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Abstract 

Anatomical standardization (also called spatial normalization) is a key pro cess in 

cross-sectional studies of brain structure and function using MRI, fMRI, PET and 

other imaging techniques. This pro cess has two components: (i) specification of a 

3D template brain, which defines a common coordinate space for analysis of any 

subsequent datasets; and (ii) a method to align the template with an individual 3D 

brain image, thereby associating each point of the standard template to a point on 

the individual. The association should be able to consistently match a particular 

template location to an anatomically corresponding location on each individual of a 

population. 

Standardization methods in widespread use employa 3D affine spatial transform­

ation to map from the individu al to the template, which matches only overall size 

and gross shape of the input brain. A wide range of more flexible image deformation 

algorithms have been developed in order to better match fine detail. AH such al­

gorithms involve design choices that are subject to debate, and most have numerical 

parameters whose value must be specified by the user. In order to provide guidance 

for such choices, the first part of this thesis develops two measures of alignment con­

sistency that are used to evaluate performance of a standardization method. The 

performance of different choices for algorithm design, numerical parameters, and 

template selection strategy for 3D normalization are compared. 

Since the processing of brain function occurs on a thin, highly convoluted sheet 

of cortex along the surface of the brain, there has been much recent interest in 

studying the structure and function along the brain cortex only, modelled as a 2D 

manifold. The second part of this thesis proposes an algorithm for highly-flexible 

deformation in 2D of a template cortex to an individu al. The alignment consistency 

measures developed for 3D are reformulated for the 2D manifold and used to evaluate 

the algorithm design and numerical parameters. Finally, the question of whether it 

is better to standardize the 3D images or the 2D cortical manifold is addressed, 

identifying the problem classes which are best suited to each type of normalization. 
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Précis 

La standardisation anatomique (également appellée normalisation spatiale) est un 

processus-clé dans les études trans-sectionnelles de structure et de fonctions cérébrales 

en imagerie par résonance magnétique (IRM) , IRM fonctionnelle, (IRMf), tomo­

graphie par émission de positron (TEP) ainsi que d'autres techniques d'imagerie. Ce 

processus est composé de deux parties: (i) la spécification d'un cadre de réference 

tri-dimensionnel (3D), qui définit un espace de coordonnées communes pour l'analyse 

subséquentes des données; et (ii) une méthode pour aligner ce cadre avec l'image 3D 

d'un cerveau individuel. Cette dernière permet d'associer à chaque point du cadre 

de réference commun un point dans un cerveau individuel. Cette association devrait 

être capable de mettre en correspondance de façon constante un endroit particulier 

du cadre à un endroit anatomique correspondant et ce, pour chaque cerveau dans 

une population donnée. 

Les méthodes de standardisation les plus employées utilisent une transformation 

spatiale affine en 3D pour mettre en correspondance le cerveau d'un individu avec 

le cadre de réference commun. Cette méthode ne fait qu'ajuster la taille totale et la 

forme globale du cerveau. Un large éventail d'algorithmes de déformation d'images, 

plus flexibles, ont été développés pour faciliter l'ajustement de détails locaux. Tous 

ces algorithmes impliquent des choix méthodologiques qui sont sujet à débat, et la 

plupart ont des paramètres numériques dont les valeurs doivent être spécifiées par 

l'usager. Pour pouvoir guider ces choix, deux méthodes de mesure de la constance de 

l'alignement, utilisées pour évaluer la performance de la méthode de standardisation, 

ont été développées et sont présentées dans la première partie de cette thèse. La 

performance de différents choix méthodologiques pour les algorithmes, de différents 

paramètres numériques et de stratégie de sélection du cadre de référence commun 

pour la normalisation 3D est ensuite comparée. 

Puisque le processus de l'activité cérébrale se déroule sur une mince couche de 

cortex très plissée le long de la surface du cerveau, un grand intérêt existe dans 

l'étude de la structure et de l'activité le long du cortex cérébral, modélisé comme 

III 



IV 

une variété 2D. La deuxième partie de cette thèse propose un algorithme de déforma­

tion 2D ultra-flexible d'un cadre de référence cortical commun à un cortex individuel. 

Les mesures de constance de l'alignement développées en 3D sont reformulées pour la 

variété 2D et utilisées pour évaluer la conception de l'algorithme ainsi que ses para­

mètres numériques. Finalement, la question à savoir si il est mieux de standardiser 

des images 3D ou une variété corticale 2D est présentée, en identifiant les classes de 

problèmes pour lesquelles chaque type de normalisation serait le mieux adapté. 
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Chapter 1 

Introduction 

This thesis addresses a thorny and continuing problem arising from the field of brain 

mapping, specifically the problem of comparing functional or structural char acter­

istics across a population of brains. Such comparisons are best carried out in a 

reference frame for which the normal anatomical variability in the population has 

been removed, to the extent possible. The aims of this thesis are therefore: (1) to de­

velop and apply tools that quantify the anatomical variability, whether the reference 

frame is a three dimensional Euclidean space or a two dimension al manifold; (2) to 

develop an automatic method for anatomical standardization of the two dimension al 

brain surface; and (3) to compare the anatomical variability of the brain remaining 

after standardization using 3D methods or using 2D methods. 

While this chapter describes the problem in the context of comparing functional 

data, the issues of anatomical standardization are largely the same wh en the data 

to be compared is structural in nature. The comparisons are carried out on popu­

lations of hundreds or thousands of brains, so this work emphasizes fully-automated 

solutions. 

1.1 Brain Mapping 

The main aim of brain mapping is to understand the functional anatomy in the 

human brain [TM96, Sav01]. Though brain tissue looks homogeneous to the naked 

eye, by the 1950's enough was known from studying patients with brain lesions 

and from direct stimulation of the brain during surgery to conclude that regions 

of the brain specialize in processing of particular functions and to draw reasonably 

detailed summary maps of brain function [SavOl]. The mental processing happens 

in neuron bodies that accumulate in a thin layer of gray matter on the surface of 

1 
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the brain, termed the cerebral cortex, while the bulk of the brain inside the cortex 

is white matter, which is composed of fibres that carry signaIs between regions of 

the cerebral cortex [Hei95]. While there are also sorne gray matter structures found 

deep inside the brain, the main interest of functional brain mapping is to describe 

the location and extent of functionally-specialized regions of the cortex. 

Today, the study of brain function is largely carried out by imaging living brains 

[SavOI]. 

1.1.1 Magnetic Resonance Images 

The dominant method for studying the brain in vivo is using Magnetic Resonance 

Imaging (MR imaging) [DSFL +99]. The MR scanner pro duces a 3D array of intensity 

values known as a volumetrie image, or simply "an image". Throughout this thesis, 

the unqualified word "image" will mean a volumetrie image. The array elements are 

known as "volume elements" or voxels, in analogy with pixels ("picture elements") of 

a 2D digital image. 

The value produced at each voxel by an MR scanner is related to the density of 

hydrogen nuclei (mainly from water molecules) at that location. By manipulating 

parameters of the scan, the signal can be modulated by other characteristics of the 

tissue. In particular, the signal can be weighted by the so-called "Tl" and "T2" 

relaxation time constants [Nis96]. These time constants differ amongst the tissue 

types of the brain, so images can be formed that have different intensity values for 

the different tissue types. Figure 1.1 shows slices from an MR image in the three 

standard orthogonal views: sagittal (from the side), coronal (from the back) , and 

axial (from ab ove ). 

In Trweighted images, a common type of MR image, three main tissue types 

of the brain can be distinguished: white matter, gray matter, and cerebral spinal 

fiuid (CSF). The white matter appears brightest, the CSF darkest, and gray matter 

intensity lies between the two as shown in Figure 1.2. Anatomically, the folds of 

the cortex form very deep crevices known as sulci (singular sulcus). The fold of 

tissue between two sulci is known as a gyrus (plural gyri). While the pattern of 

folding is highly variable between individuals [OKA90], sorne sulci and gyri are con­

sistent enough across the population that they can be used as features for identifying 

corresponding anatomy in different brains. In particular, sorne folds generally de­

limit boundaries between cortical regions of different eytoarchiteeture (ceIl structure) 

[RCSG93], which may coincide with boundaries between different functional regions. 
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Sagittal View Coronal View Axial View 

Figure 1.1: Example sliees from a magnetic resonanee image, illustrating the three 
standard views of the brain. 

CSF 

-- Gray Matter 

Scalp 

White Matter 

Figure 1.2: Brain tissue types visible in a T1-weighted image. Creviees in the brain 
are called sulci. A gyrus is the fold of tissue that lies between two sulci. 
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1.1.2 Spatial Normalization 

In the context of brain mapping, spatial normalization (also referred to as anatomical 

standardization [MKFK94, 810+98]) refers to "selective removal of inter-individual 

anatomical variance" [Fox95]. The goals and applications of spatial normalization are 

also discussed by, e.g. Ashburner and Friston [FAF+95, AF99b], Toga and Thompson 

[TTOl], Collins et al. [CZPEOl]. In practice, the term has come to refer to imposing 

a standard coordinate system on the brain by mapping each brain image into a 

standard space [AF99b]. 

The spatial map between each individu al brain and sorne standardized refer­

ence system is established so that variability in location or signal strength of sorne 

spatially-varying data can be quantified across subjects. After spatially normalizing 

the population, the data to be compared at each point in the standardized reference 

system is the data from the corresponding point in each individual. The data to be 

quantified can be either functional, in which the signal is related to brain activity, or 

structural, in which the data is an anatomical measure such as the thickness of the 

cortex. The important characteristic of this mapping strategy is that anatomically 

corresponding, i.e. homologous, locations in each subject brain be mapped to the 

same standardized coordinates so that the data being compared is associated with 

corresponding anatomy. 

One of the original motivations of spatial normalization for examining brain func­

tion cornes from studies that use Positron Emission Tomography (PET) to image the 

brain. PET images are formed by injecting a radioactive tracer into the subject's 

bloodstream and analyzing the resulting radiation to obtain the pattern of blood 

fiow in the brain, which can be related to brain activity [CP96]. Due to dosage 

limitations, the images obtained from a single subject are not always adequate to 

detect activation so data from several individuals is combined to increase the overall 

signal-to-noise ratio. The data is combined by averaging the intensity values at each 

point in the standardized space [FMRR88, FAF+95, AF97, AF99b]. It lS thus im­

portant that each standard space location maps to the homologous location in each 

individual. 

Currently, functional imaging is more commonly performed using MR, a tech­

nique known as functional magnetic resonance imaging, or fMRI [DSFL +99]. Func­

tional MRI is sensitive enough that activation can be detected in a single subject, 

so averaging across subjects is not needed to detect the signal [AF99b]. However, it 

may be that different individuals perform a given task differently, perhaps using a 

different anatomicallocation. After spatially normalizing the population, the spatial 
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Subject 1 

Subject 2 

o 

o 

Standard Space 
Subject N 

Native Space 

Figure 1.3: The spatial normalization problem is to find the corresponding location in 
each subject image, for each point in standard space. The result is a set of mappings 
{Ti: i = 1, ... ,N} from standard space to the native space of each subject, where 
standard coordinate x corresponds to point 1i(x) in the brain of subject i. 

distribution of the functional signal can be examined in standard space, i.e. with 

respect to a standardized anatomy. 

Finally, spatial normalization is useful for communicating results between labs. 

The location of a functional region determined during a study is often reported 

using standardized coordinates [BJ002]. The neuroimaging community generally 

reports locations using so-called Talairach coordinates, and there is interest in the 

neuropsychology community to do the same for lesion studies [RBOl]. 

Talairach Coordinates 

Talairach defines a piecewise-affine mapping procedure to standardize brains for sur­

gical purposes [TST+67]. Based on the plane separating the two cortical hemispheres 

and two structures known as the anterior commissure (AC) and posterior commissure 

(PC), the bounding box of the brain is subdivided into 12 boxes, each of which is in­

dependently affinely mapped to a standard location, orientation, and size. Talairach 

coordinates are 3D Cartesian coordinates associated with a particular template brain 
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image [TT88], although different conventions are used for the location of the origin 

[Wo096] so the coordinates are not always comparable. Moreover, automated and 

semiautomated standardization methods may instead use a global affine transform 

(as it is more convenient to work with than Talairach's piecewise transformation), 

but still designate the results as "Talairach coordinates" [Wo096]. 

Transformation Fundion 

A correspondence between an individu al brain and a standardized space is conveni­

ently described in terms of a spatial transformation function, generically denoted as 

T throughout this thesis. It is most convenient to define T as mapping from the 

standardized space to the space of the individu al brain, which is referred to as the 

native space of the individual. When the mapping is defined in this manner (rather 

than from the native space to the standard space), data can be transferred to the 

standard space without any gaps on the standard space sampling grid [Jah99] and 

without needing to invert the function T. This data mapping procedure is further 

elucidated in Sections 4.1 and 7.1. The spatial normalization problem is to automat­

ically find the function Ti corresponding to subject i, for i = 1, ... , N as illustrated 

in Figure 1.3. 

It is presumed that neighbouring points in the standard space should have ho­

mologous points that are neighbours in each subject, implying that the mapping 

T should be a continuous function [CRM+95]. If the biological homology between 

brains extended to arbitrarily smaU spatial scales, then each location in standard 

space would map to its unique homologous point in a subject brain, meaning that T 

should be injective, i.e. a one-to-one mapping. However, it is not expected that brains 

correspond down to each individual neuron, so at sorne point the homology breaks 

down. Indeed, the variation in brain topography is rather large, even at the scale of 

sulcal folds [OKA90]. Moreover, in the data analysis done after spatial normalization 

the data being compared is smoothed in order to enhance the signal-to-noise ratio 

[\iVor97] and to compensate for imperfect spatial normalization [AF97, BJ002]. Thus 

a comparison at point x in the standard space is really not a point-to-point compar­

ison with data precisely at 7i(x) in each subject i, but a comparison of data in sorne 

region about 7i(x). A certain amount of small-scale noninjectivity can therefore be 

tolerated in the transformations used for spatial normalization. 
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1.2 3D Image Registration 

Automated spatial normalization of brain images is mainly accomplished through 

image registration, by aligning the image with a template image that is already 

in the standardized coordinate system [AF99b1. The sensitivity of a comparison 

of spatially-varying data (structural or functional) is enhanced by reducing, to the 

extent possible, the natural anatomical variability in a population. This is the aim 

of practical spatial normalization. The effectiveness of spatial normalization depends 

on the template image and the registration method chosen. One of the themes of 

this thesis is defining performance measurements used to select between competing 

template images and between competing registration algorithms. 

Early spatial normalization approaches, e.g. [FPR85, EMN+921 take their cue 

from Talairach's normalization procedure, using an affine or piecewise-affine trans­

formation to map each brain into standard space. 8uch a mapping procedure corrects 

only for location, orientation, and overall size of the input brains, leaving much ana­

tomical variability [8FF891. However, even these fairly rigid transformations align 

individu al brains sufficiently to bring about an increase in sensitivity wh en used prior 

to combining functional measurements from different individuals [FMRR88]. 

Normalizing with more flexible warping transformations that remove even more 

anatomical variability ought to bring a further increase in sensitivity. There is sorne 

evidence showing this is the case [MKFK94, GAA97, 8IO+98, HAC+02]. Many such 

algorithms are proposed, e.g. [AF99a, BK89, Boo89, CRM96, CE97, Dav96, Thi98, 

TT96, WGW+98]. These differ in the set of transformations searched, transformation 

parameterization, how the search is conducted, and the image feature used to drive 

the search. 8uch algorithms search for a spatial mapping T from the template image 

la to subject image Ii by explicitly or implicitly minimizing sorne objective function 

of the form 

(1.1 ) 

where <PD represents the data (image similarity) term and <PM represents the model 

term that embodies the "prior knowledge" about the transformation expected. 

The mathematical form for a data term has a theoretical basis in sorne instances 

[RMAOO]. However, there is no biological theory to suggest a model term appropriate 

for transformation of one individual to another, so the models in use are generally 

either ad-hoc [CE97] or borrowed from physics (e.g. elastic solids [BK89], viscous flu­

ids [CRM96], or diffusion [Thi98]). These models include parameters corresponding 

to physical quantities such as "stiffness" or viscosity whose value is not determined by 
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theory. The coefficient À in Equation 1.1, balancing the contribution of the data and 

model terms, is also undetermined by theory. An empirical performance measure is 

therefore required to evaluate design choices such as data and model terms, and to 

select parameter values. In the context of spatial normalization, residual anatomical 

variability is the natural choice for performance measure. 

The first aim of this thesis is to develop measures that quantify the amount of 

variability in a population. These variability measures are applied in two ways. The 

first application is to evaluate design choices and select optimal numerical parameters 

of a particular algorithm. The second application is to compare spatial normalization 

methods in order to select the method that pro duces a normalized population with 

the smallest variability. 

1.3 Cortical Surface Registration 

While spatial normalization is typically carried out using 3D transformations to 

match the volumetrie images, recently there has been a lot of interest in normalizing 

only part of the brain, namely the cerebral cortex [VEDJM98, FSD99, FSTD99, 

VD99, Dav97, TT96, TMM+97]. This is useful because the cortex is where the 

neuron bodies are, where the neural computation actually occurs, and thus is what 

neuroscientists are interested to map. As most of the signal in functional imaging 

cornes from the cortex, it should be helpful to take the 2D nature of the cortex into 

account. For example, when the data analysis is performed in 3D functional signaIs 

from the opposite banks of a sulcus can be mixed together by the smoothing and 

averaging operations, which is undesirable as such locations may be quite distant 

as measured along the surface. Methods have been presented to analyze the fMRI 

signal on the cortex of an individual, e.g. [KGFOO, AKM+Ol]. 

Anatomical measures like cortical thickness can also be mapped to the cortical 

surface [KLGME01]. Population comparisons of thickness are of interest to invest­

igate thinning due to normal aging [LZG+03] or changes due to disease pro cesses 

[ADPL +03, LBBE03]. 

The cerebral cortex is a large sheet of tissue, roughly 160 000 mm2 in area but 

only 3mm thick [VEDJM98]. Typically, the functional or anatomical information of 

interest varies along the two large dimensions of the cortex, but not along the small 

("thickness") dimension. Thus it is natural to model the cortex as an infinitesimally 

thin object, i.e. as a 2D manifold embedded in 3D. 

The second aim of this thesis is to develop and validate an automated surface nor-
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malization algorithm that pro duces a surface-to-surface mapping, which is described 

as a "2D mapping" throughout this thesis. The validation ad dresses the extent to 

which anatomical variability in the cortex can be reduced using such a 2D mapping. 

1.4 About the Thesis Organization 

The first two parts of the thesis draw a deliberate parallel between 3D spatial nor­

malization and 2D spatial normalization. The three chapt ers in each section address: 

(1) the appropriate mapping function and how to parameterize it, (2) obtaining the 

mapping function by optimization (i.e. image registration), and (3) measuring resid­

ual anatomical variability to gauge progress towards the goal of removing variability. 

The third part of the thesis uses the variability measures to probe two more 

questions. First: what makes a good template image? Second: is the performance 

with respect to reducing variability of the cortex better if a 2D normalization is used 

rather than a 3D normalization? 

A glossary containing both computer science and neuroimaging terms to aid a 

reader from either community is provided, as is an index of all terms defined in the 

text. 

1.5 Thesis Contributions 

The following are believed to be the significant new contributions made in this thesis. 

As discussed in Section 1.2, one of the major unresolved issues with respect to 

nonaffine image registration algorithms is how to choose a suit able model term and 

how to choose the numerical parameters. Choosing a suit able template image for 

spatial normalization also remains a problem. These problems are addressed by items 

1,3, and 5. 

To date, 2D normalization has been compared only to low-dimensional (affine) 

3D normalization methods [DECS99, FSTD99]. In order to address the question in 

a general setting, representative high-dimensional 3D and 2D registration algorithms 

that demonstrably match the sulci well are required (items 2 and 4). The localization 

measure (item 3) is then used to compare the performance (item 6). 

1. 1 adapt a measure of label consistency [WRH+01] and develop a general method 

to obtain registration algorithm parameters, by evaluating overall alignment of 

segmented images. This method is equally applicable to 3D (Section 4.1) and 
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to 2D (Section 7.1) registration. A preliminary version of this work appears in 

a conference publication [RECW03]. 

2. l dernonstrate the utility of the general evaluation technique by applying it 

to an existing 3D registration algorithm, ANIMAL [CHPE95] (Section 4.1.1). 

In doing so, l dramatically improve the ability of ANIMAL to match cortical 

structures such as sulci. 

3. l propose a measure of dispersion, based on the mean of a random closed set, 

that is applicable to extended point sets such as sulci (Section 4.2). l use this 

dispersion to construct a novel measure of the degree to which a particular 

structure is localized (Section 4.3). The dispersion and localization measures 

also apply in 2D (Chapter 7). 

4. l propose a general method to align cortical surfaces of spherical topology 

(Section 6.7), by mat ching the pattern of a scalar function defined on each 

surface. The operation of the algorithm is oblivious to the meaning of the 

scalar function. l obtain good results using the geodesic distance transform 

starting from a set of gyral seed points (Section 6.2.2). 

5. l perform a quantitative comparison of the effectiveness of four different strategies 

for obtaining a template image (Chapter 8). 

6. l demonstrate the first comparison of the effectiveness of performing spatial 

normalization in 2D versus normalization in 3D using high-dimensional warping 

(Chapter 9). 
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3D Spatial N ormalization 
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Chapter 2 

Spatial Transformation 

As discussed in Chapter 1, the spatial normalization problem is to obtain a spatial 

transformation T that maps from standard space to an input image domain. ldeally, 

the mapping should be a homeomorphism, i.e., continuous, invertible, and with con­

tinuous inverse though, as discussed in Chapter 1, a small amount of noninjectivity is 

tolerated. The class of aU homeomorphisms is too large to represent in a computer, 

let alone search through. Rather, the transformation T must be representable with 

a finite number of parameters. This chapter is concerned with the appropriate class 

of transformations in which to search for T. 

The term warp is used as a synonym for a spatial mapping. It is also used as a 

verb to mean "to apply a spatial mapping". For example, given a spatial mapping 

T: IR3 ---+ IR3, a point set Ac IR3 is said to be warped to the point set {T(x) : x E A}. 

2.1 Image Domain 

Mathematically, each input MR image l is idealized as a continuous function from 

sorne do main VI C IR3 to IR. The domain is generally a rectangle, e.g., VI = [0,256]3. 

2.2 A uxiliary S pace 

While the 2D registration problem (see Chapter 5) employs an auxiliary space in 

addition to the input surfaces, no auxiliary space is required for 3D registration. 

The spatial mapping, T, is defined on the same do main as image I, i.e. VI. 

Generally speaking the mapping function is either defined on an of IR3 , or it can 

be easily extended to aH of IR3 . So, unless specified otherwise, T is considered a 

mapping IR3 ---+ IR3. 

12 
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2.3 Low-Dimensional Warping 

Consider the class of spatial transformations with very few parameters, specifically 

the class of "affine" transformations. 

Brains vary in size so rigid-body transformations, i.e., the set of translations and 

rotations, is certainly too limited a set to search. Such a transformation will not be 

able to match a large brain to a sm aller one. 

In or der to adjust for size, the set of possible transformations could be enlarged 

by including a global scaling operation in addition to rigid-body transformations. 

Alternatively, three operators could be added: independent scaling along the x-, y-, 

or z-axis. Such a transformation thus consists of a rigid rotation, followed by 1 or 

3 scaling operations, then a translation. To specify a transformation of this kind, 

three real parameters are needed for the translation, three parameters (e.g. a unit 

vector plus a rotation angle, or three Euler angles [GPS02]) for the rotation, plus 

one or three parameters for the scaling operation(s). These are referred to as the 

"seven-parameter" and "nine-parameter" set of transformations, respectively. 

AH transformations just described faH in the group of affine transformations. A 

general affine transformation has 12 parameters, which can be arranged into a 3x3 

matrix A and a 3-vector b for the affine transformation that maps point x to point 

Ax + b. Matrix A represents the generallinear transform part of the affine transform­

ation, and must have nonzero determinant. The set of rigid-body transformations 

is the subgroup for which A is a rotation matrix (rather than, say, a scaling or a 

refiection). The seven-parameter set restricts A to the form sR for scalar s > 0 and 

rotation matrix R. The nine-parameter set restricts A to the form 

where Ris a rotation matrix and SI, S2, and S3 are positive scalars representing the 

scale factors for each axis. 

An affine transformation has the property that a straight line is mapped into a 

straight line. For this reason, these transformations are sometimes referred to as 

"linear". 

The first applications of spatial normalization for brain mapping take their cue 

from the atlases of Talairach and co-workers [TST+67, TT88] and use affine or 

piecewise-affine transformations (with a small number of pieces) [FPR85, EMN+92]. 
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See [Woo96] for a good review and history of Talairach and Talairach-inspired nor­

malization procedures. Automated procedures for brain image registration using 

an affine mapping have been presented by several groups, including Woods et al. 

[WCM92, WMC93, WGH+98, Woo99], Collins et al. [Col94, CNPE94], Downs et al. 

[LFD+99, DILF99], Ashburner et al. [ANC+97]. These algorithms differ in how the 

search is conducted, the topic of Chapter 3. 

An affine transformation allows the transformed image to match the rough size 

and shape of the template. After allowing six parameters for location and pose and 

one for overall size, there are only five parameters 1eft (two for differential sca1ing 

a10ng the coordinate axes, and three for "skew") to specify the affine transformation. 

Five parameters (or two if using the 9-parameter subset) are certainly inadequate to 

completely capture the shape variations of the normal human brain [EKCM94]. 

Figure 2.1 shows a classification of two brains into tissue types (gray matter, white 

matter, and CSF voxels). The brains have been registered using a 9-parameter spatial 

normalization. The third column in the figure shows an image of the unmatched 

gray matter, i.e. voxe1s that are gray in one individual but not the other. If the 

9-parameter normalization were sufficient there would be no mismatch, but this is 

manifestly not the case. 

2.4 High-Dimensional Warping 

In order to better match fine detail, a more flexible class of transformation functions 

must be used. It is standard to work with the deformation field, defined as 

.6.(x) = T(x) - x, 

rather than working directly with T. One reason for this is that the boundary 

conditions for the deformation field are easily specified, making it more convenient to 

work with than T itself. For example, it is common to require that the displacement 

be zero outside some region containing the source image 1: let Vs be a bounded, 

open set of}R3 containing the domain of land require 

.6.(x) = 0 Vx ~ Vs. 

Define the coordinate functions of the deformation field as 



CHAPTER 2. SPATIAL TRANSFORMATION 15 

Figure 2.1: Map of gray matter mismatch after a 9-parameter spatial normalization. 
Left column shows a classification of one individu al brain into white matter, gray 
matter, CSF (darker gray) and background (black). Another individual is shown in 
the middle column. The third column shows in white the voxels that are gray in one 
subject but not in the other. 
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There are a vast number of possible nonaffine transformations. A registration al­

gorithm se arches through a pre-specified set of transformations, each transformation 

being specified by a vector of parameters. A parameter is said to have a global effect if 

the parameter is used to compute the value of ~(x) at aIl points x E ]R3. Otherwise, 

the parameter has a local effect. While it is conceivable to have a transformation 

class for which sorne parameters have local effect and others a global effect, it is more 

common that aIl parameters have a global effect, or an have a local effect. Such trans­

formations are denoted global transformation and local transformation, respectively 

[Bro92, MV98]. An affine transformation is an example of a global transformation. 

A transformation with mixed local effect and global effect parameters is most often 

written as the concatenation of two or more transformations, each of which is global 

or local. 

2.4.1 Global Transformations 

The deformation field is generally expressed as a sum of basis functions, each of which 

has global support (i.e. is non-zero on aIl of ]R3). The parameters are the coefficients 

that weight the basis functions of the summation. The deformation field ~ can be 

expanded using vector-valued basis functions. Alternatively, each component ~i can 

be written as an expansion of scalar-valued basis functions. 

Vector Basis Functions 

Let the basis functions take values in ]R3 and write ~(x) = L.~=i CkcPk(X) , where 

cPk : ]R3 -t ]R3 is the kth basis function and {Ck} is the set of parameters that defines 

~ (and thus T). Basis functions of this form might arise as eigenfunctions of a 

differential operator [CRM94, CJM97], as discussed in Section 3.4.1. 

Scalar Basis Functions 

The three deformation field coordinate functions can be expanded independently 

using a common basis of scalar functions cPk : ]R3 -t]R, writing ~i(X) = L.k CikcPk(X). 

The coefficients {Cik} are the parameters required to specify the transformation. 

From this point of view, affine functions are those using Xl, X2, X3, and 1 as basis 

functions. Woods [WGW+98, Woo99] extends the basis set to include polynomials 

of the coordinates up to fifth order. Friston et al. [FAF+95, AF99a, AF99b] use sine 

and cosine basis functions. 
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Another set of approaches to registration borrows from scattered data interpola­

tion [MR99]. This approach presupposes that the transformation is partially specified 

a priori, as discussed in Section 3.2.1. For example, T could be required to satisfy 

T(pk) = qk with n pairs {(pk, qk) : k = 1 ... n} of pre-specified homologous "land­

mark" points. Points {pk} lie in the source image domain while the set {qk} lie on 

the target image domain. The deformation field 6. is obtained by solving 3 inde­

pendent interpolation problems, one for each coordinate function 6.i . The system of 

equations for coordinate i is {p7 + 6.i (pk) = qf : k = 1, ... , n}. 

A cornrnon parameterization of this sort employs a low order polynomial in x 

plus a function of !!x - pk!! for each landmark point, 

N 

6.i(x) = fi(X) + 2: Cik'ljJ(!!X - pk!!), 
k=l 

where fi : 1R3 ---+ 1R is a polynomial and 'ljJ : 1R ---+ 1R is known as a radial basis function. 

Properties of the transformation T depend on the radial basis function chosen. Of 

the many possible choices, perhaps the "thin-plate" splines promoted by Bookstein 

[Boo89, Boo91] are the most widely known in medical imaging. The thin-plate spline 

radial basis function (for d dimensions) is defined as 

{ 
r2logr d = 2 

'ljJTPS(r) = r 
d=3 

Other choices include the multiquadric [RM95] 

or Gaussian [AR95] 

A global transformation can be difficult to control, as a change in any parameter 

affects the value of the transformation globally. Iterative estimation of the paramet­

ers may thus be expensive, sin ce aU the data needs to be taken into account in order 

to estimate any one parameter. If the parameter only affects the transformation 

locally, on the other hand, it may be estimated using just local information. 
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2.4.2 Local Transformations 

The global nature of radial basis functions can be avoided by using a function with 

compact support, i.e. 'ljJ(r) is nonzero only on an interval [0, a], e.g. [FRS99]. This 

guarantees that a landmark point has local influence on T. However, the choice of 

support radius a is depends on the number and configuration of the landmark points, 

as well as on the displacement of the landmar ks Ilpk - qk Il. l t is not clear how to use 

such a transformation in an automated registration system. 

The alternative chosen here is to avoid parameters with global influence by de­

fining T piecewise. Break domain of Tinto small simple subdomains, such as 

cubes or tetrahedra, with 6. defined on each subdomain using a low-degree poly­

nomial. Each parameter affects 6. only in one or few subdomains. Examples 

of transformations defined in this manner include Goshtasby's piecewise mappings 

defined on triangulations (in the plane) [Gos86, Gos87], the analogous 3D map­

pings using tetrahedra [AAFOO], and mappings defined using various splines, e.g. 

[SP86, DSTA95, LWCS96, SC97, Sub99]. 

Since digital images are usually defined on a regular rectangular gr id it is con­

venient to use rectangular parallelepiped subdomains to parameterize 6., with each 

face of a subdomain parallel to a coordinate plane. 

Definition 2.4.1 Mesh Warping. Let the domain [0, LI] x [0, L2] X [0, L3] be sub­

divided into NI N2N3 subdomains, each of size SI x S2 X S3, where Si = Ld Ni. The set 

of corners of the parallelepipeds comprise the vertices of the control mesh, written 

as {Vijk = (is1,jS2,ks3): i = 0,1, ... ,N1;j = 0,1, ... ,N2;k = 0,1, ... ,N3} where 

Si is the vertex spacing along the ith axis. 

The mapping function x I---t x + 6.(x) is determined by a continuous deforma­

tion field, 6., that is interpolated from values {6.ijk } stored at the 8 control vertices 

belonging to a subdomain containing x. 

Mesh warping is also known as a free-form deformation, though this term is often 

restricted to the case that the interpolation method is a tensor-product cubic spline. 

Mesh warpings are used in computer graphies for image morphing (e.g. [LWCS96]) 

and also in automated brain mapping by many groups, e.g. Bajcsy and KovaCÏc 

[BK89, KB99], Collins et al. [CPDE92, CPE94, Co194, CHPE95, CE97, CE99], Dav­

atzikos et al. [Dav96], Christensen et al. [CRM96, CJM97], and others [KPH+96, 

RSH+99, KLF99, RCRM01, SD02]. Indeed, mesh warping is probably the most com­

mon parameterization used, as it is a natural parameterization when 6. i8 obtained 
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using finite difference or finite element methods (discussed further in Section 3.4.1). 

The interpolation method used is generally either linear or cubic. 

The set of transformations representable (i.e. the flexibility of the transformation 

T) using a mesh warping is controlled in a natural fashion by the vertex spacing. Very 

often the vertex spacing is equal in the three dimensions (SI = S2 = 83) and a single 

value is quoted as the vertex spacing. A finer control mesh allows a more flexible 

transformation to be represented than a coarser mesh. A registration algorithm often 

estimates the final transformation in a series of steps, starting with a coarse control 

mesh and proceeding to finer and finer meshes as discussed in Section 3.5. The final 

vertex spacing is often on the or der of the image voxel size. In other circumstances, 

the vertex spacing can be limited to a larger value. This is useful to match the 

gross shape of a brain to a template when the latter is missing fine details, but a 

better mat ching is desired than is possible using just an affine transformation. This 

strategy is used in Chapter 8 to obtain improved template brain images. 

Mesh Warping with Linear Interpolation 

Consider first the two-dimensional analog bilinea'T' interpolation for which the domain 

is subdivided into rectangles. The interpolation works as follows. First, locate x in 

the control grid: let i = l xI! sd, j = l X2/ S2J. Point x is located in rectangular patch 

with control vertices vi,j, Vi+l,j, Vi+u+l, and V i,j+1, as shown in Figure 2.2. Let 

0: = xI! 81 - i and define two points on the patch boundary in a vertical line with x, 

(2.1) 

(2.2) 

Point x lies on line segment Mj Mj+1. Define (3 = X2/ S2 - j so that 

x (1 - (3)Mi + (3Mj+l 

(1 - 0:)(1 - (3)Vi,j + 0:(1- (3)Vi+l,j + (1 - o:)(3Vi,j+1 + o:(3Vi+l,j+1. 
(2.3) 

Defining Bo(s) = 1 - sand Bl(S) = s, Equation 2.3 becomes 

1 1 

X = L L Bl(o:)Bm((3)Vi+l,j+m. (2.4) 
l=O m=O 

The coefficients for each control vertex are used for interpolation of ~ 
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. -.-

Vi,j+l Mj+l Vi+ l,j+ 1 
.... 

..... i) x 

.... 
Vi,j 

Mj 
Vi+l,j 

- .. -

Figure 2.2: Bilinear interpolation for mesh warping. Points Mj and MHl are ob­
tained by linear interpolation of adjacent control vertices. Point x is linearly inter­
polated on segment Mj MHl. 

1 1 

L},(x) = L L BI (o:)Bm((J)L},i+I,Hm. (2.5) 
1=0 m=O 

This is easily extended to 3D, 

111 

X = L L L BI (0:) Bm ((3) Bn ( 1) vi+l,j+m,k+n, (2.6) 
1=0 m=O n=O 

with k = lX3/33J and 1 = X3/33 - k, with interpolation done using 

111 

L},(x) = L L L BI (o:)Bm ((3) Bn(ry)L},i+I,Hm,k+n. (2.7) 
1=0 m=O n=O 

For future reference note that any function can be similarly defined given values on a 

rectangular mesh, such as the image intensity function given values at voxel centres. 

Mesh Warping with Cubic Interpolation 

Cubic interpolation proceeds in much the same manner as for linear interpolation, 

except that the polynomials Bi are now third order. Also, there are four Bi, so the 
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T 

Figure 2.3: Mesh warping in JR2 with tensor-product cubic splines. The transforma­
tion for each patch is determined by the location of 42 control-points. 

interpolation requires (in d dimensions) a 4d grid of control vertices instead of a 2d 

grid. Equation 2.6 becomes 

3 3 3 

X = L L L BI (a) Bm(f3)Bn( ,)Vi+l-l,j+m-l,k+n-l. (2.8) 
1=0 m=O n=O 

The patch to be transformed lies at the centre of the 4d set of control vertices. Figure 

2.3 illustrates the situation for warping in JR2. 

The form of the cubic function Bi is determined by the type of spline desired. 

Sederberg and Parry [SP86] use Bernstein polynomials in order to warp geometric 

objects. Others use B-spline patches, e.g. [LWCS96] for image warping, Catmull­

Rom splines, or other spline functions [SC97]. 

Both linear interpolation and Catmull-Rom splines have the useful property of 

interpolating the function value at control mesh vertices, i.e. ~(Vijk) = ~ijk for 

aIl V ijk . The set of transformation values on the control mesh are thus often inter­

preted as a "sampling" of the deformation field~. This property is convenient in 

understanding the registration pro cess as mat ching the location of point Vijk in the 

source image to point Vijk + ~ijk in the target image. Both linear interpolation and 

the interpolating Catmull-Rom splines are a reasonable choice for the mesh warping 

interpolation function. For the 3D experiments presented in this thesis, an existing 

algorithm is used [CHPE95] which uses the cubic Catmull-Rom interpolating spline. 
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2.5 Injectivity 

An affine transformation is invertible as long as the linear part is non-singular, i.e. 

lAI =f O. In contrast, injectivity of a high-dimensional warping is difficult to ensure. 

For example, there is nothing in the definition of a mesh warping that guarantees it 

to be injective. 

Researchers often prove that the spatial transformation function T is injective 

under the assumption that T is differentiable, generally relying on the classical inverse 

function theorem. The inverse function theorem states that an inverse exists in a 

neighbourhood of point T(x) if the determinant of the Jacobian is nonzero at x, i.e. 

if I\7T(x) 1 =f O. Such proofs are derived in a continuous setting, implicitly assuming 

a computer model that can solve integral equations over real numbers. Though no 

pro of is given that the mapping remains injective after the problem is discretized 

and solved numerically, it is generally believed that the transformations obtained by 

an implementation of such an algorithm will be sufficiently close to the theoretical 

result if sufficiently many basis functions or a sufficiently small control mesh vertex 

spacing is used. 

Dupuis, Joshi, et al. [CJM97, DGM97, Jos98] prove that the solution to their 

image registration problem is a differentiable homeomorphism, i.e. it is a dijJeo­

morphi8m and thus is injective. Another tactic, adopted by Lee et al. [LCHS96] and 

Ashburner et al. [AAF99, AAFOO], among others, is to add a term to the objective 

function that penalizes a zero Jacobian determinant. This discourages the optimiz­

ation from converging to a solution that has a zero Jacobian determinant value. It 

may also cause the optimization to become stiff and thus not as effective at locating 

a good solution for T. 

Lee et al. [L\VCS96] use a 2D cubic B-spline mapping function with uniform 

control mesh vertex spacing (Le. 81 = 82) to morph digital images. They invest­

igate conditions on the control mesh vertex displacements to ensure that the warp 

is one-to-one, obtaining a sufficient condition: that the maximum control point dis­

placement should not exceed 0.4881, i.e. maXijk l.6. i (V jk
) 1 < 0.4881' In the same 

paper, they provide an example in which control point displacements of 0.49s1 result 

in a noninjective map. Choi and Lee [CLOO] refine the analysis somewhat and extend 

it to 3D. However, the resulting bounds on the maximum control point displacement 

are fairly small and are only sufficient conditions, so it is not clear how useful these 

are in practice. For example, setting .6.(x) = (1,1) for an x is a valid injective 

translation, but it violat es the conditions for the theorem of Lee et al. 
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2.6 Summary 

A necessary condition for a successful spatial normalization of the cortex is that the 

warping of one brain to another matches gray matter to gray matter. This is not 

possible to achieve using an affine transformation [EKCM94], as illustrated by Figure 

2.1, so a high-dimensional warping is sought. 

