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adjust coordinates such that a = 1 and write the following function 

cos(Q {1 + d- cos(C)) - sin2(C) 
g(C) = 

^J(l+d-cos(C))2 + sm2(C) 

It represents the inner product of normals to the circle and gradient vectors con
verging to (or emanating from) a single point; see Figure B.4. Thus, 

f'(so) = g'(Co) 

as in the figure. However, this holds for a fixed 5. In order to obtain f"(s), it is 
necessary to let 6 change as a function of the boundary parameterization t and, 
hence, S(s) = 6(t(s)). So, assuming ^ = 1, 

dCd6 dC dC2 

where 
&6 _ dS _ dSdt _ , dt 
dC~ ds ~ ~dlds ~K^'ds' 

Thus, ^ | < i^ f • Carrying out the operations we get the following bounds: 

8 + 38d2 + 25d3 + 8d4 + 28d + d5 
d2 

(0 < 
d5 

Md6 

This finishes the proof 

d2£ /c ^ / 8 + 16rf + 2rf3 + 10d2 
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Chapter 1 

Introduction 

Despite its obvious importance and ubiquitous existence, we have yet to determine 

what visual shape really is. Informal conversations frequently refer to objects by 

describing aspects of their visual form and, as such, shape is only attributed sub

ordinate meaning, one that may change as circumstance dictates. Yet, regardless of 

context, we seem to be able to remember shape, as though it is an entity in its own 

right. Thus, from a philosophical standpoint, it is unsatisfactory to be limited to an 

indirect understanding of visual form. 

The exercise of assigning meaning to visual shape is not purely academic in na

ture, however. The field of computational vision would indeed reach a new level 

if a reasonably general solution were found: image segmentation, object identifi

cation and recognition are just a few of the major areas such a discovery would 

have an impact on. The higher-level applications range from helping the visually 

impaired read, to understanding the behavior of certain illnesses, to exploring dan

gerous sites with autonomous robots. The seed of practical interest, however, is the 

problem of finding a good representation for shape. 

This thesis focuses on a particular class of representations of visual form, those 

based on the Blum skeleton [6]. We shall argue that such a representation has a 

number of desirable properties, which any good shape descriptor should possess. 

We shall begin this discussion in Section 1.1 but will keep it on a relatively high 

level leaving the details to Chapter 2. We shall then, in Section 1.2, review some of 

the previous work on skeletonization and identify the major computational diffi

culties encountered in the past. Finally, in Section 1.3, we shall briefly discuss how 

the method presented in this thesis deals with those issues and we shall identify 

the contributions of this work. 



1.1 Shape and Shape Representation 

1.1 Shape and Shape Representation 

Koenderink (see [23, p. 15]) stipulates that visual shape must be given an opera

tional definition; that is, one that may possibly change from task to task. "Thus," he 

writes, "things do not 'have a shape' the way Santa Claus has a red suit," which, 

from a practical standpoint, suggests that the same measurement may have to be 

interpreted differently under different circumstances. This is in accordance with 

Blum's early remarks (see [6]) on the problems pertaining to biological shape. He 

identifies two types of problems: 

• The first is the need to define a "taxonomy," that is, a hierarchically struc

tured representation of shape where subgroups of shapes arise naturally. In 

particular, it is desirable that visual form be described by constituent sub-

forms. This is not only intuitively satisfactory—since we seem to deal with 

information in a highly structured (hierarchical) manner—but computation

ally as well; for example, the problem of matching shapes is thus broken into 

two subproblems: matching parts and combining this information to test for 

group membership. There is also a hint at efficiency since, if the hierarchy is 

a wide tree, then searching may be as fast as log n where n is the number of 

parts. 

• The second problem is concerned with how organisms perceive and organize 

the visual form of other organisms. In particular, it is important to be able to 

tell different organisms apart as well as recognize similar ones. Thus, looking 

at a panther, the observer should perceive the same visual shape regardless 

of his relative position to the cat (translation) or whether his head is tilted to 

one side or not (rotation); however, he should also be able to realize that the 

gazelle beside the panther has a different visual shape. 

A machine representation of shape should incorporate the above observations, 

but it should also provide the means for an effective and intuitive communication. 

Below we list a number of criteria that a good shape representation should satisfy: 

1. Completeness. It should be able to represent a large class of shapes. The 

largest class is the bounded sets in R2. 

2. Hierarchy. It should allow for an easy extraction of parts, or sub-shapes. 
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3. In variance. In general, the shape itself should remain the same even if some 

Euclidean transformation is performed on the input. Hence, rotations, trans

lations and scalings should not have an impact on the percept in many situ

ations, but, under certain circumstances, this need not hold. For example, a 

horizontal bar (a twig, say) and a vertical one may be important higher level 

organizational processes. Consequently, the representation should allow for 

an interpretation invariant under the aforementioned transformations, but it 

should also keep absolute information. 

4. Noise. It should be able to deal with noise; in other words, there should be a 

natural interpretation which emphasizes differences between major features 

and minor variability. 

5. Metric. There should be a way to define, at least locally, a pseudo-metric (al

though a metric might be necessary for some applications) thereby defining 

clusters of "alike" shapes. 

6. Language. Ideally, it should provide the means to extend a human language 

in order to allow for a more efficient communication with machines. 

There are at least two classes of direct shape representation in the computer 

vision literature: boundary based and region based. In the former case, the com

pleteness and invariance criteria are satisfied and there are several approaches that 

define a shape similarity metric.1 However, small variations are captured and some 

extrinsic regularization (E.g. Gaussian smoothing) must be applied to deal with 

noise. Further, there is no intuitive notion of parts (see August et al. [4]), even 

though several efforts2 break the contour into segments each of which is meant to 

describe portions of the shape. 

On the other hand, the region based approaches emphasize a more intuitive 

notion of sub-shapes as well as the more global symmetries. An advantage these 

approaches have over boundary based ones, is that they encode the topological in

formation of the shape as well as inter-point relations (such as distance, or relative 

distance, between two points in a shape). However, region based methods may 

have large memory requirements. 

JFor example, the work by Mokhtarian and collaborators [36, 35, 37] on curvature scale space. 
Also, see Hu [22] for an idea based on invariant moments. 

2e.g. Singh et al. [50] from a human perception perspective and Starchan et al. [51] from a practical 
standpoint 
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FIGURE 1.1. TOP: The grassfire process. BOTTOM: The result. 



1.2 Computing Skeletons 

A shape representation which combines the advantages of these two general 

approaches was first introduced by Blum in [6]. He called it the "skeleton" of a 

shape and it is perhaps best explained through his well known grassfire analogy. 

Imagine that the shape is given as a perfectly dry and flat grass region surrounded 

by a wet area. The boundary is then set on fire everywhere simultaneously and the 

front advances inward at a constant speed (see Figure 1.1 top). As fire fronts meet, 

quench points form and, eventually, the fire is extinguished. The set of quench 

points sites is a sort of "stick-figure" of the original which is also called the skeleton 

or medial axis of the shape. If one keeps the time of formation of the quench points 

(distance to the boundary), the resulting structure is called the medial axis transform 

(MAT) because complete information about the process is retained; in particular, 

the original shape may be regenerated by an inverse grassfire. 

The MAT is a good representation for visual form: it is easily seen that the 

grassfire process defines a skeleton for all bounded shapes; in Chapter 2, we shall 

prove that the medial axis can be realized as a graph which satisfies the invariance 

criterion above; we shall also see, as a consequence of results from Chapter 4, that 

there is a natural way to deal with certain types of noise in the input shape; and 

there is a large selection of shape metrics based on the skeleton (e.g. Pellilo et al. [46] 

and Siddiqi et al. [49]). Consequently, significant effort has been made to compute 

the MAT but, as the next section demonstrates, the problem is far from trivial and 

progress has been slow. 

1.2 Computing Skeletons 

The past three decades have produced an enormous number of algorithms that try 

to compute the skeleton (or a similar representation) of a 2D visual shape. The ap

proaches are so varied that a general classification doing justice to all is beyond the 

scope of this thesis. Therefore, rather than provide a complete overview, we shall 

concentrate in this section on the methodologies closely related to the class of al

gorithms presented in this thesis. Four groups are discussed: topological thinning, 

distance map methods, grassfire simulation and wave propagation, and Voronoi 

Diagram (VD) approaches. 
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1.2.1 Topological Thinning 

One of the properties of the skeleton (as shown in Chapter 2) is that it is topo-

logically equivalent to the original shape. In practice, this means that both will 

have the same number of connected components and holes, and there is a natural 

and unique way of mapping components (or holes) in the shape to components 

(or holes) in the skeleton. Topological thinning approaches are characterized by 

ensuring that the result of skeletonization will have this property. All such algo

rithms assume that the shape is somehow given on a discrete grid and remove 

pixels from the boundary according to some criteria. The methods in this category 

can be further subdivided into two groups: 

• Thinning by contour peeling. The main idea is to discretely simulate the grass

fire process by successively removing layers of pixels from the shape's bound

ary. Lam et al. present a thorough overview in [26] covering both sequential 

and parallel implementations. In Chapter 9 of [45], Pavlidis surveys some of 

the earlier approaches and the issues they present are made clear. 

Although most of these algorithms do get a "skeleton" as a result, the term 

is a misnomer in the sense of Blum. Blum's definition may be seen as given 

on R2, that is, in the continuous case; hence, for unrestricted shapes discrete 

algorithms may only approximate the MAT, not compute it. Therefore, the 

approximations obtained in this manner do not necessarily have the desired 

properties (as listed in the previous section). In particular, they are not very 

consistent under rotations of the shape. 

• Augmented approach. Vincent [54] is the best representative of this method. 

The idea is to use knowledge from other approaches to define "anchor points" 

(i.e. that cannot be removed by the thinning procedure) and then apply 

a thinning technique which removes boundary points in some order while 

making sure the topology is left unchanged. The result of this strategy is a 

topologically equivalent representation of the original shape, but may not be 

thin if the set of anchor points is not. For example, Talbot and Vincent [52] use 

local speed of creation of quench points as a determinant for anchor points, 

but they approximate this value and the thresholding cannot be shown to 

give a thin anchor set in general. Malandain and Vidal [30, 20] use this crite

rion as well as the distance to boundary to extract the anchor points but fail 

to demonstrate how a thin skeleton can be obtained for all input shapes. 
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1.2.2 Distance Map Methods 

An equivalent definition for the skeleton of a shape (see Chapter 2) may be given 

by using the Euclidean metric and the notion of a maximally inscribed disk. A 

disk is maximally inscribed in a shape if there is no other disk inside the shape 

which completely contains it. Thus, the skeleton consists of all points in the shape 

which are centers of maximally inscribed disks. The role of the metric here is to 

define what the shape of the disk is, i.e. the Euclidean metric gives a circle, the 

Manhattan distance gives a square, and so on. Therefore, one can generalize the 

notion of skeleton by simply leaving the choice of metric open. Computing the 

skeleton, then, is just a matter of finding the centers of those disks which can be 

done with the following observation: Centers of maximal disks are local maxima 

of the distance function. 

It turns out that skeletonization algorithms based on non-Euclidean metrics 

(e.g. [47, 38] and, more recently, [3]) are often much faster than those based on 

Euclidean metrics. Further, if the shape is given on a grid, the city block metric for 

example, makes the skeleton lie on the same grid. However, a significant draw

back of this representation is that, like the result of pure thinning methods, it is 

sensitive to rotations and is hence unstable. The problem stems from the metric it

self, because methods based on quasi-Euclidean and Euclidean distances are better 

behaved in practice and known to be stable in theory. 

Arcelli and Sanniti di Baja [2] and Danielsson [16] are two examples of algo

rithms based on the local maximum observation for pseudo-Euclidean and Eu

clidean metrics, respectively. The resulting representations of shape are stable, but 

may be thick and possibly disconnected. 

Finally, Montanari [39] suggests a completely different skeletonization approach 

using the distance function. Instead of using the discrete grid to approximate the 

skeleton, Montanari develops an analytic simulation which computes the exact 

structure (for the Euclidean metric) that Blum describes. The crucial assumption, 

however, is that the shape can be accurately described by a polygon. Unfortunately, 

this does not always hold because noise in the input data can drastically change the 

polygonal representation. Hence, this exact algorithm is of limited scope. 
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1.2.3 Grassfire Simulation and Wave Propagation 

The grassfire analogy used to present the skeleton not only gives a definition, but 

it also suggests an algorithm for computing the medial axis. Pure thinning on a 

discrete grid was just a first attempt at simulating the process and was not guaran

teed to give the best approximation to the skeleton. The main problem stems from 

the fact that the simulated fire front does not propagate homogeneously. Xia [56] 

proposes a modified thinning strategy which addresses this issue but the metrics 

used are non-Euclidean. 

FIGURE 1.2. 3D surface under image plane induced by the distance func
tion. 

A more sophisticated approach employing active contours (snakes) was devel

oped by Leymarie and Levine in [27]. A snake is defined as a model of a deformable 

curve composed of abstract elastic materials: strings and rods; thus, it can stretch 

and bend in a controllable fashion. A grassfire is simulated by letting a snake fall 

down a surface defined by the Euclidean distance function under the image plane-

see Figure 1.2. The idea is indeed interesting and can circumvent many of the 

shortcomings from previous algorithms, but several sensitive operations must be 

tuned to produce the desired result; for example, critical points (curvature extrema 

in particular) of the boundary must be extracted which, on a discrete grid, may be 

as good as noise if the extraction process does not pick a large enough window. 

Another interesting approach for simulating the grassfire is presented in Tek 
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and Kimia [53]. Their method is inspired by numerical algorithms for solving 

PDE's and the observation that the Eikonal equation can be used to describe isotropic 

propagation of fire. The shapes are assumed to be given on a discrete grid which 

they refer to as the fixed image grid. Discrete waves are propagated on it but shocks 

are detected on a dynamic grid formed by bisectors of the line segments that de

scribe the wave front. 

1.2.4 Voronoi Diagram Approaches 

It was first observed by Kirkpatrick, over twenty years ago, that the skeleton of a 

polygonal shape is a subgraph of the Voronoi Diagram—a partitioning of the plane 

based on proximity to individual line segments (see Aurenhammer [5] for a sur

vey on VD's). This relationship is important because VD's may be computed very 

efficiently, in 0(n logn) time3 for a polygon of n vertices, however, as observed 

previously, polygonal approximation of shapes is quite unstable. 

On the other hand, a discrete point sampling of a shape's contour may be a 

better alternative. Brandt and Algazi [9] show that the skeleton can be well ap

proximated by the Voronoi diagram of such a set. Specifically, they prove that, as 

the maximum gap between consecutive sample points tends to zero, the Voronoi 

diagram tends to the skeleton of the shape. However, for any finite sampling, 

the VD will contain many edges which may not be part of the skeleton. Conse

quently, any practical algorithm based on their observation must perform some 

sort of pruning—diagram simplification based on leaf node removal—in order to 

obtain the approximation of the medial axis. 

The solution suggested by Brandt and Algazi [9] is a heuristic approach based 

on the fitness of regeneration: branches are removed if the regenerated boundary 

is within some tolerance of the original shape. The combinatorial complexity of 

the representation after pruning is not easy to determine; in particular, there is no 

notion of minimal complexity for a given tolerance. 

Ogniewicz [42], Ogniewicz and Ilg [41], and Ogniewicz and Kubler [43] pro

vide other heuristics for pruning the Voronoi diagram. Their approaches define 

the so-called "residual functions" that measure the importance of Voronoi edges. 

However, as in the previous pruning scheme, there is no real notion of a minimal 

representational complexity given a threshold. 

3See O'Rourke [44] for algorithms and analysis. 



Abstract 

The medial axis of a 2D shape consists of those points in the plane for which the 

signed distance function induced by the shape is singular. Also known as the skele

ton, this structure is particularly well suited to represent visual form: it is thin, ho-

motopic to the original shape, invariant under rigid transformations of the plane, 

can be used to completely recover the shape, and, most importantly, it has a natu

ral interpretation as a graph. However, despite its virtues, an accurate and robust 

procedure to compute the medial axis has proved difficult to develop. 

In this thesis, we present a solution to this problem in two steps. First, we show 

that the average outward flux through a region shrinking to a point of the distance 

function gradient field has a limit everywhere on the plane and is nonzero only at 

skeletal points. Then, we develop an algorithm based on the discrete interpreta

tion of this behavior and obtain a skeletonization procedure which is essentially 

parameter free. 
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Overall, Voronoi diagram approaches compute a connected, i.e. topologically 

equivalent to the initial shape, approximation of the skeleton which, in theory, may 

be as close as the sampling permits, but can fail to provide consistent representa

tions. The main problem is that pruning may yield significantly different combina

torial structures, even when the starting point sets are very similar. 

1.2.5 Computational Difficulties 

The overview in the present section discussed several techniques used to compute 

the skeleton of a visual shape, each with its own set of advantages and shortcom

ings. The following is a list, based on this discussion, that collects the computa

tional difficulties commonly encountered in skeletonization algorithms: 

• It is a challenge to compute a skeleton approximation that is stable under 

rotations. 

• The output may be thick. 

• The topology of the shape may be different from that of the computed skele

ton. 

The output may be sensitive to small changes in the input shape. 

