
NOTE TO USERS 

This reproduction is the best copy available. 

® 

UMI 





The Design and Implementation of 

the JlModelica Compiler 

WeigaoXu 
Supervisor: Prof. Hans Vangheluwe 

School of Computer Science 
McGill University, Montréal, Canada 

A thesis subrnitted to the Faculty of Graduate Studies and Research 
in partial fulfilment of the requirements of the degree of 

Master of Science in Computer Science 

Copyright @2005 by Weigao Xu 

AIl rights reserved 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell th es es 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 0-494-12567-5 
Our file Notre référence 
ISBN: 0-494-12567-5 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Modelica is a recently developed object-oriented language for physical systems modeling. It is a 
modem language built on non-causal modeling with mathematical equations and object-oriented con­
structs. 

An open source research prototype compiler for jLModelica, a subset of Modelica, is presented. The 
compiler takes tex tu al Modelica source as input, translates it into fiat Modelica, then performs a series 
of symbolic transformations on the differential-algebraic equations, most notably, assigning causality, 
and generates input suitable for processing by a numerical simulator such as Octave. 

Design and implementation issues of the jLModelica compiler are discussed in sorne detail in this 
thesis. These issues include the general architecture of the compiler, semantic analysis, formula ma­
nipulation, and code generation. Sorne advanced formula manipulation techniques are also studied, 
and are proposed to be implemented as future work. 

Modelica est un language orienté objet développé récemment dans le but de modéliser les systèmes 
physiques. C'est un language moderne, bâti à partir de la modélisation non causale, qui supporte des 
équations mathématiques et des constructions orientées objet. 

Un prototype de compilateur libre de droit pour JLModelica, un sous-ensemble de Modelica, est 
présenté. Un fichier Modelica textuel est envoyé au compilateur comme variable d'entrée. Celui-ci 
traduit le texte en Modelica simple et génre une série de transformations symboliques partir des 
équations différentielles. En particulier, la causalité est déterminée et du code pouvant être interprété 
par un simulateur numérique, tel Octave, est généré. 

Les particularitées d'implémentation et de design du compilateur sont discutées en détail dans cette 
thèse. Elles incluent notamment l'architecture du dit compilateur, l'analyse sémantique, la manipula­
tion des formules et la génération du code. Quelques techniques avancées dans la manipulation des 
formules sont aussi étudiées et l'implémentation de celles-ci est proposée comme avenue future. 
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Introduction 

1.1 Background 

Modeling and simulation have been an important part of computing for a few decades. Computer 
simulation is used in industry to reduce the cost and time of development, and to optimize product 
design. As computer technology develops rapidly in recent years, the demand to simulate increasingly 
complex systems also grows. 

In the past, causal models were most widely used n continuous, lumped parameter modeling of sys­
tems [8]. Causal models are commonly represented in the form of either causal block diagrams or 
in a Continuous System Simulation Language variant of the CSSL standard [24]. The semantics of 
such models is gieven by ordinary differential equations (ODEs). As systems under study become 
more and more complex, the requirement for reuse of components in modeling is getting increasingly 
important. Causal models are not very suitable for component re-use. 

Over the last decades, numerous simulation tools have been developed. Some of these tools are 
general-purpose simulation tools, such as Simulink [23], which are based on causal (input/output) 
block diagrams. Other tools were developed for simulating models in specifie domains, such as elec­
tronic components and mechanical devices. The major disadvantage of these tools is that they might be 
able to provide optimal methods in one domain, but are often not capable of representing and/or sim­
ulating structure and behaviour of systems in other domains. This prec1udes supporing multi-domain 
or multi-physics modeling. 

To model and simulate increasingly complex and heterogeneous technical systems which consist of 
components from different domains, as well as to support meaningful model re-use, a new modeling 
language and supporting compiler were needed. In particular, the following problems needed to be 
solved: 

• allow modelers to focus more on the description of the behaviour of system components, i.e. 
non-causal modeling, instead of spending a lot of effort on deriving a causal representations 
suitable for efficient numerical simulation; 

• provide domain-neutral modelling and efficient simulation of multi-domain systems; 

• support model reusability: the capability of creating easy-to-re-use components. 

For the above reasons, in 1996, initiated by Hilding Elmqvist, a group of researchers from universities 
and industry started the development of a new object-oriented modeling language. The new language 
was called Modelica. It is a modem language built on non-causal modeling with mathematical equa­
tions and object-oriented constructs to facilitate reuse of modeling knowledge [5]. 

Comparing to other CUITent modeling technologies, Modelica has the following advantages [16]: 

• Object-oriented modeling. This makes it possible to create physically relevant and easy-to-re-



1.2 An Overview of Modelica 2 

use model components, which are employed to support hierarchical structuring, re-use, and 
evolution of large and complex models covering multiple technology domains. 

• Non-causal modeling. Modeling is based on equations instead of on assignment statements as 
in traditional input/output block abstractions. Direct use of equations significantly increases 
reusability of model components, since components adapt to the data flow context in which 
they are used. This generalization enables both simpler models and more efficient simulation 
(thanks to global, symbolic, compile-time optimizations). 

• Physical modeling of multiple domains. Model components can correspond to physical objects 
in the real world, in contrast to established techniques that require conversion to signal blocks. 
For application engineers, such physical components are particularly easy to combine into sim­
ulation models using a (possibly domain-specifie) graphical editor. 

1.2 An Overview of Modelica 

As in the object-oriented programming language Java, the basic structuring element in Modelica is a 
class. Almost everything in the real technical world can be represented as a class, and the en tire model 
is hierarchically composed in terms of classes. But the structure of a Modelica class is different from 
that of a Java class. A typical Modelica class has two parts, the declaration part, and the equation part. 
The declaration part contains declarations of variables, which are class attributes representing data. 
The equation part contains equations which specify the behavior, that is, the relationship between 
declared variables. Equations in Modelica are different from assignment statements in traditional 
languages. There is no causality assigned in Modelica equations which are "implicit". For example, 
equation a = b + c can be written as b + c = a. The meaning of these two are equivalent. AIso, 
equations can be written in any order. 

1.2.1 Modeling an Electrical Circuit in Modelica 

This section introduces the key features of Modelica through the example of an electrical circuit, 
which is shown in Figure 1.1. 

This circuit consists of a set of inter-connected electrical components, which include a voltage source, 
two resistors, a capacitor, and a ground point. The following model is a Modelica description of the 
complete circuit: 

model Circuit 
Resistor RI(r=I); 
Resistor R2(r=I); 
Capacitor C(c=I); 
VsourceAC AC; 
Ground G; 

equation 
connect (AC.p, RI.p); 
connect (RI.n, R2.p); 
conne ct (R2.n, C.p); 
conne ct (C.n, AC.n); 
connect (AC.n, G.p); 

end circuit 

From this model, we can see that modeling in Modelica is very intuitive. System topology is conserved 
by diving the whole system into components and linking these components by connections. The un-
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Resistorl Aesistor2 

Ground1 

Figure 1.1: An Electrical Circuit 

derlying meaning of a connection is again given in terms of equations. which specify the interaction 
between connected components. 

The declarations of resistors, capacitor, etc. create instances of components. The definitions of these 
components are described in other classes. 

1.2.2 Basic Language Elements 

Modeling of a large system in Modelica is hierarchically broken up into a set of components, which 
should be reusable. Modelica has the following language elements to support this: 

• Pre-defined types: Real, Integer, Boolean, and String. These are the basic components at the 
lowest level in Modelica; 

• Structured components, enable hierarchical structuring 

• component arrays, to handle matrices, arrays of submodels, etc. 

• Equations and/or algorithms (assignment statements). Note that Modelica also supports causal 
modelling. In this thesis we will focus on the non-causal part of Modelica; 

• Connections which couple model components. 

1.2.3 Restricted Classes 

Class is the fundamental structure element in Modelica. A class in Modelica can be defined using the 
keyword class. But under certain conditions, the keyword class can be replaced by one of seven other, 
more specific keywords: model, connector, record, block, type, function, and package. 
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On the one hand, the restricted class mechanism makes Modelica code easier to read and maintain. It 
is also modeler-friendly since the modeler does not need to learn several different language constructs, 
but just the class concept. On the other hand, aIl properties of a general class are identical to aIl kinds of 
restricted classes. For example, the syntax and semantics of definition, instantiation, inheritance, and 
general properties are defined in the same way for aIl kinds of classes. Such orthogonality simplifies 
the construction of a Modelica compiler since only the syntax and semantics of the class construct, 
along with sorne validity checks on a restricted class need to be implemented. 

The following summarizes the restrictions and usage of each kind of restricted class in terms of sorne 
examples. 

model 

The only restriction of a model restricted class is that it may not be used in connections. Its semantics 
are identical to the general class construct in Modelica, and it is most commonly used. The previous 
example Circui t is defined as a model class. 

record 

The record class is used to describe structured data. No equations are allowed in the definition or in 
any of its components. It may not be used in connections and may not contain protected elements. For 
example: 

record Student 
String name; 
Integer studentNumber; 
String department; 

end Student; 

type 

A type restricted class may only be an extension to the predefined types, enumerations, record classes, 
or array of type. Therefore, it can only be used in short class definitions to introduce new types. For 
example, the following type definition is illegal: 

Il Users can not define a new type 
type Typel 

Real X; 
end Typel; 

The class definitions of Voltage and Current in section 1.2.4 show how new types are defined by 
means of short class definition. 

connector 

The restrictions of connector classes are identical to those of record classes, except that connector 
classes are designed to be used in connections. A connector ex ample is given in section 1.2.5. 

block 

The block restricted class is used to model causal (input/output) block diagrams. In Modelica, the two 
keywords, input and output, are used as component prefixes to postulate the data flow direction. AIl 
declared variables in a block must either have the prefix input or output. A block class may not be 
used in connections. A simple example: 
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block CircleAreaCalculator 
parameter Real pi = 3.14; 
input Real radius; 
output Real area; 

equation 
area = pi * radius A 2; 

end CircleAreaCalculator; 

package 

5 

Since Modelica supports nested class declarations, the package restricted class is designed to manage 
name spaces of classes. The restrictions of a package is that it may only contain class definitions and 
constant declarations, i.e., no variable or parameter declarations. Dot-notation is used to refer to inner 
classes. The following is a stripped-down example of package: 

package Electronic 
constant Real pi 

connector Pin 

end Pin; 

model Resistor 

end Resistor; 

model Capacitor 

end Capacitor; 

end Electronic; 

function 

3.1415926; 

The semantics of function classes is similar to that of block classes. In addition to the restrictions 
applied to the block classes, a function class is also restricted by the following roles: 

• No equations and initial algorithms are allowed. At most one algorithm clause is allowed. 

• Calling a function requires either an algorithm or an external function interface. 

• No calls to the Modelica built-in operators der, initial, terminal, sample, pre, edge, change, 
reinit, delay and cardinality are allowed in a function as their arguments are time-varying 
signaIs as opposed to intantaneous values. 

A simple example function: 

function Add 
input Real X; 
input Real y; 
output Real result; 
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algorithm 
result := x t Yi 

end Addi 

1.2.4 Types and Physical Quantities 

6 

Physical quantities are used to describe the properties of physical systems, e.g. Voltage and Current in 
the e1ectrical circuit example. These quantities can be defined in Modelica in terms of restricted class 
type: 

type Voltage 
type Current 

Real lunit="V")i 
Real lunit="A")i 

where Real is a pre-defined type. This is the short form of defining classes in Modelica. The above two 
definitions mean that Voltage and CUITent have the same definition as Real except that the attribute 
unit is modified. 

In Modelica, pre-defined types, i.e. Real, Integer, Boolean, and String are not the primitives. The pre­
defined types are classes built over primitives. For example, the conceptual definition of Real is given 
in [5]: 

type Real 
RealType value; 
parameter StringType quantity = ""i 
parameter StringType unit = "" 
parameter StringType displayUnit 
parameter RealType min = -Inf; 
parameter RealType max = tInf; 

"unit used in equation"i 
"" "Default display unit"; 

parameter RealType start=O "initial value"i 
parameter BooleanType fixed = true; //default for para/const 

= false; //default for other vars 
parameter BooleanType enable = truei //defined for every class 
parameter RealType nominal; 
parameter StateSelect stateSelect = StateSelect.default; 

equation 
assertlvalue>=min and value<=max, "Variable value out of limit"); 
assertlnominal>=min and nominal<=max, "Nominal value out of limit")i 

end Real; 

where RealType, IntegerType, String Type, and BooleanType are the primitive types. But in order to 
avoid confusion, modelers start creating models from pre-defined types. The relationship between 
primitives and pre-defined types is handled intemally by the compiler. 

From the above class definition, we can see that Real has actually encapsulated a set of attributes, 
such as value, unit, start, etc., which make it well-suited for describing physical quantities. 

1.2.5 Connections 

In Modelica, models can be built up of components which are coupled by connections. Connectors 
are communication interfaces between components, over which they are connected to form coupled 
models. The connector class in the electrical circuit ex ample is defined as follow: 
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connector Pin 
Voltage Vi 

flow Current i i 
end pini 

7 

The meaning of a connection statement is given in tenns of equations. A connection statement connect (pinI, 
pin2) , where pinI and pin2 are instances of connector class Pin, connects the two pins such that 
they fonn a node. The meaning of this connection is equivalent to the following two equations: 

pinl. V = pin2. v 
pinI.i + pin2.i = 0 

The physical meaning of the first equation is that, there is no voltage drop at a node. The second 
equation describes Kirchoff's CUITent law. 

In a connector class, a variable declared without the prefix flow is called an across variable, e.g. 
Voltage v here in this case. The conversion rule for connected across variables is that they are set 
equal. A variable declared with the prefix flow is called a through variable. Connected through variable 
are summed to zero at each node. Similar laws apply to ftow rates in a piping network and to forces 
and torques in mechanical systems [4]. 

1.2.6 Partial Models and Inheritance 

As in other object-oriented languages, there is a mechanism in Modelica to define an inteiface for 
different types of objects that have common properties. In the electrical domain, many components 
have two pins. An inteiface is defined as follow for these components: 

partial model TwoPin "Superclass of elements with 2 electrical pins" 
Pin p, ni 

Voltage Vi 

Current ii 
equation 

v = p.v - n.vi 

o = p.i + n.ii 
i = p.ii 

end TwOPini 

In addition to the two pins, p and n, the model also includes two attributes, quantity v, which defines 
the voltage drop across the component, and another quantity i, that defines the CUITent ftowing through 
the component. This model introduces 4 variables and 3 equations. Therefore, it is an incomplete 
model. A constitutive equation must be added to make it complete and consistent. Modelica uses the 
keyword partial to indicate that a model is incomplete and uninstantiable. 

A resistor has aIl properties described by the TwoPin model. Therefore, the TwoPin model can be 
reused in defining a resistor model: 

model Resistor "Ideal electrical resistor" 
extends TwoPini 
parameter Real r (unit="Ohm") "Resistance"i 

equation 
R * i = Vi 

end Resistori 
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The extends clause specifies that TwoP in is the parent class of resistor. By inheriting a class, it inherits 
aIl attributes and equations from the parent class. Modelica supports multiple inheritance. 

Variables declared with prefix parameter are called parameter. The value of a parameters is constant 
during a simulation run, but it can be changed between runs. This makes it possible for a user to 
change the behavior of a model without recompiling it. 

1.2.7 Modeling Dynamics 

Dynarnic systems have behavior which evolves as a function of time. Modelica has a unique prede­
fined independent variable time. AIl Modelica variables are implicitly signaIs: their value varies with 
time. 

The output of a sine-wave voltage source is a function of time. The following definition of voltage 
source shows that. 

model VsourceAC "sin-wave voltage source" 
extends TwoPin; 
parameter Voltage VA = 110 "Amplitude"; 
parameter Real f (unit="Hz") = 50 "Frequency"; 
constant Real PI = 3.14159265; 

equation 
v = VA*sin(2*PI*f*time); 

end VsourceAC; 

Also, Modelica uses the predefined operator der to represent the time derivative. It occurs in the model 
definition of a Capacitor. 

model Capacitor "Ideal electrical capacitor" 
extends TwoPin; 
parameter Real c (unit="F") "Capacitance"; 

equation 
c * der (v) = i; 

end Capacitor; 

where der (v) means the time derivative of v. 

1.3 Current Toois 

There already exist sorne excellent commercial tools for Modelica. Dymola, an integrated modeling 
and simulation tool developed by Dynasim (http://www.dynasim.se). has a Modelica translator 
which is able to perform aIl necessary symbolic transformations for large systems (more than 100 
000 equations) as weIl as for real time applications. It includes a graphical editor for model editing 
and browsing, and a simulation environment. It also provides convenient interfaces to Matlab and the 
popular block diagram simulator Simulink. For example, a Modelica model can be transformed into 
a SIMULINK S-function which can be simulated in Simulink as an input/output black. 

Another commercial tool for Modelica is MathModelica developed by MathCore (http://www . 
mathcore. corn). It provides a Modelica simulation environment which is closely integrated into 
Mathematica (http://www.wolfram.com). The tight integration with Mathematica also makes it 
possible to perform complex analysis tasks, advanced scripting, and other technical computations on 
models and simulation results. MathModelica has a graphical editor for model editing and browsing. 
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The kernel of MathModelica is similar to that of Dymola because internally, the Dymola symbolic 
and simulation engine is used for the formula manipulation and for the simulations. 

The Open Source Modelica is a tool developed by PELAB, Linkoping University (http://www . ida. 
liu. se/labs/pelab/modelica). It is to create a complete Modelica modeling, compilation and 
simulation environment based on free software distributed in source code form intended for research 
purposes. The Open Source Modelica tool contains two major modules, Modeq and ModSimPack. 
Modeq is a translator which translates Modelica source model into fiat Modelica, while ModSimPack 
is a translator that translates fiat Modelica model to C/C++ code. 

1.4 Thesis Objectives 

In the long term, we are interested in developing an integrated modeling and simulation environ­
ment for Modelica, as well as using Modelica as a meta-modeling language with AToM3, a tool for 
multi-formalism and meta-modeling under development at the Modeling, Simulation, and Design 
Lab (MDSL) in the School of computer Science of McGill University (http://moncs . cs .mcgill. 
ca/MSDL/research/projects/AToM3/). A Modelica compiler is required as the kemel for this fu­
ture environment. With lirnited resources, our research currently focuses on a subset of the Modelica 
language, and on continuous systems. We name this subset j!Modelica, where Il stands for mini, meta­
modeling, multi-formalism, and MSDL. 

The main objective of this thesis is to build an efficient research prototype compiler for j!Modelica. 
More specifically, the first prototype of the j!Modelica compiler was designed to provide an intera­
tive environment that supports the real essence of the language-non-causal modeling. It not only 
performs semantic analysis, but also carries out sorne computer algrebra optirnization techniques in 
terms of formula manipulation. 

Also, this thesis is to provide a relatively complete specification of the semantics of j!Modelica, and 
to sumerize and propose our studies of sorne language features and formula manipulation techniques 
as future work. 



The Overall Architecture 

Given that our aim is to build an open source research prototype compiler for Modelica, rapid proto­
typing and portability are the main concerns in choosing the implementation language. Python is an 
interpreted, dynamically type-checked object-oriented programming language. Like Java, the Python 
implementation is portable across many platforms. But compared to JAVA, it is better-suited for rapid 
software prototyping. Python also supports the seamless integration of code developed in statically 
type-checked language. This "extension" allows the graduaI replacement of performance-critical parts 
of the prototype. It also allows gluing of libraries (e.g., numerical code written in Fortran). In addition, 
in order to build an integrated modeling and simulation environment with a graphical user interface, 
the JAModelica compiler will be embedded into AToM3, which was implemented in Python. With the 
above-mentioned advantages of Python, and for consistency in our future tool, we chose to implement 
the JAModelica compiler in Python. 

As a research prototype compiler, this project currently only focus on a subset of the Modelica lan­
guage. But this subset covers the real essence of Modelica-non-causal modeling. The JAModelica 
compiler is able to resolve class inheritance and translates input models into fiat Modelica, and per­
forms symbolic transformations on the DAEs. Support for advanced and complex language con­
structs is left as future work. Following is a list of language features that are not yet supported in 
the JAModelica compiler: 

• the causal modeling constructs, i.e. algorithm statement, function call, and block class 

• arrays and matrices 

• element redeclaration 

• the import statement 

• external function call 

• the within construct 

• hybrid system modeling, e.g. conditional equations, when equations 

• and more ... 

2.1 The Big Picture 

Figure 2.1 shows a high-Ievel view of the JAModelica compiler. The compiler consists of three mod­
ules, the Front End, the Back End, and the Code Generator. The Front End takes Modelica source 
code as input, performs lexical and semantic analysis, and generates a fiat Modelica model, which is 
in essence a set of DAEs. The fiat Modelica model is then passed to the Back End, where formula 
manipulation is done. The Code Generator finally generates input for the Octave simulator. More de­
tails on Octave will be discussed later. AIso, for the purpose of testing and debugging, pretty printers 
are employed to dump Modelica code from internaI representation at different phases. By comparing 
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Modelica Model 

-------------- file 

o -------------- process 

D -------------- internai representation 

Figure 2_1: The Overview of pModelica 

this Modelica code with the input model, we can verify that no information is lost during each trans­
formation step. It is important to note that debugging output of each step of model compilation is in 
the form of a valid Modelica model (which is accepted by the compiler). 

2.2 The Front End 

Figure 2.2 is a detailed view of the Front End. The Front End is made up of the following components: 

• A Linux executable (implemented in C++) that takes a Modelica model as input, performs 
parsing, and generates an XML representation of the parse tree. 

• A graph kemel called pyGK (implemented in Python), which reloads the XML parse tree into a 
pyGK graph representation. 

• The ASTBuilder, which converts the parse tree into an abstract syntax tree. 

• A semantic analyzer, which translates the original Modelica model into fiat Modelica. 

Thanks to PELAB at the Department of Computer and Information Science, Linkoping University, 
who have kindly offered us the lexer and parser of Modelica from their Open Source Modelica project, 
we were able to save a lot of time in implementing the parser. The PELAB parser was developed using 
the tool ANTLR under Windows. We recompiled it under Linux, and generated a C++ parser. 
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The Front End 
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Figure 2.2: The Front End of pModelica 

This parser accepts Modelica models and generates parse trees. Implementing the parser and the 
following parts of the compiler in different languages raised a problem: how to pass the parse tree 
to Python? One solution is to "extend" Python with the parser. Another solution is to use an external 
data description, through which the two different languages can communicate and exchange data. This 
provides a stricter separation but is less efficient. XML is a mark up language for describing structured 
data. It provides a mechanism to identify structure in data. In our design, we chose to write out to file 
an XML description of the parse tree, and then reload this information and transform it into a Python 
parse tree. So long as the XML representation is well-defined, no information will be lost during this 
transformation. The XML representation and transformation process will be discussed in section 3.2. 

