
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

The Design and Implementation of

the JlModelica Compiler

WeigaoXu
Supervisor: Prof. Hans Vangheluwe

School of Computer Science
McGill University, Montréal, Canada

A thesis subrnitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements of the degree of

Master of Science in Computer Science

Copyright @2005 by Weigao Xu

AIl rights reserved

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12567-5
Our file Notre référence
ISBN: 0-494-12567-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Modelica is a recently developed object-oriented language for physical systems modeling. It is a
modem language built on non-causal modeling with mathematical equations and object-oriented con­
structs.

An open source research prototype compiler for jLModelica, a subset of Modelica, is presented. The
compiler takes tex tu al Modelica source as input, translates it into fiat Modelica, then performs a series
of symbolic transformations on the differential-algebraic equations, most notably, assigning causality,
and generates input suitable for processing by a numerical simulator such as Octave.

Design and implementation issues of the jLModelica compiler are discussed in sorne detail in this
thesis. These issues include the general architecture of the compiler, semantic analysis, formula ma­
nipulation, and code generation. Sorne advanced formula manipulation techniques are also studied,
and are proposed to be implemented as future work.

Modelica est un language orienté objet développé récemment dans le but de modéliser les systèmes
physiques. C'est un language moderne, bâti à partir de la modélisation non causale, qui supporte des
équations mathématiques et des constructions orientées objet.

Un prototype de compilateur libre de droit pour JLModelica, un sous-ensemble de Modelica, est
présenté. Un fichier Modelica textuel est envoyé au compilateur comme variable d'entrée. Celui-ci
traduit le texte en Modelica simple et génre une série de transformations symboliques partir des
équations différentielles. En particulier, la causalité est déterminée et du code pouvant être interprété
par un simulateur numérique, tel Octave, est généré.

Les particularitées d'implémentation et de design du compilateur sont discutées en détail dans cette
thèse. Elles incluent notamment l'architecture du dit compilateur, l'analyse sémantique, la manipula­
tion des formules et la génération du code. Quelques techniques avancées dans la manipulation des
formules sont aussi étudiées et l'implémentation de celles-ci est proposée comme avenue future.

Acknowledgments

1 would like to express my sincere gratitude to aU the people who have helped me and encouraged me
during my study at McGill University, especiaUy in the process of developing the jLModelica compiler.

First of aU, thanks to Prof. Hans Vangheluwe, my supervisor, who has activated my research interest
in the field of Modeling and simulation, and has earnestly supervised my work in the development of
the jLModelica compiler.

Many thanks to my parents, for their love, and for supporting me in many aspects during my study.

Thanks to Peter Bunus at PELAB, Linkoping University, who has kindly offered us a free Modelica
parser. It has saved us a lot of time in the implementation of the Front End.

Thanks to Jean-Sébastien Bolduc, for his inspiring discussions during the weekly meetings for the
jLModelica compiler.

Thanks to Marc Provost for his research work in PyGK (a Python graph kernel), which enables the
XML representation of Modelica models, and the transformation from C++ parse tree to Python parse
tree.

Finally, thanks to the Quebec tax payers, for their contributions to the funding for this project (through
the Fond de Recherche sur la Nature et les Technologies New Researchers fund) ..

1 Introduction

1.1 Background

1.2 An Overview of Modelica

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

Modeling an Electrical Circuit in Modelica

Basic Language Elements ..

Restricted Classes

Types and Physical Quantities

Connections

Partial Models and Inheritance .

Modeling Dynarnics

1.3 CUITent Tools . .

1.4 Thesis Objectives . .

2 The Overall Architecture

2.1 The Big Picture

2.2 The Front End

2.3 The Back End

2.4 The Code Generator .

3 The Front End

3.1 The Parser

3.2 XML Representation

3.2.1 Representation

3.2.2 Implementation Issues

3.3 Abstract Syntax

3.3.1 Design

3.3.2 Transformation ..

3.3.3 Test of COITectness

3.4 Scoping and Name Lookup .

3.4.1 Semantics......

3.4.2 Design and Implementation

3.4.3 The Visitor Design Pattern .

11

Contents

1
1

2

2

3

3

6

6

7

8

8

9

10

10

11

13

14

15
16

17

17

20
21

21

22
22

23

23

31

34

3.5 Expanding Inheritance ...

3.5.1 Semantics......

3.5.2 Multiple Inheritance

3.5.3 Modification of the Extends Clause

3.5.4 Short Class Definition as Class Inheritance

3.5.5 The Process of Expanding Inheritance . . .

3.5.6 Implementation Issues

3.5.7 Order of Expanding Inheritance and Name Lookup

3.6 Flattening

3.6.1 Component Instantiation

3.6.2 Flattening of Composite Components

3.6.3 Generation of Connection Equations.

3.7 Type Checking

3.7.1 Basic Types

3.7.2

3.7.3

Type Coercion

Specification of Type Checking in the pModelica Compiler .

4 The Back End

4.1 Canonical Transformation

4.2

4.3

4.1.1 Why Canonical Representation?

4.1.2 Defining the Canonical Order .

4.1.3

4.1.4

4.1.5

Simplification Rules

The Transformation Aigorithm .

AnExample

Causality Assignment

4.2.1 Flows, Augmenting Paths, and Residual Graph

4.2.2 Dinic's Aigorithm

4.2.3 ODEs in Causality Assignment

Sorting of Equations .,.

4.3.1 Dependency Graph

4.3.2 The Aigorithm . .

4.4 Aigebraic Loop Detection.

4.4.l The Aigorithm . .

4.5 Design and Implementation.

4.5.l The Data Structure .

4.5.2 Implementation Issues

4.5.3 Extension to Hybrid Systems.

5 Code Generator

5.1 Problems to be Solved

iii

36

37

39

40
41

41

41

42

42

43

44

48

50

52

52

52

56

56

56

57

57

58
59

60
61

62

62

65

65

65

67

67

69
69
70

72

73

73

5.1.1 Integrating ODE

5.1.2 Solving Nonlinear Equations ..

5.2 The Structure of the Simulation Process

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

Time Setup

Constants, Parameters, and Variables

Global Variables . .

Model Initialization .

Defining Functions

The For-Loop ...

Visualized Output.

6 Case Study

6.1 A Modelica Description of the Model

6.2 Translation to Flat Modelica . . .

6.3 Formula Manipulation

6.3.1 Canonical Representation

6.3.2 Causality Assignment ..

6.3.3

6.3.4

Sorting and Algebraic Loop Detection .

Rewriting Equations into Explicit Form

6.4 Octave Code

6.5 Simulation Result .

6.6 Conclusion

7 Future Work

7.1 More Language Features

7.1.1 Import Statement

7.1.2 Arrays......

7.2 Formula Manipulation Techniques

7.2.1 Eliminate Aliases .

7.2.2 Tearing........

7.2.3 Inline Integration ...

7.2.4 Higher Index Problem

Bibliography

A Grammar

A.1 Stored definition .

A.2 Class Definition .

A.3 Extends

A.4 Component Clause

A.5 Modification. . . .

IV

73

74
75

77
77

78
78
78
79
79

81

82

83
86

86

87
88

89
89
94

94

98

98
98
99

100
100
102
103
105

105

108

108
108
109
109
110

A.6 Equations .

A.7 Expression.

v

110

112

1.1 An Electrical Circuit

2.1 The Overview of pModelica

2.2 The Front End of pModelica

2.3 The Back End of pModelica

3.1 Class Diagram of Parse Tree Node

3.2 A High-Ievel Abstraction View of a Parse Tree .

3.3 Parse Tree in C++ to pyGK Graph

3.4 Packages in Abstract Syntax

3.5 Package Definition .

3.6 Package Component

3.7 Package Equations .

3.8 Package Expressions

3.9 Package Scope ...

3.10 Detailed Package Scope .

3.11 AST after the first pass .

3.12 AST after the second pass .

3.13 AST after the third pass ..

3.14 The Visitor Pattern

3.15 The Name Lookup Visitor

3.16 Component Instantiation .

3.17 Environment of Basic Component Real

4.1 Causality Assignment: Network Flow in Bipartite Graph

4.2 Sorting of Equations: Dependency Graph ..

4.3 Sorting of Equations: Another Sorting Result

4.4 The Data Structure for Causality Assignment

5.1 Structure of the Simulation Process .

5.2 GNU Plot Sample ..

6.1 An Electrical Circuit

6.2 C_v produced by the pModelica Compiler and Octave

vi

List of Figures

3

11

12

13

16

17

18

21

22

23

24

25

25

32

33

34

35
35
36

44

47

60
66
67

69

75

80

81

95

6.3 Cv produced by the Demo version of Dymola 95
6.4 C_i produced by the pModelica Compiler and Octave 96
6.5 Ci produced by the Demo version of Dymola 96
6.6 AC.i produced by the pModelica Compiler and Octave 97
6.7 ACi produced by the Demo version of Dymola 97

vii

Introduction

1.1 Background

Modeling and simulation have been an important part of computing for a few decades. Computer
simulation is used in industry to reduce the cost and time of development, and to optimize product
design. As computer technology develops rapidly in recent years, the demand to simulate increasingly
complex systems also grows.

In the past, causal models were most widely used n continuous, lumped parameter modeling of sys­
tems [8]. Causal models are commonly represented in the form of either causal block diagrams or
in a Continuous System Simulation Language variant of the CSSL standard [24]. The semantics of
such models is gieven by ordinary differential equations (ODEs). As systems under study become
more and more complex, the requirement for reuse of components in modeling is getting increasingly
important. Causal models are not very suitable for component re-use.

Over the last decades, numerous simulation tools have been developed. Some of these tools are
general-purpose simulation tools, such as Simulink [23], which are based on causal (input/output)
block diagrams. Other tools were developed for simulating models in specifie domains, such as elec­
tronic components and mechanical devices. The major disadvantage of these tools is that they might be
able to provide optimal methods in one domain, but are often not capable of representing and/or sim­
ulating structure and behaviour of systems in other domains. This prec1udes supporing multi-domain
or multi-physics modeling.

To model and simulate increasingly complex and heterogeneous technical systems which consist of
components from different domains, as well as to support meaningful model re-use, a new modeling
language and supporting compiler were needed. In particular, the following problems needed to be
solved:

• allow modelers to focus more on the description of the behaviour of system components, i.e.
non-causal modeling, instead of spending a lot of effort on deriving a causal representations
suitable for efficient numerical simulation;

• provide domain-neutral modelling and efficient simulation of multi-domain systems;

• support model reusability: the capability of creating easy-to-re-use components.

For the above reasons, in 1996, initiated by Hilding Elmqvist, a group of researchers from universities
and industry started the development of a new object-oriented modeling language. The new language
was called Modelica. It is a modem language built on non-causal modeling with mathematical equa­
tions and object-oriented constructs to facilitate reuse of modeling knowledge [5].

Comparing to other CUITent modeling technologies, Modelica has the following advantages [16]:

• Object-oriented modeling. This makes it possible to create physically relevant and easy-to-re-

1.2 An Overview of Modelica 2

use model components, which are employed to support hierarchical structuring, re-use, and
evolution of large and complex models covering multiple technology domains.

• Non-causal modeling. Modeling is based on equations instead of on assignment statements as
in traditional input/output block abstractions. Direct use of equations significantly increases
reusability of model components, since components adapt to the data flow context in which
they are used. This generalization enables both simpler models and more efficient simulation
(thanks to global, symbolic, compile-time optimizations).

• Physical modeling of multiple domains. Model components can correspond to physical objects
in the real world, in contrast to established techniques that require conversion to signal blocks.
For application engineers, such physical components are particularly easy to combine into sim­
ulation models using a (possibly domain-specifie) graphical editor.

1.2 An Overview of Modelica

As in the object-oriented programming language Java, the basic structuring element in Modelica is a
class. Almost everything in the real technical world can be represented as a class, and the en tire model
is hierarchically composed in terms of classes. But the structure of a Modelica class is different from
that of a Java class. A typical Modelica class has two parts, the declaration part, and the equation part.
The declaration part contains declarations of variables, which are class attributes representing data.
The equation part contains equations which specify the behavior, that is, the relationship between
declared variables. Equations in Modelica are different from assignment statements in traditional
languages. There is no causality assigned in Modelica equations which are "implicit". For example,
equation a = b + c can be written as b + c = a. The meaning of these two are equivalent. AIso,
equations can be written in any order.

1.2.1 Modeling an Electrical Circuit in Modelica

This section introduces the key features of Modelica through the example of an electrical circuit,
which is shown in Figure 1.1.

This circuit consists of a set of inter-connected electrical components, which include a voltage source,
two resistors, a capacitor, and a ground point. The following model is a Modelica description of the
complete circuit:

model Circuit
Resistor RI(r=I);
Resistor R2(r=I);
Capacitor C(c=I);
VsourceAC AC;
Ground G;

equation
connect (AC.p, RI.p);
connect (RI.n, R2.p);
conne ct (R2.n, C.p);
conne ct (C.n, AC.n);
connect (AC.n, G.p);

end circuit

From this model, we can see that modeling in Modelica is very intuitive. System topology is conserved
by diving the whole system into components and linking these components by connections. The un-

1.2 An Overview of Modelica 3

Resistorl Aesistor2

Ground1

Figure 1.1: An Electrical Circuit

derlying meaning of a connection is again given in terms of equations. which specify the interaction
between connected components.

The declarations of resistors, capacitor, etc. create instances of components. The definitions of these
components are described in other classes.

1.2.2 Basic Language Elements

Modeling of a large system in Modelica is hierarchically broken up into a set of components, which
should be reusable. Modelica has the following language elements to support this:

• Pre-defined types: Real, Integer, Boolean, and String. These are the basic components at the
lowest level in Modelica;

• Structured components, enable hierarchical structuring

• component arrays, to handle matrices, arrays of submodels, etc.

• Equations and/or algorithms (assignment statements). Note that Modelica also supports causal
modelling. In this thesis we will focus on the non-causal part of Modelica;

• Connections which couple model components.

1.2.3 Restricted Classes

Class is the fundamental structure element in Modelica. A class in Modelica can be defined using the
keyword class. But under certain conditions, the keyword class can be replaced by one of seven other,
more specific keywords: model, connector, record, block, type, function, and package.

1.2 An Overview of Modelica 4

On the one hand, the restricted class mechanism makes Modelica code easier to read and maintain. It
is also modeler-friendly since the modeler does not need to learn several different language constructs,
but just the class concept. On the other hand, aIl properties of a general class are identical to aIl kinds of
restricted classes. For example, the syntax and semantics of definition, instantiation, inheritance, and
general properties are defined in the same way for aIl kinds of classes. Such orthogonality simplifies
the construction of a Modelica compiler since only the syntax and semantics of the class construct,
along with sorne validity checks on a restricted class need to be implemented.

The following summarizes the restrictions and usage of each kind of restricted class in terms of sorne
examples.

model

The only restriction of a model restricted class is that it may not be used in connections. Its semantics
are identical to the general class construct in Modelica, and it is most commonly used. The previous
example Circui t is defined as a model class.

record

The record class is used to describe structured data. No equations are allowed in the definition or in
any of its components. It may not be used in connections and may not contain protected elements. For
example:

record Student
String name;
Integer studentNumber;
String department;

end Student;

type

A type restricted class may only be an extension to the predefined types, enumerations, record classes,
or array of type. Therefore, it can only be used in short class definitions to introduce new types. For
example, the following type definition is illegal:

Il Users can not define a new type
type Typel

Real X;
end Typel;

The class definitions of Voltage and Current in section 1.2.4 show how new types are defined by
means of short class definition.

connector

The restrictions of connector classes are identical to those of record classes, except that connector
classes are designed to be used in connections. A connector ex ample is given in section 1.2.5.

block

The block restricted class is used to model causal (input/output) block diagrams. In Modelica, the two
keywords, input and output, are used as component prefixes to postulate the data flow direction. AIl
declared variables in a block must either have the prefix input or output. A block class may not be
used in connections. A simple example:

1.2 An Overview of Modelica

block CircleAreaCalculator
parameter Real pi = 3.14;
input Real radius;
output Real area;

equation
area = pi * radius A 2;

end CircleAreaCalculator;

package

5

Since Modelica supports nested class declarations, the package restricted class is designed to manage
name spaces of classes. The restrictions of a package is that it may only contain class definitions and
constant declarations, i.e., no variable or parameter declarations. Dot-notation is used to refer to inner
classes. The following is a stripped-down example of package:

package Electronic
constant Real pi

connector Pin

end Pin;

model Resistor

end Resistor;

model Capacitor

end Capacitor;

end Electronic;

function

3.1415926;

The semantics of function classes is similar to that of block classes. In addition to the restrictions
applied to the block classes, a function class is also restricted by the following roles:

• No equations and initial algorithms are allowed. At most one algorithm clause is allowed.

• Calling a function requires either an algorithm or an external function interface.

• No calls to the Modelica built-in operators der, initial, terminal, sample, pre, edge, change,
reinit, delay and cardinality are allowed in a function as their arguments are time-varying
signaIs as opposed to intantaneous values.

A simple example function:

function Add
input Real X;
input Real y;
output Real result;

1.2 An Overview of Modelica

algorithm
result := x t Yi

end Addi

1.2.4 Types and Physical Quantities

6

Physical quantities are used to describe the properties of physical systems, e.g. Voltage and Current in
the e1ectrical circuit example. These quantities can be defined in Modelica in terms of restricted class
type:

type Voltage
type Current

Real lunit="V")i
Real lunit="A")i

where Real is a pre-defined type. This is the short form of defining classes in Modelica. The above two
definitions mean that Voltage and CUITent have the same definition as Real except that the attribute
unit is modified.

In Modelica, pre-defined types, i.e. Real, Integer, Boolean, and String are not the primitives. The pre­
defined types are classes built over primitives. For example, the conceptual definition of Real is given
in [5]:

type Real
RealType value;
parameter StringType quantity = ""i
parameter StringType unit = ""
parameter StringType displayUnit
parameter RealType min = -Inf;
parameter RealType max = tInf;

"unit used in equation"i
"" "Default display unit";

parameter RealType start=O "initial value"i
parameter BooleanType fixed = true; //default for para/const

= false; //default for other vars
parameter BooleanType enable = truei //defined for every class
parameter RealType nominal;
parameter StateSelect stateSelect = StateSelect.default;

equation
assertlvalue>=min and value<=max, "Variable value out of limit");
assertlnominal>=min and nominal<=max, "Nominal value out of limit")i

end Real;

where RealType, IntegerType, String Type, and BooleanType are the primitive types. But in order to
avoid confusion, modelers start creating models from pre-defined types. The relationship between
primitives and pre-defined types is handled intemally by the compiler.

From the above class definition, we can see that Real has actually encapsulated a set of attributes,
such as value, unit, start, etc., which make it well-suited for describing physical quantities.

1.2.5 Connections

In Modelica, models can be built up of components which are coupled by connections. Connectors
are communication interfaces between components, over which they are connected to form coupled
models. The connector class in the electrical circuit ex ample is defined as follow:

1.2 An Overview of Modelica

connector Pin
Voltage Vi

flow Current i i
end pini

7

The meaning of a connection statement is given in tenns of equations. A connection statement connect (pinI,
pin2) , where pinI and pin2 are instances of connector class Pin, connects the two pins such that
they fonn a node. The meaning of this connection is equivalent to the following two equations:

pinl. V = pin2. v
pinI.i + pin2.i = 0

The physical meaning of the first equation is that, there is no voltage drop at a node. The second
equation describes Kirchoff's CUITent law.

In a connector class, a variable declared without the prefix flow is called an across variable, e.g.
Voltage v here in this case. The conversion rule for connected across variables is that they are set
equal. A variable declared with the prefix flow is called a through variable. Connected through variable
are summed to zero at each node. Similar laws apply to ftow rates in a piping network and to forces
and torques in mechanical systems [4].

1.2.6 Partial Models and Inheritance

As in other object-oriented languages, there is a mechanism in Modelica to define an inteiface for
different types of objects that have common properties. In the electrical domain, many components
have two pins. An inteiface is defined as follow for these components:

partial model TwoPin "Superclass of elements with 2 electrical pins"
Pin p, ni

Voltage Vi

Current ii
equation

v = p.v - n.vi

o = p.i + n.ii
i = p.ii

end TwOPini

In addition to the two pins, p and n, the model also includes two attributes, quantity v, which defines
the voltage drop across the component, and another quantity i, that defines the CUITent ftowing through
the component. This model introduces 4 variables and 3 equations. Therefore, it is an incomplete
model. A constitutive equation must be added to make it complete and consistent. Modelica uses the
keyword partial to indicate that a model is incomplete and uninstantiable.

A resistor has aIl properties described by the TwoPin model. Therefore, the TwoPin model can be
reused in defining a resistor model:

model Resistor "Ideal electrical resistor"
extends TwoPini
parameter Real r (unit="Ohm") "Resistance"i

equation
R * i = Vi

end Resistori

1.3 Current Tools 8

The extends clause specifies that TwoP in is the parent class of resistor. By inheriting a class, it inherits
aIl attributes and equations from the parent class. Modelica supports multiple inheritance.

Variables declared with prefix parameter are called parameter. The value of a parameters is constant
during a simulation run, but it can be changed between runs. This makes it possible for a user to
change the behavior of a model without recompiling it.

1.2.7 Modeling Dynamics

Dynarnic systems have behavior which evolves as a function of time. Modelica has a unique prede­
fined independent variable time. AIl Modelica variables are implicitly signaIs: their value varies with
time.

The output of a sine-wave voltage source is a function of time. The following definition of voltage
source shows that.

model VsourceAC "sin-wave voltage source"
extends TwoPin;
parameter Voltage VA = 110 "Amplitude";
parameter Real f (unit="Hz") = 50 "Frequency";
constant Real PI = 3.14159265;

equation
v = VA*sin(2*PI*f*time);

end VsourceAC;

Also, Modelica uses the predefined operator der to represent the time derivative. It occurs in the model
definition of a Capacitor.

model Capacitor "Ideal electrical capacitor"
extends TwoPin;
parameter Real c (unit="F") "Capacitance";

equation
c * der (v) = i;

end Capacitor;

where der (v) means the time derivative of v.

1.3 Current Toois

There already exist sorne excellent commercial tools for Modelica. Dymola, an integrated modeling
and simulation tool developed by Dynasim (http://www.dynasim.se). has a Modelica translator
which is able to perform aIl necessary symbolic transformations for large systems (more than 100
000 equations) as weIl as for real time applications. It includes a graphical editor for model editing
and browsing, and a simulation environment. It also provides convenient interfaces to Matlab and the
popular block diagram simulator Simulink. For example, a Modelica model can be transformed into
a SIMULINK S-function which can be simulated in Simulink as an input/output black.

Another commercial tool for Modelica is MathModelica developed by MathCore (http://www .
mathcore. corn). It provides a Modelica simulation environment which is closely integrated into
Mathematica (http://www.wolfram.com). The tight integration with Mathematica also makes it
possible to perform complex analysis tasks, advanced scripting, and other technical computations on
models and simulation results. MathModelica has a graphical editor for model editing and browsing.

1.4 Thesis Objectives 9

The kernel of MathModelica is similar to that of Dymola because internally, the Dymola symbolic
and simulation engine is used for the formula manipulation and for the simulations.

The Open Source Modelica is a tool developed by PELAB, Linkoping University (http://www . ida.
liu. se/labs/pelab/modelica). It is to create a complete Modelica modeling, compilation and
simulation environment based on free software distributed in source code form intended for research
purposes. The Open Source Modelica tool contains two major modules, Modeq and ModSimPack.
Modeq is a translator which translates Modelica source model into fiat Modelica, while ModSimPack
is a translator that translates fiat Modelica model to C/C++ code.

