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Abstract

In force sensing, optomechanics, and quantum motion experiments, it is typically advanta-

geous to create lightweight, compliant mechanical elements with the lowest possible force

noise. Here we report wafer-scale batch fabrication and characterization of nanogram-scale

mechanical Si3N4 trampoline resonators having room temperature quality factors above

4 × 107 and ringdown times exceeding �ve minutes (1 mHz linewidth). We measure a ther-

mally limited force noise sensitivity of 16.2±0.8 aN/Hz1/2 at room temperature, with a spring

constant (∼ 1 N/m) 2-5 orders of magnitude larger than those of competing technologies.

We also characterize the compatibility of these devices with a high-�nesse cavity and their

suitability for optomechanics applications, �nding no evidence of surface or bulk optical losses

from the processed nitride in a cavity achieving �nesse 40,000. These parameters provide ac-

cess to a single-photon cooperativity C0 ∼ 8 in the resolved-sideband limit, wherein a variety

of outstanding optomechanics goals become feasible.

A characteristic of optomechanical systems with high cooperativities (e.g. C0 ? 1) is, that

they respond sensitively to smallest amounts of incident light. While generally desirable, this

behavior poses certain technical challenges, most notably preventing our initial attempts to

stabilize a laser's frequency to that of the cavity using traditional feedback techniques. This

motivated developing a robust sideband laser locking technique ideally suited for applications

requiring low probe power and heterodyne readout. By feeding back to a high-bandwidth

voltage-controlled oscillator, we lock a �rst-order phase-modulation sideband to a high-�nesse

Fabry-Perot cavity in ambient conditions, achieving a closed-loop bandwidth of 3.5 MHz

(with a single integrator) limited fundamentally by the signal delay. The measured transfer

function of the closed loop agrees with a simple model based on ideal system components,

and from this we suggest a modi�ed design that should achieve a bandwidth exceeding 6 MHz

with a near-causally limited feedback gain as high as 4 × 107 at 1 kHz. The o�-resonance

optical carrier enables alignment-free heterodyne readout, alleviating the need for additional

lasers or optical modulators.
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Abrégé

Dans les domaines de la détection de force, de l'optomécanique, et des expériences de mou-

vement quantique, il est typiquement avantageux de créer des éléments mécaniques légers et

�exibles possédant un bruit de force minimal. Nous rapportons ici un procédé de fabrication

à l'échelle d'une gaufrette, où des résonateurs mécaniques de type trampoline de Si3N4 de

quelques nanogrammes sont fabriqués en lot, et la caractérisation de ces derniers montrant des

facteurs de qualité de plus de 4× 107 à température ambiante et des temps d'amortissement

dépassant cinq minutes (largeur de résonance de 1 mHz). Nous mesurons une sensibilité du

bruit de force de 16.2±0.8 aN/Hz1/2, limitée par le bruit thermique à température ambiante,

avec une raideur (∼ 1 N/m) 2-5 ordres de grandeur plus élevée que celles des technologies

concurrentes. Nous caractérisons également la compatibilité de ces dispositifs avec une cavité

haute-�nesse ainsi que leurs applications en optomécanique, ne trouvant aucune preuve de

perte optique reliée à la surface ou au volume du nitrure traité en salle blanche, dans une

cavité dont la �nesse s'élève à 40, 000. Ces paramètres donnent accès à une coopérativité à

photon-unique C0 ∼ 8 dans le régime "sideband-resolved", où une variété d'objectics courants

du domaine de l'optomécanique deviennent réalisables.

Une des caractéristiques des systèmes optomécaniques à haute coopérativité (C0 ≥ 1)

est qu'ils répondent sensiblement à de minuscules quantités de lumière incidente. Bien que

généralement souhaitable, ce comportement pose certains dé�s techniques, empêchant notam-

ment nos tentatives initiales de stabiliser la fréquence d'un laser à celle d'une cavité optique

en utilisant des techniques de rétroaction traditionnelles. Cela a motivé le développement

d'une technique robuste de rétroaction de la bande latérale d'un laser (sideband laser lock-

ing), idéale pour les applications nécessitant une faible puissance optique et une détection

hétérodyne. En renvoyant à un oscillateur contrôlé par tension électrique avec une haute

bande passante, on stabilise une bande latérale de modulation de phase de premier ordre à

une cavité Fabry-Pérot haute-�nesse dans des conditions ambiantes, atteignant une bande

passante en boucle fermée de 3.5 MHz (avec un seul intégrateur), limitée fondamentalement

par le retard du signal. La fonction de transfert mesurée en boucle fermée est en accord avec

un modèle simple basé sur un système comprenant uniquement des composantes idéales.

Nous proposons une modi�cation qui devrait permettre d'atteindre une bande passante dé-
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passant 6 MHz avec un gain de rétroaction quasiment causalement limité à 4× 107 at 1 kHz.

Le porteur optique hors resonance permet la détection hétérodyne sans alignement, enlevant

ainsi la nécessité de lasers ou de modulateurs optiques supplémentaires
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Chapter 1

Introduction & Overview

Advances in nanofabrication over the past decades have enabled the growth and patterning

of pristine materials, and the creation of mechanical sensors of extraordinary quality [3].

Cantilevers sensitive to attonewton forces1 at room temperature have been fabricated from

silicon (e.g. 50 aN/Hz1/2 [4]) and diamond (26 aN/Hz1/2 [5]) using �top-down� techniques,

while �bottom-up� fabricated devices can in principle achieve below 10 aN/Hz1/2 at room

temperature (e.g. approaching ∼ 5 aN/Hz1/2 for silicon nanowires [6] or carbon nanotubes

[7]), and 1 zN/Hz1/2 at low temperatures (nanotubes [8]). These complementary approaches

carry with them an important trade-o�: on one hand, bottom-up techniques can assemble

fewer atoms into smaller, more sensitive structures, but the technology is comparatively

young, and it is more di�cult to incorporate additional structures and/or probes. These low-

mass objects also tend to have very low spring constants (i.e. below ∼ 10 mN/m), making

them highly susceptible to van der Waals �sticking� forces at short distances. On the other

hand, top-down devices are currently not as sensitive at low temperature (e.g. ∼ 500 zN/Hz1/2

for diamond at 93 mK [5]), but are reliably fabricated, are compatible with a wide variety

of probes, and naturally integrate with other on-chip systems. Some of their remarkable

achievements to date include detection of a single electron spin [9], nanoscale clusters of

nuclei [10], persistent currents in normal metal rings [11], and the force noise associated

1The force sensitivity, here speci�ed in units of force per square root of frequency, indicates for how long
the trajectory of a mechanical resonator has to be measured, in order to resolve a force of a certain magnitude
acting on the resonator. For example, a force sensitivity of 10 aN/Hz1/2 indicates, that a measurement time
of 1 s is required in order to resolve a force of 10 aN (assuming the force acts on the mechanical resonator at
a frequency within the detection bandwidth.)
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with the quantized nature of light [12]. Further, integrating with quantum electronics and /

or optical cavities has provided (among other things) access to a regime in which quantum

e�ects play a central role in the mechanical element's motion [13, 14, 15, 16, 17, 18, 19, 20].

The control of nano- and micro-mechanical resonators by means of the electromagnetic

�eld of an optical cavity or a superconducting LC circuit is studied in the �eld of cavity op-

tomechanics [21]. Pioneering work, carried out in the context of interferometric gravitational

wave detectors (1960s), showed, that laser light incident on an oscillating mirror applies a

frictional force to the mirror and thereby damps its motion [22]. This e�ect is coined op-

tomechanical cooling, as the incident laser light e�ectively lowers the mirror's temperature

by removing phonons from its oscillatory motion. It was shown that this e�ect is strongly

enhanced for the end mirrors of a Fabry-Perot cavity, interacting with the intra-cavity �eld,

and that it can be reversed, thereby resulting in anti-damping of the mirror's motion [22].

More recently cavity optomechanics has found widespread interest since it provides a means

of controlling the motion of nano- and micro-mechanical resonators, down to the quantum

level. For example, exploiting optomechanical cooling in conjunction with conventional re-

frigeration techniques has enabled cooling of a (MHz to GHz) mechanical resonator into its

quantum ground state of motion [14, 15] and, more recently, to [23], and beyond [24] the

quantum back action limit. At this point, the resonator's base temperature is fundamen-

tally limited by quantum noise in the cooling laser �eld. Other milestone experiments have

shown, that optomechanics can be exploited to generate optomechanically induced trans-

parency [25, 26], to provide a coherent interface for the conversion between photons of vastly

di�erent frequencies, e.g. optical to optical [27, 28], optical to microwave [29, 30] or optical to

radio-frequency [31], to create squeezed states of light [32, 33] or mechanical motion [34], and

to establish non-reciprocal transport of mechanical energy [35] or light [36]. Furthermore,

integrating optomechanical systems with quantum systems, such as an atomic ensemble, pro-

vides additional quantum-compatible means to manipulate the mechanical resonator. This

approach has enabled, e.g., enhanced cooling of a nanomechanical resonator, beyond what

is possible with conventional optomechanical sideband cooling alone [37], and back-action-

evading measurement of its motion [38].
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Figure 1.1: Optomechanical �membrane-in-the-middle� (MIM) setup with trampoline res-
onator. (a) A silicon nitride (Si3N4) trampoline resonator is incorporated close to the center
of a Fabry-Perot cavity, formed by two mirrors facing each other. The trampoline comprises
a central pad which is suspended by four tethers from a silicon (Si) substrate. The setup
is probed by a laser. (Image courtesy of Jack Sankey) (b, upper) Photo of fabricated Si3N4

trampoline resonator with a window size of w = 3 mm, a central pad width of d = 100µm,
and four tethers, each with width of a = 2.1µm (released nitride appears pale yellow and ni-
tride on silicon appears blue, due to optical interference). (b, lower) Schematic of trampoline
chip's anisotropically etched cross section with Si3N4 device layer thickness of 80 nm.

This dissertation deals with the construction and characterization of an optomechanical

setup in which a pristine mechanical force sensor is incorporated close to the center of a

Fabry-Perot cavity. A schematic of the setup is shown in Fig. 1.1(a), where the cavity is

formed by two mirrors facing each other and a silicon nitride (Si3N4) �trampoline resonator�

resembles the mechanical sensor. The trampoline can be seen as a square membrane from

which four identical triangularly-shaped areas are cut-out, thereby creating a central pad

which is suspended by four tethers from a silicon (Si) chip. The �lleted shapes in the cen-

ter and at the outer corners help to reduce mechanical dissipation by eliminating regions

of highly concentrated stress, thereby allowing us to achieve extraordinarily low force noise

sensitivity. Figure. 1.1(b, upper) shows a photo of a Si3N4 trampoline resonator, fabricated

and characterized in the course of this dissertation (released nitride appears pale yellow and

nitride on silicon appears blue, as a consequence of optical interference). Its dimensions are

given by window size w = 3 mm, central pad width d = 100µm, and tether width a = 2.1µm.
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Figure 1.1(b, lower) shows a schematic of the trampoline chip's cross section. The angled

sidewalls of the silicon chip (gray) and the knife edge in the middle of the chip are conse-

quences of an anisotropic, silicon etch (by means of potassium hydroxide) from the bottom

and top side of the chip. This device [1], together with Ref. [39] (submitted simultaneously),

consistently achieve an intrinsic force noise below 20 aN/Hz1/2 at room temperature (293 K).

Our measured value 16.2 ± 0.8 aN/Hz1/2 is similar to what is in principle possible using a

single layer of graphene [40] and represents the highest force sensitivity (to our knowledge)

for �top-down� batch-fabricated mechanical sensors. Furthermore, this low noise is accom-

panied by spring constants ∼1N/m that are ∼2− 5 orders of magnitude higher than those

of competing devices [3, 4, 5, 6, 7, 40], and the ∼ 100 × 100 µm2 surface area is compatible

with the incorporation of additional structures [1, 39].

Our setup (see Fig. 1.1(a)) resembles a variation of the �membrane-in-the-middle� (MIM)

geometry, in which, �most commonly�, instead of a trampoline resonator an extended mem-

brane is installed close to the cavity center. After its introduction in 2008 [41], this setup

was quickly adopted by other research groups and has since produced a variety of impres-

sive results in the �eld [12, 30, 33, 35, 37, 38, 42, 43]. The membrane resonator employed

in these studies is made out of silicon nitride, most commonly Si3N4, due to the material's

exceptionally-low mechanical and optical dissipation [42, 43]. State of the art MIM experi-

ments rely on further decreasing mechanical dissipation in the membrane, on the one hand

by operating the experiments at cryogenic temperatures [44, 45] and on the other hand by

fabricating membrane resonator's with optimized design [46, 47, 48]. Besides of reducing

mechanical dissipation, an additional objective for fabricating speci�cally-tailored devices

has been to increase the optomechanical coupling strength, e.g. by increasing the resonator's

re�ectivity (the fraction of incident light that is re�ected) and/or its mechanical compliance

[1, 39, 49, 50, 51, 52, 53, 54, 55, 56]. The former can be achieved by depositing a dielectric

mirror coating onto the mechanical element [49, 50, 51]. Since this approach comes at the

expense of increased resonator mass (and dissipation, due to the extra layers), an alternative

method has been object to recent studies; patterning a photonic crystal in the form of a

periodic array of either holes or stripes into the membrane [39, 52, 53, 54, 55, 56] furnishes

it with optical resonances that strongly increase its re�ectivity. The second objective, of en-
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hancing the resonator's mechanical compliance, requires adjusting its geometry in a way that

reduces its weight and/or its mechanical resonance frequency. These considerations resulted

in (among others) the trampoline geometry [51] discussed in this dissertation (see Fig. 1.1).

Creating increasingly optimized device geometries is an ongoing endeavor in the �eld and

has recently lead to a new class of devices in which the mechanical resonator is formed by

a geometrical defect in a periodically patterned Si3N4 membrane [57]. The defect is located

in the center of the membrane and the surrounding periodic pattern (forming a phononic

crystal) isolates it from mechanical dissipation channels. The result is an unprecedented de-

gree of suppressed mechanical dissipation and promising prospects for cooling a mechanical

resonator into its ground state of motion without cryogenicially pre-cooling it (together with

Ref. [39]).

Beam-
splitterLaser

Feedback
Electronics

Photodiode

Input
Mirror

Backstop
Mirror

Trampoline

Phase
Modulator 

Vacuum
Chamber

Figure 1.2: Schematic of experimental �membrane-in-the-middle� (MIM) setup. (a) Laser
light is phase modulated and coupled to an optical cavity, formed by an input mirror and a
backstop mirror, with trampoline resonator incorporated close to its center. The MIM cavity
is installed into a vacuum chamber. Upon interaction with the MIM setup, the laser light is
routed by a beam splitter towards a photodiode. Processing the detected signal with analog
electronics and feeding it back to the phase modulator enables frequency stabilization of the
incident laser with respect to the cavity resonance.

Ultimately, we wish to position a trampoline within a high �nesse optical cavity and con-

trol its motion with laser light. For these sensitive systems, one cannot simply set the laser

to the cavity frequency with a knob, however. In practice, ambient mechanical noise of the

cavity and classical noise of the laser prevent the laser from remaining at a �xed frequency
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relative to the cavity resonance, and so one must stabilize them with respect to one another.

Figure 1.2 shows a basic schematic of our desired setup; an incident laser beam (at telecom

wavelength 1550 nm) is phase modulated, passes through a beam splitter and is coupled

to a MIM cavity, formed by an input mirror, a backstop mirror, and a Si3N4 trampoline

resonator installed in the cavity center. The MIM cavity is situated in a vacuum chamber to

prevent collisions with surrounding air molecules from diminishing the trampoline's mechan-

ical performance. The light re�ected from the cavity, comprising the portions leaving the

cavity and the one promptly re�ected from the input mirror, is routed by a beamsplitter to

a photodiode. The detected signal is processed by analog feedback electronics and applied to

the phase modulator. Here the phase modulator is used to dither the light, probing the dif-

ference in frequency between the laser and the cavity. In the traditional Pound-Drever-Hall

technique [58], this information is sent back to the laser frequency or the cavity length, but

for our highly sensitive systems, this type of feedback cannot su�ciently stabilize the laser to

prevent mechanical instabilities driven by �uctuations. Hence, we have developed a modi�ed

Pound-Drever-Hall setup, where instead of the laser carrier a �rst-order phase modulation

sideband is locked to the cavity resonance [2].

The structure of this dissertation is as follows: In Chapter 2 we introduce the formal

framework to describe the experimental results presented in subsequent chapters. Here we

introduce the theory to express the thermally-limited force sensitivity of a mechanical sensor

and provide a model for the optical resonances of a Fabry-Perot cavity with incorporated

trampoline resonator. To illustrate optomechanical coupling between the intra-cavity �eld

and the trampoline's motion, we give expressions for the radiation force acting on the tram-

poline resonator and the corresponding optical spring constant. In anticipation of future

optomechanics experiments with our setup, we outline the theory of optomechanical side-

band cooling and brie�y discuss its quantum limits, for a cooling laser beam described by a

coherent state of light.

In Chapter 3 we discuss the fabrication and mechanical characterization of high-aspect-

ratio, nanogram-scale Si3N4 �trampoline� resonators. We give details of the trampoline's

wafer-scale batch fabrication procedure and discuss its geometrical features. To characterize

mechanical resonances of the fabricated structures, we measure their motion in a Fabry-Perot
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�ber interferometer. We describe this setup and perform an optical analysis to calibrate the

trampolines' displacement amplitude. We identify mechanical resonances with frequencies in

the range of 40−570 kHz and mechanical ringdown times up to∼ 6 minutes (1 mHz linewidth)

at room temperature (corresponding to a mechanical quality factor up to ∼ 5 × 107). By

investigating the trampoline's thermally driven motion we measure a force sensitivity of

SF = 16.2 ± 0.8 aN/Hz1/2. Finally, in a �rst step of integrating our devices in a compact

cryogenic �ber cavity setup (performed by our collaborators from the Harris Lab at Yale

University), we investigate how gluing a trampoline chip (at three spots) to a metal mount

a�ects Qm. With the result of a modest decrease by 13 %.

In Chapter 4 we describe the construction of the vacuum MIM setup and its optical

characterization. To demonstrate the trampoline's suitability for sensitive interferometric

readout and optomechanics applications we position an extended membrane (fabricated by

the same means) within the cavity of �nesse 20, 000, �nding no evidence of additional bulk or

surface optical losses from the processed nitride at telecom wavelength (1550 nm), consistent

with literature [59, 43]. In fact, for certain membrane positions, the cavity �nesse is increased

to 40,000, as expected for a lossless dielectric slab in a single-port cavity. Finally, to set an

approximate upper bound on the size of the cavity �eld required for high-�nesse applications,

we position a trampoline in a cavity �eld wide enough that 0.045% of the light falls outside

the structure. Consistent with recent simulations [60], we �nd that the majority of this

�clipped� light is in many cases recovered by the cavity.

In Chapter 5, motivated by challenges encountered in initial attempts of locking our tram-

poline MIM cavity, we present the development and characterization of a simple, low-power,

high-bandwidth, post-emission laser locking technique with built-in heterodyne readout. Our

setup is based on the Pound-Drever-Hall technique [58] and employs a voltage controlled oscil-

lator in combination with a phase modulator as frequency actuator, thereby enabling locking

of a �rst order phase modulation sideband to the cavity resonance. After outlining basic

feedback theory we brie�y describe our technique and the resulting dynamic response of the

feedback loop. We then present the experimental apparatus and discuss measurements of its

closed-loop transfer function and noise spectrum.
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Chapter 2

Theoretical Concepts

Statement of contribution: Vincent Dumont provided Eq. 2.79 and contributed to Sec. 2.2.6

with discussions.

At the heart of this dissertation lies a Fabry-Perot cavity with incorporated mechanical

membrane resonator. Our eventual goal is to conduct experiments in which the membrane's

motion is strongly controlled by the light in the cavity; hereby, our central concerns are

the mechanical resonator's decoupling from the thermal environment (a source of noise and

decoherence), and the optomechanical coupling strength. In the following, we outline the

theoretical concepts employed throughout the later chapters to characterize the mechanical

and optical properties of this setup.

In Sec. 2.1 we introduce the model of a one-dimensional damped harmonic oscillator,

which is driven by the thermal excitations in its environment. While in reality we are dealing

with an essentially two-dimensional mechanical membrane resonator in our experiment, this

one-dimensional model is a useful tool in describing the behavior of a single normal mode.

In Sec. 2.2 we focus on the optical characterization of, �rst, a Fabry-Perot (FP) cavity, and,

second, the combined setup of a FP cavity with incorporated mechanical membrane resonator.

We apply a transfer matrix model to describe the propagation of an optical �eld in these

systems, which enables to understand their optical resonances. With regard to possible

optomechanics experiments with our system, we brie�y discuss the steady state optical force,

with resulting spring constant acting on the incorporated membrane, and summarize key
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aspects of optically damping (laser cooling) the membrane's motion by means of the intra-

cavity light �eld.

2.1 One-Dimensional Harmonic Oscillator

Here we discuss a harmonic oscillator which is dissipatively coupled to its thermal environ-

ment. To maintain thermal equilibrium, this coupling provides a means for the thermal

environment to randomly inject energy, which can be modeled as stochastic "thermal force

noise" exerted upon the oscillator [61, 62]. This imposes a fundamental limit on the oscil-

lator's sensitivity to external forces. Of particular interest to this work are two kinds of

dissipative coupling; the �rst one is �gas damping�, which describes energy loss due to the

resonator's interaction with surrounding gas molecules, and the second one is �structural

damping�, wherein the oscillator's motion transfers mechanical energy to internal degrees of

freedom. In Sec. 3.3.1, we provide evidence that the dissipation of our resonators is in�uenced

by both. As these two mechanisms are characterized by a di�erent frequency dependency of

the oscillator's response to a force acting on it (see Sec. 2.1.2.2), one could in principle mea-

sure this dependency to discern between the two damping mechanisms. Such an investigation

was recently presented by another research group [63]. To achieve a measurement sensitiv-

ity su�cient to resolve the di�erence between the aforementioned damping mechanisms, the

experiment presented in Ref. [63] relied on interferometrically measuring the mechanical res-

onator's position by means of an optical cavity (see Sec. 2.2.2). The sensitivity provided by

our comparatively simple measurement setup (see Sec. 3.2) is not su�cient to resolve the

di�erence between structural damping and gas damping.

In Sec. 2.1.1 we brie�y review the harmonic oscillator's equation of motion and its

transient solution with characteristic ring-down time and corresponding quality factor. In

Sec. 2.1.2 we discuss the stationary solution of the thermally driven harmonic oscillator and

derive the magnitude of the thermal force noise and displacement power spectral densities

relevant to this work.
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2.1.1 Simple Harmonic Oscillator Model and De�nitions

The equations of motion for a harmonic oscillator of mass m and frequency Ωm for the cases

of gas damping and structural damping are given by [62]

mẍ+mΓmẋ+mΩ2
mx = Fth (gas damping) (2.1)

mẍ+mΩ2
m [1 + iΦm]x = Fth (structural damping), (2.2)

where x = x(t) is the displacement from equilibrium, Γm (Φm) is the gas damping rate

(structural "loss angle"), and Fth = Fth(t) is the �uctuating thermal force. The latter is an

inevitable consequence of the presence of damping in the equation of motion, as required to

maintain the equipartition theorem (with thermal energy of 1/2kBT per degree of freedom) in

thermal equilibrium. The gas damping model introduces dissipation by means of a velocity-

dependent frictional force. In the case of structural damping, energy loss results from a

phase lag, commonly referred to as loss angle [64, 62], between restoring force and oscillator's

displacement.

We get the transient solutions (Fth = 0) to the above given equations of motion (Eqs. 2.1-

2.2), by plugging in a test function of the form x(t) = x0 exp (iAt). The resulting trajectories

are given by the real part of

x(t) =

x0e
i
√

Ω2
m−Γ2

m/4 t−Γmt/2 ≈ x0e
iΩmte−Γmt/2 (gas damping)

x0e
iΩm
√

1+iΦm t ≈ x0e
iΩmte−ΩmΦmt/2 (structural damping).

(2.3)

The approximation applies in the case of a signi�cantly underdamped oscillator (Γm � Ωm ,

Φm � 1), which is the case for the mechanical resonators studied throughout this disserta-

tion. By de�ning the mechanical ring-down time

τm =

2/Γm (gas damping)

2/ (ΩmΦm) (structural damping),

(2.4)

both of the approximated solutions (Eq. 2.3) can be expressed as
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x(t) = x0e
−t/τm cos (Ωmt) . (2.5)

The transient solution (Eq. 2.3) describes the response of the oscillator when an external

driving force is instantaneously switched o�. Then the oscillator's performs an exponential

decay.

A commonly employed �gure of merit for the isolation of a mechanical oscillator from its

thermal environment, is the mechanical quality factor, de�ned as [65]

Qm ≡ 2π
Um

∆Um
. (2.6)

Here Um is the average energy per cycle of oscillation stored in the oscillator and ∆Um is the

energy lost per cycle of oscillation. The total energy of a harmonic oscillator is given by the

sum of kinetic and potential energy

Em =
1

2
mẋ2 +

1

2
mΩ2

mx
2. (2.7)

Plugging in the transient solution (Eq. 2.3) in the previous expression and averaging over

one cycle of oscillation (for which the amplitude decay is negligible) gives

Um =
1

2
mΩ2

mx
2
0. (2.8)

The dissipated energy per cycle of oscillation is equivalent to the work done by the damping

force Fdamp during one cycle of oscillation:

∆Um =

˛
dxFdamp =

ˆ 2π/Ωm

0

dtẋFdamp. (2.9)

Substituting the gas damping force (Eq. 2.1, 2nd term) together with the transient solution

(Eq. 2.3) yields the energy lost per cycle of oscillation in the case of gas damping1

∆Ugas
m =mΓm

ˆ 2π/Ωm

0

dt [Re (ẋ)]2 = mΓmΩ2
mx

2
0

ˆ 2π/Ωm

0

dt sin2 (Ωmt) = 2π
Γm
Ωm

Um

1Since we assume low dissipation, e.g. Γm � Ωm, Φm � 1, the amplitude decay in Eq. 2.3 is negligible

during one cycle of oscillation. Furthermore we make use of
´ 2π/Ωm

0
dt sin2 (Ωmt) = π/Ωm.
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and similarly for the structural damping force (Eq. 2.2, 2nd term) we have

∆U structural
m =mΩ2

mΦm

ˆ 2π/Ωm

0

dtRe (ẋ) Re (ix) = mΩ3
mΦmx

2
0

ˆ 2π/Ωm

0

dt sin2 (Ωmt) = 2πΦmUm.

Together with Eq. 2.6 and Eq. 2.8) follows

Qm =

Ωm/Γm (gas damping)

1/Φm (structural damping).

(2.10)

By substituting Eq. 2.4 we have the common expression

Qm = Ωmτm/2, (2.11)

which, regardless of the particular damping mechanism, relates the mechanical quality factor

to the oscillator's resonance frequency and ring-down time.

2.1.2 Thermal Noise

In this section we discuss the stationary solution as the oscillator's response to the random

thermal driving force from the environment. The environment typically can be modeled as

a large reservoir of degrees of freedom, which, due to their coupling to the oscillator, provide

energy loss channels [66]. This reservoir is characterized by a broad energy distribution,

whereby its density of states depends on the nature of its constituents (we will see that there

is a di�erence, e.g., between internal degrees of freedom and those provided by surrounding

gas molecules). The degrees of freedom in the reservoir are themselves in thermal equilib-

rium (i.e. randomly gyrating), thereby exerting a random �thermal force� on the oscillator,

which drives it to thermal equilibrium [62]. This phenomenon is known as thermal noise or

Brownian motion, where the latter terminology is motivated by similarities to the random

motion of microscopic particles in a �uid [67]. Due to the large number of degrees of free-

dom in the thermal environment, the time-dependent noise-driven motion of the oscillator is

characterized by a time-dependent amplitude.

In Sec. 2.1.2.1 we introduce the power spectral density (PSD) as commonly employed
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means to describe the frequency spectrum of a time-dependent noisy signal, and discuss

some of its properties. In Sec. 2.1.2.2 we present a description of a thermally driven harmonic

oscillator in terms of PSDs. Hereby, we derive the displacement and force noise PSDs for the

cases of structural and gas damping (see also Sec. 2.1.1).

2.1.2.1 Power Spectral Density Basics

We closely follow [66] to introduce a few key concepts for the spectral analysis of a clas-

sical signal. The signal is assumed to be stationary so that its statistical properties are

time-independent, in the sense that sampling the signal �long enough� (clari�ed below) at

di�erent times will reveal the same statistical properties (e.g., mean value). A commonly-

used expression for the spectrum or �frequency content� of a continuous signal x(t) is the

power spectral density (PSD), which is a measure for the amount of power carried by a cer-

tain frequency range of the signal. The PSD Sxx(ω) is de�ned by means of the windowed

Fourier transform

xT (ω) ≡ 1√
T

ˆ T/2

−T/2
dte−iωtx(t). (2.12)

as

Sxx(ω) : = lim
T→∞

|xT (ω)|2

= lim
T→∞

1

T

ˆ T/2

−T/2
dte−iωtx(t)

ˆ T/2

−T/2
dt′eiωt

′
x∗(t′), (2.13)

where T is the time over which the signal is measured (obtaining a reliable estimate of Sxx(ω)

experimentally requires an ensemble average over many individual observations). Practically,

the limit T → ∞ can be expressed as T � τc, with τc being a characteristic time scale on

which x(t) changes. In the case of a harmonic oscillator coupled to a classical thermal bath,

τc is represented by the mechanical ring-down time τm (Sec. 2.1.1), as this is the time it

takes to reach steady state when conditions change.. The normalization factor 1/
√
T of the

windowed Fourier transform assures that xT (ω) becomes independent of T for T � τc. This

basically says that the power associated with the signal is quadratic in its magnitude, as is

the case, e.g., for a harmonic oscillator (Sec. 2.1.1).
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In the following we employ the Fourier transform (denoted by operator F ) and its inverse

[66]

F [x(t)] =x(ω) =

ˆ ∞
−∞

dt e−iωtx(t) (2.14)

F−1 [x(ω)] =x(t) =

ˆ ∞
−∞

dω

2π
eiωtx(ω)

to realize an alternative expression of the PSD; the inverse Fourier transform of Eq. 2.13

gives (where we drop the ensemble average for simplicity)

ˆ ∞
−∞

dω

2π
Sxx(ω)eiωτ = lim

T→∞

1

T

ˆ T/2

−T/2
dt

ˆ T/2

−T/2
dt′x(t)x∗(t′)

ˆ ∞
−∞

dω

2π
e−iω(t−t′−τ)

= lim
T→∞

1

T

ˆ T/2

−T/2
dt

ˆ T/2

−T/2
dt′x(t)x∗(t′)δ(t− t′ − τ)

= lim
T→∞

1

T

ˆ T/2

−T/2
dt x(t)x∗(t− τ)

≡ 〈x(t)x∗(t− τ)〉 ,

where we have made use of a de�nition of the delta function δ(t−t′−τ) and the autocorrelation

function 〈x(t)x∗(t− τ)〉 with time average denoted by 〈...〉 [68]. Fourier transforming both

sides of the previous expression results in the Wiener-Khinchin theorem [66]

Sxx(ω) =

ˆ ∞
−∞

dτ e−iωτ 〈x(t)x∗(t− τ)〉 , (2.15)

which says that the PSD of a signal is given by the Fourier transform of its autcorrelation

function. The special case τ = 0 yields Parseval's theorem

〈
|x(t)|2

〉
=

ˆ ∞
−∞

dω

2π
Sxx, (2.16)

which relates the mean square of the signal to the area under the PSD.

The PSD Sxx (ω), as de�ned above, is commonly referred to as �double-sided� PSD which

highlights the fact that it distributes the signal content over positive and negative ω. For clas-

sical signals (i.e. not complex, such as cos(ωt) = (eiωt + e−iωt) /2) however, this distribution
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is symmetric with respect to ω = 0

Sxx(−ω) = Sxx(ω), (2.17)

motivating the de�nition of the single-sided PSD

Sx(ω) ≡ 2Sxx(ω), (2.18)

which is de�ned only for positive frequencies, with a corresponding Parseval relationship

〈
|x(t)|2

〉
=

ˆ ∞
0

dω

2π
Sx. (2.19)

2.1.2.2 Thermal Noise Power Spectral Density

In the following we apply the concepts presented in Sec. 2.1.2.1 to express the stationary

solution of a thermally-driven harmonic oscillator in terms of power spectral densities (PSDs).

Performing a Fourier transform (Eq. 2.14) on the oscillator's equations of motion (Eqs. 2.1-

2.2) gives2

m
[(

Ω2
m − ω2

)
+ iΓmω

]
x(ω) = Fth(ω) (gas damping)

m
[(

Ω2
m − ω2

)
+ iΦmΩ2

m

]
x(ω) = Fth(ω) (structural damping)

The frequency-dependent oscillator response, the mechanical susceptibility χm(ω), is de�ned

as

x(ω) ≡ χm(ω)Fth(ω) (2.20)

χm(ω) =

m
−1 [(Ω2

m − ω2) + iΓmω]
−1

(gas damping)

m−1 [(Ω2
m − ω2) + iΦmΩ2

m]
−1

(structural damping)

(2.21)

From this, combined with the displacement PSD (Eq. 2.13) and the de�nition of a single-sided

2Making use of F
[
dn

dtnx(t)
]

= (iω)
n
x(ω)
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spectrum (Eq. 2.18), it follows that

Sx(ω) = |χm(ω)|2 SF (ω), (2.22)

where SF (ω) is the single-sided force noise PSD. For the system under consideration, the

general expression for the thermal force noise PSD is given by [61]

SF (ω) =
4kBT

ω
Im
[
χ−1
m (ω)

]
. (2.23)

Then, applying linear time-dependent perturbation theory gives the previous expression.

With the above given susceptibilities (Eq. 2.21) follows

SF (ω) =

4mkBTΓm (gas damping)

4mkBTΦmΩ2
m/ω (structural damping)

(2.24)

and with Eq. 2.22 we �nd the oscillator's response to the external drive

Sx (ω) =



4kBTΓm

m
[
(Ω2

m − ω2)2 + Γ2
mω

2
] (gas damping)

4kBTΦmΩ2
m

mΩ
[
(Ω2

m − ω2)2 + Φ2
mΩ4

m

] (structural damping)

(2.25)

In the case of low dissipation (Γm � Ωm , Φm � 1) and frequencies close to the resonance

(ω ≈ Ωm), both of the previous expressions can be approximated by a �Lorentzian�

Sx (Ω) ≈ 2τmkBT

mΩ2
m

[
1 + (ω − Ωm)2 τ 2

m

] , (2.26)

were we have made use of expressions 2.4 to substitute Γm and Φm by τm. In a similar

fashion, for (ω ≈ Ωm), we can approximate both expressions 2.24 by

SF = 8mkBT/τm. (2.27)

16



Figure 2.1 shows a plot of the three di�erent expressions given for Sx (ω) (Eqs. 2.25-

2.26) (plot parameters Ωm = 41.36 kHz, m = 2.3 ng, τm = 285 s, Γm = 7 mHz, Φm =

2.7 × 10−8, corresponding to a typical trampoline device discussed in Chapters 3-4). The

blue curve corresponds to gas damping, the red curve describes structural damping and the

approximated PSD is plotted in green. In vicinity of a few kHz around Ωm/2π, the curves

are indistinguishable on the plotted scale. Outside this range clear deviations are apparent;

The structural model, due to a thermal driving force ∝ 1/ω (Eq. 2.24), goes to in�nity for

ω → 0 (may be seen as an indication that the model is not applicable in that range). In

contrast, the gas damping model converges to a constant value, as a consequence of the

frequency-independent (�white�) force noise (Eq. 2.24). For ω → ∞ the parameters within

both models go to 0, where, by the same reasoning as for ω → 0, the structural model decays

faster than the gas damping model. The approximated PSD becomes meaningless further

away from resonance.

Figure 2.1: Displacement power spectral densities of a thermally driven harmonic oscillator
with structural damping (blue) or velocity damping (red) (Eq. 2.25, upper and lower).
The green curve represents a Lorentzian approximation (Eq. 2.26) valid for both models
in the case of low dissipation (Γm � Ωm , Φm � 1) and frequencies close to the resonance
(ω ≈ Ωm). The plot parameters are Ωm = 41.36 kHz, m = 2.3 ng, τm = 285 s, Γm = 7 mHz,
and Φm = 2.7× 10−8.

For the approximate case, we can provide a sanity-check for this solution by applying

Parseval's theorem (Eq. 2.19) to expression 2.26 to obtain the mean square amplitude of the
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thermally excited oscillator. By substituting

y = (ω − Ωm)τm dω =
dy

τm
(2.28)

we have

〈
x2(t)

〉
=

ˆ ∞
0

dω

2π
Sx =

2kBT

mΩ2
m

1

2π

ˆ ∞
−Ωmτm

dy
1

y2 + 1

=
kBT

mΩ2
m

1

π
arctan(y)

∣∣∣∞
−Ωmτm

=
kbT

mΩ2
m

.

This result is in agreement with the equipartition theorem [69]

〈
x
∂H

∂x

〉
=
〈
mΩ2

mx
2(t)
〉

= kbT, (2.29)

where we have substituted the system's Hamiltonian H by the oscillator's total energy (2.7).

The root mean square (rms) displacement is then

xrms =

√
kbT

mΩ2
m

, (2.30)

which represents the average amplitude of oscillation for a thermally driven harmonic os-

cillator with either gas damping or structural damping (in the latter case a small enough

bandwidth of observation is required so that the peak around Ωm (see Fig. 2.1) provides the

main power of the signal). This result equally applies when considering the oscillation of a

three-dimensional object along one spatial direction, i.e. when considering a single degree of

freedom, as is the case in the experimental studies of our fabricated mechanical resonators

(see Sec. 3.3.1).
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2.2 Optical Resonances of Fabry-Perot Cavity

with Incorporated Membrane

Throughout this thesis we employ di�erent kinds of optical interferometers such as free-space

Fabry-Perot cavities, with or without incorporated membrane, and a �ber interferometer.

These setups are probed by a monochromatic laser beam with Gaussian intensity pro�le at

near infrared wavelength λ = 1550 nm. Here we provide a one-dimensional plane wave de-

scription of this interaction in which the electromagnetic �eld only depends on the location

along its direction of propagation and is uniform in the lateral directions. This simpli�ed

treatment enables fundamental insight in the underlying interference phenomena, and pro-

vides quantitative models for observables, such as the system's optical resonance frequencies,

re�ected, transmitted, and internal optical �elds, and the storage time of the light inside

the system. Mathematically, the combined system (comprising an input mirror, free space,

a membrane / trampoline, free space, and a second mirror) can be described by a trans-

fer matrix [70] (or similarly a characteristic matrix [71]), and the optical �eld propagating

through the system can be expressed in terms of the transfer matrix elements and the in-

cident �eld(s). In Sec. 2.2.1 we pedagogically review basic properties of electromagnetic

waves (following Ref. [72]) and introduce elementary transfer matrices describing propaga-

tion through a homogenous medium (i.e., free space or a dielectric), an interface between

two dielectrics, a freestanding dielectric membrane (e.g., a trampoline), and a distributed

Bragg re�ector (DBR). In Sec. 2.2.2 we apply the transfer matrix method to a Fabry-Perot

cavity, consisting of two DBRs and an intermediate air/vacuum layer, to derive expressions

for the resonance frequency spectrum, re�ected, transmitted, and circulating optical �elds,

and the cavity �nesse (unitless quantity proportional to storage time of light inside cavity).

We discuss how the intra-cavity �eld gives rise to a mechanical force acting on the mirrors.

Thereby, we introduce the concept of linear optomechanical coupling. Sec. 2.2.3 is similar

to Sec. 2.2.2 but for a Fabry-Perot cavity with incorporated membrane. In Sec. 2.2.4 we

examine the steady state optical force acting on the membrane inside the cavity and the

optical spring e�ect resulting from positioning the membrane at a �eld antinode (in a lat-

ter chapter (Sec. 4.3) we investigate the prospects for exploiting this e�ect to increase the
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mechanical quality factor of our trampoline resonator's (see Sec. 3.1.1)). In Sec. 2.2.5 we

brie�y discuss how the optical resonance's dependence on the membrane displacement along

the cavity axis gives rise to linear and quadratic optomechanical coupling. With regard to

studying the quantum motion of one of our trampolines in a future experiment, in Sec. 2.2.6

we outline the method of cavity-assisted laser cooling and its quantum limits. Hereby we

identify the single photon cooperativity as a �gure of merit for controlling the membrane's

trajectory with small amounts of light (which is ∼ 10 in our system, as presented in a later

chapter (Sec. 4.2.2)).

2.2.1 Optical Transfer Matrix Method

An optical transfer matrix (TM) represents a component of a strati�ed optical medium, such

as an interface or an individual layer, and relates the optical �elds on the left and right

side of the component to each other. The �eld at any location xi in the strati�ed medium

constitutes a right traveling wave and a left traveling wave3 with �eld amplitudes Ai and Bi

and wavenumber k, such that the total (complex) �eld is given by

E (xi) = Aie
ikxi +Bie

−ikxi . (2.31)

The propagation is taken to be along the direction of strati�cation, which is set as the x-

direction. In the above given expression we omitted the time dependency; the real electric

�eld at location x and time t is given by Re [E (x) e−iωt]. The wavenumber k is related to the

optical angular frequency ω by the dispersion relation ω = ck, where c is the speed of light.

Both c and k depend on the refractive index n of the medium in which the light propagates;

if c0 and k0 are the values in vacuum, then inside the medium they are given by c = c0/n and

k = nk0 (in general n is complex valued, where the imaginary part describes optical loss).

The corresponding dispersion relation ω = ck = c0k0 highlights that it is the frequency that

remains constant for the waves propagating in di�erent media (as long as n is independent

3For a monochromatic plane wave given by Re
[
E0e

±ikx−iωt] its direction of propagation becomes evident
from tracking a wave front, which is a plane of constant phase. For propagation by distance ∆x in time
interval ∆t, the constant phase requires ±kx − kct = ±kx ± k∆x − kct − kc∆t and therefore ∆x = ±c∆t,
where the plus (minus) sign corresponds to a right (left) traveling wave.

20



of E). The wavenumber is related to the wavelength by k = n2π/λ.

Let us consider the propagation of light described by Eq. 2.31 in a uniform medium. A

schematic of this situation is shown in Table 2.1(a), where the �eld at location x1 is given by

E1 = A1e
ikx1 +B1e

−ikx1 . (2.32)

and the �eld at location x2 = x1 + ∆x is given by

E2 =A1e
ikx2 +B1e

−ikx2

=A1e
ik(x1+∆x) +B1e

−ik(x1+∆x)

=:A2e
ikx1 +B2e

−ikx1 .

The relation between the �eld amplitudes at x1 and x2 is given by

A2 =A1e
ik∆x

B2 =B1e
−ik∆x,

and written in a TM representation A2

B2

 =

 eik∆x 0

0 e−ik∆x

 A1

B1

 . (2.33)

We now consider a more general case, where the outgoing �elds (B1, A2) are a linear

superposition of the incoming �elds (A1, B2):

B1 =r12A1 + t21B2 (2.34)

A2 =t12A1 + r21B2, (2.35)

with directional re�ection and transmission coe�cients r12, r21 and t12, t21. In the case

of lossless propagation, energy conservation requires (see Appendix A.4) |A1|2 + |B2|2 =
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|B1|2 + |A2|2, which, together with Eqs. 2.34-2.35, results in the conditions

|r12|2 + |t12|2 = |r21|2 + |t21|2 = 1 (2.36)

r12t
∗
21 =− t12r

∗
21. (2.37)

The �rst expression represents conservation of optical energy. The second relation constraints

the phase relation between the re�ection and transmission coe�cients. We convert Eqs. 2.34-

2.35 into a TM representation by solving the �rst equation for B2 and replacing B2 in the

second equation by this expression, resulting in A2

B2

 = t−1
21

 t21t12 − r21r12 r21

−r12 1

 A1

B1

 . (2.38)

A1

B1

A2

B2

Δx

Propagation(a)

n

A1

B1

A2

B2

n1 n2

Interface(b)

A1

B1

A2

B2

d

n

Slab(c)

A1

B1

A2

B2

DBR(d)

(
eik0n∆x 0

0 e−ik0n∆x

)
t−1
21

(
1 −r12

−r12 1

)
t−1
d

(
−ei2φr |rd|
− |rd| 1

)
−it−1

(
−1 −r
r 1

)

Table 2.1: Transfer matrices for optical plane wave propagation in a strati�ed medium. (a)
Propagation of length ∆x in a homogeneous medium with refractive index n. (b) Propagation
through the interface between two dielectric media with Fresnel coe�cients r12, t21 (Eqs. 2.39-
2.40) depending on refractive indices n1 and n2. (c) Propagation through a dielectric slab
(thickness d, refractive index n) with re�ection (transmission) coe�cient rd (td) (Eqs. 2.41-
2.42), which is surrounded by air/vacuum (refractive index 1). Re�ection coe�cient is written
in terms of amplitude and phase rd = |rd| eiφr . (d) Propagation through a distributed Bragg
re�ector (DBR) with transmission (t) and re�ection (r) coe�cients (both assumed real and
positive for convenience; see Appendix A.2 for details).

In the following, we discuss a few special cases of the general TM (Eq. 2.38), which will

be applied in later chapters. We start with the basic example of an interface formed by

two dielectric media with refractive indices n1, n2. A schematic of this situation is shown in
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Table 2.1(b). Here, re�ection and transmission coe�cients are given by Fresnel coe�cients

[71]

rab =
na − nb
na + nb

(2.39)

tab =
2na

na + nb
, (2.40)

with (a, b) ∈ {(1, 2) , (2, 1)}. For these coe�cients t21t12 − r21r12 = 1, so that only the o�-

diagonal matrix elements in Eq. 2.38 are di�erent from 1, resulting in the interface TM given

in Table 2.1(3rd row, 2nd column).

Another special case of Eq. 2.38 describes the situation of a freestanding dielectric slab

surrounded by air/vacuum. A corresponding schematic is shown in Table 2.1(c) where a

dielectric slab with thickness d and refractive index n is surrounded by air/vacuum with

refractive index 1. The symmetry of this con�guration requires r12 = r21 = rd and t12 =

t21 = td with complex-value re�ection and transmission coe�cients rd, td given by

rd =
(1− n2) sin (knd)

(n2 + 1) sin (knd) + i2n cos (knd)
(2.41)

td =
2in

(n2 + 1) sin (knd) + i2n cos (knd)
, (2.42)

(see Appendix A.1 for derivation). Then the upper left TM element (Eq. 2.38) can be written

t2d − r2
d = |td|2 ei2φt − |rd|2 ei2φr = ei2φr

(
|td|2 ei2(φt−φr) − |rd|2

)
= −ei2φr , (2.43)

where we have expressed the re�ection and transmission coe�cients in terms of their mag-

nitude |rd| , |td| and phase φr, φt. In the last step we applied Eqs. 2.36-2.37, which yield

the phase relation φt − φr = ± (2q + 1) π/2 with q ∈ N (see Fig. A.1) and consequently

ei2(φt−φr) = −1. The resulting TM is given in Table 2.1 (3rd row, 3rd column).

Finally, we introduce the TM of a lossless distributed Bragg re�ector (DBR). The DBR

re�ection and transmission coe�cients are given by r12 = r21 = −r and t12 = t21 = it

with r, t ∈ [0, 1] (see Appendix A.2 for details and derivation of re�ection and transmission

coe�cients). The resulting TM is shown in Table 2.1 (3rd row, 4th column).
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Up to now we introduced TMs that describe individual optical elements (see Table 2.1).