A parse tree represents the concrete syntax of a mode!. It is more desirable to have an internaI rep­
resentation of the abstract syntax of a mode!. The abstract syntax of a Modelica model is defined in 
terms of language constructs, such as class, element, declaration, statement, and expression etc. This 
representation is independent of the source syntax of a Modelica model being compiled. A parse tree 
is transformed to an abstract syntax tree (AST) by the ASTBuilder. In order to verify that the AST 
transformation is correct and complete, Modelica source code is produced from the AST. Verification 
of correctness can be done by comparing the Modelica model thus produced to the Modelica input 
mode!. 
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Semantic analysis is carried out in the Front End. It includes scoping analysis, name lookup, expand­
ing inheritance, fiattening structured components and coupled models, and type checking. Finally, the 
Front End generates a fiat Modelica model, where all structured components are fiattened down to 
basic components, and connections are replaced by regular equations. Such a fiat model is a system 
ofDAEs. 

2.3 The Back End 

Figure 2.3 gives a detailed view of the Back End. 

Figure 2.3: The Back End of j1Modelica 

Automated formula manipulation is significant to non-causal modeling, which is characterized by a 
set of implicit equations (DAEs). A simple approach to solving for the various unknowns in the set 
of equations is to caU a DAE sol ver, such as DASSL. However, the solution will be far more efficient 
if a causal representation can be found, i.e. computational causality is assigned and equations are 
sorted in an appropriate computation order. In many cases it is possible to transform a non-causal 
set of equations into a causal one. Even though this transformation process trades off compile time 
efficiency, it gains in simulation run-time. Since the number of simulation run is usually much greater 
than the number of compilations, it is certainly worths to try these transformations. 

Causality assignment, along with sorting of equations and algebraic loop detection, is implemented 
in the j1Modelica compiler. Causality here means computational causality, not physical causality. 
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Causality assignment determines that which variable is to be computed in each equation. The compu­
tational causality can be found in terms of sorne graph algorithms, which will be discussed later. 

Once a computation of causality is found, the equations are then sorted into a correct computation 
order based on their computational dependency. However, if there exist algebraic loops, causality 
assignment and sorting are not sufficient. The equations involved in an algebraic loop are mutually 
dependent. Sorting is not able to give a correct computation order. These equations must be identified 
and be solved separately. Therefore, sorting is always followed by the detection of algebraic loops. 

In order to provide an optimal internaI representation of equations, a canonical representation of 
equations and corresponding transformation rules are defined in [26]. A subset of these transformation 
rules are implemented in the jlModelica compiler. 

2.4 The Code Generator 

Finally, input for the Octave code is generated. Octave (a GNU Matlab clone), provides a high-level 
language for numerical computation. Octave has extensive tools for solving linear algebra problems, 
nonlinear equations, and integrating ordinary differential and differential-algebraic equations. The 
Octave model is executed by an Octave interpreter. The computation result can be visualized through 
GNU plot. We generate Octave input for convenience. The generated output is similar to Matlab 
M-files. To maximize efficiency, Simulink S-function will be generated in the future. 



The Front End 

The Front End perforrns parsing and semantic analysis. The Modelica semantics is defined in terrns 
of a set of ruIes for translating classes (including inheritance and modification), instances, and con­
nections into fiat Modelica, which is a fiat set of constants, variables, and equations. For example, the 
following Modelica model Main 

class A 
Real al, a2; 

equation 
al * 2 = a2; 

end A; 

class B 
Real bl, b2; 

equation 
bl ~ 2 = b2; 

end B; 

model Main 
A a; 
B b; 

equation 
a.al = b.bl; 
b.b2 = 4; 

end Main; 

will be translated into the following fiat Modelica: 

model Main "flat" 
Real a_al; 
Real a_a2; 
Real b_bl; 
Real b_b2; 

equation 
a_al * 2 
b_bl ~ 2 
a_al b_bl; 
b_b2 4; 

end Main; 
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where aIl structured components, such as a, b, are fiattened to basic components, such as a_al 1 b-Il1 
etc. The equation part is the mathematical description of the mode!. 

3.1 The Parser 

As mentioned earlier, the parser was developed by PELAB at Link6pings University for its Open 
Source Modelica project. It was implemented in ANTLR. ANTLR, Another Tool for Language Recog­
nition (http://http : 1 Iwww. antlr. org), is a language tool that provides a framework for con­
structing recognizers, compilers, and translators from grammatical descriptions. It is able to generate 
parsers in Java, C#, or C++, but not Python. The PELAB Modelica parser uses C++. We have com­
piled it under Linux using the gcc compiler. 

The parser takes Modelica source code as input, and generates a parse tree. A parse tree is made up 
of nodes, which are defined and provided by ANTLR's AST factory. Each tree node corresponds to a 
token. It records the type and value of a token, and keeps a reference to its first child and a reference 
to its next sibling. Figure 3.1 is the c1ass diagram view of a parse tree node. 

p,l 
\ V 

Node 

+type: Int 
+text: String 
+getTypeO: Int 
+getText(): String 
+getFirstChild(): Node 
+getNextSibling(): Node 

1 ~ p,l 

InpYT~ihlina 

Figure 3.1: Class Diagram of Parse Tree Node 

Given the following Modelica model as input, 

Il Example 1 
model A 

Real ai 
end Ai 

a parse tree pretty prin ter dumps out the following parse tree: 

+-117 : STORED_DEFINITION 
1 +-95 : CLASS_DEFINITION 
1 1 +-36 model 
1 1 +-84 A 
1 1 +-98 DECLARATION 
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+-84 Real 
+-84 a 
+-97 COMMENT 

The higher abstraction view of this parse tree is shown in Figure 3.2. 

Figure 3.2: A High-level Abstraction View of a Parse Tree 

3.2 XML Representation 

In order to make a parse tree accessible to our compiler written in Python, an XML representation of 
the parse tree is defined. The parser together with an XML writer, writes out a parse tree in such an 
XML representation. This XML file is then reloaded by an XML reader (written in Python). 

Again, for rapid prototyping, a graph kernel called pyGK was employed to define the XML represen­
tation and to reload the XML file as a graph representation of a parse tree. pyGK was developed in 
Python, as the graph kernel for AToM3, by Marc Provost at the MDSL, School of computer Science at 
McGill University (http://moncs.cs .mcgill. ca/people/mprovost/). It provides an XML rep­
resentation for graphs, and an XML Reader and an XML Writer. Note that using pyGK also opens up 
the possibility of applying graph transformations to the parse tree. 

In the Front End, there is an XML writer (in C++) which writes out the parse tree into an XML file 
in pyGK format. The XML file is then reloaded by the XML reader in pyGK into the data structure 
defined in pyGK-a graph representation of the parse tree in Python. Figure 3.3 shows this process. 

3.2.1 Representation 

A pyGK graph XML representation conceptually con tains two parts, a list of nodes, and a list of edges. 
This is different from the parse tree representation, which is based on adjacent nodes. The parser takes 
care of this conversion when it writes out XML. Adjacencies between nodes are explicitly written out 
as edges. Example 1 in section 3.1 is represented in XML as follow: 

<?xml version="l.O"?> 
<!DOCTYPE agI SYSTEM ''http://agl.dtd''> 
<!-- GraphElements --> 
<agI> 
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pyGK graph 
representation of 

parse tree (Python) 

Figure 3.3: Parse Tree in C++ to pyGK Graph 

<graph id=IAST" type=IAST"> 
<symb id=IQ" type=ISymbolTable"> 

<map key="text"> 
<string id="" type=IString" value=ISTORED_DEFINITION"/> 

</map> 
<map key="type"> 

<int id="" type=IInt" value=1117"/> 
</map> 

</symb> 
<symb id=11" type=ISymbolTable"> 

<map key="text"> 
<string id="" type=IString" value=ICLASS_DEFINITION"/> 

</map> 
<map key="type"> 

<int id="" type=IInt" value=195"/> 
</map> 

</symb> 
<symb id=12" type=ISymbolTable"> 

<map key="text"> 
<string id="" type=IString" value="model"/> 

</map> 
<map key="type"> 

<int id="" type=IInt" value=136"/> 
</map> 

18 
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</symb> 
<symb id="3" type="SymbolTable"> 

<map key="text"> 
<string id="" type="String" value="A"/> 

</map> 
<map key="type"> 

<int id="" type="Int" value="84"/> 
</map> 

</symb> 
<symb id="4" type="SymbolTable"> 

<map key="text"> 
<string id="" type="String" value="DECLARATION"/> 

</map> 
<map key="type"> 

<int id="" type="Int" value="98"/> 
</map> 

</symb> 
<symb id="5" type="SymbolTable"> 

<map key="text"> 
<string id="" type="String" value="Real"/> 

</map> 
<map key="type"> 

<int id="" type="Int" value="84"/> 
</map> 

</symb> 
<symb id="6" type="SymbolTable"> 

<map key="text"> 
<string id="" type="String" value="a"/> 

</map> 
<map key="type"> 

<int id="" type="Int" value="84"/> 
</map> 

</symb> 
<symb id="7" type="SymbolTable"> 

<map key="text"> 
<string id="" type="String" value="COMMENT"/> 

</map> 
<map key="type"> 

<int id="" type="Int" value="97"/> 
</map> 

</symb> 
<edge from="O" to="l" fromOrd="O" toOrd="O"/> 
<edge from="l" to="2" fromOrd="O" toOrd="O"/> 
<edge from="2" to="3" fromOrd=" 1 " toOrd="O"/> 
<edge from="3" to="4" fromOrd=" 1 " toOrd="O"/> 
<edge from="4" to="5" fromOrd="O" toOrd="O"/> 
<edge from="5" to="6" fromOrd=" 1" toOrd="O"/> 
<edge from="6" to="7" fromOrd=" 1" toOrd="O"/> 

19 
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</graph> 
</agl> 

20 

A parse tree node is represented as a SymbolTable. Node attributes, Le. type and text, are stored 
in the SymbolTable as entries. A SymbolTable entry is a mapping from key to value. For example, a 
parse tree node with the token Real is converted to 

<symb id="5" type="SymbolTable"> 
<map key="text"> 

<string id="" type="String" value="Real"l> 
</map> 
<map key="type"> 

<int id="" type="Int" value="84"1> 
</map> 

</symb> 

where type is mapped to 84 (integer value ofIDENTIFIER), and text is mapped to Real. 

In order to represent edges, each graph node is assigned a globally unique ID. For example, no de 
Real and node a in the declaration Real a are assigned 5 and 6, respectively. In the parse tree, node 
a is an adjacent node of node Real. But in the XML representation, such an adjacency is explicitly 
described by an edge 

<edge from="5" to="6" fromOrd="l" toOrd="O"I> 

This representation denotes an outgoing edge from node 5, which is Real, to node 6, which is a. The 
fieldfromOrd indicates whether this edge points to a child or sibling (0 means child, 1 means sibling). 

A parse tree is converted to a directed pyGK graph by means of the transformation denoted above. 
Even though pyGK represents a parse tree differently, the conceptual structure is maintained. 

3.2.2 Implementation Issues 

The main implementation issue in the parse tree transformation via XML representation is process 
management. At the top level of the computer, the data fiow control is implemented in Python. But at 
the very beginning of the fiow, the parser program (compiled C++) needs to be executed to generate 
an XML file, which will then be reloaded by a Python script. Generating and reloading of the XML 
file have to be synchronized. Therefore, the problem is how to create and manage a new process in 
which the parser is executed. 

Python has a module called os, which provides access to operating system functionality. It includes a 
series offunctions forprocess management. One ofthem is the spawn* (mode, file, ... ) function, 
which executes the program file in a new process. The asterisk means that it has variants. We use one 
of the variants, spawnlp (mode, path, file, ... ), to manage the parsing and XML generating 
process. The 1 variants are designed to be used in the case that the parameters of program file are 
fixed, while the p variants will use path to locate the program file. For example, 

os.spawnlp(os.P_WAIT, parserPath, './xmlDumper', argl, arg2) 

creates a new process which executes the program xmlDumper at location parserPath, with argl 
and arg2 as parameters. Under the os. P _WAIT mode, the main process will be temporarily suspended 
till the new process exits. This mechanism guarantees that XML reloading will not happen until the 
file has been generated. 
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3.3 Abstract Syntax 

Each node in a syntax tree must encode information to indicate the kind of the node. There are two 
ways to encode this information: the homogeneous approach and the heterogeneous approach. The 
homogeneous approach uses a single class type together with numerous token types to represent 
tree nodes. A syntax tree with homogeneous nodes can be seen as a parse tree. The heterogeneous 
approach uses different classes to represent different kinds of tree nodes. A syntax tree constructed in 
this way, such as Abstract Syntax Tree, is a heterogeneous structure. 

The syntax tree generated by the PELAB parser is a homogeneous parse tree. A detailed description 
of the representation of tree nodes has been given in section 3.1. A parse tree represents the concrete 
syntax of the corresponding pro gram, and it is source code dependent. In order to perform semantic 
analysis more efficiently, a pro gram is typically represented in terms of an abstract syntax tree (AST) 
internally in a compiler. The abstract syntax tree, along with the Visitor design pattern, is one of the 
most important patterns in compiler design and implementation. Note that the homogeneous parse 
tree representation does not support the visitor pattern. More details on the visitor pattern are given in 
section 3.4.3. 

3.3.1 Design 

An abstract syntax of Modelica is defined. Even though this project currently only works on a subset 
of the language, the full Modelica syntax is supported (implemented), from parsing to abstract syntax 
tree construction. The abstract syntax is specified in terms of the Modelica language constructs. Ac­
cording to these constructs, the abstract syntax is divided into four packages: Definition, Component, 
EquationPart, and Expression. AIso, a package called Scope is defined to support scoping analysis. 
Figure 3.4 is the UML diagram of the abstract syntax at package level. 

finitio 

EquationPar 

Figure 3.4: Packages in Abstract Syntax 

Figure 3.5 shows the classes defined within package Definition. ClassFile represents the highest level 
construct-a Modelica file. A ClassFile consists of class definitions, which in tum are made up of 
elements. In Modelica, element refers to class definitions, extends-clauses, and component declared 
in a class. A more detailed description of the se language constructs can be found in the Modelica 
Syntax defined in [5]. 
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Figure 3.5: Package Definition 
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l 1 

f-:=7-:=7:::"Exto:::::::nd:.;:'C1a;::";::" __ -;1 ImportClause 1 
-a_: Exp::N_Ixp Il:l4ent: [xp::lclantIxp:1 
--.diricaUon: ~nt::Cl ... ModifiCitio. -nue: Ixp::N_Exp 

-itQllalifie4: booban 

Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9, describe the detailed definition of package Com­
ponent, EquationPart, Expressions, and Scope, respectively. Each of these classes corresponds to a 
specific Modelica language construct defined by the Modelica grammar in [5]. See Appendix for a 
full description of the Modelica grammar. 

3.3.2 Transformation 

The transformation from parse tree to AST is implemented in a one-pass tree traversaI. Each structural 
sub-tree is transformed to a corresponding abstract syntax construct. Parentheses, which are syntacti­
cally significant to expressions, no longer appear explicitly in ASTs. The AST structure contains the 
structural information of an expression. 

3.3.3 Test of Correctness 

A series of transformations are executed to convert a Modelica model into an AST. This AST has to 
retain aIl the information from the source modeI. To verify this requirement, a pretty prin ter is imple­
mented to dump out syntactically correct Modelica. That is, given an AS T, print out its corresponding 
Modelica modeI. If the Modelica printout is the same as its original input, then it proves that aIl the 
transformations are correct. In the JLModelica compiler, a user can choose whether or not to dump 
Modelica. 
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Figure 3.6: Package Component 
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As in traditional programming languages, a name in a Modelica model has a scope in which it is 
visible. The scope of a name is the region of the code where the name has a meaning corresponding 
to its intended use [15]. Scoping analysis is characterized by the introduction and maintenance of 
symbol tables, which store mappings of identifiers to their types and definitions. As class definitions 
and declarations are processed, bindings from identifiers to their meanings are added to the symbol 
tables. When identifiers are used, they are looked up in the symbol tables and bound. 

The following sections explains sorne Modelica language constructs, which are significant in under­
standing the scoping roles of Modelica. The data structure for scoping analysis is then presented. 

3.4.1 Semantics 

Variable Declaration 

In Modelica, class instances are created via variable declarations. A declaration states the type and 
other properties of a variable. A declaration in Modelica has the following form: 

[prefixes) type-specifier component-list 

where 

• prefixes specifies accessibility, variability, and data flow . 

• type-specifier specifies the type of a variable. 
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Figure 3.7: Package Equations 

• component -list a list of component declaration. A component declaration is an identifier, 
optionally followed by an array dimension descriptor and/or modification. 

For example, the following declaration 

parameter Real a, bi 

declares two parameters, a and h, of type Real. It is equivalent to the following: 

parameter Real ai 

parameter Real bi 

Local Class Definition 

Modelica supports local class definition. Local classes can be defined nested inside a class. The num­
ber of levels of nesting is unlimited. The following ex ample shows that class B is locally defined 
within class A: 

class A 
class B 

Real Xi 
end Bi 

class C 
B bli 
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end Ci 

B b2i 

end Ai 
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Figure 3.8: Package Expressions 
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Figure 3.9: Package Scope 

A local class definition is accessible in the class where it is defined, and from within alllocal nested 
classes. In this example, local class definition B can be accessed from anywhere in A and c. 

The Concept of Parents 

The classes lexically enclosing an element form an ordered set of parents. A class defined inside 
another class definition (the parent) precedes its enclosing class definition in this set [5]. For example: 

class A 

end Ai 

class B 
Real Xi 

class C 
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Real Yi 
end Ci 

end Bi 
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There is an unnamed parent at the top-Ievel, which encloses all class definitions. In the example, the 
parent of class A and B is that unnamed parent. The ordered set of parents of class C is [B, unnamed], 
and the one of variable Y is [C, B, unnamed]. 

Encapsulated Class 

Class encapsulation is defined by the class prefix encapsulated. It is a mechanism for scoping con­
trol. Elements declared in a parent class are not accessible from within an encapsulated class unless 
they are explicitly imported. In the previous example, if class C is defined as encapsulated, bl can not 
be declared as an instance of B. The following model shows the correct use of encapsulation in class 
D. 

class A 

class B 

Real Xi 
end Bi 

encapsulated class C 
B b1i Il error 

end Ci 

encapsulated class D 
import A.Bi 
B bli Il correct 

end Di 

B b2i 
end Ai 

Use-Before-Declare 

The current Modelica language (version 2.0) allows use-before-declare (UBD). This language fea­
ture provides better support for graphical user environments, because the order of declaration is not 
determined when components are graphically created. 

In sorne programming languages, the name of a class definition can be used before the class is defined. 
In Modelica, not only class definitions, but also variables can be used before they are declared. Below 
is an example demonstrating this feature. 

class A 
B bi 
class B 

Real X (start=y) i 
parameter Y = 2i 

end Bi 
end Ai 
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In class A, name B is used before it is defined. AIso, within class B, variable y is referenced before it 
is declared. Both these declarations are legal in Modelica. 

Illegal Referencing of Declared Variables 

It has been shown in the previous section that a declared class is accessible from within local nested 
classes. But this mIe does not apply to declared variables (except for constants). In Modelica, it is 
illegal to reference variables or parameters declared in parent classes. Referencing declared constants 
in parent classes is allowed. For example: 

class A 
class B 

Real Xi 
end Bi 

class C 
B bli Il referencing class definition in parent class is legal 

end Ci 

Real Yi 
constant Real z lOi 

class D 
Real dl(start=z)i Il referencing declared constants is also legal 
Real d2 = Yi Il error: referencing declared variables is illegal 

end Di 

B b2; 
end Ai 

For-Ioop 

The following clause 

for IDENTl in expressionl, IDENT2 in expression2 ... loop 
loop body 

end for 

defines a for-Ioop in Modelica. A for-Ioop introduces an additionallexical scope. Variables declared in 
a for-Ioop (called iteration variables) are visible only within the body of the for-Ioop. The following 
example clearly shows how the scope of an iteration variable is just the body of the for-Ioop. 

class B 
constant Integer j=4i 
Real X [j l; 

equation 
for j in l:j loop Il The loop variable j takes the values 1,2,3,4 

X[jl=ji Il Uses the loop variable j 
end fori 

end Bi 
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In the for-Ioop index, the first j is implicitly declared as an iteration variable, while the second j refers 
to the constant integer declared in class B. 

Short Class Definition 

In addition to the regular class definition form, a class can also be defined in terms of the foIlowing 
short form 

class IDENTl IDENT2 class_modificationi 

which is identical to 

class IDENTl 
extends IDENT2 class_modificationi 

end IDENTli 

except that short class definition do es not introduce an additional lexical scope for modifiers. The 
folIowing example taken from [5] demonstrates the difference: 

model Resistor 
parameter Real Ri 

end Resistori 

model A 
parameter Real Ri 
model Load=Resistor(R=R)i 
Il this is correct because the R in Resistor is set to R from model A 

model LoadError 
extends Resistor(R=R)i 
Il this gives the singular equation R=R, since the right-hand side 
Il R is looked up in LoadError and found in its base-class Resistor 

end LoadErrori 

end Ai 

This is an exception to the lookup rules: modifiers in short classes are looked up in the immediately 
enclosing scope. 

Scope of Predefined Names 

User-defined classes are built from predefined types, functions etc. The predefined types in Modelica 
are Real, Integer, Boolean, and String. Modelica also has predefined functions sueh as der () , 
and sin (). AlI these predefined names are accessible from anywhere within a program, including 
encapsulated classes. Thus, the scope of predefined names is global. 