1.4 Thesis Objectives

In the long term, we are interested in developing an integrated modeling and simulation environ­
ment for Modelica, as well as using Modelica as a meta-modeling language with AToM3, a tool for
multi-formalism and meta-modeling under development at the Modeling, Simulation, and Design
Lab (MDSL) in the School of computer Science of McGill University (http://moncs . cs .mcgill.
ca/MSDL/research/projects/AToM3/). A Modelica compiler is required as the kemel for this fu­
ture environment. With lirnited resources, our research currently focuses on a subset of the Modelica
language, and on continuous systems. We name this subset j!Modelica, where Il stands for mini, meta­
modeling, multi-formalism, and MSDL.

The main objective of this thesis is to build an efficient research prototype compiler for j!Modelica.
More specifically, the first prototype of the j!Modelica compiler was designed to provide an intera­
tive environment that supports the real essence of the language-non-causal modeling. It not only
performs semantic analysis, but also carries out sorne computer algrebra optirnization techniques in
terms of formula manipulation.

Also, this thesis is to provide a relatively complete specification of the semantics of j!Modelica, and
to sumerize and propose our studies of sorne language features and formula manipulation techniques
as future work.

The Overall Architecture

Given that our aim is to build an open source research prototype compiler for Modelica, rapid proto­
typing and portability are the main concerns in choosing the implementation language. Python is an
interpreted, dynamically type-checked object-oriented programming language. Like Java, the Python
implementation is portable across many platforms. But compared to JAVA, it is better-suited for rapid
software prototyping. Python also supports the seamless integration of code developed in statically
type-checked language. This "extension" allows the graduaI replacement of performance-critical parts
of the prototype. It also allows gluing of libraries (e.g., numerical code written in Fortran). In addition,
in order to build an integrated modeling and simulation environment with a graphical user interface,
the JAModelica compiler will be embedded into AToM3, which was implemented in Python. With the
above-mentioned advantages of Python, and for consistency in our future tool, we chose to implement
the JAModelica compiler in Python.

As a research prototype compiler, this project currently only focus on a subset of the Modelica lan­
guage. But this subset covers the real essence of Modelica-non-causal modeling. The JAModelica
compiler is able to resolve class inheritance and translates input models into fiat Modelica, and per­
forms symbolic transformations on the DAEs. Support for advanced and complex language con­
structs is left as future work. Following is a list of language features that are not yet supported in
the JAModelica compiler:

• the causal modeling constructs, i.e. algorithm statement, function call, and block class

• arrays and matrices

• element redeclaration

• the import statement

• external function call

• the within construct

• hybrid system modeling, e.g. conditional equations, when equations

• and more ...

2.1 The Big Picture

Figure 2.1 shows a high-Ievel view of the JAModelica compiler. The compiler consists of three mod­
ules, the Front End, the Back End, and the Code Generator. The Front End takes Modelica source
code as input, performs lexical and semantic analysis, and generates a fiat Modelica model, which is
in essence a set of DAEs. The fiat Modelica model is then passed to the Back End, where formula
manipulation is done. The Code Generator finally generates input for the Octave simulator. More de­
tails on Octave will be discussed later. AIso, for the purpose of testing and debugging, pretty printers
are employed to dump Modelica code from internaI representation at different phases. By comparing

2.2 The Front End 11

Modelica Model

-------------- file

o -------------- process

D -------------- internai representation

Figure 2_1: The Overview of pModelica

this Modelica code with the input model, we can verify that no information is lost during each trans­
formation step. It is important to note that debugging output of each step of model compilation is in
the form of a valid Modelica model (which is accepted by the compiler).

2.2 The Front End

Figure 2.2 is a detailed view of the Front End. The Front End is made up of the following components:

• A Linux executable (implemented in C++) that takes a Modelica model as input, performs
parsing, and generates an XML representation of the parse tree.

• A graph kemel called pyGK (implemented in Python), which reloads the XML parse tree into a
pyGK graph representation.

• The ASTBuilder, which converts the parse tree into an abstract syntax tree.

• A semantic analyzer, which translates the original Modelica model into fiat Modelica.

Thanks to PELAB at the Department of Computer and Information Science, Linkoping University,
who have kindly offered us the lexer and parser of Modelica from their Open Source Modelica project,
we were able to save a lot of time in implementing the parser. The PELAB parser was developed using
the tool ANTLR under Windows. We recompiled it under Linux, and generated a C++ parser.

2.2 The Front End 12

r

The Front End

--------------'

Figure 2.2: The Front End of pModelica

This parser accepts Modelica models and generates parse trees. Implementing the parser and the
following parts of the compiler in different languages raised a problem: how to pass the parse tree
to Python? One solution is to "extend" Python with the parser. Another solution is to use an external
data description, through which the two different languages can communicate and exchange data. This
provides a stricter separation but is less efficient. XML is a mark up language for describing structured
data. It provides a mechanism to identify structure in data. In our design, we chose to write out to file
an XML description of the parse tree, and then reload this information and transform it into a Python
parse tree. So long as the XML representation is well-defined, no information will be lost during this
transformation. The XML representation and transformation process will be discussed in section 3.2.

A parse tree represents the concrete syntax of a mode!. It is more desirable to have an internaI rep­
resentation of the abstract syntax of a mode!. The abstract syntax of a Modelica model is defined in
terms of language constructs, such as class, element, declaration, statement, and expression etc. This
representation is independent of the source syntax of a Modelica model being compiled. A parse tree
is transformed to an abstract syntax tree (AST) by the ASTBuilder. In order to verify that the AST
transformation is correct and complete, Modelica source code is produced from the AST. Verification
of correctness can be done by comparing the Modelica model thus produced to the Modelica input
mode!.

2.3 The Back End 13

Semantic analysis is carried out in the Front End. It includes scoping analysis, name lookup, expand­
ing inheritance, fiattening structured components and coupled models, and type checking. Finally, the
Front End generates a fiat Modelica model, where all structured components are fiattened down to
basic components, and connections are replaced by regular equations. Such a fiat model is a system
ofDAEs.

2.3 The Back End

Figure 2.3 gives a detailed view of the Back End.

Figure 2.3: The Back End of j1Modelica

Automated formula manipulation is significant to non-causal modeling, which is characterized by a
set of implicit equations (DAEs). A simple approach to solving for the various unknowns in the set
of equations is to caU a DAE sol ver, such as DASSL. However, the solution will be far more efficient
if a causal representation can be found, i.e. computational causality is assigned and equations are
sorted in an appropriate computation order. In many cases it is possible to transform a non-causal
set of equations into a causal one. Even though this transformation process trades off compile time
efficiency, it gains in simulation run-time. Since the number of simulation run is usually much greater
than the number of compilations, it is certainly worths to try these transformations.

Causality assignment, along with sorting of equations and algebraic loop detection, is implemented
in the j1Modelica compiler. Causality here means computational causality, not physical causality.

2.4 The Code Generator 14

Causality assignment determines that which variable is to be computed in each equation. The compu­
tational causality can be found in terms of sorne graph algorithms, which will be discussed later.

Once a computation of causality is found, the equations are then sorted into a correct computation
order based on their computational dependency. However, if there exist algebraic loops, causality
assignment and sorting are not sufficient. The equations involved in an algebraic loop are mutually
dependent. Sorting is not able to give a correct computation order. These equations must be identified
and be solved separately. Therefore, sorting is always followed by the detection of algebraic loops.

In order to provide an optimal internaI representation of equations, a canonical representation of
equations and corresponding transformation rules are defined in [26]. A subset of these transformation
rules are implemented in the jlModelica compiler.

2.4 The Code Generator

Finally, input for the Octave code is generated. Octave (a GNU Matlab clone), provides a high-level
language for numerical computation. Octave has extensive tools for solving linear algebra problems,
nonlinear equations, and integrating ordinary differential and differential-algebraic equations. The
Octave model is executed by an Octave interpreter. The computation result can be visualized through
GNU plot. We generate Octave input for convenience. The generated output is similar to Matlab
M-files. To maximize efficiency, Simulink S-function will be generated in the future.

The Front End

The Front End perforrns parsing and semantic analysis. The Modelica semantics is defined in terrns
of a set of ruIes for translating classes (including inheritance and modification), instances, and con­
nections into fiat Modelica, which is a fiat set of constants, variables, and equations. For example, the
following Modelica model Main

class A
Real al, a2;

equation
al * 2 = a2;

end A;

class B
Real bl, b2;

equation
bl ~ 2 = b2;

end B;

model Main
A a;
B b;

equation
a.al = b.bl;
b.b2 = 4;

end Main;

will be translated into the following fiat Modelica:

model Main "flat"
Real a_al;
Real a_a2;
Real b_bl;
Real b_b2;

equation
a_al * 2
b_bl ~ 2
a_al b_bl;
b_b2 4;

end Main;

3.1 The Parser 16

where aIl structured components, such as a, b, are fiattened to basic components, such as a_al 1 b-Il1
etc. The equation part is the mathematical description of the mode!.

3.1 The Parser

As mentioned earlier, the parser was developed by PELAB at Link6pings University for its Open
Source Modelica project. It was implemented in ANTLR. ANTLR, Another Tool for Language Recog­
nition (http://http : 1 Iwww. antlr. org), is a language tool that provides a framework for con­
structing recognizers, compilers, and translators from grammatical descriptions. It is able to generate
parsers in Java, C#, or C++, but not Python. The PELAB Modelica parser uses C++. We have com­
piled it under Linux using the gcc compiler.

The parser takes Modelica source code as input, and generates a parse tree. A parse tree is made up
of nodes, which are defined and provided by ANTLR's AST factory. Each tree node corresponds to a
token. It records the type and value of a token, and keeps a reference to its first child and a reference
to its next sibling. Figure 3.1 is the c1ass diagram view of a parse tree node.

p,l
\ V

Node

+type: Int
+text: String
+getTypeO: Int
+getText(): String
+getFirstChild(): Node
+getNextSibling(): Node

1 ~ p,l

InpYT~ihlina

Figure 3.1: Class Diagram of Parse Tree Node

Given the following Modelica model as input,

Il Example 1
model A

Real ai
end Ai

a parse tree pretty prin ter dumps out the following parse tree:

+-117 : STORED_DEFINITION
1 +-95 : CLASS_DEFINITION
1 1 +-36 model
1 1 +-84 A
1 1 +-98 DECLARATION

3.2 XML Representation 17

+-84 Real
+-84 a
+-97 COMMENT

The higher abstraction view of this parse tree is shown in Figure 3.2.

Figure 3.2: A High-level Abstraction View of a Parse Tree

3.2 XML Representation

In order to make a parse tree accessible to our compiler written in Python, an XML representation of
the parse tree is defined. The parser together with an XML writer, writes out a parse tree in such an
XML representation. This XML file is then reloaded by an XML reader (written in Python).

Again, for rapid prototyping, a graph kernel called pyGK was employed to define the XML represen­
tation and to reload the XML file as a graph representation of a parse tree. pyGK was developed in
Python, as the graph kernel for AToM3, by Marc Provost at the MDSL, School of computer Science at
McGill University (http://moncs.cs .mcgill. ca/people/mprovost/). It provides an XML rep­
resentation for graphs, and an XML Reader and an XML Writer. Note that using pyGK also opens up
the possibility of applying graph transformations to the parse tree.

In the Front End, there is an XML writer (in C++) which writes out the parse tree into an XML file
in pyGK format. The XML file is then reloaded by the XML reader in pyGK into the data structure
defined in pyGK-a graph representation of the parse tree in Python. Figure 3.3 shows this process.

3.2.1 Representation

A pyGK graph XML representation conceptually con tains two parts, a list of nodes, and a list of edges.
This is different from the parse tree representation, which is based on adjacent nodes. The parser takes
care of this conversion when it writes out XML. Adjacencies between nodes are explicitly written out
as edges. Example 1 in section 3.1 is represented in XML as follow:

<?xml version="l.O"?>
<!DOCTYPE agI SYSTEM ''http://agl.dtd''>
<!-- GraphElements -->
<agI>

3.2 XML Representation

pyGK graph
representation of

parse tree (Python)

Figure 3.3: Parse Tree in C++ to pyGK Graph

<graph id=IAST" type=IAST">
<symb id=IQ" type=ISymbolTable">

<map key="text">
<string id="" type=IString" value=ISTORED_DEFINITION"/>

</map>
<map key="type">

<int id="" type=IInt" value=1117"/>
</map>

</symb>
<symb id=11" type=ISymbolTable">

<map key="text">
<string id="" type=IString" value=ICLASS_DEFINITION"/>

</map>
<map key="type">

<int id="" type=IInt" value=195"/>
</map>

</symb>
<symb id=12" type=ISymbolTable">

<map key="text">
<string id="" type=IString" value="model"/>

</map>
<map key="type">

<int id="" type=IInt" value=136"/>
</map>

18

3.2 XML Representation

</symb>
<symb id="3" type="SymbolTable">

<map key="text">
<string id="" type="String" value="A"/>

</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>
<symb id="4" type="SymbolTable">

<map key="text">
<string id="" type="String" value="DECLARATION"/>

</map>
<map key="type">

<int id="" type="Int" value="98"/>
</map>

</symb>
<symb id="5" type="SymbolTable">

<map key="text">
<string id="" type="String" value="Real"/>

</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>
<symb id="6" type="SymbolTable">

<map key="text">
<string id="" type="String" value="a"/>

</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>
<symb id="7" type="SymbolTable">

<map key="text">
<string id="" type="String" value="COMMENT"/>

</map>
<map key="type">

<int id="" type="Int" value="97"/>
</map>

</symb>
<edge from="O" to="l" fromOrd="O" toOrd="O"/>
<edge from="l" to="2" fromOrd="O" toOrd="O"/>
<edge from="2" to="3" fromOrd=" 1 " toOrd="O"/>
<edge from="3" to="4" fromOrd=" 1 " toOrd="O"/>
<edge from="4" to="5" fromOrd="O" toOrd="O"/>
<edge from="5" to="6" fromOrd=" 1" toOrd="O"/>
<edge from="6" to="7" fromOrd=" 1" toOrd="O"/>

19

3.2 XML Representation

</graph>
</agl>

20

A parse tree node is represented as a SymbolTable. Node attributes, Le. type and text, are stored
in the SymbolTable as entries. A SymbolTable entry is a mapping from key to value. For example, a
parse tree node with the token Real is converted to

<symb id="5" type="SymbolTable">
<map key="text">

<string id="" type="String" value="Real"l>
</map>
<map key="type">

<int id="" type="Int" value="84"1>
</map>

</symb>

where type is mapped to 84 (integer value ofIDENTIFIER), and text is mapped to Real.

In order to represent edges, each graph node is assigned a globally unique ID. For example, no de
Real and node a in the declaration Real a are assigned 5 and 6, respectively. In the parse tree, node
a is an adjacent node of node Real. But in the XML representation, such an adjacency is explicitly
described by an edge

<edge from="5" to="6" fromOrd="l" toOrd="O"I>

This representation denotes an outgoing edge from node 5, which is Real, to node 6, which is a. The
fieldfromOrd indicates whether this edge points to a child or sibling (0 means child, 1 means sibling).

A parse tree is converted to a directed pyGK graph by means of the transformation denoted above.
Even though pyGK represents a parse tree differently, the conceptual structure is maintained.

3.2.2 Implementation Issues

The main implementation issue in the parse tree transformation via XML representation is process
management. At the top level of the computer, the data fiow control is implemented in Python. But at
the very beginning of the fiow, the parser program (compiled C++) needs to be executed to generate
an XML file, which will then be reloaded by a Python script. Generating and reloading of the XML
file have to be synchronized. Therefore, the problem is how to create and manage a new process in
which the parser is executed.

Python has a module called os, which provides access to operating system functionality. It includes a
series offunctions forprocess management. One ofthem is the spawn* (mode, file, ...) function,
which executes the program file in a new process. The asterisk means that it has variants. We use one
of the variants, spawnlp (mode, path, file, ...), to manage the parsing and XML generating
process. The 1 variants are designed to be used in the case that the parameters of program file are
fixed, while the p variants will use path to locate the program file. For example,

os.spawnlp(os.P_WAIT, parserPath, './xmlDumper', argl, arg2)

creates a new process which executes the program xmlDumper at location parserPath, with argl
and arg2 as parameters. Under the os. P _WAIT mode, the main process will be temporarily suspended
till the new process exits. This mechanism guarantees that XML reloading will not happen until the
file has been generated.

3.3 Abstract Syntax 21

3.3 Abstract Syntax

Each node in a syntax tree must encode information to indicate the kind of the node. There are two
ways to encode this information: the homogeneous approach and the heterogeneous approach. The
homogeneous approach uses a single class type together with numerous token types to represent
tree nodes. A syntax tree with homogeneous nodes can be seen as a parse tree. The heterogeneous
approach uses different classes to represent different kinds of tree nodes. A syntax tree constructed in
this way, such as Abstract Syntax Tree, is a heterogeneous structure.

The syntax tree generated by the PELAB parser is a homogeneous parse tree. A detailed description
of the representation of tree nodes has been given in section 3.1. A parse tree represents the concrete
syntax of the corresponding pro gram, and it is source code dependent. In order to perform semantic
analysis more efficiently, a pro gram is typically represented in terms of an abstract syntax tree (AST)
internally in a compiler. The abstract syntax tree, along with the Visitor design pattern, is one of the
most important patterns in compiler design and implementation. Note that the homogeneous parse
tree representation does not support the visitor pattern. More details on the visitor pattern are given in
section 3.4.3.

3.3.1 Design

An abstract syntax of Modelica is defined. Even though this project currently only works on a subset
of the language, the full Modelica syntax is supported (implemented), from parsing to abstract syntax
tree construction. The abstract syntax is specified in terms of the Modelica language constructs. Ac­
cording to these constructs, the abstract syntax is divided into four packages: Definition, Component,
EquationPart, and Expression. AIso, a package called Scope is defined to support scoping analysis.
Figure 3.4 is the UML diagram of the abstract syntax at package level.

finitio

EquationPar

Figure 3.4: Packages in Abstract Syntax

Figure 3.5 shows the classes defined within package Definition. ClassFile represents the highest level
construct-a Modelica file. A ClassFile consists of class definitions, which in tum are made up of
elements. In Modelica, element refers to class definitions, extends-clauses, and component declared
in a class. A more detailed description of the se language constructs can be found in the Modelica
Syntax defined in [5].

3.3 Abstract Syntax

finitia

ClassA"

wit ~ UI

WId'llnCiause

C1usPreflx
-viaibility: En ..
-iiFinal: Ibboollan
-iaEnc.,.ubted: loo1ean
-bputial: Iooleu
-iMerOutar: En_
-iaa.placlable: IoolllUI

1

1 Element

1 1

.1

EnumUterai
-11neJiU11:int
-eoUt.: !at

:!=t~~~atE

Figure 3.5: Package Definition

22

l 1

f-:=7-:=7:::"Exto:::::::nd:.;:'C1a;::";::" __ -;1 ImportClause 1
-a_: Exp::N_Ixp Il:l4ent: [xp::lclantIxp:1
--.diricaUon: ~nt::Cl ... ModifiCitio. -nue: Ixp::N_Exp

-itQllalifie4: booban

Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9, describe the detailed definition of package Com­
ponent, EquationPart, Expressions, and Scope, respectively. Each of these classes corresponds to a
specific Modelica language construct defined by the Modelica grammar in [5]. See Appendix for a
full description of the Modelica grammar.

3.3.2 Transformation

The transformation from parse tree to AST is implemented in a one-pass tree traversaI. Each structural
sub-tree is transformed to a corresponding abstract syntax construct. Parentheses, which are syntacti­
cally significant to expressions, no longer appear explicitly in ASTs. The AST structure contains the
structural information of an expression.

3.3.3 Test of Correctness

A series of transformations are executed to convert a Modelica model into an AST. This AST has to
retain aIl the information from the source modeI. To verify this requirement, a pretty prin ter is imple­
mented to dump out syntactically correct Modelica. That is, given an AS T, print out its corresponding
Modelica modeI. If the Modelica printout is the same as its original input, then it proves that aIl the
transformations are correct. In the JLModelica compiler, a user can choose whether or not to dump
Modelica.

3.4 Scoping and Name Lookup

OllPonen

Declaration
TypePrefix

~.1 -lineNWl: lnt
-iaFlo.: Boolean
-vidbili ty: Ena

-colMua: Int
-ident: Exp: : IdentExp
-arrSub: Exp: : ArrSubExp -variabili ty: Enua
-co..ent: Exp:: Ca.aentExp

Modlflat/on]

-lineN\III: Int 1 -caus.Iity: Enu.

-colNWI: Int 1

"u, Hi

1 1

1 ClassModification 1 EqualsModificatlonl IAsslgnModificatlonl
-equala: Exp: :Exp +assip: Exp: : Exp

Argument
-lineNa: Int
-colNua: Int
-haaEach: Boolean
-isFinal: Boolean

1 1
ElementModifiation 1 ElementRedeciaration

-cocapRef: Exp: : CotIpRefExp l-claaIiDefinition: Definition: :Cl.ssDefinition
-ca.aent: Exp: :CoaentExp -replaceableClauae: Definition: : ReplaceableClaus

Figure 3.6: Package Component

3.4 Scoping and Name Lookup

, .•.

ComponentClausel
-lineNUII: lnt
-colMUII: Int
-type: Exp: :NlllleExp

23

As in traditional programming languages, a name in a Modelica model has a scope in which it is
visible. The scope of a name is the region of the code where the name has a meaning corresponding
to its intended use [15]. Scoping analysis is characterized by the introduction and maintenance of
symbol tables, which store mappings of identifiers to their types and definitions. As class definitions
and declarations are processed, bindings from identifiers to their meanings are added to the symbol
tables. When identifiers are used, they are looked up in the symbol tables and bound.

The following sections explains sorne Modelica language constructs, which are significant in under­
standing the scoping roles of Modelica. The data structure for scoping analysis is then presented.

3.4.1 Semantics

Variable Declaration

In Modelica, class instances are created via variable declarations. A declaration states the type and
other properties of a variable. A declaration in Modelica has the following form:

[prefixes) type-specifier component-list

where

• prefixes specifies accessibility, variability, and data flow .

• type-specifier specifies the type of a variable.

3.4 Scoping and Name Lookup 24

Figure 3.7: Package Equations

• component -list a list of component declaration. A component declaration is an identifier,
optionally followed by an array dimension descriptor and/or modification.

For example, the following declaration

parameter Real a, bi

declares two parameters, a and h, of type Real. It is equivalent to the following:

parameter Real ai

parameter Real bi

Local Class Definition

Modelica supports local class definition. Local classes can be defined nested inside a class. The num­
ber of levels of nesting is unlimited. The following ex ample shows that class B is locally defined
within class A:

class A
class B

Real Xi
end Bi

class C
B bli

3.4 Scoping and Name Lookup

end Ci

B b2i

end Ai

25

Figure 3.8: Package Expressions

".

.1

1 SymbolTabl.
-table: HubY_hl.

+lookVp(id:Exp::ldentlxp): '0011'

Figure 3.9: Package Scope

A local class definition is accessible in the class where it is defined, and from within alllocal nested
classes. In this example, local class definition B can be accessed from anywhere in A and c.