For the work in this thesis, the transformation is parameterized as a mesh warping 

(Definition 2.4.1) using a cubic Catmull-Rom spline for interpolation. This paramet­

erization has two advantages in addition to local control. First, by restricting the 

control mesh vertex spacing, there is a natural control over the amount of fiexibility 

allowed by the transformation. Second, the transformation interpolates its values 

at control mesh vertices which is convenient for setting up the registration process 

(discussed in the next chapter) as the parameters stored at each control mesh vertex 

can be interpreted as the value of the deformation field. 

As discussed in Section 2.5, there are no useful necessary conditions known for 

the deformation field values that ensure the mesh warping is injective. If required, 

injectivity is therefore enforced through the optimization algorithm, discussed in the 

next chapter. 



Chapter 3 

Searching for an Optimal 

Transformation 

The goal of this chapter is to survey the components and princip les of an algorithm 

for solving the following problem. Given a template image l and an image J, compute 

a transformation function T : VI C IR3 
---+ IR3 that associates each point x in image l 

with a point T(x) in image J. This association should have sorne meaning: the points 

x and T(x) should correspond biologically, i.e., be homologous. This problem, known 

as the image registmtion problem, has a long history in remote sensing and computer 

vision. Brown [Bro92] surveys image registration problem generally. Surveys by 

Maintz and Viergever [MV98] and by Lester and Arridge [LA99] cover registration 

in the medical imaging context, as do the books [Tog99, HHH01]. 

The registration problem is often cast as an optimization. The precise optimiza­

tion problem will come into focus as the chapter progresses. Roughly speaking, T is 

sought that optimizes an overall measure of how well T matches l to J. Registration 

algorithms differ in the details of sorne key components. Viewing registration as 

an optimization problem provides a useful framework in which to compare different 

algorithms appearing in the literature. 

The first component to specify is the "feature" data that is used to find the match. 

In this context, feature refers to any piece of data obtained from the image, whether 

identified by a human or extracted by the computer. The feature could be the image 

value itself, a geometric point, curve, or surface patch, or the result of sophisticated 

pre-processing such as classification of each voxel (as to its tissue type, for example). 

Closely tied to the feature used in the match is the objective function, that is, 

a function of the transformation T that measures how weIl T matches the features 

of l with the features of J. The complete objective function, generically denoted <I> 

24 
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l J 

Figure 3.1: Example of implausible registration. Figure on left is matched to figure 
on right by distorting the cavity on its side. A rotation by 90° is a more plausible 
match. 

throughout this thesis, often has two or more terms. The term that measures the 

quality of the data match is called the data term and is denoted <PD (l, J, T). 

The third component of mat ching is the set of functions in which to search for T. 

Chapter 1 argues that the transformation should in principle be a homeomorphism, 

or nearly so (sorne noninjectivity is tolerated). However, depending on the paramet­

erization of T (Chapter 2), it is not necessarily possible to limit the se arch to only 

homeomorphisms. Moreover, the space of homeomorphisms is too large: it contains 

biologically-implausible matches. Figure 3.1 shows a schematic example of an im­

plausible transformation. The leftmost figure (image 1) is to be matched with the 

rightmost (image J). In the middle is an image of l after applying a spatial trans­

formation that causes the left cavity to deform, fitting to the right cavity on image J. 

A rotation by 90° would have fit as well or better, and would be much more plausible. 

Methods to deal with this problem are discussed in Section 3.3.1. The result of such 

considerations is that a second kind of term, known as a "regularization" or "model" 

term, is incorporated into the objective function. Once the data and regularization 

terms are chosen, the objective function <P is generally expressed as a sum 

<P(I, J, T) = <PD(I, J, T) + À<PR(T) , (3.1) 

and the optimization problem to solve becomes 

T = argmin <P(I, J, T'). 
T' 

There are several possible approaches to search for the minimizer of this expression. 

These algorithms are the subject of Section 3.4. 

Spatial normalization methods generally estimate first an affine transformation 
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(or, say, a nine-parameter transformation described in Section 2.3), TA, followed by 

a nonaffine warping, Tw. The complete mapping is a concatenation of the two. 

This chapter is only concerned with the nonaffine warping transformation (hereafter 

referred to as sim ply T). 

Except wh en specified otherwise, the images and the transformation are under­

stood to be continuous functions defined on a continuous domain. The input image 

and the template image are both given as samples on a 3D rectangular grid. As­

suming it is band limited and adequately sampled, the underlying intensity function 

could be recovered using sinc interpolation although in practice a simpler (hence 

faster) interpolation method such as trilinear interpolation (Equation 2.7) is more 

often used. See [LGS99j for a survey of interpolation methods. After choosing an 

interpolation method, the images 1 and J can each be treated as a real-valued func­

tion: 1 : VI C ]R3 ---+ ]R and J : V J C ]R3 ---+ IR. Though the transformation T is only 

required for points on domain VI, it is convenient to describe the theory assuming 

that transformation T is a continuous map ]R3 ---+ ]R3. 

3.1 Coordinate Invariance 

Before enumerating specific data and regularization terms for the objective function, 

it is worth considering a broad princip le that constrains the choice of objective func­

tion terms. The principle is sim ply that the spatial mapping obtained by registering 

image 1 to image J should not depend on the specific Cartesian coordinate frame 

chosen in which to work. This principle is generally satisfied by using only terms 

that are both rotation-invariant and translation-invariant in the objective function. 

Let P be a point in]R3 with coordinates Xp in a particular right-handed Cartesian 

coordinate frame, denoted lF. Suppose there is a second right-handed Cartesian 

coordinate system, iF, in which the coordinat es are given as 

x=Rx+s (3.2) 

for a point at coordinates x in frame lF, where R is a rotation matrix and s is a 

vector. Point P has coordinates xp = Rxp + s in frame iF. 
A quantity that does not depend on the coordinate frame is called a Carlesian 

scalar. The image intensity 1 at a particular point in space, say P, is independent 

of the coordinate system, thus 1 (x p) is a Cartesian scalar. The mathematical form 

of the intensity function l does, of course, depend on the coordinate system but the 
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2 

Figure 3.2: Coordinate change. Point P has coordinates xp = (1,1) in the XIX2 

system, and coordinates Xp = (-V2, 0) in the XIX2 system. Image intensity at point 
P does not depend on the coordinate system, so the intensity function in each system 

must satisfy I(x) = I(x) where x = Rx + s, R = ~ (~1 i), and s = (-2V2, 0). 

mathematical form in the two systems must be related by l (x) = l (x) for aH points, 

where the coordinate values are related by Equation 3.2. These definitions work for 

any dimension; Figure 3.2 illustrates the concepts in ffi? In contrast to a scalar, the 

component values of a vector do depend on the coordinate frame. A vector with 

components v = (VI, V2, V3) in frame lF has components 

3 

Vj = ~RjhVh 
h=1 

in frame if. This sort of transformation property can be generalized to quantities 

with more than one subscript as follows. 

Definition 3.1.1 3D Carlesian Tensor [LR75j. Let r be any positive integer. A 

set of 3T quantities Thlh2 ... hr' hi = 1,2,3 for i = 1, ... , r, is said to constitute the 

components of a Cartesian tensor of rank r if, under the coordinate transformation 

3.2, these quantities transform according to the transformation Law 

3 3 

T·· . -~· .. ~R·h ···R·hT',h h JlJZ···Jr - L-..t L-..t J1 1 Jr r 1··· r· (3.3) 
h1=1 hr =l 

Note that vectors are Cartesian tensors of rank 1 and scalars are regarded as tensors 

of rank o. Tensors can be defined in space with arbitrary dimension and with respect 

to a general nonlinear coordinate transformation (see Lovelock and Rund [LR 75]) 
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but such generality is not needed here. In this chapter the term "tensor" is used 

without qualification to refer to 3D Cartesian tensors. The modifier "Cartesian" 

(sorne authors use the term affine tensor instead of Cartesian tensor) is applied 

because the coordinate transformation (Equation 3.2) is restricted to be an affine 

relationship between Cartesian frames in a Euclidean space. 

An invariant tensor is a tensor that has the same numerical value in every 

Cartesian coordinate system. One example is the zero tensor. Another is the Kro­

necker tensor 

o - { 1 if j = k, 
jk = 0 otherwise . (3.4) 

The Kronecker tensor is shown to be invariant by computing the component values 

in the frame ÏF using Equation 3.3, 

Sjk = L L RjlRkmOlm = L RjlRkl = (RRT)jk = Ojk, 

1 m 1 

where the last equality holds because Ris an orthogonal matrix. 

New tensors may be formed from existing tensors in a number of ways. Addition 

of tensors of the same rank forms a tensor; for example if A ijk and B ijk are the 

components of two rank 3 tensors, then so is C ijk - A ijk + Bijk . A rank r and a rank 

s tensor may be multiplied to form a rank r + s tensor; e.g. Cijklmn = AijkBlmn form 

the components of a rank 6 tensor. A rank r ;?: 2 tensor may be summed over a pair of 

indices to pro duce a rank r - 2 tensor, a pro cess known as contraction. For example, 

C j _ E~=l A iij comprise the components of a rank 1 tensor. Finally, differentiation 

of a rank r tensor function forms a rank r + 1 tensor function. For example if Aij(X) 

are the components of a rank 2 tensor function, then Bijk _ 8Aj /8.Tk forms a rank 

3 tensor function. 

The requirement that the transformation obtained by registration not depend on 

the coordinate system is satisfied by requiring that the objective function <P(I, J, T) 

is a scalar. AIl values of <P are then invariant under coordinate transformations. In 

particular, the local minima are unchanged by a coordinate transformation so the 

minimizing transformation T does not depend on the coordinate frame chosen. 

Often the objective is an integral over sorne domain D C JR3, written <P(I, J, T) = 

Jo cjJ(I, J, T)dx. In order that this integral be a scalar, it is necessary and sufficient 

[LR 75] that the integrand be a scalar, i.e. 4>(x) = cjJ( x) where the coordinate change 

is given by Equation 3.2. 
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3.2 Data Terms 

There are two broad classes of feature used in image registration. One class of features 

is geometric objects such as points, curves, surfaces, or volumes, and the other class 

is the set of image intensities, or a transformation thereof (such as smoothing or 

differentiation) [HHHOl]. 

One registration strategy, used with geometric features, requires an a priori 

mat ching of corresponding feature pairs, {(fl, fj) : k = 1, ... , n}, where feature 

fl is the kth feature of image land is matched to the kth feature of image J, de­

noted fj. Such a mat ching is used to seek a transformation T that maps the point(s) 

of feature ff on to, or near to, the point(s) of feature fj. Since generating the set 

of corresponding feature pairs is equivalent to assigning the label k to feature fj, 
this kind of feature data is known as labelled feature data. The main dichotomy in 

data terms for medical image registration is between data terms that use labelled 

features and data terms that use unlabelled features (whether geometric features or 

intensity-based features) [AF99b]. 

3.2.1 Labelled Features 

As discussed ab ove , a labelled feature is a geometric object, i.e. a point set in ]R3. 

The most commonly used type of geometric feature is a discrete point, which is 

termed a landmark point. An extended feature comprised of a continuum of points 

that make up a one-dimensional curve [Sub99, DSTA95], a two-dimensional surface 

patch [HBOO, TT96], or a three-dimensional volume set [CLGE98] can also be used. 

There are two approaches to dealing with labelled data: the transformed feature, 

T(f}), could be required to map exactly onto the corresponding feature fj, or it could 

be allowed to map only approximately to the corresponding feature. The resulting 

transformations are described as interpolating, or approximating, respectively. 

Interpolating Transformation 

Suppose it is desired that the transformation T maps each feature fJ of l exactly to 

its match fj in image J. The registration then becomes a constrained optimization 

problem. For example, suppose there is a set of n point landmarks {pk E VI : 

k = 1, ... , n} and a corresponding set of landmarks {qk} in the domain of J. An 

interpolating transformation has the property that T(pk) = qk for an k. There 

are many interpolation methods available [MR99] including distance-weighted and 

radial basis function interpolation (discussed in Section 2.4.1). In the latter category 
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are found the thin-plate spline methods of Bookstein [Boo89], and the landmark 

mat ching of Joshi et al. [Jos98, JMOO]. 

An interpolating transformation can also be used for extended features, i.e. 

curves, surface patches, and volumes. For example, suppose that, in addition to 

the pairing of a curve in c E 'DI with a curve in c' E 'D J, a mapping from c to c' is 

given, a transformation T can be found that extends this mapping (or, generally, a 

set of mappings between matched curve pairs) to the entire image domain [MR99]. 

In practice, however, curves and surfaces are often discretized into equally-spaced 

sample points and landmark mat ching is employed [VEDJM98] or an approximating 

transformation, described next, is used [CLGE98]. 

Approximating Transformation 

In typical medical images, the landmark points are not easy to locate precisely. 

Grachev et al. [GBR+99] had an expert select 128 landmarks per hemisphere two 

times in the same brain, separated by a one month interval. They report an RMS 

error in locating the landmarks of 1.6 mm for each hemisphere. The error is generally 

larger if two different experts are asked to select the landmarks, as they might use 

different criteria for locating them. 

Given that there is sorne uncertainty in locating the landmark, the registration 

problem can be relaxed so that the transformation is not required to interpolate 

the landmarks. Rather, the location T(pk) should be near qk, though not necessarily 

exactly equal to it. The idea is to trade off data fitting for a smoother transformation, 

much like the problem of fitting a curve to noisy data. The data term for the 

registration problem can take the form of a weighted square distance penalty, e.g. 

n 

<I>LM = I:akllqk - T(pk)112, (3.5) 
k=l 

where pk is a landmark point in image l that should match to the landmark point 

qk of template image J. The ak are weighting factors that could vary according to 

uncertainty in the coordinate values measured for pk and qk [JMOO, CMP+01]. If the 

uncertainties are different for the different coordinate axes or if there are correlations 

between uncertainty values of the axes, a Mahalanobis distance can be used instead 

n 

<I>LM = I:(qk - T(pk)fL,k1 (qk - T(pk)), (3.6) 
k=l 
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where Ek is the covariance matrix of uncertainties associated with the landmark pair 

(pk, qk) [JMOO]. 

3.2.2 Unlabelled Features 

Geometrie features can also be used without labelling. Alternatively, the image 

intensity itself, or a simple transformation of it such as convolution with a blurring 

or differentiation operator, can be used in the data term. 

Geometrie Feature 

The data term for geometric objects is generally based on distance from an object to 

its homologue in the other image, e.g. 1>LM (Equation 3.6). \"hile the features are 

initially unlabeIled, a matching can be carried out during the pro cess of registration. 

The iterative closest point (ICP) method and its successors are often used to estimate 

simultaneously T and a landmark point matching. The original ICP [BM92] is used 

for rigid-body transformations. Let PI = {pk E VI} be a set of landmark points 

extracted from image I, and let QJ be another set of landmarks extracted from 

image J. The iterative closest points algorithm minimizes the distance from T(pk) 

to the nearest point in Q J for each pk, i.e. to minimize 

(3.7) 

This does not require a 1-1 mat ching of features in I and J: several points in PI 

may match to the same point in Q J and sorne points of Q J may not be matched to 

a point in PI. The idea can be extended to nonrigid T [FA96], in which case extra 

constraints (i.e. regularization terms) are needed to prevent T from mapping aIl of 

PI to a single q E QJ. 

Image Intensity 

For convenience define J = Jo T, obtaining a function that is defined on the same 

domain as I. In this section I and J are considered as discrete images, each given 

by a set of intensity values located on a common grid in VI' 

Consider a data term that uses the image intensity alone. The criterion for 

deciding whether location x E VI is a good match to location T(x) E V J is made 

by comparing intensities I(x) and J(x). This thesis is concerned with mat ching MR 

images of the same modality, generally Trweighted. In this situation it might be 
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supposed that the intensity values should be approximately the same, leading to 

the data term that simply sums the squared intensity difference, I:(I(x) - J(x))2, 

a function widely used for brain image registration, e.g. [CRM94, CPA99 , AF99a, 

Woo991· 

Consider the domain over which to perform this sumo Assume that the images 

coyer the complete brain, avoiding issues that arise wh en one image covers a subset 

of the other, e.g. [SHH99]. An image that covers the entire brain often includes 

other parts of the head, e.g. scalp and neck. Non-head parts such as the neck can 

be removed by simple cropping of the images. The scalp can be 1eft in the images 

or it, too, can be removed, e.g. [DFS99, Smi02, RMPO+02]. The summation should 

include all the voxels of l and of J, a region that could be defined as D = VI U 

T-1(VJ). In this form, D inconveniently depends on T, the transformation sought. 

In practice, the domain of integration is taken to be VI or a slight en1argement (by 

a few voxels, say) of VI, and the support for J is assumed to fall inside D. This last 

assumption can be checked by the registration a1gorithm as the match progresses. 

The sum-of-squared-difference objective function is defined as 

épSSD(I, J, T) = 2:(I(x) - J(x))2. (3.8) 
xEO 

To account for the presence of noise in the images, suppose that 

J(x) = I(x) + E(X), (3.9) 

where E(X) is a zero-mean random variable. In other words, l is the "true" image 

and J is a version corrupted by noise. 

If it is further assumed that E(X) is Gaussian with constant variance (72, then the 

probability for observing intensity J( x) when the true value is l (x) 

To simplify matters, it is common to assume that measurements of each voxel of J 

are conditionally independent given l [RMA001. The probability of observing the 

entire image is then just the product of the probability of each voxel observation. 

The probability of observing image J given that l is the "true" image is 

p(llI) TIxEO p(l(x)lI) 
(21W2)-n/2 exp(-2!2 I:xEO(I(X) - J(x))2), 

(3.10) 
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where n = 101 is the number of voxels in O. A common criterion for choosing T is 

to choose the transformation for which this probability is a maximum, the "method 

of maximum likelihood" [DHS01]. From Equation 3.10, it is clear that maximizing 

P(JII) is equivalent to minimizing the expression in the exponent, which is equivalent 

to minimizing 1>SSD. 

However, it is well-known that Equation 3.9 is not a reasonable approximation in 

general. Even when the scanner settings are the same the signal elicited from, say, 

the white matter, can be very different between individuals. Figure 3.3 shows the 

intensity histogram of two individuals from the International Consortium for Brain 

Mapping (ICBM) dataset [MTE+95]. White matter voxels are among the brightest 

in a T1-weighted scan and so are part of the bump furthest to the right. The top 

histogram in the figure indicates that white matter in subject 106 has a raw intensity 

value of about 500 000, while in subject 107 the white matter intensities are about 

280000. Even after the scans are preprocessed to remove the "shading" artifact (using 

the method of [SZE98]) caused by nonuniform sensitivity of the scanner receive co ils , 

the intensity values (bottom histogram) for a given tissue differ between subjects. 

Given that the "nearly equal" intensity assumption is not satisfied, 1>ssD cannot 

be used alone. The images need to be further processed so that the intensity of a 

given tissue type is the same in each image. Consider an affine intensity relationship; 

that is, if the intensity for a given tissue in image l is i, then the same tissue should 

be measured to have intensity Œ + {3i in image J. The two parameters Œ and {3 allow 

two intensity values in land J to be matched, e.g. the peak values of gray and of 

white tissue. The values of Œ and (3 could be estimated by fin ding the intensity values 

for the two peaks in the histogram and solving a 2 x 2 system of linear equations. 

Then the intensity at each voxel x of image l can be remapped to Œ + (3I(x) before 

registration. 

An alternative to precomputing the intensity relationship is ta estimate it as 

part of the optimization. Woods [Wo099] assumes a globallinear relation between 

intensity values, 

1>(1, J, T) = I)ŒI(x) - J(x))2, (3.11) 
xESl 

and includes Œ in the set of parameters to estimate during the optimization. Friston 

et al. [FAF+95] estimate an even more general intensity relationship. 

It is also possible to build a certain intensity relationship into the data term 

without needing to estimate parameters of the intensity relationship. Incorporating 
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Figure 3,3: Intensity histograms of T1-weighted scans of two subjects. The top plot 
shows the raw intensities. The bottom plot shows the intensities after preprocessing 
to correct for the intensity nonuniformity artifact. Notice that the intensity of gray 
and of white matter, located at the rightmost two peaks of each histogram, differs 
between the two subjects even after nonuniformity correction has been applied. 
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noise, the assumption of a global affine relation between intensities can be written 

J(x) = Ct + f31(x) + E(X). (3.12) 

Using a more sophisticated likelihood argument [RMAOO], the affine intensity relation 

assumption leads to maximizing the correlation coefficient similarity measure 

<P (1 J T) = Cov(I, J) 
cc "J ' Var(I)Var(J) 

(3.13) 

in which the variance is defined as 

1 
Var(I) = N 2..:(I(x) - /-kI?, 

xEO 

and 
1 

/-kI = N 2..: I(x) 
xEO 

is the mean. The variance and mean for J are defined analogously. The covariance 

is 
~ 1"", ~ 

Cov(I, J) = N L)I(x) - /-kI)(J(X) - /-kJ). 
xEO 

The correlation coefficient pro duces a value in the range [-1, 1], with higher scores 

indicating a better match. 

Sometimes the assumption is made that intensities are linearly related, i.e. 

J(x) = f3I(x) + E(X), 

rather than Equation 3.12. In the maximum likelihood framework [RMAOO], this is 

equivalent to maximizing the normalized cross correlation 

<Pxc(I, J, T) = ~ I(x)J(x) , 

J~ J2(x) ~ J2(X) 
(3.14) 

with all sums taken over the domain i1. 
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Regional Similarity Measure 

The intensity-based similarity me as ures defined so far, <PSSD, <Pcc, and <Pxc, are each 

evaluated globally, i.e. summed over an O. This is appropriate if the corresponding 

intensity relationship (equality, affine, and linear, respectively) holds over the entire 

image. However, the MR signal intensity from homogeneous tissue, is sel dom uniform 

throughout an image. Instead, the intensity varies smoothly across the image, an 

artifact termed intensity nonuniformity. Methods exist (e.g. [SZE98]) to estimate 

and correct for the nonuniformity. 

The nonuniformity can also be accommodated directly in the similarity measure, 

by allowing the coefficients a and j3 in Equation 3.12 to be spatially varying, 

J(x) = a(x) + j3(x)!(x) + E(X). (3.15) 

This complicates evaluation of a maximum likelihood data term. However, sinee 

the intensity variation is known to be smooth with slow variation in space [SZE98], 

the functions a(x) and j3(x) may be approximated as pieeewise-constant functions. 

Break the domain 0 into n smaller regions, 

where a and j3 are assumed constant on each Ok. The maximum likelihood solution 

on region Ok is obtained by maximizing <Pcc over points in Ok. Maximizing inde­

pendently over each Ok leads to a data term expressed as a sum of regional data 

terms, 

n 

<P D (T) = L: CP'D (T), (3.16) 
k=l 

where cp~ is a similarity term (e.g. <Pcc or <Pxc) evaluated on Ok. 

The regional form of similarity measure has an additional benefit when used with 

a mesh warp transformation. Let T be parameterized as a mesh warping, and choose 

Ok to be a sphere centered on the kth control mesh vertex. Equation 3.16 can then be 

indexed in terms of the set of control mesh vertiees, V, rather than using .the integer 

k. Let cPÏJ denote the data term evaluated on Ov, a region eentered at the position 

of v. The evaluation of cPÏJ depends on T through the function J = Jo T. The value 

of T(x) = x + .6.(x) for x E Ov requires an interpolation of .6.(x). However, with the 

aim of quickly evaluating CPÏJ (evaluation time is critical inside the innermost loop of 
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an optimization), .6.(x) is approximated as .6.(v). After doing so, the only parameter 

of T on which 4JD depends is .6.( v), the deformation vector associated with control 

vertex v. The data term can thus be written 

<PD(T) = ~ 4JD(.6.(v)). 
VEV 

Each term of this sum is a function only of .6.(v) for one control mesh vertex v. It 

is shown in Section 3.4.2 that the regularization term <PR(T) can also be expressed 

as a sum of terms, each of which only depends on .6.( v) for a single control mesh 

vertex v. Thus the whole objective function can be put into a sum of such terms. 

The optimization problem is then said to be separable [NW99]: it can be solved 

using a series of independent optimization problems, each of which involves only 

a few variables, i.e . .6.(v) for one control mesh vertex v. This allows for parallel 

implementation, but more importantly each optimization problem involves only the 

three variables .6. i ( v ), i = 1, 2, 3, rather than 105 -107 variables in the full set {.6. i ( v) : 
v E V} where V is the set of control mesh vertices. Performing an optimization on 

a small set of variables allows more sophisticated optimization techniques, which 

typically require quadratic storage [NW99]. Clearly quadratic storage is not an 

option with the full variable set. 

Regional normalized cross correlation is the measure used by Collins' program 

ANIMAL [CNPE94, CHPE95], which is used for 3D experiments in this thesis. 

3.2.3 Multiple Features 

One advantage to using intensity features rather than geometric features is that 

the former are defined at every voxel of the image and so generally provide more 

information than do es a sparse set of geometric features. However, using intensity­

based measures alone has proved unsatisfactory for matching structures of the cortex 

(i.e. sulci or gyri) [CLGE9S]. 

In order to aid the mat ching for difficult areas like the cortex, an intensity-based 

similarity measure can be augmented by a geometric feature. The geometric feature 

mat ching could be imposed as a hard constraint, using an interpolating transforma­

tion as described previously. Alternatively, the data term for the geometric feature 

(such as the expression 3.6) can simply be added to that of the intensity feature, 

leading to a data term like <Pcc + À<PLM, where À is a parameter balancing the 

contributions of the two terms. 
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3.3 Model Terms 

As alluded to at the beginning of this chapter, the space of transformations searched 

is too large. There are many implausible transformations (e.g. Figure 3.1) that 

result in a "good" match, when the match quality is measured by a data term alone. 

One way to alleviate this problem is to restrict the search to a suitable subset of 

the homeomorphisms. If the two images are known to be of the same individu al 

the choice of subset is clear, namely the rigid-body transformations. However, this 

thesis addresses the problem of matching brain images of different individuals. The 

appropriate subset of homeomorphisms for this task is not presently known. 

3.3.1 Regularization Rationale 

Since the appropriate set of transformations is not known, the approach widely 

used is to search an overly-large class of transformations but to add a term (cI>R) 
to the objective function that penalizes "undesirable" transformations [Tog99]. A 

sufficiently-large penalty serves to prevent the optimization from converging to such 

a transformation. There are two heuristic arguments used to motivate this penalty 

term. Each motivation sheds sorne light on the meaning of this term. 

Bayesian 

One approach is to view registration as a statistical decision process: which T should 

be chosen, given the data 1 and J [CMGA92, Gee99]? The decision is based on the 

posterior probability of T being the correct transformation, i.e. P(TII, J). If an 

errors are viewed as equally serious (the "zero-one 10ss function"), the optimal choice 

of transformation is the maximum a posteriori solution, i.e. that which maximizes 

the posterior probability P(TII, J) [DHS01]. 

The decision problem is cast as a minimization problem by using the negat­

ive logarithm, -log P(TII, J), as the objective function. Using Bayes theorem, 

P(TII, J) = kP(JII, T)P(T), where k is a constant independent of T, the problem 

becomes to minimize 

cI>(I, J, T) = -log P(JII, T) -log P(T). (3.17) 

In Section 3.2.2 (see Equation 3.10, for example) it is argued that the data term (for 

intensity features) can often be written in the form -log P(JII, T), so the first term 

of Equation 3.17 can be identified with the data term, cI> D, and the second can be 
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identified with <PR. 

Thus, <PR is related to P(T), the prior probability distribution on the spaee of 

transformations. This agrees with the earlier notion of introducing <PRin order to 

penalize "unlikely" transformations. However, this does not aid in actually comput­

ing P(T) or <P R. Construction of a good statistical model for the transformation 

distribution is an on-going research topie. For the case of a low-dimensional regis­

tration such as an affine transformation, it is feasible to estimate the probability 

distribution function for the transformation parameters by sampling registrations 

from the template to a population [ANC+97]. Or, if landmark points are used as the 

feature, the spatial distribution of each landmark can be learned and the "principal 

modes" of the distribution are then used to produee a prior distribution for T, e.g. 

[CET98, CET99]. 

In order to obtain a prior distribution P(T) this approach requires more samples 

than parameters, which is infeasible when dealing with transformations such as mesh 

warping that have many thousands of parameters. However, by projecting the ob­

served deformation vectors .6. onto a low-dimensional subspaee using the Gram­

Schmidt orthonormalization pro cess [Lan87], Gee and Le Briquer [GLB97, Gee99] 

are able to learn the principal modes of variation in the observed subspaee. While 

this does not provide a prior for the mesh warping, it does provide P(T) for the 

observed subspaee and can be used as the regularizer for an intermediate mat ching 

stage that is applied after affine registration and before mesh warping [GB99]. 

Tikhonov 

Another point of view, coming from research in optical fiow and other early-vision 

problems [PTK85], borrows ideas from Tikhonov's the ory of regularizing "ill-posed" 

problems (see, e.g. [EHN96, Kir96]). A well-posed problem is one for which a solution 

exists, is unique, and depends continuously on initial data. Many problems fail to 

meet one or more of these three criteria, and are called ill-posed. 

An ill-posed problem often turns out to be the inverse of a well-posed problem. 

Inverse linear problems have been well-studied sinee papers by Ivanov, Phillips and 

Tikhonov in the 1960s [BB98]. This classical theory coneerns linear maps K : F -+ C, 

where F and C are Hilbert spaees (F could be the spaee of square-integrable functions 

]R3 -+ ]R3, for example). It frequently happens that the forward problem of computing 

g = K f is well-posed, while the inverse problem (solve K f = g for 1) is not. The 

inverse problem may not have a unique solution, or the solutions may not depend 

continuously on the input. The classical approach to an ill-posed inverse problem 
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is to modify what is meant by "solution". The equation K f = 9 is replaced by a 

variational formulation in which f is sought to minimize a function 

(3.18) 

where L is sorne operator, commonly the identity or a differential operator. The 

norms are associated with the space given by the subscript (i.e., II· Ile is a norm 

on space G), and are typically integrals 11911& = Je 92
. Suppose the inverse problem 

is ill-posed because the solution is not unique. The first term in Expression 3.18 is 

zero for many f, but with an appropriate operator L, the second term has a unique 

solution. 

The first term in Expression 3.18 is analogous to the data term of image regis­

tration (with T playing the role of f and function composition with J playing the 

role of operator K); recall <PSSD = J(J 0 T - 1)2 for example. The second term in 

Expression 3.18 is called the regularization term, which is where the nomenclature 

for <P R cornes from. 

This form of regularizer can be viewed as imposing prior knowledge about the 

smoothness of the solution. In contrast to the previous section, the prior knowledge 

is not a probability distribution P(T), but rather the more vague notion that T ought 

to be "smooth". The common choice of a differential operator for L in Equation 3.18 

effectively penalizes "high frequency" functions. To see this, suppose f : lR --c> lR is a 

function with Fourier transform J(k) = J f(x)e27rikxdx; then the Fourier transform 

of l' = df /dx is -27rikÎ(k). Using Parseval's equality J If(x)1 2dx = J lJ(k)1 2dk, so 

J 11'(x)1 2dx = J(47rk)21J(k)1 2dk. Choosing Lf - l' as regularizer in Equation 3.18 

effectively penalizes a transformation in proportion to the energy in each frequency 

component multiplied by the square of that frequency. Minimization with such a 

term tends to favour transformations with little contribution from higher frequen­

cies, which are generally "smoother" than functions with high-frequency components. 

DifferentiaI regularizers can be generalized to higher-order derivatives, each order of 

differentiation adding a power of k2 to the penalty. 

3.3.2 Low-Order DifferentiaI Regularizers 

At this time, choosing a prior probability distribution on T for mesh warping does 

not seem feasible, so a quadratic differential regularization term <PR = J q;R is often 

adopted to impose smoothness [BK89, Arni94 , SD02, MCAG93]. 

Following Cachier and Ayache [CAOlb], the possible forms this penalty term 
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might take are investigated. The integrand ctR must be a scalar function, as argued 

in Section 3.1. Since the registration problem is formulated as a minimization, such 

a term must be bounded from below. It is no loss of generality to require the term 

be positive semidefinite. 

The constraints imposed so far (positive semidefiniteness and invariance under 

coordinate transformation) leave a large number of possible penalty terms that can 

be investigated systematically according to the total degree in derivatives of L':.. The 

quadratic polynomials in 8L':.j /8Xk that are rotationally invariant and positive semi­

definite can be systematically enumerated as follows. Recall that L':.i form the com­

ponents of a vector (rank 1 tensor) and its derivatives form the components of a rank 

2 tensor. Introducing the notation 

8L':.· i\ _ J 
t....lj,k = 8

X
k' 

quadratic terms L':.j,kL':.l,m can be formed. These are rank 4 tensors from which scal­

ars are obtained by performing two contractions. There are 6 ways to group the 

four indices (i, j, k, l) into pairs of indices to contract, but the or der of contraction 

doesn't matter (i.e. (j, k)(l, m) is the same as (l, m)(j, k)) so only half the groupings 

are distinct. There are thus three distinct pairings of the four indices: (j, k)(l, m), 

(j, l)(k, m), and (j, m)(k, l), giving three possible quadratic terms 

ctER(L':.) = L (W1L':.j,kL':.j,k + W2L':.j,kL':.k,j + w3L':.j,jL':.k,k). (3.19) 
jk 

The other way to obtain a scalar from the rank 4 tensor L':.j,kL':.l,m is to contract it 

with a rank 4 tensor that has the same value in an Cartesian coordinate frames. It 

turns out that aH such rank 4 tensors are products of the Kronecker tensor (Equation 

3.4) and leads to the same three terms as Equation 3.19 [CA01b]. 

Imposing the condition that the regularizer must be positive semi-definite implies 

the weights are restricted as follows [CA01b] 

(3.20) 

Cachier and Ayache also characterize the rotationally-invariant quadratic differential 

forms of second order (there are five). 
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Algorithm 1 Basic Iterative Registration 

1. Set {Ck} to an initial estimate. 

2. Estimate corrections {6ck}' 

3. Set Ck f- Ck + 6ck. 

4. Repeat Steps 2-3 until done. 

3.4 Iterative Registration 

As discussed in Chapter 2, the transformation function T : ]R3 --+ ]R3 is specified 

using a finite set of parameters, generically denoted {Ck}' This section deals with 

the problem of estimating those parameters. 

In special cases, an analytic solution is available. An example of this is using 

four non-coplanar point pairs to specify an affine transformation (the 3D analogue 

of Equation 5.2). More often, however, the parameter estimation is an iterative 

procedure. 

3.4.1 Basic Aigorithm 

Let {Ck} denote the coefficients describing the transformation T that need to be 

estimated. The generic iterative algorithm is shown in Algorithm 1. The two details 

that need to be filled in are: (1) how the corrections are estimated, and (2) what 

is meant by "done". There are three routes taken in the literature. One method 

("landmark matching") is only applicable to labelled geometric data terms. For 

other data terms, there are two possibilities. The most direct route is to discretize 

the objective function <I> and apply techniques of numerical optimization. This leads 

naturally to an iterative algorithm. The other route is to derive and then discretize 

a set of "force balance" (Euler-Lagrange) equations. Historically, the latter approach 

is taken first, in the work of Broit. 

Landmark Matching 

This method is applied when using labelled geometric data terms, whether inter­

polating or approximating the data. In the former case there is no data term in 

the objective function and <I> = <I>R, while in the latter case the data term is typic­

ally <I> LM 0 The minimizer turns out to be an expansion in terms of basis functions 

[BooS9, JMOO]. The set of basis functions used is dictated by the form of <I>Ro The 
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coefficients in the expansion are obtained through solving an n x n linear system of 

equations, where n is the number of landmark pairs in the data. 

Discretized Euler-Lagrange Equations 

Sorne intensity-based data terms, e.g. ifJssD, are summations that can be regarded 

as a discretization of an integral data term ifJ D = f cp D (l, J, 0.). Suppose that the 

regularizer is also an integral with the integrand built using first derivatives of 0. 

(e.g. Expression 3.19), ifJR = f cPR(I, J, 1.:::.). Then the complete objective function to 

minimize can be written 

with 

cp = CPD + cPER = cPD(0.) + L(Wl0.j,k0.j,k + W20.j,k0.k,j + W30.j,j0.k,k)' 
jk 

(3.21) 

(3.22) 

Using standard techniques from the calculus of variations [CH53, GPS02], a necessary 

condition for ifJ to be at a minimum can be derived. Setting the "first variation" of ifJ 

to zero, results in the Euler-Lagrange equations, a set of differential equations that 

0. must satisfy, 

(3.23) 

These equations are analogous to the condition f'(xo) = 0 for Xo to be a minimum 

of a real-valued f. As is well-known, this condition only implies that f is stationary 

at Xo; it could be a maximum, minimum, or infiection point. The same is true of the 

Euler-Lagrange equations [CH 53]. 

The Euler-Lagrange equations for cp as in Equation 3.22 are 

\Vith the replacements 2Wl = /-1, and 2( W2 + W3) = /-1 + À, this equation can be 

re-written in more common notation as 

(3.24) 
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where F is a vector with components 

(3.25) 

The Euler-Lagrange equations are a set of three coupled partial differential equations. 

This is the linearized elastic force equation introduced into image registration by 

Brait and Bajcsy (see, e.g. [BK89, GB99]). Equation 3.24 can be discretized using 

finite difference approximations for the derivatives, arriving at a sparse linear system 

that can be solved using standard methods. 

The derivation of Cachier and Ayache [CAOlb] just presented provides a rationale 

for choosing "elastic" regularization: Equation 3.24 is the most general expression 

involving rotationally-invariant quadratic forms of first derivatives in.6.. Of course, 

the equations of linear elasticity are derived with the same invariance properties in 

mind, so it is no surprise that they coincide. 

Discretized Objective Function 

There are a number of methods that work directly from the objective function 1> 

rather than deriving the Euler-Lagrange equations [CRM93, GP96, LBS99]. In each 

case, the strategy is to substitute the parameterized formula for .6. into 1> and use 

numerical optimization methods to find optimal values for the parameter set {cd. 
Suppose 1> R = J IIL.6.112, where L is a linear differential operator that has a com­

plete set of orthonormal eigenfunctions, {<pk}. Let Àk be the eigenvalue associated 

with <pk, i.e. L<pk = Àk<pk. The orthonormality condition implies J <pk. <pl = <Ski. Then 

the transformation function can be conveniently parameterized using the eigenfunc­

tions as a basis, as described in Section 2.4.1. An n-term approximation is written as 

.6. = 2..:~=1 Ck<pk [MCAG93], leading to a very simple expression for the regularization 

term, 

1>R JilL t ck4l W 
k=l 

J " t ck
À

k<p
k

ll
2 

k=l 

t t CkClÀkÀl J <pk . <pl 
k=l 1=1 

n 
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Another method of discretizing the objective function is to simply approximate 

the integral cp = ](CPD(I, J, T) + CPR(T)) as a sum over the points of the control 

mesh vertices, approximating any derivatives by finite differences [MCAG93]. This 

approach fits weIl with algorithms that parameterize the transformation using mesh 

warping. 

A third approach is to apply the finite element method [Bic94], in which the do­

main of integration is subdivided into smaU elements (e.g. the parallelepipeds used 

in mesh warping [GH99]) and the integrand is expanded over basis functions with 

support in a single domain element. The basis functions are simple enough (gener­

ally low-order polynomials) that most of the terms in the integral can be evaluated 

analytically. However, the data terms involve J(T(x)) and are often approximated 

using a quadratic function of ~ [GB99]. 

3.4.2 Two-Step Registration 

When the transformation is a high dimensional warping (Section 2.4), it is not un­

common to have on the order of a million parameters: for example, a mesh warping 

with a 100 x 100 x 100 control mesh and 3 parameters per control mesh vertex con­

stitutes 3 x 106 parameters. With so many parameters to estimate, it is important 

to choose an effective optimization technique. Each of the basic methods described 

in the preceding section results in a single objective function containing all the para­

meters to estimate. Faced with such a large system, sorne researchers use simple 

steepest descent methods [MCAG93] which can be slow to converge [NW99]. 

One approach to handling this complexity is to take advantage of the sparse 

structure of CP. An expression for differential regularization, for example, whether 

evaluated using finite differences or using finite elements, results in terms involving 

the deformation vector ~ at nearby control mesh points only. This sparsity can be 

used to advantage [GH99] in a Newton or quasi-Newton method [NW99, DS96]. 

A second strategy for handling the large number of parameters to estimate is to 

separate the problem into a number of smaller optimizations [NW99]. One of the 

advantages of using a regional similarity measure (Section 3.2.2) with mesh warping 

is that the data term is separable. The goal of this section is to show how the 

regularization term can also be made separable, by transforming the problem into 

two interleaved minimizations. The resulting registration has two steps at each 

iteration, which can be interpreted as a "mat ching" step followed by a "smoothing" 

step. 