Duplicate Declarations 

In Modelica, an element name is unique in each lexical scope. Therefore, duplicate element names 
are not aIlowed in a class. The name of a declared element must be different from aIl other declared 
elements in that class. For example, both of the foIlowing classes are illegal: 
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class A 
Real ai 
Integer ai Il Error: duplicate variable name 

end Ai 

class B 
Real Xi 

class X Il Error: X has been declared as Real in this scope 

end Xi 

end Bi 

Introduction of the Keyword self 
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In order to print out intermediate representation of Modelica models as valid Modelica, we introduce 
the keyword self in pModelica. The meaning of self is equivalent to that of self in Python. That is, it 
refers to the object that holds the scope within which it is used. For example, the following model 

model A 
Real a=3.0i 
Real bi 

equation 
a*b=15i 

end Ai 

can be rewritten as 

model A 
Real a(self=3.0)i 
Real bi 

equation 
self.a * self.b 15i 

end Ai 

where the first self refers to a, the second and the third self refers to model A. 

Scope Rules 

From the previous examples, scope roles in Modelica can be summarized as follow: 

• The scope of a top-Ievel class definition is the entire program, except for those classes which 
are encapsulated. 

• The scope of a local class definition or a declared constant covers the whole class where it is 
declared, including alliocai nested classes that are not encapsulated. 

• The scope of a declared variable or parameter is the enclosing class, excluding local nested 
classes. 

• The sc ope of an iteration variable is the body of the for-Ioop where it is implicitly declared. 
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Static Name Lookup 

When a class is being instantiated, names used within that class are looked up. These names include 
type specifiers, variables, and functions. According to the nested scope mIes, Modelica uses hierarchi­
callookup of names. The lookup starts searching from the sc ope where it is used, then searches in the 
ordered set of enclosing scopes until a match is found or an enclosing class is defined as encapsulated. 

A name in Modelica can either be a simple name (without dot referencing, e.g., A), or a compos­
ite name (composed using dot notation, e.g., A.B.C). The lookup procedure of a simple name is as 
follows: 

• If a name is inside a for-Ioop or inside the body of a reduction expression, it is looked up starting 
in the for-Ioop scope which contains the implicitly declared iteration variables. 

• A name is then looked up sequentially in each member of the ordered set of parents, in the 
built-in scope and in the predefined scope, until a match is found or a parent is encapsulated. 

• If the name is not found declared in the previous two steps, the lookup continues in the global 
scope which contains predefined names. 

The lookup in each scope is performed as follow: 

• Among declared components and local class definitions, including those inherited from base 
classes. 

• Among the import names of qualified import statements. 

• Among the public elements of packages imported via unqualified import statements. 

For a composite name of the form A. B. C: 

• The first identifier is looked up as a simple name. 

• If the first identifier denotes a declaration, the rest of the name, e.g, B. C, is looked up among 
the declared components of the definition of the declaration. 

• If the fist identifier denotes a class, the rest of the name is looked up among the declared name 
elements of the class. If the class does not satisfy the requirements of a package, the lookup is 
restricted to encapsulated elements only. The following example shows this restriction: 

package Pl 
constant Real a=3.0; 
class BI 

Real bl=a; 
end BI; 

end Pl; 

class P2 
Real a; 
encapsulated class B2 

Real b2; 
end B2; 
class B3 

Real b3; 
end B3; 
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end P2; 

model M 
Pl.Bl xl; 

P2.B2 x2; 

P2.B3 x3; 

end M; 

Il 
Il 
Il 
Il 
Il 
Il 

This is legal since Pl satisfies 
the requirements of a package. 
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This is also allowed because B2 is an encapsulated 
class even though P2 is not a package. 
This is illegal because neither P2 is a 
package nor B3 is encapsulated. 

3.4.2 Design and Implementation 

The basic structure of semantic analysis is the symbol table. It is a tabulation of the collection of 
declarations and con tex tuaI information, which is convenient for symbollookup. Each symbol in the 
table is bound to the meaning as it is declared. This section presents the design and implementation 
of scoping analysis and name lookup in the jLModelica compiler. 

The Data Structure 

The analysis in section 3.4 shows that scopes usually correspond to class definitions. Each class defi­
nition introduces a new lexical scope. If a scope is conceptually seen as a node, the structure of scopes 
in a program can then be seen as a tree. 

In the AST design, a Scope node has been inserted at each structure level which introduces a lexical 
scope.TheseincludeClassFile, ClassDefinition, ForEqStm, ForAlgStm,andForFunArgExp 
(reduction expression). A sc ope node is actually a symbol table and has two attributes: table and outer. 
table is a dictionary (in Python) which maps identifiers to their "meanings" (TableEntry), and outer 
is a reference to the scope node of its outer scope. With this outer attribute, scope nodes are connected 
as a tree, with the scope node at the ClassFile level as the root. Figure 3.10 is the class diagram of 
the scope package. 

A name (identifier) is bound to certain "meanings" in symbol tables. The "meanings" of a name 
is represented in its corresponding TableEntry, which contains information such as prefix, type, 
definition, value, etc. AU the information of declarations in an AST is moved to symbol tables, which 
enables efficient symbollookup. 

Multiple Passes 

As mentioned earlier, Modelica (version 2.0) aUows use-before-declare (UBD). Multiple passes are 
required to support UBD in implementing scoping analysis and name lookup. In the jLModelica com­
piler, these tasks are executed through three passes. Each pass carries out a specific task, which is 
done via a visitor. 

During the first pass, the visitor collects all declared elements, i.e., declared components and local 
classes, in the AST. A new TableEntry is created for each declared name. There are two types of 
TableEntry, DeclarationEntry and DefinitionEntry. The class diagram in Figure 3.10 shows 
the relationship. More specificaUy, a DeclarationEntry is created to store aU the information of a 
declared component, while a DefinitionEntry is created for a declared class. A DefinitionEntry 
mainly keeps a reference to the class definition node in the AST. These created entries are added to 
symbol tables in corresponding scopes. Each symbol table then contains an declaration information 
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Scope 

TableEntry 

+lineNWI: int 
+COlNWl: int 

•• 1' +naae: ASTExp: : IdentExp 
defini tian: ASTDefini tian: : ClassDefini tio 

I~ ~ 

.1 
V 1 1 

SymbolTable DeciarationEntry L DefinitionEntry J 
-table: HashTable +type Prefix : ASTCollponent:: TypePrefi: I+visibility: EnWlI 
+lookUp(id:Exp: :Id.ntExp): Bool. +type: ASTExp: :NueExp 

l1 +typeArrSub: ASTExp: : ArrSubExp 
+nueArrSub: ASTExp:: ArrSubExp 
+.odif: List 

Figure 3.10: Detailed Package Scope 

in its own scope after the first pass completes. 

In a lexical scope, whenever a dec1aration with duplicate name is detected, an exception is thrown. 

Figure 3.11 illustrates the AST and scope nodes structure of the following Modelica model: 

Il Assume that this Modelica model is stored in file A.mo 
class A 

Real a, b; 

C c; 

class C 
Real X; 

end C; 

equation 
a = b; 

end A; 

The second pass is to perform type specifiers lookup. For example, in the following dec1aration 

Integer a; 
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Integer is the type specifier. A visitor iterates over aIl DeclarationEntrys in the AST. The type 
specifier in each of these symbol table entries is looked up. The lookup algorithm is given in sec­
tion 3.4.1. If the type specifier is found, a reference to the definition that type in the AST is created in 
that DeclarationEntry, otherwise an exception is thrown. Figure 3.12 shows the change in the AST 
of the previous ex ample after the second pass. 

Used names are looked up during the third pass. Names are used in modifications and equations. For 
example, in the following piece of code 
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model Example 

parameter Real ai 

Real bi 
Resistor RI (r=2*a) i 

Resistor R2i 

equation 
b = a A2i 

conne ct (RI.p, R2.n)i 

end Examplei 

Figure 3.11: AST after the first pass 
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RI is dec1ared as a Resistor, together with modification r = 2*a to its attribute r. In this modification, 
names r and a are used. AIso, in the equation part, names b, a, RI. p, and R2 . n are referred to. To 
verify that the use of these names is legal, they must be found dec1ared in that lexical scope. The 
lookup algorithm is also the same as the one given in section 3.4.1, except that the left hand side of an 
element modification, e.g., r in r = 2 * a, is looked up in its definition scope. For example, r is looked 
up in the scope where c1ass Resistor is defined. 

If use of a name is verified legal, a reference to the DeclarationEntry of this name in a symbol 
table is created. Otherwise, an exception is thrown. Figure 3.13 shows the same AST as the one in 
Figure 3.11, after the third pass. 
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Figure 3.12: AST after the second pass 

3.4.3 The Visitor Design Pattern 

In order to give a c1ean design and an easy-to-understand implementation, we use the visitor design 
pattern. Visitor enables the complete separation of data and the operations to be performed on the 
data. In other words, one can define a new operation without changing the classes of the elements on 
which it operates. 

Overview of the Visitor Pattern 

Programs are usually represented as Abstract Syntax Trees (AST) internally in a compiler. An abstract 
syntax tree is a structure which consists of different types of elements (nodes). The semantic analysis 
will need to perform operations, such as name lookup, type checking, etc., on ASTs. Moreover, we 
might define operations on ASTs for pretty-printing, program restructuring, and code generation. Most 
of these operations might treat different kinds of tree nodes differently. For example, type-checking for 
sum expressions is different from type-checking for function calls. If aIl the se operations are coded as 
methods inside various c1ass definitions of AST nodes, it leads to a system that is hard to understand, 
main tain, and change. 

Another design scheme is to separate the data and the operations performed on it. More specificaIly, 
we can place related operations, e.g., type-checking operations for various sorts of nodes, into a sepa­
rate object, namely, a Visitor. The visitor is then passed to elements of the AST as the AST is traversed. 
Each AST node has an accept method with the visitor object as argument. The accept method in each 
AST node in turn invokes the method in the visitor that is specifically defined for this kind of nodes. 
This method invocation includes the AST node itself as an argument. It is the visitor that executes 
the operation for AST nodes. This technique is called double-dispatch because the operation that gets 
executed depends on both the type of the visitor and the type of the element. 

Figure 3.14 is the UML class diagram of the Visitor Pattern. There are two class hierarchies in this 
pattern: the class hierarchy of nodes (data) and the class hierarchy of visitors (operations performed on 
data). Each concrete visitor encodes an operation to be performed on various kinds of nodes. One can 
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Figure 3.13: AST after the third pass 

'J 
1 Visitor 

Node 

I:ViSitAssillllenntNode() : 
+iI~S:!:121(Y'Yilil!2[l' +visitVariableNode() : 

if t 
1 1 1 1 

ConcreteVisitorl ConcreteVIsltor2 1 AssignmentNode L VariableNode 1 
+visitAssignaentNode() : +visi tAssignaentNode(): l+accept(v:Visitor): J +accept(v:Visitor) : 
+visitVariableNode() : +visitVariableNode() : 

Figure 3.14: The Visitor Pattern 

add a new operation in the compiler by creating a new subclass in the visitor class hierarchy. As long 
as the grammar of a language does not change, new functionality of the compiler can be augmented 
simply by adding new concrete visitor classes. 

Implementation Issues 

As it is mentioned earlier, the underlying philosophy of the visitor pattern is double-dispatch. Double­
dispatch simply means that the operation that gets executed depends on the kind of request and the 
types of two receivers: the visitor's and the element's. The accept method is a double-dispatch opera­
tion. The following block of code (Python style) is a sample accept method: 

class VariableNode: 

def accept(self, v): 
v.visitVariableNode(self) 
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The accept method at every element is invoked during the object structure traversaI. But the real 
operation is not performed within the accept method. Instead, it sends a request to the visitor to 
execute the operation on the element being visited. Therefore, the operation that gets executed depends 
on both the type of Visitor and the type of Element it visits. This is the key to the visitor pattern. 

The second implementation issue is object structure traversaI. A visitor is supposed to visit each 
element in the structure. The problem is, who is responsible for traversing the structure? Or in other 
words, how does the visitor get there? 

In fact, we can put the structure travers al code either in the object structure itself, or in the visitor. 
If we put responsibility for traversing the structure in the object structure itself, we only need to 
write the traversaI code once in the object structure. But each time a visitor traverses the structure, 
it has to follow the same traversaI algorithm. In our implementation, the vi si tors are responsible for 
traversing the AST. Each concrete visitor has its own code for each aggregate con crete element. This 
is because in our compiler, the traversaI algorithm for sorne visitors are different, even though it ends 
up duplicating code. For ex ample, a name lookup visitor only needs to traverse the equation part in 
an AST. 

The Design 

Figure 3.15: The Name Lookup Visitor 

Figure 3.15 is a simplified UML class diagram of the design of the visitors that perform scoping 
analysis and name lookup. A class hierarchy of visitors is defined to support multiple concrete visitors. 
The parent class Visitor of all visitors of an AST is an abstract class. The parent Visitor declares 
an operation (method) for each AST construct class it visits. In every concrete visitor, there is a 
corresponding implementation for each of these methods. AlI these methods are not shown in the 
class diagram because the number of AST constructs is relatively large. 

3.5 Expanding Inheritance 

Modelica supports class inheritance, a key feature of object-oriented language. An existing class, 
called superclass or base class, can be extended to define a more specialized class, which inherits the 
properties and behavior of the base class. The specialized class is called subclass or derived class. It 
is defined in terms of the extends clause 

extends name [class_modification] 

For example, the following piece of code 
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partial model TwoPin "Superclass of elements with 2 electrical pins" 
Pin p, n; 
Voltage V; 
Current i; 

equation 
V = p.v - n.v; 
o = p.i + n.i; 
i = p.i; 

end TwoPin; 

model Resistor "Ideal electrical resistor" 
extends TwoPin; 
parameter Real r (unit="Ohm") "Resistance"; 

equation 
R * i = V; 

end Resistor; 

defines Resistor as a subclass of TwoPin. 

3.5.1 Semantics 
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As mentioned earlier, the goal of the Front End is to translate original Modelica model into fiat Mod­
elica, where aIl declared components are fiattened down to predefined types. In class inheritance, 
properties and behavior are inherited in the form of component declarations, and equations. Derived 
classes need to be expanded before the model is translated into fiat Modelica. In fact, aIl data and 
equations in base classes are copied to the derived class. The foIlowing example shows how extend 
clauses are expanded. 

package P 
constant Real PI=3.l4; 
class A 

Real al, a2; 
equation 

al*a2=1.0; 
end A; 

class B 
A a(a2=PI); 
Real b; 

equation 
a.a2 * b~2 

end B; 
end P; 

class C 
class Cl 

Real cll; 
end Cl; 

end C; 

10.0; 
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model M 
extends Ci 

extends P. Bi 

Cl Xi 

end Mi 

Il Expanding the extends clauses in model M leads to the following 
Il expanded version of M: 
model M 

Il inherited from C 
class Cl 

Real cl1i 

end C1i 

Il inherited from P.B 
constant Real PI=3.14i 
A a(a2=PI)i 
Real bi 

Cl Xi 

equation 
a.a2 * b'2 

end Mi 
10.0i 
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In this example, model M is a derived class of both class C and class B in package P. In the process of 
expanding the extends clauses, aIl declared elements, including variables and local class definitions, 
and equations in base classes, are copied to the derived class M. In addition to that, referenced constant 
declarations in the enclosing scope by base classes, e.g., constant Real PI=3 .14 in this example, 
are also copied to the derived class. 

It is possible that an inherited component from a base class has the same name as a locally declared 
component. As it is mentioned in section 3.4, two declared components in a lexical scope are not 
allowed to have the same name. But under certain conditions, the inherited declaration and the local 
one can be merged into a single declaration. These conditions are: 

• the two declarations must have the same type; 

• they must have the same protection level, Le., they must be both public elements or protected 
elements; 

• they must have the same type prefix, e.g., they must be both declared as continuous variable, or 
both declared as discrete variables, or both declared as parameters, etc. 

Satisfying these conditions means that the two declarations are identical. One of them is ignored. 
Otherwise it is illegal, which will cause an exception in the compiler. For example, 

class A 
Real a, bi 

end Ai 
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class B 
extends 
Real a; 
Integer 

end B; 

A; 
Il 

b; Il 
Il 

This is legal. 
This is illegal since the type is different to 
to the one declared in class A. 
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This rule also applies to inheritance of equations. If an inherited equation is syntactically identical 
to a locally declared one in the derived class, one of the equations is discarded. For example, in the 
expanded class F, only one equation is kept. 

class E 
Real el, e2; 

equation 
e1+e2=1; 

end E; 

class F 
extends E; 

equation 
e1+e2=1; 

end F; 

Il The expanded version of F 
class F 

Real el; 
Real e2; 

equation 
e1+e2=1; 

end F; 

3.5.2 Multiple Inheritance 

Modelica supports multiple inheritance, Le., more than one extends clause is allowed. In sorne cases 
this might lead to the problem of inheriting the same element or equation twice through other inter­
mediate inheritances. For example, 

class Person 
String name; 
Integer dateOfBirth; 

end Person; 

class Student 
extends Person; 
Integer stuID; 

end Student; 

class Employee 
extends Person; 
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Integer emplID; 
end Employee; 

class StudentEmployee 
extends Student; 
extends Employee; 

end StudentEmployee; 
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Class Student and Employee are derived classes of base class Pers on, while class StudentEmployee 
is a derived class of both class St udent and Employee. In the process of expanding class St udentEmployee, 
the declarations String name and Integer dateOfBirth are inherited twice, via the two extends 
clauses. This is an examp1e of repeated inheritance. This problem can be solved easily by applying 
the rule stated in the previous section. According to that rule, only one of the identical components is 
kept. Class StudentEmployee is expanded as: 

class StudentEmployee 
String name; 
Integer dateOfBirth; 
Integer stuID; 
Integer emplID; 

end StudentEmployee; 

3.5.3 Modification of the Extends Clause 

An extends clause may carry class modifications which modify the value of attributes in base classes. 
For example, 

class A 
Real al=2.0; 
Real a2=3.0; 

end A; 

class B 
extends A(a2=5.0); 
Real b; 

end B; 

When an extends clause is expanded, the modification is also applied to corresponding elements in 
the base class. Finally, element modifications are merged, that is, outer modification overrides inner 
modification. In the pModelica compiler, each declaration symbol table entry carries a list of modifica­
tions. In the process of expanding inheritance, modification is appended to the copy of corresponding 
elements. which are then inserted into the derived class. The following is the pretty printed version of 
the expanded version of class B by the pModelica compiler: 

Il Expanded version of B 
class B 

Real al=2.0; 
Real a2(self=3.0, self=5.0); 
Real b; 

end B; 
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3.5.4 Short Class Definition as Class Inheritance 

A short class definition is a concise way of defining new classes based on inheritance. As described 
in section 3.4.1, the short form class definition 

class IDENTl = IDENT2 class_ffiodification; 

is usuaIly identical to 

class IDENTl 
extends IDENT2 class_ffiodification; 

end IDENTl; 

which is a longer form based on the extends clause. Actually in the JlModelica compiler, short class 
definitions are transformed to the above longer form, which are then expanded. AIl semantic analysis 
performed on short classes are identical to normal classes, except that modifiers in short classes are 
looked up in the immediate enclosing scope. 

3.5.5 The Process of Expanding Inheritance 

The process of expanding inheritance consists of the following steps: 

• The name of the base class is looked up; 

• If the base class con tains unexpanded extends clauses; recursively expand aIl extends clauses in 
the base class; 

• Copy all declared elements and equations from the base class to the derived class; 

• Resolve class modification and apply the modification to corresponding inherited components. 

3.5.6 Implementation Issues 

Component Deep Copy 

In the process of expanding class inheritance, the modification needs to be resolved and be applied to 
the declarations copied from the base class. Since modification creates a variant of the original defi­
nition, shared objects are no longer sufficient to carry modification of multiple instances. Therefore, 
true copies of declarations are needed to store the information of modification. 

These true copies can be created via a deep copy operation. Python's deep copy operation creates 
copies which are unnecessarily "too deep" with respect to what is required here. A user-defined deep 
copy operation is needed to make sure that these copies are created only as deep as needed, but not 
more. In the case that modification is absent, it suffices to keep a reference to the original element 
object when it is copied from the base class. 

Detectlng Cycllc Dependency of Inheritance 

Cyclic dependency of inheritance must be detected when extends clauses are expanded (to avoid 
infinite expansion). The foIlowing example shows a cyclic dependency of inheritance between class 
A, Band C: 

class A 
extends B; 
Real a; 
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end Ai 

class B 
extends Ci 

end Bi 

class Ci 

extends A(a=l.O)i 
Real Ci 

end Ci 
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Such a dependency can be detected by introducing a list of visited base class when inheritance is 
recursively expanded. Suppose class A is the first to be expanded in this example, A is visited and is 
then added ta the list of visited classes, as [A]. Since A extends class Band B extends class C, Band 
C are recursively visited and are added to the list, giving [A, B, C]. Finally when the extends clause 
in class C is expanded, its base class A is again visited and will be added to the list [A, B, C], in 
which A a1ready exists. Duplicate occurrences of the same class in the li st means there exists a cyclic 
inheritance dependency. An exception is raised when such a dependency is detected. 

3.5.7 Order of Expanding Inheritance and Name Lookup 

In order to guarantee that elements can be used before they are declared, expanding inheritance and 
name lookup are executed in the following order in the pModelica compiler: 

1. The first pass: class definitions and component declarations are added into symbol tables; 

2. The second pass: class inheritances are resolved, that is, inherited elements are copied from 
based classes to the derived class; 

3. The third pass: type specifiers are looked up; 

4. The fourth pass: uses of names in modifications and in the equation part are looked up. 

3.6 Flattening 

The goal of semantic analysis is to translate a Modelica model to Flat Modelica, which consists of 
basic components and DAEs. For example, the following model M 

class A 
Real ali 
Integer a2=li 

end Ai 

class B 
Real bl(unit="N")i 
Real b2=2.0i 

end Bi 

model M 
extends Ai 

B b(bl=l.5 , b2=3.0)i 
end Mi 
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is translated to the following fiat form of Modelica by the front end: 

model M 
Real al; 
Integer a2; 
Real b_b2; 
Real b_bl; 

equation 
a2=1; 
b_b2=3.0; 
b_bl=1. 5; 

end M; 
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In the fiattened model, all class attributes are declared in terms of predefined types, and modifications 
are merged and turned into equations. 