The Concept of Parents

The classes lexically enclosing an element form an ordered set of parents. A class defined inside
another class definition (the parent) precedes its enclosing class definition in this set [5]. For example:

class A

end Ai

class B
Real Xi

class C

3.4 Scoping and Name Lookup

Real Yi
end Ci

end Bi

26

There is an unnamed parent at the top-Ievel, which encloses all class definitions. In the example, the
parent of class A and B is that unnamed parent. The ordered set of parents of class C is [B, unnamed],
and the one of variable Y is [C, B, unnamed].

Encapsulated Class

Class encapsulation is defined by the class prefix encapsulated. It is a mechanism for scoping con­
trol. Elements declared in a parent class are not accessible from within an encapsulated class unless
they are explicitly imported. In the previous example, if class C is defined as encapsulated, bl can not
be declared as an instance of B. The following model shows the correct use of encapsulation in class
D.

class A

class B

Real Xi
end Bi

encapsulated class C
B b1i Il error

end Ci

encapsulated class D
import A.Bi
B bli Il correct

end Di

B b2i
end Ai

Use-Before-Declare

The current Modelica language (version 2.0) allows use-before-declare (UBD). This language fea­
ture provides better support for graphical user environments, because the order of declaration is not
determined when components are graphically created.

In sorne programming languages, the name of a class definition can be used before the class is defined.
In Modelica, not only class definitions, but also variables can be used before they are declared. Below
is an example demonstrating this feature.

class A
B bi
class B

Real X (start=y) i
parameter Y = 2i

end Bi
end Ai

3.4 Scoping and Name Lookup 27

In class A, name B is used before it is defined. AIso, within class B, variable y is referenced before it
is declared. Both these declarations are legal in Modelica.

Illegal Referencing of Declared Variables

It has been shown in the previous section that a declared class is accessible from within local nested
classes. But this mIe does not apply to declared variables (except for constants). In Modelica, it is
illegal to reference variables or parameters declared in parent classes. Referencing declared constants
in parent classes is allowed. For example:

class A
class B

Real Xi
end Bi

class C
B bli Il referencing class definition in parent class is legal

end Ci

Real Yi
constant Real z lOi

class D
Real dl(start=z)i Il referencing declared constants is also legal
Real d2 = Yi Il error: referencing declared variables is illegal

end Di

B b2;
end Ai

For-Ioop

The following clause

for IDENTl in expressionl, IDENT2 in expression2 ... loop
loop body

end for

defines a for-Ioop in Modelica. A for-Ioop introduces an additionallexical scope. Variables declared in
a for-Ioop (called iteration variables) are visible only within the body of the for-Ioop. The following
example clearly shows how the scope of an iteration variable is just the body of the for-Ioop.

class B
constant Integer j=4i
Real X [j l;

equation
for j in l:j loop Il The loop variable j takes the values 1,2,3,4

X[jl=ji Il Uses the loop variable j
end fori

end Bi

3.4 Scoping and Name Lookup 28

In the for-Ioop index, the first j is implicitly declared as an iteration variable, while the second j refers
to the constant integer declared in class B.

Short Class Definition

In addition to the regular class definition form, a class can also be defined in terms of the foIlowing
short form

class IDENTl IDENT2 class_modificationi

which is identical to

class IDENTl
extends IDENT2 class_modificationi

end IDENTli

except that short class definition do es not introduce an additional lexical scope for modifiers. The
folIowing example taken from [5] demonstrates the difference:

model Resistor
parameter Real Ri

end Resistori

model A
parameter Real Ri
model Load=Resistor(R=R)i
Il this is correct because the R in Resistor is set to R from model A

model LoadError
extends Resistor(R=R)i
Il this gives the singular equation R=R, since the right-hand side
Il R is looked up in LoadError and found in its base-class Resistor

end LoadErrori

end Ai

This is an exception to the lookup rules: modifiers in short classes are looked up in the immediately
enclosing scope.

Scope of Predefined Names

User-defined classes are built from predefined types, functions etc. The predefined types in Modelica
are Real, Integer, Boolean, and String. Modelica also has predefined functions sueh as der () ,
and sin (). AlI these predefined names are accessible from anywhere within a program, including
encapsulated classes. Thus, the scope of predefined names is global.

Duplicate Declarations

In Modelica, an element name is unique in each lexical scope. Therefore, duplicate element names
are not aIlowed in a class. The name of a declared element must be different from aIl other declared
elements in that class. For example, both of the foIlowing classes are illegal:

3.4 Scoping and Name Lookup

class A
Real ai
Integer ai Il Error: duplicate variable name

end Ai

class B
Real Xi

class X Il Error: X has been declared as Real in this scope

end Xi

end Bi

Introduction of the Keyword self

29

In order to print out intermediate representation of Modelica models as valid Modelica, we introduce
the keyword self in pModelica. The meaning of self is equivalent to that of self in Python. That is, it
refers to the object that holds the scope within which it is used. For example, the following model

model A
Real a=3.0i
Real bi

equation
a*b=15i

end Ai

can be rewritten as

model A
Real a(self=3.0)i
Real bi

equation
self.a * self.b 15i

end Ai

where the first self refers to a, the second and the third self refers to model A.

Scope Rules

From the previous examples, scope roles in Modelica can be summarized as follow:

• The scope of a top-Ievel class definition is the entire program, except for those classes which
are encapsulated.

• The scope of a local class definition or a declared constant covers the whole class where it is
declared, including alliocai nested classes that are not encapsulated.

• The scope of a declared variable or parameter is the enclosing class, excluding local nested
classes.

• The sc ope of an iteration variable is the body of the for-Ioop where it is implicitly declared.

3.4 Scoping and Name Lookup 30

Static Name Lookup

When a class is being instantiated, names used within that class are looked up. These names include
type specifiers, variables, and functions. According to the nested scope mIes, Modelica uses hierarchi­
callookup of names. The lookup starts searching from the sc ope where it is used, then searches in the
ordered set of enclosing scopes until a match is found or an enclosing class is defined as encapsulated.

A name in Modelica can either be a simple name (without dot referencing, e.g., A), or a compos­
ite name (composed using dot notation, e.g., A.B.C). The lookup procedure of a simple name is as
follows:

• If a name is inside a for-Ioop or inside the body of a reduction expression, it is looked up starting
in the for-Ioop scope which contains the implicitly declared iteration variables.

• A name is then looked up sequentially in each member of the ordered set of parents, in the
built-in scope and in the predefined scope, until a match is found or a parent is encapsulated.

• If the name is not found declared in the previous two steps, the lookup continues in the global
scope which contains predefined names.

The lookup in each scope is performed as follow:

• Among declared components and local class definitions, including those inherited from base
classes.

• Among the import names of qualified import statements.

• Among the public elements of packages imported via unqualified import statements.

For a composite name of the form A. B. C:

• The first identifier is looked up as a simple name.

• If the first identifier denotes a declaration, the rest of the name, e.g, B. C, is looked up among
the declared components of the definition of the declaration.

• If the fist identifier denotes a class, the rest of the name is looked up among the declared name
elements of the class. If the class does not satisfy the requirements of a package, the lookup is
restricted to encapsulated elements only. The following example shows this restriction:

package Pl
constant Real a=3.0;
class BI

Real bl=a;
end BI;

end Pl;

class P2
Real a;
encapsulated class B2

Real b2;
end B2;
class B3

Real b3;
end B3;

3.4 Scoping and Name Lookup

end P2;

model M
Pl.Bl xl;

P2.B2 x2;

P2.B3 x3;

end M;

Il
Il
Il
Il
Il
Il

This is legal since Pl satisfies
the requirements of a package.

31

This is also allowed because B2 is an encapsulated
class even though P2 is not a package.
This is illegal because neither P2 is a
package nor B3 is encapsulated.

3.4.2 Design and Implementation

The basic structure of semantic analysis is the symbol table. It is a tabulation of the collection of
declarations and con tex tuaI information, which is convenient for symbollookup. Each symbol in the
table is bound to the meaning as it is declared. This section presents the design and implementation
of scoping analysis and name lookup in the jLModelica compiler.

The Data Structure

The analysis in section 3.4 shows that scopes usually correspond to class definitions. Each class defi­
nition introduces a new lexical scope. If a scope is conceptually seen as a node, the structure of scopes
in a program can then be seen as a tree.

In the AST design, a Scope node has been inserted at each structure level which introduces a lexical
scope.TheseincludeClassFile, ClassDefinition, ForEqStm, ForAlgStm,andForFunArgExp
(reduction expression). A sc ope node is actually a symbol table and has two attributes: table and outer.
table is a dictionary (in Python) which maps identifiers to their "meanings" (TableEntry), and outer
is a reference to the scope node of its outer scope. With this outer attribute, scope nodes are connected
as a tree, with the scope node at the ClassFile level as the root. Figure 3.10 is the class diagram of
the scope package.

A name (identifier) is bound to certain "meanings" in symbol tables. The "meanings" of a name
is represented in its corresponding TableEntry, which contains information such as prefix, type,
definition, value, etc. AU the information of declarations in an AST is moved to symbol tables, which
enables efficient symbollookup.

Multiple Passes

As mentioned earlier, Modelica (version 2.0) aUows use-before-declare (UBD). Multiple passes are
required to support UBD in implementing scoping analysis and name lookup. In the jLModelica com­
piler, these tasks are executed through three passes. Each pass carries out a specific task, which is
done via a visitor.

During the first pass, the visitor collects all declared elements, i.e., declared components and local
classes, in the AST. A new TableEntry is created for each declared name. There are two types of
TableEntry, DeclarationEntry and DefinitionEntry. The class diagram in Figure 3.10 shows
the relationship. More specificaUy, a DeclarationEntry is created to store aU the information of a
declared component, while a DefinitionEntry is created for a declared class. A DefinitionEntry
mainly keeps a reference to the class definition node in the AST. These created entries are added to
symbol tables in corresponding scopes. Each symbol table then contains an declaration information

3.4 Scoping and Name Lookup

Scope

TableEntry

+lineNWI: int
+COlNWl: int

•• 1' +naae: ASTExp: : IdentExp
defini tian: ASTDefini tian: : ClassDefini tio

I~ ~

.1
V 1 1

SymbolTable DeciarationEntry L DefinitionEntry J
-table: HashTable +type Prefix : ASTCollponent:: TypePrefi: I+visibility: EnWlI
+lookUp(id:Exp: :Id.ntExp): Bool. +type: ASTExp: :NueExp

l1 +typeArrSub: ASTExp: : ArrSubExp
+nueArrSub: ASTExp:: ArrSubExp
+.odif: List

Figure 3.10: Detailed Package Scope

in its own scope after the first pass completes.

In a lexical scope, whenever a dec1aration with duplicate name is detected, an exception is thrown.

Figure 3.11 illustrates the AST and scope nodes structure of the following Modelica model:

Il Assume that this Modelica model is stored in file A.mo
class A

Real a, b;

C c;

class C
Real X;

end C;

equation
a = b;

end A;

The second pass is to perform type specifiers lookup. For example, in the following dec1aration

Integer a;

32

Integer is the type specifier. A visitor iterates over aIl DeclarationEntrys in the AST. The type
specifier in each of these symbol table entries is looked up. The lookup algorithm is given in sec­
tion 3.4.1. If the type specifier is found, a reference to the definition that type in the AST is created in
that DeclarationEntry, otherwise an exception is thrown. Figure 3.12 shows the change in the AST
of the previous ex ample after the second pass.

Used names are looked up during the third pass. Names are used in modifications and equations. For
example, in the following piece of code

3.4 Scoping and Name Lookup

model Example

parameter Real ai

Real bi
Resistor RI (r=2*a) i

Resistor R2i

equation
b = a A2i

conne ct (RI.p, R2.n)i

end Examplei

Figure 3.11: AST after the first pass

33

RI is dec1ared as a Resistor, together with modification r = 2*a to its attribute r. In this modification,
names r and a are used. AIso, in the equation part, names b, a, RI. p, and R2 . n are referred to. To
verify that the use of these names is legal, they must be found dec1ared in that lexical scope. The
lookup algorithm is also the same as the one given in section 3.4.1, except that the left hand side of an
element modification, e.g., r in r = 2 * a, is looked up in its definition scope. For example, r is looked
up in the scope where c1ass Resistor is defined.

If use of a name is verified legal, a reference to the DeclarationEntry of this name in a symbol
table is created. Otherwise, an exception is thrown. Figure 3.13 shows the same AST as the one in
Figure 3.11, after the third pass.

3.4 Scoping and Name Lookup 34

Figure 3.12: AST after the second pass

3.4.3 The Visitor Design Pattern

In order to give a c1ean design and an easy-to-understand implementation, we use the visitor design
pattern. Visitor enables the complete separation of data and the operations to be performed on the
data. In other words, one can define a new operation without changing the classes of the elements on
which it operates.

Overview of the Visitor Pattern

Programs are usually represented as Abstract Syntax Trees (AST) internally in a compiler. An abstract
syntax tree is a structure which consists of different types of elements (nodes). The semantic analysis
will need to perform operations, such as name lookup, type checking, etc., on ASTs. Moreover, we
might define operations on ASTs for pretty-printing, program restructuring, and code generation. Most
of these operations might treat different kinds of tree nodes differently. For example, type-checking for
sum expressions is different from type-checking for function calls. If aIl the se operations are coded as
methods inside various c1ass definitions of AST nodes, it leads to a system that is hard to understand,
main tain, and change.

Another design scheme is to separate the data and the operations performed on it. More specificaIly,
we can place related operations, e.g., type-checking operations for various sorts of nodes, into a sepa­
rate object, namely, a Visitor. The visitor is then passed to elements of the AST as the AST is traversed.
Each AST node has an accept method with the visitor object as argument. The accept method in each
AST node in turn invokes the method in the visitor that is specifically defined for this kind of nodes.
This method invocation includes the AST node itself as an argument. It is the visitor that executes
the operation for AST nodes. This technique is called double-dispatch because the operation that gets
executed depends on both the type of the visitor and the type of the element.

Figure 3.14 is the UML class diagram of the Visitor Pattern. There are two class hierarchies in this
pattern: the class hierarchy of nodes (data) and the class hierarchy of visitors (operations performed on
data). Each concrete visitor encodes an operation to be performed on various kinds of nodes. One can

3.4 Scoping and Name Lookup 35

Figure 3.13: AST after the third pass

'J
1 Visitor

Node

I:ViSitAssillllenntNode() :
+iI~S:!:121(Y'Yilil!2[l' +visitVariableNode() :

if t
1 1 1 1

ConcreteVisitorl ConcreteVIsltor2 1 AssignmentNode L VariableNode 1
+visitAssignaentNode() : +visi tAssignaentNode(): l+accept(v:Visitor): J +accept(v:Visitor) :
+visitVariableNode() : +visitVariableNode() :

Figure 3.14: The Visitor Pattern

add a new operation in the compiler by creating a new subclass in the visitor class hierarchy. As long
as the grammar of a language does not change, new functionality of the compiler can be augmented
simply by adding new concrete visitor classes.

Implementation Issues

As it is mentioned earlier, the underlying philosophy of the visitor pattern is double-dispatch. Double­
dispatch simply means that the operation that gets executed depends on the kind of request and the
types of two receivers: the visitor's and the element's. The accept method is a double-dispatch opera­
tion. The following block of code (Python style) is a sample accept method:

class VariableNode:

def accept(self, v):
v.visitVariableNode(self)

3.5 Expanding Inheritance 36

The accept method at every element is invoked during the object structure traversaI. But the real
operation is not performed within the accept method. Instead, it sends a request to the visitor to
execute the operation on the element being visited. Therefore, the operation that gets executed depends
on both the type of Visitor and the type of Element it visits. This is the key to the visitor pattern.

The second implementation issue is object structure traversaI. A visitor is supposed to visit each
element in the structure. The problem is, who is responsible for traversing the structure? Or in other
words, how does the visitor get there?

In fact, we can put the structure travers al code either in the object structure itself, or in the visitor.
If we put responsibility for traversing the structure in the object structure itself, we only need to
write the traversaI code once in the object structure. But each time a visitor traverses the structure,
it has to follow the same traversaI algorithm. In our implementation, the vi si tors are responsible for
traversing the AST. Each concrete visitor has its own code for each aggregate con crete element. This
is because in our compiler, the traversaI algorithm for sorne visitors are different, even though it ends
up duplicating code. For ex ample, a name lookup visitor only needs to traverse the equation part in
an AST.

The Design

Figure 3.15: The Name Lookup Visitor

Figure 3.15 is a simplified UML class diagram of the design of the visitors that perform scoping
analysis and name lookup. A class hierarchy of visitors is defined to support multiple concrete visitors.
The parent class Visitor of all visitors of an AST is an abstract class. The parent Visitor declares
an operation (method) for each AST construct class it visits. In every concrete visitor, there is a
corresponding implementation for each of these methods. AlI these methods are not shown in the
class diagram because the number of AST constructs is relatively large.

3.5 Expanding Inheritance

Modelica supports class inheritance, a key feature of object-oriented language. An existing class,
called superclass or base class, can be extended to define a more specialized class, which inherits the
properties and behavior of the base class. The specialized class is called subclass or derived class. It
is defined in terms of the extends clause

extends name [class_modification]

For example, the following piece of code

3.5 Expanding Inheritance

partial model TwoPin "Superclass of elements with 2 electrical pins"
Pin p, n;
Voltage V;
Current i;

equation
V = p.v - n.v;
o = p.i + n.i;
i = p.i;

end TwoPin;

model Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real r (unit="Ohm") "Resistance";

equation
R * i = V;

end Resistor;

defines Resistor as a subclass of TwoPin.

3.5.1 Semantics

37

As mentioned earlier, the goal of the Front End is to translate original Modelica model into fiat Mod­
elica, where aIl declared components are fiattened down to predefined types. In class inheritance,
properties and behavior are inherited in the form of component declarations, and equations. Derived
classes need to be expanded before the model is translated into fiat Modelica. In fact, aIl data and
equations in base classes are copied to the derived class. The foIlowing example shows how extend
clauses are expanded.

package P
constant Real PI=3.l4;
class A

Real al, a2;
equation

al*a2=1.0;
end A;

class B
A a(a2=PI);
Real b;

equation
a.a2 * b~2

end B;
end P;

class C
class Cl

Real cll;
end Cl;

end C;

10.0;

3.5 Expanding Inheritance

model M
extends Ci

extends P. Bi

Cl Xi

end Mi

Il Expanding the extends clauses in model M leads to the following
Il expanded version of M:
model M

Il inherited from C
class Cl

Real cl1i

end C1i

Il inherited from P.B
constant Real PI=3.14i
A a(a2=PI)i
Real bi

Cl Xi

equation
a.a2 * b'2

end Mi
10.0i

38

In this example, model M is a derived class of both class C and class B in package P. In the process of
expanding the extends clauses, aIl declared elements, including variables and local class definitions,
and equations in base classes, are copied to the derived class M. In addition to that, referenced constant
declarations in the enclosing scope by base classes, e.g., constant Real PI=3 .14 in this example,
are also copied to the derived class.

It is possible that an inherited component from a base class has the same name as a locally declared
component. As it is mentioned in section 3.4, two declared components in a lexical scope are not
allowed to have the same name. But under certain conditions, the inherited declaration and the local
one can be merged into a single declaration. These conditions are:

• the two declarations must have the same type;

• they must have the same protection level, Le., they must be both public elements or protected
elements;

• they must have the same type prefix, e.g., they must be both declared as continuous variable, or
both declared as discrete variables, or both declared as parameters, etc.

Satisfying these conditions means that the two declarations are identical. One of them is ignored.
Otherwise it is illegal, which will cause an exception in the compiler. For example,

class A
Real a, bi

end Ai

3.5 Expanding Inheritance

class B
extends
Real a;
Integer

end B;

A;
Il

b; Il
Il

This is legal.
This is illegal since the type is different to
to the one declared in class A.

39

This rule also applies to inheritance of equations. If an inherited equation is syntactically identical
to a locally declared one in the derived class, one of the equations is discarded. For example, in the
expanded class F, only one equation is kept.

class E
Real el, e2;

equation
e1+e2=1;

end E;

class F
extends E;

equation
e1+e2=1;

end F;

Il The expanded version of F
class F

Real el;
Real e2;

equation
e1+e2=1;

end F;

3.5.2 Multiple Inheritance

Modelica supports multiple inheritance, Le., more than one extends clause is allowed. In sorne cases
this might lead to the problem of inheriting the same element or equation twice through other inter­
mediate inheritances. For example,

class Person
String name;
Integer dateOfBirth;

end Person;

class Student
extends Person;
Integer stuID;

end Student;

class Employee
extends Person;

3.5 Expanding Inheritance

Integer emplID;
end Employee;

class StudentEmployee
extends Student;
extends Employee;

end StudentEmployee;

40

Class Student and Employee are derived classes of base class Pers on, while class StudentEmployee
is a derived class of both class St udent and Employee. In the process of expanding class St udentEmployee,
the declarations String name and Integer dateOfBirth are inherited twice, via the two extends
clauses. This is an examp1e of repeated inheritance. This problem can be solved easily by applying
the rule stated in the previous section. According to that rule, only one of the identical components is
kept. Class StudentEmployee is expanded as:

class StudentEmployee
String name;
Integer dateOfBirth;
Integer stuID;
Integer emplID;

end StudentEmployee;

3.5.3 Modification of the Extends Clause

An extends clause may carry class modifications which modify the value of attributes in base classes.
For example,

class A
Real al=2.0;
Real a2=3.0;

end A;

class B
extends A(a2=5.0);
Real b;

end B;

When an extends clause is expanded, the modification is also applied to corresponding elements in
the base class. Finally, element modifications are merged, that is, outer modification overrides inner
modification. In the pModelica compiler, each declaration symbol table entry carries a list of modifica­
tions. In the process of expanding inheritance, modification is appended to the copy of corresponding
elements. which are then inserted into the derived class. The following is the pretty printed version of
the expanded version of class B by the pModelica compiler:

Il Expanded version of B
class B

Real al=2.0;
Real a2(self=3.0, self=5.0);
Real b;

end B;

3.5 Expanding Inheritance 41

3.5.4 Short Class Definition as Class Inheritance

A short class definition is a concise way of defining new classes based on inheritance. As described
in section 3.4.1, the short form class definition

class IDENTl = IDENT2 class_ffiodification;

is usuaIly identical to

class IDENTl
extends IDENT2 class_ffiodification;

end IDENTl;

which is a longer form based on the extends clause. Actually in the JlModelica compiler, short class
definitions are transformed to the above longer form, which are then expanded. AIl semantic analysis
performed on short classes are identical to normal classes, except that modifiers in short classes are
looked up in the immediate enclosing scope.

3.5.5 The Process of Expanding Inheritance

The process of expanding inheritance consists of the following steps:

• The name of the base class is looked up;

• If the base class con tains unexpanded extends clauses; recursively expand aIl extends clauses in
the base class;

• Copy all declared elements and equations from the base class to the derived class;

• Resolve class modification and apply the modification to corresponding inherited components.

3.5.6 Implementation Issues

Component Deep Copy

In the process of expanding class inheritance, the modification needs to be resolved and be applied to
the declarations copied from the base class. Since modification creates a variant of the original defi­
nition, shared objects are no longer sufficient to carry modification of multiple instances. Therefore,
true copies of declarations are needed to store the information of modification.

These true copies can be created via a deep copy operation. Python's deep copy operation creates
copies which are unnecessarily "too deep" with respect to what is required here. A user-defined deep
copy operation is needed to make sure that these copies are created only as deep as needed, but not
more. In the case that modification is absent, it suffices to keep a reference to the original element
object when it is copied from the base class.