The modified problem formally uses two transformations, one denoted U : ]R3 -t 
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]R3 for the data term and one denoted T for the regularization term. A third term is 

introduced into the objective function to link the transformations, resulting in 

(3.26) 

After minimizing over both T and U, the transformation T is returned as the final 

solution. In other words, the registration problem solved is 

where 

arg min <P' (T) , 
T 

<p' (T) = arg min <P(T, U). 
u 

The new objective function, Equation 3.26, has twice as many variables as the 

original objective function, <PD + <P R. An iterative minimization method such as 

those described in Section 3.4.1 is used, with half the variables held fixed at each 

iteration. One iteration fixes the variables that define T while the next iteration fixes 

the variables that define U. In this manner, the optimization of T and of U can be 

interleaved, resulting in two "half iteration" steps. First, fix T and find 

U = argmin <P(T, U') = argmin <PD(U') + ~ J liT - U'11 2
. 

if if 2 
(3.27) 

Then, fix U and find 

T = argmin<P(T', U) = argmin~ J liT' - UI1 2 + <PR(T'). 
T' T' 2 

(3.28) 

The first step (Expression 3.27) can be seen as finding a transformation, U, that 

matches the data while remaining close to the previous solution, T. The term l IIT­

U'I1 2 can be discretized as a sum over the control mesh vertices, each term of which 

involves only the displacement change T - U at that control mesh vertex. Thus the 

first step of finding an optimal U is separable if the data term is separable. The 

second step (Expression 3.28) can be seen as regularizing the transformation U to 

produce a smoother transformation T. An efficient implementation of this step as a 

filtering operation is described below. 

Cohen [Coh96] uses this kind of transformation in a situation where the regular­

ization term is convex, but the data term is not convex. Instead of using the given 

data term, <PD, in the first step, Cohen introduces a transformed data term <PD and 
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iterates over the two steps 

U = argmin <I>~(U') + ~ J liT - U'112, 
U' 2 

(3.29) 

and Equation 3.28. By choosing <I>~ carefully, the expression 

<I>'JJ(T) - rrijp<I>~(UI) + ~ J liT - U'11 2 

has a minimum over U' for every T, and is equal to <I>D(T) [Coh96]. Thus, the 

algorithm ends up solving 

T - argminT,{minu' <I>D(U') + ~ J liT' - U'112 + <I>R(T')} 

argminT' <I>D(T') + <I>R(T') 

where <I>D is the original data term for the problem. Moreover each half-iteration is 

a convex problem. 

Cachier and Ayache [CAOla] point out that splitting the optimization into two 

steps has advantages, even if Equation 3.27 is used instead of Equation 3.29, i.e. even 

without transforming the data term. In their work, <I>ssD is used as the data term, 

and the modified objective function minimized by the two-step algorithm performed 

better than wh en using the original data term. 

The second advantage of a two-step method is that the regularization step (Equa­

tion 3.28), if <I>R is formed of quadratic terms of derivatives, can be implemented by 

filtering [NFD97]. For example, suppose 

Working in the Fourier domain (which means assuming periodic boundary conditions 

on the domain of interest), ft (k) = J 7} (x) e27rikx dx and the Fourier transform of 

7},m is J 7},m(x)e27rikxdx = - J 27T'ikm7} (x)e27rikxdx = -27T'ikmTz. Using Parseval's 

equality, Equation 3.28 can be written as 

~ 

The minimizer can be obtained by formally taking the derivative with respect to T'l 
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Algorithm 2 Two-Step Registration. 

1. Set T to initial estimate. 

2. Minimize iJ!D(U) + \lf(T - U), where the term \lf penalizes deviation of U from 
T. 

3. Set T to be the smoothed version of U. 

4. Repeat steps 2-3 until done. 

and setting it to zero, resulting in 

-- --.. 2 2--Tt - Ul + >'(2n) k Tt = 0, 

or 
1 ---

Tt = 1 + >'(2n)2k2 Ul' 

This is the Fourier domain equation for a linear filter. Thus T may be obtained by 

convolution with a filter whose kernel is the inverse Fourier transform of 

So, given a particular choice of quadratic regularizer, iJ! R, a filter can be derived. 

This point of view can be reversed: given a filter, the form of iJ!R may be derived. 

This is only possible for certain filters. However, the goal of registration is to match 

images not to impose a certain form of regularizer, so it isn't necessary that the 

filter have a corresponding expression in terms of a quadratic form of derivatives. In 

this spirit, the notion of a two-step algorithm is broadened. The first step searches 

for a transformation U that minimizes the data term with a control on how much U 

deviates from T. Equation 3.27 is of that form, but controls other than the quadratic 

expression liT - UI12 are permitted. The second step sets T to be a smoothed version 

of U using sorne kind of filtering operation. This is summarized in Algorithm 2. One 

co st of broadening the criterion for the two steps is that the resulting algorithm may 

no longer be interpretable as a minimization problem. 

3.4.3 Four-Step Registration 

There is ample experimental evidence, e.g. [CRM+95], that "elastic" registration 

using iJ! = iJ!ssD + J CPER can result in a non-invertible transformation if the regular-
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ization parameters W1, W2, W3 of Equation 3.19 are too small. Increasing the regular­

ization strength alleviates this at a cost to the mat ching criterion <PSSD. Christensen 

et al. [CRM94, CRM96] ascribe this problem to the tendency of transformations 

based on cp ER to "develop restoring forces proportional to the deformed distance" 

[CRM94], preventing the transformation from matching fine detail. 

Christensen et al. [CRM93, CRM96] propose instead to base the registration 

penalty on a different physical model, that of a vis cous fiuid. Given this model, they 

proceed to derive a mat ching procedure termed fiuid registration that repeatedly 

adds a smoothed correction field to the current transformation. The implementation 

of this algorithm is now described; see [CRM96] for a derivation of the procedure 

from the laws of fiuid mechanics. 

Break up the transformation ,6, into a sum ,6, = 81 + 82 + ... + 8n
. Each 8j is 

obtained in sequence, by fixing 8i (i < j) and searching for 

8j 
= argmjn J CPD(81 + ... + 8j

-
1 + 8) + J CPER(8) , (3.30) 

with CPER given by Equation 3.19. Writing cp = CPD(81 + ... + 8j
-

1 + 8) + J CPER(8) , 
the optimization in Equation 3.30 can be se en to be the same as the optimization 

in Equations 3.21 and 3.22, but with the optimization over 8 rather than ,6,. The 

Euler-Lagrange equations are the analogue of Equation 3.24, 

(3.31) 

with Fk = 8CPD/88k . Vnder the assumption that correction 8 is small, Equation 

3.31 is solved using the approximation that the force F is constant, i.e., given by 

Fk = (8CPD/88Ù5=O[CRM96]. 
Bro-Nielsen points out that with constant force term F Equation 3.31 can be im­

plemented as a filtering of F, which is "at least an order of magnitude faster" than the 

original implementation of Christensen et al. [BNG96J. In the Bro-Nielsen formu­

lation, the lh iteration of the algorithm estimates 8j by a filtering (i.e. smoothing) 

operation, reminiscent of the smoothing step of Algorithm 2. The difference is that 

in fiuid registration the corrections 8j are smoothed rather than the total displace­

ment,6, (or, equivalently the transformation T). Both algorithms can be put into a 

common framework [CPA99] displayed in Algorithm 3. If only smoothing of 8 done 

the algorithm is described as a fiuid registration algorithm, even if the smoothing 

is not that associated with CPER. Similarly, if only smoothing of ,6, is performed the 
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Algorithm 3 Four-Step Registration. 

1. Set D. to initial estimate. 

2. Let J = arg minc5' 1> (D. + J'). 

3. Smooth J. 

5. Smooth 6. 

6. Repeat steps 2-5 until done. 

method is termed an elastic registration, even if the smoothing is not that associated 

with <PER· 

3.5 Coarse-to-Fine Hierarchy 

Registration is almost universally performed with multiple resolutions of the trans­

formation [BK89, CHPE95, KPH+96, CJM97, RSH+99, KLF99, RCRM01, SD02]. 

When the transformation is parameterized using mesh warping, a very coarse grid 

is used first, say with vertex spacing 8 times the image voxel spacing. One of the 

algorithms discussed so far is run to completion. The mesh warping grid is then 

refined by a factor of two (to 4 times image voxel spacing), setting the value 6 ( v ) 

at new nodes v by interpolating values from the old (coarse) control mesh. The 

algorithm is run again, the mesh refined again, and so on. 

An alternative strategy is possible when the transformation is expanded in terms 

of Fourier or wavelet basis functions: simply st art with the low-frequency basis func­

tions and refine the warp by adding higher frequency terms to the set of basis func­

tions [CJM97, Ami94]. 

The ide a behind these strategies is to speed up the optimization by aligning 

larger structures at the coarse levels, hopefully bringing the sm aller structures into 

a better starting position for registration on the finer meshes. The goal is to have 

the registration converge more rapidly and to a better minimum [KB99]. 
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3.6 Brain Image Registration Literature 

3.6.1 Labelled Features 

Landmark matching approaches use labelled geometric features, generally points, 

curves, or surface patches. Bookstein uses a landmark interpolating transformation 

obtained with a regularizer whose minimizer is a thin-plate spline transformation 

[Bo089, Bo091, Bo099]. Other splines are used for image matching [GT99], including 

"fiuid model" splines of Joshi [Jos98, JMOO, MJC99] that assure an injective mapping. 

The number of easily-identifiable landmarks in the brain is limited, and so some­

times extra landmarks are generated heuristically, e.g. Van Essen et al. take triples 

of existing landmarks and add the centroid of the triple as an extra landmark 

[VELD+01]. 

Approaches for automatically extracting the features from image data are de­

scribed for geometrically-salient points [IAC99], sulci represented using curves [TG93, 

DSTA95, Loh98, Sub99], medial sulcal surfaces [SBK+92, VDB96, LGBB97, ZTT99], 

sulcal regions on cortex [RHPOO] and 3D sulcal basins [LvC98]. However, very of­

ten the feature is obtained manually [FPR85] or semi-manually, e.g. [TT96, Dav96, 

ZSS+99]. 

Automated Labelling 

Amit and Kong [AK96, Ami97] locate potential landmark points using image pro­

cessing techniques and then label the landmarks by fitting a "decomposable" graph 

shape model to the set of landmarks. In this context, decomposable means a tri­

angulated, embedded graph that can be reduced to a single triangle by repeatedly 

deleting a vertex of degree 2. Fitting the model (with a label at each vertex) to the 

image serves to label the features. 

Automated labelling for sulci is described by Royackkers et al. [RFD+95, RDFR99], 

Mangin et al. [MRB+95, MFB+95, RMPO+OO, RMPO+02], and Le Goualher et al. 

[LGBB97, LGPC+99]. The labelling is typically based on location in space and 

simple shape descriptors, combined with neighbourhood information in the case of 

Mangin et al. 
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3.6.2 Unlabelled Features 

Elastic Model 

Determining the "optical fiow" between two consecutive frames in a movie sequence 

has a long history in computer vision [HS81]. It is, in essence, a non affine registration 

problem using <PSSD as the data term. Various regularizations of the problem are 

proposed such as the square of the Laplacian, 1IV'2.6.112 [HS80]. 

In his 1981 thesis, Broit introduces elastic regularization for image matching. Ba­

jcsy and Kovacic extend the idea to include a coarse-to-fine hierarchy [BK89]. Broit's 

original approach (described in, e.g., [GH99]) uses normalized cross-correlation as the 

data term, and a finite difference discretization of the equations on a regular grid. 

The equations are nonlinear in .6. due to the data term, Le. to the term F in Equation 

3.24. Brait obtains an expression for F that is linear in .6. from a Taylor expansion 

of CPD about the current estimate for .6., truncated at second order. The derivative of 

the quadratic approximation gives an expression linear in .6. for the force (Equation 

3.25), resulting in a linear system of Euler-Lagrange equations, which is solved using 

Jacobi relaxation. The approximation to F is then updated with the new estimate 

of .6. for the next iteration of relaxation. The iterations terminate when the vector 

F is approximately zero. 

Christensen et al.'s work on elastic mat ching [CMGA92, CRM94, CJM97, Chr99, 

MCAG93] uses <PSSD as the data term and an expansion .6.(x) = I:~=1 Ckcpk(x) 

where cpk are eigenfunctions of the operator L = -aV'2 - bV'V' . +C and the chosen 

boundary conditions. With this form of .6., the integral in the regularization term 

<P R = J IIL.6.112 is easily evaluated in terms of eigenvalues and the coefficients Ck· 

Minimization of <P ( Ck) is achieved using steepest descent (on B<p / BCk) with fixed step 

size. A coarse-to-fine matching is implemented by increasing the number of basis 

functions used, n, in sequence from low to high frequency. 

Gee et al. [GH99] use a Ritz finite element approach [Bic94] to transform <P 

into a function of the n parameters {Ck}. A series of quadratic problems is solved, 

approximating the data term as Broit did (above). 

Thirion's "diffusing models" [Thi98, Thi99] are typically implemented using <PSSD 

as the data term and elastic smoothing with a Gaussian kemel [CPA99]. 

Lavallée et al. [LBS99] use an "octree spline", in effect a selectively refined control 

mesh for mesh warping. The mesh can be 1eft coarse in regions for which the trans­

formation is homogeneous, while being refined in regions where the transformation 

changes rapidly. They register images using a feature that consists of a landmark 
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point location together with other characteristics such as normal, gradient vector, 

curvature values, image intensity, etc. A differential regularizer is used. 

Rueckert et al. use a normalized mutuaI information data term with thin-plate 

spline bending energy regularizer [RSH+99]. 

The HAMMER algorithm of Shen and Davatzikos [SD02] uses a data term that 

combines image intensity with information from tissue classification. The underlying 

parameterization of the transformation is a mesh warping, but the deformation is 

initially estimated only on a subset of "driving" control mesh vertices. The set of 

driving vertices increases to the entire set of control mesh vertices as the iterations 

proceed. A Laplacian regularizer is used to smooth the warp. 

Fluid Model 

Christensen et aL introduce the fiuid model [CRM93, CRM94, CRM96, CJM97, 

Chr99] for image registration. Their implementation of the smoothing (step 3 of 

Aigorithm 3) solves the Euler-Lagrange equations on a spatial grid with successive 

overrelaxation and consequently is quite slow. Bro-Nielsen and Gramkow [BNG96] 

point out that the smoothing can be do ne much faster, when implemented as a 

filtering of the force term. 

The stated advantage of this model is that the resulting transformation (under 

certain conditions [Ami94, DGM98, JMOO]) is invertible, even for large deformations. 

Other 

Woods et al. exp and the transformation using low-degree (up to fifth order) polyno­

mial basis functions with global support. The original "variance of intensity ratio" 

data term [WCM92], proposed for registering PET images, is also used for PET-MRI 

registration [WMC93]. In later work [\VGH+98, WGW+98, Woo99] the (J>SSD term 

is used, optionally with a single global scaling (Equation 3.11). 

Friston et al. [FAF+95, AF99a] use the (J>SSD data term and regularize the prob­

lem by parameterizing T using a moderate number (up to 512 [AF99b]) of cosine 

functions for the basis. The parameter set is small enough that they can use the 

Gauss-Newton method [NW99] for nonlinear least squares to estimate them. 

Ashburner et al. [AAFOO] subdivide the domain of Tinto tetrahedra and use a 

piecewise-affine transformation. The model term is designed to penalize both small 

and large Jacobian determinant values in order to encourage both T and T- 1 to 

have moderate, positive Jacobian determinant values. While the resulting warp will 



CHAPTER 3. SEARCHING FOR AN OPTIMAL TRANSFORMATION 54 

bend the template locally to match the input image, ll.. is not very smooth as there 

is nothing to enforce long range coherence in the mapping. 

Sorne methods that use geometric data terms attempt to generate a matching at 

the same time as estimating the best transformation, e.g. the iterated closest points 

[BM92] and the softassign methods [PGR96, RCB97, RCD99]. Feldmar and Ayache 

generalize this to non-rigid mappings for points lying on a surface [FA96]. Subsol et 

al. [DSTA95, Sub99] extend lCP to generate a consistent matching of points lying 

on polygonal lines (e.g. crest lines of sulci and gyri) and use cubic splines for the 

transformation. 

Kochunov et al. [KLF99, KLT+OO] use an octree rather than a full grid to para­

meterize the mesh warping. 

Davatzikos and Vaillant [Dav96, TT96, CLGE98, BGKM98, WS98, VD99] and 

Thompson and Toga [TT96] both use landmark matching in a hierarchical fashion. 

From matched sulcal curves, a set of points is digitized, and used as the data term 

in a surface warping (see Chapter 6) and the resulting surface map is used as a 

boundary condition in generating the volumetrie warp. 

Intermodal Registration 

The assumption that the intensity values of 1 and J are affinely related is a reasonable 

one for same-modality matching. For cross-modality registration, the assumptions 

have to be further relaxed. If an that can be assumed is that there exists a functional 

relationship (without knowledge of the form of this function), then the maximum 

likelihood method is equivalent to using the so-called "correlation ratio" [RMPA98, 

RMAOO]. This turns out to be closely related to Woods' variance of intensity ratios 

measure [WMC93]. If even a functional relationship between the images' intensities 

cannot be assumed, but only a statistical relationship, then maximum likelihood is 

equivalent to using the mutual information [CMD+95, WIVA +96]. This measure is 

very useful in cross-modality matching, but for mat ching MR to MR, it may have a 

smaller basin of attraction and be less robust [RMA99]. 

Most of the multimodal registration approaches are intended to register the same 

anatomy, and so search for a rigid-body transformation. Guimond et al. [GRAMOI], 

however, jointly estimate a mesh warping and polynomial intensity remapping. 
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3.6.3 Multiple Features 

Adding a sulcus-based term is investigated by Collins et al. [CLGE98], Hellier et 

al. [HBOO], and Cachier et al. [CMP+01]. In each case, a matching (or labelling) 

of the suld is performed and the registration data term consists of a distance-based 

penalty term in addition to the original image intensity terrn. In Collins' work, each 

sulcus in the input image l is represented by a set of points, and the distance to the 

nearest point of the corresponding sulcus is used, reminiscent of the iterated closest 

points approach. Hellier represents the sulci using B-splines. Using the assumption 

that the splines' control points should match, the sum of squared distance between 

corresponding control points is added to the objective function. Cachier uses points 

along the bottom and along the top of the extracted sulci. The distance penalty is 

the squared distance to the closest mat ching sulcus point (matching top to top and 

bottom to bottom). The sulcus top curves are known to be much more variable than 

the sulcal fundi, and some of the more variable sulci are not robustly labelled by the 

automated procedure used. Therefore, the weighting for sulcus top points and for 

the "un-trustworthy" sulcus bottom points is multiplied by an exponentially-decaying 

function of distance, to avoid undue penalty. 

3.7 Algorithm for 3D Experiments: ANIMAL 

The 3D spatial normalization experiments for this thesis are carried out using the 

ANIMAL algorithm [CE97] as a prototypical nonaffine registration method. This 

section elaborates on the algorithm with attention to the numerical parameters the 

user must choose. 

The deformation function ~ estimated by ANIMAL is parameterized as a mesh 

warping (Definition 2.4.1) with cubic interpolation using a Catmull-Rom spline [FvDFH90]. 

ANIMAL operates with a coarse-to-fine outer loop, and a two-step inner loop, i.e. an 

elastic registration. The transformation function is specified in a "world" coordinate 

system, which is defined independently of the source and target image voxel grids. 

Each image is endowed with the affine transformation function between world co­

ordinates and its own voxel grid. Lengths in the world coordinate system, such as 

the control mesh vertex spacing, are given in units of millimeters. 
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Algorithm 4 Inner loop of ANIMAL. 

2. Let ~v = ~v + a2 cSv . 

3. Let 6.v be mean displacement of 26-neighbours of v. 
Set ~v = a36.v + (1 - a3)~v. 

4. Loop over Steps 1-3 a fixed number of times. 

3.7.1 Outer Loop 

The first iteration of the outer loop employs a control mesh with a vertex spacing 

of 8 mm and is referred to as the 8 mm grid. The feature used in the match is the 

two input images, each blurred using an isotropie Gaussian kernel with FWHM=8 

mm. The next two iterations use a control mesh with a vertex spacing of 4 mm (4 

mm grid) and 2 mm (2 mm grid). The input images are smoothed with an isotropie 

Gaussian kernel of FWHM=8 mm and FWHM=4 mm, respectively. Finally, a fourth 

iteration with a vertex spacing of 2 mm is done using smoothed (FWHM=4 mm) 

gradient magnitude images. 

The initial iterate for the inner loop is interpolated from the result of the pre­

vious iteration of the outer loop, except the first iteration which starts with zero 

displacements. 

3.7.2 Inner Loop 

U sing v to index the control mesh vertices, 6. v is the current estimated displacement 

vector for vertex v, and cSv is the correction to ~ v estimated at each iteration of the 

inner loop. The inner loop of ANIMAL, displayed in Algorithm 4, is comparable to 

Lines 2 and 3 of Algorithm 2, with T replaced by 6. and U replaced by 6. + cS. 

The objective function of Line 1 is comprised of two terms for each control mesh 

vertex. The first term, CP'fl, is a regional image similarity measure, with the region 

for vertex v being a sphere of radius 1.5 times the control mesh vertex spacing. 

The similarity measure is either normalized cross correlation <Pxc, or correlation 

coefficient <Pcc. The second term, 1jJ, is an increasing function that approaches 00 at 

a finite value of IlcSvll, thus limiting the size of the correction vector. The parameter 

al E [0, 1] balances the similarity and co st of correction step cSv, and is known as the 

similarity-cost ratio. 

The objective <P is separable so the optimization is performed independently for 
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each v. The result is a large number of small optimization problems, as cSv has just 

three variables to optimize: the displacement in the X-, y-, and z-directions. Having 

only a small-dimensional optimization means that the quadratic-storage Nelder-Mead 

downhill simplex algorithm [PFTV88] can be used. This is an advantage because the 

derivative of the objective function, which uses <Pcc or <Pxc, is then not required. 

These data terms (Equations 3.13 and 3.14, respectively), are complicated functions 

of the displacement vectors through the function J = J 0 T. 

The update step of Line 2 employs a weight parameter a2. The displacements 

are under-corrected if a2 < 1 or over-corrected if a2 > 1. 

The displacement vector 6. v is smoothed in Line 3 by taking a weighted sum of 

the current displacement estimate with the me an displacement of the 26 neighbours 

in the 3 x 3 x 3 control mesh neighbourhood centered on v. The stiffness parameter 

a3 E [0,1] balances the two terms. 

The three parameters al, a2, and a3 need to be specified in order to complete 

the description of ANIMAL. Collins and Evans choose values of 0.5, 0.6, and 0.5, 

respectively [CE97]. These values are obtained empirically using visual inspection 

of the displacements and resampled images to judge registration quality. The next 

chapter proposes a more objective method to select these parameters. 

Node Thinning 

The optimization at control mesh vertex v is not performed if the source image value 

at that location falls below 10% of the maximum source image value. Such locations 

are likely to be background and are skipped sin ce there is nothing to be gained by 

fitting background regions that are dominated by noise. This heuristic is termed 

node thinning. 

For the iterations using intensity data, this heuristic retains nearly an the nodes 

lying in brain tissue, while skipping control mesh vertices located outside of the head. 

The image data and corresponding node-thinning mask for the third outer iteration 

(using FWHM=4mm blurred data) is shown in Figure 3.4. 

In the next chapter, this heuristic is shown to be detrimental to the gradient fit. 

3.8 Summary 

The purpose of this chapter is to survey the components and principles of a 3D 

image registration algorithm and, in particular, of MR image registration. The 

algorithms are put into a common framework of optimization in or der that they may 
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Smoothed Image Data Node Thinning Mask 

Figure 3.4: Left column shows the image data, smoothed with a FWHM=4 mm 
Gaussian kernel, the input data for the third iteration of the ANIMAL outer loop. 
Right column shows the corresponding mask used for node thinning heuristic. The 
dis placement is only estimated for a control mesh vertex that lies in the white region. 
This strategy reduces the processing time, as vertices lying in the background region 
outside the he ad are skipped. 
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be compared, e.g. on the basis of the data and model terms employed in the objective 

function, <I>(I, J, T). 

The principle of coordinate invariance is used to guide the choice of terms in 

the objective function, even if approximations used in a practical implementation 

(e.g. discretizing an integral) breaks strict invariance. The data terms involve only 

scalar values such as distance, image intensity, or image gradient magnitude, and so 

are easily seen to be invariant. The model terms, however, are constrained by the 

invariance requirement, as discussed in Section 3.3.2. 

3.8.1 Data Terms 

Data terms for registration are generally constructed either using image intensity or 

using a geometric feature extracted from the image. In the latter case a labelling, 

i.e., an a priori pairing between features in the source and target images may be 

given. There are a number of data terms in use for labelled features, as discussed in 

Section 3.2.l. 

Chapter 2 argues that a high-dimensional warping transformation should be used 

for mat ching brains. This implies a reasonably large set of features that is well­

distributed throughout the brain, so that the estimation of each parameter has sorne 

data with which to work. One of the best systems currently available for auto­

mated feature labelling can label 60 sul ci per hemisphere with 76% of the labelled 

voxels in accordance with a manual labelling, which is considered good perform­

ance [RMPO+02]. In fact a number of the disagreements with the manual labelling 

are observed to be ambiguous situations where the automatic labelling is preferred 

[RMPO+02], so the suc cess rate of voxellabelling is somewhat higher. Nevertheless, 

the number of voxels that are labelled by the system is small compared to the million 

or so parameters involved in specifying a grid warping, e.g. a 3-vector on a grid of 

size 100 x 100 x 100. Thus label data can not be used alone to drive the registration, 

though it can be used in concert with intensity data [CLGE98, HBOO, CMP+Ol]. 

This thesis concentrates on first obtaining the best spatial normalization possible 

using intensity features alone. If the normalization is not sufficient, then future work 

can incorporate label data. 

Section 3.2.2 presents conventional data terms based on image intensity in a 

framework of maximum likelihood [DHSOl], Le. in terms of maximizing P(J!I), the 

probability of observing image J - Jo T given that l is the "true" image. In this 

framework, the data terms discussed correspond to an assumption on the functional 

relationship (linear, affine, etc) between the intensity generated by a given tissue 
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type in image l and in image J [RMAOO]. As Figure 3.3 demonstrates, the intensity 

of gray or of white matter is not equal in each MR image, though a linear or affine 

transformation is likely to be sufficient to match intensities. A linear relation maps 

intensity i to intensity ai, which means that only one intensity from each image is 

required to solve for the coefficient a. If the intensity of, say, the gray matter is 

chosen then gray matter intensity will match exactly but the white matter intensity 

may be mismatched. An affine relationship, on the other hand, maps intensity 

i 1---7 ai + 13. Using an affine mapping, two tissue types can be intensity-matched. 

Assuming an affine intensity relationship me ans that the correlation coefficient data 

term, <Pcc (Equation 3.13) should be used, while a linear relationship implies the 

cross correlation, <Px c (Equation 3.14). 

Any of the intensity data terms in Section 3.2.2 can be evaluated across the whole 

of images land J. However, breaking the data term into a sum of such terms, each 

of which is evaluated on a small region of the domain, offers two advantages. First, 

since a regional similarity measure can be seen as a piecewise-constant approximation 

to letting the intensity relationship vary spatially, sorne extra protection against 

the intensity nonuniformity artifact [SZE98] is obtained, as explained on page 36. 

Second, wh en combined with a mesh warp transformation, the evaluation region can 

be chosen to centre around control mesh vertex v, leading to a data term in the form 

of a sum with one term per control mesh vertex. This brings the data term into 

a form where each parameter is estimated locally. If the entire objective function 

(model terms as well as data terms) is of this form, the problem becomes separable, 

which has the great advantage [NW99] of being able to perform the optirnization 

independently for each control mesh vertex. 

3.8.2 Model Terms 

The goal of the model term, as discussed in Section 3.3, is to insert into the algorithm 

sorne prior knowledge of the solution. This can be very specific knowledge, e.g. 

of the distribution of transformation parameters obtained from statistical sarnpling 

[CET98, CT99, CET99]. Such sampling is not feasible for the large parameter set 

of a mesh warping, though a subspace can be sampled [GLB97, Gee99] and used as 

one step in the algorithm [GB99]. 

Thus, mesh warping based registration generally uses the less-specific knowledge 

that the transformation should be "smooth", which means in this context that the 

derivatives of Tare small. This smoothness requirement is implemented either by 

adding a regularization term <P R that penalizes derivatives, e.g. Cr:'k aTk / aXk)2, or 
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by explicitly smoothing the deformation field in the algorithm, such as in Step 3 of 

the two-step algorithm (Algorithm 2). 

3.8.3 Registration Algorithm 

The registration algorithm is fundamentally a minimization of the objective function, 

<I>. The choice of data term and of transformation parameterization influence the 

approach used for the optimization, as discussed in Section 3.4. 

For a mesh warping with a separable data term (i.e. using a regional similarity 

measure), it is a computational advantage to keep the model term separable [NW99]. 

With a regularization term expressed as a quadratic in derivatives, the two-step 

method of Cohen [Coh96] transforms the optimization into an iteration of a data 

mat ching step followed by a transformation smoothing step, as discussed in Section 

3.4.2. More generally, an ad-hoc smoothing step can be used, as is done by the 

ANIMAL algorithm [CHPE95]. 

The smoothing step can be moved from smoothing the deformation field, .6., to 

smoothing the deformation field corrections, 6. The result is the four-step algorithm 

(Algorithm 3), initially motivated by a viscous fluid model [CRM93]. The claimed 

advantage of the four-step method over the two-step method is that the former 

allows injective matching with larger deformations, under certain conditions [Ami94, 

DGM98, JMOO]. In or der to ascertain whether the fluid model is required for spatial 

normalization, this thesis concentrates on producing the best performance possible 

from a two-step method. If that matching is determined to be inadequate, future 

work can use a four-step method. Specifically, the 3D experimental work in the 

next chapter uses ANIMAL, a two-step algorithm which employs a regional cross­

correlation data term and ad-hoc smoothing. 

A coarse-to-fine hierarchy is standard practice [KB99] with any of the basic regis­

tration algorithms. The specific hierarchy used in ANIMAL increases the data com­

plexity in step with the coarse-to-fine warping [LA99] by performing less smoothing 

of the data at each level. The idea is to reduce the number of sm aIl minima in the 

data term and, in so doing, increase the chance of arriving at a good minimum of 

the objective [Co194]. 



Chapter 4 

Quantifying Spatial Variability 

The goal of spatial normalization in brain imaging is to remove, to the extent pos­

sible, the natural anatomical variability in a population by warping each individual's 

anatomy into a standardized space. This residual variability must be quantified, in 

order to compare the efficacy of two spatial normalization methods. This chapter 

presents two different strategies for measuring anatomical variability. The first is 

automated and gives a global measure of variability. It is used to tune the numerical 

parameters of a registration algorithm. The second method, which relies on manual 

delineation of a structure such as a sulcus, gives a measure that is interpretable as 

the "variance" of that structure about a mean structure. The second quantity is used 

to judge the quality of a registration method for the purpose of spatial normalization. 

Anatomical variability is often visualized qualitatively in the "sharpness" of the 

mean intensity image after spatial normalization, as in Figure 4.11. The intensity 

values of a structural magnetic resonance image, while obviously carrying anatom­

ical information, are affected by factors such as scanner settings, the partial volume 

effect, and the shading artifact. It is unclear how much the averaged MR intensity 

value tells us about biological homology. Instead, the raw intensity values are pro­

cessed ta identify each voxel as gray matter or white matter, and used to measure 

how consistently the normalizatian matches tissue types. This can be done fully 

automatically and is the first method of quantifying variab ility. 

Early quantitative methods of evaluating variability include overlaying contours 

traced along fundi of a given sulcus in several individuals and estimating a "zone 

of maximum variability" , as done by Talairach and co-workers [TST+67]. The idea 

behind this type of approach is to measure the amount of "dispersion" of a single 

structure. At the present time, such a structure is generally manually delineated from 

the images. Once that is done, the computation then comprises two steps: first, a 
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Figure 4.1: Induced labelling on the standard grid from spatially normalizing a 
population. Transformation ~ maps standard space voxel v to the shaded voxel 
(with labellvi) on each image h The resulting set oflabels, {lvI, ... , lvN}, constitutes 
a sampling of the random label Lv of standard space voxel v. The voxel entropy, 
H(Lv), is estimated from this sampling. 

suit able "mean" structure is obtained from the input samples, and second, a measure 

of distance between the mean structure and each sam pIe structure is computed. The 

dispersion is, like the standard deviation of ordinary statistics, related to the average 

of these distances. 

4.1 Segmentation Variability 

A segmentation of an image is an assignment (manual or automatic) of a class label 

to each voxel. Labels assigned to an input image that has been spatially normalized 

can be carried along with a spatial transformation to induce a segmentation on a 

voxel grid in the standard space. The labels can represent any relevant information. 

In this thesis, labels oftissue type (gray matter, white matter, or CSF) are used and 

also labels of sulci. However, the labels representing a functionally-defined region 

could equally weIl be used. Each voxel of the standard space grid is assigned a label 

by each input image. The goal is to measure the consistency of the set of labels 

assigned to a given standard space voxel. 

Consider voxel v in the standard space grid. This voxel maps to a certain point 

in subject i, which has label lvi (see Figure 4.1). A spatial normalization method 
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that achieves its goal of matching homologous points of each input will result in 

identicallabels across the subjects (lvl = lv2 = ... ) for each voxel v. Warfield et al. 

[WRH+Ol] suggest to consider the label of voxel v as a random variable Lv, of which 

the set {lvi} is a sampling. The entropy [CT91] of this distribution is 

H(Lv) = - L Pzlog2 Pl, (4.1) 
Z 

where Pz is the probability that Lv is assigned label l. The sum is taken over the 

labels l for which Pl f. O. The probabilities Pl are estimated as the frequencies 

observed after spatially normalizing a sample population as follows. Let NI be the 

number of sub jects for which the voxel label is l, i.e. the size of the set {i : LVi = l}. 
Then the probability Pl is estimated as Pz = Nz/N. The entropy H(Lv) measures the 

amount of uncertainty in the label Lv (in units of bits, when using base-2 logarithms), 

which is regarded as the anatomical variability at voxel v. The entropy satisfies 

o :S H(Lv) :S log2 n, where n is the number of possible labels [CT91]. The lower 

bound H(Lv) = 0 is obtained when Pz = 1 for precisely one labell and is zero for 

the rest, while the upper bound H(Lv) = log2 n is obtained when Pl = l/n for alll. 

For each standard space voxel v, Lv is a distinct random variable. The joint 

entropy of random variables A and B satisfies H(A, B) :S H(A) + H(B), where the 

equality holds if, and only if, A and B are independent [CT91]. The joint entropy 

of {Lv : v E V}, where V is the set of standard space voxels is thus bounded by the 

sum 

(4.2) 
v 

The quantity H, termed the total entropy, is used as a measure of variability remain­

ing after spatial normalization is applied. 

4.1.1 Application: Evaluating Algorithm Design 

Recall that the inner loop of ANIMAL (Algorithm 4) has three parameters that need 

to be specified: the similarity cost ratio (hereafter referred to as simply "similarity"), 

the weight, and the stiffness, summarized in Table 4.1. Collins and Evans use values 

of 0.5, 0.6, and 0.5, respectively [CE97], chosen empirically by visual inspection of 

the displacements and resampled images to judge registration quality. This section 

demonstrates that optimal parameter values can be selected using total entropy as a 

performance measure. In addition to selecting numerical values for user parameters, 

total entropy enables quantitative investigation of all design aspects of a registration 
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Table 4.1: Major Parameters of ANIMAL inner loop, Algorithm 4. 

1 Symbol 1 Description 

al Similarity Cost Ratio 
a2 Weight 
a3 Stiffness 

algorithm in the context of spatial normalization. 

One may wonder whether it would be more straightforward to consider the en­

tropy measure as a function of aU N transformations and use total entropy as the 

objective function for registration. Minimizing total entropy would thus co-register 

all N images simultaneously. Such an approach, which is feasible for affine registra­

tion of small 2D images [MMVOO], would be more direct than the method described 

here in which the registration optimiziation is done for each image (to the template) 

using fixed parameters selected using the entropy measure. However, given that the 

computational co st for (pairwise) 3D image registration using free-form deformations 

is already high, it is expected that attempting to simultaneously co-register a number 

of 3D images would not be feasible. 

To investigate design choices of ANIMAL, 40 Tl-weighted images are selected 

arbitrarily from the ICBM data base [MTE+95]. AlI are segmented into white matter, 

gray matter, cerebral spinal fluid, and background classes [Ko196] with non-brain 

voxels removed [Smi02]. One of the images is selected to be the template and 10 

other images are spatially normalized to that template. Sorne of the later experiments 

normalize the full set of 39 subjects (this will be explicitly indicated). 

The total entropy is computed after affine registration, and after registration 

using various choices for weight, stiffness, and similarity. Table 4.2 shows the results 

for the classic choice of parameters (similarity=0.5, weight=0.6, stiffness=0.5) and 

the results with the same similarity and stiffness but using weight=l: changing just 

the one parameter improves the result. Alarmingly, however, it appears that the 

gradient magnitude fit degrades the result, so that aspect is investigated first. 

Outer Loop 

Several choices for the numerical parameters are used to normalize the test data set, 

and the entropy is computed after each of the four iterations of the outer loop. It 

is clear that the increase in entropy in the fourth level of the hierarchy is a general 

phenomenon. Figure 4.2 shows representative results for weight=l, stiffness=0.9 and 
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Table 4.2: Total entropy values (units of 106 bits) for 9-parameter affine registration 
and for registration with ANIMAL, after each iteration of the outer loop. Second 
column shows results for the "classic" set of parameters (similarity=0.5, weight=0.6, 
stiffness=0.5). Third column shows results using similarity=0.5, weight=l, stiff­
ness=0.5. Note that changing just one parameter (weight) improves the perform­
ance. 

Outer Level 1 Classic Animal 1 Weight=l 1 

9-Parameter Affine 1.96 
8 mm Grid 1.74 1.71 
4 mm Grid 1.72 1.71 
2 mm Grid 1.67 1.66 

2 mm (Gradient) 1.70 1.68 

using a range of similarity values between 0.1 and 1. 

Close examination of the algorithm reveals that the node thinning strategy (Sec­

tion 3.7.2) is the culprit. For the three iterations of the outer loop that use intensity 

data, this heuristic retains nearly an the control mesh vertices lying in brain tissue, 

while skipping control mesh vertices located outside of the head. Figure 3.4 shows the 

blurred and thresholded data from a typical input wh en smoothed using FWHM=4 

mm kernel. 

In the gradient data iteration, however, only values on the scalp, ventricle, and su­

perficial cortex edges are above the threshold as shown by Figure 4.3. Displacements 

are therefore estimated on very few control mesh vertices (about 1/3 of the num­

ber of vertices in the previous outer iteration, which uses the same control mesh), 

while aIl vertices participate in the smoothing of the displacement vectors, Step 3 of 

Aigorithm 4. The effect is to smooth out the warp, degrading the data fit. 

Omitting the node thinning heuristic for the 2 mm grid gradient data fit brings 

the total entropy down below the value obtained using the 2 mm grid intensity fit. 

Omitting the heuristic for the intensity fits does not change the results appreciably, 

so no no de thinning is done for any of the following. 

Data Term 

It is noted in Section 3.2.2 that the normalized cross-correlation is an appropriate 

data term in the situation where the intensity relation between registered voxels is 

linear, whereas the correlation coefficient assumes an affine relation. 

An affine function (IR -+ IR) has two parameters, which can be solved for using 
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Figure 4.2: Residual anatomical variability as measured by total entropy, H, on a 
sample of 10 individuals after registration with ANIMAL. Plot shows results after 
each of the four iterations of the outer loop (weight=l.O, stiffness=0.9) aiong with the 
value for 9-parameter affine normalization, for reference. Note that the variability is 
reduced for each of the first three iterations of the outer Ioop, but increases on the 
fourth iteration. 
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Smoothed Gradient Magnitude Node Thinning Mask 

Figure 4.3: Left column shows the gradient magnitude of an MR image, smoothed 
with a FWHM=4 mm Gaussian kernel, the input data for the fourth iteration of 
the ANIMAL outer loop. Right column shows the corresponding mask used for node 
thinning heuristic. The displacement is only estimated for a control mesh vertex that 
lies in the white region. The masking is clearly an inappropriate strategy for gradient 
data, as the set of control mesh vertices for which the displacement is estimated does 
not cover the brain. Compare with the mask for the third iteration of the outer loop, 
pictured in Figure 3.4. 
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two intensity values from each image. The parameters could be chosen, for example, 

so that the intensity of gray matter of the source image maps to the gray matter 

intensity of the target image and the intensity for white matter is similarly matched. 

