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STATEMENT OF ORIGINALITY

Although there is an enormous literature on statistical methods for diagnostic test

data, there are no frequentist solutions that directly address the problem of estimating

parameters in the presence of three or less correlated tests. To our knowledge there is

also no literature discussing a Bayesian solution to this problem, even for identi6able

cases. This thesis has addressed this gap in the literature. Therefore, the models

developed in Chapters 4 and 5 appear for the 6rst time, as does the analysis of the

Strongyloidcs data set in Chapter 6.

Of special note is the intended audience for which this thesis was written. In

keeping with the spirit of a multi-disciplinary Department of Epidemiology and Bio­

statistics, we have included sufficient background material on Bayesian analysis so

that the thesis couId be read by a practicing epidemiologist. Conversely, we have also

provided introductory definitions of terms relating to the diagnostic testing situation,

so that the interested statistician with no epidemiology background should have no

trouble.
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AB8TRACT

The differential diagnosis of a disease is often based on the information obtained from

multiple diagnostic tests or multiple applications of the same test. The usual assump­

tion in such situations is that the test results are statistically independent within each

subject conditional on knowing the true disease status. This assumption greatly sim­

plifies the statistical analysis of such data. In practice, however this assumption may

be violated, as for example when there is a certain subject-related characteristic that

may increase or decrease the probability of detection in two or more tests. The clas­

sical or frequentist solutions that account for the correlation between tests require

a minimum of four different tests to obtain an identifiable solution. However, it is

not always possible ta have results from four different tests, particularly when tests

are expensive, tiule consuming or invasive. Our objective in this thesis is to draw

simultaneous inferences about the prevalence and test parameters while adjusting for

the possibility of conditional dependence between tests, particularly in the situation

when we have three or fewer tests, leading to a non-identifiable problem. We do so by

way of a Bayesian approach, which utilizes available information about the prevalence

and test parameters summarized in the form of prior distributions. The first of the

two methods we propose models the dependence as a direct effect between each pair of

tests. The second method uses a random effects model and simulates the dependence

between tests via their sensitivity and specificity which are modeled as functions of

a latent, subject-specific 'disease intensity'. Bath models are based 00 dichotomous

tests and the parameters are estimated using a Gibbs Sampiero It was found that

ignoring the conditional dependence between tests could lead to misleadiog estimates

of the sensitivities and specificities of the tests and of disease prevalence. Therefore,

the methods presented here may improve inferences from surveys which are designed

to provide estimates of the prevalence of disease in a particular population, when

correlations among the diagnostic tests used may be present.

x
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RÉSUMÉ

Le diagnostic d'une maladie est souvent basé sur l'information obtenue de plusieurs

tests ou plusieurs applications d'un même test. Dans un tel cas on assume généralement

que les résultats de tests sont statistiquements indépendants pour chaque sujet à

condition de connaître le véritable état de la maladie. Cette supposition simplifie

grandenlent l'analyse statistique de telles données. En pratique, toutefois, cette sup­

position peut être violée lorsqu'il y a, par exemple, une certaine caractéristique reliée

au sujet qui peut augmenter ou diminuer la probabilité de détection dans le cas de

deux tests ou plus. Les solutions classiques ou fréquentistes qui tiennent compte de

la corrélation entre ces tests requièrent un minimum de quatre tests différents pour

obtenir une solution identifiable. Cependant, il n'est pas toujours possible d'obtenir

les résultats de quatre tests différents, surtout lorsque ces tests sont onéreux, longs,

ou stressants. Notre objectif dans cette thèse est de tirer des conclusions simultanées

au sujet de la prévalence de la maladie étudiée et des paramètres des tests en tenant

compte de la dépendance conditionnelle possible entre les tests, particulièrement dans

la situation où nous avons un problème non-identifié. Nous procédons selon l'approche

bayesienne, laquelle utilise l'information disponible au sujet de la prévalence et des

paramètres de tests résumése sous la forme de distributions a priori. La première des

deux méthodes que nous proposons modélise la dépendance comme un effet direct

entre chaque paire de tests. La seconde utilise un modèle à effet "random effects" et

simule la dépendance entre les tests de par leur sensibilité et leur spécifité lesquelles

sont modélisées comme des fonctions de la latence ou la sverité de la maladie de chaque

sujet. Les deux modèles sont basés sur des tests dichotomiques et les paramètres sont

estimés en utilisant un échantilloneur de Gibbs. Ne pas prendre, en consideration

la dépendance conditionnelle entre les tests peut mener à des estimations erronées

de la sensibilité et spécifité des tests ainsi que de la prévalence de la maladie. Par

conséquent, les méthodes présentées ici peuvent donner une meilleure inférence apar­

tir de données de sondage conçus pour estimer de la prévalence d'une maladie dans

une population donnée, lorsque des corrélations peuvent être présentes.
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INTRODUCTION:

THE DIAGNOSTIC TESTING PROBLEM

Historically, medical diagnoses have been made on the basis of subjective knowledge

gathered from the medical history and observed symptoms of the patient. In recent

decades this has been augmented by the more methodical process of obtaining objec­

tive information from diagnostic tests. Thus, in the framework of medical decision

making, diagnostic tests have come to occupY an important role and consequently

their appropriate analysis is a very active area of biostatistical research today.

In this thesis we take up the specifie problem of modeling the conditional depen­

dence between multiple diagnostic tests, especially in the absence of a gold standard

or reference test. Two or more diagnostic tests may be conditionally dependent when

their results are related due to a factor other than the disease status. Such a depen­

dence could occur, for instance, between tests which are based on the same underlying

principle or between results from the same test at two different points in time. Severa!

authors have demonstrated that it is important to account for this dependence while

analyzing the results from diagnostic tests, in arder to obtain unbiased estimates of

the prevalence of disease and test parameters (Fryback, 1978; Vacek, 1985; Brenner,

1996; Torrance-Rynard and Walter, 1997). While there has been much recent work

in this area, the problem of how to analyze diagnostic test data when the tests are

correlated and when there is no perfect (gold standard) test remains to be solved,

1



especially when the number of tests available is less than 5, as is usually the case in

practice. This problem is especially difficult since, as we will see, it is non-identifiable,

i.e. there is not sufficient information available to obtain a unique estimate of aIl the

parameters involved. Nevertheless, the frequency at which it occurs (often unrecog­

nized) motivated a serious look at the problem in this thesis.

•
1: INTRODUCTION 2

•

•

This introductory chapter covers the basic concepts behind diagnostic tests, the

parameters used to evaluate their performance, the utility of multiple testing and the

conditional dependence between tests. We a180 provide the objectives of the thesis

and an outline of the forthcoming chapters.

1.1 Diagnostic Tests: Definition and performance param­

eters

Diagnostic tests are routinely used in public health, community medicine and clinical

medical practice to help gain more information about a patient's or a group of pa­

tients' condition, and to separate subjects into classes with different probabilities of

disease. A test is typically determined by:

1. A separator variable, which is a measurable property of the subject, associated

\Vith the disease of interest, and

2. A positivity criterioD, which is a particular value of the separator variable

that divides subjects into different disease categories.

In order ta diagnose the presence of hypertension, for example, a possible separator

variable is the average diastolic blood pressure over three successive readings. A

diastolic blood pressure of 90mm of Hg eould be used as the positivity eriterion 50

that patients with an average diastolic blood pressure greater than this value would
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he diagnosed as hypertensive. 1t is common to dichotomize a continuous separator

variable, using a single positivity criterion, such that there are only two possible test

results - positive or negative. Throughout this thesis, we will be dealing only with

dichotomous tests. Apart from simplifying the exposition of the problem, the use of

dichotomous tests is motivated by the fact that in reality most medical decisions are

dichotomous: to operate or Dot to operate, to prescribe a drug or not ta prescribe a

drug, etc (Weinstein et al., 1980). Our methods, however, could straightforwardly be

extended to the case where the test results are multi-categorical, or even continuous.

Diagnostic tests can be of varied formats - questionnaires, biochemical tests, ge­

netic tests, radiographie tests, and sa on. Whatever their format, tests are seldom

perfecto That is, they do not always correctly diagnose the subject's true disease

status. This is usually because it is Dot possible ta find a separator variable which

clearly demarcates subjects into diseased and non-diseased categories. For instance,

we could hypothesize that the separator variable follows a different distribution for

the diseased and non-diseased subjects as illustrated in Fig 1.1. Subjects who faH

Grey Zone

X=x•
X : 5eparator Variable
x.: PosItMty Crlterton

Figure 1.1: Grey zone where subjects are likely ta be misclassified.
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in the 'grey zone', where the two distributions overlap, may be misclassified because

both diseased and non-diseased subjects cao have test results that lie in this range.

~Iisclassification can also occur due ta random or systematic measurement error.

Random errors can occur even when we have a technically perfect test. In the case

of a stool examination, for instance, a subject is diagnosed as positive if the disease­

causing parasite is detected in the stool. An error might occur because the subject's

diet makes it difficult to detect the parasite, because the technician analyzing the

staol makes an error, or because the instrument used to detect the parasite is de­

ficient. Sametimes, hawever, the test itself is invalid. For example, when the level

of serum glucose, a separator variable for myocardial infarction, is measured using a

miscalibrated instrument that adds on 5 nnits to every measurement, subjects who

fall below the positivity criterion of 100 mg/lOOml may be systematically misclassified

as positive.

Despite their imperfection, many tests are routinely used in clinical diagnosis,

screening and epidemiological studies. The correct interpretation of test results is

dependent on knowledge of the population under study and the parameters which

characterize test performance. The parameters of primary interest in the diagnostic

setup are the prevalence of the disease in the population, and test properties such as

sensitivity and specificity of the test, which are defined as follows:

The prevalence is the proportion of truly diseased subjects in the population of

interest. Throughout this thesis it will be denoted by 1l' = P(D = 1), where D = 1

denotes positive disease status. The probability of being non-diseased, D =0, is then

given by P(D =0) = 1 - P(D = 1) = 1 -1l'.

The sensitivity is the probahility that a suhject who is truly diseased will he

correctly diagnosed by the test as being positive. In other words, it is the conditional

probability of testing positive given that the disease is present. In probabilistic terms
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this can be written as S = P(T = 11D = 1), where T = 1 indicates that the result of

the test is positive.

The specificity of the disease is the probability that a subject who is not diseased

will test negative or the conditional probability of testing negative given that the

disease is absent. This is denoted by C = P(T = OID = O}, where T = 0 indicates

that the result of the test is negative.

Ideally we would like both the sensitivity and specificity of a test to be as high as

possible. Theoretically a perfect test would have S = C = 1. In practice however,

even the most accurate test available does not have S = C = 1. The best test is

usually called the gold standard test, even though it may not be 100% accurate.

Detecting diseased subjects is clearly of importance, but it is also of interest to reduce

the number of faise positives especially when a positive test is followed by a costly

or risky intervention. However, if either the sensitivity or specificity is increased,

usually by altering the positivity criterion, the other is aimost always automatically

decreased. The following example illustrates the estimation of the prevalence and test

parameters in the situation when the test results can be compared to those from a

'perfect' gold standard test.

Example 1.1: Shapiro et al., 1974 obtained the data presented in Table 1.1 from

a study on screening for breast cancer. The extreme right column contains the results

of a screening test which consisted of a physical examination and mammography. The

last row contains the 'gold standard' results which were obtained when these women

were followed for a year subsequent ta the screening and sorne of them were diagnosed

with breast cancer. We cao see, from the crosg.c1assification in Table 1.1, that there

are subjects who were incorrectly classified as negative by the screening test and a

large number of subjects who were falsely classified as positive by the screening test,

when in fact they never went on to develop the disease. The population prevalence

and test parameters for the screening test can be estimated, by assuming the gold
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Breast Cancer

Cancer Cancer Dot Total

confirmed confirmed

Screening test Positive 132 983 1115

Negative 45 63650 63695

Total 177 64633 64810

6

•

•

Table 1.1: Cross-classification of results from screening test and the 'true' diagnosis at the end of
one year of follow-up.

standard to represent the truth, as follows:

P 1
No. of subjects who were truly diseased

~w~œ= .
Total no. of subJects

177
= 64810 =0.27%,

S
... No. of truly diseased subjects who tested positive

ensltlvlty = . .
No. of subJects who were truly dlseased

132 _
= 177 = (4.6%,

S
·fi· No. of truly non-diseased subjects who tested negative

peci city=. .
No. of subJects who were truly non-dlseased

63650
= 64633 = 98.5 %.

It is important ta note at this point, that it would not have been possible ta

obtain these estimates in the absence of a gold standard test. What could we infer,

for instance, when the gold standard was known not to be the truth or when we have

two or more non-gold standard tests whose results are in conflict? Further, what if

these tests are correlated and do not provide independent information? In this thesis
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we will deal simultaneously with an these problems.

The prevalence, sensitivity and specificity are parameters of greater interest to

public health practitioners and policy makers. Two other related parameters, which

are more meaningful ta the clinician in interpreting test results for a single patient,

are the positive predictive value and the negative predictive value, which are defined

as follows:

The positive predictive value is the probability that a subject who has tested

positive actua1ly has the disease, and is denoted by PV+ = P(D = liT = 1). In

other words, the PV'+, is the conditional probability of being truly diseased given

that the subject tested positive. In sorne instances we use the notation PVP for the

predictive value positive.

The negative predictive value is the probability that a subject who has tested

negative is in fact disease-free and is denoted by PV - = P(D = DIT = 0). Hence the

P\l- is the conditional probability of being truly non-diseased given that the subject

tested negative. In sorne instances we use the notation PVN for the predictive value

negative.

The positive and negative predictive values of a test can be shawn to be functions

of the prevalence, sensitivity and specificity as follows:

P(D = 1)P(T = IID = 1)
PV+ =P(D = liT = 1) = P(D = l)P(T = IID = 1) + P(D = O)P(T = IID =0)

P(D = l)P(T = IID =1)
---------~-..-;...---.;.--~-~-------

P(D = I)P(T = 11D = 1) + (1 - P(D = 1))(1 - P(T =OID =0))

rrS
- rrS + (1 - 1r)(1 - Cr
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P(D = O)P(T = OID = 0)
PV- = P(D = DIT = 0) = P(D = l)P(T = OID = 1) + P(D = O)P(T = OID = 0)

_ (1 - P(D = l))P(T = olD = 0)
- P(D = 1)(1 - P(T = IID = 1)) + (1 - P(D = I))P(T = OID = 0)

_ (l-7r)C
- rr(l - S) + (1 -rr)C'

Hence, when interpreting the result of a test for a single individual, it is important

to know the prevalence of the disease and the sensitivity and specificity of the test,

in the population to which the individual belongs.

Example 1.1 continued: Using the breast cancer data in Table 1.1 we have:

It is interesting to note that this test has been designed sucb that it has a fairly high

sensitivity of 74.6%. This is probably because breast cancer is a fatal disease and it

is important that as few cases as possible go undetected. This, however, cornes at

the cast of a poor positive predictive value. A subject in this population who has a

positive result on the screening test has ooly an 11.8% chance of actually developing

breast cancer.

•
PV - 132 _ O'L+ - 1115 - 11.870,

63650
PV - = 63695 = 99.9%.

and

•

1.2 Multiple diagnostic tests

The ditrerential diagnosis of disease is rarely based on the results of a single test. In

arder ta improve the accuracy of the diagnosis, physicians often order more than one
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diagnostic test or more than one application of the same diagnostic test. The gold

standard procedure may in fact be a set of two or more tests which together provide

more accurate information.

Example 1.2: In arder ta estimate the prevalence of Strangyloides infection

among a group of refugees, Joseph et al., 1995 used two commonly available tests

with complementary characteristics - a staol examination and a serological test. The

stoal examination has a very poor sensitivity of 24%, and a high specificity af 95%

The seralogy test, on the other hand, has a relatively higher sensitivity of 81% but

a lower specificity of 72%. Though neither test is a gold standard, their combined

results help to improve the accuracy of diagnosis. We will return to this example

later in the thesis.

When multiple tests are used, the performance of two or more tests may he related

due to a variable other than the disease status. This could happen, for instance, when

two tests are based on the same biological phenomenon, when two questionnaires

contain overlapping items, or when the two tests are in fact replications of the same

test at two different tirnes. Such a similarity between a pair of tests may be measured

using their covariance within each disease c1ass. We denote the covariance between

two tests, Tl and T2, among the diseased and non-diseased subjects as COVPJ! and

covnl!, respectively. In probabilistic terms this would be expressed as:

COVPl2 = E(T1T2 ID = 1) - E(TJ ID = I)E(T!ID = 1), and

covn12 = E(T1T!ID = 0) - E(T1ID = O)E(T!ID = 0),

where E(X) represents the expectation of the randorn variable )(. In the event when

two tests are conditionally independent, i.e. independent within a disease c1ass, the

covariance between them in that disease class is o. The concept of conditional depen...

dence between tests is dealt with in greater detail in the next sub-section. Throughout

the thesis we use the terms conditional dependence and correlation interchangeably.
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1.2.1 Identiiiability

The parameter 9 which indexes the probability distribution F9 is said to be identifiable

if F91 t= F92 when 81 t= 92• More simply, a problem is said to he identifiable when

it has a unique solution, i.e. when the number of degrees of freedom of the observed

data is equal to or greater than the number of unknown parameters to be estimated.

Figure 1.2 is a diagrammatic representation of ail the parameters involved in the

diagnostic testing problem in the general situation when we have p tests - 1r denotes

1t

(s"e,)~~ (S"e,)

(covp ,covn )._jl ~ (~, .c.~!. (~! ,e,)
12 Il .//

(cavp ,covn )
1 J 1 J

(cavp ,cavn )
1 J 1 J

Figure 1.2: Parameters involved in the multiple diagnostic tests problem.

the population prevalence, Si and Ci denote the sensitivity and specificity of the i h

test, j = 1, ... , p, and COVPki and covnkl, k, l = 1, ... ,p, k #: l, denote the covariance

between the tests k and l among the positively and negatively diseased subjects,

respectively. The methods developed in this thesis are in the context of a community

situation where two or more tests are applied ta each of N (> 1) subjects.

The total number of parameters involved in the diagnostic testing problem illus­

trated in Figure 1.2 is (2 x p) + (2 x PC2) + 1. The number of degrees of freedom

available, which is determined by the number of possible cross-classifications of test
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results, is 21' - 1. Assuming that none of the p tests is a gold standard, then, in arder

for the problem ta be identifiable, it is required that,

(2 x p) + (2 x PC2 ) + 1 ~ 21' - 1,

~ P? 5,

i.e. results from a minimum of 5 tests should be available. However, results from

five tests may not always be available, especially when the tests have to be applied

ta several subjects and when they are expensive, invasive or time-consuming. In

this thesis we develop methods which can he used even when the prohlem is oon­

identifiable.

1.2.2 Conditional independence

From elementary probability theory we know that when two events are independent,

the probability that they occur jointly is given by the product of their individual

probabilities. Mathematically, if A and B are independent events, P(A n B) =
P(A)P(B). This definition can be extended to the situation when the events of

interest are conditional on another event. For instance, we may be interested in the

results oftwo diagnostic tests conditional on the disease status, i.e. P(Tr = t1lD =d)

and P(T2 = t21D = d). If the two tests are conditionally independent, given D = d

it means that

This means that among the subjects for whom D = d the results of Tl have no

bearing on the results of Ts. This need not necessarily hold if the disease status

changes, i.e. the two tests may be independent among the diseased but not among

the non-diseased subjects, or vice-versa.

When analyzing the results from multiple tests their joint distribution is often

needed. For example, suppose that a subject must test positive on a1l p tests used
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in a study in arder ta qualify for the intervention. Ta estimate the total cost of

this intervention in a certain population, we would need ta know the probability of

obtaining a positive result on aIl tests. From the law of total probability, this is given

by

P(Tr = 1, Tg = 1, ... , TI' = 1)

=P(D = l)P(Tr = l,Tg = 1, ... , TI' = llD = 1)

+ P(D = 0)P(TJ = 1, Tg = 1, ... , Tp = 11D = 0). (1.1)

•

•

To calculate the probability in equation (1.1), we need the joint distribution of the

p tests conditional on the disease status. This information is seldom available and

in order ta circurnvent the need for it, it is common ta assume the tests to be con­

ditionally independent. In this case, equation (1.1) can be written in terms of the

sensitivity and specificity of eaeh test, as follows

P(Tr = 1, T2 = 1, ... , Tp = 1)

=P(D = l)P(TJ = 11D = l)P(Tg = llD = 1) ... P(Tp = llD = 1)

+ P(D =O)P(TJ = llD = O)P(T2 = IID = 0) ... P(Tp = IID = 0)

= rrSrSg ... Sp + (1-11")(1- Cr)(l- C2 ) ••• (1- Cp). (1.2)

However, the conditional independence assumption is Dot always realistic, sinee test

results may be correlated within each disease class. When the conditional indepen­

dence assumption is invalid, it could result in biased estimates of the parameters of

interest as the following example illustrates.

Example 1.3: This example is modified from one used in the book Clinical Deci­

sion Making by Weinstein et aL, 1980 (page 155). At a certain hospital, reno-vascular

disease among hypertensive patients is diagnosed using two tests - an intravenous pyel­

ogram (IVP) and a renogram (RG). The sensitivity and specificity of the two tests

are listed in Table 1.2.
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Test Sensitivity(S) Specijicity(C)

IVP 0.78 0.89

RG 0.85 0.90

13
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Table 1.2: Sensitivity and specificity of tests used ta diagnose reno-vascular disease.

Patients testing positive on both tests are subjected to a costly and invasive sur­

gical intervention. Hence it is of importance ta assess the probability of a positive

result. In the absence of any information about their joint distribution, the proba­

bility of obtaining a positive result on both tests may be estimated using equation

(1.2), assuming they are conditionally independent. Using the information that the

prevalence of renovascular disease among hypertensive patients is 10%, we have

P(IVP= I,RG= 1)

= 1t'P(IVP = 1, RG = IID = 1) + (1 - tr)P(RG = 1, IVP = IID = 0)

=trP(IVP = IID = I)P(RG = IID = 1)

+ (1 - 7r)P(IVP = IID = O)P(RG = 11D =0)

= rrSrVPSRG + (1 - 7r)(1 - Crvp )(1 - CRG )

= (0.1)(0.85)(0.78) + (1 - 0.1)(1 - 0.9)(1 - 0.89)

= 0.0762.

In the case of IVP and RG, however, the information on their joint distribution

happens ta be available and is presented in Table 1.3. 50 the probability of obtaining

a positive result on both tests would in fact be

P(IVP = I,RG = 1) =P(D = I)P(IVP = 1, RG = IID =1)

+ P(D = O)P(RG = 1, IVP = IID = 0)

= (0.1)(0.69) + (0.9)(0.08)

= 0.141.
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D= 1 D=O

Test result IVP= 1 IVP=O IVP=l IVP=O

RG=l 0.69 0.16 0.08 0.02

RG=O 0.09 0.22 0.03 0.87

14
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Table 1.3: Cross-classification of results from the intravenous pyelogram test and the renogram test.

This means that the cost of the study intervention will be almost twice as great as

the conditional independence assumption would suggest.

We will return to this issue later in the thesis in Chapters 4 and 5, where we show

how assuming tests are conditionally independent when it is not the case, couId lead

to biased estimates of the prevalence and test parameters.

1.3 Objectives of the thesis

Commonly used methods for the analysis of results from multiple diagnostic tests

assume that these tests are conditionally independent as this simplifies the process.

As mentioned in the previous section, this may not always he the case. A more

realistic model would take into account the dependence between tests within each

disease class. Sucb a model, however, is non-identifiable when we have four or fewer

tests, as seen in Section 1.2.1. Bence, classical frequentist solutions to this problem

require that a minimum of four tests he used in order ta solve the problem directly

(See Chapter 3). But results from four tests may not always be possible in practice.

With this in mind, the main objective of this thesis is stated as follows:

To develop methodology for Bayesian inference about the prevalence and all test

parameters in the situation where multiple tests or replications of tests are used,

while adjusting for the conditional dependence between them, particularly when the
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problem is non-identifiable. More specifically, we will:

1. Develop a fixed effects model for conditionally dependent diagnostic tests.

15
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2. Develop a random effects model for conditionally dependent diagnostic tests.

3. Demonstrate how these models may work in practice by both simulations and

application to real data. This step is especially important given the non­

identifiable nature of the problem.

While the main focus of this thesis involves the development of statistical methodol­

ogy, we have tried to present the material here in a manner such that it can be read

by biostatisticians and epidemiologists alike. In particular, this chapter has reviewed

the basic notions of diagnostic tests, while the next chapter will provide the necessary

statistical background.

1.4 Organization of the thesis

The outline of the thesis is as follows:

Chapter 2 provides background rnaterial on the statistical concepts which fonn

the foundation of the work developed here. We introduce the concept of Bayes'

rule and sorne Bayesian computational techniques, namely the Sampling Importance­

Resampling (SIR) algoritbm and the Gibbs sampler, which will be used Iater in the

thesis.

Chapter 3 presents a brief review of the literature on methods used to analyze

results from diagnostic tests. These include the Bayes conditional independence

method and more recent methods using latent class analysis. The problem of non­

identifiablility and the advantage of the Bayesian approach in providing a solution
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for such problems is discussed. We then describe sorne frequentist methods that have

been developed to model the conditional dependence between diagnostic tests when

five or more tests are available. Finally we present a summary of sorne Bayesian

methods that have been used in the analysis of diagnostic test data.

In Chapter 4 we describe how conditional dependence between tests affects test

results and how it may be measured using the covariance between pairs of tests. We

then formulate a fixed etTects model using the covariance to model the dependence

between tests, and describe a Bayesian approach for its solution. In Chapter 5 we use

random etTects to model the conditional dependence between tests and once again

propose a Bayesian approach to draw inferences for the parameters of this mode!.

Here, the test sensitivities and specificities are taken to be functions of a subject­

specifie 'intensity' which is a latent or unobserved variable. The dependence between

test results is induced by this additional variable without explicit reference to the

covariance.

In Chapter 6, the methods of Chapters 4 and 5 are applied to the results from

two diagnostic tests conducted in a group of Cambodian refugees to determine the

prevalence of Strongyloides infection. Finally, we end with a summary chapter on our

conclusions and suggestions for future research.
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PRELIMINARIES: BAYESIAN ANALYSIS

AND COMPUTATIONAL TECHNIQUES

In this chapter we provide a brief discussion of Bayesian analysis which is fundamental

to the methods developed in this thesis. This is followed by a section describing sorne

computational tools for Bayesian inference with examples illustrating their usage.

2.1 Bayesian analysis

Over the last three decades, Bayesian statistical analysis has come to represent an

important alternative to the classical or frequentist school of thought. A primary

motivation for the use of Bayesian techniques is that they facilitate a commOQ-sense

interpretation of statistical conclusions. Further, these methods are flexible and can

he used ta model very complex problems, where recent computational advances have

made Bayesian inference feasible (see section 2.2).

Frequentist statistics considers unknown parameters as fixed, and examines the

behavior of data-hased statistics as the data are imagined to change over the sampIe

space. For exampIe, a frequentist 95% confidence interval around a parameter is

interpreted as 'a random interval (the randomness coming from its endpoints varying

across different data sets ather than that observed) which would capture the true

parameter 95% of the time in repeated applications acrass different experiments'.

17
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Thus, inferences are indirect at best, since the interval at hand is based on a single

realization of the experiment and it is not known whether it faIls among the 95% of

intervals which correctly capture the true parameter.

The Bayesian approach, on the other hand, treats unknown parameters as random

and involves drawing inferences conditional on the observed data and quantifying the

uncertainty in the inference using probability. A Bayesian 95% probability interval is

literally an intervaI where the parameter of interest has a 95% probability of being

located. This direct interpretation, as we will see below, cornes at the cost of requiring

the specification of a prior distribution over aIl unknown parameters, which means

that its probability statements are interpreted subjectively. A detailed comparison of

the two schools of thought can he found in Berger, 1985. See Gelman et al., 1995 for

an introduction to oata analysis from a Bayesian point of view.

2.1.1 Bayes' Theorem

Bayes' ruIe, which is pivotai to the use of Bayesian methods, can be summarized

as follows: Let us consider the general situation whère we are interested in drawing

inferences about fJ, which is a parameter characterizing the distribution of the ob­

servable variable Y. In the Bayesian framework, 8 is treated as a random variable

having a distribution /8(8). This distribution, which is termed the prior distribu­

tion, represents the information available on fJ prior ta ohserving Y = y. Statistical

conclusions about () are then expressed in terms of the probability of 8 conditional on

the ohserved values of y, /91Y(8Iy), which is called the posterior distribution.

The basic idea behind Bayesian thinking is ta pool together the information from

the prior distribution f9(fJ) and the likelihood function /Yls{Y = y18) of the observed

value of Y = y, ta obtain the posterior distribution /s\y(8IY = y) using the following
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relation which is called Bayes' theorem of conditional probability:

fe y(8Iy) = J(e, y) = !e(0)fYle(yI8) (2.1)
1 f(y) E8 fe(8)fYle(yI0)"

In the case when () is eontinuous, f(y) = f~oo f«(})f(yI8)d(J. Thus the primary task in

developing a Bayesian solution to any specifie problem is to select a suitable model

f(8, y) and to find f(8) whieh accurately summarizes the available information about

O. An equivalent form of equation (2.1) omits the factor f(y), which does not depend

on () and ean hence be considered a normalizing constant. We then have

J(8Iy) oc f(9)f(yI8) (2.2)

•

•

For the sake of brevity we will often use this unnormalized form of the posterior

density in this thesis.

2.1.2 Prior distributions

The use of prior distributions has been controversial, and is the leading issue in the

debate between the frequentist and Bayesian schools of statistical thought. On the

one hand, in theory it is very attractive to summarize ail past information into a prior

distribution, and update it with the information in the CUITent data set to arrive at a

posterior density which summarizes ail that is known about the set of parameters un­

der investigation. The great problem, of course, is that in practice the choice of prior

distributions is virtually never unique and different choices of prior distributions will

lead to different posterior densities and possibly different conclusions. Spiegelhalter

et al., 1994, suggest providing posterior densities across the range of reasonahle prior

densities in the context of reporting results from elinicaI trials. This cornmon sense

approach can he applied to areas other than clinical trials as well, offering a partial

solution ta the problem.