Detectlng Cycllc Dependency of Inheritance

Cyclic dependency of inheritance must be detected when extends clauses are expanded (to avoid
infinite expansion). The foIlowing example shows a cyclic dependency of inheritance between class
A, Band C:

class A
extends B;
Real a;

3.6 Flattening

end Ai

class B
extends Ci

end Bi

class Ci

extends A(a=l.O)i
Real Ci

end Ci

42

Such a dependency can be detected by introducing a list of visited base class when inheritance is
recursively expanded. Suppose class A is the first to be expanded in this example, A is visited and is
then added ta the list of visited classes, as [A]. Since A extends class Band B extends class C, Band
C are recursively visited and are added to the list, giving [A, B, C]. Finally when the extends clause
in class C is expanded, its base class A is again visited and will be added to the list [A, B, C], in
which A a1ready exists. Duplicate occurrences of the same class in the li st means there exists a cyclic
inheritance dependency. An exception is raised when such a dependency is detected.

3.5.7 Order of Expanding Inheritance and Name Lookup

In order to guarantee that elements can be used before they are declared, expanding inheritance and
name lookup are executed in the following order in the pModelica compiler:

1. The first pass: class definitions and component declarations are added into symbol tables;

2. The second pass: class inheritances are resolved, that is, inherited elements are copied from
based classes to the derived class;

3. The third pass: type specifiers are looked up;

4. The fourth pass: uses of names in modifications and in the equation part are looked up.

3.6 Flattening

The goal of semantic analysis is to translate a Modelica model to Flat Modelica, which consists of
basic components and DAEs. For example, the following model M

class A
Real ali
Integer a2=li

end Ai

class B
Real bl(unit="N")i
Real b2=2.0i

end Bi

model M
extends Ai

B b(bl=l.5 , b2=3.0)i
end Mi

3.6 Flattening

is translated to the following fiat form of Modelica by the front end:

model M
Real al;
Integer a2;
Real b_b2;
Real b_bl;

equation
a2=1;
b_b2=3.0;
b_bl=1. 5;

end M;

43

In the fiattened model, all class attributes are declared in terms of predefined types, and modifications
are merged and turned into equations.

After expanding extends clauses, a class contains attributes which can either be basic components
or composite components. ActuaIly composite components are built up of basic components. The
purpose of fiattening is to expand the class structure into a fiat form, i.e., aIl class attributes are
declared as predefined types. The key issues in the fiattening process are:

1. Component instantiation;

2. Flattening of composite components and merging of modifications;

3. Generation of connection equations.

3.6.1 Component Instantiation

In the internaI representation of a Modelica model, instead of creating a concrete object instance for
each declaration, a symbol table entry just keeps a reference to its class definition, and carries all the
original information of modifications. Figure 3.16 shows the internaI representation of the previous
example.

This scheme helps save memory space, and it works well until modifications are resolved. Class
modification creates a variant of the original class definition. The data structure has to be augmented
to hold concrete instances for these variants.

An instance stores the modified data and behavior of a component. It consists of a symbol table, a
list of initial equations, and a list of equations. The symbol table contains class attributes copied from
the original class definition, as well as the modification to that component. The equation part is also
copied from class definition to instance.

A class modification con tains element modifications. Each element modification is looked up and is
applied to the found element in the concrete instance. For space efficiency, no instance will be created
for declarations which contain no modification. It is sufficient to keep references to their definitions.

In the jiModelica compiler, components are instantiated as follow:

instantiateComp(comp) :
if comp has no modification:

if the type of comp is not a predefined type:
for each subcomponent(i) in comp:

instantiateComp(i)
else:

3.6 Flattening

·al· III

name . .. modlf def

"br . "(unlfaN)

"br .. [2.01

"Ame . .. modlf de'
"b1" •. [unlfaNJ

"h2· •. 12.01

"bM • ,_ (bl-l.5,
bl-3.O]

".r .. Il

·al· ... 111

Figure 3.16: Component Instantiation

inst=createlnstance(comp)
merge modification to inst
if the type of comp is not a predefined type:

for each subcomponent(j) in inst:
instantiateComp(i)

Figure 3.16 also shows the internaI representation after components are instantiated.

3.6.2 Flattening of Composite Components

44

A fiat Modelica model is a system of equations with aIl variables declared in predefined types, i.e., a
declared variable must be one of the type Real, Integer, Boolean, or String. In the process of fiattening,
aIl structured components, Le., composite components, are expanded to a set of basic components.

3.6 Flattening 45

Resolving Variable Names

When composite components are replaced by basic components, names from different lexical sc opes
are inserted into the same lexical scope. This will easily lead to a problem: sorne declared variables
rnight have the same name in the fiattened model, which is in confiict with the rule that no duplicate
declarations of the same name are allowed. Therefore, the basic components in a fiattened model must
be renamed such that each of them has a unique name in its lexical scope.

Renaming of basic components in a fiattened model can be achieved by combining the names of a
basic component and the names of aIl its parents. This scheme guarantees that each combined name is
unique because each name and each of the name in its order set of parents is unique in its own lexical
scope. For example, in model M

model M
extends A;
B b(bl=1.5, b2=3.0);

end M;

the composite component b is replaced by

Real b_bl;
Real b_b2;

where bJJl and bJJ2 are the combinations of b and the name of basic components in base class B,

namely bl, b2, respectively.

As mentioned earlier, the j.tModelica compiler is able to dump out intermediate representations as
valid Modelica models. For example, it can dump out a fiat Modelica as a valid Modelica model. In
sorne other Modelica tools, dot notation is used in combining names in fiat Modelica. For example,
b.l)l and b.l)2 will become b.bl and b.b2, respectively. But according to the grammar of Modelica,
a declared identifier is not allowed to contain dot. Among those special characters, underscore is the
only one that is valid in an identifier. Therefore, it is used to make names unique in the jlModelica
compiler.

Merge of Modifications

Modifications can be applied not only to declared components or local classes, but also to extends
clauses. Therefore, it is possible that a component can be modified multiple times through these
nested modifications. For example,

class A
Real al;
Real a2=2.0;

end Ai

class M
A a(al=l.O, a2=3.0);

end Mi

there are two modifiers a2 = 2.0, and a2 = 3.0, applied to a2. But finally a variable can only take one
value. This means that nested modifications must be merged.

3.6 Flattening 46

In Modelica, outer modification takes precedence over inner modifications. a2 = 3.0 is an outer mod­
ification compared to a2 = 2.0 in the previous example. In the pModelica compiler, each declared
variable carries a list of modifications. The priority of modifications is encoded in the list. After com­
posite components have been flattened to basic components, modifications for each of these basic
components are merged. In the following example,

class A

Real al;
Integer a2=1;

end A;

class B
Real bl(unit="N");
Real b2=2.0;

end B;

model M

extends A;
B b(bl=1.5, b2=3.0);

end M;

merging modifications in the flattened model M gives

Il flattened version of M with modifications merged
model M

Real al;
Integer a2=1;
Real b_bl (unit="N")=1.5;
Real b_b2=3.0;

end M;

Other than representing a single value, a basic component, i.e., instance of a predefined type, has other
attributes which de scribe some properties of a physical quantity. For ex ample, type Real is defined in
Modelica syntax as follow

type Real
RealType value;
parameter StringType quantity ="";
parameter StringType unit ="";
parameter StringType displayUnit ="";
parameter RealType min =-Inf; Il Inf denotes a large value
parameter RealType max =Inf;
parameter RealType start =0;
parameter BooleanType fixed =false; Il "true" for parameter/constant
parameter BooleanType enable =true;
parameter RealType nominal;
parameter StateSelect stateSelect = StateSelect.default;

equation
assert(value)= min and value <= max, "Variable value out of limit");

3.6 Flattening

assertlnominal)= min and nominal <= max, "Nominal value out of limit");
end Real;

47

Modifications may apply to sorne of these attributes. In the pModelica compiler, an environment is
created for each basic component, which contains mappings from attribute to value. Figure 3.17 shows
the environment for

Real b_bl lunit="N") =1. 5;

Sorne information encapsulated in a basic component might not be so important to the simulation back
end, such as attribute "unit". But it will be important in the future if we are to implement unit-based
type checking. For the sake of integrity, this information is kept in the environment.

ATTRIBUTE VALUE

value 1.5

quantity None

unit None

displayunit None

min -Inf

max Inf

start 0

fixed false

enable true

norminal None

stateSelect StateDelect.edfault

Figure 3.17: Environment of Basic Component Real

Modification Equation

Modifications in Modelica are finally turned into equations. In the simulation back end, we are cur­
rently only concerned with the value attribute of each basic component. Other attributes, such as unit,
are ignored. Therefore, only modifications to the value field are turned into equations. Other modifi­
cations are stored in the environments. For example, the modification in basic component

Real b_bllunit="N")=1.5;

is turned into

b.bl = 1.5

Model M in the previous example is then finally fiattened to

model M
Real al;
Integer a2;
Real b_bl;

3.6 Flattening

Real b_b2;
equation

a2 = 1;
b_bl 1.5;
b_b2 = 3.0;

end M;

48

The information of modification un i t =" N" is not lost. It is maintained in the environment of b JJ 1. It
is typically used to generate code usable in an integrated modeling and simulation environment such
as WEST [27].

3.6.3 Generation of Connection Equations

In Modelica, components may be coupled by connections, whose semantics are given by equations.
A connection is introduced by the following connect statement:

connect (connectorl, connector2)

where connectorl and connector2 are two references to connectors, each of which is either a
component of the same class or an element of one of its component. connectorl and connector2
must be type equivalent. Two types Tl and T2 are equivalent if:

• Tl and T2 denotes the same primitive type, Le., one of RealType, IntegerType, StringType,
BooleanType, or EnumType;

• Tl and T2 are classes containing the same public declaration elements (according to their
names) and each of these elements in Tl is type equivalent to the corresponding one in T2.

Connection statements are converted into normal equations, which are called connection equations.
There are two different forms of connection equation generated, for flow and non-flow variables,
respectively. The main tasks in the process of generating connection equations are:

• Building connection sets from connection statements;

• Generating connection equations for the complete model.

Connection Sets

In Modelica, multiple connections can be made to a single connector. For example, in the simple
electronic circuit in section 1.2:

model Circuit
Resistor Rl(r=l);
Resistor R2(r=1);
Capacitor C(c=l);
VsourceAC AC;
Ground G;

equation
connect (AC.p, Rl.p);
connect (Rl.n, R2.p);
connect (R2.n, C.p);
conne ct (C.n, AC.n);
connect (AC.n, G.p);

end circuit

·3.6 Flattening 49

connector AC . n is connected to both connector C . n and G • p. Multiple connections to a single connec­
tor can be seen as anode where aIl involved connectors are inter-connected. Through (ftow) variables
from each connector are summed to zero at such anode.

Connection sets are needed to detect if there exist connectors that have multiple connections. Connec­
tion sets are first built at the level of connectors, i.e., connector connection sets. Then these connector
connection sets are expanded to primitive connection sets.

• A connector connection set is a set of connec tors connected by means of connect clauses. AlI
connectors in such a set are type equivalent.

The algorithm for building connector connection sets in the pModelica compiler is as foIlows:

1. Create an empty list L to store connection sets;

2. For each connect statement, create a connection set containing its two arguments, and append
this set to list L. For example, the connection set of connect (C. n, AC. n) is [C.n,AC.n];

3. Merge connection sets. That is, if any connector in a connection set is a member of other con­
nection sets, aIl the corresponding sets are merged. For example, the connections set of con­
nect statement connect (AC.n, G.p), [AC.n,G.p], is merged with [C.n,AC.n], resulting in
[C.n, AC.n, G.p].

AH connectors in a connection set are type equivalent, i.e., they have the same public attributes (with
the same names and types). If a connector type contains structured components, these structured
component are expanded into basic components, i.e., predefined types. Common basic component of
members in a connector connection set form a primitive connection set:

• A set of variables having the same name and the same Modelica predefined type.

• A primitive connection set may only contain ftow variables or non-ftow variables.

For example, the connector class of the electronic circuit example in section 1.2 is defined as:

connector Pin
Voltage v;
flow Current i;

end pin;

The generated primitive connection sets from the connector connection set [C.n,AC.n,G.p] are:

• Non-flow variables: [C.n.v,AC.n.v, G.p.v]

• Flow variables: [C.n.i,AC.n.i,G.p.i]

Connection Equations for Non-flow Variables

Equations generated from primitive connection sets of non-flow variables have the foHowing form:

which is equivalent to:

3.7 Type Checking 50

Connection Equations for Flow Variables

Equations generated from primitive connection sets of flow variables have the following form:

The sign of variable hj is + 1 if the connector is an inside connector, and -1 if the connector is a outside
connector. Inside and outside connectors are defined as follows:

• In an element instance M, a connector component of M is called an outside connector with
respect to M.

• A connector component that is hierarchically inside M is called an inside connector with respect
toM.

For example, aIl members of connector connection set [C.n, AC.n, G.p] are inside connectors of model
Circuit. Therefore, the generated equation for the primitive connection setofflow variables [C.n.i,AC.n.i, G.p
is:

3.7 Type Checking

After aIl the above-mentioned semantic analysis are executed, a Modelica model is translated into fiat
Modelica. In the pModelica compiler, the textual representation of flat Modelica is still valid Modelica
model. For example, the flat Modelica representation of the circuit example is as follow:

model Circuit
flow Real RI_n_i;;
Real R2_v;;
parameter Real RI_r;
Real G--p_ v; ;
Real en_v;;
Real RI--p_v;;
flow Real RI_p_i;;
flow Real G_p_i;;
Real R2_i;;
flow Real AC_n_i;;
parameter Real R2_r;
Real RI_n_v;;
flow Real R2_n_i;;
parameter Real C_c;
flow Real R2_p_i;;
parameter Real AC_VA;
flow Real AC_p_i;;
Real C_i;;
flow Real C_p_i;;
constant Real AC_Pli
Real RI_v;;

3.7 Type Checking

Real AC_v;;
Real ACi;;
Real C-p_v;;
Real Rl_i;;
Real C_v;;
Real AC_p_ v; ;
Real AC_D_V;;
Real R2_p_v;;
flow Real C_D_i;;
Real R2_D_V;;
parameter Real AC_f;

equatioD
C_c*der(C_v)=C_ii
C_v=C_p_V-C_D_V;
O=C_p_itCD_i;
C_i=Cp_i;
Rl_r*Rl_i=Rl_v;
Rl_v=Rl-p_v-Rl_D_Vi
O=Rl-p_itRl_D_ii
Rl_i = R1-p _i;
G-p_V=Oi

R2_r*R2_i=R2_Vi
R2_v=R2-p_v-R2_D_Vi
O=R2_p_itR2_D_i;
R2_i = R2-p _i i
AC_v=AC_VA*siD(2*AC_PI*time);
AC_v=AC-p_v-AC_D_V;
O=AC_p_itAC_D_ii
AC_i=ACp_ii
AC_p_itRl-p_i=O.O;
AC_p_v=Rl_p_v;
Rl_D_itR2_p_i=O.O;
Rl_D_v=R2_p_v;
R2_D_itC_p_i=O.O;
R2_D_V=C_p_v;
G-p_itAC_D_itC_D_i=O.O;
G-p_V=AC_D_V;
G-P_V=C_D_V;

eDd Circuit i

51

As in other programming languages, the type of a construct in Modelica need to match what is ex­
pected in its usage context. For example, the - (minus) operator expects two operands of type IDteger
or Real. Therefore, the expression of a - b is a type error if any of a or bis neither an integer nor real
number.

This leads to the next step to be performed in the compiler: type checking. The main tasks of type
checking are:

• Verify that each construct is type correct.

3.7 Type Checking 52

• Type coercion, which changes the type of one expression to another.

3.7.1 Basic Types

As it is mentioned earlier in previous sections, the predefined types in Modelica are built over the built­
in types, Le., RealType, IntegerType, StringType, and BooleanType. By default, the name of
a variable of predefined types refers to its value attribute. For example, equation

a+b=c

means

a.value + b.value = c.value

The basic types in Modelica are RealType, IntegerType, StringType, BooleanType, TypeError,
and Void. The basic type void represents the empty set and allows an equation to be checked.
TypeError indicates a construct has type errors.

3.7.2 Type Coercion

In sorne cases, an operator allows its operands to have different types. For example, the expression
a + b is legal in Modelica, where a is of type Real and b is of type Integer. Since the machine
instructions of operations on reals and integers are different, specific rules are needed to convert the
type of operands by the compiler. Such a conversion of type is called coercion [2].

If type coercion is required, the type checker in the pModelica compiler will insert a conversion
operator in the expression. For example, the type checking rule for the + (plus) operator is defined as
follows:

typeOf(El + E2):
if El.type=IntegerType and E2.type=IntegerType:

return IntegerType
elif El.type=RealType and E2.type=RealType:

return RealType
elif El.type=StringType and E2.type=StringType:

return StringType
elif El.type=RealType and E2.type=IntegerType:

replace E2 by RealOf(E2)
return RealType

elif El.type=IntegerType and E2.type=RealType:
replace El by RealOf(El)
return RealType

else:

return TypeError

3.7.3 Specification of Type Checking in the ILModelica Compiler

In the pModelica compiler, type checking is performed on the equation part of the fiat Modelica
model. The type checker verifies that each equation and aIl expressions in that equation tree are type
compatible, and will perform type coercion if applicable. The following specifications have been
implemented:

3.7 Type Checking 53

1. Normal equation (RegularEquation): LHS RHS
if LHS.type==RHS.type:

return Void
elif LHS.type==IntegerType and RHS.type==RealType:

replace LHS by RealOf(LHS)
return Void

elif LHS.type==RealType and RHS.type==IntegerType:
replace RHS by RealOf(RHS)
return Void

el se
return TypeError

2. Identifier (IdentExp): E
return E.type

3. Integer (IntExp):
return IntegerType

4. Real number (RealExp):
return RealType

5. String (StringExp):
return StringType

6. Boolean (BoolExp):
return BooleanType

7. Logical exp: El op E2, where op: and (AndExp), or (OrExp)
if El.type==BooleanType and E2.type==BooleanType:

return BooleanType
else:

return TypeError

8. Logical exp: not E (NotExp)
if E.type==BooleanType:

return BooleanType
else:

return TypeError

9. Relation exp: El op E2, where op: <, <=, >, >=, <>
if El.type==RealType and E2.type==RealType:

return BooleanType
elif El.type==IntegerType and E2.type==IntegerType:

return BooleanType
elif El.type==StringType and E2.type==StringType:

return BooleanType
elif El.type==BooleanType and E2.type=BooleanType:

return BooleanType

3.7 Type Checking

elif El.type=RealType and E2.type=IntegerType:
return RealType

elif El.type=IntegerType and E2.type=RealType:
return RealType

else:
return TypeError

10. Sum exp (SumExp): El + E2
if El.type=IntegerType and E2.type=IntegerType:

return IntegerType
elif El.type=RealType and E2.type=RealType:

return RealType
elif El.type=StringType and E2.type=StringType:

return StringType
elif El.type=RealType and E2.type=IntegerType:

replace E2 by RealOf(E2)
return RealType

elif El.type=IntegerType and E2.type=RealType:
replace El by RealOf(El)
return RealType

else:
return TypeError

Il. Exp: El op E2, where op: - *, /
if El.type=IntegerType and E2.type=IntegerType:

return IntegerType
elif El.type=RealType and E2.type=RealType:

return RealType
elif El.type=RealType and E2.type=IntegerType:

replace E2 by RealOf(E2)
return RealType

elif El.type=IntegerType and E2.type=RealType:
replace El by RealOf(El)
return RealType

else:
return TypeError

12. Unary minus exp: -E
if E.type=IntegerType:

return IntegerType
elif E.type=RealType:

return RealType
else:

return TypeError

13. Function calI: El(E2)
if E2.type matches the type of declared input variables:

return El.type (types of declared output variables)

54

3.7 Type Checking 55

else:
return TypeError

Type checking of sorne Modelica constructs is not implemented in the CUITent jLModelica compiler.
The above type checking rules works for continuous models.

The BackEnd

A model described in Modelica is translated to a model in fiat Modelica by the Front End. Basically,
a fiat Modelica model can be seen as a set of DAEs. The ultimate purpose of simulation is to solve
such a set of equations.

One can solve a set of DAEs using a DAE solver, e.g., DASSL [22]. But DAE solvers are inefficient.
A far more efficient approach is to perform DAE transformations. The purpose of these transforma­
tions is to obtain a causal representation of the equations, which might inc1ude ODEs and algebraic
equations. This set of causal equations can be solved more efficiently with ODE solvers.

This chapter discusses the formula manipulation techniques implemented in the jLModelica compiler,
which inc1udes eanonieal transformation, eausality assignment, equation sorting, and deteeting alge­
braie loops.

4.1 Canonical Transformation

Usually an equations is represented as a tree made up of operators and operands. The eanonieal
representation of an equation means that the equation is stored internally in a particular, unique way.
More specifically, the equation is rewritten in such a way that

• Constants are folded;

• Operators and operands at every level of the tree are in a unique order;

• A few other simplification rules are implemented, the details of which are given below.

4.1.1 Why Canonical Representation?

Even though canonical transformation reuses compile-time efficiency, it is necessary to perform su ch
a transformation for the following reasons:

• For simulation run-time efficiency. If constants are folded at compile-time, there is no need
to calculate the same operations on these constants at each time step at simulation-time. For
example, assume that a model contains the following equation

a=2+3+b

If 2 + 3 is computed at compile time, e.g., a = 5 + b, the same operation need not be computed
at each time step during simulation run-time. Therefore, it is a tradeoff between compile-time
and run-time. Because the number of simulation runs is far greater than the number of times a
model is compiled, it is worth to do so.

• The need for causality assignment. For example, the following equation

x+x+y=o

4.1 Canonical Transformation 57

cannot be transformed to causal form correctly if unknown x is to be calculated based on the
value of y, e.g., x on the left hand side of the equation. In such a case, like terms have to be
combined, e.g, x + x is converted to 2x.

4.1.2 Defining the Canonical Order

An ordering relation on a set of operators is defined so that the nodes in an equation tree can be sorted
into the canonical order. The set of operators currently includes sum (+), multiplication (*), power
C), and function caUs. The ordering of these operators is defined as foUows:

,+, < '*' < ,A, < 'f()'

where f () represents function caUs. The ordering relation between different function caUs is deter­
mined by lexicographic ordering of the names of function caUs. For example, naturallogarithm logO
has a higher order than e-based exponent expO. That is,

, exp ()' < 'log () ,

The canonical representation of an expression or an equation is obtained by sorting the children of
every node in the equation tree, together with constant fol ding and sorne simplification rules.

4.1.3 Simplification Rules

The paper [26] suggests a set of simplification rules for canonical transformation. A subset of these
rules have been implemented in pModelica. These rules are specified as foUows:

1. The RHS of an equation is moved to the LHS, and the RHS is set to 0.0, eg., a = b is transformed
to a-b = 0.0.

2. AU constants are rewritten as real numbers. Fractions are evaluated. For example, 1/2 is simpli­
fied to 0.5,.xl is rewritten as x2.0, and x1/2 is written as xO.5 etc.