After expanding extends clauses, a class contains attributes which can either be basic components 
or composite components. ActuaIly composite components are built up of basic components. The 
purpose of fiattening is to expand the class structure into a fiat form, i.e., aIl class attributes are 
declared as predefined types. The key issues in the fiattening process are: 

1. Component instantiation; 

2. Flattening of composite components and merging of modifications; 

3. Generation of connection equations. 

3.6.1 Component Instantiation 

In the internaI representation of a Modelica model, instead of creating a concrete object instance for 
each declaration, a symbol table entry just keeps a reference to its class definition, and carries all the 
original information of modifications. Figure 3.16 shows the internaI representation of the previous 
example. 

This scheme helps save memory space, and it works well until modifications are resolved. Class 
modification creates a variant of the original class definition. The data structure has to be augmented 
to hold concrete instances for these variants. 

An instance stores the modified data and behavior of a component. It consists of a symbol table, a 
list of initial equations, and a list of equations. The symbol table contains class attributes copied from 
the original class definition, as well as the modification to that component. The equation part is also 
copied from class definition to instance. 

A class modification con tains element modifications. Each element modification is looked up and is 
applied to the found element in the concrete instance. For space efficiency, no instance will be created 
for declarations which contain no modification. It is sufficient to keep references to their definitions. 

In the jiModelica compiler, components are instantiated as follow: 

instantiateComp(comp) : 
if comp has no modification: 

if the type of comp is not a predefined type: 
for each subcomponent(i) in comp: 

instantiateComp(i) 
else: 
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Figure 3.16: Component Instantiation 

inst=createlnstance(comp) 
merge modification to inst 
if the type of comp is not a predefined type: 

for each subcomponent(j) in inst: 
instantiateComp(i) 

Figure 3.16 also shows the internaI representation after components are instantiated. 

3.6.2 Flattening of Composite Components 
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A fiat Modelica model is a system of equations with aIl variables declared in predefined types, i.e., a 
declared variable must be one of the type Real, Integer, Boolean, or String. In the process of fiattening, 
aIl structured components, Le., composite components, are expanded to a set of basic components. 
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Resolving Variable Names 

When composite components are replaced by basic components, names from different lexical sc opes 
are inserted into the same lexical scope. This will easily lead to a problem: sorne declared variables 
rnight have the same name in the fiattened model, which is in confiict with the rule that no duplicate 
declarations of the same name are allowed. Therefore, the basic components in a fiattened model must 
be renamed such that each of them has a unique name in its lexical scope. 

Renaming of basic components in a fiattened model can be achieved by combining the names of a 
basic component and the names of aIl its parents. This scheme guarantees that each combined name is 
unique because each name and each of the name in its order set of parents is unique in its own lexical 
scope. For example, in model M 

model M 
extends A; 
B b(bl=1.5, b2=3.0); 

end M; 

the composite component b is replaced by 

Real b_bl; 
Real b_b2; 

where bJJl and bJJ2 are the combinations of b and the name of basic components in base class B, 

namely bl, b2, respectively. 

As mentioned earlier, the j.tModelica compiler is able to dump out intermediate representations as 
valid Modelica models. For example, it can dump out a fiat Modelica as a valid Modelica model. In 
sorne other Modelica tools, dot notation is used in combining names in fiat Modelica. For example, 
b.l)l and b.l)2 will become b.bl and b.b2, respectively. But according to the grammar of Modelica, 
a declared identifier is not allowed to contain dot. Among those special characters, underscore is the 
only one that is valid in an identifier. Therefore, it is used to make names unique in the jlModelica 
compiler. 

Merge of Modifications 

Modifications can be applied not only to declared components or local classes, but also to extends 
clauses. Therefore, it is possible that a component can be modified multiple times through these 
nested modifications. For example, 

class A 
Real al; 
Real a2=2.0; 

end Ai 

class M 
A a(al=l.O, a2=3.0); 

end Mi 

there are two modifiers a2 = 2.0, and a2 = 3.0, applied to a2. But finally a variable can only take one 
value. This means that nested modifications must be merged. 
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In Modelica, outer modification takes precedence over inner modifications. a2 = 3.0 is an outer mod­
ification compared to a2 = 2.0 in the previous example. In the pModelica compiler, each declared 
variable carries a list of modifications. The priority of modifications is encoded in the list. After com­
posite components have been flattened to basic components, modifications for each of these basic 
components are merged. In the following example, 

class A 

Real al; 
Integer a2=1; 

end A; 

class B 
Real bl(unit="N"); 
Real b2=2.0; 

end B; 

model M 

extends A; 
B b(bl=1.5, b2=3.0); 

end M; 

merging modifications in the flattened model M gives 

Il flattened version of M with modifications merged 
model M 

Real al; 
Integer a2=1; 
Real b_bl (unit="N")=1.5; 
Real b_b2=3.0; 

end M; 

Other than representing a single value, a basic component, i.e., instance of a predefined type, has other 
attributes which de scribe some properties of a physical quantity. For ex ample, type Real is defined in 
Modelica syntax as follow 

type Real 
RealType value; 
parameter StringType quantity =""; 
parameter StringType unit =""; 
parameter StringType displayUnit =""; 
parameter RealType min =-Inf; Il Inf denotes a large value 
parameter RealType max =Inf; 
parameter RealType start =0; 
parameter BooleanType fixed =false; Il "true" for parameter/constant 
parameter BooleanType enable =true; 
parameter RealType nominal; 
parameter StateSelect stateSelect = StateSelect.default; 

equation 
assert(value )= min and value <= max, "Variable value out of limit"); 
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assertlnominal )= min and nominal <= max, "Nominal value out of limit"); 
end Real; 
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Modifications may apply to sorne of these attributes. In the pModelica compiler, an environment is 
created for each basic component, which contains mappings from attribute to value. Figure 3.17 shows 
the environment for 

Real b_bl lunit="N") =1. 5; 

Sorne information encapsulated in a basic component might not be so important to the simulation back 
end, such as attribute "unit". But it will be important in the future if we are to implement unit-based 
type checking. For the sake of integrity, this information is kept in the environment. 

ATTRIBUTE VALUE 

value 1.5 

quantity None 

unit None 

displayunit None 

min -Inf 

max Inf 

start 0 

fixed false 

enable true 

norminal None 

stateSelect StateDelect.edfault 

Figure 3.17: Environment of Basic Component Real 

Modification Equation 

Modifications in Modelica are finally turned into equations. In the simulation back end, we are cur­
rently only concerned with the value attribute of each basic component. Other attributes, such as unit, 
are ignored. Therefore, only modifications to the value field are turned into equations. Other modifi­
cations are stored in the environments. For example, the modification in basic component 

Real b_bllunit="N")=1.5; 

is turned into 

b.bl = 1.5 

Model M in the previous example is then finally fiattened to 

model M 
Real al; 
Integer a2; 
Real b_bl; 
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Real b_b2; 
equation 

a2 = 1; 
b_bl 1.5; 
b_b2 = 3.0; 

end M; 
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The information of modification un i t =" N" is not lost. It is maintained in the environment of b JJ 1. It 
is typically used to generate code usable in an integrated modeling and simulation environment such 
as WEST [27]. 

3.6.3 Generation of Connection Equations 

In Modelica, components may be coupled by connections, whose semantics are given by equations. 
A connection is introduced by the following connect statement: 

connect (connectorl, connector2) 

where connectorl and connector2 are two references to connectors, each of which is either a 
component of the same class or an element of one of its component. connectorl and connector2 
must be type equivalent. Two types Tl and T2 are equivalent if: 

• Tl and T2 denotes the same primitive type, Le., one of RealType, IntegerType, StringType, 
BooleanType, or EnumType; 

• Tl and T2 are classes containing the same public declaration elements (according to their 
names) and each of these elements in Tl is type equivalent to the corresponding one in T2. 

Connection statements are converted into normal equations, which are called connection equations. 
There are two different forms of connection equation generated, for flow and non-flow variables, 
respectively. The main tasks in the process of generating connection equations are: 

• Building connection sets from connection statements; 

• Generating connection equations for the complete model. 

Connection Sets 

In Modelica, multiple connections can be made to a single connector. For example, in the simple 
electronic circuit in section 1.2: 

model Circuit 
Resistor Rl(r=l); 
Resistor R2(r=1); 
Capacitor C(c=l); 
VsourceAC AC; 
Ground G; 

equation 
connect (AC.p, Rl.p); 
connect (Rl.n, R2.p); 
connect (R2.n, C.p); 
conne ct (C.n, AC.n); 
connect (AC.n, G.p); 

end circuit 
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connector AC . n is connected to both connector C . n and G • p. Multiple connections to a single connec­
tor can be seen as anode where aIl involved connectors are inter-connected. Through (ftow) variables 
from each connector are summed to zero at such anode. 

Connection sets are needed to detect if there exist connectors that have multiple connections. Connec­
tion sets are first built at the level of connectors, i.e., connector connection sets. Then these connector 
connection sets are expanded to primitive connection sets. 

• A connector connection set is a set of connec tors connected by means of connect clauses. AlI 
connectors in such a set are type equivalent. 

The algorithm for building connector connection sets in the pModelica compiler is as foIlows: 

1. Create an empty list L to store connection sets; 

2. For each connect statement, create a connection set containing its two arguments, and append 
this set to list L. For example, the connection set of connect (C. n, AC. n) is [C.n,AC.n]; 

3. Merge connection sets. That is, if any connector in a connection set is a member of other con­
nection sets, aIl the corresponding sets are merged. For example, the connections set of con­
nect statement connect (AC.n, G.p), [AC.n,G.p], is merged with [C.n,AC.n], resulting in 
[C.n, AC.n, G.p]. 

AH connectors in a connection set are type equivalent, i.e., they have the same public attributes (with 
the same names and types). If a connector type contains structured components, these structured 
component are expanded into basic components, i.e., predefined types. Common basic component of 
members in a connector connection set form a primitive connection set: 

• A set of variables having the same name and the same Modelica predefined type. 

• A primitive connection set may only contain ftow variables or non-ftow variables. 

For example, the connector class of the electronic circuit example in section 1.2 is defined as: 

connector Pin 
Voltage v; 
flow Current i; 

end pin; 

The generated primitive connection sets from the connector connection set [C.n,AC.n,G.p] are: 

• Non-flow variables: [C.n.v,AC.n.v, G.p.v] 

• Flow variables: [C.n.i,AC.n.i,G.p.i] 

Connection Equations for Non-flow Variables 

Equations generated from primitive connection sets of non-flow variables have the foHowing form: 

which is equivalent to: 
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Connection Equations for Flow Variables 

Equations generated from primitive connection sets of flow variables have the following form: 

The sign of variable hj is + 1 if the connector is an inside connector, and -1 if the connector is a outside 
connector. Inside and outside connectors are defined as follows: 

• In an element instance M, a connector component of M is called an outside connector with 
respect to M. 

• A connector component that is hierarchically inside M is called an inside connector with respect 
toM. 

For example, aIl members of connector connection set [C.n, AC.n, G.p] are inside connectors of model 
Circuit. Therefore, the generated equation for the primitive connection setofflow variables [C.n.i,AC.n.i, G.p 
is: 

3.7 Type Checking 

After aIl the above-mentioned semantic analysis are executed, a Modelica model is translated into fiat 
Modelica. In the pModelica compiler, the textual representation of flat Modelica is still valid Modelica 
model. For example, the flat Modelica representation of the circuit example is as follow: 

model Circuit 
flow Real RI_n_i;; 
Real R2_v;; 
parameter Real RI_r; 
Real G--p_ v; ; 
Real en_v;; 
Real RI--p_v;; 
flow Real RI_p_i;; 
flow Real G_p_i;; 
Real R2_i;; 
flow Real AC_n_i;; 
parameter Real R2_r; 
Real RI_n_v;; 
flow Real R2_n_i;; 
parameter Real C_c; 
flow Real R2_p_i;; 
parameter Real AC_VA; 
flow Real AC_p_i;; 
Real C_i;; 
flow Real C_p_i;; 
constant Real AC_Pli 
Real RI_v;; 
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Real AC_v;; 
Real ACi;; 
Real C-p_v;; 
Real Rl_i;; 
Real C_v;; 
Real AC_p_ v; ; 
Real AC_D_V;; 
Real R2_p_v;; 
flow Real C_D_i;; 
Real R2_D_V;; 
parameter Real AC_f; 

equatioD 
C_c*der(C_v)=C_ii 
C_v=C_p_V-C_D_V; 
O=C_p_itCD_i; 
C_i=Cp_i; 
Rl_r*Rl_i=Rl_v; 
Rl_v=Rl-p_v-Rl_D_Vi 
O=Rl-p_itRl_D_ii 
Rl_i = R1-p _i; 
G-p_V=Oi 

R2_r*R2_i=R2_Vi 
R2_v=R2-p_v-R2_D_Vi 
O=R2_p_itR2_D_i; 
R2_i = R2-p _i i 
AC_v=AC_VA*siD(2*AC_PI*time); 
AC_v=AC-p_v-AC_D_V; 
O=AC_p_itAC_D_ii 
AC_i=ACp_ii 
AC_p_itRl-p_i=O.O; 
AC_p_v=Rl_p_v; 
Rl_D_itR2_p_i=O.O; 
Rl_D_v=R2_p_v; 
R2_D_itC_p_i=O.O; 
R2_D_V=C_p_v; 
G-p_itAC_D_itC_D_i=O.O; 
G-p_V=AC_D_V; 
G-P_V=C_D_V; 

eDd Circuit i 
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As in other programming languages, the type of a construct in Modelica need to match what is ex­
pected in its usage context. For example, the - (minus) operator expects two operands of type IDteger 
or Real. Therefore, the expression of a - b is a type error if any of a or bis neither an integer nor real 
number. 

This leads to the next step to be performed in the compiler: type checking. The main tasks of type 
checking are: 

• Verify that each construct is type correct. 
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• Type coercion, which changes the type of one expression to another. 

3.7.1 Basic Types 

As it is mentioned earlier in previous sections, the predefined types in Modelica are built over the built­
in types, Le., RealType, IntegerType, StringType, and BooleanType. By default, the name of 
a variable of predefined types refers to its value attribute. For example, equation 

a+b=c 

means 

a.value + b.value = c.value 

The basic types in Modelica are RealType, IntegerType, StringType, BooleanType, TypeError, 
and Void. The basic type void represents the empty set and allows an equation to be checked. 
TypeError indicates a construct has type errors. 

3.7.2 Type Coercion 

In sorne cases, an operator allows its operands to have different types. For example, the expression 
a + b is legal in Modelica, where a is of type Real and b is of type Integer. Since the machine 
instructions of operations on reals and integers are different, specific rules are needed to convert the 
type of operands by the compiler. Such a conversion of type is called coercion [2]. 

If type coercion is required, the type checker in the pModelica compiler will insert a conversion 
operator in the expression. For example, the type checking rule for the + (plus) operator is defined as 
follows: 

typeOf(El + E2): 
if El.type=IntegerType and E2.type=IntegerType: 

return IntegerType 
elif El.type=RealType and E2.type=RealType: 

return RealType 
elif El.type=StringType and E2.type=StringType: 

return StringType 
elif El.type=RealType and E2.type=IntegerType: 

replace E2 by RealOf(E2) 
return RealType 

elif El.type=IntegerType and E2.type=RealType: 
replace El by RealOf(El) 
return RealType 

else: 

return TypeError 

3.7.3 Specification of Type Checking in the ILModelica Compiler 

In the pModelica compiler, type checking is performed on the equation part of the fiat Modelica 
model. The type checker verifies that each equation and aIl expressions in that equation tree are type 
compatible, and will perform type coercion if applicable. The following specifications have been 
implemented: 
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1. Normal equation (RegularEquation): LHS RHS 
if LHS.type==RHS.type: 

return Void 
elif LHS.type==IntegerType and RHS.type==RealType: 

replace LHS by RealOf(LHS) 
return Void 

elif LHS.type==RealType and RHS.type==IntegerType: 
replace RHS by RealOf(RHS) 
return Void 

el se 
return TypeError 

2. Identifier (IdentExp): E 
return E.type 

3. Integer (IntExp): 
return IntegerType 

4. Real number (RealExp): 
return RealType 

5. String (StringExp): 
return StringType 

6. Boolean (BoolExp): 
return BooleanType 

7. Logical exp: El op E2, where op: and (AndExp), or (OrExp) 
if El.type==BooleanType and E2.type==BooleanType: 

return BooleanType 
else: 

return TypeError 

8. Logical exp: not E (NotExp) 
if E.type==BooleanType: 

return BooleanType 
else: 

return TypeError 

9. Relation exp: El op E2, where op: <, <=, >, >=, <> 
if El.type==RealType and E2.type==RealType: 

return BooleanType 
elif El.type==IntegerType and E2.type==IntegerType: 

return BooleanType 
elif El.type==StringType and E2.type==StringType: 

return BooleanType 
elif El.type==BooleanType and E2.type=BooleanType: 

return BooleanType 
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elif El.type=RealType and E2.type=IntegerType: 
return RealType 

elif El.type=IntegerType and E2.type=RealType: 
return RealType 

else: 
return TypeError 

10. Sum exp (SumExp): El + E2 
if El.type=IntegerType and E2.type=IntegerType: 

return IntegerType 
elif El.type=RealType and E2.type=RealType: 

return RealType 
elif El.type=StringType and E2.type=StringType: 

return StringType 
elif El.type=RealType and E2.type=IntegerType: 

replace E2 by RealOf(E2) 
return RealType 

elif El.type=IntegerType and E2.type=RealType: 
replace El by RealOf(El) 
return RealType 

else: 
return TypeError 

Il. Exp: El op E2, where op: - *, / 
if El.type=IntegerType and E2.type=IntegerType: 

return IntegerType 
elif El.type=RealType and E2.type=RealType: 

return RealType 
elif El.type=RealType and E2.type=IntegerType: 

replace E2 by RealOf(E2) 
return RealType 

elif El.type=IntegerType and E2.type=RealType: 
replace El by RealOf(El) 
return RealType 

else: 
return TypeError 

12. Unary minus exp: -E 
if E.type=IntegerType: 

return IntegerType 
elif E.type=RealType: 

return RealType 
else: 

return TypeError 

13. Function calI: El(E2) 
if E2.type matches the type of declared input variables: 

return El.type (types of declared output variables) 

54 
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else: 
return TypeError 

Type checking of sorne Modelica constructs is not implemented in the CUITent jLModelica compiler. 
The above type checking rules works for continuous models. 



The BackEnd 

A model described in Modelica is translated to a model in fiat Modelica by the Front End. Basically, 
a fiat Modelica model can be seen as a set of DAEs. The ultimate purpose of simulation is to solve 
such a set of equations. 

One can solve a set of DAEs using a DAE solver, e.g., DASSL [22]. But DAE solvers are inefficient. 
A far more efficient approach is to perform DAE transformations. The purpose of these transforma­
tions is to obtain a causal representation of the equations, which might inc1ude ODEs and algebraic 
equations. This set of causal equations can be solved more efficiently with ODE solvers. 

This chapter discusses the formula manipulation techniques implemented in the jLModelica compiler, 
which inc1udes eanonieal transformation, eausality assignment, equation sorting, and deteeting alge­
braie loops. 

4.1 Canonical Transformation 

Usually an equations is represented as a tree made up of operators and operands. The eanonieal 
representation of an equation means that the equation is stored internally in a particular, unique way. 
More specifically, the equation is rewritten in such a way that 

• Constants are folded; 

• Operators and operands at every level of the tree are in a unique order; 

• A few other simplification rules are implemented, the details of which are given below. 

4.1.1 Why Canonical Representation? 

Even though canonical transformation reuses compile-time efficiency, it is necessary to perform su ch 
a transformation for the following reasons: 

• For simulation run-time efficiency. If constants are folded at compile-time, there is no need 
to calculate the same operations on these constants at each time step at simulation-time. For 
example, assume that a model contains the following equation 

a=2+3+b 

If 2 + 3 is computed at compile time, e.g., a = 5 + b, the same operation need not be computed 
at each time step during simulation run-time. Therefore, it is a tradeoff between compile-time 
and run-time. Because the number of simulation runs is far greater than the number of times a 
model is compiled, it is worth to do so. 

• The need for causality assignment. For example, the following equation 

x+x+y=o 
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cannot be transformed to causal form correctly if unknown x is to be calculated based on the 
value of y, e.g., x on the left hand side of the equation. In such a case, like terms have to be 
combined, e.g, x + x is converted to 2x. 

4.1.2 Defining the Canonical Order 

An ordering relation on a set of operators is defined so that the nodes in an equation tree can be sorted 
into the canonical order. The set of operators currently includes sum (+), multiplication (*), power 
C), and function caUs. The ordering of these operators is defined as foUows: 

,+, < '*' < ,A, < 'f()' 

where f () represents function caUs. The ordering relation between different function caUs is deter­
mined by lexicographic ordering of the names of function caUs. For example, naturallogarithm logO 
has a higher order than e-based exponent expO. That is, 

, exp ()' < 'log () , 

The canonical representation of an expression or an equation is obtained by sorting the children of 
every node in the equation tree, together with constant fol ding and sorne simplification rules. 

4.1.3 Simplification Rules 

The paper [26] suggests a set of simplification rules for canonical transformation. A subset of these 
rules have been implemented in pModelica. These rules are specified as foUows: 

1. The RHS of an equation is moved to the LHS, and the RHS is set to 0.0, eg., a = b is transformed 
to a-b = 0.0. 

2. AU constants are rewritten as real numbers. Fractions are evaluated. For example, 1/2 is simpli­
fied to 0.5,.xl is rewritten as x2.0, and x1/2 is written as xO.5 etc. 

3. A negative number or term is rewritten as: 

• -c --t +( -c), where c is constant 

• -E --t +( -1.0) *E, where E is a term 

4. Expressions in reciprocal form (divisions) are rewritten in terms of negative powers. For exam-
pIe: 

• l/y --t 1.0*y-1.0 

• x/y --t x*y-1.0 

• z3 / (.xl + 2 *x * y) --t z3.0 * (2.0 *x* y+.xl.O)-1.0 

5. Binary operators + and * are converted to n-ary operators. It is feasible to do so because both + 
and * are commutative and associative. For example: 

• a+b+c can be rewritten as +(a,b,c) 

• a*b*c can be rewritten as *(a,b,c) 

6. Constant folding. AU sum, product, power or other known operations of constants are imme­
diately evaluated. AIso, the foUowing rules should be applied to remove superfiuous zeros and 
ones: 
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• O.O+E ---? E; 

• 0.0 * E ---? 0.0; 

• O.oc ---? 0.0; 

• 1.0*E ---? E; 

• El.O ---? E; 

• EO.o ---? 1.0; 

• 1.0
E 

---? 1.0; 

7. Like terms in a sum are collected and their constant coefficients are added (* distributes over 
+), eg.: 

a*xP+b*xP ---? (a+b)*xP 

where a,b are constants (or parameters), x, p can be constants, variables or expressions. 