In contrast, a linear function has just one parameter. Only one intensity point can 

be matched, so it may not be possible to accurately match both the gray and white 

intensities. 

The ability to match two intensity values suggests that the correlation coefficient 

could be a better matching criterion than cross correlation, especially at the interface 

between two tissues. This hypothesis is tested by replacing the similarity function 

in ANIMAL by the correlation coefficient similarity function <Pcc (Equation 3.13). 

Since ANIMAL uses a regional similarity measure (discussed in Section 3.2.2), the 

two parameters of the affine intensity mapping should be adequate: at the finest con­

trol mesh resolution (with control mesh vertices separated by 2 mm), the similarity 

is evaluated over a sphere of radius 3 mm (i.e. 1.5 times the control mesh spacing; 

see Section 3.7) which generally contains at most two tissue types. 

The result of a number of tests using cross correlation with different parameter 

values is that the lowest entropy score is obtained using similarity=0.98, weight=0.8, 

stiffness=0.98. Similar testing using correlation coefficient yields similarity=0.3, 

weight=1.0, stiffness=1.0 as optimum. The entropy score in each case is approx­

imately equal to 1.37 x 106 bits. However, the sensitivity to parameter variation 

about the optimal set is markedly different. Figures 4.4 and 4.5 compare the entropy 

scores as a function of similarity and of stiffness, respectively. Both plots show a 

much shallower curve with good performance (i.e. low entropy) over a broad range 

of parameter values, when using correlation coefficient. These plots present data 

from a single sample of 10 subjects. A different set of subjects might require slightly 

different parameter values to produce optimal results (this question is addressed be­

low; see Figure 4.9). The behaviour of ANIMAL using correlation coefficient is much 

better in this regard than when cross correlation is used; the former pro duces good 

results even if the parameters are not precisely optimal. This behaviour is desirable, 

so correlation coefficient is used for subsequent experiments. 

Regularization 

Consider now the effect of the similarity co st ratio parameter (al) that controls the 

relative contributions of the data term, CP'D, and the displacement update penalty 

term, 'ljJ, to the objective function. The objective function terms that involve the 
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Figure 4.4: Comparison of residual variability as a function of similarity cost ratio 
for the cross correlation data term (using weight=O.S, stiffness=0.9S) and the cor­
relation coefficient data term (using weight= 1, stiffness= 1), along with the value for 
9-parameter affine normalization for reference. Comparison made at 2 mm (intens­
ity) level of ANIMAL outer Ioop. Though the minimum variability attained is about 
the same for each data term, the correlation coefficient achieves low variability over 
a wide range of values for similarity cost ratio so it is easier to choose a similarity 
value that pro duces good performance with that data term. 
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Figure 4.5: Comparison of residual variability as a function of stiffness for the cross 
correlation data term (using similarity=O.98, weight=l) and the correlation coeffi­
cient data term (using similarity=O.3, weight=l). Comparison made at 2 mm (in­
tensity) level of ANIMAL outer loop. Note that the variability is much less sensitive 
to the value of stiffness when using the correlation coefficient data term. 
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control mesh vertex v are (from Line l of Algorithm 4) 

( 4.3) 

Figure 4.4 shows that, when using correlation coefficient, a value in the range 0.2-0.6 

provides good performance. 

Figure 4.4 also shows that the entropy becomes large for similarity values near 1, 

even larger than obtained using the initial affine transformation. This phenomenon 

is observed using either of the two data terms. When the similarity parameter is 

set to 1 in Equation 4.3, the registration is driven only by the data term CPD with 

no control on the size of the correction vector, 118v Il. The poor performance near 

similarity=l indicates that the correction length penalty 'I/J plays an important role 

in controlling the optimization. 

Transformations obtained with this ratio set to 1 (i.e. no contribution at an from 

'I/J) contain much larger displacements, are much less smooth, and have more instances 

of folding (non-invertibility) than those obtained with similarity cost ratio < 1. An 

example of this is shown in Figure 4.6, where the only difference between the two 

registrations is the similarity setting. This confirms the importance of incorporating 

the regularization into the algorithm. 

Smoothing 

The smoothing step of ANIMAL (Line 3 of Algorithm 4) sets the deformation vector 

for control mesh vertex v to be 

where Llv is the mean displacement of 26-neighbours of v and a3 is the stiffness 

parameter. Figure 4.5 indicates that very high values of stiffness parameter are best, 

so stiffness= 1 is used. 

Miscellaneous Parameters 

The third major numerical parameter of ANIMAL is the weight value (a2), used 

in Line 2 of Algorithm 4. Values in the range 0.8 to 1.4 (using similarity=0.3, 

stiffness=l) show little change in entropy values. The weight is set to l for aU 

experiments. 

The ANIMAL algorithm uses several other parameters not yet discussed. The 
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similarity=O.3 similari ty= 1. 0 

Figure 4.6: Control mesh vertices shown in their displaced positions, i.e. the grid at 
points {v+6.(v)}, for an axial slice through the source image. The mesh shown on the 
1eft is the resu1t of registration using similarity=O.3 while the mesh on the right used 
similarity=l. AlI other parameters and the source and target images are identical for 
the two registrations. With similarity=l, the objective function has no contribution 
from the regularization term, resulting in a much rougher transformation with many 
more regions of noninjectivity. 
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only such parameter changed from the default setting is the number of iterations 

for which the inner loop is run. The termination condition for the inner loop of 

ANIMAL (Algorithm 4) is simply to iterate a fixed number of times. The iteration 

limits must be chosen large enough that the optimization reaches convergence. 

An optimization is generally deemed to be converged when, to within a numerical 

tolerance, the gradient of the objective function is zero, the iterate updates become 

small, or both [DS96]. The objective function is not explicitly used in a two-step 

algorithm like ANIMAL (see Section 3.4.2), so only the change in iterate can be 

checked. Each iteration of the inner loop updates the deformation vector ~ v for each 

control mesh vertex v. Let ~i be the deformation vector at iteration i of the inner 

loop, and con si der the magnitude of deformation vector changes during iteration i, 

{11~i -~i-lll : v EV}, where V is the set of control mesh vertices. These quantities 

are the total change at each vertex, after both the mat ching and smoothing steps 

of ANIMAL. The inner loop can be deemed to have converged when the mean total 

change (averaged over aH control mesh vertices) drops below a prespecified threshold. 

The ANIMAL code, as distributed, uses 12 iterations for the 8 mm control grid, 

8 iterations for the 4 mm control grid, and 5 iterations for the 2 mm control grid. 

Since it is unc1ear a priori how changing numerical parameters and other elements 

of ANIMAL (e.g. the data term) will affect the convergence of the inner loop, the 

iteration limits are raised to much larger values: 60, 60, and 20 for the 8 mm, 4 

mm, and 2 mm control grids, respectively. This is done for aH experiments in this 

thesis, including those already discussed. Figure 4.7 plots the mean total change as a 

function of iterations for three variants of ANIMAL. The upward spikes at iterations 

60, 120, and 140 are due to starting the second, third, and fourth iterations of the 

outer loop, at which time both the control grid and the image data change (the latter 

is less smoothed). The graph indicates that the standard iteration limits would be 

inadequate when using the optimized parameter settings, whereas the limits in use 

suffice. For example, the me an deformation change is still large after five iterations 

for the 2 mm control grid, used in the third and fourth iterations of outer loop 

(starting at inner iterations 120 and 140 in Figure 4.7), but has settled down after 

20 iterations. 

Injectivity 

As discussed in Section 2.5, mesh warpings are not guaranteed to be injective nor 

does the ANIMAL algorithm take any measures to enforce injectivity, though the 

regularization imposed by the penalty term 1jJ (see Figure 4.6) and the smoothing 
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Figure 4.7: Mean magnitude of change in deformation vector, plotted for each it­
eration of the ANIMAL inner loop. Data for three variants of ANIMAL is shown. 
The curve labelled "classic ANIMAL" uses a cross correlation data term with simil­
arity=0.5, weight=0.6, and stiffness=0.5. The other two curves use optimized para­
meter sets: cross correlation uses similarity=0.98, weight=0.5, and stiffness=0.98 , 
while correlation coefficient uses similarity=0.3, weight=l, stiffness=l. The increases 
at iterations 60, 120, and 140 result from starting the second, third, and fourth it­
erations of the outer loop. Convergence of inner loop is demonstrated by the mean 
deformation change falling off before the next iteration of the outer loop. Note that 
the original limit of 5 iterations for the last two iterations of the outer Ioop (start­
ing at inner iterations 120 and 140), while adequate for classic ANIMAL would be 
inadequate for the optimized versions of ANIMAL. 
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step both help. 

Recall from Chapter 1 that the data to be analyzed in standard space is typically 

smoothed, meaning that a comparison at point x in the standard space is reaUy 

not a point-to-point comparison with data precisely at Ti(x) in each subject i, but 

a comparison of data in sorne region about 7i(x). A certain amount of small-scale 

noninjectivity can therefore be tolerated in the transformations used for spatial nor­

malization. To gauge whether noninjectivity is a serious problem in practice, the 

Jacobian determinant is estimated using finite differences at each control mesh ver­

tex after registration. The full sample of 39 ICBM subjects is spatially normalized 

to the same template. The Jacobian determinant of the resulting transformation 

functions is negative (indicating noninjectivity) on a mean of 616/265401=0.2% of 

the control mesh vertices lying in si de the scalp (standard deviation is 211 or 0.08%). 

These vertices tend to be concentrated around sulci, as shown in Figure 4.8. How­

ever, noninjectivity is relatively rare and thus will not be considered an impediment 

to using ANIMAL for spatial normalization. 

Transferability 

The experiments presented so far an use the same template and the same set of 10 

test subjects. The question arises as to whether the parameters obtained are specifie 

to the set of subjects used, or are generally applicable. To answer this, a second 

set of 10 subjects is registered using various similarity values with weight=l and 

stiffness=l. The results (Figure 4.9) show the same shallow curves, indicating that 

the same similarity=0.3 value can be used for the new set. Chapter 8 investigates 

the variability obtained using other template images. 

Since the parameters appear to be generally applicable, an registrations use sim­

ilarity=O.3, weight=l, and stiffness=l, unless otherwise specified. 

Summary of Experiments 

Figure 4.10 provides a visual illustration of the reduced anatomical variability in 

the full set of 39 individuals, obtained using the tuned version of ANIMAL. The 

variability in the depth of many sulci is reduced, indicating that the sulci are better 

aligned. 

The improved alignment is most readily apparent in the large regions of homo­

geneous tissue such as the white matter and ventricles. The coronal view (second row 

in Figure 4.10) c1early shows that the tuning is instrumental in aligning the white 
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z = 75 

z = 55 

z = 35 

z = 15 

Figure 4.8: Maps showing frequency of negative Jacobian determinant at control 
mesh vertices, measured using transformations of 39 individuals. The largest fre­
quency is approximately 25%. The 1eft and middle columns show the results after 
using cross correlation and correlation coefficient, respectively. The right column 
shows the template, for reference. Overall, only 0.2% of the control mesh vertices in 
the brain region have negative Jacobian determinant, so the problem is negligible. 
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Figure 4.9: A second set of 10 subjects shows good performance in the same broad 
range of similarity values (using weight=l, stiffness=l) as exhibited in Figure 4.4. 
The parameter values are thus not specific to the particular data set. 

matter of many gyri. The gray matter is also often well-matched and shows up with 

low variability, such as in the circled regions of Figure 4.10. 

Boundaries between tissue types show high variability, some of which is due to 

misalignment and some of which is due to limitations of the classifier used to generate 

the segmentation. At a boundary, even a misalignment on the order of the voxel size 

is enough to change the labelling from an input image and hence the entropy value. 

However, sorne of the apparent variability is the result of imperfections in the tissue 

classification. Voxels in boundary regions frequent contain two (or more) tissue types, 

resulting in a signal intensity between the intensities of the two tissue types. Such 

partial volume voxels are more frequently misclassified. For exarnple, the CSF is 

frequently misclassified as gray matter, leading to high entropy values in the CSF 

spaces of sulci. 

A more sophisticated classifier could try to estirnate the fraction of each type 

of tissue in a voxel [CHK91] and use that information to pro duce a more refined 

segmentation that includes classes for voxels containing more than one tissue. For 

example, a voxel that contains significant fractions of both gray matter and CSF 

could be labelled as a mixed "gray-CSF voxel". Enlarging the set of classes in this way 
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Affine Classic ANIMAL Tuned ANIMAL 

Figure 4.10: Entropy maps of 39 individu aIs after spatial normalization using 9-
parameter affine registration, ANIMAL with the default parameters (and cross cor­
relation data term) , and ANIMAL using correlation coefficient data term and optimal 
parameter values (similarity=O.3, weight=l, stiffness=l). Voxels with more variab­
ility are brighter. Edges remain the most variable, both the whitej gray interface 
and gray jCSF interface, producing an "outline" effect where the gray matter shows 
as less variable, bounded between two interfaces of high variability (examples are 
circled in the middle image of the third column). The third column shows a clear 
reduction in variability compared with the other two columns. 
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Affine Classic ANIMAL Tuned ANIMAL Template 

Figure 4.11: Intensity-averaged images of 39 individu aIs after spatial normalization 
using 9-parameter affine registration, ANIMAL with the default parameters (and 
cross correlation data term) , and ANIMAL using correlation coefficient data term 
and optimal parameter values (similarity=0.3, weight=l, stiffness=l). The fourth 
column shows the template image. Note the sharpness of the third column compared 
to the first two columns, and the excellent matching of the third column with the 
template. 

might irnprove the classifier performance, as it would allow labelling the boundary 

voxels as a rnixed class rather than choosing one or the other pure classes. If so, this 

may remove sorne of the apparent variability at the cortical edges in Figure 4.10. 

Figure 4.11 shows intensity-averaged images which become sharper with tuning, 

a qualitative display of the improvement in aligning fine detail. 

4.1.2 Frontal Sulci 

While total entropy of the tissue classification gives a good measure of overall match­

ing, it is also of inter est to know how weIl the spatial normalization succeeds in 

aligning specifie structures, such as a particular sulcus. To quant if y this, a human 



CHAPTER 4. QUANTIFYING SPATIAL VARIABILITY 

0.16 ,.-----r--.,------,----,---,.------r---,---,----",. 
Affine -- i 

8 mm Grid ---6--- :1 
4 mm Gr!d ... -/; .. il 
2 mmGnd···· .. ·· .. :> 

0.15 

û! 0.14 

"" .0 

"'0 

2 mm (Gradient) --8- :1 
ii 
:1 
:1 

il 
:J 
" 

.. ···1 

è5: 0.13 

~ 
~ 

'", '" '" 0 "" ""'.""': :.':'.:::: cc: Z CC :::'. ::::1:::: '. cc :c:.,,: --~,~,:, : :.:: :~: :'--"'---1 
• __ ...•. -_ .• ,t,,------------Il:r----- J 

-~ 0.12 

0.11 

8-

_ -& _____ -a-- - - - - - -8- - - - - -:- - - ..... v··········· 

- - - -a - - - - - --a-- - - w······ .. ············· 
7 ········· ........... v ... ················ .. 

...•... _- .. 17' ..•..•. .....•.....••. "' .•....•.••.••.•..•.•. 

_ . .a-:.~.,' 
.... '?f 

0.1 ~-~--~--~--~--~--~--~--~-~ 
0,' 0,2 0,3 004 0.5 0.6 0.7 0.8 0.9 

Similarity Cost Ratio 

81 

Figure 4.12: Residual variability of segmentation of frontal sulci (46 labels) as meas­
ured by total entropy, H, on a sample of 10 individuals after registration with AN­
IMAL. Plot shows results after each ofthe four iterations of the outer loop (weight=l, 
stiffness=l) along with the value for 9-parameter affine normalization, for referenee. 
Note that similarity values in the range 0.2-0.6 pro duce good results, the same range 
as found using tissue class labelling shown in Figure 4.9. However, while the variab­
ility is redueed for each of the first three iterations of the outer loop, it increases on 
the fourth (gradient fit) iteration. The gradient fit will no longer be used. 

anatomical expert manually identified 46 sulcal segments in the frontal lobes of the 

40 ICBM images under study. 

The total entropy of this set of labels (Figure 4.12) shows the same slowly­

changing behaviour as a function of similarity cost ratio as obtained using the tissue 

labels (Figure 4.4). However, the fourth outer loop iteration, which uses a gradient 

fit, produees a larger total entropy than that of the third iteration (the 2 mm grid 

intensity fit). Sinee the gradient fit produees little overall reduction in variability 

(Figure 4.9), while increasing the variability for sulci, it will be omitted for the re­

main der of this thesis. As an added benefit, the running time of each registration is 

cut nearly in half. 

For the experiments to follow, four sulci are used: central, superior and inferior 

preeentral, and superior frontal; see Figure 4.13. Each sulcus is identified as the union 

of its constituent folds. The other labels are discarded, leaving just four labels, one 
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Superior Frontal 

Inferior Precentral 

Superior Precentral 

Central 

Figure 4.13: The frontal sulcus labels used to measure variability. 

for each of the sulci. AH 39 images (all except the template) are normalized and used 

in the subsequent analysis. 

After spatially normalizing the inputs, the location of the central sulcus can be 

given probabilistically as follows. Each voxel v of a grid in the standardized space is 

assigned a value equal to the fraction of inputs for which the central sulcus overlaps 

v. This fraction is interpreted as the probability that v forms part of the central 

sulcus. The same procedure can be carried out for each of the other three sulci. 

Formally, for a random point set X C ]R3, define the coverage function Px to be 

the probability that a point x E ]R3 forms part of X, px(x) = Pr(x E X) [SS94]. 

Spatial maps of the coverage function for anatomical features are also referred to as 

Statistical Probability Anatomy Maps (SPAMs) [CZPE01]. 

The coverage function for the central sulcus after a 9-parameter affine normaliza­

tion and after nonaffine normalization using ANIMAL is shown in Figure 4.14. From 

the figure, it is evident that the nonaffine normalization pro duces a much tighter dis­

tribution in space (shown in the third column) than does the affine normalization 

(shown in the first column). It is also clear that the input central sulci are being 

matched to two distinct folds on the template. This is most evident for the 1eft 

hemisphere on the z = 34 and z = 44 slices. In fact, an four sulci in left hemisphere 

are matched to more than one fold of the template. This also happens on the right 
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hemisphere, though to a much lesser extent. 

Variability of the central sulcus, as measured by total entropy, is smaller after 

nonlinear normalization, decreasing from 1.8 x 104 to 1.3 X 104 bits on the left 

hemisphere and from 1.6 x 104 to 1.1 X 104 bits on the right. In spite of this, the 

"width" of the left hemisphere distribution on the z = 34 image has not appreciably 

decreased. The decrease in total entropy, without any decrease in spatial width of the 

distribution, is understood with the help of a I-dimensional example, illustrated in 

Figure 4.15. Consider the example as a linear cross-section through the distribution 

on the z = 34 plane. In this example there are two structure labels: the central 

sulcus has label 1 and other voxels have label O. Suppose there are 4 input images, 

each of which has a single voxel labelled as central sulcus. The distribution on the 

left of Figure 4.15 has four voxels in which the probabilities are not aU 0 or 1. Each 

of these four voxels has Po = 3/4 and Pl = 1/4, giving entropy (Equation 4.1) of 

3 3 1 1 
- '" Pl log2Pl = --log2 - - -log2 - ~ 0.81 7 4 4 4 4 

at each such voxel, for a total entropy H = 2.:v H(Lv) ~ 3.2. For the distribution 

shown on the right, there are two voxels with nonzero entropy. Each voxel has 

Po = Pl = 1/2, giving a voxel entropy of 

111 1 
- - log2 - - - log2 - = 1 

2 2 2 2 ' 

for a total entropy of 2. This lower entropy is obtained no matter what is the 

separation between the two non uniformly-labelled voxels. 

The phenomenon illustrated by this simple example is also occurring in the spatial 

normalization data shown in Figure 4.14. Consider the le ft hemisphere sulci on the 

z = 34 slice. The sulci after affine spatial normalization are located in a small region 

of space, but there is not much overlap at any particular voxel: the larger coverage 

function values are in the range 20-25%. After a non affine spatial normalization, 

shown in the third column of the figure, the coverage function values are in the 

range 30-35%. The coverage function value at a voxel is precisely the probability 

Pl, for l="central sulcus", that goes into computing the entropy H(Lv) in Equation 

4.1. Thus the affine result of Figure 4.14, with many voxels of low probability, is 

analogous to the left distribution of Figure 4.15. The nonaffine result of Figure 4.14, 

with fewer voxels covered, but with higher probability values is analogous to the 

right distribution of Figure 4.15. The entropy after nonaffine spatial normalization 
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Figure 4.14: Coverage function for the central sulcus of 39 individuals, after 9-
parameter affine spatial normalization (left) , and nonaffine normalization using AN-
1MAL (right). The template images are shown in the centre column, for reference. 
Note that the maximum probability values are higher when using non affine normal­
ization compared to affine normalization, but that the input sulci are being matched 
to two foids of the template, e.g. on the z = 34 slice. 
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Figure 4.15: The total entropy is lower for the distribution on the right compared to 
the distribution on the left, even though the spread along the x-axis is larger for the 
distribution on the right. 

is 1.3 X 104 bits, lower than that obtained after affine spatial normalization (1.8 x 104 

bits). The entropy after nonaffine spatial normalization would continue to be lower, 

no matter how widely separated are the two concentrations of sul ci appearing in the 

left hemisphere sulci of the z = 34 slice. 

In summary, the voxels are more consistently labelled, but are not better localized 

in space. The total entropy is clearly not sensitive to this spatial variability. Thus, a 

different measure of variability is required to capture the spatial distribution of the 

structures in question. 

4.2 Structure Variability 

In univariate statistics, the variability of a quantity can be described using sorne 

measure of dispersion about a central value. Two common such measures are the 

standard deviation about the mean, and the mean absolute deviation, 

1 N 

NI:1x-ml, 
i=l 

about the median m [GGD91, Chapter 8]. A similar approach is considered here for 

labelled brain structures, specifically for the frontal sulci described in Section 4.1.2. 

Each structure under consideration is a closed and bounded point set of IR3 (thus 

a compact point set), with nonzero volume. For ex ample, a 1 mm3 cubic voxel with 

centre at (5,7,2) is considered as the point set {(x, y, z) : 4.5 :::; x :::; 5.5; 6.5 :::; Y :::; 

7.5; 1.5 :::; z :::; 2.5}. For the present set of experiments, the structures under study 

are finite unions of such voxels. 

x 
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Figure 4.16: Structure distance defined using matched landmarks can be misleading. 
Though the pair of structures in the 1eft panel appears closer together than the pair 
of structures in the right panel, the mean landmark distance is the same in both 
panels. 

Defining a measure of dispersion for compact point sets requires selection of a 

central structure, and a me as ure of distance between structures. These two topics 

are addressed in the reverse or der . 

4.2.1 Distance Measure 

In the brain imaging literature, a method commonly used to measure a distance 

between two structures involves identifying and matching one or more points on 

each structure. For example, a sulcus represented by a curve (e.g. the fundus) can 

be uniformly sam pIed with the points numbered sequentially along the curve. The 

i th point on each curve is deemed to be corresponding [KLT+OO] and the structure 

distance is then derived from the distances between corresponding points, e.g. by 

taking the mean. The analogous procedure can be carried out for a sulcus represented 

by a medial surface patch, in this case sampling on a two-dimensional grid [TST96]. 

Such an approach is sim ply one choice as to how the structures should be matched. 

In particular, the assumption is that the endpoints of one sulcus should match the 

endpoints of the other, even if the sulci are of very different lengths. These a-priori 

landmark matchings can assign a large distance to situations where (considered as 

continuous sets of points), the sulci couid be considered to be close, see Figure 4.16. 

Moreover, this kind of strategy breaks down when the structure in question is 

more complicated than a ID curve or 2D surface patch. For example, sulci obtained 
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by manu al delineation of the CSF spaces will generally be like a "thick" surface 

patch, with varying thickness; see Figure 4.13, for example. Or consider measuring 

the distance between structures that consist of aU gray matter in a brain. Obtaining 

homologous landmarks throughout the gray matter is essentiaUy equivalent to regis­

tering the two cortices, but it is the registration itself that is to be quantified using 

the distance measure. 

These difficulties are avoided by defining a measure based on the distance to 

the nearest point of the other structure rather than a prespecified point, a strategy 

used by e.g. [WGW+98, CLGE98]. This strategy of assigning distance removes the 

necessity of identifying and matching landmark points in the structures. In addition 

it can be usefuIly applied to complex structures like the gray matter, as will be shown 

in Chapter 8. 

A suit able measure of distance between compact point sets is obtained by a 

modification of the well-known Hausdorff distance [Ruc96]. Let A C Rd be a compact 

point set and define the distance transform of A, denoted dA, by 

dA : x E Rd I-t inf Ilx - ail. 
aEA 

The distance transform is zero for aU x E A, and positive for x (j. A (since A is 

closed). Consider the set of points at distance ::; r from A, denoted 

(4.4) 

This set contains A as well as points near A. Given a second compact point set B, 

a measure of the nearness of A to B is obtained by considering the smallest r such 

that A c Br. This value of r is given by r = p(A, B) where p is defined as 

p(A, B) = sup dB(a). ( 4.5) 
aEA 

This measures the closeness of A to B: aIl points of A are within distance p(A, B) 

of B. This measure is not symmetric, as illustrated in Figure 4.17. The Hausdorff 

distance is defined to be the larger of the two asymmetric measures, 

dH(A, B) = max{p(A, B), p(B, A)}. (4.6) 

Though it has the attractive property of being a metric on the space of compact sets, 

the Hausdorff distance is sensitive to outliers in the following sense [VH99]. Suppose 
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Figure 4.17: Distance p(A, B) is the largest dB(a) for a E A. The light grey area on 
the left is the set {x : dB(x) ::; p(A, Bn and it completely contains set A. On the 
right, the roles of A and B are reversed, illustrating that p(B, A) =1= p(A, B). 

A, B are given point sets, but due to noise only A' = Au P and B are observed, 

where P is some perturbation. For example, P may be some misclassified voxels. 

From Equation 4.5, p(A', B) = max{p(A, B), p(P, Bn. Set P may be arbitrarily 

distant from B, hence p(A', B) may be arbitrarily larger than p(A, B), even though 

the perturbation P may be arbitrarily smaU in size (e.g. a single voxel). This defect 

can be mitigated, though not eliminated, by modifying the computation of p(A, B), 

replacing the supremum in Equation 4.5 by a "quantile" value defined as follows. 

For q E [0,1], the q-quantile of a distribution is defined as a value x q for which 

fraction q of the values are::; xq and fraction (1 - q) are ~ Xq. The median of a set 

is the ~-quantile. Define the q-quantile distance function 

pq(A, B) = q-Quantile{dB(a) : a E A}. 

This measures the nearness to B, not of set A as is the case for p(A, B), but of the 

closest fraction q of the points of A. For example, set q=90%; then T = pq(A, B) is 

the distance such that 90% of A lies in Br. Finally, define the q-trimmed Hausdorff 

distance (also known as the partial Hausdorff distance [Ruc96]) as 

dq(A, B) = max{pq(A, B), pq(B, A)}. (4.7) 

In the experiments that follow, q-trimmed Hausdorff distance with q=90% is 

selected as the distance measure between sets. The reason for using this distance 
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Figure 4.18: Cumulative distribution of distance sets {dB(a) : a E A} and {dA(b) : 
b E B} for typical pair of sulci A and B. The Hausdorff distances is the supremum 
of the two sets. The long tail is avoided by using the 90% trimmed distances. 

rather than the Hausdorff distance is that the 90%-trimmed Hausdorff distance gives 

a more representative distance between points of the two sets. Figure 4.18 shows the 

distribution of distances {dB(a) : a E A} and {dA(b) : b E B} for a typical pair of 

input sulci, A and B. Using the 90% cutoff gives a representative distance, avoiding 

the long tail in the distribution. 

The implementation of this distance measure for experimental work presented in 

this thesis uses a discrete approximation of the structure (one point at the centre of 

each voxel) as well as a discrete approximation of the distance transform functions 

dA, dB [Bor84]. 

4.2.2 Dispersion about the Template 

In sorne cases, the template image will have the same structures identified as do 

the population images. If so, the dispersion can be measured using the template 

structure as the central structure. 

This is the case for the experiments presented so far. The template is one of the 

40 images for which the four sulci are identified. For each of the sulci, 39 distances 

are computed: the distance between the template structure and one of the input 

structures. The effect of nonaffine spatial normalization is measured by computing 

the set of distances after 9-parameter affine registration, and again after running 

ANIMAL on the inputs. 

For the central sulcus, the coverage function map in Figure 4.14 suggests that the 

distribution of distances after nonaffine spatial normalization is likely to be bimodal: 

20 
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Figure 4.19: Distributions of the 90%-trimmed Hausdorff distance to the template 
central sulcus for 39 subjects. The distances are measured after a 9-parameter affine 
spatial normalization (top row) and after a nonaffine spatial normalization (bottom 
row). Note that the affine distributions are unimodal while the nonaffine are bimodal 
distributions. 

some inputs are very near the template central sulcus while others are not, at least for 

the left hemisphere. The histograms of the 39 distances before and after nonaffine 

normalization, displayed in Figure 4.19, show clearly the bimodal distribution of 

distances for the 1eft hemisphere after registration. In the right hemisphere, the 

distribution is shifted towards smaller values, though some values do become larger 

after nonaffine normalization. 

Since the distribution is not necessarily unimodal, and may have a long tail (as 

in the lower right plot of Figure 4.19), the median value (~-quantile) is chosen to 

represent the average. In the plots to follow, the median is shown along with ~­

quantile and ~-quantile to indicate the range of distance values. The median is 

quoted as the measure of dispersion. 

Figure 4.20 shows the dispersion values after 9-parameter affine normalization 
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Figure 4.20: For each sulcus, the dispersion about the template sulcus is displayed 
after 9-parameter affine normalization (left bar of each pair) and after nonaffine 
normalization (right bar of each pair). The central mark indicates the dispersion 
value, which is the median of the set of distances from the template, while the error 
bars display the 25% and 75% quantile values, computed with 39 subjects. The 
sulci for which the medians obtained with affine normalization and with nonaffine 
normalization differ significantly (sign test at p :S 0.05) are marked by an asterisk. 

and after nonaffine normalization using ANIMAL. The nonparametric paired-sample 

sign test [Fre92] is used to test for significant change in the median value before 

and after nonaffine normalization. Of the 8 sulci, four show significant decrease 

after nonaffine registration while the remaining four show increases that are not 

statistically significant. 

4.2.3 Mean of a Random Closed Set 

The template structure may not be available. Or the template, if an arbitrarily 

chosen individual, may not be representative of the population. In such cases, a dif­

ferent notion of "centre" about which to measure dispersion is required. As discussed 

above, the dispersion for a real-valued distribution is measured about some notion 

of average (mean, median, etc). Similarly, consider the structure to be a random 

variable, X, whose value is a closed point set in ]R3. View the set of input structures 
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as a sampling of X, from which a sample mean is computed to be used as the centre 

for dispersion measurements. 

There is a considerable body of work on the theory of random cIosed sets, with 

several definitions for the mean of a random set, e.g. [8894, 8er82, Mat75]. 80me 

of the definitions are suitable only for convex or for star-shaped sets. The sulci 

considered here are not of this form, so such definitions of mean are not considered. 

For a point sets A C ]R3, use lAI to denote the volume. Define the set difference 

A \ B as A \ B = {a E A : a ri. B} and the symmetric set difference A - B as 

A - B = (A \ B) U (B \ A). As previously discussed, the input structures are given 

as closed and bounded (hence compact) point sets of ]R3 that have non-zero volume. 

Let }( denote the set of cIosed, bounded subsets of ]R3 that have non-zero volume, 

i.e. }( is the set of compact set of }R3 with non-zero volume. 

Vorob'ev Mean 

Let X be a random compact set of]R3 with finite, nonzero expected volume, EIXI. 
Recall that the value of the coverage function px(x) is the probability that x E X. 

For any t, define the set of points for which the coverage probability is at least t 

as Vt = {x E }R3 : px(x) ~ t}. It is easy to see that t < u implies that Vu c Vt. 
Vorob'ev suggests to choose t such that the volume of yt most cIosely matches the 

expected volume of X. Thus t is chosen to be the largest value for which IVtI 2: EIXI. 
The Vorob'ev mean EX is then defined to be yt. This mean is the best-fitting set of 

volume EIXI as measured using symmetric set difference, EIX - EXI :::; EIX - BI for 

all B with volume EIXI [8894, p.113]. 

For small structures with little overlap (i.e. low values in the coverage function), a 

drawback of this definition of mean is that the resulting mean structure often doesn't 

look like an individual input structure. Figure 4.21 shows three input structures 

that are roughly the same size and shape, lying roughly parallel to one another. 

Intuitively, one expects a "mean" to look something like one of the inputs and lie 

roughly in the middle. However, each of the non-white voxels for this input have 

coverage function value 1/3. The Vorob'ev threshold t cannot be larger than 1/3, 

otherwise Vt is empty. 80 t = 1/3 and the Vorob'ev me an is the union of the three 

inputs. This phenomenon happens in real-world data, too: the Vorob'ev me an for 

the left central sulcus after nonaffine normalization includes voxels from both the 

folds that appear on the z = 34 slice of Figure 4.14. 

The Vorob'ev me an is more reasonable when the inputs are larger and more 

likely to overlap. In Chapter 8 the Vorob'ev mean of gray matter is used to select 
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Figure 4.21: Three input structures are displayed in the left panel. The right panel 
shows the resulting Vorob'ev mean, which is not a natural result. A structure similar 
to the middle input is a more appealing mean. 

a template. However, for smaller structures like sul ci a different notion of mean is 

sought. 

Fréchet Mean 

8uppose that a metric function p is given on the space of structures K (the Hausdorff 

distance is a suitable metric). Then X is considered as a random element of the 

metric space (K, p). The following definition of a mean of a random variable that 

takes values in a metric space was introduced by Fréchet in 1948. 

Let X be a random variable in the metric space (K, p) that satisfies Ep2(X, K) < 
00 for aH K E K. Any M E K that satisfies 

(4.8) 

is a mean value element of X [8894]. The set of all mean value elements is called 

the Fréchet mean. For real numbers (metric space (IR, d), where d(x, y) = lx - yi), 

the Fréchet mean reduces to the standard definition. 

This mean has a natural appeal, but the big drawback to using it is that one 

must perform an optimization over the space JC. The next definition of mean can be 

seen as a modification of Fréchet's. 

Distance Mean 

Baddeley and Molchanov [BM98] suggest a method for computing a mean image by 

averaging distance transform functions. Let X be a random element of the metric 

space (K, dH ), where dH is the Hausdorff distance defined in Equation 4.6. The 
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Hausdorff distance satisfies the identity 

dH(A, B) = sup IdA(x) - dB(x)l, (4.9) 
xEJR3 

which is proved, e.g. in [Bad92]. Using this, the optimization over lC in Fréchet's 

mean (Equation 4.8) can be replaced by an optimization over the space of distance 

functions (functions IR3 
----t IR) with the uniform metric 

Poo(f, g) = sup If(x) - g(x)1 ( 4.10) 
xEJR3 

as follows. Using Equations 4.9 and 4.10, write dH(A, B) = Poo (dA, dB), so the right 

hand side of Equation 4.8 (with P = dH ) can be written as 

(4.11) 

This reformulation confers no advantage, as the optimization of Equation 4.11 is 

no easier than the original optimization in Equation 4.8. The key is then to change 

the metric used on the distance functions which, of course, changes the metric space 

in which X lies and therefore changes the mean computed. Baddeley and Molchanov 

replace the uniform metric on distance functions by the L 2 metric, 

The advantage of this change is that the infimum over the space of distance fun ct ions 

has a unique solution, namely the expectation value of the distance function for X, 

Edx [BM98]. When given a set of samples of X, {Xl"'" X N }, Edx can be estimated 

as the sample mean, 
1 N 

d(x) = N I: dXi(x), 
i=l 

where dXi is the distance transform of input structure Xi' For the experimental work 

in this thesis, the distance transforms are always represented on a discrete grid, so 

the sample mean is simply the voxelwise mean. 

This function d is a solution to the (modified) problem of finding the mean dis­

tance transform function. The final step is to map this back to a point set of IR3 

that can be identified as the mean value EX. Unfortunately, the function d is not 

the distance transform of a point set (unless X is deterministic) [BM98]. A suit able 
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point set can be obtained, however, by choosing a threshold t and defining 

Dt = {x E ]R3 : d(x) ~ t}. 

With a suit able choice of threshold, EX will be set to Dt. This can be interpreted in 

terms of the sample mean as selecting the points that are, on average, close to the 

input structures. 

Baddeley and Molchanov propose a number of different ways to select the threshold 

value. Each method to obtain t is arrived at by optimizing sorne measure between 

the mean distance transform, d, and the distance transform of EX. Subsequent work 

by Lewis, Owens and Baddeley [LOB99] suggests a different strategy: choose t by 

optimizing a criterion based on Dt and the inputs, {Xi}' They suggest to minimize 

the mean absolute volume difference, 

(4.12) 

It is well-known (e.g. [GGD91]) that the me an absolute deviation about m, 

where m and Xi are real numbers, is minimized by choosing m to be a median value 

of {Xl, ... , X N }. Thus, Expression 4.12 is minimized by selecting t such that \ Dt \ is 

equal to the median volume of the input set {Xi}' This has the attractive property 

that the volume of the mean is equal to the average (median) of the input volumes, 

and is the criterion used in this thesis. For the implementation, the distance mean 

is discretized so \Dt\ will not generally exactly equal the median input volume, m; 

rather, t is chosen to be the smallest value such that \Dt\ 2: m. 

As an illustration of the improvement over Vorob'ev mean for smaU structures 

with little overlap, the same three inputs as used for Figure 4.21 and the distance 

me an are shown in Figure 4.22. In this example, the distance mean is more natural 

than the Vorob'ev mean. It is a single connected component, and located roughly 

where the middle input structure appears. 

The distance mean for the central sulcus, after non affine spatial normalization, 

is shown in Figure 4.23. In both hemispheres, the mean structure is similar in 

appearance to an input central sulcus, albeit shorter and thicker. 

The tendency of the distance mean to be shorter and thicker is actually a reflection 
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Figure 4.22: The 1eft panel shows the same three input structures as in Figure 
4.21. The resulting distance mean shown in the right panel is more natural than the 
Vorob'ev mean. 

of the spatial variability of the inputs. If each input mapped exactly on top of aH 

the others, then d would be zero at these points, and the volume of the set of points 

for which d is zero would be equal to the median volume of the inputs. In this case, 

the distance mean would be precisely the same as each input. If, on the other hand, 

the distribution in one region of the structure (e.g. the z S; 44 slices in Figure 4.23) 

were more spread out than in another region (e.g. slice z = 64), the value of d in 

the former (more variable) region would tend to be larger than d in the latter (less 

variable) region. Points in the less variable region are more likely to be under the 

threshold and thus selected for the distance mean, at the expense of points in the 

more variable region. 

4.2.4 Dispersion about the Distance Mean 

In contrast to measuring dispersion using the template structure as the central struc­

ture, dispersion about the distance mean is expected to be a better measure of the 

input variability for two reasons. First, the distance mean is centered on the input 

data whereas the template structure could be from an extreme of the population 

variation. If the inputs were spatially concentrated in a small region while the tem­

plate structure were an out lier , the dispersion measure could be quite large and thus 

unrepresentative of the actual dispersion of the input data. Second, as noted above 

the sample distance me an tends to be concentrated in the regions of low variabil­

ity, away from regions of higher variability. This renders the dispersion about the 

distance mean more sensitive to variability of the inputs. 

The distance me an for each of the eight structures before and after nonaffine 

spatial normalization is computed, and the dispersion me as ures about these means 
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z=64 

z=54 

z=44 

z=34 

Figure 4.23: Coverage function and distance mean of the central sulcus after nonaffine 
normalization with 39 subjects. Notice that the distance mean in the left hemisphere 
does not extend down to the z = 34 and z = 44 slices. 