In the following two sections - and in later chapters - we employ the introduced TMs to model

systems that comprise several of the individual elements discussed here. The entire system

is described by the matrix resulting from multiplying the individual TMs of each component

together: Let us consider a strati�ed medium formed by N individual components, where

component i is represented by transfer matrix Mi with i ∈ {1, 2, .., N}. Then the transfer

matrix of the entire system is given by

M =MN ...Mi...M2M1 ≡

 µ11 µ12

µ21 µ22


and the optical �elds on the left and right side of the system are related by AN

BN

 =

 µ11 µ12

µ21 µ22

 A1

B1

 , (2.44)

where we have written M in terms of its elements µab with a, b ∈ {1, 2}. At this point, we've

reduced a system of 2N+2 �elds to a system of two equations. If one speci�es the input �elds

(A1 and BN), for example, one can now quickly calculate the transmission and re�ection of

the entire system by solving this system for AN and B1, respectively
4.

Similarly, we can relate the �elds to the left of component j to the �elds on the left of

the entire system  Aj

Bj

 =

 µ̃11 µ̃12

µ̃21 µ̃22

 A1

B1

 (2.45)

where µ̃ab are the elements of matrix Mj−1...M2M1. By means of Eq. 2.44 we can replace

the outgoing �eld B1 by the incoming �elds A1, BN

B1 =
BN − µ21A1

µ22

(2.46)

which yields the following relation of the �internal �elds� Aj and Bj to the input �elds A1

4Additionally, n copies of this system would be described by a matrix Mn, a trick that can dramatically
increase computation speed for DBR's. See Appendix A.2.
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and BN

Aj =

(
µ̃11 − µ̃12

µ21

µ22

)
A1 +

µ̃12

µ22

BN (2.47)

Bj =

(
µ̃21 − µ̃22

µ21

µ22

)
A1 +

µ̃22

µ22

BN . (2.48)

Re�ection from and transmission through the complete stack is obtained for µ̃ab → µab.

2.2.2 Optical Resonances of a Fabry-Perot Cavity

Here we employ the transfer matrix (TM) method introduced in the previous section to

characterize the optical resonances of a Fabry-Perot cavity. A schematic of the setup is

shown in Fig. 2.2, where two mirrors face each other at a distance Lc. Each mirror is

characterized by a re�ection coe�cient (r1, r2 respectively) and a transmission coe�cient

(t1, t2 respectively). Note that both ri, ti (i ∈ {1, 2}) are real valued for convenience (see

also previous section). Incoming light with amplitude Ein and wavenumber k is partially

re�ected at the input mirror and partially coupled to the right and left traveling intra-cavity

�elds Ecl and Ecr. Light re�ected from and transmitted through the cavity is denoted by Er

and Et respectively. Note that we have adopted a di�erent nomenclature here with respect

to the previous section; since there are only �ve �eld components of interest, we have chosen

more intuitive symbols, e.g., Et for the transmitted �eld instead of A3. Furthermore, with

regard to an analytical calculation of the circulating optical power inside the cavity we only

consider intra-cavity �eld components Ecr (right-moving) and Ecl (left-moving), located at

the interface between left mirror and cavity. The �eld components at other locations within

the cavity are characterized by the same amplitude but di�erent phase.
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Ein

Er

Ecr Et

Lc

r1, t1 r2, t2

Ecl

Figure 2.2: Schematic of a one-dimensional Fabry-Perot cavity. The cavity is formed by two
mirrors facing each other at a distance set by the cavity length Lc. Right (Left) mirror is
characterized by its re�ection coe�cient r1 (r2) and transmission coe�cient t1 (t2). Incident
light with amplitude Ein is partially re�ected at the input mirror and partially coupled to
the intra-cavity �elds Ecl and Ecr. Light re�ected from and transmitted through the cavity
is denoted by Er and Et respectively.

The �elds on the right and left side of the cavity are related by

 Et

0

 = Mcav

 Ein

Er

 =

 µ11 µ12

µ21 µ22

 Ein

Er

 , (2.49)

with the cavity's TM Mcav, given by a product of a left mirror TM, a propagation TM, and

a right mirror TM (see Table 2.1)

Mcav =
1

it2

 −1 −r2

r2 1

 eikLc 0

0 e−ikLc

 1

it1

 −1 −r1

r1 1


=

1

t1t2

 e−ikLcr1r2 − eikLc e−ikLcr2 − eikLcr1

eikLcr2 − e−ikLcr1 eikLcr1r2 − e−ikLc

 . (2.50)

The re�ected �eld follows from Eq. 2.48 (with BN = 0)

Er
Ein

= −µ21

µ22

=
r1 − r2e

2ikLc

−1 + r1r2e2ikLc
(2.51)

and the corresponding fractional re�ected power is given by

∣∣∣∣ ErEin
∣∣∣∣2 =

r2
1 + r2

2 − 2r1r2 cos (2kLc)

1 + r2
1r

2
2 − 2r1r2 cos (2kLc)

. (2.52)
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The optical power with unit Watt is given by multiplying the previous expression by cε0nJ /2,

with speed of light c, dielectric permittivity ε0, refractive index n, and cross-sectional area

of optical �eld J . In the following, by �power� we refer just to the absolute square of the

complex �eld amplitude.

Transmitted �eld and power follow from Eq. 2.47 (with BN = 0)

Et
Ein

= µ11 −
µ12µ21

µ22

=
t1t2e

ikLc

−1 + r1r2e2ikLc
(2.53)

∣∣∣∣ EtEin

∣∣∣∣2 =
t21t

2
2

1 + r2
1r

2
2 − 2r1r2 cos (2kLc)

. (2.54)

With Eq. 2.47 also follows the right traveling intra-cavity �eld and power (BN = 0)

Ecr
Ein

= µ̃11 − µ̃12
µ21

µ22

=
−it1

−1 + r1r2e2ikLc
(2.55)

∣∣∣∣EcrEin

∣∣∣∣2 =
t21

1 + r2
1r

2
2 − 2r1r2 cos (2kLc)

, (2.56)

where µ̃ab (a, b ∈ {1, 2}) correspond to matrix elements of left mirror TM. The left traveling

cavity �eld is given by Ecl = r2Ecr. In the case of a highly re�ective end mirror, left and

right traveling cavity �elds are roughly identical, e.g. r2 > 0.99 results in a deviation < 1%,

so that one refers to either of them as the circulating �eld Ec ≡ Ecr ≈ Ecl. With this choice

of end mirror coe�cients, the circulating power Pc ∝ |Ec|2 (Eq. 2.56) is maximal when the

resonance condition

kN = N
π

Lc
(N ∈ N) (2.57)

is ful�lled, or, in terms of the wavelength

LN = N
λ

2
. (2.58)

This expression coincides with the resonance condition for clamped boundary conditions.

The integer N represents the longitudinal mode order. Multiplying the previous expression

by c yields the resonance frequencies

ωN = N
πc

Lc
=: NωFSR, (2.59)
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where in the last step we have de�ned the free spectral range ωFSR as increment between sub-

sequent longitudinal modes. The previous expression tells us which frequency or wavelength

λN = 2πc/ωN is required for light incident on the cavity in order to meet the resonance

condition. Alternatively, the resonance condition for incident light of �xed λ can be met by

adjusting Lc; from kN = 2π/λ together with Eq. 2.57 follows the expression for the resonance

cavity length.

FSR Intra-Cavity

Reflected

Transmitted

Figure 2.3: Resonance spectrum of a Fabry-Perot cavity with mirror re�ectivities r1 =
r2 = 0.9 and cavity length Lc ≈ 5 cm, which is probed by laser light with frequency ω ≈
2π × 1.94× 1014 Hz corresponding to wavelength λ ≈ 1550 nm. Blue, green, and red curves
correspond to re�ected, transmitted, and intra-cavity power (all three relative to input power,
given by Eqs. 2.52, 2.54, 2.56 respectively) versus cavity length Lc and optical frequency ω.
Lower axis describes the situation in which cavity length is changed around a resonance length
LN (Eq. 2.58, longitudinal mode number N = 64516) for incident light with wavelength
λ = 1550 nm. Neighboring peaks are separated by λ/2. Upper axis describes frequency
detuning of light incident on a cavity with �xed Lc = 5 cm, with respect to cavity resonance
frequency ωN (Eq. 2.59, N = 64516). The spacing between consecutive modes is given by
free spectral range ωFSR = 2π × 3 GHz. Resonance linewidth κ = 2π × 0.2 GHz corresponds
to full width at half maximum of peaks. Gray dashed curve shows Lorentzian approximation
of central resonance (Eq. 2.60).

Figure 2.3 shows the resonance spectrum of a Fabry-Perot cavity with r1 = r2 = 0.9 and

Lc ≈ 5 cm, which is probed by light with frequency ω ≈ 2π× 1.94× 1014 Hz (λ ≈ 1550 nm).

Blue, green, and red curves correspond to re�ected, transmitted, and intra-cavity power
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(all three normalized with respect to input power), given respectively by Eqs. 2.52, 2.54,

2.56. The lower horizontal axis represents the situation in which the incident laser has a

�xed frequency and the cavity length is changed within few λ/2 around a resonance length

LN ≈ 5 cm (Eq. 2.58, N = 64516). The upper horizontal axis applies to the case of �xed

cavity length Lc = 5 cm and incident light is tuned to within a few free spectral ranges

ωFSR = 2π×3 GHz around a cavity resonance ωN ≈ 2π×1.94×1014 Hz (Eq. 2.59, N = 64516).

When the resonance condition (Eqs. 2.58, 2.59) is satis�ed, the intra-cavity �eld builds up.

As a consequence the transmitted power approaches one and the re�ected power goes to zero.

The latter results from destructive interference between the promptly re�ected light from the

input mirror and the intra-cavity light that is transmitted through the input mirror. The

resonance linewidth of the resulting peaks/dips is de�ned as the full width at half maximum

(FWHM) κ = 2π × 0.2 GHz.

A single cavity resonance, for r1, r2 ≈ 1, can be approximated by a Lorentzian; for small

detuning ∆ = ωl − ωN between an incident laser with frequency ωl and a cavity resonance

ωN , we can expand the cosine in Eq. 2.56. This yields 5

∣∣∣∣EcrEin

∣∣∣∣2 =
(t1c/2Lc)

2

∆2 + κ2/4
, (2.60)

which represents a Lorentzian with FWHM κ (gray dashed curve in Fig. 2.3). Similarly

to a harmonic oscillator, - which has a frequency spectrum characterized by a Lorentzian

resonance (see Sec. 2.1) - is the inverse of the FWHM associated with a decay time τc = κ−1,

representing the time scale on which the intra-cavity �eld responds to a change in its operating

conditions, e.g., τc is the characteristic time scale for the exponential decay of the intra-cavity

power when an incident laser is switched o�.

A measure for the enhancement of the intra-cavity power with respect to the incident

power is provided by the cavity �nesse, de�ned as

F :=
ωFSR

κ
=

π

2 arcsin
(

1−r1r2
2
√
r1r2

) (2.61)

5By ∆ small we consider ∆ � ωFSR: cos (2kLc) = cos (2ωlLc/c) = cos [2 (ωN + ∆)Lc/c] =
cos (2∆Lc/c) = cos (2π∆/ωFSR).
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(see Appendix A.3 for derivation of κ). In the case of highly-re�ective mirrors (r1, r2 ≈ 1)

the previous expression can be approximated as

F ≈ π

1− r1r2

≈ 2π

2− r2
1 − r2

2

. (2.62)

Comparing this expression to the circulating power (Eq. 2.56) in a symmetric cavity (r1 = r2)

yields Pc/P0 = F/π (Eq. 2.56, 2.62). Alternatively, we can express F in terms of the cavity

ring-down time τc = κ−1

F =
πcτc
Lc

. (2.63)

DBR DBR

Figure 2.4: Electric �eld amplitude distribution |A+B| (relative to input Ein), with am-
plitude of right and left traveling �eld respectively given by A and B, inside a Fabry-Perot
cavity (see text for details). Cavity is formed by two distributed Bragg re�ectors (DBRs, see
Appendix A.2 for details) each comprising six and a half layer pairs of material a (light blue,
refractive index 2.10, e.g. Ta2O5) and material b (light green, refractive index 1.47, e.g. SiO2)
corresponding to r1 = r2 = 0.991 (Eq. A.9, with refractive index of substrate ns = 1.47) and
F = 175 (Eq. 2.62). Optical length (physical length times refractive index) of each layer is
λ/4 with wavelength λ = 1550 nm. The mirrors are separated by 5λ corresponding to mode
order N = 10 (Eq. 2.58).

Figure 2.4 shows the electric �eld amplitude distribution |A+B| /Ein inside a Fabry-Perot

cavity, designed for light with wavelength λ = 1550 nm, where A and B are the position-

dependent right and left traveling �eld amplitudes. The cavity is formed by two identical

distributed Bragg re�ectors (DBRs). Each DBR is composed of six and a half layer pairs of

material a (light blue, refractive index 2.10, e.g. Ta2O5) and material b (light green, refractive

index 1.47, e.g. SiO2). The optical length (physical length times refractive index) of each

layer is λ/4 with λ = 1550 nm. These parameters correspond to r1 = r2 = 0.991 (Eq. A.9)

and F = 175 (Eq. 2.61). The mirrors are separated by 5λ corresponding to longitudinal

30



mode order N = 10 (Eq. 2.58). Field amplitudes A and B are calculated numerically; TM

of depicted cavity is a product of TMs describing individual layers and interfaces (given in

Table 2.1). The electric �eld at each position x within the cavity and DBRs is of the form

E (x) = Aeikx + Be−ikx(see Sec. 2.2.1), where right (left) traveling �eld amplitude A (B) is

given by Eq. 2.47 (Eq. 2.48). The intra-cavity �eld decays exponentially towards the outer

sides of the DBR, where it is one.

The intra-cavity �eld causes a mechanical force (see Appendix A.2 for a classical deriva-

tion)

Fc = ±2
Pc
c

(2.64)

to act on the cavity mirrors (a photon of energy E = ~ck, with reduced Planck constant

~, transfers a momentum of p = 2~k to an object upon re�ection from it, it follows p/E =

F/P = 2/c, with force F and power P of the photon). The positive (negative) sign holds

for the right (left) mirror, which means that the intra-cavity �eld tends to push the mirrors

apart. Generally, the radiation force depends on the detuning from resonance; e.g. when

detuned by κ/2, Pc (and therefore the force Fc) depends approximately linearly on Lc (see

Fig. 2.4).

If we consider this point as equilibrium position (e.g. radiation force balanced by structural

forces), and if one changes the cavity length slowly enough to allow the cavity �eld to remain

in steady state, then the cavity mirrors experience a force ±Kx (positive/negative sign holds

for left/right side of resonance) for small elongations x from the equilibrium position, with

optical spring constant K. The case with a negative sign resembles Hook's law (Sec. 2.1.1),

consequently it is referred to as optical spring e�ect. In the case of a positive sign, one speaks

of the optical anti-spring e�ect [21]. For an oscillating cavity mirror the radiation force gives

rise to dynamical e�ects, which occur as a consequence of the delayed response (by τc) of Pc

to a change in the cavity con�guration (Lc). In Sec. 2.2.6 we brie�y discuss how this e�ect

can be used to damp or amplify mechanical vibrations of the mirror (e.g. Brownian motion,

see Sec. 2.1.2.2), which is of central interest in the �eld of cavity optomechanics [21]. A key

parameter for optomechanics applications is the dispersive frequency shift G := ∂ωc/∂x with

small elongation from resonance x and x-dependent cavity resonance frequency ωc (x). In the
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present case of a Fabry-Perot cavity, we have for the cavity resonance frequency (Eq. 2.59)

ωc = N πc
Lc+x

≈ ωN (1− x/Lc) and the dispersive coupling G = −ωN/Lc.

Depending on which property of the intra-cavity �eld is altered by the mirror displacement

x, one distinguishes between di�erent kinds of optomechanical coupling. The case discussed

in the previous paragraph, where the cavity resonance frequency is a function of the mirror

displacement, is referred to as �dispersive� optomechanical coupling [21]. Other examples

are dissipative optomechanical coupling [73, 74, 75, 76, 77] and optomechanical mode �eld

coupling [78]. The former is characterized by a x−dependent cavity decay rate κ(x). The

latter concerns the mode �eld distribution; displacement x of the cavity boundaries causes

the optical �eld to appear/disappear in certain areas of the cavity.

2.2.3 Optical Resonances of a Fabry-Perot Cavity with Incorpo-

rated Membrane

In this section we characterize the optical resonances of a membrane in the middle (MIM)

setup by means of the transfer matrix (TM) method (Sec. 2.2.1). The here presented analysis

expands upon the treatment presented in Ref. [79] (which is based on a scattering matrix

formalism). Figure 2.5 shows a sketch of a one-dimensional MIM setup which comprises a

Fabry-Perot cavity (see Sec. 2.2.2) with dielectric membrane incorporated close to its center.

Mirrors and membrane are characterized by re�ection (transmission) coe�cients r1, rd, r2 (t1,

td, t2) respectively (left to right). The mirrors are separated by the cavity length Lc and the

membrane displacement from the cavity center x is small, so that x � Lc/2. Incident light

Ein is partially re�ected at the input mirror and partially coupled to the intra-cavity �elds

Elr, Ell , Err , and Erl. Light re�ected from and transmitted through the cavity is denoted by

Er and Et respectively. Note, that similarly to the previous section, we here adopt a di�erent

nomenclature with respect to the one employed in the general introduction of the transfer

matrix formalism (Sec. 2.2.1); e.g., the transmitted �eld is denoted by Et instead of A4.

Furthermore, with regard to an analytical calculation of the circulating optical power inside

the cavity, either on the left or right side of the membrane, we only consider intra-cavity

�eld components Elr (right-moving), Ell (left-moving), located at the interface between left
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mirror and left cavity side, and Err (right-moving), Erl (left-moving), located at the interface

between membrane and right cavity side. The �eld components at other locations within the

same cavity side are characterized by the same amplitude but di�erent phase.

Ein

Er

Et

Lc /2−x

r1, t1 r2, t2

Ell

Elr

rd, td

Err

Erl

Lc /2+x

Figure 2.5: Schematic of a one-dimensional Fabry-Perot cavity with membrane incorporated
close to its center. The cavity is formed by two mirrors facing each other at a distance set
by the cavity length Lc. Each mirror is characterized by its re�ection coe�cient r1, r2

respectively and transmission coe�cient t1, t2 respectively. The membrane, with re�ection
(transmission) coe�cient rd (td), is located close to the cavity center, with displacement from
the center x� Lc/2. Incident light Ein is partially re�ected at the input mirror and partially
coupled to the intra-cavity �elds Elr, Ell, Err, and Erl. Light re�ected from and transmitted
through the cavity is denoted by Er and Et respectively.

The transfer matrix of the MIM setup is given by a product of �ve individual matrices

(see Sec. 2.2.1)

Mmim =
1

it2

−1 −r2

r2 1

eiδ− 0

0 e−iδ−

 1

td

−ei2φr |rd|
− |rd| 1

eiδ+ 0

0 e−iδ+

 1

it1

−1 −r1

r1 1

 ,

(2.65)

which represent (right to left): left cavity mirror, propagation from left mirror to membrane,

membrane, propagation from membrane to right mirror, and right cavity mirror. The phase

accumulated upon propagation from a mirror to the membrane, or vice versa, is given by

δ± = k (x± Lc/2), where the positive (negative) sign holds for the left (right) mirror. The

membrane's re�ection coe�cient is expressed in terms of amplitude and phase rd = |rd| eiφr .

The re�ected, transmitted, and intra-cavity optical powers follow from the above given TM
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and Eqs. 2.47-2.48 for a single input Ein from the left

∣∣∣∣ ErEin
∣∣∣∣2 =

∣∣∣∣∣−r1

[
ei(kLc+2φr) + rdr2e

2ikx
]

+ r2e
−ikLc + rde

−2ikx

r1 [r2ei(kLc+2φr) + rde2ikx] + e−ikLc + rdr2e−2ikx

∣∣∣∣∣
2

(2.66)

∣∣∣∣ EtEin

∣∣∣∣2 =

∣∣∣∣∣ t1t2
(
−r2

d + e2iφr
)
eik(Lc+2x)

td {rdeikLc (r2 + r1e4ikx) + r1r2e2i[k(Lc+x)+φr] + e2ikx}

∣∣∣∣∣
2

(2.67)

∣∣∣∣ElrEin

∣∣∣∣2 =

∣∣∣∣∣ it1
(
r2rde

ikLc + e2ikx
)

rdeikLc (r2 + r1e4ikx) + r1r2e2i[k(Lc+x)+φr] + e2ikx

∣∣∣∣∣
2

(2.68)

∣∣∣∣EllEin

∣∣∣∣2 =

∣∣∣∣∣ it1e
ik(Lc+2x)

[
r2e

i(kLc+2φr) + e2ikxrd
]

rdeikLc (r2 + r1e4ikx) + r1r2e2i[k(Lc+x)+φr] + e2ikx

∣∣∣∣∣
2

(2.69)

∣∣∣∣ErrEin

∣∣∣∣2 =

∣∣∣∣∣− it1
(
−r2

d + e2iφr
)
eik(Lc+2x)

td {rdeikLc (r2 + r1e4ikx) + r1r2e2i[k(Lc+x)+φr] + e2ikx}

∣∣∣∣∣
2

(2.70)

∣∣∣∣ErlEin

∣∣∣∣2 =

∣∣∣∣∣ it1r2

(
−r2

d + e2iφr
)
eik(Lc+2x)

td {rdeikLc (r2 + r1e4ikx) + r1r2e2i[k(Lc+x)+φr] + e2ikx}

∣∣∣∣∣
2

(2.71)

In principle, one could determine the values k(x) (Lc �xed) or Lc(x) (k �xed) for which

incident light is on resonance with the cavity, by �nding the extrema of one of the previous

expressions. Instead, we take an approximate route by considering a closed cavity with mirror

re�ection coe�cients r1 = r2 = 1. The transfer matrix in this case reduces to

M̃mim =

eiδ− 0

0 e−iδ−

 1

td

−ei2φr rd

−rd 1

eiδ+ 0

0 e−iδ+

 =
1

tm

−ei(kLc+2φr) rde
−i2kx

−rdei2kx e−ikLc


(2.72)

with

 Err

Erl

 = M̃mim

 Elr

Ell

 . (2.73)

For perfectly re�ective mirrors Ell = −Elr, Erl = −Err and together with Eqs. 2.72-2.73 we

have
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Err
Elr

=
1

td

[
−ei(kLc+2φr) − rde−i2kx

]
Err
Elr

=
1

td

[
rde

i2kx + e−ikLc
]
, (2.74)

from which follows the resonance condition

−ei(kLc+φr) − |rd| e−i2kx = |rd| ei2kx + e−i(kLc+φr)

− cos (kLc + φr) = |rd| cos (2kx) . (2.75)

We assume the membrane causes a small perturbation ∆kN of the empty cavity resonance

kN = Nπ/Lc(N ∈ N) (Eq. 2.57), and write the resonance wavenumber as

kMIM,N = kN + ∆kN . (2.76)

Plugging this into Eq. 2.75 and making use of the identity cos(a + b) = cos(a) cos(b) −

sin(a) sin(b) gives

− cos(kNLc) cos(∆kNLc + φr) + sin(kNLc) sin(∆kNLc + φr) = |rd| cos [2kN (1 + ∆kN/kN)x]

(−1)(N+1) cos(∆kNLc + φr) ≈ |rd| cos (2kNx) ,

where in the last step we have approximated 1 + ∆kN/kc ≈ 1. The resonance wavenumber

detuning with respect to kN is given by

∆kN =
−φr + arccos

[
(−1)(N+1) |rd| cos(2kcx)

]
Lc

(N ∈ N) . (2.77)

Instead of tuning the incident light on resonance, e.g. by detuning its wavelength

(∆kN = 2π/∆λN), one can change the cavity length; following the same procedure as for the

wavenumber detuning, we �nd for the length detuning

∆LN =
−φr + arccos

[
(−1)(N+1) |rd| cos(2kcx)

]
k

(N ∈ N) . (2.78)
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The resonance MIM cavity lengths are given by LMIM,N = LN +∆LN , with resonance lengths

of empty cavity LN (Eq. 2.58). Note that the expression for ∆LN , opposed to the expression

for ∆kN , does not require an approximation and therefore applies to any membrane position

x within the cavity.

In order to determine the cavity �nesse FMIM = ωFSR/κMIM, we calculate the rate κMIM

at which optical energy EMIM leaves the cavity

dEMIM

dt
= −κMIMEMIM = −

(
t21Pl + t22Pr

)
, (2.79)

with optical power Pl (Pr) in the left (right) half of the cavity given by Eq. 2.68 (Eq. 2.70).

For the total energy inside the cavity we have

EMIM =
(Lc + 2x)Pl + (Lc − 2x)Pr

c
. (2.80)

Combining the previous two expression yields the cavity decay rate

κMIM = c

[
t21Pl + t22Pr

(Lc + 2x)Pl + (Lc − 2x)Pr

]
. (2.81)

Dividing ωFSR = πc/Lc by κMIM yields the �nesse

FMIM = π

[
(1 + 2x/Lc)Pl + (1− 2x/Lc)Pr

t21Pl + t22Pr

]
, (2.82)

where Pr and Pl are given by Eqs. 2.68, 2.70. In the case of highly re�ective mirrors we

can simplify this expression by dividing both numerator and denominator by Pl, thereby

expressing FMIM in terms of the power ratio Pr/Pl, for with an approximation is given by

the absolute square of Eq. 2.74

Pr
Pl

=
1 + |rd|2 + 2 |rd| cos [kMIM (Lc + 2x) + φr]

|td|2
. (2.83)

For mirror re�ectivites r1, r2 = 0.99, this expression deviates by less than 2 % from the exact

expression, given by Eqs. 2.68, 2.70.

In the case of a bare Fabry-Perot cavity (previous section), we have discussed that the
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cavity �nesse divided by π corresponds to the enhancement factor of the circulating power

inside the cavity with respect to the incident power. In the present case of a MIM cavity,

the average circulating power is given by

Pc,MIM =
(Lc/2 + x)Pl + (Lc/2− x)Pr

Lc
. (2.84)

In the next paragraph we discuss (among other things) the relation between FMIM and Pc,MIM.
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Cavity Finesse
Cavity Finesse

Left Cavity

Right CavityLeft Cavity

Right Cavity

(a) (b)

Figure 2.6: Optical resonances of a cavity with membrane (thickness d = 100 nm, refractive
index nd = 2.0, re�ection coe�cient rd = 0.48 exp (i 2.49 rad) (Eq. A.3)) incorporated close
to its center. Wavelength of incident light λ = 1550 nm. (a, upper) Re�ected power (relative
to input power, Eq. 2.66) for a symmetric cavity (mirror re�ectivities r1 = r2 = 0.9) versus
membrane displacement x (from cavity center) and cavity length Lc (L0 = 5 cm). Gray
dashed lines indicate empty cavity resonances of order N = 64517 and N = 64518 (bottom
to top, Eq. 2.58). White dotted curves show resonance length detuning (Eq. 2.78). (a,
center) Green solid curve shows scaled circulating power πPc,MIM (Eq. 2.84) for mode of
order N = 64517 for a symmetric cavity (mirror re�ectivities r1 = r2 = 0.991). Gray dashed
line shows corresponding cavity �nesse (Eq. 2.82). (a, lower) Normalized right traveling
electric �eld amplitudes on left (blue) and right (red) side of membrane (Eqs. 2.68-2.70, N ,
r1, r2 same as in (a, center)). (b, upper) Same as (a, upper) but for an asymmetric cavity
with mirror re�ectivities r1 = 0.85, r2 = 0.99. (b, center & lower) Same as (a, center &
lower) but for an asymmetric cavity with mirror re�ectivities r1 = 0.991, r2 = 0.999.
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Figure 2.6(a, upper) shows the re�ected optical power (Eq. 2.66) from a MIM cavity versus

membrane displacement x and cavity length change ∆Lc with respect to Lc = 5 cm. Note

that we consider symmetric lengthening of the cavity, whereby both cavity mirrors move

apart from each other by the same amount. This leaves the relative positioning between

optical �eld nodes and membrane unchanged as the cavity length is altered. We implement

this approach experimentally with the measurement presented in Sec. 4.2.2. The mirror

re�ection coe�cients considered in Fig. 2.6(a, upper) are r1 = r2 = 0.9, corresponding to a

symmetric cavity. The membrane thickness d = 100 nm and refractive index 2.0 result in

a re�ection coe�cient rd = 0.48 exp (i 2.49 rad) (Eq. A.3). The plot shows two resonances

(blue areas), which are periodic in x with period λ/2. The periodicity is a consequence of

the �eld distribution inside the cavity (see also Fig. 2.7); if the membrane is located at a

�eld antinode, the optical resonance is maximally altered from the empty cavity resonance

(gray dashed line, Eq. 2.58). This is because a signi�cant part of the �eld is located inside

a medium with a refractive index di�erent from the one of the surrounding cavity (in our

case they are di�erent by a factor of 2). In the opposite case, when the membrane is located

at a �eld node, the interaction between light and membrane is minimized and so is the

e�ect on the optical resonance. The described behavior is consistent with the mode orders

N = 64517 and N = 64518 (bottom to top, Eq. 2.58) of the shown resonances, where N

odd (even) corresponds to a �eld antinode (node) at the cavity center (x = 0). As a result,

consecutive resonances are horizontally shifted by λ/4. The white dotted curves represent

the cavity resonance lengths Nλ/2 + ∆LN (Eq. 2.78). Figure 2.6(a, center) shows the scaled

circulating power πPc,MIM (green curve, Eq. 2.84) together with the �nesse FMIM (dashed

gray line, Eq. 2.82) for a MIM cavity with r1 = r2 = 0.991 and rd as given above. Here

FMIM/π represents the mean value of Pc,MIM(x), whereas in the case of a bare symmetric

cavity (r1, r2 ≈ 1) F/π ≈ Pc, see Sec. 2.2.2). Blue and red curves in Fig. 2.6(a, lower)

show respectively left and right cavity �eld amplitudes (for the same cavity as in Fig. 2.6(a,

center)). The amplitude of the �eld variation on the left is eight times bigger than the one

on the right, because the presence of the membrane decreases the e�ciency of pumping the

�eld on the right. The left �eld amplitude is periodic in x with period λ/2 and the right �eld

amplitude has periodicity λ/4.
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Figure 2.6(b) shows the same plots as Figure 2.6(a) but for an asymmetric cavity. In

Fig 2.6(b, upper) the mirror re�ectivities are r1 = 0.85 and r2 = 0.99. As a consequence of the

asymmetry, the re�ected power depends on whether the slope of the resonance is positive or

negative. This can be understood by regarding the back mirror together with the membrane

as a compound mirror, with an �e�ective re�ectivity� depending on the relative distance

between membrane and mirror. If the e�ective re�ectivity is lower (higher) a smaller (bigger)

fraction of the intra-cavity light exits the cavity through the front mirror, resulting in a higher

(lower) relative re�ected power from the cavity (formed by interference of light promptly

re�ected from input mirror and light leaving the cavity) for the given cavity con�guration.

The mirror re�ectivities for Fig. 2.6(a, center & lower) are r1 = 0.991 and r2 = 0.999.

Opposed to the symmetric case (Fig. 2.6(a, center)), FMIM depends on the membrane position

and modulates together with Pc,MIM(x) with a period of λ/2 (see Fig. 2.6(a, center)). The

dependency of FMIM on x is referred to as dissipative optomechanical coupling [73, 74, 75, 76,

77]. Figure 2.6(b, lower) shows the circulating �eld amplitudes inside the left and right half

of the cavity. In contrast to the symmetric case (Fig. 2.6(a, lower)), the right cavity power

varies more strongly than the left cavity power with variation amplitudes three times higher.

Both components are periodic in x with period λ/2. This is also contrary to the symmetric

case where only the left �eld is periodic with λ/2 and the right �eld is periodic with λ/4.

Consistent with r2 > r1, the �nesse is maximized when most of the light is located between

membrane and right cavity mirror which has higher re�ectivity r2.
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DBR

DBR

DBR

DBR

Figure 2.7: Electric �eld amplitude distribution |A+B| (relative to input Ein), with am-
plitude of left and right traveling �eld respectively given by A and B, inside a Fabry-Perot
cavity with membrane (gray, thickness d = 100 nm, refractive index nd = 2.0, re�ection
coe�cient rd = 0.48 exp (i 2.49 rad) (Eq. A.3)) incorporated ±λ/8 away from cavity center;
positive (negative) sign holds for upper (lower) plot. Cavity is formed by two distributed
Bragg re�ectors (DBRs, see Sec. A.2 for details) each comprising six and a half layer pairs of
material a (light blue, refractive index 2.10, e.g. Ta2O5) and material b (light green, refractive
index 1.47, e.g. SiO2) corresponding to r1 = r2 = 0.991 (Eq. A.9, with refractive index of
substrate (not shown) ns = 1.47). Optical length (physical length times refractive index)
of each layer is λ/4 with wavelength λ = 1550 nm. The mirrors are separated by ≈ 5.5λ,
corresponding to mode order N = 11 (Eq. 2.58).

Figure 2.7 shows the electric �eld amplitude distribution |A+B| /Ein inside a MIM setup

deigned for light with wavelength λ = 1550 nm. The cavity is formed by two identical

distributed Bragg re�ectors (DBRs, see Sec. A.2 for details). Each DBR comprises six and

a half layer pairs of material a (light blue, refractive index 2.10, e.g. Ta2O5) and material b

(light green, refractive index 1.47, e.g. SiO2) corresponding to r1 = r2 = 0.991 (Eq. A.9, with

refractive index of substrate (not shown) ns = 1.47). Optical length (physical length times

refractive index) of each layer is λ/4. The mirrors are separated by ≈ 5.5λ, corresponding

to longitudinal mode order N = 11 (Eq. 2.58). The membrane (gray) with thickness d =

100 nm, refractive index nd = 2.0, and resulting re�ection coe�cient rd = 0.48 exp (i 2.49 rad)

(Eq. A.3) is located +λ/8 (Fig. 2.7(upper)) or −λ/8 (Fig. 2.7(lower)) away from the cavity

center. Field amplitudes A and B are calculated numerically; TM of depicted cavity is a
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product of TMs describing individual layers and interfaces (given in Table 2.1). The electric

�eld at each position x within the cavity, DBRs, and membrane is of the form E (x) =

Aeikx + Be−ikx(see Sec. 2.2.1), where right (left) traveling �eld amplitude A (B) is given by

Eq. 2.47 (Eq. 2.48). The �eld amplitude on the right side of the cavity is identical for both

membrane positions, whereas the left cavity �eld amplitude reaches its minimal (maximal)

value for membrane displacement +λ/8 (−λ/8) (see also Fig. 2.6(c)). This illustrates that, for

the same amount of incident light, the amount of intra-cavity light depends on the membrane

position. The intra-cavity light decays exponentially towards the outside of the DBRs. Both

re�ected and transmitted powers for the �eld distributions shown in Fig. 2.7(upper & lower)

are identical. Identical transmission for x = +λ/8 and x = −λ/8 follows from identical

�eld amplitudes on the right cavity side for both of these con�gurations. The fact that the

re�ected cavity power is equal for both con�gurations can be understood by considering the

destructive interference of the �eld leaving the cavity to the left Eleave with the �eld promptly

re�ected from the input mirror r1Ein; the re�ected cavity power is given by |El − r1Ein|2,

with r1Ein ≈ 1, for the given cavity con�guration. This implies the for values of Eleave which

are either smaller or bigger than 1 by the same amount, the resulting re�ected power is the

same. This is the case for the two con�gurations presented in Fig. 2.7, where for x = +λ/8

we have Eleave = 0.52 and for x = −λ/8 we have Eleave = 1.48.

2.2.4 Steady State Optical Forces

In the previous section we have examined how optical resonance frequency, �eld distribution,

and �nesse of a cavity with incorporated membrane depend on the membrane position. Here

we show, that the optical �eld inside the cavity causes a force to act on the membrane and

that positioning the membrane at a �eld antinode results in a steady state �optical spring�.

This e�ect is of interest to this work, as it shows promise for increasing the mechanical

quality factor of our trampoline resonators (see Sec. 3.1.1) beyond the limits posed by their

intrinsic dissipation mechanisms. Inspired by previous studies of similar systems [80, 60, 81],

in Sec. 4.3 we present a �nite-element simulation of an optical spring acting on a trampoline

resonator, with the result of an increase in its mechanical quality factor.
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Empty Cavity Resonance Empty Cavity Resonance

Figure 2.8: Optical force and optical spring constant for a membrane (thickness 100 nm,
refractive index 2.0) situated close to the center of a Fabry-Perot cavity (both mirrors with
re�ection coe�cient 0.9). Wavelength of intra-cavity light λ = 1550 nm. (left) Optical force
(Eq. 2.85) versus membrane displacement x and cavity length Lc (L0 = 5 cm). Dashed
black lines represent empty cavity resonances of order N = 64517 and N = 64518 (Eq.
2.58). Dashed gray curves show resonance lengths for cavity with incorporated membrane
(Eq. 2.78). (right) Similar to left but for derivative of optical force with respect to x, which
corresponds to optical spring constant.

Figure 2.8(left) shows the optical force acting on the membrane in a MIM setup (pa-

rameters are identical to that of Fig. 2.6(a)) versus membrane displacement x (from cavity

center) and cavity length (with respect to L0 = 5 cm). The optical force can be calculated

from momentum conservation (see Appendix A.4) and is given by

FRP,MIM =
Pin
c

(∣∣∣∣ElrEin

∣∣∣∣2 +

∣∣∣∣EllEin

∣∣∣∣2 − ∣∣∣∣ErrEin

∣∣∣∣2 − ∣∣∣∣ErlEin

∣∣∣∣2
)
, (2.85)

with incident power Pin and normalized intra-cavity powers (Eqs. 2.68-2.71). Dashed black

lines show the empty cavity resonance lengths for modes of order N = 64517 and N = 64518

(Eq. 2.58). Dashed gray curves show the corresponding MIM resonance lengths (Eq. 2.78).
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For values of x and Lc in vicinity of a resonance, there is a force acting on the membrane. If

the membrane is located at a �eld node or antinode, corresponding to maximum or minimum

of cavity resonance curve, the force vanishes as a consequence of the optical powers on each

cavity side being equal. In the case of an antinode this results in a stable equilibrium, since

the force acts to push the membrane back toward the antinode.. Conversely, in vicinity of a

�eld node, the forces tend to push the membrane away, resulting in an unstable equilibrium.

Figure 2.8(right) shows the optical spring constant −d/dxFRP,MIM (Eq. 2.85). Similar to

the case of an empty Fabry-Perot cavity (Sec. 2.2.2), slight x−detuning to the right (left)

from resonance results in an optical spring (anti-spring). Similar to the optical force, the

spring e�ect is more pronounced for cavity con�gurations which maximize the �eld on the

left cavity side (see Fig. 2.6(a)). The force and spring constant discussed here, describe the

situation in which x or Lc are changed on a time scale much longer than the cavity ringdown

time τMIM = 1/κMIM. On the contrary, if, e.g., the membrane oscillates at a frequency which

is comparable to τMIM, the optical force will have an additional dynamic component. This

is a consequence of the delayed response (by τMIM) of the intra-cavity �eld with respect to a

change in x (or Lc). In Sec. 2.2.6 we brie�y discuss how this dynamic e�ect can be used to

damp (or antidamp) the membrane's motion (e.g. Brownian motion, see Sec. 2.1.2.2), which

is of central interest in the �eld of cavity optomechanics [21].

In the following, we analytically calculate the optical spring constant at a �eld antinode,

which represents a stable equilibrium position (see previous paragraph). In the case of highly

re�ective cavity mirrors (r1, r2 = 1), we can express the optical force (Eq. 2.85) as

FRP,MIM =
Pl
c

(1− Pr/Pl) , (2.86)

with Pl (Pr) optical power on the left (right) cavity side. Substituting Eq. 2.83 for Pr/Pl and

taking the derivative with respect to x yields the spring constant

KMIM = −dFRP,MIM

dx
=

4kPl
c

|rd| sin [k (Lc + 2x) + φr]

|td|2
. (2.87)

At equilibrium we have FRP,MIM = 0 so that from Eq. 2.86 together with Eq. 2.83 follows
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cos [k (Lc + 2x) + φr] =− |rd|

sin [k (Lc + 2x) + φr] =
√

1− cos2 [k (Lc + 2x) + φr] = |td|

and for the spring constant

KMIM =
4kPl
c

|rd|
|td|

(2.88)

(equivalently, expressing KMIM in terms of circulating power instead of Pl requires additional

factor of 2 [81]).

2.2.5 Linear and Quadratic Dispersive Frequency Shift

In the previous section we have shown that positioning a dielectric membrane at an antinode

of the optical �eld inside a Fabry-Perot cavity causes a steady state optical spring to act

on it. The designation �steady state� highlights the fact, that the cavity is not required to

realize this e�ect, and that it equally can be achieved by positioning the membrane at the

antinode of an optical standing wave resulting from, e.g., re�ecting a laser beam of a mirror

[81]. In the following section we give a brief outlook on dynamical optical forces, which

result speci�cally from the interaction of an intra-cavity �eld with a mechanical resonator.

In preparation for this treatment, we here brie�y discuss the �dispersive� shift of the optical

resonance frequency as a consequence of the mechanical resonator's displacement, which is

involved in the mathematical description of the dynamical optical forces (following section).

The linear dispersive frequency shift is de�ned as G ≡ ∂ωc/∂x, with mechanical resonator

elongation x and x-dependent cavity resonance frequency ωc (x). For our �membrane-in-

the-middle� (MIM) setup (see Sec. 2.2.3), the cavity resonance frequencies are given by

ωMIM = ωN + c∆kN , with empty cavity resonance frequency ωN (Eq. 2.59) and (membrane-

induced) resonance frequency detuning ∆ωN = c∆kN (Eq. 2.77). The linear dispersive
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frequency shift follows as

∂∆ωN
∂x

= ωFSR
2kc
π

(−1)(N+1) |rd| sin (2kNx)√
1− |rd|2 cos2(2kNx)

. (2.89)

An additional feature of the MIM setup compared to the empty Fabry-Perot cavity (see end

of Sec. 2.2.2), is a pronounced quadratic dispersive frequency shift

∂2∆ωN
∂x2

= −ωFSR
4k2

c

π

(−1)(N+1) |rd|
(
|rd|2 − 1

)
cos (2kNx)[

1− |rd|2 cos2(2kNx)
]3/2 . (2.90)
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2=0.99
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Figure 2.9: Resonance frequency detuning, linear, and quadratic dispersive frequency shifts
for a cavity with membrane incorporated close to its center, all three relative to free spectral
range ωFSR (Eq. 2.59). Blue, red , and green curves correspond to membranes with thickness
d = {30, 80, 194} nm and refractive index nd = 2.0 (e.g. Si3N4 at λ = 1550 nm), resulting in
re�ection coe�cients rd = {0.18 exp (i 1.87 rad) , 0.41 exp (i 2.32 rad) , 0.60 exp (i 3.14 rad)}.
Gray dashed curves correspond to an in�nitely thin membrane with rd = 0.995. (top)
Resonance frequency detuning ∆ωN = c∆kN with speed of light c and resonance wavenumber
detuning ∆kN (Eq. 2.77, N = 2q + 1 with q ∈ N). (center) Linear dispersive frequency shift
∂x∆ω (shorthand for ∂/∂x∆ωN , Eq. 2.89). (lower) Quadratic dispersive frequency shift
∂2
x∆ωN (shorthand for ∂2/∂x2∆ωN , Eq. 2.90) (subscript N is omitted in all y−axis labels).

Figure 2.9 shows a plot of ∆ωN , ∂∆ωN/∂x, and ∂2∆ωN/∂x
2 (mode order N odd)

relative to ωFSR. Blue, red, and green curves correspond to membranes with thickness

d = {30, 80, 194} nm and refractive index nd = 2.0 (e.g. Si3N4 at λ = 1550 nm), resulting in

re�ection coe�cients rd = {0.18 exp (i 1.87 rad) , 0.41 exp (i 2.32 rad) , 0.60 exp (i 3.14 rad)}.

Gray dashed curves show behavior of an in�nitely thin membrane with rd = 0.995. Mem-

branes with d = {30, 80, 194} nm achieve {18, 41, 60} % of the maximal linear dispersive
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frequency shift. For the present case of a membrane with n = 2.0, rd reaches its maximal

value at d = 194 nm (see Fig. A.1). A common strategy to enhance linear and quadratic

dispersive shifts is to increase the membrane's re�ectivity by fabricating a photonic crystal

re�ector (PCR) into it [82, 39, 56, 55, 52]. A PCR is a periodic structure (e.g., an array

of cut-out stripes or holes) with periodicity ∼ λ. Matching λ of incident light to certain

optical resonances of the PCR results in an interference which suppresses transmission of

light through the PCR while enhancing re�ection of incident light. Depending on the design

parameters, this enables membrane re�ectivities > 99 %. A second strategy to enhance dis-

persive optomechanical coupling aims at reducing the cavity length Lc (see Eqs. 2.89-2.90 with

ωFSR ∝ 1/Lc, Eq. 2.59); Fabry-Perot cavities with Lc of a few 10 µm to 100 µm and incorpo-

rated mechanical resonator, e.g. a carbon-based nanorod [83] or a Si3N4 membrane[84, 85],

have been implemented based on �ber cavities.

2.2.6 Dynamical Optical Forces and Laser Cooling

One of the long term goals with our optomechanical (OM) system (see Chapter. 1) is to

control the trampoline's trajectory with a precision down to the quantum level, e.g., to

measure the quantized nature of its motional energy. In a proposal of such a measurement

[86], for a system similar to ours, the mechanical resonator needs to be cooled to a degree

where thermal noise is precluded from dominating over the quantum nature of its motion. In

the case of our trampoline resonators, with mechanical resonance frequencies up to ∼ 0.5 MHz

(see Chapter 3), this can not be achieved with conventional refrigeration techniques alone and

requires additional means of cooling6. Therefore, in this section we discuss cavity-assisted

laser cooling as a possible route of cooling a mechanical resonator (with resonance frequencies

signi�cantly smaller than ∼ 1 GHz) into a regime where less than one thermally-excited

quantum of energy occupies the resonator [14, 15].

In the previous sections we have seen how the optical �eld amplitude (Sec. 2.2.3) and the

optical resonance frequency (Sec. 2.2.5) of a cavity with incorporated membrane depend on

6State-of-the-art dilution refrigerators achieve temperatures T ∼ 10 mK. From the equipartition theorem
(see end of Sec. 2.1.2.2) follows that this temperature corresponds to a thermal energy equal to one quantum
of energy of a harmonic oscillator with a resonance frequency kBT/~ = 1.3 GHz, with Boltzmann constant
kB and reduced Planck constant ~.
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the membrane position along the cavity axis. In the following, we discuss how the interplay

between membrane motion and intra-cavity �eld results in a dynamical back action [87, 88,

21], where a displacement of membrane (or cavity mirror(s)) causes a change in the optical

resonance which acts back on the moving object by a change in the radiation force. In general,

this interaction is governed by a set of coupled non-linear di�erential equations [21] (as a

consequence of non-linear dependency of, e.g., optical resonance frequency on displacement

(see Fig. 2.9)). In the following, we brie�y summarize the realm of linearized optomechanics,

in which the intra-cavity �eld is described by a superposition of a coherent steady state

component and a �uctuating part, where the latter is much smaller than the former [21].