In non-identifiable problems, however, one has the choice of either carrying out

a Bayesian analysis, or changing the problem to an identifiable one, and solving
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the simpler problem via a frequentist approach. As we will see, the main problem

addressed in this thesis is non-identifiable. In particular, we will address the problem

of estimating the test properties and population prevalence from two tests in the

presence of conditional dependence between the tests. Therefore, only the Bayesian

approach offers a direct solution to this problem. Nevertheless, it is particularly

important ta select prior densities carefully in non-identifiable problems sinee their

effeets can be 'everlasting'. From the central limit theorem, Bayesian and frequentist

approaches offer numerieally similar inferences as the sample size inereases across a

wide class of problems. This is because the infornlation in the prior density becomes

overwhelmed by that in the data as the sample size increases. However, this does

Dot happen in the case of non-identifiable problems, where final inferences greatly

depend on the choice of prior density, even with large sampie sizes.

Elicitation of prior distributions

As discussed above, one of the most important steps in any Bayesian analysis is the

process of determining the distribution that accurately summarizes the information

available prior to the experiment. This information is typically gathered from previous

studies or from subjective, expert opinion. Since prior elicitation tends to be elictee­

and application-specifie, it is difficult to automate this process. Several methods that

have been suggested ta streamline the process are reviewed in Chaloner, 1996 and

Wolfson, 1995.

One simple method is to divide the range of the parameter of interest, 9, into

intervals and assign relative probabilities ta each of these intervals in a manner that

reflects the experimenterfs beliefs. While this method might seem natura! when 8

is discrete, it quickly becomes complicated as the range of fJ increases or when it is

continuous. Altematively, we could assume that the prior distribution cornes from

a family of well known parametric distributions !(fJ!l1), where 11 is fixed so that the
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resulting distribution matches our prior beliefs as c10sely as possible. For example, if

Tf were two dimensional, as in the case of the N armal distribution, then specification

of two moments (such as the mean and the variance) or two quantiles (such as the

5th and 95th percentiles) would suffice to determine Tf. Sometimes a prior belonging

to a particular distributional family may simplify the computation of the posterior

distribution. In particular, when the likelihood of the observed data belongs to the

exponential family of distributions, it is possible to select a conjugate prior which

would result in a posterior distribution which belongs ta the same family as the prior.

Example 2.1 Suppose that .~L, ••• , .o'Y"n are independent and identically distributed

as Binomial(N, pl. The likelihood of the data can be written as

n
L(.X't, ... , ..Ynlp) ex II pXi (1 - p)N-Xi,

i=1

=pL:=1 xi (1 _ p)nN-L:':1 Xi

A reasonable choice of a prior density for p is the Beta(a.,I3) prior density such that

o~ p ~ 1, Cl: > 0, {3 > O.

This prior distribution is defined over the entire range of possible values of p and

bas the further advantage of taking on several shapes over this range. Using Bayes'

theorem we obtain the posterior density of p as follows

!(pl)(l, ... , .Yn ) ex: L(~X'l' ... , Xnlp)f(p) ,

ex: pL7=1 xi(1 _ p)nN-L7=l X'pa-l(1 _ p)~-l,

= pL~1 X.+a-l(1 _ p)nN-L7=1 X.+fj-l. (2.3)

The above equation is proportional to a Beta density with parameters a' =Lf=I"X'i+

a and {3' = N2 - L::l Xi + {3. Since this is the ooly function proportional to equation

(2.3) which integrates to 1, the posterior density of p is indeed Beta(a', (3') and the

Beta is the conjugate family for the Binorniallikelihood. See Berger, 1985 and Carlin

and Louis, 1996 for more examples of conjugate families.
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Given that aIl the parameters in the diagnostic testing problem are continuous,

for the methods developed in this thesis we have selected priors of standard distribu­

tionaI forms, utilizing conjugate distributions wherever feasible. While this method

facilitates the conversion of prior information inta parameters, a drawback is that in

attempting ta force the available information ioto the fonn of a standard distribution,

one may end up with a prior distribution that may not exactly match the available

information. Also, there may be more than one distribution, belonging to different

families, which conform ta the prior beliefs of the experimenter but result in very

different posterior densities. In such a. case it Inay Ilot always he clear which prior

should be used, so that reporting results across a range of reasonable prior densities

is again indicated.

When there is no prior information available on 6 or when we want to draw infer­

ences based on the data alone, we could use a non-informative or diffuse prior, i.e.

one where the data dominates any information in the prior. Several methods which

have been proposed for the construction of such priors are discussed in (Carlin and

Louis, 1996). One of the most common methods, which we shaH employ later in the

thesis, is to use a uniform distribution over the range of (J.

2.2 Bayesian computational techniques

Until recentIy, Bayesian analysis was not frequently used in practice, because it oCten

involved the integration of complex functions for which there is no analytical solu­

tion. Sophisticated numerical analysis techniques used ta solve such problems require

lengthy calculations. Over the last decade, however, Bayesian analysis has gained

increasing importance in applied statistical analysis because of the availability of nu­

merical Monte Carlo methods for sampling from the distribution of interest without

actually having to first derive the exact posterior density. The availability of fast com-
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puters which can execute these methods within a reasonable time frame bas resulted

in an explosion of applied Bayesian research. In this section we discuss two snch

methods which are used later in the thesis - the Sampling Importance Resampling

(SIR) algorithm and the Gibbs sampler.

2.2.1 The Sampling-Importance-Resampling (SIR) algorithm

The SIR algorithm, which was discussed by Rubin, 1988, is particularly useful wben

it is difficult to obtain the analyticai form of the distribution of interest, g(x), or even

to simulate a sample from it, but where there exists a distribution, h(x), wbich is

absolutely continuous with respect to g(x) and is easier to sample from. The SIR

consists of the following steps:

1. Drawa sample of size n, (Xl, Xe, ... , Xn ) from the 'proposaI' distribution h(x).

2. Assign weights W l, WS, ••• , W n to each corresponding Xi snch that W(Xi) =

2!=J.' 1h(ra)' ~ = , ... , n.

3. Finally, draw a new random sample of size m, x~, X2, ... , x;" with replacement

from the discrete distribution over XJ, Xs, ••• , X n with probabilities propor­

tionai to WI, WS, ••• , W n •

The resulting sample xi, X2, ... , x:n is approximately an independent sample from

g(x). For a quick proof of this, see Smith and Gelfand, 1992. Clearly, increasing n and

m increases the accuracy of the estimates. Theoretically, any distribution, including

a unifonn density over the range of x, can he used as the 'proposai' distribution h(x).

However, the more closely h(x) resembles g(x), the smaller the value of n required ta

obtain a good approximation of g(x), that is, the closer x~, xi, ... , x:n will resemble

a random sample from g(x).



2: PRELIMINARIES 24

•

•

•

Example 2.2: In a hypotheticai community study it was of interest to estimate

the prevalence 1r, of the disease .Y. For the purpose of illustration we assume the

exact sensitivity and specificity of the test are known to be S = 0.95 and C = 0.85.

Of the 1000 subjects tested for disease X, 270 tested positive. The probability of

obtaining a positive test is given by:

P(T = 1) = P(D = l)P(T = 11D = 1) + P(D = O)P(T = 11D = 0)

= 1rS + (1 - 1r)(l - C)

The likelihood function can DOW be written as:

L ex: P(T = 1)270(1 - P(T = 1))1000-270

= (0.951r + (1 - 71")(1 - 0.85))270(1 - (0.9571" + (1 - 1r)(1 - O.85)f30

A review of earlier studies, say, suggested that the prior distribution of 1T' in the

population was Beta(10,90). Therefore the posterior distribution of 1r is given by

g(1rldata) ex: (0.951r + (1 - 1r)(l - 0.85))27°(1 - (0.951r + (1 - 1r)(1 - 0.85))730

X1r 1o- 1(1 - 7r)90-1 (2.4)

This function can of course he integrated, numerically or otherwise, to obtain the

posterior density or a close approximation. Nevertheless, we will use the SIR algo­

rithm for illustrative purposes. The function in equation (2.4) is not of the form of

any common distribution, but a SIR algorithm can be used to obtain a sample from

it. We select the Uniform(O, 1) as the proposaI distribution, which means h(1r) =1.

This is not necessarily the best choice, but is adequate for the purpose of this example

and guarantees absolute continuity with respect to g(7rldata). We then proceed as

follows:

1. Draw m values 1rl, ... , 1rm from Uniform(O, I)
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2. Assign a weight wei) to each 1ri, such that

wei) = g(1r;) = 'lrtO- 1(1 -'lrd90-1(1TiO.95 + (1 -7rd(l - 0.85))270

X (1 - (0.951ri + (1 - 1Ti)(l - 0.85)) 730 i = 1 ... , m •

25
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3. Sample n values 1r;, ... , 1r: from 'Ir1, ... , 'Irm with weights proportional to

It was found that the posterior median and 95% posterior probability interval of 'Ir

were 0.1404 and (0.1118,0.1662), respectively. The proposai distribution h(rr) and

prior and posterior distributions for 1T are illustrated in Figure 2.1, where 'm and

n were taken to be 1000 and 2000, respectively. The plot for the posterior density

was obtained by smoothing the histogram of the posterior sample using the ksmooth

function in S-plus.

2.2.2 The Gibbs sampler

The Gibbs sampler, see for example, Geman and Geman, 1984, cornes from the class

of Markov Chain Monte Carlo (MCMC) procedures. These methods are based on

~Ionte Carlo integration using Markov chaîns and have been used to simplify a wide

class of high-dimensional integration problems, especially in Bayesian analysis. The

Gibbs sampler is the most commonly used of the MCMC techniques, and is the

fundamental too1 for the inferentia1 methods developed in this thesis.

Consider the following situation: We are interested in the marginal posterior dis­

tributions of n ~ 2 variables XI, X f , ... , X n . However, it is their so-called 'full con­

ditional distributions' of the form f(XiIXt , ••• , Xi-l, X i +1 , .•. , .X'n), i = 1, ... ,n

that are known or are easier to sampie from. This Conn is usually easily available, up

to a normalizing constant, for each Xi, i = 1, ... ,n by multiplying its prior density
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with the likelihood function as in equation (2.2) and cOllsidering all variables except

J"(i as constants.

The Gibbs sampler can be used to break down a multivariate problem into a series

of smaller dimensional problems. It works by simulating a sample from each of the

marginal posterior distributions using the following steps:

1. Assign starting values to all variables sucb that .'(1 = X~l), X, = x~l), ... , Xn =
X~l) •

2. Draw a single value X~2) for Xl from the full conditional distribution !(X1 IX, =
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X~l), ••• , yn = xh1}), i.e., the distribution of Xl conditionalon the remaining

variables y2, ... , Xn ·

3. Repeat Step 2 for a1l n variables. For example, draw x~2) for "Yi from the

d· 'b . f( v 1v (2) X (2) X (1) v (i»)Istn utlan ....'\.i ..'\. J = Xl' , •• , i-J = X(i-J)' i+l = X(i+1)' •. " "'\.n = X n

A single iteration is completed when a value has been drawn for each of the n

variables, This procedure is repeated, say, N times where N is typica1ly several thou­

sand. The sample (XiJ, ••• , IiN), i = 1, ... , n thus obtained is a possibly correlated

random sample from the marginal distribution of Xi, and can be used to obtain pos­

terior inferences about the unknown parameters. For a description of the Markov

chain concepts related to the Gibbs sampler see Roberts, 1996.

Example 2.3: To illustrate the Gibbs sampler we use the example from the

classic paper on data augmentation by Tanner and Wong, 1987. Based on a genetic

linkage model, 197 animais are considered ta he distributed inta 4 categories following

a multinomial distribution such that y = (Yl,Y2,Y3,Y.) = (125,18,20,34), with

corresponding probabilities (~ + ~, (l~8), 1~8, ~), where 0 ~ 8 ~ 1. The variable y

is transformed by splitting the first cell into two cells with probabilities ~ and ~,

The transformed variable x = (xJ,XS,X3,X.ç,XS), is such that x, +X2 = Y, = 125,

X3 = Ys = 18, x-I = Y3 = 20 and Xs = Y. = 34. We can think of Xe as having a

Binomial distribution such that, Xe f"ooJ Bin(8~2' 125). The likelihood function of the

observed data is

f(yl8) ex (2 + 8)111 (1 - 8)111+113 8114 ,

which can be rewritten in terms of the x as

If the prior distribution of 8 is taken to be Uniform(O, 1), the posterior distribution
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of () would he equal to the normalized likelihood, and could he expressed as

f(8Ix) ex (F!+%5 (1 - 8)%3+%4

=} 81x f'J Beta(x! + 34, 38)

28
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Thus, we know the distribution of x! conditional on (J and the distribution of 8

conditional on X2, but not the marginal distribution of either variable. We can use

the Gibbs sampler ta obtain random samples from the marginal distributions of x!

and 8 as follows:

1. Start with an arbitrary initial value 8 = 8(1)

2 D (1) f B· ( 8(1) ). raw X2 = X 2 rom ln 125, 80)+2

3. Draw ()(2) from Beta(x~l) + 34,38)

Repeat steps two and three until a sufficiently large sarnple from the full conditional

distribution of () is obtained. The posterior median and 95% posterior probability

interval of 8 were found to be 0.6273 and (0.5241,0.7221), respectively. The prior and

posterior distributions for the parameter (J are seen in Figure 2.2. Here X2 is considered

as 'latent' or unobserved data. We will use a similar technique for deriving marginal

posterior densities of latent parameters in Chapters 4 and 5.

2.2.3 Diagnostics for tbe Gibbs sampler

As with many other statistical methods, once a technique bas been selected and

the parameters of interest have been estimated, it is important to ensure that the

technique has operated as expected. For an MeMe chain this means assessing when

the procedure has 'converged' and when it cao he safely terminated. In other words,

here we want ta he sure that the samples obtained come from the true stationary
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distribution, i. e. the true joint posterior distribution, and that a sufficiently large

sampie is collected for an accurate approximation of the joint and marginal posterior

densities. This is difficult because what is produced by the algorithm at convergence

is not a single number or even a distribution, but a sample from a distribution.

Furthermore, the algorithm is complex, and, of course, we usually do not have the

true posterior densities against which to compare our approximations. Theoretically,

an accurately modeled problem will eventually converge after an infinite number

of iterations (Gelfand and Smith, 1990). However, given the complexity of most

MeMe problems, each iteration is expensive in tenns of computer time and it is

desired to minimize the required number of iterations. Although severa! methods
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have been proposed, 'MCMC convergence diagnostics' remains an area which is still

being actively researched. A comparative review of sorne commonly used methods is

presented in the paper by Cowles and Carlin, 1996.

In this section we summarize two such methods which we employed ta assess the

performance of the methods developed in this thesis. Bath these methods are avail­

able as part of a software package called CODA (developed by the ?vIRe Biostatistics

unit at the University of Cambridge). In addition to these two methods, the auto­

correlation within each chain and the cross-correlation between different parameters

can he utilized to evaluate convergence.

A'lethod 1: Raftery and Lewis

Raftery and Lewis, 1992, have proposed a method which will detect slow convergence

to the stationary distribution as well as provide a way of bounding the precision

of the variance of the posterior quantiles. This method determines (a) the number

of bum-in iterations, Al, to be discarded in the initial part of the chain before it

converges, (b) the number of further iterations, N, to he run in order to obtain the

desired precision and (c) the thinning interval, k, which is the number of iterations

to he discarded between two successive, retained, independent iterations to obtain a

sequence of independent random iterates. While considerations (a) and (c) are not

ahsolutely mandatory for the operation of a Gibbs sampler algorithm, they help use

the computer memory more efficiently. The first step involves running a pilot chain of

length Nmin , which is the minimum number of iterations that would he required for

the desired accuracy if the samples were independent. The value of Nmin is detennined

as a function of the quantile q, that is of interest ta be estimated with precision r,

with s being the probability of attaining the specified accuracy, sucb that

N. . = {<)_1(8 + 1)}2q(1- q)
man 2 r2
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where ~(.) is the cumulative distribution function for the standard normal distribu­

tion. The results from the pilot mn are entered ioto CODA to obtain estimates of

NI, N and k. A large value of M indicates slow convergence and a large value of N

which is greater than lVmin or equivalently a value of k greater than 1 suggests strong

autocorrelations within the chain. In addition we can also calculate the dependency

factor

which measures the increase in the number of iterations due to the dependence in

the sequence. Values of 1 much greater than 1 suggest a high level uf dependence

in the model and values greater than 5 suggest that the implementation (often the

parameterization) of the problem may need to be changed. The diagnostics of Raftery

and Lewis, 1992, while helpful, do Dot guarantee that convergence has occurred by

NI iterations, or that N iterations will necessarily have the desired accuracy. This

is because the method assumes that a function of the quantiles of interest follow a

Markov chain, and uses the ergodic theorem to derive a 'sample size' for the accurate

estimation ofeach marginal posterior density, and uses the BIC criterion (see Kass and

Raftery, 1995) to determine the required burn-in. Both of these are approximations,

50 that this method should he used with caution.

]\;Iethod II: Gelman and Rllbin

The method developed by Gelman and Rubin, 1992 addresses the problem of undiag­

nosed slow convergence (Gelman and Meng, 1996). This could happen, for instance,

when successive observations in a chain are highly correlated or when the model is

overparametrized. This in turn may prevent proper 'mLxing' of the chain, giving a

false impression of convergence. Sucb a problem may not be visible by viewing a

single trace plot which is the plot of the successive observations vs iteration numbers.

The method consists of two parts as follows:
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1. Observe the trace plots of multiple, say m = 5, parallel sequences of length n

starting at pre-determined points which are weil dispersed over the range of the

target distribution. By ensuring that the starting points are weIl dispersed it

will be possible to detect if the MC~lC eventually identifies the correct mode(s)

of the stationary distribution each time. AlI n trace plots are then overlaid to

see if the individual sequences can be distinguisbed after eliminating the burn-in

iterations.

2. The second step involves the calculation of a quantitative measure which checks

if the empirical distribution of simulations obtained separately from each chain

is approximately the same as the empirical distribution obtained when the se­

quences are mbced together. This is done by comparing the within-sequence and

between-sequence variance for each parameter. For each parameter of interest,

say tP, the parallel chains are labeled tPi;, i = 1, ... , m, j = 1, ... , n and the two

quantities of interest are calculated as

•
m 1 n

n ~ - - 2 -"B = --1 .l...J1/Ji. - 'l/J..} , where tPi. = - L.- 1Pij,
m - i=1 n j=1

1~2 2 1 ~ -2
W = - L- Si' where Si = ---=-1 L-(1/Jij - tPiJ .

m i=1 n j=1

- 1 ~ -
'l/J.. = - L.- 1/Ji..

m i=1

•

The two variance components are used to construct the ratio of an overestimate

and an underestimate of the posterior variance as follows

A !!.=.lw + lB
R= n n

W

As n ~ 00, or in other words when convergence is reached in all sequences, Êl

will he equal to or very close to 1.

When the overlaid sequences are distinguishable or Êl is very different from 1 (say

i 1.2) the model may require reformulation. There bas been an enormous amount

of research into the properties of MCMC algoritbms since the popularizing paper of
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Gelfand and Smith, 1990. See the recent book by Gilks et al., 1996, and the references

therein for a path into this literature.

2.3 Summary

In this chapter we have seen the basic concepts behind the use of Bayesian analysis

as they will be applied in Chapters 4 and 5 of this thesis. An important step in any

Bayesian analysis is collecting accurate prior information and then determining the

distribution which most closely matches our prior beliefs. This step is of particular

importance when we have a non-identifiable problem since in these problems, even

with a very large sample size, the influence of the informative prior distributions can

remain great. Aiso important ta any Bayesian analysis is the process of determining

the posterior distributions of the parameters of interest. This hitherto complicated

process has now been siInplified by computational techniques snch as the SIR and

the Gibbs sampler.

In the next chapter we review sorne of the methods which have been developed for

the analysis of diagnostic tests, particularly those which provided the background for

the methods developed in this thesis.
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A REVIEW OF THE LITERATURE

Over the last four decades a great dea! of research has been done to develop sta­

tistical methods for the analysis of diagnostic test data. The result is a choice of

several models using a variety of statistical techniques including Bayesian methods,

generalized linear models and latent class analysis. This chapter is a brief review

of this literature. Sorne of the techniques presented here provide the motivation for

the methodologies developed in the remaining chapters of the thesis while others are

mainly of historical interest.

3.1 The Bayesian independence model

The Bayesian independence model, introduced by Ledley and Lusted, 1959, was

among the earliest formaI methods for the analysis of diagnostic tests. Since then

it has enjoyed great popularity in computer-aided medical diagnosis algorithms and

other areas of statisticai pattern recognition. Though this method has no direct re­

lation to those developed in this thesis, we discuss it here since it involves Bayes'

theorem and purports ta analyze simultaneously results from multiple, independent

tests.

The outline of the method is as follows: Let dl, ... , dq denote q mutually exclusive

and exhaustive, well-defined disease conditions. The tests Tl, ... , TI' are p tests used

34
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to diagnose a patient's disease condition, snch that the jth test takes on li distinct

values, 1,2, ... t lj. For example, if Tl is 'chest pain" with II = 3 it could take values

1,2 and 3 indicating none, radiating and non-radiating pain. Each new patient is

thus a realization of the random variable (D, T) where D is the true disease status

and T = (Tl' ... , Tp ) is the vector of test results. The diagnostic problem now is to

observe T = t and infer from it the value of D. This means observing

t=(tlt ,tp ),

tE {l, ,ll} X ..• x {l, ... ,lp}.

and estimating the probability P(D = d.lt), k = 1, ... , q. The desired probability

can be calculated using Bayes' theorem as follows

P(D = dle)P(T = tlD = die)
P(D = dklT = t) = LZ'=l P(D =dle,)P(T = tlD =die,)' k = 1, ... , q. (3.1)

It is assumed that valid estimates of the prevalence of each disease condition

P(D = die), k = 1, ... , q, and the test performance parameters P(T; = ti ID =
d.), j = 1, ... ,p, k = 1, ... , q are available from studies conducted earlier. A

fundamental feature of the algorithm is that it hypothesizes that results from the p

tests are conditionally independent. This implies

k = 1, ... , q,

which simplifies the calculation of the joint probability of the p tests. In practice, it

means that if the true disease state is knowD, then the test results are independent

of each other, i.e., knowing the result of Test j provides no information about Test

j', j :F j', if the disease state is known. Equation (3.1) can DOW he rewritten as

P(D = d.ly) = P(D =d.)P(TJ = tJID =d.) ... P(T" = t"ID = dA:) ,
E%,=l P(D =d.,)P(TJ = t1lD = d.,) ... P(T, = t,ID = d.,)

k = 1, ... ,q.



3: A REVIEW OF THE LITERATURE 36

•

•

•

The early literature on this method demonstrated much confusion about the use of

the conditional independence assumption which was understood by many researchers

to be a necessary condition for use of this method (Feinstein, 1977). Since condi­

tional independence between diagnostic tests is seldom exactly achieved in practice,

the method was criticized for being unrealistic. This gave way to much of the lit­

erature assessing the effects of the assumption of conditional independence on the

parameter estimates of interest. Several authors have shown that the assumption can

be rela..xed, in that in many practical situations it does not materiallyaffect the esti­

mated probabilities of disease (Lincoln and Parker, 1967, Russek et al., 1983, Hilrlen,

1984).

In the light of the methods developed later in this thesis, it is of interest to note

tbat though this method makes use of Bayes' theorem, it is not Bayesian in its in­

ferential approach. In fact, there is not even the use of an interval to give an idea of

the variability in the estimated probabilities. Point estimates are used for the prior

information on disease prevalence P(D = die) and test parameters P(Tj = t j ID = die),

which are assumed exactly correct. As will be explained in Section 3.2.5, it is diffi­

cult to know these values exactly and a fully Bayesian approach would assign a priar

distribution over the range of possible values for the prevalence and test properties

which accounts for the uncertainty about the values of these parameters.

Early methods, such as this one, sought to identify symptoms associated with the

presence or absence of disease, in order to develop an algorithm for predicting the

probability of disease following an individual test result. Such an algorithm is usually

developed by comparing test results with the true disease status or gold standard test

results. Later methods, such as those described in the following sections, attempted to

model data more realistically for situations where no gold standard test was available.

The latter methods focussed more on the estimation of population level quantities

such as disease prevalence.



3: A REVIEW OF THE LITERATURE 37

•

•

•

3.2 Latent class analysis

Often we are interested in measuring a variable which cannot be observed directly.

Consider, for example, 'religious commitment'. Such an unobservable or latent vari­

able can be estimated using one or more observable indicators, for example 'frequency

of church visits', 'perceived importance of religious beliefs\ and so on (McCutcheon,

1990). Latent Structure Analysis, which was first introduced by Lazarsfeld in 1950,

has been widely used by social scientists ta model such problems and particularly to

study the relations between the observed indicator variables (Lazarsfeld and Henry,

1968).

In recent years these methods have round application in modeling the results from

diagnostic tests to estimate the prevalence and test parameters. In the diagnostic test

situation, the observed variables would be the results from the diagnostic tests and

the latent variable would be the true disease status, which in the absence of a gold

standard test is unobservable. Latent Class (Le) problems are a subset of Latent

Structure problems where the latent variable is discrete, taking a finite number of

distinct values. For ease of exposition and notation, and, keeping in mind the context

of this thesis, the discussion here is focussed on situations where both the observed

and latent variables are dichotomous. The results are easily extended ta address

problems with more than two latent classes.

The basic premise of latent class analysis is that the relations between two or more

observed variables are explained entirely by the latent variable. This can be stated in

statistical terms as: two or more observed variables are independent conditional on

the latent variable. In the case of the diagnostic testing problem, this would amount

ta saying: the results of two or more tests are independent within groups of the

diseased and non-diseased subjects, or



3: A REVIEW OF THE LITERATURE 38

•

•

•

= P(TJ = tt ID = d) P(Ta = t.eID = d) ... P(Tp = tplD = dl .

Note that we do not expect independence to hoId between groups, i.e. we do not

expect that

as it would imply poor performance of the diagnostic tests.

Following the notation described in Chapter 1, the probability of observing the

vector (t J, ••• , t p ) of test results can now he expressed as:

P(TJ = t J , T2 = ta, ... ,Tp = tp ), ti = 0 or 1, j = 1, ... , P
1

- L P(D = d)P(Tt = t J , T2 = ta,·· . ~ Tp= tplD = d)
d=O

1

- L P(D = d)P(Tt = t J ID = d) P(Ta = t 2 1D = d) ... P(Tp = t"ID = dl·
d=O

(3.2)

Equation (3.2) follows from the fact that there are two mutually exclusive, latent

disease classes, D = 0 and D = 1, and, conditional on the disease status the results

of the p tests are independent. Hereafter we refer to the model with two latent classes

denoting diseased and non-diseased as the 2LC or 'two latent class' model. In the

next section we discuss how to set up the likelihood function for this model using

these equations.

3.2.1 Observed and complete likelihoods

For ease of illustration let us consider the situation when we have p = 2 tests. Again,

the results can easily he extended to the situation where results from more than two

tests are available. The cross-classification of the observed results from two tests

Tl and TB can be summarized as in Table 3.1. Following the basic assumption of
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Tl =1 Tl =0

Te =1 nu nOI

Te =0 nlO nOO

Table 3.1: Cross-classification of observed results from two dichotomous tests.
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latent class analysis, the two tests are considered to he independent conditional on

the disease status. Thus from equation (3.2) we see that the probahility of observing

(TI = 1. T2 = 1) is

P(T, = 1, Te = 1) = P(D = I)P(Tl = llD = 1)P(T2 = llD = 1)

+P(D = O)P(T, = llD =0)P(T2 =11D = 0),

= 1rSlS2 + (1 -1r)(1 - C I )(l - Ce).

Similarly the probabilities of observing the other three cells are

P(TJ = l, T2 = 0) = 1rSJ (1 - 52) + (1 - ?r)(1 - Cl )C2,

P(TJ =0, T2 = 1) =1r(1 - SI )8e+ (1 - 1r)Cl (1 - C2 ),

P(TI =0, Te =0) =1r(1 - 51 )(1 - Se) + (1 -1r)C,C2.

Using the above equations, the likelihood function of the observed data, Lo , can

now be written as

L
o
= (nu + niO + nOl + noo)! [1rS,S2 + (1 - 1r)(l - Cd(l _ C2 )]Rll

nu! nlO! nol! nOO!
x [1rSJ (1 - Se) + (1 - 1r)(l - Cl )CS)R10

X [1r(1 - SI )52 + (1 - 1r)Cl (1 - C2 )]nOI

X [1r(1 - SI)(l - S,) + (1 -1r)CICg ]ROO,

o~ 1r, S" 8 2 , Cl, Cs :5 1. (3.3)

A helpful 'trick' to solving this problem is to imagine what would happen if we

knew the number of truly diseased subjects in each of the four cells (Tl = 1, T2 = 1),
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Diseased

Tl = 1 Tl =0

T2 = 1 Yu YOl

T2 =0 YlO Yoo

Not Diseased

Tl = 1 Tl =0

Te = 1 nu - Yu nOl - YOl

Te =0 nlO - YlO noo - yoo
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Table 3.2: 'Complete' data from two dichotomous tests.

(Tl = 1, T2 = 0), (Tl = 0, T2 = 1) and (Tl = 0, T2 = 0). If this were true, estimating

the prevalence and test parameters would be straightforward as (in Example 1.1)

when results from a gold standard test are available. This unobservable or latent

data will be denoted by Yu, YlO, YOl and Yoo. We hypothesize that if the latent data

were available, then the latent data along with the observed data would constitute

the 'complete' data set as presented in Table 3.2.

The likelihood function of the 'complete' data is then given by

Le = (nu + nlO + nOI + noo)!
yu r (nu - Yu)! YlO! (nlO - YIO)! Yod (no! - Yod! YOO! (noo - Yoo)!