3. A negative number or term is rewritten as:

• -c --t +(-c), where c is constant

• -E --t +(-1.0) *E, where E is a term

4. Expressions in reciprocal form (divisions) are rewritten in terms of negative powers. For exam-
pIe:

• l/y --t 1.0*y-1.0

• x/y --t x*y-1.0

• z3 / (.xl + 2 *x * y) --t z3.0 * (2.0 *x* y+.xl.O)-1.0

5. Binary operators + and * are converted to n-ary operators. It is feasible to do so because both +
and * are commutative and associative. For example:

• a+b+c can be rewritten as +(a,b,c)

• a*b*c can be rewritten as *(a,b,c)

6. Constant folding. AU sum, product, power or other known operations of constants are imme­
diately evaluated. AIso, the foUowing rules should be applied to remove superfiuous zeros and
ones:

4.1 Canonical Transformation 58

• O.O+E ---? E;

• 0.0 * E ---? 0.0;

• O.oc ---? 0.0;

• 1.0*E ---? E;

• El.O ---? E;

• EO.o ---? 1.0;

• 1.0
E

---? 1.0;

7. Like terms in a sum are collected and their constant coefficients are added (* distributes over
+), eg.:

a*xP+b*xP ---? (a+b)*xP

where a,b are constants (or parameters), x, p can be constants, variables or expressions.

8. Product of power of the same base is simplified using this mIe:

where x,q,p can be constants, variables or expressions.

9. The power of a power can be simplified as:

(xP)q ---? xp+q

where x,q,p can be constants, variables or expressions. A further simplification occurs if x,q are
both constants:

10. The power of a product:
(x*y)P ---? xP *yP

x,y,p can be constants, variables or expressions, but with x,y not being both constants. The
opposite of this mIe should be applied when both x and y are constants, and so they can be
folded:

Il. A constant multiplying an expression which is a sum of terms containing variables, is dis­
tributed:

C*(tl +t2+ ... +tn) ---?C*tl +C*t2+ ... +C*tn

where c is a constant, and ti is a set of terms.

4.1.4 The Transformation Aigorithm

The transformation consists of a series of applications of the simplification rules. These rules are
invoked in the following order:

1. According to mIe 3 and 4, convert division expressions, and subtraction expressions into multi­
plications, and sum expressions, respectively.

2. According to mIe 5, on both sides of the equation, convert the binary operators + and * into
n-ary operators.

3. Move the RHS of the equation to the LHS, and set the RHS to 0.0

4.1 Canonical Transformation 59

4. Apply role 5 to the resulting LHS again.

5. Constant folding according to role 6.

After these prelirninary transformation steps, the following roles are iterated over until all nodes in
the tree are in canonical order:
While the tree changes:

1. Simplify the powers of products by applying role 10.

2. Apply role 5 to the LHS to fiatten the + and * operators.

3. Constant folding according to role 6.

4. Sort nodes into canonical order.

5. Apply role 9 to fiatten the powers ofpowers.

6. Apply role 8 to simplify the products of powers of the same base.

7. Constant folding according to role 6.

8. Sort nodes into canonical order.

The iteration stops if there is no further change occurs in the tree. Finally the following roles are
applied:

1. Rule Il: distribute constants.

2. Flatten the + and * operators on the LHS.

3. Constant fold.

4. Sort nodes into canonical order.

5. Apply role 7 to collect like terms.

6. Constant fold again.

7. Sort nodes into canonical order.

4.1.5 An Example

Here is an example showing the canonical transformation in the pModelica compiler. Given the fol­
lowing model as input:

class Canonical
Real a, b, c, d, x;
Real e, f, g, h;

equation
2-1-3-4-5=h;
a+a+2.0*a+b+(c+d*a/b)=a-2*b*c-d;
2*a'3+3*c'd=a'3-2*c-d;
a*a*b*c*c*d+b*a'2*a+e'a*f'b*e'(c+d)=O.O;
e'a*f'b*e'(c+d+g)=O.O;
((4/2*a' (O+b)) '2)' (2* (3+2))=0;
2*a'a+a'a+a'2=O;
(a*(b+c)'2*d'e*(2*3+4)'2)'3=e;
(x+b) '2-(c*b) '2+a'2*d=(c+d) '2;

end Canonical;

4.2 Causality Assignment

The J.lModelica compiler rewrites the equation part into the following canonical form:

(-11.0)+h*(-1.0)=0.0;
a*3.0+a*b h(-1.0)*d+b+b*c*2.0+c+d=0.0;
a h3.0+c hd*5.0=0.0;
ah2.0*b*ch2.0*d+ah3.0*b+eh(a+c+d)*fhb=0.0;
eh (a+c+d+g)*fhb=O.O;
ah (b*20.0) *1048576.0=0.0;
a h2.0+a ha*3.0=0.0;
a h3.0* (b+c) h6.0*d h (e*3.0) *1000000.0+e* (-1.0)=0.0;
ah2.0*d+(b+x)h2.0+bh2.0*c~2.0*(-1.0)+(c+d)~2.0*(-1.0)=0.0;

4.2 Causality Assignment

60

The real essence of Modelica is non-causal modeling, which is characterized by a set of implicit
equations. To solve the various unknowns in the system more efficiently, it is far more preferrable
to have a causal representation of equations. It is possible in many cases to transform a non-causal
representation into a causal one. Such a transformation is called causality assignment. For example,
consider the following set of implicit equations:

{ x:~::~ = ~
z-u-16 = 0

u-5 = 0

Eq 1
Eq2
Eq3
Eq4.

Figure 4.1: Causality Assignment: Network Flow in Bipartite Graph

To compute this set of equations on a computer, each equation must be identified that it is used to
solve for what variable. That is, a matching between equations and variables must be found. This
problem can be solved in terms of graph algorithms. More specifically, it can be solved elegantly by

4.2 Causality Assignment 61

turning it into the problem of finding a maximum network fiow in a bipartite graph. Equations and
variables are turned into nodes and the dependencies between equations and variables are turned into
edges. Adding a source node and a sink node to the bipartite graph results in a directed graph. For
example, figure 4.1 shows the resulting graph of this set of equations. Causality assignment can be
obtained by maximizing the flow from the source node to the sink node. As shown in figure 4.1, the
flow paths indicate the correspondence between each variable and the equation used to compute it:

-x-z
-3z-u2

u+16
5

Therefore, the problem to be solved here is to find a maximum flow in a directed bipartite graph.
In history, many attempts have been made to solved this problem. Dinic's algorithm in finding su ch
a maximum flow is efficient if aIl edges in the graph has unit capacity. It is implemented in the
pModelica compiler. This section discusses Dinic's algorithm in detail [9].

4.2.1 Flows, Augmenting Paths, and Residual Graph

Before discussing Dinic's algorithm, sorne important concepts in the theory of network flows are
introduced.

Let G = [V, E] be a directed graph made up of the set of vertices V == {v} and the set of edges E == {e}.
Two special vertices, the source and the sink, are identified as sand t, respectively. The number of
vertices in G is n and the number of edges is m. Every edge is associated with a positive capacity
cap (v, w). A fiow f on G is defined as a real-value function on vertex pairs. It has the following
properties:

• Skew symmetry: f(v, w) = - f(w, v).
AIso, if f(v, w) > 0, then there is a flow from v to w.

• Capacity constraint: f(v, w) ::; cap (v, w).
A flow is said to saturate the edge [v, w] if the equality f(v, w) = cap(v, w) holds.

• Flow conservation: for every vertex v excluding the source sand sink t, the net incoming flow
must equal the net outgoing flow: LWEV f(v, w) = O.

The residual capacity for a flow f in a network is also given by a function on vertex pairs. It is the
difference in the capacity of the edge connecting the two vertices and the flow across the edge:

res(v, w) = cap(v, w) - f(v, w). (4.1)

An amount of res(v, w) additional units of flow can be pushed from v to w by increasing the flow
J(v, w) and correspondingly decreasing J(w, v). We can construct the residual graph R for a ftow J,
which is the graph with vertex set V including the source sand sink t, and an edge [v, w] of capacity
res(v, w), such that this capacity is positive: res(v, w) > O.

An augmenting path for f is defined as a path p from s to t in R. The residual capacity of this path,
denoted by res(p), is the minimum value of res(v,w) for [v,w] an edge of p. The value of the ftow f
can be increased by any amount /). up to res(p) by increasing the ftow on every edge of p by /).. To
satisfy the property of symmetry, if a change of /). is made to f(v, w), there should be a corresponding
amount of -/). made to f(w, v).

4.2 Causality Assignment 62

The concepts of blocking flow and level graph are important to understand Dinic's algorithm. A ftow
fis a blocking flow if every path from the source s to the sink t contains a saturated edge (an edge
[v, w] is said to be saturated if f(v, w) = cap (v, w). There is no way to increase the value of a blocking
flow by increasing additional ftow along any path in the graph. However, it is possible to do so by
rerouting, which means the ftow on sorne edges is decreased while it is increased in other edges. Let
R be the residual graph of a ftow f. The level of a vertex v in R is the length of the shortest path
from the source node s to v. The level graph L for f is the subgraph of R containing only the vertices
reachable from s, and only the edges [v, w] such that level(w) = level(v) + 1. L contains every shortest
augmenting path and can be constructed in O(m) time by breadth-first search.

4.2.2 Dinic's Aigorithm

Dinic's algorithm is implemented in the JAModelica compiler to solve the problem of causality assign­
ment. It is to find a maximumflow from the source node to the sink node on a directed graph. Given a
directed graph with a source and a sink, it starts with zero ftow and repeats the blocking step until the
sink t is no longer in the level graph for the current ftow.

The blocking step in Dinic's algorithm is defined as follows:

• Find a blocking ftow f'on the level graph for the current ftow f.

• Replace f by the ftow f + f' defined by: (f + f')(v, w) = f(v, w) + f'(v, w).

The remaining problem is to find a blocking ftow. We also adopt Dinic's method: let G be the input
acyclic graph, use depth-first search (DFS) to find a path from the source node s to the sink node
t, push along the path the amount of ftow that saturate the edge with smallest residual, then delete
aIl newly saturated edges, and repeat this procedure until t is not reachable from s. The algorithm is
described more formally below:

• lnitialize: Let p = [s] and v = s. Go to Advance.

• Advance: Ifthere is no outgoing edge from v, go to Retreat. Otherwise, let [v, w] be an outgoing
edge ofv. Replace p by p+ [w], and v by w. Ifw t= t repeat Advance; ifw = t, go to Augment.

• Augment: Let Ù be min (cap (v, w) - f(v, w)) where [v, w] is any edge in path p. Add Ù to the
ftow of very edge on p, delete from G an newly saturated edges, and go to Initialize.

• Retreat: If v = s, haIt. Otherwise, let lu, v] be the last edge on p. Delete v from p and lu, v] from
G, replace v by u, and go to Advance.

It can be proved that Dinic's algorithm above correctly finds a blocking ftow in O(nm) time, and
a maximum ftow in O(n2 m) time. It can also be proved that on a unit network, Dinic's algorithm
finds a blocking ftow in O(m) time, and a maximum ftow in O(n1/ 2 m) time. In a unit network, all
edge capacities are integers, and each vertex v other than the source and the sink has either a single
entering edge of capacity one, or a single outgoing edge of capacity one.On a network whose edge
capacities are aIl one, Dinic's algorithm finds a maximum ftow in O(min{n2

/ 3 m,m3/
2

}) time [13].

4.2.3 ODEs in Causality Assignment

In Modelica, the time derivative of a state variable is introduced by the operator derO. An ordinary
differential equation (ODE) has the following form (in Modelica syntax):

der(x) = f(x)

4.2 Causality Assignment 63

The numerical approximation of the time derivative of a variable is defined as:

der(x) = (X-Xold)/&

The value of x can be computed by numerical integration methods.

Because either the value of x can be computed via integration based on der(x), or the value or der(x)
can be derived from the current value of x and Xold, only one of x or der(x) is treated as unknown
in causality assignment. How the j.tModelica compiler handles ODEs in causality assignment is dis­
cussed in this section. More specifically, an algorithm to choose which form of a state variable as
unknown is given.

Integral Causality and Derivative Causality

In causality assignment, integral causality means that the time derivative of a state variable is chosen
as unknown, while the state variable itself is computed through numerical integration. Differentiai
causality works in the other way around. That is, a state variable itself is chosen as known, and the
time derivative of the state variable is computed through numerical differentiation.

In fact, integral causality is more preferrable in simulation computation since it gives more stable
simulation results. But in some cases, choosing integral causality might lead to failure in causality
assignment. Consider the following example:

{

y = sin(time)
der(x) = y+z
der(y) = x+z

If der(x), der(y), and z are chosen as unknowns, a valid causality assignment result can not be found
because both sides of the first equation are known. However, it is possible to find a valid causality if
some of the unknowns with integral causality are replaced by differential causality. For ex ample, if
state variable y is assigned derivative causality, a valid causality assignment can be found.

The Algorithm

An algorithm for handling ODEs in causality assignment is implemented in the j.tModelica compiler.
Based on the fact that integral causality can give more accurate simulation result, the algorithm prefers
integral causality as many as possible. The algorithm is described more formally as follows:

• By default, integral causality is chosen for all state variables. For example, der(x), der(y), and
z are regarded as unknowns by default in the previous system.

• If a valid causality assignment is found, return.

• Otherwise, a list of all possible combinations of integral causality and derivative causality is
generated. In the previous example, all possible combinations are:

• der (x) , y, z
• x,der(y),z

• x,y,z

• Begin with the combination with least derivative causality. If causality assignment still fails, try
the next combination in the list that has the least derivative causality. Repeat this step until a
valid causality is found.

• If finally causality assignment fails after aIl the combinations have been tried, a DAE solver is
called to solve the set of implicit equations directly.

4.2 Causality Assignment 64

This algorithm is a heuristic approach to finding the most appropriate combination of integral causality
and derivative causality. In the worst case, the algorithm's complexity is combinatorial. We realize that
there might exist a more direct and efficient approach. But ours is an easy-to-understand approach. At
the time being for the sake of fast prototyping, we chose tbis approach because it is easy to implement.

Example

Consider the following Modelica model encoding the equations given above:

class ODEl
Real x, y, Zi

equation
y=sin (time) i
der(y)=x+Zi
der(x)=y+z;

end ODEli

The jLModelica compiler generates the following causality assignment result for this model:

-------causality assignment result ------­
Variables: der (y), der(x), z,
der(x)+y*(-l.O)+z*(-l.O) 0.0 is used to solve for 'der(x)'
der(y)+x*(-l.O)+z*(-l.O) 0.0 is used to solve for 'der(y)'
Invalid causality!

-------causality assignment result ------­
Variables: y, der(x), z,
sin(time)*(-l.O)+y = 0.0
der(x)+y*(-l.O)+z*(-l.O)
der(y)+x*(-l.O)+z*(-l.O)
Valid causality!

is used to solve for 'y'
0.0 is used to solve for 'der(x)'
0.0 is used to solve for 'z'

From this output, one can see that the compiler first tried with aIl integral causality but failed. Then
it succeeded in finding a valid causality assignment result for the model when variable y is given
derivative causality.

Inserting Derivative Equation and Integration Equation

The jLModelica compiler, inserts a derivative equation of the following form:

der(x) = (X-Xold)/ru

for every variable that was given derivative causality. An integration equation of the following form:

x = integration(xold,der(x))

is inserted for every variable that was given integral causality. For example, inserting these types of
equations leads to the following complete computation model for the previous system:

y = sin(time)
der(y) (y - Yold)/ ru

z = Xold - der(y)
der (x) y+z

x = integration(xold,der(x))

4.3 Sorting of Equations 65

These additional equations are inserted at code generation time after the equations are sorted. That is,
they are not taken into account in sorting.

4.3 Sorting of Equations

Even though the original set of DAEs has been transformed to a causal representation, in general they
are not yet in a correct computation order. The following ex ample (set of equations) illustrates this
problem when a mathematical sets of equations are coded in a programming language with sequence
semantics such as C, where sin(time) is considered as known:

a= b2 +3
b= sin(cu)
c= (d - 0.5)°·5
d= 1/2
e= sin(time)

If it is coded in the above sequence, uninitialized variables will be given a zero value which leads to
erroneous results:

a= 3
b= 0
c = -0.5°·SCexception)
d= 1/2
e = sin(time)

However, it is possible to compute the correct solution of the set of equations if they are re-arranged
in the following sequence:

d= 1/2
e= sin (time)
c= (d - 0.5)°·5
b= sin(c * e)
a= b2 +3

Therefore, the equations must be sorted in the reverse order of their dependencies, i.e., if to compute
the value of an unknown it is necessary to know the value of another variable, then the latter variable
must be computed prior to this one. This section presents the algorithm for sorting the equations into
a correct computation order.

4.3.1 Dependency Graph

Before equations are sorted, the computation dependency graph is built. Each vertex in the graph
represents a variable to be computed. An edge from vertex a to vertex b means that the value of a
depends on the value of b, i.e., b appears on the RHS of the equation to compute a. For example, the
computation dependency graph of the set of equations given above is shown in figure 4.2.

4.3.2 The Aigorithm

Based on the graph of computation dependency, the sorting of equations can be achieved by a topolog­
ical sort with post-order numbering on this graph. The numbers indicate the order in which equations
are computed. In the pModelica compiler, the following algorithm is implemented to determine the
order in which equations need to be written:

topSort() and dfsLabelling() both refer to the global counter,

4.3 Sorting of Equations

1

Figure 4.2: Sorting of Equations: Dependency Graph

dfsCounter, which will be incremented during the topological sort.
It is used to assign an orderNumber to each node in the graph.
dfsCounter = 1

topSort() performs a topological sort on a directed graph
(either acyclic or cyclic)
def topSort(graph G)

mark ail nodes as unvisited
for nods in G

node.visited = false
start dfsLabelling() from any node in the graph until ail
nodes have been visited
for node in G

if node.visited == false
dfsLabelling(node)

dfsLabelling() performs a depth-First traversai of a possibly
cyclic directed graph. Nodes are labelled with numbers.
def dfsLabelling(node n, graph G)

if node.visited == false
mark the node as visited
node.visited = true
perform dfsLabelling() on ail neighbours
for neighbour in node.out_neighbour

dfsLabelling(neighbour, G)
label the node with the counter and subsequently increment

66

4.4 Aigebraic Loop Detection

the counter
node.orderNumber dfsCounmter
dfsCounter tt

The program terminates when all nodes have been visited.
As a result, all nodes are labelled with numbers which
indicate the order of computation.

67

Figure 4.2 also shows the result of sorting. The numbers beside vertices indicate the order of compu­
tation. The result of sorting is not unique. Figure 4.3 gives another correct computation order.

3

Figure 4.3: Sorting of Equations: Another Sorting Result

4.4 Aigebraic Loop Detection

In sorne cases, sorting is not possible due to the existence of dependency cycles (algebraic loops). For
example, the following set of equations

{

X=Y+16
Y= -x-z
z= 5

can not be sorted since there exists a dependency cycle between x and y, or in other words, the
equations to calculate x and y form an algebraic loop. Therefore, before sorting equations, detecting
algebraic loops is required. Once detected, the equations involved should be isolated, and be solved
simultaneously either with symbolic or numerical methods.

4.4.1 The Aigorithm

Detecting algebraic loops (finding dependency cycles) can be turned into the problem of locating
strongly connected components in a graph. A strongly connected component is a set of nodes in a

4.4 Aigebraic Loop Detection 68

graph whereby each node is reachable from each other node in the strongly connected component.
Based on the result of the previous topological sort with post-order numbering, this problem can be
solved by producing a list of strongly connected components. If anode is not in a cycle, it will be a
strongly connected component with only itself as a member. Therefore, if there exist algebraic loops,
sorne of the strongly connected components in the produced list must contain more than one node.
The algorithm for locating strongly connected components is given below.

Producing a list of strongly connected components.
Strongly connected components are given as lists of nodes.
def strongCom(graph G)

Perform a topological sort in the graph with post-order
numbering (the algorithm is given in the previous section)
topSort(G)
Produce a new graph with all edges reversed.
rev_graph = reverse_edges(G)
Start with an empty list of strong components
strong_components = l]
Mark all nodes as not visited
for node in rev_graph:

node.visited = false
As strong components are discovered and added to the
strong_components list, they will be removed from rev_graph.
The algorithm terminates when rev_graph is reduced to empty.
while rev_graph != empty:

Start from the highest numbered node in rev_graph
start_node = highest_orderNumber(rev_graph)
Perform a depth first search on rev_graph starting from
start_node, collecting all nodes visited.
This collection (a list) will be a strong component.
dfsCollect() also marks nodes as visited to avoid infinite
loops.
component = dfsCollect(start_node, rev_graph)
Add the found strong component to the list of strong
components.
strong_components.append(component)
Remove the identified strong component
rev_graph.remove(component)

If a subset of equations are located in the same strongly connected component, they will be identified
as an algebraic loop. This subset of equations need not to be rewritten into causal form. Instead, they
will be solved simultaneously with numerical methods.

Causality assignnment, sorting, and algebraic-Ioop detection can also be carried out by transforming
the DAEs into the block-lower-triangular (BLT) form. Aigebraic loops can be more easily identified
in the BLT form. But using a dependency graph to detect algebraic loops is a clean and didactic way
to illustrate the problem and it enables visualization (for small problems).

In most cases, a Modelica model is finally transformed to a set of causally represented equations
with correct computation order. Such a set of equations may contain algebraic loops. Integrators and
algebraic loop solvers are required to compute the solution of the equations. In the worst case, if

4.5 Design and Implementation 69

formula manipulation fails, a DAE solver is required. But it is a far less efficient approach than the
previous one.

4.5 Design and Implementation

There are different approaches to implementing causality assignment, sorting, and algebraic-Ioop de­
tection. The Block-lower-triangular (BLT) transformation approach has been implemented in sorne
tools such as the PELAB openModelica compiler. It is a technique based on matrix transformation.
Our implementation of these problems is purely based on graph algorithms. This section presents the
data structure and sorne issues in our implementation of the Back End.

4.5.1 The Data Structure

As mentioned earlier during the description of Dinic's algorithm, the causality assignment problem
is tumed into the problem of finding a maximum flow in a bipartite graph. Such a bipartite graph
consists of different types of nodes, and edges, as depicted in Figure 4.4. ,

l:l
1 1 .". EQUationparJ

IDenpendencyGraph 1 FlowGraph p.
I~.ource: Node ~
+si.nk: Node ReguiarEq5tm 1

1 \V 1[\

1 FlowEdge n , Node ::l I:capaci ty: int +id: int
+nov: int +visi ted: bool

r +level: int
1 DeciaratlonEntry 1

i
LL 1

DNode EqNode 1 VarNode

+id: int ~ l~ha.DeriVertiVeForll: boolear
+visited: boolean +integrale.us.li ty: boolean
+orderNuaber: int

d~.
Figure 4.4: The Data Structure for Causality Assignment

A class hierarchy of nodes is defined. There are 3 types of nodes in a bipartite graph: the ones that
represent equations, the ones that represent variables, and the source and sink. The source and the
sink are instances of the parents class Node. Equations and variables are represented by EqNode and
VarNode, respectively.

A bipartite graph is an instance of FlowGraph, which consists of a source, a sink, a list of EqNode,
and a list of VarNode. AIso, there is a class called FlowEdge representing outgoing edges from each
node. It is similar to the representation of an adjacency list. That is, each node has a list of outgoing
edges. Each edge specifies the destination node, as weIl as edge capacity and currently flow.