A mechanical resonator with mass m linearly coupled to an optical mode will experience

a shift in frequency Ωm and damping rate Γm, such that the susceptibility (Eq. 2.21) becomes

[21]

χ−1
om (ω) = m

[
Ω2

m + 2ωδΩopt − ω2 + iω (Γm + Γopt)
]
, (2.91)

where the otpomechanical frequency shift δΩopt and damping rate Γopt are given by

δΩopt =g2
0ncav

[
∆ + Ωm

(∆ + Ωm)2 + κ2/4
+

∆− Ωm

(∆− Ωm)2 + κ2/4

]
(2.92)

Γopt =g2
0ncav

[
κ

(∆ + Ωm)2 + κ2/4
− κ

(∆− Ωm)2 + κ2/4

]
, (2.93)

with optomechanical single-photon coupling strength g0 = GxZPF, dispersive frequency shift

G = ∂ωc/∂x (see Fig. 2.9), quantum zero point �uctuation xZPF =
√
~/2mΩm (quantum

mechanical uncertainty of oscillator position in ground state), ncav average number of intra-

cavity photons, ∆ = ωl − ωc is the detuning between incident laser frequency ωl and cavity

resonance frequency ωc (Eq. 2.59), and cavity decay rate κ (rate at which intra-cavity photons

leave cavity). Note that Eqs. 2.91-2.93 rely on κ � Γm + Γopt and high mechanical quality

factor (Qm � 1).

The frequency shift is referred to as optomechanical spring e�ect and the change in the

mechanical damping rate is known as optomechanical damping/anti-damping rate [21]. The

latter is of particular interest in quantum optomechanics, since it provides a means of ex-

tracting thermal energy from the resonator, to a degree that quantum mechanical e�ects
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dominate the resonator's trajectory [14, 15]. That the presence of Γopt enables cooling (heat-

ing) of the resonator can be seen by executing an analysis similar to the one presented at

the end of Sec. 2.1.2.2, to calculate the mean square oscillation amplitude of the thermally

driven oscillator: in vicinity of the mechanical resonance (Ω ≈ Ωm) and for small frequency

shifts (δΩopt � Ωm), the displacement power spectral density (see Sec. 2.1.2.2) is given by

Sx (ω) = |χom (ω)|2 4kBTΓm =
4kBTΓm

mΩ2
m (Γm + Γopt)

2 [4 (Ωm + δΩopt − ω)2 / (Γm + Γopt)
2 + 1

] ,
(2.94)

with Boltzmann constant kB = 1.38×10−23 m2kgs−2K−1, and temperature of environment T .

By applying Parseval's theorem (Eq. 2.19) and substituting y = 2 (Ωm + δΩopt − ω) / (Γm + Γopt)

and dω = dy (Γm + Γopt) /2 we have

〈
x2(t)

〉
=

ˆ ∞
0

dω

2π
Sx =

2kBT

mΩ2
m

Γm

(Γm + Γopt)

1

2π

ˆ ∞
y0

dy
1

y2 + 1
=

kBT

mΩ2
m

Γm

(Γm + Γopt)
. (2.95)

A comparison with the equipartition theorem (Eq. 2.29) shows, that this expression corre-

sponds to a harmonic oscillator connected to a thermal environment with e�ective tempera-

ture

Teff = T
Γm

(Γm + Γopt)
. (2.96)

For Γopt > 0 (< 0) the OM interaction causes cooling (heating) of the resonator by reduc-

ing (increasing) Teff . From Eq. 2.93 follows that OM cooling (heating) requires red (blue)

detuning of the incident laser beam with respect to the cavity resonance, with ∆ < 0 (> 0).

For reasons that will be elucidated further below, this type of OM cooling is sometimes re-

ferred to as sideband cooling. Other types of OM cooling require the use of active feedback

[49, 89] or the existence of dissipative OM coupling, wherein motion adjusts the power in

the cavity through its loss rate κ(x) (see Fig. 2.6(b) for an example of dissipative coupling

F (x) (∝ κ−1(x))) [73, 74, 75, 76, 77].
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Cavity (DoS)

Figure 2.10: Schematic of optomechanical sideband cooling showing the optical power
spectral density as a function of detuning δ between an incident laser and an optical cavity
resonance (similar to Fig. 1(a) in Ref. [24]). Green arrow represents a laser with frequency ωl
which is red-detuned from an optical cavity resonance (gray curve, representing the cavity's
density of states (DoS)) with frequency ωc, so that ∆ = ωl − ωc < 0. The cavity comprises a
mechanical resonator (e.g. moving end mirror or �exible membrane in between end mirrors)
which oscillates at its resonance frequency Ωm and thereby scatters laser light into a red
(blue) sideband, located at −Ωm (+Ωm) with respect to incident laser. Scattering light
into red (blue) sideband transfers energy from light (mechanical resonator) to mechanical
resonator (light) and happens at a rate proportional to the optomechanical anti-damping
(damping) rate Γ− (Γ+) given by second (�rst) term of Eq. 2.93. Depending on detuning
∆ and cavity linewidth κ (full width at half maximum) the cavity response suppresses one
sideband more than the other, which for ∆ < 0 (> 0) results in e�ective cooling (heating) of
the mechanical element.

Figure 2.10 shows a schematic of optical sideband cooling. An incident laser with fre-

quency ωl is scattered by the mechanical resonator into a red (blue) sideband (with lineshape

corresponding to a mechanical resonator (see Fig. 2.1) of linewidth Γm+Γopt), located at −Ωm

(+Ωm) with respect to ωl
7. Scattering light into red (blue) sideband transfers energy from

light (mechanical resonator) to mechanical resonator (light). Depending on detuning ∆ and

cavity linewidth κ (full width at half maximum) the cavity response (density of states) sup-

presses one sideband more than the other, which for ∆ < 0 (> 0) results in e�ective cooling

(heating) of the mechanical element. This process is most e�cient in the resolved-sideband

7In a classical picture, the mechanical resonator phase modulates the intra-cavity �eld, given by real part
of Ece

iωlt+ia sin(Ωmt) with �eld amplitude Ec and small modulation amplitude a � 1. Taylor expanding
gives Ece

iωlt+ia sin(Ωmt) ≈ Ece
iωlt [1 + ia sin (Ωmt)] = Ec

[
eiωlt + a

2e
i(ωl+Ωm)t − a

2e
i(ωl−Ωm)t

]
, where second

and third term correspond to red and blue sideband. In a quantum picture, intra-cavity photons can be
scattered by resonator phonons. Hereby, a photon (ωl) can create or absorb a phonon (Ωm) while being
scattered to ωl + Ωm or ωl − Ωm.
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regime (Ωm ∼ κ) where the red sideband is strongly suppressed while blue is strongly en-

hanced. Equation 2.96 suggests, that cooling to arbitrarily low temperatures is feasible by

continuously increasing Γopt. In the case of sideband cooling with a coherent state of light,

an achievable minimum value for Teff arises as a consequence of the quantum mechanical

properties of the OM interaction. The cooling and heating rates can be calculated from lin-

ear time-dependent perturbation theory (Fermi's golden rule) and are respectively given by

Γ+nm and Γ− (nm + 1) [21], where Γ+ (Γ−) corresponds to the �rst (second) term of Eq. 2.93,

and nm is the (current) average number of phonons in the mechanical resonator mode. Now,

as one cools the resonator, thereby reducing nm, an equilibrium between heating and cooling

Γ+nm,0 = Γ− (nm,0 + 1) will be reached eventually, which sets the lower bound

nm,0 =
Γ−

Γ+ − Γ−
= −κ

2 + 4 (∆0 + Ωm)2

16∆0Ωm

. (2.97)

The second expression, with ∆0 = −
√
κ2 + 4Ω2

m/2, follows from Eqs. 2.92-2.93 and mini-

mizing with respect to ∆. The fact that a minimum value for the resonator's occupation

nm,0 exists is a consequence of the inherent asymmetry in cooling rate (∝ nm) and heating

rate (∝ nm + 1). To establish this limit we assumed the resonator to be not connected to a

(mechanical) thermal environment and that OM cooling and heating were the only processes

to change the resonator's occupation.

We now move on to include the resonator's connection to a thermal environment (modeled

as an in�nite set of mechanical oscillators [66]). The net cooling and heating rates are modi�ed

by a purely mechanical component (∝ Γm), which describes the connection to the thermal

environment with phonon occupation at resonance frequency nm,th = kBT/~Ωm (consequence

of equipartition theorem, see end of Sec. 2.1.2.2). In equilibrium we have (Γ+ + A+)nm,min =

(Γ− + A−) (nm,min + 1), with mechanical cooling and heating rates respectively given by A+ =

Γm(nm,th + 1) and A− = Γm(nm,th). In the case of optimal detuning ∆0 and with Eq. 2.97,

the minimum value for the resonator's phonon occupation follows as

nm,min =
Γmnm,th + Γopt (∆0)nm,0

Γm + Γopt (∆0)
. (2.98)

Even in the case of strong OM cooling (Γopt (∆0) � Γmnm,th) the minimum value nm,min is
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ultimately bounded by nm,0.

In the (deep) resolved sideband regime (Ωm � κ) the optimal cooling rate is given by

Γ− (−Ωm) ≈ 4ncg
2
0/κ. (2.99)

This motivates the de�nition of the single photon cooperativity

C0 ≡ 4g2
0/ (Γmκ) (2.100)

which represents the ratio of cooling/damping rate for an average cavity occupancy of a

single photon (at the optimal detuning) to intrinsic damping of the mechanical element.

For C0 = 1 a single intra-cavity photon (on average) provides a cooling rate equal to the

intrinsic thermal damping rate (Eqs. 2.99-2.100). For the setup studied in this dissertation,

formed by a Fabry-Perot cavity with incorporated trampoline resonator (see Sec. 2.2.3), we

can express C0 by substituting Γm = 2/τm (Eq. 2.4), κ = πc/ (FLc) (see Sec. 2.2.2) and

g0 =
√
~/2mΩm∂ωc/∂x with ∂ωc/∂x given by Eq. 2.89, into Eq. 2.100, resulting in

C0 =
4π~c |rd|2 τmF
λ2LcmΩm

, (2.101)

with phonon lifetime τm, speed of light c, cavity �nesse F , cavity length Lc, optical wavelength

λ, and re�ection coe�cient of trampoline rd.
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Chapter 3

Fabrication & Mechanical

Characterization of Si3N4 Trampoline

Resonators

Statement of contribution: Alexandre Bourassa built the vacuum chamber and a previous

version of the �ber interferometer that is employed in this chapter. For the presented mea-

surements, I upgraded the �ber interferometer (replaced a homebuilt two-axis stage with a

commercial one (closed-loop), assisted in interfacing it (python ctypes), designed and built a

new support structure for the stage, replaced a �ber optical circulator with a four port �ber

coupler, and added a preampli�er before the lock-in ampli�er. Yishu Zhou, Vikramaditya

Mathkar, and Chris McNally assisted by independently testing the setup and coding). Mat-

tieu Nannini, Don Berry, Jun Li, Lino Eugene, Simon Bernard, and Scott Hoch contributed

with discussions on nanofabrication. Raphael St-Gelais contributed to Sec. 3.2.3 with dis-

cussions on the angular spectrum method. Abeer Barasheed and Bogdan Piciu contributed

with discussions on the �nite-element model (COMSOL) used to simulate eigenfrequencies

and mode pro�les of fabricated trampoline resonators. My main contributions were: develop-

ment of the silicon nitride trampoline resonator fabrication protocol, design and fabrication

of all investigated trampolines, measurement and data analysis of the results presented in

Sec. 3.3.1 - 3.3.2. The measurement presented in Sec. 3.3.3 was performed by Alexey Shkarin

at the Harris Lab, Yale University, on devices that I fabricated. Aashish Clerk, Peter Grütter,
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Christian Degen, and Gary Steele contributed with discussions.

Mechanical resonators fabricated from silicon nitride, particularly the stoichiometric form

Si3N4, have attracted widespread interest over the past decade. This has lead to rapid im-

provements in their performance and increased understanding of the mechanisms limiting its

optical and mechanical performance. By now, these combined e�orts have resulted in fab-

ricated devices with unprescedented mechanical �gures of merit, namely mechanical quality

factors Qm (for resonator masses meff ∼ fg− ng and frequencies fm ∼ 10 kHz− 100 MHz),

products Qmfm, and (among �top-down� batch-fabricated mechanical sensors) force sensitiv-

ities1 (see Sec. 2.1.2.2)

SF = 8meffkBT/τm, (3.1)

with e�ective mass2 meff , Boltzmann constant kB, temperature T , and mechanical ringdown

time τm. Due to the way in which they are grown, most high-performance Si3N4 resonators

have a quasi one- or two-dimensional design with a Si3N4 layer thickness in the range of

10 nm− 400 nm and lateral extents in the range of 1µm− 5 cm, as well as a high tensile

(in-plane) stress on the order of 1 GPa. To give an everyday example, this amount of tensile

stress would be created in a letter size paper (thickness 100 µm), oriented upright, if a weight

of two metric tons was hung from its bottom edge (given the material strength would permit

it).

The dependency of mechanical performance parameters on material properties and device

geometry of Si3N4 resonators has been systematically investigated by various groups. These

independently executed studies were primarily carried out on doubly-clamped string/beam

resonators and extended two-dimensional membranes. The common �nding was, that Qm,

Qmfm, and SF bene�t from higher �lm stress [91, 92], larger lateral resonator dimensions (e.g.

beam/string length and membrane area) [91, 93, 94, 59, 92, 95], and smaller �lm thickness

1The force sensitivity SF in units of force per square root of frequency, indicates for how long the trajectory
of a mechanical resonator has to be measured, in order to resolve a force of a certain magnitude acting on
the resonator. For example, a force sensitivity of 10 aN/Hz1/2 indicates, that a measurement time of 1 s
is required in order to resolve a force of 10 aN (assuming the force acts on the mechanical resonator at a
frequency within the detection bandwidth.)

2The e�ective mass is given by meff = ρm

´
dV ζ2 (x, y) /ζ2

0 [90] with material density ρm, trampoline
volume V , trampoline displacement amplitude ζ (x, y) from its equilibrium con�guration (in xy−plane), and
maximum displacement ζ0.
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[94, 59, 92, 39, 57]. Furthermore, maximal Qmfm is typically obtained for higher order modes

for both, strings/beams and membranes, with highest measuredQmfm values of∼ 1013 for the

former [39, 96] and ∼ 1014 for the latter [92, 57]. A characteristic of string/beam resonators is

that their mechanical performance degrades for beam widths exceeding few µm [94]. Whereas

higher Qmfm values have been achieved for membranes compared to strings/beams (partially

owing to the bigger lateral extent of the former in the referenced studies), string/beam-based

structures been shown to provide higher force sensitivity [97, 1, 39]. This is because they

o�er a mechanical performance comparable to that of membranes at orders-of-magnitude-

lower mass (Eq. 3.1).

The exact scaling of performance parameters with respect to in-plane stress and device

geometry, roughly outlined above, depends on the particular mechanism that limits the

mechanical performance. A recent review [98] summarizes the current state of knowledge

about the underpinnings of mechanical energy dissipation in Si3N4 resonators. By now it

is understood that the mechanical performance is fundamentally limited by �clamping� and

�bending� losses. The former describes energy dissipation by radiation of phonons into the

substrate (can be reduced by using thicker chip substrates [59, 39], as this increases the

mechanical impedance mismatch at the clamps). The latter assumes coupling of bending

induced strain �elds to internal defects in the material. This loss is a sum of contributions

from bending in the clamp areas and bending at modal antinodes. The exact details are still

subject of an ongoing discussion but accumulating evidence points at two-level defect states

as the prime suspect of dissipating bending energy [99, 98].
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Figure 3.1: Fabricated Si3N4 trampoline resonator with redistributed in-plane stress upon
release. (a) Optical image of fabricated device with a window size of w = 1.5 mm, central
pad diameter d = 400µm, and tether width a = 1.7µm (released Si3N4 appears white, Si3N4

on Si substrate appears blue). (b) Finite element simulation (COMSOL) of in-plane stress
for device of (a), with material parameters: density 2700 kg/m3, Young's modulus 250 GPa,
Poisson ratio 0.23, and internal stress 0.95 GPa.

In recent years, based on the insights gained with Si3N4 resonators of the fundamen-

tal string/beam and membrane geometries (see above), a variety of speci�cally-engineered

devices has emerged. Hereby, the objectives have been to circumvent certain limitations

encountered in strings/beams or membranes and to improve speci�c features. For example,

it had repeatedly been reported [42, 98, 92] that mounting conditions of resonator chips can

have a severe impact on the device performance. In these studies, particularly lower-order

membrane modes bene�ted strongly from minimal contact with the structure supporting the

chip, where gluing the chip at several spots to its support decreased Qm by a factor up to

∼ 102 [42]. This �nding motivated patterning the Si substrate surrounding the membrane

into a periodic structure, with the intent to suppress propagation of phonons at certain

membrane resonance frequencies in the substrate, thereby increasing the membrane's isola-

tion from its environment [46, 47]. A trampoline resonator is another type of device which is

speci�cally tailored, here with regards to its application in optomechanics [51]. Figure 3.1(a)

shows a fabricated trampoline comprising a central pad, to interact with an incident laser

beam, that is weakly suspended by four tethers. This geometry increases the mechanical

compliance with respect to an unpatterned membrane and thereby enhances the resonator's
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susceptibility to the force of incident light. Trampoline resonators have been demonstrated

to provide low force noise
√
SF ∼ 15 aN/

√
Hz [1, 39] and high Qmfm & 1013 [39]. Achiev-

ing this high performance is partially attributed to a stress redistribution in the fabricated

devices. Figure 3.1(b) shows a �nite element simulation of the stress distribution for the

trampoline of Fig. 3.1(a). The tethers provide only a small force compared to the large area

pad, causing the pad to contract while the tethers are stretched. As a result, the central

pad is completely stress-relieved, with a tensile stress level of 10 MPa while, while the stress

level in the tethers is 2.2 GPa, which represents an increase by more than two times with

respect to the residual �lm stress of the Si3N4 device layer. A similar approach of �stress

engineering� was reported for beam resonators [100]; instead of directly clamping a beam of

uniform thickness at the substrate, it is connected to the substrate via a wider nitride area,

which upon release contracts and thereby increases the beam stress. A recent benchmark

for Si3N4 resonators was obtained with periodically-patterned membranes featuring a cen-

tral defect [57]; the defect modes provide both highly reduced clamping and bending losses

compared to any other geometry realized so far. This is by virtue of the con�nement of the

defect mode to the central area of the membrane, which results in greatly reduced oscillation

amplitudes at the clamp, thereby reducing clamping loss. Furthermore, by replacing strong

bending at the clamps with soft clamping in areas where the geometrical defect transitions

into the periodically patterned part of the membrane, bending-induced dissipation is strongly

reduced. These features have enabled resonators with Qm > 108 at fm = 1 MHz and resulting

Qmfm & 1014 [57].

In this chapter we present the fabrication and mechanical characterization of Si3N4 tram-

poline resonators. In Sec. 3.1 we discuss the geometrical features of a fabricated trampoline

and detail its fabrication procedure. In Sec. 3.2 we present the vacuum �ber interferometer

setup, used to measure the trampoline's mechanical resonances, and discuss the calibration

procedure to express the trampoline's oscillation amplitude in terms of length units. This

calibration relies on a one-dimensional optical model, which agrees with a more involved

two-dimensional model within 10 % (see Sec. 3.2.3). Since the latter is more complicated

to apply to the experimental data we employ the former, justi�ed by the modest deviation.

In Sec. 3.3 we identify mechanical resonances of a trampolines resonator, which agree with
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a �nite element simulation (COMSOL) within 1 %. By measuring the mechanical ringdown

time, after switching o� a resonant piezo drive, we extract Qm of the identi�ed modes, which

all have values > 107. The highest value was measured for the fundamental resonance with

Qm = 4.5× 107. We measure the thermal displacement spectrum (at room temperature) of

this resonance and extract a thermal force noise of 16.2 aN/Hz1/2. With regard to future

integration of the trampolines, e.g. in an optical cavity, we cleave them (post release) into

individual device chips and glue them at three spots to metal support, resulting in a mod-

erate ∼ 10 % reduction of Qm for the fundamental resonance (note this result is for smaller,

570 kHz devices having bare Qm's of 5× 106).

3.1 Si3N4 Trampoline Resonator Fabrication

High aspect ratio Si3N4 mechanical resonators �nd widespread use, e.g. in cavity optome-

chanics experiments [21] or as cantilever in atomic force microscopy [101], as they combine

exceptional mechanical performance (see introduction to this chapter) with low optical loss.

Devices made out of Si3N4 are typically fabricated on an Si substrate, oriented such that a

(100) crystal plane is parallel to the resonator. This geometry enables one to de�ne sharp

terminating edges in the substrate at the resonator's clamping areas by wet releasing in potas-

sium hydroxide solution (due to high etch selectivity with respect to crystal planes; etch rate

along [100] crystal direction about a factor ∼ 102 bigger than along [111]). Improving the

mechanical performance by virtue of this wet-release comes at the expense of dealing with

additional technical challenges, as it exposes the highly-fragile (once released) Si3N4 struc-

tures to forces exerted by the liquid (all the more, as it requires additional cleaning steps in

which the released resonator has to be transferred between di�erent chemical baths). There-

fore, in the course of developing our trampoline fabrication protocol we soon identi�ed chip

handling as a factor with crucial impact on device breaking and cleanliness. To circumvent

the encountered limitations, we designed a sample carrier which protects the chips against

�ow in the chemical baths and minimizes tweezer-based chip handling. By virtue of this

carrier, we achieved an overall fabrication yield of ∼ 50 % (up to 100 % on individual chips)

for the trampoline resonators mechanically-characterized in later sections of this chapter.
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In Sec. 3.1.1 we present optical and scanning electron microscope pictures of a fabri-

cated trampoline resonator and discuss its geometric features and design considerations. In

Sec. 3.1.2 we discuss the Si3N4 trampoline resonator fabrication protocol and give details on

the employed machines, tools, and recipes.
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3.1.1 Fabricated Trampoline Resonator

Drawing inspiration from similar structures [102], those having embedded Bragg mirrors

[50, 51], and high-Qm nitride strings [91], we pattern single-layer resonators suitable for a

�membrane-in-the-middle� [41] optomechanical geometry.
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Figure 3.2: Fabricated Si3N4 �trampoline� resonators. (a) Optical image of the released
structure with a window size of w = 3 mm (upper) and a schematic of its KOH-etched cross-
section (lower). Right-hand images show (i) an optical image of the d = 100µm-wide central
pad, (ii) a scanning electron microscope (SEM) image of the a = 2.1µm-wide tether (near the
pad), and (iii) an SEM image of the 4.6-µm-wide overhanging Si3N4. Left from the overhang
is the angled, KOH-etched silicon substrate showing typical roughness and residues. (b)
Optical image of chip with eight trampoline resonators and optical �ber aligned on one of
the trampolines for characterization of mechanical motion (see Sec. 3.2.1).

We fabricated and tested Si3N4 trampoline resonator ranging from 250 µm to 3000 µm

window size, 40 µm to 400 µm pad diameter, and 1.4 µm to 3.5 µm tether width. The
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most successful device (in terms of force noise sensitivity) is shown in Fig. 3.2(a), comprising

(i) an 80-nm-thick, 100-µm-wide central pad suspended by (ii) 2.1-µm-wide tethers. These

devices are suspended from a 675-µm-thick, (single-side-polished) silicon wafer, upon which

100 nm of stoichiometric Si3N4 was commercially deposited via low-pressure chemical vapor

deposition.3 Nitride on silicon appears blue, and suspended nitride appears yellow. The

�lleted shapes [91] of the central nitride pad and corner clamping points ensure that all

suspended structures are held �at by the nitride's internal stress (nominally ∼ 1 GPa), and

that regions of concentrated strain in the structure's normal modes are minimized. The �llets

are nominally circular; on the central pad their radius de�nes the pad diameter d and the

corner �llets are de�ned to have a quarter of this radius, to reduce their relative mass. The

tethers are long (2.1 mm) to simultaneously increase the mechanical quality factor Qm [94]

and decrease the mechanical frequency Ωm
4, thereby maximizing the mechanical ringdown

time τm = 2Qm/Ωm (see Sec. 2.4) without contributing too much mass. This in turn bene�ts

the thermal force noise (Eq. 3.1). The cross section of the wafer (lower image of Fig. 3.2(a),

also faintly visible from above) results from the minimum anisotropic KOH etch required to

cut a clear-shot window through the silicon. This choice minimizes the region of overhanging

Si3N4 (iii), a known source of mechanical dissipation [81, 94]. The size of the square window

on the back side of the chip is chosen (on photolithograpy mask (see following section)) so

that etching the Si substrate just from the back would yield sidewalls �ush (up to overhang)

with the outer boundaries of trampoline. In the present case of double side etching, this

causes the top and back etch pro�le to be o�set with respect to each other, resulting in a

sharp edge half way along the substrate thickness. The angle of the etched silicon associated

with the anisotropic etch also serves to further increase the rigidity of the supporting frame

at the clamping points.

3Note Si3N4-coated wafers purchased from University Wafer and Addison Engineering produce similar
results.

4Resonance frequencies of a highly-stressed doubly-clamped beam are given by q
√
σ/ρ/ (2lt) [103, 91], with

mode index q ∈ N, tensile stress σ, material density ρ, and beam length lt. For a trampoline with a, d� lt
this expression provides an estimate for the trend of its (lower order) resonance frequencies, whereby the
increased mass, with respect to the beam, due to the central pad, can be described by an increased ρ.
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3.1.2 Fabrication Protocol

Here we discuss details of our fabrication protocol for Si3N4 trampoline resonators (see pre-

vious section). Fig. 3.3 shows an illustration of the process �ow, based on vertical cross

sections and names of employed chemicals for each process step. In Tables 3.1-3.2 we list

details of the employed tools, machines, and fabrication recipe parameters. In the following

we brie�y describe the essential steps carried out during fabrication and refer the reader to

the aforementioned �gure and tables for speci�cs.
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Figure 3.3: Schematic of trampoline cross section at di�erent stages in fabrication process
(see Tables 3.1-3.2 for recipe details). From top to bottom and left to right: silicon (Si) wafer
(� = 6 inch), coated on top and back side with 100 nm thick layer of Si3N4, is vapor primed
with hexamethyldisilazane (HMDS) and spin coated with 1.5 µm thick layer of photoresist
(Microposit S1813). Trampoline geometry is transferred into photoresist by means of pho-
tolithography and resist development (Microposit MF-319). Residues are washed o� with
deionized (DI) water. Trampoline is written into top Si3N4 layer by magnetically-enhanced
reactive ion etch, with plasma comprising Argon (Ar), Fluoroform (CHF3), and Tetra�u-
oromethane (CF4). Previous steps (except priming) are repeated on backside to write a
square window into Si3N4 layer. Additional backside alignment is required to overlay square
window and trampoline. Wafer is manually cleaved (using diamond scribe and wafer pliers)
into chips of 15 mm× 15 mm. Photoresist is stripped (Microposit Remover 1165). Individual
cases require additional cleaning in piranha solution (mixture of sulfuric acid and hydrogen
peroxide) to remove excess photoresist. Chips are dipped in hydro�uoric acid (HF), rinsed in
DI water and transferred to potassium hydroxide solution (SI etch). Chips are rinsed �rst in
DI water then isopropanol followed by HF surface treatment, DI water rinse, and methanol
rinse. Trampoline chips are dried on hotplate. (i) Optical image of tether (blue) on silicon
(peach) showing �hard-to-remove� excess photoresist after stripping.
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Fabrication begins by lithographically de�ning a 1.5-µm-thick photoresist mask in the

shape of a trampoline on the top surface and transferring it to the nitride with a CF4 /CHF3

reactive ion etch. The remaining resist is left as a protective layer while an array of square

openings is patterned into the backside nitride using the same technique. The wafer is then

diced into chips of 15 mm × 15 mm for handling, each hosting 8 identical devices and one

unpatterned �reference� membrane (see Fig. 3.2(b); reference membrane can be fully etched

if desired), and mounted in a chemically-resistant Polytetra�uoroethylene (PTFE) carrier.

Figure 3.4(a) shows a photo of this carrier with chips rigidly held in a vertical orientation,

while allowing liquid to slowly enter and drain via slits in the bottom; we �nd it plays a

crucial role in device survival during wet chemical processing. The photoresist is stripped in

Microposit Remover 1156 at 80◦C (initially we used acetone, but switched to Remover 1156

since it can be heated up to signi�cantly higher temperatures). This process takes typically

1-2 hours, until there are no more photoresist residues visible with a microscope (Olympus

MX 40). Hereby, it takes longest to strip resist of the tethers, with increasing stripping time

for decreasing tether width.5 Inset (i) shows an optical microscope image of a tether (blue,

width 2µm) on Si (peach), displaying a typical example of �hard-to-remove� photoresist. If

we encounter these residues after ∼ 2 hours of stripping, we perform a Piranha clean (see

Table 3.2, 1st Clean) on the chips, which removes all the remaining residues. During this

process the device chips are rigidly clamped to the PTFE carrier to avoid them �oating out of

their slots. A CAD drawing of the chips clamped to the carrier is shown in Fig. 3.4(b), where

additional crossbars (polypropylene) are installed onto the carrier with screws (not shown,

�xed through holes indicated by red dashed lines). Each chip is clamped to the carrier with

a screw through a hole in the crossbar. We move on to remove the newly-exposed silicon's

native oxide with a 1-minute 10:1 Hydro�ouric (HF) acid dip at room temperature. To

release the trampolines, the chips are brie�y rinsed in DI water and then transferred to a

45 % potassium hydroxide (KOH) solution at 60◦C, where the silicon is etched at a rate

of 18 µm/hr for 19 hours. This removes the requisite 340 µm from both sides of the wafer,

5A possible reason for the �hard-to-remove� photoresist residues on the tethers might be, that the resist
in these areas was baked harder compared to, e.g., the central pad. We suspect that this might be related to
a geometry-dependent heat transfer during RIE. To examine this we reduced the etch power from 500 W to
200 W with no measurable e�ect on the duration of the resist stripping process. Note that the 200 W RIE
recipe requires a 5 times longer etch time compared to the 500 W recipe (see Table 3.2).
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resulting in the pro�le shown on the bottom right of Fig. 3.3. Faster etches could be achieved

at higher temperatures (e.g. ∼ 30 µm/hr at 75◦C, but we �nd this signi�cantly reduces device

yield, likely due to increased H2 bubble formation [104]. We suspect the rising bubbles break

the tethers by either directly exposing them to surface tension forces and pressure variations,

or by violently shaking the chip (if loosely mounted), thereby dragging the pad (a.k.a. �the

giant sail�) through the solution. While keeping the released devices submerged, the KOH

solution is then diluted to 0.1 % of its original strength by iteratively removing existing

solution, without exposing the devices to air, and re�lling with DI water. This dilution

process is repeated with isopropanol to further clean and reduce surface tension. The chips

are then transferred to a 10:1 HF solution for 10 min, which gently etches ∼ 10 nm of nitride

(from all exposed surfaces) along with any lingering residues [105]. Finally the chips are

transferred to DI water and then methanol for a �nal rinse before removing and drying on

a hotplate at 85◦C. With this protocol, 6 of the 8 devices in Fig. 3.2(b) survived, consistent

with a survival rate of ∼ 50 % for all device types discussed in this dissertation.

1 cm1 cm

(a) (b)

PTFE Carrier

Handle

Chips

Crossbar

Screw

Figure 3.4: Chip carrier made out of Polytetra�uoroethylene (PTFE) for wet chemistry steps
in Si3N4 trampoline fabrication. (a) Photo of carrier with device chips mounted vertically in
v-grooves. Handle is made out of polypropylene. (b) CAD drawing of carrier with crossbars
(polypropylene, �xed to carrier by means of screws (polypropylene or stainless steel, not
shown) thorough holes indicated by red dashed lines). Chip is clamped by means of screw
(polypropylene or stainless steel) through crossbar.
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Process Step Process Information

T: Yield Engineering Systems (YES) 310
R: thumbwheel set to �2�

Priming C: hexamethyldisilazane (HMDS)
D: 22 min (25 min)
N: temperature in oven is set to 150◦C
T: Laurell WS-400-6NPP-LITE
R: program �C�

Spin Coating C: Microposit S1813
D: (10 min)
N: spreading at 500 rpm for 5 s, spinning at 4000 rpm for 30 s
T: hotplate (Electronic Micro Systems Ltd 1000-1)

Soft Bake D: 1 min
N: bake wafer at 115◦C for 1 min
T: EVG620

UV Exposure
R: �TopSide-7inMask-6in-1.4um�, �BackSide-7inMask-6in-1.4um�
D: (20 min (top side), 30 min (back side))

N:

Top Side Back Side
Process: Manual Top Side Manual Bottom Side

Process Mode: Transparent Overlay
Exposure Mode: Constant Dose Constant Dose
Contact Mode: Hard Contact Soft Contact

mask, substrate size: 7 in, 6 in, separation: 50 µm, Dose: 65 mJ/cm2

thickness mask, substrate, resist: 3.06 mm, 0.68 mm, 1.4 µm
C: Microposit MF-319

Developing D: 45 s (10 min)
N: After developing rinse in deionized water
T: Applied Materials Precision 5000
R: �O2 CLEAN�

O2 Clean C: O2 (45 scc)
(during rampdown only Ar (70 scc))

D: (10 min)

N:

Stabilization Etch Rampdown
Step Time: 15 s 180 s 10 s
Pressure: 150 mTorr 150 mTorr fully open

RF Power: 0 W 500 W 50 W
Magnet Field: 0 Gauss 70 Gauss 0 Gauss

Table 3.1: Trampoline fabrication tools and recipes (part 1). Process parameter abbre-
viations stand for T: tool/equipment name, R: recipe name or settings, C: name of used
chemicals, D: duration of recipe (time given in paranthesis is optimistic estimate for total
duration of fabrication step, including preparation and cleaning of tool, equipment and/or
workspace), N: additional notes and details.

67



Process Step Process Information

T: Applied Materials Precision 5000
R: �Si3N4 ETCH SH�, �SI3N4 CHRISTOPH�
C: Ar (70 scc), CHF3 (30 scc), CF4 (7 scc)

Si3N4 Etching D: (10 min)

N:

Stabilization Etch Rampdown
Step Time: 15 s 45 s (240 s) 15 s
Pressure: 30 mTorr 30 mTorr fully open

RF Power: 0 W 500 W (200 W) 20 W
Magnet Field: 0 Gauss 70 Gauss (60 Gauss) 0 Gauss

T: diamond scribe & Fletcher wafer pliers
Cleaving N: make scratch (1-2 mm) on both ends of cleave line,

center pliers on a scratch, and apply very little pressure only
T: Crest Ultrasonics (solvent bench)
R: time: 1-2 hr, temperature: 85◦C, sonication power level 5 (out of 10)

Stripping C: Microposit Remover 1165, IPA and DI water rinse
D: 1-2 hours
N: hardest to strip resist from tethers → inspect carefully (microscope)
T: acid wet bench, HF wet bench

1st Clean
C: HF 10:1, H2SO4: H2O2 2:1 mixture (piranha), DI water rinse
N: HF dip (1 min), if excess photoresist → piranha (20 min), then HF

optional piranha procedure: preheat H2SO4 (35◦C) then add H2O2

T: Si etch bench, hotplate, syringe with tubing
C: KOH 45 % solution
N: Fill 500 ml of KOH (45 %) in 800 ml Pyrex beaker,
D: (20M100-150hr)

Si Etching cover beaker with PTFE lid, etch at 60◦C for 19 hr
optional: place beaker in water bath (glass bowl) on hotplate
when etch done pump out KOH (chips barely submerged),
re�ll beaker with DI water (repeat two times),
pump out DI water and re�ll 200 ml of IPA

T: HF wet bench, solvent bench
C: HF 10:1, DI water, methanol

2nd Clean N: Transfer chips from IPA to HF (PP beaker, for 10 min)
transfer to beaker with DI water (200 ml)
transfer to beaker with methanol (200 ml)

T: hotplate (Fisher Scienti�c Isotemp)
Drying N: cover hotplate at 85◦C with wipe

take chips out of methanol and place on hotplate

Table 3.2: Trampoline fabrication tools and recipes (part 2). Process parameter abbre-
viations stand for T: tool/equipment name, R: recipe name or settings, C: name of used
chemicals, D: duration of recipe (time given in paranthesis is optimistic estimate for total
duration of fabrication step, including preparation and cleaning of tool, equipment and/or
workspace), N: additional notes and details. Other abbreviations stand for IPA: isopropanol,
DI: deionized, PP: polypropylene.
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3.2 Fiber Interferometer for Measuring Nanomechanical

Motion

Optical interferometry is a widely-employed high-precision method for measurig the distance

between two objects. The measurement principle relies on interference of two portions of

light, which have a relative phase di�erence dependent on the displacement of interest. This

phase di�erence is translated into a corresponding level of optical power and read out with a

photodetector. This method resembles an omnipresent tool in di�erent branches of physics,

such as gravitational wave detection with few-km-long free-space optical interferometers [106]

or nanomechanical motion measurements in a ∼ µm-long �ber interferometer [101].

Here we describe the interferometric measurement that we carry out to characterize the

mechanical resonances of our trampoline resonators. In Sec. 3.2.1 we present the employed

Fabry-Perot �ber interferometer, describe its optical, electronic, and vacuum components

and give a brief overview over its measurement principle. In Sec. 3.2.2 we present our cali-

bration procedure, which is based on an optical plane wave model, to convert the measured

voltage into a displacement amplitude. As this model neglects divergence of the light beam

propagating in the interferometer, in Sec. 3.2.3 we test its applicability by comparing it to a

two-dimensional model which includes beam divergence. We �nd a mutual deviation of up to

10 % between plane-wave model and diverging-beam model and therefore employ the former

in our calibration procedure, due to its ease.

3.2.1 Design

To assure that the mechanical performance of our Si3N4 trampoline resonators (see Sec. 3.1.1)

is not limited by air damping (see Appendix B.2) we characterize their mechanical resonances

in a vacuum chamber at a pressure below 10−6 Torr.6 Figure 3.5(a) shows a view inside the

chamber where the central pad of a trampoline is aligned with respect to an optical �ber at

6After pumping down from ambient conditions to pressures ∼ 10−7 Torr with a turbo pumping station
(Pfei�er HiCube ECO), we cross over to an ion pump (Duniway DSD-05005125-M), to prevent vibrations
from the turbo pump to corrupt our nanomechanical motion measurements. A gauge inside the ion pump
measures a pressure of ∼ 10−7 Torr. The trampoline is installed in the middle of a six-inch vacuum cube
which is connected to the pump via a vacuum tee with connection length of 15 inch and diameter of 2−5 inch.
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a distance of 50 - 100 µm. To measure the trampoline's motion, laser light is directed along

the �ber towards a cleaved tip, and the interference between re�ections from the cleave and

trampoline records the instantaneous displacement.
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Figure 3.5: Vacuum �ber interferometer setup (pressure below 10−6 Torr). (a) Optical
image of a chip with eight trampoline resonators inside a vacuum chamber. An optical �ber
is aligned within a distance of 50 - 100µm from a central pad of a trampoline resonator.
(b) Schematic of the complete measurement setup. Yellow (black) curves represent optical
�bers (electronic cables). A �ber coupled laser (wavelength λ = 1550 nm) passes through an
isolator and a splitter. Ten percent of the incident light is routed to the �ber interferometer
towards cleaved tip of �ber and 90 % are directed to photodiode 1 (PD 1). Re�ected light from
�ber interferometer, made up by partial re�ections at �ber cleave and trampoline resonator,
is split so that 90 % land on photodiode 2 (PD 2) and 10 % are blocked by the isolator.
Voltage from PD 1 is measured on auxiliary input (Aux, acts as voltmeter) of a lock-in
ampli�er. Voltage from PD 2 is ampli�ed ×50 by a low-noise preampli�er and subsequently
split. Oscillatory component is measured by means of lock-in detection and DC component
is measured on auxiliary input. (c) Optical image of �ber interferometer with device chip
and nanopositioning stages in vacuum chamber. A support structure, comprising a bottom
plate, two posts, and a crossbar is employed for mounting a xy-stage and z-stage. Fiber is
�xed to z-stage by means of a �ber clamp. A piezo actuator is installed on xy-stage. Inset
(i) shows piezo, electrically contacted by means of a copper (Cu) wire, glued to a washer.

Figure 3.5(b) shows a schematic of the combined optical and electronic measurement

setup. All optical components are �ber coupled, with optical �bers represented by yellow
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curves. Electronic cables are drawn as black curves. A �ber coupled laser diode (Thorlabs

SFL1550P7), with wavelength 1550 nm and output power 40 mW, is connected to an isolator

(Thorlabs IO-H-1550APC), two attenuators (Thorlabs FA05T-APC and FA10T-APC, not

shown) with combined attenuation of 15 dB, and a 90:10 splitter (Thorlabs 10202A-90-

APC), which routes 90 % of the incident optical power to a photodiode (PD 1, Thorlabs

PDA10CF) and 10 % towards the �ber cleave inside the vacuum chamber. The optical

power measured right at the �ber cleave is 50 µW (in agreement with laser diode output

power and nominal attenuation from optical components). The back-re�ected light from

the �ber interferometer is routed by the splitter so that 90 % land on a photodiode (PD

2, Thorlabs PDA10CF) and 10 % are blocked by the isolator. The voltage from PD 1 is

measured on the auxiliary input (Aux) of our lock-in ampli�er (Zurich Instruments HF2),

which acts as a voltmeter. By monitoring this signal up to several hours we have con�rmed

that the laser diode's output power is stable over this time span. The voltage from PD 2

is ampli�ed by a low-noise preampli�er (Stanford Research Systems SR560 with additional

50 Ω resistor installed parallel to 100 MΩ input resistance) by a factor of 50 and subsequently

split. The AC component, oscillating at the trampoline's mechanical resonance frequency

(see next section for details), is demodulated8 on the lock-in ampli�ers input (In). The DC

component of the signal (used to calibrate trampoline's oscillation signal in length units, see

following section) is measured on Aux.

Figure 3.5(c) shows a photo of the �ber interferometer installed inside a vacuum chamber.

We use a single mode �ber (SM980-5.8-125), which is stripped down to the cladding (� =

125µm) and cleaved to provide an optically smooth surface. The refractive index of the �ber

core is 1.45 at our operating wavelength of 1550 nm [personal communication with Thorlabs

employee, June 9, 2017]. Vacuum-compatible pass through of the �ber inside the vacuum

chamber is achieved by using a polytetra�uoroethylene (PTFE) �ber ferrule installed in a

7we now recommend using a Redfern Integrated Optics Orion system instead, as that laser/controller
combination has signi�cantly lower amplitude noise over these frequencies.

8The following description of lock-in detection is taken from Ref. [107]. Measured signal voltage
us(t) = As cos (ωst+ ϕ), with amplitude As, frequency ωs/2π, and phase ϕ, is multiplied (with elec-
tronic mixer) by reference signal ur(t) =

√
2 exp (iωrt), with frequency ωr/2π. This results in us(t)ur(t) =

As/
√

2 {exp [i (ωs − ωr) t+ ϕ] + exp [i (ωs + ωr) t+ ϕ]}. Subsequent low-pass �ltering (�lter transfer func-
tion F (ω)) yields F (ωs − ωr)As/

√
2 exp [i (ωs − ωr) t+ ϕ]. Choosing ωr as close as possible to ωs and the

low pass as selective as possible to the resulting signal, realizes a measurement which highly suppresses signals
oscillating at frequencies di�erent from ωs/2π, resulting in a highly increased signal to noise ratio.
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�1/8 inch tube Swagelok compression �tting [108]. The �ber is �xed to a linear stage �z-

stage� (Micronix PP-20, 12 mm travel range, 1 nm resolution) by means of a PTFE clamp.

We use the z-stage to set the distance between �ber and trampoline. Typically, we aim for

a separation in the range of 50 − 100µm (estimated based on �ber thickness) as a trade-o�

between readout sensitivity (see Sec. 3.2.3) and practical considerations, such as the ability

to optically resolve the �ber-trampoline separation. Here we employ two Califone CM1-USB

cameras, with resolution ∼ 10µm, to observe �ber and membrane chip during alignment.

These cameras are pointed at vacuum viewports (roughly oriented along x− and y−axis)

from outside the chamber to verify alignment along all three spatial directions. For respective

alignment of �ber and trampoline in the xy−plane we rest the trampoline chip on a 2−axis

stage (Smaract SLC-17, 31 mm travel range, 1 nm resolution). In order to resonantly excite

the trampoline's motion, we have installed a piezo actuator (Noliac CSAP01) onto this stage.

Inset (i) of Fig. 3.5(c) shows the piezo glued to a washer, which is screwed onto the top plate

of the xy−stage (see. Fig. 3.5(c)). By connecting this piezo to the lock-in ampli�er's output,

we can drive mechanical resonances up to 2 MHz (examined by Simon Bernard, [personal

communication, July 3, 2017]).

3.2.2 Displacement Calibration Based on Optical PlaneWave Model

The �ber interferometer discussed in the previous section converts the trampoline's (see

Sec. 3.1) oscillation amplitude into a voltage signal, which is read out with a lock-in ampli�er.

In this section we describe our calibration procedure to extract the displacement amplitude

from the measured voltage. Our method relies on an optical plane wave model, in which

the electromagnetic �eld depends only on the location along its axis of propagation. In

the following section we present a two-dimensional model, in which the light is treated as a

diverging Gaussian beam. Comparison of the two models shows a deviation of at most 10 %

for all the trampolines studied in this dissertation. This justi�es using the �simpler-to-apply�

1D model in our calibration procedure.
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Figure 3.6: Optical plane wave propagation in �ber interferometer, resulting interference
fringe, and experimentally observed fringe drift. (a) Schematic of �ber interferometer with
optical �ber (blue, refractive index nf ) separated by distance L from trampoline resonator
(gray, refractive index nd). Re�ected light Er results from interference of partial re�ections
of incident light Ein (wavelength λ = 1550 nm) at �ber-vacuum interface (re�ection and
transmission coe�cients rf and tf ) and trampoline (re�ection and transmission coe�cients
rd and td). (b, upper) Blue curve shows Airy function describing normalized re�ected signal
ur/uin (Eq. 3.3 with ur ∝ E2

r , uin ∝ E2
in) versus �ber-membrane separation L/λ. Red curve

shows sinusoidal fringe (Eq. 3.4). Gray line indicates minimum (maximum) fringe values
umin/uin (umax/uin). Green circle indicates fringe center (umin + umax) /2uin. (b, lower)
same as (b, upper) but for slope of fringe dur/dL × λ/uin. Green circle is at same L/λ
value as in (b, upper) and indicates maximum value for slope of sinusoidal fringe. (c) Green
curve shows o�set voltage u0 versus time. Solid gray line shows minimum (maximum) fringe
voltages umin (umax). Dashed gray line shows fringe center (umin + umax) /2.