X [7rS/S2]YU [(1 -7r)(1- Cd(l- ce)]nu- 1Iu [1l'SI(l- 8S )]1IIO

x [(1-11")(1- C1 )CS ]RIO-YIO [1l'(I- 8d8.e]YOl [(l-1l')C I(l- C2)]nOl-YOI

x [1l'(1- Bd(! - 82 )]1100 [(1-1l')CIC2]noO-flOo,

o~ tr,SI,8e,C1 ,Cs ~ 1.(3.4)

The ·complete' and observed likelihoods are related by

(3.5)

•

Equation (3.5) shows that the probability density associated with the conceptual

·complete' data may not be unique. In most cases, given La, the choice of the Le

is guided by convenience. In the following sections we will show how the 'complete'
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Number of tests p 1 2 3 4 5

Number of parameters 2p+ 1 3 5 7 9 Il

Number of df 21' -1 1 3 7 15 31
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Table 3.3: Number of unknown parameters and available degrees of freedom as a function of the
number of tests.

data likelihood can be used ta obtain estimates of parameters when data are latent

or missing.

3.2.2 Identinability conditions for the frequentist model

The number of diagnostic tests used determines the number of cross-c1assifications

into which the observed results are grouped and hence the number of degrees of free­

dom. In the general situation when we have results from p conditionally independent

diagnostic tests we have p sensitivities, p specificities and the prevalence that we are

interested in estinlating, i.e. we have a total of 2p + 1 parameters ta estimate. Since

each test can take two possible V"dolues, 1'; = 0 or 1, j = 1, ... , p, there are 21' possible

cross-c1assifications of test results and hence 2" -1 degrees of freedom, since the total

sampie size is fixed. Table 3.3 summarizes the number of unknown parameters and

the number of degrees of freedom available as a function of the number of tests. From

this table we can see that in the case when there are less than three conditionally

independent tests the problem is non-identifiable and therefore a frequentist approach

to the solution of sucb a problem will require applying certain constraints as will be

discussed in Section 3.2.4. For a complete description of identifiability conditions in

the general case when the latent and manifest variables have more than two exclusive

classes see Goodman, 1974.
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Stool Examination

+ - Total

Serology + 38 87 125

Test - 2 35 37

Total 40 122 162

Table 3.4: Results of tests for Strongyloides infection among a group of Cambodian refugees.

Parameter Median 95% CI

Stool SI 0.24 0.07-0.47

Examination Cl 0.95 0.89-0.99

Serology Ss 0.81 0.63-0.92

Test Cs 0.72 0.31-0.96

Table 3.5: Test parameters of staal examination and seralogy test.
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3.2.3 The Strongyloides infection problem

In this section we outline a diagnostic test problem which could be rnodeled using

latent class analysis. Following this we describe two methods - a frequentist and a

Bayesian method - to estimate the parameters in the latent class mode!. We apply

both methods to the problem described here.

Joseph et al., 1995 were interested in studying the prevalence of Strongyloides

infection among a group of Cambodian refugees arriving in Montréal, Canada. They

had available to them results from two imperfect tests - a serology test and a stoo1

examination - as illustrated in Table 3.4. Assuming the two tests to he conditionally

independent, we see from Table 3.3 that this problem is non-identifiable. Consultation

with the literature showed that there was no gold standard test available with which ta

compare these two tests and hence there was great uncertainty about the performance
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parameters of the tests, even though they were commonly prescribed. For instance,

the specificity of the serology test was found to range anywhere from 35% to lOO%!

The prior median and 95% CI of the test parameters are summarized in Table 3.5.

While the staal examination had a very poor sensitivity it had an extremely high

specificity. The serology test on the other hand had a higher sensitivity but a poorer

specificity than the stool examination. The study's main objective was to see if any

interventions were required in this population when they immigrated to Canada.

3.2.4 A frequentist solution for the 2LC model

Frequentist methods for parameter estimation require that a problem he identifiable

in arder to obtain a meaningful solution. Therefore, when the degrees of freedom

are less than the number of unknown parameters, constraints must be added to the

model by assuming sorne of the parameters to he known constants. For example,

when we have two tests we need to fix the values of any two parameters in arder to

ensure that there are as many unknown parameters (5 - 2 = 3) to estimate as there

are degrees of freedom (3) available. Different combinations of parameters may be

held fixed depending on the context of the problem, as discussed in great detail in

the review by Walter and Irwig, 1988. The remaining parameters are then estimated

conditional on the values of the constrained parameters.

Estimates of parameters in the latent class model are commonly obtained by the

method of maximum likelihood. The EM algorithm, described in the next section, is

an iterative method which cao he used to obtain maximum likelihood estimates for

this type of problem.
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The EM algorithm

The EM algorithm, popularized by the paper of Dempster et al., 1977, was developed

to obtain ma.ximum likelihood estimates in a situation when we have missing or

incomplete data. This method can also be applied to great advantage in situations

when the data are 'missing' by virtue of their being unobservable or latent, as in the

case of the diagnostic testing problem. Detailed descriptions of the algorithm and its

properties are given by Dempster et al., 1977 and Wu, 1983. Lvuis, 1982 presents a

method of estimating the covariance matrix of the parameter estimates from an EM

algorithm.

Let n denote the observed data and y denote the complete data, with likelihood

functions g(nlq'» and f(ylt/J), respectively. For a given n, the purpose of the EM

algorithm is to determine the value of f/> which maximizes g(nlq'» by making use of

the complete data density f(ylcfJ). Each iteration of the EM algorithm consists of two

steps - the 'expectation' or E-step and the 'maximization' or !vI-step. The algorithm

typically proceeds as follows:

1. Civen that the estimate of q'> in the ith step is c/J(i), the E-step consists of com­

puting the expectation of the complete data likelihood conditional on c/>(i), with

respect to the conditional density of y given n as follows:

When the probability density of the complete data cornes from the exponential

family of distributions, this step reduces to calculating the expectation of the

sufficient statistics for each parameter conditional on the observed incomplete

data and c/J(i).

2. In the M-step the new estimate of t/J, t/>(i+l), is obtained by maximizing the

expectation computed in the E-step.
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The E and ~1 steps are repeated until sorne pre-detennined convergence criterion

such as 14>(i+l) - «p(i) 1 < l is met, for sorne smalil. The main advantage of the EM

algorithm is its simplicity. It does not rely on the calculation and inversion of the

information matrix. Another feature of the EM algorithm is that the likelihood func­

tion never decreases at successive iterations. The convergence of the EM algorithm is

linearly related to the amount of missing information in the data. While convergence

is reached quickly in problems where the likelihood functions has a single mode, there

is a danger that the algorithm could get stuck at local maxima or saddle points. This

can happen when there is Inore than one luode, for exanlple when we have a large

sample size resulting in individual points being associated with a large weight.

The E}vf ,Algorithm Applied to the Diagnostic Testing Problem

We now illustrate the application of the E~I algorithm ta the two-test diagnostic prob­

lem. As noted earlier this non-identifiable problem can be solved using a frequentist

approach by constraining some two parameters to be fixed. For the Strongyloides

data problem let us arbitrarily hold the two specificities constant. We then have

with Cl and Cs held constant. The likelihood function in equation (3.4) cao be

rewritten as

Le (1l', SI, S21C1 , C2,n, y)
_ (nu + nLQ + nO! + noo)!
- YU! (nu - YU)! YlO! (niO - Y10)! Y01! (nO! - yod! YOO! (nOD - YOO)!

x 7t'flU+!110+"OI+II00(1 - 7t')N-(lIu+!110+Yol+Yoo)SYU+1I10(1 - SI )1/01+1100

X S=l1 +"01 (1 - S2)1I10+fIOOC~nOl-1Iod+(noo-1Ioo) (1 - Cl )(n11-1I11)+(nl0-1I10)

x C~nl0-1I10)+(nOO-1I00) (1 - C
2

)(RU-lI11)+(nol-llod
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ex 7rllll +YI0+1/01 +1/00 (1 _ 7r) N -(t/ll +YI0+1/01 +YOO)~ll +1110 (1 - 51 )1101+yoo

S~l1+YOl (1 - 52 )1110+1/00.
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Let ND = Yn + YIO + YOl + Yoo, YJ· = Yu + YIO and Y'l = Yu + YOl· Therefore ND

represents the total number of truly diseased subjects, YI. represents the number of

subjects who obtain a positive result on the first test and Y.l represents the nunlber

of subjects who obtain a positive result on the second test. equation (3.6) can now

he rewritten as

Lc ('7r, SI, S21C1 , C2,y) oc 1T N°(l - 7r)N-ND Sl"(l - Sd ND - YI .5101 (1 - S2)No-y",

(3.7)

where N = nu +nlO +nOl +noo. The factorization theorem for the exponential family

of distributions states that a necessary and sufficient condition for a statistic, say tex),

to he sufficient for the distribution of a variable x, is that there exist non-negative

functions, 09(') and {j(.) such that the density of x, f(xI8), satisfies

f(xI8) =Q8(t(X),B(x).

By the factorization theorem, it is easy ta see that lVD , YI' and 'y.J are the suffi­

cient statistics for 4>. The steps of the EM algorithm for the diagnostic problem can

therefore be summarized as follows:

1. Since the multinomial likelihood cornes from the family of exponential distri­

butions, the E-step involves the computation of the expectations of the three

sufficient statistics conditional on the observed data and the current estimate

of 4J. Therefore,

•

E(ND Inu, niO, noo, nOl, 4J(i»

=E(Yn + YlO + YOl + Yoolnu, nlO, noo, nOb q,(i») , (3.8)
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C)E(Yl.lnll' nlO, nOO, nQl, 4> 1 )

= E(y1l + y10lnu, nlO, noo, nQl, 4>(i») , and

E(Y.llnn, nlO, noo, nQl, 4>(i»)

= E(yOl + yOOlnu, nlO, noo, nOb et>(i»).
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(3.9)

(3.10)
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The expectations in equations (3.8), (3.9) and (3.10) can be obtained using the

expectations of Ylb YIO, YOl, yoo, which are as follows. From equation (3.6) we

can deduce that

E{Ylllnll' nlO, noo, nOl, 4>(i)}
1T~i) S~i) S~i)

E{Ylolnll' nlO, nOO, nQl, 4>(i)}
1T~i) S~i) (1 _ S~i»)

E{Y01Inll' nlO, noo, nOl, 4>(i)}
1T~i} (1 - S~i») S~i)

E{yoolnu, nlO, noo, nOb t/>(i}}
1f'~i)(l - S~i»)(l _ S~i»)

2. For a member of the exponential family of distributions, maximizing Q(,pI4>(i»)

is equivalent to solving E(t(x)l4J) = t. In the M-step the parameter estimates

q,(i+l) are found to be

(i+l) _ ND
7r --

N'
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Cl = 0.95, Cl =0.72 Cl =0.89, Cl =0.31

1r 0.521 0.253

SI 0.543 0.520

S, 0.547 0.479
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Table 3.6: Estimates of 1r, S1 and 52 obtained using a frequentist solution to the 2LC model at two
different points on the (Cl,C2 ) plane.

S(i+l} _ YI·
l - ND'

S (i+l) _ Y·I
2 - ND'

The E and M steps are repeated till sorne convergence criterion such as

is met. The ErvI algorithm converges fairly quickly for this problem (within about

50 iterations) but this rnay not always be the case. Two sets of point estimates of

the prevalence and sensitivities obtained by constraining the two specificities to he

at their medians, and to he at the lower endpoint of their 95% CI, are given in Table

3.6. A sensitivity analysis, that is results frorn repeated runs of the above algorithm

for different values of Cl and Cs, could be used to get an idea of the range of the

prevalence and sensitivities. The prevalence estimate almost doubles in value as the

specificities change across their range of plausible values.

As mentioned earlier, the major advantage of using this method is the ease of

implementation of the EM algorithme UnUke a Bayesian method there is no need ta

determine prior distributions for the parameters, although one daes have to exactly

specify Cl and C2, or two other parameters in arder to draw inferences. This ease

cornes at the cast, however, of having ta determine which parameters must be con­

strained and what values the constrained parameters must take. From the results in

Table 3.6 we can see that by altering the values of the specificities the estimate of the
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prevalence changed drastically. This is particularly worrisome because there is much

uncertainty about the values of the specificities as discussed earlier, and with this

method we are not able ta simultaneously account for the variability of the different

parameters. A sensitivity analysis, while giving an idea of the point estimates at

several points in the (Cl, C2) plane, still does not provide the complete picture.

3.2.5 A Bayesian solution for the 2LC model

As seen in the previous section, when we have a non-identifiable model the classical

frequentist method cannot be used to obtain estimates of ail unknown parameters

without constraining sorne of them ta be fixed constants. This is a rather unrealistic

requirement since none of the parameters are truly known and hence the division

ioto constrained and unconstrained pararneters is often quite arbitrary. Further, the

uncertainty in the value of the constrained parameters is not accounted for while

estimating the variability of the unconstrained parameters, for exarnple in terms of

their confidence intervals.

The Bayesian approacb to a non-identifiable problem

Under non-identifiability, a Bayesian approach can be used to obtain closed form, in­

terpretable point and interval estimates for each of the unknown parameters (Neath

and Samaniego, 1997). The basic idea behind the Bayesian approacb is to use the

available information about each parameter summarized in the forro of a prior distri­

bution, and thus eliminate the need for constraining them. By doing sa the uncer­

tainty in our knowledge of the parameter is accounted for. Prior distribution functions

can be determined in consultation with the available literature and expert opinion.

This approach is numerically equivalent to the frequentist approach when a degener­

ate prior distribution is used over the constrained parameters, which concentrates all

the probability mass at a single point. The problem of formulating a suitable prior
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distribution or deriving the posterior density are not worsened by virtue of the non­

identifiability of a problem, at least in this case since all parameters have an easily

understood 'natural' interpretation.

Roughly speaking, in order to obtain a usefu} solution using this approach, fairly

strong priors would be needed on at least as many parameters as would be constrained

when using the frequentist approach. Since in this situation the prior distribution

tends to have a strong influence on the posterior, it is important to interpret the

results of such an analysis carefully. Neath and Samaniego, 1997 determine conditions

to identify the subset of prior densities that would ensure the posterior estimate is

an improvement over the prior guess. They considered the non-identifiable problem

involving results from a single dichotomous test, although by treating only point

estimates they did not consider interval estimation.

..:\ Bayesian approach ta the diagnostic testing problem

In this section we describe a Bayesian solution to the 2LC problem which was pre­

sented in the paper by Joseph et aL, 1995. For the Bayesian approach the observed

data and the parameters to be estimated would be

respectively. Let YI}' YIO, YOI and Yoo be defined as in Table 3.2

As explained in Chapter 2, the joint posterior distribution is proportional to the

product of the likelihood function and the prior distributions. Denoting the prior

density corresponding to a parameter 8 as p(81.), and assuming all parameters in tP

to be independent of each other, the joint posterior distribution can he written as

p{tPln) (X (nu + nlO + 1&01 + noo)!
Yu! (nu - YU)! YLO! (nLO - YIO)! Y01! (nOI - yod! Yoo! (noo - Yoo)!
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X (rrSlS2]1Ill [(1 -rr)(l - C I )(l - C2)tll - Yll [1rSl (1 - S.e)]1IIO

x [(1 - 1r)(1 - Cl )C.etIO-flIO [-rr(1 - 81 )8.e]YOI [(1 - rr)C1 (1 - C.e)tOI-YOl

x [1r(1 - 51 )(1 - 8.e)]1I00 [(1 - 1r)C1C.etoO-f/OO

x P1r(1r)PSI (51 )Ps, (S.e )PC1 (Cl )pC! (C.e). (3.11)

A convenient choice of prior distribution for aIl the parameters of interest would

be from the Beta(o, {3) family of distributions, since this family is constrained to

the range 0 - 1, which matches the range of ail parameters in cP. Further, the Beta

distribution is conjugate to a Binomial likelihood function (see Section 2.1.2), thus

simplifying the derivation of the full conditional distributions of the Gibbs sampler

that will be employed below. A random variable, ..Y, has a Beta(o, {3) distribution if

its probability density function is of the form

)
{

B{~ a)x
o

-
1(1 - x).8-1

, 0 ~ X :$ 1 0, P> 0,
1(04"'< = x = t~

0, otherwise.

Another advantage of the Beta distribution is that severa! density shapes cao be

obtained by varying 0 and {3. For example, a non-informative or uniform prior is

obtained by setting (} = /3 = 1, a symmetric prior by setting 0 = {3 = m(> 1), a

right-skewed prior cao be obtained by setting ct > {3, etc.

The joint posterior distribution can DOW be rewritten as

p(4)ln) oc [1r81S.e]1Iu[(1-rr)(I-Cd(l-Cs)]nll-lIu[1rSl(1- S8)]1I10

x [(1 -1r)(! - Ct )C.e]nlo-lIlo[1r(l - 81 )S.e] 1101 [(1 - 1r)Ct (l - CS)tOl-YOl

x [1T(1 - St)(l - SS)]IIOO [(1 - 1r)CtCs]noo-Yoo

x 1rQ1f-l(l_1r),B1f-lS~SI-l(l_ S1)PS,-IS;S,-1(1_ SS)PS,-1

x C~Cl-l(l_ Cl).8cl-lC~C.e-l(l_ C.e)PC,-l .
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= 1r0W + Yll +1110+1101 +1100 ••1(1 _ 1r )tJ..+N-h/ll +1II0+1I01+1/oo)-L

X S;SI +1111 +1110-\1 _ SI )tJSI +YOl +YOo-L S:St+1Ill+fI10-l (1 _ Ss)PS, +1/10+1I00- L

x C~c, +(nOl-yot}+(noo-yoo)-L (1 - Cl )tJCI +(nll-YU)+(nl0-fI10)-1

X C:Ct! +(nl0-1Il0)+(nOO-yoo)-L (1 _ Cs )tJcI+(nll-Yll )+(nol-Yod-I • (3.12)

The latent data are not observed, preventing direct use of the posterior distribution.

Therefore, samples from the marginal posterior distributions of the prevalence and

test parameters are drawn using the Gibbs sampler described in Section 2.2.2. The

basic idea behind this method is that if the latent data are known, then the marginal

full conditional distributions of the prevalence and test parameters are known. Con­

versely, conditional on the exact values of the prevalence, test parameters and the

observed test results, we can derive the full conditional distributions of YII, YLO, YOl

and Yoo. By altemating between these two steps a sample from the marginal posterior

distributions of each parameter is obtained.

From equation 3.12 it is easy ta see that the full-conditional distributions, namely

the distributions of each parameter conditional on the athers are as follows

Yu Inu, 1r, SI> Cl, S2' Cl! ~ Binamial(nu, 1rSl S, + (1 _ :f;~2_Cl )(l - C,)),

. . 1rSl (1 - S2)
YI0 InLO' 1r, SI, Cl, S2' Cs '"V Bl,nom'l.al(nlO' 1rSl (1 _ Ss) + (1 - 1r)1r(1 - CdGs)'

. . 1r(1 - SI )S!
YOl Inol, 1r, SI, Cl, Se, Ce '"V B'l.nom'l.al(nOl, 1r(1 _ Sd8! + (1 _ 1r)1rCl (1 - Cs)),

.. 1r(1 - Sl)(l - Se)
Yoolnoo, 1[", SI, Cl, SB, Ce '"V B1,norrnal(noo, 1r(1 _ 8d(1 _ Se) + (1 - 1r)1rCICS

)'

'"V Beta(Ct1r + Yn + Y10 + YOl + Yoo, /31r + N - (Yu + YlO + YOl + Yoo»,

SI Iyu, YlO, YOlt Yoo, as" PS,
'"V Beta(Cts, + Yu + YIO, PSt + YOl + Yoo),
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Parameter Median 95% PI a 13
Stool 81 0.24 0.07-0.47 4.44 13.31

Examination Cl 0.95 0.89-0.99 71.25 3.75

Serology 82 0.81 0.63-0.92 21.96 5.49

Test CI. 0.72 0.31-0.96 4.1 1.76
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Table 3.7: Prior distribution parameters corresponding ta sensitivities and specificities of the stool
examination and serology test.

"'J Beta(ac1 + (no! - Yod + (noo - Yoo),

{3c1 + (nu - Yld + (nlO - YlO)),

S2IYll, YlO, YOl, Yoo, as" /3s.

"'J Beta(as! + Yu + YlO, /3s1 + YlO + YOO) ,

C2ln u, nlO, nOl, noo, Yu, YIO, YOl, Yoo, Cie., I3c.

"'J Beta(ace + (nlO - YIO) + (nao - YOo),

{3c1 + (nu - Yu) + (nOI - Yod).

(3.13)

In the case of the Strongyloides data, sinee no information was available about

the prevalence of this disease in the population under study, a Beta(l, 1) diffuse prior

distribution was used for the prevalence. The parameters of the Beta prior for the

sensitivities and specificities of the two tests were obtained by equating the center of

the range (i.e. the 95% probability interval) to the mean of the Beta distribution,

which is given by o:Jt and, one quarter of the range to the standard deviation of

the Beta distribution, which is given by J(o+Jt)2{!+Jt+l). These parameters are pre­

sented in Table 3.7. The estimated posterior medians and 95% posterior probability

intervals for the prevalence and test parameters are summarized in Table 3.8. Here
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Median 95% PI

Prevalence 0.76 0.52-91

Stool SI 0.31 0.22-0.44

Examination Cl 0.96 0.91-0.99

Serology S2 0.89 0.80-0.95

Test C2 0.67 0.36-0.95
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Table 3.8: Posterior Medians and 95% posterior probability intervals of the prevalence and test
parameters obtained using a Bayesian solution ta the 2LC model.

and elsewhere PI denotes 'probability interval'. Figure 3.1 illustrates the prior and

posterior density function for the prevalence.

The advantage of this method over the frequentist method is that it avoids the un­

realistic constraining of unknown parameters and takes into account their variability.

In the words of Neath and Samaniego L'Ta the classical statistician the estimation of

a non-identifiable problem is, purely and simply, an ill-posed problem (for which)

the only alternative is to ... solve a related problem which is identifiable Bayesian

methods can provide point estimates of a non-identifiable parameter that are unam­

biguous and unique (relative to a given prior)." The Gibbs sampler is fairly simple to

implement and was found to converge quickly. One drawback of this method is that,

like the frequentist approach described earlier, it assumes tests to be independent of

each other conditional on the latent disease status. This assumption rarely holds in

practice as the two tests could in fact be the same test conducted at two different

points in time, or the two tests could he based on the same underlying phenomenon.

That is, there may he a variable besides the disease status which causes the test

results ta be related. The reasons for this are described in greater detail in Section

5.1. In the next section we present sorne of the methods developed ta date to model

this dependence hetween tests.
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Figure 3.1: Prior distribution of the prevalence overlaid by the posterior distribution obtained using
the Gibbs sampler.•
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3.3 Modeling the conditional dependence between diag­

nostic tests

The possible inadequacy of the assumption of conditional independence between mul­

tiple tests/raters has been recognized by several researchers and consequently many

methods have been suggested to model the data more realistically. While earlier

methods tried to describe the agreement hetween tests using measures sncb as the

kappa statistic (Fleiss, 1971, Landis and Koch, 1977), later methods songht ta model

this agreement and correct for its influence on estimates of the test parameters and
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prevalence. In this section we discuss sorne of the methods that were developed for

the situation when there was no gold standard among the test/rater results.

3.3.1 Increasing the number of latent classes

When the conditional independence model is inappropriate for the observed data, the

proportion of subjects for whom all tests give identical results are underestimated.

One way to account for this is to increase the number of latent classes in the la­

tent variable ululer stuùy suell that there is an exclusive latent class corresponding

to the unequivocally diseased and another corresponding to the unequivocally non­

diseased subjects for whom aIl test results are in agreement. This method has been

described by several authors including Hagenaars, 1988, Espeland and Handelman,

1989, Uebersax and Grove, 1990 and Formann, 1994.

To illustrate the application of this method we use the example from the paper

by Espeland and Handelman, 1989, where they analyzed the results from five diag­

nosticians on 3, 869 radiographie images of dental caries. The images were classified

by each diagnostician as sound (0) or carious (1). The authors begin by fitting the

c1assic two-Iatent class model (Section 3.2.1) reformulated as a log-linear model. Let

mdpqrlt, d, p, q, T, S, t = 0, 1 denote the frequency for the cross-c1assifications by the five

dentists in the latent class D = d. Then, the equivalent of equation 3.2 in log-linear

form is

log{mdpqr.c) = uo{d) + 11.1 (d,p) + u!(d, q) + 11.3 (d, T) + 11.4 (d, s) + us{d, t),

d, p, q, r, s, t = 0, 1. (3.14)

where 11.0(') references the latent variable and UJ (., .), •• • ,11.5(" .) reference iodividual

diagnosticians. This model can be solved using the EM-algorithm by assuming the

mrlpqr.t to be known at one step and computing the maximum likelihood estimates

of the Uj ( •)'s in the next step. The value of the likelihood ratio chi-square statistic
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corresponding to the model in equation (3.14) was G2 = 129.84, dl = 20, indicating

that the data did not fit the model adequately.

The authors hypothesize that sorne images are unequivocally classified as sound

or carious by aIl the dentists but this unqualified agreement is underestimated by

the 2LC mode!. More generally, a look at the residuals from the 2LC model, i.e.

the difference in the observed and e~timated values of the cell means, will suggest

which cross-classifications have been under- or overestirnated. The problem at hand

can he modeled by adding two more latent classes D = 2 and 3 corresponding to

unequivocally sound and unequivocally carious teeth. Thus aIl subjects in class D = 2

will receive a 'sound' diagnosis and aU subjects in class D = 3 will receive a 'carious'

diagnosis from all five dentists. The log-linear model for these two additional cells

has the fol1owing parameterization

The value of the G2 statistic for the new model was round to he 53.08, dl = 18,

indicating a marked improvement in the fit of the model to the data.•
log (m!OOOOO ) =uo(2),

log(m311111) = uo(3). (3.15)

•

The prevalence and test parameters can be estimated using the estimated cell

means as follows:

1T' = P(D = 1 or D = 3) = m311111 + L mlpqrtt,
pqrlt=O,l

Sensitivity of Dentist 1

=P(T
1

= lin = 1 or D =3) = m311lJl + Eqne=o,l mUqrd ,

m3Jllii + Epqr,e=o,l mlpqrd

and

Specificity of Dentist 1

=P(T
1
=OID =0 or D = 2) = m,OOOOO + Eqr,t=o,J mOOqnt •

mBOOOOO + Epqnt=O,l mOpqrrt
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The sensitivities and specificities of the other dentists cao he calculated similarly.

Lu, 1968 suggests the further addition of a latent class corresponding ta 'undiag­

nosable~ cases for whom there is no right or wrong result and for whom diagnosticians

are providing no more than a random guess. Thus each one of the 25 possible cross­

classifications is equally probable for suhjects who lie in this latent class, which we

shaH denote as D = 4. A log-Hnear model for this fifth latent class would be of the

fonn

log(m4pqrsd =uo(4), p, q, r, 8, t =0, 1. (3.16)

•

•

This model only marginally improves the likelihood chi-square ratio statistic to G2 =

50.57, dl = 17.

Addition of latent classes, however, accentuates the problem of non-identifiability.

This model is identifiable only when (21' -1) 2:: (2p+ 1+m), where m is the number of

latent classes added to the 2LC mode!. Therefore, in order to have sufficient degrees

of freedom to estimate aH parameters when a single latent class is added, a minimum

of four tests would he required. The other problem with this method is that it is

not clear how many additional latent classes need to he added to improve the fit

of the model. In the dental caries example, Espeland and Handelman found that

the addition of two latent classes was not sufficient to explain the relations in the

data and they had to extend tbeir model in other ways as will be described in the

next section. Clearly, with the addition of a sufficient number of latent classes, the

problem will hecome saturated resulting in G2 = 0 but this may not necessarily yield

a meaningful model. Finally, it is not c1ear wbether each additionallatent c1ass will

be substantively meaningful. For instance in the case when sorne subjects are deemed

'undiagnosable' it is unclear how the prevalence is to he estimated.
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3.3.2 Addition of interaction terms
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1 In this section we describe yet another extension of the 2LC model used in the paper

by Espeland and Handelman, 1989. When the addition of latent classes did not

sufficiently improve the fit of the model, the authors added interaction terms between

pairs of dentists who showed a tendency to agree with each other. Such a pair of

dentists (or tests) among whom there is agreement can he identified by collapsing the

25 cross-classifications iota .marginal tables for each pair of dentists and 100king at

thp rpsiduals ohtained from the four-class latent model of the previous section. From

such a table, the authors found a significant agreement between the raters 3 and 4

and hence modified the earHer model ta include an interaction term as follows

log(mdpqrlt) = 'Uo(d) + Ul (d, p) + us(d, q) + u,(d, T)

+u4 (d, s) + us(d, t) + u'4 (d, T, s),

d, p, q, T, S, t =0, 1,

This model reduces the likelihoad ratio chi-square statistic to G2 = 25.57, dl = 16

suggesting a significant improvement in the fit as compared ta the earlier mode!.

The prevalence and test parameters can be estimated from the estimated ~camplete'

cross-classification table as described in equation (3.16).

•
log(m:woooo ) = uo(2),

log(m'l1111) = 'Uo(3). (3.17)

•

3.3.3 Marginal models

In a recent paper, Yang and Becker, 1997 used latent class marginal models to adjust

for the correlation between diagnostic tests. In this model the sensitivities and speci­

ficities are simple functions of the model parameters, unUke the methods described

in the previous sections. The authors describe the particular situation when results
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from four dichotomous tests are available and ooly associations between pairs of tests

are considered. Three and four-factor associations are constrained ta be absent. For

a general description of marginal models see Becker, 1994.

Let the four tests be denoted by T; = t, where j = 1,2,3,4 and t = 0, 1 and

disease status he denoted by D = d, d = 0,1. The marginal model for an observed

24 contingency table involves four univariate logits, six log-odds ratios for bivariate

associations, four tri-variate associations and one four-factor association. The model

is formally expressed as follows:

1. The univariate logits corresponding ta Tl are

T,ID
1 ( 1rOd ) _ T,
n T,ID -ad' d=0,1,

1r Id

where rr'{jID = P(Ti = tlD =d).