8. Product of power of the same base is simplified using this mIe: 

where x,q,p can be constants, variables or expressions. 

9. The power of a power can be simplified as: 

(xP)q ---? xp+q 

where x,q,p can be constants, variables or expressions. A further simplification occurs if x,q are 
both constants: 

10. The power of a product: 
(x*y)P ---? xP *yP 

x,y,p can be constants, variables or expressions, but with x,y not being both constants. The 
opposite of this mIe should be applied when both x and y are constants, and so they can be 
folded: 

Il. A constant multiplying an expression which is a sum of terms containing variables, is dis­
tributed: 

C*(tl +t2+ ... +tn) ---?C*tl +C*t2+ ... +C*tn 

where c is a constant, and ti is a set of terms. 

4.1.4 The Transformation Aigorithm 

The transformation consists of a series of applications of the simplification rules. These rules are 
invoked in the following order: 

1. According to mIe 3 and 4, convert division expressions, and subtraction expressions into multi­
plications, and sum expressions, respectively. 

2. According to mIe 5, on both sides of the equation, convert the binary operators + and * into 
n-ary operators. 

3. Move the RHS of the equation to the LHS, and set the RHS to 0.0 
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4. Apply role 5 to the resulting LHS again. 

5. Constant folding according to role 6. 

After these prelirninary transformation steps, the following roles are iterated over until all nodes in 
the tree are in canonical order: 
While the tree changes: 

1. Simplify the powers of products by applying role 10. 

2. Apply role 5 to the LHS to fiatten the + and * operators. 

3. Constant folding according to role 6. 

4. Sort nodes into canonical order. 

5. Apply role 9 to fiatten the powers ofpowers. 

6. Apply role 8 to simplify the products of powers of the same base. 

7. Constant folding according to role 6. 

8. Sort nodes into canonical order. 

The iteration stops if there is no further change occurs in the tree. Finally the following roles are 
applied: 

1. Rule Il: distribute constants. 

2. Flatten the + and * operators on the LHS. 

3. Constant fold. 

4. Sort nodes into canonical order. 

5. Apply role 7 to collect like terms. 

6. Constant fold again. 

7. Sort nodes into canonical order. 

4.1.5 An Example 

Here is an example showing the canonical transformation in the pModelica compiler. Given the fol­
lowing model as input: 

class Canonical 
Real a, b, c, d, x; 
Real e, f, g, h; 

equation 
2-1-3-4-5=h; 
a+a+2.0*a+b+(c+d*a/b)=a-2*b*c-d; 
2*a'3+3*c'd=a'3-2*c-d; 
a*a*b*c*c*d+b*a'2*a+e'a*f'b*e'(c+d)=O.O; 
e'a*f'b*e'(c+d+g)=O.O; 
((4/2*a' (O+b)) '2)' (2* (3+2) )=0; 
2*a'a+a'a+a'2=O; 
(a*(b+c)'2*d'e*(2*3+4)'2)'3=e; 
(x+b) '2-(c*b) '2+a'2*d=(c+d) '2; 

end Canonical; 
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The J.lModelica compiler rewrites the equation part into the following canonical form: 

(-11.0)+h*(-1.0)=0.0; 
a*3.0+a*b h(-1.0)*d+b+b*c*2.0+c+d=0.0; 
a h3.0+c hd*5.0=0.0; 
ah2.0*b*ch2.0*d+ah3.0*b+eh(a+c+d)*fhb=0.0; 
eh (a+c+d+g)*fhb=O.O; 
ah (b*20.0) *1048576.0=0.0; 
a h2.0+a ha*3.0=0.0; 
a h3.0* (b+c) h6.0*d h (e*3.0) *1000000.0+e* (-1.0)=0.0; 
ah2.0*d+(b+x)h2.0+bh2.0*c~2.0*(-1.0)+(c+d)~2.0*(-1.0)=0.0; 

4.2 Causality Assignment 
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The real essence of Modelica is non-causal modeling, which is characterized by a set of implicit 
equations. To solve the various unknowns in the system more efficiently, it is far more preferrable 
to have a causal representation of equations. It is possible in many cases to transform a non-causal 
representation into a causal one. Such a transformation is called causality assignment. For example, 
consider the following set of implicit equations: 

{ x:~::~ = ~ 
z-u-16 = 0 

u-5 = 0 

Eq 1 
Eq2 
Eq3 
Eq4. 

Figure 4.1: Causality Assignment: Network Flow in Bipartite Graph 

To compute this set of equations on a computer, each equation must be identified that it is used to 
solve for what variable. That is, a matching between equations and variables must be found. This 
problem can be solved in terms of graph algorithms. More specifically, it can be solved elegantly by 
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turning it into the problem of finding a maximum network fiow in a bipartite graph. Equations and 
variables are turned into nodes and the dependencies between equations and variables are turned into 
edges. Adding a source node and a sink node to the bipartite graph results in a directed graph. For 
example, figure 4.1 shows the resulting graph of this set of equations. Causality assignment can be 
obtained by maximizing the flow from the source node to the sink node. As shown in figure 4.1, the 
flow paths indicate the correspondence between each variable and the equation used to compute it: 

-x-z 
-3z-u2 

u+16 
5 

Therefore, the problem to be solved here is to find a maximum flow in a directed bipartite graph. 
In history, many attempts have been made to solved this problem. Dinic's algorithm in finding su ch 
a maximum flow is efficient if aIl edges in the graph has unit capacity. It is implemented in the 
pModelica compiler. This section discusses Dinic's algorithm in detail [9]. 

4.2.1 Flows, Augmenting Paths, and Residual Graph 

Before discussing Dinic's algorithm, sorne important concepts in the theory of network flows are 
introduced. 

Let G = [V, E] be a directed graph made up of the set of vertices V == {v} and the set of edges E == {e}. 
Two special vertices, the source and the sink, are identified as sand t, respectively. The number of 
vertices in G is n and the number of edges is m. Every edge is associated with a positive capacity 
cap (v, w). A fiow f on G is defined as a real-value function on vertex pairs. It has the following 
properties: 

• Skew symmetry: f(v, w) = - f(w, v). 
AIso, if f(v, w) > 0, then there is a flow from v to w. 

• Capacity constraint: f(v, w) ::; cap (v, w). 
A flow is said to saturate the edge [v, w] if the equality f( v, w) = cap( v, w) holds. 

• Flow conservation: for every vertex v excluding the source sand sink t, the net incoming flow 
must equal the net outgoing flow: LWEV f( v, w) = O. 

The residual capacity for a flow f in a network is also given by a function on vertex pairs. It is the 
difference in the capacity of the edge connecting the two vertices and the flow across the edge: 

res(v, w) = cap(v, w) - f(v, w). (4.1) 

An amount of res(v, w) additional units of flow can be pushed from v to w by increasing the flow 
J(v, w) and correspondingly decreasing J(w, v). We can construct the residual graph R for a ftow J, 
which is the graph with vertex set V including the source sand sink t, and an edge [v, w] of capacity 
res(v, w), such that this capacity is positive: res(v, w) > O. 

An augmenting path for f is defined as a path p from s to t in R. The residual capacity of this path, 
denoted by res(p), is the minimum value of res(v,w) for [v,w] an edge of p. The value of the ftow f 
can be increased by any amount /). up to res(p) by increasing the ftow on every edge of p by /).. To 
satisfy the property of symmetry, if a change of /). is made to f(v, w), there should be a corresponding 
amount of -/). made to f(w, v). 
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The concepts of blocking flow and level graph are important to understand Dinic's algorithm. A ftow 
fis a blocking flow if every path from the source s to the sink t contains a saturated edge (an edge 
[v, w] is said to be saturated if f(v, w) = cap (v, w). There is no way to increase the value of a blocking 
flow by increasing additional ftow along any path in the graph. However, it is possible to do so by 
rerouting, which means the ftow on sorne edges is decreased while it is increased in other edges. Let 
R be the residual graph of a ftow f. The level of a vertex v in R is the length of the shortest path 
from the source node s to v. The level graph L for f is the subgraph of R containing only the vertices 
reachable from s, and only the edges [v, w] such that level(w) = level(v) + 1. L contains every shortest 
augmenting path and can be constructed in O(m) time by breadth-first search. 

4.2.2 Dinic's Aigorithm 

Dinic's algorithm is implemented in the JAModelica compiler to solve the problem of causality assign­
ment. It is to find a maximumflow from the source node to the sink node on a directed graph. Given a 
directed graph with a source and a sink, it starts with zero ftow and repeats the blocking step until the 
sink t is no longer in the level graph for the current ftow. 

The blocking step in Dinic's algorithm is defined as follows: 

• Find a blocking ftow f'on the level graph for the current ftow f. 

• Replace f by the ftow f + f' defined by: (f + f')(v, w) = f(v, w) + f'(v, w). 

The remaining problem is to find a blocking ftow. We also adopt Dinic's method: let G be the input 
acyclic graph, use depth-first search (DFS) to find a path from the source node s to the sink node 
t, push along the path the amount of ftow that saturate the edge with smallest residual, then delete 
aIl newly saturated edges, and repeat this procedure until t is not reachable from s. The algorithm is 
described more formally below: 

• lnitialize: Let p = [s] and v = s. Go to Advance. 

• Advance: Ifthere is no outgoing edge from v, go to Retreat. Otherwise, let [v, w] be an outgoing 
edge ofv. Replace p by p+ [w], and v by w. Ifw t= t repeat Advance; ifw = t, go to Augment. 

• Augment: Let Ù be min (cap (v, w) - f(v, w)) where [v, w] is any edge in path p. Add Ù to the 
ftow of very edge on p, delete from G an newly saturated edges, and go to Initialize. 

• Retreat: If v = s, haIt. Otherwise, let lu, v] be the last edge on p. Delete v from p and lu, v] from 
G, replace v by u, and go to Advance. 

It can be proved that Dinic's algorithm above correctly finds a blocking ftow in O(nm) time, and 
a maximum ftow in O(n2 m) time. It can also be proved that on a unit network, Dinic's algorithm 
finds a blocking ftow in O(m) time, and a maximum ftow in O(n1/ 2 m) time. In a unit network, all 
edge capacities are integers, and each vertex v other than the source and the sink has either a single 
entering edge of capacity one, or a single outgoing edge of capacity one.On a network whose edge 
capacities are aIl one, Dinic's algorithm finds a maximum ftow in O(min{n2

/ 3 m,m3/
2

}) time [13]. 

4.2.3 ODEs in Causality Assignment 

In Modelica, the time derivative of a state variable is introduced by the operator derO. An ordinary 
differential equation (ODE) has the following form (in Modelica syntax): 

der(x) = f(x) 
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The numerical approximation of the time derivative of a variable is defined as: 

der(x) = (X-Xold)/& 

The value of x can be computed by numerical integration methods. 

Because either the value of x can be computed via integration based on der(x), or the value or der(x) 
can be derived from the current value of x and Xold, only one of x or der(x) is treated as unknown 
in causality assignment. How the j.tModelica compiler handles ODEs in causality assignment is dis­
cussed in this section. More specifically, an algorithm to choose which form of a state variable as 
unknown is given. 

Integral Causality and Derivative Causality 

In causality assignment, integral causality means that the time derivative of a state variable is chosen 
as unknown, while the state variable itself is computed through numerical integration. Differentiai 
causality works in the other way around. That is, a state variable itself is chosen as known, and the 
time derivative of the state variable is computed through numerical differentiation. 

In fact, integral causality is more preferrable in simulation computation since it gives more stable 
simulation results. But in some cases, choosing integral causality might lead to failure in causality 
assignment. Consider the following example: 

{

y = sin(time) 
der(x) = y+z 
der(y) = x+z 

If der(x), der(y), and z are chosen as unknowns, a valid causality assignment result can not be found 
because both sides of the first equation are known. However, it is possible to find a valid causality if 
some of the unknowns with integral causality are replaced by differential causality. For ex ample, if 
state variable y is assigned derivative causality, a valid causality assignment can be found. 

The Algorithm 

An algorithm for handling ODEs in causality assignment is implemented in the j.tModelica compiler. 
Based on the fact that integral causality can give more accurate simulation result, the algorithm prefers 
integral causality as many as possible. The algorithm is described more formally as follows: 

• By default, integral causality is chosen for all state variables. For example, der(x), der(y), and 
z are regarded as unknowns by default in the previous system. 

• If a valid causality assignment is found, return. 

• Otherwise, a list of all possible combinations of integral causality and derivative causality is 
generated. In the previous example, all possible combinations are: 

• der (x) , y, z 
• x,der(y),z 

• x,y,z 

• Begin with the combination with least derivative causality. If causality assignment still fails, try 
the next combination in the list that has the least derivative causality. Repeat this step until a 
valid causality is found. 

• If finally causality assignment fails after aIl the combinations have been tried, a DAE solver is 
called to solve the set of implicit equations directly. 
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This algorithm is a heuristic approach to finding the most appropriate combination of integral causality 
and derivative causality. In the worst case, the algorithm's complexity is combinatorial. We realize that 
there might exist a more direct and efficient approach. But ours is an easy-to-understand approach. At 
the time being for the sake of fast prototyping, we chose tbis approach because it is easy to implement. 

Example 

Consider the following Modelica model encoding the equations given above: 

class ODEl 
Real x, y, Zi 

equation 
y=sin (time) i 
der(y)=x+Zi 
der(x)=y+z; 

end ODEli 

The jLModelica compiler generates the following causality assignment result for this model: 

-------causality assignment result ------­
Variables: der (y), der(x), z, 
der(x)+y*(-l.O)+z*(-l.O) 0.0 is used to solve for 'der(x)' 
der(y)+x*(-l.O)+z*(-l.O) 0.0 is used to solve for 'der(y)' 
***Invalid causality!*** 

-------causality assignment result ------­
Variables: y, der(x), z, 
sin(time)*(-l.O)+y = 0.0 
der(x)+y*(-l.O)+z*(-l.O) 
der(y)+x*(-l.O)+z*(-l.O) 
***Valid causality!*** 

is used to solve for 'y' 
0.0 is used to solve for 'der(x)' 
0.0 is used to solve for 'z' 

From this output, one can see that the compiler first tried with aIl integral causality but failed. Then 
it succeeded in finding a valid causality assignment result for the model when variable y is given 
derivative causality. 

Inserting Derivative Equation and Integration Equation 

The jLModelica compiler, inserts a derivative equation of the following form: 

der(x) = (X-Xold)/ru 

for every variable that was given derivative causality. An integration equation of the following form: 

x = integration(xold,der(x)) 

is inserted for every variable that was given integral causality. For example, inserting these types of 
equations leads to the following complete computation model for the previous system: 

y = sin(time) 
der(y) (y - Yold)/ ru 

z = Xold - der(y) 
der (x) y+z 

x = integration(xold,der(x)) 
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These additional equations are inserted at code generation time after the equations are sorted. That is, 
they are not taken into account in sorting. 

4.3 Sorting of Equations 

Even though the original set of DAEs has been transformed to a causal representation, in general they 
are not yet in a correct computation order. The following ex ample (set of equations) illustrates this 
problem when a mathematical sets of equations are coded in a programming language with sequence 
semantics such as C, where sin(time) is considered as known: 

a= b2 +3 
b= sin(cu) 
c= (d - 0.5)°·5 
d= 1/2 
e= sin(time) 

If it is coded in the above sequence, uninitialized variables will be given a zero value which leads to 
erroneous results: 

a= 3 
b= 0 
c = -0.5°·SCexception) 
d= 1/2 
e = sin(time) 

However, it is possible to compute the correct solution of the set of equations if they are re-arranged 
in the following sequence: 

d= 1/2 
e= sin (time) 
c= (d - 0.5)°·5 
b= sin(c * e) 
a= b2 +3 

Therefore, the equations must be sorted in the reverse order of their dependencies, i.e., if to compute 
the value of an unknown it is necessary to know the value of another variable, then the latter variable 
must be computed prior to this one. This section presents the algorithm for sorting the equations into 
a correct computation order. 

4.3.1 Dependency Graph 

Before equations are sorted, the computation dependency graph is built. Each vertex in the graph 
represents a variable to be computed. An edge from vertex a to vertex b means that the value of a 
depends on the value of b, i.e., b appears on the RHS of the equation to compute a. For example, the 
computation dependency graph of the set of equations given above is shown in figure 4.2. 

4.3.2 The Aigorithm 

Based on the graph of computation dependency, the sorting of equations can be achieved by a topolog­
ical sort with post-order numbering on this graph. The numbers indicate the order in which equations 
are computed. In the pModelica compiler, the following algorithm is implemented to determine the 
order in which equations need to be written: 

# topSort() and dfsLabelling() both refer to the global counter, 
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Figure 4.2: Sorting of Equations: Dependency Graph 

# dfsCounter, which will be incremented during the topological sort. 
# It is used to assign an orderNumber to each node in the graph. 
dfsCounter = 1 

# topSort() performs a topological sort on a directed graph 
# (either acyclic or cyclic) 
def topSort(graph G) 

# mark ail nodes as unvisited 
for nods in G 

node.visited = false 
# start dfsLabelling() from any node in the graph until ail 
# nodes have been visited 
for node in G 

if node.visited == false 
dfsLabelling(node) 

# dfsLabelling() performs a depth-First traversai of a possibly 
# cyclic directed graph. Nodes are labelled with numbers. 
def dfsLabelling(node n, graph G) 

if node.visited == false 
# mark the node as visited 
node.visited = true 
# perform dfsLabelling() on ail neighbours 
for neighbour in node.out_neighbour 

dfsLabelling(neighbour, G) 
# label the node with the counter and subsequently increment 
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# the counter 
node.orderNumber dfsCounmter 
dfsCounter tt 

# The program terminates when all nodes have been visited. 
# As a result, all nodes are labelled with numbers which 
# indicate the order of computation. 
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Figure 4.2 also shows the result of sorting. The numbers beside vertices indicate the order of compu­
tation. The result of sorting is not unique. Figure 4.3 gives another correct computation order. 

3 

Figure 4.3: Sorting of Equations: Another Sorting Result 

4.4 Aigebraic Loop Detection 

In sorne cases, sorting is not possible due to the existence of dependency cycles (algebraic loops). For 
example, the following set of equations 

{

X=Y+16 
Y= -x-z 
z= 5 

can not be sorted since there exists a dependency cycle between x and y, or in other words, the 
equations to calculate x and y form an algebraic loop. Therefore, before sorting equations, detecting 
algebraic loops is required. Once detected, the equations involved should be isolated, and be solved 
simultaneously either with symbolic or numerical methods. 

4.4.1 The Aigorithm 

Detecting algebraic loops (finding dependency cycles) can be turned into the problem of locating 
strongly connected components in a graph. A strongly connected component is a set of nodes in a 
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graph whereby each node is reachable from each other node in the strongly connected component. 
Based on the result of the previous topological sort with post-order numbering, this problem can be 
solved by producing a list of strongly connected components. If anode is not in a cycle, it will be a 
strongly connected component with only itself as a member. Therefore, if there exist algebraic loops, 
sorne of the strongly connected components in the produced list must contain more than one node. 
The algorithm for locating strongly connected components is given below. 

# Producing a list of strongly connected components. 
# Strongly connected components are given as lists of nodes. 
def strongCom(graph G) 

# Perform a topological sort in the graph with post-order 
# numbering (the algorithm is given in the previous section) 
topSort(G) 
# Produce a new graph with all edges reversed. 
rev_graph = reverse_edges(G) 
# Start with an empty list of strong components 
strong_components = l] 
# Mark all nodes as not visited 
for node in rev_graph: 

node.visited = false 
# As strong components are discovered and added to the 
# strong_components list, they will be removed from rev_graph. 
# The algorithm terminates when rev_graph is reduced to empty. 
while rev_graph != empty: 

# Start from the highest numbered node in rev_graph 
start_node = highest_orderNumber(rev_graph) 
# Perform a depth first search on rev_graph starting from 
# start_node, collecting all nodes visited. 
# This collection (a list) will be a strong component. 
# dfsCollect() also marks nodes as visited to avoid infinite 
# loops. 
component = dfsCollect(start_node, rev_graph) 
# Add the found strong component to the list of strong 
# components. 
strong_components.append(component) 
# Remove the identified strong component 
rev_graph.remove(component) 

If a subset of equations are located in the same strongly connected component, they will be identified 
as an algebraic loop. This subset of equations need not to be rewritten into causal form. Instead, they 
will be solved simultaneously with numerical methods. 

Causality assignnment, sorting, and algebraic-Ioop detection can also be carried out by transforming 
the DAEs into the block-lower-triangular (BLT) form. Aigebraic loops can be more easily identified 
in the BLT form. But using a dependency graph to detect algebraic loops is a clean and didactic way 
to illustrate the problem and it enables visualization (for small problems). 

In most cases, a Modelica model is finally transformed to a set of causally represented equations 
with correct computation order. Such a set of equations may contain algebraic loops. Integrators and 
algebraic loop solvers are required to compute the solution of the equations. In the worst case, if 
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formula manipulation fails, a DAE solver is required. But it is a far less efficient approach than the 
previous one. 

4.5 Design and Implementation 

There are different approaches to implementing causality assignment, sorting, and algebraic-Ioop de­
tection. The Block-lower-triangular (BLT) transformation approach has been implemented in sorne 
tools such as the PELAB openModelica compiler. It is a technique based on matrix transformation. 
Our implementation of these problems is purely based on graph algorithms. This section presents the 
data structure and sorne issues in our implementation of the Back End. 

4.5.1 The Data Structure 

As mentioned earlier during the description of Dinic's algorithm, the causality assignment problem 
is tumed into the problem of finding a maximum flow in a bipartite graph. Such a bipartite graph 
consists of different types of nodes, and edges, as depicted in Figure 4.4. , 
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Figure 4.4: The Data Structure for Causality Assignment 

A class hierarchy of nodes is defined. There are 3 types of nodes in a bipartite graph: the ones that 
represent equations, the ones that represent variables, and the source and sink. The source and the 
sink are instances of the parents class Node. Equations and variables are represented by EqNode and 
VarNode, respectively. 