Figure 3.6(a) shows a schematic for optical plane wave propagation in the �ber interferom-

eter. An optical �ber (blue) is separated by distance 50µm < L < 100µm from a trampoline

resonator (gray). Light Ein is incident from the left, with wavelength λ = 1550 nm and

wavenumber k = 2π/λ. Re�ected light Er results from interference of partial re�ections from

cleaved �ber tip and trampoline. Re�ection and transmission at the cleave are governed by

Fresnel coe�cients rf = (nf − 1) / (nf + 1) and tf = 2nf/ (nf + 1) (Eqs. 2.39-2.40), with

refractive index of �ber nf = 1.45 (see Sec. 3.2.1 for details). Trampoline re�ection and

transmission coe�cients rd = |rd| eiφr (written in terms of magnitude |rd| and phase φr) and
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td are given by Eqs. A.3-A.4, with membrane thickness d = 100 nm and refractive index

nd = 2.0 (Si3N4 at 1550 nm). The optical transfer matrix (TM, see Sec 2.2 for details),

describing propagation of light through this setup, is a product of a TM governing (from

left to right) re�ection at the trampoline (modeled as a dielectric slab, see Appendix A.1),

propagation in between �ber and trampoline, and re�ection at the �ber-vacuum interface

(see Table 2.1)

Mfi =
1

td

 −e2iφr |rd|

− |rd| 1

 eikL 0

0 e−ikL

 1

tf

 1 −rf
−rf 1

 . (3.2)

The re�ected optical power is given by (Eq. 2.48)

Pr(L) = Pin

∣∣∣∣µ21

µ22

∣∣∣∣2 = Pin

[
1 +

r2
d + r2

f − r2
dr

2
f − 1

1 + r2
dr

2
f + 2rdrf cos(2kL)

]
(3.3)

with incident power Pin ∝ |Ein|2 (see Appendix A.4) and lower left (lower right) matrix

element µ21 (µ22) of Mfi. Equation 3.3 resembles an Airy function, similar to the one obtained

for the re�ected optical power of a Fabry-Perot cavity (Eq. 2.52). This is consistent with the

picture that the �ber interferometer sketched in Fig. 3.6(a) resembles a Fabry-Perot cavity for

which the �ber-vacuum interface represents the input mirror and the trampoline acts as back

mirror. In the present parameter regime (|rd|2 = 0.228, |rf |2 = 0.034, both small compared

to high-�nesse cavity mirror re�ectivities > 0.99), the L−dependent re�ected optical power

from the �ber interferometer features a smooth modulation (see following paragraph) in

contrast to sharp resonances, as for the Fabry-Perot cavities studied in theory in Sec. 2.2.2

and investigated experimentally in Sec. 4.2.1.

With our experimental setup (see Sec. 3.2.1) we measure a voltage proportional to the

re�ected optical power ur ∝ Pr (Eq. 3.3). The blue curve in Fig. 3.6(b, upper) represents

the normalized re�ected signal ur/uin = Pr/Pin (Eq. 3.3), with uin ∝ Pin, versus normalized

�ber-trampoline separation L/λ. This so-called interference fringe varies periodically with L

and period λ/2. The blue curve in Fig. 3.6(b, lower) represents the displacement sensitivity

dur/dL, normalized with respect to input signal and wavelength.

Equation 3.3 establishes a relation between the trampoline's displacement and re�ected
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signal. This suggests, that based on the knowledge of nf , nd, and λ one can convert the

measured voltage into a displacement amplitude. In the following section we present an

optical model in which the light exiting the �ber is more precisely described as a diverging

Gaussian beam (see Sec. C.1) instead of a plane wave. The main consequence of beam

divergence is that the fringe extent decreases for increasing L, resulting in convergence of

minimum and maximum fringe value, denoted respectively by umin and umax (indicated by

solid gray lines in Fig. 3.6(b, upper)). For our typical �ber-trampoline separation in the range

of 50 − 100µm (see Sec. 3.2.1), the fringe extent, taking into account beam divergence, is

signi�cantly smaller than the one predicted by Eq. 3.3 (see Fig. 3.7). We therefore perform the

following calibration procedure: First, we coarsely align the �ber on top of the trampoline's

central pad, with L = 50 − 100µm (see Sec. 3.2.1). Subsequently, we change L in steps of

∼ 10 nm with the goal of recording umin and umax. Based on these parameters and k we

de�ne the sinusoidal calibration function

ũr (L) = uamp sin (2kL) + umid, (3.4)

with fringe amplitude uamp and center umid given respectively by

uamp = (umax − umin) /2

umid = (umax + umin) /2.

The red curves in Fig. 3.6(b) represent ũr/uin (Fig. 3.6(b, upper)) and dũr/dL × λ/uin

(Fig. 3.6(b, lower)). The displacement sensitivity of ũr (L) is maximized at locations Lmid

where ũr (Lmid) = umid (indicated by green circles in Fig. 3.6). Therefore, after scanning

the fringe for umin and umax, we move the �ber to an o�set value L0 within ≈ 50 nm to

Lmid, indicated by an o�set voltage u0 ≈ umid. This is the initial situation for performing

measurements of the trampoline's motion. Note that the relative di�erence between slope of

sine and Airy function at Lmid is ≈ 3 %.

For a trampoline resonator oscillating around its equilibrium position L0 (t), the displace-
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ment between �ber and membrane at time t is given by

L (t) = L0 (t) + x (t) . (3.5)

The second term describes the trampoline's oscillatory motion x (t) ∝ sin (Ωmt), with me-

chanical resonance frequency Ωm/2π. The time dependency of L0 (t) is due to intrinsic

changes in the �ber-membrane separation through, e.g., thermal drift. The green curve in

Fig. 3.6(c) shows a typical u0(t) trace. Over a time span of 290 minutes, u0(t) drifts within

0.08 V around umid = 0.85 V, corresponding to a drift in L0 (t) of 74 nm.

Assuming that x (t)� λ, the re�ected signal can be approximated as

u(t) ≈ u0(t) +
dũr
dL

∣∣∣
L0(t)

x(t) ≡ u0(t) + ũ(t). (3.6)

With the measurement setup described in Sec. 3.2.1, we read out u0(t) and ũ(t) separately.

As a �rst step, we extract L0 (t) from u0(t); with Eq. 3.4 we have

u0(t) = uamp sin [2kL0 (t)] + umid. (3.7)

Solving for L0 (t) yields

L0(t) =
1

2k
arcsin

[
u0(t)− umid

uamp

]
. (3.8)

Substituting this expression in the derivative in Eq. 3.6 gives

dũr
dL

∣∣∣
L0(t)

=2kuamp cos

{
arcsin

[
u0(t)− umid

uamp

]}

=2kuamp

√
1−

[
u0(t)− umid

uamp

]2

From this expression �nally follows the calibrated oscillation amplitude

x(t) =
ũ(t)

2kuamp

√
1−

[
u0(t)−umid

uamp

]2
. (3.9)
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3.2.3 Diverging Beam E�ects

In Section 3.2.2 we treated the optical �eld propagating in between �ber and membrane by a

one-dimensional transfer matrix model, thereby assuming the wavefronts to be planes. More

precisely, the light exiting the single-mode �ber is approximately described by a Gaussian

beam [109], which is laterally con�ned and diverging after the exit of the cleaved �ber end

(i.e. the location of the waist). As a consequence, the amount of light coupled back into the

�ber, after multiple re�ections between �ber and trampoline, is reduced for increasing beam

propagation length. In the following, we estimate the e�ect of beam divergence on the �ber

interferometer's displacement sensitivity.

Figure 3.7(a, inset(i)) shows a schematic of the low-�nesse cavity formed by �ber tip

and trampoline (thickness d), separated by distance L. The lateral mode pro�le (in xy-

plane) of the incident optical �eld inside the single-mode �ber (Sec. 3.2.1) is approximately

described by a Gaussian function [109] (mode �eld diameter 2w0 = 10.4 µm at 1550 nm, see

Appendix C.1)

Ein (x, y) =

√
2

πw2
0

exp

[
−x

2 + y2

w2
0

]
, (3.10)

which is normalized so that Pin =
´∞
−∞ dxdyE

2
in (x, y) = 1. The �eld exiting the �ber is

described by a Gaussian beam E00(x, y, z), which is re�ected multiple times between �ber and

membrane and slightly distorted upon each re�ection at either trampoline or �ber-vacuum

interface, as discussed in detail in the following.

Propagation of the Gaussian beam in the �ber interferometer can be described with a

transfer matrix method, as carried out for optical plane waves in the previous section. As a

�rst step, this requires us to represent the incident �eld (Eq. 3.10) by its plane wave spectrum,

also referred to as angular spectrum [110, 111]. This is done by means of the two-dimensional

spatial Fourier transform [112]

Ẽin (kx, ky) =
1

2π

∞̂

−∞

∞̂

−∞

dxdyEin (x, y) exp [−i (kxx+ kyy)] ,
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which yields the incident Gaussian Fourier spectrum9

Ẽin (kx, ky; z = 0) =

√
w2

0

2π
exp

[
−w2

0

k2
x + k2

y

4

]
. (3.11)

This function represents the distribution of plane waves with lateral wave numbers kx and

ky, forming the Gaussian beam. Therefore, similarly to the case of a single plane wave

(Sec. 3.2.2), we can describe propagation, re�ection or transmission of this spectrum by

multiplying an �optical transfer function�, which generally depends on kx, ky (equivalently,

angle of propagation with respect to z-axis): Propagation along the z-axis is described by

multiplying a phase factor

Ẽ (kx, ky; z) = Ẽ (kx, ky; z = 0) exp (ikzz) , (3.12)

where the wave vector along the direction of propagation is given by

kz =
√
k2 − k2

x − k2
y ≈ k −

k2
x + k2

y

2k
. (3.13)

with absolute wave number k = 2π/λ. The approximation is applicable in the paraxial limit

which requires kx,ky � k, as is the case for a Gaussian beam [109]. Re�ection from or

transmission through the interface between �ber (refractive index n1 = 1.45 (see Sec. 3.2.1))

and vacuum/air (refractive index n0 = 1.0 ) (see Fig. 3.7) is described by multiplication with

Fresnel coe�cients (see Appendix A.1)

rs10 =− rs01 =
k1z − k0z

k1z + k2z

ts10 =
k0z

k1z

ts10 =
2k1z

k1z + k0z

,

with k1/0z = kn1/0 −
(
k2
x + k2

y

)
/
(
2kn1/0

)
. The superscript s denotes perpendicular polar-

ization, describing the electric �eld component that points in the direction perpendicular to

the plane of incidence. The opposite case is parallel or p polarization, describing the electric

9Making use of the relation
´∞
−∞ dx exp

(
−ax2 + bx

)
=
√

π
a exp

(
b2/4a

)
. Note that the Fourier transform is

unitary (by choice of its prefactor), therefore preserving the normalization Pin =
´∞
−∞ dkxdkyE

2
in (kx, ky) = 1.
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�eld component that is parallel to the plane of incidence. We found that the results of the

following analysis di�er only by ∼ 1% between s- and p-polarization, and therefore present

only the former case.

The re�ection coe�cient of the trampoline (modeled as dielectric slab with refractive index

n2 = 2.0 (see Sec. 3.2.2), thickness d = 50 nm, 100 nm) is given by [113] (see Appendix A.1

for derivation)

rsd =
(k2

0z − k2
2z) [1− exp (i2kn2d)]

(k0z + k2z)
2 − (k0z − k2z)

2 exp (i2kn2d)
.

The intra-cavity �eld Ẽcav in between �ber and trampoline can be calculated by multiplying

the incident �eld with the sum over all possible paths inside the cavity. We multiply t10 for

initial transmission from �ber into cavity, rd (r10) for each re�ection at membrane (�ber tip),

and exp (ikz2L) for each round-trip

Ẽcav = t10rd exp (ikz2L)
∞∑
j=1

[rdr10 exp (ikz2L)]j Ẽin

=
t12rd exp (ikz2L)

1− rdr10 exp (ikz2L)
Ẽin

(note that Ẽ-�elds and Fresnel coe�cients depend on kx, ky). The �eld which is generated

inside the �ber by the intra-cavity �eld can be calculated by projecting Ẽcav on Ẽin [114]

Ẽcav,f (L) = t01

∞̂

−∞

∞̂

−∞

dk′xdk
′
yẼcav(k

′
x, k

′
y;L)Ẽ∗in(k′x, k

′
y) Ẽin(kx, ky)

= t01 2π

∞̂

0

dk′ρ k
′
ρ

2
Ẽcav(k

′
ρ;L)Ẽ∗in(k′ρ) Ẽin(kρ),

where in the last step we have exploited circular symmetry of the �elds around the z-axis10.

The overall re�ected �eld is a superposition of the promptly re�ected light at the �ber-vacuum

10We set k2
ρ = k2

x + k2
y and carry out the integration in polar coordinates, thereby treating kρ as radial

wave number component.
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interface and the portion of the intra-cavity �eld which is coupled back into the �ber

Ẽr (kρ;L) = r10Ẽin (kρ) + Ẽcav,f (kρ;L) . (3.14)

The re�ected intensity is given by

Pr (L) = 2π

∞̂

0

dkρ k
2
ρ

∣∣∣Ẽr (kρ;L)
∣∣∣2 . (3.15)
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Figure 3.7: Interference fringe and displacement sensitivity for diverging Gaussian beam.
(a, inset(i)) Schematic of low-�nesse cavity formed by �ber (refractive index n1 = 1.45) tip
and trampoline (thickness d, refractive index n2 = 2.00), separated by distance L. Lateral
�eld envelope (xy-plane) inside �ber (red) is described by a Gaussian function (mode �eld
diameter 2w0 = 10.4 µm at wavelength λ = 1550 nm). Field propagating in between �ber
and trampoline (red) resembles diverging Gaussian beam. Transmission through (re�ection
from) �ber-vacuum interface is governed by Fresnel coe�cients t01, t10 (r01, r10). Re�ection
coe�cient of trampoline is given by rd. (a) Theoretical prediction for extent of interference
fringe Pr (L) /Pin for d = 50 nm (blue area) and d = 100 nm (red area). The distance
between upper and lower bound of the fringe is given by a(L). Dashed blue (red) lines
mark extent of interference fringe, predicted by plane wave model (Fig. 3.6), for d = 50 nm
(d = 100 nm). Gray dashed line indicates Rayleigh range zR = 54.8 µm. (b) Similar to
(a), but for displacement sensitivity d [Pr (L) /Pin] /dL. The solid blue (red) curves show
the sinusoidal slope 2πa (L) /λ for d = 50 nm (d = 100 nm). (inset ii) Red (blue) curves
represent ratio of predicted sensitivity (outer bounds of colored areas) and sinusoidal slope
(solid curves) for d = 50 nm (d = 100 nm).

Figure 3.7(a) shows the extent of the interference fringe Pr (L) /Pin (colored areas) for a
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�ber interferometer with a 50 nm (blue area) or 100 nm (red area) thick trampoline11. Figure

3.7(b) similarly shows the extent of the fringe's derivative d [Pr (L) /Pin] /dL, where the outer

edges mark the maximum displacement sensitivity for a given �ber trampoline separation.

Dashed horizontal lines indicate the extent of Pr (L) /Pin (Fig. 3.7(a)) and d [Pr (L) /Pin] /dL

(Fig. 3.7(b)) predicted by the plane wave model (see Sec. 3.2.2) for d = 50 nm (blue) and

d = 100 nm (red) thick trampoline. For L exceeding a few µm, plane wave and Gaussian beam

model clearly deviate from each other; while for su�ciently small L, the �ber-coupled intra-

cavity light outweighs the promptly re�ected light, causes beam divergence the two portions

to be matched eventually. At this point (L ≈ 60µm (L ≈ 120µm) for d = 50 nm (d = 100 nm)

thick trampoline), the lower boundary of the fringe reaches zero. When further increasing

L, the promptly re�ected light becomes the predominant contribution to Pr (L) /Pin. The

dashed vertical line indicates the Rayleigh range of E00(x, y, z). In a similar fashion to the

fringe extent, the displacement sensitivity (Fig. 3.7(b)) is clearly reduced with respect to the

1D model, already within zR.

In the following we discuss the implications of the 2D model on our calibration procedure

(Sec. 3.2.3). In our calibration procedure, we measure the di�erence between minimum and

maximum value of the fringe a(L) and employ a (L) sin(4πL/λ)/2 (up to an o�set) as calibra-

tion function. The solid blue (red) curves in Fig. 3.7(b) represent the maximum/minimum

slope ±2πa (L) /λ of this calibration function in the case of a d = 50 nm (d = 100 nm) tram-

poline. Due to the sinusoidal nature of the calibration function, these lines mark a symmetric

area with respect to the x-axis, thereby highlighting the asymmetry in the displacement sen-

sitivity arising in the Gaussian beam model. Inset (ii) shows the relative deviation between

sinusoidal slope and 2D model for d = 50 nm (blue curves) and d = 100 nm (red curves). In

the former case, the relative deviation converges to within ±6%. In the latter case, to within

±9%. For L ≈ 0 the interference fringe is given by an Airy function (see Sec. 3.2.2)

In this section and the previous section we have applied two di�erent optical models

to describe the propagation of light in our Fabry-Perot �ber interferometer. The goal of

this investigation was, to establish a calibration procedure which enables quantifying the

11The device thicknesses d = 50 nm, 100 nm are chosen based on the specs of our fabricated devices;
d = 100 nm resembles the maximally achievable thickness with our fabrication protocol. The thinnest device
characterized in the following section has d = 44 nm.
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trampoline's displacement amplitude. Our analysis showed that the re�ected signal from the

�ber interferometer, in dependence on the �ber-trampoline separation, can be approximately

described by a sine with period λ/2 and an amplitude that is readily measured. The precision

provided by this calibration function, with respect to the exact solutions of the employed

optical plane wave model (Sec. 3.2.2) and Gaussian beam model (this section), is within

10 % for all devices experimentally characterized in the following section.

3.3 Characterization of Mechanical Resonances

In the following we characterize the mechanical resonances of our Si3N4 trampoline resonators

(see Sec. 3.1.1). This characterization is based on measuring the trampoline's nanomechanical

oscillations by means of interferometric readout and lock-in demodulation (see Sec. 3.2.1).

In Sec. 3.3.1 we identify resonances by applying an oscillatory mechanical drive of swept

frequency to the trampoline. The measured resonance frequencies (in the range of 40 −

280 kHz) agree to those predicted by a �nite-element simulation (COMSOL) within 1 %.

We measure the mechanical ringdown times τm of the mode amplitudes corresponding to

these resonances and obtain values up to τm ≈ 6 min for the fundamental out-of-plane mode,

corresponding to a mechanical quality factor Qm ≈ 5 × 107. In Sec. 3.3.2 we study the

trampoline's thermally driven motion at room temperature and measure a thermal force

noise of 16.2± 0.8 aN/
√

Hz. The measurements presented in Secs. 3.3.1-3.3.2 are carried out

on chips containing 8 trampolines (practical chip size for fabrication, see Sec. 3.1.2). With

regard to future integration of the trampolines in a compact cryogenic setup, in Sec. 3.3.3 we

cleave chips hosting eight released trampolines into individual devices and subsequently glue

the �single-device-chip� at three spots onto a metal mount. We �nd that Qm of the glued

devices is reduced up to 13 % compared to the values measured before cleaving.

3.3.1 Identifying Mechanical Resonances and Measuring Qm

In an initial step of characterization, we apply an external drive to the trampoline resonator

to excite its mechanical resonances. Hereby, the trampoline chip rests on a metal plate, to

which a piezo actuator is installed (see Fig. 3.5). Applying a voltage of swept frequency to

82



the piezo permits measuring the trampoline's mechanical resonance spectrum.
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Figure 3.8: Mechanical modes of a trampoline (window size of w = 3 mm, central pad
width of d = 100µm, tether width of a = 2.1µm, and thickness of 80 nm, see Fig. 3.2)
measured with a �ber interferometer operating at wavelength 1550 nm and power 220 µW.
(a) Approximate response to piezo drive, showing �rst nine resonances (thin blue line). Pink
line shows the response of the Si frame. Simulated resonance frequencies (dashed gray lines)
agree to within 1 % of measured values with Si3N4 parameters density 2700 kg/m3, Young's
modulus 250 GPa, Poisson ratio 0.23, and internal stress 0.95 GPa. Inset shows a �typical�
ringdown for the fundamental (�symmetric� s1) mode with �t (red curve) having functional
form

√
(x0e−t/τm)2 + x2

1, where x0, τm, and x1 are allowed to �oat. Black line shows the
ringdown extrapolated from the early data, and gray dashed line shows x1 (run-to-run vari-
ation by a factor of ∼ 2). The ringdown time τm = 350 ± 15 s (error represents statisti-
cal �uctuations of multiple measurements) corresponds to a room temperature force noise√
SF = 19.5±0.5 aN/Hz1/2.(b) Simulated displacement pro�les for the �symmetric� (si), �tor-

sional� (ti) and �antisymmetric� (ai) modes labeled in (a). (c) Measured frequency Ωm/2π
(kHz), simulated frequency Ωsim/2π (kHz), ringdown time τm (s), quality factor Qm, mass
meff (ng), spring constant Keff (N/m) and force noise

√
SF
(
aN/Hz1/2

)
for the �rst 9 modes.

The mass has a ∼ 10 % systematic error due to uncertainty in the thickness and density of
the nitride.

Figure 3.8(a) shows the amplitude of driven oscillations as a function of frequency for
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the �ber positioned over the nitride pad (blue) and silicon frame (pink). Both curves con-

tain many peaks, and several very strong resonances (labeled) emerge whenever the tip is

positioned over the pad. There are a few ways to convincingly identify these as trampoline

modes, aside from noting their large response. First, they uniformly exhibit signi�cantly

larger quality factors Qm > 107 (measured by ringdown; see below), whereas supporting

frame resonances exhibit low-amplitude peaks of Qm < 105. Second, we compare the ob-

served frequencies with those predicted by a �nite-element simulation (COMSOL) of our

geometry. We simulate the volume of the released nitride in the membrane limit12, and ap-

ply perfectly-clamped boundary conditions along the outer edges of the overhanging nitride.

The nitride itself is modeled using the material parameters listed in the caption, and we set

its internal stress to 0.95 GPa. The resulting normal mode frequencies are indicated with

dashed lines in Fig. 3.8(a), and the corresponding mode shapes are illustrated in Fig. 3.8(b).

These parameters reproduce all 9 frequencies of the high-Qm resonances (i.e. the 7 labeled

in Fig. 3.8(a), with twofold degeneracies for the �torsional� modes t1 and t2) to within 1 %

of the observed values. It is worth noting that some peaks in Fig. 3.8(a) appear arti�cially

small because we did not let the drive dwell on resonance long enough for the mode to ring

up; this requires > 10 minutes per point, and small temperature drifts shift the resonance by

more than the (sub-mHz) linewidth during this time.

To determine Qm, we instead perform a mechanical ringdown by suddenly switching o�

a near-resonant drive and monitoring the amplitude decay. A �typical' ringdown is shown in

Fig. 3.8(a, inset), along with an exponential �t (red) for the 40.9-kHz fundamental (�sym-

metric� s1) mode. Due to the thermally-driven noise of the mode (visible at the end of the

ringdown and discussed in the following section) repeated �t values span τm = 350 ± 15

seconds, corresponding to Qm = 45 ± 2 × 106. We apply Eq. 3.1 to infer the thermal force

noise
√
SF = 19.5± 0.5 aN/Hz1/2.

12In the membrane model, the mechanical resonator is treated as two-dimensional sheet in which the elastic
restoring force is a sole consequence of in-plane tensile stress σ; the structure doesn't have any bending

sti�ness. The governing equation of motion is the two-dimensional wave equation σ
(
∂2ζ
∂x2 + ∂2ζ

∂y2

)
= ρd∂

2ζ
∂t2 ,

with out-of-plane displacement ζ, mass density ρ, and membrane thickness d [103, 115].
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w d a Ωm/2π τm Qm meff Keff SF

375 100 1.4 196.3 8 5× 106 2.5 3.8 101.8
750 100 1.6 101.9 25 8× 106 3.0 1.2 62.3
2400 90 2.0 51.5 238 39× 106 3.7 0.4 22.4
3000 100 2.1 40.9 350 45× 106 4.0 0.3 19.5

Table 3.3: Frequency Ωm/2π (kHz), ringdown time τm (s), quality factor Qm e�ective mass
meff (ng), spring constant Ke� (N/m), and force noise SF (aN/Hz1/2) for the fundamental
(s1) mechanical resonance of trampolines having varied window size w (µm), pad diameter
d (µm), and tether width a (µm).

The �t values for the higher-order mechanical modes are listed in Fig. 3.8(c). Of note, the

�rst �torsional� mode t1 achieves a marginally lower force noise, and may in fact be more useful

for some of the classical sensing geometries suggested in Chapter 6. The second �torsional�

mode t2 achieves the highest value of Qmfm ≡ QmΩm/2π = 5.8× 1012. This is in agreement

with the �nding that Qmfm of a beam resonator typically is maximal for a higher-order mode

[116, 96]. For reference, Table 3.3 also lists the properties of the fundamental modes of other

trampolines having similar pad diameters d and tether widths a but di�erent window sizes

w (see Ref. [39] for additional parameter variations). In agreement with independent studies

of beam resonators [94, 91] and trampolines [39], we �nd larger Qm for longer tethers.

It is interesting to note that an estimation, presented in Appendix B.2 suggests, that the

Qms presented here might be partially limited by air damping. A direct measurement of the

pressure dependency of Qm is planed to be carried on future devices.

3.3.2 Thermal Noise Measurement

In the previous section we have measured the trampoline's oscillation in response to an

external drive. From the measured mechanical resonance frequency Ωm/2π and ringdown

time τm we inferred the thermal force noise
√
SF . Here, we directly measure the thermal

force noise, by analyzing the trampoline's thermally-driven motion. This measurement is

performed on a device similar to the one of the previous section, having the same lateral

dimensions as that of Fig. 3.2 and Fig. 3.8, but with a reduced thickness of 44 nm, owing to

a more aggressive HF etch (see Sec. 3.1.2). The fundamental mode frequency Ωm = 2π ×

41.4 kHz, massmeff = 2.3 ng, and ringdown time τm = 285 seconds (measurement described in

85



Sec. 3.3.1) of this device correspond to a thermal force noise of
√
SF = 16.2 aN/Hz1/2 (Eq. 3.1)

and root-mean-squared displacement xRMS =
√

2kBT/ (meffΩ2
m) = 161 pm (see Sec. B.1),

with Boltzmann constant kB = 1.38× 10−23 m2kg s−2K−1 and temperature T = 293 K.

t

x τm

√T

Figure 3.9: Schematic of a mechanical resonator's thermally excited motion (similar to [21]).
The resonator oscillates at its resonance frequency Ωm/2π while its amplitude and phase
�uctuate on a time scale set by the mechanical ring-down time τm (typically τm � Ωm), with
mean amplitude ∝

√
T at temperature T .

Figure 3.9 qualitatively shows the thermally excited oscillation of a mechanical resonator.

The trajectory is given by [117]

x(t) = x0(t) cos [Ωmt+ φ (t)] , (3.16)

which represents harmonic oscillation at resonance frequency Ωm/2π with �uctuating ampli-

tude x0(t) and phase φ (t). These �uctuations happen on a time scale set by the mechanical

ringdown time τm and resemble the random nature of the resonator's interaction with its ther-

mal environment (see also Sec. 2.1.2.2). For a resonator at temperature T , the mean value

of x0(t) is given by xrms (Eq. B.5). For pristine nanomechanical resonators, the harmonic

oscillation happens at vastly shorter time scales than the �uctuations, e.g. Ωmτm ∼ 107 for

the trampoline resonator studied here. The thermally driven motion in this case resembles a

harmonic oscillation with slowly varying amplitude.
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Figure 3.10: Force noise measurement for the s1 mode of a 44 nm-thick trampoline. (a)

Inset shows the displacement noise spectrum S
1/2
x,obs (blue) observed for a laser power of

50 µW, along with the spectrum expected for the measured device parameters S
1/2
x (red)

and the displacement noise �oor of the interferometer (dashed, 509 ± 44 fm/Hz1/2). Main

panel shows the force noise spectrum S
1/2
F,obs = (Sx,obsSF/Sx)

1/2 (blue), consistent (within a

∼ 5% systematic calibration error) with the expected 16.2 ± 0.8 aN/Hz1/2 (red) over many
thousands of linewidths. Dark blue line is the same data �coarsened� by averaging together
points within 10% of each other. Dashed line again indicates the displacement noise �oor.
(b) Same as (a) but with compensation of frequency drift (see text).

Experimentally we characterize the trampoline's thermally driven motion by means of

interferometric readout and lock-in demodulation (see Sec. 3.2.1). As a result we obtain the

in-phase and quadrature components, respectively given by (see Sec. B.1 for details)

X1 (t) /
√

2 ≡x0(t) cos [φ (t)] /
√

2, (3.17)

X2(t)/
√

2 ≡x0(t) sin [φ (t)] /
√

2. (3.18)

Letting the system evolve without drive for 38 hours (56 Hz sampling rate, 25 Hz mea-

surement bandwidth) we observe xrms,obs =
√
〈X2

1 (t) +X2
2 (t)〉 /2 = 165 ± 5 pm (from

Eqs. B.7-B.8), which agrees with the expected value xrms = 161 pm (from Eq. B.5). Fig-

ure 3.10(a, inset) shows the displacement noise spectrum S
1/2
x,obs = S

1/2
Y Y (Eq. B.3), with

Y ≡ [X1 (t) + iX2 (t)] /
√

2, for this data (blue data), which follows the expected form [62]

(see Sec. 2.1.2.2 ),

Sx =
2τmkBT

meffω2
m [1 + (ω − ωm)2τ 2

m]
(3.19)
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(red curve, not a �t), before the displacement noise �oor dominates above ∼ 4 Hz from

resonance. Since the displacement noise spectrum Sx is just the (white) force noise spectrum

SF (see beginning of this section) ��ltered� by the harmonic oscillator susceptibility, we can

extract the force noise spectrum SF,obs by multiplying Sx,obs by the ratio SF/Sx, the result

of which is plotted in the main panel. Note in this plot, we are demodulating just below

the mean frequency to show the majority of the power spectrum. Near resonance (within

300 mHz), the noise is limited by drift in the mechanical frequency, and above 300 mHz,

we observe a noise �oor consistent with SF over more than thousand mechanical linewidths.

This illustrates that these trampolines should present no surprising technical challenges in

achieving the inferred sensitivities.13 Figure 3.10(b) shows the same as Figure 3.10(a) but

with manually compensated frequency drift: We obtain Sx,obs fromX1 (t) andX2 (t) by means

of a windowed Fourier transform in which we split up the time traces X1 (t) and X2 (t) into N

�windows� with 131072 data points (corresponding to 40 min sampling duration) each. For

these windows we calculate Sx,q, with window index q ∈ {1, 2, ...N}, (see Sec. B.1) and obtain

Sx,obs by averaging over all windows Sx,obs =
∑N

q=1 Sx,q/N . Over the duration (~40 min) of

a window, we typically observe a monotonically increasing or decreasing phase drift. In

the case of frequency compensation (Fig. 3.10(b)), we adjust the demodulation frequency

post-acquisition by centering the spectrum on the frequency with the largest power at the

beginning of each window. This results in reduced frequency drift compared to Fig. 3.10(a)

and an increase of 17 % in the frequency range over which SF,obs is consistent with SF .

3.3.3 Qm of Cleaved and Glued Trampoline

With our fabrication protocol presented in Sec. 3.1, we obtain chips of 15 mm × 15 mm,

each hosting eight identical trampoline resonators and an unpatterned area of equal size (see

Fig. 3.2). This �9-chip� represents a 3 × 3 grid of 9 individual �1-chips� of 5 mm × 5 mm,

hosting and individual trampoline or membrane. Whereas the dimensions of the 9-chip are

practical for handling during fabrication, is it often desirable to have a 1-chip for installation

in an experimental setup. For example, when installing a trampoline chip inside a compact

13Note that our �ber interferometer was constructed without any consideration to thermal stability or
vibration isolation: devices rest on a piezo stage �xed to a stainless plate; this rests directly on a vacuum
�ange, and the whole chamber is supported by metal blocks on a work bench (see Sec. 3.2.1).
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�ber cavity operated at cryogenic temperatures in a dilution refrigerator. On a �rst attempt,

we manually cleaved a 9-chip, by making scratches (few mm long) with a diamond scribe

at both ends of the 9-chip and subsequently applying a torque to the chip to break of a

column of three 1-chips from the 9-chip. Both of these steps generated �akes from the chip

which contaminated the trampolines, as was observed with an optical microscope. Despite

the contamination, none of the devices broke during the cleave, even trampolines with a

window size w = 3 mm (see Fig. 3.2(a)), comparable to the chip size of 5 mm. In order

to avoid contamination, we now cover the trampolines with Kapton tape before cleaving.

Figure 3.11(a) shows a schematic of this procedure for a chip formed by two 1-chips (left).

As a �rst step, we attach strips of Kapton tape along the 4 outer edges of each trampoline

(center). Secondly, we lay a square of Kapton tape across the trampoline, which is attached

to the elevated strips, and therefore does not touch the trampoline. After cleaving along the

line indicated by �cleave line� (Fig. 3.11), the tape is (readily) peeled o� with tweezers.

Measuring Qm of glued trampoline chip, �nding modest reduction

of

(a) (b)

cleave
line

Kapton tape 

Individual 
trampoline
chip

Trampoline

Copper
mount

Glue

w
5 mm

Figure 3.11: Cleaving and gluing of trampoline chips. (a) Left to right: Schematic of
chip with two trampolines. Four Kapton tape strips are attached parallel to outer edges of
each trampoline. Kapton squares are attached to strips to cover trampolines. (b) Individual
trampoline chip (window size w = 250µm) glued at three spots to a copper mount (image
courtesy of Alexey Shkarin, Harris Lab, Yale University).

Figure 3.11(b) shows a 1-chip (w = 250µm) glued at three spots (black areas, glue:

Stycast 2850) to a copper mount.
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Dimensions 9-chip 1-chip 1-chip glued
w d a Ωm/2π Qm (106) Ωm/2π Qm (106) Ωm/2π Qm (106)

250 40 1.5
565.4 4.6 564.2 4.6 � �
566.1 4.8 565.4 4.5 564.5 3.9
� � 564.3 5.3 564.1 4.8

500 40 3.5
343.5 5.6 343.4 5.6 � �
343.8 5.0 343.8 5.3 � �

Table 3.4: Frequency Ωm/2π (kHz) and quality factor Qm for the fundamental out of plane
(s1, see Fig. 3.8) mechanical resonance of trampolines of varied window size w (µm), pad
diameter d (µm), and tether width a (µm). (data courtesy of Alexey Shkarin, Harris Lab,
Yale University)

In previous studies [42, 94, 59, 92] of the mechanical performance of Si3N4 membrane and

string resonators, it was found that Qm, particularly of the fundamental and consecutive low-

order modes, signi�cantly degrades (up to ∼ 102 times [42]) when the resonator chip is glued

at multiple spots to a support structure. It has been suggested that this might be related

to strain introduced in the glued chip [59] or the fact that rigidly connecting the chip to a

supporting structure changes the mechanical density of states in such a way, that coupling

of the resonator's high-Qm resonance to lower-Qm resonance in its environment is enhanced

[94]. Motivated by these �ndings, we investigate the change in Qm of the fundamental out-

of-plane (s1, see Fig. 3.8) trampoline resonance as a consequence of cleaving a 9-chip into a

1-chip and subsequent gluing of the 1-chip at three points to a metal mount. Table 3.4 shows

measured Ωm/2π and Qm values (see Sec. for measurement details) for uncleaved (�9-chip�),

cleaved (�1-chip�), and glued individual chip (�1-chip glued�) devices with varied dimensions

of window w, pad d, and tether a (see Fig. 3.2). The Qmvalues for 1-chip and 9-chip stay the

same in two cases (line1, line4) and change by −6 % (line 2) or +6 % (line 5) respectively in

one case. The measured Qm values for the glued trampolines show a decrease of 10 % (line

3) and 13 % (line 2) with respect to the unglued value.

In conclusion, the 9-chips can readily be split up into 1-chips of 5 mm × 5 mm without

a signi�cant change in Qm. Gluing of the chips at three spots to a metal mount, results in

a decrease of the Qm by up to 13 %, a moderate loss compared to the 100-times decrease

reported for the fundamental mode of a Si3N4 membrane [59].
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Chapter 4

Vacuum Fabry-Perot Cavity with

Incorporated Si3N4 Trampoline

Resonator

Statement of contribution: Tina Müller, assisted in building the vacuum Fabry-Perot cavity

setup, which I designed. Furthermore, she incorporated the trampoline into the cavity and

took the data presented in Sec. 4.2.2 which was analyzed by both of us.

After its introduction in 2008 [41], the con�guration of a Fabry-Perot cavity with a mem-

brane (∼ 10...100 nm thickness) incorporated close to its center quickly became a generic

optomechanical setup [42, 43, 12, 33, 30]. The membrane material of choice, typically, is

high-stress Si3N4 due to its exceptionally-low mechanical and optical dissipation [42, 43].

While commercially available square membranes (available at, e.g., Norcada, Inc.) have been

employed �most commonly�, are more recent e�orts aimed toward highly engineered devices

with the goal of improving the mechanical performance and increasing the optomechanical

coupling strength [49, 50, 51, 52, 53, 54, 1, 39, 55, 56]. In that regard, trampoline resonators

(see Sec. 3.1.1) are promising since they o�er a mass m which is reduced by orders of magni-

tudes compared to a square membrane with the same oscillation frequency, thereby enabling

increased optomechanical coupling strength (g0 ∝ 1/
√
m, see Sec. 2.2.6).

In this chapter we examine the feasibility of employing a Si3N4 trampoline resonator in-
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stead of a square membrane in a �membrane-in-the-middle� (MIM) optomechanical setup.

In order to suppress a decrease in the trampoline's mechanical quality factor resulting form

its interaction with surrounding gas molecules, our cavity is installed in a vacuum chamber.

In Sec. 4.1 we discuss the construction of our vacuum Fabry-Perot cavity with incorporated

trampoline and provide details on the trampoline alignment structure. In Sec. 4.2 we charac-

terize the optical resonances of the empty cavity and measure a bare cavity �nesse of 20, 000.

To con�rm that our fabrication protocol doesn't introduce additional optical losses, we incor-

porate one of our fabricated square membranes in the cavity. We �nd that, depending on its

position, the presence of the membrane increases the measured �nesse up 40, 000, as expected

for a lossless dielectric slab in a single-port cavity. Finally, we incorporate a trampoline into

our cavity for which 0.045% of the light extend over the trampoline's sidewalls. Consistent

with recent simulations [60], we �nd that the majority of this �clipped� light is, for many

trampoline positions along the cavity axis, recovered by the cavity.

4.1 Vacuum Cavity Setup with Trampoline Alignment

Structure

Implementations of the �membrane in the middle� (MIM) con�guration range from using �ber

optical cavities with length Lc ∼ 10 µm [84][118] to free-space optical cavities with Lc of a few

cm [43, 119]. Here we present the construction (Sec. 4.1.1 ) of a 5-cm-long vacuum-compatible

Fabry-Pérot cavity comprising two piezo-actuator-controlled mirror mounts, which enables

in-situ alignment and length change of the cavity while under vacuum. In Sec. 4.1.2 we

discuss how to align the Si3N4 trampoline with respect to the optical intra-cavity �eld by

means of a manual 5-axis stage and subsequent gluing of the chip into the cavity. In Sec. 4.1.3

we describe the vacuum chamber setup into which the cavity is incorporated.

4.1.1 Cavity Support Structure

Here we present the construction of a vacuum-compatible �membrane in the middle� (MIM)

cavity support structure. As this structure is the �rst of its kind in our lab, we are aiming
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for �exibility with regard to achievable cavity lengths, Si3N4 structure positions, and de-

ployable mirror substrate diameters. A particular requirement is that, among the possible

con�gurations, should be a cavity with length Lc ≈ 5 cm. This request has two reasons:

First, a few-cm-long cavity together with the trampolines' mechanical resonance frequency

fm ∼ 10 kHz...100 kHz (see Sec. 3.3.1) and an anticipated cavity �nesse of a few 10,000 (see

Sec. C.2) enables operation in the resolved-sideband limit (see Sec. 2.2.6). Second, we aim for

a small optical mode �eld diameter (MFD) (see Appendix C.1) to avoid scattering losses of

the optical �eld from the trampoline sidewalls (see Sec. 4.2.2). To achieve small cavity waists

(few 10s of µm) with cm-long cavities requires working near the spherical limit Rc ≈ Lc/2,

with mirror radius of curvature Rc. At the time (2012) we bought our mirrors (see Sec. C.2

for details), the smallest available (to our knowledge) radius of curvature was Rc = 2.5 cm,

hence demanding Lc ≈ 5 cm for the spherical limit.
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Figure 4.1: Design of vacuum compatible �membrane in the middle� cavity. (a, upper) CAD
drawing of the cavity formed by two mirrors, each mounted to a tip-tilt stage (stainless steel
and titanium, Janssen Precision Engineering B.V. (JPE) PFOM1) by means of an adapter
(stainless steel, outer � = 1 in). Three �piezo knobs� control the tip-tilt of the mirror mount
by pushing a drive screw against the spring-loaded mount (spring anchored in mount (Am)
and base (Ab)). The base of each tip-tilt stage is �xed to the bottom and side support plates
(invar, see (b) for details). This requires the use of spacers (stainless steel) since the piezo
knobs extend over the base. In the center of the cavity is a Si-Si3N4 mechanical resonator chip
aligned with respect to the optical axis (see Sec. 4.1.2) and glued to a holding �xture (see
(c) for details). (a, lower) Piezo knobs (JPE CLA2601) comprise a torque pulse generator
which performs stick-slip based rotation of a drive screw. (b) Back view of the invar support
plates showing colored arrays of through holes (yellow) and counterbores of through holes
(blue, red, green, gray); invar side support (4.20 in× 3.65 in× 1.25 in) and bottom support
(4.20 in× 1.45 in× 2.50 in) are screwed together through green, chip holder is �xed through
red and tip-tilt stages are mounted through blue. The bottom support is screwed from the
top (yellow) to the vacuum chamber (see Sec. 4.1.3). (c) Two-parts chip holder comprising
a chip support (0.30 in × 1.02 in × 1.60 in) and a chip adapter (0.30 in × 0.60 in × 1.16 in)
which are connected through turquoise holes. The chip support is mounted through red
holes (vented by violet holes) to the invar support plates (see (b)). Semicircular clearance
(� = 0.16 in) is centered around intra-cavity optical axis.

Figure 4.1(a, upper) shows a CAD drawing of our cavity design, which at its heart has two
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piezo-controlled tip-tilt stages (stainless steel and titanium, Janssen Precision Engineering

B.V. (JPE) PFOM1). Each of the stages comprises a mirror mount a base and three piezo

knobs (JPE CLA2601). The mirror mount is spring-loaded with respect to the base by two

springs that are anchored in the mirror mount (Am) and in the base (Ab). The tip-tilt is

adjusted by three piezo knobs, each pushing a drive screw against the mirror mount. The

smallest step size at room temperature is speci�ed by JPE to be 5−25 nm and the maximum

travel range as 1.2 cm. This gives us the possibility to both align the cavity and change its

length (within ≈ 2.4 cm) by means of an electronic controller (JPE CPSC with CADM,

MCM). We make use of this functionality mainly when the cavity is under vacuum (see Sec.

4.1.3), while under ambient conditions we typically rotate the piezo knobs by hand.

The mirror mounts are designed for � = 1 inch mirror substrates which enabled us

to build cavities from mirrors with substrate sizes ranging from � = 1 inch (Newport

10CV00SR.70F, Layertec 1095011) to � = 0.3 inch , 0.5 inch (Advanced Thin Films, see

Sec. C.2). To install � < 1 inch mirrors we use adapters (stainless steel, machined in the

McGill physics department machine shop based on Thorlabs AD12).

Each of the two tip-tilt stages is mounted by its base to a bottom and a side support plate

(invar). This requires the use of spacers (stainless steel, 0.1 in thickness) in between base and

bottom support, since the piezo knobs laterally (perpendicular to optical axis) extend over

the base3. Halfway in between the tip-tilt stages is a holding �xture installed to the support

plates to which the Si-Si3N4 resonator chip is glued. Figure 4.1.1(b) shows a back view of the

support structure with color coded mounting through-holes; they are used for (according to

sequence of assembly): Connecting side to bottom support plate (green), mounting tip-tilt

stages (blue), mounting chip holder (red), and installing assembled cavity to vacuum chamber

(yellow, see Sec. 4.1.3). Here green, blue, and red are counterbores (screw is inserted from

depicted side) whereas yellow is just the through-hole (screw is inserted from the cavity side,

see Fig. 4.2). When connecting the support plates we tighten the six screws iteratively, since

1not recommended due to optical losses
2To increase stability, we recommend using a "clamp" style adapter and / or epoxy to more rigidly �x

the mirror in place.
3Note this is a prototyping cavity. For a real adjustable cavity (once the desired length is known), we

recommend machining extra space into the invar support to accommodate the knobs, removing the need for
these spacers.
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they over-constrain the connection. Equally we tighten the screws iteratively when installing

the tip-tilt stages and the chip holder. The eight slots in the support structure for both the

tip-tilt stages and the chip holder enable a variety of cavity lengths ranging from ≈ 10 cm

(requires reversing tip-tilt stages so that piezo knobs point toward chip) to submillimeter

(requires speci�cally designed mirror adapters).

The bottom plate (dimensions 4.2 in × 2.5 in × 1.45 in) and the side plate (dimensions

4.2 in× 1.25 in× 3.65 in) (machined in the machine shop of the McGill Physics department)

are made out of invar, which features a ∼ 10 times lower thermal expansion coe�cient than

common stainless steels, such as type 304 or 316, thereby reducing cavity length changes due

to temperature drift.

Figure 4.1(c) shows the chip holding �xture comprising a chip support (dimensions

0.30 in × 1.02 in × 1.60 in) and a chip adapter (dimensions 0.30 in × 0.60 in × 1.16 in)

(both stainless steel) which are screwed together (turquoise holes). The chip support is

mounted to the invar support (red holes, vented by violet holes). The structure is designed

so that the optical axis goes through the center of the semicircular clearance (� = 0.16 in) on

top of both components. After alignment with the optical intra-cavity �eld (see Sec. 4.1.2)

the chip is glued to the chip adapter. The two-parts construction provides �exibility with

regard to exchanging the chip or changing the chip position within the cavity, both of which

can be readily conducted by exchanging the chip adapter without the need to take out the

cavity of the vacuum chamber to exchange the chip support.
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Figure 4.2: Vacuum �membrane in the middle� cavity as built in our lab. (a) In addition to
the components described in Fig. 4.1, there is a piezo actuator (Noliac NAC2002) positioned
between one drive screw and contact point of each mirror mount. This enables us to measure
the cavity photon lifetime based on rapidly sweeping the cavity length [120] (see Sec. 4.2).
The Si-Si3N4 mechanical resonator chip is glued to a piezo actuator (Noliac NAC2002) which
in turn is glued to the chip adapter (see (b) for details). The piezo moves the chip along the
optical axis to characterize the Si3N4 structure dependent optical cavity resonances (see Sec.
4.2.2). The three piezo actuators and the 6 piezo knobs are contacted by copper wires. (b)
Sketch of the interconnection between chip adapter and Si-Si3N4 chip (not to scale). The
connections between chip, alumina sheet, piezo and chip adapter are made with vacuum
compatible, electrically non-conducting epoxy (Lesker Torr Seal). We electrically contact the
piezo by means of two copper wires and silver epoxy (Epo-Tek H20E).