2. The log-odds ratios for the association between Tl and T2 are

T, T,ID T, T,ID
1 (1rOOd 1rlld ) ,./. T, Tt d - °1n T,T,ID T,T,ID =o/d , -, .

1rOId 1rlOd

The univariate logits for the other tests or', ar' t OJ4 and the log-odds ratios

1/JJ' T" t/JJ' T4, tPJ! T" t/JJ' T4, t/JJ' T4 for the other bivariate associations follow

similarly. At this point we note that if ail univariate and bivariate associations

were present there would be 2x4+2x6 =20 parameters ta estimate which would

exceed the degrees freedom availahle, namely, 24 - 1 = 15. Hence constraints

must he applied on at least 5 of the parameters. In their paper, Yang and Becker,

1997 consider only one bivariate association 1/JT,T4 to be non-zero 50 that the

number of unknown parameters is 10 and hence the model is identifiable.

3. Constraints are placed on all three-factor associations,

T, T, T,ID T, T, T,ID T, T, T41D T, T, T,ID
In(1rOOOd 1r11ad ) _ ln( 1r001d 1r111d ) - 0

T, T, T,ID T, T, T41D T, T, T41D T, T, T,ID - ,
1r01ad 1rJOad 1r01ld 1rlaId
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and, the single four factor-association
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to ensure that they are absent.

Maximum likelihood estimates of the parameters in the marginal latent class model

can be obtained using the EM algorithm. One of the benefits of modeling the marginal

distributions is that the sensitivity and specificity can be expressed as functions of the

parameters for the univariate marginallogits. For example, to obtain the sensitivity

of test Tl we proceed as follows:

Similarly for the specificity:

T,ID

1 ( tra~) T,
n T,ID =00 ,

trl0
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The sensitivities and specificities for the remaining tests are obtained similarly.
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The main drawback ta this method is that of non-identifiability in the absence of

a sufficient number of tests. In fact, while the degrees of freedom available from p

tests remains the same, i.e. 2P - 1 (see Table 3.3), the number of parameters to be

estimated increases ta 2 x (PCI -tP C2 +...+Pen) +1 = 2(2P -1) +1. Sa the number of

parameters to be estimated always exceeds the degrees of freedom available, meaning

that constraints would always have ta be placed on a subset of the parameters ta

obtain an identifiable mode!. The authors cite the parameterization of the model in

terms of test parameters as the model's main advantage. However, when weighed

against the complexity of the model it is questionable whether it is worth the effort.

3.3.4 A random efIects mode]

Random effects models are often used ta model similarity within groups, as for exam­

pie, the similarity among seriai observations on the same unit in a repeated measures

analysis, or the similarity within clusters in a two-stage sampling design. This is

done by ... (see Kutner et al., 1996 for an introduction to random effects rnodels) Qu

et aL, 1996, use such an approach to model the correlation between multiple tests

via their sensitivities and specificities. The similarity between the test results is hy­

pothesized to arise due ta a latent, subject-specific characteristic which is different

from the disease status. Sorne examples of such subject-specific variables which affect

test performance are given in Chapter 5 where we propose a Bayesian solution to the

random effects rnodeL
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The sensitivities and specificities are taken to be probit functions of an unobserved,

continuous variable, say J, which is assumed to have a N(O, 1) distribution. Probit

functions are convenient because they take values between 0 and 1. Let tjk = 0,1

denote the test result of the k th subject, k = 1, ... , N, on the jth test, j = 1, ... , p,

and tk = (t 1k, ,t2k, ... , tpk) denote the vector of test results for the kth subject on

each test. The probability that the kth subject has a positive test result on the jth

test is given by

P(tjk = 11D = d, J = i) = <I>(a;d + bjdi) , d = 0,1, J "J N(D, 1) (3.18)

where cl> represents the cumulative distribution function of the N(O, 1} distribution

and (ajd, bjd ), j = 1, ... ,p, d = 0,1 are rea! constants.

The disease status D and the latent variable lare assumed to be independent of

each other. The sensitivity of the jth test is then given by

Sj = P(tjk = 11D = 1)

=i:"'(ajl + bjli)d"'(i)

~= rl+bJl <I>(x)d<l>(x) (using a tan- l ( 1:'~2 ) anticlockwise rotation)J-00 JI

= <I>( ajl
2

)
1 + bj1

Similarly, the specificity of the jth test is given by

Cj = P(tjk = 0ID = 0)

= 1 - 4»( ajO )

1 +bjo
a·o= <1>(-1 J~ ) using the result 4»(-x) = 1 - <I>(x)
+ iO

The results of different tests are taken to be independent of each other conditional

on the disease status D and the variable J. This means that within each disease class

the tests are independent of each other conditional on the variable 1. Qu et al., 1996
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caU tbis model the 2LCR model which is short for the 'Two Latent Class Random

Effects ~lodel'. The likelihood function of the observed data is given by
N l

L oc II L P(D = d) P(tkiD = d,! = i)
k=l d=O
N p

= II (7r II ~(ajl + bjlik)tjl(l- ~(ajl + bjlik))(l-tjt)

k=l j=l
P

+ (1 - 1r) II ~(ajO + bjoik)(l-tjlr) (1 - ~(aiO + bjoik))tJt),

j=l

(3.19)

The estimates of the parameters 1rd and (ajd, bjd ), j = l, ... ,p, d =0, 1 are obtained

using the EM algorithm.

Apart from providing an elegant way to model the dependence between two or more

tests simultaneously, this method is also more substantively meaningful. Similarity

between test results often arises due to a factor, such as severity of disease, which

is independent of disease status. A more severe case of the disease is likely to be

detected by ail tests as positive resulting in an agreement between them. The model

is also flexible and the bjd parameters can be set 50 that the dependence is between

a subset of tests, of the same or varying strength between different pairs of tests.

Once again, the drawback of this model is that a frequentist approach to its solution

requires a minimum number of tests. Corresponding to each sensitivity and specificity

there is a pair of (ajd, bjd)'s to be estimated. Bence the total number of parameters

is given by

2 x (2 x p) + 1 = (4 x p) + 1

This means that in order for the problem ta be identifiable we require

(4 x p) + 1 :::; 2P - 1 => p ~ 5

(3.20)

(3.21)

•

A special case of the model, which the authors term the 2LCRI model, occurs when

the variance components are aU equal, i.e. bjd = bd, j = 1, ... ,p, d = 0, 1. This
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means we have only two bjd values now, one among the diseased subjects and one

among the non-diseased subjects. This would mean that the effect of the variable 1

on the performance of each test is the same. In this situation we need

(2 x p) + 2 + 1 :5 2P - 1 => P ~ 4

resulting in a less stringent constraint of a minimum of four tests.

(3.22)

•

•

3.4 Other Bayesian methods for the analysis of diagnostic

tests

Several researchers have found Bayesian analysis advantageous for developing method­

ology for the analysis of diagnostic tests. We briefly mention sorne of this work in

this section. Gastwirth et aL, 1991, used Bayesian inference ta obtain large-sample

maximum likelihood estimates of the accuracy of screening tests used ta detect BIV

antibodies in donated blood. More recently, Neath and Samaniego, 1997 looked at

the problem of estimating the prevalence of HIV based on results from a single test .

Their model is set up ta estimate the proportion of truly diseased suhjects among

those who test positive by applying a Dirichlet(ol, ct2, (3) prior distribution over the

pair of probabilities (Pl, 112) of true-positive and false-positive results, as follows

f(P ) - r(al + 02 + (3) 01-1 Q2-1 03-1
l,Pl - r(Odr(02)r(03)Pl P2 Pa ,

Pl ~ 0, Pl ~ 0, Pl + P2 :5 1, P3 = 1 - Pl - 112·

If ...Y" f"'oJ Binarnial(n, Pt +P2) denotes the number of subjects who tested positive, then

the posterior distribution of (Pl, Pl) is given by

~z 1:C pOl+k-lp02+Z-k-lp03+n-z-l
f(P IX - x) - ~k=o kIl 3

b P2 - - ~Z zC reO! +02+03) .
~1=O 1 r(Odr(02)r(03)

The authors use this example ta provide a template for assessing the efficacy of

Bayesian updating in non-identifiable problems. They concIude that Bayesian analy-
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sis is worthwhile in the vast majority of cases because the posterior estimate of (Pl, 1>2)

is usually doser to the true value than the prior estimate.

~Iatchar et al., 1990, proposed a Bayesian approach to address the problem of eval­

uating test performance when sorne patient's remain undiagnosed by a gold standard

test. Estimating test parameters by ignoring these subjects could lead to work-up

or verification bias, as discussed by Begg, 1987. The authors used a joint prior dis­

tribution over the sensitivity and specificity and employed a Monte Carlo l\tIarkov

Chain rnflt.hod to ~ample from the posterior distributions of the prevalence and test

parameters. 1t was found that taking into account the undiagnosed subjects markedly

affects the estimates of the prevalence and test parameters.

Peng and Hall, 1996, propose a Bayesian solution to regression models of ordered

ordinal response data from radiological tests. While most rnethods for the analysis

of diagnostic tests postulate that test scores from diseased and non-diseased subjects

as following a binormal distribution, as depicted in Figure 1.1, in practice test scores

are usually ordinal. The approach suggested by Peng and Hall, 1996, overcomes

this problem by imputing the unobserved continuous observations from the latent

binormal distributions using data augmentation. They postulate that if there are

J possible outcomes on a test which are determined by the latent cut-off values

(h, ... 1 (JJ-l and 1 possible covariate levels, then the probability of a subject at the

i th covariate level lying in any one of the first j ordered categories of the test is given

by

( ) ,/,,( 8; - oTXi ) . 1 J' 1 1'Yi Xi = '1' (r.rr)' J = , ... , ,1. = ,... ,
exp !J- Xi

where Xi is the covariate vector corresponding to the ith level. Given the cut-off

values, the unobserved test results are imputed using the constraint 8;-1 ~ Zi; ~ 8;.

The papers by Gatsonis, 1995 and Ishwaran and Gatsonis, 1997 extend this method

to the case when we have correlated ordinal data from multiple measurements on

each subject.
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Joseph and Gyorkos, 1996, propose a Bayesian method for calculating point and

interval estimates of likelihood ratios in the absence of a gold standard diagnostic

test. They observed that their results were numerically similar to those obtained

by the standard frequentist approach in the presence of a gold standard test, but

typically provide larger interval estimates reflecting the inherent uncertainty when a

gold standard is not present. This method was an improvement over earlier frequentist

methods which required that the data under study he normally distributed.

3.5 Summary

In this chapter we have discussed various methods for the analysis of diagnostic tests,

focusing mostly on those that have provided the background for the methods devel...

oped in this thesis. The 2LC model, while providing an elegant way ta analyze results,

from independent diagnostic tests, cannot be solved directly using a frequentist ap".

proach when we have less than 3 tests, i.e. when we have a non... identifiable problem.

Another drawback of the 2LC model is its assumption of conditional independence

between the tests which may not always be satisfied. Similar comments, however,

apply to the 2LCR model when there are less than four or five tests. Bayesian ap".

proaches can be used in such situations to provide estimates of the disease prevalence

and test parameters without imposing any unrealistic constraints, as Joseph et al.,

1995 showed for the 2LC model.

Although there is an enormous literature on statistical methods for diagnostic test

data, there are no frequentist solutions that directly address the problem of estimating

parameters in the presence of three or less correlated tests. To our knowledge there

is no literature discussing a Bayesian solution to this problem, even for identifiable

cases. In the next chapter we describe the 6rst of the two methods proposed in this

thesis for modeling the conditional dependence between two imperfect tests.
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4

MODELING CONDITIONAL DEPENDENCE

USING FIXED EFFECTS

In the preceding chapters we have seen that the assumption of conditional indepen­

dence between diagnostic tests is often made to simplify the statistical analysis of

test results, even though it may be of questionable validity. We have also seen that

frequentist approaches which address this problem would require a minimum of four

tests ta estimate all parameters without imposing unrealistic constraints on the pa­

rameter values. In this chapter we present the first approach develaped in this thesis

for modeling the conditional dependence between tests. We begin with a look at the

effect of correlation on test results and how this cao be modeled. The next section

describes the implementation of a Bayesian fixed effects model to estimate the preva­

lenee and diagnostic test parameters of two tests, while adjusting for the correlation

between them. This is followed by a simulated example ta illustrate the methad. We

will apply this method ta real data in Chapter 6.

4.1 Modeling the correlation between a pair of tests

To demanstrate the effect on test results when tests are correlated, we use an example

invalving two hypathetical tests Tl and T2• In the extreme situation when these tests

are perfectly positively correlated i.e. when they have a correlation of +1, their

combined results would appear as in Table 4.1. Since two perfectiy carrelated tests

68
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T1+ T1-

T2+ Nu 0

T2- 0 Noo
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Table 4.1: Results from two tests with a correlation of +1.

would give the same result for every subject, the two cells where the test results are

in conflict have a frequency of N JO = NOl = O. In this case the second test adds no

information once the results of the first test are known.

Of course, it would be unlikely ta encounter such an extreme correlation in practice.

Nevertheless, this example serves to illustrate that when two tests are positively

correlated, there is a greater tendency for their results to agree. The frequencies of

the (Tl = 1, T2 = 1) and (Tl = 1, T2 = 0) cells are increased, and the frequencies

of the (Tl = 1, T2 = 0) and (TL = 0, T2 = 1) cells are decreased compared ta the

case of conditionally independent tests. Therefore, while modeling this situation, an

increased probability must be assigned to the diagonal ceIls at the expense of the

off-diagonal cells

The conditional dependence between two tests can he measured using the covari­

ance or correlation between the two tests within each disease class. This Lconditional

covariance' can he expressed in terms of the sensitivities and specificities of the two

tests involved. Let Tl and TB be two tests such that:

{
1 if the test is positive,

Tl = 0
otherwise,

and

{

1 if the test is positive,
Ts = o otherwise.

Using the notation first presented in Chapter 1, the covariance between the tests
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among the diseased subjects, denoted here by covp, can be derived as follows (Vacek,

1985):

covp = cov(TI ,T2 ID = 1) = E(TJT2 ID = 1) - E(T1 ID = I)E(T2 ID = 1),
1

= L tJt2P(TJ=tl,T2=t2ID=I)
tl,t,=O

1 1

- L tl P(TJ = tliD = 1) L t2 P(T2 = t!ID = 1),
tl =0 t!=O

= P(TJ = 1, T2 = IID = 1)

- P(TJ = IID = I)P(T! = IID = 1),

=P(TJ = 1, T2 = IID = 1) - SIS!. (4.1)

Similarly among the non-diseased subjects

covn = cov(TJ,T!ID = 0) = E(TJT2 1D = 0) - E(TJID =O)E(T2 ID = 0),

=P(T/ = 0, Te = OID = 0) - CIC!.

Equation (4.1) can be re-written as

when covp = O. (4.2)

Therefore, the probability of observing (Tl = 1, T2 = 1) when two tests are correlated,

is iDcreased by a factor of covp as compared to the case when the tests are conditionally

independent. Similarly,

P(T1 = 1, Te = OID = 1) =SI (1 - SB) - covp,

=SI(1 - SB), when coup =0, (4.3)

•

so that the probability of observing (Tl = 1, T2 = 0) when two tests are correlated

is covp less than in the case when the tests are conditionally independent. The
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probabilities of observing the remaining combinations of test results are

P(TJ = 0, Te = llD = 1) = (1- SI )Se - covp,

P(TI = 0, Te =OID = 1) = (1- SI)(l - Se) + covp,

P(TJ = 1, Te = llD = 0) = (1 - C l )(l - Ce) + covn,

P(TJ = 1, Te = OID = 0) = (1 - Cl )Ce - covn,

P(TJ = 0, Te = llD = 0) = Cl (1- Ce) - covn,

P(TJ =0, Te =olD = 0) =Cl Cs + covn.

71

(4.4)
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•

In the remainder of the thesis, we take covp and covn to be positive as this is the case

that arises most frequently in practice. Analogous results to those presented above

can be derived for negative correlations.

From the above equations we see that a constant covariance between a pair of tests

causes the probability of each combination of test results to be altered by a fixed value.

This suggests that the dependence between a pair of tests could he modeled as a fixed

effect due to their covariance on their combined results. As discussed in the previous

chapter, in order to obtain an identifiable solution using this model we require that

there be at least as many degrees of freedom as the number of unknown parameters.

number of unknown parameters ~ number of degrees of freedom,

::} (2 x p) + (2 x PC2 ) + 1 ~ 2' - 1,

=> p ?= 5.

Hence a minimum of 5 tests would be required to obtain a solution for this model

using a frequentist approach.

To address the problem of non-identifiability when we bave less than 5 tests, we

propose to extend the Bayesian approach used by Joseph et al., 1995, in the case

when tests are conditionally independent. A problem with using the covariance to

model conditional dependence is that, since it is defined only for pairs of tests it is



4: FIXED EFFECTS MODEL 72

•

•

•

not possible to model the simultaneous dependence between three or more tests. The

Bayesian method developed in the following section pertains to the situation when

there are ooly two tests, although it could he extended ta situations when there are

more than two tests and there is a dependence between different pairs of tests. For

a discussion of the effect of conditional dependence between pairs of tests, in the

situation when there are three or four tests, on the estimates of the prevalence and

test parameters see Torrance-Rynard and Walter, 1997.

4.2 A Bayesian fixed effects model

As outlined in Figure 1.2, the parameters of interest in the geoeral situation, when

the conditional dependence between tests is taken into account, are the prevalence,

sensitivities and specificities of the tests and the covariances between them. As in

the case of the method developed by Joseph et aL, 1995, discussed in the previous

chapter, by assigning suitable prior distributions to these parameters, we can do away

with the need for 5 tests and still be able to obtain a solution for all unkno\Vn param­

eters simultaneously. The parameters of the prior distributions can be determined in

consultation with the literature, be based on expert opinion, or sorne combination of

these sources. This is an important step, since under non..identifiability, the influence

of the priar distributions is considerable even as the sampie size increases.

4.2.1 Notation

Let us assume we have results from two dichotomous tests Tl and T2• We will use

the same notation for the prevalence, sensitivities, specificities and covariance as

introduced in the first chapter. The number of subjects who fall iota the cross­

classification (Tl = i, T2 = j) is denoted by Ni;, i, j = 0, 1 and the total number of

subjects in the study is denoted by N. The true number of diseased subjects for each
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D=l D=O

T1=1 Tl=0 Tl=l Tl =0

T2=1 Yll YOI N ll - Y11 NOl - YOl

T2=0 YlO YOO N IO - YIO N oo - YOO

Table 4.2: Cross-classification oC observed and latent data Crom two tests.
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comhination of test results will he denoted by Yii' 'i, j = 0, 1. The Yi;'s are latent

values which are net observed. The ebserved and latent data can he summarized as

in Table 4.2.

4.2.2 The model

Using equations (4.2), (4.3) and (4.4), we can write the likelihood function of the

observed and latent data in the spirit of equation (3.4) as

L ex: ('Tr (51 5f + covp))Yu (11" (S1(1 - S2) - covp))Y, O

x (11"((1 - SI )S2 - covp))YO I (1r(1- SI)(l - 52) + Covp))Yoo

x ((1 - 11")((1 - Cd(1 - Cf) + covn))Nll-Yll

x ((1 - 11")(1 - Cl )C2 - covn))NIO-YIO

x ((1 - 7T')(C1(1 - Cs) - covn) )NOI-Yol «(1 - 1I")(C1C2 + covn))NOo-Yoo.

(4.5)

As described earlier in Chapter 2, perhaps the most important practical aspect of

developing a Bayesian solution for a non-identifiable problern is the proper elicitation

of prior distributions for the model parameters. As explained there, we will use prior

distributions that are members of standard distributional families, whose parameters

are fixed such that they reflect the experimenter's beliefs prior to observing any

data. The forms of the prior densities that we used for each parameter of interest
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TI =1 Tl =0 Total

T2=1 (1 - C I )(l - C.2) + covn Cl (1 - C2 ) - covn l-C2

T2=O (1 - Cl )C.2 - covn CIC! + covn C.2

Total 1- Cl Cl 1
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Table 4.3: Probabilities of obtaining each possible combination of test results among the non-diseased
subjects.

are described below. The ehoice of these funetions is not unique and they may be

repIaeed by other suitable densities.

1. The prevalenee is assumed to follow a beta prior distribution with parameters

0:11' and (311" i.e. 1r l''V Beta(01l'' /31r)' The Beta distribution is ehosen sinee it is

defined over the entire range of possible values, (0, 1), of the prevalence. It is

a versatile distribution and can he set to be diffuse, symmetric or skewed by a

suitable ehoice of parameter values. Further, sinee the Beta prior distribution

is eonjugate to the Binamial likelihood (see Section 2.1.2, we will see that it

simplifies the caleulation of the full conditional density for 1r when using the

Gibbs sampiero

2. The sensitivities and specifieities are also assumed to have Beta prior densities

such that Sj l''V Beta(as" (3S,) , j = 1,2 and Cj l''V Beta(ac1' (3e,) , j = 1,2.

Again, the range of these distributions match those for Si and Cj'

3. The feasible range of the covariance is determined by the sensitivities among

the diseased subjects and the specificities among the non-diseased subjects.

This can be verified from Table 4.3, which depicts the situation among the

non-diseased subjects. Clearly,
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where min(a, b) is the minimum of a and b. Similarly,

C! - (CIe! + covn) ~ 1- Cl

~ covn~Cl+C2-CIC2-1
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(4.6)

However, as mentioned in the previous section, we are ooly interested in the

situation when the two tests are positively correlated, requiring that the lower

bound of covn is O. Since the expression in equation (4.6) is always uegative,

the lower hound of covn was fixed at O. Therefore the upper and lower bounds

for covn are given by

(4.7)

Analogously, the bounds for covp are

(4.8)

•
The generalized Beta distribution is suitable for the covariance parameters,

sinee it cao be defined over a range determined by their lower and upper bounds.

A variable is said to have a generalized Beta(o, /3) distribution when its density

function is of the following forro (Johnson et aL, 1994):

1 (y_a)ct-1(b_y)~-1

J(x) = B(o:, P) (b _ a)Q+.B- 1 ' a ~ y ~ b, 0 > 0, f3 > o.
This distribution has the same properties as the Beta distribution in that it is

flexible and cao take on various shapes by an appropriate selection of (0, (3). The

notation for the prior distribution parameters of the covariances is as follows:

covp ,....., GenBeta{Qcovp, f3covp) , 0 ~ covp ~ uP'

where 'Up = min(81 , Sa) - 81S2.

•

and, covn,....., GenBeta(ocov,,, f3œvn) , o~ covn ~ Un,
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4.2.3 The Gibbs sampler algorithm

When the likelihood function in equation (4.5) is combined with the above prior

distributions, we obtain the following expression for the joint posterior distribution

of the parameters:

p(rr, SI, Cl, S!, Cs, covp, covn, Yu, YJO , YOI , YoolNll , N lO , NOL' Noo )

ex ('1I"(Sl S2 + covp))Yll (rr(SJ (1 - S2) - COVp))Y,O

x (rr((1 - SI )S2 - covp))Y01 (rr((l - 51)(1 - S2) + covp))Yoo

x ((1 - 1r)( (1 - Cl )(1 - C!) + covn)) Nil - Yu

x ((1 - 7r)((1 - Cl )C! - covn))N1o-YI0

x ((1 - 'Ir) (C1 (1 - C2) - covn) )NOl - YOI ((1 - 7r) (Cl C! + coon) )NOD - YOD

x 1T"olf-l(1_7r)Plf-1S~SI-l(1_ Sdltsl-lS~s,-1(1_ S!){3s,-l

x C~CI-l(l - CdPcI-IC~CI!-l(l_ C2)PC,-1

X covpQCQtJP-1 (Up - coop)Pcovp- l coonOcovn -1 (Un _ covn)Pcovn -1 •

Due to the complexity of this expression, it is not possible to obtain the marginal

distribution for the parameters analytically. Since we are interested in the marginal

posterior densities of ail parameters, we can use a Gibbs sampler algorithm as outlined

in the following three steps:

1. Arbitrary starting values are chosen for each parameter as follows:

1T" = 1r(J) such that 0 < 1r(l) < 1- -,
S S(l) h h 5(1) .i = j suc t at 0:5 j :5 l, J = l, 2,

C CU) h h C{l) .
j = j suc t at 0:5 j :5 1, J = 1,2,

coop = COVp(l) sucb that 0 < COVp(l) < min(S(l) S(l») - S(l)Sel)
- - J , S 12'

coon = covn(l) such tbat 0 < covn(l) <min(C(l) C{l)) - c(l)e(l) and
- - l' 2 12'

- (l) ch b 0 < (1) < 1\T •• - 0 1Yi; - Yi; su t at _ Yi; _ lY i;, 1., J - , .
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2. At each iteration of the Gibbs sampler, a single value is sampied in turn from the

full conditional distribution of each parameter. The full conditional distribution

is obtained by selecting the terms containing the parameter of interest, from the

product of the likelihood and the prior densities, and normalizing this function.

For our problem, the full conditional distributions are given below. Note that

while in theory we are conditioning on a11 parameters except the one whose

distribution is being derived, in practice sorne parameters do not appear in all

equations because of simplifications that arise.

The full conditional distribution of the prevalence, 1r, given the other variables

and latent data is

p(1r 1 l'I'I1' YIO , YOI , Yoo) oc 1rQ1f+Yll+Y,O+YO,+Yoo-l

(1 - 1r)P1f+Nll+NIO+NO,+NOO-(Yll+Y,O+YOI+Yoo)-l ,

=> 1r Ilîl,l'lo,Yol ,Yoo

"J Beta(O:1r + l'I'll + YIO + YOl + Yoo ,.B1r + N - (Yu + YIO + YOI + l'ao)).

(4.9)

Therefore, at each iteration of the Gibbs sampler a single value of 1r is sampled

from the Beta distribution in equation (4.9). The full conditional distributions

for the other variables, namely the sensitivities, specificities and the covariance

parameters were not of any standard fonn, so a SIR algorithm (see Chapter 2)

was used to sample from these distributions. The full conditional distributions

of the sensitivities are given (up to a constant of integration) by

P(SjIS3-j,COVP, Y11 , Y10 , YOl, Yoo )

oc (1r(SlSa + covp»Yu (1r(Sl (1 - SB) - COVp»)Y,O

x (11"«1 - 51 )S, - covp»YOJ
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x (1r«1- 51)(1- 8~) +COVp))Yoo 5;Sj-\1- Si)~Sj-l,

where j=1,2.

The full conditional distributions of the specificities are similarly given by

p(Cj IC3-j, covn, Yu , YJO , Y01 , Yoo )

oc «1-1r)(1 - Cd(1 - C2 ) + covn))Nll-Yll

x «1 - 1t')(1 - Cl )C~ - covn))Nlo-YlO

x «1 - 1r)(Cl (1 - C2 ) - covn))NOI-YOl

x «1 - 1t')(CIC~ + covn))NOo-Yoo

x C;cj -l(1 - Cj)PC,-l, where j=1,2.

The full conditional distributions for the covariances are given by

p(COVpIS1,S~'Yll'YJO'Y01,rOO)

<X ('Tr(S} S~ + covp))Yll

x (1t'(5J (1 - 52) - COVp))YIO

x (11'«1 - 51 )82 - cOVp))YOl

x (11'«1 - Sd{l - 52) + coup)) YOO

x (coup - lp)Oeovp-l (Up - COVp)fJeotlP-t,

p(covnIC1 , C2 , Yu, YJO , Y01 , YOO )

oc « 1 - 1t') ((1 - CJ ) (1 - C2) + covn) )Nil - V,l

X «1 - 1t')«l - Cl )C! - covn))Nlo-YIO

x «1 - 1I')(C1 (1 - Cs) - covn))NoI-YOI

x «1 -lt')(C JC! + covn))NOo-Yoo

x (covp -ln)ocovp-l(Un - covp)fJeovp- 1,

78
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The latent variables Vij have Binomial full conditional distributions as follows:

h
1r«l - SdSa - covp)

w ere POl = l

1t'((1 - 5J )5t - covp) + (1 - 1r)(CJ (1 - Gt ) - cavn)

h
1r((1 - SI )(1 - St) + covp}

w ere Poo = ( .
1r((1 - Bd 1 - Bt ) + covp) + (1 - 1r)(CI C.e + covn)

3. Step 2 is repeated a large number of times to obtain a sufficiently large sample

from the full conditional distribution of each parameter. The resulting samples

are approximate random samples Crom the marginal posterior density of each

parameter, as discussed in Chapter 2.

In the following section we illustrate the application of this Gibbs sampler algorithm

to a problem involving simulated data.
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Parameter True value

'Ir 0.73

SI 0.50

S2 0.80

covp 0.07

Cl 0.90

C2 0.70

covn 0.05

Table 4.4: 'True' prevalence and test parameters.

4.3 A simulated example

80
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In order to illustrate the performance of the Bayesian fixed effects method developed

in the previous set:tion, we simulated a hypothetical problem involving the results of

two tests, neither of which was a gold standard. The parameters of the two tests were

set up such that they had complementary characteristics i.e. the sensitivity of one

test was very poor but it had a high specificity, while the other test had a reasanably

high sensitivity but a worse specificity than the first test. Thus, it may be expected

that the combined result of the two tests will provide more accurate results than

either test alone.

4.3.1 Simulating the 'observed' data

The true values of the prevalence and test parameters were set to be as in Table

4.4. The tests were designed ta be conditionally dependent both among the diseased

and non-diseased subjects. The range of the covariance among the diseased and oon­

diseased subjects is, of course, limited by the values of the sensitivities and specificities
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Test1

Positive Negative Total

Test2 Positive 73 60 133

Negative 5 62 67

Total 78 122 200

Table 4.5: Simulated cross-classification of results from two correlated tests.

as defined in equations (4.7) and (4.8), so that

o::; covp ::; min(Sl' S2) - S152

= min(0.5, 0.8) - (0.5)(0.8) = 0.1,

and, 0::; covp::; min(C1 , Cs) - C1CS '

= min(0.9, 0.70) - (0.9) (0.70) = 0.07.

81

•

•

For this example we set covp =0.07 and covn =0.05, which lie within these admissible

ranges.