Remember that in Dinic's algorithm, a level graph is created based on the residual graph. It is a
subgraph of the residual graph. It contains a subset of nodes of the residual graph, but the nodes
are connected by different edges. In our implementation, an object instance of FlowGraph is used to

4.5 Design and Implementation 70

represent both fiow/residual graph and level graph. The way that these two graphs are distinguished
is that, each node keeps two different lists to store its outgoing edges in a fiow/residual graph and its
outgoing edges in a level graph, respectively. Even though this approach might cause more coherence
between the residual graph and the level graph, it is more efficient, in the rerouting step, to combine a
new blocking fiow into the existing one in the residual graph.

Sorting is executed based on computational dependency, which is represented by a dependency graph.
Causality assignment gives one-to-one pairings (via saturated edges) between equation nodes (EqNode)
and variable nodes (VarNode) in the bipartite graph. Unsaturated edges from equation nodes to vari­
able nodes indicate computational dependency. A dependency graph is constructed by tuming each
pairing (consists of an EqNode and an VarNode linked by an saturated edge) into a DNode, and uns at­
urated edges into dependency edges. The design of these classes is shown in Figure 4.4.

4.5.2 Implementation Issues

Finding a blocking fiow is the key issue in solving the problem of causality assignment in terms
of Dinic's algorithm. This section presents our implementation (pseudocode) of the blocking step in
Dinic's algorithm.

Level Graph Construction

We are to find a blocking fiow in a level graph. Before discussing the implementation of how to find
a blocking fiow, we first show how a level graph is constructed.

In a residual graph R, the level of a vertex v is the length of the shortest path from the source no de s
to v. The level graph L for a fiow f is the subgraph of R containing only the vertices reachable from
s, and only the edges [v, w] such that level(w) = level(v) + 1. L can be constructed in O(m) time by
breadth-first search. The pseudocode of constructing a level graph is given as follows:

G: : FlowGraph
G represents the residual graph
def buildLevelGraph(G):

initialization
for node in G.getAllNodes():

node.deleteAllOutgoingEdgeslnL()
node.setVisited(false)
node.setLevel(O)

G.isSinklnL=False
G.source.setVisited(True)
LO=[G.source]
a global counter of the current level during graph traversal
level=O
G.source.setLevel(level)
graph traversal by breadth-first search
while LO not empty:

level=level+l
another list for breadth-first search
Ll=[]
for v in LO:

for each unsaturated outgoing edge [v, w]:
add edge [v,w] to L if w is not visited

4.5 Design and Implementation

LO=L1

if not w.isVisited() :
w.setVisited(True)
w.setLevel(level)
set the flag if L contains the sink node
if w==G.sink:

G.isSinklnL=True
LI. append (w)
v.addOutgoingEdgelnL([v,w])

add edge [v,w] to L if level(w)=level(v)+l
else:

if v.level+1==w.level:
v.addOutgoingEdgelnL([v,w])

now G also contains the information of the Ievel graph
return G

A Blocking Step

71

A blocking step in Dinic's algorithm consists of finding a blocking flow J'on the level graph L with
the CUITent flow J, and replace the CUITent flow J by J + J'. The following method implements a
blocking step. The input to the method is a residual/level graph with flow J, and the output is the
same graph with flow J + f'.

Find a blocking flow f' on the level graph L for the
current flow f,
and replace the current flow by f+f'
def blockingStep(L):

initialize
p=[L.source]
v=L.source
while True:

Advance
outgoingEdges=v.getAllUnsaturatedEdgeslnL()
if v has outgoing edges
if outgoingEdges is not empty:

by default, pick the first edge [v,w] in the list
[v,w]=outgoingEdges[O]
replace path p by p+w, and v by w
p.append(w)
v = w
if v is not L.sink:

repeat Advance
continue

Retreat
else:

if v is L.source:
halt
return L

else:

4.5 Design and Implementation

[u,v)=last edge of p
delete [u,v) in L
delete v in p
replace v by u
v = u
continue

Augment
compute the saturated flow delta on p
delta=saturatedFlow(p)
for each edge (e) on p:

add delta to the flow of every edge on p
e.addFlow(delta)
add -delta to the flow of corresponding reversed edge
el=reversed(e)
el.addFlow(-delta)
#delete newly saturated edge in L
if e.getCap()==e.getFlow() :

delete e in L
initialize
p=[L.source)
v=L.source

return L

4.5.3 Extension to Hybrid Systems

72

Even though this thesis does not coyer hybrid behavior in Modelica, it is important to consider that the
CUITent data structure is capable of supporting hybrid models. That is, the CUITent data structure should
be capable of handling all Modelica features from syntax to semantics, and symbolic transformation
in the Back End.

It has been mentioned earlier that the J.lModelica compiler provides full support of Modelica syntax.
The abstract syntax covers aIl Modelica constructs. The semantics of hybrid models is also defined
in terms of the translation of original Modelica source file into DAEs, while sorne of the DAEs are
conditionally evaluated. The CUITent data structure supports conditional equstions. This should enable
the translation of hybrid models into fiat Modelica.

Causality assignment is more complicated with hybrid behavior. Our implementation of causality
assignment is based on a very general graph data structure. It is hard to predict that the CUITent data
structure will fully support hybrid systems in causality assignment. But we are confident that using
graph algorithms is general enough (as opposed to matrix-based approaches), and it will work with
hybrid models, possibly with additional structures.

Code Generator

As it has been mentioned, The jlModelica compiler project is an open-source project, and it is based
entirely on aU freely available resources in the public domain. To meet the requirement that one can
simulate Modelica models with free resources, a free simulator is also needed. GNU Octave is a
high-Ievel language and environment which is primarily intended for numerical computation. It is
intended as a free alternative to Matlab. It can solve linear and nonlinear problems numericaUy, and
can perform other types of numerical experiments. It is a freely available software. The jlModelica
compiler currently generates Octave code. This approach is far from optimal, and the flavor of the
generated code is more suited for Simulink S-functions or DSblock [20]. This chapter presents how
Octave is used to simulate Modelica models.

5.1 Problems to be Solved

After formula manipulation has been performed in the Back End, a set of implicit DAEs are possibly
transformed to a set of explicit (causal) equations, which rnight contain linear equations, ODEs and
integration equations, and algebraic loops (linear or nonlinear). This section discusses how Octave
solves each of these problems.

5.1.1 Integrating ODE

Octave is able to solve nonlinear differential equations of the foUowing form:

dx
dt = f(x,t)

with initial condition
x(to) = Xo·

Users must specify the function f(x,t), Le., the RHS of the equation, for Octave to integrate the
equation. Consider the foUowing example:

function xdot = f(x , t)
a = 1.5
b = 2.0
c = 3.0
d = 6.0
xdot (1)
xdot (2)

endfunction

a*x(I)+b*x(I)*x(2)~2

5.1 Problems to be Solved

This function will solve the following set of nonlinear ODEs

{ l! = axl +bXI~
Tt = c2XI + dX2xT

74

Users also need to specify the time space and the time step over which the differential equations are
integrated. For example,

t = linspace(O, 50, 200)

defines the set of output times as a column of vector, where 0 is the initial time, 50 is the end time of
integration. This time space is divided into 200 intervals. Given the initial condition

xO = [1; 2]

the set of differential equations can be solved by calling the built-in lsode function

x = lsode("f", xO, t).

The retum value is a matrix of size 2 x 200. The first column of the matrix corresponds to the value
of Xl, and the second column corresponds to the value of X2, at each time step. The output at initial
time corresponds to the initial condition given above.

5.1.2 Solving Nonlinear Equations

During formula manipulation in the Back End, algebraic loops are identified and the equations in­
volved are not transformed to causal representation. An algebraic loop can either be linear or nonlin­
ear. Octave can solve sets of nonlinear equations of the form

F(x) = 0

using the functionfsolve, which is defined as folIow:

[x,info,msg] = fsolve(fcn,xo)

where fcn is the hame of a function of the form f(x), Xo is an initial guess value of x. For example,
the function to solve the folIowing set of nonlinear equations:

is written as :

function y = f(x)

{
2x2 + 3xy + l = 5
3x - 2xy2 + 2y3 = 2

y(l) = 2*x(1)A2+3*x(1)*x(2)+x(2)A2-5
y(2) = 3*x(1)-2*x(1)*x(2)A2+2*x(2)A3-2

endfunction

To solve this set of equations, one must give an initial guess of x(1) and x(2). For example,

xO = lOi 0].

Then calIfsolve to find the roots of the system

[x, info] = fsolve("f", [OiO])

A retum value of info = 1 means that the solution has converged.

5.2 The Structure of the Simulation Process

5.2 The Structure of the Simulation Process

Figure 5.1 depicts the structure of the simulation process.

solve equations
in order

YES

Figure 5.1: Structure of the Simulation Process

Consider the following example:

model Equation
constant Real pi=3.1416;
parameter Real a=2.0;
Real w, x, y, z;

equation
x = sin (time) ;
der(y)+x = y~2;
w+z+x = 3;
w-2*z = 1;

end Equation;

Given this model as input, the JAModelica compiler transforms the equations into a causal form:

75

5.2 The Structure of the Simulation Process 76

x=a*pi+sin (time)
der(y)=(-1.0)*x+y~2.0

Algebraic 100p 1: -3.0+w+x+z = 0.0
Algebraic 100p 1: -1.0+w+z*(-2.0) 0.0

and generates the following Octave code:

set time
time_init=input("Please enter initial time: ");
time_end=input("Please enter end time: ");
time_step=input("Please enter time step: ");
num_of_intervals=(time_end - time_init)/time_step;
time = linspace(time_init, time_end, num_of_intervals), ;
Constants
global pi_last=3.1416
Parameters
global a_last=2.0
a_last=input("enter parameter value: a(2.0)");
Variables and model initialization
global z=zeros(num_of_intervals, 1);
z(I)=input("Please enter initial value of z: ");
global z_last=z(I);
global w=zeros(num_of_intervals, 1);
w(I)=input("Please enter initial value of w: ");
global w_last=w(I);
global y=zeros(num_of_intervals, 1);
y(I)=input("Please enter initial value of y: ");
global y_last=y(I);
global der_y=zeros(num_of_intervals, 1);
der_y(I)=input("Please enter initial value of der_y: ");
der_y_last=der_y(I);
global x=zeros(num_of_intervals, 1);
x(I)=input("Please enter initial value of x: ");
global x_last=x(I);

function loopl = f_loopl(x)
global x_last;
loopl(I)=(-3.0)+x(2)+x_last+x(I);
loopl (2) = (-1. 0) +x (2) +x (1) * (-2.0);

endfunction

function y_dot f_y(yi, ti)
global x_lasti
global y_last;
y_dot(1)=(-1.0)*x_last+yi(I)~2.0;

endfunction

5.2 The Structure of the Simulation Process

Equation 1
x(i)=a_last*pi_last+sin(time(i));
x_last=x (i) ;
Equation 2
der_y(i)=(-1.0)*x_last+y_last A 2.0;
der_y_last=der_y(i);
time_i=linspace(time(i-1), time(i), 10)';
yiO=[y-1ast];
y_i=lsode("f_y", yiO, time_i);
y(i)=y-i(10);
y_last=y (i) ;
Equation 3
init_9uess=zeros(2, 1);
[loop1, info]=fso1ve("f_loop1", init_9uess);
z(i)=loop1(1);
z_last=z(i);
w(i)=loopl(2);
w_last=w(i);

endfor

From this sample, we can see that the simulation process consists of the following steps:

• Set the initial time, end time, and time steps of a simulation run;

• Set up parameters for a simulation run;

• Set up initial conditions;

• Define functions to compute integration equations and algebraic loops;

• Compute the value of unknowns in order, at each time step.

77

Note that the main simulation loop advances simulation time in fixed time-steps. Within each time
step, Octave solvers, including lsode get called. Obviously, this use of Octave is overkill. The structure
of the generated code (without the time-step loop) is closer to that of Simulink S-functions.

5.2.1 lime Setup

Before a simulation run, users are prompted to enter the initial time (usually 0), the end time, and
the number of intervals that this time space is divided into. Smaller time step leads to more accurate
simulation result, at the cost of lower run time efficiency.

5.2.2 Constants, Parameters, and Variables

In simulation models, it is meaningful to specify the variability of identifiers. As in sorne other mod­
eling and simulation languages, three levels of variability are identified in Modelica:

1. Constant: the value of a constant never changes after it is declared. Wherever the identifier
occurs, it may be replaced by its value. Here in the jlModelica compiler, substituting constant
values, which is called constant propagation in compiler theory, is not implemented. The value
of a constant identifier is evaluated at run time. But this is left as future work for code optimiza­
tion.

5.2 The Structure of the Simulation Process 78

2. Parameter: the value is set at the beginning of a simulation but remains constant during a single
simulation run. In generated Octave models, the literaI value of a parameter is not substituted in
equations until that equations is evaluated. In future work, parameter equations will be moved
outside the time-step loop.

3. Variable: the value is set to an "initial condition" at the beginning of a simulation run and may
subsequently change over the whole integration domain. Variables occurring in the form of
der(x) (replaced by der J in Octave code) are called derived state variables. Depending on the
causality a derived state variable is assigned (integral causality or derivative causality), an in­
tegration equation or a derivative equation is inserted to solve both of x and der J. AU other vari­
ables are algebraic variables. In Octave models, a zero vector of size numberO fTimelntervals x
1 is created for each variable. The ith element of a vector corresponds to the value of that vari­
able at time step i.

5.2.3 Global Variables

The RHS of an ODE, or an algebraic loop, may contain other algebraic variables, such as

der(y)=(-1.O)*x+y'2.0

in this example. To solve y by integration, the value of x also need to be known. We can see that
from the function definition introduced in section 5.1.1, there is no way to pass the value of x into
the function body as a formaI parameter. The solution to solving this problem is to declare x as a
global variable. In Octave, a variable that has been declared as global may be accessed from within a
function body without having pass it as a formaI parameter.

In generated Octave models, aH variables, including constants and parameters, are declared as global.
AIso, there is a reference to the latest evaluated value of each variable at the previous time-step, e.g.,
xJast. These names are also declared as global.

5.2.4 Model Initialization

Before a simulation run, all variables in a model are assigned consistent initial values. This pro­
cess is caUed model initialization. During this phase, all derivatives, der(...), are treated as unknown
algebraic variables. Initial values assigned to variables must be consistent. They are subject to the
foUowing constrains:

• AU equations that are utilized in the intended operation;

• As equations in "initial equation" sections;

• Implicitly by using the value of attribute start in the declaration of variables.

Using the dependency graph described in section 4.3.1, it is possible to derive a consistent initial state
of a model. Model initialization has not yet been implemented in the pModelica compiler currently.
Instead, users are responsible for creating a consistent initial state of a model, by assigning each
variable a value at initial time.

5.2.5 Defining Functions

For each explicit ODE, an integration equation is inserted. such an integration equation is tumed into
a function representing the RHS of the corresponding differential equation in Octave. For example,
the ODE

5.2 The Structure of the Simulation Process

der(y)=(-1.0)*x+y-2.0

corresponds to the function

function y_dot = f_y(yi, ti)
global x_lasti
global y_lasti
y_dot(1)=(-1.0)*x_last+yi(1)-2.0i

endfunction

Functions are also defined for identified algebraic loops. For example, the function

function loop1 = f_loop1(x)
global x_lasti
loop1(1)=(-3.0)+x(2)+x_last+x(1)i
loop1 (2) = (-1. 0) +x (2) +x (1) * (-2.0) i

endfunction

is defined to solve the following algebraic loop:

Algebraic Loop 1: -3.0+w+x+z = 0.0
Algebraic Loop 1: -1.0+w+z*(-2.0) 0.0

5.2.6 The For-Loop

79

The for-Ioop is designed to solve variables at each time step, in the order of their dependencies. It
starts from the second time step since the value of each variable at the first time step is determined by
model initialization. Equations within the for-Ioop are written in the order of computation dependency,
which is the result of sorting described in section 4.3. The reference to the latest evaluated value of a
variable is updated right after it is computed at each time step.

ODEs are integrated over the time interval of every two consecutive time steps, i.e., integrated at each
[t(i -l),t(i)]. Such a time interval is divided into 10 slices, i.e.,

time_i=linspace(time(i-1), time(i), 10)'

The value of integration at the 1 (jh slice is assigned to the state variable being integrated.

5.2.7 Visualized Output

When the for-Ioop terminates, the solution signal for each variable is stored in the vector which was
created before the simulation ron. Octave supports graphical output of simulation results. The follow­
ing command is used to display solutions graphically

plot (time, x)

For the above example, this gives figure 5.2

5.2 The Structure of the Simulation Process 80

linel-

7

6

5

4

3

O~------~------~------~--------L-----~ o 2 4 6 10

Figure 5.2: GNU Plot Sample

Case Study

In order to show that the t-tModelica compiler is able to solve real problems, a case study is presented
in this chapter. The study is based on the simple circuit example mentioned in chapter 1. It is a circuit
which consists of two resistors, a capacitor, a sine voltage source, and a ground point. AU these
components are connected in, as shown in Figure 6.1.

Figure 6.1: An Electrical Circuit

As it will be shown later in this chapter, this is a nontrivial case because the model involves the most
important features of Modelica, su ch as class inheritance, class modifications, components coupled
by connection equations, and non-causal modeling with implicit equations. Finally this is a model that
ends up with both ODEs and algebraic loops after causality assignment. This chapter presents how
the t-tModelica compiler translates the original Modelica source code of the model into fiat Modelica,
the transformations of equations, and finaUy how Octave simulates the model. The simulation result
is compared to the one obtained in the demo version of the Modelica commercial tool, Dymola 5, by
Dynasim AB (http://www . dynasim. sel).

6.1 A Modelica Description of the Model

6.1 A Modelica Description of the Model

A complete description of the simple circuit model in Modelica is given as follows:

Il declaring physical quantities
type Voltage Real (unit="V");

type Current = Real (unit="A");

Il define connector class
connector Pin

Voltage v;
flow Current i;

end pin;

Il define the partial model of components with two pins
partial model TwoPin "Superclass of elements with 2 electrical pins"

Pin p, n;
Voltage v;
Current i;

equation
v = p.V n.v;
o = p.i + n.i;
i = p.i;

end TwoPin;

Il definition of resistor
model Resistor "Ideal electrical resistor"

extends TwoPin;
parameter Real r (unit="Ohm") "Resistance";

equation
r * i = v;

end Resistor;

Il definition of capacitor
model Capacitor "Ideal electrical capacitor"

extends TwoPin;
parameter Real c (unit="F") "Capacitance";

equation
c * der (v) = i;

end Capacitor;

Il sine voltage source
model VsourceAC "sin-wave voltage source"

extends TwoPin;
parameter Voltage VA = 110 "Amplitude";
parameter Real f (unit="Hz") = 1 "Frequency";
constant Real pi = 3.14159265;

82

6.2 Translation to Flat Modelica

equation
v = VA*sin(2*pi*f*time)i

end VsourceACi

Il the ground point
model Ground "Ground"

Pin Pi
equation

p.v = 0;
end Ground;

Il the complete model
model circuit

Resistor RI(r=I);
Resistor R2(r=I);
Capacitor C(c=I);
VsourceAC AC;
Ground G;

equation
connect (AC.p, RI.p);
conne ct (RI.n, R2.p);
connect (R2.n, C.p);
conne ct (C.n, AC.n);
connect (AC.n, G.p);

end circuit;

83

From the source code, we can see that circuit components are built hierarchically from basic com­
ponents, i.e., predefined types. Subsequently, these circuit components are connected via connect
statements.

Since the pModelica compiler currently does notsupport import statements, all the class definitions
have to be placed in one file. This file is the input to the compiler.

6.2 Translation to Flat Modelica

Given this file as input, the pModelica compiler eventually generates corresponding Octave code. But
there are sorne intermediate transformation steps which lead to corresponding intermediate represen­
tations of the model. This section shows the intermediate representations in the Front End.

During the process of flattening, class inheritance is first expanded. The printout of the intermediate
representation of the expanded classes is as follows:

Il expanded version of Resistor
model Resistor

Pin p, n;
Voltage v;
Current i;
parameter Real r (unit="Ohm");

equation
v = p.v - n.v;

6.2 Translation to Flat Modelica

o p.i + n.ii
i p. ii
r * i = Vi

end Resistori

Il expanded version of Capacitor
model Capacitor

extends TwOPini
Pin p, ni
Voltage Vi

Current ii
parameter Real c (unit="F")i

equation
V = p.v - n.Vi
0 p.i + n.ii
i p.ii
c * der (v) = i' ,

end Capacitori

Il expanded version of VsourceAC
model VsourceAC

Pin p, ni
Voltage vi

Current ii
parameter Voltage VA = 110i
parameter Real f (unit="Hz") li

constant Real pi = 3.14159265i
equation

v = p.v - n.Vi
o p.i + n.ii
i p. ii
v = VA*sin(2*pi*f*time)i

end VsourceACi

84

In this model, both Resistor f Capacitor, and VsourceAC are derived classes of TwoPin. AU dec­
larations and equations in TwoP in are copied and inserted into these three classes, respectively.

Then the model is translated into fiat Modelica in terms of fiattening composite components, fiattening
connect equations, and resolving modifications. After these translation steps have been executed, a fiat
Modelica description of the model is generated by the Front End:

model Circuit
flow Real R1_n_ii
Real R2_Vi
parameter Real R1_r
Real G-P_Vi
Real C_n_vi
Real R1_p_Vi
flow Real R1_p_ii

6.2 Translation to Flat Modelica

flow Real G-p_i;
Real R2_i;
flow Real AC_n_i;
parameter Real R2_r;
Real RI_n_v;
flow Real R2_n_i;
parameter Real C_c;
flow Real R2_p_i;
parameter Real AC_VA;
flow Real AC_p_i;
Real Ci;
flow Real C_p_i;
constant Real AC_pi;
Real RI_v;
Real AC_v;
Real AC_i;
Real C-p_v;
Real RI i' - ,
Real C_v;
Real AC-p_v;
Real AC_n_v;
Real R2-p_v;
flow Real C_n_i;
Real R2_n_v;
parameter Real AC_f;

equation
C_c*der(C_v)=C_i;
C_v=C-p_v- C_n_v;
O=C_p_itCn_i;
C_i=Cp_i;
RI_r*RI_i=RI_v;
RI_v=RI_p_v-RI_n_v;
O=RI-p_itRI_n_i;
RI_i=RI-p_i ;
G-p_v=O;
R2_r*R2_i=R2_v;
R2_v=R2_p_v-R2_n_v;
O=R2_p_itR2_n_i;
R2_i=R2-p_i ;
AC_v=AC_VA*sin(2*AC_f*AC-pi*time);
AC_v=AC-p_v-AC_n_v;
O=AC_p_itAC_n_i;
ACi=AC-p_i ;
AC_p_itRI_p_i=O.O;
AC_p_v=RI_p_v;
RI_n_itR2_p_i=O.O;
RI_n_v=R2_p_v;
R2_n_itC_p_i=O.O;

85

6.3 Formula Manipulation

R2_n_v=C_p_Vi
G_p_itAC_n_itC_n_i=O.Oi
G_p_v=AC_n_vi
G_p_v=C_n_vi

end Circuit i

86

In the fiat Modelica description of the model, only modifications of real numbers or integers are tumed
into equations. Modifications of strings, e.g., modification to the uni t attribute, are ignored.

6.3 Formula Manipulation

The Back End performs formula manipulation on the set of equations declared in the fiat Modelica
description. Formula manipulation includes the techniques of canonical transformation, causality as­
signment, sorting and algebraic loop detection. This section shows the result of each transformation
step.