Figure 4.2(a) shows the assembled cavity (based on design presented in Fig. 4.1). In addi-

tion to the components shown in Fig. 4.1 we have installed a piezo actuator (Noliac NAC2002)

between one drive screw and contact point of each mirror mount. The maximum free stroke

of these piezos is speci�ed by Noliac to be 3 µm and their unloaded resonance frequency

as > 486 kHz. We use these piezos to measure the cavity lifetime by rapidly sweeping the

cavity length [120] (see Sec. 4.2.1). The piezo knobs' speci�ed (by JPE) maximum velocity of

15 µm/s is not su�cient since we require a sweep velocity of 44 µm/s in our photon lifetime

measurements (see Sec. 4.2.1). We glue the mechanical resonator chip to the same kind of

piezo (Noliac NAC2002), which is attached to the chip adapter; moving the chip along the

optical axis enables us to characterize the dependency of the optical cavity resonances on

the Si3N4 structure position within the cavity (see Sec. 4.2.2). The three piezo actuators
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and six piezo knobs are each electrically contacted by a pair of twisted copper wires which

are connected by means of electrically conducting, vacuum-compatible silver epoxy (Epo-Tek

H20E). A schematic of the interconnection between mechanical resonator chip, piezo and chip

adapter is shown in Fig. 4.2(b); all components are glued together by means of electrically

non-conducting, vacuum-compatible epoxy (Lesker Torr Seal). The twisted copper wires are

glued (Epo-Tek H20E) to the electrical contacts of the piezo, which are located on the sides

parallel to the stroke direction.

4.1.2 Trampoline Alignment Structure

A crucial step in assembling a membrane in the middle (MIM) setup is the alignment of

the membrane with respect to the intra-cavity optical �eld. Two main goals, hereby, are

to avoid optical mode mixing, caused, e.g., by a tilt of the membrane with respect to the

wavefronts [43, 80], and to optimize optomechanical coupling by maximizing the overlap

of optical intensity pro�le (TEM00 with Gaussian mode pro�le, see Appendix C.1) and

mechanical displacement mode pro�le. In the present case, where a trampoline resonator is

aligned inside the cavity, we wish to achieve maximal overlap of the optical mode with the

fundamental out-of-plane mechanical mode (see Fig. 3.8). This requires laterally (normal

to cavity axis) centering the intra-cavity mode pro�le on the trampoline's central pad (see

Fig. 3.2). Aligning the trampoline parallel to the wavefronts inside the cavity relies on control

over its position along the cavity axis, to place it within a few wavelengths (1550 nm) of the

cavity waist, where the wavefronts are planar. Furthermore, this requires the ability to

directly adjust the trampoline, tilt with respect to the wavefronts.
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Figure 4.3: Cavity inside vacuum chamber with chip alignment structure. (a) CAD drawing
showing the cavity setup (see Fig. 4.1) installed on the bottom �ange of a vacuum cube
(stainless steel, edge lenth 8 in, LDS Vacuum Products, Inc. Con�at Cube). We mount
and align a mechanical resonator chip into the cavity by means of a manual �ve axis stage
(Newport 9081) in combination with a temporary chip holder (aluminum). The �ve axis
stage is connected to the cube by a horizontal support plate and two vertical mounting plates
(both aluminum). Turning both X (Y) screws equal amounts in the same direction results
in translation along the x-axis (y-axis). Turning the X (Y) screws in opposite directions tilts
the stage around the y-axis (x-axis). Turning the Z screw causes translation along the optical
axis. (b) Close-up of cavity and alignment structure inside the cube. During alignment, a
beryllium copper �ngerstock clamps down the mechanical resonator chip to a piezo (Noliac
NAC2002) which is a part of the temporary chip holder. With this piezo we move the Si3N4

structure along the optical axis to verify its alignment with respect to the optical intra-cavity
�eld (see Sec. 4.2.2). Once aligned the chip is glued (Lesker Torr Seal) to the piezo (Noliac
NAC2002) of the cavity chip support (see Fig. 4.2(b)).

Figure 4.3(a) shows a CAD drawing of the cavity (see Sec. 4.1.1) inside a vacuum cube

(stainless steel, edge lenth 8 in, LDS Vacuum Products, Inc. Con�at Cube) together with

the chip alignment structure. In order to align the trampoline chip we use a manual �ve-axis

stage (Newport 9081) with a temporary chip holder (similar to chip support, see Fig. 4.1.1).

The stage allows translation along x, y, and z with a travel range of 3 mm and rotation

around x and y with an angular range of 8◦. The stage is adjusted by manually turning its

�ve set screws: Turning both X (Y) screws equal amounts in the same direction results in

translation along x (y). Turning the X (Y) screws in opposite directions tilts the stage around

y (x). Turning the Z screw causes translation along the optical axis (z). To incorporate the
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stage into the cube we �rst install a horizontal support plate by means of two mounting

plates to the left and the right side of the cube. Then we hang the stage upside-down from

the horizontal support plate.

Figure 4.3(b) shows a close-up of the �ve-axis stage installed above the cavity. During

alignment the mechanical resonator chip is clamped by �ngerstock down to a piezo (Noliac

NAC2002) which is attached to the temporary chip holder (similar to Fig. 4.2(b)). The piezo

perpetually moves the trampoline back and forth along the optical axis while we monitor

the optical cavity resonance spectrum in real time (see Sec. 4.2.2). Comparing the observed

spectrum with the theoretically predicted one allows for the identi�cation and compensation

of tilt between trampoline and optical axis. Similarly we analyze and adjust the centering of

the trampoline's central pad with the optical �eld. Once the trampoline is aligned, we glue

(Lesker Torr Seal) the chip to the chip adapter's piezo. Subsequently, we let the glue cure

under ambient conditions for a few days. When the curing is completed we dismantle the

chip alignment structure in the following way: As a �rst step we remove the �ngerstock and

retract the �ve-axis stage with temporary chip support. As a second step we take out the

�ve axis stage of the cube. Finally, we remove the �ve-axis stage support and the mounting

plates from the cube. At this point, the trampoline is aligned and mounted inside the cavity

and the vacuum chamber can be closed (see following section). Fine adjustments to the tip

and tilt of the cavity mode (relative to the trampoline) can then be made in situ with the

mirror mounts.

4.1.3 Vacuum Chamber

In Sec. 2.2.6 we have introduced the single-photon cooperativity C0 as a �gure of merit for

controlling the trajectory of, e.g., one of our Si3N4 trampoline resonators, with extremely

small amounts of light, on the order of a single cavity photon (on average). In order to

enable high C0 (�gure of merit for optomechanical interaction, see Sec. 2.2.6) we need to

install our cavity with incorporated trampoline into a vacuum chamber. This is because the

interaction of the trampoline with surrounding gas molecules damps its mechanical motion

(see Appendix B.2) and causes a decrease of its mechanical quality factor Qm, where C0 ∝ Qm

(from Eqs. 2.101, 2.11).
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Cavity vacuum chamber installed on optical table. At the heart of the vacuum chamber is
a con�at cube (stainless steel, edge length 8 in) in which the cavity (inset (i)) is attached
to the bottom con�at �ange (inset (ii)). The cavity is optically addressed through two
anti-re�ection-coated (designed for λ = 1550 nm) vacuum viewports by means of an optical
probing setup (beam path shown, see Sec. 4.2.1 for details). The cavity mirror mounts and
piezo actuators (see Sec. 4.1) are electrically contacted through a D-subminiature feedthrough
(25 gold-plated pins). Inset (ii) shows the cube �xed to the optical table by means of a
connector plate (aluminum): First, we �x the connector plate through the bottom �ange
to the cube (violet screw). Second, we install the connector plate to the optical table (red
screw). We evacuate the chamber by means of a turbo pump with integrated roughing pump
(Pfei�er HiCube ECO) and an ion pump (Varian RVA-140-DD-M). Both pumps are linked
to the cube via a cross and each can be connected or disconnected by opening or closing a
gate valve. The ion pump stands on the optical table, supported by legs (aluminum) and
leveling mounts (steel, rubber). The turbo pump stands on the �oor and is connected to the
gate valve (see inset (iii)) through a KF 40 �ange and a vacuum bellows.

In view of future optomechanics experiments, we constructed the vacuum chamber pre-

sented in Fig. 4.1.3, where the cavity is installed into a con�at cube (inset (i), Sec. 4.1.1).

The cube is �xed to an optical table (inset (ii)) by means of a connector plate (aluminum)

in two steps: �rst, the connector plate is attached to the cube through the bottom �ange

(violet screw); second, the connector plate with cube is mounted to the optical table (red

screw). Furthermore, the vacuum system comprises an ion pump (Varian RVA-140-DD-M)
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which is connected to the cube through a con�at cross (8 inch) and a gate valve (8 inch).

The ion pump stands on the optical table, supported by legs (aluminum) and leveling mounts

(McMaster-Carr 6167K19). The leveling mounts are screwed into the legs and permit �ne ad-

justment of the ion pump's height before installing it to the cross. We connect a turbo pump

with integrated roughing pump (Pfei�er HiCube ECO) to the second gate valve installed

to the cross through a KF 40 �ange (see inset (iii)) and a stainless vacuum bellows (length

1 m); the turbo pump typically stands on the lab �oor. In order to estabslish vacuum in the

chamber we �rst pump down with the turbo pump until a pressure < 10−6 Torr (measured at

the input of the turbo pump) is reached, which takes about 12 hours. At this point we turn

on the ion pump (or open its gate valve if it is already running and under vacuum) and subse-

quently disconnect the turbo pump from the chamber by closing its gate valve and switching

it o�. This is the �vacuum operation mode� which after a few days of operation reaches a

base pressure of typically ≈ 10−8 Torr (measured at the ion pump with the Ultek 60-154

ion pump controller). This base pressure is achieved without baking the chamber or any of

the cavity constituents. Our main precautions with respect to achieving a low base pressure

are the use of vacuum compatible materials, mainly stainless steel (type 304, type 316) and

invar (see Sec. 4.1.1), and thorough cleaning of the components prior to their installation

in the vacuum chamber. Components bought from vacuum product retailers/manufacturers

(LDS Vacuum Products, Kurt J. Lesker Company) are wiped down with acetone and iso-

propanol. Custom parts that were speci�cally machined (McGill physics department machine

shop, Proto Labs) are cleaned according to the following sequence: washing with water and

soap, wiping down with acetone and isopropanol; sonication in acetone bath, rinsing with

acetone and isopropanol, cleaning threaded holes with cleanroom compatible swabs soaked

in acetone/isopropanol, �nal wipe-down with acetone then isopropanol.

Installed on the left and the right side of the cube are two custom-made con�at �anges

(8 inch, Accu-Glass Products), both featuring an anti-re�ection-coated vacuum viewport

which provides optical access to the cavity (beam path of optical probing setup shown, see

Sec. 4.2.1 for details). Additionally, installed to the right �ange is an electrical feedthrough

(D-subminiature, 25 gold-plated pins) through which we connect the electronic cavity com-

ponents (see Sec. 4.1.1).
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4.2 Optical Characterization

Here we characterize the optical resonances of a Fabry-Perot cavity with incorporated tram-

poline resonator. With regard to realizing a high single-photon cooperativity C0 (a �gure

of merit for how strongly light on single-photon level a�ects the mechanical resonator's tra-

jectory, see Sec. 2.2.6), we investigate how the presence of the trampoline a�ects the cavity

�nesse F (C0 ∝ F , Eq. 2.101).

In Sec. 4.2.2 we discuss the optical components of our Fabry-Perot cavity setup and

the measurement of the empty cavity's �nesse, with a resulting value of F = 20, 000. To

verify whether our fabrication protocol introduces additional optical loss, in Sec. 4.2.2 we

incorporate one of our fabricated extended membranes into the cavity. Depending on the

membrane's position we measure a �nesse up to 40, 000, which agrees with the predictions

of a lossless optical model. Finally, to set an approximate upper bound on the size of the

cavity �eld required for high-�nesse applications, we position a trampoline in a cavity �eld

wide enough that 0.045 % of the light falls outside the structure. Consistent with recent

simulations [60], we �nd that the majority of this �clipped� light is, in many cases, recovered

by the cavity.

4.2.1 Optical Setup & Empty Cavity Finesse Measurement

The most sensitive way to estimate small optical losses associated with our fabricated struc-

tures is to position them inside a cavity and measure their e�ect on the �nesse. Figure 4.4

shows a schematic of the cavity setup: two high-re�ectivity mirrors (2.5 cm radius of cur-

vature) form a Fabry-Pérot cavity of length Lc = 4.7 cm, which, at our operating wave-

length λ = 1550 nm, yields a fundamental transverse electromagnetic mode (TEM00, see

Appendix C.1 for details on cavity eigenmodes) diameter 2w0 = 110µm and a free spectral

range FSR = 3.2 GHz. The input mirror (left-hand) is designed (see Appendix C.2 for a

description of how we tune a mirror's re�ectivity by etching away layers from its dielectric

coating) to have a �modest� re�ectivity of ≈ 0.9997 while the �backstop� (right-hand) mirror

re�ectivity exceeds 0.999993, forcing the majority of cavity light to exit through the input

mirror. We probe the cavity by shining laser light on the input mirror and measuring the op-

103



tical signals re�ected and transmitted by the cavity. E�cient coupling of the incoming laser

beam to the TEM00 cavity mode is realized by means of a collecting lens, a di�using lens,

and two adjustable silver mirrors (see caption of Fig. 4.4 for details). We sweep the cavity

length Lc to scan for optical resonances by applying a 45 ms linear voltage ramp Vc(t) from

0 to 60 V to a piezo actuator positioned between one drive screw and contact point of each

mirror mount. This compresses the cavity symmetrically about the waist by ∆Lc ∼ 2 µm

corresponding to roughly ∼ 2.5 free spectral ranges. Note this actuation method tilts the

end mirrors by ∼ 0.01 degrees over the full sweep range, corresponding to a ∼ 4µm shift in

the location of the cavity waist for this radius of curvature. The piezo voltage Vc is supplied

by a data acquisition (DAQ) module (National Instruments PXI-6115) in combination with

a homemade inverting voltage ampli�er (×− 20).
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Figure 4.4: Light from a �ber coupled laser (wavelength 1550 nm, power 40 mW, linewidth ∼
200 Hz) is collimated (1/e2 intensity beam diameter 3 mm) and passes through an adjustable
neutral density (ND) �lter, a 50:50 beam splitter (BS), mode-matching lenses L1, L2 (-10
cm and 15 cm focal length, separated by 19 cm) mirrors M, and an anti-re�ection-coated
vacuum viewport (VP) before landing on a cavity formed by an input mirror (32 cm from
L2) of re�ectivity |ri|2 ≈ 0.9997 and a �backstop� mirror of re�ectivity |rb|2 > 0.999993. The
radius of curvature of both mirrors is Rc = 2.5 cm. Light re�ected from the cavity passes
through an optical isolator and is focused on a photodiode (PD, 150 MHz bandwidth) by a
3 cm focal length lens. The transmitted light passes through an anti-re�ection-coated vacuum
viewport and is focused on a photodiode (150 MHz bandwidth) by a 3 cm focal length lens.
The PD voltages are monitored on an oscilloscope and the re�ected light is recorded on a
data acquisition (DAQ) module. The cavity length Lc is swept symmetrically about the waist
by applying a voltage to the mirror piezo actuators (P) which compresses the cavity by ∆Lc.
The voltages are generated by the DAQ module and ampli�ed by a low-noise, high-voltage
ampli�er (designs available upon request) of voltage gain ≈ −20.

Figure 4.5(a) shows the re�ected optical power from the cavity, recorded by the DAQ

module and normalized with respect to the o�-resonance value (corresponding to all light

being promptly re�ected by the input mirror), for a typical cavity length sweep of a reasonably

well-aligned empty cavity. The data (solid blue line) shows a pattern of dips repeated three

times, once for each free spectral range. When well-aligned, the largest dip is the TEM00

mode, as veri�ed by an image of its spatial pro�le viewed on the transmission side by an

infrared camera (not shown). We can also corroborate these observations by predicting the
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locations of the TEM resonances ∆Vlmn = a∆Llmn + b, where

∆Llmn =
λ

2π

[
lπ + 2 (m+ n+ 1) arctan

(
1√

2Rc/Lc − 1

)]
(4.1)

are the expected resonance lengths of our cavity4 (see Appendix C.1 for derivation) which

are transformed to voltages by coe�cients a and b. The dashed lines in Fig. 4.5(a) represent

the expected peak positions ∆Vlmn for cavity parameters Rc = 2.5 cm, Lc = 4.87 cm, mode

orders l = 0...5 (relative to l0 ∼ 63,000), m + n = 0...4, and coe�cients a = −27.1 V/µm,

b = 127.0 V.

The slight mismatch between observed and expected resonance positions is most likely a

consequence of piezo nonlinearities, which result in a nonlinear relation between cavity length

change and piezo voltage ∆Lc (Vc). We determine ∆Lc(Vc) (see Fig. 4.5(b)) by �tting a fourth

order polynomial to the measured resonance voltages under the condition that TEM modes

of consecutive transverse order m + n are separated by a constant value and consecutive

longitudinal modes are separated by λ/2 =775 nm (see Eq. 4.1). The dashed gray line is

plotted to illustrate the deviation of the measured piezo expansion from ideal linear behavior.

The �t residuals are randomly distributed between −4 nm and 4 nm which is ∼ 10 times

higher than the RMS Lc noise observed in a similar cavity of �xed length5 [2].

4For perfectly circular (and non-birefringent) cavity mirrors, the resonance spectrum is degenerate inm,n.
In practice this degeneracy is usually lifted due to slightly elliptic cavity mirrors and / or birefringence in the
mirror or cavity materials, resulting in a small splitting between the TEMmn and TEMnm modes (typically
a fraction of the splitting between neighboring TEM modes for a cavity of our dimension [43]). Therefore,
another way to discern the TEM00 modes from higher order TEMmn modes is to zoom in on the peaks in
Fig. 4.5 and check for a splitting.

5The sawtooth voltage ramp applied to sweep the cavity length is composed of a spectrum of sinusoidal
tones that act as mechanical drive on the mirror mounts; the increased Lc noise is consistent with result-
ing mirror oscillations. For sensitive sweeps, we now recommend driving with a continuous sine, so that
there is exactly one frequency applied to the mounts and a steady state can be achieved. For the cavity
characterization presented in the following sections the demonstrated Lc stability of 5 nm is su�cient.
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Figure 4.5: Characterization of empty cavity resonances. (a) Re�ected optical power from
the cavity (normalized by the o�-resonance signal) as a function of the voltage (45 ms linear
voltage ramp Vc(t) from 0 to 60 V) applied to the mirror piezo actuators. Dashed lines
represent expected resonance positions of TEM modes of longitudinal mode order l = 0...5
(relative to l0 ∼ 63,000 ) and transverse mode orderm+n=0...4 for mirror radius of curvature
Rc = 2.5 cm and cavity length Lc = 4.87 cm. (b, lower) Cavity length change ∆Lc as a
function of the voltage applied to the mirror piezos. The red curve is obtained by requiring
that all transverse modes within a subset are equally spaced and that adjacent transverse
modes of the same order are separated by λ/2=775 nm. (b, upper) Fit residuals representing
the di�erence between measured positions and the �tted curve show no obvious signs of
systematics. (c) Ringdown of the cavity's re�ected power (normalized by the o�-resonance
value): After passing through resonance, light exiting the cavity beats with the prompt
re�ection, resulting in power �uctuations [120] ae−t/2τc cos [(ω0 + bt) t+ c] for �t (red curve)
parameters a, ω0, b, c, and power ringdown time τc = 1.00 ± 0.05 µs (�nesse F = 20, 100 ±
1, 000; error represents statistical �uctuations of multiple measurements).

In view of future optomechanics experiments we are interested in the time the photons

spend inside the cavity, the so called �photon lifetime� τc, which is proportional to the cavity

�nesse F = πcτc/Lc (see Sec. 2.2.2). We measure τc by sweeping through the resonance faster

than its lifetime [120] resulting in the sinusoidal ringdown signal presented in Fig. 4.5(b) for

the TEM00 mode.
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The signal beats at the frequency di�erence between the promptly re�ected light from the

cavity input mirror and the light exiting the cavity which was Doppler shifted in frequency

as a consequence of multiple re�ections from the moving cavity mirrors. The extracted bare

cavity photon lifetime is τc = 1.00± 0.05 µs corresponding to F = 20,000± 1,000. Note that

the mirrors, as purchased, nominally achieve �nesse ∼ 1,000,000 (see Sec. C.2 for details on

tuning the mirror re�ectivity).

4.2.2 Cavity with Incorporated Trampoline

While the high mechanical performance of the trampolines presented in Chapter 3 makes

them excellent candidates for mechanical sensing and dissipation studies, we also wish to

use them for precision interferometry and optomechanics experiments. To this end we char-

acterize their optical performance by measuring their e�ect on the cavity characterized in

Sec. 4.2.1.
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Figure 4.6: Simpli�ed Fabry-Pérot cavity setup with incorporated Si3N4 structure and tram-
poline positioning with respect to the incident laser beam during alignment. (a) Incident laser
light (wavelength 1550 nm, power ∼ 10 mW, linewidth ∼ 200 Hz) lands on a cavity formed
by an input mirror (M) and a �backstop� mirror (see Fig. 4.4 for details) with trampoline
resonator (or extended membrane) positioned near the waist. Light re�ected from the cavity
passes through a 50:50 beam splitter (BS) and is detected by a photodiode (PD, 150MHz
bandwidth). The PD voltage is recorded on a data acquisition (DAQ) module. The cavity
length Lc is swept symmetrically about the Si3N4 structure (∆Lc) by applying a voltage to
the mirror piezo actuators (P) and the Si3N4 structure can be moved along the optical axis
by applying a voltage to its piezo actuator, resulting in a displacement ∆x. The voltages are
generated by the DAQ module and ampli�ed by low-noise, high-voltage ampli�ers (designs
available upon request) of voltage gain ≈ −20. (b) Typical sequence of trampoline (mem-
brane) positioning with respect to the incident laser beam during alignment. First, the beam
is retrore�ected from area I, where unpatterned Si3N4 (thickness 90-100 nm) sits on top of a
Si substrate (thickness ≈ 675 µm). Second, the chip is moved to position II where the laser
partially overlaps with area I and the region of suspended Si3N4 where the Si substrate is
completely removed. Third, we move the chip along a line until we reach III which is the
same as II but on the opposite site of the �window area�. Four, we go to position IV by
covering half the distance back toward II.

Figure 4.6(a) shows the simpli�ed cavity setup formed by an incident laser beam, an input

mirror (M), a backstop mirror, a trampoline (or membrane) aligned close to the waist, all

three mounted to piezo actuators (P), a beam splitter (BS), a photodidode (PD) and a data

acquisition module that records the photodiode voltage and supplies voltages to the mirror

and membrane/trampoline piezos, in combination with low-noise, high-voltage ampli�ers of

voltage gain ≈ −20 (see Fig. 4.4 for details) .
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To test whether our fabrication protocol introduces additional bulk absorption or surface

losses, we �rst align an extended membrane, fabricated similarly to the trampolines, near the

cavity waist. Unpatterned Si3N4 membranes fabricated elsewhere have been shown to exhibit

very little optical loss [43, 42], and, in particular, the bound placed on the imaginary index

Im[n] < 1.5 × 10−6 [43] would in principle make these structures compatible with a cavity

�nesse F ∼ 106, even when positioned at an antinode of the intracavity �eld. Furthermore,

we incorporate a trampoline in the cavity to investigate scattering and di�raction losses due

to overlap of the TEM00 cavity mode with the trampoline sidewalls.

The alignment of either a square membrane or a trampoline inside our cavity starts

with a partially disassembled cavity comprising only the �backstop� mirror and a pinhole

replacing the input mirror. In a �rst step, we make sure the incident laser is properly

retrore�ected from the �backstop� mirror, guided back through the pinhole and landing on

the photodiode. We then clamp the membrane or trampoline chip by means of �ngerstock

onto a piezo actuator that is glued to the temporary chip support of a manual �ve axis stage

(see Fig. 4.3). Figure 4.6(b) shows how the Si3N4 structure is consecutively positioned with

respect to the incident laser beam during the alignment procedure. We start by aiming the

laser at a region away from the released structure where unpatterned Si3N4 (refractive index

2 for λ = 1550 nm) sits on top of the Si (refractive index 3.7 for λ = 1550 nm) substrate

(position I). The chip's tilt is aligned so that the beam is again retrore�ected through the

pinhole. We then center the laser on the released Si3N4 structure by moving the stage lateral

to the optical axis. We roughly hit the center of the structure (position IV) by counting

the screw turns from leaving the chip area on, e.g., the left side (position II) to reaching the

chip area on the right side (position III) of the membrane or trampoline and consecutively

going back by half the amount of turns. Hereby, leaving (or reaching) the chip area is usually

obvious from a change in re�ected intensity landing on the photodiode. At this point the

Si3N4 structure is roughly centered and perpendicular with respect to the cavity axis and

we move on to install and align the input mirror so that the incident light is retrore�ected,

which typically results in a coarsely aligned cavity. If successful, higher-order TEM modes

are now visible in the re�ection spectrum. Fine alignment can then be achieved by adjusting

the trampoline's position and tilt, with the goal of increasing the size of the re�ection dips
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while reducing their number6.

The resonance lengths for a cavity with one of our Si3N4 structures aligned close to its

waist are given by

∆L̃lmn =
λ

2π

lπ + 2 (m+n+1) tan−1

 1√
2Rc

Lc
− 1

− φr + cos−1

[
− |r| cos

(
4π

λ
∆x+ lπ

)] .

(4.2)

The �rst two terms describe TEM resonances of the empty cavity (see Sec. 4.2.1) with length

Lc, and mirror radius of curvature Rc. The third and fourth terms represent the modi�cation

in the resonance length caused by the presence of the Si3N4 structure (see Sec. 2.2.3) with

membrane re�ection coe�cient r = |r| exp (iφr) and relative position ∆x along the optical

axis. Figure 4.7(a, left) shows a plot of the power re�ected from the cavity as a function of

cavity length and membrane position. This data was taken by ramping the cavity mirror

piezos (as in Sec. 4.2.1) and stepping the membrane piezo's voltage from 0 to 60 V (0.3 V

steps) in between each ramp. For each pair of cavity and chip piezo voltages we normalize

by the o�-resonance value (corresponding to all incident light being promptly re�ected by

the cavity). The dark regions occur when the laser is resonant with the cavity.

6Note this is not always the best "goal" for a low-loss, single-port (over-coupled) cavity, since the re�ected
power should ideally remain constant, even though a lot of light builds up inside the cavity.
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Figure 4.7: Re�ection signal (normalized by o�-resonance value) of a cavity having either a
membrane or trampoline aligned close to its waist. (a, left) Re�ected intensity from a cavity
with an extended membrane as a function of the voltage applied to the mirror piezos and
the membrane piezo. The cavity length Lc is rapidly swept (45 ms linear voltage ramp Vc(t)
from 0 to 60 V) and the membrane position is stepped (voltage increase by ∆Vm = 0.3 V
up to 60 V) after the Lc sweep. Colored curves show expected cavity resonances for λ =
1550 nm, Lc = 4.80 cm, cavity mirror radius of curvature Rc = 2.5 cm, absolute|r| = 0.48
and phase φr = −0.65 of membrane re�ection coe�cient, longituidnal mode order l = 0...4
(relative to l0 ∼ 62,000), and transverse mode order m + n = 0...4 transformed to voltages
by coe�cients a = −18.3V/µm and b = 102.8V. The dashed line indicates a single Lc sweep
(Vm = 51.7 V) which is shown in (a, middle). Consecutive fundamental transverse electric
resonances (TEM00) are labeled by (i)-(iii) for which respective power ringdown data are
shown in (a, right). (b) Same as (a) but for a patterned trampoline of width d = 200 µm.
Colored curves show expected cavity resonances for λ = 1550 nm, Rc = 2.5 cm, Lc = 4.75 cm,
|r| = 0.37, φr = −0.89, l = 1...3 (relative to l0 ∼ 61,000), andm+n = 0...2, a = −23.0V/µm,
and b = 112.9 V.
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The periodicity ∼ λ/2 (up to Gouy phase shift, see Appendix C.1) of the resonances in ∆x

is a consequence of the intra-cavity optical intensity pro�le. Along the vertical axis is a

pattern (spanning ≈ 15 V) of dips repeated three times (once for each free spectral range)

present, where the lowest resonance corresponds to the TEM00 mode (see. Sec. 4.2.1) and

the weaker resonances (separated by ∆Vc ≈ 3 V) originate from higher order TEMm+n≥1

modes. Due to piezo nonlinearities and hysteresis, the resonances are distorted along the

horizontal and the vertical axis (see Sec. 4.2.1). We identify the transverse mode orders

by plotting the expected resonances ∆Ṽlmn = a∆L̃lmn + b (colored curves) with ∆L̃lmn

(Eq. 4.2) for λ = 1550 nm, Rc = 2.5 cm, Lc = 4.80 cm, |r| = 0.48, φr = −0.65, l = 0...4

(relative to l0 ∼ 62,000), and m + n = 0...4 transformed to voltages by a = −18.3 V/µm

and b = 102.8 V. Resonances of consecutive transverse order are shifted horizontally by

0.3 V due to a membrane displacement ∆x slightly away from the cavity waist, where modes

of di�erent transverse order have slightly di�erent Gouy phases (see Appendix C.1). The

vertical dashed line indicates a single Lc sweep, taken for Vm = 51.7 V, which is plotted in

Fig. 4.7(a, middle) where the three TEM00 resonances are indicated by (i)-(iii). Their swept

ringdown signal (see Sec. 4.2.1) is plotted in Fig. 4.7(a, right) from which we extract F (see

Sec. 4.2.1 for details). Figure 4.7(b) is similar to Fig. 4.7(a) but the data is taken with the

trampoline instead of the membrane, and the expected resonances ∆Ṽlmn (colored curves)

are plotted for λ = 1550 nm, Rc = 2.5 cm, Lc = 4.75 cm, |r| = 0.37, φr = −0.89, l = 1...3

(relative to l0 ∼ 61,000), and m+ n = 0...2, a = −23.0 V/µm, and b = 112.9 V.

The resonance scans presented in Fig. 4.7(a, left) and Fig. 4.7 (b,left) are smoothly dis-

torted and slightly sheered due to piezo nonlinearity and creep, combined with tempera-

ture drift. Figure 4.8(a, top) and Fig. 4.8(b, top) show two consecutive TEM00 resonances

(white cuves) where these nonidealities are eliminated by simultaneously �tting the resonant

values to their known functional dependence (Eq. 4.2) incorporating fourth-order polyno-

mial distortion (see Sec. 4.2.1) and linear sheer correction terms. Doing so allows us to

extract the cavity detunings induced by the membrane, along with the membrane's re�ec-

tivity |rm| = 0.38 ± 0.01. Using a lower-order polynomial does not signi�cantly change our

result, but minor systematics do eventually become visible. Note this value of |rm| corre-

sponds to that expected for a Si3N4 (refractive index 2.0) slab of thickness 72± 2 nm, which
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is smaller than the nominal value of 80 nm. However, this scheme is known for its systematic

underestimate of |rm| [43], which is attributed to slight misalignment of the membrane and /

or level repulsion between the TEM00 and higher-order transverse modes of the cavity, both

of which tend to �atten the sinusoidal perturbation.

(a) (b)

sidewall
scattering / diffraction

Figure 4.8: Finesse characterization of a cavity containing either a membrane or trampoline
aligned close to its waist. (a, upper) Finesse and cavity mode detuning versus the displace-
ment of an extended membrane. White curves show �t (see text), and solid dashed lines
show the approximate empty cavity resonance frequencies. Inset shows qualitative sketch of
left and right cavity modes (a, lower) Comparison of �nesse (from the topmost resonance)
with prediction for a lossless membrane (red). Dashed line indicates empty cavity �nesse
F ≈ 20,000. (b) Same as (a) but for a patterned trampoline of width d = 200 µm, in this
case, the trampoline's e�ective re�ectivity is |rt| = 0.31 ± 0.01. Inset shows a qualitative
sketch of the cavity cross-section at the trampoline.

The �nesse (color scale and lower plot of Fig. 4.8(a)) is found to oscillate with position,

in fact exceeding the bare cavity �nesse F ≈ 20,000 (dashed line in lower plot of Fig. 4.8(a))

measured in Sec. 4.2.1. This can be readily understood by viewing the membrane as �one more

dielectric layer� of the input mirror that, with the proper air-gap, enhances its re�ectivity. A

transfer matrix theory [79] assuming zero optical loss in the membrane (red curve, zero free

parameters) reproduces the oscillations. This implies that, so long as the optical mode waist
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2w0 is su�ciently small compared to the diameter d of the pad, it should readily achieve

a cavity �nesse of 40,000 or higher. Note, as observed previously [43], the error bar on

individual �nesse measurements is signi�cantly smaller than the �uctuations in Fig. 4.8; the

larger, non-statistical variations are known to arise from membrane-mediated hybridization

between the TEM00 mode and higher-order modes of the cavity (each having its own value

of �nesse) whenever they approach degeneracy.

Finally, in an e�ort to place an approximate upper bound on the cavity mode diameter

required to achieve this �nesse with a patterned device, we replace the membrane with a

trampoline having a pad diameter d = 200µm, such that ∼ 0.045% of the cavity light (mode

diameter 2w0 = 110 µm) does not land on the structure. If we naively assume this light is

lost from the cavity, the �nesse would be limited to 7,000. However, simulations of a similar

geometry [60] suggest higher value, since the end mirrors can collect and recycle some of the

scattered light. As shown in Fig. 4.8(b), despite these �clipping� losses, a �nesse equal to the

empty-cavity value of 20,000 is achievable within a short distance of any trampoline position,

even near the antinodes of the intracavity �eld. Clipping e�ects are still evident, however:

the regions of boosted �nesse have vanished, and the rapid �nesse variations dip to much

lower values. This is consistent with an intuition that sidewall scattering further breaks the

symmetry of the cavity, increasing the TEM00 mode's coupling to even higher-order, lossier

transverse modes.

In the context of optomechanical sideband cooling (see Sec. 2.2.6), we have introduced

the single photon cooperativity C0 as a �gure of merit, which is proportional to the optome-

chanical cooling rate and can be written

C0 =
4π~c |rd|2 τmF
λ2LcmΩm

, (4.3)

for our geometry. The demonstrated optical parameters (Lc = 4.7 cm, F = 40, 000, λ = 1550

nm, rm = 0.4) together with the trampoline's mechanical characteristics (e�ective mass

meff = 4.0 ng, ringdown time τm = 6.0 min, and resonance frequency Ωm = 2π × 40.9 kHz,

see Sec. 3.3.1) correspond to a single-photon cooperativity C0 ∼ 8 in the resolved-sideband

limit (�resolved� in the sense that the back-action-limited cooling would result in an average
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phonon occupancy nm,min = 0.2 < 1 (Eq. 2.98)). In Sec. 2.2.6 we have discussed, that

for C0 = 1 a cooling laser (in the resolved-sideband limit) having an average intensity of

a single photon doubles the dissipation rate of the bare mechanical element. So with our

value C0 ∼ 8, we are in the regime wherein the mechanical trajectory will be signi�cantly

altered when the apparatus contains a single photon on average. Indeed, our initial attempts

to frequency stabilize an external laser to the cavity with incorporated trampoline failed,

because the trampoline's oscillation was strongly anti-damped by by the �uctuations of the

incident laser (as soon as the trampoline is antidamped, it rings up and the system is unusable

for minutes). This motivated the development and characterization of our sideband locking

technique, presented in Chapter 5.

4.3 Simulation of Qm-Increase Through Optical Trapping

Optically levitated mechanical sensors can be isolated from classical noise sources so that

the momentum imparted by single photons becomes the dominant noise source [121]. This

approach typically involves subwavelength-scale dielectric nanoparticles which are optically

trapped inside a Fabry-Perot cavity ([121], and references cited therein). Patterned dielec-

tric membranes can be designed to bene�t from partial optical levitation, where an optical

trapping potential provides a restoring force acting in conjunction with the elastic restoring

force of the membrane material [60]. In an experimental implementation of this scheme [81],

the mechanical quality (Qm) factor of a Si pendulum was increased 50-fold when aligned

in an optical standing wave (few Watts incident power). Theoretical treatments [60, 122]

have proposed that partial levitation can yield a Qm-increase of more than three orders of

magnitude.

In the following, we adopt the approach presented in [60, 122, 123] to simulate the e�ect

of a strong optical trap on the 80-nm-thick trampoline of Fig. 3.2. Hereby, we are particularly

interested in the achievable enhancement of the mechanical quality (Qm) factor. The �nite-

element simulation is carried out in COMSOL Multiphysics.

Inset (i) in Fig. 4.9 shows the fundamental (s1) trampoline mode (see also Fig. 3.8) with
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an optical trapping beam applied to the central pad. We model the optical trap as external

force

Ftrap = meffω
2
trapf (x, y) ζ (x, y) , (4.4)

acting along the direction of the trampoline's out-of-plane displacement ζ (x, y) (see Fig. 4.9,

inset (i)). Here meff = ρm

´
dV ζ2 (x, y) /ζ2

0 is the e�ective mass [90] of the mechanical mode,

with material density ρm, maximum trampoline displacement at the center ζ0, and volume of

the resting trampoline V . The optical trap strength ω2
trapf (x, y) is parametrized by means

of trap frequency ωtrap =
√
KMIM/meff , with optical spring constant KMIM given by Eq. 2.88,

and a function f (x, y) describing the optical intensity pro�le. According to the parameters

of our experimental cavity setup (Sec. 4.2.2) we set f (x, y) = exp [−2 (x2 + y2) /w0] with

2w0 = 110 µm, which represents the Gaussian beam pro�le of the TEM00 cavity mode.

We assume that the optical force, together with the tensile stress (see Sec. 3.1.1), act in

a linear fashion on the trampoline, so that its mechanical response can be described by

linearly superimposing the e�ects of the two forces [124]. In this case, the total mechanical

energy of the trapped trampoline is given by the sum of the intrinsic mechanical (tensile)

energy and the additional optical trapping potential Utot = Um + Utrap. By assuming that

the optical potential contributes no mechanical dissipation channel [60, 122], the de�nition

of the mechanical quality factor (Eq. 2.6) yields

Qtot = 2π
Um + Utrap

∆Um

= Qm

(
1 +

Utrap

Um

)
(4.5)

for the total quality factor of the trapped trampoline, where ∆Um is the dissipated mechanical

energy per cycle of oscillation, and Qm = 2πUm/∆Um is the intrinsic mechanical quality

factor. Alternatively, we can express Qtot in terms of Utot as

Qtot =
Qm

1− Utrap/Utot

, (4.6)

with energies (see Sec. 2.1.1)

Utot =
1

2
ρmdω

2
tot

¨
dxdy ζ2 (x, y) (4.7)
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Utrap =
1

2
ρmdω

2
trap

¨
dxdy ζ2 (x, y) f (x, y) , (4.8)

and their ratio
Utrap

Utot

=
ω2

trap

ω2
tot

˜
dxdy ζ2 (x, y) f (x, y)˜

dxdy ζ2 (x, y)
. (4.9)

Here, the second term represents the normalized overlap of the mechanical displacement

squared with the optical intensity pro�le, which in the present case is biggest for the trampo-

lines symmetric out-of-plane modes (indicated by si, with mode index i, in Fig. 3.8), making

them primary candidates for Qm-increase through optical trapping.

In the case of uniform trap strength across the trampoline (f (x, y) = 1), the ratio of the

integrals in Eq. 4.9 is one and the maximally achievable energy ratio would mainly be limited

by the amount of optical power the system can handle. The trapped mechanical frequency

in this case is ω2
tot = Ω2

m + ω2
trap, with mechanical resonance frequency Ωm, which, together

with Eq. 4.9, permits to rewrite Eq. 4.6 as

Qtot = Qm

(
1 +

ω2
trap

Ω2
m

)
. (4.10)
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Figure 4.9: Response of a Si3N4 trampoline resonator (see Fig. 3.2 for device dimensions) to
an optical trap with Gaussian intensity pro�le (mode �eld diameter 2w0 = 110µm). Inset (i)
shows the trapped s1 mode pro�le (for ωtrap = 400 kHz) with applied trapping beam. When
at rest, the trampoline lies in the xy-plane, from which it is perpendicularly displaced by ξ for
out of plane modes. (a) Colored circles show mechanical resonance frequencies of optically-
trapped �symmetric� (si), �torsional� (ti) and �antisymmetric� (ai) modes ωtot (mode index i,
see Fig. 3.8 for plotted mode pro�les) versus trap frequency ωtrap. The gray lines correspond
to modes of the overhanging Si3N4 frame (dashed lines, see Fig. 3.2), in-plane modes (solid
lines), and torsional tether modes (dot-dashed lines) for which the tethers twist around their
longitudinal axis. The orange line shows the case of constant trapping force across the whole

mode pro�le ωtot =
(
Ω2

m + ω2
trap

)1/2
. (b) Response of the total mechanical quality factor Qtot

(upper), e�ective mass mtot
eff (center), and force noise

√
Stot
F (lower) to the optical trap for

the fundamental (s1) trampoline mode . The orange line (upper) represents the case of a
constant trapping force across the whole mode pro�le Qtot = Qm

(
1 + ω2

trap/Ω
2
m

)
.

Figure 4.9(a) shows the response of the trampoline's six lowest mechanical out-of-plane

resonances (colored circles), to an optical trap with Gaussian beam pro�le and trap frequency

ωtrap. Most strongly a�ected are the symmetric modes (s1, s2), in agreement with the dis-

cussion of Eq. 4.9. Their frequency is increased until they hybridize with the above-lying

antisymmetric (a1, a2) and torsional modes (t1, t2), which also hybridize with each other.

This hybridization is a consequence of the trap's con�nement to the central pad, which, for

increasing strength, progressively clamps it down until merely the tethers are free to oscil-
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late. This behavior contrasts the e�ect of a uniform trap (shown for s1, Fig. 4.9(a) orange

curve), for which the mode symmetry remains unchanged, theoretically enabling an arbitrary

resonance frequency increase7. The gray lines in Fig. 4.9(a) represent resonances which are

una�ected by the optical trap, due to a vanishing overlap integral in Eq. 4.9. We distinguish

between modes of the overhanging Si3N4 frame (dashed lines, see Fig. 3.2), in-plane modes

(solid lines), and torsional tether modes (dot-dashed lines) for which the tethers twist around

their longitudinal axis. Potentially counterproductive are crossings of these resonances with

the trapped mode since they provide additional dissipation channels due to mode hybridiza-

tion.

Figure 4.9(b) shows the response of the total mechanical quality factor Qtot, e�ective

mass mtot
eff (center), and force noise

√
Stot
F (lower) to the optical trap for s1. The inital

values
{
Qtot, m

tot
eff ,
√
Stot
F

}
ωtrap=0

=
{

4.5× 107, 4.5 ng, 19.5 aN/
√

Hz
}
are chosen according

to the experimental parameters of Sec. 3.3.1. The orange line (upper) represents the case of a

constant trapping force across the whole mode pro�le (Eq. 4.10). The maximum value of Qtot

is realized at the point of in�ection of ωtot, where the mode hybridization comes into play.

From this point Qtot decays back to the untrapped value, due to the increasing hybridization

to tether modes (assumed to have the same initial quality factor for simplicity), which are

una�ected by the optical trap. The e�ective mass (Fig. 4.9(b, center)) slightly increases until

the �hybridization point�, which agrees with the intuition, that the onsetting trap mainly

reduces the maximum displacement ξ0, while for stronger traps, the mass of the central pad

is more and more excluded from contributing to mtot
eff due to hybridization, causing it to

approach the tether mass. The e�ect on the force noise combines the previously discussed

aspects according to
√
Stot
F =

√
4mtot

eff ωtotkBT/Qtot (see Sec. 2.1.2.2). Initially the force noise

is improved ∼15 %. Ultimately, the increase in ωtot outweighs the reduction in mtot
eff , causing

the force noise to increase up to 18 %.

Although our trampoline resonator is not particularly designed to bene�t from optical

trapping, our simulation (based on experimental parameters) predicts that its Qm can be

7Ultimately, the achievable increase is limited by residual optical absorption which will cause the resonator
structure to fracture when the incident optical power reaches the damage threshold. In an experimental
trapping attempt of a similar device as the one discussed here, a damage threshold of ∼ 10 W was found
[102].
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increased by a factor of 2.8 resulting in Qtot = 1.3 × 108 at resonance frequency ωtot/2π =

82 kHz. This corresponds to Qtot × ωtot/2π = 1013, which meets the requirements for laser

cooling to the quantum mechanical ground state [87, 88]. The maximum value of Qtot is

realized for ωtrap = 160 kHz. For the optical single-mode spring discussed in Sec. 2.2.3,

this would require an optical trapping power ∼ 100 W. This value would be reduced to ∼

1 W when employing an optimized con�guration [122], which exploits the increased trapping

e�ciency provided by the avoided crossing of the TEM00 and TEM10 or TEM01 cavity mode.

Similar to previous studies [81, 122], we �nd that mode-hybridization in consequence of a

non-uniform trapping potential is the limiting factor for Qtot. In principle, one could enhance

the trap uniformity, by increasing the cavities MFD (e.g. shortening the cavity length), to

further increase Qtot. In that regard, the results presented in Sec. 4.2.2 show promise that an

overlap of the optical intra-cavity �eld with the trampoline sidewalls is not detrimental to the

cavity �nesse. Eventually, the maximum obtainable Qm increase might involve a trade-o�

between the trap uniformity and the reduction in cavity �nesse associated with di�raction

from the trampoline sidewalls (Sec. 4.2.2).
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Chapter 5

Simple Delay-Limited Sideband Locking

with Heterodyne Readout

Statement of contribution: Tina Müller implemented an initial version of the feedback loop,

which she operated together with the �membrane-in-the-middle� cavity setup presented in

Chapter 4. For the characterization presented in this chapter and a journal article on this

topic, I built a new Fabry-Perot cavity setup, added the heterodyne readout capability and

adjustable attenuator to the original feedback circuit, and recorded and analyzed all the data.

Erika Janitz, Maximilian Ruf, Alexandre Bourassa, Simon Bernard, Abeer Barasheed, and

Vincent Dumont contributed with discussions.

A common goal in precision optics is to employ feedback [125] to stabilize (lock) the frequency

of a continuous-wave (CW) laser to that of an external system, such as a Fabry-Perot optical

cavity [58] or atomic transition [126, 127]. This can be used to stabilize the laser itself, or to

continuously monitor the dynamics of the external system. For example, by locking a laser to

a su�ciently stable cavity, it is possible to produce extraordinarily coherent light [128], which

can then be applied to the precision control and spectroscopy of trapped atoms [129], high-

accuracy optical clocks [130, 131], or interferometric detection of passing gravitational waves

[106]. Alternatively, a locked laser can be used to probe atomic or molecular absorption within

the cavity [132], or to resolve the quantum zero-point motion of an embedded mechanical

element [17, 18] (see also [16]). Within the latter context (optomechanics [21]), a stable, low-
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power lock is particularly important for systems combining a lightweight, highly compliant,

ultrahigh-Qm mechanical system [1, 39, 57] (see also Sec. 3.1.1) with a high-�nesse cavity,

wherein the radiation pressure from an average cavity occupancy of one photon should in

principle profoundly alter the mechanical trajectory [1]. Indeed, our failed attempts to lock

the combined system of cavity with incorporated trampoline investigated in Sec. 4.2.2 and

Ref. [1] (using traditional methods) is precisely what motivated the present work.

As reviewed in Sec. 5.1 below, all feedback schemes aim to simultaneously achieve the

largest possible closed-loop gain (the degree to which noise can be suppressed) and su�cient

dynamic range (headroom) to compensate all �uctuations. The closed-loop gain is ultimately

limited by the speed with which corrections can be applied (the bandwidth), which itself is

fundamentally limited by the delay of the signal propagating through the loop [125]. In many

situations, however, the achievable gain is practically limited by other system nonidealities.