The test results were generated by calculating the expected frequency of each cross­

classification based on the equations (4.2), (4.3) and (4.4), using the values in Table

4.4. The 'observed' data would then appear as in Table 4.5. The S-plus program

used to obtain these results is listed in the Appendix. If the tests were conditionally

independent, i. e. the covariance between them was 0 in each disease category, we

would observe the test results presented in Table 4.6. Note that the frequency of the

Noa and Nu cells is less than in the correlated case, while the margins remain fixed.
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Test1

Positive Negative Total

Test2 Positive 60 73 133

Negative 18 49 67

Total 78 122 200

Table 4.6: Simulated cross-classification of results from two independent tests.

4.3.2 Determining the pararneters of the prior distributions
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The prior means and 95% prior probability intervals of the test parameters, or in

other words, the marginal prior information was set to be as in Table 4.7. Here and

elsewhere, the abbreviation PI stands for probability interval. The corresponding

Beta distribution parameters for the sensitivities and specificities were obtained by

first determining the ratio of Q : {3 by solving the equation Q~P = Mean, and then

finding the Beta distribution whose 95% probability interval matches that given in

Table 4.7. For the two covariance parameters we used the same procedure, replacing

the expression for the mean by Q~~ x (l-u) + 'U, where land u are the lower and upper

bounds of the covariances given in Table 4.7, and then finding the Generalized Beta

distribution whose 95% probability interval matches these values.

4.3.3 Results

We tried to see ifwe could re-capture the true prevalence when using a non-informative

prior distribution over the prevalence along with the informative priors for the test

parameters described above. This situation could arise, for instance, when two corn...

mon tests are used ta assess the prevalence of a disease in a population in which

the disease distribution is unknown. The C++ program used to carry out the Gibbs

sampler is listed in Appendix 8.1.2. This program takes about 2 minutes to complete
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Parameter Mean 95% PI a {j

51 0.50 0.4-0.6 34 34

52 0.80 0.7-0.9 90 10

Covp 0.07 0.0-0.1 1.167 0.5

Cl 0.90 0.85-0.95 32 8

C2 0.70 0.6-0.8 42 18

Covn 0.05 0.0-0.07 2.5 1
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Table 4.7; Prior means and 95% prior probability intervals of the test parameters and corresponding
Beta distribution parameters for the two hypothetical tests.

20,000 iterations of the Gibbs sampler on a Pentium c1ass computer. The posterior

medians and 95% posterior probability intervals of the prevalence and test parameters

thus obtained are listed in Table 4.8. The corresponding results using the Bayesian

conditional independence model are presented in Table 4.9.

Figure 4.1 is a plot of the non-informative prior and the two posterior distribu­

tions which would be obtained when using the Bayesian fixed effects model and the

Bayesian conditional independence model. We find that the prevalence would be un­

derestimated if the correlation between the two tests was ignored. Figure 4.2 is a plot

of the prior and the two posterior distributions for the sensitivity of the first test,

obtained when using the Bayesian fixed effects model and the Bayesian conditional

independence model respectively. Ignoring the correlation would result in an overes­

timate of the sensitivity. This is to be expected, since obtaining the results in Table

4.5 when using two independent tests would require higher values of the sensitivities

and specificities for both tests. The same effect was observed on the remaining test

parameters.

The CODA software package was used to obtain diagnostic statistics for the Gibbs

sampler. The value of Gelman and Rubin's Êl statistic for each parameter was found



•
4: FIXED EFFECTS MaDEL

Variable Median 95% PI

1r 0.7341 0.5662 - 0.8984

Sl 0.4995 0.4177 - 0.5814

Cl 0.8932 0.8281 - 0.9422

pvp1 0.9291 0.8435 - 0.9794

pvnl 0.3920 0.1573 - 0.6033

S2 0.7902 0.7143 - 0.8652

Cs 0.6966 0.5729 - 0.8019

pvp2 0.8812 0.7431 - 0.9614

pvn2 0.5531 0.2481 - 0.7550

covp 0.0809 0.0478 - 0.0989

covn 0.0379 0.0116 - 0.0639
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Table 4.8: Posterior medians and 95% posterior probabiJity intervals of the prevalence and test
parameters obtained using the fixed effects mode!.

Variable Median 95% PI

1r 0.6137 0.5010 - 0.7163

SI 0.5680 0.4869 - 0.6510

Cl 0.9242 0.8717 - 0.9605

pvpl 0.8892 0.8128 - 0.9427

punI 0.6649 0.5789 - 0.7483

S! 0.8965 0.8260 - 0.9484

Cs 0.7287 0.6255 - 0.8228

pvp2 0.7975 0.6935 - 0.8778

pvn2 0.8559 0.7486 - 0.9309

Table 4.9: Posterior mediaos and 95% posterior probability iotervais of the prevaleoce and test
parameters obtained using the cooditiooal independence model.



4: FIXED EFFECTS MaDEL 85

•
('\

1 \
1 \
1 \
1 \
1 \
1 \
1 \
1 \
1 \, - ....
l ,.\ \
l ' \ ,
J '\ ",

1 / \ \
l '\ '., \ \

1 i \ \
l' ,
1 1 \ \.

l" \ \
l' \ '.

J
\ ]1 ./ \ \"'"

/ " ,
_.:'- ' .....-

Fbced enec:ts ModeI
CondltlonaJ Indeptndence Medel
Prielr Distr1but1on

4.00

0.00 -1 1

2.00

6.00

Figure 4.1: Prior distribution of 1r overlaid by posterior distributions obtaincd using the fixed effects
and conditional îndependence models.•
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to be close ta one as shawn in Table 4.10. Figure 4.3 shows the overlaid trace plots

for the prevalence obtained from five different runs of the Gibbs sampler for the

fixed effects model are indistinguishable after about 100 iterations, corroborating the

evidence from the Êl statistic that the sequences have converged. Only the first 500

iterations are included here for clarity. Similar plots were obtained for the remaining

parameters.

Raftery and Lewis' method was used to detennine the minimum number of itera­

tians required to estimate the 0.025 quantile with 95% probability with an accuracy

of +/- 0.005. The results are presented in Table 4.11. The value orthe Nmin statistic

•
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Iterations used for diagnostic = 2450:4899

Thinning interval = 1

Sample size per chain = 4899

Variable Point est. of R 97.5% quantile

prey 1.01 1.02

sensl 1.00 1.00

specl 1.00 1.00

pvpl 1.01 1.02

pvnl 1.01 1.02

sens2 1.00 1.00

spec2 1.00 1.00

pvp2 1.01 1.02

pvn2 1.01 1.02

covn 1.00 1.00

covp 1.00 1.00

Table 4.10: Gelman and Rubin 50% and 97.5% shrink factors.

86
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was fairly high for sorne of the parameters resulting in a dependency factor greater

than 1. This suggests a high correlation between successive iterations long after the

sequence has converged. This is Dot surprising since in our non-identifiable prob­

lem the values of certain parameters are largely determined by the values of other

parameters, and vice versa, thereby producing autocorrelations. This can be best

seen by looking at the full conditional distributions of Section 4.2.3. While a high

degree of autocorrelation suggests that the chain maves slowly through the range of

the parameter, the accuracy of the parameter estimates becomes sufficiently high if

a large enough number of iteratioDs are rune Nevertheless, careful attention to Gibbs
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sampler diagnostics is required whenever this method is used.

4.4 Summary

In tbis chapter we have demonstrated that a Bayesian approach can be used to obtain

a solution for the non-identifiable problem that arises when we have two conditionally

dependent tests in the absence of a gold-standard. This fixed effects model further

has the advantage that cross-classification probabilities are modeled in terms of test

parameters and the covariance, allowing for a simple interpretation of the effect of

conditional dependence on test results. The most challenging aspect of using this
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Iterations used = 101:4999

Thinning interval = 1

Sample size per chain = 4899

Quantile = 0.025

Accuracy = +/ - 0.005

Probability = 0.95

Variable Thin Burn-in Total Lower bound Dependence factor

(k) (M) (N) (Nmin) (1)

prey 3 24 21972 3746 5.87

sens1 1 3 4206 3746 1.12

spec1 2 8 8670 3746 2.31

pvpl 2 16 15186 3746 4.05

pvnl 2 16 18232 3746 4.87

sens2 2 8 8670 3746 2.31

spec2 2 10 13936 3746 3.72

pvp2 3 30 26958 3746 7.2

pvn2 2 18 19830 3746 5.29

covn 1 3 4198 3746 1.12

covp 1 2 3837 3746 1.02

Table 4.11: Raftery and Lewis convergence diagnostic.
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method is to determine prior distributions which accurately represent the available

information on the prevalence and the test parameters. This method is easy to

implement using computational techniques such as a Gibbs sampler and a SIR. While

our simulation showed the method to work well, we chose prior densities for four of

the parameters which, while relatively wide, were centered on the 'true' values. Other

prior distributions, of course, may not work as weil, and in practice we will never be

certain that our prior distribution 'covers' the true parameter values. In this sense,

the methodology developed here may be viewed as a 'mapping' from a given set

of prior distributions to the corrcsponding set of posterior distributions. Therefore,

the posterior density cao always be interpreted as a coherent updating of the prior

distribution upon seeing the data, but any extrapolation to the 'truth' involves a

leap of faith. A possible drawback of this method is its limitation to modeling the

dependence between pairs of tests only. The next chapter presents a method free of

this restriction.
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MODELING CONDITIONAL DEPENDENCE

USING RANDOM EFFECTS

In this chapter, we present an approach to modeling the conditional dependence be­

tween multiple tests using random effects. The sensitivities and specificities of the

tests are modeled as functions of a latent, subject-specific random variable. Apply­

ing the same latent value within each patient across aIl tests induces a dependence

between the tests, without explicit reference to a covariance parameter. The chapter

commences with sorne examples of such subject-specific variables. This is followed

by the description of a Bayesian random effects approach to modeling this situatioD.

The next section is devoted to a simulated example used ta illustrate this method,

and the last section summarizes our findings. The model is applied to real data in

Chapter 6, where we compare the results to a fixed effects model.

5.1 Background

In the classical diagnostic testing model, the sensitivity and specificity of a test are

usually assumed ta remain constant over all individuals to whom the test is applied.

In practice however, test performance often varies between subjects for a variety of

reasons. The source of this variation could be due to random or systematic errors of

the kind discussed in Section 1.1. However, apart from factors related ta the test or its

laboratory analysis, there is often one or more covariates inherent to the subject that

91
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1. Fecal Occult Blood Test: This test, which is commonly used to screen for col­

orectal cancer, diagnoses a patient as positive when it detects traces of hlood

in the patientts stool. This is because malignant polyps are known ta bleed

intermittently, causing traces of blood ta he present in the stool. As a corollary,

a fecaI occult blood test cannot detect polyps that do not bleed. Therefore,

the bleeding biology of colorectal cancer ultÎlnately determines the upper limit

of screening efficacy when using this test. In subjects who have 'small' polyps,

however, the test has a very poor sensitivity since smaller polyps do not bleed

at aIl in certain subjects, for a reason Dot yet determined by medical research

(Ransohoff and Lang, 199i).

2. Stool Examination: In a staal examination for an infectious or parasitic disease,

a positive test means that the parasite of interest was directly observed under

a microscope ta be in the subject's stool specimen. The sensitivity of such a

test is thus dependent on the ease of detecting the parasite in the stool. In

a severely diseased case there is a larger concentration of parasites, making it

easier to deteet, and resulting in a more sensitive test. By the same token, the

test has high specificity among subjects who are disease free sinee the absence

of the parasite increases the likelihood of a negative test. Nevertheless a faIse

positive test usually occurs when a different parasite is wrongly identified as

the one of interest, so that subjects carrying other parasites have decreased

specificity.

3. Diagnosis of group A streptococcal infection: A cornmon problem faced by doc­

tors in primary care is treating a sore throat. If the sore throat is diagnosed

to be due to streptococcal infection the patient should be given antibiotics, but

Dot if it is diagnosed to be due ta a viral infection. While it is possible to find
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this information using laboratory tests which take over 24 hours, the physician

may want to prescribe the course of treatment immediately. To address this

problem several predictor variables for streptococcal infection have been iden­

tified such as fever, no cough, and tonsillar swelling. However, the validity of

these markers varies with age. An accurate scoring system therefore assigns a

point for the presence of each of these symptoms/signs but modifies the score

based on age (eg., 1 extra point for 3-14 year olds, 0 for 15-44 year olds, and -1

for age 2: 45 years, McIsaac et al., 1998).

In the first example, the 'covariate' which determines whether or not the polyp bleeds

is unknown and hence cannot be measured. The second example illustrates the type

of covariate that most typically affects test performance. Subjects whose stool sampie

has a larger concentration of parasites, i.e. those with a more severe case of infection,

are more likely to be detected. This is because the observed value of the separator

variable has a much greater likelihood of satisfying the positivity criterion. The

covariate of interest couId he termed 'severity of illness', but it cannat be easily

quantified, and is usually unknown at the time that the test must he interpreted.

Finally, in the third example, the covariate is clearly defined and can also be measured.

The general situation, encampassing ail three of the above cases, can be conceptu­

alized as one where the performance of a subject on a test is a function of a continuous

random variable, which we will term the 'intensity'. This 'intensity' can he thought

of as a summary measure of the severity of illness / ease of detection along with any

other covariates which affect a subject's performance on a test. The sensitivity and

specificity of a test for each subject are functions af this underlying intensity, of the

fonn 1(1), where 1 is a continuous, monotonically increasing function taking values

between 0 and 1. The higher the intensity of a subject, the greater the value of the

sensitivity and the specificity of every test for that subject.
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In the situation when we have two correlated tests, illustrated in Section 4.1,

subjects who have a higher 'intensity' will tend to be correctly detected by both tests

and will therefore faIl into the (Tl = 1, Tl! = 1) or (Tl = 0, Tl! = 0) ceUs where

the tests are in agreement. Conversely, subjects who fall into the (Tl = 1, Tl! = 0)

or (Tl = 0, Tl! = 1) celis, where test results are not consistent, tend to have a lower

intensity. Thus a dependence is induced between tests via the test parameters without

explicitly using a parameter for the covariance. The range of values, as well as the

~meaning' of the intensity may be different among the diseased and non-diseased

subjects. In Example 2 above, it rnay he that 'intensity· illdeed nleasures severity of

disease among diseased subjects, but among non-diseased subjects higher intensity

may correspond to an absence of other parasites that could lead to a false-positive

diagnosis.

A possible approach to represent the above situation is by way of a random effects

model since 1 is usually latent. While it is unknown what distribution the values

of 1 take, in the Bayesian random effects model described below 1 is taken to he a

random variable following a N(p., (72) distribution. Without 10ss of generality we will

use a N(O, 1) distribution. Densities other than the Normal could he used, although

we do Dot investigate them here.

5.2 A Bayesian random effects model

In this section we propose a Bayesian solution ta the 'Two Latent Class Random

Effects (2LCR) Model' discussed in the paper by Qu et al., 1996 which was described

earHer in Section 3.3.4. The main advantage of this model over the earHer approach,

is that it provides a solution even in the situation when we have a non-identifiable

model, i. e. when the number of tests is less than 4 or 5. By placing a prior distribution

over all unknown parameters, it is possible ta obtain a joint posterior distribution aver
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these same parameters, even though the problem is non-identifiable.

5.2.1 Notation
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We consider the general scenario with p tests and N subjects. The test result for

the kth subject on the jth test is denoted by tjl: = 1 or 0 for a positive or a negative

result, respectively. The vector of results for the kth subject on each of the p tests is

denoted by tic = (t llc , •• • , tpk)' The true disease status of the kth subject is denoted

by D = dt d" = 0, 1. The 'intensity' of the kth subject is denoted by i/c.

5.2.2 The model

As defined earlier, the probability that the kth subject has a positive result on the jth

test is given by

where ~ represents the cumulative distribution function of the N(O, 1) distribution

and (ajd, bjd ) , j = 1, ... ,p, d = 0,1 are real, unknown parameters. It follows that

the probability that the kth subject has a negative result on the jth test is given by

The disease status D and the latent variable 1 are assumed to be independent of

each other. The mean sensitivity of the jth test over ail subjects is then given by

integrating the expression for the sensitivity of the kth subject with respect to f, as

follows:

Sj = P(tjl = IID = 1) = L: Sjl d41(ik)

=L: 4l(ajJ + bj/it )d41(it)
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~=1.:"11~(x)d<l>(x)

= ~( ail ).
1 + bjl

Similarly, the specificity of the jth test is given by
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Cj = P(tik =OID = 0)
a·o

= 1 - c)( 1 1b2 )
+ iD

a·o= ~(-1 J b2 ) using the result ~(-x) = 1 - ~(x).
+ jO

The sensitivity and specificity of each individual subject can be thought of as being

shifted from the mean by an amount determined by the magnitude of the subject's

'intensity' i".

The results of different tests are taken to be independent of each other conditional

on the disease status D and the latent variable J. This means that within each

disease class the test results are independent of each other conditional on the variable

J. Therefore the likelihood for the kth subject given ik is

p P
P(tlk, ... , t p,,11IJ, i,,) = 1r II S;k" (1 - Sjle)(l-t,,,) + (1 - 1t') II C;~-t")(l - Cjk)t,1c

j=l ;=1
P

=1r II <l>(ail + bi1 ik)ti" (1 - <)(ajJ + bi1 ik))(l-tjlr)

j=1
p

+ (1 - 1t') II ~(a;o + bjoile)(l-t,il) (1 - ~(a;o + b;oi,,))tilc ,

j=l

(5.1)

where t/J is the vector of parameters to be estimated, 50 that 1IJ = ('Ir, (aid, bjd ) j =
1, ... ,p, d = 0, 1). The 'complete' likelihood for the kth subject, given the latent data

ik and die, is given by

p

P(tu, ... , tpkl.,p, ik, die) = (1t' II c)(a;I + biJik)tift(l - 4l(aiJ + bjJi"»(l-t,.))d,,
j=l
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p

x «1 - 11") II <I»(a;o + bjoik)(I-t,~)
j=1

(1 - <I»(ajO + b;oik))tjl )(l-di ).
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Clearly, the case when bjd = 0, j = 1, ... , p, d = 0, 1 corresponds to the Bayesian con­

ditional independence mode!. It follows that the likelihood function of the observed

and latent data for all subjects is given by

N

L ex II P(tun ... , t pkl1/J, i k , dk)
k=l

.TV P
= II (1T' II 4>(a;J + b;J ik)t,1r (1 - <I>(ajl + bjlik))(I-tjl))dlr

k=l ;=1

"X «1 -11") II <I»(ajO + bjo i k)(l-t,i)(l- <I>(ajO + b;oik))t'Ir){l-dlr ).
j=l

Let p(9) denote the prior distribution of a parameter 9. The expression for the joint

posterior distribution of 1/J is obtained by multiplying the likelihood above by the

prior distribution for each parameter as follows:

p( t/J 1 tu, ... , t"k, -ik,dk, k = 1, ... , N)

N "ex: II (11" II <I>(ajJ + bj1 ik)tiJr (1 - <I>(ajl + b;l ik))(I-tJ.))dlr

k=l ;=1
P

X «1 - 1T') II 4>(ajO + bjoik)(l-t'Ir) (1 - 4>(ajO + bjoik))t'Jr)(l-di )
;=1

1 P

X p(7t") II II p(a;d, bjd ). (5.2)
d=Oj=l

As explained in Chapter 2, the elicitation of the parameters for the prior distributions

is perbaps the most important step in implementing this method. These parameters

are obtained in consultation with results from earlier studies and expert opinion.

We provide an example of this in Chapter 6. When the prior information can be

expressed using the prior densities given below, the expressions for the full conditional

distribution of each parameter, which will be used in the Gibbs sampler algoritbm,

are simplified.
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1. A Beta(Cl1r ,,31r ) prior distribution can be used for the prevalence, 1T', since it is

conjugate to the binomial distribution. This distribution can take on a variety

of shapes over the range (0,1) by appropriate adjustment of the parameters

(Cl,.., ,81r).

2. A bivariate normal prior distribution, N2 ( ( aJD ) ,EJD ), over the
bJD

parameter pairs (ajd, bjd ) cao he used. The vector ( aJD ) denotes the bivariate
bJD

mean and EJD is the 2 x 2 covariance matrix.

This prior distribution also facilitates sampling from the full conditional distri­

bution using a method developed by Albert and Chib, 1993, which is described

in the Appendix.

5.2.3 Implementing the Gibbs sampler

Assuming the joint prior distribution is the product of the individual densities dis­

cussed above, the product of the likelihood function in equation (5.2) and the joint

prior distribution is:

p(1/; 1 t1k, ... , tpk, ik, dk, k = 1, ... , N)

ex 1T'E:=l dk +Qlr-l(l - 1T')E:=l(l-d/E)+.8lr-l

N p

x II (II <I>(ajl + bjJ ik)t'l (1 - <I>(aiJ + b;J ik) )(l-ti.»)dld~(ajl'bjJ )
k=l ;=1

p

x(II <I>(ajO + bjoik)(l-tjl) (1 - ~(ajO + bjoik))t,,)(1-d·)d~(ajo, bjo ),
;=1

where d~(ajd, bjd ) is the bivariate normal density

1(
-1 v ~) = exp(-(x - X)TE-l(X - X)/2)
X "''\., "" 21r 1El'
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(
ajd ) - ( aJD )with X = and X = .
bjd bJD
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As in the case of the fixed effects model, we use a Gibbs sampler algorithm to sampie

from the full conditional distributions of the parameters in t/J as follows:

1. Assign random starting values to each of the parameters and latent variables.

Possible starting values are, for example,

1r = 1r{l) 0 < 1r{J) < 1,- -,

( . .) - ( (1) b(l») . - d -a]d, b,d - ajd , jd ,J - 1, ... , p, - 0, 1,

(

a(.~) ) ( 0) (1 0)such that ~l) f"W N2( , ),
bjd 0 0 1

d" = d~l), k = 1, ... , N,

such that d~l) = 0 or 1,

. .(1) k 1 N1." = 1.", =, ... , ,

such tbat i~l) fV N(O, 1).

When running a Gibbs sampler, however, it is usual to ron it several times with

different starting values that are overdispersed with respect to the range of the

expected posterior densities, in order ta verify convergence.

2. Draw a single value from the full conditional distribution of each parameter, i.e.

the distribution of each parameter conditional on the most recently updated

values of the other parametp.rs. This distribution is obtained by isolating from

the product of the likelihood and the prior, the product of the terms which

contain the parameter of interest, and normalizing it, whenever possible. If

normalization is diflicult, a SIR or other algorithm may he used as needed.



•
5: RANDOM EFFECTS MaDEL

(a) For the prevalence, the full conditional distribution is given by

p(1rld1, ... , dN ) oc 1rE:=l d~+Q,,-1(1 -1r)N-E:=l d.+.8,,-l,

N N

=> 1rldt, ... ,dN ro.J Beta(E d" + Q'Ir' N - L d" + 13'1r)'
":1 ":1

100

(5.3)

Thus at each iteration 1r is set equal ta a random value drawn from

Beta(Ef:1 dt + (t'Ir' N - E::1 die + 137r)'

(b) The full conditional distribution for each dfc is given by

p(dfc lt1", ••• , t"", t/J, i,,)
p

ex (7t' II <!J(ajl + bjlifc)tJJr(1 - c/>(ajl + bili,,))(l-tjk))dk
j=l

p

x ((1 - 1r) il c/>(ajO + bjo i,,)(l-t1t ) (1 - c/>(ajO + bjoi,,))t1k)(1-dk ),

;:1

(5.4)

•

•

where

"+(1 - 11") II cP(ajO + bjoi,,)(l-t'Jr)(1 - cP(ajO + bioi,,))t,k.
;=1

Thus, at every iteration we draw a value for each d", k = 1. ... , N from a

Bernoulli(pfc), k = 1. ... , N distribution.

(c) The full conditional distribution for each (ail, bil ) is given by

p(ajl' bj1 1tjb ••. , tjN, db· .. ,dN)
N

oc il 4»(ail + bj1 i,;}drctJk

"=1
X (1 - 4»(ajl + bil iA:))dt{1-tjlr)d~(ajl'bjl ). (5.5)
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Similarly, the full conditional distribution for each (aiO' bjo ) is given by

p(ajO' bjoltu , ... , tjN, dl, ... , dN )

N
ex: II 4l(ajO + bjoik)(l-dle ) (l-t,lc)

k=1
x (1 - ~(ajO + bjoik )) (1-dlr) t,le d4'(ajO, bjo ).

(5.6)

The full conditional distributions for the (ajd, bjd ) pairs are not of a stan­

dard distributional fonn but they can be sampled from using approximate

methods like a SIR algorithm (described in section 2.4.1). Albert and

Chib, 1993 have developed a method which is of particular interest in

these situations which is described the Appendix. We used this method

here. ~Ietropolis sampling (Hastings, 1970) could also be used.

(d) The full conditional distribution of the intensity, of the kth subject, ik, k =

1, ... , N, is given by

•
p(ikltlk, ... , tpk, (ajd, bjd ) , i = 1, ... ,p, d = 0,1)

p

ex: II <I>(ajl + b;1 ik)dtt,1r (1 - ~(ajl + bj1 ik))dt(l-t,t)

j=1
p

X II ~(ajO + bjoik )(1-dlr) (l-t,Ir)(1 - <I>(ajO + bjoik))(l-dlr ) t,Ir

j=l

(5.7)

(5.8)

•

Since equation (5.8) is not reducible to the forro of any standard density

fUfiction the ik values are sampled at each iteration using a SIR algorithm.

3. Step two is repeated many times to obtain a sufficiently large sampIe from

the full conditionai distribution of each pararneter. The resulting samples are

approximate random sarnples from the marginal posterior densities of each pa­

rameter.

The next section applies this method to a simulated data set.
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5.3 A simulated example

5.3.1 Simulating the 'observed' data
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As in the case of the fixed effeets model, we used simulated results from two hypo­

thetieal, non-gold standard tests to examine whether adjusting for the conditional

dependence between the two tests, by way of the random effects model, affects the in­

ference about the prevalence and test parameters. The 'true' values of the prevalence

and test parameters along with the corresponding values of the (ajd, bjd ) parameters

for the sensitivities and specificities are listed in Table 5.1. Even though there is no

explicit parameter for the covariance, the value of the (ajd, bjd ) pairs was determined

such that the tests are eonditionally dependent, as will be explained later in this

section. It must be noted that the parameters SI, 52, Cl and C2 do not have their

usual meanings, sinee the test properties are different for each subject depending on

i k • Therefore, the values in Table 5.1 represent mean values averaged over aU possible

ik "-1 N(O, 1). As was explained in Chapter 4, the range of values for the covariances is

deterrnined by equation (4.7). As in the previous chapter we set the two covariances

to be covp = 0.07 and covn = 0.05.

The probability of falling into each possible cross--c1assification (Tl = i, T2 =

j) i,j = 0,1 for each of the N = 200 subjects is calculated using equation (5.1).

The overall 'observed' cross-classification is obtained by summing the probabilities

for each classification over aIl subjects. For example, the number of subjects in the

ceU (Tl = 1, T2 = 1) is given by

Number of subjects in cross.cla.'3sification (Tl = 1, T2 = 1),
N

= E P(t" = (1,1)),
k=l
N 2 2

= E(1r II ~(ajJ + bj1ik) + (1 -1r) II (1 - ~(ajO + bjoik))).
k=l j=l j=l
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Parameter True value ajd bjd

1r 0.73

covp 0.07

covn 0.05

81 0.50 0 1.2731

82 0.80 1.3625 1.2731

Cl 0.90 2.2536 1.4465

C2 0.70 0.9221 1.4465

Table 5.1: 'True' prevalence and test parameters with corresponding (ajdt bjd) values.

Test1

Positive Negative Total

Test2 Positive 75 58 133

Negative 5 62 67

Total 80 120 200

Table 5.2: Simulated cross-classification of results from two correlated tests.
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where the 1 = ik values for each subject are drawn randomly from a N(O, 1) distribu..

tion for each subject. The program for implementing this algorithm is listed in the

Appendix. It is of interest ta note that the data set in Table 4.1 which was simulated

using a fixed effects model can aIso be observed under the random effects model.

5.3.2 Determining the parameters of the prior distributions

Once again we assumed that there was no prior information available about the

prevalence and used a Beta(l, 1) prior distribution for it. The prior means and 95%

prior probability intervals for the test parameters was set ta he as in Table 5.3.
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Parameter Mean 95% PI

covp 0.07 0.01-0.09

covn 0.05 0.01-0.07

51 0.50 0.4-0.6

Cl 0.90 0.85-0.95

52 0.80 0.7-0.9

CI, 0.70 0.6-0.8

104

•

Table 5.3: Prior means and 95% prior probability intervals of the test parameters of the two hypo-­
thetical tests.

Determining the (aJD, bJD ), J = 1,2, D = 0,1 values is a difficult exercise. Here

we use the 2LCRI model which is a particular case of the 2LCR model when

bjd = bd, j = 1,2, d = 0,1. This means that a change in the value of ik will

cause the sensitivities and specificities of ail tests for the kth subject ta change by

the same amount on the probit scale. We use the 2LCRI model in part because the

available information about the mean values of the test parameters is not sufficient

ta uniQuely determine the (aJD, bJD ), J = 1,2, D = 0,1 parameters in the 2LCR

model using the method described below. This problem does not arise when we have

more than two tests. However, the restriction of the 2LCRI model does not sub­

stantially affect the estimates of the sensitivities and specificities since the effect of

the bjd parameters on their mean values is small, as will be shawn later in this sec­

tion. Further, this model has the advantage of being easier ta interpret since it bas

fewer parameters. One metbod ta elicit the means of the prior distributions of the

(ajb bjt), j = 1,2 parameters in the 2LCRI model from knowledge about the mean

values of the sensitivities in the population, is by solving the following 3 equations

for (au, a21' bl ):

•

(5.9)
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(5.10)

(5.11)
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The first two equations relate the information about the mean sensitivities in Table

5.3 to the expression for the mean sensitivity of each test in terms of the (ajd, bjd ) 's.

The last equation relates the mean covariance ta the expression for the covariance in

terms of the sensitivities.