CHAPTER 4. QUANTIFYING SPATIAL VARIABILITY 98 

30 
Lelt Hemisphere Righi Hemisphere 

25 l 20 
Ê g 

1 j 
c 

1 

.9 15 

1 1 1 1 

f!! 

ct 
f 1 ! 1 

10 

± l ± 5 

0 . '@ . , 
'@ . , 

}g Œ ë 
'@ }g 

ë Œ Œ c 
ë ë c ë ë e Cl) e Cl) 
Cl) u Cl) 

Ü Cl Cl u.. 
Ü ~ ~ u.. u u 

0.. ci. ~ ~ ci. 
0.. :::J 0.. 0.. :::J 

ci. (/) ci. :g (/) 
:::J Ë (/) :::J 

(/) 

Figure 4.24: For each sulcus, the dispersion about the distance mean is displayed 
after 9-parameter affine normalization (left bar of each pair) and after nonaffine 
normalization (right bar of each pair). The central mark indicates the dispersion, 
which is the median of the set of distances from the distance mean, while the error 
bars disp1ay the 25% and 75% quantile values, computed with 39 subjects. The 
sulci for which the medians obtained with affine normalization and with nonaffine 
normalization differ significant1y (sign test at p :; 0.05) are marked by an asterisk. 

are plotted in Figure 4.24. The biggest difference with respect to dispersion about the 

temp1ate is that 3 of 4 of the 1eft hemisphere sulci show large increases in dispersion 

after non affine warping. This is due to the second effect, i.e. that the distance mean 

is concentrated in regions of lower spatial variability, as illustrated in Figure 4.23. 

4.3 Localization Measure of Spatial Normalization 

The goal of spatial normalization is to map a population into standard space such 

that corresponding structures are well-localized. Fischl et al. [FSTD99] measure 

localization by "computing the spatial spread over which a feature occurs across 

individuals". Their measure of spatial spread is the volume of the union of the struc­

tures after spatial normalization, divided by the me an volume of the structures. This 

measure captures sorne aspects of the spatial spread, but not aIl of them. Imagine 

spatially normalizing a population of 2 individuals and let Xl be the first subject's 
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Figure 4.25: A good spatial normalization of four structures is shown in the 1eft panel. 
In contrast, the middle panel shows a spatial distribution that is more disperse, and 
the right panel shows a spatial distribution in which the structures cover a larger 
area. 

structure after normalization, while X2 is the structure of the second subject after 

normalization. The spatial spread measure of Fischl et al. is given by 

Assuming that the sizes of Xl and X2 are not appreciably different for the different 

spatial normalizations being compared, the denominator of 0: is roughly constant. 

The quantity 0: is then minimized when there is complete overlap, i.e. Xl C X2 or 

X2 C Xl' The maximum value of 0: occurs when Xl and X2 are disjoint, which gives 

0: = 2. However, 0: is equal to 2 no matter how distant in space are Xl and X 2 . 

Thus, the measure does not completely capture the notion of "spatial spread". The 

measure 0: suffers from the same fiaw as that of segmentation entropy, discussed at 

the end of Section 4.1.2 on page 83. 

The desired measure of localization should capture the notion that the normalized 

structures should be neither too disperse, nor cover too large a volume. See Figure 

4.25. 

In contrast to the measure of Fischl et al., the dispersion measure discussed in 

Section 4.2 is sensitive to the spatial spread about a mean, e.g. the distance mean. 

However, the dispersion is not sensitive to the size of the mean: if input structures 

are mapped to large regions in a consistent fashion, the dispersion can be low. Thus 

while the dispersion may be part of the answer, it, too, is not the complete answer. 

To proceed consider the situation for a distribution of real numbers, with mean x 
and standard deviation a. A certain fraction of the population (depending upon the 

underlying distribution) is known to lie on the interval [x - a, x + al. Let M == {x} 
denote the mean point set and notice that the interval is MO", the dilation of M by 
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Figure 4.26: For each sulcus, the volume is displayed after 9-parameter affine nor­
malization (left bar of each pair) and after nonaffine normalization (right bar of each 
pair). The central mark indicates the median while the error bars display the 25% 
and 75% quantile values, computed with 39 subjects. 

a defined by Equation 4.4. The size of the set M(7 (i.e. 20') is a measure of the 

localization: the smaller the size of M(7' the better localized is the distribution. The 

localization for extended structures, such as the sulci considered in this thesis, can 

be measured in an analogous manner. Given a mean structure M (e.g. the distance 

mean) , and a measure of dispersion about the me an a (e.g. the dispersion defined 

in Section 4.2), the localization measure is taken to be the volume, 

(4.13) 

One way to think about this measure is that the distance mean, after dilating by 

the dispersion value, is a region that covers at least 90% of at least half the inputs. 

In contrast to sim ply measuring the union, however, the size of M(7 increases with 

dispersion. 

Figure 4.26 shows that the structure volumes can be enlarged (e.g. superior 

frontal sulcus) or reduced (e.g. superior precentral sulcus) after normalization. The 

size of the distance mean is (approximately) the median value of the structure sizes so 

it, too, can be either enlarged or reduced by spatial normalization. The localization 



CHAPTER 4. QUANTIFYING SPATIAL VARIABILITY 101 

80000 
Lelt Hemisphere Right Hemisphere 

70000 ,-

60000 

50000 

'" E 
S 40000 ,-
re ,-
(i.j 

30000 
,- ,- ,- ,-

- ,-- ,-
r-

20000 ,- - r---

10000 

0 
Jg ~ ~ ~ ~ "ê ~ ~ c: c: ë 2 c: ë 2 (l) (l) (l) <Il (l) <Il 
Ü u <> IJ.. Ü ~ ~ IJ.. 

~ l!! ci. ci. a. a. :> a. a. :> 
ci. ~ 

(j) ci. ~ 
(j) 

:> :> 
(j) (j) 

Figure 4.27: For each sulcus, the localization measure is displayed after 9-parameter 
affine normalization (left bar of each pair) and after nonaffine normalization (right 
bar of each pair) of 39 subjects. To distinguish better the values for most sulci, 
the vertical range is set to 80 000. The value for left central sulcus after nonaffine 
normalization is about 2 x 105 mm3 . 

measures before and after non affine normalization are shown in Figure 4.27. The 

results, in terms of whether nonaffine normalization improved or degraded localiza­

tion, generally agree with the measures of dispersion about the distance mean (Figure 

4.24). Where the dispersion increases or decreases, so too does the localization value, 

with two exceptions. The 1eft superior precentral shows about equal dispersion be­

fore and after nonaffine normalization. However, the size of the distance mean is 

considerably reduced afterwards, leading to a modest drop (improvement) in local­

ization value. The right superior frontal sulcus shows about equal dispersion before 

and after nonaffine normalization with a larger distance mean afterwards, leading 

to a larger measure for localization. These examples indicate that the localization 

measure does indeed capture a quality distinct from the dispersion. 
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4.4 Previous Work 

Measurements of variability (or the converse: alignment) after nonaffine registration 

most often appears in work validating a new algorithm, generally comparing the 

algorithm to one other algorithm (often an affine registration method). The goal 

of studies that compare nonaffine registration algorithms is often slightly different, 

namely to compare the impact of spatial normalization on analysis of functional 

data, e.g. [CSTM+02, GAA97, MKFK94, SIO+98, HAC+02]. However, many of 

these studies also include sorne measure of anatomical variability as weIl. 

The measurements of variability can be divided into two categories. The first cat­

egory is measurements that compare a normalized image with the template, e.g. dis­

persion about the template discussed in Section 4.2.2. Such a measure can be mis­

leading if the template is unrepresentative of the population, as discussed in Section 

4.2.4. The second category of measurements avoids using the template. Examples of 

this approach are the total entropy discussed in Section 4.1 and the dispersion about 

a distance mean discussed in Section 4.2.4. 

Template Agreement Measures 

In validation work, perhaps because the goal is to show that the spatial transforma­

tion generates a good match between the source image and the target, the compar­

ison most often measures agreement or discrepancy with the template. Comparative 

studies also use this type of pairwise measurement. A set of such pairwise measures 

can be averaged to show typical performance. 

The measures can be as crude as simply checking that the volume of the brain, 

or sorne substructure such as the ventricles, agrees with the template volume after 

alignment, e.g. [CHPE95, KLT+OO, SD03]. Certainly this is not a very sensitive 

test of misregistration as a structure may have the same volume but be shifted with 

respect to the template structure, and it is not relied on as the only measurement. 

Slightly more sophisticated tests measure segmentation agreement by counting 

the number of voxels on which the individual and the template segmentations agree 

(or disagree) after registration, e.g. [BK89, CRM94, CJM97, CSTM+02, CHPE95, 

HBOO, HBC+Ol, HAC+02, KPH+96, KLT+OO, KLT+02, SD03]. When applied to 

only two images, total entropy score defined in Section 4.1 is equal to the number of 

voxels for which the segmentations disagree. This is because in a pairwise measure­

ment, voxels on which the registered image and the template agree contribute zero 

to the entropy. If the labels do not agree, then there are precisely two labels with 
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Figure 4.28: The two structures in the left panel are better aligned than the two in 
the right panel. The area of the union is the same in the left panel as in the right, 
as is the area of the intersection. Thus, the union and intersection measures do not 
completely capture the essence of "alignment". 

Pz = 1/2 and the other labels have zero probability. The entropy for such a voxel 

is 2( -~ 10g2 ~) = l, so the total entropy is just the number of voxels that disagree. 

Measures of overlap can be normalized by total number of voxels, the total number 

of voxels in the template structure, or the total number of voxels in the union of the 

two structures [GJCOl]. 

Dispersion measures about template structures have also been used, for example 

with point landmarks [GBR+99, KPH+96, TT96] or with sulcal surfaces [CLGE98, 

HBC+Ol] . 

Group Measures 

Variability measures that don't rely on a template are generally obtained by measur­

ing a dispersion about a mean, using point landmark features [SAVK+Q2, SKS+99] 

or curves [KLT+OO, SKS+99]. 

Warfield et al. [WRH+Ol] introduce the total entropy (Equation 4.2) as a per­

formance measure, borrowing the idea from Miller et al. [MMVOO] who use the 

total entropy as the objective function to simultaneously co-register binary images 

of handwritten characters. 

Other group measures of variability include the volume of intersection of all input 

structures used by Roland et al. [RGA +97] for which a larger volume indicates better 

normalization. Fischl et al. [FSTD99] look instead at the volume of the union of 

aH inputs, i.e., the volume with positive coverage function. In this case, a lower 

volume is best. However, there are qualitatively different situations, su ch as those 

illustrated in Figure 4.28, that cannot be distinguished by union nor by intersection. 

\-Voods et al. [WGW+98] use sulcal and gyral curves to evaluate variability. The 

curves are rasterized, and at every voxel of a curve, the me an distance to the other 

N - 1 homologous curves is computed. Rather than generating a single variability 
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number, the distribution of these mean distances, over an curves is compared with 

the corresponding distribution of another spatial normalization method. 

4.5 Summary 

Two different strategies for measuring anatomical variability are presented in this 

chapter. Both me as ures can be applied to measure the performance of any registra­

tion method. 

With either strategy, the variability is measured using a number of input images, 

each of which has an accompanying segmentation. In the work presented here, the 

segmentations carry anatomical information so anatomical variability is measured. 

However, the segmentations could equally weIl be functional regions in which case 

variability of a functional region would be measured. To compute the variability, 

a spatial normalization is first carried out, producing a set of transformations from 

the template to each input image. Each transformation induces a segmentation on 

a standard space grid, as illustrated in Figure 4.1. 

Impravements ta ANIMAL 

The first strategy for measuring variability (Section 4.1) is based on measuring the 

consistency of the induced segmentations. After spatially normalizing the input data, 

each voxel v in the standard space grid maps to a certain point in subject i, which 

has label LVi as shown in Figure 4.1. If the spatial normalization is truly matching 

homologous points, the labels thus associated with v will be consistently of the same 

class. The extent to which the labels are consistent is measured using total entropy, 

defined in Equation 4.2. 

A segmentation of the entire brain into tissue classes gray matter, white matter, 

and CSF can be obtained automatically [Ko196, DFS99, JCD+99]. Using such a 

segmentation allows a variability measure that is sensitive to label consistency across 

the entire brain. The entropy value measured using such a segmentation is thus a 

global measure of variability and it can be used to measure the performance of a 

registration algorithm for the purposes of spatial normalization. In Section 4.1.1, 

this performance me as ure is used to evaluate algorithm design choices and choose 

optimal values of numerical parameters for the ANIMAL algorithm (Section 3.7). 

As distributed, the ANIMAL algorithm performs four iterations of the outer loop 

(Section 3.7.1), the first three using smoothed image data with control grid vertex 
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spacing of 8 mm, 4 mm, and 2 mm. The fourth iteration uses smoothed gradient 

image data, with a 2 mm control grid. The entropy me as ure (see Figure 4.2) shows 

that the variability decreases after the first three iterations of the outer loop, but 

not after the fourth. Further investigation reveals that the node thinning heuristic 

that is designed to suppress the matching step for control mesh vertices located in 

non-brain regions of the image (Section 3.7.2) is not suit able for gradient image data. 

This heuristic suppresses matching at a control mesh vertex if the image intensity 

faIls below 10% of the maximum intensity, which happens for almost an vertices 

when the image data is gradient magnitude, as shown in Figure 4.3. With node 

thinning, matching is only done on scalp and superficial cortex, and not on the 

internaI structures of the brain. After the node thinning is removed from ANIMAL, 

the gradient fit iteration of the outer loop does indeed reduce variability, albeit not 

by much; see Figure 4.9. Ultimately, however, spatial normalization is concerned 

with minimizing the variability of structures like sulci. The entropy measured using 

a segmentation of frontal sulci rather than by tissue c1ass (Section 4.1.2) shows in 

Figure 4.12 that variability using the gradient fit is larger than the variability using 

the intensity fit with the 2 mm grid. Thus, the gradient fit is omitted for results in 

this thesis. 

The data term used by ANIMAL is also investigated using total entropy as a 

performance measure. The original ANIMAL algorithm uses normalized cross cor­

relation (Equation 3.14) as the data term, which is equivalent to maximum likelihood 

under the assumption that the intensities of the two images are linearly related, as 

discussed in Section 3.2.2. The correlation coefficient (Equation 3.13), on the other 

hand, assumes an affine intensity relationship. An affine function has one more para­

meter than a linear function, which suggests it might be better able to match regions 

in which there are two tissue types such as near boundaries, as discussed in Sec­

tion 4.1.1 on page 66. This is tested by replacing the cross correlation data term in 

ANIMAL by the correlation coefficient. The lowest variability achieved in the exp er­

iments performed with each data term is about the same, as show by Figures 4.4 and 

4.5. However, these figures also show that the correlation coefficient data term still 

achieves low variability if the similarity cost ratio or the stiffness parameter is slightly 

non-optimal, whereas the variability when using cross correlation may be dramatic­

ally worse. In a situation where the algorithm is tuned using a set of test data and 

then put to general use with the selected parameters, this robustness to parameter 

choice is desirable. The optimal parameter choice for a given data set might indeed 

be slightly different from the parameter set in use. Thus, the correlation coefficient 
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data terrn is used for the experirnents in this thesis. 

The total entropy is then used to obtain optimal values for the three major para­

meters of the ANIMAL inner loop (Algorithm 4): similarity co st ratio, stiffness, and 

weight. Figures 4.4 and 4.5 show that similarity=0.3, and stiffness=l are optimal. 

The weight value, which doesn 't affect the results greatly, is set to 1. These para­

met ers are selected using a sample of 10 individuals, and Figure 4.9 shows that the 

performance is good for a second sample of 10 individu aIs using the same parameters. 

Using the optimal parameters, a set of 39 individuals is spatially normalized 

to check whether the generated transformations are commonly non-injective. The 

results in Figure 4.8 show that there are pockets of non-injectivity. Overall, however, 

the Jacobian determinant is negative at only 0.2% of the control mesh vertices, so it 

is not a large problem. 

In summary, using the total entropy as a performance measure for ANIMAL, 

in the context of spatial normalization, demonstrates that the following changes 

produce improved performance: remove node thinning, remove gradient fit, use cor­

relation coefficient as the data term, and use parameters similarity=0.3, stiffness=l, 

weight=l. Figure 4.10 shows the quantitative improvement of these changes in terms 

of reduced entropy throughout the brain. Figure 4.11 shows the improvement qual­

itatively in terms of increased sharpness in the intensity average image. 

Structure Variability 

If homo logo us structures are being aligned by the spatial normalization, then gray 

matter is expected to align more often with gray matter, and similarly white matter 

with white matter. In other words, the label consistency measured by total entropy 

should decrease. However, the converse is not true: a decrease in entropy at a voxel 

because it is consistently assigned the label gray matter does not mean that the gray 

matter cornes from the same sulcus in each individu al. Figure 4.14 shows that this 

can happen, even for the central sulcus, which is relatively large and consistent in 

the population. 

In order to quantify the variability of structures sm aller than the totality of 

white matter or of gray matter, a more refined segmentation consisting of frontal 

sulci is used in Section 4.2. With the sulcus labelling, the total entropy will increase 

if a sulcus is matched to the wrong sulcus, in contrast to the tissue segmentation 

which will decrease because much of the tissue labels do match even if the sulcus 

is incorrectly matched to the wrong sulcus. However, as discussed at the end of 

Section 4.1.2 on page 83, the entropy of the sulcus labelling does not capture the 
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spatial spread of the distribution of normalized sulci. The total entropy can decrease 

if the input sulci are weIl matched to, say, two foIds on the tempIate, regardless of 

how widely separated in space are the two foIds, as illustrated in Figure 4.15. 

To capture the spatial aspect of variability, a dispersion measure akin to median 

absolute deviation of univariate statistics is proposed in Section 4.2. Dispersion is 

defined as the median distance from a central structure to each of the input struc­

tures. The distance between structures is measured using trimmed Hausdorff dis­

tance (Equation 4.7). This distance measure is chosen because it is applicable to 

any closed point set, e.g. the gray matter object, and the "thick" sulcus structures 

used in this thesis. It does not require a point-to-point mat ching of the structures 

nor does it require any manual intervention. 

Three methods for obtaining a central object about which dispersion can be 

measured are discussed in Section 4.2. One option is to measure dispersion about 

the template structure as in Section 4.2.2. This could be useful to gauge suitability 

of that template for the purpose of automated labelling, since labelling requires 

that the template structure be accurately matched to the corresponding structure in 

the population. The second option is to use the Vorob'ev mean structure, which is 

possibly useful when the input structures contain a lot of overlap, after normalization. 

The third option is the distance mean, which is useful for smaU structures that don't 

necessarily overlap much. Figures 4.21 and 4.22 compare the Vorob'ev and distance 

means on a synthetic example where there is not much overlap. The results of the 

distance mean are more natural. Thus the distance mean is used for dispersion 

measures of the frontal sulci. 

Localization 

A measurement of the localization of a given structure after applying spatial normal­

ization should capture the notion that the normalized structures should be neither 

too disperse, nor coyer too large a volume, as illustrated in Figure 4.25. From the 

notion of confidence intervals on the real line, which locate the region in which a 

given fraction of the population is concentrated, an analogous measure for extended 

objects is proposed. The localization measure is the size of the distance mean after 

dilating by the dispersion measure. This measure takes into account both the size 

of the mean as well as the dispersion about it. This is an improvement upon the 

volume of the union proposed by Fischl et al. [FSTD99] which isn't sensitive to the 

dispersion, as discussed in Section 4.3. 

When comparing two competing spatial normalization methods, the smaller loc-
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alization value is preferred. 



Part II 

2D Spatial N ormalization 
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Chapter 5 

Spatial Transformation 

This chapter is concerned with defining an appropriate class of transformations for 

cortical surface spatial normalization, the 2D paraUel of Chapter 2. Spatial normal­

ization of the 2D cortical surface is conceptually the same problem as 3D spatial 

normalization, namely to obtain a transformation T from the standard space to an 

input cortical surface. However, there are two additional steps required, which are 

illustrated in Figure 5.1. First, the cortical surface mesh must be identified from 

the MR image; here there are several competing definitions of cortical surface mesh 

from which to choose. Second, the mapping from the surface situated in 3D to an 

auxiliary 2-manifold must be defined and computed. 

5.1 Surface Mesh 

Topology 

The cortex of each hemisphere is a highly folded sheet of gray matter, which is 

attached to other structures deep in the brain such as the corpus callosum. The 

complete cortex consisting of two hemispheres can be modelled as a mesh using one 

of at least three different topologies. One option is to represent each cortical hemi­

sphere using a topological disc [CDVE95]. However, this approach requires human 

neuroanatomical expertise to find the cortical boundaries deep in the brain [DECS99]. 

The second approach splits the MR data into two parts through the corpus callosum, 

which can be done automatically, e.g. [DFS99, RMPO+02, RHXP02]. The surface 

of this combined object (one hemisphere plus half the corpus callosum) is then rep­

resented as a manifold without boundary, i.e., a topological sphere. The cortex is 

modelled as two such topological spheres, each of which includes an arbitrary "cap" 

110 



CHAPTER 5. SPATIAL TRANSFORMATION 
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Figure 5.1: Starting with a native MR image, a cortical surface is extracted and then 
projected onto an auxiliary space (mapping II) such as the plane or the unit sphere. 
After these two preliminary steps, the mapping T from standard auxiliary space to 
the native auxiliary space can be obtained. The two initial steps, enclosed in the 
dashed-line box, are unique to the 2D normalization problem. 

through structures of the mid-brain [DFS99]. This cap does not represent cortex, but 

it is typically small in area and considered neglectable in subsequent analysis. The 

third approach uses a single topological sphere to cover both cortical hemispheres 

[MKAEOO]. In this case, the surface consists of two cortical hemispheres, joined by 

the top part of the corpus callosum and an arbitrary cap through the brain stem 

below. These three possibilities are illustrated in Figure 5.2. 

In the first two cases a separate auxiliary space is used for each hemisphere with 

left and right cortical hemispheres mapped separately to their respective auxiliary 

spaces, while the third approach maps both hemispheres to a single auxiliary space. 

From now on, the auxiliary space topology will be described sim ply as a disc or a 

sphere, understanding that the sphere may model one hemisphere or both. 

Choice of Layer 

Since the cortex actually has sorne thickness, there are several candidates that may 

be used as the cortical surface, illustrated in Figure 5.3. The interface between the 

white matter and the gray matter could be used, for example. Or the outer surface of 

the gray matter (also called the "pial surface" because the cortex is bounded by "pia 

matter") could be used. However, using either of these surfaces for brain mapping 
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Figure 5.2: Schematic coronal slices through the cortical surface. The top figure 
shows the actual situation: cortex consists of two hemispheres attached to the corpus 
callosum (shaded). Topology of the model could be (bottom row, left to right): two 
discs, two spheres, or a single sphere. In order to interpret the bottom row, note that 
a slice through a topological disc (i.e. a manifold with boundary) is an open curve 
in the plane, while a slice through a topological sphere pro duces a closed curve. 

Outer 

Inner 

SulcuS ----iii ...... -
White Matter 

Figure 5.3: Three possible cortical surfaces: the outer surface is the external surface 
of the cortex, the inner surface is the gray matter/white matter interface, and the 
medial surface is between the two. 
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can be criticized (e.g. [DEC899]) as being unrepresentative of the cortical surface. 

Along a fold, one surface (outer surface at the crown of a gyrus, inner surface at the 

fundus of a sulcus) tends to have more surface area than the other surface. As a 

compromise, therefore, sorne groups use a surface through the middle of the cortical 

sheet. This surface cannot be discerned by a particular intensity on an MR image, but 

can be computed using a function that seeks the "centre of mass" of the gray matter 

[DB96, XPR+99] or using cues based on intensity and its gradient [VEDD+Ol]. Thus 

there are at least three reasonable choices for "the" cortical surface. 

Computing the Mesh 

There are several methods used to extract surfaces from volume data. An early 

method is to manually trace polygonal line contours in a stack of image planes and 

then link nodes between adjacent planes [JTH+89, 8he92]. This is still used with data 

obtained from histological sections [VEDD+01]. With MR or cryosection data, on 

the other hand, the surface reconstruction is generally do ne directly in 3D, employing 

one or both of the following two techniques. 

One technique uses an intensity value that lies midway between the intensities 

of white matter and of gray matter. The locus of points in the (continuous) image 

that have this intensity value contains the interface between gray and white matter. 

8ince other parts of the head, notably skin and fat, can appear with intensities in 

the same range as white matter, this set can contain many connected components. 

The set is usually post-processed (e.g. to remove aU but the largest component), and 

the result is referred to as an iso-value surface, or iso-surface. 

To ease the problem of choosing the iso-value the image is often pre-processed, 

classifying each voxel as to whether it lies in white matter, gray matter, or neither, 

using standard classification techniques, e.g. [KoI96, ZFE02]. The result is a classified 

image in which each voxel contains its class identifier, e.g. value 2 (white), 1 (gray), 

or 0 (background), as shown in Figure 5.4. On such an image the surface sought has 

a known iso-value of 1.5. Level-set methods [8et96, M898] offer an alternate form of 

classification from which a surface can be generated. 

Once the iso-value is chosen, a polyhedron with triangular facets is generated, 

typically using a variant of the marching cubes method [LC87]. Surfaces produced in 

this manner typically have a large number of triangles and biologically-implausibly 

sharp edges and corners. The surfaces are generally decimated and smoothed to al­

leviate this. In addition, with the exception of the topology-preserving segmentation 

of Mangin et al [MFB+95], the surfaces will generally have non-zero genus and re-
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Figure 5.4: Left: the MR image. Right: voxels c1assified according to tissue class. 
The outer cortical surface boundary is difficult to discern from MR data, especially 
in sulci. 

quire editing to bring the genus down to zero. The editing is typically either manual 

[DECS99] or based on intricate heuristics [FLDOl, KGOl, SLOl, VEDD+01]. 

A second technique for computing a boundary surface is based on iteratively 

deforming a trial surface represented explicitly (e.g. as a polyhedron) until it conforms 

to the desired boundary. This deformable surface approach has the advantage that 

the surface topology can be fixed in advance (e.g. to be spherical) and the deformation 

pro cess can maintain a simple surface at aU times [Mac98], obviating the need for 

manual editing. The deformation pro cess also has provisions for controlling the 

smoothness of the surface during deformation, rather than smoothing afterwards. 

One drawback of this approach is that it is much more computationally demanding 

than marching cubes. A fair comparison with iso-surfacing, however, must include 

the effort required to correct topological defects, which may take several hours on an 

SGI Octane [VEDD+Ol]. 

Computing the outer surface is problematic because the gap between opposing 

banks of many sulci is at or below the resolution of the image and thus is not visible. 

See Figure 5.4 for example. This is much less of a problem with the inner surface, 

so the inner surface is used for experiments presented in this thesis. The surface is 

obtained using the ASP software, developed by MacDonald [Mac98]. 
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Cortical Surface Extraction Literature 

The software suite of Van Essen's group [VEDD+01] contains provisions for either 

manual contour tracing or automated iso-surface extraction and smoothing, using 

the medial surface in either case. Joshi et al. [JCD+99] use an iso-surface method on 

the white matter segmentation. Malladi et al. [MS98] use a level-set technique for 

segmentation and then compute an iso-surface. Xu et al. [XPR+99] compute the iso­

surface of the gray/white interface after fuzzy segmentation, then use a deformable 

surface technique to find the medial surface. Dale et al. [DFS99] st art with the surface 

of a white matter segmentation, and then deform it to seek the outer surface. None 

of the preceding guarantees a surface of genus 0 without post-processing. Davatzikos 

and Bryan [DB96] use a deformable mesh that seeks the medial surface, but it is 

not able to get into the depths of the sulci. Thompson and Toga [TT96] use a 

deformable mesh driven by the gradient image, thresholded and subsequently blurred. 

MacDonald et al. [MAE94, MAE98, MKAEOO] use a deformable surface to find first 

the inner surface, then the outer surface, using the former to constrain the latter. 

Throughout the deformation, the surface remains geometrically simple and of genus 

O. 

5.2 A uxiliary S pace 

In contrast to the situation in 3D, the domain and range for the mapping T is not 

self-evident. While it is conceivable to use the native mesh just described as the 

domain and range of the mapping T, a simpler auxiliary space is generally used 

instead. There are at least three different reasons for using an auxiliary space in 

preference to the manifold of the native mesh. 

The first reason for mapping to a simpler manifold is to allow visualization of 

surface data that is buried in the foIds [VEDJM98, FSD99]. With a standard ren­

dering of the native cortical mesh, a good deal of the cortex buried in the folds is 

occluded from view. In order to bring the buried cortex into view, the surface can 

be mapped to the plane (sometimes called fiat mapping) , to a sphere or ellipsoid, 

or to a smoothed version of the cortex [VEDJM98]. One method of smoothing the 

cortex is described in more detail in Section 6.2.2. 

The second reason for mapping to a simpler manifold is to facilitate communic­

ation of surface locations of interest between laboratories. Mapping to the plane or 

the sphere allows standard coordinate systems to be used. Cartesian coordinates 

are used for fiat maps [VEDJM98] while polar coordinates are used on the sphere 
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[VEDJM9S, FSD99]. 

As the topic of this thesis is the registration problem, these two rationales for 

using an auxiliary surface will not be considered further. In any case, software 

allows one to use multiple surfaces and to map information from one representation 

to another [VEDD+Ol]. For example, a coordinate system set up using, say, the 

sphere can be mapped on to a fiat map intended for visualization. 

The third reason to use an auxiliary surface is to simplify implementation of sur­

face registration. AH the 3D registration algorithms described in Chapter 3 employ 

a single coordinate system to locate points of lR.3 . This simplifies algorithms tre­

mendously, e.g. the distance computation between landmark points is a very simple 

operation in lR.3 compared to computing the geodesic distance on the native mesh. 

Similarly, the smoothing operations used in a 4-step algorithm (Algorithm 3) im­

plemented on an arbitrary manifold requires an effective method for transporting 

a vector between tangent spaces of nearby points in order to integrate or average 

displacement vectors in a neighbourhood. This corn pl exit y is avoided by choosing a 

simpler auxiliary surface on which to work. 

Geometry 

If the cortex is modelled by a topological disc then the auxiliary space should also 

be a topological disc, Le. a 2-manifold with boundary, or something into which a 

disc can be embedded such as the plane. The plane has the advantage that an the 

spatial normalization algorithms used for 3D can be straightforwardly adapted for 

the plane. Van Essen et al. [VEDJM9S] apply the landmark matching of Joshi and 

Miller [JMOO] to surfaces mapped into the plane. 

If the cortex is modelled using a sphere, then the auxiliary space could be the unit 

sphere §2. There are a number of coordinate systems possible on the sphere, each 

with its own strengths and weaknesses. Polar coordinates, used by Thompson and 

Toga [TT96 , TT99] and by Fischl et al. [FSTD99], suffer from coordinate problems 

at the poles where two points separated by a small distance have a large difference in 

the azimuthal (i.e. "longitudinal") coordinate. Davatzikos and Bryan [DB95, DB96, 

Dav97] use two unit squares in the plane with boundary conditions as illustrated 

in Figure 5.5. These boundary conditions also introduce extra complexities in the 

registration problem of computing T [VD99], for example smoothing T(x) for x 

near an edge. These problems are avoided by embedding the sphere in lR.3 and 

representing each point using a unit-length 3-vector. This parameterization, used 

by Vaillant and Davatzikos [VD99] avoids the problems at the poles and at patch 
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Figure 5.5: Parameterization of a spherical mesh using two unit square coordinate 
patches. Corners and edges with the same label are identified in the obvious manner. 

boundaries described ab ove, albeit at the cost of using 3 coordinate values to specify 

a point on a 2-manifold. 

Projection of Native Mesh 

The cortical surface is initially obtained as a mesh situated in 3D, whereas the 

auxiliary space is the plane or the unit sphere. The next step in surface normalization 

is to find the transformation II that maps the surface bijectively to the auxiliary space 

as shown in Figure 5.l. 

The domain of map II is the triangulated mesh that represents the native cortex. 

A piecewise-linear map defined on a triangulated mesh is conveniently specified by 

its value at each vertex. The value of the map at a non-vertex point x is obtained 

by linear interpolation of the map values at the three vertices of the facet in which x 

lies, as described in Section 5.4.2 (Definition 5.4.5 in the plane and Definition 5.4.9 

on the sphere). To specify II, it suffices to find II ( v) for each vertex v of the mesh. 

The initial projection to the plane or the sphere can be obtained using any of 

several different techniques: iterative deformation (forward or reverse), conformaI 

mapping, and harmonic mapping. 

Iterative Deformation 

Sorne methods for mapping the cortex to the plane or a sphere borrow from work on 

deformable surfaces. The idea is to apply forces at each mesh vertex and simulate its 

motion. The procedure is engineered to ensure that an the vertices eventually end 

up in a common plane or sphere. The value of map II is obtained for vertex v by its 

final position after deformation. 
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The deformation generally comprises two stages, with a number of iterations 

performed at each stage. The iterations of the first stage smooth the mesh in ]R3, 

e.g. by applying a force that pushes each vertex towards the centroid of its neighbours. 

This force has (unless the point is coplanar with its neighbours) a component directed 

along the normal to the surface, which tends to make the mesh locally flatter. In 

addition, forces directed along the plane of each incident facet are added to discourage 

metric distortion. For example, a spring-like force directed along each edge penalizes 

compression or expansion of the edge from its initial length. Forces designed to 

penalize a change in facet shape, such as a change in angle or area, may also be used. 

After the first stage of iterations, the mesh is projected into the auxiliary space. If 

the auxiliary space is planar, a suit able projection plane is chosen, e.g. by computing 

the mean of the facet normal vectors (of the mesh position after the first stage of 

deformations) and using a plane perpendicular to this mean normal direction. In the 

case of a spherical auxiliary space, the mesh vertices can be projected radially to the 

desired distance from the global centroid. Note that this projection may introduce 

overlaps, rendering II non-injective. 

The second stage of iterations keeps the mesh in the auxiliary plane or sphere. 

For planar space, this is achieved by simply using forces directed in the plane. In 

the case of the sphere, the mesh vertices may be allowed to move in ]R3 and are then 

projected back to the sphere after each iteration. 

The projection step after the first stage of iterations may result in a mesh that 

is "folded", due to a triangle of the surface mesh having flipped over on top of an 

adjacent triangle. The second stage of iterations generally attempts to remedy this. 

In addition, the second stage is often used to reposition vertices to minimize the 

change in edge length, facet area, or facet angle between the initial mesh and the 

deformed mesh. 

This approach is used by Van Essen's group [CDVE95, DVEA +96, DECS99] 

by Dale, Fischl, and Sereno [DFS99, FSD99], and by Wandell, ChiaI, and Backus 

[WCBOO]. Similar ideas were proposed to generate a surface mapping for shape 

morphing [KCP92]. A large amount of effort is spent dealing with the non-injective 

mapping that arises if a triangle is flipped over. Drury et al. detect this occurrence 

and manually re-start the procedure with different parameters. Dale et al. deal with 

this by incorporating an additional force term that penalizes flipped triangles during 

the second stage of iterations [FSD99]; setting its coefficient large enough will ensure 

that no triangles are flipped. 
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Reverse Iterative Deformation 

Recall from Section 5.1 that one approach to computing a cortical surface from the 

image data is to iteratively deform a mesh (initially a sphere, say) so that it conforms 

to the desired interface of the 3D image. Treating the initial sphere of the mesh as 

the auxiliary space, the initial and final positions of the mesh vertices during surface 

extraction can be used to generate II: if vertex v of the native cortex (final mesh) 

originated from point Pv on the initial mesh, set II( v) = Pv. 

MacDonald et al. [Mac98, MKAEOO], Thompson and Toga [TT96 , TT99], and 

Davatzikos and Bryan [DB95, DB96, Dav97] each use the map obtained after identi­

fying the cortex using a deformable surface. 

ConformaI Mapping 

A conformaI (i.e. angle-preserving) map between two genus a surfaces always exists. 

Such a mapping is attractive since it is unique up to isometries, and is guaranteed 

to be bijective. 

Angenent et al. use a finite-element approximation of a partial differential equa­

tion to map cortex (modelled as a topological sphere) to the unit sphere [AHTK99a, 

AHTK99b]. The core of this method is solving two systems of linear equations. The 

systems are large, but sparse and so can be solved rapidly; in [AHTK99b] they re­

port computing a mapping for a surface composed of 430 000 triangles in less than 

6 minutes on a Sun Ultrasparc la. 

Hurdal et al. [HBS+99] start with a circle packing of the cortex, modelled as a 

topological disc. A circle packing of a mesh associates a circle to each vertex with 

the property that two circles are tangent if their respective vertices are joined by an 

edge of the mesh. Radii of the circles for boundary mesh vertices are parameters; 

once chosen, the radii for internaI vertices are fixed [eS03]. The position in the 

plane for each vertex is fixed by the radii and mesh structure, up to isometries. A 

circle packing (with no "branch points") will give a flattened mesh with consistently­

oriented triangles, which is sufficient for II as it only needs to be injective. By 

iteratively adjusting the boundary radii, the mapping can be made more nearly 

conformal. 

Harmonie Mapping 

A topological disc can always be harmonically mapped to a convex polygon in the 

plane. The map is constructed from an optimization problem that treats mesh edges 
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as springs. This approach is used to generate correspondences between meshes for 

purposes of morphing [EDD+95, KSK98]. Although a harmonie map lS a homeo­

morphism, the map generated is usually a piecewise-affine approximation, so the 

possibility of adjacent facets overlapping still exists. 

Graph Drawing Approaches 

The surface mesh is a planar graph with triangular facets and the cyelic or der­

ing of neighbours about each vertex is known. In the language of graph drawing 

[DBETT99], the mesh is an embedded graph, i.e. the cyclic ordering of the neigh­

bours is specified. In fact, since the graph is triconnected, the embedding is unique, 

up to a reversaI of the neighbour ordering. The problem of mapping the mesh to 

the plane can be reduced to producing a straight-line drawing of the graph. Floater 

approaches the problem in this manner [Flo97]. Alexa [AleOO] uses ideas from planar 

graph drawing to embed the mesh onto the sphere. 

5.3 Low-Dimensional Warping 

The choice of auxiliary space influences which classes of spatial transformations are 

suitable. One natural class of low-dimensional mappings for the sphere is rotations, 

which require 3 parameters. 

In the plane the naturallow-dimensional mappings are the affine transformations, 

just as is the case in ]R3 (Section 2.3). A general 2D affine transformation has six 

parameters, e.g. a 2 x 2 matrix A and a 2-vector b with the transformation written 

as T : x 1-+ Ax + b. Analogous to the 9-parameter subset of affine transformations 

used in ]R3 is the subset of transformations comprised of rigid body transformations 

followed by independent scaling of the Xl and X2 axes, requiring a total of 3 + 2 = 5 

parameters. 

Such low-dimensional warpings can be used as the first stage of alignment. How­

ever, the experience in 3D (Chapter 4) suggests that a more flexible set of transform­

ations is required to match fine detail, e.g. structures su ch as sulci. 

5.4 High-Dimensional Warping 

When using the plane as the auxiliary space, any 3D technique of Section 2.4, e.g. 

splines or mesh warping, can be adapted for use in a straightforward manner. For 
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example, Van Essen et al. [VEDJM98] use the fluid landmark approaeh of Joshi and 

Miller [JMOO] after mapping the cortical hemispheres to the plane. 

The remainder of this section coneentrates on the use of the sphere §2 as the 

auxiliary space, as the spherical topology introduces a few subtleties in the mapping 

function. 

5.4.1 Global Transformations 

On the sphere, basis functions with global support can be used to expand the map­

ping function. Spherieal harmonies are a natural choice for basis functions, and have 

been used in this context by Thompson and Toga [TT96] and by BaklrclOglu, Joshi, 

and Miller [BJM99]. As in 3D, however, a local transformation is used as it allows 

better control of the transformation. 

5.4.2 Local Transformations 

Working in a spherical topology, it is possible to adapt the 2D mesh warping approach 

(Definition 2.4.1) by working in a 2D parameter space, such as polar eoordinates. 

Davatzikos uses [Dav96] such a mesh warping on his pair of unit squares domain 

(Figure 5.5). However, the spherical topology imposes non-trivial boundary condi­

tions so this approach will not be pursued. Instead, the sphere is embedded in ]R3 

and a point on the sphere is specified using a unit-length 3-vector. 

A local transformation is obtained by defining T piecewise on the sphere, in the 

same spirit as the mesh warping used in 3D. In eontrast to mesh warping, it turns 

out to be advantageous to use triangular subdomains rather than quadrilateral sinee 

the control mesh is obtained from the projection of the (triangulated) native mesh 

to the sphere using il (see Section 6.7). In addition, testing for injectivity of the 

map T (discussed in Section 5.5) is easier when the subdomains are triangulaI. The 

other differenee vis-a-vis mesh warping is that it is more convenient to store, at each 

mesh vertex v, the value of the transformation T(v) itself rather than a deformation 

vector .6.(v), as discussed in Section 6.7. 