For example, one means of tuning a laser's emission frequency is to mechanically stretch an

internal optical path, and the bandwidth is then practically limited by the structure's me-

chanical resonances. For this reason, low-noise, mechanically tuned lasers (e.g. commercial

Nd:YAG lasers) are typically limited to control bandwidths of ∼ 100 kHz. Faster feedback

can be achieved by controlling the laser's pump, and commercial diode lasers (e.g.) routinely

achieve su�cient pump modulation bandwidth that feedback is limited by other loop non-

idealities; as such, using the pump to stabilize against an external cavity is often employed

as a �rst stage to reduce their comparatively large noise [133]. The control bandwidth of the

combined system, however, is then limited by the external cavity's mechanical resonances.

Cavity mirror actuation has improved in recent years, achieving 180 kHz with short-travel

piezo actuation [134] and now up to ∼ 700 kHz with the incorporation of photothermal tuning

[135].

An alternative, laser-independent technique is to shift the light's frequency after emis-

sion. For visible wavelengths, this is usually accomplished with an acousto-optical modulator

(AOM), achieving ∼ 200 kHz closed-loop bandwidth [128] with ∼MHz-scale headroom on its

own, and up to 2 MHz bandwidth when combined with an electro-optical modulator (EOM)

to correct the high-frequency noise in parallel [136]. At near-infrared (telecom) wavelengths,

low-cost �ber modulators are more commonly employed: using serrodyne techniques, wherein
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a voltage-controlled oscillator (VCO), nonlinear transmission line (NLTL), and EOM gener-

ate a saw-tooth phase that e�ectively shifts the carrier frequency [137, 138], or single-sideband

modulation (SSM), wherein a VCO and Mach-Zehnder interferometer shift a small portion

of the carrier [139], it is routine to achieve several-MHz feedback bandwidth and well over

100 MHz headroom.

A second common goal in precision optics is to perform heterodyne readout [140], wherein

a weak �signal� beam is overlapped with a strong local oscillator (LO) beam detuned by an

electronically measurable frequency. Landing on a photodiode, the beating between these two

beams produces an ampli�ed electronic signal with a spectrum shifted to the LO detuning,

thereby providing simultaneous access to the signal's amplitude and phase quadratures (or,

equivalently, to its double-sided spectrum). In addition to spectroscopy, polarimetry, laser

radar (and lidar), microscopy, and other applications [140], heterodyne readout enables a

continuous, self-calibrating measurement of mechanical temperatures in the quantum regime

of motion [17, 18].

Here we present and characterize a simple, low-power, high-bandwidth, post-emission

laser locking technique with built-in heterodyne readout. This approach employs a high-

speed VCO and a single EOM to control the signal beam frequency, and can be implemented

with any laser. In contrast to serrodyne systems, it does not require a precise NLTL-generated

saw-tooth waveform (or the extra EOM bandwidth to handle it), and, similar to SSM, shifts

only a fraction of the laser light. In contrast to both, the carrier is exploited as an optical LO

for heterodyne readout, and no alignment or relative path stabilization is required. Using

the test ports of our chosen electronics, we directly measure the frequency-dependence of

the closed-loop gain, demonstrating a delay-limited feedback bandwidth of 3.5 MHz (one

integrator) and excellent agreement with a simple model based on ideal components. From

this we propose a modi�ed setup that should realistically achieve a gain of 4× 107 at 1 kHz

(6.6 MHz bandwidth, two integrators). The headroom allowed by these components exceeds

500 MHz, limited only by a 10 V ceiling on the VCO programming voltage imposed by our

ampli�er (∼1 GHz should be possible with this VCO/EOM combination, at the expense

of added amplitude noise). Section 5.1 brie�y reviews requisite concepts in laser feedback.

Section 5.2 then introduces the �Pound-Drever-Hall� method for generating an error signal
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[141, 58, 142] (including a derivation of its dynamical response) and a simple electronics

modi�cation enabling heterodyne readout. We then present the technical details of our

�proof-of-concept� system in Sec. 5.3, characterize its performance in Sec. 5.4, and conclude

in Sec. 5.5.

5.1 A Brief Review of Laser Feedback

All laser frequency stabilization schemes rely on (i) generation of an �error� signal proportional

to the frequency di�erence (detuning) δ between the laser and an external system, and (ii)

processing and routing of this signal to a port that adjusts δ to compensate [125]. 5.1(a)

shows a conceptual diagram of a feedback loop for locking a laser to a cavity resonance.

Cavity vibrations and laser frequency noise together introduce a nominal detuning δn (note

these noise sources appear on equal footing, and only the di�erence δ will be stabilized) that

is converted to an electronic signal by a photodiode �D�, ampli�ed and �ltered by assorted

electronics �−A�, and sent to a �feedback� port �F � to adjust δ. This correction is added to

the original noise (e.g., by tuning the laser frequency, cavity length, or both), resulting in a

relationship for the net detuning δ = δn − CDAFδ, where C, D, −A, and F are complex,

frequency-dependent gains (transfer functions) for the cavity, diode, electronics, and feedback

port. Solving for δ yields

δ =
δn

1 + CDAF
. (5.1)

This immediately highlights the central concerns for stabilization. First, it is desirable

to make the �closed-loop gain� G ≡ CDAF as large as possible, to maximally cancel the

noise. For |G| � 1, the overall phase φG does not matter, but if G approaches −1 at a

some �bad� frequency, then the noise at that frequency is ampli�ed. This places unavoidable

limits on G for the following reasons: (i) any delay td in the signal path introduces a phase

factor e−iωtd , forcing φG = −π at �nite frequencies, regardless of what electronics are chosen

for A, (ii) stability concerns impose that the magnitude of the gain at the lowest of these

frequencies ω−π should be less than 1, and (iii) causality places an upper bound |G| < ω2
−π/ω

2

on how much the gain can increase below this frequency [125]. Since most noise occurs at

low frequencies, it is therefore desirable to make ω−π large, and to engineer a feedback circuit
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such that G increases as rapidly as possible with decreasing frequency.

Laser Modulator

Carrier Phase
Modulated Amplitude

Modulated

(a)

(b)
(i)

(ii)

(iii)

Detuning δ

VY (δ)

+

PD

Oscillator

BS

Resonance

I
L

R

Figure 5.1: Feedback stabilization. (a) Generic control loop for stabilizing a laser's detuning
δ from the resonance of an optical cavity. Noise δn enters, is converted to an optical signal by
the cavity (transfer function C), collected by a diode (D), manipulated by electronics (−A)
and sent to a �feedback� port (F ). (b) Practical implementation using Pound-Drever-Hall
readout. Straight red lines represent optical paths, straight black lines represent electrical
paths, and dashed gray lines show potential feedback paths. The laser is phase-modulated,
lands on a beam splitter (BS) and interacts with the cavity, which converts phase to amplitude
modulation. This is recorded with a photodiode and mixed (demodulated) with a local
oscillator. Inset shows the resulting steady-state voltage VY (δ), with a red dot indicating a
stable lock point. The manipulated signal can be fed back to (i) the cavity length or (ii) the
laser frequency. Feeding back to (iii) the oscillator frequency only adjusts the sidebands.

A readout of δ (the error signal) can be obtained by several methods. A high-�nesse

optical cavity of length L, input mirror �eld transmission coe�cient t1 and power ringdown

time τ has an overall �eld re�ection coe�cient (see Appendix A)

r(δ) ≈ t21τc/L

1 + i2τδ
− 1. (5.2)

The re�ected power (∝ |r|2) therefore follows a Lorentzian line shape. On resonance (δ =

0), the re�ected power cannot on its own be used for feedback since it does not provide

information about the sign of δ. One can generate a bipolar error signal by tuning the laser
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away from resonance [143], but this technique couples laser power �uctuations to detuning

errors. However, the phase of r(δ) does vary linearly on resonance, and can be extracted

via phase modulation [58], heterodyne [140, 144], and homodyne [145] schemes, wherein the

mode of interest interferes with one or more reference beams having di�erent frequency or

phase. Other techniques employ a second cavity mode as a reference, for example a mode of

di�erent polarization [146] or a higher order spatial mode [147, 148]. The powerful �Pound-

Drever-Hall� technique [58] is discussed in the following section.

5.2 Modi�ed Pound-Drever-Hall Readout and Dynami-

cal Response

A ubiquitous method for on-resonance laser stabilization is the �Pound-Drever-Hall� (PDH)

technique [141, 58], a diagram of which is drawn in Fig. 5.1(b). Stated brie�y, this technique

e�ectively amounts to dithering the laser frequency with an electro-optical modulator (EOM)

and measuring the induced modulation in the re�ected power to infer the slope of |r(δ)|2

(or Im[r]) [142]. The resulting error signal (inset blue curve, near red dot) can then be

manipulated with electronics (−A) and fed back to either (i) the cavity length or (ii) the

laser frequency, as described above. Feeding back to a voltage-controlled oscillator (VCO, iii)

will not adjust the carrier frequency (or δ) in this con�guration, but can be used to lock a

sideband as discussed in Sec. 5.3. An elegant, pedagogical derivation of the steady-state error

signal (VY in Fig. 5.1(b)) for this system can be found in [142]. This accurately captures

the system's ability to convert low-frequency detuning noise into an error signal, but breaks

down when the detuning δ(t) contains frequencies comparable to the cavity's linewidth 1/τ .

A straightforward means of deriving the dynamic response [149] is to propagate a small

laser �noise� component through an EOM, cavity, diode, and demodulation (mixer) circuit

in Fig. 5.1(b) to extract a combined transfer function, as follows (see Appendix B for more

details). Suppose there exists a laser frequency noise component at frequency ω that is

the real part of Ω̃(t) = Ωne
iωt, where Ωn is a constant amplitude. This corresponds to

phase modulation φ(t) = φn sin(ωt), where φn = Ωn/ω. If this light is fed through a phase
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modulator (EOM) driven by voltage Vosc = Ve sin(ωet), the �eld landing on the cavity is

E = El cos (ωlt+ φe sinωet+ φn sinωt) (5.3)

where El is a constant amplitude and φe ∝ Ve according to the e�ciency of the EOM.

Assuming all modulations are small (φe, φn � 1), Eq. (5.3) can be written as the sum of a

�carrier� at frequency ωl, four �rst-order sidebands (ωl±ωe and ωl±ω) and eight second-order

sidebands (ωl± 2ωe, ωl± 2ω, ωl±ωe±ω, and ωl±ωe∓ω). If we also assume the modulator

frequency is large compared to the cavity linewidth and noise frequency (ωe � 1/τ, ω), and

the carrier is on resonance, only �ve beams (ωl, ωl ± ω, and ωl ± 2ω) acquire a signi�cant

change in magnitude and phase upon re�ection, as per Eq. (5.2). When the 13 re�ected

beams land on a photodiode, they produce a time-averaged photocurrent ∝ 〈E2〉 containing

all frequencies within the photodiode's bandwidth (� ωl). If this signal is then mixed

with the original oscillator voltage Vosc, the output is proportional to 〈E2〉 sin(ωet), and an

appropriately chosen low-pass �lter can eliminate all terms except those having frequency

near ω. After some bookkeeping (Appendix B), the complete transfer function for converting

a frequency noise Ω̃ to a (complex) error signal ṼY is found to be

ṼY

Ω̃
≈ −2φeE

2
l βτ

2

1 + 2iτω
(5.4)

where the constant prefactor β includes a combination of cavity parameters and the con-

version e�ciencies of the diode and mixer (note our chosen diode and mixers have large

bandwidths, and are assumed here to have frequency-independent e�ciencies for simplicity;

this assumption is validated by the agreement with the measurement in Sec. 5.4). The in-

terpretation of this result is straightforward. Assuming φn � 1 restricts VY (δ) to the region

of linear response (i.e. near the red dot in Fig. 5.1(b)). The resulting transfer function sen-

sibly scales with the laser power and dither amplitude [58, 142], and the cavity's amplitude

ringdown time 2τ imposes a low-pass �lter on the readout [149]. Interestingly (as alluded

to before [58, 142]), despite the round-trip time of light circulating within the cavity, this

transfer function does not contain a delay-like factor; the phase tends to a constant value at

high frequency.

128



This motivates the use of a �proportional-integral� (PI) ampli�er for the conditioning

electronics (A in Fig. 5.1). A PI ampli�er has a transfer function

API = G0
1 + iω/ωPI

1/g + iω/ωPI
(5.5)

where G0 is an overall scaling factor, ωPI is a �PI corner� frequency, above which the re-

sponse changes from integrator-like to proportional, and g is a gain limit at low frequen-

cies. Often (especially while locked) the gain limit is removed (1/g → 0), in which case

API → G0

(
1− iωPI

ω

)
; when combined with the readout transfer function (Eq. (5.4)), the

choice ωPI = 1/2τ then results in a partial-loop transfer function

ṼY

Ω̃
API =

φeE
2
l βτ

2G0

iτω
(5.6)

The total system behaves like an integrator over all frequencies, with increasing gain at low

frequencies. The overall phase is far from −π, preventing the system's overall delay factor

e−iωtd from forcing the closed-loop gain below 1 at a low frequency. This phase margin fur-

thermore provides �wiggle room� for loop nonidealities such as indirectly driven resonances

that can cause a temporary excursion in phase (see, e.g., [134]). However, even if the band-

width of the feedback port F is e�ectively in�nite and / or we have precisely compensated for

all of its artifacts, the ultimate gain is limited by the signal delay td � in this case from the

output of the EOM to the cavity, back to the diode, through the electronics, and through the

feedback port � which forces the closed-loop gain to be less than 1 at frequency ω−π < π/4td

for this choice of electronics.

It is also possible to lock the �rst-order sidebands (ω ± ωe) to the cavity. Following the

same analysis for the case of either sideband resonant with the cavity produces a transfer

function
ṼY,±

Ω̃
≈ φeE

2
l βτ

2

1 + 2iτω
(5.7)

which is inverted and half as large as the carrier-resonant case (Eq. (5.4)), consistent with

the slope of the steady state solution (VY in 5.1(b)) at δ = ±ωe [58, 142].

Finally, similarly propagating an amplitude noise component through this system (i.e.,
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setting El → (1 + Re[ε̃])El, where ε̃(t) = εne
iωt with constant εn � 1) has no impact on ṼY

or ṼY,±. However, introducing a relative π/2 phase shift between the mixer's LO and signal

ports provides access to a similar readout of the laser's amplitude noise ṼX with an overall

transfer function
ṼX,±
ε̃
≈ ∓φeE2

l βτ
1 + iτω

1 + 2iτω
(5.8)

for the upper or lower sidebands on resonance, respectively. We note that, in contrast to the

�phase quadrature� VY,±, the �amplitude quadrature� VX,± is in�uenced by the o�-resonance

sideband. Equation 5.8 illustrates that the addition of a second, phase-shifted mixer (or using

an IQ mixer) enables heterodyne readout with no additional lasers, optical modulators, or

alignment. Conveniently, the steady-state form of this quadrature, discussed below and

shown in Fig. 5.2, also provides a simple means of verifying which sideband is locked to the

cavity (along with an independent estimate of how well it is locked).
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5.3 Apparatus for Sideband Locking with Heterodyne Read-

out
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Figure 5.2: Sideband locking with heterodyne readout. Many parts from Thorlabs (TL),
Newport (NP) and Minicircuits (MC). (a) A VCO (MC ZX95-1600W-S+) signal is split (MC
ZX-10-2-20-S+) and ampli�ed (MC ZX60-4016E-S+) feeding an EOM (TL LN65-10-P-A-A-
BNL-Kr with shortened output �ber) and the LO (�L�) ports of two mixers (MC ZFM-5X-S)
for quadrature readout. Laser (Koheras Adjustik E15) feeds a 14.2-dBm (26.3 mW) carrier
through the EOM, producing a 10.8 dBm carrier and -2.2 dBm (5%) sidebands, set by a
variable attenuator (MC ZX73-2500-S+, ∼15 dB) leading to the EOM. Once collimated (TL
F260APC-1550), the beam passes through a beam splitter (BS, TL BS018 50:50), mode-
matching lenses (-5 cm and 10 cm focal length, see (b)), and steering mirrors (M) before
landing on a cavity comprising a �at (NP 10CM00SR.70F) and curved (NP 10CV00SR.70F)
supermirror, the second of whose position is swept by a piezo mirror mount (TL K1PZ). The
transmitted beam is focused on a photodiode (PD, TL PDA10CF), while the re�ected beam
is rerouted by the BS, passes through an isolator (TL IO-2.5-1550-VLP), and is focused upon
a 2-GHz photodiode (PD, Femto HSA-X-S-2G-IN). Low-frequencies signals (< 20 MHz) are
eliminated with a high-pass (MC SHP-20+), before ampli�cation (MC ZX60-P105LN+) and
splitting by a π/2 splitter (MC ZX10Q-2-13-S+). The phase-shifted signals are fed to the
mixers' RF (R) ports and demodulated to the IF (I) ports. The �phase� quadrature (VY ) is
fed to a PI ampli�er (−A, NP LB1005) for feedback to the VCO. Inset shows the steady-state
voltage of the �amplitude� quadrature VX(δ). (b) Photograph of optics. (c) Simultaneously
acquired VX and VY , for three di�erent VCO controls: 0 V (lightest), 0.8 V, and 1.8 V
(darkest).
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Figure 5.2(a) shows our test setup for locking a �rst order sideband (at ωl ± ωe) to a Fabry-

Perot cavity resonance. Sidebands are created with a �ber EOM driven at ωe by a VCO with

90 MHz modulation bandwidth and 0.65-1.75 GHz tuning range. Light from the EOM passes

through a beam splitter (BS) and mode-matching optics (shown in (b)), re�ects from the

cavity, and is collected by a high-bandwidth photodiode. The resulting signal is �ltered and

ampli�ed before passing through a power splitter that produces a phase shift of 0 and π/2 at

its outputs. These two signals are separately mixed with that of the VCO to produce VX and

VY . The VCO output is split prior to the EOM, delayed, and used as the electronic LO for

both mixers. In order to maintain a �xed phase between the mixers' LO and signal ports over

the full range of VCO frequencies ωe, the delay between the two signal paths must match.

Any di�erence ∆td produces a relative phase ωe∆td that must remain small compared to π/2

at the highest VCO frequency. Here this imposes that ∆td � π/2ωe ∼ 1 ns, corresponding to

a free-space path di�erence � 30 cm, which is mostly compensated for with a combination

of cables and extension adapters (Fig. 5.2(a)), with mm-scale �ne-tuning of the photodiode's

position. The higher precision required for larger-ωe systems can be easily implemented with

the diode optics mounted on a translation stage.

Fig. 5.2(b) shows a photograph of the optical path; the electronics are mounted on a

nearby platform. The detuning δ between the laser and cavity can be widely adjusted with

long-travel piezos in the second mirror mount (�Piezo M�). Fig. 5.2(c) shows a diagnostic

measurement of VY (δ) and VX(δ) recorded during cavity length sweeps for a few values of

ωe. Each sweep was performed �quickly� (16 ms over the full range) to reduce run-to-run

variations from the ambient vibrations of the test cavity. The insensitivity of the quadrature

readout to ωe indicates the delay is matched (see Appendix C for a larger range). The

cavity has a power ringdown time τ = 1.2 ± 0.1 µs (�nesse 4700±400), and so these fast

sweeps produce a transient response [150] resulting in a measured VY (top plot of (c)) that

is consistently not symmetric about VY = 0, and a measured VX (bottom plot of (c)) that

deviates from a simple peak. This artifact can be highly misleading when tuning the relative

delay, and so rather than trying to symmetrize VY , we recommend slowly modulating ωe

while quickly sweeping the cavity, and adjusting ∆td to produce a signal shape that does not

vary with ωe.
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The error signal VY is then fed through a tunable PI ampli�er having the transfer function

of Eq. (5.5), with ωPI = 110 kHz and g = 105 = 40 dB (measured) before �nally being fed

back to the VCO. Due to the sidebands' opposed frequency response, one sideband is always

stabilized by this feedback and the other is always destabilized; here we (arbitrarily) lock

the upper sideband (veri�ed by the negative value of VX). Despite the open-air design and

�agrant disregard for vibration isolation, this system readily locks and remains so inde�nitely

(it is impervious to chair scoots, door slams, claps, and shrieks, but fails if the table surface

is tapped with a wrench).

5.4 Performance

Once locked, we increase the feedback gain G0 until the system rings (at ∼3 MHz for this

implementation), indicating that the gain at ω−π ∼ 3 MHz has exceeded unity. We then

reduce G0 until the remaining noise in VY is minimized. The most sensitive estimate of VY is

achieved by referring the PI ampli�er's output back to its input using its known (measured)

transfer function; together with an independent measurement of the error signal slope on

resonance 2π × ∂δVY = 388 ± 40 mV/MHz, we estimate that the stabilized RMS detuning

noise δRMS/2π is below 70 Hz (0.0005 cavity resonance full-widths). This is a factor of 3000

lower than the pre-stabilized value of 240 kHz (1.6 fullwidths, corresponding to 0.3 nm RMS

cavity length noise), as estimated directly from the PI output and the VCO speci�cations

(52 MHz/V). Figure 5.3(a) shows the power spectral densities of these two inferred detuning

signals. The square root of their ratio provides a basic estimate of the closed-loop gain

magnitude |G(ω)| ∼ 1000 at ω/2π = 1 kHz. We note that this estimate of the pre-stabilized

noise is made while the system is locked � the cavity's inherent mechanical noise and narrow

linewidth together preclude an open-loop estimate � and so this data mainly serves as a

consistency check for the closed-loop gain measurement below and our assumptions about

the other system components.

To directly measure G(ω), we inject a small amount of �noise� into the locked system and

observe how it is suppressed. The PI ampli�er provides a second (inverted) input, and an

isolated monitor of the in-loop error signal. Using a lock-in ampli�er, we apply an oscillatory
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signal Vn of frequency ω to this input and record both quadratures of the error signal VY at ω

(correcting for the transfer functions between the input and error monitor, as well as the lock-

in and its measurement cables). Using the same analysis of Fig. 5.1(a) with CDAF → G,

δn → Vn, and δ → VY , we solve for the closed-loop gain G = Vn/VY − 1, which is plotted in

Fig. 5.3(b) (blue). Importantly, the observed gain smoothly decreases with ω (approximately

as 1/ω), and the phase crosses −π at ω/2π = 3.5 MHz, where |G| < 1, consistent with the

observed ringing frequency. The measurement noise increases at low frequencies due to the

reduced signal at high gain. It is worth pointing out that, despite the addition of sidebands

to the VCO output (at ωe ± ω), the measured transfer function through the EOM, cavity,

diode, and mixer is identical to that of laser frequency noise (this can be seen by tracking

these extra sidebands through a calculation similar to that of Appendix B).
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Figure 5.3: (a) Detuning noise power spectral density (PSD) before and after lock, recorded
while locked. The pre-feedback noise (red) is inferred from the proportional-integral (PI)
ampli�er output and the VCO conversion factor 52 MHz/V, while the post-feedback noise
(blue) is inferred from the PI output referred back to its input and the independently mea-
sured slope of the error function (388± 40 mV/MHz) at the lock point. (b) Measured (blue)
and modeled (red) closed-loop transfer function. The model includes the cavity (green, ring-
down time τ = 1.1 µs), PI ampli�er (yellow, ωPI=110 kHz, and g=105), and a delay (brown,
70 ns, 52 ns from the PI ampli�er). Transfer functions of other components are assumed to
be ��at� on this scale. The gray dashed line shows a closed-loop gain that could be achieved
with optimizations: replacement of the PI ampli�er and further delay reductions to 10 ns and
two PI �lters, one with ωPI/2π = 70 kHz, 1/g = 0), and the other with ωPI/2π = 15 MHz
and g = 105.
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The red line in Figs. 5.3(b)�5.3(c) represents a simple model for G(ω) comprising the

product of (i) the PI transfer function (Eq. (5.5)) with measured ωPI=110 kHz and g=105,

(ii) the cavity transfer function (Eq. (5.7)) with τ = 1.1µs (i.e. one standard deviation

below the measured value), (iii) a closed-loop delay td = 70 ns, and (iv) an overall scaling

factor chosen to match the measured G(ω). The yellow and green curves show the modeled

PI and cavity transfer functions alone for reference, and the brown curve shows the phase

contribution from the delay. The employed value of td is consistent with the signal travel

time of the loop, independently estimated to be approximately 68 ns from the signal path of

the lower VCO loop in Fig. 5.2(a): a combined cable and component length of 127" traversed

at 2/3 the speed of light (16 ns) plus the measured internal delay of the PI ampli�er (52 ns).

The agreement between the model and measurement suggests that the chosen components

exhibit no important nonidealities up to ∼10 MHz, and that the other components (the

EOM, optics, diode, �lters, mixers, ampli�ers, attenuators, splitters, and connectors) can be

assumed to have a �at response, adding a combined delay on the order of nanoseconds at

most.

The phase plot of Fig. 5.3(b) highlights that the achieved bandwidth is limited primarily

by the delay. Without it, the phase would remain above −π/2 to a signi�cantly higher

frequency, allowing for larger G0. The PI ampli�er accounts for 75% of the delay, implying

the greatest gains can be made by replacing it with a faster (albeit less �exible) integrated

circuit. Modern ampli�ers routinely achieve sub-nanosecond delays, and the requisite PI

�lters can be realized with passives (capacitors and resistors). It is also straightforward to

reduce the optical and electronic lengths: using compact mode-matching optics and shorter

cables alone can reduce the delay to ∼10 ns. Furthermore, replacing the existing PI �lter

with two � one having ωPI/2π = 70 kHz and 1/g → 0 and the other having ωPI/2π = 15 MHz

and g = 105 � for example, would produce a bandwidth of 6.6 MHz and (more importantly)

a near-causality limited gain |G (2π × 1 kHz)| ∼ 4 × 107 (Fig. 5.3(b), dashed line). This

optimization will be the subject of future work.

To estimate the headroom, we change the cavity length L while locked and monitor the

output voltage of the PI ampli�er; the system remains locked over the full ∼100 MHz tuning

range presented in Fig. 5.2(b), in this case limited by the cavity's small free spectral range:
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the lower sideband of an adjacent mode eventually becomes degenerate with the locked

sideband, spoiling the error signal. Performing the same test on a 5-cm cavity, we �nd a

headroom of 550 MHz, limited instead by the maximum output voltage of the PI ampli�er

(10 V), which covers only half the tuning range of the VCO. A headroom exceeding 1 GHz

is in principle possible with these components; however, while more headroom is certainly

useful for tracking large �uctuations, the frequency-dependencies of the VCO output, EOM,

and other electronics will eventually couple these �uctuations to the amplitude of the optical

signal and LO beams (see Appendix C). Further engineering e�ort is therefore best spent

reducing the system's inherent noise.

5.5 Conclusion

We have demonstrated a simple technique for locking a �rst order laser sideband to an optical

cavity with a delay-limited feedback bandwidth of 3.5 MHz with a single integrator, and a

headroom exceeding 500 MHz. We directly measured the closed-loop gain, �nding excellent

agreement with a model based on ideal components, and suggest simple modi�cations for real-

izing a gain exceeding 107 at 1 kHz. Finally, we note that, by implementing an appropriately

weighted sum of VX and VY (or otherwise shifting the relative phase of the mixers' electronic

LO and signal ports), it should be possible to create an amplitude-insensitive locking point

� a zero crossing in the resulting error signal � at arbitrary detuning.
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Chapter 6

Conclusion & Outlook

In this dissertation we have presented the wafer-scale batch fabrication and characterization

of high-aspect-ratio, nanogram-scale Si3N4 trampoline resonators. Our fabricated devices

have resonance frequencies in the range of 40 − 570 kHz and mechanical ringdown times

up to ∼ 6 minutes (∼ 1 mHz linewidth) with corresponding mechanical quality factors up

to ∼ 5 × 107 at room temperature. We have measured the trampolines' thermally limited

force sensitivity and the resulting value of 16.2±0.8 aN/Hz1/2 (at room temperature), paired

with high spring constants (∼ 1 N/m), and compatibility with low-loss optics, renders them

well suited for classical sensing applications. With regard to future integration, e.g., in a

compact cryogenic setup, we have investigated how gluing a trampoline chip to a metal

mount a�ects the quality factor (measurements performed by our collaborators from the

Harris Lab at Yale University), �nding a modest reduction up to 13 %. With the goal

of employing our devices in a �membrane-in-the middle� optomechanical geometry [41], we

have built a high-vacuum Fabry-Perot cavity setup, and incorporated a trampoline close

to the cavity center. To set an approximate upper bound on the size of the cavity �eld

required for high-�nesse applications, we have chosen the trampoline size so that 0.045 % of

the light falls outside the structure. Consistent with recent simulations [60], we �nd that the

majority of this �clipped� light is retained by the cavity and that the empty cavity �nesse

of 20, 000 is, in many cases, recovered. The measured mechanical and optical parameters

of our optomechanical setup, correspond to a single photon cooperativity C0 ∼ 8 in the

resolved-sideband limit (�resolved� in the sense that the back-action-limited cooling would
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result in an average phonon occupancy nm,min = 0.2 < 1 (Eq. 2.98)). Motivated by failed

attempts of frequency stabilizing an external laser to the cavity with incorporated trampoline,

with standard methods, we have developed and characterized a robust sideband laser locking

technique ideally suited for applications requiring low probe power and heterodyne readout.

We have measured the transfer function of the locked feedback loop, which revealed a feedback

bandwidth of 3.5 MHz (with a single integrator). Our data agrees with a simple model based

on ideal components, which shows that the bandwidth is fundamentally limited by the signal

delay. From this we suggested a modi�ed design that should achieve a bandwidth exceeding

6 MHz with a near-causally limited feedback gain up to 4× 107 at 1 kHz.

The low dissipation rates of our trampolines make them excellent candidates for studies of

dissipation mechanisms. Although there was considerable gain in the understanding of limit-

ing factors in high-Qm Si3N4 resonators over recent years [151, 152, 93, 153, 92, 98, 57], there

are open questions remaining. Among them is the relative contribution of bulk and surface

defects to overall defect-induced losses [98, 57]. Also the in�uence of surface roughness, e.g.

on the etched sidewalls of the devices, on Qm is not fully understood; it has repeatedly been

reported [105, 100, 1] (also this work) that subjecting patterned Si3N4 resonators to hydro�u-

oric acid solution, thereby removing few nanometers of material from all exposed surfaces,

results in enhanced mechanical and optical quality factors. The underpinnings of this e�ect

are yet unclear and it is speculated whether it is the removal of structural defects or chemical

surface contaminants, e.g. oxygen or carbon [94], which causes the improvement. A possible

route to diminishing surface roughness would be to optimize the dry etch process, used to

write the trampoline shape into the Si3N4 device layer. This can be done by systematically

investigating the sidewall roughness (e.g., with a scanning electron microscope) in depen-

dency of etch parameters. To reduce surface contamination one could follow an approach

described for silicon surfaces [154]. Here, a detailed surface analysis by means of X-ray photo-

electron spectroscopy enabled identi�cation of the contaminant (silicon dioxide) and surface

passivation with an accordingly-chosen chemical (short-chain alkynes) signi�cantly reduced

contamination on newly-fabricated devices.

With regard to employing the trampolines in classical sensing applications, we envision

in the simplest case capacitive [30, 155] or �ber [156] readout from within the silicon etch pit,
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and a sharp tip (or other probe) fabricated upon the top surface. Alternatively, if high-�nesse

readout is required, one could position a probe at the edge of the central pad or upon the

tethers, far from any light �elds, employ a �ber cavity [157], and / or exploit the second

order trampoline mode (where trampoline's central pad twists around two resting (diagonal)

tethers while the other two tethers oscillate out of phase, see Fig. 3.8(b)), which has the

same force sensitivity but a larger tether displacement and spring constant. Furthermore, if

Qm follows the trend for nitride, namely increasing by a factor of 10-100 at low temperature

[158, 155, 159], these devices could in principle achieve ∼ 14 zN/Hz1/2 at 14 mK [155], a

value approaching that of a carbon nanotube [160, 8], but with a signi�cantly larger, sti�er

platform amenable to the incorporation of additional circuitry and probes.

The compatibility of our trampolines with high-�nesse optics, together with the long ring-

down time of the fundamental trampoline mode, also provides access to parameter regimes

of central interest in the �eld of optomechanics. Our measured parameters corresponds to

a single-photon cooperativity C0 ∼ 8, which renders outstanding goals in the �eld feasible.

For example, if the trampoline is simultaneously laser cooled to the back-action limit [23]

and mechanically driven to an amplitude of ∼5 nm (i.e. as in Fig. 3.8(a)), even the gentle

quadratic optomechanical coupling found at a node or antinode [41] would be su�cient to

perform a quantum nondemolition (QND) readout of the trampoline's phonon shot noise [86]

with a signal-to-noise ratio of ∼ 170. Importantly, such a scheme is inherently compatible

with a single-port optical cavity such as the one employed in this work (see Sec. 4.2.2), as

required by the theory [86]. This avoids the need to �nd clever ways to catch and recycle

cavity light from one of the two ports found in other systems such as avoided crossings [43],

wherein the requirements are signi�cantly more stringent [161]. Finally, though these devices

are not optimized to bene�t from the Qm-enhancement of partial levitation [81, 60, 80], the

�nite-element simulation of Sec. 4.3 predicts that Qm can be boosted by a factor of ∼ 2.5

when trapped to Ωm ∼ 2π× 100 kHz, thereby achieving Qm > 108. In this case, there would

be an average of n̄m = kBT/~Ωm ∼ 6 × 107 thermal phonons in the mode at room temper-

ature. This meets the requirement n̄m < Qm for laser cooling to the quantum mechanical

ground state [88, 87].

A next step towards performing an optomechanics experiment with our setup would be to
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achieve a stable frequency �lock� between an external laser and the cavity with incorporated

trampoline. This would require optimizing our frequency stabilization technique, e.g., by

implementing the suggested modi�cations to the feedback electronics (see Sec. 5.4), reducing

the power of the incident laser, or locking to a cavity resonance with lower �nesse. An

interesting feature of our setup is, that the mechanical resonance frequency (40 kHz) is

well within the feedback bandwidth (3.5 MHz), as this causes the feedback action to play

an active role in the interaction between oscillating trampoline and electromagnetic cavity

�eld. Recently it was demonstrated that exploiting this additional means of control in an

optomechanical sideband cooling scheme enables cooling 7.5 dB beyond what is possible with

sideband cooling alone [162]. Achieving a stable cavity lock for the setup discussed in this

work would also be useful for employing more complex mechanical resonators comprising an

array of coupled trampolines, e.g., to perform an experiment recently proposed by our group,

where the geometry of the trampoline array, represented by its mechanical mode pro�le, is

controlled by means of its interaction with the intra-cavity �eld [123].

Another aspect of future work could be the optimization of our setup with regard to

enhanced cooperativity C0 (Eq. 2.101). A strightforward approach would be to reduce the

cavity length Lc (C0 ∝ L−1
c ) by incorporating a trampoline into one of our �ber cavities [163]

(Lc ∼ 100µm), instead of the free-space cavity (Lc ∼ 5 cm) presented in Sec. Sec. 4.2.2. This

would enable C0 ∼ 1000. Although striking, this increase would happen at the expense of

operating in the �bad cavity limit�, where the optomechanical sidebands are located within the

cavity resonance, thereby precluding e�cient sideband cooling schemes. Increasing C0 while

remaining in the sideband-resolved regime could be realized by modifying the trampoline

design; for example, using thinner trampolines would bene�t C0 directly by reducing mass

m (C0 ∝ m−1), and indirectly through an enhancement of the mechanical ringdown time τm

(C0 ∝ τm) [39]. This approach comes with a trade-o�, since devices much thinner than ∼100

nm su�er from reduced re�ectivity |rd|2
(
C0 ∝ |rd|2

)
. This reduction can be compensated

for by incorporating a photonic crystal re�ector [52, 53, 54, 39, 55, 56] into the trampoline.

Though, in order to achieve re�ectivities > 99 %, the nitride layer would have to be ∼ 200 nm

thick [39]. Therefore, in order to simultaneously optimize the trampoline's mechanical an

optical performance, one could follow the approach presented in [39], where the tethers are
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thinned down with respect to the central pad, thereby optimizing mechanical and optical

performance. In Addition, a photonic crystal re�ector can signi�cantly boost the quadratic

optomechanical coupling [119] (Eq. 2.90) while still in principle maintaining a single-port

cavity. This provides a promising route toward resolving individual quantum jumps between

the phonon number states of the trampoline [41] at the expense of added optical losses that

might limit the achievable �nesse [119].
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Appendix A

Theoretical Concepts

A.1 Re�ection and Transmission Coe�cient of a One-

Dimensional Slab

We derive the re�ection and transmission coe�cient of a one-dimensional slab characterized

by its thickness d and refractive index n2, which is surrounded by a medium with refractive

index n1. The transfer matrix of the system is given by

Md =
1

t12

 1 r12

r12 1

 eikn2d 0

0 e−ikn2d

 1

t21

 1 −r12

−r12 1


1

t12t21

 eikn2d − e−ikn2dr2
12 −2ir12 sin (kn2d)

2ir12 sin (kn2d) e−ikn2d − eikn2dr2
12

 ,

with wave number k, Fresnel coe�cient r12 (r21 = −r12) describing re�ection when light

impinges from the surrounding (slab) on the slab (surrounding), and Fresnel transmission

coe�cients t12 (t21) describing light transmission from surrounding (slab) to slab (surround-

ing). Assuming light impinges only from one side, the re�ection and transmission coe�cients

of the slab are given by (from Eqs. 2.47-2.48)

rd = −(Md)21

(Md)22

=
r12

(
−1 + ei2kn2d

)
−1 + r2

12e
i2kn2d

(A.1)
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td = (Md)11 −
(Md)12 (Md)21

(Md)22

=
(r2

12 − 1)
2
eikn2d

t12t21 (−1 + r2
12e

i2kn2d)
. (A.2)

In the case of a dielectric slab in air (n1 = 1, n2 = n) with normal incidence and lossless

propagation of light in both materials, the Fresnel coe�cients are given by (from Eqs. 2.39-

2.40)

r12 =
1− n
1 + n

t12 =
2

1 + n

t21 =
2n

1 + n
.

For the slab's re�ection and transmission coe�cients follows

rd⊥ =
(1− n2) sin (knd)

(n2 + 1) sin (knd) + i2n cos (knd)
(A.3)

td⊥ =
2in

(n2 + 1) sin (knd) + i2n cos (knd)
. (A.4)
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Figure A.1: Re�ection and transmission coe�cients rd, td (Eqs. 2.39-2.40) of a dielectric slab
with refractive index 2 (e.g. Si3N4 at wavelength 1550 nm) surrounded by air/vacuum with
refractive index 1 as a function of slab thickness d. Respectively shown in blue and red are
magnitudes |rd| , |td| and phases φr, φt. Gray dashed curve represents φt−φr = ± (2q + 1) π/2
with q ∈ N.

Figure A.1 shows re�ection and transmission coe�cients rd, td (Eqs. 2.39-2.40) of a

dielectric slab with refractive index 2 (e.g., Si3N4 at wavelength 1550 nm) surrounded by

air/vacuum with refractive index 1 as a function of slab thickness d. Respectively plotted

in blue and red are magnitudes |rd| , |td| and phases φr, φt. Gray dashed curve represents

φt − φr, which, as a consequence of energy conservation is restricted to ± (2q + 1) π/2 with

q ∈ N (Eq. 2.43).

In the general case of oblique incidence, the re�ection and transmission at an interface be-

tween two media depend on the polarization of the light. Typically, one distinguishes between

perpendicular and parallel polarization, which are denoted in the following by superscripts s

and p. In the former case, the electric �eld points in the direction perpendicular to the plane

of incidence. In the latter case, the electric �eld is parallel to the plane of incidence. The

polarization-dependent Fresnel coe�cients describe re�ection (r) and transmission (t) at the
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interface between two media with refractive indices n1, n2 [70, 113]

rs12 =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

=
k1z − k2z

k1z + k2z

ts12 =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

=
2k1z

k1z + k2z

rp12 =
n1 cos θ2 − n2 cos θ1

n2 cos θ1 + n1 cos θ2

=
n2

1k2z − n2
2k1z

n2
1k2z + n2

2k1z

tp12 =
2n1 cos θ1

n2 cos θ2 + n1 cos θ2

=
2n1n2k1z

n2
1k2z + n2

2k1z

,

where θ1 and θ2 are respectively the angles of incidence and refraction. The wave vector

components along the direction of propagation are given by

k1z =
√
k2

0 − k2
x − k2

y = k1 cos θ1 = k0n1 cos θ1

k2z =
√
k2

2 − k2
x − k2

y = k2 cos θ2 = k0n2 cos θ2.

For both directions of polarization follows

r12 =− r21

1 = t12t21 − r12r21

We get the angle-dependent slab re�ection coe�cients by substituting r12 → rs12 or r12 → rp12,

in rd:

rsd =
(k2

1z − k2
2z)
(
1− ei2kn2d

)
(k1z + k2z)

2 − (k1z − k2z)
2 ei2kn2d

rpd =
(n4

1k
2
2z − n4

2k
2
1z)
(
1− ei2kn2d

)
(n2

1k2z + n2
2k1z)

2 − (n2
1k2z − n2

2k1z)
2
ei2kn2d

which correspond to expressions (15a) and (16a) in Ref. [113].
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A.2 Re�ection and Transmission Coe�cient of a DBR

An optical distributed Bragg re�ector (DBR) is typically composed of a glass substrate with

refractive index ns and a coating formed by alternating dielectric layers with refractive indices

n1 and n2. This con�guration acts as an e�cient mirror for light with wavelength λ, if the

portions re�ected at each interface interfere constructively with each other. This is the case

if the optical thickness (physical thickness multiplied with refractive index) of each layer is

λ/4. The transfer matrix (TM) describing propagation through such a layer is given by (from

TM in Table 2.1(column 1, row 3))

MP =

 i 0

0 −i

 . (A.5)

The transfer matrix describing re�ection and transmission at the interface between layer a

and b with a, b ∈ {1, 2} is given by (see Sec. 2.2.1)

Mab =
1

tba

 1 −rab
−rab 1

 . (A.6)

We start to assemble the transfer matrix describing the propagation through a DBR

mirror MDBR by writing down the matrix for a layer pair consisting of on layer made out of

material 1 and one layer made out of material 2

MDL = M21MPM12MP =
1

2

 −n1

n2
− n2

n1
−n1

n2
+ n2

n1

−n1

n2
+ n2

n1
−n1

n2
− n2

n1

 . (A.7)

For N consecutive double layers we have

MN
DL =

1

2

 (
−n1

n2

)
N +

(
−n2

n1

)
N
(
−n1

n2

)
N −

(
−n2

n1

)
N(

−n1

n2

)
N −

(
−n2

n1

)
N
(
−n1

n2

)
N +

(
−n2

n1

)
N

 (A.8)
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and for a DBR where the coating starts and ends with material 1 follows

MDBR =M1sMPM
N
DLM01

=
i

2n1ns

 n2
1

(
−n1

n2

)
N + ns

(
−n2

n1

)
N n2

1

(
−n1

n2

)
N − ns

(
−n2

n1

)
N

−n2
1

(
−n1

n2

)
N + ns

(
−n2

n1

)
N −n2

1

(
−n1

n2

)
N − ns

(
−n2

n1

)
N

 .

Here M01 describes the propagation from air (refractive index n0 ≈ 1) to the outer coating

layer and M1s describes the propagation from the substrate to the adjacent coating layer.

The re�ection coe�cient is given by (from Eq. 2.48)

rDBR = −(MDBR)12

(MDBR)22

=
−n1

2N+2 + nsn2
2N

n1
2N+2 + nsn2

2N
(A.9)

and the transmission coe�cient is given by (from Eq. 2.47)

tDBR = (MDBR)11 −
(MDBR)12(MDBR)21

(MDBR)22

=
i2nN+1

1 nN2
n1

2N+2 + nsn2
2N
, (A.10)

with properties

tDBR = i |tDBR| (A.11)

and for n1 > n2, ns

rDBR = − |rDBR| . (A.12)

For a lossless stack we have

|rDBR|2 + ns |tDBR|2 = 1, (A.13)

where the transmission is scaled by ns accounting for the change in intensity of an electro-

magnetic wave entering the stack from air and exiting it to the mirror substrate.

A.3 Derivation of Cavity Finesse

In Sec. 2.2.2 we have discussed, that in order for light to be ampli�ed by a Fabry-Perot cavity

with length Lc, its frequency needs to ful�ll the resonance condition
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ωN = N
πc

Lc
=: NωFSR (N ∈ N0) , (A.14)

with speed of light c, and free spectral range ωFSR. A commonly used �gure of merit for the

intra-cavity power enhancement is the cavity �nesse, de�ned as

F :=
ωFSR

∆ω
. (A.15)

The cavity linewidth ∆ω is de�ned as the full width at half maximum

|Ec (∆ω/2)|2 =
1

2
max

(
|Ec|2

)
. (A.16)

Plugging in the expression for the circulating �eld inside the cavity Ec (Eq. 2.56) yields

1 + r2
1r

2
2 − 2r1r2 cos (2kL) = 2 + 2r2

1r
2
2 − 4r1r2. (A.17)

By making use of the dispersion relation ω = ck, with wavenumber k, we express the phase

factor ascos (2kL)=cos (2ωL/c). With ω = ωc+∆ω/2 follows 2ωL/c = N2π+∆ωL/c and ap-

plying the identity cos (x+ y) = cos (x) cos (y)−sin (x) sin (y) gives cos (2kL) = cos (∆ωL/c).

Plugging this into Eq. A.17 gives

1 + r2
1r

2
2 − 2r1r2 cos (∆ωL/c) =2 + 2r2

1r
2
2 − 4r1r2

2r1r2 cos (∆ωL/c) =− 1− r2
1r

2
2 + 4r1r2

2r1r2

[
1− 2 sin2 (∆ωL/2c)

]
=− 1− r2

1r
2
2 + 4r1r2

sin2 (∆ωL/2c) =
(1− r1r2)2

4r1r2

,

with cavity mirror re�ection coe�cients r1, r2. We apply de�nitions Eq. A.14-A.15 to the

previous expression and get for the �nesse

F =
π

2 arcsin
(

1−r1r2
2
√
r1r2

) ≈ π

1− r1r2

. (A.18)

The approximation, made in the last step, applies to the case of highly re�ective cavity
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mirrors r1, r2 ≈ 1. Taylor expanding the denominator 1− r1r2 yields F ≈ 2π/ (2− r2
1 − r2

2).

A.4 Maxwell Stress Tensor

The classical coupling between an object containing charges and light is a consequence of the

Lorentz force

~F = q
(
~E + ~v × ~B

)
, (A.19)

with charge q, velocity of charge ~v, electric �eld ~E, and magnetic �eld ~B. By applying

Maxwell's equations [72] one can replace q and q~v in the Lorentz force in terms of ~E and ~B,

resulting in the expression

~f + ε0µ0
∂~S

∂t
= ∇
←→
T , (A.20)

where ~f is the Lorentz force per unit volume, ~S = ~E × ~B/µ0 is the momentum per unit

volume carried by the electromagnetic �eld, known as Poynting vector, and

←→
T = ε0

~E ⊗ ~E +
1

µ0

~B ⊗ ~B − 1

2

(
ε0E

2 + µ0H
2
)←→
I . (A.21)

is the Maxwell stress tensor, with vacuum permittivity ε0 and vacuum permeability µ0. The

double arrow indicates a second order tensor, which can be represented by a 3 × 3 matrix.
←→
I corresponds to the identity matrix.