A bipartite graph is an instance of FlowGraph, which consists of a source, a sink, a list of EqNode, 
and a list of VarNode. AIso, there is a class called FlowEdge representing outgoing edges from each 
node. It is similar to the representation of an adjacency list. That is, each node has a list of outgoing 
edges. Each edge specifies the destination node, as weIl as edge capacity and currently flow. 

Remember that in Dinic's algorithm, a level graph is created based on the residual graph. It is a 
subgraph of the residual graph. It contains a subset of nodes of the residual graph, but the nodes 
are connected by different edges. In our implementation, an object instance of FlowGraph is used to 
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represent both fiow/residual graph and level graph. The way that these two graphs are distinguished 
is that, each node keeps two different lists to store its outgoing edges in a fiow/residual graph and its 
outgoing edges in a level graph, respectively. Even though this approach might cause more coherence 
between the residual graph and the level graph, it is more efficient, in the rerouting step, to combine a 
new blocking fiow into the existing one in the residual graph. 

Sorting is executed based on computational dependency, which is represented by a dependency graph. 
Causality assignment gives one-to-one pairings (via saturated edges) between equation nodes (EqNode) 
and variable nodes (VarNode) in the bipartite graph. Unsaturated edges from equation nodes to vari­
able nodes indicate computational dependency. A dependency graph is constructed by tuming each 
pairing (consists of an EqNode and an VarNode linked by an saturated edge) into a DNode, and uns at­
urated edges into dependency edges. The design of these classes is shown in Figure 4.4. 

4.5.2 Implementation Issues 

Finding a blocking fiow is the key issue in solving the problem of causality assignment in terms 
of Dinic's algorithm. This section presents our implementation (pseudocode) of the blocking step in 
Dinic's algorithm. 

Level Graph Construction 

We are to find a blocking fiow in a level graph. Before discussing the implementation of how to find 
a blocking fiow, we first show how a level graph is constructed. 

In a residual graph R, the level of a vertex v is the length of the shortest path from the source no de s 
to v. The level graph L for a fiow f is the subgraph of R containing only the vertices reachable from 
s, and only the edges [v, w] such that level(w) = level(v) + 1. L can be constructed in O(m) time by 
breadth-first search. The pseudocode of constructing a level graph is given as follows: 

# G: : FlowGraph 
# G represents the residual graph 
def buildLevelGraph(G): 

# initialization 
for node in G.getAllNodes(): 

node.deleteAllOutgoingEdgeslnL() 
node.setVisited(false) 
node.setLevel(O) 

G.isSinklnL=False 
G.source.setVisited(True) 
LO=[G.source] 
# a global counter of the current level during graph traversal 
level=O 
G.source.setLevel(level) 
# graph traversal by breadth-first search 
while LO not empty: 

level=level+l 
# another list for breadth-first search 
Ll=[] 
for v in LO: 

for each unsaturated outgoing edge [v, w]: 
# add edge [v,w] to L if w is not visited 



4.5 Design and Implementation 

LO=L1 

if not w.isVisited() : 
w.setVisited(True) 
w.setLevel(level) 
# set the flag if L contains the sink node 
if w==G.sink: 

G.isSinklnL=True 
LI. append (w) 
v.addOutgoingEdgelnL([v,w]) 

# add edge [v,w] to L if level(w)=level(v)+l 
else: 

if v.level+1==w.level: 
v.addOutgoingEdgelnL([v,w]) 

# now G also contains the information of the Ievel graph 
return G 

A Blocking Step 
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A blocking step in Dinic's algorithm consists of finding a blocking flow J'on the level graph L with 
the CUITent flow J, and replace the CUITent flow J by J + J'. The following method implements a 
blocking step. The input to the method is a residual/level graph with flow J, and the output is the 
same graph with flow J + f'. 

# Find a blocking flow f' on the level graph L for the 
# current flow f, 
# and replace the current flow by f+f' 
def blockingStep(L): 

# initialize 
p=[L.source] 
v=L.source 
while True: 

# Advance 
outgoingEdges=v.getAllUnsaturatedEdgeslnL() 
# if v has outgoing edges 
if outgoingEdges is not empty: 

# by default, pick the first edge [v,w] in the list 
[v,w]=outgoingEdges[O] 
# replace path p by p+w, and v by w 
p.append(w) 
v = w 
if v is not L.sink: 

# repeat Advance 
continue 

# Retreat 
else: 

if v is L.source: 
# halt 
return L 

else: 
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[u,v)=last edge of p 
delete [u,v) in L 
delete v in p 
# replace v by u 
v = u 
continue 

# Augment 
# compute the saturated flow delta on p 
delta=saturatedFlow(p) 
for each edge (e) on p: 

# add delta to the flow of every edge on p 
e.addFlow(delta) 
# add -delta to the flow of corresponding reversed edge 
el=reversed(e) 
el.addFlow(-delta) 
#delete newly saturated edge in L 
if e.getCap()==e.getFlow() : 

delete e in L 
# initialize 
p=[L.source) 
v=L.source 

return L 

4.5.3 Extension to Hybrid Systems 
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Even though this thesis does not coyer hybrid behavior in Modelica, it is important to consider that the 
CUITent data structure is capable of supporting hybrid models. That is, the CUITent data structure should 
be capable of handling all Modelica features from syntax to semantics, and symbolic transformation 
in the Back End. 

It has been mentioned earlier that the J.lModelica compiler provides full support of Modelica syntax. 
The abstract syntax covers aIl Modelica constructs. The semantics of hybrid models is also defined 
in terms of the translation of original Modelica source file into DAEs, while sorne of the DAEs are 
conditionally evaluated. The CUITent data structure supports conditional equstions. This should enable 
the translation of hybrid models into fiat Modelica. 

Causality assignment is more complicated with hybrid behavior. Our implementation of causality 
assignment is based on a very general graph data structure. It is hard to predict that the CUITent data 
structure will fully support hybrid systems in causality assignment. But we are confident that using 
graph algorithms is general enough (as opposed to matrix-based approaches), and it will work with 
hybrid models, possibly with additional structures. 



Code Generator 

As it has been mentioned, The jlModelica compiler project is an open-source project, and it is based 
entirely on aU freely available resources in the public domain. To meet the requirement that one can 
simulate Modelica models with free resources, a free simulator is also needed. GNU Octave is a 
high-Ievel language and environment which is primarily intended for numerical computation. It is 
intended as a free alternative to Matlab. It can solve linear and nonlinear problems numericaUy, and 
can perform other types of numerical experiments. It is a freely available software. The jlModelica 
compiler currently generates Octave code. This approach is far from optimal, and the flavor of the 
generated code is more suited for Simulink S-functions or DSblock [20]. This chapter presents how 
Octave is used to simulate Modelica models. 

5.1 Problems to be Solved 

After formula manipulation has been performed in the Back End, a set of implicit DAEs are possibly 
transformed to a set of explicit (causal) equations, which rnight contain linear equations, ODEs and 
integration equations, and algebraic loops (linear or nonlinear). This section discusses how Octave 
solves each of these problems. 

5.1.1 Integrating ODE 

Octave is able to solve nonlinear differential equations of the foUowing form: 

dx 
dt = f(x,t) 

with initial condition 
x(to) = Xo· 

Users must specify the function f(x,t), Le., the RHS of the equation, for Octave to integrate the 
equation. Consider the foUowing example: 

function xdot = f(x , t) 
a = 1.5 
b = 2.0 
c = 3.0 
d = 6.0 
xdot (1) 
xdot (2) 

endfunction 

a*x(I)+b*x(I)*x(2)~2 
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This function will solve the following set of nonlinear ODEs 

{ l! = axl +bXI~ 
Tt = c2XI + dX2xT 
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Users also need to specify the time space and the time step over which the differential equations are 
integrated. For example, 

t = linspace(O, 50, 200) 

defines the set of output times as a column of vector, where 0 is the initial time, 50 is the end time of 
integration. This time space is divided into 200 intervals. Given the initial condition 

xO = [1; 2] 

the set of differential equations can be solved by calling the built-in lsode function 

x = lsode("f", xO, t). 

The retum value is a matrix of size 2 x 200. The first column of the matrix corresponds to the value 
of Xl, and the second column corresponds to the value of X2, at each time step. The output at initial 
time corresponds to the initial condition given above. 

5.1.2 Solving Nonlinear Equations 

During formula manipulation in the Back End, algebraic loops are identified and the equations in­
volved are not transformed to causal representation. An algebraic loop can either be linear or nonlin­
ear. Octave can solve sets of nonlinear equations of the form 

F(x) = 0 

using the functionfsolve, which is defined as folIow: 

[x,info,msg] = fsolve(fcn,xo) 

where fcn is the hame of a function of the form f(x), Xo is an initial guess value of x. For example, 
the function to solve the folIowing set of nonlinear equations: 

is written as : 

function y = f(x) 

{ 
2x2 + 3xy + l = 5 
3x - 2xy2 + 2y3 = 2 

y(l) = 2*x(1)A2+3*x(1)*x(2)+x(2)A2-5 
y(2) = 3*x(1)-2*x(1)*x(2)A2+2*x(2)A3-2 

endfunction 

To solve this set of equations, one must give an initial guess of x( 1) and x( 2). For example, 

xO = lOi 0]. 

Then calIfsolve to find the roots of the system 

[x, info] = fsolve("f", [OiO]) 

A retum value of info = 1 means that the solution has converged. 
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5.2 The Structure of the Simulation Process 

Figure 5.1 depicts the structure of the simulation process. 

solve equations 
in order 

YES 

Figure 5.1: Structure of the Simulation Process 

Consider the following example: 

model Equation 
constant Real pi=3.1416; 
parameter Real a=2.0; 
Real w, x, y, z; 

equation 
x = sin (time) ; 
der(y)+x = y~2; 
w+z+x = 3; 
w-2*z = 1; 

end Equation; 

Given this model as input, the JAModelica compiler transforms the equations into a causal form: 
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x=a*pi+sin (time) 
der(y)=(-1.0)*x+y~2.0 

Algebraic 100p 1: -3.0+w+x+z = 0.0 
Algebraic 100p 1: -1.0+w+z*(-2.0) 0.0 

and generates the following Octave code: 

# set time 
time_init=input("Please enter initial time: "); 
time_end=input("Please enter end time: "); 
time_step=input("Please enter time step: "); 
num_of_intervals=(time_end - time_init)/time_step; 
time = linspace(time_init, time_end, num_of_intervals), ; 
# Constants 
global pi_last=3.1416 
# Parameters 
global a_last=2.0 
a_last=input("enter parameter value: a(2.0)"); 
# Variables and model initialization 
global z=zeros(num_of_intervals, 1); 
z(I)=input("Please enter initial value of z: "); 
global z_last=z(I); 
global w=zeros(num_of_intervals, 1); 
w(I)=input("Please enter initial value of w: "); 
global w_last=w(I); 
global y=zeros(num_of_intervals, 1); 
y(I)=input("Please enter initial value of y: "); 
global y_last=y(I); 
global der_y=zeros(num_of_intervals, 1); 
der_y(I)=input("Please enter initial value of der_y: "); 
der_y_last=der_y(I); 
global x=zeros(num_of_intervals, 1); 
x(I)=input("Please enter initial value of x: "); 
global x_last=x(I); 

function loopl = f_loopl(x) 
global x_last; 
loopl(I)=(-3.0)+x(2)+x_last+x(I); 
loopl (2) = (-1. 0) +x (2) +x (1) * (-2.0); 

endfunction 

function y_dot f_y(yi, ti) 
global x_lasti 
global y_last; 
y_dot(1)=(-1.0)*x_last+yi(I)~2.0; 

endfunction 
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# Equation 1 
x(i)=a_last*pi_last+sin(time(i)); 
x_last=x (i) ; 
# Equation 2 
der_y(i)=(-1.0)*x_last+y_last A 2.0; 
der_y_last=der_y(i); 
time_i=linspace(time(i-1), time(i), 10)'; 
yiO=[y-1ast]; 
y_i=lsode("f_y", yiO, time_i); 
y(i)=y-i(10); 
y_last=y (i) ; 
# Equation 3 
init_9uess=zeros(2, 1); 
[loop1, info]=fso1ve("f_loop1", init_9uess); 
z(i)=loop1(1); 
z_last=z(i); 
w(i)=loopl(2); 
w_last=w(i); 

endfor 

From this sample, we can see that the simulation process consists of the following steps: 

• Set the initial time, end time, and time steps of a simulation run; 

• Set up parameters for a simulation run; 

• Set up initial conditions; 

• Define functions to compute integration equations and algebraic loops; 

• Compute the value of unknowns in order, at each time step. 
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Note that the main simulation loop advances simulation time in fixed time-steps. Within each time 
step, Octave solvers, including lsode get called. Obviously, this use of Octave is overkill. The structure 
of the generated code (without the time-step loop) is closer to that of Simulink S-functions. 

5.2.1 lime Setup 

Before a simulation run, users are prompted to enter the initial time (usually 0), the end time, and 
the number of intervals that this time space is divided into. Smaller time step leads to more accurate 
simulation result, at the cost of lower run time efficiency. 

5.2.2 Constants, Parameters, and Variables 

In simulation models, it is meaningful to specify the variability of identifiers. As in sorne other mod­
eling and simulation languages, three levels of variability are identified in Modelica: 

1. Constant: the value of a constant never changes after it is declared. Wherever the identifier 
occurs, it may be replaced by its value. Here in the jlModelica compiler, substituting constant 
values, which is called constant propagation in compiler theory, is not implemented. The value 
of a constant identifier is evaluated at run time. But this is left as future work for code optimiza­
tion. 
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2. Parameter: the value is set at the beginning of a simulation but remains constant during a single 
simulation run. In generated Octave models, the literaI value of a parameter is not substituted in 
equations until that equations is evaluated. In future work, parameter equations will be moved 
outside the time-step loop. 

3. Variable: the value is set to an "initial condition" at the beginning of a simulation run and may 
subsequently change over the whole integration domain. Variables occurring in the form of 
der(x) (replaced by der J in Octave code) are called derived state variables. Depending on the 
causality a derived state variable is assigned (integral causality or derivative causality), an in­
tegration equation or a derivative equation is inserted to solve both of x and der J. AU other vari­
ables are algebraic variables. In Octave models, a zero vector of size numberO fTimelntervals x 
1 is created for each variable. The ith element of a vector corresponds to the value of that vari­
able at time step i. 

5.2.3 Global Variables 

The RHS of an ODE, or an algebraic loop, may contain other algebraic variables, such as 

der(y)=(-1.O)*x+y'2.0 

in this example. To solve y by integration, the value of x also need to be known. We can see that 
from the function definition introduced in section 5.1.1, there is no way to pass the value of x into 
the function body as a formaI parameter. The solution to solving this problem is to declare x as a 
global variable. In Octave, a variable that has been declared as global may be accessed from within a 
function body without having pass it as a formaI parameter. 

In generated Octave models, aH variables, including constants and parameters, are declared as global. 
AIso, there is a reference to the latest evaluated value of each variable at the previous time-step, e.g., 
xJast. These names are also declared as global. 

5.2.4 Model Initialization 

Before a simulation run, all variables in a model are assigned consistent initial values. This pro­
cess is caUed model initialization. During this phase, all derivatives, der( ... ), are treated as unknown 
algebraic variables. Initial values assigned to variables must be consistent. They are subject to the 
foUowing constrains: 

• AU equations that are utilized in the intended operation; 

• As equations in "initial equation" sections; 

• Implicitly by using the value of attribute start in the declaration of variables. 

Using the dependency graph described in section 4.3.1, it is possible to derive a consistent initial state 
of a model. Model initialization has not yet been implemented in the pModelica compiler currently. 
Instead, users are responsible for creating a consistent initial state of a model, by assigning each 
variable a value at initial time. 

5.2.5 Defining Functions 

For each explicit ODE, an integration equation is inserted. such an integration equation is tumed into 
a function representing the RHS of the corresponding differential equation in Octave. For example, 
the ODE 
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der(y)=(-1.0)*x+y-2.0 

corresponds to the function 

function y_dot = f_y(yi, ti) 
global x_lasti 
global y_lasti 
y_dot(1)=(-1.0)*x_last+yi(1)-2.0i 

endfunction 

Functions are also defined for identified algebraic loops. For example, the function 

function loop1 = f_loop1(x) 
global x_lasti 
loop1(1)=(-3.0)+x(2)+x_last+x(1)i 
loop1 (2) = (-1. 0) +x (2) +x (1) * (-2.0) i 

endfunction 

is defined to solve the following algebraic loop: 

Algebraic Loop 1: -3.0+w+x+z = 0.0 
Algebraic Loop 1: -1.0+w+z*(-2.0) 0.0 

5.2.6 The For-Loop 
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The for-Ioop is designed to solve variables at each time step, in the order of their dependencies. It 
starts from the second time step since the value of each variable at the first time step is determined by 
model initialization. Equations within the for-Ioop are written in the order of computation dependency, 
which is the result of sorting described in section 4.3. The reference to the latest evaluated value of a 
variable is updated right after it is computed at each time step. 

ODEs are integrated over the time interval of every two consecutive time steps, i.e., integrated at each 
[t(i -l),t(i)]. Such a time interval is divided into 10 slices, i.e., 

time_i=linspace(time(i-1), time(i), 10)' 

The value of integration at the 1 (jh slice is assigned to the state variable being integrated. 

5.2.7 Visualized Output 

When the for-Ioop terminates, the solution signal for each variable is stored in the vector which was 
created before the simulation ron. Octave supports graphical output of simulation results. The follow­
ing command is used to display solutions graphically 

plot (time, x) 

For the above example, this gives figure 5.2 
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Figure 5.2: GNU Plot Sample 



Case Study 

In order to show that the t-tModelica compiler is able to solve real problems, a case study is presented 
in this chapter. The study is based on the simple circuit example mentioned in chapter 1. It is a circuit 
which consists of two resistors, a capacitor, a sine voltage source, and a ground point. AU these 
components are connected in, as shown in Figure 6.1. 

Figure 6.1: An Electrical Circuit 

As it will be shown later in this chapter, this is a nontrivial case because the model involves the most 
important features of Modelica, su ch as class inheritance, class modifications, components coupled 
by connection equations, and non-causal modeling with implicit equations. Finally this is a model that 
ends up with both ODEs and algebraic loops after causality assignment. This chapter presents how 
the t-tModelica compiler translates the original Modelica source code of the model into fiat Modelica, 
the transformations of equations, and finaUy how Octave simulates the model. The simulation result 
is compared to the one obtained in the demo version of the Modelica commercial tool, Dymola 5, by 
Dynasim AB (http://www . dynasim. sel). 
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6.1 A Modelica Description of the Model 

A complete description of the simple circuit model in Modelica is given as follows: 

Il declaring physical quantities 
type Voltage Real (unit="V"); 

type Current = Real (unit="A"); 

Il define connector class 
connector Pin 

Voltage v; 
flow Current i; 

end pin; 

Il define the partial model of components with two pins 
partial model TwoPin "Superclass of elements with 2 electrical pins" 

Pin p, n; 
Voltage v; 
Current i; 

equation 
v = p.V n.v; 
o = p.i + n.i; 
i = p.i; 

end TwoPin; 

Il definition of resistor 
model Resistor "Ideal electrical resistor" 

extends TwoPin; 
parameter Real r (unit="Ohm") "Resistance"; 

equation 
r * i = v; 

end Resistor; 

Il definition of capacitor 
model Capacitor "Ideal electrical capacitor" 

extends TwoPin; 
parameter Real c (unit="F") "Capacitance"; 

equation 
c * der (v) = i; 

end Capacitor; 

Il sine voltage source 
model VsourceAC "sin-wave voltage source" 

extends TwoPin; 
parameter Voltage VA = 110 "Amplitude"; 
parameter Real f (unit="Hz") = 1 "Frequency"; 
constant Real pi = 3.14159265; 
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6.2 Translation to Flat Modelica 

equation 
v = VA*sin(2*pi*f*time)i 

end VsourceACi 

Il the ground point 
model Ground "Ground" 

Pin Pi 
equation 

p.v = 0; 
end Ground; 

Il the complete model 
model circuit 

Resistor RI(r=I); 
Resistor R2(r=I); 
Capacitor C(c=I); 
VsourceAC AC; 
Ground G; 

equation 
connect (AC.p, RI.p); 
conne ct (RI.n, R2.p); 
connect (R2.n, C.p); 
conne ct (C.n, AC.n); 
connect (AC.n, G.p); 

end circuit; 
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From the source code, we can see that circuit components are built hierarchically from basic com­
ponents, i.e., predefined types. Subsequently, these circuit components are connected via connect 
statements. 

Since the pModelica compiler currently does notsupport import statements, all the class definitions 
have to be placed in one file. This file is the input to the compiler. 

6.2 Translation to Flat Modelica 

Given this file as input, the pModelica compiler eventually generates corresponding Octave code. But 
there are sorne intermediate transformation steps which lead to corresponding intermediate represen­
tations of the model. This section shows the intermediate representations in the Front End. 

During the process of flattening, class inheritance is first expanded. The printout of the intermediate 
representation of the expanded classes is as follows: 

Il expanded version of Resistor 
model Resistor 

Pin p, n; 
Voltage v; 
Current i; 
parameter Real r (unit="Ohm"); 

equation 
v = p.v - n.v; 
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o p.i + n.ii 
i p. ii 
r * i = Vi 

end Resistori 

Il expanded version of Capacitor 
model Capacitor 

extends TwOPini 
Pin p, ni 
Voltage Vi 

Current ii 
parameter Real c (unit="F")i 

equation 
V = p.v - n.Vi 
0 p.i + n.ii 
i p.ii 
c * der (v) = i' , 

end Capacitori 

Il expanded version of VsourceAC 
model VsourceAC 

Pin p, ni 
Voltage vi 

Current ii 
parameter Voltage VA = 110i 
parameter Real f (unit="Hz") li 

constant Real pi = 3.14159265i 
equation 

v = p.v - n.Vi 
o p.i + n.ii 
i p. ii 
v = VA*sin(2*pi*f*time)i 

end VsourceACi 
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In this model, both Resistor f Capacitor, and VsourceAC are derived classes of TwoPin. AU dec­
larations and equations in TwoP in are copied and inserted into these three classes, respectively. 