These equations can be solved using a bisection algorithm as follows:

1. Transform the equations (5.9) and (5.10) such that aJJ = cIl-1(SJh/l + b~, J =
1,2.

2. Substitute the expressions for aJJ, J = 1,2 in terms of bl in equation (5.11) to

obtain:

{O il <J1(<J1- 1(5J ) VI + ~ + b1ik)d<J1(ik) - 5152 = covp
-OC) J=1

=> i:hl <J1(<J1- 1(5J }Vl + ~ + b1ik}d<J1(ik}

-81S2 - coup =0

3. Let J(bJ) = J~OC) nj=1 cIl(cIl-1(SJ) Vl + b~ + bJi/c)d4-(i/c) - 8 182 - covp. The

solution for bJ must satisfy J(bJ) = O. We start by fixing the lower (l) and

upper (u) bounds between which the solution must lie. The idea is that if bl

is truly bounded by 1 and u then f(l)f(u) < 0 sinee f(bd = O. A reasonable

starting value for bJ is x = (l + u)/2. If J(x)/(l) < 0 then the two are of

opposite signs and the solution must lie between 1and x, 50 the upper bound

is changed to u = x. If on the other hand, f(x)f(l) > 0 then f takes the same

sign at both 1and u and therefore the lower bound is altered to l = x.
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4. Step 3 is repeated till J(x) is smaller than a predetermined value €•

The parameters for the prior distributions of the specificities can he calculated

similarly. It must be noted that while eliciting the prior distributions for these pa­

rameters we have considered what is known about their mean values, which are in

fact averaged over the individual-specific properties in the population under study.

The degree to which the properties vary over the population is controlled mostly by

the bd values.

The solution to the equations (5.9), (5.10) and (5.11) is (au = 0, a2l = 1.362, bl =

1.273). To determine the approximate prior standard deviations of au, a21 and bl

we used contour plots of Sion the (aUl bd plane and 52 on the (a21, bd plane,

respectively, which were constructed using the following steps:

1. We first generated sequences of points lying between (mean-l, mean+1) for each

of the three parameters. Then, a 3-D grid of (au, a211 bd values was created

using an possible combinations of values from the three sequences.

2. At each point on this 3-D grid we calculated the values of SI = ~(~),
yl+bî

S2 = ~(y';:br) and covp = f~oo ~(a1J + blik) ~(a!l + blik)d~(ik) - S l S2.

3. We then plotted SI values on a 2-D plot of bl vs. au, S2 values on a 2-D plot

of bl vs. a21 and covp values on bath the (aIl, bl) and (a21, bl ) planes.

From Figure 5.1, which is the contour plot of SIon the (au, bd plane, we can see

that as SI ranges from 0.4 ta 0.6 (its 95% prior probability interval), au ranges

approximately from -0.270369 to 0.270369. The standard deviation of au was taken

ta be a quarter of this range namely sd(au) = O.270369-~-O.270369) = 0.1351845. The

range of bl is less obvious, since the same value of bl could correspond to the entire

range of values of S1. Therefore we set the standard deviation ta a relatively large
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Figure 5.1: Contour plot of Si on the (au, bd plane.•
·1.0 ·0.5 0.0

a11

0.5 1.0

•

value. We can deduce from this that the value of SI is mainly determined by au,

while the value of b1 has a greater bearing on the value of the covariance between the

tests. Intuitively, this could have been expected since the covariance enters into the

model via the 'intensity' ik, which is multiplied by b1•

The standard deviations of the remaining parameters were deduced similarly. The

values of the means and standard deviations of the prior distributions of the (aid, bjd)

parameter pairs are summarized in Table 5.4. In order to validate our method of prior

elicitation we generated a random sample from the prior distributions of the (ajd, bid)

pairs using the parameter values in Table 5.4 and calculated the mean sensitivities
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Mean S.O.·

au 0 0.1332

a21 1.3625 0.2135

b1 1.2731 0.5

* S.D. = Standard Deviation

Mean S.D.·

alO 2.2536 0.0801

a20 0.9221 0.2579

bo 1.4465 0.5
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Table 5.4: Prior means and standard deviations for parameters detennining sensitivity and specificity
in the random effects mode!.

and spedficitif?R. The means and 95% probability intervals of these samples were

found to he close to the corresponding values for the sensitivities and specificities

presented earlier in Table 5.3.

5.3.3 Results

A C++ program, which is listed in the Appendix, was used to implement the Gibbs

sampler for the random effects mode!. The values of posterior medians and 95%

posterior probability intervals thus obtained are listed in Table 5.5. The Gibbs sam­

pler takes about one hour ta complete 20000 iterations. It is slowed down chiefly by

the fact that there are severa! parameter values, sucb as the individual sensitivities

and specificities of each subject and their intensities, that need to be calculated and

stored. The results that would have been obtained had we ignored the conditional

dependence and used the Bayes conditional independence model are presented in Ta­

ble 5.6. Figure 5.2 is a plot of the prior distribution of the prevalence overlaid by the

posterior distributions obtained when the conditional dependence is taken into ac­

count and when it is ignored. Figure 5.3 is a similar plot for the sensitivity of Test 2.

Once again we see that the prevalence has been underestimated when the conditional

dependence is ignored, whereas the sensitivity of Test 2 is overestimated. The same

is true for the remaining sensitivities and specificities. A representative sample of

the posterior medians and 95% posterior probability intervals of the intensity for 16
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Variable Median 95% PI

1T 0.7405 0.5872 - 0.9107

an 0.0032 -0.7002 - 0.7116

a21 1.4411 0.9152 - 2.0906

bl 1.4826 0.4386 .. 2.3731

alO 2.1914 1.5050 - 2.8794

a20 0.9016 0.0139 - 1.7298

bo 1.4543 0.1488 - 2.2381

SI 0.5006 0.3330 - 0.6711

Cl 0.9243 0.7971 - 0.9910

pvpl 0.9530 0.8329 - 0.9964

pvnl 0.3888 0.1524 - 0.6051

S! 0.7873 0.6771 - 0.9318

C! 0.7203 0.5079 - 0.8968

pvp2 0.8929 0.7811 - 0.9780

pvn2 0.5348 0.1817 - 0.8709
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Table 5.5: Posterior medians and 95% posterior probability intervals oC the prevalence and test
parameters obtained using the random eftècts model.
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Variable Median 95% PI

1r 0.6113 0.5037 - 0.7159

SI 0.5778 0.4960 - 0.6612

CI 0.8723 0.8710 - 0.9597

pupl 0.9130 0.8173 - 0.9438

punI 0.6686 0.5857 - 0.7478

Sa 0.8962 0.8262 - 0.9472

Ca 0.7300 0.6319 - 0.8206

pvp2 0.7979 0.6967 - 0.8767

pun2 0.8570 0.7452 - 0.9282
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Table 5.6: Posterior medians and 95% posterior probability intervals of the prevalence and test
parameters obtained using the conditional independence model.

subjects falling into each of the four classifications is presented in Table 5.7. We can

see a clear distinction in the distribution of the intensity across the four cells with the

subjects falling in the (Tl = 1, T2 = 1) having the highest intensity and those falling

in the (Tl =0, T2 =0) having the lowest intensity.

The overlaid trace plots of the posterior distribution of the prevalence obtained

from 5 different runs of the Gibbs sampler starting from overdispersed initial values

are presented in Figure 5.4. We present ooly the first 500 observations for the sake

of clarity. Clearly ail sequences reach convergence fairly quiekly. This is confirmed

by Gelman and Rubin's statistic for all the parameters which is displayed in Table

5.9. The high value ofRaftery and Lewis' Nmin diagnostic, in Table 5.8, indicates the

presence of autocorrelation between successive observations. This is to be expected

since our parameters are intimately related. For example, decreasing the sensitivity

of a test will result in an increase in the prevalence, sinee it is presumed that there

are more false negative subjects and so on.
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Cross ~Iedian 95% PI

classification

Tl = 1, T2 = 1 0.6004 -1.6256 - 2.2733

0.6127 -1.4234 - 2.0749

0.5868 -1.221 - 2.2423

0.5582 -1.4935 - 2.2745

Tl = 1, T2 = 0 -0.3990 -1.8241 - 0.7308

-0.4630 -1.7565 - 0.8066

-0.4109 -1.7688 - 0.7321

-0.4481 -1.6904 - 0.6503

Tl = 0, T2 = 1 -0.3265 -1.5983 - 0.9799

-0.3350 -1.6545 - 0.9131

-0.3792 -1.6687 - 0.9445

-0.3340 -1.66057 - 0.8924

Tl =0,T2 =0 -0.4424 -2.225 - 1.8914

-0.5232 -2.2791 - 1.7015

-0.2846 -2.2674 - 1.8679

-0.4189 -2.2854 - 1.7990
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Table 5.7: Posterior medians and 95% posterior probability intervals of the marginal posterior
distributions of a sample of the ilr values.
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Figure 5.2: Prior distribution of 'Ir overlaid by posterior distributions obtained using the random
effects and conditional independence models.•
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5.4 Summary

In this chapter we have presented a Bayesian method to model the conditional depen­

dence between tests by allowing for individual variability in test performance. This

method accounts Cor the simultaneous dependence between three or more tests. The

main advantage of the Bayesian approach is that it provides a solution even in the

situation when we have non-identifiable parameters due to there being less than 4 or

5 tests. While no closed-Corm solution exists, this method cao be implemented using

a Gibbs sampiero With 4 or more tests, the Bayesian approach cao still he useCul

if there is good prior information on one or more of the parameters which will lead

•
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to narrowed posterior distributions. A minor drawback of this method is that it is

computationallyexpensive, since the Gibbs sampler takes almost 10 times as much

time to complete a given number of iterations compared to the fixed effects mode!.

In the next chapter we compare the performance of both the fixed and random

effects models in adjusting for the conditional dependence between two tests using a

'real-liCe' problem.
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1terations used for diagnostic = 2500:4999

Thinning interval = 1

Sample size per chain = 4999

Variable Point est. of R 97.5% quantile

'li 1.01 1.02

au 1.00 1.01

a21 1.01 1.02

bl 1.01 1.02

alO 1.00 1.02

a20 1.00 1.03

bo 1.01 1.03

SI 1.01 1.02

Cl 1.00 1.00

PV+ 1.01 1.02

PV- 1.01 1.02

S2 1.00 1.00

C2 1.00 1.00

PV+ 1.01 1.03

PV- 1.00 1.00

Table 5.8: Gelman and Rubin 50% and 97.5% shrink factors .
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Iterations used = 1:1999

Thinning interval = 1

Sample size per chain = 1999

Quantile = 0.025

Accuracy = +/- 0.01

Probability = 0.95

Variable Thin Burn-in Total Lower bound Dependencp. factor

(k) (M) (N) (Nmin) (1)

1r 1 .. 1959 937 2.091

au 1 2 930 937 0.993

a21 1 5 1322 937 1.41

b1 1 34 9251 937 9.87

al0 1 4 1216 937 1.3

a20 1 8 2185 937 2.33

bo 1 8 2222 937 2.37

SI 1 3 1011 937 1.08

Cl 1 8 2053 937 2.19

pvp1 1 10 2497 937 2.66

pvn1 1 7 1959 937 6.18

52 1 8 2053 937 2.19

C2 1 7 2078 937 2.22

pvp2 2 14 4394 937 4.69

pvn2 2 22 5356 937 5.72

Table 5.9: Raftery and Lewis convergence diagnostic.
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THE STRONGYLOIDES INFECTION PROBLEM REVISITED

In this chapter we apply the methods developed in Chapters 4 and 5 to the Strongy­

loides infection problem which was introduced in Section 3.2.3. This data set was

obtained as part of a study conducted among a group of Cambodian refugees in

~Iontréal, Canada. The purpose of this chapter is to illustrate the practical aspects

of using the methods described earlier, to account for the conditional dependence

between two imperfect tests.

The cross-classification of the results from the staol examination and the serology

test are repeated in Table 6.1 for convenience.

Stool Examination

+ - Total

Serology + 38 87 125

Test - 2 35 37

Total 40 122 162

Table 6.1: Results of tests for Strongyloides infection among a group of Cambodian refugees.

117
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Parameter 95% PI

Staol Sensitivity 0.05-0.45

Examinatian Specificity 0.90-1.00

Seralogy Sensitivity 0.65-0.95

Test Specificity 0.35-1.00

118
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Table 6.2: 95% Prior probability intervals for sensitivity and specificity of the stool examination and
the seraiogy test.

6.1 Elicitation of the prior distributions

Bath the stool examination and serology test are commonly used diagnostic tools

in infectious disease practice. Since a positive result on the stoal examination re­

quires that the parasite actually be detected in the stool specimen, this test tends

to underestimate the population prevalence. The serology test, on the other hand,

is expected ta overestimate the prevalence due to cross-reactivity or persistence of

reactivity following the parasite cure. The lack of gold standard tests for most par­

asitic infections, however, means that the parameters for these tests are not known

with a high accuracy. In consultation with the faculty from the McGill Centre for

Tropical Disease, Joseph et al., 1995, determined equal tailed 95% prior probability

intervals for the sensitivities and specificities of the two tests as presented in Table

6.2. These were determined from information documented in previous studies and

clinical opinion (Garn et aL, 1987, Genta, 1988, Nutman et al., 1987, Genta, 1989,

Caroll et aL, 1981, Bailey, 1989, Pelletier et al., 1988, Douce et aL, 1987).

Since very little was known a priori about the prevalence of Strongyloides infection

in a Carnbodian population, a diffuse or non-informative prior was used over this

parameter.

For this example, we retain the prior distributions used by Joseph et aL, 1995,
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Parameter a {3 Mean· S.D.··

Stool Sensitivity 4.44 13.31 0.25 0.10

Examination Specificity 71.25 3.75 0.95 0.025

Serology Sensitivity 21.96 5.49 0.80 0.075

Test Specificity 4.1 1.76 0.70 0.1625
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* 1\ '1 - Q ** S 0 -. 1 . 04
lV ean - 0+13' • '-y (0+13)2(0+13+1)

Table 6.3: Prior distribution parameters for sensitivities and specificities in the fixed effects mode!.

and explain in the following two sections how the corresponding prior distribution

parameters are elicited for the fixed and the random effects models. In doing sa, it

is important to note that the parameters for the sensitivity and specificity given in

Table 6.2 represent marginal prior information, as the tests are DOW correlated. In

addition, the random effects model allows for subject-to-subject variations in the test

properties, depending on the 'intensity'. In this case, the values given in Table 6.2

represent marginal prior information for the Mean over all subjects in the popula­

tion. Subject-specific sensitivities and specificities vary about this mean, as discussed

below.

Elicitation of prior distribution parameters for the fixed effects model

The parameters for the Beta(a, {3) prior distributions of the sensitivities and speci­

ficities were determined by solving the two equations wbich match the center of the

parameter range to its mean, ~, and a quarter of the 95% prior probability interval

to its standard deviation, J(Q+I3)2(:+13+1)' These two equations determine a and /3
uniquely. The (0:, /3) values for the prior distributions of the sensitivities and speci­

ficities are presented in Table 6.3. Since the prior distribution for the prevalence is

diffuse the corresponding Beta distribution parameters are (0:11' = 1, f31f = 1).
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As discussed in Chapter 3, in order to obtain a meaningful solution for a non­

identifiable problem, we need to have informative prior distributions on at least as

many parameters as would need ta be constrained in a frequentist approach. For the

fixed effects model this means we must have informative distributions on at least

(2 x 2 + 2 x 2C2 + 1) - (22
- 1) =4 parameters.

In this particular example, we were able to determine informative prior distributions

for the sensitivities and specificities. Since we did Dot have exact information about

the covariance between tests, it was decided to use. diffuse generalized beta prior

distributions over the two covariance parameters, i.e. prior distributions which assign

equal weight to a1l values in the admissible range of the two covariances as follows:

covp "J GenBeta(l,I), 0 ~ covp ~ min(51 , 52) - SlS!~

and, covn "J GenBeta(l, 1), 0 ~ covn ~ min(C1 , C!) - CIC!.

A Generalized Beta distribution is simply a standard Beta distribution as discussed

in Chapter 4, which has been stretched or compressed and then translated to accom­

modate a wider or a narrower range than (0,1).

Elicitation ofprior distribution parameters for the random effects model

In the case of the random effects model, we can use the bisection algorithm described

in Section 5.3.2 to obtain the mean values of the prior distribution parameters for

the sensitivities and specificities. We denote the Stool Examination as Test 1 and

the Serology Test as Test 2. Unlike for the fixed effects model, the values for the

covariances among the diseased and non-diseased subjects must be specified in arder

ta uniquely determine the (aJD, bD), J = 1,2, D = 0,1 parameter pairs. The mean

sensitivities and specificities were taken ta be equai ta the middle value of their ranges

in the Table 6.2. Using the expression derived in equation (4.8), and the mean values
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of the sensitivities, we can estimate the range of values in which the mean covariance

among the diseased subjects lies as

o~ covp ~ min(51 , 52) - S1S2

= mir~(0.25, 0.8) - (0.25)(0.8) = 0.05. (6.1)

•

For purposes of estimating the prior densities of aIl, a21 and bl , we arbitrarily fixed

covp = 0.025 since this value lies in the middle of the range in equation (6.1). We

discuss later that this choice has little effect on the final prior parameter values. The

mean values of the sensitivities from Table 6.2 together with this value of covp were

used ta solve for the mean values of (au, a2b bd as follows

i: 4>(all + b,ik) 4>(aBJ + bJ ik)d4>(ik) - (0.25)(0.8) =0.025. (6.2)

The possible range of values for the mean covariance among the non-diseased subjects,

covn, was determined using the equation (4.7) and the two mean specificities such

that

= min(0.95, 0.70) - (0.95)(0.70) = 0.035. (6.3)

•

Once again we arbitrarily set covn = 0.0175 which is the mid-point of the range in

equation (6.3). The mean values of the specificities in Table 6.2 together with this

value of cO'vn were used to solve the equations involving (alO' a20, bol as follows:
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It must be stressed that the values we have selected for the covariance parameters are

by no means unique. In the absence of any information about the covariance between

the tests, it seems sensible to use the mid-point of the range as the prior mean, so

that the prior distribution can easily cover the feasible range. Another approach may

be ta first run the fixed effects model and then use the mean values of the posterior

distributions for the covariance parameters obtained there.

The solution to the equations in (6.2) is (au = -0.856, a21 = 1.068, bl = 0.782).

Ta determine the approximate prior standard deviations for au, a21 and bl we used

contour plots of S1 on the (au, bd plane and 82 on the (a2b bd plane as illustrated

in Figures 6.1 and 6.2, respectively. From Figure 6.1, we cao see that as 81 ranges

from 0.05 ta 0.45 (its 95% prior probability interval), au ranges approximately from

-2.08 to 0.16. The standard deviation of au was taken to be a quarter of this range

namely sd(all) = 0.16-(4-
2

.
08

) =0.56. The range of bl is less obvious, since the same

value of bl could correspond ta the entire range of values of St. We can deduce from

this that the value of SI is mainly determined by au, while the value of bl has a

greater bearing on the value of the covariance between the tests.

Keeping in mind that we have no prior information on covp, and that its 'mean'

value was arbitrarily selected, it was thought prudent to use a wide prior distribution

for bl , 'ie one with a high standard deviation. Such a prior distribution would assign

similar probabilities to a sufficiently large range of values of bl corresponding to a wide

range of values of the covariance. Similar ta our comment in our discussion of the

prior distributions for the fixed effects model, we should be able ta attain reasonable

results here, since we have fairly strong priors on the four ajti, j = 1,2, d = 0,1

parameters. Of course, if in other applications there is better information on bl , this

will further sharpen the posterior inferences.
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The range of values of the a21 cao similarly be deduced from Figure 6.2 to he 0.48

to 1.68. Once again we notice that the value of 52 is mainly determined by a21 and

not b1. The standard deviations for (alO' a20, bo) were determined in a similar fashion.

The values of the means and standard deviations of the prior distributions of

the (ajd, bjd ) parameter pairs are summarized in Table 6.4. In order ta validate our

method of prior elicitation we generated a random sample of 1000 observations from

the prior distributions of the (ajd, bjd ) pairs using the parameter values in Table

6.4 and calculated the mean sensitivities and specificities. The medians and 95%

probability intervals of these samples, which are presented in Table 6.5, were found
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Figure 6.2: Contour plot of 52 on the (au, bl) plane.•
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to be very close to the desired values in Table 6.2. Therefore, we conclude that our

somewhat ad hoc method of determining the prior parameters for this problem has

worked weil.

6.2 Results

The results obtained by Joseph et al., 1995, when applying the Bayesian conditional

independence model ta the Strongyloides infection problem are repeated Table 6.6

to facilitate comparison with the results obtained from the fixed and randam effects

models.
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Mean 5.0.-

au -0.856 0.562

a21 1.069 0.302

bl 0.782 1.000

* S.D. = Standard Deviation

Mean 5.0.-

alO 3.108 0.427

a20 0.983 0.693

bo 1.584 1.000

•

•

Table 6.4: Prior mean and standard deviation for parameters determining sensitivity and specificity
in the random effects model.

Parameter Median 95% PI

Staal Sensitivity 0.252 0.046-0.493

Examination 5pecificity 0.947 0.802-0.995

Seralogy Sensitivity 0.766 0.602-0.920

Test Specificity 0.684 0.417-0.974

Table 6.5: Prior medians and 95% prior probability intervals for seositivity and specificity of the
stool examination and the serology test calculated using estimated (ajlll bel) parameters.
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Median 95% PI

Prevalence 0.76 0.52-0.91

Stool Sensitivity 0.31 0.22-0.44

Examination Specificity 0.96 0.91-0.99

PV+ 0.98 0.88-1.00

PV- 0.30 0.11-0.63

Serology Sensitivity 0.89 0.80-0.95

Test Specificity 0.67 0.36-0.95

PV+ 0.90 0.62-1.00

Pv- 0.70 0.28-0.92
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Table 6.6: Posterior medians and 95% posterior probability ÎntervcÙs of the prevalence and test
parameters obtained using the conditional independence mode!.

Results (rom the fixed eiIects model

Using the prior distributions determined in the previous section, we implemented the

Gibbs sampler for the Bayesian fixed effects model described in Section 4.2.3. The

posterior medians and 95% posterior probability intervals for the prevalence and test

parameters thus obtained are presented in Table 6.7. As was noticed in the example

using simulated data in Chapter 4, the median prevalence obtained using the fixed

effects model is greater than that obtained using the conditional independence model.

The 95% posterior probability interval, however, is not very different and does not

give any clear indication of a shift in the value of the prevalence due to accounting

for the dependence between tests.

To determine the degree to which the two posterior densities difrer, we calculated

the probability P(1TBCf < '1rPE) where Bel refers to the Bayesian Conditional In­

dependenee model, and FE refers to the Fixed Efeets model. This was done by

sampling with replacement 10,000 pairs of values, one from each of the two posterior
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Variable Median 95% PI

1r 0.8549 0.5461 - 0.9903

covp 0.0276 0.0063 - 0.0531

covn 0.01878 0.0026 - 0.0575

Stool Sensitivity 0.2749 0.1993 - 0.3914

Examination Specificity 0.9353 0.8640 - 0.9785

PV+ 0.9824 0.8189 - 0.9979

PV- 0.1801 0.0123 - 0.5460

Serology Sensitivity 0.8305 0.7391 - 0.9247

Test Specificity 0.6776 0.3013 - 0.9369

PV+ 0.9479 0.6243 - 0.9979

PV- 0.4073 0.0302 - 0.7857
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Table 6.7: Posterior medians and 95% posterior probability intervals of the marginal posterior
distributions of the prevalence and test parameters obtained using the fixed effects mode!.
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distributions of 1r, and then calculating the proportion of times 1rsc/ was less than

1rFE' It was estimated that P(1rBC/ < 1rFE )=0.715, indicating that the prevalence

was more likely to he greater when the conditional dependence between the tests was

taken into account than when it was ignored. If the two distributions were identical,

we would have P(1rBcr < 1l'FE)=O.5, while if the distributions were non-overlapping

we would have P(1rscr < 1l'FE)=O or 1, indicating certainty of a difference. Our result

is intermediate ta these extremes. The shift in the prevalence when accounting for

conditional dependence is clearly seen in Figure 6.3, which is a plot of the posterior

densities obtained from the three different methods.
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Figure 6.3: Posterior distributions of the prevalence obtained using the three mode!s.
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The posterior medians of the sensitivities and specificities are lower than those

obtained using the conditional independence model. The 95% posterior prabability

intervals of these parameters are, however, wider due to the addition of the covari­

ance parameters, and due to the non-informative prior distributions over them. Our

overall conclusion, then, is that if we take inta account the possibility of correlation,

this may have a substantive effect on the posterior estimates of the prevalence and

test properties. Unless something is known a priori about the degree of correlation,

however, we also add 'noise' to the modeling process, especia11y in the non-identifiable

case of two tests.

The diagnostic parameters obtained from the methods due to Gelman and Rubin,

1992, and Raftery and Lewis, 1992 are presented at the end of the chapter in Tables

6.12 and 6.13, respectively. The value of the Rstatistic remained close to 1 for a11

parameters when comparing five different runs with over-dispersed starting points,

indicating that the Gibbs sampler had likely converged. The same inference can be

drawn from the low value of the bum-in iterations suggested by the method of Raftery

and Lewis. However, the high value of the dependency factor, l, is indicative of high­

autocorrelation between successive values sampled. Therefore, we ran a large number

of iterations (20,000), in order to obtain accurate inferences from the Gibbs sampler.

Since the run-time was ooly about 2 minutes, it was not thought necessary to seek a

reparameterization or other method ta reduce the autocorrelations.

Results from the random effects model

The posterior medians and 95% posterior probability intervals obtained using the

random effects model are presented in Table 6.8. The median prevaJence is greater

than that obtained with the conditional independence model, though Dot as great

as that obtained with the fixed effects mode!. However, the 95% posterior probabil­

ity interval is similar to that obtained with the other two models. We found that
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Variable Median 95% PI

tr 0.8215 0.5276 - 0.9869

au 3.0407 1.9849 - 4.1331

a21 0.2658 -1.0566 - 2.1746

bl 0.9530 -0.2378 - 2.9828

alO -0.8456 -2.1389 - 0.4655

a20 1.3896 0.8457 - 2.0987

bo 1.3018 0.5660 - 2.2795

Stool Sensitivity 0.2761 0.0761 - 0.6132

Examination Specificity 0.9810 0.8148 - 0.9997

PV+ 0.9886 0.8405 - 0.9998

PV- 0.2367 0.0172 - 0.5935

Serology Sensitivity 0.8038 0.6632 - 0.9203

Test Specificity 0.6622 0.1830 - 0.9230

PV+ 0.9093 0.5194 - 0.9972

PV- 0.3553 0.0340 - 0.7466

Table 6.8: Posterior medians and 95% posterior probability intervals of the prevalence and test
parameters obtained using the random effects model.

P(trBCf < trRE) = 0.634, wbere RE denotes the Random Effects modeL This indi­

cates that the prevalence estimate obtained using the random effects model is greater

than that obtained using the conditional independence model, in the sense that the

posterior density is somewhat shifted to the right, as seen in Figure 6.3.

The median sensitivities were somewhat lower than those obtained using the con­

ditional independence model, while the median specificities remained about the same.

Their 95% posterior probability intervals are even wider than those obtained with the

fixed effects mode!. This is due to the additional uncertainty added on by the latent
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'intensity' variable.

The values of the Gelman and Rubin, and Raftery and Lewis diagnostic statistics

revealed that while the Gibbs' sampler converges fairly quickly, there was again a

high degree of autocorrelation between successive observations. These results are

presented in Tables 6.14 and 6.15 at the end of the chapter.

Results using priors with smaller variance

A plausible reason why we do not see a more substantial change from the results

obtained with the conditional independence model is because of the lack of strong

prior information on the covariance parameters. In fact, the prior distributions for

the sensitivities and specificities are also very wide, which further compounds the

problem. In order to demonstrate that adjusting for the dependence between tests,

when it exists, could create an important difference in the results, we reduced the

variability in the parameters by halving the standard deviations of the informative

prior distributions. The results for the conditional independence model, the fixed

effects model and the random effects models are presented in Tables 6.9, 6.10 and

6.11, respectively.

We see that the median prevalence obtained from the fixed and random effects

models is greater than that obtained when assuming conditional independence. The

95% probability intervals are now tighter making it possible ta distinguish the two

situations when the conditional dependence is takeo iota account and when it is

ignored. This result is illustrated in Figure 6.4.
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Median 95% PI

Prevalence 0.8294 0.6636-0.9646

Stool Sensitivity 0.2858 0.2120-0.3769

Examination Specificity 0.9529 0.9255-0.9727

PV+ 0.7368 0.6112-0.8406

PV- 0.7428 0.6763-0.8103

Serology Sensitivity 0.8352 0.7698-0.8889

Test Specificity 0.6938 0.5162-0.8399

PV+ 0.9232 0.8321-0.9676

PV- 0.4974 0.2928-0.6678
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Table 6.9: Posterior medians and 95% posterior probability intervals of the prevalence and test
parameters obtained using the using the conditional independence model when prior distributions
have a reduced variance.