The mechanical force exerted by an electromagnetic �eld on a volume V of a medium

follows from integrating Eq. A.20 over V

~F =

ˆ

V

dV ∇
←→
T − ε0µ0

ˆ

V

dV
∂~S

∂t
. (A.22)

For a plane electromagnetic wave of the form

Ey =Re
[
E0e

i(±kx−ωt)] (A.23)

Bz =Re
[
B0e

i(±kx−ωt)] , (A.24)
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with wavenumber k, frequency ω, direction of propagation along the x−axis, and time t we

have for the average force per cycle of oscillation

〈F 〉 =

ˆ

V

dV
〈
∇
←→
T
〉

=

˛

J

dS
〈←→
T
〉
· ~n, (A.25)

where the second expression follows from Stokes' theorem. The surface enclosing V is denoted

by J , which is characterized by its normal vector ~n. The cycle average for the second term

in Eq. A.22 vanishes. Expressing
←→
T (Eq. A.21) element-wise

Tij = ε0

(
EiEj −

1

2
δijE

2

)
+

1

µ0

(
BiBj −

1

2
δijB

2

)
(A.26)

and substituting the plane wave expressions (Eq. A.23-A.24) gives

Txx = −1

2

(
ε0E

2
y +

1

µ0

B2
z

)
. (A.27)

From Faraday's law [72]

∇× ~E = −∂
~B

∂t
(A.28)

together with the dispersion relation ω = ck follows

B0 = ±E0/c, (A.29)

where positive (negative) sign holds for right (left) traveling wave. In the case of a strati�ed

medium (see Sec. 2.2.1), the electromagnetic �eld at location x is given by

Ey =Re
[(
Aeikx +Be−ikx

)
e−iωt

]
Bz =Re

[(
Aeikx −Be−ikx

)
e−iωt

]
/c.

Here Bz follows from Ey by applying Eq. A.29. Plugging these expressions in Eq. A.27 and

time averaging gives
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〈Txx〉 = −ε0

2

(
A2 +B2

)
, (A.30)

where we have made use of c = 1/
√
ε0µ0. The mixed terms vanish due to the di�erent signs

of the left traveling components ∝ B.

Let us consider the case of a dielectric membrane inside a cavity (see Sec. 2.2.3), where

A and B are the right and left traveling �eld amplitudes on the left side of the membrane.

Similarly, C and D are the right and left traveling �eld amplitudes on the right side of the

membrane. The force acting on the membrane in this case is given by (from Eqs. A.25, A.30)

〈Fx〉 =

˛

J

dS 〈Txx〉nx =
ε0J

2

[
A2 +B2 − C2 −D2

]
(A.31)

or in terms of optical power by

〈Fx〉 =
1

c
(PA + PB − PC − PD) (A.32)

with PA = cε0JA2/2 and so on.
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Appendix B

Fabrication & Mechanical

Characterization of Si3N4 Trampoline

Resonators

B.1 Power Spectral Density Measurement with a Lock-In

Ampli�er

Here we present the analysis behind the spectral density measurement of a thermally driven

trampoline resonator discussed in Sec. 3.3.2. The resonator's trajectory is given by [117, 164]

x (t) =x0(t) cos [Ωmt+ φ (t)]

x (t) =x0(t) cos [φ (t)] cos (Ωmt)− x0(t) sin [φ (t)] sin (Ωmt)

x (t) ≡X1 (t) cos (Ωmt)−X2(t) sin (Ωmt) , (B.1)

with time dependent amplitude x0(t) and phase φ (t), and oscillation frequency Ωm. When

measuring this signal with our lock-in ampli�er (Zurich Instruments HF2, see Sec. 3.2), the

output (once calibrated, see Sec. 3.2.2) are the two root-mean-square quadrature time traces

X1 (t) /
√

2 and X2(t)/
√

2, with
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X1 (t) ≡x0(t) cos [φ (t)]

X2(t) ≡x0(t) sin [φ (t)] .

In order to see how we can extract the signal's power spectral density (PSD) from these two

quantities, we evaluate the general expression of the double-sided PSD (see Sec. 2.1.2.1)

Sxx(Ω) =

ˆ ∞
−∞

dτ e−iΩτ 〈x(t)x∗(t− τ)〉 (B.2)

for the above given signal x (t). Hereby, we make use of abbreviations

St := sin (Ωmt)

Ct := cos (Ωmt)

and trigonometric identities

SaSb =
1

2
(Ca−b − Ca+b)

CaCb =
1

2
(Ca−b + Ca+b)

SaCb =
1

2
(Sa−b + Sa+b) ,

with times a, b. For the autocorrelation function follows

〈x(t)x∗(t− τ)〉 = 〈[X1 (t)Ct −X2 (t)St] [X1 (t− τ)Ct−τ −X2 (t− τ)St−τ ]〉

=
1

2
〈X1 (t)X1 (t− τ) +X2 (t)X2 (t− τ)〉Cτ

+
1

2
〈X1 (t)X2 (t− τ)−X1 (t− τ)X2 (t)〉Sτ .

Terms proportional to S2t−τ , C2t−τ don't contribute since their time average is zero. This

is because Ωm � Γm (see Sec. 3.3.2 ), where 1/Γm is the timescale on which X1 (t), X2(t)
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change. For the double-sided PSD follows

Sxx(Ω) =
1

4

ˆ ∞
−∞

dτ
[
e−i(Ω−Ωm)τ + e−i(Ω+Ωm)τ

]
〈X1 (t)X1 (t− τ) +X2 (t)X2 (t− τ)〉

− i

4

ˆ ∞
−∞

dτ
[
e−i(Ω−Ωm)τ + e−i(Ω+Ωm)τ

]
〈X1 (t)X2 (t− τ)−X1 (t− τ)X2 (t)〉

=
1

4

ˆ ∞
−∞

dτ
[
e−i(Ω−Ωm)τ + e−i(Ω+Ωm)τ

]
〈[X1 (t) + iX2(t)] [X1 (t− τ)− iX2(t− τ)]〉

and for the single-sided PSD

Sx(Ω) =
1

2

ˆ ∞
−∞

dτ e−i(Ω−Ωm)τ 〈[X1 (t) + iX2(t)] [X1 (t− τ)− iX2(t− τ)]〉 .

By de�ning Y ≡ [X1 (t) + iX2 (t)] /
√

2 we have

Sx(Ω) = SY Y (Ω− Ωm) . (B.3)

From Parseval's theorem (Eq. 2.19)

〈
|x(t)|2

〉
=

ˆ ∞
0

dΩ

2π
Sx(Ω) =

ˆ ∞
−∞

dΩ

2π
SY Y (Ω− Ωm) =

〈
|Y (t)|2

〉
, (B.4)

follows the root mean square (rms) displacement, which is a measure for the average dis-

placement amplitude

xrms =
√〈
|x(t)|2

〉
=
√
〈X2

1 (t) +X2
2 (t)〉 /2. (B.5)

Alternatively, we can directly calculate this value based on its de�nition [68]

x2
rms := lim

T→∞

1

T

T/2ˆ

−T/2

dt |x(t)|2 . (B.6)
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Applying this to the signal given by Eq. B.1 yields

x2
rms = lim

T→∞

1

T

T/2ˆ

−T/2

dt
[
X2

1 (t) cos2 (Ωmt) +X2
2 (t) sin2 (Ωmt)

]
, (B.7)

where the term ∝ 2 cos (Ωmt) sin (Ωmt) = sin (2Ωmt) was omitted, since its time aver-

age is zero. We can further evaluate the integral by exploiting the fact that the ampli-

tudes X1 (t), X2 (t) change on vastly di�erent time scales compared to the oscillatory terms

sin (Ωmt) , cos (Ωmt) (see Sec. 3.3.2); the former change on a characteristic time scale set by

the mechanical ring-down time τm = 285 s, and the latter oscillate with period 1/Ωm = 4 µs.

Therefore, we can divide the time traces into shorter subsets of length ∆t = T/N , with

1/Ωm � ∆t� τm, during which the amplitudes are assumed to be constant. Applying this

to the �rst integral in the above given expression yields

T/2ˆ

−T/2

dtX2
1 (t) cos2 (Ωmt) =

N∑
i=1

X2
1 (ti)

T/2−(N−i)∆tˆ

−T/2+(i−1)∆t

dt cos2 (Ωmt)

=
1

2

N∑
i=1

X2
1 (ti) ∆t

=
1

2

T/2ˆ

−T/2

dtX2
1 (t)

An equivalent relation holds for the second term in Eq. B.7, so that we have

x2
rms =

1

2
lim
T→∞

1

T

T/2ˆ

−T/2

dt
[
X2

1 (t) +X2
2 (t)

]
=

1

2

〈
X2

1 (t) +X2
2 (t)

〉
, (B.8)

which is the same as Eq. B.5.
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B.2 Gas Damping

At ambient pressure the mechanical performance (see Sec. 3.3.1) of our trampoline resonators

is limited by gas damping. Here we give an estimate for the pressure dependent quality

factor Qm, based on a model including drag force gas damping [165, 166] and squeeze �lm

gas damping [167, 168]. The former is a consequence of a pressure gradient created by the

resonator in its environment while it oscillates1. The latter occurs if the resonator's perimeter

is comparable to its distance from a near by surface; in this case, the resonator might do work

on the surrounding gas in two di�erent ways: First, by compressing the gas and second, by

shuttling gas in and out of the �thin �lm� area between resonator and neighboring surface.

The estimation presented in the following, applies to the free molecular �ow regime, where

the gas mean free path2 λgas exceeds the characteristic length scale of the resonator bc by

∼ 10 [166, 169]. The ratio of these two length scales is known as the Knudsen number

Kn =
λgas

bc
=

kBT

bc
√

2σP
, (B.9)

with Boltzmann constant kB, temperature T , scattering cross section of gas molecules σ, and

gas pressure P .

Similar to the analysis presented in Sec. 2.1.1 for the intrinsic mechanical quality factor,

we will estimate the quality factor resulting from gas damping. The mechanical energy of

the resonator (average over cycle of oscillation ∝ cos (Ωmt)) is given by (Sec. 2.1.1)

Um =
1

2
ρmΩ2

md

¨
dxdy ζ2 (x, y) , (B.10)

with resonator material density ρm, mechanical resonance frequency Ωm/2π, resonator thick-

ness d, and trampoline out-of-plane displacement ζ (x, y) . The gas drag force per unit area

is given by [166]

f (x, y) = kmPζ (x, y)
d

dt
cos (Ωmt) , (B.11)

1Alternatively, this can be seen as consequence of the di�erent relative velocities between gas molecules
and cantilever for the resonator side that moves towards the gas molecules and the side that moves away
from them.

2To give an example, the man free path of air with an ambient pressure of ∼1 Torr is ∼10 cm.

157



where under the assumption of elastic re�ection of the gas molecules from the resonator and

equal temperatures of gas and vacuum chamber wall, the damping coe�cient is given by

km =
4.2

vgas

= 4.2

√
mgas

2kBT
, (B.12)

with mean gas velocity vgas and gas mass mgas. The prefactor of 4.2 is a consequence of

the rectangular cross section and a small thickness compared to the lateral extent of the

resonator [166]. The work done by the resonator on the gas per cycle of oscillation3 is given

by

∆Udr = πkmΩmP

¨
dxdy ζ2 (x, y) . (B.13)

For the quality factor purely limited by drag force gas damping we have

Qdr = 2π
Um

∆Udr

=
ρmΩmd

kmP
. (B.14)

The quality factor, purely limited by squeeze �lm damping is related to the previous

expression by [167, 168]

Qsq = 16π

(
h

u

)
Qdr, (B.15)

where h is the distance between resonator and neighboring surface and u is the resonator's

perimeter.

In the absence of gas damping the resonator is limited by its intrinsic quality factor Q0.

Therefore, we have for the overall mechanical quality factor

1

Qm

=
1

Q0

+
1

Qdr

+
1

Qsq

. (B.16)

3Integrating the time dependency over one cycle of oscillation gives
´ 2π/Ωm

0
dt
[
d
dt cos (Ωmt)

]2
= πΩm.
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Figure B.1: Mechanical quality factor Qm as a function of air pressure P for a trampoline
resonator (see text for parameters). Gray curve shows an assumed intrinsic quality factor
Q0 = 5.5×107 (absence of gas molecules). Green and blue curves show an estimate for respec-
tively, Qm purely limited by either squeeze �lm gas damping Qsq or drag force gas damping
Qdr. Red curve shows the resulting mechanical quality factor Qm = 1/

(
Q−1

0 +Q−1
dr +Q−1

sq

)
.

Figure B.1 shows Qm (red curve) versus P (Eq. B.16) for a trampoline resonator (see

Fig. 3.2) with window size l = 3000 µm, pad diameter d = 100 µm, tether width a =

2.1 µm, thickness d = 80 nm, resonance frequency Ωm/ (2π) = 40.8 kHz (fundamental out

of plane mode), Si3N4 density ρm = 2700 kg/m3, trampoline perimeter u ≈ 4
(√

2l + d
)
, and

separation between trampoline and underlying support plate h = 675 µm. Furthermore, we

consider temperature T = 293 K, mass of air molecules mgas = 48.1 × 10−27 kg [166], and

scattering cross section of air molecules σ = 1.76× 10−19 m2 [166]. The threshold set for the

Qm increase by the drag force gas damping (blue curve) and squeeze �lm gas damping (green

curve) di�er by less than a factor of two. In combination they cause Qm to transition from

0 to an assumed intrinsic value Q0 = 5.5 × 107 in the range of 10−4 Torr < P < 10−9 Torr.

Note that Kn� 10 over the entire P range plotted in Fig. B.1, regardless of employing either

d or a as critical dimension bc in Eq. B.9.

The estimate presented in Fig. B.1 suggests, that the mechanical performance of the

trampoline resonators presented in Sec. 3.3 might be limited by gas damping. In previous

studies [169, 63, 96], similar models have been applied to successfully describe the measured
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Qm versus P dependency for Si3N4 nanobeam resonators with Ωm/ (2π) of a few MHz and

Qm ∼ 106. In these studies Qm was limited by gas damping down to pressures of 10−4−10−3

Torr. The di�erence of 104 for the limiting pressure between these studies and the here

presented estimation is consistent with the trampoline's lower Ωm/ (2π), larger Qm, and

larger u. Studies of similar resonators as the one considered here [39, 57], mention slight

in�uence of gas damping at P ∼ 10−7 Torr.
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Appendix C

Vacuum Fabry-Perot Cavity with

Incorporated Si3N4 Trampoline

Resonator

C.1 Transverse Electromagnetic Cavity Modes

A symmetric spherical cavity formed by two spherical mirrors with identical radii of curvature

Rc can stably con�ne light if the cavity length Lc ≤ 2Rc. The resonant spectrum of complex

electric �eld amplitudes in this case is given by the Hermite-Gaussian modes [109]

Emn(r, z) = E0
w
w(z)

Hm

(√
2x

w (z)

)
Hn

( √
2y

w (z)

)
exp

[
− r2

w2 (z)

]
exp [−jϕmn (r, z)] (C.1)

with phase

ϕmn (r, z) = kz + k
r2

2R (z)
+ (m+ n+ 1) ζ (z) (C.2)

and
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w0 =

√
λzR
π

(mode waist)

w (z) = w0

√
1 +

(
z

zR

)2

(mode radius)

R (z) = z

[
1 +

(zR
z

)2
]

(mode radius of curvature)

ζ (z) = arctan

(
z

zR

)
(Gouy phase)

The indices m,n ∈ N represent the transverse mode order which is equal to the number of

�eld nodes along the two directions orthogonal to the cavity axis: x and y.

The Rayleigh range zR can be calculated from the boundary condition

Rc
!

=
Lc
2

[
1 +

(
2zR
Lc

)2
]
. (C.3)

resulting in

zR =

√
Lc
2

(
Rc −

Lc
2

)
(C.4)

and the cavity waist

w0 =

√√√√λ

π

√
Lc
2

(
Rc −

Lc
2

)
. (C.5)

The cavity resonance condition requires that ϕmn (r, z) is constant across the mirror sur-

faces and that the wave is invariant under translations of 2Lc (cavity roundtrip) which can

be expressed as

ϕmn (0, z) = 2kLc + 4 (m+ n+ 1) ζ

(
Lc
2

)
!

= l × 2π (C.6)

where l ∈ N is the longitudinal mode order giving the number of �eld antinodes along the

cavity axis. With the above found expression for zR follows

Llmn =
1

k

[
lπ + 2 (m+ n+ 1) arctan

(
1√

2Rc/Lc − 1

)]
(C.7)
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which resembles the spectrum of cavity resonance lengths. To characterize the modes of our

cavity (see Sec. 4.2) we periodically compress its length by a small amount ∆Lc which enables

us to observe modes of a few consecutive longitudinal mode orders. In the identi�cation of

these modes we are interested only in the relative change of l with respect to its initial value

l0 = Round (kLc/π) =: kL0/π. By replacing l → l0 + l we can write Llmn = L0 − ∆Llmn

where ∆Llmn is given by Eq. C.7. For a homogeneous and isotropic cavity the spectrum is

degenerate in m,n and we can replace ∆Llmn → ∆Llm+n where only a change in the added

transverse mode indices results in a length change. This degeneracy is lifted for example in

the case of slightly elliptic cavity mirrors or birefringent mirror or cavity materials [43].

Beam Diameter

The beam diameter is de�ned as the diameter where the optical power is reduced to 1/e2

from its peak level. For a Gaussian beam (TEM00) with intensity distribution

I(r, z) = E2
0

w
w2(z)

exp

[
− 2r2

w2 (z)

]
(C.8)

the beam diameter is therefore given by 2w (z).

C.2 Cavity Finesse Tuning by Mirror Etching

Mirrors formed by a thin metal (e.g. silver) �lm deposited onto a glass slab or polished

substrate, are omnipresent in everyday life and an important constituent of optical setups.

When it comes to precisely engineered re�ection and transmission spectra in combination with

low optical losses (as required for optical cavities), the component of choice commonly is a

dielectric distributed Bragg re�ector (DBR). The typical composition of a DBR is sketched

in Fig. C.1(a) where alternating layers of two di�erent dielectric materials (here Ta2O5 and

SiO2) are deposited on top of a glass substrate. This structure forms an e�cient mirror for

light of wavelength λ if the following requirements are met: the optical thickness (physical

thickness multiplied by the material's refractive index n) of each layer equals λ/4, which

results in constructive interference between the portions of light re�ected at each interface.
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Here the re�ected fraction is bigger for higher contrast in the materials' refractive indices.

The overall re�ection increases for a larger number of dielectric layers. Furthermore, the

penetration depth of light into the mirror is reduced when the stack is terminated with the

high index material, which in turn minimizes optical loss. The expression for the DBR's

re�ectivity in this case is given by (see Appendix A.2)

RN = |rDBR|2 =

(
−n1

2N+2 + nsn2
2N

n1
2N+2 + nsn2

2N

)2

(C.9)

where n1, n2 (with n1 > n2) are the refractive indices of the dielectrics, ns is the refractive

index of the glass substrate and N is the number of dielectric double layers. Two additional

and important requisites are low optical material losses and low scattering losses at interfaces

and at the DBR surface, which demand good material quality, a deposition process that yields

smooth layers, and a superpolished substrate (roughness ∼ 0.1 nm). The DBRs forming our

cavity (designed for λ =1550 nm) are manufactured by Advanced Thin Films (ATFilms) and

comprise N=20 double layers of Ta2O5 (n1 = 2.10, thickness 184.5 nm) and SiO2 (n2 = 1.47,

thickness 263.6 nm) and an additional Ta2O5 layer (which terminates the stack). During

fabrication the dielectric layers are deposited by ion beam sputtering onto a fused silica

substrate (�=0.3 inch) which was previously superpolished [170]. The resulting optical losses

per mirror are speci�ed by ATFilms to be 2 ppm.
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Si wafer (6 inch)

Kapton tape
(double sided)

(b)(b)
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(single sided)
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(c)(c)

Ta2O5

SiO2

...

Mirror substrate

N double 
layers

(a)

Figure C.1: Schematic layer structure of a distributed Bragg re�ector (DBR) and mounting
of a DBR on a 6 inch Si wafer for reactive ion etching. (a) Sketch of a DBR comprising N
alternating double layers of Ta2O5 and SiO2 and an additional Ta2O5 layer deposited onto a
glass substrate. The optical thickness of each layer (physical thickness times the material's
refractive index) is λ/4 which causes the portions of light re�ected at each interface to interfere
constructively. (b) A DBR is attached to a Si wafer by double sided Kapton tape for loading
into a reactive ion etch chamber. (c) Etch rate estimation on a test mirror by covering most
of the mirror surface by Kapton tape and exposing only a stripe of ≈ 200 µm width to the
etch plasma. This enables measuring the etched pro�le by a contact pro�lometer.

In an initial step of characterization, we assembled a cavity from two of the above de-

scribed mirrors with radius of curvature Rc = 2.5 cm, cavity length Lc = 3 cm, resulting

TEM00 mode �eld diameter at the cavity center 2w0 = 156 µm, and mode diameter at each

mirror 2wc = 246 µm. Right after the assembly we measured a ringdown time τc = 29 µs

corresponding to cavity �nesse F = πcτc/Lc = 910,000 (see Sec. 4.2.1 for method), which,

over a few days, dropped to F = 470,000, where it remained until the disassembly of the

cavity1.

While higher �nesse enables stronger interaction between photons and objects, such as one

of our Si3N4 structures, it entails more challenging working conditions. This is mainly due to

the reduced resonance linewidth (see Sec. A.3) which makes it both harder to align the cavity2

1The cavity was not encapsulated for periods of time (minutes to hours) and exposed to the ambient lab
environment. This might have caused a single or multiple dust particle(s) to stuck to the mirrors in the
region of the cavity mode.

2During alignment we sweep the cavity length to scan for optical resonances (see Sec. 4.2.1). Hereby, the
sweep rate should be slow enough to enable a measurable amount of light to be transferred to the cavity mode.
For a narrower resonance this requires a slower sweep rate. This in turn results in an increased exposure of
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and to permanently stabilize (or lock) the laser frequency and the cavity resonance with

respect to each other (see Chapter 5). For a cavity formed by two mirrors with re�ectivities

R1 and R2 the �nesse is given by F = 2π/(2− R1 − R2) (lossless case, see Sec. (Sec. A.3)).

Together with Eq. C.9 this suggests to reduce the number of dielectric layer pairs N as a

means to reduce F . This is realized by etching away dielectric layers from the cavity DBR's

[171].

Similar to the method presented in Ref. [171] we remove one double layer from the dielec-

tric coating by starting with reactive ion etching (RIE) of the Ta2O5 layer and then removing

the SiO2 layer in hydro�uoric acid (HF). This approach is well suited since the Ta2O5 acts as

etch stop material for the HF etch and therefore enables the controlled removal of individual

layer pairs.

Before etching the DBR in the reactive ion etcher (Applied Precision 5000) of the McGill

Nanotool - Microfab cleanroom we perfom an O2 plasma clean of the etch chamber (see

Table. 3.1 for recipe). Figure C.1(b) shows the DBR attached by double-sided Kapton tape

to a 6 inch silicon wafer (necessary in order to insert the mirror into the etch chamber). Due

to the overall thickness of 4.2 mm the Si wafer with attached DBR can not be loaded from a

cassette through the front of our RIE machine (as is standard procedure), instead it has to

be inserted manually into the loadlock chamber by opening the chamber's top3. From there,

the wafer is transferred automatically to the etch chamber (a bigger mirror of thickness 6.4

mm didn't �t through the loading port of the etch chamber) and etched.

Figure C.1(b) shows a DBR, similarly mounted as described in the previous paragraph,

which is mostly covered by Kapton tape except a ≈ 200µm wide strip that is exposed to the

etch plasma. This enables us to determine the etch rate by means of a mechanical pro�ler

(Ambios XP-200) that we use to scan across the etch pro�le. Our RIE recipe (based on

Ref. [172]), wet etch recipe, and measured etch rates are presented in Table C.1. Here it can

be seen that the RIE etches the SiO2 about four times faster than the Ta2O5. We accordingly

chose an etch time of 11 min, which removes all the Ta2O5 and ≈ 20 nm of the underlying

the system to environmental noise (e.g. mechanical vibrations, thermal drift), which is more pronounced on
longer time scales and causes �uctuations in the resonance length of the cavity. Therefore, it is harder to
meet the resonance condition of a higher �nesse/narrower linewidth cavity. In addition, the amount of light
re�ected from and transmitted through the cavity is more sensitive to optical loss.

3Thanks to Don Berry for doing this over and over and over again!
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SiO2 layer. Subsequently, we rinse the mirror in DI water and transfer it to HF 10:1 where

we leave it for 6 min. This ensures complete removal of the SiO2. We transfer the mirror to

a beaker �lled with DI water, from which we take it out while rinsing �rst with isopropanol

then methanol. Finally, we dry the mirror in a stream of nitrogen. The procedure is then

repeated until the desired mirror re�ectivity and cavity �nesse is realized.

RIE recipe Wet etch recipe
Ar 25 sccm

CHF3 25 sccm
CF4 15 sccm HF 10:1

RF Power 200 W
Pressure 30 mtorr

Etch time 11 min 6 min
Ta2O5 etch rate 18 nm/min X
SiO2 etch rate 65 nm/min > 43 nm/min

Table C.1: Etch recipes and etch rates for reactive ion etching [172] and wet etching of
dielectric mirror layers.

Table C.2 shows parameters for 4 cavity con�gurations which are formed by mirrors that

have di�erent numbers of dielectric layers (N1: input mirror layer number, N2: output mirror

layer number) in consequence of repeated etching.

Cavity 1 Cavity 2 Cavity 3 Cavity 4

N1 20 17 15 14
N2 20 17 15 19
F 470,000 86,000 24,000 20,000
Lc 3 cm 3 cm 3 cm 4.7 cm
Rc 2.5 cm 2.5 cm 2.5 cm 2.5 cm
2w0 156µm 156µm 156 µm 110 µm
2wc 246 µm 246µm 246µm 446 µm

Table C.2: Parameters of cavities comprising DBR mirrors with di�erent number of dielectric
layer pairs as a result of etching: Number of double layers of input and backstop mirror N1

and N2, measured cavity �nesse F , cavity length Lc, radius of curvature of cavity mirrors
Rc, TEM00 mode �eld diameter at the cavity center 2w0 , and TEM00 mode �eld diameter
on the mirror surface wc.

The cavity �nesse characterization presented in the following two sections employs a

�single port cavity� (Table C.2, Cavity 4) where mainly the re�ectivity of the input mirror is
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reduced, resulting in ≈ 98 % of light exiting through to input mirror which, e.g., can bene�t

the detection e�ciency in the context of quantum limited sensing.
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Appendix D

Simple Delay-Limited Sideband Locking

with Heterodyne Readout

D.1 Re�ection from an Asymmetric Cavity

Consider a cavity of length L with mirrors that are not identical, having �eld transmission

coe�cients it1 and it2 and re�ection coe�cients −r1 and −r2 (where ti and ri are real

positive and |ti|2 + |ri|2 ≤ 1). If the �rst mirror is driven by a �eld of amplitude Ein and

angular frequency ω, the steady-state re�ected �eld � a sum of the prompt re�ection and

all subsequent paths leaking from the input mirror � can be calculated from the resulting

geometric series:

Er
Ein

= −r1 + t21r2e
−2iωL/c + t21r2e

−2iωL/c
(
r1r2e

−2iωL/c
)

(D.1)

+ t21r2e
−2iωL/c

(
r1r2e

−2iωL/c
)2

+ ...

= −r1 +
t21r2e

−2iωL/c

1− r1r2e−2iωL/c
(D.2)

In the high-�nesse limit, this can be expanded in terms of the small transmission ti � 1 and

loss ρi ≡
√

1− r2
i � 1, such that the overall re�ection coe�cient

r(δ) ≡ Er
Ein
≈ t21τc/L

1 + i2τδ
− 1, (D.3)
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where τ = 2L/c

ρ21+ρ22
is the power ringdown time and δ = ω − ωr is the detuning from the nth

resonance frequency ωr = nc/2L (δ is also assumed small compared to the mode spacing

c/2L).

D.2 Transfer Function from Laser Noise to Error Signal

D.2.1 Shorthand Notation

To save space and avoid typos, we adopt the following shorthand notation.

Ca, Sa ≡ cos (ωat) , sin (ωat) (D.4)

Ca±b, Sa±b ≡ cos (ωat± ωbt) , sin (ωat± ωbt) (D.5)

Ca±bψ, Sa±bψ ≡ cos (ωat± (ωbt+ ψ)) , sin (ωat± (ωbt+ ψ)) (D.6)

Ca±2bψ, Sa±2bψ ≡ cos (ωat± (2ωbt+ ψ)) , sin (ωat± (2ωbt+ ψ)) (D.7)

The diode and mixer steps discussed below involve nonlinear operations, and so (as a matter

of algebraic taste) we save complex notation for the end of the calculation.

D.2.2 Propagating Laser Noise Through the Readout System

We proceed by adding a small �noise� term to the �eld from a laser, and then propagate

this through the electro-optical modulator (EOM), cavity, photodiode, and mixers to deter-

mine the readout's overall transfer function. Suppose the laser has a �noise� component at

frequency ω, with amplitude and frequency modulation

ε(t) = εn cos(ωt) (D.8)

Ω(t) = Ωn cos(ωt) (D.9)

for constants εn and Ωn. In this case, the �eld (nominally of the noiseless form
√
Pl cos(ωlt) for

laser frequency ωl and power Pl) is E(t) =
√
Pl(1+εnCn) cos(ωlt+φnSn), where φn ≡ Ωn/ω is

the phase modulation amplitude. If this passes through an electro-optical modulator (EOM)
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driven by a voltage-controlled oscillator (VCO) output of the form VV CO(t) = Ve sin(ωet) (for

constant Ve and frequency ωe), E is further modi�ed to

E(t) =
√
Pl(1 + εnCn + εeSe) cos(ωlt+ φnSn + φeSe), (D.10)

where φe = ηEOMVV CO is the phase excursion for a ��at� EOM conversion e�ciency ηEOM

(units of rad/V), and we have included a small amount of �accidental� amplitude modulation

εe due to imperfections in the EOM optics for generality. If we assume the modulations are

small (εn, εe, φn, φe � 1), the �eld can be expanded to second order and rewritten in terms

of a carrier at ωl plus 12 sidebands:

E(t)√
Pl
≈

(
1− 1

4
φ2
e −

1

4
φ2
n

)
Cl (D.11)

+
1

2
εn (Cl+n + Cl−n) +

1

2
φn (Cl+n − Cl−n)

+
1

2
εe (Sl+e − Sl−e) +

1

2
φe (Cl+e − Cl−e)

+
1

8
φ2
n (Cl+2n + Cl−2n) +

1

4
φnεn (Cl+2n − Cl−2n)

+
1

8
φ2
e (Cl+2e + Cl−2e) +

1

4
φeεe (−2Sl + Sl+2e + Sl−2e)

+
1

4
φeφn (Cl+e+n − Cl+e−n − Cl−e+n + Cl−e−n)

+
1

4
φnεe (Sl+e+n − Sl+e−n − Sl−e+n + Sl−e−n)

+
1

4
φeεn (Cl+e+n + Cl+e−n − Cl−e+n − Cl−e−n) .

Now suppose these beams land on a cavity with either a resonance �A� tuned to the

carrier at ωl or a resonance �B� tuned to the upper sideband at ωl + ωe (we track both

options through the calculation, allowing the choice of scenarios afterward). In the limit

of �large� VCO frequency (ωe � ω, 1/τ), only the red terms in Eq. (D.11) interact with

resonance A and only the blue terms interact with resonance B, so the �eld re�ected from
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the cavity becomes

−E(t)

r1

√
Pl

=

(
1− 1

4
φ2
e −

1

4
φ2
n

)
ρA0Cl (D.12)

+
1

2
εn (ρAnCl+nψA

+ ρAnCl−nψA
) +

1

2
φn (ρAnCl+nψA

− ρAnCl−nψA
)

+
1

2
εe (ρB0Sl+e − αSl−e) +

1

2
φe (ρB0Cl+e − αCl−e)

+
1

8
φ2
n (ρA2nCl+2nφA + ρA2nCl−2nφA)

+
1

4
φnεn (ρA2nCl+2nφA − ρA2nCl−2nφA)

+
1

8
φ2
e (Cl+2e + Cl−2e) +

1

4
φeεe (−2Sl + Sl+2e + Sl−2e)

+
1

4
φeφn (ρBnCl+e+nψB

− ρBnCl+e−nψB
− αCl−e+n + αCl−e−n)

+
1

4
φnεe (ρBnSl+e+nψB

− ρBnSl+e−nψB
− αSl−e+n + αSl−e−n)

+
1

4
φeεn (ρBnCl+e+nψB

+ ρBnCl+e−nψB
− αCl−e+n − αCl−e−n) .

where we de�ne

ρN(δ) ≡ 1− t21τc/L

1 + i2τδ
(D.13)

ρN0 ≡ ρN(0) (D.14)

ρNn ≡ |ρN(ω)| (D.15)

ψN ≡ arg [ρ(ω)] = − arg [ρ(−ω)] (D.16)

ρN2n ≡ |ρN(2ω)| (D.17)

φN ≡ arg [ρ(2ω)] = − arg [ρ(−2ω)] (D.18)

for cavity resonance N ∈ (A,B), and we have attached a prefactor α = 1 to the lower

sidebands to track their e�ect on the demodulated signal (see below).

When all of this light lands on a photodiode, the resulting signal comprises all frequencies

generated by the quantity E2(t) that are within the diode's electronic bandwidth (a few

GHz in our case), which includes many frequency components. Anticipating the subsequent

demodulation at ωe and our eventual interest in the noise term at ω, we can ignore the
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vast majority, however. Assuming a constant photodiode conversion e�ciency ηPD (units

of V/W) and again keeping only terms up to second order in εn, εe, φn, φe, the photodiode's

output VPD(t) is then given by

4VPD(t)

ηPDr2
1Pl

≈ ...+ ρA0φeφn (ρBnCe+nψB
− ρBnCe−nψB

+ αCe+n − αCe−n) (D.19)

+ρA0εeφn (ρBnSe+nψB
− ρBnSe−nψB

+ αSe−n − αSe+n)

+ρA0φeεn (ρBnCe+nψB
+ ρBnCe−nψB

− αCe−n − αCe+n)

+ρAnεeεn (ρB0 + α) (Se−nψA
+ Se+nψA

)

+ρAnφeεn (ρB0 − α) (Ce−nψA
+ Ce+nψA

)

+ρAnεeφn (ρB0 − α) (Se−nψA
− Se+nψA

)

+ρAnφeφn (ρB0 + α) (Ce−nψA
− Ce+nψA

)

At this point, we can demodulate this signal with the VCO output ∝ sin(ωet) to produce the

�classic� Pound-Drever-Hall (PDH) error signal quadrature VY , and we can simultaneously

demodulate with a phase-shifted VCO output ∝ cos(ωet) to produce the other quadrature

VX . Assuming a ��at� mixer e�ciency ηM , (i.e. VY = ηMVPDSe and VX = ηMVPDCe) and

keeping only terms at ω, the two quadratures simplify to

4VY (t)

ηMηPDr2
1Pl

≈ −φeφnρA0 (ρBnSnψB
+ αSn) + φeφn (ρB0 + α) ρAnSnψA

(D.20)

+εeεn (ρB0 + α) ρAnCnψA

4VX(t)

ηMηPDr2
1Pl

≈ εeφnρA0 (ρBn − α)SnψB
+ φeεnρA0 (ρBnCnψB

− αCn) (D.21)

+φeεnρAn (ρB0 − α)CnψA
− εeφnρAn (ρB0 − α)SnψA

.

These expressions can be applied to many situations, and we now consider those relevant to

the main text.
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D.2.3 Case 1: Frequency Noise only, Ideal EOM, Cavity Resonant

with Carrier

If we consider only frequency noise, an ideal EOM, and the cavity resonant with the carrier,

εe → 0, εn → 0, ρBn → 1, ρB0 → 1 and ψB → 0, so the quadratures (Eqs. (D.20)�(D.21))

become

VY (t) →
√
PlPe

8
ηMηPDr

2
1φn (1 + α) (ρAnSnψA

− ρA0Sn) (D.22)

VX(t) → 0. (D.23)

where we have used Eq. (D.11) to rewrite the power in each EOM-driven sideband
√
Pe ≈√

1
2
Plφe. The �amplitude� quadrature VX is zero to lowest order, which is sensible considering

the laser is exactly on resonance and we are only modulating its frequency. With both

sidebands present (α = 1), the �phase� quadrature VY also provides the dynamic response of

the classic PDH error signal

VY =

√
PlPe

2
ηMηPDr

2
1φn (ρAnSnψA

− ρA0Sn) . (D.24)

If the lower sideband is not present, the signal is simply a factor of 2 smaller; the �classic�

PDH error signal receives a contribution from both sidebands in proportion to the frequency

noise.

Now that all the nonlinear operations (photodiode, mixer) are complete, we have a linear

mapping from the original noise Ω(t) to the error signal VY . We can convert this into a

complex transfer function by noting that Ω is the real part of Ω̃ = Ωne
iωt, and that VY is the

real part of

ṼY ≡ −i
√
PlPe

2
ηMηPDr

2
1φn

(
ρA(ω)eiωt − ρA(0)eiωt

)
. (D.25)

The complex transfer function is then the ratio

ṼY

Ω̃
=

√
2PlPeηMηPDr

2
1t

2
1cτ

2/L

1 + i2τω
=

2φeE
2
l βτ

2

1 + i2τω
. (D.26)

where we have used the de�nitions of φn = Ωn/ω and ρA (Eq. (D.13)) and de�ned the
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constant β = ηMηPDr
2
1t

2
1c/2L. The cavity acts as a low-pass �lter.

D.2.4 Case 2: Frequency Noise only, Ideal EOM, Cavity Resonant

with Upper Sideband

If the cavity is instead resonant with the upper sideband, ρAn → 1, ρA0 → 1 and ψA → 0,

and the quadratures (Eqs. (D.20)-(D.21)) become

VY (t) → −
√
PlPe

8
ηMηPDr

2
1φn (ρBnSnψB

− ρB0Sn) (D.27)

VX(t) → 0. (D.28)

Following the same analysis as Case 1,

ṼY

Ω̃
= −

√
PlPe

2

ηMηPDcτ
2r2

1t
2
1/L

1 + i2τω
= −φeE

2
l βτ

2

1 + i2τω
. (D.29)

The error signal behaves exactly the same, but is half as large and inverted. The lower

sideband does not play a role.

D.2.5 Case 3: Amplitude Noise only, Ideal EOM, Cavity Resonant

with Carrier

If we now consider only amplitude noise, an ideal EOM, and the cavity resonant with the

carrier, εe, φn → 0, ρBn → 1, ρB0 → 1, ψB → 0, and the quadratures (Eqs. (D.20)-(D.21))

become

VY (t) → 0 (D.30)

VX(t) →
√
PlPe

8
ηMηPDr

2
1εn(1− α) (ρA0Cn + ρAnCnψA

) (D.31)

The �phase� quadrature VY is zero, as expected, regardless of the presence of the lower

sideband; this is consistent with the notion that changing the laser's amplitude will not

a�ect location of the error signal's zero-crossing. Following the analysis of the previous cases,
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ṼX
ε̃

=

√
PlPe

2
ηMηPDr

2
1(1− α)

(
1− cτt21

L

(
1 + iτω

1 + i2τω

))
. (D.32)

This signal is only nonzero if the lower sideband is either missing or is otherwise not identical

to the upper sideband (i.e. α 6= 1 and/or the EOM is not ideal).

D.2.6 Case 4: Amplitude noise only, ideal EOM, cavity resonant

with upper sideband

If the cavity is instead resonant with the upper sideband, εe, φn → 0, ρAn → 1, ρA0 → 1,

ψA → 0, and

VY (t) → 0 (D.33)

VX(t) →
√
PlPe

8
ηMηPDr

2
1εn (ρBnCnψB

+ ρB0Cn − 2αCn) (D.34)

meaning

ṼX
ε̃

=

√
PlPe

2
ηMηPDr

2
1

(
1− α− cτt21

L

(
1 + iτω

1 + i2τω

))
(D.35)

with an overall o�set determined by the lower sideband α. The presence of the lower sideband

(α = 1) produces a PI-like behavior (see Eq. 5.5).

ṼX
ε̃

= −φeE2
l βτ

(
1 + iτω

1 + i2τω

)
. (D.36)

D.3 Error Signal for Wider Range of VCO Outputs

Figure D.1 shows the two quadrature amplitudes of the photodiode signal, taken with a

shorter cavity of L = 5 cm and for a wider range of VCO tune voltages than that of Fig. 5.2(c)

in the main text. Over this range, the non-ideal response of the system components is visible.

Note in particular the peaks of VX(δ), systematically vary with ωe by a factor of ∼2, arising

from a combination of VCO and EOM nonidealities (they are not ��at�). Large frequency

noise will therefore produce amplitude noise even if it is perfectly tracked by a sideband,

highlighting the fact that, while a large headroom is desirable to remain locked in the presence
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of large �uctuations, it is always preferable to engineer a stable, vibration-isolated cavity.
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Figure D.1: Quadrature amplitudes of the photodiode signal for 11 di�erent VCO voltages.

177



Bibliography

[1] C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, �Ultralow-Noise SiN

Trampoline Resonators for Sensing and Optomechanics,� Physical Review X, vol. 6,

no. 2, p. 21001, apr 2016. [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.6.

021001 viii, x, 4, 56, 58, 91, 123, 139

[2] C. Reinhardt, T. Müller, and J. C. Sankey, �Simple delay-limited sideband locking with

heterodyne readout,� Opt. Express, vol. 25, no. 2, pp. 1582�1597, jan 2017. [Online].

Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-2-1582 viii, ix, x,

6, 106

[3] M. Poot and H. S. van der Zant, �Mechanical systems in the quantum regime,� Physics

Reports, vol. 511, no. 5, pp. 273�335, 2012. 1, 4

[4] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe,

and D. Rugar, �Quality factors in micron- and submicron-thick cantilevers,� Journal

of Microelectromechanical Systems, vol. 9, no. 1, pp. 117�125, mar 2000. [Online].

Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=825786

1, 4

[5] Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, �Single-crystal

diamond nanomechanical resonators with quality factors exceeding one million.�

Nature communications, vol. 5, p. 3638, jan 2014. [Online]. Available: http:

//www.nature.com/ncomms/2014/140408/ncomms4638/abs/ncomms4638.html 1, 4

[6] J. M. Nichol, E. R. Hemesath, L. J. Lauhon, and R. Budakian, �Displacement detec-

178

http://dx.doi.org/10.1103/PhysRevX.6.021001
http://dx.doi.org/10.1103/PhysRevX.6.021001
http://www.opticsexpress.org/abstract.cfm?URI=oe-25-2-1582
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=825786
http://www.nature.com/ncomms/2014/140408/ncomms4638/abs/ncomms4638.html
http://www.nature.com/ncomms/2014/140408/ncomms4638/abs/ncomms4638.html


tion of silicon nanowires by polarization-enhanced �ber-optic interferometry,� Applied

Physics Letters, vol. 93, no. 19, p. 193110, 2008. 1, 4

[7] K. Jensen, K. Kim, and A. Zettl, �An atomic-resolution nanomechanical mass sensor,�

Nature nanotechnology, vol. 3, no. 9, pp. 533�537, 2008. 1, 4

[8] J. Moser, A. Eichler, J. Güttinger, M. I. Dykman, and A. Bachtold,

�Nanotube mechanical resonators with quality factors of up to 5 million.� Nature

nanotechnology, vol. 9, no. 12, pp. 1007�1011, oct 2014. [Online]. Available:

http://dx.doi.org/10.1038/nnano.2014.234 1, 140

[9] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, �Single spin detection by

magnetic resonance force microscopy.� Nature, vol. 430, no. 6997, pp. 329�332, 2004. 1

[10] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar,

�Nanoscale magnetic resonance imaging.� Proceedings of the National Academy

of Sciences of the United States of America, vol. 106, no. 5, pp. 1313�1317,

feb 2009. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=2628306{&}tool=pmcentrez{&}rendertype=abstract 1

[11] M. A. Castellanos-Beltran, D. Q. Ngo, W. E. Shanks, A. B. Jayich, and J. G. E.

Harris, �Measurement of the full distribution of persistent current in normal-metal

rings.� Physical review letters, vol. 110, no. 15, p. 156801, apr 2013. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/25167295 1

[12] T. P. Purdy, R. W. Peterson, and C. A. Regal, �Observation of Radiation Pressure

Shot Noise on a Macroscopic Object,� Science, vol. 339, no. 6121, pp. 801�804, feb

2013. [Online]. Available: http://dx.doi.org/10.1126/science.1231282 2, 4, 91

[13] A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, �Cooling and squeezing

via quadratic optomechanical coupling,� Physical Review A, vol. 82, no. 2, pp.

021 806+, aug 2010. [Online]. Available: http://dx.doi.org/10.1103/physreva.82.021806

2

179

http://dx.doi.org/10.1038/nnano.2014.234
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2628306{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2628306{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/25167295
http://dx.doi.org/10.1126/science.1231282
http://dx.doi.org/10.1103/physreva.82.021806


[14] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J.

Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, �Sideband cooling of

micromechanical motion to the quantum ground state,� Nature, vol. 475, no. 7356, pp.

359�363, jul 2011. [Online]. Available: http://dx.doi.org/10.1038/nature10261 2, 48,

50

[15] J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher,

M. Aspelmeyer, and O. Painter, �Laser cooling of a nanomechanical oscillator into its

quantum ground state,� Nature, vol. 478, no. 7367, pp. 89�92, 2011. 2, 48, 50

[16] A. H. Safavi Naeini, J. Chan, J. T. Hill, T. P. Mayer Alegre, A. Krause, and

O. Painter, �Observation of Quantum Motion of a Nanomechanical Resonator,�

Physical Review Letters, vol. 108, pp. 033 602+, jan 2012. [Online]. Available:

http://dx.doi.org/10.1103/physrevlett.108.033602 2, 122

[17] T. P. Purdy, P.-L. Yu, N. S. Kampel, R. W. Peterson, K. Cicak, R. W.

Simmonds, and C. A. Regal, �Optomechanical Raman-ratio thermometry,�

Physical Review A, vol. 92, no. 3, p. 31802, sep 2015. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevA.92.031802 2, 122, 124

[18] M. Underwood, D. Mason, D. Lee, H. Xu, L. Jiang, A. B. Shkarin,

K. Børkje, S. M. Girvin, and J. G. E. Harris, �Measurement of the

motional sidebands of a nanogram-scale oscillator in the quantum regime,�

Physical Review A, vol. 92, no. 6, p. 61801, dec 2015. [Online]. Available:

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.061801 2, 122, 124

[19] S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili, M. D. Shaw, and

O. Painter, �Pulsed excitation dynamics of an optomechanical crystal resonator near

its quantum ground state of motion,� Phys. Rev. X, vol. 5, p. 041002, Oct 2015.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.5.041002 2

[20] V. Sudhir, D. J. Wilson, R. Schilling, H. Schütz, S. A. Fedorov, A. H. Ghadimi, A. Nun-

nenkamp, and T. J. Kippenberg, �Appearance and disappearance of quantum corre-

180

http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1103/physrevlett.108.033602
http://link.aps.org/doi/10.1103/PhysRevA.92.031802
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.061801
https://link.aps.org/doi/10.1103/PhysRevX.5.041002


lations in measurement-based feedback control of a mechanical oscillator,� Physical

Review X, vol. 7, no. 1, p. 011001, 2017. 2

[21] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, �Cavity optomechanics,�

Reviews of Modern Physics, vol. 86, no. 4, pp. 1391�1452, dec 2014. [Online].