Warping a triangulated mesh can also be used to define a transformation in the 

plane. The required concepts and definitions are introduced with the planar version 

before describing the the warping method for the sphere. 
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Triangulation Warping in the Plane 

Cartographers have long used isomorphic triangulated mesh pairs to register (2D) 

maps of the earth; see Goshtasby [Gos86], Saalfeld [Saa87], and references therein. 

The main idea is to map each triangle in the domain mesh bijectively to the cor­

responding triangle in the range mesh (see Figure 5.7). Though higher-order poly­

nomials can be used [Gos87] to generate a smoother transformation, an affine map 

between triangle pairs is used here. Meshes employed in brain mapping generally 

have triangles that are small enough that extra smoothness at the triangle bound­

ary will not bring any benefit, while imposing a cost in terms of more complicated 

injectivity conditions. 

An affine map from JR2 to JR2 has six parameters. Using homogeneous coordinates, 

write the map as 

(5.1) 

The six parameters {t ij } are obtained by solving a system of three equations involving 

2D points, which are conveniently given by two triangles. Let A = (al, a2, 1), B = 

(b l , b2 , 1), and C = (Cl, c2, 1) be coordinates ofthree non-collinear points in the plane. 

Similarly, let A' = (a~, a;, 1), B' = (b~, b;, 1), and C' = (c~, c;, 1) be three non­

collinear points. Let T be an affine transformation such that T(A) = A', T(B) = B', 

and T(C) = C'. Using Equation 5.1, these three equations are written as columns 

of a 3x3 matrix equation, 

(5.2) 

Since points A, B, and C are not collinear, the second matrix on the 1eft hand side 

can be inverted to solve for the matrix of T. Since in addition points A', B', and C' 

are not collinear, the determinant of T is non-zero. The transformation T is therefore 

a valid affine transformation. Since the second and third matrices are non-singular, 

the solution for T is unique. The above is summarized in the following lemma. 

Lemma 5.4.1 Let A, B, and C be three non-collinear points in JR2. Let A', B', and 

C' be three non-collinear points in JR2. There is a unique affine transformation T 

such that T(A) = A', T(B) = B', and T(C) = C'. 
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Figure 5.6: Areal coordinates (a,!3, ,) for pare proportional to the signed area of 
triangles BCp, CAp, and ABp respectively. The coordinates are aU nonnegative if, 
and only if, p lies in triangle ABC. 

The mapping T can thus be called the affine map of ABC to AI BIC'. 

Consider now the mapping of points of the triangle interior. Let ABC be a non­

degenerate triangle in JR2. Masses a, /3, , (with a + /3 +, =1- 0) placed at vertices of 

the triangle determine a unique point p that balances the plane. The triple (a, /3, ,) 
is known as barycentric coordinates of p [Cox69, section 13.7J. The coordinates are 

homogeneous: for any À =1- 0, (Àa, À/3, À,) specifies the same point. This freedom is 

used to normalize the coordinates such that 

(5.3) 

Barycentric coordinates so normalized are caUed areal coordinates and give a formula 

for the point, p = aA+/3B+,C. Henceforth, allbarycentric coordinates are assumed 

to be areal. 

The coordinates are proportional to the (signed) area of triangles BCp, CAp, 

and ABp respectively [Cox69, section 13.7J. Thus the coordinat es are aU positive if, 

and only if, p lies on the interior of triangle ABC. Using Equation 5.3 to eliminate 

a, 

p A + /3(B - A) + ,(C - A) 

A+/3U+,V, 

where U = B - A and V = C - A. 

(5.4) 

(5.5) 

Given the triangle vertices and point p, the barycentric coordinates are obtained 

by solving a 2x2 linear system. Take the dot product of (p - A) with U and with V, 
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obtaining the following system of equations, 

( 
U2 U . 2V ) ( (3 ) = ( (p - A) , U ) . 

u· V V , (p - A)· V 
(5.6) 

The determinant of the matrix is U2V 2(1 - cos2 e), where e is the angle between 

vectors U and V. Since the triangle ABC is assumed to be non-degenerate, e is 
neither 0 nor 7f so this determinant is not zero; thus the system has a unique solution. 

The barycentric coordinates are useful for interpolation, both for real functions 

defined on triangle ABC and for mapping from triangle ABC to JR2, Let (a, (3, ,) 

be the barycentric coordinates for point p with respect to triangle ABC, which can 

be computed using Equation 5.6. Let A' B'C' be a second non-degenerate triangle 

and define the mapping 

T: A + (3(B - A) + ,(C - A) f-7 A' + (3(B' - A') + ,(C' - A'). (5.7) 

In other words, point T(p) has the same barycentric coordinates with respect to 

triangle A' B'C' as p has with respect to triangle ABC. Equation 5.6 shows that (3 

and , are affine functions of the coordinates of p and so therefore is the mapping 

T. The vertices A, B, and C have barycentric coordinates of (1,0,0), (0,1,0), and 

(0,0,1) respectively, so T(A) = A', T(B) = B', and T(C) = C'. In light of Lemma 

5.4.1, the mapping T defined by Equation 5.7 is the unique affine map of ABC onto 

A'B'C'. 

Note that Equations 5.4, 5.6, and 5.7 are all valid when p, A, B, etc. are points 

in ]R3. This is used later to construct a map between the unit sphere and itself. 

For p on edge AB, the barycentric coordinate , is zero. The map of Equation 

5.7 reduces to A + (3(B - A) f-7 AI + (3(B' - A'), i.e., it is an affine map from edge 

AB to edge A' B'. It is clear that edge AB is mapped to edge A' B' in a manner 

that depends only on the edges involved (AB and A' B') and does not depend on C 

or C'. Similarly, edge BC maps to B' C' and edge CA maps to edge C' A'; in each 

case the map only depends on the edges involved. Interior points of triangle ABC 

comprise the set of points with positive barycentric coordinates, so interior points of 

ABC are mapped to interior points of A' B'C'. These observations are summarized 

in the following lemma. 

Lemma 5.4.2 The affine map of ABC ta A' B'C' maps interior' points of ABC ta 

interior' points of A'B'C'. Each edge of ABC is mapped to the corresponding edge 

of A' B'C', each su ch map depending only on the two edges involved. 



CHAPTER 5. SPATIAL TRANSFORMATION 125 

T 

Figure 5.7: Plane triangulation warp. Each triangle is mapped using the unique affine 
transformation that maps corresponding vertices, e.g. vertex A to vertex T(A), etc. 

The preceding method for affinely mapping a single triangle is now extended to 

mapping a region of the plane, 1), employing a triangulation of the latter. 

Definition 5.4.3 Plane Triangulation. Let S be a finite set of non-degenerate tri­

angles and let 1) = UTEST. Gall S a plane triangulation if (i) the intersection of any 

pair of triangles is either empty, a common vertex, or a common edge, and (ii) the 

edges in S belonging to only one triangle form a simple closed polygon denoted 81). 

Condition (ii) ensures that the do main is simply connected with boundary 81). A 

piecewise-affine mapping is defined on 1) as follows. 

Definition 5.4.4 Plane Triangulation Warp. Let S be a plane triangulation with 

do main 'D) as in Definition 5.4.3. Let {Pv : v a vertex of S} be a set of points in 

the plane such that for each triangle ABC E S, points PA, PB, and Pc form a non­

degenerate triangle in the plane. Define the plane triangulation warp T : 1) -+ JR2 as 

follows. 1. If x is a vertex of S, T(x) = Px' 2. Otherwise) x is located in triangle 

ABC E S; let T(x) be given by Equation 5.7, the unique affine mapping of DABC 

to DPAPBPC. 

This mapping is also known as a triangulation map [Saa87]. The mapping is well­

defined since the mapping of each vertex is given, and the vertex mapping determines 

the map for points on a triangle interior. Given point x, the triangle containing 

it is located using a standard planar point location algorithm, for example using 

a trapezoidal map [dBvKOS97]. For edges common to two triangles, Lemma 5.4.2 

ensures the maps agree because each map reduces to the same affine mapping between 

edges. The mapping T is continuous everywhere, and Section 5.5 discusses the 

conditions under which it is a homeomorphism. This kind of mapping easily extends 

to a mapping between isomorphic simplicial complexes in higher dimensions and is 

used in 3D brain matching, e.g. [AAFOO]. 
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The barycentric coordinates are convenient for defining a piecewise-linear inter­

polation of a function on the domain of a triangulation. 

Definition 5.4.5 Plane Triangulation Interpolation. Let S be a plane triangulation 

with domain V, as in Definition 5.4-3, and V be the vertex sei of S. Given a set 

of real values at each vertex, {fv E JR : v E V}, a continuous funciion f : V -+ JR 

is obtained as follows. 1. If x is a vertex of S, then f(x) = fx. 2. Otherwise, x is 

locaied in triangle ABC E S; let f(x) = afA + j3fB +,fc, where (a,j3,,) are the 

barycentric coordinates of x relative to triangle 6ABC. 

This definition is easily extended to range sets other than R For example, Equation 

5.7 is precisely a plane triangulation interpolation with values in JR2, so the plane 

triangulation warp is sim ply a special case of plane triangulation interpolation. 

Triangulation Warping on the Sphere 

On the sphere, triangulation warping follows the same pattern as in the plane: the 

spherical domain is divided into "spherical" triangles and a 1-1 mapping between 

corresponding triangles is used. 

Let A, B, and C be three points on the sphere §2 that are not copI anar with the 

origin. Using projection from the origin, i.e. the mapping x f-t x/llxll, the planar 

triangle ABC is put into 1-1 correspondence with a triangular patch of §2 bounded 

by three short est geodesics, from A to B, from B to C, and from C to A. Each 

geodesic bounding the patch is denoted an edge arc, and the triangular patch of §2 is 

known as the spherical triangle @ABC. Given the 1-1 mapping between the planar 

triangle 6ABC and the spherical triangle @ABC, barycentric coordinates can be 

used to refer to either q = aA + j3B + rC E 6ABC or to p = q/llqll E @ABC. 

Define a mapping from point pin spherical triangle @ABC to point T(p) in spher­

ical triangle @A' B'C' as follows. First, project p to point q on the pl anar triangle 

ABC and compute the barycentric coordinates of q using Equation 5.6. Equation 

5.7 then gives a corresponding point q' on the planar triangle A' B' C'. Finally, q' 

is projected to point on the sphere, denoted p'. Define T(p) to be p'. Figure 5.8 

illustrates this procedure. Note that each of these maps is a homeomorphism, so the 

composed spherical triangle to spherical triangle mapping is a homeomorphism. CalI 

this mapping the barycentric spherical triangle mapping from @ABC to @A' B' C'. 

These observations are summarized in the following lemma. 
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B' 

A 
C' 

Figure 5.8: Map from spherical triangle @ABC to spherical triangle @A'B'C' is 
defined using the mapping between a spherical triangle and the pl anar triangle using 
the same vertices, and the affine map between pl anar triangles ABC and A' B'C'. 
The value of map T at pis obtained by composing maps p I-t q I-t q' I-t p'. 

Lemma 5.4.6 The barycentric spherical triangle mapping from @ABC to @A'B'C' 

is a homeomorphism. Interior points of @ABC are mapped to interior points of 

@A' B' C'. The mapping on each edge arc is independent of the remaining vertex. 

The last statement follows from observing that the edge arc, say from A to B, maps 

to the line segment AB, and Lemma 5.4.2. The preceding method for mapping a 

single spherical triangle is now extended to mapping the entire sphere, employing a 

triangulation of the latter. 

Definition 5.4.7 Sphere Triangulation. Let S be a finite set of spherical triangles 

su ch that UTEST = §2. Call S a triangulation if (i) the intersection of any pair of 

spherical triangles is either empty, a common vertex, or a common edge arc, and (ii) 

each edge arc in S belongs to exactly two spherical triangles. 

Given a sphere triangulation, a continuous mapping from the sphere to itself is 

obtained as follows. 

Definition 5.4.8 Sphere Triangulation Warp. Let S be a sphere triangulation. Let 

{Pv : v a vertex of S} be a set of points on §2 su ch that for each spherical tri­

angle @ABC E S, points PA, PB, and Pc are not coplanar with the origin and 

thus comprise the vertices of a spherical triangle. Define the sphere triangulation 

warp T : §2 -+ §2 as follows. 1. If x is a vertex of S, T(x) = Px- 2. Otherwise, 

x is located in spherical triangle @ABC E Si let T(x) be given by the barycentric 

spherical triangle mapping of @ABC to @PAPBPC. 

A continuous real fun ct ion on the sphere can be defined using interpolation as follows. 
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Figure 5.9: Locate spherical triangle containing x E §2 by testing x against plane 
OAB, etc. 

Definition 5.4.9 Sphere Triangulation Interpolation. Let S be a sphere triangula­

tion with vertex set V. Given a set of real values at each vertex, {fv E lR : v E V}, 

a continuous function f : §2 -'t lR is obtained as follows. 1. If x is a vertex of 

S, then f(x) = fx. 2. Otherwise, x is located in spherical triangle @ABC E Si 

let f(x) = CtfA + {3fB + Ife, where (Ct,{3,,) are the barycentric coordinates of the 

projection of x onto the planar triangle DABC. 

In or der to implement sphere triangulation warping or sphere triangulation inter­

polation, an algorithm to locate the spherical triangle @ABC containing x E §2 is 

required. One possible algorithm is sketched here. Observe that x E @ABC if, and 

only if, x lies in the infinite triangular pyramid with apex at the origin, 0, and edges 

passing through points A, B, and C. This property can be verified by testing the 

location of x with respect to the planes through points OAB, OBC, and OCA. If x 

lies on the correct si de of aU three planes, then x E @ABC. If x lies on the opposite 

side of, say, plane through 0 AB, then x is closer to the adjacent triangle that shares 

edge AB than it is to @ABC. Figure 5.9 shows an example where x is on the oppos­

ite side from @ABC of the plane through 0 AB and is therefore closer to @ADB. 

The triangle containing x E §2 is obtained starting from an arbitrary triangle by 

testing x against the three planes associated with the triangle and updating to a 

triangle that is closer if x fails a plane test. This is similar to the strategy used in 

the Lin-Canny algorithm to find the closest features on a pair of convex polyhedra 

[Lin93] and its robust descendants such as [Mir98]. 
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5.5 Injectivity 

In 3D, the mesh warping functions use cubic polynomial interpolation for each sub­

domain (Section 2.4.2). With cubic interpolation, a spatial transformation can be 

noninjective in two ways [CLOO]. First, a transformed subdomain may overlap an­

other transformed subdomain. Second, the mapping of a single subdomain may itself 

be noninjective. The situation is somewhat easier using triangulation warps because 

the second situation does not occur. In the plane, mapping of each triangular subdo­

main is affine (Lemma 5.4.1) and thus injective. The mapping of a spherical triangle 

is also injective, due to Lemma 5.4.6. 

The conditions un der which a plane triangulation warp is injective are given by 

Saalfeld [Saa87]. Let S be a plane triangulation with domain V, and let T : V ~ IR.2 

be a plane triangulation warp. Consider a triangle of Sand its image under T. If the 

counterclockwise ordering of vertices for a particular triangle is ABC in S and the 

counterclockwise ordering in the image is T(A)T(B)T(C), then T is said to preserve 

the orientation of triangle ABC. Say that the mapping T is orientation preserving 

if it preserves the orientation of an triangles. 

Theorem 5.5.1 (Saalfeld [Saa87J) Let T : V ~ JR2 be an orientation preserving 

triangulation mapping. If TIBv is one-to-one, then T is a homeomorphism. 

Saalfeld proves this theorem by observing that the area bounded by the simple poly­

gon T (8V) is given by the sum of signed areas of triangle T ( T) for each TES. 

Sinee the mapping preserves the orientation of each triangle, the signed areas are aIl 

positive so the area of T(V) is equal to the sum of absolute area of each triangle 

T( T) and therefore no two triangles overlap. If T reverses the orientation of each 

triangle, the analogous theorem is also true. 

The situation for sphere triangulation warp turns out to be more complicated 

because the sphere has no boundary. Meisters and Olech [M063] prove a very general 

theorem on homeomorphisms between manifolds, from which a useful corollary is 

derived. A crucial property for a map to be injective is contained in the following 

definition. 

Definition 5.5.2 Locally one-to-one. A continuous mapping T : X ---t Y of one 

topological space X to another is said to be locally one-to-one at a point x provided 

x possesses a neighbourhood N su ch that TIN is a one-to-one mapping. A mapping 

T is said to be locally one-to-one on X pTOvided T is locally one-to-one at each point 

of X. 
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If T is differentiable, the classical inverse function theorem (see, e.g. [PM91]) provides 

a method for checking this property. Let T be a differentiable map Rn -? Rn with 

continuous derivatives in an open set U c Rn and the Jacobian is nonzero at x E U. 

Then T lS locally one-to-one at x. Triangulation warping is defined piecewise and is 

not necessarily differentiable on the boundaries of subdomains, so the inverse function 

theorem cannot be used to prove local one-to-oneness. 

The following form of a classical theorem, known as Brouwer's theorem on the 

invariance of domain, is used by Meisters and Olech [M063]. 

Theorem 5.5.3 Let X be an arbitmry subset of an n-manifold Mn, and let T be a 

homeomorphism of X onto a subset T(X) of an n-manifold Mm. Then T(IntX) = 

IntT(X) and T(8X) = 8T(X). 

The following is theorem 2 of Meisters and Olech, slightly simplified to avoid sorne 

extra notation unnecessary for this work. 

Theorem 5.5.4 (Theorem 2 of [M063j) Let X be a compact subset, with connected 

boundary, of an n-manifold Mn, n ~ 2. Let T be a continuous mapping of X onto 

a proper subset T(X) of an n-manifold Mm such that T is locally one-to-one on X. 

Then if Tlax is one-to-one, T is a homeomorphism. 

The theorem of Meisters and Olech cannot be used directly to prove that a sphere 

triangulation mapping T is a homeomorphism because the theorem requires that the 

do main and its image be proper subsets of the manifold in question, i.e., the sphere. 

In order to apply the theorem, remove one spherical triangle T from the domain 

of T and apply the theorem to the mapping T restricted to the smaller domain 

X = §2 \ Int T. The condition that T(X) is a proper subset of the sphere must be 

separately checked. 

Let S be a sphere triangulation and T : §2 -? §2 be a sphere triangulation 

warp defined using S. Consider a spherical triangle of Sand its image under T. 

If, viewed from outside the sphere, the counterclockwise ordering of vertices for 

a particular spherical triangle is ABC in S and the counterclockwise ordering in 

the image is T(A)T(B)T(C), then T is said to preserve the orientation of spherical 

triangle @ABC. Similarly, the edge arcs joining a vertex v to each of its neighbouring 

vertices have a particular counterclockwise cyclic ordering, as viewed from out si de 

the sphere. If the edge arcs have the same cyclic ordering after mapping, T is said to 

preserve the cyclic ordering of neighbours of v. Say that the mapping T is orientation 

preserving if it preserves the orientation of aH spherical triangles and also preserves 

the orientation of neighbours about each vertex. 
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Figure 5.10: Neighbourhoods for proof of Theorem 5.5.5. 

Theorem 5.5.5 Let T : §2 -t §2 be an orientation preserving sphere triangulation 

warp. Let T be a spherical triangle and p a point on the interior of T. If T(p) 

does not belong to the image T(T') for any spherical triangle T' =1 T, then T is a 

homeomorphism. 

Proof: Let X = §2 \ Int T, which is a compact subset of §2 with connected boundary 

OT. Let T' denote transformation T restricted to X. By hypothesis, T'(X) does not 

contain T(p), so T'(X) is a proper subset of §2. The map Tir is a homeomorphism 

by Lemma 5.4.6, so Tlor and hence also T'iox is one-to-one. Now argue that T' is 

locally one-to-one, so that Theorem 5.5.4 can be applied to T'. 

Consider a point x E §2. There are three possibilities: x lies on the interior of a 

spherical triangle, x lies on the relative interior of a spherical triangle edge arc, or x 

is a vertex. Argue, for each case in turn, that T' is locally one-to-one at x. 

If x is on the interior of spherical triangle t, then x possesses a neighbourhood 

N ç t and T'IN is the mapping associated with t. AH such triangle-to-triangle maps 

are homeomorphisms by Lemma 5.4.6, so T'IN is one-to-one. 

In the case that x lies on the relative interior of an edge arc shared with T, 

the neighbourhood in X can be chosen to lie in exactly one spherical triangle, and 

the argument proceeds as in the preceding case. Suppose instead that x lies on an 

edge arc shared by spherical triangles s = ABC and t = CD A (left si de of Figure 

5.10). Choose a neighbourhood N small enough that it contains no edge arcs other 

than AC . Neighbourhood N is therefore contained in sUt. Consider the disjoint 

partition N = (N n Int s) EB(N n Int t) EB(N n AC). Each of T'lNnlntsl T'INnlntt, 

and T'lNnAc is one-to-one. Since T' is orientation preserving, T'(B) and T'(D) are 

on opposite sides of the edge arc through T' (A )T' (C). Rence T' (Int s) is disjoint 

from T'(Intt) and both are disjoint from T'(AC). Thus T'IN is one-to-one. 

The final case is that x is a vertex of the triangulation (right side of Figure 5.10). 
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Choose N small enough that it intersects no edge arcs of the triangulation other than 

those incident to x. Split N into a disjoint union of subsets (i) lying in the interior 

of a spherical triangle incident to x, (ii) lying in the relative interior of an edge arc 

incident to x, and (iii) the set {x}. As in the previous case, T' restricted to each 

subset of N is one-to-one. Since T' preserves cyclic ordering of the neighbours of x, 

the images of the subsets are pairwise disjoint. Thus T'IN is one-to-one. 

Using Theorem 5.5.4, conclude that T' is a homeomorphism. It remains to show 

that T'(X) and T(IntT) are disjoint so that the two maps can be put together to 

obtain a homeomorphism defined on aH of §2, namely the mapping T. 

Mapping T' is a homeomorphism on X C §2 onto a subset of §2. By Theorem 

5.5.3, T' maps the boundary of X to the boundary of set T'(X). The boundary of 

X is a7, which is mapped to the boundary of the spherical triangle T ( T). There 

are two open sets of §2 that have aT( T) as boundary: the spherical triangle interior, 

IntT(7), and the exterior, §2 \ T(7). By Theorem 5.5.3, T' maps IntX to one of 

these two sets. It cannot be the spherical triangle interior, Int T ( 7), since the latter 

contains T(p) and T(p) tI. T'(X) by hypothesis. Thus Int T'(X) = §2 \ T(7). The 

sets T'(Int X) and T(Int T) are thus disjoint. 

Since both T'and Tir are homeomorphisms and agree on their common boundary 

(i.e. a7), the two maps can be put together to obtain a homeomorphism, namely T. 

o 

In contrast to the situation in the plane, the sphere triangulation mapping T 

must preserve not only the orientation of the spherical triangles, but also the cyclic 

ordering of neighbours. A simple example shows that this extra condition is neces­

sary. Consider a triangulation of the domain sphere that comprises a vertex at each 

pole and 2k vertices (k 2: 3) equally spaced about the equator, with 2k spherical 

triangles in each hemisphere as shown on the left of Figure 5.11. Let T be a sphere 

triangulation warp for which each pole vertex is mapped to itself, while the sequence 

of vertices VI ... v2k is stretched so as to wrap around the equator twice, as pictured 

on the right of Figure 5.11. The mapping preserves the orientation of each spherical 

triangle VAViVi+l, but it is clearly not a 1-1 map. The cyclic arder of vertices at the 

pales is not preserved. 
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Figure 5.11: Spherical triangulation warp with v~ = T(Vi)' This example shows that 
preserving the orientation of each spherical triangle is not sufficient to guarantee an 
injective spherical triangulation mapping. 

5.6 Summary 

In contrast to registration of 3D images, surface registration requires two extra steps, 

illustrated in Figure 5.1, before the transformation can be obtained. First, the cor­

tical surface must be identified from the MR image. Second, the mapping from the 

surface situated in 3D to an auxiliary 2-manifold must be obtained. 

As shown in Figure 5.3, there are at least three plausible manifolds that can 

be used as the cortical surface: the inner interface between gray matter and white 

matter, the outer interface between gray matter and CSF, or a surface located in the 

middle. In principle, any of the three can be used as the surface. For this work the 

inner surface is chosen, largely because the outer surface (and thus also the medial 

surface) is more difficult to detect on typical MR images as shown in Figure 5.4. 

Biologically, each cortical hemisphere surface is a topological disco However, the 

hemisphere boundaries are deep in the brain next to the corpus callosum and require 

manual processing to identify [DECS99]. Automatic cortical extraction software 

avoids identifying the hemisphere boundaries and instead pro duces a surface with 

extra, non-cortical, regions. One method splits the hemispheres and pro duces a to­

pological sphere for each hemisphere that consists of cortex plus a cap through the 

corpus callosum. The second approach pro duces a single topological sphere that in­

cludes both hemispheres along with the top of the corpus callosum and a cap through 

the brain stem. The three alternatives are shown in Figure 5.2. The experiments 

presented in this thesis obtain the cortical surface using the ASP software, developed 

by MacDonald [Mac98]. This software operates by deforming a spherical mesh onto 
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both hemispheres of the brain, obtaining a single-sphere model of the cortex. 

As discussed in Section 5.2, the cortical surface mesh situated in }R3 is inconveni­

ent, so a simpler auxiliary space is used. There are three general reasons to prefer 

using an auxiliary space [VEDJM98]: (1) to aid visualization, (2) to facilitate a global 

coordinate system that allows communication of results between laboratories, and 

(3) to simplify the registration algorithm. It is the third reason that is important for 

this work. The auxiliary space topology should be compatible with the topology of 

the cortical surface mesh, which generaUy means a topological disc (or the plane) or 

a topological sphere is used. As mentioned ab ove , this work uses a single topological 

sphere for the cortical mesh and a single sphere is therefore used as the auxiliary 

space. 

After the native surface mesh has been generated, a mapping from the native 

mesh into the auxiliary space is required. There are a number of methods for doing 

so, described in Section 5.2. For this work the reverse-iterative deformation method 

is most appropriate, since the surfaces are generated by deforming an ellipsoid (easily 

mappable to §2) to the native mesh. This method obtains the mapping from mesh 

vertex v to §2 by simply recording the sphere location that corresponds to the point 

on the initial ellipsoid that ends up at v at the end of the surface extraction process. 

Once aU data from the source and target surfaces have been mapped onto §2, the 

auxiliary space, the mapping sought is T : §2 -+ §2. This mapping is parameterized 

as a high-dimensional warping in or der to have enough fiexibility in mat ching different 

individu aIs , the same reasons that a mesh warping is used in 3D (see Chapter 2). 

For the work in this thesis, the sphere triangulation warp (Definition 5.4.8) is used. 

There is nothing in the definition of triangle mesh warping that requires the 

mapping to be injective, just as there is nothing to require injectivity of a 3D mesh 

warping. In contrast to the situation in 3D, however, injectivity can be easily tested 

using the results of Theorem 5.5.5. This theorem ensures an injective mapping if the 

orientation of each triangle and the cyclic ordering of neighbours for each vertex are 

preserved under the mapping and, in addition, one point in some spherical triangle 

T does not appear in spherical triangle T( T') for aIl T' i= T. 



Chapter 6 

Searching for an Optimal 

Transformation 

The purpose of this chapter is to review the general surface mapping problem, mainly 

highlighting the differences from the corresponding 3D problem described in Chapter 

3. In addition the algorithm for 2D surface registration proposed in this thesis is 

detailed. 

Surface registration is set up as an optimization, as is done for volume registration, 

and thus the feature, objective function, and transformation search strategy must be 

chosen. As discussed in Section 5.2, the spatial transformation sought is mapping 

from the auxiliary space (the plane IR?2 or the sphere §2) to itself. In this chapter, the 

auxiliary space is sometimes denoted generically by ][2. Thus, the spatial mapping 

is two steps removed from the input images as shown in Figure 6.1. From source 

image l, the native mesh is extracted (MI) and then projected using mapping TIl 

onto ][2. Similarly, target image J gives rise to native mesh NI] which is mapped 

to the auxiliary surface using TI]. Using the data from the source and target images 

mapped onto the auxiliary surface, T : ][2 -+ ][2 is obtained by optimization. 

6.1 Coordinate Invariance 

As discussed in Section 5.2, the auxiliary space is introduced for computational 

convenience. The fundamental mapping between cortices is the mapping between 

the native surfaces, shown as mapping W in Figure 6.1. As long as TI] is invertible, 

it is equivalent to compute mapping T or to compute mapping W = TI]l 0 T 0 TIl. 

However, T is easier to work with since the domain is chosen to have a simple 

geometry such as the plane or the sphere. 

135 
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MI -----------..... M.l 

TIl 

T 

Figure 6.1: From the 3D image 1 the native mesh (MI) is extracted and then mapped 
into the auxiliary space using TIl. Image J undergoes analogous steps. The mapping 
T maps the auxiliary space to itself. Assuming TI] is invertible, then W :::::: TIj 1oToTII 

maps the native mesh MI to M]. 
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From the point of view of coordinate invariance, it is mapping W that should be 

invariant under changes of coordinate system. In principle, the same map HI should 

be obtained no matter what coordinate systems are imposed on the cortical meshes 

MI and M]. In 3D, the coordinate system is always assumed to be a right-handed 

Cartesian coordinate system, so only invariance under transformations between right­

handed Cartesian coordinate systems is required. On the 2D surfaces, the coordinate 

systems are not Cartesian, so the objective function should be invariant under a 

general change of coordinates (any invertible function). This can be accomplished 

by ensuring the objective function is a scalar under general coordinate change, which 

in turn means that the integrand must be a "scalar density" [LR75]. For differential 

regularization terms, this means replacing each partial derivative by its corresponding 

covariant derivative, as suggested by Thompson [TT99, TWMTOO]. 

In practice, most approaches work on the auxiliary space rather than the native 

mesh [Dav97, VEDJM98, FSTD99, VD99] without discussing coordinate invariance. 

This strategy can be viewed as considering the projections III, II] as canonical so 

that T is the fundamental mapping. This is the point of view adopted in this thesis. 

It is the variational problem for T on the auxiliary space (rather than for W on MI) 

that is required to be invariant under coordinate changes. For the plane, as in 3D, 

Cartesian coordinates are assumed and invariance under rigid-body transformations 

is required. For the sphere, invariance under rotations of the sphere is required. 

6.2 Data Terms 

Data terms can be categorized, as was done for 3D image registration, depending on 

whether a partial matching is given or not, i.e. whether the features are labelled or 

unlabelled. 

6.2.1 Labelled Features 

Both interpolating and approximating transformations driven by labelled features 

are possible, as is done in 3D. The only change is to use distance measured in the 

auxiliary space for the data term. Landmark mat ching can be done using the plane 

[VEDJM98] or using the sphere [BJM99] as the auxiliary space. The data term is 

n 

<PLM = ~ Œkd2(T(pk) , qk), (6.1) 
k=l 
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where d is the metric function for the auxiliary space, {(pk, qk)} is the set of matched 

point landmarks, and CXk lS a weighting reftecting the confidence of localizing pair k. 

This is the 2D analogue of Equation 3.5. 

6.2.2 Unlabelled Features 

As with 3D matching, unlabelled features can be geometric objects or a continuous 

function defined on X2
• In 3D, the latter was typically the image intensity function 

or its gradient magnitude. Since the surface is assumed to represent an iso-intensity 

surface of the original data (Section 5.1), the intensity values are not useful for surface 

matching. Sorne other feature must be obtained, and the only data available is the 

geometry of the native surface mesh. Three possible features are described below. 

In each case, the feature value for the source brain is computed and stored for 

each vertex of the projection of mesh MI into the auxiliary space X2, i.e. III(M1 ). 

The continuous fun ct ion over X2 is then obtained using triangulation interpolation 

described in Section 5.4.2 (Definition 5.4.5 or Definition 5.4.9). The feature value is 

thus a continuous function denoted as S : X2 
-7 lR for the source (template) surface 

and as function R : X2 
-7 lR for the target surface. For convenience, define 'li = RoT. 

Geometrie Features 

Surfaces can be represented and matched just using point features, or points along 

with extra information such as surface normal, curvature estimates [FA96 , LBS99]. 

The data term used is a minimum-distance term similar to <P!CP (Equation 3.7). 

Curves [BGKM98] and sulcal regions can also be identified on the surface mesh 

[RHPOO, RHXP02]. Either could potentially be used as a feature. 

Mean Surface Curvature 

The surface curvature reftects the type of folding (e.g. sulcal or gyral) at each surface 

point, so surface curvature is a reasonable feature for matching. There are sever al 

related quantities that have "curvature" in the name. The following definitions are 

standard and can be found in any textbook on differential geometry (e.g. [Gug63]). 

The curvature of a plane curve is explained first. 

Let C be a curve in the plane with arc-length pammeterization x(s), that is 

Ilx'(s)11 = 1, where the prime denotes differentiation of x with respect to its para­

meter. Let point PEe have parameter value Sp, Le. P = x(sp). Define the 

unit-length tangent vector t = x'(sp) and a unit-length vector n perpendicular to t, 
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Figure 6.2: Plane curve C defined by arc-length parameterization x(s) with x(O) = P, 
x'(O) = t, has curvature K,p at P defined by relation x"(O) = K,pn, where n is a unit­
length vector perpendicular to t. The curvature at P in this figure is negative. 

as illustrated in Figure 6.2. The curvature at P, K,p, is defined by the relationship 

x"(sp) = K,pn. (6.2) 

Note that there are two unit vectors perpendicular to t and the sign of K,p depends 

on which vector is chosen to be the normal vector, n. 

While a planar curve has a unique tangent vector, the situation at a point P on 

a surface S is complicated by the fact that the tangent to the surface is not unique. 

Indeed, a curvature can be defined for each tangent vector as follows. Let n be a 

unit-Iength normal to the surface at P, and t be a unit-Iength vector tangent to S at 

point P. The three points (P, P + t, P + n) define a plane II which is perpendicular 

to the surface at P. The intersection of II with S defines a curve C, and the normal 

curvature (some authors use the term direction al curvature) at P in the direction t, 

denoted K,p(t), is defined as the curvature at P of the planar curve C. The normal 

curvature can be calculated using an arc-Iength parameterization of C and Equation 

6.2. 

The normal curvature at a point is either constant as a function of t (e.g. for 

an tangent vectors, the normal curvature is zero if S is a plane) or varies between a 

maximum and minimum curvature. Let K,~ and K,~ be the two extreme values of the 

normal curvature at P. With no loss of generality, choose IK,~I 2: IK,~I. The values 

K,~ and K,~ are referred to as the principal curvatures at P. The corresponding 

tangent directions are always perpendicular. In Figure 6.3, for example, tangent 

vector t points approximately in the direction of largest principal curvature while 

the orthogonal direction in the tangent plane is the direction of smallest principal 
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s 

Figure 6.3: Normal curvature K,p(t) of surface at point P in direction t defined by 
arc-length parameterization of plane curve C, x(s), with x(O) = P, x'(O) = t, and 
x"(O) = K,p(t)n. The curvature K,p(t) in this figure is negative. 

curvature (approximately zero in this figure). The mean curvature at P is defined as 

the me an of the normal curvatures, averaged over an tangent directions. The mean 

curvature has a simple formula, 

(6.3) 

As with plane curves, the sign of normal curvature depends on the normal vec­

tor chosen. For the cortex, being consistently orientable, define the curvature with 

respect to the outward normal. With this convention, the sign of K,P (and hence 

also of K,p, since 1 K,P 1 2': 1 K,~ 1) at a sulcus fundus is positive, whereas the sign of 

K,p is negative on a gyral crown. Figure 6.4 shows the value of K,p evaluated (using 

[Tau95]) at each vertex of the cortical surface. 

The pattern of sulci and gyri is evidently reflected in the structure of Figure 6.4. 

Since sulcal fundi and gyral crowns have mean curvature of opposite sign, registration 

based on matching mean curvature should tend to match sulcus to sulcus and gyrus 

to gyrus. However, there is evidently a lot of noise in the curvature map as well, 

due to small-scale oscillations in the mesh vertex positions, so the data needs to be 

smoothed when used for registration [AF99b]. 

Curvature (or a thresholded version [Dav97]) can be used directly in a registration 

algorithm for matching cortical surfaces. Alternatively, the curvature can be used 

to guide manual delineation of features. Sulcal curves for landmark matching, for 

example, can be obtained by tracing the sulcus on a curvature map similar to Figure 

6.4 [VD99, Dav96, Dav97]. 
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Figure 6.4: Mean curvature, evaluated (using [Tau95]) on typical cortical surface 
(gray matter / white matter interface). Left shows the curvature values on the 
folded cortex. Right shows the values mapped onto the unit sphere. Both views are 
from the top. 

Average Convexity Feature 

Fischl et aL [FSD99] describe a method of "inflating" a cortical surface that is essen­

tially a mesh smoothing process such that the sulci open up, enabling visualization of 

functional activity occurring within sulci. The idea is to generate a smoother version 

of the surface while minimizing the change in distance between vertices. Let (V, E) 

denote the vertex and edge set of the surface mesh, x( v) E ]R,3 denote the position 

of vertex v, and duv denote the distances between vertices u and v in the initial 

(unsmoothed) mesh. The inflated surface is obtained by minimizing the following 

function 

1 ~ 2 Àd ~~ 2 
ls = ïVï Lt Ilx(u) - x(v)11 + 41VI Lt Lt (1Ix(u) - x(v)ll- duv ) 

(u,V)EE vEY UENv 

over the positions {x(v) : v EV}, where IVI is the size of the vertex set, and Nv 

is an unspecified neighbourhood of v that should contain a "significant section of 

the manifold" rather than be just the 1-ring neighbourhood [FSD99]. A value of 0.1 

is suggested for Àd. The minimization of ls is stopped when the average distance 

of neighbours to the tangent plane at v drops below some threshold for aH v. The 

first term in ls tends to pull v towards the centroid of its 1-ring neighbours, thus 

smoothing the mesh. The second term strives to keep Ilx(u) - x(v)11 near its value 
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in the starting mesh. 

At each iteration of the minimization, each vertex is displaced by sorne amount 

which is resolved into components tangent to and normal to the surface (at that 

iteration). Fishl et al. point out that vertices with positive me an curvature (i.e. 

sulcal fundi) tend to move outwards due to the smoothing term, while vertices with 

negative mean curvature (gyral crowns) tend to move inwards. Summing the (signed) 

displacements in the direction normal to the surface provides a measure of how 

"sulcal-like" or "gyrus-like" the surface is at v, a measure they dub "average convexity": 

a vertex that consistently moves outwards will have a large positive average convexity 

value, whereas a vertex that consistently moves inwards will have a large negative 

value. 

The intersubject surface registration of Fischl et al. [FSTD99] uses squared differ­

ence of average convexity as the data term. They observe that the average convexity 

value "is useful for quantifying the folding pattern of a surface, as it captures large­

scale geometric features, while being relatively insensitive to the smaU folds that 

typicaUy occur on the banks of a sulcus. This is in contrast to mean curvature which 

attains equaUy high values for small secondary and tertiary folds in a surface as for 

the primary folds." 

The average convexity, however, is dependent not just on the original surface 

geometry but also on the details of the smoothing algorithm, e.g. the definition of 

the neighbourhood Nv and the stopping conditions. The next section describes a 

feature value that is independent of smoothing algorithm details. 

Crown Distance Transform 

The intuition behind this feature, like the mean curvature and average convexity 

features, is that it is desirable to match points along the crown of a gyrus on the 

source surface with points along the crown of a gyrus in the target surface. Similarly, 

the fundus of a sulcus should match the fundus of a sulcus. In contrast to matching 

by mean curvature or by average convexity, other points on the bank of a sulcus are 

matched according to their fractional distance towards the bottom of the sulcus, e.g. 

a vertex halfway down the sulcus in the source mesh should match a point halfway 

down the target sulcus. Throughout this section, distances are measured on the 

native meshes MI and M J . 

Suppose v is located in a sulcus of the source mesh. Consider two short est 

geodesic paths, one from v to the gyral crown and the other from v to the fundus. 

Let the length of the first of these paths be S ( v) and let S D ( v) be the sum of the 



CHAPTER 6. SEARCHING FOR AN OPTIMAL TRANSFORMATION 143 

Seed Vertices (gyral crown) 

Figure 6.5: Vertices labelled as gyral points are given value zero. The remaining 
vertices are given a value equal to the (approximate) geodesic distance transform 
from the gyral crown points. Matching is based on the fractional depth S ( v) j S D ( v). 

two path lengths. Distance S D ( v) can be regarded as the depth of the sulcus along 

a path through v. Let R and RD be the analogous distance functions for the target 

surface. The fractional depth of vertex v on the source mesh is S (v) j S D (v) as shown 

in Figure 6.5. The desired matching is to a point T( v) on the target surface such 

that S(V)jSD(V) ~ R(T(v))jRD(T(v)). This relation can be expressed as (recall 

R = RoT) 

R(x) = a(x) + f3(x)S(x) + E(X), (6.4) 

where E represents random noise, f3(x) = RD(T(x))jSD(X), and a should be zero. 