Parameters may have to be tuned in an ad hoc fashion. 

1.3 Contributions 

In this thesis, we present a skeletonization algorithm that overcomes the computa

tional difficulties identified in Section 1.2.5. We develop a tool—the average out

ward flux—which is used to classify points in the plane R2 as either medial or 

non-medial. Then, we show how this criterion may be approximated on a discrete 

lattice and used in a discrete skeletonization algorithm. We prove that the result 

of this procedure will give a thin structure (only two neighbors in the 3x3 neigh

borhood of a point) which is no more than a lattice spacing away from the real 

skeleton. The points in this approximation can then be shifted toward the medial 

axis until they are no more than a user-specified tolerance from it. Finally, we de

rive the conditions that guarantee this algorithm to give the desired result which 
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also demonstrates that, if the shapes are originally given on a gird, the procedure 

only needs the tolerance to be specified. Specifically, 

• We discuss the notion of planar shapes and their skeletons and provide an ac

count of the differential and combinatorial properties of these and associated 

structures (e.g. induced distance function); see Chapter 2. 

• We introduce a-skeletons as simplifications of the complete skeleton and show 

how the two are related (Theorem 2.31). 

• We reformulate the Divergence Theorem and use it to establish a criterion that 

separates skeleton points from non skeleton points in the plane R2. (Chap

ter 3) Specifically, the limiting behavior of the average outward flux of the gra

dient of the distance function is described and shown to be strictly negative 

on skeletal points and only on such points. 

• The case of the average outward flux through shrinking circular neighbor

hoods (Section 3.4) is analyzed in full. We show that, at almost all skeletal 

points P ER2 (all but finitely many), this value is the sine of the object angle; 

see Table 3.1. 

• We translate the continuous behavior into a discrete algorithm (Chapter 4). 

We analyze the numerical approximations to the average outward flux and 

estimate, by providing bounds, the error. We thus show how parameters 

should be chosen in order to obtain a skeleton approximation no further than 

a specified tolerance from the real object (Theorem 4.8). 

• The algorithm we suggest computes arbitrarily close approximations to the 

a-skeleton of a shape where a > 36° (see Theorem 2.31 and Section 4.6). 

Organization 

The rest of this thesis is organized in three chapters. We shall give shape and its 

skeleton a formal definition in Chapter 2, and present many of the ensuing prop

erties of these structures. Then, in Chapter 3, we shall extend the Divergence The

orem and derive the criterion for identifying skeletal points. Finally, in Chapter 4, 

we shall discuss the issues involved in using this criterion on a discrete lattice and 

develop a skeletonization algorithm based on that analysis. 
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Chapter 2 

Definitions and Properties 

Before trying to compute the skeleton of a shape, we must introduce these con

cepts formally. In this chapter, we shall give precise definitions for both shape and 

skeleton and, in the process, we shall also introduce the vast majority of concepts 

needed throughout this thesis. 

We'll begin, in Section 2.1 by presenting and briefly discussing the definition 

of shape. We shall then examine the differential properties of the signed distance 

function induced by a shape (Section 2.2) and we'll see how skeletons may be de

fined as singularities of this function in Section 2.3; several of its properties will be 

derived there as well. Finally, we shall explore the adequacy of the skeleton (trans

form) as a representation for shape in Section 2.4 and we'll introduce ct-skeletons. 

2.1 Shapes 

We begin, in this section, by quickly revisiting standard notions from point-set 

topology needed for a formal discussion of shape. Once the necessary notation is 

established and the required definitions are in place, shape will be given mathe

matical meaning which shall be the basis for our subsequent analysis. 

Our investigation will be restricted to the real plane R2 and we shall assume 

the standard Euclidean metric and induced topology. The next four definitions 

establish the notations and introduce the concept of boundary for subsets of R2. 

Definition 2.1. The Euclidean norm, denoted ||-|| : R" —> R is defined as 
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where v = (vi,..., vn). The Euclidean metric d(P, Q) : Rn x R" -»• R is 

d(P,Q) = \\P-Q\\. 

We shall also denote by d (P, S) the closest distance from a point P to the set S C 

R2, i.e. 

d (P, S) = inf d (P, Q) . 
Q<ES 

Definition 2.2. Let P £ R" and r > 0. The n-dimensional open fra// is 

£ r ( P ) = { Q £ R " : d(P,Q)<\r\} 

A set X C R2 will be called bounded if and only if there is a P £ R2 and a large 

enough r > 0 such that X C Br (P). 

Definition 2.3. The interior of a set X C R" is 

int (X) = {P £ X : 3e > 0, B£ (P) C X} . 

A limit point Q £ R" of X if and only if for any e > 0, Be (Q) n int (X) 7̂  0 . The 

collection of all limit points of X is called the boundary of X and is denoted dX. The 

closure of X is given by 

X = i n t ( X ) u 3 X . 

Definition 2.4. A set X C R" is open if X = int (X). A set X is closed in R" if and 

only if X = X. 

In order to talk about the boundary of a shape, we need to establish the notion 

of real analytic curves. As the following definition illustrates, these are a special 

kind of differentiate curves. 

Definition 2.5. Let / : R —> R be a function such that the fc-th derivative exists and 

is continuous, then / £ Ck. Any function / £ C°° must have continuous derivatives 

of all orders, but / need not have a converging Taylor series on all points in its 

domain of definition. A C°° function is called real analytic and belongs to Cw if it 

can be written as a convergent Taylor series for all points in its domain. 

Now, if y : R —> R2 is a curve defined by y(r) = (x(t),y(t)) where both x(t) and 

y(t) are Ck, then the curve itself will be referred to as being Ck as well. Similarly, 

the curve is called real analytic if and only if both x(t) and y(t) are real analytic 

functions. 
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Remark 2.1. If k < I are integers, then if a function is Cl, it must also be Ck. How

ever, the converse need not be true. 

Definition 2.6 (Shape). A 2D shape X has two defining characteristics: 

i. it is the closure of a bounded connected open subset in R2, i.e. X = int (X) ; 

ii. the boundary, dX, of X consists of a finite number of mutually disjoint closed 

curves. Each boundary curve does not self-intersect and is composed of 

finitely many real analytic curve segments. 

FIGURE 2.1. A disallowed shape. The line connected to the base is a 
portion of the shape that has no thickness. The interior of this shape 
only consists of the interior of the "P"; hence, the closure of the interior 
would be the same shape, with the line removed. 

This definition for shape encompasses the largest class of objects which are well 

behaved mathematically and afford a reasonable representation. Let us examine 

the first condition. If it is violated, then the object on Figure 2.1 would be valid. 

There, a piece of the boundary—the line connected to the base of the shape—is 

part of the figure but has no real thickness. It could be argued that such objects 

do indeed exist, however our sensing technologies (e.g. digital cameras) do not, at 

present, allow to detect infinitely thin strings and to correctly identify them as such. 

Therefore, allowing shapes as that on Figure 2.1 only adds to the representational 

burden without including any additional observable phenomena. 

There are more practical considerations that lead to this definition for shape, 

but we must postpone this discussion until after the skeleton of a shape is formally 

introduced in Section 2.3. Thus, the next section presents the necessary preliminar

ies, namely, the notion of a distance function induced by a shape. 



2.2 Euclidean Distance Function ^ ^ _ _ _ 15 

2.2 Euclidean Distance Function 

In order to define the skeleton of a shape X, we need to establish several results 

concerning the induced signed distance function Dx- This section will discuss the 

differentiability of Dx by analyzing its behavior with respect to the shape. 

However, before anything can be said about Dx, we must define it. The signed 

distance function Dx is Euclidean distance to the boundary of X which is negative 

for points inside the shape and positive otherwise. Formally, 

Definition 2.7. Given a shape X, the signed distance function Dx : R2 —> R is de

fined as 
Dx(P)=xx(P)ird d(P,Q) 

QGdX 

where d(P,Q) is the Euclidean distance between P £ R2 and Q £ R2 and xx ' 

R2 - • {-1,1} is 

Xx(P)-{-1 ^ ^ • (2-1) 
*XK } \ 1 i f P ^ X v ' 

It turns out that, as a differentiable function, Dx behaves in essentially the same 

way as the boundary of the shape; but to make this precise, we need to introduce 

the boundary support for a planar point. 

Definition 2.8. Let X be a shape and P £ R2 a point. The boundary support of P is 

the set of closest boundary points to P, i.e. 

pc = {Q£ax|d(p,Q) = d(p,ax)}. 

Theorem 2.9. If\Pc\ — 1/ ^ Q E dXbe the unique point in PQ- IfdX is piecewise Ck, 

then 

(a) IfP i ax , then 

V D x ( P ) = X x ( P ) | | Q ~ p [ | (2.2) 

where Q — P denotes the vector from PtoQePc and Xx(P) is as in Equation 2.1. 

(b) IfdX is Ck, with k>l, near Q, then DX(P) is Ck near P. 

The first part of the theorem is due to Federer [19, 4.8(3)] and the second is a 
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direct consequence of a result by Krantz and Parks [24].l Note that, even though 

part (b) holds for an arbitrary k > 1, the assumptions on the shapes we consider 

here imply that k > 1 actually means k = oo. Similarly, the next Corollary (shown 

in Appendix A), only needs the boundary to be piecewise Ck. 

Corollary 2.10. Let P £ R2 - 3X. Assume |PC | = 1 and let Q edXbe the unique point 

in Pc . 7/ax is C° near Q, then DX{P) is at least C1 near P. 

Theorem 2.9 and Corollary 2.10 reveal much of the behavior of the vector field 

given by the gradient of the distance function. Indeed, they show that VDx has 

magnitude one and is continuous on all interior points (i.e. P £ int (X)) which 

have a trivial boundary support. Thus, VDx can be seen as a real-valued function 

there—only the orientation of the vector is relevant. The significance of this fact 

will be made explicit in the next section where we shall see that almost all points 

in the plane have trivial boundary support. 

2.3 Skeletons and Skeleton Transform 

Now that shape is formally defined and the induced distance function is in place, 

we can finally turn our attention to the skeleton. We shall begin this section by 

presenting two definitions of such a structure and will then show that they are 

equivalent. This will be useful in studying the medial axis as it will allow us to 

see the structure in two different ways, each contributing to the list of properties 

presented here. The interplay of these formulations will allow us to show that 

the skeleton is a thin structure which is topologically equivalent to the original 

shape. This will enable us to classify skeletal points so as to suggest a natural 

combinatorial structure—a finite graph—on the medial axis. 

We begin, then, by recalling Blum's definition of skeleton based on the grass

fire analogy. Imagine an ideally homogeneous grass field, perfectly flat and where 

there is no wind. Suppose now that a perfectly dry and ready to burn bounded re

gion is surrounded by wet grass (which cannot catch on fire) and ignite the border 

of this region, all at once. The fire will then propagate inward at a constant speed, 

1 Krantz and Parks [24] show the claim for an arbitrary (but finite) dimension manifold. Mather 
[31], on the other hand, provides even more information about the signed distance function by 
providing normal forms; he has a list for manifolds of up to dimension 7. Yet another source with 
similar results is Matheron [33] where differential properties of the distance function are shown 
with the skeleton in mind. 
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occasionally extinguishing itself at the sites where fronts meet until the whole re

gion is burnt. The quench points are what Blum called the "skeleton" of the shape 

(the dry region). 

Observe that, at all such points, one can draw a disk with radius equal to the 

closest distance to the boundary and this disk will be maximal; that is, there will 

be no other disk which strictly contains the first one and is itself completely inside 

the shape. Formally, this translates into the following definition: 

Definition 2.11. A ball Br (P) is said to be inscribed in a shape X whenever Br (P) C 

X. A ball Br (P) is maximally inscribed if and only if there is no inscribed ball Br< (Q) 

which completely contains Br (P) and is strictly larger, i.e. r' > r. 

Intuitively, it should be clear that the grass fire formulation above is equivalent to 

defining the medial axis of a shape in the following manner: 

Definition 2.12. The medial axis, MA (X), of a shape X is the locus of maximally 

inscribed disks; that is, a point P £ X is in MA (X) if and only if there exists a 

maximally inscribed ball in X centered at P. 

We shall not show that equivalence here because Blum's definition is not partic

ularly useful to our efforts in this chapter (or the rest of the thesis), but it should 

be pointed out that the report [10] by Calabi contains a proof.2 Definition 2.12, on 

the other hand, will prove very useful, especially in conjunction with the following 

one. 

Definition 2.13. The skeleton of a shape X, denoted Sk (X), is the set of points in X 

that have more than one closest point to the boundary of the shape; formally 

Sk(X) = { P £ X : \PC\ > 2 } . 

The skeleton transform, denoted ST (X), is ST (X) = Sk (X) x R (for RcR+- {0}) 

where (P,r) £ ST (X) if and only if P £ Sk (X) and r = |DX(P)| . 

Remark 2.2. Contrast Definition 2.13 with Theorem 2.9 and Corollary 2.10. The 

skeletal points are exactly the locations in the interior of the shape where Dx is not 

smooth; in fact, on skeletal points, VDx is not a function in the usual sense but it 

can be regarded as a "multivalued function;" that is, if P £ int (X), then 

VDX(P) = {v : v = 2 ^ QePcy (2.3) 
2See Calabi and Hartnett [11] for a higher level discussion without proofs. 
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Corollary 2.10 guarantees Equation 2.3 to give a function whenever P ^ Sk (X), 

but on skeletal points it does definitely not. Indeed, S7DX(P) for P £ Sk (X) is thus 

defined by Equation 2.3 as the collection of all limit points of converging sequences 

VDx(Pn) where Pn $ Sk (X) for all n and Pn -> P. 

The previous remark shows that the distance function is not differentiable at 

skeletal points according to Definition 2.13. The same is true for almost all points of 

the medial axis as given by Definition 2.12; Theorem 2.14 makes this claim precise. 

Theorem 2.14. Let 

E = {P £ X : P is a centre of curvature for dXand \PQ\ = 1} • 

Then, MA (X) - E = Sk (X). 

In other words, the skeleton set Sk (X) is the same as the medial axis set MA (X) 

except possibly for some end-points of MA (X). This is the intuitive interpretation 

assuming that the skeleton is just a collection of curves, i.e. assuming that it is thin. 

This assumption does hold but it is not a new result. Several authors, including 

Matheron [32] and Calabi (see See Calabi and Hartnett [11]), have analyzed the 

skeleton's thickness and equivalent formulations of the structure, but their frame

works are unnecessarily complicated for our purposes here. Therefore, rather than 

follow an approach based on those investigations, we shall instead provide self-

contained proofs of both Theorem 2.14 and the following corollary (Corollary 2.15) 

in Appendix A; refer to Theorem A.2 and Corollary A.3. 

Corollary 2.15. Let Xbea shape. The skeleton ofX is a collection of bounded curves, i.e. 

int(Sk(X)) = 0 . 

Remark 2.3. This result is not unique to planar shapes; in fact, it can be shown that 

the skeleton of an n-dimensional bounded manifold (defined by, say, maximal balls 

exactly similarly to Definition 2.12) is an (n — 1)-dimensional structure (see Bouix 

[8] for n = 3). 

The skeleton is not only thin, it is also topologically equivalent to the original 

shape. Specifically, there is a natural way to map holes in Sk (X) to holes in X 

in a one-to-one and onto fashion. In fact, a stronger relationship exists: there is 

a continuous process that takes the boundary of the shape to its skeleton. This 

process is given formally by a homotopy function. 
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Definition 2.16. Let y\ : R —> R2 and 72 : R —• R2 be two curves. These curves 

are homotopic if and only if there is a homotopy3 H : [0,1] x R —> R2 which is a 

continuous function and such that H(0, f) = y\(t) and H( l , f) = Yi{t). 

Thus, it can be shown that the shape's boundary (actually much less restrictive 

shapes as those assumed in this thesis) is homotopic to the skeleton (refer to Lieu-

tier [29] or Calabi and Hartnett [11]). This is the meaning of the following:4 

Theorem 2.17. Let X be a shape and Sk (X) its skeleton. Then X and Sk (X) are of the 

same homotopy type. 

FIGURE 2.2. Necessity of condition (i) in Definition 2.6. The circles meet 
at a single point S, so that their interiors are disconnected. The skeleton 
of the shape is then the two points Qi and Q2. Thus, even though the 
shape is connected, its skeleton is not and, therefore, it is not of the same 
homotopy type. 

Remark 2.4. This result holds under the assumptions for shapes as specified by 

Definition 2.6 and, as Figure 2.2 illustrates, justifies condition (i)—if the interior of 

the shape is not connected, then the theorem need not be true. In fact, the rela

tionship is somewhat stronger: Lieutier [29] gives a proof that the skeleton of any 

bounded open subset of R" is homotopy equivalent to its skeleton. Thus, if the 

shape is not of the same homotopy type as its interior, it will not be homotopic to 

its skeleton (that is, Sk (X)). 

Theorem 2.17 suggests that boundary points are mapped to skeleton points, but 

what can be said about mapping skeleton points to boundary points? It turns out 

that the process is almost invertible—it fails only for sharp convex corners of the 

boundary. Proposition 2.19 formalizes the result (see Proposition A.4 in Appendix 

A for the proof). 