Available: http://link.aps.org/doi/10.1103/RevModPhys.86.1391 2, 31, 32, 44, 49, 52,

59, 86, 122

[22] V. B. Braginsky and A. B. Manukin, �Ponderomotive E�ects of Electromagnetic Ra-

diation,� Soviet Physics Journal of Experimental and Theoretical Physics, vol. 52, pp.

986+, 1967. 2

[23] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W. Lehnert,

and C. A. Regal, �Laser Cooling of a Micromechanical Membrane to the Quantum

Backaction Limit,� Physical Review Letters, vol. 116, no. 6, p. 63601, feb 2016. [Online].

Available: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.063601 2,

140

[24] J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, �Sideband

cooling beyond the quantum backaction limit with squeezed light,� Nature, vol. 541,

no. 7636, pp. 191�195, 2017. 2, 51

[25] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J.

Kippenberg, �Optomechanically Induced Transparency,� Science, vol. 330, no. 6010, pp.

1520�1523, dec 2010. [Online]. Available: http://dx.doi.org/10.1126/science.1195596 2

[26] A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichen�eld, M. Winger, Q. Lin,

J. T. Hill, D. E. Chang, and O. Painter, �Electromagnetically induced transparency

and slow light with optomechanics.� Nature, vol. 472, no. 7341, pp. 69�73, apr 2011.

[Online]. Available: http://dx.doi.org/10.1038/nature09933 2

[27] J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, �Coherent optical wavelength

conversion via cavity optomechanics.� Nature communications, vol. 3, p. 1196, jan

2012. [Online]. Available: http://dx.doi.org/10.1038/ncomms2201 2

181

http://link.aps.org/doi/10.1103/RevModPhys.86.1391
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.063601
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/ncomms2201


[28] Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, �Electromagnetically Induced

Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk

Optomechanical Resonators,� Physical Review Letters, vol. 110, no. 22, p. 223603, may

2013. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.110.223603 2

[29] J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, �Nanomechanical

coupling between microwave and optical photons,� Nat Phys, vol. 9, no. 11, pp.

712�716, nov 2013. [Online]. Available: http://dx.doi.org/10.1038/nphys2748 2

[30] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A.

Regal, and K. W. Lehnert, �Bidirectional and e�cient conversion between microwave

and optical light,� Nature Physics, vol. 10, no. 4, pp. 321�326, mar 2014. [Online].

Available: http://dx.doi.org/10.1038/nphys2911 2, 4, 91, 139

[31] T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor,

A. Sørensen, K. Usami, A. Schliesser et al., �Optical detection of radio waves through

a nanomechanical transducer,� Nature, vol. 507, no. 7490, pp. 81�85, 2014. 2

[32] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter,

�Squeezed light from a silicon micromechanical resonator.� Nature, vol. 500, no. 7461,

pp. 185�189, aug 2013. [Online]. Available: http://dx.doi.org/10.1038/nature12307 2

[33] T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, �Strong

Optomechanical Squeezing of Light,� Physical Review X, vol. 3, no. 3, p. 31012, sep

2013. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevX.3.031012 2, 4,

91

[34] E. E. Wollman, C. Lei, A. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. Clerk,

and K. Schwab, �Quantum squeezing of motion in a mechanical resonator,� Science,

vol. 349, no. 6251, pp. 952�955, 2015. 2

[35] H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, �Topological energy transfer in an

optomechanical system with exceptional points,� Nature, vol. 537, no. 7618, pp. 80�83,

Sep 2016, letter. [Online]. Available: http://dx.doi.org/10.1038/nature18604 2, 4

182

http://link.aps.org/doi/10.1103/PhysRevLett.110.223603
http://dx.doi.org/10.1038/nphys2748
http://dx.doi.org/10.1038/nphys2911
http://dx.doi.org/10.1038/nature12307
http://link.aps.org/doi/10.1103/PhysRevX.3.031012
http://dx.doi.org/10.1038/nature18604


[36] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and

O. Painter, �Generalized non-reciprocity in an optomechanical circuit via synthetic

magnetism and reservoir engineering,� Nat Phys, vol. 13, no. 5, pp. 465�471, May

2017, article. [Online]. Available: http://dx.doi.org/10.1038/nphys4009 2

[37] A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein,

�Sympathetic cooling of a membrane oscillator in a hybrid mechanical atomic

system,� Nat Nano, vol. 10, no. 1, pp. 55�59, Jan 2015, letter. [Online]. Available:

http://dx.doi.org/10.1038/nnano.2014.278 2, 4

[38] C. B. Møller, R. A. Thomas, G. Vasilakis, E. Zeuthen, Y. Tsaturyan, M. Balabas,

K. Jensen, A. Schliesser, K. Hammerer, and E. S. Polzik, �Quantum back-

action-evading measurement of motion in a negative mass reference frame,�

Nature, vol. 547, no. 7662, pp. 191�195, Jul 2017, letter. [Online]. Available:

http://dx.doi.org/10.1038/nature22980 2, 4

[39] R. A. Norte, J. P. Moura, and S. Groblacher, �Mechanical Resonators

for Quantum Optomechanics Experiments at Room Temperature,� Physical

Review Letters, vol. 116, no. 14, p. 147202, apr 2016. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevLett.116.147202 4, 5, 48, 56, 58, 85, 91, 123,

141, 160

[40] M. Kumar and H. Bhaskaran, �Ultrasensitive room-temperature piezoresistive trans-

duction in graphene-based nanoelectromechanical systems,� Nano letters, vol. 15, no. 4,

pp. 2562�2567, 2015. 4

[41] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E.

Harris, �Strong dispersive coupling of a high-�nesse cavity to a micromechanical

membrane,� Nature, vol. 452, no. 7183, pp. 72�75, mar 2008. [Online]. Available:

http://dx.doi.org/10.1038/nature06715 4, 61, 91, 138, 140, 142

[42] D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, �Cavity Optomechanics with

Stoichiometric SiN Films,� Physical Review Letters, vol. 103, no. 20, pp. 207 204+, nov

183

http://dx.doi.org/10.1038/nphys4009
http://dx.doi.org/10.1038/nnano.2014.278
http://dx.doi.org/10.1038/nature22980
http://link.aps.org/doi/10.1103/PhysRevLett.116.147202
http://dx.doi.org/10.1038/nature06715


2009. [Online]. Available: http://dx.doi.org/10.1103/physrevlett.103.207204 4, 57, 90,

91, 110

[43] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris,

�Strong and tunable nonlinear optomechanical coupling in a low-loss system,�

Nature Physics, vol. 6, no. 9, pp. 707�712, jun 2010. [Online]. Available:

http://dx.doi.org/10.1038/nphys1707 4, 7, 91, 92, 98, 106, 110, 114, 115, 140, 163

[44] A. Jayich, J. Sankey, K. Børkje, D. Lee, C. Yang, M. Underwood, L. Childress, A. Pe-

trenko, S. Girvin, and J. Harris, �Cryogenic optomechanics with a Si3N4 membrane and

classical laser noise,� New Journal of Physics, vol. 14, no. 11, p. 115018, 2012. 4

[45] T. P. Purdy, R. W. Peterson, P. L. Yu, and C. A. Regal, �Cavity

optomechanics with Si3N4 membranes at cryogenic temperatures,� New Journal

of Physics, vol. 14, no. 11, pp. 115 021+, nov 2012. [Online]. Available:

http://dx.doi.org/10.1088/1367-2630/14/11/115021 4

[46] Y. Tsaturyan, A. Barg, A. Simonsen, L. G. Villanueva, S. Schmid, A. Schliesser,

and E. S. Polzik, �Demonstration of suppressed phonon tunneling losses in phononic

bandgap shielded membrane resonators for high-q optomechanics,� Optics Express,

vol. 22, no. 6, pp. 6810�6821, 2014. 4, 57

[47] P.-L. Yu, K. Cicak, N. Kampel, Y. Tsaturyan, T. Purdy, R. Simmonds, and C. Regal,

�A phononic bandgap shield for high-q membrane microresonators,� Applied Physics

Letters, vol. 104, no. 2, p. 023510, 2014. 4, 57

[48] M. J. Weaver, B. Pepper, F. Luna, F. M. Buters, H. J. Eerkens, G. Welker, B. Pe-

rock, K. Heeck, S. de Man, and D. Bouwmeester, �Nested trampoline resonators for

optomechanics,� Applied Physics Letters, vol. 108, no. 3, p. 033501, 2016. 4

[49] D. Kleckner and D. Bouwmeester, �Sub-kelvin optical cooling of a micromechanical

resonator,� Nature, vol. 444, no. 7115, pp. 75�78, nov 2006. [Online]. Available:

http://dx.doi.org/10.1038/nature05231 4, 50, 91

184

http://dx.doi.org/10.1103/physrevlett.103.207204
http://dx.doi.org/10.1038/nphys1707
http://dx.doi.org/10.1088/1367-2630/14/11/115021
http://dx.doi.org/10.1038/nature05231


[50] S. Groblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab,

and M. Aspelmeyer, �Demonstration of an ultracold micro-optomechanical oscillator

in a cryogenic cavity,� Nature Physics, vol. 5, no. 7, pp. 485�488, jun 2009. [Online].

Available: http://dx.doi.org/10.1038/nphys1301 4, 61, 91

[51] D. Kleckner, B. Pepper, E. Je�rey, P. Sonin, S. M. Thon, and D. Bouwmeester, �Op-

tomechanical trampoline resonators,� Optics Express, vol. 19, no. 20, p. 19708, 2011.

4, 5, 57, 61, 91

[52] C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei

Wong, �High-re�ectivity, high-Q micromechanical membranes via guided resonances

for enhanced optomechanical coupling,� Applied Physics Letters, vol. 100, no. 2, p.

21110, jan 2012. [Online]. Available: http://scitation.aip.org/content/aip/journal/apl/

100/2/10.1063/1.3658731 4, 48, 91, 141

[53] U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, �Cavity optomechanics with

sub-wavelength grating mirrors,� New Journal of Physics, vol. 14, no. 12, p. 125010,

2012. 4, 91, 141

[54] K. Makles, T. Antoni, A. Kuhn, S. Deléglise, T. Briant, P.-F. Cohadon, R. Braive,

G. Beaudoin, L. Pinard, C. Michel et al., �2d photonic-crystal optomechanical nanores-

onator,� Optics letters, vol. 40, no. 2, pp. 174�177, 2015. 4, 91, 141

[55] S. Bernard, C. Reinhardt, V. Dumont, Y.-A. Peter, and J. C. Sankey, �Precision res-

onance tuning and design of sin photonic crystal re�ectors,� Optics Letters, vol. 41,

no. 24, pp. 5624�5627, 2016. 4, 48, 91, 141

[56] X. Chen, C. Chardin, K. Makles, C. Caër, S. Chua, R. Braive, I. Robert-Philip, T. Bri-

ant, P.-F. Cohadon, A. Heidmann et al., �High-�nesse fabry�perot cavities with bidi-

mensional si3n4 photonic-crystal slabs,� Light: Science & Applications, vol. 6, no. 1, p.

e16190, 2017. 4, 48, 91, 141

[57] Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, �Ultracoherent

nanomechanical resonators via soft clamping and dissipation dilution,� Nature

185

http://dx.doi.org/10.1038/nphys1301
http://scitation.aip.org/content/aip/journal/apl/100/2/10.1063/1.3658731
http://scitation.aip.org/content/aip/journal/apl/100/2/10.1063/1.3658731


Nanotechnology, vol. advance online publication, Jun 2017, article. [Online]. Available:

http://dx.doi.org/10.1038/nnano.2017.101 5, 56, 58, 123, 139, 160

[58] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and

H. Ward, �Laser phase and frequency stabilization using an optical resonator,� Applied

Physics B Photophysics and Laser Chemistry, vol. 31, no. 2, pp. 97�105, jun 1983.

[Online]. Available: http://link.springer.com/10.1007/BF00702605 6, 7, 122, 125, 127,

128, 129

[59] D. J. Wilson, Cavity optomechanics with high-stress silicon nitride �lms. California

Institute of Technology, 2012. 7, 55, 56, 90

[60] D. E. Chang, K.-K. Ni, O. Painter, and H. J. Kimble, �Ultrahigh- Q mechanical

oscillators through optical trapping,� New Journal of Physics, vol. 14, no. 4, p.

45002, apr 2012. [Online]. Available: http://stacks.iop.org/1367-2630/14/i=4/a=

045002?key=crossref.29c8cf6b5ec26bac42abcbe56a4c041e 7, 42, 92, 103, 115, 116, 117,

138, 140

[61] H. B. Callen and T. A. Welton, �Irreversibility and generalized noise,� Physical Review,

vol. 83, no. 1, p. 34, 1951. 9, 16

[62] P. R. Saulson, �Thermal noise in mechanical experiments,� Physical Review

D, vol. 42, no. 8, pp. 2437�2445, oct 1990. [Online]. Available: http:

//link.aps.org/doi/10.1103/PhysRevD.42.2437 9, 10, 12, 87

[63] S. Fedorov, V. Sudhir, R. Schilling, H. Schütz, D. Wilson, and T. Kippenberg, �Evidence

for structural damping in a high-stress silicon nitride nanobeam and its implications

for quantum optomechanics,� arXiv preprint arXiv:1703.07134, 2017. 9, 159

[64] A. S. Nowick, Anelastic relaxation in crystalline solids. Elsevier, 2012, vol. 1. 10

[65] M. Imboden and P. Mohanty, �Dissipation in nanoelectromechanical systems,�

Physics Reports, vol. 534, no. 3, pp. 89�146, 2014. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S0370157313003475 11

186

http://dx.doi.org/10.1038/nnano.2017.101
http://link.springer.com/10.1007/BF00702605
http://stacks.iop.org/1367-2630/14/i=4/a=045002?key=crossref.29c8cf6b5ec26bac42abcbe56a4c041e
http://stacks.iop.org/1367-2630/14/i=4/a=045002?key=crossref.29c8cf6b5ec26bac42abcbe56a4c041e
http://link.aps.org/doi/10.1103/PhysRevD.42.2437
http://link.aps.org/doi/10.1103/PhysRevD.42.2437
http://linkinghub.elsevier.com/retrieve/pii/S0370157313003475


[66] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, �In-

troduction to quantum noise, measurement, and ampli�cation,� Reviews of Modern

Physics, vol. 82, no. 2, p. 1155, 2010. 12, 13, 14, 52

[67] A. Einstein, Investigations on the Theory of the Brownian Movement. Courier Cor-

poration, 1956. 12

[68] P. F. Dunn, Measurement and data analysis for engineering and science. CRC press,

2014. 14, 155

[69] T. Flieÿbach, Statistische Physik, Lehrbuch zur Theoretischen Physik IV. Spektrum

Akademischer Verlag, Heidelberg/Berlin� 2007, vol. 4. 18

[70] �Lecture notes on optical transfer matrix method,� accessed: 2017-03-29. [Online].

Available: https://people.ifm.liu.se/boser/elma/Lect13.pdf 19, 146

[71] M. Born and E. Wolf, �Principles of optics, 7-th ed,� Cambridge University, Cambridge,

1999. 19, 23

[72] J. D. Jackson and R. F. Fox, �Classical electrodynamics,� American Journal of Physics,

vol. 67, no. 9, pp. 841�842, 1999. 19, 150, 151

[73] F. Elste, S. M. Girvin, and A. A. Clerk, �Quantum Noise Interference and Backaction

Cooling in Cavity Nanomechanics,� Physical Review Letters, vol. 102, no. 20, p.

207209, may 2009. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.

102.207209 32, 40, 50

[74] M. Li, W. H. P. Pernice, and H. X. Tang, �Reactive Cavity Optical

Force on Microdisk-Coupled Nanomechanical Beam Waveguides,� Physical Review

Letters, vol. 103, no. 22, pp. 223 901+, 2009. [Online]. Available: http:

//dx.doi.org/10.1103/physrevlett.103.223901 32, 40, 50

[75] A. Xuereb, R. Schnabel, and K. Hammerer, �Dissipative optomechanics in a

michelson-sagnac interferometer,� Phys. Rev. Lett., vol. 107, p. 213604, Nov 2011.

[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.107.213604 32, 40,

50

187

https://people.ifm.liu.se/boser/elma/Lect13.pdf
http://link.aps.org/doi/10.1103/PhysRevLett.102.207209
http://link.aps.org/doi/10.1103/PhysRevLett.102.207209
http://dx.doi.org/10.1103/physrevlett.103.223901
http://dx.doi.org/10.1103/physrevlett.103.223901
https://link.aps.org/doi/10.1103/PhysRevLett.107.213604


[76] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P.

Davis, and P. E. Barclay, �Dissipative and Dispersive Optomechanics in a Nanocavity

Torque Sensor,� Physical Review X, vol. 4, no. 2, p. 21052, jun 2014. [Online].

Available: http://link.aps.org/doi/10.1103/PhysRevX.4.021052 32, 40, 50

[77] A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer,

and R. Schnabel, �Observation of Generalized Optomechanical Coupling and Cooling

on Cavity Resonance,� Physical Review Letters, vol. 114, no. 4, p. 43601, jan 2015.

[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.114.043601 32, 40,

50

[78] M. Cotrufo, A. Fiore, and E. Verhagen, �Coherent atom-phonon interaction through

mode �eld coupling in hybrid optomechanical systems,� Physical Review Letters, vol.

118, no. 13, p. 133603, 2017. 32

[79] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin,

A. A. Clerk, F. Marquardt, and J. G. E. Harris, �Dispersive optomechanics: a

membrane inside a cavity,� New Journal of Physics, vol. 10, no. 9, pp. 095 008+, sep

2008. [Online]. Available: http://dx.doi.org/10.1088/1367-2630/10/9/095008 32, 114

[80] T. Müller, C. Reinhardt, and J. C. Sankey, �Enhanced optomechanical levitation of

minimally supported dielectrics,� Phys. Rev. A, vol. 91, p. 053849, May 2015. [Online].

Available: https://link.aps.org/doi/10.1103/PhysRevA.91.053849 42, 98, 140

[81] K. K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter,

and H. J. Kimble, �Enhancement of Mechanical Q Factors by Optical Trapping,�

Physical Review Letters, vol. 108, pp. 214 302+, may 2012. [Online]. Available:

http://dx.doi.org/10.1103/physrevlett.108.214302 42, 45, 62, 116, 121, 140

[82] U. Kemiktarak, M. Metcalfe, M. Durand, and J. Lawall, �Mechanically compliant

grating re�ectors for optomechanics,� Applied Physics Letters, vol. 100, no. 6, p.

61124, feb 2012. [Online]. Available: http://scitation.aip.org/content/aip/journal/apl/

100/6/10.1063/1.3684248 48

188

http://link.aps.org/doi/10.1103/PhysRevX.4.021052
http://link.aps.org/doi/10.1103/PhysRevLett.114.043601
http://dx.doi.org/10.1088/1367-2630/10/9/095008
https://link.aps.org/doi/10.1103/PhysRevA.91.053849
http://dx.doi.org/10.1103/physrevlett.108.214302
http://scitation.aip.org/content/aip/journal/apl/100/6/10.1063/1.3684248
http://scitation.aip.org/content/aip/journal/apl/100/6/10.1063/1.3684248


[83] I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and

K. Karrai, �Fluctuating nanomechanical system in a high �nesse optical microcavity,�

Optics express, vol. 17, no. 15, pp. 12 813�12 820, 2009. 48

[84] N. E. F. Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich,

C. Deutsch, J. Reichel, and J. G. E. Harris, �Fiber-cavity-based optomechanical

device,� Applied Physics Letters, vol. 101, no. 22, pp. 221 109+, 2012. [Online].

Available: http://dx.doi.org/10.1063/1.4768779 48, 92

[85] H. Zhong, G. Fläschner, A. Schwarz, R. Wiesendanger, P. Christoph, T. Wagner,

A. Bick, C. Staarmann, B. Abeln, K. Sengstock et al., �A millikelvin all-�ber cav-

ity optomechanical apparatus for merging with ultra-cold atoms in a hybrid quantum

system,� Review of Scienti�c Instruments, vol. 88, no. 2, p. 023115, 2017. 48

[86] A. A. Clerk, F. Marquardt, and J. G. E. Harris, �Quantum Measurement of Phonon

Shot Noise,� Physical Review Letters, vol. 104, no. 21, pp. 213 603+, may 2010.

[Online]. Available: http://dx.doi.org/10.1103/physrevlett.104.213603 48, 140

[87] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, �Theory of

Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,�

Physical Review Letters, vol. 99, no. 9, p. 93901, aug 2007. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevLett.99.093901 49, 121, 140

[88] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, �Quantum

Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,� Physical

Review Letters, vol. 99, no. 9, pp. 093 902+, aug 2007. [Online]. Available:

http://dx.doi.org/10.1103/physrevlett.99.093902 49, 121, 140

[89] D. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg,

�Measurement-based control of a mechanical oscillator at its thermal decoherence rate,�

Nature, vol. 524, no. 7565, pp. 325�329, 2015. 50

[90] M. Pinard, Y. Hadjar, and A. Heidmann, �E�ective mass in quantum e�ects of radiation

189

http://dx.doi.org/10.1063/1.4768779
http://dx.doi.org/10.1103/physrevlett.104.213603
http://link.aps.org/doi/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/physrevlett.99.093902


pressure,� The European Physical Journal D-Atomic, Molecular, Optical and Plasma

Physics, vol. 7, no. 1, pp. 107�116, 1999. 55, 117

[91] S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. Craighead,

�High quality factor resonance at room temperature with nanostrings under high tensile

stress,� Journal of Applied Physics, vol. 99, no. 12, p. 124304, 2006. 55, 61, 62, 85

[92] S. Chakram, Y. Patil, L. Chang, and M. Vengalattore, �Dissipation in Ultrahigh

Quality Factor SiN Membrane Resonators,� Physical Review Letters, vol. 112,

no. 12, p. 127201, mar 2014. [Online]. Available: http://link.aps.org/doi/10.1103/

PhysRevLett.112.127201 55, 56, 57, 90, 139

[93] Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, �Damping of nanomechanical

resonators,� Physical review letters, vol. 105, no. 2, p. 027205, 2010. 55, 139

[94] S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, �Damping mechanisms in

high-$Q$ micro and nanomechanical string resonators,� Physical Review B, vol. 84, pp.

165 307+, oct 2011. [Online]. Available: http://dx.doi.org/10.1103/physrevb.84.165307

55, 56, 62, 85, 90, 139

[95] A. G. Krause, T. D. Blasius, and O. Painter, �Optical read out and feedback cooling

of a nanostring optomechanical cavity,� arXiv preprint arXiv:1506.01249, 2015. 55

[96] A. H. Ghadimi, D. J. Wilson, and T. Kippenberg, �Dissipation engineering of high-

stress silicon nitride nanobeams,� arXiv preprint arXiv:1603.01605, 2016. 56, 85, 159

[97] E. Gavartin, P. Verlot, and T. J. Kippenberg, �A hybrid on-chip optomechanical

transducer for ultrasensitive force measurements.� Nature nanotechnology, vol. 7, no. 8,

pp. 509�514, aug 2012. [Online]. Available: http://dx.doi.org/10.1038/nnano.2012.97

56

[98] L. G. Villanueva and S. Schmid, �Evidence of Surface Loss as Ubiquitous Limiting

Damping Mechanism in SiN Micro- and Nanomechanical Resonators,� Physical

Review Letters, vol. 113, no. 22, p. 227201, nov 2014. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevLett.113.227201 56, 57, 139

190

http://link.aps.org/doi/10.1103/PhysRevLett.112.127201
http://link.aps.org/doi/10.1103/PhysRevLett.112.127201
http://dx.doi.org/10.1103/physrevb.84.165307
http://dx.doi.org/10.1038/nnano.2012.97
http://link.aps.org/doi/10.1103/PhysRevLett.113.227201


[99] T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, �Signatures of

two-level defects in the temperature-dependent damping of nanomechanical silicon

nitride resonators,� Phys. Rev. B, vol. 89, p. 100102, Mar 2014. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevB.89.100102 56

[100] R. Zhang, C. Ti, M. I. Davanco, Y. Ren, V. Aksyuk, Y. Liu, and K. Srinivasan, �In-

tegrated tuning fork nanocavity optomechanical transducers with high f mqm product

and stress-engineered frequency tuning,� Applied Physics Letters, vol. 107, no. 13, p.

131110, 2015. 58, 139

[101] D. Rugar, H. Mamin, and P. Guethner, �Improved �ber-optic interferometer for atomic

force microscopy,� Applied Physics Letters, vol. 55, no. 25, pp. 2588�2590, 1989. 59, 69

[102] R. A. Norte, �Nanofabrication for on-chip optical levitation, atom-trapping, and super-

conducting quantum circuits,� Ph.D. dissertation, California Institute of Technology,

2015. 61, 120

[103] K. F. Gra�, Wave motion in elastic solids. Courier Corporation, 2012. 62, 84

[104] I. Zubel and M. Kramkowska, �Etch rates and morphology of silicon (h k l)

surfaces etched in KOH and KOH saturated with isopropanol solutions,� Sensors

and Actuators A: Physical, vol. 115, no. 2-3, pp. 549�556, 2004. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0924424703006435 66

[105] K. E. Grutter, M. Davanco, and K. Srinivasan, �Si3N4 Nanobeam Optomechanical

Crystals,� IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 4, pp.

61�71, jul 2015. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6975027 66, 139

[106] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams,

T. Adams, P. Addesso, R. Adhikari et al., �Observation of gravitational waves from a

binary black hole merger,� Physical review letters, vol. 116, no. 6, p. 061102, 2016. 69,

122

[107] HF2 User Manual, Zurich Instruments, 4 2014. 71

191

https://link.aps.org/doi/10.1103/PhysRevB.89.100102
http://www.sciencedirect.com/science/article/pii/S0924424703006435
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6975027
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6975027


[108] E. R. Abraham and E. A. Cornell, �Te�on feedthrough for coupling optical �bers into

ultrahigh vacuum systems,� Applied Optics, vol. 37, no. 10, pp. 1762�1763, 1998. 72

[109] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 1st ed. John Wiley &

Sons, 1991. 77, 78, 161

[110] L. Novotny and B. Hecht, Principles of nano-optics. Cambridge university press, 2012.

77

[111] R. St-Gelais, A. Poulin, and Y.-A. Peter, �Advances in modeling, design, and fabrication

of deep-etched multilayer resonators,� Journal of Lightwave technology, vol. 30, no. 12,

pp. 1900�1908, 2012. 77

[112] G. B. Arfken and H. J. Weber, �Mathematical methods for physicists,� 1999. 77

[113] Q. Li and R. J. Vernon, �Theoretical and experimental investigation of gaussian beam

transmission and re�ection by a dielectric slab at 110 ghz,� IEEE transactions on

antennas and propagation, vol. 54, no. 11, pp. 3449�3457, 2006. 79, 146

[114] W. B. Joyce and B. C. DeLoach, �Alignment of Gaussian beams,� Appl.

Opt., vol. 23, no. 23, pp. 4187�4196, dec 1984. [Online]. Available: http:

//ao.osa.org/abstract.cfm?URI=ao-23-23-4187 79

[115] �Comsol Documentation: Vibrating Membrane.� [Online]. Available: https://www.

comsol.com/model/download/285161/models.sme.vibrating_membrane.pdf 84

[116] S. S. Verbridge, H. G. Craighead, and J. M. Parpia, �A megahertz nanomechanical

resonator with room temperature quality factor over a million,� Applied Physics Letters,

vol. 92, no. 1, p. 013112, 2008. 85

[117] J. Rutman and F. Walls, �Characterization of frequency stability in precision frequency

sources,� Proceedings of the IEEE, vol. 79, no. 7, pp. 952�960, 1991. 86, 153

[118] A. Schwarz, R. Wiesendanger, P. Christoph, T. Wagner, and A. Bick, �A millikelvin

all-�ber cavity optomechanical apparatus for merging with ultra-cold atoms in a

192

http://ao.osa.org/abstract.cfm?URI=ao-23-23-4187
http://ao.osa.org/abstract.cfm?URI=ao-23-23-4187
https://www.comsol.com/model/download/285161/models.sme.vibrating_membrane.pdf
https://www.comsol.com/model/download/285161/models.sme.vibrating_membrane.pdf


hybrid quantum system,� arXiv:1611.03406v2, no. MiM, pp. 1�12, 2017. [Online].

Available: https://arxiv.org/abs/1611.03406 92

[119] C. Stambaugh, H. Xu, U. Kemiktarak, J. Taylor, and J. Lawall, �From membrane-in-

the-middle to mirror-in-the-middle with a high-re�ectivity sub-wavelength grating,�

Annalen der Physik, vol. 527, no. 1-2, pp. 81�88, jan 2015. [Online]. Available:

http://doi.wiley.com/10.1002/andp.201400142 92, 142

[120] Y. He and B. J. Orr, �Optical heterodyne signal generation and detection

in cavity ringdown spectroscopy based on a rapidly swept cavity,� Chemical

Physics Letters, vol. 335, no. 3-4, pp. 215�220, feb 2001. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0009261401000318 97, 107

[121] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, �Direct mea-

surement of photon recoil from a levitated nanoparticle,� Physical Review Letters, vol.

116, no. 24, p. 243601, 2016. 116

[122] T. Müller, C. Reinhardt, and J. C. Sankey, �Enhanced optomechanical levitation of

minimally supported dielectrics,� Physical Review A, vol. 91, no. 5, pp. 1�10, 2015.

[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevA.91.053849 116, 117,

121

[123] A. Z. Barasheed, T. Müller, and J. C. Sankey, �Optically de�ned mechanical geometry,�

Physical Review A, vol. 93, no. 5, p. 053811, 2016. 116, 141

[124] L. Landau and E. Lifshitz, �Mechanics, vol. 1,� Course of theoretical physics, pp. 84�93,

1976. 117

[125] J. Bechhoefer, �Feedback for physicists: A tutorial essay on control,� Reviews

of Modern Physics, vol. 77, no. 3, pp. 783�836, aug 2005. [Online]. Available:

http://link.aps.org/doi/10.1103/RevModPhys.77.783 122, 123, 125

[126] K. Dschao, M. Glaser, and J. Helmcke, �I2 Stabilized He-Ne Lasers at 612 nm,�

IEEE Transactions on Instrumentation and Measurement, vol. 29, no. 4, pp.

193

https://arxiv.org/abs/1611.03406
http://doi.wiley.com/10.1002/andp.201400142
http://www.sciencedirect.com/science/article/pii/S0009261401000318
http://link.aps.org/doi/10.1103/PhysRevA.91.053849
http://link.aps.org/doi/10.1103/RevModPhys.77.783


354�357, 1980. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4314953 122

[127] P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, �He-ne lasers stabilized by

saturated absorption in iodine at 612 nm,� IEEE Transactions on Instrumentation and

Measurement, vol. 29, no. 4, pp. 352�354, 1980. 122

[128] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin,

L. Chen, and J. Ye, �A sub-40-mHz-linewidth laser based on a silicon single-crystal

optical cavity,� Nature Photonics, vol. 6, no. 10, pp. 687�692, sep 2012. [Online].

Available: http://www.nature.com/doi�nder/10.1038/nphoton.2012.217 122, 123

[129] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, �Quantum dynamics of single

trapped ions,� Reviews of Modern Physics, vol. 75, no. 1, pp. 281�324, mar 2003.

[Online]. Available: http://link.aps.org/doi/10.1103/RevModPhys.75.281 122

[130] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H.

Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann,

N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, �Frequency Ratio

of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place,�

Science, vol. 319, no. 5871, 2008. 122

[131] C. Chou, D. Hume, J. Koelemeij, D. Wineland, and T. Rosenband, �Frequency

Comparison of Two High-Accuracy Al + Optical Clocks,� Physical Review

Letters, vol. 104, no. 7, p. 070802, feb 2010. [Online]. Available: http:

//link.aps.org/doi/10.1103/PhysRevLett.104.070802 122

[132] J. Ye, L. S. Ma, and J. L. Hall, �Ultrasensitive detections in atomic and molecular

physics: demonstration in molecular overtone spectroscopy,� Journal of the Optical

Society of America B, vol. 15, no. 1, p. 6, 1998. 122

[133] A. Schoof, J. Grunert, S. Ritter, and A. Hemmerich, �Reducing the linewidth of

a diode laser below 30 Hz by stabilization to a reference cavity with a �nesse

194

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4314953
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4314953
http://www.nature.com/doifinder/10.1038/nphoton.2012.217
http://link.aps.org/doi/10.1103/RevModPhys.75.281
http://link.aps.org/doi/10.1103/PhysRevLett.104.070802
http://link.aps.org/doi/10.1103/PhysRevLett.104.070802


above 10�5,� Optics Letters, vol. 26, no. 20, p. 1562, oct 2001. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=ol-26-20-1562 123

[134] T. C. Briles, D. C. Yost, A. Cingoz, J. Ye, and T. R. Schibli, �Simple

piezoelectric-actuated mirror with 180 kHz servo bandwidth,� Optics Express, vol. 18,

no. 10, p. 9739, may 2010. [Online]. Available: https://www.osapublishing.org/oe/

abstract.cfm?uri=oe-18-10-9739 123, 129

[135] J. F. S. Brachmann, H. Kaupp, T. W. Hansch, and D. Hunger, �Photothermal e�ects

in ultra-precisely stabilized tunable microcavities,� Optics Express, vol. 24, no. 18,

p. 21205, sep 2016. [Online]. Available: https://www.osapublishing.org/abstract.cfm?

URI=oe-24-18-21205 123

[136] J. L. Hall and T. W. Hansch, �External dye-laser frequency stabilizer,�

Optics Letters, vol. 9, no. 11, p. 502, nov 1984. [Online]. Available: https:

//www.osapublishing.org/abstract.cfm?URI=ol-9-11-502 123

[137] R. Houtz, C. Chan, and H. Muller, �Wideband, e�cient optical serrodyne

frequency shifting with a phase modulator and a nonlinear transmission Line,�

Optics Express, vol. 17, no. 21, p. 19235, oct 2009. [Online]. Available:

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-21-19235 124

[138] R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and

P. Bouyer, �Robust laser frequency stabilization by serrodyne modulation,�

Optics Letters, vol. 37, no. 6, p. 1005, mar 2012. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=ol-37-6-1005 124

[139] D. Gatti, R. Gotti, T. Sala, N. Coluccelli, M. Belmonte, M. Prevedelli, P. Laporta, and

M. Marangoni, �Wide-bandwidth Pound-Drever-Hall locking through a single-sideband

modulator,� Optics Letters, vol. 40, no. 22, p. 5176, nov 2015. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=ol-40-22-5176 124

[140] V. V. Protopopov, Laser Heterodyning, ser. Springer Series in Optical Sciences.

195

https://www.osapublishing.org/abstract.cfm?URI=ol-26-20-1562
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-10-9739
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-10-9739
https://www.osapublishing.org/abstract.cfm?URI=oe-24-18-21205
https://www.osapublishing.org/abstract.cfm?URI=oe-24-18-21205
https://www.osapublishing.org/abstract.cfm?URI=ol-9-11-502
https://www.osapublishing.org/abstract.cfm?URI=ol-9-11-502
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-21-19235
https://www.osapublishing.org/abstract.cfm?URI=ol-37-6-1005
https://www.osapublishing.org/abstract.cfm?URI=ol-40-22-5176


Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol. 149. [Online]. Available:

http://link.springer.com/10.1007/978-3-642-02338-5 124, 127

[141] R. V. Pound, �Electronic Frequency Stabilization of Microwave Oscillators,� Review

of Scienti�c Instruments, vol. 17, no. 11, p. 490, 1946. [Online]. Available:

http://scitation.aip.org/content/aip/journal/rsi/17/11/10.1063/1.1770414 125, 127

[142] E. D. Black, �An introduction to Pound-Drever-Hall laser frequency stabilization,�

American Journal of Physics, vol. 69, no. 1, pp. 79�87, jan 2001. [Online]. Available:

http://dx.doi.org/10.1119/1.1286663 125, 127, 128, 129

[143] R. L. Barger, �Frequency stabilization of a cw dye laser,� Applied Physics Letters,

vol. 22, no. 11, p. 573, 1973. [Online]. Available: http://scitation.aip.org/content/aip/

journal/apl/22/11/10.1063/1.1654513 127

[144] S. L. Danilishin and F. Y. Khalili, �Quantum measurement theory in gravitational-wave

detectors,� Living Reviews in Relativity, vol. 15, no. 1, pp. 1�147, 2012. 127

[145] M. Heurs, I. R. Petersen, M. R. James, and E. H. Huntington, �Homodyne locking of

a squeezer,� Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser

Science Conference (QELS), 2010 Conference on, vol. 34, no. 16, pp. 1�2, 2010. 127

[146] T. W. Hansch and B. Couillaud, �Laser frequency stabilization by polarization spec-

troscopy of a reference cavity,� Optics Communications, vol. 35, no. 3, pp. 441�444,

1980. 127

[147] C. E. Wieman and S. L. Gilbert, �Laser-frequency stabilization using mode interference

from a re�ecting reference interferometer.� Optics letters, vol. 7, no. 10, pp. 480�2, 1982.

[Online]. Available: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-7-10-480

127

[148] D. A. Shaddock, M. B. Gray, and D. E. McClelland, �Frequency locking

a laser to an optical cavity by use of spatial mode interference,� Optics

Letters, vol. 24, no. 21, p. 1499, nov 1999. [Online]. Available: https:

//www.osapublishing.org/abstract.cfm?URI=ol-24-21-1499 127

196

http://link.springer.com/10.1007/978-3-642-02338-5
http://scitation.aip.org/content/aip/journal/rsi/17/11/10.1063/1.1770414
http://dx.doi.org/10.1119/1.1286663
http://scitation.aip.org/content/aip/journal/apl/22/11/10.1063/1.1654513
http://scitation.aip.org/content/aip/journal/apl/22/11/10.1063/1.1654513
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-7-10-480
https://www.osapublishing.org/abstract.cfm?URI=ol-24-21-1499
https://www.osapublishing.org/abstract.cfm?URI=ol-24-21-1499


[149] M. Rakhmanov, R. Savage, D. Reitze, and D. Tanner, �Dynamic resonance of light in

Fabry-Perot cavities,� Physics Letters A, vol. 305, no. 5, pp. 239�244, 2002. 127, 128

[150] M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L.

Byer, �Dynamic response of a Fabry-Perot interferometer,� Journal of the Optical

Society of America B, vol. 16, no. 4, p. 523, apr 1999. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=josab-16-4-523 132

[151] I. Wilson-Rae, �Intrinsic dissipation in nanomechanical resonators due to phonon tun-

neling,� Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 24,

pp. 1�31, 2008. 139

[152] I. Wilson-Rae, R. A. Barton, S. S. Verbridge, D. R. Southworth, B. Ilic, H. G.

Craighead, and J. M. Parpia, �High-q nanomechanics via destructive interference of

elastic waves,� Phys. Rev. Lett., vol. 106, p. 047205, Jan 2011. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.106.047205 139

[153] P.-L. Yu, T. Purdy, and C. Regal, �Control of material damping in high-q membrane

microresonators,� Physical review letters, vol. 108, no. 8, p. 083603, 2012. 139

[154] Y. Tao, R. Hauert, and C. L. Degen, �Exclusively gas-phase passivation of native oxide-

free silicon (100) and silicon (111) surfaces,� ACS applied materials & interfaces, vol. 8,

no. 20, pp. 13 157�13 165, 2016. 139

[155] M. Yuan, M. A. Cohen, and G. Steele, �Silicon nitride membrane resonators at

millikelvin temperatures with quality factors exceeding $10�8$,� pp. 1�10, 2015.

[Online]. Available: http://arxiv.org/abs/1510.07468 139, 140

[156] H. I. Rasool, P. R. Wilkinson, A. Z. Stieg, and J. K. Gimzewski, �A low noise all-�ber

interferometer for high resolution frequency modulated atomic force microscopy

imaging in liquids.� The Review of scienti�c instruments, vol. 81, no. 2, p. 23703,

feb 2010. [Online]. Available: http://scitation.aip.org/content/aip/journal/rsi/81/2/

10.1063/1.3297901 139

197

https://www.osapublishing.org/abstract.cfm?URI=josab-16-4-523
https://link.aps.org/doi/10.1103/PhysRevLett.106.047205
http://arxiv.org/abs/1510.07468
http://scitation.aip.org/content/aip/journal/rsi/81/2/10.1063/1.3297901
http://scitation.aip.org/content/aip/journal/rsi/81/2/10.1063/1.3297901


[157] N. Flowers-Jacobs, S. Hoch, J. Sankey, A. Kashkanova, A. Jayich, C. Deutsch, J. Re-

ichel, and J. Harris, �Fiber-cavity-based optomechanical device,� Applied Physics Let-

ters, vol. 101, no. 22, p. 221109, 2012. 140

[158] B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson,

and J. G. E. Harris, �High quality mechanical and optical properties of commercial

silicon nitride membranes,� Applied Physics Letters, vol. 92, no. 10, pp. 103 125+,

2008. [Online]. Available: http://aip.scitation.org/doi/full/10.1063/1.2884191 140

[159] R. Fischer, N. Kampel, G. Assumpção, P.-L. Yu, K. Cicak, R. Peterson, R. Simmonds,

and C. Regal, �Optical probing of mechanical loss of a si3n4 membrane below 100 mk,�

arXiv preprint arXiv:1611.00878, 2016. 140

[160] J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and

A. Bachtold, �Ultrasensitive force detection with a nanotube mechanical resonator,�

Nature Nanotechnology, vol. 8, no. 7, pp. 493�496, 2013. [Online]. Available:

http://www.nature.com/doi�nder/10.1038/nnano.2013.97 140

[161] H. Miao, S. Danilishin, T. Corbitt, and Y. Chen, �Standard Quantum Limit for

Probing Mechanical Energy Quantization,� Physical Review Letters, vol. 103, no. 10, p.

100402, sep 2009. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.

103.100402 140

[162] M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra,

G. Di Giuseppe, and D. Vitali, �Enhancing sideband cooling by feedback�controlled

light,� arXiv preprint arXiv:1704.04556, 2017. 141

[163] E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, �Fabry-Perot

microcavity for diamond-based photonics,� Physical Review A, vol. 92, no. 4, p. 43844,

oct 2015. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevA.92.043844

141

[164] K. Y. Fong, W. H. Pernice, and H. X. Tang, �Frequency and phase noise of ultrahigh

198

http://aip.scitation.org/doi/full/10.1063/1.2884191
http://www.nature.com/doifinder/10.1038/nnano.2013.97
http://link.aps.org/doi/10.1103/PhysRevLett.103.100402
http://link.aps.org/doi/10.1103/PhysRevLett.103.100402
http://link.aps.org/doi/10.1103/PhysRevA.92.043844


q silicon nitride nanomechanical resonators,� Physical Review B, vol. 85, no. 16, p.

161410, 2012. 153

[165] R. Christian, �The theory of oscillating-vane vacuum gauges,� Vacuum, vol. 16, no. 4,

pp. 175�178, 1966. 157

[166] M. J. Martin, B. H. Houston, J. W. Baldwin, and M. K. Zalalutdinov, �Damping

models for microcantilevers, bridges, and torsional resonators in the free-molecular-

�ow regime,� Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 503�511,

2008. 157, 158, 159

[167] M. Bao, H. Yang, H. Yin, and Y. Sun, �Energy transfer model for squeeze-�lm air

damping in low vacuum,� Journal of Micromechanics and Microengineering, vol. 12,

no. 3, p. 341, 2002. 157, 158

[168] M. Bao and H. Yang, �Squeeze �lm air damping in mems,� Sensors and Actuators A:

Physical, vol. 136, no. 1, pp. 3�27, 2007. 157, 158

[169] S. S. Verbridge, R. Ilic, H. Craighead, and J. M. Parpia, �Size and frequency dependent

gas damping of nanomechanical resonators,� Applied Physics Letters, vol. 93, no. 1, p.

013101, 2008. 157, 159

[170] �Advanced Thin Films, manufacturing.� [Online]. Available: http://advancedthin�lms.

com/Capabilities/Manufacturing 164

[171] T. P. Purdy, �Cavity QED with Ultracold Atoms on an Atom Chip,� Ph.D. dissertation,

University of California, Berkeley, 2009. 166

[172] M. S. Ilango, M. D. Charlton, and C. C. Vidyasagar, �Etch Process Development of

Tantalum Pentoxide (Ta2O5) Using Photoresist (S1813),� Nanoscience and Nanotech-

nology: An International Journal, vol. 3, no. 2, pp. 36�40, 2013. 166, 167

199

http://advancedthinfilms.com/Capabilities/Manufacturing
http://advancedthinfilms.com/Capabilities/Manufacturing

	Introduction & Overview
	Theoretical Concepts
	One-Dimensional Harmonic Oscillator 
	Simple Harmonic Oscillator Model and Definitions 
	Thermal Noise 
	Power Spectral Density Basics 
	Thermal Noise Power Spectral Density 


	Optical Resonances of Fabry-Perot Cavity with Incorporated Membrane
	Optical Transfer Matrix Method
	Optical Resonances of a Fabry-Perot Cavity
	Optical Resonances of a Fabry-Perot Cavity with Incorporated Membrane 
	Steady State Optical Forces
	Linear and Quadratic Dispersive Frequency Shift
	Dynamical Optical Forces and Laser Cooling 


	Fabrication & Mechanical Characterization of Si3N4 Trampoline Resonators
	Si3N4 Trampoline Resonator Fabrication
	Fabricated Trampoline Resonator 
	Fabrication Protocol

	Fiber Interferometer for Measuring Nanomechanical Motion 
	Design 
	Displacement Calibration Based on Optical Plane Wave Model
	Diverging Beam Effects 

	Characterization of Mechanical Resonances
	Identifying Mechanical Resonances and Measuring Qm 
	Thermal Noise Measurement
	Qm of Cleaved and Glued Trampoline 


	Vacuum Fabry-Perot Cavity with Incorporated Si3N4 Trampoline Resonator
	Vacuum Cavity Setup with Trampoline Alignment Structure 
	Cavity Support Structure 
	Trampoline Alignment Structure
	Vacuum Chamber 

	Optical Characterization
	Optical Setup & Empty Cavity Finesse Measurement 
	Cavity with Incorporated Trampoline 

	Simulation of Qm-Increase Through Optical Trapping 

	Simple Delay-Limited Sideband Locking with Heterodyne Readout
	A Brief Review of Laser Feedback
	Modified Pound-Drever-Hall Readout and Dynamical Response
	Apparatus for Sideband Locking with Heterodyne Readout
	Performance
	Conclusion

	Conclusion & Outlook
	Theoretical Concepts
	Reflection and Transmission Coefficient of a One-Dimensional Slab
	Reflection and Transmission Coefficient of a DBR 
	Derivation of Cavity Finesse
	Maxwell Stress Tensor 

	Fabrication & Mechanical Characterization of Si3N4 Trampoline Resonators
	Power Spectral Density Measurement with a Lock-In Amplifier 
	Gas Damping 

	Vacuum Fabry-Perot Cavity with Incorporated Si3N4 Trampoline Resonator
	Transverse Electromagnetic Cavity Modes
	Cavity Finesse Tuning by Mirror Etching 

	Simple Delay-Limited Sideband Locking with Heterodyne Readout
	Reflection from an Asymmetric Cavity
	Transfer Function from Laser Noise to Error Signal
	Shorthand Notation
	Propagating Laser Noise Through the Readout System
	Case 1: Frequency Noise only, Ideal EOM, Cavity Resonant with Carrier
	Case 2: Frequency Noise only, Ideal EOM, Cavity Resonant with Upper Sideband
	Case 3: Amplitude Noise only, Ideal EOM, Cavity Resonant with Carrier
	Case 4: Amplitude noise only, ideal EOM, cavity resonant with upper sideband

	Error Signal for Wider Range of VCO Outputs