6.3.1 Canonical Representation

The set of equations are transformed to the following canonical form:

C_c*der (C_v) tC_i* (-l.O)=O.Oi
C_n_vtC_p_v*(-l.O)tC_V=O.Oi
C_n_i*(-l.O)tC-p_i*(-l.O)=O.Oi
C_itC_p_i*(-l.O)=O.Oi
Rl_i*Rl_rtRl_v*(-l.O)=O.Oi
Rl_n_vtRl-p_v*(-l.O)tRl_v=O.Oi
Rl_n_i*(-1.O)tR1-p_i*(-1.O)=O.Oi
Rl_itRl-p_i*(-l.O)=O.Oi
G_p_v=O.O;
R2_i*R2_rtR2_v*(-1.O)=O.O;
R2_n_vtR2-p_v*(-1.O)tR2_v=O.Oi
R2_n_i*(-1.O) tR2-p_i *(-1.O)=O.Oi
R2_itR2_p_i*(-1.O)=O.Oi
AC_VA*sin(2*AC_f*AC_pi*time)*(-1.O)tAC_v=O.Oi
AC_n_vtAC_p_v*(-l.O)tAC_v=O.Oi
AC_n_i*(-l.O)tAC-p_i*(-l.O)=O.Oi
AC_itAC-p_i*(-l.O)=O.Oi
AC_p_itRl_p_i=O.O;
AC-p_vtRl-p_v*(-l.O)=O.Oi
Rl_n_itR2_p_i=O.Oi
Rl_n_vtR2_p_v*(-1.O)=O.Oi
C-p_itR2_n_i=O.Oi
C_p_v*(-1.O)tR2_n_v=O.Oi
AC_n_itC_n_itG_p_i=O.Oi
AC_n_v*(-l.O)tG_p_V=O.Oi
C_n_v*(-l.O)tG-p_V=O.Oi

6.3 Formula Manipulation 87

6.3.2 Causality Assignment

The jtModelica compiler finds a matching between equations and variables in causality assignment.
The result is as follows:

Eq: AC_ll_itC_ll_itG-p_i = 0.0
--is used to solve G_p_i

Eq: AC_ll_v*(-l.O)tG_p_v = 0.0
--is used to solve AC_ll_V

Eq: C_p_itR2_ll_i = 0.0
--is used to solve C_p_i

Eq: C_ll_v*(-l.O)tG_p_v = 0.0
--is used to solve C II v

Eq: R1_ll_itR2_p_i = 0.0
--is used to solve R1_ll_i

Eq: R1_ll_vtR2_p_v*(-1.0) = 0.0
--is used to solve R2-p_v

Eq: R2_ll_vtR2_p_v*(-1.0)tR2_v = 0.0
--is used to solve R2_v

Eq: R2_i*R2_rtR2_v*(-1.0) = 0.0
--is used to solve R2_i

Eq: R2_itR2-p_i*(-1.0) = 0.0
--is used to solve R2-p_i

Eq: R2_ll_i* (-1.0)tR2_p_i* (-1.0) = 0.0
--is used to solve R2_ll_i

Eq: AC_ll_vtAC_p_v*(-l.O)tAC_v = 0.0
--is used to solve AC-p_v

Eq: AC_VA*sill(2*AC_f*AC_pi*time)*(-1.0)tAC_v 0.0
--is used to solve AC v

Eq: AC_itAC-p_i*(-l.O) = 0.0
--is used to solve AC_i

Eq: AC_ll_i*(-l.O)tAC-p_i*(-l.O) 0.0
--is used to solve AC_ll_i

Eq: AC_p_vtR1_p_v*(-1.0) = 0.0
--is used to solve R1-p_v

Eq: AC_p_itR1_p_i = 0.0
--is used to solve AC-p_i

Eq: C-p_v*(-1.0)tR2_ll_v = 0.0
--is used to solve R2_ll_V

Eq: C_c*der (C_v) tC_i* (-1.0) = 0.0
--is used to solve der(C_v)

Eq: C_ll_i*(-l.O)tC-p_i*(-l.O) = 0.0
--is used to solve C_ll_i

Eq: C_ll_vt C-p_v * (-l.O)tC_v = 0.0
--is used to solve C_p_v

Eq: R1_i*R1_rtR1_v*(-1.0) = 0.0
--is used to solve R1_v

Eq: C_itC-p_i*(-l.O) = 0.0

6.3 Formula Manipulation

--is used to solve C_i
Eq: R1_n_i*(-1.0)tR1_p_i*(-1.0) = 0.0

--is used to solve R1-p_i
Eq: R1_n_vtR1_p_v*(-1.0)tR1_v = 0.0

--is used to solve R1_n_v
Eq: G_p_v = 0.0

--is used to solve G_p_v
Eq: R1_itR1-p_i* (-1.0) 0.0 is

--used to solve R1_i

88

By default, the derived state variable der(C_v) is given integral causality. That is, der(C_v) is treated
as an algebraic unknown, and C_v is computed by integration.

6.3.3 Sorting and Aigebraic Loop Detection

The lJModelica compiler also found that there exists an algebraic dependency loop among sorne of
the equations. This is detected while the equations are sorted into a correct computation order based
on their computational dependencies.

--------------- Sorting ------------------
(1) R1_p_i---7: R1_n_i*(-1.0)tR1-p_i*(-1.0) 0.0
(2) R1_i---8: R1_itR1_p_i*(-1.0) = 0.0
(3) R1_v---5: R1_i*R1_rtR1_v*(-1.0) = 0.0
(4) G-p_v---9: G-p_v = 0.0
(5) AC_n_v---25: AC_n_v*(-1.0)tG_p_v = 0.0
(6) AC_v---14: AC_VA*sin(2*AC_f*AC-pi*time)*(-1.0)tAC_v 0.0
(7) AC_p_v---15: AC_n_vtAC_p_v*(-1.0)tAC_v = 0.0
(8) R1_p_v---19: AC-p_vtR1_p_v*(-1.0) = 0.0
(9) R1_n_v---6: R1_n_vtR1_p_v*(-1.0)+R1_v = 0.0
(10) R2_p_v---21: R1_n_vtR2-p_v*(-1.0) = 0.0
(11) C_n_v---26: C_n_v*(-1.0)+G_p_v = 0.0
(12) C_p_v---2: C_n_vtC_p_v*(-1.0)tC_v = 0.0
(13) R2_n_v---23: C_p_v*(-1.0)tR2_n_v = 0.0
(14) R2_v---11: R2_n_vtR2-p_v*(-1.0)+R2_v = 0.0
(15) R2_i---10: R2_i*R2_rtR2_v*(-1.0) = 0.0
(16) R2_p_i---13: R2_itR2_p_i*(-1.0) = 0.0
(17) R1_n_i---20: R1_n_i+R2-p_i = 0.0
(18) AC-p_i---18: AC-p_itR1-p_i = 0.0
(19) AC_n_i---16: AC_n_i* (-1.0)tAC_p_i* (-1.0) 0.0
(20) R2 n i---12: R2_n_i*(-1.0)tR2-p_i*(-1.0) 0.0
(21) C_p_i---22: C-p_itR2_n_i = 0.0
(22) C_n_i---3: C_n_i*(-1.0)tC-p_i*(-1.0) = 0.0
(23) G_p_i---24: AC_n_itC_n_itG-p_i = 0.0
(24) AC_i---17: AC_itAC_p_i*(-1.0)= 0.0
(25) C_i---4: C_itC-p_i*(-1.0) = 0.0
(26) der(C_v)---l: C_c*der (C_v) tC_i* (-1.0) 0.0

----------- Algebraic Loops -------------­
Algebraic Loop: 1

6.4 Octave Code

20: R1_n_i+R2_p_i=0.0
7: R1_n_i*(-1.0)+R1_p_i*(-1.0)=0.0
8: R1_i+R1_p_i*(-1.0)=0.0
5: R1_i*R1_r+R1_v*(-1.0)=0.0
6: R1_n_v+R1_p_v*(-1.0)+R1_v=0.0
21: R1_n_v+R2-p_v*(-1.0)=0.0
11: R2_n_v+R2-p_v*(-1.0)+R2_v=0.0
10: R2_i*R2_r+R2_v*(-1.0)=0.0
13: R2_i+R2-p_i*(-1.0)=0.0

6.3.4 Rewriting Equations into Explicit Form

89

The subset of equations that are involved in an algebraic loop are identified when the whole system is
rewritten into explicit form. They are grouped together and are placed in the right position according
to the computation order.

************* Equations in Explicit Form ***************
G-p_v=O.O
AC_n_v=G_p_v
AC_v=AC_VA*sin(2*AC_f*AC_pi*time)
AC_p_v=AC_n_v+AC_v
R1_p_v=ACp_v
C_n_v=G_p_v
C-p_v=C_n_v+C_v
R2_n_v=C-p_v
Algebraic Loop 1: R1_n_i+R2_p_i = 0.0
Algebraic Loop 1: R1_n_i* (-1.0)+R1_p_i* (-1.0) 0.0
Algebraic Loop 1: R1_i+R1_p_i*(-1.0) = 0.0
Algebraic Loop 1: R1_i*R1_r+R1_v*(-1.0) = 0.0
Algebraic Loop 1: R1_n_v+R1-p_v*(-1.0)+R1_v = 0.0
Algebraic Loop 1: R1_n_v+R2-p_v*(-1.0) = 0.0
Algebraic Loop 1: R2_n_v+R2_p_v*(-1.0)+R2_v = 0.0
Algebraic Loop 1: R2_i*R2_r+R2_v*(-1.0) = 0.0
Algebraic Loop 1: R2_i+R2_p_i*(-1.0) = 0.0
AC_p_i=(-1.0)*R1_p_i
AC_n_i=(-1.0) * AC_p_i
R2_n_i=(-1.0)*R2_p_i
C_p_i=(-1.0)*R2_n_i
C_n_i=(-1.0)*C-p_i
G-p_i =(-1.0)*AC_n_i+(-1.0)*C_n_i
AC_i=AC_p_i
C_i=C_p_i
der (C_v)=C_i*C_c' (-1.0)

6.4 Octave Code

Finally, the following Octave code is generated for the simple circuit model:

simulation time set up

6.4 Octave Code

time_init=input("Please enter initial time: ");
time_end=input("Please enter end time: ");
time_step=input("Please enter time step: ");
num_of_intervals=(time_end - time_init)/time_step;
time = linspace(time_init, time_end, num_of_intervals)';

Constants
global AC_pi_Iast=3.l4

Parameters
global Rl_r_last=l
Rl_r_last=input("enter parameter value: Rl_r(l)");
global R2_r_Iast=1
R2_r_Iast=input("enter parameter value: R2_r(1)");
global C_c_Iast=l
C_c_Iast=input("enter parameter value: C_c(l)");
global AC_VA_Iast=110
AC_VA_Iast=input("enter parameter value: AC_VA(llO)");
global AC_f_Iast=l
AC_f_Iast=input("enter parameter value: AC_f(l)");

variables
global C_v=zeros(num_of_intervals, 1);
C_v(l)=input("Please enter initial value of C_v: ");
global C_v_Iast=C_v(l);
global der_C_v=zeros(num_of_intervals, 1);
der_C_v(l)=input("Please enter initial value of der_C_v: ");
der_C_v_Iast=der_C_v(l)i
global C_i=zeros(num_of_intervals, 1);
C_i (l)=input ("Please enter initial value of C_i: ");
global C_i_Iast=C_i(l);
global AC_i=zeros(num_of_intervals, 1);
AC_i(l)=input("Please enter initial value of AC_i: ");
global AC_i_Iast=AC_i(l);
global G_p_i=zeros(num_of_intervals, 1);
G-p_i(l)=input("Please enter initial value of G_p_i: ");
global G_p_i_Iast=G-p_i(l);
global C_n_i=zeros(num_of_intervals,
C_n_i (l)=input ("Please enter initial
global C_n_i_Iast=C_n_i(l);
global C-p_i=zeros(num_of_intervals,
C-p_i (l)=input ("Please enter initial
global C-p_i_Iast=C-p_i(l);
global R2_n_i=zeros(num_of_intervals,
R2_n_i (l)=input ("Please enter initial
global R2_n_i_Iast=R2_n_i(1);
global AC_n_i=zeros(num_of_intervals,
AC_n_i(l)=input("Please enter initial

1) ;
value of

1) ;
value of

1) ;
value of

1) ;
value of

C _n_ i: ") ;

C-p_i : ") ;

R2 _n_ i: ") ;

AC _n_ i: ") ;

90

6.4 Octave Code

global AC_n_i_last=AC_n_i(l);
global AC-p_i=zeros(nuffi_of_intervals, 1);
AC_p_i(l)=input("Please enter initial value of AC-p_i: ");
global AC_p_i_la st =AC-p_i (1);
global Rl_n_i=zeros(nuffi_of_intervals, 1);
Rl_n_i (1) =input ("Please enter initial value of Rl_n_i: ");
global Rl_n_i_last=Rl_n_i(I);
global Rl_p_i=zeros(nuffi_of_intervals, 1);
Rl_p_i (1) =input ("Please enter initial value of Rl_p_i: ");
global Rl_p_i_last=Rl_p_i(I);
global Rl_i=zeros(nuffi_of_intervals, 1) ;
Rl_i(l)=input("Please enter initial value of RI - i: ") ;

global Rl_i_last=Rl_i(I);
global Rl_v=zeros(nuffi_of_intervals, 1) ;
Rl_v(I)=input("Please enter initial value of RI_v: ") ;

global Rl_v_last=Rl_v(I);
global Rl_n_v=zeros(nuffi_of_intervals, 1);
Rl_n_v (1) =input ("Please enter initial value of Rl_n_v: ");
global Rl_n_v_last=Rl_n_v(I);
global R2_p_v=zeros(nuffi_of_intervals, 1);
R2_p_v(I)=input("Please enter initial value of R2-p_v: ");
global R2-p_v_last=R2-p_v(I);
global R2_v=zeros(nuffi_of_intervals, 1) ;
R2_v(I)=input("Please enter initial value of R2_v: ") ;
global R2_v_last=R2_v(I);
global R2_i=zeros(nuffi_of_intervals, 1) ;
R2_i (1)=input ("Please enter initial value of R2 i: ") ;
global R2_i_ last=R2 _i (1);
global R2_p_i=zeros(nuffi_of_intervals, 1);
R2-p_i(I)=input("Please enter initial value of R2_p_i: ");
global R2_p_i_last=R2-p_i(I);
global R2_n_v=zeros(nuffi_of_intervals, 1);
R2_n_v(I)=input("Please enter initial value of R2_n_v: ");
global R2_n_v_last=R2_n_v(I);
global C-p_v=zeros(nuffi_of_intervals, 1);
C_p_v(I)=input("Please enter initial value of C-p_v: ");
global C-p_v_last=C-p_v(I);
global C_n_v=zeros(nuffi_of_intervals, 1);
C_n_v(I)=input("Please enter initial value of C_n_v: ");
global C_n_v_last=C_n_v(I);
global Rl_p_v=zeros(nuffi_of_intervals, 1);
Rl_p_v (1) =input ("Please enter initial value of Rl_p_v: ");
global Rl_p_v_last=R1-p_v(I);
global AC_p_v=zeros(nuffi_of_intervals, 1);
AC-p_v(1)=input("Please enter initial value of AC_p_v: ");
global AC_p_v_last=AC_p_v(I);
global AC_v=zeros(nuffi_of_intervals, 1);
AC_v(I)=input("Please enter initial value of AC_v: ");

91

6.4 Octave Code

global AC_v_last=AC_v(I);
global AC_n_v=zeros(num_of_intervals, 1);
AC_n_v(I)=input("Please enter initial value of AC_n_v: ");
global AC_n_v_last=AC_n_v(I);
global G-p_v=zeros(num_of_intervals, 1);
G_p_v(I)=input("Please enter initial value of G-p_v: ");
global G-p_v_last=G-p_v(I);

functions to compute ODEs
function C_v_dot = f_C_v(C_vi, ti)

global C_i_last;
global C_c_last;
C_v_dot(I)=C_i_last*C_c_last A (-1.0);

endfunction

functions to compute algebraic loops
function loopl = f_loopl(x)

global Rl_r_last;
global Rl_p_v_last;
global R2_n_v_last;
global R2_r_last;
loopl(I)=x(l)tx(9);
loopl (2) =x (1) * (-1.0) tx (2) * (-1.0);
loopl(3)=x(3)tx(2)*(-1.0);
loopl(4)=x(3)*Rl_r_lasttx(4)*(-1.0);
loopl(5)=x(5)tRl_p_v_last*(-1.0)tx(4);
loopl(6)=x(5)tx(6)*(-1.0);
loopl(7)=R2_n_v_lasttx(6)*(-1.0)tx(7);
loopl(8)=x(8)*R2_r_lasttx(7)*(-1.0);
loopl(9)=x(8)tx(9)*(-1.0);

endfunction

for i=2:num_of_intervals
Equation 1
G_p_v(i)=O.O;
G-p_v_last=G_p_v(i);
Equation 2
AC_n_v(i)=G_p_v_last;
AC_n_v_last=AC_n_v(i);
Equation 3
AC_v(i)=AC_VA_last*sin(2*AC_f_last*AC_pi_last*time(i));
AC_v_last=AC_v(i);
Equation 4
AC_p_v(i)=AC_n_v_lasttAC_v_lasti
AC_p_v_last=AC_p_v(i);
Equation 5
R1-p_v(i)=AC_p_v_last;
Rl_p_v_last=Rl_p_v(i);

92

6.4 Octave Code

Equation 6
C_n_v(i)=G-p_v_1asti
C_n_v_last=C_n_v(i)i
Equation 7
C-p_v(i)=C_n_v_lasttC_v_lasti
C_p_v_last=C-p_v(i)i
Equation 8
R2_n_v(i)=C_p_v_lasti
R2_n_v_last=R2_n_v(i)i
Equation 9
init_guess=zeros(9, l)i
[loop1, infol=fsolve("Cloop1", init_guess)i
R1_n_i(i)=loop1(1)i
R1_n_i_last=R1_n_i(i) i
R1_p_i(i)=loop1(2)i
R1_p_i_last=R1_p_i(i)i
R1_i(i)=loop1(3)i
R1_i_last=R1_i(i)i
R1_v(i)=loop1(4)i
R1_v_last=R1_v(i)i
R1_n_v(i)=loop1(5)i
R1_n_v_last=R1_n_v(i)i
R2_p_v(i)=loop1(6)i
R2_p_v_last=R2-p_v (i)i
R2_v(i)=loop1(7)i
R2_v_last=R2_v(i)i
R2_i(i)=loop1(8)i
R2_i_last=R2_i(i)i
R2_p_i(i)=loop1(9)i
R2_p_i_last=R2_p_i(i)i
Equation 10
AC_p_i(i)=(-1.0)*R1_p_i_lasti
AC_p_i_last=AC-p_i(i)i
Equation 11
AC_n_i(i)=(-1.0)*AC_p_i_lasti
AC_n_i_last=AC_n_i(i)i
Equation 12
R2_n_i(i)=(-1.0)* R2-p_i _1asti
R2_n_i_last=R2_n_i(i)i
Equation 13
C_p_i(i)=(-1.0)*R2_n_i_lasti
C_p_i_last=C-p_i(i)i
Equation 14
C_n_i(i)=(-1.0)*C-p_i_lasti
C_n_i_last=C_n_i(i)i
Equation 15
G-p_i (i)=(-1.0)*AC_n_i_lastt(-1.0)*C_n_i_lasti
G_p_i_last=G-p_i(i)i

93

6.5 Simulation Result

Equation 16
AC_i(i)=AC_p_i_Iasti
AC_i_Iast=AC_i(i)i
Equation 17
C_i(i)=C_p_i_Iasti
Ci_Iast=Ci(i)i
Equation 18
der_C_v(i)=C_i_Iast*C_c_Iast'(-1.0)i
der_C_v_Iast=der_C_v(i)i
time_i=linspace(time(i-1), time(i), 10)' i
C_viO=[C_v_Iast]i
C_v_i=lsode ("f_C_v", C_viO, time_i) i
C_v(i)=C_v_i(lO)i
C_v_Iast=C_v(i)i

endfor

6.5 Simulation Result

Given the following initial setup of a simulation ron:

initial time: 0
end time: 10
time step: 0.02

parameter R1_r=1.0
parameter R2_r=1.0
parameter C_c=1.0
parameter AC_VA=110.0
parameter AC_f=l.O

initial value of aIl variables: 0

Octave generates the C_v signal, as shown in Figure 6.2.

94

Given the same model as input to the demo version of the commercial tool Dymola, and the same
initial simulation setup, Dymola generates the C_v signal shown in Figure 6.3.

Also, comparisons are made between the C_i signaIs generated by the two tools, as well as AC-Ï. These
variables are shown in Figure 6.4, Figure 6.5, Figure 6.6, and Figure 6.7.

6.6 Conclusion
We can see that the simulation result given by the JLModelica Compiler and Octave is almost identical
to that given by the demo version of Dymola. Even though large-scale testing has not yet been per­
formed, this case study shows that the compiler is able to compile and simulate non-trivial models of
continuous system.

6.6 Conclusion

20
Iine1-

15 f\
f\

A 10 f\
f\ f\

v
-5 v v v V v V

-10 '-------'------'------'------''------'
o 10

Figure 6.2: C_v produced by the jLModelica Compiler and Octave

"

12

-C.Y

1\
J'i
, 1
1 i

\1

(1

;\
1 i
1

1 1

1 1

1 , i 1
1 ,

'I , ,
\)

, ,
V

/\ i\
1 1

1 , ,
1 , 1
1 1

1

1 1
1

1 , ,
, 1

i 1

1 , 1

'.1

" 'J

f\ l\ rI,

"
,ri

1
1 1

1 \
\ :

1 1 1 1

! 1

1 1 1 1 1 1

1
1

1

, 1

1 , 1

1 i !
1

,
1 , ,

1 ,
1

\ 1 "
"
,

; 1 1
"

,
\; V \/

10

Figure 6.3: Cv produced by the Demo version of Dymola

95

6.6 Conclusion

ror---------,----------,---------,----------,---------,
AlinelA

1\

40

20

-20

-40

_roOL __ ~ __ V~ __ V ____ V~ ______ ~ ___ V __ ~ ______ ~lO

Figure 6.4: Ci produced by the jLModelica Compiler and Octave

1 i ,
, '

,1
, !

2,5

" " 'J

1

\i
"

\
, ,

, \ i
\J " \l'

,
1 1

, 1 ,
1 ! ,

1
,

\ 'Ii' !
"

7.5 10

Figure 6.5: Ci produced by the Demo version of Dymola

96

6.6 Conclusion

60,-~,----'---,----'-------~------r-~M----'

1\ 1\ 1\ A A A A 1i~1-Ï\

40

20

-20

-40

v v v v v v v v
~L-______ ~ ______ ~~ ______ ~ ______ ~~ ______ ~

o 10

Figure 6.6: AC_i produced by the jlModelica Compiler and Octave

-AC.!