3A more general definition may be found in a standard book on Topology; e.g. see Munkres [40]. 
4See footnote 3. 
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Resume 

L'axe median de formes 2D est l'ensemble de points ou la fonction Euclideinne 

de distance au contour n'est pas differentiable. Cette structure, aussi connue par le 

nom de squelette, est une tres bonne representation: elle est mince, homotopique 

a la forme, invariante aux transformations rigides et elle a une structure combina-

toire naturelle. Cependant, malgre tous ces benefices, le developpement d'algorith-

mes qui calculent le squelette d'une forme 2D a ete dificile. 

Dans cette these, nous presentons une solution en deux etapes. Premierement, 

nous montrons que la limite du flux moyen a travers une region tendant vers un 

point sur l'axe median est differente que celle si le point n'appartient pas a cette 

structure. Nous obtenons ainsi un critere pour identifier les points du squelette. 

Deuxiemement, en etudiant le comportement du flux moyen dans le cas discret, 

nous adaptons ce critere de selection et developpons une procedure qui approxime 

l'axe median d'une forme dont l'erreur est arbitrairement petite. 
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Definition 2.18. Let X be shape and Q £ dX be a point where the boundary is C° 

but not Cl. Let 9 be the angle inside X formed by the tangents to dX taken while 

approaching Q from either side. If 6 < n then Q is a sharp corner of the boundary; 

see Figure 2.3. If 9 > n then Q is a didl corner. 

int(X) 

FIGURE 2.3. An examples of a sharp corner (LEFT), and a dull corner 
(RIGHT); see Definition 2.18. 

Proposition 2.19. Let Xbe a shape and Q £ dX. Then, there exists a P £ Sk (X) such 

that Q £ PQ or Q is a sharp corner of the boundary. 

So now we know something about relating skeletal points to boundary points, 

but what we are really after is a way to make the skeleton into a graph. To do this, 

let us classify the points in Sk (X) according to their boundary support. 

Definition 2.20 (Skeletal Points). Let X be a shape and P £ Sk (X). Refer to Fig

ure 2.4 for examples. 

i. P is called a regular point if |Pel = 2 . 

ii. P is an end-point if there exists SQ > 0 such that for any 0 < e < £Q the circle 

centered at P intersects Sk (X) at a single point. 

iii. P is a junction point if PQ has three or more connected components. 

iv. P is a pseudo-junction point if PQ contains infinitely many points but only two 

connected components. 

Theorem 2.21. The skeleton of a shape X is well behaved: 

(1) Most skeletal points are regular; that is, there are only finitely many skeletal points 

which are not regular. 
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Regular Point 

End-Point Pseudo-Junction Point 

Junction Point 

FIGURE 2.4. Examples of the different kinds of skeletal points; see Def
inition 2.20. The isolated points on the boundary (denoted Q, Q\, Q2) 
together with the bolder arcs on the boundary form the boundary sup
port (denoted PQ) for the skeletal point P. 
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(2) The skeleton is 

Sk(X) = U Image (S,-(0) 
i=i 

where S,(f) : [0,1] —> Sk (X) is a curve of regular points and of maximum length. 

Each such curve is of finite length and n is a natural number. Each S,(r) is C1 

everywhere and Ck almost everywhere; there are only finitely many points where the 

curve is not Ck. Further, S2-(f) do not self-intersect and S{(t) and Sj(t) may meet 

only at their extreme points, whenever i ^ j . 

(3) If P is a regular skeletal point and its boundary support PQ contains a dull corner, 

then the unique skeletal curve S(t) passing through it is strictly C1 (i.e. it is not C2) 

if and only if any neighborhood ofPonS(t) contains a point with boundary support 

that does not have any dull corners. 

(4) Ifrt(t) is defined such that (S,-(f), r,-(f)) £ ST (X) and S,-(f) as in Part 2, then r,(t) 

is as differentiable as S(t), i.e. it is Ck where S,-(f) is and it is strictly Cl where S,-(r) 

is. 

(5) Sk (X) is path connected. 

(6) If P £ Sk (X) is a junction point, then PQ has n connected components for some 

integer n > 2. Further, exactly n distinct skeletal curves meet at P. 

This result is a consequence of our development so far and several theorems in 

Choi et al. [13]. 

Definition 2.22. The curves S(t) as in Theorem 2.21(2) are called skeletal curves and 

the r(t) corresponding to an S(t) is the radius function along the skeletal curve. 

Leyton [28] demonstrated how each skeletal curve is related to the boundary. He 

called this result the Symmetry-Curvature Duality Theorem which can be inter

preted as the following 

Theorem 2.23 (Symmetry-Curvature Duality). Let X be a shape. To each skeletal curve 

there correspond exactly two subcurves of the boundary dX. 

Thus, (finally) we can realize the skeleton as a graph. To do this, notice that there 

are only finitely many skeletal curves in Sk (X), they do not self-intersect and are 

mutually disjoint except at their extremities. The combinatorial structure can then 

be defined by taking the end-points and junction points as nodes, and the curves 
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connecting these, as the edges. Theorem 2.17 implies that, for connected shapes, 

the graph will be connected as well. Further, if the shape has no holes, the graph 

must be a tree. 

However, the most important property of this graph, from a computational 

standpoint, is that it is finite. The fact that the boundary of a shape must be given 

by finitely many real analytic curves (see Definition 2.6(h)) is the reason for this 

behavior. Matheron [32] gives a counterexample of a shape with boundary made 

of infinitely (but countably) many real analytic curves where there are infinitely 

many skeletal curves. On the other hand, there are shapes with only two smooth 

(i.e. C°°) curves defining their boundary but which are not real analytic such that 

the skeleton is an infinite graph; see Choi et al. [13]. 

In summary, we have seen that the skeleton of shapes under our assumptions 

must be thin and with finite combinatorial structure. Therefore, it should be possi

ble to implement the medial axis for such objects on a digital machine, but exactly 

how much information does this thin structure carry about the original shape? In 

the following section, we study the adequacy of the skeleton as a descriptor for 

shape. 

2.4 Boundary Representation through ST (X) 

In this section, we shall demonstrate that the skeleton transform ST (X) of a shape 

X is a faithful representation, equivalent to the original object. Our analysis will 

reveal that the curvature of the boundary can be obtained from the ST (X) and 

how this structure can be conceived of as an invariant of the group of rigid trans

formations in the plane. We shall also introduce the notion of a-skeletons which 

are restrictions of ST (X). 

We begin by studying the second component of the skeleton transform, the 

radius function associated to a skeletal curve. Denote the pair by (S(t),r(t)) £ 

ST (X) and observe that the r(t) is simply a restriction of the distance function Dx 

to the points on S(t) with the sign is ignored. Thus, the derivative of r(t) should 

be somehow related to the gradient of Dx- Indeed, although not a function on 

regular points of the skeleton, VDx can be seen as a pair of vectors on such loca

tions and r'(t) captures their geometric relationship. Figure 2.5 illustrates this and 

Theorem 2.24 (with proof in Appendix A, Theorem A.5) formalizes the claim. 
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Theorem 2.24. Let Pbea regular skeletal point and denote by Q\ and Q2 the two distinct 

points in P c . Let S(t) be the skeletal curve that that passes through P, such that S(t0) = P. 

Then, 

(a) the angle Z.Q\PQ2 is bisected by S'(t0), i.e. the tangent to S(t) at tQ; and 

(b) \r'(to)\ = cos a, where r(t0) is the radius function at P (i.e. P = S(t0) and 

(S(f0),r(f0)) £ ST (X); and a < ^ishalf of AQXPQ2. 

FIGURE 2.5. The object angle <x — <x(P) at a regular skeletal point P. Here 
S(t) is a parameterization of the skeleton curve thatpasses through P, i.e. 
P = S(t0), and tP = S'(f0) is the tangent at t0. See Theorem 2.24. 

Recall that skeletal curves consist of regular points except for their two extremi

ties (see Theorem 2.21(2)). Therefore, the angle a in Theorem 2.24 is defined on the 

whole curve and can be thought of as a function. 

Definition 2.25. Let S(t) be a skeletal curve and let oc(t) be as in Theorem 2.24. The 

function a(t) is called the object angle function. 

Thus, the object angle at a regular point is the angle formed by the tangent to the 

skeleton in the direction of decreasing radius function and the gradient vector on 

one side of the curve. In particular, the skeleton point P, the radius value at P 

and the object angle there are sufficient to recover the two points on the boundary 

which are closest to P; that is, using the notation on Figure 2.5, we can write 

Qi = P+\Dx(P)\R((-iy+'a)tP, i = 1,2 (2.4) 
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where R(( — l)t+la) represents counterclockwise rotation by plus oc to obtain Q\, 

and by minus the object angle to recover Q2. 

Now recall that there is a continuous process that maps boundary points to 

skeleton points (see Theorem 2.17). Thus, if Pi and P2 are regular points on the 

same skeletal curve and are close, then their boundary support should also be 

close. In practice, this means that Equation 2.4 defines the Qzs continuously along 

S(t) and, consequently, it regenerates the two contour curves (whose existence is 

guaranteed by Theorem 2.23) corresponding to S(t). Formally, this translates into 

the following theorem.5 

Theorem 2.26 (Reconstruction). Let X be a shape. Let S(t) be a skeletal curve and 

denote by Q : R —> dX the two curves corresponding to it. Then, the boundary curves 

may be parameterized given a parameterization ofS(t). In particular, 

Q(t) = S(t) + r(t) (-r'(f)S'(f) + (-1)'+1 V ^ W S ' ± ( 0 ) , * = 1,2 
(2.5) 

where S'(t) is the unit tangent to the skeleton and S'±(t) is obtained by a counterclockwise 

rotation of S'(t) by n/2. 

The result is significant because it provides an explicit relationship between the 

boundary and the skeleton. By the definition of Sk (X) (see Definition 2.13) it is 

clear that each skeletal point corresponds to at least two boundary points. Propo

sition 2.19, on the other hand, guarantees that all boundary points except sharp 

corners (of which there are only finitely many) correspond to at least one skeletal 

point. Therefore, Theorem 2.26 shows how to recover all points on the boundary 

except the sharp corners and demonstrates the efficiency of the skeleton transform 

as a representation for shape. However, it would not be an adequate representation 

if rigid transformations of the shape could change it drastically. 

Fortunately, the ST (X) remains invariant under rigid transformation of X. This 

property may be expressed as the following theorem 

Theorem 2.27 (Invariance). Let r be a rigid transformation of the plane R2 and Xbe a 

shape. Then, rSk (X) = Sk ( T X ) . 

In other words, the rigid transformations commute with the skeletonization 

operator Sk (•). The claim is a direct consequence of the Reconstruction Theorem: 

5A formal proof is given by Choi et al. [13]. 
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a regular skeletal point P and its two corresponding boundary points Q\, Q2 define 

a triangle which is invariant under rigid transformations, in particular, the relative 

positions of the gradient lines emanating from Q\ and Q2 and meeting at P (i.e. the 

sides of the isosceles triangle) remain unchanged. 

Another consequence of the Reconstruction Theorem is the fact that boundary 

curvature may be expressed by second order differential properties of the skele

ton transform. We have the following theorem (shown as Theorem A.6 in Ap

pendix A). 

Theorem 2.28. Let S(t) be a segment of a skeletal curve such that r(t) is monotonically 

decreasing and ||S'(r)|| = 1. Assume further that S(t) is at least C2 and let C(t) be a 

contour reconstruction according to Equation 2.5. Then, the curvature of the boundary 

segment C(t), denoted Kc(t), is 

MO I 
W(t)-KS(t)\ 

l|C(OII 

a'(t)-KS(t) 

r(f)(a'(r) + *c s(f))-sina(f) 

It turns out that the quantity in the denominator actually comes up from a well 

known boundary-skeleton correspondence—the boundary-to-axis ratio (see Blum 

and Nagel [7]). 

Definition 2.29. The boundary-to-axis ratio is the ratio of a length on the boundary to 

the length of the corresponding skeletal portions. The notion makes sense, almost 

everywhere, locally as well. 

This ratio is an indication as to how important a particular skeletal points is, that is, 

"how much" of the boundary it represents. Indeed, not all medial points are per

ceptually relevant to the shape, perhaps even whole branches. Another interesting 

way of assigning relevance is through the amount of area represented. Define the 

following simplification of a skeleton: 

Definition 2.30. The oc-skeleton, denoted Sk (X, ex), of a shape X is a restriction of 

the skeleton of X, i.e. Sk (X), obtained by retracting the end-points of Sk (X) until a 

skeletal point is reached with object angle greater than or equal to oc. Alternatively, 

letting Vp be the set of shortest paths starting at P and ending at an end-point of 
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FIGURE 2.6. The proportion of area represented by an a-skeleton. Here, 
ae [0,TT/2]. 

Sk (X), the a-skeleton is formally given by 

Sk (X, a) = {P £ Sk (X) : Vy £ YP, 3Q £ y such that aQ > a} 

where OCQ denotes the object angle at point Q. 

The oc-skeleton transform, denoted ST (X, oc), is the restriction of ST (X) induced 

b y S k ( X , a ) . 

Theorem 2.31 (a-Skeleton). Let A(X) denote the area of shape X and A(X, oc) the area 

of the shape represented by the oc-skeleton transform ofX, then 

< 
71 A(X,oc) 

A(X) ~ n + tan(a) - oc 
(2.6) 

Figure 2.6 is a plot of this bound. Notice that most of the area of the shape is 

preserved by an a-skeleton for oc as high as 57° (i.e. lrad). Thus, many of the 

skeletal branches of the medial axis of a polygonal approximation may be removed 

without affecting the represented shape much. 
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2.5 Summary 

Before anything can be done about computing the skeleton of a shape, we must 

make precise exactly what the problem is. In this chapter, we discussed a math

ematical definition for shape and formally introduced the concept of skeletoniza

tion. We saw that small variations in the assumptions about shape may have a 

big impact on the behavior of the skeleton. In particular, we saw that, under Def

inition 2.6, Sk (X) is a thin structure and it is readily interpreted as a finite graph. 

Furthermore, the skeleton transform was demonstrated to be a very good represen

tation for shape, invariant to rigid transformations and providing a parameteriza

tion of the boundary. Finally, we saw that it is possible to simplify the skeleton by 

defining the a-skeleton which represents the original shape quite closely for small 

enough a. 
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Chapter 3 

The AOF Criterion 

Now that the formal introduction of shapes and their skeletons is in place, we can 

turn our attention to the task of identifying skeletal points. We shall proceed in two 

steps: first, we shall work in the continuous domain (i.e. all of R2) and, then, we 

shall specialize to the discrete lattice. In this chapter we shall assume the former 

setting and derive a criterion to classify points in a shape into either medial (on the 

skeleton) or non-medial. Even though the results will suggest a discrete algorithm, 

there are several issues which must be addressed in order to guarantee accuracy 

and robustness. Therefore, we shall postpone the presentation of such a procedure 

until Chapter 4. 

The skeletal point identification criterion will be derived by studying the be

havior of the distance function gradient field induced by the shape. We shall be

gin, in Section 3.1, by reviewing some basic definitions and the Divergence The

orem. Then, in Section 3.2, we shall extend this theorem—so it can be applied in 

the presence of skeletal points—and the criterion will be derived in Section 3.3 as a 

consequence of this extension. We shall then see (in Section 3.4) exactly how much 

information this criterion can give about skeletal points.1 

3.1 Preliminaries 

The results presented in this chapter will follow from a nonstandard application of 

the Divergence Theorem but, before going any further, we need to introduce some 

basic concepts and notations. 

1The results presented in this chapter are largely those reported in Dimitrov et al. [17]. 
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3.2 An Extension of the Divergence Theorem 30 

Definition 3.1. The outward flux of a vector field F through a closed curve y C R2 

is given as the line integral 

Ty = f ( F, N ) ds 

where M denotes the outward normals to y and s is some parameterization of the 

curve. In the case of F = VD X and y = Cf (the circle of radius e centered at P), we 

shall denote the outward flux by F£{P). 

Definition 3.2. The average outward flux of a vector field F through a closed curve 

y is the the outward flux normalized by the length of the curve,i.e. 

_ Ty _ / y ( F , A Q d s 
r L(Y) frds • 

Similarly to Definition 3.1, whenever F = VDX and y = Cf we shall denote the 

average outward flux &£(P). 

Definition 3.3. The divergence of a vector field F = VDX , denoted div(F) or V • F, 

Theorem 3.4 (Divergence Theorem). Let X be a shape and let R be a path-connected 

region where div(F) is defined. Then, total divergence over RofF is equal to the the 

outward flux through the boundary of the region dR, i.e. 

I div(F) dv = f ( F, TV ) ds. (3.1) 
J R JdR 

where dv is an area element. 

Remark 3.1. It should be noted that this formulation of the Divergence Theorem 

is far from the general result—it is a specialization for regions in R2. A discussion 

of the n-dimensional case can be found in any standard text on smooth manifolds 

such as Warner [55]. 

3.2 An Extension of the Divergence Theorem 

We shall now develop an extension of the Divergence Theorem which can be ap

plied to investigate properties of the vector field F = VD at skeletal points, where 
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FIGURE 3.1. A region R which intersects a branch of the skeleton S. 

it is discontinuous. Figure 3.1 illustrates the set up for the calculation which fol

lows. 