6.3 A brief note on model selection

Given that we have described three competing models, each of which provide some­

what different inferences, it is natural to ask which model is best supported by the

data. If necessary, this cao be accomplished using Bayes Factors (Kass and Raftery,

1995). Given data D and two models, say Ml and k/2 , the Bayes Factor of Model 2

compared ta Model 1 is defined as

(6.4)

•

The Bayes Factor, therefore, provides the ratio of the probability of observing the

data under Model 2 compared to the probability of obtaining the data under Madel

1. Intuitively, if the data are more likely under Madel 2, then B21 > 1, and M2 is

preferred. If 8 21 < 1 then kIl is preferred, and if B21 = 1 then the data do Dot
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Variable Median 95% PI

1l' 0.8974 0.7211 - 0.9929

covp 0.0331 0.0081 - 0.0578

covn 0.0187 0.0009 - 0.0579

Staol Sensitivity 0.2690 0.1948 - 0.3547

Examination Specificity 0.9433 0.8884 - 0.9680

PV+ 0.9767 0.9130 - 0.9984

PV- 0.1280 0.0089 - 0.3457

Serology Sensitivity 0.8089 0.7431 - 0.8701

Test Specificity 0.6966 0.5137 - 0.8437

PV+ 0.9614 0.8393 - 0.9975

PV- 0.2943 0.0221 - 0.6184
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Table 6.10: Posterior medians and 95% posterior probability intervals of the prevalence and test
parameters obtained using the fixed efFects model when prior distributions have a reduced variance.
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Variable Median 95% PI

1r 0.9029 0.7427 - 0.9916

au 3.087 2.3549 - 3.8333

a21 0.8814 -0.1262 - 1.9143

bl 1.5218 0.5917 - 2.5301

alO -0.8432 -1.7827 - 0.0682

a20 1.2448 0.8609 - 1.6952

bo 0.9781 0.4748 - 1.5239

Stool Sensitivity 0.2772 0.0928 - 0.5212

Examination Specificity 0.9546 0.8490 - 0.9972

PV+ 0.9850 0.8813 - 0.9995

PV- 0.1241 0.0111 - 0.3296

Serology Sensitivity 0.8102 0.7291 - 0.8982

Test Specificity 0.6832 0.4729 - 0.8824

PV+ 0.9632 0.8564 - 0.9974

PV- 0.2749 0.0204 - 0.6544

Table 6.11: Posterior medians and 95% probability intervals of the prevalence and test parameters
obtained using the random effects model when prior distributions have a reduced variance.

distinguish between these models.

In order the calculate Bayes Factors, one needs to calculate terms of the form

p(DIk'I). In general, suppose that the model NI contains the vector of unknown

parameters 9. We can write

p(DIM) = f p(DI8, M)p(8IM)d8. (6.5)

•

In other words, p(DIM) can usually he expressed as the integral of the product
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Figure 6.4: Posterior distributions of the prevalence obtained using the three models when prior
distributions have a reduced variance.
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of the prior distribution of 8 times the likelihood function of the data given 8, with

respect to (J.

In our problem, however, equation (6.5) appears intractable even for the simplest

case of the conditional independence model, so that we cannot directly apply equa­

tian (6.4) to calculate the desired Bayes Factors. Severa! authors (for example, see

Chib, 1995) have discussed approximating Bayes Factors from the output of a Gibbs

sampler. The idea is as follows:

For any given model, from Bayes Theorem, we can write:

•
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• p(6ID) = P(~~~(8) , (6.6)

where -m(D) = Jp(DI8)p(8)dfJ is the marginal distribution of the data D. Rearranging

terms, we can write (6.6) as

(D) = p(DI8)p(fJ)
m p(8ID) . (6.7)

•

•

Since (6.7) must hold for aIl fJ, this equation shows that one can estimate m(D)

provided that each of p(DI8), p(8), and p(81D) can be estimated for at least one value

of 8. OCten a good choice is the posterior mean of 8, since it is usually a point of high

density which induces stability into the estimator, and since it is easily estimated

from the Gibbs sampler output.

While this is sufficient for many problems, a further complication that applies to

the models discussed in this thesis is that while the likelihood and prior densities are

'fully available' in the sense that the normalizing constants are known, this is not the

case for the posterior density. Chib, 1995 discusses how to estimate the normaliz­

ing constant in such situations by using a 'Rao-Blackwell' (see Gelfand and Smith,

1990) mixture estimate of the posterior density. Here one takes the full conditional

distribution from which each unknown parameter was sampled during the running

of the Gibbs sampler, and takes an average of the result over all iterations. This

additional step would allow m(D) to he calculated for the conditional independence

model, where all full conditional distributions are fully specified, including normal­

izing constants. However, both models developed in this thesis for correlated had

full conditional distributions with unknown nomlalizing constants, wherein the SIR

algorithm was employed, sa that the methods of Chib, 1995 could not he employed

here.

Other methods have appeared for calculating Bayes Factors from the output of a

Gibbs sampiero For example, Carlin and PoIson, 1991 suggested running ail competing
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models simultaneously, and adding a parameter as a model indieator. This method,

however, requires a earefully seleeted tuning parameter which essentially balances the

probabilities that each model is selected for the next iteration, so that proper mixing

of the Gibbs sampler occurs. Newton and Raftery, 1994 showed that the marginal

density could be estimated by a harmonie mean involving only the likelihood function

gjven the Gibbs sampler output, but this estimate has been criticized as being unstable

and therefore unreliable as input into a Bayes Factor equation.

Given the above considerations, we decided that it was not worthwhile here to

compare models via Bayes Factors, as the posterior inferences were not sufficiently

dissiInilar ta warrant the considerable effort required, and since the only applicable

method is known to he unreliable. Further research is clearly required in this area.

6.4 Summary

In this chapter we have seen that adjusting for the conditional dependence between di­

agnostic tests can result in substantial changes ta the posterior densities of the preva­

lence and test parameters. However, the magnitudes of these changes are dependent

on informative content of the prior distributions used, and on the data themselves,

particularly sinee we have ooly two tests.
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Iterations used for diagnostic = 2500:4999

Thinning interval = 1

Sample size per chain = 4999

Variable Point est. of il 97.5% quantile

1(' 1.01 1.02

covp 1.00 1.00

covn 1.00 1.00

Stool Sensitivity 1.01 1.02

Examination Specificity 1.00 1.00

PV+ 1.01 1.02

Pv- 1.01 1.02

Serology Sensitivity 1.00 1.00

Test Specificity 1.00 1.00

PV+ 1.01 1.03

PV- 1.00 1.00

Table 6.12: Gelman and Rubin 50% and 97.5% shrink factors for the fixed effects mode!.
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Iterations used = 1:4999

Thinning interval = 1

Sample size per chain = 4999

Quantile = 0.025

Accuracy = + / - 0.005

Probability = 0.95

Variable Thin Burn-in Total Lower bound Dependence factor

(k) (M) (N) (Nmin) (1)

1r 2 32 33192 3746 8.86

covp 1 3 4448 3746 1.19

covn 1 4 4636 3746 1.24

Staal Sensitivity 2 10 10670 3746 2.85

Examinatian Specificity 1 4 5165 3746 1.38

PV+ 2 20 21728 3746 5.8

Pv- 2 16 17508 3746 4.67

Seralagy Sensitivity 1 5 6020 3746 1.61

Test Specificity 2 10 10670 3746 2.85

PV+ 1 26 26888 3746 7.18

PV- 1 12 12871 3746 3.44

Table 6.13: Rartery and Lewis convergence diagnostic for the fixed effects mode!.
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Iterations used for diagnostic = 2500:4999

Thinning interval = 1

Sample size per chain = 4999

Variable Point est. of R 97.5% quantile

1r 1.01 1.02

au 1.00 1.01

a21 1.01 1.02

b1 1.01 1.02

alO 1.00 1.02

a20 1.00 1.03

bo 1.01 1.03

Stoal Sensitivity 1.01 1.02

Examination Specificity 1.00 1.00

PV+ 1.01 1.02

PV- 1.01 1.02

Serology Sensitivity 1.00 1.00

Test Specificity 1.00 1.00

PV+ 1.01 1.03

PV- 1.00 1.00
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Table 6.14: Gelman and Rubin 50% and 97.5% shrink factors for the random effects model.
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Iterations used = 1:4999

Thinning interval = 1

Sample size per chain = 4999

Quantile = 0.025

Accuracy = +/- 0.005

Prabability = 0.95

Variable Thin Burn-in Total Lower bound Dependence factor

(k) (M) (N) (Nmin) (1)

1r 2 32 33192 3746 8.86

au 1 2 3803 3746 1.02

a21 1 6 6683 3746 1.77

b1 1 10 10383 3746 2.77

alO 1 4 5165 3746 1.38

a20 2 8 9730 3746 2.6

bo 1 7 5165 3746 1.38

Staal Sensitivity 2 10 10670 3746 2.85

Examination Specificity 1 4 5165 3746 1.38

PV+ 2 20 21728 3746 5.8

PV- 2 16 17508 3746 4.67

Serology Sensitivity 1 5 6020 3746 1.61

Test Specificity 2 10 10670 3746 2.85

PV+ 1 26 26888 3746 7.18

Pv- 1 12 12871 3746 3.44

Table 6.15: Raftery and Lewis convergence diagnostic for the random effects model.
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DISCUSSION

Development of methods for the analysis of results from diagnostic tests is a very

active area of biostatistical research. This is not surprising given the bearing the

inferences drawn from these methods have on medical decision making. Accurate

estimates of the prevalence and test parameters help ta improve the organization of

health care at bath clinical and public health levels.

In this thesis we have addressed the issue of statistical analysis when tests are con­

ditionally dependent. Although there is an enormous literature on statistical methods

for diagnostic test data, there are no frequentist solutions that directly address the

problem of estimating parameters in the presence of three or less correlated tests. To

our knowledge there is also no literature discussing a Bayesian solution to this proh­

lem, even for identifiable cases. This thesis has addressed this gap in the literature.

The problem with less than 3 tests is non-identifiable since in the absence of a gold

standard test we need at least 4 tests to obtain a direct solution using a frequentist

approach. Due to time and cost constraints, for example, there are often occasions

when we have ta make do with the results from less than four tests, and hence there

is a need for metbods which provide the best possible estimates of the parameters

of interest in sucb situations. Even though the successful application of the methods

presented here depend to a very large extent on the prior distributions, this solution is

preferable to no solution at a11, especially given the frequency with which the problem

occurs.

142
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We have demonstrated how a Bayesian approach can he used when we have a

non-identifiable problem, since it can provide simultaneous estimates of aIl important

paralneters without having ta impose unrealistic constraints on the unknown param­

eters. The Bayesian approach also allows us to utilize valuable prior information to

draw inferences from the data at band. To carry out the Bayesian analyses, we have

used computational methods such as the Gibbs sampler and the Sampling-Importance

Resampling (SIR) algorithms.

"Ve have discussed two methods for evaluating the possible effects that correlation

between tests may have on their results. The first method postulates that the condi­

tionai dependence between two tests has a fixed effect on their joint probability. This

can be modeled by way of the covariance between the tests among the diseased and

non-diseased populations. In Chapter 4 we showed that the two covariance parame­

ters can be expressed in terms of the sensitivities and specificities, thus making this

model easy to interpret. In a simulated example we found that this method gives

more accurate estimates of the posterior prevalence and test parameters, than would

be obtained by assuming conditional independence between the tests.

Tbe second method we propose allows for variation in the performance of individual

subjects on each diagnostic test. This variation is incorporated by way of a latent

'intensity' variable which is independent of the disease status and could be taken

ta mean 'severity of disease' or 'ease of detection'. The 'intensity' which follows a

N(O, 1) distribution is modeled as a random effect which induces correlation between

the tests. The results of applying this model ta a simulated data set showed that

it also provided more accurate estimates of the prevalence and test parameters than

when ignoring the dependence between tests.

In Chapter 6, we applied bath methods ta the Strongyloides infection data set

used earlier in the paper by Joseph et al., 1995. Here we round that in the absence of

strong prior distributions, the improvement in the results obtained by adjusting for
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conditional dependence, though evident, is not substantial. Unless good information

is available about the degree of correlation between tests or about the test properties

themselves, there will always be sorne uncertainty about whether correlation exists,

and about how important it is to correct for possible correlations. This problem is

especially acute when there is no gold standard, and when the number of available

tests is less than 4, which is usually the case. When results from more than 4 test~ are

available, one may apply the recently developed method of Qu et al., 1996. Even then

the Bayesian methods presented here may be useful in allowing for more accurate

estimation via prior information. Nevcrtheless, when there are less than 4 tests,

checking for the effect of correlation is important.

Although in aIl the examples we have used there was no information about the

prevalence and therefore we used a diffuse prior distribution over this parameter, the

rnethods developed here can also be used in other situations. For example, when

evaluating the accuracy of a new test by comparing it to a gold standard test whose

properties are well known, we could use diffuse distributions over its sensitivity and

specificity. We could aIso use these methods in the situation when we have informative

prior distributions over the prevalence and sensitivities and specificities of the two

tests and we are interested to know about the covariance between the two tests

among diseased and non-diseased subjects.

While concluding this thesis we feel that the following will be important for future

research in this area:

1. The methodology developed here may be viewed as a 'mapping' from a given set

of prior distributions to the corresponding set of posterior distributions. There­

fore, the posterior density can always be interpreted as a coherent updating of

the prior distribution upon seeing the data, but any extrapolation ta the 'truth'

involves a leap of faith. Thus the accurate elicitation of prior distributions is
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very important. Though there is much literature on the general problem of

elicitation, elicitation of prior distributions for the diagnostic testing problem

remains ta be addressed. Not all tests perform uniformly well across different

populations, and this is difficult to quantify.

2. It would be of interest to compare performance of the models developed here

with other models which can be used for adjusting for the conditional depen­

dence between tests, such as a logistic regression model or the ordinal regression

madels used for the analysis of parametric ROC curves. These models bring

their own problems in non-identifiable situations. For example, in a logistic

regression the binary outcome of 'disease' or 'free of disease' is latent, 50 that

one would need a good method for eliciting prior information on the regression

parameters relating test results ta disease status.

3. In both the modeis developed here we assumed that the observed data were

collected from a random sample of the population. Another area worthy of

interest would be the extension of these models to the situation when test

results are obtained from a non-random population, such as might he observed

in a clinic-based study. In such a situation we would need to adjust for the

'work-up' bias that might occur, when the prevaience and test parameters are

estimated based only on the results of the subjects studied.

Although much rernains to be done, the work presented here shows that the diagnostic

testing problem for correlated data is manageable from a Bayesian point-of-vieweven

under non-identifiability, modulo a carefui treatment of the prior information.
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A.l The Albert and Chib method

In this section we describe one of the methods presented in the paper titled ~ Bayesian

Analysis of Binary and Polychotomaus Data' by Albert and Chib, 1993, in which the

authors propose Bayesian approaches ta modeling categorical response data using a

Gibbs sampiero

•

•

Let YI, ... , YN be N independent, observed Bernoulli variables with probability

of success Pie = P(Yk = 1), k = 1, ... , N. The probability Pic is a function of n

known covariates such that Pie = H (xf{3). The vector of covariates is denoted by

XIc = (xlel, ••• , X /en) and {3 is an n x 1 vector of unknown parameters. H is a known

cumulative distribution function. In the case when H is the normal distribution we

have the probit model, Pic = ~(xr{3). The likelihood function of the observed data is

then given by

N
L = II cf> (xI{3)1I~ (1 - 4l(xI{3))(l-tllI).

1e=1

Let 1f'({3) be the joint prior density of the parameters of interest, {3. Then the posterior

distribution of (J would he given by

7r(f3) n~l 4»(xf(3)1111 (1 - 4l(x{(3) )(1-1111)

1r(,BIY1, .•• , YN) = f1r({3) II~l 4»(xr,8)1I1I(1- <I»(xrp))(l-lIlr)d,lf (A.1)

In the particular case when 1r({J) is the normal distribution Nk(~' E), (A.1) reduces
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Since the expression in the denominator of A.2 is very difficult to solve analytically,

it is Dot straightforward to sample from this distribution. However, the structure of

the problem is simplified by introducing N iDdependent, latent variables ZJy ... , ZN,

where Z" f'ooJ N(xf/3,1). If the Z" were known this would correspond to the standard

normallinear model, for which the solution is available. However, since they are not

known, we can link the Zk ta xi{3 via the known y". Define y" such that y" = 1

if Z" > 0 and Ylc = 0 if ZIc :::; O. The Ylc then have a Bernoulli distribution with

probability ~(xr{3).

P(YIc = 1) = P(ZIc > 0),

= 1 - P(ZIc ~ 0),

= 1 _ p(ZIc - xff3 < 0 - xI13)
1 - 1 '

=1 - ~(-xI(3) = ~(xr{3)·

Treating the Zk'S as the augmented data, the posterior distribution for {3 can be ob­

tained using the Gibbs sampler. The joint posterior distribution of the unobservables

{3 and ZIc 's is gjven by

N

tr({3, ZIY) (X tr(!3) II (I(ZIc > O)l(YIc = l)+l(Z" $ O)I(YIc = O))~(Zi; xi{3, 1). (A.3)
1e=1

The function l(X E A) is the indicator function that is equal to 1 if the random

variable X is contained in set A. From (A.3) we can see that the posterior distribution

of {3 condîtional on Z is given by

N

tr(,BIZ, y) (X 1r({3) II c)(Zi; xI,8, 1).
1e=1
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When the prior distribution of /3 is Nk (/3, 'E), then the posterior distribution of /3 is

given by

The posterior distribution of Z conditional on /3 also has a simple form,

Zi ly,,B '" N(xI13, 1) truncated at the left by 0, if Yk = 1, and

Zily,13 t'V N(xf (3, 1) truncated at the right by 0, if Ylc = O. (A.5)

Using the Gibbs sampler algorithm one can altemately sample from (A.4) and (A.5)

to obtain a sample from the posterior distribution of {J. This method can be applied

to obtain a sample from the posterior distribution of the (ajd, bjcl)'s in the random

effeets model developed in Chapter 5. The fonn of their posterior distributions ean

be seen from (5.5) and (5.6) to be similar to that in (A.2). The y/c's representing the

true disease status are Bernoulli random variables and the i values are the eovariates.

Though in truth, neither of these variables is observed, at eaeh iteration of the Gibbs

sampler (described in section 5.2.3) they take on specifie values.
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B.l Programs used for the Bayesian fixed e!Iects model in
Section 4.3

B.l.1 S-Plus program used to calculate cross-classification of test re­
sults in Tables 4.5 and 4.6

s imulate<-function(x) {

•

•

# setting test parameters ta the mean value of their prior
# distributions
s1<-0.5
82<-0.8
c1<-0.9
c2<-0.7
covp<-O.046
covn<-0.023
prev<-0.73

n<-200

d<-rep(1,4)
i<-rep(1,4)

# calculating the number of subjects in each cross-classification
# when the tests are dependent
d[1]<-n*(prev*(sl*s2+covp)+(l-prev)*«l-cl)*(1-c2)+covn))
d[2] <-n*(prev*(sl*(l-s2)-covp)+(1-prev)*«1-cl)*c2-covn) )
d[3] <-n* (prev*«l-sl)*s2-covp)+(1-prev)* (cl* (1-c2)-covn) )
d[4] <-n*(prev* «1-s1)*(l-s2)+covp)+(1-prev) *(cl*c2+covn) )

# calculating the number of subjects in each cross-classification
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# when the tests are dependent
i[1]<-n*(prev*(sl*s2)+(l-prev)*«l-cl)*(1-c2»)
i[2]<-n*(prev*(sl*(1-s2»+(l-prev)*«1-cl)*c2»
i[3]<-n*(prev*«1-sl)*s2)+(l-prev)*(cl*(1-c2»)
i[4]<-n*(prev*«1-s1)*(1-s2»+(1-prev)*(cl*c2»

return(d,i)
}
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B.l.2 C++ program to implement the Gibbs sampler for the Bayesian
fixed eiIects model

For the sake of brevity only the functions related ta the Gibbs sampler are included
here and standard functions, such as those used ta sample random variables, are
omitted.

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <fstream.h>
#include <time.h>
#include "matrix.h"
#include "random.h"
#include "sir.h ll

Il global constants
int n11=68;
int nl0=10;
int n01=65;
int nOO=57;
int sum=200;

Il declaring the variables used in the program
int y1,y2,y3,y4;
double *prev, *sensl, .specl, *sens2, *spec2, p11, plO, pOl, pOO;
double .covp, *covn, .pvp1, *pvn1, .pvp2, *pvn2;
int size=5000,int i;

Il output file
ofstream fout("d:/cpp/fixed");
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Il body of main program
void main(void) {

Ilinitiating a random seed
srand( (unsigned)time( HULL ) );
long seed=rand();
long *idum=tseed;

Il declaring prior distributions
double alphaprev = 1;
double betaprev = 1;

double alphasensl = 34;
double betasensl = 34;
double alphaspecl = 90;
double betaspecl = 10;
double alphasens2 = 32;
double betasens2 = 8;
double alphaspec2 = 42;
double betaspec2 = 18;
double alphacovp = 23;
double betacovp = 477;
double alphacovn = 23;
double betacovn = 477;

Il allocating memory for pointers
prev_samp = (double *)malloc(size*sizeof(double»;
sensl = (double *)malloc(size*sizeof(double»;
sens2 = (double *)malloc(size*sizeof(double»;
specl = (double *)malloc(size*sizeof(double»;
spec2 = (double *)malloc(size*sizeof(double»;
pvpl = (double *)malloc(size*sizeof(double»;
pvnl = (double *)malloc(size*sizeof(double»;
pvp2 = (double *)malloc(size*sizeof(double»;
pvn2 = (double *)malloc(size*sizeof(double»;
covp = (double *)malloc(size*sizeof(double»;
covn = (double *)malloc(size*sizeof(double»;

Il starting values
double prev_start=runif(idum);
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double sensl_start=runif(idum);
double specl_start=runif(idum);
double sens2_start=runif(idum);
double spec2_start=runif(idum);

Il determining the lower and upper bounds for the
Il starting values of the covariance parameters

double ubp=__min(sensl_start.sens2_start)
-sens1_start*sens2_start;
double Ibp=O;
double ubn=__min(spec1_start.spec2_start)
-specl_start*spec2_start;
double Ibn=O;

Il starting values of the covariance parameters
double covp_start=runif (idum) *(ubp-Ibp)+lbp;
double covn_start=runif (idum) *(ubn-Ibn)+lbn;
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Il initializing aIl array elements to 1
for (i=O; i<size; i++)
{

*(prev+i) = 1.0;
*(sensl+i) = 1.0;• *(specl+i) = 1.0;
*(sens2+i) = 1.0;
*(spec2+i) = 1.0;
*(covp+i) = 1.0;
*(covn+i) = 1.0;
}

Il setting the first entry in each array to the starting value
*prev = prev_start;
*sensl = sens1_start;
*specl = spec1_start;
*sens2 = sens2_start;
*spec2 = spec2_start;
*covp = covp_start;
*covn = covn_start;

Il the 5000 iterations of the Gibbs sampler begin
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for (i=1; i<size; i++) {

*(pvp1+i-l) = (*(prev+i-l) * *(sens1+i-l»
1 (*(prev+i-l) * *(sens1+i-l) + (l-*(prev+i-l» * (l-*(specl+i-l»);
*(pvnl+i-l) = (l-*(prev+i-l»* *(specl+i-l)
1 (*(prev+i-l)*(l-*(sensl+i-l» + (l-*(prev+i-l»* *(specl+i-l»;
*(pvp2+i-l) = (*(prev+i-l) * *(sens2+i-l»
1 (*(prev+i-l) * *(sens2+i-l) + (l-*(prev+i-l» * (1-*(spec2+i-l»);
*(pvn2+i-l) = (l-*(prev+i-l»* *(spec2+i-l)
1 (*(prev+i-l)*(1-*(sens2+i-l» + (l-*(prev+i-l»* *(spec2+i-l»;

fout « i « "\t" « *(prev+i-l) « "\t" « *(sensl+i-l) « "\t lt

« *(specl+i-l) « "\t" « *(pvpl+i-l) « Il\t lt « *(pvnl+i-l)
« "\t U « *(sens2+i-l) « It\t lt « *(spec2+i-l) « n\t U

« *(pvp2+i-l) « "\t" « *(pvn2+i-l) « n\t"
« *(covp+i-l) « n\t n « *(covn+i-l) « n\n lt

;

fout.flush();

Il calculating the value of a true positive in
Il each cross-classification of the tvo tests
pll = (*(prev+i-l)* (*(sensl+i-l)* *(sens2+i-l)+*(covp+i-l»)1
(*(prev+i-l)* (*(sensl+i-l)* *(sens2+i-l)+*(covp+i-l»

+(l-*(prev+i-l»*«l- *(specl+i-l»*(1- *(spec2+i-1»
+*(covn+i-l»);

y1 = rbin(n11.pl1.idum);

plO = (*(prev+i-l)*(*(sens1+i-l)*(1- *(sens2+i-l»-*(covp+i-1»)1
(*(prev+i-1)* (*(sensl+i-1)*(1- *(sens2+i-l»-*(covp+i-l»

+(l-*(prev+i-l»*«l- *(specl+i-1»* *(spec2+i-l)
-*(covn+i-l»);

y2 = rbin(nlO.pl0.idum);

pOl = (*(prev+i-l)*«l- *(sensl+i-l»* *(sens2+i-1)- *(covp+i-1»)1
(*(prev+i-l)*«l- *(sensl+i-l»* *(sens2+i-l)- *(covp+i-l»

+(l-*(prev+i-l»* (*(spec1+i-l)*(1- *(spec2+i-l»
- *(covn+i-l»);

y3 = rbin(n01.p01.idum);

pOO = (*(prev+i-l)*«l- *(sens1+i-l»*(1- *(sens2+i-1»+*(covp+i-l»)1
(*(prev+i-l)*«l- *(sensl+i-l»*(1- *(sens2+i-1»+*{covp+i-l»
+(l-*(prev+i-1»* (*(specl+i-1)* *(spec2+i-l)+*(coVD+i-l»);
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y4 = rbin(nOO.pOO.idum};

Il drawing the estimated prevalence from a beta distribution
*(prev+i)=rbeta(yl+y2+y3+y4+alphaprev.

sum-(yl+y2+y3+y4)+betaprev.idum);

Il updating the sensitivities and specificities
sir_sensl(alphasensl.betasensl.i.
sensl.sens2.covp.yl.y2.y3.y4.idum);
sir_specl(alphaspecl.betaspecl.i.specl.spec2.covn.
nll.nl0.nOl.nOO.yl.y2.y3.y4.idum);
sir_sens2(alphasens2.betasens2.i.
sensl.sens2.covp.yl.y2.y3.y4.idum);
sir_spec2(alphaspec2.betaspec2.i.specl.spec2,covn,
nl1.nl0.nOl.nOO,yl.y2,y3.y4,idum);

Il updating the covariances
sir_covp(alphacovp.betacovp,covp.i,
sensl,sens2,yl.y2,y3,y4.idum};
sir_covn(alphacovn.betacovn,covn,i,specl,spec2,
nl1,nl0,nOl.nOO,yl.y2.y3,y4.idum);
}
}

\\ SIR for updating the sensitivity of the first test
void sir_sensl(double alphasensl.double betasens1. int ii.
double *sensl. double *sens2, double *covp.
int y1, int y2, int y3, int y4, long *idum)
{

double p,cusum[50],w[50].k[50] ,g[50].lb.ub;
cusum[O]=O; cusum[49]=1;

Ib=*(covp+ii-l}/(l- *(sens2+ii-1});
ub=l - *(covp+ii-1)1 *(sens2+ii-1);

for (int i=l; i<49; i++)
{

g[i]=runif(idum);
k[i] =(ub-Ib) *g[i]+lb;
w[i]=pov(k[i] * *(sens2+ii-l) + *(covp+ii-l),yl)
*pow(k[i]*(l- *(sens2+ii-l» - *(covp+ii-l),y2)
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*pow«l-k[i]) * *(sens2+ii-l) - *(covp+ii-l),y3)
*pow«l-k[i]) * (1 - *(sens2+ii-l» + *(covp+ii-l),y4)
*pow(k[i],(alphasensl-l»*pow«l-k[i]),(betasensl-l»;

cusum[i]=cusum[i-l]+w[i];
}

p=runif(idum);
for (i=1;i<49;i++) {
cusum[i] /= cusum[48];
if «p>cusum[i-l]) tt (p<=cusum[i]» {
*(sensl+ii)=k[i];
break;
}
}
}

\\ SIR for updating the specificity of the first test
void sir_specl(double alphaspecl, double betaspecl, int ii,
double *specl, double *spec2, double *covn,
int nl, int n2, int n3, int n4,
int yl, int y2, int y3, int y4, long *idum)

{

double p,cusum[50] ,w[50],k[50],g[50],lb,ub;
cusum[O] =0; cusum[49]=1;

lb=*(covn+ii-l)/(l- *(spec2+ii-l»;
ub=l - *(covn+ii-l)/ *(spec2+ii-l);

for (int i=l; i<49; i++)
{

g[i]=runif(idum);
k[i]=(ub-lb)*g[i]+lb;
w[i]=pow(k[i] * *(spec2+ii-l) + *(covn+ii-l),(n4-y4»
*pow(k[i] * (1- *(spec2+ii-l» - *(covn+ii-l),(n3-y3»
*pow«l-k[i]) * *(spec2+ii-l) - *(covn+ii-l),(n2-y2»
* pow«l-k[i]) * (1 - *(spec2+ii-l» + *(covn+ii-l),(nl-yl»
*pow(k[i],(alphaspecl-l».pow«1-k[i]),(betaspecl-1»;
cusum[i]=cusum[i-l]+v[i];
}

p=runif(idum);
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for (i=1;i<49;i++) {
cusum[i] 1= cusum[48];
if «p>cusum[i-l]) tt (p<=cusum[i]» {
*(specl+ii)=k[i];
break;
}
}
}

\\ SIR for updating the sensitivity of the second test
void sir_sens2(double alphasens2, double betasens2, int ii,
double *sensl, double *sens2, double *covp,
int yl, int y2, int y3, int y4, long *idum)
{

double p,cusum[50],w[50] ,k[50],g[50],lb,ub;
cusum[O] =0; cusum[49]=1;

lb=* (covp+ii-l) / (1- *(sensl-t'ii-l» ;
ub=l - *(covp+ii-l)/ *(sensl+ii-l);

for (int i=l; i<49; i++)
{

g[i]=runif(idum);
k[i]=(ub-lb)*g[i]+lb;
w[i]=pow(k[i] * *(sensl+ii) + *(covp+ii-l) ,y1)