However, a is 1eft free to compensate for practical difficulties in computing S(x) and 

R(x). Note that points near to v should have depth values close to SD(V) and sim­

ilarly points near T(v) should have depth values close to RD(T(v)). Thus, assume 

that a and f3 are slowly-varying functions and, as discussed in Section 3.2.2, the 

maximum likelihood estimate for T corresponds to maximizing the regional correla­

tion coefficient, <pcc(S, R, T) given by Equation 3.13. If desired, the parameter a in 

Equation 6.4 could be forced to zero by using the normalized cross correlation, <Pxc 

(Equation 3.14). 

For the computation of <Pcc, it is only the gyral crown distance transforms, S 
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and R that appear and not BD and RD. Thus, the feature value stored at each vertex 

is the geodesic distance transform from a set of gyral "seed" vertices, i.e. the length 

of the shortest geodesic path from v to a vertex in the seed set. Computation of a 

geodesic distance transform is addressed shortly, after considering how to identify the 

seed vertices. The vertices chosen to be the seeds should in principle be an vertices 

located on aH the gyral crowns. 

Existing methods used to locate such gyral vertices of a surface mesh employ 

image processing techniques. Rettmann et al. [RHXP02] st art with a binary edge 

map image that is produced by assigning the value 1 to any voxel that intersects 

the cortical surface mesh. Then a deformable mesh (as discussed in Section 5.1) 

with a high tension force that makes it resistant to bending is used to seek out the 

boundaries of the edge map. The high tension force prevents the deformable surface 

from penetrating deeply into the sulci, but sometimes causes the surface to break 

through gyral regions so the Implementation is modified to add an extra barrier force 

[RHXP02]. Any vertex on the original cortical surface that lies within 2 mm of the 

second deformable surface is deemed to be gyral. Cachia et al. [CMR+03] st art with 

the white matter binary mask, i.e. an image that is 1 at each white matter voxel and 

zero otherwise. They apply a 3D morphological closing to fill in the sulcal regions 

and then perform a 3D erosion of the closed mask that changes any voxel within 5 

mm of the mask boundary to the background value. Any mesh vertex lying outside 

the closed, eroded mask is selected to be a gyral crown vertex. 

Other approaches do not employ image processing techniques. For ex ample , one 

way to identify gyral vertices is to compute the mean curvature, then smooth and 

threshold it. As discussed previously, gyral vertices have negative mean curvature 

and so can be identified on that basis. However, negative mean curvature is not 

exclusive to gyral crown points: other bumps deep inside a sulcus can have negative 

mean curvature so a different characterization is sought. 

The stiff deformable surface approach of Rettmann et al. [RHXP02] pro duces a 

surface that can be considered a "relaxed" or "slack" version of the convex hull. As 

Rettmann et al. observe [RHXP02], the convex hull alone generates too few gyral 

vertices. The problem is illustrated on the left side of Figure 6.6, where points C 

and D, which ought to be labelled gyral, are not part of the convex hull. Figure 6.7 

shows the convex hull vertices of a typical cortical surface. There are relative few 

such vertices and certainly do not outline gyral crowns weIl. 

The a-shape [EM94] is a discrete geometry notion that can be considered as a 

relaxation of the convex hull, with the degree of relaxation controlled by the para-
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Figure 6.6: Left figure shows convex hull, which does not include points C and D on 
its boundary. The a-shape on the right includes C because there is an a-baIl with 
C on the boundary and no points on the interior. However, a is large enough that 
B is still excluded from the boundary. 

meter a. Let S be a set of points in ]R3. Define an a-ball1 to be a closed ball of 

radius .,;a, i.e. the point set {x E]R3 : Ilx - pli:::; fo}, for sorne p E ]R3. The points 

of S that form the vertices of the a-shape of Sare those that lie on the boundary of 

an a-ball with no point of S on the interior ofthe a-ball. Such vertices are said to be 

a-exposed. Note that convex hull vertices are always a-exposed, since for every point 

x on the boundary of a convex set, there exists a baIl of radius fo for any value 

of a that intersects the convex set only at x. Thus the vertices of the a-shape with 

a = 00 are the vertices of the convex hull. As a is decreased, more points become 

a-exposed until at a = a an points are a-exposed. On the right side of Figure 6.6, a 

has been selected so that C is now a-exposed, but a is still large enough to prevent 

sulcal vertices such as B from being a-exposed. 

Using a-balls of radius la mm (i.e. a = 100), a value empirically chosen using 

visual inspection of the results, gives the pattern shown in Figure 6.8. Here there are 

good outlines of sever al major gyri. However, there are also vertices in the point set 

lying underneath the brain on the arbitrary "cap" through the brain stem (described 

in Section 5.1). These should not form part of the seed set, 80 they are masked 

out as follows. The distance transform is computed using the convex hull points as 

the seed vertices and any vertex with a distance transform value greater than 35 (a 

value chosen empirically) is removed from the set of vertices of the a-shape. The 

IThe definition given here follows the Computational Geometry Algorithms Library (CGAL) 
[CGA03], as the implementation of a-shape provided by CGAL is used. In the original definition 
of Edelsbrunner and Mücke, a is the radius of the a-baIl. 
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Figure 6.7: Left column shows convex hull points of the cortical surface in red. Right 
column shows corresponding view on §2. The convex hull points are distributed very 
sparsely across the surface, so are not representative of gyral crowns. 
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Figure 6.8: Vertices of a-shape (a = 100). The major gyri are outlined reasonably 
weU, but there are also points in the unphysical "cap" through the brain stem (second 
row), which are not desirable. 
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remaining vertices form the seed set used for the crown distance transform feature, 

shown in Figure 6.9. 

The crown distance transform from the final seed set is illustrated in Figure 6.10. 

Geodesie Distance Transform 

The distance transform used in practice is an approximation to the geodesic distance, 

as computing true geodesic distance is computationally costly and difficult to code 

robustly [LMSOl]. The approximation is computed using the mesh graph with the 

weight for each edge set to the Euclidean length of the edge. An additional vertex, 

s, is inserted and attached to each seed vertex with a zero weight edge. Then 

Dijkstra's single-source shortest path algorithm [CLR90] is run with s as the source 

vertex. To improve the accuracy of the approximation the mesh is refined before 

running Dijkstra's short est path algorithm. First, m equally-space extra points are 

inserted on each edge, then a new edge is inserted for each pair of extra points that 

either (i) are adjacent on an original edge, or (ii) are on different edges both of which 

are incident to a common (original) facet. The approximate shortest path computed 

by this algorithm consists of line segments which are either an edge of the original 

surface, or cross a facet of the original surface as illustrated in Figure 6.11. The 

set of original surface edges encountered along the path is important for the error 

bound. 

Lanthier et al. [LMSOl] prove that the approximate path length is bounded by 

the true path length plus kL / (m + 1) where L is the longest edge of the original 

surface and k is the number of segments comprising the approximate path. In their 

paper, Lanthier et al. note that this is a pessimistic bound. A better estimate of the 

error, assuming that the source and terminal vertices of the path are vertices of the 

original surface (which is the case for the distance transform computation) is 

1 k 

m + 1 L:lj, 
j=l 

where ij is the length of the lh original-surface edge encountered along the approx­

imate path. This is a better estimate because, as shown in Figure 6.12, most of the 

edges in a typical cortical surface are much smaller than the largest edge. 

In order to select a value for m, an arbitrary cortical surface is chosen and the 

distance transform is computed with m = 0,1, ... ,7 at which point the storage 
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Figure 6.9: Vertices of a-shape (a = 100), with deep points removed. The unphysical 
points of the brain stem cap have been removed. Compare the second row with the 
second row of Figure 6.8. 
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Top Bottom 

Left Right 

Figure 6.10: Gyral crown distance transform mapped onto §2. The intensity scale 
runs white (0 mm) to black (40 mm or more), so the gyral regions are shown in white 
and sulcal in black. Due to the masking out of deep vertices, most vertices in the 
bottom view have distances 40 mm or greater and so appear black. 
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Figure 6.11: Heavy line shows short est path from s to t on a polyhedral surface (only 
part of which is shown). The path consists of line segments that either follow an 
edge (first segment) or cross a facet (shaded). The path encounters some edges of 
the surface (indicated by arrows). The extra points and extra edges are not shown. 
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Figure 6.12: Histogram of edge lengths (122880 edges) of a typical cortical surface. 
86 edge lengths were > 10 (largest edge has length 18.2). Note that the vast majority 
of the edge have length < 5 (27% of the maximum length) so the error bound based 
on the largest edge length is likely to be an overestimate. 
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Figure 6.13: Plot of distance transform values for three vertices, as a function of m, 
the number of extra points inserted on each edge. One vertex was chosen because the 
difference between m = 0 and m = 7 was largest. Another had the largest difference 
between values for m = 6 and m = 7. The third was chosen arbitrarily. The values 
converge after about m = 4, so using 4 or more extra points should produce reliable 
distance transform values. 

requirement (>lGB) exceeds the machine memory. Figure 6.13 shows that the values 

converge after about m = 4 or 5, which is in agreement with the observations of 

Lanthier et al. The value m = 5 is used for the experiments in this thesis. Figure 6.14 

shows that the accuracy lost by stopping at m = 5 rather than m = 7 is generally less 

than 0.2: which is on the or der of 1 % oftypical distance transform values. Moreover, 

the error bound grows with the path length k, so errors for vertices with small 

distance transform values are expected to on the low end of Figure 6.14 while large 

errors will be associated with large distance transform values. The relative accuracy 

is thus expected not to be correlated with distance transform values. 

6.2.3 Multiple Features 

As with 3D normalization, it is possible to use both labelled and unlabelled fea­

tures. For example, Davatzikos [Dav97] uses a feature derived from thresholding 

three curvature values (the two principal curvatures and Gaussian curvature) at 
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Figure 6.14: Histogram of distance transform difference between m = 5 and m = 7. 
Most values are < 0.2, which can be taken as indicative of the typical error made in 
the path length when computed using m = 5. 

each vertex of the control mesh in addition to a landmark term <P LM (Equation 6.1) 

of points on mat ching sulci. 

6.3 Model Terms 

6.3.1 Regularization Rationaie 

The rationale is the same as described in Section 3.3.1 namely to impose prior know­

ledge of the solution characteristics on T, either as a specifie distribution P(T) or a 

generic "smoothness" requirement using a differential regularizer. 

6.3.2 Low-Order DifferentiaI Regularizers 

The low-order regularizers discussed in Section 3.3.2 can be adapted by changing 

the partial derivatives to covariant partial derivatives in order that the result be 

invariant under a general change of coordinates as discussed in Section 6.1 [LR 75]. 

This approach is not pursued here; rather the regularization is implemented as a 

smoothing operation of a two-step registration method (Section 6.4.2). 
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6.4 Iterative Registration 

In general, the algorithms for 3D (Section 3.4) carry over with minimal modifica­

tions, e.g. derivatives should be covariant and distances should be measured on the 

appropriate 2-manifold rather than in ]R3. 

6.4.1 Basic Algorithm 

The generic algorithm for surface mapping is analogous to Algorithm 1. As in 3D, 

the idea is to iteratively estimate the parameters of the transformation T. 

Landmark Matching 

Algorithms used in 3D, e.g. [JMOO] can be easily adapted to the plane auxiliary 

space [VEDJM98]. Landmark mat ching on the sphere auxiliary space is also used 

[BJM99]. 

Discretized Euler-Lagrange Equations 

Elastic mat ching can be do ne using the Euler-Lagrange Equation 3.23 in the auxiliary 

space [Dav97]. The Euler-Lagrange equations can also be applied to deform the 

auxiliary sphere in ]R3, projecting the deformed surface back to §2 after each iteration 

[VD99]. 

Discretized Objective Function 

Directly optimizing the objective function <I> as done in 3D is possible. 

Wh en a sphere triangulation warping is used for T, the parameters that need to 

be estimated are locations on the sphere, {T( v) : v E V}, where V is the control 

mesh vertex set. If the three Cartesian coordinates are used as parameters for T ( v), 
the problem becomes a constrained optimization as points must lie on the sphere, i.e. 

IIT( v) Il = 1 for an v. In general, constrained optimization is more computationally 

expensive than unconstrained optimization [NW99]. However since the constraint is a 

simple one, if the displacements are smaU enough with an unconstrained optimization 

in ]R3, the vertices {T( v)} can simply be projected to the sphere after each iteration. 

This is done, e.g. by Fischl et al. [FSTD99]. 

The algorithm used for the experiments in this thesis avoids constrained optim­

ization in a different manner, using a two-step registration method described next. 
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6.4.2 Two-Step Registration 

Recall that a two-step registration formally uses two transformations, T and U, each 

a map §2 ---+ §2. The algorithm (Algorithm 2 on page 48) iterates over a matching 

step 

U = argmin <I>D(U') + \If(T - U'), 
U' 

where <I> D is the data term and \If(T - U) penalizes deviation of transformation U 

from T, followed by a smoothing step that sets T to be a smoothed version of U. 

One of the advantages of this algorithm is that, wh en used with a regional data term, 

the objective function is separable as discussed in Section 3.4.2. 

If the auxiliary space is the plane, any two-step registration used for 3D, e.g. 

ANIMAL, can be adapted straightforwardly. 

U sing the sphere auxiliary space, an awkward constrained optimization can be 

neatly avoided by using a suitable penalty term, \If. Suppose the objective func­

tion is separable (e.g. a regional data term is used) and consider the terms re­

lated to control mesh vertex v. The matching step searches for U ( v) in a neigh­

bourhood of point T(v). Suppose the penalty is designed so that U(v) is restric­

ted to the hemisphere centred on T(v). This is not hard to do; for example, let 

\If(T - U) = 2:v 1jJ(T(v) , U(v)), where 1jJ becomes infinite when the angle between 

T( v) and U (v) reaches 1f /2. With the search space restricted to a hemisphere, it 

can be parameterized using two variables, by projecting the points of]R3 to the tan­

gent plane at T(v). Thus, U(v) is obtained using a two-dimensional unconstrained 

optimization. This is the approach used by the algorithm proposed in this thesis. 

6.4.3 Four-Step Registration 

Recall that a four-step method (Algorithm 3) differs from a two-step method in that 

the corrections U - T can be smoothed as weIl as U itself. As in the 3D work, 

this thesis concentrates on producing the best performance possible from a two-step 

method. If that matching is determined to be inadequate, future work can use a 

four-step method. 

6.5 Coarse ... to-Fine Hierarchy 

For sphere triangulation warping, the control mesh is often refined using quadrisec­

tian in which each triangle is replaced by four by joining the midpoints of the three 

edges, as shown in Figure 6.15. The surface meshes used for work in this thesis all 
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Figure 6.15: Quadrisection: each triangle is split into four by joining the midpoints. 

start out as an icosahedron, the polyhedron with 20 equilateral triangular facets and 

12 vertices, each of degree five. The vertices of this icosahedron aH lie on §2. After 

performing a quadrisection on each facet, a polyhedron with 80 facets is obtained. 

Each new vertex is initially the midpoint of an edge which is then projected onto the 

sphere §2. This procedure of quadrisection followed by projection to §2 can be re­

peated, each time generating a mesh with four times as many facets as the previous. 

Each new vertex inserted has degree six. 

6.6 Brain Surface Registration Literature 

6.6.1 Labelled Features 

The approaches that employ labelled features all rely on manu al identification of the 

landmarks. 

Thompson et al. [TT96, TMM+97] work with polar coordinates on the sphere 

as the auxiliary space. Writing the transformation as T : (e, <p) 1---> (e + t l (e, <p), <P + 
t2 (e, <p)), each t l , t 2 is given by a finite sum of spherical harmonie functions. The 

coefficients of the expansion for t 2 are chosen to minimize the expression 

N 

L (<Pi + t 2(ei , <Pi) - <p;)2 , (6.5) 
i=l 

where (ei , <Pi) are the coordinates of the ith landmar k of the surface, and (e;, <PT) are 

the coordinates of the corresponding template landmark. The coefficients for t l are 

obtained in a similar manner. Note that Expression 6.5 penalizes geodesic distances 

unequally and thus fails to be invariant under rotation of the sphere as discussed in 

Section 6.1. Suppose points A and E share the same <P coordinate value, and points 

A* and B* likewise have the same <P value. Then both (A, A*) and (E, B*) contribute 

equally to the sum in Expression 6.5 even though one pair might be nearer to the 

pole and thus be much doser together on the surface, as illustrated in Figure 6.16. 

The matching will exp end a disproportionate amount of energy mat ching landmarks 



CHAPTER 6. SEARCHING FOR AN OPTIMAL TRANSFORMATION 157 

Figure 6.16: Equal penalty is imposed by Expression 6.5 for A and for E, though 
the former is much doser to its homologue. 

near the poles, to the detriment of landmarks nearer the equator. 

The Van Essen group employs large deformation landmark matching (Section 

3.2.1) to align cortices after mapping to the plane or to the sphere [VEDJM98, 

DECS99, VELD+Ol]. This technique is originally developed in 3D Eudidean space 

by Joshi and Miller [JMOO] and on the sphere by BabrclOglu, Joshi, and Miller 

[BJM99]. Thompson advocates the same approach in later work [TT99, TMV+Ol]. 

In his earlier work, Davatzikos [Dav96] elastically matches landmark points using 

the two-unit-square parameterization of the cortex (Figure 5.5). Vaillant and Dav­

atzikos [VD99] use §2 as the auxiliary space and obtain T by deforming the source 

mesh in IR,3) projecting it back to the sphere after each iteration. The forces used to 

deform the mesh are derived from distance between matched landmark points (the 

derivative of Equation 3.5) and elastic forces (Equation 3.24). 

6.6.2 Unlabelled Features 

Fischl and co-workers [FSTD99] use the average convexity feature described in Sec­

tion 6.2.2 with a squared difference data term. The regularization terms are quadratic 

in change of signed facet area and change of edge length; the change is measured 

between the initial and deformed source meshes. The optimization is done in IR,3 

[FSD99], projecting back to the surface at each step. 

Related to the registration problem is work that searches for a cortical surface 

mapping in order to transfer labels from the template to an individual. The four pa­

pers mentioned here do not use an auxiliary surface, but compute mapping directly 

between native meshes (mapping W of Figure 6.1). Feldmar and Ayache [FA96] 

adapt lep to indude surface curvature in the data term and to search for non-



CHAPTER 6. SEARCHING FOR AN OPTIMAL TRANSFORMATION 158 

rigid transformations. Sandor and Leahy [SL97] model the superficial surface of 

cortex using B-spline patches and fit to individu al using deformable model tech­

niques. Jaume, Macq, and Warfield [JMW02] describe a method in which the model 

mesh is coarsened using "progressive meshes" and the coarse model mesh is fit as a 

deformable surface (in ]R3) to the individual. The model is then refined by reversing 

the coarsening process, and the reinserted vertices are moved along the surface nor­

mal to the nearest point on the target. These three approaches search for matches 

in 3D and so are not constrained to search in surface neighbourhood of adjacent 

vertices: the possibility of jumping across to the opposite bank of a sulcus exists. 

In addition, it may be difficult to match to surface locations deep in sulci. Wang, 

Peterson and Staib [WPSOO] st art with an extremely coarse model of the cortex (69 

vertices, 134 triangles), and locate corresponding vertices on the target surface. The 

arc joining a pair of neighbouring vertices is a geodesic path on the surface. The 

source and target meshes are repeatedly refined by subdividing each arc and using 

quadrisection to build isomorphic triangulations on the two surfaces. The result is 

that the matching is driven only by the coarse mesh of 69 vertices, which is very 

little data. 

6.6.3 Multiple Features 

Davatzikos [Dav97] uses a feature derived from thresholding three curvature values 

(the two principal curvatures and Gaussian curvature) at each vertex of the control 

mesh in addition to a landmark term <I>LM (Equation 6.1) of points on mat ching 

sulci. 

6.7 Aigorithm for 2D Experiments 

This section elaborates on the algorithm proposed in this thesis for registering cortical 

surfaces. 

The algorithm is based on the unit sphere auxiliary space. Thus the assumption 

is that the native surfaces are of spherical topology, as discussed in Section 5.1. 

However, no assumption is made as to whether the surface contains one cortical 

hemisphere or both hemispheres, nor as to whether the inner, outer, or medial cortical 

surface is used (see Section 5.1). Moreover, the only assumption about the type of 

feature used for mat ching is that it is a scalar value defined at each point on the 

sphere. The algorithm is very general in these respects; it can be used to register 
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any data that can be mapped to the sphere. The feature data could be anatomical 

or it could be functional, for example. For experiments described in Chapter 7, both 

the me an curvature and the crown distance transform features described in Section 

6.2.2 are used. 

The transformation T : §2 -? §2 is parameterized as a sphere triangulation warp 

(Definition 5.4.8 on page 127). Working on the sphere, coordinate invariance in the 

auxiliary space is achieved by using a two-step algorithm where the mat ching and 

smoothing steps each integrate over small circular neighbourhoods of the sphere. 

The experiments presented in the se quel all use the inner cortical surface with 

both hemispheres mapped to a single unit sphere, obtained using the ASP code 

of MacDonald [MKAEOO, Mac98]. The cortical surface extracted using ASP is a 

mesh of 81920 facets and 40962 vertices. This mesh is obtained by starting with an 

icosahedron (20 facets, 12 vertices, each of degree 5) and performing quadrisection six 

times. The projection of the native mesh onto §2 using reverse iterative deformation 

(see Section 5.2) is precisely this sixfold quadrisection ofthe icosahedron. This is the 

mesh used for the feature data interpolation functions Sand R, described in Section 

6.2.2. 

There are thus three separate meshes involved in registration, each of which 

is embedded on the sphere §2: the control mesh for T, the source data mesh for 

interpolating source data function S, and the target data mesh for interpolating the 

target data function R. Each of these meshes is implemented using the halfedge data 

structure of CGAL [Ket99, CGA03]. 

6.7.1 Outer Loop 

Control Mesh Refinement 

As discussed in Section 6.5, the control mesh is obtained by repeated quadrisection 

of an icosahedron. The finest level mesh is designed to coincide with the data mesh 

extracted by ASP [Mac98], which is a sixfold quadrisection with 46 .20 = 81920 facets. 

Initial experimentation indicates that using a very coarse mesh is not effective, so the 

initial mesh used starts with a threefold quadrisection (43 
. 20 = 1280 facets). Thus 

there are four levels of the outer loop, with 43 .20, 44 .20, 45 .20, and 46 .20 facets for 

the control mesh. After each level, the current transformation is interpolated onto 

the finer control mesh for the next iteration. 

The initial mapping is obtained by a low-dimensional warping, e.g. a rotation 

of the sphere as discussed in Section 5.3. However, for the experiments performed 
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here, the initialization is simpler still. Each MR image is initially registered using a 

9-parameter affine transformation to a common target. Then a standard ellipsoid is 

deformed by ASP to identify the cortical surface in the image. Since the images are 

aligned, a given vertex v of the initial mesh tends to end up in a nearly homologous 

location on each image [MKAEOO]. This means that the initial transformation on 

the coarsest control mesh can simply be set to the identity mapping. More evidence 

for this is shown in the next chapter, in the discussion around Figure 7.15. 

Data Refinement 

When the feature value map requires smoothing so as to reduce noise, the smoothing 

is done in a coarse-to-fine manner in step with the control mesh refinement. The 

coarse control mesh is used with heavily-smoothed data, with the amount of smooth­

ing being reduced after each level of the hierarchy. Let D( v) denote the data value 

at vertex v. The data smoothing replaces, in parallel for aIl v, D(v) by 

(D(v) + a L D(u))ja, (6.6) 
uENv 

where Nv is the set of neighbours of v, a = 1 + alNvl is a scaling factor to ensure 

the weights add to 1, and a is a constant, selected using visu al inspection to be 0.4 

for experiments in this thesis. The smoothing operation is iterated 128 times at the 

coarsest level of control mesh, 32 for the next, then 8, and finally twice at the level 

of the finest control mesh. 

The result of smoothing the mean curvature data term shown in Figure 6.4 is 

shown in Figure 6.17. The crown distance transform data (see Figure 6.10) is deemed 

sufficiently smooth, so no extra smoothing is done. 

6.7.2 Inner Loop 

The inner loop is a two-step algorithm patterned after ANIMAL, displayed as AI­

gorithm 5. 

Step 1: Matching 

The data term (rjJv in Step 1) is based on the regional correlation coefficient similarity 

measure (the regional version of <Pcc, described in Section 3.2.2). Recall that <Pcc 

pro duces a value in range [-1, 1] with better match indicated by larger score. The 
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Figure 6.17: Smoothed me an curvature data for the four Ievels of coarse-to-fine outer 
Ioop. 

Algorithm 5 Inner Ioop of Surface Registration. 

1. Minimize <p(U) = ~v(cPV(U(v)) + a~(IIU(v) - T(v)II))· 

2. Let C(v) be centroid of {U(u) : u is 1-ring neighbour of v}. 
Set T(v) = U(v) + wC(v), projected to §2. 

3. Loop over Steps 1-2 a fixed number of times. 
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Figure 6.18: Spherical cap neighbourhood for evaluating similarity measure at p. 
Point p is a control mesh vertex, either v on the source or U ( v) on the target sphere. 
The neighbourhood is parameterized by a disc of radius Rn in a plane parallel to the 
tangent plane at p. The right figure shows how the sample points are arranged in 
the disco 

function to minimize is 

q?(U) = 1 - cfJcdU) , 

where cfJce is the correlation coefficient evaluated between a neighbourhood of v on 

the source data and a neighbourhood of U(v) on the target data. 

Each neighbourhood is a spherical cap at the given centre point p, where p is 

either v or U(v). The correlation coefficient is evaluated by sampling a number of 

points in each neighbourhood. The sample points are arranged on a di sc of radius 

Rn parallel to the tangent plane at p, as illustrated in Figure 6.18. The set of sample 

points are: the centre of the disc, 8 points equally spaced around a circle of radius 

Rnl2, and 16 points equally spaced on a circle of radius Rn. The di sc radius is 

(6.7) 

where 'n is a user-specified radius factor, and de sets the distance scale based on 

the coarseness of the control mesh. The value of de is the distance, projected to 

the dise, from the centre of the cap to a neighbouring control mesh vertex. In other 

words, de is the length of a typical control mesh edge after projecting to the dise. 

The value of Rn must be no greater than 1, so 'n :::; 1lde . 

The 1jJ(IIU(v) - T(v)ll) term in Line 1 of the algorithm is intended to limit the 

search for U(v) to the hemisphere centred at T(v) as discussed in Section 6.4.2. The 

search region is parameterized using a disc parallel to the tangent plane at T ( v ). 

Points T( v) and U( v) are projected to this disc and 1 is defined as the distance 
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Figure 6.19: The penalty term 'IjJ restricts the search for U ( v) to a spherical cap 
neighbourhood of T(v), parameterized using a dise of radius Rs. 

between the projected points as illustrated in Figure 6.19. The penalty is a log­

arithmic barrier function [NW99], 'IjJ = -log(l - r 2 / R;), which has the effect of 

constraining the search for U (v) to points with r < Rs. The disc radius is 

(6.8) 

where r s is a user-specified se arch radius factor, and dT sets the distance scale based 

on the control mesh. The value of dT is the distance, projected to the dise, between 

T(v) and T(u) where u is the control-mesh neighbour closest to v on the target, i.e. 

IIT(v) - T(u)11 is minimum for all 1-ring neighbours u of v. The value of Rs must 

be no greater than 1, so rs :S l/dT . 

The objective function is designed to be separable so that the minimization of 

cjJV(U(v)) + a'IjJ(IIU(v) - T(v)lI) (6.9) 

is performed independently for each control mesh vertex v. Each optimization is a 

2-dimensional problem, parameterized by Cartesian coordinates in the tangent plane 

at T(v). The initial iterate is (0,0) which corresponds to T(v), and is a feasible 

point since it corresponds to r = ° so the barrier function 'IjJ is zero. The optimiz­

ation is performed using the Nelder-Mead downhill simplex algorithm [PFTV88] as 

implemented in the GNU Scientific Library [GDT+02]. The Nelder-Mead simplex 

algorithm is chosen because it does not require derivatives of the objective function 

6.9, which are complicated due to the correlation coefficient data term in cjJv. 
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Step 2: Smoothing 

The model term is given implicitly by specifying the smoothing operation (Line 2 

of Algorithm 5). The smoothing, which is carried out in ]R3, is a simple weighted 

average of U(v) and the centroid of its neighbourhood, 

1 
C(v) = INvl 2:= U(u), 

uENv 

where Nv is the set of neighbours of v. The smoothed transformation is given by 

U(v) + wC(v) 
T(v) = IIU(v) +wC(v)ll' 

where w is a user-specified smoothing weight. 

Efficient Point Location 

During the minimization of Expression 6.9, the location of U ( v) E §2 is updated 

many times. The location of U( v) specifies the central point of the neighbourhood 

on the target sphere that is used to evaluate the correlation coefficient data term. 

The target feature value must be evaluated for each of the points shown in Figure 

6.18. As discussed in Section 6.2.2 the feature value at point x E §2 is obtained by 

triangulation interpolation, for which the triangle containing x must be identified. 

This would, in general, involve a linear-time search across the target data mesh, as 

discussed in connection with Figure 5.9 on page 128. The search time is reduced in 

the following manner. 

The transformation at vertex v is a point T(v) E §2. However, instead of storing 

the Euclidean coordinates for the point T(v), the triple (h, Œ, 13) is stored where h 

is a halfedge (internally represented as a pointer) specifying the spherical triangle of 

the target data mesh that contains T( v) and (Œ, (3) are the barycentric coordinates 

(along with "f = 1 - Œ - (3) locating T ( v) on the spherical triangle. The situation is 

illustrated in Figure 6.20. Each time the data term needs to be evaluated during the 

optimization, the search for U ( v) always begins at the triangle indicated by h. Since 

U(v) is known to be near T(v), the search will traverse few triangles. Subsequently, 

the points in the similarity neighbourhood of Figure 6.18 are obtained starting the 

se arch at the triangle containing U ( v ). 



CHAPTER 6. SEARCHING FOR AN OPTIMAL TRANSFORMATION 165 

Figure 6.20: Point q = aA + (3E + "jC is represented by triple (h, a, (3), where h is 
the halfedge from C to A, and "j = 1 - a - (3. Point p = q/llqll. 

Parameters 

The user of this algorithm has four major parameters to specify: the search radius 

rs , the neighbourhood radius rn , the penalty ratio a, and the smoothing weight w. 

Note that the search radius and neighbourhood radius are dimensionless quantities 

that multiply a length set by the coarseness of the control mesh through Equations 

6.7 and 6.8, respectively. Thus rs and rn can be set to a fixed value for aU iterations 

of the outer loop, as are parameters a and w. 

Experiments in the next chapter determine values for these parameters. 

6.8 Summary 

The chapter objectives are first to review the surface registration problem, mainly 

highlighting the differences from the image registration problem considered in Chapter 

3, and second to propose a new algorithm for surface registration. Surface registra­

tion algorithms are put lnto a common optimization framework in order to compare 

them on the basis of the data terms and model terms, just as is done for image 

registration. 

6.8.1 Data Terms 

Landmark points can be used with distance based data terms, as is done with image 

registration. This approach is applicable in both the plane and the sphere auxiliary 

space [VEDD+01]. To date, the method of identifying and matching the points has 

been manual [TT96, DECS99, VD99] which precludes using this approach for spatial 

normalization in large scale automated analyses. Automatic labelling of the cortical 
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surface mesh, e.g. [RHXP02, RMPO+02] could be an aid, but as is the case for 

image registration (Section 3.8.1), there is no system that generates enough labels 

for a high-dimensional warp that requires, say, two parameters at each of 40 000 

control mesh nodes. Thus, this thesis concentrates on obtaining the best results 

possible without label data. 

In the case of image registration (Chapter 3), the mat ching problem without label 

data is based on the image data itself, a real-valued function defined on the source 

and target domains. The surface registration problem, in contrast, does not have 

such a real-valued function given as part of the problem specification, so one must 

be created. In or der to match the pattern of sulcal folding, a function is sought that 

reflects the geometry of the folding pattern. 

The three features described in Section 6.2.2 aIl locate sulci and gyri in sorne 

manner. Mean surface curvature, given by Equation 6.3, can be used to identify the 

type of foId by the sign of the curvature value. Using the outward-normal convention, 

discussed following Equation 6.3 on page 140, points in the fundus of a sulcus gen­

erally have positive mean curvature while points on the gyral crown generally have 

negative mean curvature. This classification is not foolproof, since a outward bump 

at the bottom of the sulcus will have positive mean curvature, so sorne smoothing is 

required with this feature. The average convexity feature of Fischl et al., discussed 

on page 141 is one way of smoothing out these fluctuations [FSTD99]. Using either 

of these features will tend to match points along the crown of a gyrus on the source 

surface with points along the crown of a gyms in the target surface. Similarly, the 

fundus of a sulcus will tend to match the fundus of a sulcus. Points along the bank 

of a sulcus, in between the crown and the fundus, will also tend to match to points 

on the target with similar curvature. The gyral crown distance transform described 

on page 142, in contrast, is designed to match these points on the banks of sulci 

according to their fractional distance towards the bottom of the sulcus, e.g. a vertex 

halfway down the sulcus in the source mesh should match a point halfway down the 

target sulcus. 

The gyral crown distance transform feature values are generated in two steps. 

First, seed points representing the gyral crowns are identified using a method based 

on the a-shape of Edelsbrunner and Mücke [EM94]. The a-shape allows extreme 

vertices (the a-exposed vertices described on page 145) of the surface to be labelled 

as gyral, a discrete-geometry method similar in spirit to the deformable surface of 

Rettmann et al. [RHXP02]. The second step is to generate the geodesic distance 

transform from the gyral seed vertices. Approximate geodesic distances are obtained 
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using Dijkstra's single source shortest-paths algorithm on the surface mesh augmen­

ted with 3m extra vertices and O(m2) edges on each triangular facet [LMSOl]. Fig­

ure 6.13 shows that the approximate distance values become close to the true values 

after about m = 4 or 5, which is in agreement with the observations of Lanthier et 

al. [LMSOl]. The experiments in this thesis use distance transforms generated with 

m=5. 

6.8.2 Model Terms 

Here the options are generally similar to image registration. So far work has focused 

on enforcing smoothness either by expanding the transformation using a finite set of 

basis functions [TT96], using a regularization term based on derivatives of the trans­

formation [JMOO, BJM99, VD99], or a penalty based on the Jacobian determinant 

[FSD99, FSTD99]. The model terms for the surface registration algorithm proposed 

in Section 6.7 are implemented as smoothing of the transformation, as the algorithm 

is based on the two-step algorithm of Section 3.4.2. 

6.8.3 Registration Aigorithm 

The approaches used for optimization depend on the auxiliary space chosen. When 

using the plane, the methods of image matching can be easily adapted. When the 

sphere is chosen as the auxiliary space, one option is to optimize {T( v)} by working 

in ]Ra, taking a smaU step, and projecting the result back to the sphere so that 

IIT(v)11 = 1 for aU control mesh vertices v [FSTD99, VD99]. 

The new algorithm proposed in Section 6.7 is based on the two-step algorithm. 

The transformation is parameterized using a sphere triangulation warp (Defini­

tion 5.4.8 on page 127) and a regional data term is chosen so that the optimiza­

tion is separable. The optimization for each control mesh vertex, v, is therefore 

performed independently. Each such optimization is two-dimensional, which allows 

use of the (quadratic storage) Nelder-Mead downhill simplex algorithm [PFTV88]. 

This optimization method is chosen because it does not require derivatives of the 

objective function 6.9, which are complicated due to the correlation coefficient data 

term (Equation 3.13). The location of T(v) in the source and target data meshes 

is stored in terms of a triangle and barycentric coordinates within the triangle as 

illustrated by Figure 6.20, rather than using the Cartesian coordinates of the point 

in ]R3. This speeds up the evaluation of the data term, which requires locating a 

number of points in the target data mesh that are near T(v). The point location al-
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gorithm is, in general, a linear-time search across the target data mesh, as discussed 

in connection with Figure 5.9 on page 128. By storing the mesh location of T(v), 

each search starts near to the point sought and thus only examines a few facets. 

The registration algorithm employs a typical coarse-to-fine strategy with four levels. 

The data values are blurred less at each level, while the control mesh is refined using 

quadrisection (Figure 6.15) of each facet at each level. 

This surface registration algorithm is used for 2D spatial normalization in the 

following chapters. 



Chapter 7 

Quantifying Spatial Variability 

This chapter has two goals. The first goal is to transfer the concepts and measures 

of variability developed for ]R3 in Chapter 4 to the sphere auxiliary space, §2. The 

second goal is to use these measures to demonstrate that the surface registration 

algorithm proposed in Section 6.7 does succeed in reducing spatial variability. 

Spatial variability for 2D spatial normalization is quantified using two measures 

analogous to the two measures used to quantify variability after 3D spatial normal­

ization in Chapter 4. The main difference being that the 3D measures are evaluated 

on a voxel grid whereas a triangular mesh is used in 2D. The first measure, segment­

ation variability, gives a global measure of spatial normalization based on the extent 

to which gyral crowns are matched to gyral crowns and sulci are matched to sulci. 

This measure is used to examine design choices of the algorithm and to choose the 

values for the numerical parameters. The second measure, structural variability, is 

the dispersion of a specific structure in the standard space and is used to form the 

localization measure. 

7.1 Segmentation Variability 

A segmentation of the surface is defined to be an assignment (manual or automatic) 

of a class label to each vertex. This is analogous to a segmentation of a 3D grid, 

where the labels were assigned to each voxel (Section 4.1). 

As is done in 3D, labels assigned to an input surface that has been spatially nor­

malized can be carried along with a spatial transformation to induce a segmentation 

on a mesh in the standard space. Each vertex of the standard space mesh is assigned 

a label by each input surface. The goal is to measure the consistency of the set of 

labels assigned to a given standard space vertex. 

169 
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Surface 1 

Template 

Figure 7.1: Induced labelling on standard mesh from spatially normalizing a popu­
lation. For each subject i, transformation 1i maps standard space vertex v to the 
cell (shaded) on surface i with label Lvi' The resulting set of labels, {LvI, ... , lvN}, 
constitutes a sampling of the random label Lv of standard space vertex v. The vertex 
entropy, H(Lv), is estimated from this sampling. 

Consider vertex v of the standard space mesh. This vertex maps to a certain point 

in subject i, which has labellvi as illustrated in Figure 7.1. A spatial normalization 

method that achieves its goal of mat ching homologous points of each input will result 

in identicallabels across the subjects (IvI = lv2 = ... ) for each vertex v. As in 3D 

(Section 4.1), the label of standard vertex v is considered as a random variable Lv 

for which the entropy is computed as 

(7.1) 

where Pl is the probability that Lv is assigned labell. The sum is taken over the labels 

l for which Pl =1= O. The probabilities Pl are estimated as the frequencies observed 

after spatially normalizing a sample population as follows. Let NI be the number of 

subjects for which the vertex label is l, i.e. the size of the set {i : LVi = I}. Then the 

probability Pl is estimated as Pl = NzlN, where N is the total number of subjects. 

The entropy H(Lv) measures the amount of uncertainty in label Lv (in bits, when 

using base-2 logarithms), which is regarded as the anatomical variability at vertex 

v. The total of the entropy values is used as a measure of variability remaining after 
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Figure 7.2: Normalized Voronoï cell areas on the standard mesh of 40962 vertices. 
About 2/3 of the vertices have normalized area in the narrow range of 1.05-1.10. 

spatial normalization is applied. 

On the 3D grids used in this thesis, each voxel is of equal size, so the total entropy 

used as a performance measure gives equal weight to the entropy of each voxel. On 

the 3D grid, each voxel is associated with a vertex located at the voxel centre. The 

voxel (except for boundary voxels) is actually the Voronoï ceIl of the vertex. The 

voxel label can thus be considered as the label for the Voronoï ceU of the vertex, a 

concept that transfers directly to 2D. In contrast to the situation in 3D, the ceIls of 

the 2D mesh are not aIl of equal size. The largest ceIl has area about 1.36 times the 

area ofthe smallest, though most cell areas faU in a small band of areas about 5-10% 

larger than the minimal triangle area as the histogram of Figure 7.2 demonstrates. 