Let S be a branch of the skeleton and let R = R\ U R2 be a path connected region 

which intersects it. Let dR — C\ U C2 and C3 = S D R. Let C3t, C3t be parallel curves 

to C3 which approach C3 as f —>• 0. Let Rif and R2t be the regions obtained from 

Ri and R2 by removing the region between the curves C3t and C3t Finally, let F + 

denote F above S and F_ denote F below S. 

The outward flux of F through dR is given by 

/ (T,M)ds=[ ( F, N ) ds + f ( F, M ) ds. 
JdR JC\ JCi 

Applying the Divergence Theorem to Ru and R2t 

I div(F)dv= [ (I,Af)ds+f/(F,M)ds, 
JRU JCU Jc3f 

I div(F) dv = / ( F, N ) ds + / „ ( F, N ) ds. 
JR2t JCii ^ _ C 3 , 
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Adding the above two equations we have 

/ d i v ( F ) d u + / div(F)du = / ( F, A/") ds + / ( F, M) ds 
JRu JR2t Jclt Jc2t 

+ / , (F, A/") ds + / „ (F, N) ds. 
^ L Q . J — L O . '3( " *~3t 

By Theorem 2.24, the tangent to the skeleton bisects the the angle between F + and 

F_ at a regular skeletal point (see Figure 3.2). Thus, on C3 we have 

( F + , JV+) = (*_,#_), (3.2) 

where N+,N- denote the normals to C3 from above and from below, respectively. 

Thus, one can take the limit as t —»• 0 of both sides of the above equation to obtain 

the following extension of the Divergence Theorem 

Theorem 3.5. For a path connected region R which contains part of a skeletal curve S, the 

divergence of the vector field F is related to its flux through dR by the following equation 

[ div(F) dv= [ ( F, A/") ds + 2 / ( F, JVC, ) ds. 
JR=R1UR2 JdR Jc3

 3 

Although the Divergence Theorem fails for such regions because F is discon

tinuous on Co,, the last integral is well defined due to Equation 3.2; we either take 

F = F + and A/"c3 = JV+ or F = F_ and MQ3 = A/--. Because ( F, A/q, ) is in the 

interval (0,1] on the skeleton, it also follows that 

/ ( F, M ) ds > f div(F) dv - 2L(C3). 
JdR JR 

where L(C3) denotes the Euclidean length of the curve. 

3.3 Skeletal Point Selection Criterion 

We now consider the limit values of the outward flux and the average outward 

flux, of the vector field F = VD through a convex curve that is the boundary dR of 

a region R, as the region shrinks to a point. The results reported here are actually 

a special case of a more general result which applies to the case of any shrinking 

convex domain of arbitrary (but finite) dimension; see Damon [14]. 
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We begin by considering the case where the limit point P does not lie on the 

skeleton and hence Equation 3.1 applies. We can write 

/ div(F) dv = [ ( F(P) + S(s), M ) ds 
JR JO 

where L is the Euclidean length of dR, F(P) is the value of the vector field at the 

limit point P and S(s) is the quantity added to get the value of F at neighboring 

points on dR (F is continuous at P). In the limit as L —• 0 we have 

lim .FdR = l imL_0 H ( F(P), JV ) ds + £ ( 6(s), M) ds) . (3.3) 

Now, ( F(P), J\f ) is a continuous function over the dR for a small enough R. The 

boundary dR is also a closed curve, so, by the Fundamental Theorem of Calcu

lus, the first integral is identically equal to zero for all non-skeletal points. The 

limit of the second integral must also be zero because, as Corollary 2.10 guaran

tees, 5(s) must be continuous and the Fundamental Theorem of Calculus applies 

again. The average outward flux is shown to vanish at non-medial points exactly 

similarly—one must divide by the length of dR which also tends to zero but the 

limit is determined by the fact that the numerator is identically zero. 

We now consider the second case where the limit point is a skeletal point and 

hence Theorem 3.5 applies, which we rewrite as 

FdR = f div(F) dv-2 f (¥,Mc3) ds, 
JR. J C3 

which implies that the average outward flux can be seen as 

/ R div(F)d i ; 2 / C 3 ( F / A/-C3> ds 
&dR = L(dR) L(dR) 

Considering the limit as R shrinks to a point, the argument for non-skeletal point 

applies to the first term on the right hand side. Thus, the potentially nonzero term 

is the second one. Therefore, 

dR^p dR dR^P L(dR) dR->p L(dR) 

where P is the limit point and 6(s) is the quantity added to get the value of F at 
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neighboring points on C3. Owing to the fact that the integrand is in (0,1], the value 

of this integral is bounded as 

, " 2 ( sup C j ( FC3, MCl ) ) L(C3) 

Iim ,)R < l im -^Mc3(FcM)HC3) 
dR^P dR^P L(dR) 

Thus the average outward flux through a region shrinking to a regular skeletal 

point is 

s H m ^ = - 2 ( F ( P ) , ^ ( P ) > U m ^ . (3.4) 

Summarizing the above results, we have the property that whereas the limit 

value of the outward flux is zero for both skeletal2 and non-skeletal points, the 

average outward flux has a different limiting behavior at skeletal points than at 

non-skeletal ones, providing a theoretical justification for its use in the Hamilton-

Jacobi skeletonization algorithm Siddiqi et al. [48]. 

3.4 Circular Neighborhoods 

We now specialize the average outward flux calculation to the case of circular 

neighborhoods shrinking to a skeletal point. Instead of using Equation 3.4 to study 

the limiting behavior, we shall exploit the properties of this special case. Doing so 

will not only corroborate the analysis of Section 3.3, but it will allow us to study 

regular points as well as extreme points of skeletal curves. 

We shall treat the three cases (see Definition 2.20) of regular points, junction 

points, and end-points of the skeleton separately. 

3.4.1 Regular Skeletal Points 

A regular skeletal point P is one for which PQ = {Qi,Q2} for Q\ ^ Q2. Let ni and 

n2 be the unit inward normals to the boundary at Q\ and Q2 respectively. Let tp 

be the unit tangent vector to the skeleton at P and define the object angle at P to be 

cc(P) G [0, TT/2], such that 

ni • ri2 = cos2a(P). 

2Multiply Equation 3.4 by L(dR) to get limR^P FdR = - 2 ( F(P), Ac3 (P) ) limR^P L(C3) = 0. 
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FIGURE 3.2. The object angle oc = cx(P) at a regular skeletal point P. Here 
S(t) is a parameterization of the skeleton curve. Hence, tp = S'(to) is the 
tangent at to, i.e. where P = S(to). 

FIGURE 3.3. The distance function gradient vector field in the e-
neighborhood of P is given by a step function - one value for the "top" 
semi-circle and another for the "bottom" one. Both these vectors form an 
angle of a — a(P) with tp, since the skeleton is assumed to cut Cf in half 
at P0 and Pi. 

It follows that n, • tp = cos oc(P) for i = 1,2 (see Figure 3.2). 

Now, let Cf be the circle with radius e centered at P. Let Cf : [0,2ne\ —* R2 be 

arc-length parameterized as 

C?
e(s) = e (cos ( J + 0(tP)) , sin (^ + 0(tP)) ) + P, (3.5) 

where Cf (0) = P + £tp and Cf (ne) = P - £tp. Now consider Figure 3.3. Here, 

it is assumed that the gradient field has one value along C^(s) for s G (0, TIE.) and 

another for s e (n£,2ne). Also, both Cf (0) = P0 and Cf(zr£) = Pi are on the 

skeleton. Let the outward normal of this circle at s be JV(s). Hence, the outward 
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flux of VD though Cj?(s) is 

fine I \ 

Tt{P) = JQ ( VD(C?(s)), A/"(s) ) ds 

In pn rin 
— — £ / cos(ct - s) d s — £ / cos(—oc — s) ds 

JO Jn 

(3.6) 

= — 4£sin(a) 

Notice that this calculation holds regardless of the orientation of tp. However, it 

makes very strict assumptions that do not hold in most situations. Fortunately, the 

general case is similar to this one. 

There are only two differences: (1) Cf (0) and Cf (ns) may not be on the skele

ton, and (2) the distance function gradient field may take on more than two values 

along C^(s) for s € [0,2m:]. For small enough e, the circle will intersect the skele

ton at precisely two points, which we label PQ = Cf (<5Q£) and Pi = Cf ((n + 6i)e). 

Thus, the distance function gradient field is continuous on Cf(s) for s G Io = 

(SQ£, (n + 6i)e) and also for s G I\ = ((n + 6\)s, (2n — So)e) 3. However, it may 

take on more than one value in the intervals IQ and 7i. Define /3o(s) and j3\ (s) on 

Io and I\ respectively, to account for such eventualities: 

tP • 9(Cp
c(s)) = cos (cx(P) + jS0(s)) , s G J0 

tp • 9(C?(s)) = cos (-a(P) + fr(s)), s G h. 

Therefore, the outward flux calculation for regular skeletal points becomes 

T£(P) = jQ ( VD(C?(s)), M(s) ) ds 

rn+6i 
— —e cos(a + /3o(s) - s) ds 

J80 

/•2n-60 

- £ / c o s ( - a + /3i(s) — s) ds. 
Jn+51 

The continuity of the distance function gradient field along the circle implies 

3However, it is not necessarily continuous on the closure of IQ U I\. 
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that both fio(s) a n d fix (s) are continuous functions. Further, as £ —> 0, necessarily 

lim sup |/3o(s)| = 0 
£~*° se[60,n+61] 

lim sup |/3i(s)| = 0. 
£^° se[n+6v2n-50} 

Also, since the skeletal curve has continuous tangents, we must have that lim <5, = 

0 for i = 0,1. Therefore the average outward flux through a shrinking circular 

region is given by 

TAP) £ fn+6l 
lim „ = — lim - — / cos(<% + finis) — s) ds 
£^0 27T£ £^0 27T£j60

 V W ' 

£ r2n-50 

— l i m - — / cos(—a + fi\(s) — s) ds 
e^o 27r£jn+sl 

(3.7) 
\ en \ rln 

= — —- / cos (oc — s) ds — — / cos(—a — s) ds 
2n Jo 2n Jn 

2 . 
= sin a. 

n 

In summary, we have shown that, using the notation from Equation 3.4, C3 

tends to the diameter of the circle and L(C$)/L(dR) = 2£/2n£ = 1/n, which im

plies that the limit of the average outward flux is, essentially, the object angle at the 

regular point. Thus, Equation 3.4 is corroborated for the case of shrinking circles. 

However, this exercise was not just a verification, we have introduced the notation 

for our subsequent analysis of the other types of skeletal points. 

3.4.2 Skeletal End-Points 

Let P be a skeletal end-point. Let the point Q£ be on the branch which is at distance 

£ from P. Choose £ small enough so that Q£ is a regular skeletal point. Thus, the 

object angle is well defined for Q£. Now, let 

ocp = lim oc(Q£). 
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This limit makes sense, because the circle4 Cf intersects the skeleton at a single 

point and the object angle function is continuous along a skeletal branch. 

Now consider Figure 3.4. Along the arc arcXp opposite to the skeleton curve, the 

distance function gradient field must coincide with the inner normals of the circle. 

This is because the end-point results from the collapse of a circular arc (possibly a 

point if ap = 0) on the boundary. On the rest of the circle, the distance function 

gradient field behaves as if P were a regular skeletal point. Thus, 

Fe(P) = -ef_ 
OCp 

ds 
ap 

rn+6 
/ cos(«p + j3o(s) - s) ds 

J apt 

r2n—ap 

/ cos(-ocp +fii(s) - s) ds 
Jn+6 

where 6 and fij(s) account for the circle not intersecting the skeleton midway and 

the distance function gradient field not being strictly a step function on Cf — arcap. 

Therefore, 

i : _ ^ ( P ) 
1111L 
£—0 27T£ 

£ faP 
= - lim - — / ds 

£-+0 27T£ J-ap 

£ f7t+6 
— l i m - — / cos(ocp + fin(s) — s) ds 

£-»0 27T£ JaP 

c r2n—ocp 
- lim - — / cos ( -ap + fi\(s) — s) ds 

£->0 27T£ Jn+b 

= - ±(ap + sinocp) 

since, as £ —> 0, 5, fio(s) and fi\(s) vanish. Notice, however, that ap = 0 if the 

end-point is generated from a contour segment where the curvature is continuous. 

3.4.3 Skeletal Junction and Pseudo-Junction Points 

Let P be a skeletal junction point; that is where n skeletal curves meet. Let these 

curves be given by parameterizations S,-(f) so that S,(0) = P. Consider a circle of 

4Here Cf is as defined in Equation 3.5 but tP = l i m ^ o tQr 
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FIGURE 3.4. A circular neighborhood of radius e around the end-point 
P. Along the arc of angle 2c*p the gradient vectors agree (in orientation) 
with the normals to Cf. Along the arc "above" S(t) the gradient vectors 
all form an angle of aP with S'(0) = tp. Similarly, for the arc "below," 
this angle is — ap. 

radius £ centered at P. Denote it Cf. For small enough £, Cf intersects the skeleton 

at precisely n regular points. Refer to them as Q[ = S,(£). Hence, to each there is a 

corresponding object angle. Define a, as 

oci = lim an,. 

Now consider Figure 3.5 TOP. It suggests that X; 2ctr = 27r for shapes without 

any circular arcs on their boundaries (such junction points will be referred to as 

simple junction points). Indeed, a,- is the angle between S|(0) 5 and the line joining 

P to some point in PQ- TO compute the outward flux through Cf, we can divide 

the circle into n arcs, each corresponding to a skeletal curve. In particular, for 

Si(t) this would be the arc of angle 2at—denote these arcs as yr. For example, in 

Figure 3.5, the arc corresponding to Si(t) (i.e. y\) is the union of the two arcs of 

angle a\. Notice that the distance function gradient field along y, behaves like that 

of a regular skeletal point with object angle a,-. Hence, the outward flux through it 

is 

?* — — £ cos(a! + fio,i(s) - s) ds 
Js, 

£ cos(—Oj +fiiri(s) — s) ds 
J—oa 

*6i 

where <5„ fio,i(s) and fiiri(s) all vanish as £ —> 0. Thus, the total outward flux is 

5Here S't(0) = lim^0+ S'^t). 
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FIGURE 3.5. TOP: A circular neighborhood of radius e around the simple 
junction point P. There are three skeletal curves denoted by S\(t), Sz(t) 
and S3(r) respectively. The dashed lines link P and its closest points on 
the boundary (i.e. points in Pc). Note that <x\ + a2 + «3 = n. CEN
TER: Pseudo-junction point. BOTTOM: General junction point. 

jF£(p) = ££_j Fy, and the average outward flux becomes 

lim — = > lim j - y 
£^0 27T£ 

1 n 
V sin a,. 

n i=\ 
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Now, for general junction points, we must also consider the effects circular arcs 

on the boundary of the shape (see Figure 3.5 BOTTOM). Naturally, in such situa

tions, the sum of object angles from the n skeletal curves does not add to 27r, we 

must also include the angles 0j of the arcs arcj from the boundary. Hence, 

« = 1 ; = 1 

where Tarc. is —£9j, n is the number of skeletal curves and k is the number of circu

lar arcs on the boundary. Notice that pseudo-junction points are those where n = 2 

and k = 1, thus the general result for all types of junction points is 

W) = ~ Isin^-i-ie,-. (3-8) 

3.4.4 Non-Skeletal Points 

Now, let P be a non-skeletal point. In particular, there exists an £ small enough, 

so that Cf contains no skeletal points. Hence, the distance function gradient field 

along the circle is continuous. Thus, we can write 

F£(P)=e[ cos(a + fi(s)-s)ds, 
Jo 

where a is any orientation of the distance function gradient field along Cf and 

lim sup |j3(s)| = 0. Hence, 

T£(P) 1 rln 

£-*°se[0,2n 

1 tln 

— / cosfa — s) ds = 0. 
In Jo 

Ihn ~ 
£-+0 27T£ 27T Jo 

3.5 Summary 

Following the formal introduction of shape and skeleton in Chapter 2, we devel

oped in this chapter a criterion that classifies points in the interior of a shape as 

either belonging to the skeleton or not. We extended the Divergence Theorem and 

used this new result to show that the limit of the average outward flux through the 

boundary of a region as it shrinks to a point may be used to distinguish between 
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P O I N T TYPE 

Regular Points (Figure 3.2) 

End-Points (Figure 3.4) 

Junction Points (Figure 3.5) 

Non-Skeletal Points 

lim-—-— 
£->0 27T£ 

— ̂  sin a 
n 

-^(sina + a) 

-hll=is™«i-i;ZUei 

0 

TABLE 3.1. A surnmary of results relating the limit values of the average 
outward flux to the object angle for shrinking circular neighborhoods. 
Note that for contours of type C3 (i.e. with continuous curvature), ex will 
be zero for the case of end-points. 

regular skeletal points and non-skeletal points. Our analysis also provides a neces

sary and sufficient condition that must be satisfied by any limiting process so that 

AOF criterion may be applied. Further, for the special case of circular regions, we 

showed that the criterion also covered the extreme points of skeletal curves; that is, 

as the circle shrinks to a point P, the AOF tends to zero if and only if P £ Sk (X). 

We also saw that the nonzero limit value of the AOF on regular P e Sk (X), is 

actually the object angle in disguise. Table 3.1 summarizes the exact behavior. 