*pow(k[i] * (1- *(sensl+ii» - *(covp+ii-l),y3)
*pow«l-k[i]) * .(sensl+ii) - *(covp+ii-l),y2)
.pow«l-k[i]) * (1 - .(sensl+ii» + *(covp+ii-l),y4)
*pow(k[i],(alphasens2-1»*pow«1-k[i]),(betasens2-1»;

cusum[i]=cusum[i-l]+w[i];
}

p=runif(idum);
for (i=1;i<49;i++) {
cusum[i] 1= cusum[48];
if «p>cusum[i-l]) tt (p<=cusum[i]» {
*(sens2+ii)=k[i];
break;
}
}
}
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\\ SIR for updating the specificity of the second test
void sir_spec2(double alphaspec2. double betaspec2. int ii.
double *specl. double *spec2, double *covn.
int nl. int n2, int n3. int n4.
int yl. int y2. int y3. int y4. long *idum)
{

double P.cusum[SO].w[50].k[SO],g[50].lb,ub;
cusum[O] =0; cusum[49]=1;

lb=*(covn+ii-l)/(l- *(specl+ii-l»;
ub=l - *(covn+ii-l)/ *(specl+ii-l);

for (int i=l; i<49; i++)
{

g[i]=runif(idum);
k[i]=(ub-lb)*g[i]+lb;
w[i]=pow(k[i] * *(specl+ii) + *(covn+ii-l).(n4-y4»

*pow(k[i] * (1- *(specl+ii» - *(covn+ii-l).(n2-y2»
*pow«l-k[i]) * *(specl+ii) - *(covn+ii-l).(n3-y3»
*pow«l-k[i]) * (1 - *(specl+ii» + *(covn+ii-l}.(nl-yl»
*pow(k[i] ,(alphaspec2-1»*pow«1-k[i]}.(betaspec2-1»;

cusum[i]=cusum[i-l]+w[i];
}

p=runif(idum};
for (i=1;i<49;i++) {
cusum[i] /= cusum[48];
if «p>cusum[i-l]) II (p<=cusum[i]}) {
*(spec2+ii)=k[i];
break;
}
}
}
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\\ SIR for updating the covariance among the diseased subjects
void sir_covp(double alphacovp. double betacovp. double *covp. int ii.
double *sensl. double *8e082.
int yl. int y2, int y3. int y4. long *idum)
{

double P.cusum[50].w[50].k[50].g[50].lb.ub;
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cusum[O]=O; cusum[49]=1;

Ib=O;
ub=__min(__min(*(sensl+ii),
*(sens2+ii»- *(sensl+ii) * *(sens2+ii),O.1);

for (int i=l; i<49; i++)
{

g[i]=runif(idum);
k[i]=g[i]*(ub-lb)+lb;
w[i]=pow(*(sens1+ii) * *(sens2+ii) + k[i],yl)
*pow(*(sensl+ii) * (1- *(sens2+ii» - k[i] ,y2)
*pow«l-*(sensl+ii» * *(sens2+ii) - k[i] ,y3)
*pow«l-*(sensl+ii» * (1 - *(sens2+ii» + k[i],y4)
*pow(k[i] ,(alphacovp-l»*pow«l-k[i]),(betacovp-l»;
cusum[i]=cusum[i-l]+w[i];
}

p=runif(idum);
for (i=1;i<49;i++) {
cusum[i] /= cusum[48];
if «p>cusum[i-l]) ti (p<=cusum[i]» {
*(covp+ii)=k[i];
break;
}
}
}

\\ SIR for updating the covariance amang the non-diseased subjects
void sir_covn(double alphacovn, double betacovn, double *covn,
int ii, double *specl, double *spec2,
int nl, int n2, int n3, int n4,
int yl, int y2, int y3, int y4, long *idum)
{

double p,cusum[50],w[50],k[50],g[50] ,lb,ub;
cusum[O]=O; cusum[49]=1;

lb=O;
ub=__min(__min(*(specl+ii),
*(spec2+ii»- *(specl+ii) * *(spec2+ii),O.07);
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for (int i=1; i<49; i++)
{

g[i]=runif(idum);
k[i]=g[i] *(ub-lb)+lb;
w[i]=pow(*(specl+ii) * *(spec2+ii) + k[i],(n4-y4»

*pow(*(specl+ii) * (1- *(spec2+ii» - k[i],(n3-y3»
*pow«l-*(specl+ii» * *(spec2+ii) - k[i],(n2-y2»

*pow«l-*(specl+ii» * (1 - *(spec2+ii» + k[i] , (n1-y1»
*pow(k[i] .(alphacovn-l»*pow«l-k[i]),(betacovn-l));

cusum[i]=cusum[i-l]+w[i] ;
}

p=runif(idum};
for (i=1;i<49;i++) {
cusum[i] /= cusum[48];
if «p>cusum[i-l]) li (p<=cusum[i]}) {
*(covn+ii)=k[i] ;
break;
}
}
}
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Programs used for the Bayesian random efIects mode]
in Section 5.3
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C.1.1 S-Plus program used ta calculate cross-classification of test re­
sults in Table 5.2

sim6<-function(x) {

all<-O
a21<-1.362548
bl<-1.273193

al0<-2.253658
a20<-O.9221768
bO<-1.446533

t<-rnorm(200.0.1)

prev<-O.73

sl<-pnorm(al1+bl*t)
cl<-pnorm(al0+bO*t)
s2<-pnorm(a21+bl*t)
c2<-pnorm(a20+bO*t)

pl1<-prev*(sl*s2)+(1-prev)*«1-cl)*(1-c2»
pl0<-prev*(sl*(1-s2»+(1-prev)*«1-cl)*c2)
pOl<-prev*«1-s1)*s2)+(1-prev)*(cl*(1-c2»
pOO<-prev*«1-s1)*(l-s2»+(1-prev)*(cl*c2)

nl1<-sum(pll)
nl0<-sum(pl0)
nOl<-sum(pOl)
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nOO<-sum(pOO)

return(n11,nl0,n01,nOO)

}
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C.l.2 C++ program used to implement the Gibbs sampler for the
Bayesian random efIects model

For the sake of brevity only the functions related to the Gibbs sampler are included
here and standard fllnctions~ such as those used to sample random variables. are
omitted.

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <fstream.h>
#include <time.h>
#include "matrix.h ll

#include "r andom.h"
#include "s ir6.h ll

Il prototypes of functions appearing in the body of the program
int sumarr(int arr 0, int n1, int n2);
void sir(int *y_samp, int ii, double *abl_samp, double *abO_samp,
double *t, long *idum);

Il global variables
int nl1=75;
int nl0=5;
int nOl=58;
int nOO=62;
int sum=200;
int mu=O;
int sigma=1;
double *T;
double mean=O;

Il declaring the variables used in tbe program
int *y_samp;
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double *prev_samp. *abl_samp, *abO_samp;
double *sensl, *specl. *sens2. *spec2. pll. plO. pOl, pOO;
double *sensl_samp. *sens2_samp. *specl_samp. *spec2_samp;
double *pvpl. *pvnl. *pvp2. *pvn2;
double *sensl_checkl. sensl_check2;

Il output file
ofstream fout(ld:/main/cpp/thesis/results/chap5l");

Il main body of program
void main (void)
{

Ildetails of iterations
int size=5000;
int i. j ;
srand( (unsigned)time( HULL ) );
long seed=rand();
long *idum=tseed;

Il declaring prior distributions
double alphaprev = 1;
double betaprev = 1;

double al1, al0. a21. a20, bl. bO;
double al1Bstar, al0Bstar, a21Bstar. a20Bstar. blBstar. bOBstar;

all = 0; alO = 2.253658; a2l = 1.362548; a20 = 0.9221768;
bl = 1.273193; bO = 0.91;

blBstar = 0.5;
bOBstar =0.5;
allBstar = 0.133265;
a10Bstar = 0.12849975;
a21Bstar = 0.175;
a20Bstar = 0.19059425;

Il allocating memory for pointers
y_samp = (int *)malloc(sum*sizeof(int»;
prev_samp = (double *)malloc(size*sizeof(double»;
sensl = (double .)malloc(size*sizeof(double»;
sens2 = (double *)malloc(size*sizeof(double»;
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specl = (double *)malloc(size*sizeof(double»;
spec2 = (double *)malloc(size*sizeof(double»;
sensl_samp = (double *)malloc(size*sum*sizeof(double»;
specl_samp = (double *)malloc(size*sum*sizeof(double»;
sens2_samp = (double *)malloc(size*sum*sizeof(double»;
spec2_samp = (double *)malloc(size*sum*sizeof(double»;
sensl_checkl = (double *)malloc(sum*sizeof(double»;
pvpl = (double *)malloc(size*sizeof(double»;
pvnl = (double *)malloc(size*sizeof(double»;
pvp2 = (double *)malloc(size*sizeof(double»;
pvn2 = (double *)malloc(size*sizeof(double»;
T = (double *)malloc(2*sum*size*sizeof(double»;
abl_samp = (double *)malloc(3*size*sizeof(double»;
abO_samp = (double *)malloc(3*size*sizeof(double»;

Il setting the first entry in each array to a random starting value
*(prev_samp)=ran2(idum);
*(abl_samp)=ran2(idum);
*(abl_samp+l)=ran2(idum);
*(abl_samp+2)=ran2(idum);
*(abO_samp)=ran2(idum);
*(abO_samp+l)=ran2(idum);
*(abO_samp+2)=ran2(idum);

1/ initializing aIl array elements ta 1
for (i=l; i<size; i++)
{

*(prev_samp+i) = 1.0;
.(abl_samp+3*i) = 1.0;
*(abl_samp+3*i+l) = 1.0;
*(abl_samp+3*i+2) = 1.0;
*(abO_samp+3*i) = 1.0;
*(abO_samp+3*i+l) = 1.0;
*(abO_samp+3*i+2) = 1.0;
}

for (i=O; i<size; i++)
{
*(sensl+i) = 1.0;
*(specl+i) = 1.0;
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*(sens2+i) = 1.0;
*(spec2+i) = 1.0;
*(pvpl+i)=1.0;
*(pvnl+i)=1.0;
*(pvp2+i)=1.0;
*(pvn2+i)=1.0;
}

for (i=O; i<size; i++) {
for (j=O; j<sum; j++) {
*(sensl_samp+i*sum+j) = 1.0;
*(specl_samp+i*sum+j) = 1.0;
*(sens2_samp+i*sum+j) = 1.0;
*(spec2_samp+i*sum+j) = 1.0;
}
}

Il drawing random N(O,l) values for the initial t values
for (j=O; j<sum; j++) {
*(y_samp+j) = 1;
*(T+j*2) = 1;
*(T+j*2+1) = gasdev(O,l,idum);
}

Il the 5000 iterations begin
for (i=l; i<size; i++)

{

*(sensl+i-l) = pnorm(*(abl_samp+3*(i-l»/sqrt(1
+*(abl_samp+3*(i-l)+2)**(abl_samp+3*(i-l)+2»);
*(specl+i-l) = pnorm(*{abO_samp+3*(i-l»/sqrt(l
+*(abO_samp+3*(i-l)+2)**(abO_samp+3*(i-l)+2»);
*(sens2+i-l) = pnorm(*(abl_samp+3*(i-l)+1)/sqrt(l
+*(abl_samp+3*(i-l)+2)**(abl_samp+3*(i-l)+2»);
*(spec2+i-l) = pnorm(*(abO_samp+3*(i-l)+1)/sqrt(1
+*(abO_samp+3*(i-l)+2)**(abO_samp+3*(i-l)+2»);

III calculating the predictive value positive and negative
*(pvpl+i-l) = (*(prev_samp+i-l)* *(sensl+i-l»1
(*(prev_samp+i-l)* *(sensl+i-l)
+ (l-*(prev_samp+i-l» * (l-*(specl+i-l»);
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*(pvnl+i-l) = «l-*(prev_samp+i-l})* *(specl+i-l)}1
(*(prev_samp+i-l)*(l-*(sensl+i-l»
+(l-*(prev_samp+i-l»* *(specl+i-l));
*(pvp2+i-l) = (*(prev_samp+i-l)* *(sens2+i-l}}1
(*(prev_samp+i-l)* *(sens2+i-l)
+ (l-*(prev_samp+i-l))* (1-*(spec2+i-l)});
*(pvn2+i-l) = «l-*(prev_samp+i-l»* *(spec2+i-l)}1
(*(prev_samp+i-l)*(1-*(sens2+i-l})
+ (l-*(prev_samp+i-l))* *(spec2+i-l»;

fout « i « "\t" « *(prev_samp+i-l) « "\t ll « *(sensl+i-l)
« "\t" « *(specl+i-l) « "\t ll « *(pvpl+i-l)
« "\tU « *(pvnl+i-l) « "\t" « *(sens2+i-l)
« lI\t"« *(spec2+i-l) « "\t" « *(pvp2+i-l)
« n\t" « *(pvn2+i-l) « n\tn « *(abO_samp+3*(i-l»
« lI\t" « *(abO_samp+3*(i-l)+1)
« "\t U « *(abO_samp+3*(i-l)+2)
« "\t" « *(abl_samp+3*(i-l»
« "\t" « *(abl_samp+3*(i-l)+1)
« "\t" « *(abl_samp+3*(i-l)+2) « lI\t ll ;
fout.flush();

Il calculating the S and C's for each subject as a function of t
for (j=O; j<sum; j++)
{

fout « *(T+(i-l)*2*sum+j*2+1) « lI\t" ;
*(sensl_samp+(i-l)*sum+j) = pnorm(*(abl_samp+3*(i-l»
+*(abl_samp+3*(i-l)+2)**(T+(i-l)*2*sum+j*2+1»;
*(specl_samp+(i-l)*sum+j) = pnorm(*(abO_samp+3*(i-l})
+*(abO_samp+3*(i-l)+2)**(T+(i-l)*2*sum+j*2+1»;
*(sens2_samp+(i-l)*sum+j) = pnorm(*(abl_samp+3*(i-l}+1}
+*(abl_samp+3*(i-l}+2)**(T+(i-l)*2*sum+j*2+1»;
*(spec2_samp+(i-l)*sum+j) = pnorm(*(abO_samp+3*(i-l)+1)
+*(abO_samp+3*(i-l}+2)**(T+(i-l)*2*sum+j*2+1»;
}

fout « n\nU
;

Il calculating the value of a true positive in each of the four
Il segments nll,nl0,nOl,nOO
for (j=O; j<nll; j++)
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{

pl1 = (*(prev_samp+i-1)* *(sensl_samp+(i-l)*sum+j) •
*(sens2_samp+(i-l)*sum+j»/
(*(prev_samp+i-1)* *(sens1_samp+(i-l)*sum+j)*
*(sens2_samp+(i-l)*sum+j)
+(l-*(prev_samp+i-l»*(l- *(specl_samp+(i-l)*sum+j»
*(1- *(spec2_samp+(i-l)*sum+j»);

*(y_samp+j) = rbern(p11,idum);
}

for (j=nll; j«nl1+nl0); j++)
{

plO = (*(prev_samp+i-l)* *(sensl_samp+(i-l)*sum+j)
*(1- *(sens2_samp+(i-l)*sum+j»)/
C*(prev_samp+i-l)* *(sensl_samp+(i-l)*sum+j)
*(1- *(sens2_samp+(i-l)*sum+j»
+(l-*(prev_samp+i-l»*(l- *(specl_samp+(i-l)*sum+j»
* *(spec2_samp+(i-l)*sum+j»;
*(y_samp+j) = rbern(plO,idum);
}

for (j=(nl1+nl0); j«nll+nl0+nOl); j++)
{

pal = (*(prev_samp+i-l)*(l- *(sensl_samp+(i-l)*sum+j»*
*(sens2_samp+(i-l)*sum+j»/
(*(prev_samp+i-l)*(l- *(sensl_samp+(i-l)*sum+j»*
*(sens2_samp+(i-l)*sum+j)
+(l-*(prev_samp+i-l»* *(specl_samp+(i-l)*sum+j)*
(1- *(spec2_samp+(i-l)*sum+j»);
*(y_samp+j) = rbern(p01.idum);
}

for (j=(n11+n10+n01); j<sum; j++)
{

pOO = (*(prev_samp+i-1)*(1- *(sens1_samp+(i-l)*sum+j».
(1- *(sens2_samp+(i-l)*sum+j»)!

(*(prev_samp+i-1)*(1- *(sensl_samp+(i-1)*sum+j»*
(1- *(sens2_samp+(i-1)*sum+j»

+(l-*(prev_samp+i-l»* *(specl_samp+(i-l)*sum+j).
*(spec2_samp+(i-1)*sum+j»;
*(y_samp+j) = rbern(pOO.idum);
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}

Il estimated number of true positives in each segment
int y1 = sumarr(y_samp,O,nll);

int y2 = sumarr(y_samp,nll,nll+n10);
int y3 = sumarr(y_samp,nl1+nl0,n1l+n10+nOl);
int y4 = sumarr(y_samp,nll+nl0+nOl,sum);

Il sirs to pick b values
sir_bO(y_samp,i ,T,bO,bOBstarJabO_samp, idum Jnl1 Jnl0,n01,nOO);
sir_al0(y_samp,i,T,al0 Jal0Bstar,abO_samp,idum,nl1,nl0,nOl,nOO);
sir_a20(y_samp,i JTJa20,a20Bstar,abO_samp.idum.nll,nl0,nOl,nOO);

sir_bl(y_samp,i,T,b1,blBstar,abl_samp,idum,n11,nl0,n01 JnOO);
sir_al1(y_samp.i,T,al1,allBstar,abl_samp,idum,nl1,nl0,nOl,nOO);
sir_a2l(y_samp,i,T,a21 Ja21Bstar,abl_samp,idum Jnl1,nl0,nOl,nOO);
Ilsirs to pick a values

Il drawing the estimated prevalence from a beta distribution
*(prev_samp+i) =rbeta(yl+y2+y3+y4+alphaprev ,

sum-(yl+y2+y3+y4)+betaprev,idum);

Il drawing the updated t's using a sir function
sirCy_samp,i,abl_samp JabO_samp.T.idum);
}

}

Il sumarr called to sum the elements of an array
int sumarr(int *arr , int nl, int n2)
{

int total = 0;
for (int i=nl;i<n2;i++)
total =total + *(arr+i);
return total;
}

Il SIR ta pick t values
void sir(int *y_samp, int ii, double *abl_samp, double *abO_samp,
double *t, long *idum)
{
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int i,j;
double k[25].v[25] .cusum[25];
for (j=O; j<sum; j++) {
double p=ran2(idum);
cusum[O] = 0; cusum[24]=1;
if (y_samp[j]==l) {
for (i=l; i<24; i++) {
k[i]=gasdev(mu,l,idum);
if (j<nll) w[i]=pnorm(*(abl_samp+3*ii)+*(abl_samp+3*ii+2)*k[i])*
pnorm(*(abl_samp+3*ii+l)+*(abl_samp+3*ii+2)*k[i])
*exp(-k[i]*mu+(mu*mu)/2);
if «j>=nl1) li (j«nl1+nl0») w[i]=pnorm(*(abl_samp+3*ii)+
*(abl_samp+3*ii+2)*k[i])*pnorm(-(*(abl_samp+3*ii+l)+
*(abl_samp+3*ii+2)*k[i]»*exp(-k[i]*mu+(mu*mu)/2);
if «j>=(nl1+nl0» ii (j«nl1+nl0+nOl»)
w[i] =pnorm(-(* (abl_samp+3*ii) +
*(abl_samp+3*ii+2)*k[i]»*pnorm(*(abl_samp+3*ii+l)+
*(abl_samp+3*ii+2)*k[i])*exp(-k[i]*mu+(mu*mu)/2);
if (j>=(nll+nl0+nOl» w[i]=pnorm(-(*(abl_samp+3*ii)+
*(abl_samp+3*ii+2)*k[i]»*pnorm(-(*(abl_samp+3*ii+l)+
*(abl_samp+3*ii+2)*k[i]»*exp(-k[i]*mu+(mu*mu)/2);
cusum[i]=cusum[i-l]+w[i] ;
}
}

else if (y_samp[j]==O) {
for (i=l; i<24; i++) {
k[i]=gasdev(-mu,l,idum);
if (j<nl1) w[i]=pnorm(-(*(abO_samp+3*ii)+
*(abO_samp+3*ii+2)*k[i]»*pnorm(-(*(abO_samp+3*ii+l)+
*(abO_samp+3*ii+2)*k[i]»*exp(+k[i]*mu+(mu*mu)/2);
if «j>=nl1) li (j«nl1+nl0») w[i]=pnorm(-(*(abO_samp+3*ii)+
*(abO_samp+3*ii+2)*k[i]»*pnorm«*(abO_samp+3*ii+l)+
*(abO_samp+3*ii+2)*k[i]»*exp(+k(i]*mu+(mu*mu)/2);
if «j>=(nl1+nl0» ia (j«nll+nl0+nOl») v[i]=pnorm(*(abO_samp+3*ii)+
*(abO_samp+3*ii+2)*k[i])*pnorm(-(*(abO_samp+3*ii+l)+
*(abO_samp+3*ii+2)*k[i]»*exp(+k(i]*mu+(mu*mu)/2);
if (j>=(nl1+nl0+nOl» w[i]=pnorm(*(abO_samp+3*ii)+
*(abO_samp+3*ii+2)*k[i])*pnorm(*(abO_samp+2*ii+l)+
*(abO_samp+2*ii+2)*k[i])*exp(+k[i]*mu+(mu*mu)/2);
cusum[i]=cusum[i-l]+w[i];
}
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}

for (i=l; i<25; i++) {
if (i<24) cusum[i] 1= cusum[23];
if «p>cusum[i-l]) il (p<=cusum[i]» {
*(t+ii*2*sum+j*2+1)=k[i];
break;
}
}
}
}

Il SIR for picking b values vhen bil = bl. ie S's share same b
void sir_bl(int *y. int ii, double *T, double bl, double sd,
double *abl_samp. long *idum, int nll, int nl0, int nOl, int nOO) {
double p,cusum[100] ,w[100],k[100],wi[200];
int i, j ;

p=ran2(idum);
cusum[O] =0; cusum[99]=1;
for (i=1;i<99;i++) {
k[i]=gasdev(bl,sd,idum);
w[i]=O.O;

for (j=O;j<200;j++) {
if (*(y+j)==O) wi[j]=log(l*l);
else {
if (j<nl1) {
wi[j]=log(1*pnorm(*(abl_samp+3*(ii-l»+k[i]**(T+(ii-l)*4OO+j*2+1»
*pnorm(*(abl_samp+3*(ii-l)+1)+k[i]**(T+(ii-l)*400+j*2+1)»;
}

if (j>=nl1 li j«nll+nl0» {
wi[j]=log(1*pnorm(*(abl_samp+3*(ii-l»+k[i]**(T+(ii-l)*4OO+j*2+l»
*(l-pnorm(*(abl_samp+3*(ii-l)+1)+k[i]**(T+(ii-l)*400+j*2+1»»;
}

if (j>=(nl1+nl0) li j«nll+nl0+nOl» {
vi[j]=log(1*(l-pnorm(*(abl_samp+3*(ii-l»+k[i]**(T+(ii-l)*400+j*2+1»)
*pnorm(*(abl_samp+3*(ii-l)+1)+k[i]**(T+(ii-l)*400+j*2+1)»;
}

if (j>=nl1+nl0+nOl) {
wi[j]=log(1*(1-pnorm(*(abl_samp+3*(ii-l»+k[i]**(T+(ii-l)*400+j*2+1»)
*(1-pnorm(*(abl_samp+3*(ii-l)+1)+k[i]**(T+(ii-l)*400+j*2+1»»;
}
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}

w[i] += vi [j] ;

}

cusum[i]=cusum[i-l]+exp(w[i]);
}

for (i=1;i<100;i++) {
if (i<99) cusum[i] 1= cusum[98];
if «p>cusum[i-l]) tt (p<=cusum[i]») {
*(abl_samp+3*ii+2)=k[i];
break;
}
}
}
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Il SIR for picking b values vhen biO = bO, ie S's share same b
void sir_bO(int *y, int ii, double *T, double bO, double sd,
double *abO_samp, long *idum, int nll, int ni0. int nOl. int nOO) {
double P.cusum[lOO].v[100],k[100],vi[200];
int i,j;

p=ran2(idum);
cusum[O]=O; cusum[99] =1;
for (i=1;i<99;i++) {
k[i]=gasdev(bO,sd,idum);
w[i]=O.O;

for (j=O;j<200;j++) {
if (*(y+j)==l) vi[j]=log(l*l);
else {
if (j<nl1) {
wi[j]=log(1*(1-pnorm(*(abO_samp+3*(ii-1)}+k[i]*
*(T+(ii-1)*400+j*2+1»)
*(1-pnorm(*(abO_samp+3*(ii-1)+1}+k[i]**(T+(ii-l)*400+j*2+1»»;
}

if (j>=nl1 ta j«nll+nl0)} {
vi[j]=log(l*(1-pnorm(*(abO_samp+3*(ii-1}}+k[i]**(T+(ii-l}*400+j*2+1»)
*pnorm(*(abO_samp+3*(ii-l)+1)+k[i]**(T+(ii-1)*400+j*2+1)»;
}

if (j>=(nll+nl0) ti j«n1i+nl0+nOl» {
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wi[j]=log(l*pnorm(*(abO_samp+3*(ii-l»+k[i]**(T+(ii-l)*4OO+j*2+l»
*(1-pnorm(*(abO_samp+3*(ii-1)+1)+k[i]**(T+(ii-l)*400+j*2+1»»;
}

if (j>=nll+nl0+nOl) {
wi[j]=log(1*pnorm(*(abO_samp+3*(ii-l»+k[i]**(T+(ii-l)*4OO+j*2+1»
*pnorm(*(abO_samp+3*(ii-l)+l)+k[i]**(T+(ii-l)*400+j*2+l)»;
}
}

wei] += wi [j] ;
}

cusum[i]=cusum[i-l]+exp(w[i]);
}

for (i=1;i<100;i++) {
if (i<99) cusum[i] 1= cusum[98];
if «p>cusum[i-l]) il (p<=cusum[i]» {
*(abO_samp+3*ii+2)=k[i] ;
break;
}
}
}
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Il SIR for picking all values
void sir_all(int *y, int ii, double *T, double all, double sd,
double *abl_samp, long *idum, int nl1, int nl0, int n01, int nOO) {
double p,cusum[100],w[100] ,k[100] ,wi[200];
int i,j;

p=ran2(idum);
cusum[O] =0; cusum[99] =1;
for (i=l;i<99;i++) {
k[i]=gasdev(all t sd,idum);
w[i]=O;

for (j=0;j<200;j++) {
if (*(y+j)==O) wi[j]=log(1*1);
else {
if (j«nl1+nl0» wi[j]=log(l*pnorm(k[i]+
*(abl_samp+3*ii+2)**(T+(ii-l)*400+j*2+1»);
else wi[j]=log(l*(l-pnorm(k[i]+*(abl_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+1»»;
}
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}

wri] += wi [j] ;
eusum[i]=eusum[i-l]+exp(w[i]);
}

for (i=1;i<100;1++) {
if (i<99) cusum[i] 1= eusum[98];
if «p>eusum[i-l]) ta (p<=eusum[i]» {
*(ab1_samp+3*ii)=k[i];
break;
}
}
}
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Il SIR for pieking alO values
void sir_al0(int *y, int ii, double *T, double al0, double sd,
double *abO_samp, long *idum, int n11, int nl0, int nOl, int nOO) {
double p,cusum[100] ,w[100],k[100] ,wi[200];
int i,j;

p=ran2(idum);
eusum[O] =0; eusum[99] =1;
for (i=1;i<99;i++) {
k[i]=gasdev(al0,sd,idum);
w[i]=O;

for (j=0;j<200;j++) {
if (*(y+j)==l) wi[j]=log(1*1);
else {
if (j«n11+nl0» wi[j]=log(1*(1-pnorm(k[i]+*(abO_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+1»»;
eise wi[j]=log(1*pnorm(k[i]+*(abO_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+1»);
}

wei] += wi [j] ;
}

eusum[i]=eusum[i-l]+exp(w[i]);
}

for (i=1;i<100;i++) {
if (i<99) eusum[i] 1= cusum[98];
if «p>eusum[i-l]) tt (p<=cusum[i]» {
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*(abO_samp+3*ii)=k[i];
break;
}
}
}
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/1 SIR for picking a2i values
void sir_a2i(int *y, int ii, double *T, double a21, double sd,
double *abl_samp, long *idum, int nll, int ni0, int nOl, int nOO) {
double p,cusum[100] ,w[100],k[100],wi[200];
int i,j;
p=ran2 (idum) ;
cusum[O] =0; cusum[99]=1;
for (i=1;i<99;i++) {
k[i]=gasdev(a2i,sd,idum);
w[i]=O;

for (j=0;j<200;j++) {
if (*(y+j)==O) wi[j]=log(l*l);
else {
if (j<nll Il (j>=(ni1+nl0) tt j«nll+nl0+nOl»)
wi[j]=log(1*pnorm(k[i]+*(abi_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+1»);
else wi[j]=log(1*(1-pnorm(k[i]+*(abi_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+1»»;
}

wei] += wi[j];
}
cusum[i]=cusum[i-i]+exp(w[i]);
}

for (i=1;i<100;i++) {
if (i<99) cusum[i] 1= cusum[98];
if «p>cusum[i-l]) tt (p<=cusum[i]» {
*(abl_samp+3*ii+l)=k[i];
break;
}
}
}

Il SIR for picking a20 values
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void sir_a20(int *y, int ii. double *T, double a20, double sd,
double *abO_samp, long *idum, int nll, int nl0, int nOl, int nOO) {
double P.cusum[lOO],w[100],k[100] ,wi[200];
int i,j;

p=ran2(idum);
cusum[O] =0; cusum[99]=1;
for (i=1;i<99;i++) {
k[i]=gasdev(a20.sd,idum);
w[i]=O;

for (j=O;j<200;j++) {
if (*(y+j)==l) wi[j]=log(l*l);
else {
if (j<nll Il (j>=nl1+nl0 ta j«nll+nl0)+nOl»
wi[j]=log(1*(1-pnorm(k[i]+*(abO_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+l»»;
else wi[j]=log(1*pnorm(k[i]+*(abO_samp+3*ii+2)*
*(T+(ii-l)*400+j*2+l»);
}

wei] += wi [j] ;
cusum[i]=cusum[i-l]+exp(w[i]);
}

for (i=1;i<100;i++) {
if (i<99) cusum[i] /= cusum[98];
if «p>cusum[i-l]) ta (p<=cusum[i]» {
*(abO_samp+3*ii+l)=k[i];
break;
}
}
}
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