,

,,1
1

..
, 1

1

1 1

20

-20

1 1

,1
, i

" \;
\J

i
l ,

; 1

: '
1

1 1
,

i 1
1
1

1 1

l ,
1 1

\ 1

If
\j

,

/'

,
1

\ 1

Il
\ ,
, 1

V

1 1

1

1

! '

,
,1
1

, , ,
, 1

" \)
~+-~-r~--~'-~~-'~ __ '--r~~~'-~~-'~ __ ~~

Ù 2.5 10

Figure 6.7: AC_i produced by the Demo version of Dymola

97

Future Work

Given the objective that we are to build a research prototype compiler for Modelica, the ttModelica
compiler currently only focuses on a subset of Modelica, which is the real essence of the language­
non-causal modeling. As shown in chapter 6, the compiler is able to solve non-trivial problems. But
compiling and simulating large models is not possible due to the absence of support for sorne language
features, such as import statements, arrays and matrices, etc. In order to make it possible, and to em­
ploy large scale testing on the Modelica standard library, more language features will be implemented
in the J1Modelica compiler. AIso, as a research prototype compiler, we are interested in implementing
sorne advanced formula manipulation techniques, such as teaing for solving algebraic loops [18], and
inline integration [12]. This chapter gives an introduction to sorne of these techniques, and proposes
the future work for the ttModelica compiler.

7.1 More Language Features

Among the language features to be supported, resolving import statements and supporting arrays are
the most important ones. With the support of these two features, we can make use of the Modelica
standard library. Therefore, we will be able to simulate large models and perform large scale testing,
which will in tum give us feedback to improve the design and implementation of the compiler.

7.1.1 Import Statement

An import Statement is introduced by the following import clause:

import (IDENT "=" name 1 name ["." "*"))

It can be either a qualified import statement, e.g., import A. B. C, and import D=A. B. C, or an unqual­
ified import statement, e.g., import A. B. *. The following example demonstrates various forms of
import statement:

package A
package B

partial model C
Real Xi

end Ci
model D

extends C(x=5)i
end Di

end Bi

package Bl
model C

7.1 More Language Features

extends B.C(x=4);
end C;

end B1;
package B2

model C
extends B.C(x=7);

end C;
model E=B.C(x=6);
model F=B.C(x=10);

end B2;
end A;

class Importl
import A.B.*;
import A.B2.*;
import A.B1.Ci

import MyC=A.B2.Ci IINote that a qualified import takes

C Ci

D d;
E e;
MyC myc;

end Import 1 ;

Il precedence over a unqualified import

99

Qualified import statements may only import a package or an element of a package. For example, in
import A. B . C, or import D=A. B . C, A. B must be a package, while C can either be a package or an
element of a package. Unqualified import statements may only import elements from packages, e.g.,
in import A. B . *, A. B must be a package.

Lookup of the name in an import statement is different from the normal lexical lookup. The first part
of the name, e.g., A in A. B, is looked up at the top level.

Classes imported from external files can be loaded in two different ways. One of them is the pes­
simistic approach, that is, whenever an import statement is resolved, aIl imported classes are loaded.
Another approach is the optimistic approach, that is, a imported element will not be loaded until it
is used. For instance, in the sample model, class A. B2 . F will not be loaded because it is not used in
class Importl. The first approach is easier to implement. But the latter one is more efficient and use
less memory space.

7.1.2 Arrays

Modelica supports arrays and matrices. An array variable can be declared by appending dimensions
after the type-specifier name or after a component name. For example

model Array1
Integer x[5)
Integer[3) y

end Array1;

{1,2,3,4,5};
1:3;

declares two arrays: x of size 5, and y of size 3. The fiat Modelica description of this model is as
follows:

7.2 Formula Manipulation Techniques 100

class Arrayl
Integer x [1) ;
Integer x [2);
Integer x [3);
Integer x [4);
Integer x [5];
Integer y [1) ;
Integer y [2);
Integer y [3);

equation
x [1) 1;
x[2) 2;
x[3) 3;
x [4) 4;
x[5) 5;
y [1) (1: 3) [1] ;
y[2) (1: 3) [2] ;
y[3) (1: 3) [3) ;

end Array1;

From this description, we can see that the semantics of array variables is defined by expanding arrays
to individual scalar variables. The implementation of arrays is related to the implementation of rele­
vant language features such as the for-loop construct. Further studies on arrays will be carried out in
the near future.

7.2 Formula Manipulation Techniques

This section introduces sorne of the formula manipulation techniques we have studied, which are
important in improving simulation run-time efficiency. These techniques will be implemented in the
future version of the pModelica compiler.

7.2.1 Eliminate Aliases

Recall that the fiat Modelica description of the simple circuit model includes the following set of
equations:

C_c*der(C_v)=C_i;
C_v=c_p_v-C_n_v;
O=C_p_i +Cn_i;
Ci=C-p_i ;
R1_r*R1_i=R1_v;
R1_v=R1_p_v-R1_n_v;
O=R1_p_i+R1_n_i;
R1_i=R1_p_i;
G_p_v=O;
R2_r*R2_i=R2_v;
R2_v=R2-p_v-R2_n_v;
O=R2_p_i+R2_n_i;
R2_i = R2-p _i;

7.2 Formula Manipulation Techniques

AC_v=AC_VA*sin(2*AC_f*AC-pi *timeli
AC_v=AC-p_v-AC_n_vi
O=AC_p_i+AC_n_ii
ACi=AC-p_ii
AC_p_i+Rl_p_i=O.Oi
ACp_v=Rl_p_Vi
Rl_n_i+R2-p_i =O.Oi
Rl_n_v=R2_p_Vi
R2_n_i+C_p_i=O.Oi
R2_n_v=C_p_Vi
G_p_i+AC_n_i+C_n_i=O.Oi
G_p_v=AC_n_vi
G_p_v=C_n_vi

101

Due to the "connect" statements in coupled models, the original set of equations contains many
aliases, e.g., there exist many trivial equations of the type a = b or a + b = O. Actually they are
the same variables stored under different names. In the simple circuit example, we can see that 16 out
of 26 equations are of this type. It will seriously affect the simulation run-time efficiency if aIl these
trivial equations are computed during the simulation process. ActuaIly, sorne of these equations can
be eliminated without affecting the simulation result. This section presents how these equations can
be eliminated.

The algorithm for eliminating aliases is straightforward. We only need to get rid of the equations of
the type a = b, and replace aH occurrences of variable a in aH other equations by variable b. Also, this
rule applies to the foHowing variants of a = b:

• a=-b

• -a=b

• -a=-b

• a+b=O

• a-b=O

• -a+b=O

• -a-b=O
• either a or b is a constant

For example, equations of the type a + b = 0 is eliminated and all occurrences of a are replaced by -b.

There is an exception to this rule: variables that were dec1ared as input or output should not be
eliminated. For instance, if a is an input or output variable, the equation a = b will be eliminated
as weIl, but aIl occurrences of b are replaced by a. If both a and b are dec1ared as input or output
variables, the equation will not be eliminated.

The eliminated variables are no longer visible to the simulator. They will not be computed at sim­
ulation run-time. But a user may be interested in knowing the simulation output of sorne of those
eliminated variables. This problem can be solved by keeping a reference table which stores the re­
lationship of the eliminated variables to variables computed at simulation run-time. These variables
will only be computed when required.

7.2 Formula Manipulation Techniques 102

7.2.2 Tearing

Once equations are identified as forming an algebraic loop, they are isolated and will be solved si­
multaneously, either with a symbolic sol ver or a numerical solver. There are two types of algebraic
loops, linear algebraic loops and non-linear algebraic loops. Linear algebraic loops can be solved
analytically using Crarner's rule, or with numerical techniques in case the analytical solution grows
too large. Non-linear algebraic loops can not generally be solved by formula manipulation. It may be
preferrable to employa numerical method to solve such a set of equations.

The technique to solve non-linear algebraic loops we are to discuss here is called tearing, which was
introduced by Kron in 1962 [18]. It is a simple technique to reduce a large system of linear or non­
linear algebraic equations to a smaller system of equations. It consists of finding a reduced subset of
variables over which to iterate, so that the remaining paired variables can be calculated explicitly as a
function of these variables.

Consider a set of non-linear algebraically coupled equations h to be solved for the unknown vector z:

0= h(z) (7.1)

Tearing means breaking algebraic loops in the dependency structure of equations and variables. A
subset of z, called z}, are chosen as tearing variables. A subset ofh, called h}, are chosen as residual
equations. The choice is made in such a way that the remainder of z, called Z2, can be calculated in
sequence using the remaining equations h2, assuming that the Zl variables are known, Le.:

(7.2)

This system of equations can be solved by Newton iteration over the tearing variables Zl. The numer­
ical procedure to compute Z is as follow:

• Choose Zl

• Give an estimate to Zl

• Compute: Z2 = h2 (Zl)

• Compute the residual in res(zl) = h1(Zl,Z2)

• Iterate until res(zl) are within tolerance.

We can observe from this procedure that it reduces the dimension of the iterated system of equations
from dim(h) = dim(hl) +dim(h2) down to dim(hI).

However, the optimal selection of tearing variables and residual equations is not trivial. This is be­
cause:

• The more tearing variables there are, the greater the computational overhead.

• Numerical errors may differ considerably from one selection to another.

• Fewer tearing variables may mean greater errors since the errors are propagated through the
equations and may be amplified.

These factors make it almost impossible to know automatically whether a selection of tearing variables
is good or not. This means that, in general, it is preferable for the user to make the choice based on
knowledge of the problem domain. But the compiler itself has to check whether the user's selection
is valid.

7.2 Formula Manipulation Techniques 103

7.2.3 Inline Integration

Inline integration is a new method for solving DAEs using a mixed symbolic and numerical approach,
which is proposed by [12].

In practice, it is either the modeling software or simulation software that converts the continuous-time
problem to a discrete-time problem that can be solved through iteration. Traditionally this task was
assigned to simulators. However, the concept inline integration enables the conversion of continuous­
time problem to discrete-time problem at compile time by modeling software.

The basic idea of inline integration is to transform ODEs to algebraic equations through either an
explicit or implicit integration method. The original set of DAEs will then be converted into a set of
purely algebraic equations. With this technique, a compiler is able to generate more efficient simula­
tion run-time code.

Continuous-time systems can essentially be represented as state-space models through a set of ODEs:

der (x) = f(x,t); x(to) = Xo (7.3)

where derO denotes the time derivative, x is the vector of state variables, t denotes time, and f is a
set of assignment statements specifying how the derivatives of x are computed, assuming the state
variables x are known.

Solving (7.3) by any explicit integration method is straightforward. In the forward Euler method, the
derivative of the state vector x is approximated by:

Xn+l -Xn
der(x(tn)) = der(xn) = h (7.4)

where Xn+l = X(tn+l) is the unknown value of x at the new time instant tn+l = tn + h, Xn = x(tn) is
the known value of x at the previous time instant tn, and h is the time increment. Substituting der(x)
in (7.4) by (7.3) leads to the following recursive formula:

Xo = x(to) (7.5)

This formula can be used to solve the ODE, and it works well for non-stiff systems.

But unfortunately, explicit integration methods are not weIl suited for stiff systems or systems which
contain algebraic loops. Implicit integration methods are more appropriate in such cases [12]. Using
the backward Euler method, the derivative of the state vector x is approximated by:

Xn+l -Xn
der(xn+l) = h (7.6)

Substituting der(xn+l) in (7.6) by (7.3) leads to

(7.7)

where Xn+l is the unknown to be solved, given Xn and tn+l. Equation (7.7) can be rewritten as:

x = old(x) + h * der(x) (7.8)

In general, (7.8) is a non-linear equation for Xn+l, and usually it will be solved by numerical methods.

Adding equation (7.5) (for non-stiff systems), or (7.8) (for stiff systems or systems containing al­
gebraic loops) to the original model represented by (7.3) will transform the the system to a set of

7.2 Formula Manipulation Techniques 104

purely algebraic equations, assurning that both der (x) and x are unknowns. Given the following sets
of equations:

ACv
C_i

R2_v
R2_p_v

RLv
der(C_v)

sin(time)
RLv*RLr-l.O

R21*Ci
R2_v+ (-1.0) *Cv

= AC_v + (-1.0) * R2_p_v
= C_i*C_c-l.O

adding (7.8) leads to the following system:

ACv = sin(time)
C_i RLv*RLr-l.O

R2_v R21*Ci
R2_p_v R2_v+ (-1.0) *Cv

RLv = AC_v + (-1.0) * R2_p_v
der(Cv) = C_i*Cc-l.O

Cv = h * der(Cv) + old(C_v)

where both der(Cv) and C_v are treated as algebraic variables. This set of equations need to be sorted
again and checked for algebraic loops. To solve the system, a simulator no longer needs to have an
integrator. It only needs a solver for algebraic loops.

In many cases a model contains algebraic loops, and implicit inline integration method may introduce
extra a1gebraic 100ps. The tearing technique can be combined with inline integration to solve the
algebraic loop problem elegantly. It allows the automated transformation of model equations to their
discretized form in a simple way. Assuming the model is specified in ODE form by (7.3), tearing
provides an elegant formulation:

der (x) = f(x,t)

x = old(x) + h * der (x) + res(x)

(7.9)

(7.10)

In this discretized model, the original equations are not changed, while additional discretization equa­
tions are added. Here both x and der(x) are considered as unknowns. x is selected as tearing variables.
The solver will give an estimate for x, then der(x) is computed by the state equation (7.9). FinaIly,
the residuals are computed via equation (7.10) and retumed to the solver. This process is iterated until
converged.

A general algorithm that transforms a DAE down to a suitable discretized form in an automatic manner
has been developed in [12]. A system of DAE is represented as

0= f(der(x) , x, w,t); x(tO) = xo (7.11)

where x is, as mentioned before, the vector of unknown variables that appear in the model in differ­
entiated form, whereas w is the vector of unknown purely algebraic variables. The algorithm includes
the following steps to perform inline integration of a DAE system:

1. Transform the system to casual form, sort the equations, and check if there exist algebraic loops,
assurning that x is known, and that w and der(x) are unknown.

2. For every Xi that can be solved explicitly in the partitioned equations, add the following equation

Xi = h * der(xi) + old(Xi) + res(xi)

For aIl other Xj, add the same equation but without the term res(xj).

(7.12)

7.2 Formula Manipulation Techniques 105

3. Ifthe assigned equation of der(xj) or Wk appears in an algebraic loop, add the term res(der(xj))
or res(wk) to the corresponding model equation.

4. Repeat the first step while w, der(x) and x are aIl treated as unknown variables, thereby utilizing
the tearing information. As a result, nonlinear, discretized model equations are produced.

7.2.4 Higher Index Problem

Mathematical non-causal modeling of physical systems may result in higher index DAEs. However,
there are no general purpose solvers for higher index DAEs. These systems are usually solved in terms
of index reduction as described by Pantelides [21]. This topie is beyond the scope this thesis.

Bibliography

[1] Python 2.2.3 documentation, May 2003. http://www .python. org/ctoc/2. 2.3/.

[2] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[3] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge University Press,
1997.

[4] Modelica Association. Modelica - a unified object-oriented language for physical systems mod­
eling, tutorial, version 1.4. December 2000.

[5] Modelica Association. Modelica - a unified object-oriented language for physical systems mod­
eling, language specification, version 2.0. July 2002.

[6] Peter Bunus and Peter Fritzson. Automated static analysis of equation-based components. Sim­
ulation, 80:321 - 345, August 2004.

[7] F.E. Cellier and H. Elmqvist. Automated formula manipulation supports object-oriented
continuous-system modeling. IEEE Control Systems, 1(1), September 1993.

[8] François E. Cellier. Continuous System Modeling. Springer-Verlag, New York, 1991.

[9] E.A. Dinic. Aigorithm for solution of a problem of maximum ftow in a network with power
estimation. Soviet Math. Dokl., 11:1277-1280, 1970.

[10] 1. S. Duff and J. K. Reid. Aigorithm 529: Permutations to block triangular form [fi]. ACM
Transactions on Mathematical Software (TOMS), 4(2):189-192, 1978.

[11] 1. S. Duff and J. K. Reid. An implementation of tarjan's algorithm for the block triangularization
of a matrix. ACM Transactions on Mathematical Software (TOMS), 4(2):137-147, 1978.

[12] Hilding Elmqvist, Martin OUer, and Francois E. Cellier. Inline integration: A new mixed sym­
bolic /numeric approach for solving differential- algebraic equation systems. 1995.

[13] S. Even and Robert Endre Tarjan. Network ftow and testing graph connectivity. SIAM J. Com­
put., 4:507-518, 1975.

[14] G. Fabian, D.A. van Beek, and J.E. Rooda. Index reduction and discontinuity handling using
substitute equations. Mathematical and Computer Modelling of Dynamical Systems, 7(2): 173-
187,12001.

[15] Peter Fritzson. Principles of Object-Oriented Modelling and Simulaation with Modelica 2./.
Wiley Inter-Science, 2004.

[16] Peter Fritzson and Vadim Engelson. Modelica-a unified object-oriented language for system
moedling and simulation. page 19, July 1998.

[17] EA International. Ecosimpro mathematical algorithms. December 1999.

BIBLIOGRAPHY 107

[18] G Kron. Diakoptics-the piecewise solution of large-scale systems. 1962.

[19] John R. Levine, Tony Mason, and Doug Brown. Lex & yacc. O'Reilly & Associates, second
edition, October 1992.

[20] Martin Otter and Pieter Mosterman. The DSblock model interface, version 4.0. Technical report,
Modelica Design, 1999.

[21] c.c. Pantelides. The consistent initialization of differential-algebraic systems. SIAM Journal on
Statistical and Scientific Computing, 9(2):213-231, 11988.

[22] Linda R. Petzold. A description of DASSL: A differentiallalgebraic system solver. Technical
Report SAND82-8637, Sandia National Laboratories, Livermore, Califomia, 1982.

[23] Simulink. Using Simulink. The MathWorks, Natick, MA, June 2004.

[24] Jon C. Strauss, Donald C. Augustin, Mark S. Fineberg, Bruce B. Johnson, Robert N. Linebarger,
and F. John Sansom. The SCi Continuous System Simulation Language (CSSL). Simulation,
9(6):281 - 303, December 1967.

[25] Michael Tiller. Introduction ta Physical Modeling with Modelica, volume 615 of International
Series in Engineering and Science. Kluwer Academic, May 2001.

[26] Hans Vangheluwe, Bhama Sridharan, and lndrani A.V. An algorithm to implement a canonical
representation of algebraic expressions and equations in atom3. April 2003.

[27] Henk Vanhooren, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans L. Vangheluwe, and
Peter A. Vanrolleghem. WEST: Modelling biological wastewater treatment. Journal of Hy­
droinformatics, 5(1):27-50, 2003.

A.1 Stored definition
stored_definition:

within [name 1 ";" 1
[final 1 class_definition

A.2 Class Definition
class_definition

encapsulated
[partial 1

11. " ,

Grammar

(class 1 model 1 record 1 block 1 connector 1 type 1 package 1 function)
IDENT class_specifier

class_specifier :
string_comment composition end IDENT
1 "=" base_prefix name [array_subscripts 1 [class_modification 1 comment
1 "=" enumeration "(" [enum_listl ")" comment

base-prefix :
type_prefix

enum_list : enumeration_literal { "," enumeration_literal}
enumeration_literal : IDENT comment

composition :
element_list

}

public element_list
protected element_list
equation_clause 1

algorithm_clause

[external [language_specification
[external_function_call

language_specification
STRING

". " , [annotation ". Il , 1 1

A.3 Extends

external_function_call :
[component_reference n=n

IDENT n(n [expression " Il , expression} 1 n)n

element_list :
{ element nin 1 annotation

element :
import_clause
extends_clause 1

[final 1
[inner 1 outer 1

Il. Il ,

((class_definition 1 component_clause) 1

replaceable (class_definition 1 component_clause)
[constraining_clause comment])

import_clause :
import (IDENT n=n name 1 name [n.n n*n]) comment

A.3 Extends
extends_clause

extends name class_modification

constraining_clause
extends_clause

A.4 Component Clause
component_clause:

type_prefix type_specifier [array_subscripts] component_list

type-prefix :
[flow] [discrete 1 parameter 1 constant] [input 1 output 1

type_specifier
name

component_list
component_declaration

component_declaration
declaration comment

declaration :

Il " , component_declaration }

IDENT [array_subscripts 1 [modification 1

109

A.5 Modification

A.5 Modification
modification :

class_modification
n=n expression
n:=" expression

class_modification :

n=" expression

"(" [argument_list] ")"

argument_list :
argument { n," argument}

argument :
element_modification
1 element_redeclaration

element_modification
[each] [final] component_reference modification string_comment

element_redeclaration :
redeclare [each] [final
((class_definition 1 component_clausel)

replaceable (class_definition 1 component_clausel)
[constraining_clause])

component_clausel :
type-prefix type_specifier component_declaration

A.6 Equations
equation_clause :

[initial] equation { equation

algorithm_clause :

If. " , 1 annotation Il. " ,

[initial] algorithm { algorithm ". " , 1 annotation n. " ,

equation :
(simple_expression "=" expression

1 conditional_equation_e
1 for_clause_e
1 conne ct_clause
1 when_clause_e
1 IDENT function_call

comment

algorithm
(component_reference ":=" expression

110

A.6 Equations

"(" expression_list ")" ":=" component_reference function_call
conditional_equation_a
for_clause_a
while_clause
when_clause_a

comment

conditional_equation_e
if expression then

{ equation ";" }
elseif expression then
{ equation ";" }

el se
equation

end if

" • n ,

conditional_equation_a
if expression then

{ algorithm ";" }
elseif expression then
{ algorithm ";" }

else
algorithm

end if

for_clause_e :

Il. Il ,

for for_indices loop
{ equation ";" }

end for

for_clause_a :
for for_indices loop

algorithm ";" }
end for

for_indices
for_index {"," for_index}

for_index:
IDENT [in expression

while_clause
while expression loop

{ algorithm ";" }

111

A.7 Expression

end while

when_clause_e :
when expression then

{ equation "i" }
{ elsewhen expression then

{ equation ";" } }
end when

when_clause_a :
when expression then

{ algorithm ";" }
{ elsewhen expression then

{ algorithm ";" } }
end when

connect_clause
connect "(" connector_ref

connector ref

Il " ,

IDENT [array_subscripts 1 [

A.7 Expression
expression :

simple_expression

112

connector_ref ")"

" Il IDENT [array_subscripts 1 1

1 if expression then expression { elseif expression then expression } el se
expression

simple_expression
logical_expression " .11 logical_expression [

logical_expression :
logical_term { or logical_term

logical_term :
logical_factor { and logical_factor }

logical_factor :
[not 1 relation

relation :

". " logical_expression 1 1

arithmetic_expression [rel_op arithmetic_expression 1

rel_op :
"<" 1 "<=" 1 ">" 1 ">=" "==" 1 "<>"

arithmetic_expression

A.7 Expression

"+" 1 " "

term :
factor { mul_op factor }

mul_op :
"*11 1 11/"

factor :
primary ["-,, primary

primary :
UNSIGNED_NUMBER
1 STRING
1 false
1 true
1 component_reference [function_call]
l "(" expression_list ")"
l "[" expression_list { ";" expression_list } "]"
l "{" function_arguments "}"
1 end

name :
IDENT ["." name]

component_reference :
IDE NT [array_subscripts] [" " component_reference]

function_call :
"(" [function_arguments] ")"

function_arguments :
expression ["," function_arguments 1 for for_indices
1 named_arguments

named_arguments:
named_argument

named_argument:

" Il ,

IDENT "=" expression

expression_list :

named_arguments]

expression { "," expression

array_subscripts :

113

A.7 Expression

"[" subscript

subscript :
":" 1 expression

comment

" Il , subscript } "]"

string_comment [annotation]

string_comment :
[STRING { "t" STRING }]

annotation
annotation class_modification

114