These results suggest a computational approach for the extraction of Sk (X) 

given a shape X: keep only the points P where the approximation to limp^p ^ R 

is strictly negative. However, there are several issues with this direct algorithm 

that must be addressed in order to obtain a robust and accurate approximation of 

Sk (X); this is the topic of the next chapter. 
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Chapter 4 

Flux-Based Skeletonization 

In Chapter 3, we derived an average outward flux criterion that allows us to distin

guish between points on the skeleton of a shape and those which do not belong to 

that structure. However, the discussion was carried out in the continuous domain 

R2 taking advantage of a tool not present in discrete computations: limits. A digital 

machine may only approximate limits so, if we are to use the theory from Chap

ter 3, we must understand the limiting behavior of the AOF even better. In this 

chapter, we shall analyze the distance function gradient field on a discrete lattice 

in order to adapt the continuous criterion to a square grid. This will then allow us 

to develop a procedure that computes a good discrete approximation of a shape's 

skeleton: the approximating points will be arbitrarily close to the real structure, 

ordered along skeletal curves, and we shall be able to guarantee a user specified 

maximal separation between consecutive points. 

In Section 4.1, we shall introduce the computational setup and discuss the mean

ing of homotopy equivalence on a discrete grid. Then, in Section 4.2, we shall de

rive an algorithm that produces a thin discrete approximation to the skeleton no 

more than a grid spacing away from the real skeleton. We shall also see there how 

the output of this procedure can be converted into a graph as discussed in Chap

ter 2. In Section 4.3, we shall analyze the adequacy of this approximation by study

ing the effects of thresholding the AOF criterion. Then, in Section 4.4, we shall see 

how the points in this approximation can be shifted to be within a user-specified 

distance to the real structure and, just before the summary (Section 4.6), we shall 

perform, in Section 4.5, a number of numerical experiments and corroborate our 

theory. 
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4.1 Computational Setup 

Given a shape X, its contour curves may be represented discretely through splines. 

For the purposes of computer vision, this does not seem to be a restriction and so 

it will be the representation of choice in what follows. In fact, as far as the sample 

implementation is concerned, contour curves will be assumed to be a collection of 

line segments satisfying the conditions of Definition 2.6. In Section 4.1.1, we give 

the details of acceptable representations for the computational framework in this 

chapter and, in Section 4.1.2, we discuss the notion of homotopy thinning on a 

square grid, as well as reasonable parameters for the estimation of limits there. 

4.1.1 ax, VDX and Discrete AOF 

In order to use the AOF criterion developed earlier, the computational setup should 

make it easy to determine the value of the distance function at any point on R2, 

as well as its gradient. If those quantities were exact (as accurate as hardware 

permits), then the approximation of the average outward flux through any circle 

of nontrivial radius could be computed within any specified tolerance of the real 

value. With these goals in mind, we now turn to the question of how to represent 

shapes efficiently. 

The curves forming dX (see Definition 2.6) can be given a notion of inside con

sistent with X. Since any such curve is simple and closed, by definition exactly one 

of the two regions it separates contains the shape — that is the inside of the curve. 

Now, if a point P G R2 is closest to a contour curve C(t), then it is inside the shape 

if and only if it is in the inside region for C(t). Hence, one can define a signed 

distance function DQ for each C(t): 

DCi(P)=xc,(P)infd(P,Q) 
QeQ(0 

where Xc (P) *s — 1 whenever P is in the inside region of Q(f) and 1 otherwise. 

Thus, the collection of Dc, "split" D x , that is 

D x ( P ) = m j n D Q ( P ) . 

Notice that, by Theorem 2.9(a), VDX also splits. 

Therefore, the object oriented paradigm may be used to perform the calcula-
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FIGURE 4.1. The lattice points overlayed on top of a shape defined in R2. 
These are the locations where the average outward flux is computed and 
where the thinning takes place. The gray circles identify the points in 
La(X). 

tions. Think of a shape as an object which collects several curves. If, in turn, each 

curve is an object endowed with a signed distance function as above and VDQ 

computed as suggested by the theorem, then the shape object knows how to com

pute Dx and VDx- To obtain DQ, a curve object may be seen as a set of atomic 

curve segments each endowed with the above distance function collected exactly 

similarly. Thus, if each atomic segment can provide exact information (as is the 

case for line segments used in the sample implementation), then exact information 

is returned by Dx and VDx. 

Unfortunately, the average outward flux must be numerically approximated. 

Recall that the average outward flux through a circle of radius r centered at P is 

given by 

[(VDx(P + rM(s)), M(s))ds 
* ( P ) = J~ ^ 

where J\f(s) is the outward normal to the circle and the integral is over the circle. 

Applying the Trapezoidal rule, the numerator is approximated by 

r 2nrn~l 

/ ( WDX(P + rN(s)), M(s) ) ds = 2 ( V D ( P + ^ O U ^ ( 0 > (4-1) 
J K i—n 

where J\f(i) = (cos(z'27r/n),sin(z27r/n)) is the outward normal to the circle at the 

sampled locations. To obtain the average outward flux, one simply divides the 

above by 27rr. 
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4.1.2 The Discrete Lattice ha 

The skeleton of a shape will be approximated by a finite set of points chosen from a 

discrete grid—the square lattice LCT. The representations in the previous subsection 

did not assume anything about where on the R2 plane the calculations are to be 

carried out. Consequently, there is no restriction on the size and position of the grid 

and therefore, as will become evident in what follows, the quality of the skeleton 

approximation is only limited by the choice of a. But first, the necessary definitions 

are discussed as well as how the discrete computations translate into properties of 

shapes in R2. 

Let us begin by formally introducing the discrete lattice. It is denoted ha and, 

as a set, can be thought of as the "square grid" in R2 with spacing1 a, i.e. 

Lff = ffZ x aZ c R2. 

Now, if X is a shape, let La (X) be the discrete representation of X, i.e. 

La (X) = {P G La : P e X} . 

A discrete approximation to the skeleton of X, denoted Sk^ (X), will be computed 

from La (X). The idea is to thin La (X) preserving homotopy type and using the 

discrete average outward flux as a stopping criterion. 

However, homotopy thinning in the discrete setting must be related to the con

tinuous case; in particular, it is desirable to somehow assign homotopy type to 

Sko- (X) and be able to verify that it is the same as that of X.2 To do this, let us 

introduce an operator, Sa (LI) (i.e. "the shape of LI"), that assigns a "shape" to a 

discrete set of points U C ha. Define it as 

Sa(U)= \jB2a/3(P); 
Pell 

that is, as the union of all closed balls of radius 2cr/3 centered at a point in LI. The 

radius is such that it is possible to find a "small enough" a for which Sa (La (X)) is 

of the same homotopy type as X, i.e. the following holds (see Appendix B, Propo

sition B.l for the proof) 

1OT, equivalently, resolution. 
2Meyer [34] provides an, essentially, equivalent solution to the one presented here, but he as

sumes shapes to be discrete entities. 
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Proposition 4.1. Given a shape X with no isolated points in dX, then there must be 

CTQ > 0 such that if a < UQ then Sa (La (X)) is homotopy equivalent to X. 

Hence, a homotopy thinning is performed on La (X) if and only if, at any step of 

the thinning, the resulting set LI is such that Sa (LI) is homotopy equivalent to 

Sa(La(X)). If a is small enough so that Sa(La(X)) is homotopy equivalent to X 

and Sko- (X) is the result of a homotopy thinning on La (X), then Sa (Ska (X)) is 

homotopy equivalent to X. 

Another important consideration in computing SkCT (X) is the calculation of the 

discrete average outward flux. The calculation in Equation 4.1 involves two pa

rameters: (1) the number of sample points and (2) the radius of the circle. As will 

be shown later, (1) affects the approximation to the actual average flux and error 

bounds are available, so let us look at (2). 

Chapter 3 showed the behavior of the average outward flux for very small val

ues of r (indeed, as r —> 0). Unfortunately, on ha, r may not be zero and if it is 

too small (e.g. r = O.lcr) then evaluating the AOF at some lattice points near the 

skeleton might not be affected by the skeleton at all and, consequently, would be 

an inadequate criterion for detecting such points. On the other hand, choosing a 

large r (e.g. 2cr) would make the AOF a poor skeleton detector as it would "blur " 

the information and hinder localization. A good compromise, then, (one for which 

properties are shown later) is 

r = a. 

This choice does not sacrifice localization for detection and it can also handle an 

n-point approximation of the AOF (see Equation 4.1). The following section elabo

rates. 

4.2 The Algorithm 

Chapter 3 provided a continuous criterion—the limit of the AOF through a shrink

ing circle—for separating skeletal points from non-skeletal points in R2 and, as we 

have just seen, it is possible to approximate it on a discrete lattice by evaluating the 

average outward flux through a small circle (radius r = a). However, it is not im

mediately clear how this approximation may be used to, in turn, approximate the 

skeleton on La (X) and obtain a thin structure, which is topologically equivalent 

to the original shape. We shall see, in Section 4.2.1, that the most straightforward 
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approach—simply thresholding on the AOF—is not an acceptable solution: the re

sult is thick and possibly disconnected. The second problem may be fixed by a 

homotopy thinning, a class of algorithms discussed in Section 4.2.2, but we'll see, 

in Section 4.2.3, that the first problem needs more work. In Section 4.2.4, we'll dis

cuss the selection of discrete end-points, which will then be used to thin again and 

produce the desired result. Finally, in Section 4.2.5, we'll see how to obtain the 

graph interpretation (discussed in Chapter 2) of the thin skeleton. 

4.2.1 Thresholding the AOF on ha 

Chapter 3 presented a criterion that distinguishes between points on the skeleton 

of a shape from those which are not on the skeleton—in the limit as a circle shrinks 

to a point, the average outward flux is nonzero in the former case and identically 

zero in the latter. Chapter 2 on the other hand, discussed properties of the signed 

distance function Dx induced by a 2D shape X, and showed that VDx is continu

ous almost everywhere. It is therefore reasonable to expect that the behavior of the 

AOF through circles of small radius be similar to the limiting case; in other words, 

it should be possible to obtain a discrete approximation of the skeleton, Ska- (X), 

by simply keeping points in La (X) for which the AOF is above a certain value. Of 

course, the quality of this approximation depends on how the AOF is obtained and 

on the threshold. 

Although it is difficult to make general statements about the behavior of the 

AOF through a circle of radius a, it is possible to bound the AOF if the circle C£ 

is completely inside the shape and C£ does not contain any skeletal points in its 

interior. The bound is a function of maximum variation of the orientation of VDx,* 

i.e. (see Lemma B.2 on page 84 for the proof) 

Lemma 4.2 (Deviation). Let E(s) : [0o,0i] -»• [-6/2,6/2] for 0 < 6 < 2/r. Then 

6\ I 
2n 

cos(ct + £(s) + s ) ds 
o 

< 6 + 2 sin , 
V2 

Further, if the integral is numerically approximated by the Trapezoidal rule with n 

sample points and separation ̂  between them, then 

j(") <<5 + 2 s i n ( ^ j + N u m E r r ( n ) 
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where the top integral actually denotes the outward flux through a circle (recall 

Section 3.4) and P") denotes the rc-point approximation given by Equation 4.1 with 

numerical error NumErr(n). So, if 6 can be reasonably estimated for circles as 

above, the lemma provides a bound for the continuous version of the AOF through 

those circles (or if NumErr(n) = 0). The following lemma provides a tight bound 

on 6 (refer to Lemma B.3 on page 87 for a proof): 

Lemma 4.3. Let X be a shape and dX its boundary. Let C^ be a circle centered at P with 

radius o. Assume that C£ does not contain in its interior any skeletal points or points on 

dX. Let 5 be the maximum difference in orientation of VDx through C^. Then, 

c ^ ^ . / cr \ 
6 < 2arcsin 

where d = min {d (Cj, dX), d (Cj, Sk (X))} > 0. 

Hence, collecting Lemma 4.2 and Lemma 4.3, the following can be said about 

the numerical approximations of the average outward flux under the assumptions 

of Lemma 4.3: 

Corollary 4.4. Let X, dX, C^ and d be as in Lemma 4.3 and suppose the average outward 

flux through C£ is approximated by n sample points as in Lemma 4.2. If^a(P) denotes 

this approximation, then 

^n\p) <-L 
- 2/r 

2 a r c s i n ( ^ ) + 2 {ah +NumE"W 
Therefore, if the numerical error could be made negligible, then thresholding ac

cording to the above bound would guarantee that the points kept are at most dis

tance d away from the skeleton. The following result suggests how to achieve this 

(see Lemma B.4 on page 88). 

Lemma 4.5. Let Xbe a shape and denote by tc(t) the curvature function ofdX wherever 

it is defined. If the boundary is made of line segments then 

4n3 

NumErr(n) < — T . v J ~ 3n2 

Suppose X C BR (P), \x(t)\ < Ki e R and \K'(t)\ < K2 e R. If £ - f > a and 
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INPUT: La (X) C La 

OUTPUT: S T h r W ( X ) c L , 
SThv(d)(X) = 0 

for all Pe La (X) do 
if&a

n){P) < - T h r (<I) then 
Insert P in SThr{d)(X) 

end if 
end for 

ALGORITHM 1. Skeleton approximation by simple thresholding. 

n = 2kfor k>2 then 

4 7r3 / 1 Rs 

NumErr(„) < -^S I - - -

where 
c/^^ ^ v

 R 8 + 38£2 + 25£3 + 8£4 + 28£ + £5 

£(£ ) < K2- -5 

8 + 16£ + 2£3 + 10£2 

+ I5 

Thus, we define a thresholding function as follows: 

Definition 4.6. The threshold function Thr (d) is 

1 
Thr (d) = 

27T 
2 arcsin I ] + 2 

d-\- a J \d + a 

Now the simple algorithm for approximating the skeleton of a shape consists of 

computing the AOF approximation at all points in La (X) and keeping only those 

that satisfy a threshold given by Thr (d); see Algorithm 1. 

So far, we only have negative results about the performance of this procedure— 

Corollary 4.4 estimates which lattice points are discarded by thresholding according 

to Thr (d). Let us now examine which elements of La (X) that are close to Sk (X) 

might be kept. First, assume that the circle of radius a centered at P G La (X) is 

intersected by a curve segment of the skeleton. Without loss of generality, P is at 

most <J/2 away from the skeleton. In this case it is possible to amend Lemma 4.2 to 

obtain (Lemma B.2 on page 84 for the proof) 
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Lemma 4.7. Let P be such that Cj intersects the skeleton, i.e. the interior of the circle 

contains points in Sk (X). Then, the n-point approximation of the AOF is bounded by 

- - ? - (4sin(a) + E) < &a
n){P) < -^- (2 v

/ 3s in(a) - E) 
2TC 2n V / 

where E = 4(5 + NumErr(n), and VDx along the circle meets the skeleton at an angle 

bounded by [a — 6/2, a + 6/2}. 

Now, using Algorithm 1 and the bound from Lemma 4.7, it is possible to estimate 

which points will be kept. Consider 

. -L(4s in(«) + E ) < - ^ - 2 arcsin a 
d+a 

+ 2 a 
d + a 

so 
a > arcsin 

and, exactly similarly, 

a < arcsin 

1 / o • ( ° * - 2 arcsin 
4V W + 0-. 

+ 2 a 
d + a 

-E 

( 2arcsin a 
d + a 

+ 2 
d + a 

+ E 
2V3 \ 

Therefore, recalling Corollary 4.4, 

Theorem 4.8 (Threshold Lemma). The points P in La (X) which satisfy 

&an)(P) < -Th r (d ) 

(4.2) 

(4.3) 

are 

1. No further than dfrom the skeleton (for large enough n); and 

2. Those which are closer than a/2 from the skeleton are such that the object angle of 

the skeletal points contained in a a-ball around the point is bounded by 

arcsin -(2nThr (d)-E) < a < arcsin 
1 

2\/3 
(2/rThr (d) + E) (4.4) 

where £ = 4<5 + NumErr(rc), and VDx along the circle C^ meets the skeleton at 

an angle bounded by [a - 6/2, a + 6/2]. 

Notice that the lattice points that would best approximate the skeleton are those in 

part 2 of the theorem; that is, points no further than a/2 from the Sk (X). Indeed, 
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it is desirable to obtain 

Ska (X) = { P e L f f : d (P, Sk (X)) < 0-/2} . (4.5) 

However, simple thresholding does not provide this ideal approximation; in 

fact, serious issues arise due to the global nature of the operation. To illustrate, let 

us assume that the error term £ in Theorem 4.8 is negligible. Then, the points kept 

by a threshold Thr (d) will "be of object angle"3 which is a function of Thr (d). At 

the same time, there might be P <E La up to d away from the real skeleton that will 

also be kept by this procedure. Now, if SThr^(X) denotes the approximation of 

the skeleton by thresholding, a real problem arises if Sa (SThl^(X) J is not of the 

same homotopy type as Sa (La (X)), which, regrettably, is quite possible. 