Then the model is translated into fiat Modelica in terms of fiattening composite components, fiattening 
connect equations, and resolving modifications. After these translation steps have been executed, a fiat 
Modelica description of the model is generated by the Front End: 

model Circuit 
flow Real R1_n_ii 
Real R2_Vi 
parameter Real R1_r 
Real G-P_Vi 
Real C_n_vi 
Real R1_p_Vi 
flow Real R1_p_ii 
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flow Real G-p_i; 
Real R2_i; 
flow Real AC_n_i; 
parameter Real R2_r; 
Real RI_n_v; 
flow Real R2_n_i; 
parameter Real C_c; 
flow Real R2_p_i; 
parameter Real AC_VA; 
flow Real AC_p_i; 
Real Ci; 
flow Real C_p_i; 
constant Real AC_pi; 
Real RI_v; 
Real AC_v; 
Real AC_i; 
Real C-p_v; 
Real RI i' - , 
Real C_v; 
Real AC-p_v; 
Real AC_n_v; 
Real R2-p_v; 
flow Real C_n_i; 
Real R2_n_v; 
parameter Real AC_f; 

equation 
C_c*der(C_v)=C_i; 
C_v=C-p_v- C_n_v; 
O=C_p_itCn_i; 
C_i=Cp_i; 
RI_r*RI_i=RI_v; 
RI_v=RI_p_v-RI_n_v; 
O=RI-p_itRI_n_i; 
RI_i=RI-p_i ; 
G-p_v=O; 
R2_r*R2_i=R2_v; 
R2_v=R2_p_v-R2_n_v; 
O=R2_p_itR2_n_i; 
R2_i=R2-p_i ; 
AC_v=AC_VA*sin(2*AC_f*AC-pi*time); 
AC_v=AC-p_v-AC_n_v; 
O=AC_p_itAC_n_i; 
ACi=AC-p_i ; 
AC_p_itRI_p_i=O.O; 
AC_p_v=RI_p_v; 
RI_n_itR2_p_i=O.O; 
RI_n_v=R2_p_v; 
R2_n_itC_p_i=O.O; 
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R2_n_v=C_p_Vi 
G_p_itAC_n_itC_n_i=O.Oi 
G_p_v=AC_n_vi 
G_p_v=C_n_vi 

end Circuit i 
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In the fiat Modelica description of the model, only modifications of real numbers or integers are tumed 
into equations. Modifications of strings, e.g., modification to the uni t attribute, are ignored. 

6.3 Formula Manipulation 

The Back End performs formula manipulation on the set of equations declared in the fiat Modelica 
description. Formula manipulation includes the techniques of canonical transformation, causality as­
signment, sorting and algebraic loop detection. This section shows the result of each transformation 
step. 

6.3.1 Canonical Representation 

The set of equations are transformed to the following canonical form: 

C_c*der (C_v) tC_i* (-l.O)=O.Oi 
C_n_vtC_p_v*(-l.O)tC_V=O.Oi 
C_n_i*(-l.O)tC-p_i*(-l.O)=O.Oi 
C_itC_p_i*(-l.O)=O.Oi 
Rl_i*Rl_rtRl_v*(-l.O)=O.Oi 
Rl_n_vtRl-p_v*(-l.O)tRl_v=O.Oi 
Rl_n_i*(-1.O)tR1-p_i*(-1.O)=O.Oi 
Rl_itRl-p_i*(-l.O)=O.Oi 
G_p_v=O.O; 
R2_i*R2_rtR2_v*(-1.O)=O.O; 
R2_n_vtR2-p_v*(-1.O)tR2_v=O.Oi 
R2_n_i*(-1.O) tR2-p_i *(-1.O)=O.Oi 
R2_itR2_p_i*(-1.O)=O.Oi 
AC_VA*sin(2*AC_f*AC_pi*time)*(-1.O)tAC_v=O.Oi 
AC_n_vtAC_p_v*(-l.O)tAC_v=O.Oi 
AC_n_i*(-l.O)tAC-p_i*(-l.O)=O.Oi 
AC_itAC-p_i*(-l.O)=O.Oi 
AC_p_itRl_p_i=O.O; 
AC-p_vtRl-p_v*(-l.O)=O.Oi 
Rl_n_itR2_p_i=O.Oi 
Rl_n_vtR2_p_v*(-1.O)=O.Oi 
C-p_itR2_n_i=O.Oi 
C_p_v*(-1.O)tR2_n_v=O.Oi 
AC_n_itC_n_itG_p_i=O.Oi 
AC_n_v*(-l.O)tG_p_V=O.Oi 
C_n_v*(-l.O)tG-p_V=O.Oi 
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6.3.2 Causality Assignment 

The jtModelica compiler finds a matching between equations and variables in causality assignment. 
The result is as follows: 

Eq: AC_ll_itC_ll_itG-p_i = 0.0 
--is used to solve G_p_i 

Eq: AC_ll_v*(-l.O)tG_p_v = 0.0 
--is used to solve AC_ll_V 

Eq: C_p_itR2_ll_i = 0.0 
--is used to solve C_p_i 

Eq: C_ll_v*(-l.O)tG_p_v = 0.0 
--is used to solve C II v 

Eq: R1_ll_itR2_p_i = 0.0 
--is used to solve R1_ll_i 

Eq: R1_ll_vtR2_p_v*(-1.0) = 0.0 
--is used to solve R2-p_v 

Eq: R2_ll_vtR2_p_v*(-1.0)tR2_v = 0.0 
--is used to solve R2_v 

Eq: R2_i*R2_rtR2_v*(-1.0) = 0.0 
--is used to solve R2_i 

Eq: R2_itR2-p_i*(-1.0) = 0.0 
--is used to solve R2-p_i 

Eq: R2_ll_i* (-1.0)tR2_p_i* (-1.0) = 0.0 
--is used to solve R2_ll_i 

Eq: AC_ll_vtAC_p_v*(-l.O)tAC_v = 0.0 
--is used to solve AC-p_v 

Eq: AC_VA*sill(2*AC_f*AC_pi*time)*(-1.0)tAC_v 0.0 
--is used to solve AC v 

Eq: AC_itAC-p_i*(-l.O) = 0.0 
--is used to solve AC_i 

Eq: AC_ll_i*(-l.O)tAC-p_i*(-l.O) 0.0 
--is used to solve AC_ll_i 

Eq: AC_p_vtR1_p_v*(-1.0) = 0.0 
--is used to solve R1-p_v 

Eq: AC_p_itR1_p_i = 0.0 
--is used to solve AC-p_i 

Eq: C-p_v*(-1.0)tR2_ll_v = 0.0 
--is used to solve R2_ll_V 

Eq: C_c*der (C_v) tC_i* (-1.0) = 0.0 
--is used to solve der(C_v) 

Eq: C_ll_i*(-l.O)tC-p_i*(-l.O) = 0.0 
--is used to solve C_ll_i 

Eq: C_ll_vt C-p_v * (-l.O)tC_v = 0.0 
--is used to solve C_p_v 

Eq: R1_i*R1_rtR1_v*(-1.0) = 0.0 
--is used to solve R1_v 

Eq: C_itC-p_i*(-l.O) = 0.0 
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--is used to solve C_i 
Eq: R1_n_i*(-1.0)tR1_p_i*(-1.0) = 0.0 

--is used to solve R1-p_i 
Eq: R1_n_vtR1_p_v*(-1.0)tR1_v = 0.0 

--is used to solve R1_n_v 
Eq: G_p_v = 0.0 

--is used to solve G_p_v 
Eq: R1_itR1-p_i* (-1.0) 0.0 is 

--used to solve R1_i 
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By default, the derived state variable der(C_v) is given integral causality. That is, der(C_v) is treated 
as an algebraic unknown, and C_v is computed by integration. 

6.3.3 Sorting and Aigebraic Loop Detection 

The lJModelica compiler also found that there exists an algebraic dependency loop among sorne of 
the equations. This is detected while the equations are sorted into a correct computation order based 
on their computational dependencies. 

--------------- Sorting ------------------
(1) R1_p_i---7: R1_n_i*(-1.0)tR1-p_i*(-1.0) 0.0 
(2) R1_i---8: R1_itR1_p_i*(-1.0) = 0.0 
(3) R1_v---5: R1_i*R1_rtR1_v*(-1.0) = 0.0 
(4) G-p_v---9: G-p_v = 0.0 
(5) AC_n_v---25: AC_n_v*(-1.0)tG_p_v = 0.0 
(6) AC_v---14: AC_VA*sin(2*AC_f*AC-pi*time)*(-1.0)tAC_v 0.0 
(7) AC_p_v---15: AC_n_vtAC_p_v*(-1.0)tAC_v = 0.0 
(8) R1_p_v---19: AC-p_vtR1_p_v*(-1.0) = 0.0 
(9) R1_n_v---6: R1_n_vtR1_p_v*(-1.0)+R1_v = 0.0 
(10) R2_p_v---21: R1_n_vtR2-p_v*(-1.0) = 0.0 
(11) C_n_v---26: C_n_v*(-1.0)+G_p_v = 0.0 
(12) C_p_v---2: C_n_vtC_p_v*(-1.0)tC_v = 0.0 
(13) R2_n_v---23: C_p_v*(-1.0)tR2_n_v = 0.0 
(14) R2_v---11: R2_n_vtR2-p_v*(-1.0)+R2_v = 0.0 
(15) R2_i---10: R2_i*R2_rtR2_v*(-1.0) = 0.0 
(16) R2_p_i---13: R2_itR2_p_i*(-1.0) = 0.0 
(17) R1_n_i---20: R1_n_i+R2-p_i = 0.0 
(18) AC-p_i---18: AC-p_itR1-p_i = 0.0 
(19) AC_n_i---16: AC_n_i* (-1.0)tAC_p_i* (-1.0) 0.0 
(20) R2 n i---12: R2_n_i*(-1.0)tR2-p_i*(-1.0) 0.0 
(21) C_p_i---22: C-p_itR2_n_i = 0.0 
(22) C_n_i---3: C_n_i*(-1.0)tC-p_i*(-1.0) = 0.0 
(23) G_p_i---24: AC_n_itC_n_itG-p_i = 0.0 
(24) AC_i---17: AC_itAC_p_i*(-1.0)= 0.0 
(25) C_i---4: C_itC-p_i*(-1.0) = 0.0 
(26) der(C_v)---l: C_c*der (C_v) tC_i* (-1.0) 0.0 

----------- Algebraic Loops -------------­
Algebraic Loop: 1 
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20: R1_n_i+R2_p_i=0.0 
7: R1_n_i*(-1.0)+R1_p_i*(-1.0)=0.0 
8: R1_i+R1_p_i*(-1.0)=0.0 
5: R1_i*R1_r+R1_v*(-1.0)=0.0 
6: R1_n_v+R1_p_v*(-1.0)+R1_v=0.0 
21: R1_n_v+R2-p_v*(-1.0)=0.0 
11: R2_n_v+R2-p_v*(-1.0)+R2_v=0.0 
10: R2_i*R2_r+R2_v*(-1.0)=0.0 
13: R2_i+R2-p_i*(-1.0)=0.0 

6.3.4 Rewriting Equations into Explicit Form 
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The subset of equations that are involved in an algebraic loop are identified when the whole system is 
rewritten into explicit form. They are grouped together and are placed in the right position according 
to the computation order. 

************* Equations in Explicit Form *************** 
G-p_v=O.O 
AC_n_v=G_p_v 
AC_v=AC_VA*sin(2*AC_f*AC_pi*time) 
AC_p_v=AC_n_v+AC_v 
R1_p_v=ACp_v 
C_n_v=G_p_v 
C-p_v=C_n_v+C_v 
R2_n_v=C-p_v 
Algebraic Loop 1: R1_n_i+R2_p_i = 0.0 
Algebraic Loop 1: R1_n_i* (-1.0)+R1_p_i* (-1.0) 0.0 
Algebraic Loop 1: R1_i+R1_p_i*(-1.0) = 0.0 
Algebraic Loop 1: R1_i*R1_r+R1_v*(-1.0) = 0.0 
Algebraic Loop 1: R1_n_v+R1-p_v*(-1.0)+R1_v = 0.0 
Algebraic Loop 1: R1_n_v+R2-p_v*(-1.0) = 0.0 
Algebraic Loop 1: R2_n_v+R2_p_v*(-1.0)+R2_v = 0.0 
Algebraic Loop 1: R2_i*R2_r+R2_v*(-1.0) = 0.0 
Algebraic Loop 1: R2_i+R2_p_i*(-1.0) = 0.0 
AC_p_i=(-1.0)*R1_p_i 
AC_n_i=(-1.0) * AC_p_i 
R2_n_i=(-1.0)*R2_p_i 
C_p_i=(-1.0)*R2_n_i 
C_n_i=(-1.0)*C-p_i 
G-p_i =(-1.0)*AC_n_i+(-1.0)*C_n_i 
AC_i=AC_p_i 
C_i=C_p_i 
der (C_v)=C_i*C_c' (-1.0) 

6.4 Octave Code 

Finally, the following Octave code is generated for the simple circuit model: 

# simulation time set up 
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time_init=input("Please enter initial time: "); 
time_end=input("Please enter end time: "); 
time_step=input("Please enter time step: "); 
num_of_intervals=(time_end - time_init)/time_step; 
time = linspace(time_init, time_end, num_of_intervals)'; 

# Constants 
global AC_pi_Iast=3.l4 

# Parameters 
global Rl_r_last=l 
Rl_r_last=input("enter parameter value: Rl_r(l)"); 
global R2_r_Iast=1 
R2_r_Iast=input("enter parameter value: R2_r(1)"); 
global C_c_Iast=l 
C_c_Iast=input("enter parameter value: C_c(l)"); 
global AC_VA_Iast=110 
AC_VA_Iast=input("enter parameter value: AC_VA(llO)"); 
global AC_f_Iast=l 
AC_f_Iast=input("enter parameter value: AC_f(l)"); 

# variables 
global C_v=zeros(num_of_intervals, 1); 
C_v(l)=input("Please enter initial value of C_v: "); 
global C_v_Iast=C_v(l); 
global der_C_v=zeros(num_of_intervals, 1); 
der_C_v(l)=input("Please enter initial value of der_C_v: "); 
der_C_v_Iast=der_C_v(l)i 
global C_i=zeros(num_of_intervals, 1); 
C_i (l)=input ("Please enter initial value of C_i: "); 
global C_i_Iast=C_i(l); 
global AC_i=zeros(num_of_intervals, 1); 
AC_i(l)=input("Please enter initial value of AC_i: "); 
global AC_i_Iast=AC_i(l); 
global G_p_i=zeros(num_of_intervals, 1); 
G-p_i(l)=input("Please enter initial value of G_p_i: "); 
global G_p_i_Iast=G-p_i(l); 
global C_n_i=zeros(num_of_intervals, 
C_n_i (l)=input ("Please enter initial 
global C_n_i_Iast=C_n_i(l); 
global C-p_i=zeros(num_of_intervals, 
C-p_i (l)=input ("Please enter initial 
global C-p_i_Iast=C-p_i(l); 
global R2_n_i=zeros(num_of_intervals, 
R2_n_i (l)=input ("Please enter initial 
global R2_n_i_Iast=R2_n_i(1); 
global AC_n_i=zeros(num_of_intervals, 
AC_n_i(l)=input("Please enter initial 

1) ; 
value of 

1) ; 
value of 

1) ; 
value of 

1) ; 
value of 

C _n_ i: ") ; 

C-p_i : ") ; 

R2 _n_ i: ") ; 

AC _n_ i: " ) ; 
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global AC_n_i_last=AC_n_i(l); 
global AC-p_i=zeros(nuffi_of_intervals, 1); 
AC_p_i(l)=input("Please enter initial value of AC-p_i: "); 
global AC_p_i_la st =AC-p_i (1); 
global Rl_n_i=zeros(nuffi_of_intervals, 1); 
Rl_n_i (1) =input ("Please enter initial value of Rl_n_i: "); 
global Rl_n_i_last=Rl_n_i(I); 
global Rl_p_i=zeros(nuffi_of_intervals, 1); 
Rl_p_i (1) =input ("Please enter initial value of Rl_p_i: "); 
global Rl_p_i_last=Rl_p_i(I); 
global Rl_i=zeros(nuffi_of_intervals, 1) ; 
Rl_i(l)=input("Please enter initial value of RI - i: ") ; 

global Rl_i_last=Rl_i(I); 
global Rl_v=zeros(nuffi_of_intervals, 1) ; 
Rl_v(I)=input("Please enter initial value of RI_v: ") ; 

global Rl_v_last=Rl_v(I); 
global Rl_n_v=zeros(nuffi_of_intervals, 1); 
Rl_n_v (1) =input ("Please enter initial value of Rl_n_v: "); 
global Rl_n_v_last=Rl_n_v(I); 
global R2_p_v=zeros(nuffi_of_intervals, 1); 
R2_p_v(I)=input("Please enter initial value of R2-p_v: "); 
global R2-p_v_last=R2-p_v(I); 
global R2_v=zeros(nuffi_of_intervals, 1) ; 
R2_v(I)=input("Please enter initial value of R2_v: ") ; 
global R2_v_last=R2_v(I); 
global R2_i=zeros(nuffi_of_intervals, 1) ; 
R2_i (1)=input ("Please enter initial value of R2 i: ") ; 
global R2_i_ last=R2 _i (1); 
global R2_p_i=zeros(nuffi_of_intervals, 1); 
R2-p_i(I)=input("Please enter initial value of R2_p_i: "); 
global R2_p_i_last=R2-p_i(I); 
global R2_n_v=zeros(nuffi_of_intervals, 1); 
R2_n_v(I)=input("Please enter initial value of R2_n_v: "); 
global R2_n_v_last=R2_n_v(I); 
global C-p_v=zeros(nuffi_of_intervals, 1); 
C_p_v(I)=input("Please enter initial value of C-p_v: "); 
global C-p_v_last=C-p_v(I); 
global C_n_v=zeros(nuffi_of_intervals, 1); 
C_n_v(I)=input("Please enter initial value of C_n_v: "); 
global C_n_v_last=C_n_v(I); 
global Rl_p_v=zeros(nuffi_of_intervals, 1); 
Rl_p_v (1) =input ("Please enter initial value of Rl_p_v: "); 
global Rl_p_v_last=R1-p_v(I); 
global AC_p_v=zeros(nuffi_of_intervals, 1); 
AC-p_v(1)=input("Please enter initial value of AC_p_v: "); 
global AC_p_v_last=AC_p_v(I); 
global AC_v=zeros(nuffi_of_intervals, 1); 
AC_v(I)=input("Please enter initial value of AC_v: "); 
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global AC_v_last=AC_v(I); 
global AC_n_v=zeros(num_of_intervals, 1); 
AC_n_v(I)=input("Please enter initial value of AC_n_v: "); 
global AC_n_v_last=AC_n_v(I); 
global G-p_v=zeros(num_of_intervals, 1); 
G_p_v(I)=input("Please enter initial value of G-p_v: "); 
global G-p_v_last=G-p_v(I); 

# functions to compute ODEs 
function C_v_dot = f_C_v(C_vi, ti) 

global C_i_last; 
global C_c_last; 
C_v_dot(I)=C_i_last*C_c_last A (-1.0); 

endfunction 

# functions to compute algebraic loops 
function loopl = f_loopl(x) 

global Rl_r_last; 
global Rl_p_v_last; 
global R2_n_v_last; 
global R2_r_last; 
loopl(I)=x(l)tx(9); 
loopl (2) =x (1) * (-1.0) tx (2) * (-1.0); 
loopl(3)=x(3)tx(2)*(-1.0); 
loopl(4)=x(3)*Rl_r_lasttx(4)*(-1.0); 
loopl(5)=x(5)tRl_p_v_last*(-1.0)tx(4); 
loopl(6)=x(5)tx(6)*(-1.0); 
loopl(7)=R2_n_v_lasttx(6)*(-1.0)tx(7); 
loopl(8)=x(8)*R2_r_lasttx(7)*(-1.0); 
loopl(9)=x(8)tx(9)*(-1.0); 

endfunction 

for i=2:num_of_intervals 
# Equation 1 
G_p_v(i)=O.O; 
G-p_v_last=G_p_v(i); 
# Equation 2 
AC_n_v(i)=G_p_v_last; 
AC_n_v_last=AC_n_v(i); 
# Equation 3 
AC_v(i)=AC_VA_last*sin(2*AC_f_last*AC_pi_last*time(i)); 
AC_v_last=AC_v(i); 
# Equation 4 
AC_p_v(i)=AC_n_v_lasttAC_v_lasti 
AC_p_v_last=AC_p_v(i); 
# Equation 5 
R1-p_v(i)=AC_p_v_last; 
Rl_p_v_last=Rl_p_v(i); 
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# Equation 6 
C_n_v(i)=G-p_v_1asti 
C_n_v_last=C_n_v(i)i 
# Equation 7 
C-p_v(i)=C_n_v_lasttC_v_lasti 
C_p_v_last=C-p_v(i)i 
# Equation 8 
R2_n_v(i)=C_p_v_lasti 
R2_n_v_last=R2_n_v(i)i 
# Equation 9 
init_guess=zeros(9, l)i 
[loop1, infol=fsolve("Cloop1", init_guess)i 
R1_n_i(i)=loop1(1)i 
R1_n_i_last=R1_n_i(i) i 
R1_p_i(i)=loop1(2)i 
R1_p_i_last=R1_p_i(i)i 
R1_i(i)=loop1(3)i 
R1_i_last=R1_i(i)i 
R1_v(i)=loop1(4)i 
R1_v_last=R1_v(i)i 
R1_n_v(i)=loop1(5)i 
R1_n_v_last=R1_n_v(i)i 
R2_p_v(i)=loop1(6)i 
R2_p_v_last=R2-p_v (i)i 
R2_v(i)=loop1(7)i 
R2_v_last=R2_v(i)i 
R2_i(i)=loop1(8)i 
R2_i_last=R2_i(i)i 
R2_p_i(i)=loop1(9)i 
R2_p_i_last=R2_p_i(i)i 
# Equation 10 
AC_p_i(i)=(-1.0)*R1_p_i_lasti 
AC_p_i_last=AC-p_i(i)i 
# Equation 11 
AC_n_i(i)=(-1.0)*AC_p_i_lasti 
AC_n_i_last=AC_n_i(i)i 
# Equation 12 
R2_n_i(i)=(-1.0)* R2-p_i _1asti 
R2_n_i_last=R2_n_i(i)i 
# Equation 13 
C_p_i(i)=(-1.0)*R2_n_i_lasti 
C_p_i_last=C-p_i(i)i 
# Equation 14 
C_n_i(i)=(-1.0)*C-p_i_lasti 
C_n_i_last=C_n_i(i)i 
# Equation 15 
G-p_i (i)=(-1.0)*AC_n_i_lastt(-1.0)*C_n_i_lasti 
G_p_i_last=G-p_i(i)i 
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# Equation 16 
AC_i(i)=AC_p_i_Iasti 
AC_i_Iast=AC_i(i)i 
# Equation 17 
C_i(i)=C_p_i_Iasti 
Ci_Iast=Ci(i)i 
# Equation 18 
der_C_v(i)=C_i_Iast*C_c_Iast'(-1.0)i 
der_C_v_Iast=der_C_v(i)i 
time_i=linspace(time(i-1), time(i), 10)' i 
C_viO=[C_v_Iast]i 
C_v_i=lsode ("f_C_v", C_viO, time_i) i 
C_v(i)=C_v_i(lO)i 
C_v_Iast=C_v(i)i 

endfor 

6.5 Simulation Result 

Given the following initial setup of a simulation ron: 

initial time: 0 
end time: 10 
time step: 0.02 

parameter R1_r=1.0 
parameter R2_r=1.0 
parameter C_c=1.0 
parameter AC_VA=110.0 
parameter AC_f=l.O 

initial value of aIl variables: 0 

Octave generates the C_v signal, as shown in Figure 6.2. 
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Given the same model as input to the demo version of the commercial tool Dymola, and the same 
initial simulation setup, Dymola generates the C_v signal shown in Figure 6.3. 