Consider the examples in Figure 4.2; the shape is shown on top and the contents 

°f Sxhr(i)(X) for d = 3 just below. The flux was approximated with n = 30 and 

it is easily seen that 6 is zero at all points of the skeleton except on the line in the 

middle where it is proportional to ^ ^ (r is distance to the contour). The object 

angle near the junction points on the side closer to the center is lowest relative to 

the rest of the skeleton which explains the lack of approximating pixels there. On 

the other hand, the threshold cannot remove the "noise pixels" near the end-points 

corresponding to the centers of curvature of the two circular arcs. Note that this 

situation is inescapable: if a threshold is picked high enough to remove some of 

the noise at the end-points (e.g. d = 1), then the object angle of the points kept by 

this threshold will increase and the gaps in SThr^ (X) will become even wider. 

This example demonstrates that, even for generic shapes, any ct-skeleton may 

have regular points with object angles much lower than a. Thus, the result of 

thresholding on the object angle will possibly be disconnected or trivial (empty). 

Hence, Algorithm 1 will not produce a thin—as in Equation 4.5—skeleton approx

imation which is topologically equivalent to the initial shape. In the following, we 

shall couple thresholding with a homotopy thinning approach. 

4.2.2 Homotopy Thinning 

Section 4.1.2 introduced the notion of a homotopy thinning on subsets of La 

but did not discuss any such procedure. Vincent [54] discusses such an algorithm 

and provides removability tables. However, it turns out that there is a simple nec-

3In the sense of Equation 4.4. 
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d = 3a 

FIGURE 4.2. Simple thresholding. Thresholding for a thin skeleton may 
disconnect the approximation. 
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FIGURE 4.3. LEFT: A 3x3 neighborhood of a 2D digital point P in a rect
angular lattice. RIGHT: An example neighborhood graph for which P 
can be removed. Note that there is no edge between neighbors 6 and 8 
(see text). 
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1: INPUT: U C La 
2: OUTPUT: W C U 
3: while There is a removable P € dll do 
4: choose p € air 
5: if P is removable then 
6: U=U-{P} 
7: end if 
8: end while 

ALGORITHM 2. Generic thinning. Here dU is the discrete boundary of U 
which, of course, assumes that 17 is bounded. Step 4 would incorporate 
the criterion in Proposition 4.9 to turn this procedure into a homotopy 
thinning. 

essary and sufficient condition that determines if a thinning scheme is homotopy 

preserving or not (see Dimitrov et al. [18]). 

We begin with the notion of thinning. Algorithm 2 is the description of a generic 

thinning procedure: at each step somehow select a point on the boundary of the 

remaining object and remove it if it makes sense for the application at hand. Typ

ically, an order is assigned to the pixels on dU and removal is attempted accord

ingly; the algorithm terminates if all candidates must be kept. However, remov

ability plays an even more important role—the topology (on Sa (U), say) induced 

by U can be directly controlled by tuning this criterion. 

Let Li C La be the initial (bounded) set and denote by U^ the resulting set after 

removing n points from IT. Let P be such that lj(" -1) = {/(") U {P}. The homotopy 

type of Sa (IP'" -1) 1 and Sa ( U ^ J will be different if and only if the removal of 

P creates a hole in Sa (IJ("_1) J or locally (as in Figure 4.3 left) disconnects it. It is 

convenient to view this as a graph problem. Consider the 3x3 neighborhood of P as 

shown in Figure 4.3, and select those neighbors that are also in U^n~lh Construct a 

neighborhood graph by placing edges between pairs of points that are 4-adjacent 

or 8-adjacent to one another. If any of the 3-tuples {2,3,4}, {4,5,6}, {6,7,8} or 

{8,1,2} are nodes of the graph, remove the corresponding diagonal edges {2,4}, 

{4,6}, {6,8} or {8,2}, respectively. This ensures that there are no degenerate cy

cles in the neighborhood graph (cycles of length 3). Now, observe that if the re

moval of P disconnects Ll("_1) or introduces a hole, the neighborhood graph will 

not be connected or will have a cycle, respectively. Conversely, a connected graph 

that has no cycles (i.e. a tree) means that LP'") will be of the same homotopy type 
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as IP" - 1 ) . Hence, the criterion may be expressed as follows: 

Proposition 4.9. Sa (iP'""1)) = Sa (u^ U {P}) andSa ( l i (")) are homotopy equiv

alent if and only if the neighborhood graph ofP, with cycles of length 3 removed, is a tree. 

The application of this criterion is fairly simple: a graph is a tree if and only if 

its Euler characteristic number (i.e. number of nodes minus number of edges) is 

identical to 1. 

Hence, the first problem identified in the previous subsection—that of pre

serving topology—may be solved by combining thresholding and Proposition 4.9; 

which is the approach discussed next. 

4.2.3 Thick Skeletons 

In Section 4.2.1 a first attempt was made to approximate the skeleton of a shape but 

it was demonstrated to be flawed: simply keeping lattice points with high enough 

flux, according to a threshold, could (and, by and large, always does) disconnect 

the skeleton thereby yielding an approximation which is not topologically equiva

lent to the original shape. The previous subsection on the other hand, suggests an 

approach to fix this problem but, as will become clear, the final issue pertaining to 

the thickness of the approximation will have to be addressed separately. 

Consider the condition on line 4 in Algorithm 2. Combining thresholding with 

homotopy thinning amounts to defining this criterion and specifying how to choose 

a point on the boundary in line 3. Therefore, let a point P G dU be removable if and 

only if &a (P) > —Thr (d) and its removal maintains the topology unchanged, i.e. 

using Proposition 4.9. Now, in order to obtain an approximation which is as close 

as possible to Sk (X), the points on the boundary that should be removed first are 

those furthest from Sk (X) or, equivalently, those closest to dX. Algorithm 3 is the 

ensuing procedure and Figure 4.4 provides some examples of its application. 

There is an important relationship between the output of Algorithm 3 and that 

of Algorithm 1. Let SThick(d)(X) denote the approximation of Sk (X) obtained by 

Algorithm 3 and let Sxhr(d) (X), as before, be the approximation obtained by simply 

thresholding. Then 

SThr{d)(X) ^ Smck(d)(X) ) 

in other words, this procedure may only add points to SThr(rf)(X) and if it does, 

then those will be as close as possible to Sk (d), i.e. less than cr/2 from it. This 
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a 

d = 3a 

FIGURE 4.4. Thick skeletons. Contrast with Figure 4.2; homotopy thin
ning maintains connectivity. 



4.2 The Algorithm 57 

INPUT: U = La (X) C L a 

OUTPUT: ST W c J t ( d )(X)c Lff (X) 
while There is a removable P G dU do 

Choose P G 317 closest to dX among remaining choices. 

if &an) (P) > - T h r (d) and NG(P) is a tree then 
17= U-{P} 

end if 
end while 
SThick(d)(X) = U 

ALGORITHM 3. Thick skeleton algorithm. NG(P) denotes the neighbor
hood graph of P as described in Section 4.2.2. 

is a consequence of the ordering of the points on dU in Algorithm 3; a point P G 

^Thkk(d)(X) which is not in SThT^(X) must be furthest possible from the boundary 

among its neighbors that have not been kept. 

However, the relationship also implies that SThkk^ (X) can possibly contain lat

tice points as far as d from the real skeleton of the shape. Indeed, the noise present 

in Figure 4.2 is still there in Figure 4.4 (left column, middle) and the diagonal lines 

are still thick. To remedy the situation, the output of Algorithm 3 may be further 

thinned to obtain an even better approximation, one that will contain lattice points 

no further than a/2 from Sk (X) everywhere, except possibly near end-points and 

junction points. 

The idea is simple: identify discrete end-points, disallow their removal by an

choring them (similarly to Vincent [54]), and perform a homotopy thinning on 

SThkk(d)(X); see Algorithm 4. However, devising criteria for the selection of end-

points in SThicud\(X) turns out to be non-trivial. In the following section we shall 

examine this problem and propose a solution. 

4.2.4 Selection of End-Points 

The skeleton approximation SThick^(X) obtained in the previous subsection is 

"thick" while the desired approximation should not be. The solution is to thin 

it further by designating certain points as anchors for which the natural choice are 

the discrete end-points; Algorithm 4 contains the precise idea. To complete the 

procedure, it then suffices to define the criteria for end-point selection. This will 

be done by exploiting the defining characteristic of a continuous end-point but, as 
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l: Start with U = SThlck{d)(X) C La 

2: while There is a removable P G 911 do 
3: Choose P G dU closest to dX among remaining choices. 
4: if P is not an end-point and NG(P) is a tree then 
5: U=U-{P} 
6: end if 
7: end while 
8: Return SThm{d)(X) 

ALGORITHM 4. Thin skeleton algorithm—it needs the output of Algo
rithm 3. NG(P) denotes the neighborhood graph of P as described in 
Section 4.2.2. 

we shall see, the range of acceptable values for Thr (d) will be limited as a conse

quence. 

FIGURE 4.5. A skeletal end-point in R2. 

Consider a skeletal end-point, e.g. as depicted on Figure 4.5, and recall Defini

tion 2.20(h). The statement of this definition expresses the fact that one can place 

a small enough circle on the end-point which intersects the skeletal curve exactly 

once. Analogously, on the discrete lattice La, one may define as end-points all 

those P G La for which there is a small enough discrete circle centered at P and 

which intersects the (thick) skeleton exactly once. The problem, however, is that of 

making precise the notion of "small enough" in this context. 

By its nature, La (X) C La only admits a finite number of discrete circles at any 

given P G La (X) and the one with smallest nonrrivial radius r is when r = a. 

However, the above criterion using r = a on La (X) is satisfied by many points 

which should not be labeled as end-points; for example, every corner on the thick 

skeletons on Figure 4.6 LOWER RIGHT. On the other hand, if r is bigger, then certain 

end-points may be ignored and whole branches lost; see Figure 4.6 LOWER LEFT. 

Fortunately, if one is willing to impose conditions on d (and limit the types of skele

tons produced as a result), the notion of a discrete end-point may be made precise 
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FIGURE 4.6. SThick(5\(X). Problems with selecting discrete end-points. 
LOWER LEFT: The end-point may not be detected if r is too big. 
LOWER RIGHT: If r is small some points may be misclassified as end-
points. 



TABLE OF CONTENTS yi 

3.4 Circular Neighborhoods 34 

3.4.1 Regular Skeletal Points 34 

3.4.2 Skeletal End-Points 37 

3.4.3 Skeletal Junction and Pseudo-Junction Points 38 

3.4.4 Non-Skeletal Points 41 

3.5 Summary 41 

4 Flux-Based Skeletonization 43 

4.1 Computational Setup 44 

4.1.1 3X, VDX and Discrete AOF 44 

4.1.2 The Discrete Lattice La 46 

4.2 The Algorithm 47 

4.2.1 Thresholding the AOF on La 48 

4.2.2 Homotopy Thinning 52 

4.2.3 Thick Skeletons 55 

4.2.4 Selection of End-Points 57 

4.2.5 The Final Product: Skeletal Branches 60 

4.3 Thresholding on End-Points 62 

4.4 Shifting 64 

4.5 Experimental Results 66 

4.6 Summary 68 

Conclusion 74 

A Proofs for Chapter 2 77 

B Proofs for Chapter 4 84 



4.2 The Algorithm 60 

and the aforementioned issues circumvented. 

Suppose d < a and consider SThick^(X). Then, by the Threshold Lemma (on 

page 51), SThlck(d}(X) is no more than 2cr thick; in particular, near end-points, there 

may be no more than two adjacent lattice points in SThicud\ (X). Hence, any poten

tial discrete end-point P is in one of the following situations 

(a) P has a single neighbor or two neighbors which are 4-adjacent to one another, 

(b) P has a neighbor Q such that with Q removed, P is as in (a). 

The only potential ambiguity in this characterization is when (b) holds for both 

P and Q. In that case, it is reasonable to pick arbitrarily between the two. Thus, a 

complete criterion is available that does not mislabel discrete points, as guaranteed 

by (a), and does not allow for Algorithm 4 to shorten the approximation (e.g. by 

removing a branch) because of (b). An example of the complete procedure com

paring it to Algorithm 3 is shown in Figure 4.7. 

4.2.5 The Final Product: Skeletal Branches 

A very useful approximation of the skeleton of a shape consists of individual (thin) 

approximations of the skeletal curves. Once Sj^^^X) is obtained, it is easy to 

"break" it into skeletal branches using simple criteria for labeling discrete points as 

one of three types: end-point, branch point (analogous to regular points in Sk (X)) 

and junction points. It is enough to consider the number of intersections of a dis

crete 1-circle, i.e. the boundary of a 3x3 square, with Sj^t^ (X): 

• P G SThlck(d}(X) is a discrete end-point if and only if the square intersects 

Smck(d) ( x ) exactly once; 

• P is a branch point if there are exactly two intersections; and 

• P is a junction point otherwise. 

Notice that this characterization is naturally broken into discrete curves: by 

definition, the collection of neighboring branch points gives such a partitioning. 

Thus, a skeletal curve is approximated by the set of 8-connected branch points 

and, if so desired, by the two end-points or junction points neighboring this set. 

Therefore, tangents to the skeleton may be approximated. Observe, however, that 
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FIGURE 4.7. TOP: Thick skeleton SThick^)(X). BOTTOM: The thin discrete 
skeleton SThm{l)(X). 
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it is possible to get several neighboring junction points, but there may be no more 

than four arranged in a square. 

An important question about this representation is: what does it describe? The 

next section provides an answer. 

4.3 Thresholding on End-Points: Consequences for Shape 

Representation 

In Section 4.2.4 a compromise had to be made when determining which discrete 

points should be labeled as end-points, namely, the threshold Thr (d) had to be 

taken so that d < a. Even though at first glance this may seem overly restrictive, it 

turns out that STk.in^(X) (for d < a) represents a significant portion of the shape 

X. To demonstrate and quantify this claim, SThinid\(X) will be treated as approxi

mating an a-skeleton of X (refer to Definition 2.30 on page 26) and upper bounds 

for this a will be determined. 

To begin, observe that the end-points in SThm^(X) are the first ones to satisfy 

the threshold as guaranteed by the criterion in Section 4.2.4. Hence, this approx

imation of the skeleton completely covers the a-skeleton where a is the largest 

object angle attributable to a discrete end-point in SThm^ (X). It is straightforward 

to obtain an upper bound for such an a using Equation 4.4 of the Threshold Lemma 

(page 51), reproduced here for convenience: 

arcsin \ (27rThr (d) - E) < a < arcsin 
2y/3 

(2/rThr (d) + E) 

where E — 46 + f^ and the object angle is in the interval [a — 6/2, a + 6/2}. With 

E = 0 and d = a, the object angle is bounded above by 

a < arcsin ( ^ f 1 ) « 36.226" 

and the a-Skeleton Theorem (see page 27) implies that this a-skeleton represents 

over 96% of the shape's area.4 The question now is: does SThin^(X) approximate 

well the a-skeleton for a = 36.226° ? 
4 Actually, the theorem gives this bound for individual protrusions; thus, this it is a loose bound 

for most shapes. 
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The answer is yes if the the end-points of the a-skeleton are at least distance b 

from the boundary and if a is appropriately chosen. Then, as we shall now see, 

it can be shown that the discrete point will be at most a from the skeletal location 

which has object angle greater than this a. 

To see this, let P G Sk (X) be within the circle of radius a around a discrete end-

point in SThin(a)(X) (such a P must exist as guaranteed by the Threshold Lemma). 

Denote by VP the set of all shortest paths connecting P to a real end-point of Sk (X) 

and pick some y G Tp; see Figure 4.8 TOP. First, suppose any circle of radius a 

containing portions of y actually contains line segments. Now, consider walking on 

y starting at the real end-point and moving toward P. If, along the way, the object 

angle becomes greater than a and then decreases, denote by Q G y the location 

where it is greatest. Assume, without loss of generality, that d (P, Q) > a. The 

greatest rate of decrease of the object angle on the stretch starting at Q and ending 

at P, denoted yQp, is reached if all P' G yQp are closest to the same boundary point 

B. This rate is given by a'(s) = s'"/g| where a(s) and r(s) are the object angle and 

the distance to the boundary, respectively; see Figure 4.8 BOTTOM. 

Hence, on the circle centered at P and of radius a, 6 is no more than if the circle 

was in a gradient field defined by a single point at least b away from its center. By 

Lemma 4.3, it follows that 6 is bounded as 

6 < 2 arcsin 
a + b 

Now, if y is not a line segment, we can use the fact that the skeleton's curvature 

is no more than one over the radius value there (see Damon [15]) and choose the 

lattice spacing, so that any portion of y contained within a circle of radius a has 

tangents with maximum variation in orientation C for any specified c\5 So, in the 

general case, 

6 < 2arcsin ( —^—r ) +C • \a + bj 
Hence, given 6Q and using the above, a may be chosen so that 6 < 6Q. Moreover, 

Lemma 4.5 suggests a method for bounding the numerical error, i.e. how to choose 

n in order to guarantee NumErr(n) < £ G R+. Consequently, given £Q > 0, we 

5For example, if the boundary is given by a sequence of evenly points, say on a grid, then the 
curvature of the skeleton may not be more than one over that separation. 
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—• •-
P Q 

y connects P to real end-point E 

FIGURE 4.8. TOP: boundary (thin line) and corresponding skeletal curve 
(thick line). BOTTOM: The object angle, denoted by oq for i = 1,2, can be 
expressed as ratios and the derivative of the object angle can be obtained 
by looking at the difference cx2 - ot\ and taking the limit as d (Pi, P2) —> 
0. Thus, a' = sin(a)/r. 

can make E < EQ and 

1 » , 4sin(aP) + rZ0< J?a
!(P) < —(4s in (a P ) - £0) 

2.71 ZTC 

1 

sinar where \ap — « Q < y ^a. 

4A Shifting 

Under certain conditions, the discrete approximation SThin^(X) of the skeleton 

may be further improved. In fact, it is possible to shift the discrete points to be 

arbitrarily close by applying a bisection scheme, see Algorithm 5. A possible side 

effect of this algorithm is a reordering of the discrete points as obtained by the 

procedure outlined in Section 4.2.5. In general, it may be very difficult (impossible) 
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1: INPUT: The tolerance T and SThin{d)(X) c La. 
2: tor a\\ P e STlun{d)(X) do 
3: VP = VDX(P) 
4: S = a 
5: while V D x ( P + svp) = vp do 
6: s = s + a 
7: end while 
8: Q = P + SVP 

9: while d (P, Q) > T do 
10: M = i (P + Q) 
11: if VDX(M) ^ vpthen 
12: Q = M 
13: else 
14: P = M 
15: end if 
16: end while 
17: end for 
18: Return ST(X) 

ALGORITHM 5. Shifting of the discrete skeleton approximation given by 
^Thin{d)(X), the output of Algorithm 4 (see page 58). Returns a discrete 
skeleton approximation where the points are no more than r away from 
Sk(X). 

to put them back in order, but if the smallest object angle in the a-skeleton is not 

too small relative to the lattice spacing, Algorithm 6 will do just that. 

The property this algorithm relies on is that the closest point Q to a given P in 

the original unordered set will, in fact, be the next point along the skeletal curve. 

This is true whenever d (P, Q) is small relative to the curvature of the curve. So, 

if d (P, Q) is always less than or equal to d (P, dX), the procedure will yield an 

appropriately ordered set O. 

Now, let's derive a criterion that ensures this and allows us to estimate d (P, Q). 

Observe that, before shifting, d (P, Q) < V2/2a and that a discrete point will not 

be shifted more than j-gnr^ ^ r o m i t s original position where a is the angle of the 

gradient through the point and the skeleton. Therefore, if the smallest object angle 

is an, choosing a such that 
a l v /2 

•^—. < -z-^-v 
2 sin an 2 2 

ensures that Algorithm 6 will produce ordered sequences of points. Notice that a 
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1: INPUT: The shifted thin skeleton ST(X). 
2: OUTPUT: Set of ordered curves O. 
3: for all Curves C in ST(X) do 
4: Pick P eC 
5: Pick QeC-{P} closest to P. 
6: Pick Q' G C - {P, Q} closest to P. 
7: i f d ( Q , Q ' ) < d ( P , Q') then 
8: 0 = {P,Q,Q'} 
9: else 

10: C = {Q',P,Q} 
ll: end if 
12: while C - O ^ 0 do 
13: Let P be the beginning of O and Q its end. 
14: Pick P' eC-(OU{P}) closest to P. 
15: PickQ' eC-(OU{Q}) closest to Q. 
16: i f d ( Q , Q ' ) < d ( P , P ' ) then 
17: insert Q' in (9 after Q 
18: else 
19: insert P' in O before P 
20: end if 
21: end while 
22: end for 
23: Return ST(X) 

ALGORITHM 6. Reordering of points after shifting; see Algorithm 5. 

lower bound for CXQ may be obtained by assuming that the closest distance between 

any two dull corners is no more than dc, then 

-^ < sin(an) 

where R is the radius of the shape X, i.e. such that X is contained in a ball of radius 

R. This bound is particularly useful when the initial shape is given on a discrete 

grid; then, dc is no more than one grid separation. 

4.5 Experimental Results 

In this section, we shall perform experiments using Algorithm 4 and Algorithm 5. 

We shall apply the boundary reconstruction procedure suggested in Section 2.4 
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on the output of a thin, shifted discrete approximation of the skeleton in order to, 

qualitatively, corroborate the theoretical guarantees provided in this chapter. 

The setup is the same as in Section 4.1 where the shapes are given by bound

aries consisting of line segments. The samples do not have holes in them, but that 

is not a limitation of the algorithms, it is a consequence of the current implemen

tation. Figure 4.9 presents an overview of the steps involved in the experiments. 

First, a binary image is taken and its discrete contour traced. This gives an ordered 

list of pixels connected with line segments. Thus, a closed curve C(t) : R —• R2 is 

obtained6. Next, Algorithm 4 is applied (d = 1), which yields a one-pixel thick dis

crete skeleton. These are shifted using Algorithm 5 to better approximate the tan

gents to Sk (X). Finally, the object angle is obtained through the average outward 

flux approximation as predicted by Equation 3.7 (see page 37) and, for each discrete 

skeletal point more than two pixels away from a junction point or an end-point, the 

two corresponding boundary points are reconstructed using Equation 2.5 (see page 

25). 

Figure 4.10 provides additional examples of the above computation and Fig

ure 4.11 compares the accuracy of the method to that of an exact calculation. The 

profile on the left uses straight lines to show the association of regular skeletal 

points with their bi-tangent points on the contour (the black circles). Here the as

sociation has been determined by using the average outward flux limit values to 

obtain the object angle. The profile on the right demonstrates an "exact" computa

tion, where the bi-tangent points are obtained by connecting each regular skeletal 

point from the shifted approximation to its two closest contour points. Notice how 

similar the two computations are. 

The final demonstration is shown on Figure 4.12. A rectangle defined on the 

discrete grid is rotated on the lattice and the above experiment run for three angles. 

Observe that, for all samples, the accuracy of the reconstruction suggests an even 

higher accuracy for the skeleton approximation. The reason for this is that both 

tangents to the skeleton and object angle have to be estimated well in order to 

obtain a good approximation to the boundary points: a small inaccuracy in either 

one results in a big error for boundary points, especially where the radius function 

is highest. 

It should be pointed out that certain portions of the contour have not been re

constructed because the end-points of the skeleton have been chosen to satisfy an 

6The pixel locations are smoothed to account for jaggedness inherent in all discrete images. 
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object angle threshold (above 30°). Consequently, the end-points shown, although 

very close to the real ones, may not be actual end-points of the skeleton and whole 

branches of Sk (X) may not have corresponding discrete branches.7 Thus, to ap

proximate the missing portions of the contour, it would be necessary to draw the 

circular arcs corresponding not only to the approximate end-points, but to account 

for the missing branches as well. The latter being a nontrivial task, the reconstruc

tion was limited to the regular skeletal points. 

4.6 Summary 

In this chapter, we developed a method that computes an approximation to the a-

skeleton of a shape and demonstrated how to choose parameters in order to get an 

arbitrarily good representation of the continuous object. The main idea revolves 

around adapting the AOF criterion discussed in Chapter 3 to the discrete lattice. 

We analyzed the effects of thresholding the discrete version of the AOF and de

termined a threshold function that ensures only points no more than aa specified 

distance from the skeleton may be kept. Then, we incorporated this idea into a ho

motopy thinning procedure which outputs a thick but topologically adequate ap

proximation. Once we identified the discrete end-points, we could thin again and 

obtain a thin discrete skeleton which can be naturally broken into discrete skele

tal branches. These branches are simply an ordered sequence of points, hence, 

tangents to the medial axis may be obtained from them. To approximate those tan

gents even better, we then devised a shifting procedure which moves the points 

in a branch to be within a specified (arbitrary but strictly positive) distance to the 

skeleton while ensuring that the ordering is preserved. Algorithm 7 summarizes 

these steps. 

7For example, on Figure 4.4, the panthers paws have small branches when thresholding with 
d — 3a which are not detected by the lower threshold of d = a. 
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1: INPUT: La (X) C La 

2: OUTPUT: SThr(d)(X) C La 

3: Get Sjfccui\(X) by running Algorithm 3 on La (X) 
4: Get SThtn{l)(X) by running Algorithm 4 on SThlck{1)(X) 
5: Shift SThin(i}(X) within T of Sk (X) with Algorithm 5 
6: Ensure branches are ordered with Algorithm 6 and output Ska (X, 37°) 

ALGORITHM 7. The complete procedure. 
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\7 

\7 

FIGURE 4.9. (1) From a binary image, the boundary is extracted and rep
resented as a continuous curve. (2) The skeleton is computed and shift
ing performed. (3) Using the average outward flux and radius values 
along the skeleton, the boundary is reconstructed. 
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FIGURE 4.10. For each shape the original boundary is shown as thin 
curve, the skeleton obtained using the average outward flux is shown 
with thick curves and the boundary points estimated from the skeleton 
using the relationship between the average outward flux and the object 
angle oc are shown with black circles. 
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FIGURE 4.11. Bi-tangent points associated with regular skeletal points: 
(LEFT) computed using average outward flux information and (RIGHT) 
computed explicitly. 
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Binary image Continuous shape Result 

Original 

Original rotated by 10° 

Original rotated by 40° 

FIGURE 4.12. Examples showing the boundary reconstruction of a shape 
that has been rotated on the discrete grid. 
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Conclusion 

Overview 

In this thesis we have studied the problem of computing the medial axis of a 2D 

shape. The discussion began in Chapter 2 where the necessary formalisms were 

introduced and several properties of skeletons demonstrated. Then, in Chapter 3, 

we saw how a normalized flux measure could be used to identify medial points 

distinguishing them from non-medial points. In the previous chapter, Chapter 4, 

we adapted those results to the discrete lattice La and developed an algorithm 

for estimating the skeleton by a finite number of "sample" points. Here, we shall 

revisit each of these steps. 

The first chapter in the development of this thesis, Chapter 2, introduced a num

ber of definitions and properties about shapes and their skeletons. As is necessary 

for the implementation on digital machines, we adopted a formalism for shape 

that allows its skeleton to be seen as a finite graph. In turn, the medial axis was 

introduced in two different ways—as the locus of maximally inscribed disks and 

as singularities of Dx—both of which provided a unique perspective of the same 

mathematical object. We have since mixed language, referring to the "radius" func

tion along skeletal branches as borrowed from the first definition and to object "an

gles" inspired by the second one. The interplay between these formulations also 

allowed us to establish a number of useful properties of the skeleton: it is thin 

(trivial interior); with finitely many non-regular points and, consequently, finitely 

many smooth curves; it has a natural interpretation as an invariant under rigid 

transformations; and it can be used to represent the boundary explicitly, without 

having to take the envelope of maximal disks (see Theorem 2.28). We were then 

able to talk about shapes and their skeletons formally having developed most of 

the necessary language. 

In Chapter 3, we set out to derive a criterion which identifies points on the plane 
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as either belonging to the skeleton or not. There, the second definition of medial 

axis—singularities of Dx—proved most useful. Indeed, the main idea was to locate 

the points in IR2 where the distance function is not differentiable. To do this, we 

demonstrated that the flux through the boundary of an appropriately shrinking 

region behaved (asymptotically) differently if the region collapsed to a point on the 

skeleton than to a point away from it. In fact, we showed that the average outward 

flux, obtained by dividing the flux by the length of the boundary, exhibited the 

behavior explicitly: it is non-zero only on medial points. We demonstrated that 

this value was actually the sine of the object angle for general shrinking regions, 

and we derived the explicit behavior for circular regions on all types of skeletal 

points (see Table 3.1 on page 42). However, these results could not be used without 

modification on a discrete lattice. 

In the final chapter of the development (Chapter 4), we adapted the criterion 

obtained earlier for use on the discrete lattice and then applied it to obtain an al

gorithm which computes an arbitrarily close approximation to the skeleton. There 

were several steps. First (Section 4.2), we analyzed the behavior of the average 

outward flux through a small circle and determined how to threshold this value 

so as to define a, no more than two pixel thick, anchor set for a homotopy thin

ning. That allowed us to extract end-points of the thick approximation and thin 

again. We then had a one pixel thick approximation (except possibly at junction 

points) that was guaranteed 7to be no more than half a pixel away from the real 

skeleton. Further, we showed (in Section 4.3) that this thin approximation actually 

covered the a-skeleton (for a = 37°) evenly which demonstrated the adequacy of 

this representation. In order to obtain an even closer approximation, (in Section 4.4) 

we provided the necessary procedures to shift the discrete points obtained previ

ously within an arbitrary (but positive) distance to the skeleton and we showed 

how to guarantee that the shifted points cover the skeleton appropriately. The ef

fectiveness of this approach was then demonstrated qualitatively in Section 4.5 by 

reconstructing the boundary using the shifted thin skeleton. 

In summary, this thesis makes two main contributions. First, the results pre

sented in Chapter 3 show that the limit of the average outward flux through a 

region (e.g. circle) shrinking to a point distinguishes between medial points and 

non-medial points; it is a function of the object angle in the former case and iden

tically zero in the latter. Hence, the limit of the AOF is an invariant under rigid 

transformations and can be used to identify skeleton points. Second, using an 
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approximation to this criterion on the discrete lattice, we have presented here a 

skeletonization algorithm that approximates the a-skeleton (for a — 37°) arbitrar

ily well: it returns finitely many points with user-specified minimum spacing and 

which are no more than a user-specified distance to the real a-skeleton. 

Future Directions 

Recall that the selection of end-points from the thick skeleton Sj^ickid\(X) could 

only be done reliably when d — 1. However, an extension for higher values of 

d seem possible. Counting intersections of a discrete circle of radius d + 1 may 

overlook some branches, but adapting this radius based on the local structure of 

the SThick(d)(X) may solve the problem. Then, Algorithm 7 would approximate an 

a-skeleton for an even lower a. 

Another possible way to obtain such an approximation may be to simply ex

tend Ska (X, 37°) obtained by the algorithm presented in this thesis. The approach 

would use Sjhickid\ (X) as a mask and only try to extend Sko- (X, 37°) for points in 

So- (SThick(d)(X)) • Thus, for each element P in SThickid\(X) not already represented 

in Ska (X, 37°), one could study numerically (e.g. through the Nelder-Mead Sim

plex method in ID, see [25]) the local maxima of the distance function along the 

circle C£. 

Finally, an interesting question unrelated to the computational aspects of the 

method presented here, but having to do with the representational power of its 

result is the following: How important are a-skeletons perceptually; that is, is there 

an OCQ such that no a-skeleton with a < OCQ contains more perceptual information 

than the ao_skeleton? 
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Appendix A 

Proofs for Chapter 2 

Corollary 2.10 is restated below as Proposition A.l and the proof follows. 

Proposition A.l (Corollary 2.10, p. 16). Let P e R2 - dX. Assume \PC\ = 1 and let 

Q € dX be the unique point in PQ- IfdX is C° near Q, then DX{P) is at least Cl near P. 

Proof. If dX is C° but not C1 near Q, then the normal to dX is not well-defined at 

Q. However, since the boundary of the shape is a closed curve, Q must be where 

two Ck pieces, B\ and B2, meet. Denote by n, (for i = 1,2) the limit of the normal 

vector of Bl while approaching Q along B,. See Figure A.l. These two vectors span 

a cone which contains all points closest to Q; hence, P must be in it. If P is strictly 

inside the cone Dx is C°°, Theorem 2.9(a) applies and Equation 2.2 holds. On the 

other hand, if P' were strictly outside the cone, then it would be closer to some 

point on, e.g. B\(s) than to Q, assuming w.l.o.g. that P' is sufficiently close to the 

boundary of the cone. Therefore, Theorem 2.9(b) applies to such P' which shows 

that approaching the boundary of the cone from outside or from inside yields the 

same value for VDX(P). Hence, Dx is Cl even if P is on the boundary of the cone. 

Bl(s) B2(s) 

FIGURE A.l. A region R which intersects a branch of the skeleton S. 

• 
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Theorem 2.14 is restated below as Theorem A.2. 

Theorem A.2 (Theorem 2.14, p. 18). Let 

Then, 

E = {P G X : P is a centre of curvature for dX and \PQ\ = 1} 

M A ( X ) - £ = Sk(X) . 

Proof. If P G MA(X) and |PC | = 1 (Pc must contain at least one point), then 

there exists r > 0 such that Br (P) is maximally inscribed in X but dBr (P) and dX 

intersect at a single point Q. Hence, dX must be Ck near Q — otherwise r = 0 — 

in particular, dBr (P) is an osculating circle to dX at Q and P is center of curvature. 

Therefore, the only points with trivial boundary support included in the medial 

axis are those in E. Thus, MA (X) - E C Sk (X). 

FIGURE A.2. See proof of Theorem 2.14. 

On the other hand, if P G Sk (X), then, since d (P, Q) = DX(P) for any Q G P c , 

#d(P, Q) (P) £ X. Now, if another ball, Br (P1), contains tfd(P/ Q) (P), then any Q G 

Pc must be on the boundary of Br(P') because otherwise there is £ > 0 such that 

B£ (Q) C £ r (? ' ) ; however B£ (Q) - X £ 0 so Br (P') - X £ 0 . Hence, choosing 

two distinct points Qi, Q2 G P c implies d (P', Qi) = d (P', Q2) = r . Thus, two 

isosceles triangles — APQiQ 2 and AP'QxQ^ — are defined as in Figure A.2. 
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Now we show that r = d (P, Q{) = DX(P). Put r0 = d (P, Qi), Ar = r - r0, 

h = h2 and Ah = h - h\. Suppose the claim does not hold. Then, r > ro and 

Ar, Ah > 0. Since the triangles are isosceles, write h\ + w2 = TQ and h\ + w2 = r2. 