Also, comparisons are made between the C_i signaIs generated by the two tools, as well as AC-Ï. These 
variables are shown in Figure 6.4, Figure 6.5, Figure 6.6, and Figure 6.7. 

6.6 Conclusion 
We can see that the simulation result given by the JLModelica Compiler and Octave is almost identical 
to that given by the demo version of Dymola. Even though large-scale testing has not yet been per­
formed, this case study shows that the compiler is able to compile and simulate non-trivial models of 
continuous system. 
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Future Work 

Given the objective that we are to build a research prototype compiler for Modelica, the ttModelica 
compiler currently only focuses on a subset of Modelica, which is the real essence of the language­
non-causal modeling. As shown in chapter 6, the compiler is able to solve non-trivial problems. But 
compiling and simulating large models is not possible due to the absence of support for sorne language 
features, such as import statements, arrays and matrices, etc. In order to make it possible, and to em­
ploy large scale testing on the Modelica standard library, more language features will be implemented 
in the J1Modelica compiler. AIso, as a research prototype compiler, we are interested in implementing 
sorne advanced formula manipulation techniques, such as teaing for solving algebraic loops [18], and 
inline integration [12]. This chapter gives an introduction to sorne of these techniques, and proposes 
the future work for the ttModelica compiler. 

7.1 More Language Features 

Among the language features to be supported, resolving import statements and supporting arrays are 
the most important ones. With the support of these two features, we can make use of the Modelica 
standard library. Therefore, we will be able to simulate large models and perform large scale testing, 
which will in tum give us feedback to improve the design and implementation of the compiler. 

7.1.1 Import Statement 

An import Statement is introduced by the following import clause: 

import (IDENT "=" name 1 name ["." "*")) 

It can be either a qualified import statement, e.g., import A. B. C, and import D=A. B. C, or an unqual­
ified import statement, e.g., import A. B. *. The following example demonstrates various forms of 
import statement: 

package A 
package B 

partial model C 
Real Xi 

end Ci 
model D 

extends C(x=5)i 
end Di 

end Bi 

package Bl 
model C 
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extends B.C(x=4); 
end C; 

end B1; 
package B2 

model C 
extends B.C(x=7); 

end C; 
model E=B.C(x=6); 
model F=B.C(x=10); 

end B2; 
end A; 

class Importl 
import A.B.*; 
import A.B2.*; 
import A.B1.Ci 

import MyC=A.B2.Ci IINote that a qualified import takes 

C Ci 

D d; 
E e; 
MyC myc; 

end Import 1 ; 

Il precedence over a unqualified import 

99 

Qualified import statements may only import a package or an element of a package. For example, in 
import A. B . C, or import D=A. B . C, A. B must be a package, while C can either be a package or an 
element of a package. Unqualified import statements may only import elements from packages, e.g., 
in import A. B . *, A. B must be a package. 

Lookup of the name in an import statement is different from the normal lexical lookup. The first part 
of the name, e.g., A in A. B, is looked up at the top level. 

Classes imported from external files can be loaded in two different ways. One of them is the pes­
simistic approach, that is, whenever an import statement is resolved, aIl imported classes are loaded. 
Another approach is the optimistic approach, that is, a imported element will not be loaded until it 
is used. For instance, in the sample model, class A. B2 . F will not be loaded because it is not used in 
class Importl. The first approach is easier to implement. But the latter one is more efficient and use 
less memory space. 

7.1.2 Arrays 

Modelica supports arrays and matrices. An array variable can be declared by appending dimensions 
after the type-specifier name or after a component name. For example 

model Array1 
Integer x[5) 
Integer[3) y 

end Array1; 

{1,2,3,4,5}; 
1:3; 

declares two arrays: x of size 5, and y of size 3. The fiat Modelica description of this model is as 
follows: 
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class Arrayl 
Integer x [1) ; 
Integer x [2); 
Integer x [3); 
Integer x [4); 
Integer x [5]; 
Integer y [1) ; 
Integer y [2); 
Integer y [3); 

equation 
x [1) 1; 
x[2) 2; 
x[3) 3; 
x [4) 4; 
x[5) 5; 
y [1) (1: 3) [1] ; 
y[2) (1: 3) [2] ; 
y[3) (1: 3) [3) ; 

end Array1; 

From this description, we can see that the semantics of array variables is defined by expanding arrays 
to individual scalar variables. The implementation of arrays is related to the implementation of rele­
vant language features such as the for-loop construct. Further studies on arrays will be carried out in 
the near future. 

7.2 Formula Manipulation Techniques 

This section introduces sorne of the formula manipulation techniques we have studied, which are 
important in improving simulation run-time efficiency. These techniques will be implemented in the 
future version of the pModelica compiler. 

7.2.1 Eliminate Aliases 

Recall that the fiat Modelica description of the simple circuit model includes the following set of 
equations: 

C_c*der(C_v)=C_i; 
C_v=c_p_v-C_n_v; 
O=C_p_i +Cn_i; 
Ci=C-p_i ; 
R1_r*R1_i=R1_v; 
R1_v=R1_p_v-R1_n_v; 
O=R1_p_i+R1_n_i; 
R1_i=R1_p_i; 
G_p_v=O; 
R2_r*R2_i=R2_v; 
R2_v=R2-p_v-R2_n_v; 
O=R2_p_i+R2_n_i; 
R2_i = R2-p _i; 
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AC_v=AC_VA*sin(2*AC_f*AC-pi *timeli 
AC_v=AC-p_v-AC_n_vi 
O=AC_p_i+AC_n_ii 
ACi=AC-p_ii 
AC_p_i+Rl_p_i=O.Oi 
ACp_v=Rl_p_Vi 
Rl_n_i+R2-p_i =O.Oi 
Rl_n_v=R2_p_Vi 
R2_n_i+C_p_i=O.Oi 
R2_n_v=C_p_Vi 
G_p_i+AC_n_i+C_n_i=O.Oi 
G_p_v=AC_n_vi 
G_p_v=C_n_vi 
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Due to the "connect" statements in coupled models, the original set of equations contains many 
aliases, e.g., there exist many trivial equations of the type a = b or a + b = O. Actually they are 
the same variables stored under different names. In the simple circuit example, we can see that 16 out 
of 26 equations are of this type. It will seriously affect the simulation run-time efficiency if aIl these 
trivial equations are computed during the simulation process. ActuaIly, sorne of these equations can 
be eliminated without affecting the simulation result. This section presents how these equations can 
be eliminated. 

The algorithm for eliminating aliases is straightforward. We only need to get rid of the equations of 
the type a = b, and replace aH occurrences of variable a in aH other equations by variable b. Also, this 
rule applies to the foHowing variants of a = b: 

• a=-b 

• -a=b 

• -a=-b 

• a+b=O 

• a-b=O 

• -a+b=O 

• -a-b=O 
• either a or b is a constant 

For example, equations of the type a + b = 0 is eliminated and all occurrences of a are replaced by -b. 

There is an exception to this rule: variables that were dec1ared as input or output should not be 
eliminated. For instance, if a is an input or output variable, the equation a = b will be eliminated 
as weIl, but aIl occurrences of b are replaced by a. If both a and b are dec1ared as input or output 
variables, the equation will not be eliminated. 

The eliminated variables are no longer visible to the simulator. They will not be computed at sim­
ulation run-time. But a user may be interested in knowing the simulation output of sorne of those 
eliminated variables. This problem can be solved by keeping a reference table which stores the re­
lationship of the eliminated variables to variables computed at simulation run-time. These variables 
will only be computed when required. 
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7.2.2 Tearing 

Once equations are identified as forming an algebraic loop, they are isolated and will be solved si­
multaneously, either with a symbolic sol ver or a numerical solver. There are two types of algebraic 
loops, linear algebraic loops and non-linear algebraic loops. Linear algebraic loops can be solved 
analytically using Crarner's rule, or with numerical techniques in case the analytical solution grows 
too large. Non-linear algebraic loops can not generally be solved by formula manipulation. It may be 
preferrable to employa numerical method to solve such a set of equations. 

The technique to solve non-linear algebraic loops we are to discuss here is called tearing, which was 
introduced by Kron in 1962 [18]. It is a simple technique to reduce a large system of linear or non­
linear algebraic equations to a smaller system of equations. It consists of finding a reduced subset of 
variables over which to iterate, so that the remaining paired variables can be calculated explicitly as a 
function of these variables. 

Consider a set of non-linear algebraically coupled equations h to be solved for the unknown vector z: 

0= h(z) (7.1) 

Tearing means breaking algebraic loops in the dependency structure of equations and variables. A 
subset of z, called z}, are chosen as tearing variables. A subset ofh, called h}, are chosen as residual 
equations. The choice is made in such a way that the remainder of z, called Z2, can be calculated in 
sequence using the remaining equations h2, assuming that the Zl variables are known, Le.: 

(7.2) 

This system of equations can be solved by Newton iteration over the tearing variables Zl. The numer­
ical procedure to compute Z is as follow: 

• Choose Zl 

• Give an estimate to Zl 

• Compute: Z2 = h2 (Zl) 

• Compute the residual in res(zl) = h1(Zl,Z2) 

• Iterate until res(zl) are within tolerance. 

We can observe from this procedure that it reduces the dimension of the iterated system of equations 
from dim(h) = dim(hl) +dim(h2) down to dim(hI). 

However, the optimal selection of tearing variables and residual equations is not trivial. This is be­
cause: 

• The more tearing variables there are, the greater the computational overhead. 

• Numerical errors may differ considerably from one selection to another. 

• Fewer tearing variables may mean greater errors since the errors are propagated through the 
equations and may be amplified. 

These factors make it almost impossible to know automatically whether a selection of tearing variables 
is good or not. This means that, in general, it is preferable for the user to make the choice based on 
knowledge of the problem domain. But the compiler itself has to check whether the user's selection 
is valid. 
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7.2.3 Inline Integration 

Inline integration is a new method for solving DAEs using a mixed symbolic and numerical approach, 
which is proposed by [12]. 

In practice, it is either the modeling software or simulation software that converts the continuous-time 
problem to a discrete-time problem that can be solved through iteration. Traditionally this task was 
assigned to simulators. However, the concept inline integration enables the conversion of continuous­
time problem to discrete-time problem at compile time by modeling software. 

The basic idea of inline integration is to transform ODEs to algebraic equations through either an 
explicit or implicit integration method. The original set of DAEs will then be converted into a set of 
purely algebraic equations. With this technique, a compiler is able to generate more efficient simula­
tion run-time code. 

Continuous-time systems can essentially be represented as state-space models through a set of ODEs: 

der (x) = f(x,t); x(to) = Xo (7.3) 

where derO denotes the time derivative, x is the vector of state variables, t denotes time, and f is a 
set of assignment statements specifying how the derivatives of x are computed, assuming the state 
variables x are known. 

Solving (7.3) by any explicit integration method is straightforward. In the forward Euler method, the 
derivative of the state vector x is approximated by: 

Xn+l -Xn 
der(x(tn)) = der(xn) = h (7.4) 

where Xn+l = X(tn+l) is the unknown value of x at the new time instant tn+l = tn + h, Xn = x(tn) is 
the known value of x at the previous time instant tn, and h is the time increment. Substituting der(x) 
in (7.4) by (7.3) leads to the following recursive formula: 

Xo = x(to) (7.5) 

This formula can be used to solve the ODE, and it works well for non-stiff systems. 

But unfortunately, explicit integration methods are not weIl suited for stiff systems or systems which 
contain algebraic loops. Implicit integration methods are more appropriate in such cases [12]. Using 
the backward Euler method, the derivative of the state vector x is approximated by: 

Xn+l -Xn 
der(xn+l) = h (7.6) 

Substituting der(xn+l) in (7.6) by (7.3) leads to 

(7.7) 

where Xn+l is the unknown to be solved, given Xn and tn+l. Equation (7.7) can be rewritten as: 

x = old(x) + h * der(x) (7.8) 

In general, (7.8) is a non-linear equation for Xn+l, and usually it will be solved by numerical methods. 

Adding equation (7.5) (for non-stiff systems), or (7.8) (for stiff systems or systems containing al­
gebraic loops) to the original model represented by (7.3) will transform the the system to a set of 
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purely algebraic equations, assurning that both der (x) and x are unknowns. Given the following sets 
of equations: 

ACv 
C_i 

R2_v 
R2_p_v 

RLv 
der(C_v) 

sin(time) 
RLv*RLr-l.O 

R21*Ci 
R2_v+ (-1.0) *Cv 

= AC_v + (-1.0) * R2_p_v 
= C_i*C_c-l.O 

adding (7.8) leads to the following system: 

ACv = sin(time) 
C_i RLv*RLr-l.O 

R2_v R21*Ci 
R2_p_v R2_v+ (-1.0) *Cv 

RLv = AC_v + ( -1.0) * R2_p_v 
der(Cv) = C_i*Cc-l.O 

Cv = h * der(Cv) + old(C_v) 

where both der(Cv) and C_v are treated as algebraic variables. This set of equations need to be sorted 
again and checked for algebraic loops. To solve the system, a simulator no longer needs to have an 
integrator. It only needs a solver for algebraic loops. 

In many cases a model contains algebraic loops, and implicit inline integration method may introduce 
extra a1gebraic 100ps. The tearing technique can be combined with inline integration to solve the 
algebraic loop problem elegantly. It allows the automated transformation of model equations to their 
discretized form in a simple way. Assuming the model is specified in ODE form by (7.3), tearing 
provides an elegant formulation: 

der (x) = f(x,t) 

x = old(x) + h * der (x) + res(x) 

(7.9) 

(7.10) 

In this discretized model, the original equations are not changed, while additional discretization equa­
tions are added. Here both x and der(x) are considered as unknowns. x is selected as tearing variables. 
The solver will give an estimate for x, then der(x) is computed by the state equation (7.9). FinaIly, 
the residuals are computed via equation (7.10) and retumed to the solver. This process is iterated until 
converged. 

A general algorithm that transforms a DAE down to a suitable discretized form in an automatic manner 
has been developed in [12]. A system of DAE is represented as 

0= f(der(x) , x, w,t); x(tO) = xo (7.11) 

where x is, as mentioned before, the vector of unknown variables that appear in the model in differ­
entiated form, whereas w is the vector of unknown purely algebraic variables. The algorithm includes 
the following steps to perform inline integration of a DAE system: 

1. Transform the system to casual form, sort the equations, and check if there exist algebraic loops, 
assurning that x is known, and that w and der(x) are unknown. 

2. For every Xi that can be solved explicitly in the partitioned equations, add the following equation 

Xi = h * der(xi) + old(Xi) + res(xi) 

For aIl other Xj, add the same equation but without the term res(xj). 

(7.12) 
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3. Ifthe assigned equation of der(xj) or Wk appears in an algebraic loop, add the term res(der(xj)) 
or res(wk) to the corresponding model equation. 

4. Repeat the first step while w, der(x) and x are aIl treated as unknown variables, thereby utilizing 
the tearing information. As a result, nonlinear, discretized model equations are produced. 

7.2.4 Higher Index Problem 

Mathematical non-causal modeling of physical systems may result in higher index DAEs. However, 
there are no general purpose solvers for higher index DAEs. These systems are usually solved in terms 
of index reduction as described by Pantelides [21]. This topie is beyond the scope this thesis. 
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A.1 Stored definition 
stored_definition: 

within [ name 1 ";" 1 
[ final 1 class\_definition 

A.2 Class Definition 
class_definition 

encapsulated 
[ partial 1 

11. " , 

Grammar 

( class 1 model 1 record 1 block 1 connector 1 type 1 package 1 function ) 
IDENT class_specifier 

class_specifier : 
string_comment composition end IDENT 
1 "=" base_prefix name [ array_subscripts 1 [ class_modification 1 comment 
1 "=" enumeration "(" [enum_listl ")" comment 

base-prefix : 
type_prefix 

enum_list : enumeration_literal { "," enumeration_literal} 
enumeration_literal : IDENT comment 

composition : 
element_list 

} 

public element_list 
protected element_list 
equation_clause 1 

algorithm_clause 

[ external [ language_specification 
[ external_function_call 

language_specification 
STRING 

". " , [ annotation ". Il , 1 1 



A.3 Extends 

external_function_call : 
[ component_reference n=n 

IDENT n(n [ expression " Il , expression} 1 n)n 

element_list : 
{ element nin 1 annotation 

element : 
import_clause 
extends_clause 1 

[ final 1 
[ inner 1 outer 1 

Il. Il , 

( ( class_definition 1 component_clause) 1 

replaceable ( class_definition 1 component_clause) 
[constraining_clause comment]) 

import_clause : 
import ( IDENT n=n name 1 name [n.n n*n] ) comment 

A.3 Extends 
extends_clause 

extends name class_modification 

constraining_clause 
extends_clause 

A.4 Component Clause 
component_clause: 

type_prefix type_specifier [ array_subscripts ] component_list 

type-prefix : 
[ flow ] [ discrete 1 parameter 1 constant ] [ input 1 output 1 

type_specifier 
name 

component_list 
component_declaration 

component_declaration 
declaration comment 

declaration : 

Il " , component_declaration } 

IDENT [ array_subscripts 1 [modification 1 
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A.5 Modification 

A.5 Modification 
modification : 

class_modification 
n=n expression 
n:=" expression 

class_modification : 

n=" expression 

"(" [ argument_list ] ")" 

argument_list : 
argument { n," argument} 

argument : 
element_modification 
1 element_redeclaration 

element_modification 
[ each ] [ final ] component_reference modification string_comment 

element_redeclaration : 
redeclare [ each ] [ final 
( ( class_definition 1 component_clausel) 

replaceable ( class_definition 1 component_clausel) 
[constraining_clause]) 

component_clausel : 
type-prefix type_specifier component_declaration 

A.6 Equations 
equation_clause : 

[ initial ] equation { equation 

algorithm_clause : 

If. " , 1 annotation Il. " , 

[ initial ] algorithm { algorithm ". " , 1 annotation n. " , 

equation : 
( simple_expression "=" expression 

1 conditional_equation_e 
1 for_clause_e 
1 conne ct_clause 
1 when_clause_e 
1 IDENT function_call 

comment 

algorithm 
( component_reference ":=" expression 
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A.6 Equations 

"(" expression_list ")" ":=" component_reference function_call 
conditional_equation_a 
for_clause_a 
while_clause 
when_clause_a 

comment 

conditional_equation_e 
if expression then 

{ equation ";" } 
elseif expression then 
{ equation ";" } 

el se 
equation 

end if 

" • n , 

conditional_equation_a 
if expression then 

{ algorithm ";" } 
elseif expression then 
{ algorithm ";" } 

else 
algorithm 

end if 

for_clause_e : 

Il. Il , 

for for_indices loop 
{ equation ";" } 

end for 

for_clause_a : 
for for_indices loop 

algorithm ";" } 
end for 

for_indices 
for_index {"," for_index} 

for_index: 
IDENT [ in expression 

while_clause 
while expression loop 

{ algorithm ";" } 
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A.7 Expression 

end while 

when_clause_e : 
when expression then 

{ equation "i" } 
{ elsewhen expression then 

{ equation ";" } } 
end when 

when_clause_a : 
when expression then 

{ algorithm ";" } 
{ elsewhen expression then 

{ algorithm ";" } } 
end when 

connect_clause 
connect "(" connector_ref 

connector ref 

Il " , 

IDENT [ array_subscripts 1 [ 

A.7 Expression 
expression : 

simple_expression 
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connector_ref ")" 

" Il IDENT [ array_subscripts 1 1 

1 if expression then expression { elseif expression then expression } el se 
expression 

simple_expression 
logical_expression " .11 logical_expression [ 

logical_expression : 
logical_term { or logical_term 

logical_term : 
logical_factor { and logical_factor } 

logical_factor : 
[ not 1 relation 

relation : 

". " logical_expression 1 1 

arithmetic_expression [ rel_op arithmetic_expression 1 

rel_op : 
"<" 1 "<=" 1 ">" 1 ">=" "==" 1 "<>" 

arithmetic_expression 
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"+" 1 " " 

term : 
factor { mul_op factor } 

mul_op : 
"*11 1 11/" 

factor : 
primary [ "-,, primary 

primary : 
UNSIGNED_NUMBER 
1 STRING 
1 false 
1 true 
1 component_reference [ function_call ] 
l "(" expression_list ")" 
l "[" expression_list { ";" expression_list } "]" 
l "{" function_arguments "}" 
1 end 

name : 
IDENT [ "." name ] 

component_reference : 
IDE NT [ array_subscripts ] [ " " component_reference ] 

function_call : 
"(" [ function_arguments ] ")" 

function_arguments : 
expression [ "," function_arguments 1 for for_indices 
1 named_arguments 

named_arguments: 
named_argument 

named_argument: 

" Il , 

IDENT "=" expression 

expression_list : 

named_arguments ] 

expression { "," expression 

array_subscripts : 
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A.7 Expression 

"[" subscript 

subscript : 
":" 1 expression 

comment 

" Il , subscript } "]" 

string_comment [ annotation ] 

string_comment : 
[ STRING { "t" STRING } ] 

annotation 
annotation class_modification 
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