Thus, 

h2 - r2 = w2 = (h- Ah)2 - (r - Ar)2 

(h + r)(h-r) = (h + r + Ah + Ar)(h - r + Ah - Ar) 
h+r _ -i _|_ Ah -Ar 

h+r+Ah+Ar L ^ h~T~ 

Hence, since h-r < 0, Ah - Ar > 0 so Ah > Ar. Now, suppose the point Q 

on Figure A.2 is on the boundary of # d ( p Q) (P). Then it is d (P, Q) = r0 and 

d (P', Q) = r0 + Ah > r0 + Ar = r. Therefore, Q lies outside the boundary of 

Br (P') which contradicts the assumption that # d ( p QJ (P) C Br (P'). This means 

that r = d (P, Q) and P' = P which shows that the ball Bd(P / Q) (P) is maximally 

inscribed and implies that Sk (X) C MA (X) - E completes the proof of the theo

rem. • 

Corollary A.3 (Corollary 2.15, p. 18). Let Xbea shape. The skeleton ofX is a collection 

of bounded curves, i.e. 

int(Sk(X)) = 0 . 

Proof. It suffices to show that int(Sk(X)) = 0 since the first statement claims 

that the skeleton of a shape is either a 1-dimensional object or a set of points. So, 

suppose that int (Sk (X)) ^ 0 . Then, there exists £ > 0 and P G int (Sk (X)) such 

that B£ (P) C int(Sk (X)). Choose Q G P c and P' G B£ (P) on the line segment 

joining P to Q making sure P' ^ P. Now, |Dx(P') | < d (P', Q) because Q is on the 

boundary of the shape. Hence, \DX(P')\ < d (P, Q) and #Dx(p') {P') Q Bd(p, Q) (P) 

so BDx(pi) (Pf) is not maximally inscribed which contradicts Theorem A.2 (that is, 

Theorem 2.14). • 

Proposition A.4 (Proposition 2.19, p. 20). Let Xbe a shape and Q G dX. Then, there 

exists a P G Sk (X) such that Q G PQ or Q is a sharp corner of the boundary. 

Proof. Suppose Q is not a a sharp corner. Then, recalling the definition of shape 

(Definition 2.6), Q is either a dull corner or dX is at least C2 near Q. If there is 

some inscribed ball with boundary containing Q, then Theorem 2.14 guarantees 

that there will be a P G Sk (X) such that Q G Pc- Hence, it suffices to show that 

such a ball exists. 

First, if Q is a dull corner, then the claim is trivial. On the other hand, if Q is 

a smooth point of the boundary, then it is a standard result that such a ball must 
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exist: any circle of radius less than 1/KQ (where Kg is the curvature of the boundary 

at Q) with center along the normal at Q and tangent to Q will do; see a standard 

text on Differential Geometry such as Guggenheimer [21] or DoCarmo [12]. • 

Theorem A.5 (Theorem 2.24, p. 23). Let P be a regular skeletal point and denote by Q\ 

and Q2 the two distinct points in PQ. Let S(t)be the skeletal curve that that passes through 

P, such that S(t0) = P. Then, 

(a) the angle ZQ1PQ2 is bisected by S'(t0), i.e. the tangent to S(t) at t0; and 

(b) |r'(fo)| = cos a, where r(to) is the radius function at P (i.e. P — S(to) and 

(S{to), r(t0)) e ST (X)) and a < § is half of AQXPQ2. 

Proof. 1 Let Q be one of Q\ and Q2. Then, 

d(Q, S(t0)) = r(tQ) and d (Q, S(t0 + r)) > r(t0 + r) (A.l) 

for T G (—£,£) and sufficiently small £. The inequality holds because Q need not 

be the closest point on dX to S(tQ + r). So, define f : (—£,£) —• R as 

/ ( T ) = d(Q, S(t0 + r))2-r(t0 + r)2 

= {Q-S(t0 + r), Q-S(t0 + r))-r(t0 + T)2 

Theorem 2.21 guarantees that S(t) and r(t) are differentiable in some neighbor

hood of to, so decrease £ so t ha t / ( r ) becomes Cl. The derivative of f(r) is obtained 

by 

%W = ( H 7 ( Q - S ( ' 0 + T ) ) , Q - S ( f 0 + T ) } - 2 r ' ( f o + T)r(f0 + T) 

= 2 ( -S'(t0 + r),Q- S(t0 + T) ) - 2r'(t0 + r)r(t0 + T) 

Now, the conditions in Equation A.l translate into / (0) = 0 and / ( T ) > 0. Thus, 

/ ( T ) has a local extremum at zero or is constant at zero, i.e. f'(0) = 0. Hence, 

(S'(fo), Q-S(to)) = -r'(t0)r(t0) 

and since | (S'(t0), Q-S(t0)}\ = \\S'(t0)\\ \\Q - S(t0)\\ cos a, assuming S(t) is pa

rameterized by arc-length, 

|r'(fo)| = cos a 

1This proof was adapted from [13, Theorem 6.3]. 
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which shows the second claim. To prove the first claim, recall that the derivation 

holds for both Qi and Q2. Since r(t0) = d (P, QT) = d (P, Q2), 2a must be the 

angle S-QiPQ2. U 

Theorem A.6 (Theorem 2.28, p. 26). Let S(t) be a segment of a skeletal curve such that 

r(t) is monotonically decreasing and \\ S'(t) || = 1. Assume further that S(t) is at least C2 

and let C(t) be a contour reconstruction according to Equation 2.5. Then, the curvature of 

the boundary segment C(t), denoted KC(t), is 

MOI 
\a'(t)-KS(t)\ 

\C(t) 

a'(t)-KS(t) 
r(t)(a'(t) + KS(t))-sma(t) 

where K$(t) is the curvature of S(t). 

Proof This result is a direct consequence of the following to lemmas 

Lemma A.7. Under the assumptions of Theorem A.6, 

\af(t)-KS(t)\ 
MOI = l|C'(0 

where K$(t) is the curvature of S(t). 

Proof. Denote by 9s(t) and 9Q(t) the orientations functions of the tangents to S(t) 

and C(t) respectively. Hence, a(t + dt) — a(t) = d9s(t) + d9c(t) which implies 

that 
d9c a'(t)=KS(t) + 
dt 

Now, ^1 = ||C'(f)|| where s(t) is the arc-length parameterization of C(t). Let 

g(s(t)) = t, i.e. the inverse function of s(t). The assumtions make g(t) into a 

well-defined, well-behaved (e.g. differentiable) function. Hence, 

dg = d£ds = 

dt ds dt 

which shows that ^ = wry^- Finally, 

d9cds 
MOI ds df 

\cx'(t)-KS(t)\ 

lic(0ll 
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Sk(X,a) 

FIGURE A.3. Protrusion on discrete skeleton. The thick curve is the de
tected skeleton; the segment PQ is worst possible (creating most area) 
extension of the skeleton - the added area, then, is the portion of the 
triangles not in the disc. 

• 
Lemma A.8. The local boundary to axis ratio, ^|, under the assumptions of Theorem A.6 

makes sense and is given by 

(jjz) = llC'COf = W 0 ( « ' ( 0 + xs(t)) - sina(t))2 

Proof. A direct calculation from Equation 2.5 shows this. Alternatively, the result 

is derived by Blum and Nagel [7] in a completely different manner. • 

This finishes the proof of Theorem A.6. D 

Theorem A.9 (Theorem 2.31). Let A(X) denote the area of shape X and A(X,a) the 

area of the shape represented by the a-skeleton transform ofX, then 

A(X,a) n 
A(X) ~ 7T+tan(a)-a (A-2) 

Proof. Let P be an end-point of the a-skeleton and pick any path ye TP. By defini

tion, the object angle on any point in y is bounded above by a. Suppose that y is 

a straight line as depicted on Figure A.3. Then, the triangle PBO and its reflection 

must contain the boundary. Therefore, the largest area of the shape not covered 

by the circle at P is achieved if the object angle along y is equal to a everywhere 

and, consequently, the boundary is given by the two triangles as depicted. Now, 

the area of the triangle PBO can be obtained by noticing that PB = r at P and that 
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BO = r tan(a) , which implies that A(PBO) = r2 tan(a) /2 . Hence, the area of the 

boundary not covered by the disc, denoted Aout, is no more than r2 tan (a) — ar . 

So, 
A(disc) nr2 n 

< 
A0ut + A(disc) rcr1 + r2 tan(a) - ar2 n + tan(a) - a 

which shows the claim if y is a line segment. If, on the other hand, yo were not 

straight (e.g. with nontrivial curvature), then the area represented by yo would 

be strictly smaller than the area represented by a straight y. Hence, the claim also 

holds for such yo-

Finally, since the result holds for any y G TP, it holds for the whole shape. • 
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Appendix B 

Proofs for Chapter 4 

Proposition B.l (Proposition 4.1, p. 47). Given a shape X with no isolated points in dX, 

then there must be OQ > 0 such that if a < a$ then Sa (La(X)) is homotopy equivalent to 

X. 

Proof. We want to show that every hole in X will have a unique represetative in 

the discrete lattice for a small enough a. The key observation is that there are 

only finitely many holes in X, none of which may consist of a single point (see 

Definition 2.6). Thus, there is a ball of positive radius, denoted r, that fits in all 

holes. Consequently, if a < r/3, then each hole will contain at least on lattice point 

and the claim follows. • 

Lemma B.2 (Lemma 4.2, p.48; Lemma 4.7, p.50). Let 90,9\ G R such that 0 < 9\ -

9Q < 2TI. Let E(s) : [90,9i] -> [-6/2,6/2] for 0 <6<2n. Then 

[Q\ rd\ 
I cos(a + E(s) + s) ds < / cos(a + s )d s 

Jen JeQ 

+ 26 

and 

< 6 + 2 sin I -
rzn 
/ cos(a + E(s) +s) ds 

Jo 

Further, if 1^ is the n-point approximation of the flux (see Equation 4.1), then 

/(») c n . f6\ 4/r3 

< * + 2sin - )+-V2. 
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FIGURE B.l. The two functions: sup cos(f) and cos(0 + s) are shown. 
tel(s) 

Proof First, if 9\ — 9Q < 6 then the claim follows since 

r9, 

e0 

cos(a + E(s) + s) ds <9i-90<6. 

So, assume 9\ — 9$ > 6 and let I(s) — [a + s — 6/2, a + s + 6/2]. We have 

cos(a +E(s)+ s) < sup cos(f) 
tei(s) 

so / cos (a + E(s) + s) ds < / sup cos(f) ds 
J do JQo tei(s) 

Similarly, / inf cos(f) ds < cos(a + E(s) + s) ds and therefore 
Je0 tei(s) Je0 

I cos(a +E(s)+s) ds < / sup cos(f) ds 
J 00 J do t€l{s) 

or 
/ * cos(a + E(s) + s) ds < I 

Jen Je, 
inf cos(t) ds 

>e0 tei{s) 
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Sk(X) 

FIGURE B.2. Configuration of VDX near the skeleton. 

Now, for any s G [0,27r] one can verify that 

sup cos(f) 
tei(s) 

= < 

1 if s G [0,6/2} 

cos(a + s-6/2) if s G [6/2, n] 

cos(a + s + 6/2) iis e[n,2n- 6/2} 

1 i fsG [27r-<5/2,27r] 

See Figure B.l for a picture. Notice that as far as the areas under the curves are 

concerned, the modified cosine (sup cos) has two portions which are exactly the 

same as for cos(a + s). The portion lacking is only that with area f_6 cos(s) < 6 

and it appears with negative contribution in the original cosine. The only other 

difference is the area of size 6 around the peaks. Observing that the case for inf cos 

is exactly similar finishes thethe proof. 

Lemma 4.2 now follows by taking 9$ = 0 and 9\ = 2n. Lemma 4.7 is also a 

consequence of this result, it provides the error bound. The 2\/3 sin(a) is a conse

quence of assuming the point to be at most cr/2 from the skeleton (see Figure B.2); 

thus, Equation 3.6 must account for this by adjusting the bounds on the integrals 

as follows: 

Fe{P) = VD(C?(s)), M(s) ) ds 
2n£ 

0 

£ I cos(a — s)ds — £ cos(—a - s) ds 
-y. Jn+n 

—4£sin(a) cos(fi) 
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FIGURE B.3. Configuration maximizing 6. See proof of Lemma B.3. 

where u = arcsin ( | J and | < \, which shows the claim. • 

Lemma B.3 (Lemma 4.3, p. 49). Let Xbea shape and dX its boundary. Let C£ be a circle 

centered at P with radius a. Assume that C^ does not contain in its interior any skeletal 

points or points on dX. Let 6 be the maximum difference in orientation of VDx through 

Ca- Then, 

6 < 2 arcsin f ) 
\d + aj 

where d = min {d (Cj, dX), d (Cj, Sk (X))} > 0. 

Proof Pick any point R on C£ and arrange coordinates so that the orientation of 

VD(R) is zero and so that every other VD vector along the circle has positive 

orientation. Now if Q G C£ and VD(Q) does not coincide with the tangent to C£ 

at Q, then there exists Q' G Cj , Q' ^ Q such that if B G dX is the closest boundary 

point to Q, then it is also to Q'. This is because otherwise C£ will have a skeletal 

point in its interior. Therefore, the VD vector with largest valued orientation 6 

must be such that 6 < n. 

We now find the maximum value for 6 given a and d. Denote by Q\ and Q2 

any pair of points on the circle such that ( VD (Qi), VD (Q2) ) = cos(<5). Since 

6 > 0 (e.g. Figure B.3), suppose the lines defined by £t(t) = Qt + tVD (Q{) (for 

i = 1,2) intersect at point O. Hence, d < d0 = d(Cj, O) because otherwise O e dX 

or O G Sk (X) and the definition of d would not hold. It is easy to see that 6 is 

maximized when the £j(t) are tangent to C£ so we leave the proof to the reader. 

This configuration is illustrated in Figure B.3. Notice that since PO = a + do, we 

have 

sin (I) = FT* 
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which is maximized when d0 is minimized, i.e. when d0 = d. This finishes the 

proof. • 

Lemma B.4 (Lemma 4.5, p. 49). Let X be a shape and denote by <(t) the curvature 

function ofdX wherever it is defined. If the boundary is made of line segments then 

47T3 

NumErr(n) < -—j 

Suppose X C BR (P), \K(t)\ < Ki G R and | K ' ( 0 | < K2 G R. // £ - § > a and 

n = 2kfor k>2 then 

47T3 NumE-(«) * y>£ fe - 1 ) 
where 

C/J. ^ „ R 8 + 3U2 + 25d3 + MA + 28d + d5 

S(d) < K2- J5 

8 + l6d + 2di + \Qd2 

+ cP 

Proof. We have to show that the numerical error ensuing from the n-point approxi

mation of the AOF using the Trapezoidal Rule is as claimed. To do this, notice that 

the error bound for such numerical integration is given by 

\ln -1 / o _ \ 3 

S€[/¥'C + I ) f ] 

(e.g. see Allen and Isaacson [1, p. 317]). In our case, 

f(s) = cos(a + E(s) + s) 

so 

— (s) + lj -sin(cc + E(s)+s)w(s). 

Now, since/(s) expresses the inner product of the normals to a circle and the corre

sponding value of the gradient field VDx, the function a + E(s) actually expresses 

the orientation of the gradient vector at a particular point on the circle. Thus, ^ 

is related to the curvature of the boundary point Q which gives rise to the gradi-
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FIGURE B.4. The value of f(s0) may be approximated by this case. O 
is the center of curvature for the boundary point Q(s0) corresponding to 
C%(s0) so, locally, the gradient lines converge in O. Thus, the gradient 
vectors at Cp

a(tQ) are given by normalizing O - C£(£0). C?(C) is a repa-
rameterization for the above and such that C£(C0) = C^(sQ). See proof 
of Lemma B.4. 

ent vector with orientation a + E(s). If C(t) is arc-length parameterization of the 

boundary near Q and s is as in the arc-length parameterization of C^(s), then 

d£ 
ds 

d2£ 
— = - = / 

dCdt 
= dt ds = K(l 

<W*V + 

0 -;ds 

Kit) -
ds2 \ d s / ds2 

Hence, if the boundary is locallly a line segment, then 

| / " ( s ) | =cos(a + E(s)+s) < 1 , 

which shows the first part of the claim. 

Now suppose that the boundary is not locally a line segment and let d = ^ — j . 

Thus, if Q(s) G dX is the closest point to Ca(s) G int (X) (the AOF is computed 

for the circle C£), then d is the shortest distance between Ca(s) and the center of 

curvature corresponding to Q(s). A tight upper bound for ^ is 

Now, to estimate f"(s), notice that all possible values for f'(s] 

exactly given the distance 6 between the circle and the center of curvature for the 

boundary point corresponding to Ca(s). This is because f'(s) only depends that 

curvature and ^, and the circle of curvature approximates it behavior locally. So, 

<4. — d-

can be computed 