To account for the variable ceil size, the contribution of each cell is weighted 

according to the relative ceU area with the smallest cells assigned unit weight. The 

total entropy in 2D is defined as 

(7.2) 

where W v is the area of ceIl v divided by the area of a smallest ceil. The quantity H, 

termed the total entropy, is used as a measure of variability remaining after spatial 
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Table 7.1: Major Parameters of surface registration algorithm. 

1 Symbol 1 Description 

'rs Search Radius 
'rn Neighbourhood Radius 
a Penalty Ratio 
w Smoothing Weight. 

normalization is applied. 

7.1.1 Application: Evaluating Aigorithm Design 

The inner loop of the surface registration, Aigorithm 5, has four parameters to select, 

summarized in Table 7.1. An optimal value for each of these parameters is chosen 

using total entropy of a segmentation, as was done for ANIMAL in Section 4.1.1. 

The same template and ten test subjects that are used for the 3D work are used 

again to probe the choice of data term and to locate optimal parameter values. 

In order to generate the segmentation of each test subject's surface, an automated 

vertex classification is required analogous to the tissue classification of voxels used 

in 3D. The cortical surface mesh is presumed to lie entirely on the boundary of two 

tissue types, specifically white matter and gray matter for the experiments presented 

here. Thus classification into tissue types is not an option. Instead, each vertex is 

classified as either gyral (lying on the gyral crown) or non-gyral. The classification 

is achieved by simply thresholding the crown distance transform values at distance 

10, a value empirically chosen. Figure 7.3 shows a typical surface segmentation. 

Recall from Section 6.2.2 on page 145 that the crown distance transform is designed 

to remove from the transformation seed set, the points on the surface that lie on 

the cap through the brain stem. Thus no such points are labelled as gyral by the 

segmentation. Indeed, Figure 7.3 shows that there are no vertices labelled as gyral 

anywhere near this cap. This means that the vertices associated with this part of the 

surface will generate a consistent set of sample labels resulting in a vertex entropy, 

H(Lv), of zero. The total entropy is therefore not sensitive to the mapping on the 

unphysical parts of the surface. 
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Top Bottom 

Right Left 

Figure 7.3: Views of a typical gyral surface segmentation, with gyral points shown 
in black. Note in the bottom view that the unphysical cap through the brain stem 
is aH the same label (non-gyral). These vertices will generally contribute zero to the 
total entropy, since they tend to map to non-gyral vertices on every input. 
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Figure 7.4: Residual anatomical variability as measured by total entropy, H, on 
a sample of 10 individuals after surface registration, along with the initial (unre­
gistered) value for comparison. The control mesh of each level is the quadrisection 
of the previous level; level1 is the coarsest control mesh. Note the reduction of total 
entropy value with each mesh refinement level. 

Outer Loop 

The test data is normalized using sever al choices for the numerical parameters and 

the total entropy after each of the four iterations of the outer loop is computed. 

Figure 7.4 shows representative results using the crown distance transform data term 

with T s = 0.5, Tn = 2.8, w = 1, and a range of penalty ratio values, a. The plot 

demonstrates that alignment improves at each finer resolution of control mesh. 

Data Term 

Both the mean curvature and the crown distance transform presented in Chapter 6 

are possible data terms. A search over several parameter sets yields a parameter set 

(Ts = 0.5, Tn = 2.8, w = 1) that provides good performance, i.e. low total entropy, 

with each data term. Since the entropy is much lower when using the crown distance 

transform, as shown in Figure 7.5, an further experiments in this thesis use the crown 

distance transform. 
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Figure 7,5: Residual anatomical variability as measured by total entropy, H, on 
a sample of 10 individuals after surface registration. The plot compares the res­
ults using mean curvature as the feature value for the data term, and using crown 
distance transform as the feature value. The crown distance transform pro duces a 
normalization with much less variability. 
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Penalty Ratio 0.001 Penalty Ratio 0.05 

Figure 7.6: Control mesh vertices shown in their displaced positions. The result 
shown on the left, using a very low penalty ratio parameter, allows more folding of 
the mesh. 

Regularization 

The trade-off between the data match and the amount of displacement allowed during 

one step of the inner loop is controlled by the penalty ratio, a. This trade-off occurs 

in Line 1 of Algorithm 5 which minimizes the following expression for each control 

mesh vertex v, 

<j;V(U(v))+ a~P(IIU(v) - T(v)II)), 

where <j;v is the data term and 'ljJ is the penalty term. Figure 7.5 shows that a = 0.05 

is optimal for the crown distance transform data feature. 

Setting the value of a to zero eliminates the regularization and so, as with 3D 

(Figure 4.6), the triangulation warping is expected to be less smooth. This is illus­

trated in Figure 7.6, where the mesh warped using the lower penalty ratio shows 

larger regions where the mesh has folded (i.e. the transformation is noninjective) 

and a larger variation in size of the warped triangles, both signs of a less smooth 

warping. 

Smoothing 

The smoothing step of Algorithm 5 sets the location of vertex v to a weighted average 

of the location obtained by the data matching step, U(v), and the centroid C(v) 
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Figure 7.7: Residual anatomical variability as measured by total entropy, H, on 
a sample of 10 individuals after surface registration. Smoothing sets the position 
of control mesh vertex v to a weighted sum of the position U(v) obtained by the 
matching step and the centroid computed from the neighbours of v. With large 
smoothing weight values, the sum asymptotically becomes equal to the centroid 
value. A weight value near 1 is best. 

computed from the neighbours of U(v). The smoothed transformation is given by 

U(v) +wC(v) 
IIU(v) + wC(v)lI' 

where w is the smoothing weight value. Figure 7.7 plots the entropy as a function of 

smoothing weight, showing weights near w = 1 provide the best performance. 

Note that large values for w will asymptotically set the smoothed mesh equal to 

the centroid value, C ( v ) / Il C ( v) Il, and the performance does indeed level off in Figure 

7.7. For low values of smoothing weight, the plot shows a sharp increase in entropy. 

This happens because the lack of smoothing allows more folding of the mesh, as 

illustrated in Figure 7.8, which pro duces poor performance. 



CHAPTER 7. QUANTIFYING SPATIAL VARIABILITY 178 

Smoothing weight 0.01 Smoothing weight 1 

Figure 7.8: Control mesh vertices shown in their displaced positions. The result 
shown on the 1eft, using a very low smoothing weight, allows more folding of the 
mesh. 

Miscellaneous Parameters 

The other two major parameters for the algorithm are the search radius and the 

neighbourhood radius. Figure 7.9 illustrates the optimal values T s = 0.5 and T n = 2.8, 

respectively. 

Recall that the search radius is measured in units of the distance to the nearest 

control mesh vertex neighbour on the target sphere (see Equation 6.8). Using a 

small search radius prevents the optimization from finding a good data match and 

results in a warping that is near the initial transformation and thus pro duces high 

total entropy. The poor performance produced by a large search radius, on the 

other hand, is because triangles are too easily able to reverse orientation. The value 

T s = 0.5 restricts the search radius to half the distance to the nearest control mesh 

vertex neighbour. 

The neighbourhood radius is measured in units of the distance to the nearest 

control mesh vertex neighbour on the source sphere (see Equation 6.7). As discussed 

in Section 6.2.2, the feature value (i.e. the crown distance transform) is a function 

defined on the sphere using sphere triangulation interpolation, i.e. it is interpolated 

from values on a given data mesh. A small radius limits the number of data mesh 

vertices that participate in computing the correlation coefficient data term, thus 

limiting the information available for matching. In addition, there is less overlap 

between the neighbourhood caps for adjacent control mesh vertices with small Tn , so 
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Figure 7.9: Residual anatomical variability as measured by total entropy, H, on a 
sample of 10 individuals after surface registration. The plot on the 1eft uses optimal 
neighbourhood radius of 2.8, while the plot on the right uses optimal search radius 
of 0.5; both plots use penalty ratio = 0.05 and smoothing weight = 1. 

the transformation obtained after the matching step may be less smooth. At large 

values of r n the neighbourhood can sample points from more than one sulcus or gyrus, 

rendering the matching step less reliable. In addition, the data term may be under­

sampled as it is evaluated on a fixed number of sample points in the neighbourhood, 

so the density of the sampling decreases with increasing r n. The behaviour for r n 

near 3 is likely due to an aliasing effect caused by the changing sample density. 

At each iteration of the outer loop, the surface registration runs the inner loop 

for a fixed number of iterations. For the experiments in this thesis, the registration 

runs the inner loop for 20 iterations. Figure 7.10 indicates that the optimization has 

adequately converged for each level before the next level of the outer loop begins. 

Injectivity 

In order for the sphere triangulation warping be injective, it is necessary that both 

the cyclic ordering of neighbours around each vertex as weIl as the orientation of each 

triangle be preserved, as stated by Theorem 5.5.5. The surface registration algorithm 

(Section 6.7) used for experiments in this thesis does not ensure an injective mapping. 

To gauge the extent of noninjectivity encountered in practice, the area of the target 

sphere covered by triangles that have their orientation reversed is computed. 

The template is registered to 151 other ICBM subjects using parameters rs = 0.5, 

rn = 2.8, a = 0.05, and w = 1. The largest area observed is 0.13, which is about 

1% of the 41f surface area of the unit sphere (41f ~ 12.57). As shown in Figure 

7.11, most of the subjects were about 2/3 of this number. Figure 7.12 illustrates the 

distribution of reversed orientation triangles. While such triangles appear in many 
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Figure 7,10: Mean magnitude of change in vertex position, plotted for each iteration 
of the inner loop. The registration is done using parameters T s = 0.5, Tn = 2.8, 
a = 0.05, and w = 1. The increases at iterations 20, 40, and 60 result from starting 
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Figure 7.11: Histogram showing total area of triangles with reversed orientation on 
target sphere as a fraction of the sphere area, computed on a dataset of 151 subjects. 
The majority of the surfaces had less than 0.7% of the sphere area covered by such 
triangles, indicating that noninjectivity is at a tolerable level. 
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regions of the template, the single region of largest area is actually the unphysical 

cap through brain stem shown in the bottom view which is not normally considered 

in data analysis. Moreover, as noted above, the total region of noninjective mapping 

for any one individu al is on the order of a few percent and is thus considered small 

enough to neglect. 

Transferability 

The experiments presented so far aIl use the same template and the same set of 10 

test subjects. The variability as a function of penalty ratio is computed for a second 

set of 10 subjects. The results in Figure 7.13 show the same qualitative behaviour 

and the same optimal value for the penalty ratio. The optimal parameters values 

rs = 0.5, rn = 2.8, a = 0.05, and w = 1 are used for aIl experimental work. 

Summary of Experiments 

Figure 7.14 provides a visual illustration of the reduced anatomical variability in 

the full set of 151 individuals. The variability is reduced in aIl areas of the cortex, 

indicating that the gyral patterns are better aligned. The variability that remains is 

concentrated on the edges of the gyral regions. As was the case in 3D, sorne of this 

variability is the result of imperfections in the vertex classification while sorne is due 

to misalignment. At a boundary, even a misalignment on the order of the spacing 

between control mesh vertices is enough to change the labelling from an input surface 

and hence the entropy value. 

Figure 7.15 shows intensity-averaged images which become sharper with tuning, a 

qualitative display of the improvement in aligning fine detail. Note also that the ini­

tial average images show a lot of structure: the interhemispheric and sylvian fissures 

are obvious, and even the central sulcus is visible. This supports the observation 

that there is a "loose consistency" [MKAEOO] for the location of a given vertex of 

ASP's deformable mesh across a population. Thus it is reasonable to use the identity 

as the initial mapping of the auxiliary sphere, as discussed in Section 6.7.1. 

7.1.2 Frontal Sulci 

The structure labels described in Section 4.1.2 are also used to examine the variability 

of warping in 2D, after transferring the labels to the surface. The labels, delineated 

in 3D, are assigned to the voxels of the CSF spaces of the sulci. The surface used 

for registration is the inner cortical surface, which does not intersect CSF voxels, 
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Figure 7.12: Map showing frequency of reverse orientation triangles, a measure of 
noninjectivity, computed from spatially normalizing a set of 151 surfaces to the 
template. The template gyral crown distance transform is given for reference. Notice 
that a large number of the reversed triangles appear on the unphysical brain stem 
cap shown on the bottom view, and thus can be ignored. 
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Figure 7.13: A second set of 10 subjects show similar behaviour with respect to 
penalty ratio. Note that the optimal value of 0.05 is the same as in Figure 7.5. 

as illustrated in Figure 7.16. Thus, the labels cannot be transferred to the surface 

by sim ply sampling the voxel label information at the surface vertex location. The 

surface extraction algorithm used is ASP [MKAEOO], which extracts both the inner 

and outer cortical surfaces. Moreover, the inner surface (white matter / gray matter 

interface) is obtained first, and then used as the initial surface for the deformation 

pro cess that extracts the outer surface. Thus, there is a correspondence between 

vertices of the inner and outer surfaces, which is employed to transfer the labels 

from 3D to 2D as follows. Let v be a vertex on the inner surface for which a label is 

sought and w be the corresponding vertex on the outer surface. Draw a line segment 

from v to w and extend it by 50% past w so that it includes CSF spaces. If any 

voxels intersected by that segment have a sulcus label, assign that label to v. If not, 

repeat the same procedure for v and each neighbour of w. The idea is to sample 

a small cone with apex at v that points toward the CSF space. The procedure is 

illustrated in Figure 7.16, with the resulting labelling of the central sulcus vertices 

shown in the first row of Figure 7.17. 

The coverage function, Px, for a random set X C §2 is defined as px(x) = P(x E 

X), analogous to the situation in 3D. The coverage function resulting from spatial 

normalization of 39 subjects is shown for the central sulcus in Figure 7.17. 
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Figure 7.14: Entropy maps before and after surface registration of 151 subjects. 
Black indicates a vertex with high entropy (high variability). Notice that the vari­
ability is reduced in aH areas of the cortex after surface registration. 
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Figure 7.15: Average of crown distance transform feature data of 151 subjects shown 
before and after surface registration with the template data shown for comparison. 
Note the appearance of sm aller sulci after registration, and the agreement with the 
template data pattern. 
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Figure 7.16: Method used to map labels from 3D voxels (shaded) onto the inner cor­
tical surface mesh. Each voxel that intersects a line segment (dotted) with endpoint 
v and passing through w is checked. If such a voxel has a label, it is assigned to v. 
Otherwise, the procedure is repeated with v and each neighbour of w. The pairing 
of v and w is obtained during the surface extraction pro cess using ASP. 

7.2 Structure Variability 

As discussed in Chapter 4, while the total entropy is a useful variability me as ure for 

investigating design choices and parameter values of the algorithm, it is not the best 

choice for measuring variability of a structure. In particular, as discussed at the end 

of Section 4.1.2 on page 83, the entropy of a set of sulcus labels does not capture the 

spatial spread of the distribution of resampled sulci. The total entropy can decrease 

if the input sulci are well matched to, say, two folds on the template, regardless of 

how widely separated in space are the two folds, as illustrated in Figure 4.15. The 

analogous problem can occur with surface matching. 

Thus, a measure of dispersion is computed for surface structures, analogous to 

the measure in 3D. 

1.2.1 Distance Measure 

The definitions and notation of Section 4.2.1 are taken over into the unit sphere 

auxiliary space, §2. Let d(x, y) denote the distance between x, y E §2. A closed 
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Figure 7.17: Central sulcus mapped to the surface. The top row shows the template 
central sulcus label set. Holes and cracks are due to imperfections in the label transfer 
from 3D. The second row shows the coverage function computed with 39 subjects 
before any surface normalization. The third row shows the coverage function after 
surface normalization. Notice that after registration, the region of high probability 
is more sharply defined. This indicates that surface normalization reduces dispersion 
of the central sulcus. 
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point set Ac §2 has a distance transforrn, denoted dA, defined as 

dA(x) = inf d(x, a), 
aEA 

cornputed as discussed in Section 6.2.2 on page 148. The notation Ar denotes the 

point set located at distance :S r frorn A, i.e. 

(7.3) 

A distance between two point sets is cornputed using the sarne 90%-trirnrned 

Hausdorff rneasure as described in Section 4.2.1. 

7.2.2 Dispersion about the Template 

The ternplate is one of the 40 subjects for which the frontal sulcus labelling is available 

(the ternplate is in fact the sarne as used in Chapter 4), so the distance between the 

ternplate structure and each input structure can be rneasured. For the left central 

sulcus, the coverage function rnap of Figure 7.17 suggests that sorne of the inputs 

rnight end up further away frorn the ternplate after norrnalization 

The dispersion about the ternplate sulci is rneasured before and after surface 

registration, analogous to rneasuring the dispersion in 3D after 9-pararneter affine 

norrnalization and after nonaffine norrnalization using ANIMAL. As is the case in 

3D, the distance to the ternplate for sorne individuals decreases while others increase. 

As an exarnple, consider the distribution of distance rneasures for the central sulcus, 

shown in Figure 7.18. This figure shows that after spatial norrnalization, while 

there are sorne exceptions, the central sulcus of rnost subjects becornes doser to 

the ternplate central sulcus. The effect is rnost drarnatic for the right hernisphere. 

Compare the left hernisphere histograrns to the analogous result in 3D, shown in 

Figure 4.19 on page 90. The distribution in 3D is rnuch more evenly split into two 

dusters than in 2D, rneaning that more individuals are being rnatched to the wrong 

fold when the norrnalization is carried out in 3D. 

The dispersion values cornputed for each of the four sul ci are shown in Figure 

7.19, both before and after surface norrnalization. The nonpararnetric paired-sarnple 

sign test [Fre92] shows that four of the eight structures show a significant decrease 

in rnedian dispersion after spatial norrnalization, dernonstrating that the surface 

registration succeeds in its task of aligning the inputs to the ternplate. 
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Figure 7.18: Distributions of the 90%-trimmed Hausdorff distance to the template 
central sulcus for 39 subjects. The distances in the top row are measured before 
surface normalization while the bottom row shows the distances after surface nor­
malization. Note that after normalization, while the distributions for both the 1eft 
and the right sulcus are mainly shifted towards smaller values, some of the individu al 
distances have increased. 
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Figure 7.19: For each sulcus, the dispersion about the template sulcus is displayed 
before normalization (left bar of each pair) and after normalization (right bar of 
each pair). The central mark indicates the dispersion, which is the me di an of the 
set of distances from the template, while the error bars display the 25% and 75% 
quantile values, computed with 39 subjects. The sulci for which the medians differ 
significantly (sign test at p :S 0.05) are marked by an asterisk. 
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Automated 2D Sulcal Labels 

Another demonstration of successful spatial normalization of surfaces is shown using 

a second data set. Cachia et al. [CMR+03] describe a method to automatically 

identify vertices of sul cal fundi. The sulci are automatically generated from the 3D 

MR image as a set of voxels obtained by skeletonization of gray and CSF voxels of 

the sulcus [RMPO+02], the result of which is a sheet of voxels on or near the medial 

axis of the sulcus qualitatively simîlar to the manual labelling shown in Figure 4.13. 

The lower edge of the sheet is then projected down on to surface along the fundus 

of the sulcus. The result is a set of connected curves on the cortical surface, shown 

in the top row of Figure 7.20. The central and superior temporal sulcal fundi are 

obtained for 150 ICBM brains. The second and third rows of the figure display the 

coverage function of the two fundi before and after spatial normalization. Spatial 

normalization pro duces a much more spatially concentrated distribution that has 

higher probability values. The dispersion values computed for each of the sulci are 

shown in Figure 7.21, both before and after surface normalization. Three of the four 

sulci show significant reduction in dispersion, indicating that the improved alignment 

visible in Figure 7.20 is statistically significant. 

7.2.3 Mean of a Random Closed Set 

The distance mean for a surface structure is computed just as is done in 3D (Section 

4.2.3). As an example, the distance mean is computed for the central sulcus after 

spatial normalization of the 39 subjects used to generate Figure 7.17 is shown in 

Figure 7.22. This mean structure is quite similar to an individual structure, e.g. the 

template structure in the top row of Figure 7.17. 

7.2.4 Dispersion about the Distance Mean 

The dispersion values about the distance mean are shown in Figure 7.23 for the 8 

structures before and after surface registration. The dispersion value decreases for 6 

of 8 structures after using surface normalization. 

7.3 Localization Measure of Spatial Normalization 

The localization measure described in Section 4.3 is used also for 2D spatial normal­

ization. Let M be the distance mean and (J" be the dispersion about the distance 
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Figure 7.20: Automatically generated traces of the central and superior temporal 
sulcal fundi. The top row shows the traces generated for the template surface. 
The second row shows the coverage function computed with 149 subjects before 
any surface normalization. The third row shows the coverage function after surface 
normalization. Note that the distribution is much more spatially concentrated and 
the probabilities are much greater. 
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Figure 7.21: For each sulcus, the dispersion about the template sulcus is displayed 
before normalization (left bar of each pair) and after normalization (right bar of 
each pair). The central mark indicates the dispersion, which is the median of the 
set of distances from the template, while the error bars display the 25% and 75% 
quantile values, computed with 149 subjects. The sulci for which the medians differ 
significantly (sign test at p ::; 0.05) are marked by an asterisk. 
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Figure 7.22: Distance mean of the central sulcus after spatial normalization of 39 
individu al surfaces. 
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Figure 7.23: For each sulcus, the dispersion about the distance mean is displayed 
before normalization (left bar of each pair) and after normalization (right bar of each 
pair). The central mark indicates the dispersion, which is the median of the set of 
distances from the distance mean, while the error bars display the 25% and 75% 
quantile values, computed with 39 subjects. The sulci for which the medians differ 
significantly (sign test at p ::S 0.05) are marked by an asterisk. 
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Figure 7.24: For each sulcus, the input size is displayed before normalization (left 
bar of each pair) and after normalization (right bar of each pair). The central mark 
indicates the median while the error bars display the 25% and 75% quantile values, 
computed with 39 subjects. 

mean. The localization measure is defined to be 

where Mer is the dilation of the mean, defined by Equation 7.3, and lAI denotes the 

size (area) of set A. 

Localization, as discussed in Section 4.3, is sensitive to both the size of the mean 

structure and the dispersion. The size of the distance mean is given by the median 

size of the input structures (see the discussion around Equation 4.12 on page 95). In 

3D, it is found (see Figure 4.26) that this size can be changed by spatial normaliza­

tion. The equivalent data computed in 2D, shown in Figure 7.24, does not exhibit 

large changes in size after spatial normalization. The localization measures shown in 

Figure 7.25 therefore follow the same pattern of improvement (for 6 of 8 structures) 

as the dispersion about the distance me an shown in Figure 7.23. 
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Figure 7.25: For each sulcus, the localization value is displayed before normalization 
(left bar of each pair) and after normalization (right bar of each pair). The central 
mark indicates the median while the error bars display the 25% and 75% quantile 
values, computed with 39 subjects. 
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7.4 Previous Work 

Fischl et al. [FSTD99] measure localization of a structure as the area of the union of 

aH input structures, in direct analogy to their measure of localization in 3D discussed 

in Section 4.3. As discussed in that section, their measure is not sensitive to disper­

sion. For example, if the union consists of two disjoint regions, their measure remains 

the same no matter how widely separated in space are the two regions. Figure 4.28 

is another manifestation of the same problem. 

Comparison of surface warping by Van Essen et al. [VEDJM98, VELD+Ol] is 

limited to displaying contours of the deformed template on the auxiliary surface of 

one subject, 

7.5 Summary 

The goals of this chapter are twofold. First, to reformulate the concepts and measures 

of variability in ]R.3 presented in Chapter 4 for use on the sphere §2. Second, to 

demonstrate that the surface registration algorithm proposed in Section 6.7 does 

succeed in reducing spatial variability. 

The concepts of segmentation and segmentation entropy transfer in a straightfor­

ward manner from 3D to the sphere. The main change is to weight the total entropy 

by cell area in Equation 7.2, to account for the variation in cell size. As in 3D, the 

segmentation entropy is demonstrably useful to probe design choices of the surface 

registration algorithm. In particular, a better performance is obtained using crown 

distance transform feature data rather than mean curvature, as shown in Figure 7.5. 

In addition, total entropy is able to demonstrate optimal values for the algorithm 

parameters: penalty ratio a = 0.05 (Figure 7.5), smoothing weight w = 1 (Figure 

7.7), search radius rs = 0.5 (Figure 7.9 left) , and neighbourhood radius rn = 2.8 

(Figure 7,9 right). With these parameters, the transformation is injective except for 

a few percent of the target sphere area as shown in Figure 7.11. This small amount 

of noninjectivity is tolerated for this work. 

With the aid of the second outer surface extracted with ASP, the label data used 

in 3D is transferred to the surface to provide similar structure labels for both 2D 

and 3D normalization. The concepts of distance mean, trimmed Hausdorff distance, 

and dispersion are straightforwardly reformulated for §2. 

The surface registration algorithm proposed in Section 6.7 is shown to be effective 

in aligning anatomical structures, as evidenced by the following. The total entropy is 
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reduced after surface normalization and the entropy maps of Figure 7.14 show that 

the reduction occurs aU across the sphere. The sharper images of average feature data 

shawn in Figure 7.15 is further qualitative evidence of the global feature alignment. 

The spatial distribution of automatically-extracted sulcal fundi shown in Figure 7.20 

is more compact after surface normalization. Finally, the localization measures are 

lower for 6 of 8 frontal lobe sulci after normalization, as shown in Figure 7.25. 
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Chapter 8 

Template Selection 

The experiments presented so far in this thesis have an used an arbitrarily-chosen 

individual image as the template. For the purpose of spatial normalization, the 

best template to choose is one that best localizes the structures of interest in the 

population under study. This chapter applies the localization measure of Chapter 

4 to quantify the effect of template choice for 3D spatial normalization, enabling a 

principled template selection. 

8.1 Template Generation Strategies 

The registration of the template to an individual uses local optimization starting 

from the transformation obtained by an initial 9-parameter affine registration. This 

initial transformation is obtained independently of the template subsequently used 

for nonaffine spatial normalization. A particular structure of the template will vary 

in location depending on the template chosen, and thus will vary in the ease with 

which it can be matched to the corresponding structure in the population images. 

More successful mat ching is expected if the template's structure lies near the spatial 

centre of the population distribution than if it lies on an extreme of the distribution. 

If an individual from the population is selected to be the template, it should be 

checked that it is representative of the population. One method for such a check 

is proposed below. Alternatively, a synthetic template that better represents the 

population or average anatomy can be used. A synthetic template can be generated, 

for example, by averaging the intensity of a number of inputs, by applying a spatial 

transformation to an image, or both. 

201 
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8.1.1 Intensity Average 

Intensity-normalized images from a number of different individuals, affinelyeo-registered, 

ean be simply averaged voxel-by-voxel to form an intensity-average template [CZPE01]. 

Due to the normal anatomieal variability in the images being averaged, fine-seale fea­

tures with variable position tend to be averaged away, and only the large-seale, con­

sistently located features remain. The 1eft eolumn of 8.1 shows the iebm152 image, 

an average of 152 brains from the ICBM database. Due to loss of fine detail, sueh an 

average image is normally considered a suit able template only for affine registration. 

An intensity average ean also be formed using different images of the same in di­

vidual, the benefit of whieh is a greatly enhanced signal-to-noise ratio. An average 

of 27 scans of one individual, published by Holmes et al. [HHC+98], is distrib­

uted widely to laboratories around the world. Despite being a single individual, the 

colin27 image (middle column of Figure 8.1) might be used as a template due to 

the fine detail visible on it. The 1996 release of the widely used Statistical Para­

meter Mapping (SPM) software [SPM03] provides the colin27 image as the standard 

template for nonaffine spatial normalization using sine and eosine global basis func­

tions (see Section 2.4.1). Starting in the 1999 release, the iebm152 image is used as 

the standard SPM template. The surface registration software from the Van Essen 

group [VEDD+01] uses the surface of colin27 as the standard template for surface 

registration [VE02]. 

8.1.2 Representative lndividual 

The second strategy examined here is to use an individu al brain as the template, but 

choose an individual that is closest to "average" in sorne sense [RGW+94]. 

One notion of average uses the spatial transformation function itself to measure 

distance between images [GM98]. Specifically, if T is the transformation that re­

gisters image l to image J, then sorne measure of the distance between T and the 

identity transformation can be interpreted as the amount of effort required to warp 

l to J, and also be interpreted as a distance between images land J. The distance 

measure on T can be as simple as the sum of squared displacements on the set of 

control mesh vertices V, LVEV Il.6.(v)112, or it can involve derivatives of .6. [GM98]. 

An implementation of this distance measure, e.g. [KLT+01], requires a number 

of nonaffine registrations be carried out between images in the population in or der 

to measure these distances and estimate the best template. In principle, with a 

sample of N images, {11, ... ,IN}, aU N 2 transformations {Tkl : k, lEI, .. . ,N}, 
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icbm152 colin27 colin27 Ise 

Figure 8.1: Possible templates images. The icbm152 image is the intensity average of 
152 images co-registered using a 9-parameter transformation, capturing the average 
shape of the brain envelope. The colin27 image is a single individual with its own 
idiosyncratic shape. One example of the shape difference from the average is a slight 
bulge indicated by the arrow in the centre picture. The colin27 Ise image is a slightly 
warped version of colin27 that corrects the brain shape. In the axial view on the 
second row, for example, the bulge is slightly less prominent. The warping also shifts 
the position of sulci; the sulcus indicated by an arrow in the third row has shifted to 
the posterior and a second branch is now visible on this particular sUce. 
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where Tkl is the spatial transformation that matches image h to image fz, need 

to be evaluated. Computing N2 nonaffine registrations is an expensive proposition 

with even a moderate sample size, say N = 40. Kochunovet al. [KLT+Ol] suggest 

a reduction to just 2(N - 1) registrations, {Tlk : k = 1, ... , N} and {Tkl : k = 

1, ... , N}. The transformation nz is estimated as the concatenation of Tkl followed 

by TIl. This strategy relies on the registration method being able to successfully 

match ft to aIl N - 1 other images. Otherwise, the concatenation of Tkl and TIl is 

not a good estimate of Tkl . The template used in Chapter 4, for example, is not a 

good candidate for Il, as it was successfully matched to the left central sulcus of less 

than half the sample images (see Figures 4.14 and 4.19). The image selected to be 

the intermediary Il should therefore be carefully chosen to be easily matched to the 

others in the sample set. This renders the problem circular. 

The trimmed Hausdorff distance presented in Section 4.2.1 enables an estimation 

of proximity to a mean based on the affinely-registered image characteristics only, 

and is thus independent of the particular nonaffine registration algorithm chosen. 

For spatial normalization of the cortex, mat ching the gray matter is of primary 

importance so the distance is measured using gray matter voxels. The idea is that 

if the template gray matter is spatially close to the average gray matter, then the 

template should be easy to match to most of the images of the sample. 

For each of the 152 images in the ICBM data set, the gray matter voxels are 

identified using a tissue classifier [Ko196]. Each set of gray matter voxels is treated 

as a single structure and the Vorob'ev mean of the 152 structures is computed, as 

described in Section 4.2.3. Finally, the 90%-trimmed Hausdorff distance between 

each individual and the mean gray structure is computed. The distribution of these 

distances is shown in Figure 8.2. ICBM subject 00244 has the minimum distance to 

the Vorob'ev gray mean and is used as a template in the experiments of this chapter. 

8.1.3 Shape Correction 

Prior to nonaffine spatial normalization, individual images are initially registered 

using a low-dimensional warping. In the experiments presented in this thesis, for 

example, the images are first registered using a 9-parameter affine transformation 

to the MNI305 average target [ECM+93] , an intensity average of 305 images which 

is similar to the icbm152 in appearance. The initial transformation includes scaling 

along the coordinate axes intended to make an the brains similar to the average 

target in size. By using a slightly more flexible transformation, it is possible to 

improve the matching of the overall shape with the shape of the intensity average 
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Figure 8.2: Histogram of 90%-trimmed Hausdorff distances between Vorob'ev mean 
gray matter and the individuals of the ICBM data set. 

template. 

For this thesis, a mesh warping obtained using ANIMAL at the 8 mm grid res­

olution (see Section 3.7) is used for shape correction. The shape correction warp is 

obtained using the input images smoothed using a FWHM=8 mm Gaussian kernel, 

so the match is mainly determined by overall shape, rather than the details of sm aller 

sul ci as the latter get blurred away. The resulting warp is very smooth. 

The right column of Figure 8.1 shows slices from colin27/SC, the result of de­

forming the colin27 image to match the icbm152 average shape. In the axial view 

(second row) , there is a bulge (indicated by an arrow) compared to the shape of 

the icbm152 image. The bulge is slightly reduced by shape correction, shown in the 

third column. As a result of correcting overall shape, the locations of sulci do change 

as illustrated in the third row. It is hoped that this shi ft puts the sulci in a more 

average position, improving the quality of the spatial normalization when using this 

template. 
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8.1.4 Warp Average 

Another method proposed to generate a representative template starts with an ar­

bitrary individu al image, 10 , and then warps it into a "more average" configuration. 

In contrast to the shape correction method just described, this method uses a high­

dimensional warping. The warp is generated using a representative sample of the 

population, images {Il, ... ,IN}' Image 10 is registered to each of the others, produ­

cing a set of transformations {Ti}, where transformation Ti registers 10 to h Then 

the average transformation is computed, 

(8.1) 

--1 
and applied to 10 to generate the template image, IT(x) = 10(T (x)) [MBC+g7, 

KLT+Ol]. Other groups, e.g. [GMTOO, RFSOl] take the procedure one step further, 

by first forming the intensity average of the resampled input images, 

(8.2) 

and then applying T to the intensity average image rather than to 10, The template 

image in this case is given by IT(x) - I(T-
1
(x)). 

Figure 8.3 shows an example warp average template, both with and without 

intensity averaging. 

8.2 Experiments 

Each experiment consists of normalizing the same set of 40 ICBM subjects as used 

in Chapter 4 with a particular template, and computing the localization measure 

described in Section 4.3 for the four frontal suld described in Section 4.1.2. Only 

the template varies between experiments; aH other registration parameters (similar­

ity=0.3, weight=l, stiffness=l) are identical for each experiment. 

The templates examined include two individual templates. One is the ICBM 

subject 00244, identified as nearest to the mean gray matter in Section 8.1.2. The 

other is the individual template used for the initial experiments in Chapter 4, which 

happens to be one of the scans that make up the colin27 average image. This 

individual template is denoted colin1. 
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00244 00244/WA 00244 /WA /IA 

Figure 8.3: Possible template images. The ICBM subject 00244 is a single sub­
ject image. Template 00244/WA is a warp average applied to 00244. Template 
00244/WA/IA is the same warp average applied to an intensity average image. See 
text for details. The arrows in the first row are at the same spatial position, illustrat­
ing a shift of the brain downwards at the top of the head. Similarly, the arrows in 
the third row are at the same position and demonstrate the shift of a sulcus towards 
the front of the head. 
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Table 8.1: Summary of the templates evaluated. 

1: Template 1 Base Image 1 Processing 

Tl 00244 -
T2 00244 Shape Correction 
T3 00244 Warp Average 
T4 00244 Warp Average & Intensity Average 
T5 colin 1 -
T6 colin1 Warp Average 
T7 colin27 -
T8 colin27 Shape Correction 

The shape correction strategy described in Section 8.1.3 is applied to subject 

00244, deforming it to match the icbm152 average shape. The warp average strategy 

described in Section 8.1.4 is used with subject 00244 to generate two more templates. 

A second sample of 40 ICBM images, different from the 40 used to measure variability, 

is used to generate the average warp from 00244 using Equation 8.1. This warp is 

applied to 00244 itself to generate one template, and the warp is applied to the 

intensity average of the 40 images (Equation 8.2) to generate the second template. 

Figure 8.3 shows example slices of these two templates. 

The warp average strategy is also applied to colin1, using the same set of 40 

subjects to generate the average warp as used to measure localization. The intensity 

average image colin27 is also tested, to measure the effect of the improved signal to 

noise ratio vis-a-vis colin1. The final experiment uses the shape correction strategy 

of Section 8.1.3 applied to colin27. 

A summary of the templates appears in Table 8.1. 

8.2.1 Results 

The localization measures for each of the four sulci, measured after nonaffine spatial 

normalization using each of the eight templates are plotted in Figures 8.4 to 8.7. The 

localization measures using just the 9-parameter affine normalization are also given, 

for comparison. 

The large variability for the 1eft central sulcus when using colinl (Template T5) 

is shown in Chapter 4 (e.g. Figure 4.14) to be due to the population being matched 

to two different folds on the template, as illustrated in Figure 8.8. The same phe­

nomenon is observed for templates T6 (warp average of colin1) and T7 (intensity 
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Figure 8.4: Central sulcus localization. 
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Figure 8.5: Superior precentral sulcus localization. 
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Figure 8.6: Inferior precentral sulcus localization. 
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Figure S.S: Coverage function for the central sulcus, after non affine normalization 
with three templates. The tendency of matching to two different foids is most obvious 
with template T5; it is reduced with TS and is almost nonexistent with template Tl. 

average, colin27). The effect is much reduced using template TS (shape correction 

of colin27), though not completely eliminated. 

Each of the four strategies discussed in Section S.l is considered in turn. The 

comparisons are based on the localization measures of the S structures shown in 

Figures 8.4 to S. 7, where a lower score indicates a better localization. 

Intensity Average 

This strategy does not change at aU the location of sulci in the image. Nevertheless, 

the expected improvement in signal-to-noise ratio [HHC+9S] does have an effect on 

the registration. 

Consider the localization values measured using the colin27 template (T7) com-
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pared ta using template colin1 (T5). These templates differ only in that colin27 is an 

intensity average. The colin27 shows better localization for 5 of 8 structures, while 

colinl i8 better for just 2 of the structures and 1 structure is equally-welliocalized 

with either template. This shows that the improved signal of colin27 does aid the 

registration. On the other hand, the sulcus pattern of colin1 and colin27 is the same 

so the 1eft central sulcus continues to be matched to two folds of template colin27. 

The effect of intensity averaging is also se en in the template pair T3 and T4. 

Template T3 is the warp average applied to image 00244, while template T4 is 

the same warp average applied to an intensity average image. In contrast to the 

colin1/colin27 pair considered above, this intensity average uses scans of different 

individuals. However, each individual has first been warped to image 00244. In 

principle, if each individual is exactly homo logo us to 00244 down to the smallest 

furrow and the warping was perfect, then each warped image would look exactly 

like 00244. In that case, the intensity averaging wouid serve the same purposes 

as in the case of colin27, namely to improve the signal to noise ratio [HHC+98]. 

However, neither is each individual exactly homo logo us to 00244 nor is the warping 

perfecto Nevertheless, the large folds do align very well and the average image has 

much less noise; compare the white matter tracts in the second and third columns 

of Figure 8.3. In addition to improving the signal-to-noise ratio, it is likely that the 

averaging also has the effect of blurring away sorne of the smaller, more variable 

foids. The localization values of the average (template T4) are better than the 

warped individual (template T3) for 6 of 8 structures while the other two are about 

equally well localized. 

The results from both pairs of templates indicate that intensity averaging aids 

the registration. 

Representative Individual 

The effect of choosing an individual image for use as a template is compared using 

the arbitrarily chosen colin1 image (template T5) and ICBM subject 00244 (template 

Tl). The latter is nearest to the mean gray matter as discussed in Section 8.1.2, 

with distance 1.6 mm from the mean gray matter. For comparison the colin1 scan 

is at distance 3.9 mm, which is on the high side of the distribution (Figure 8.2). 

The localization values are better using image 00244 for 6 of 8 structures, so the 

00244 image is certainly a better template than colinl. Figure 8.8 illustrates the 

improved mat ching of the central sulcus. In particular almost aH of the input images 

succeed in matching to the correct fold. 
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Shape Correction 

The shape correction strategy is examined twice, once using image 00244 (templates 

Tl and T2), and once with image colin27 (templates T7 and T8). 

In the results for image 00244 (templates Tl and T2), template T2 produces 

better localization for 5 of 8 structures. The results for colin27, however, are improved 

by shape correction only for 3 structures with one more being about the same whether 

using shape correction or not. The left central sulcus is more likely to be matched 

to the ternplate sulcus, but sorne inputs are still matched to the wrong fold of the 

template. 

Warp Average 

This strategy is examined twice, once using image 0244 (templates Tl and T3) and 

once using image colinl (templates T5 and T6). In each case, the warp average 

temp1ate pro duces the better resu1t for 5 of 8 structures. This suggests that the 

warp average is generally better as a template than the underlying image. 

However, using the warp averaged colinl template (T6) does not localize the 1eft 

central sulcus very weIl. The bimodal distribution shown in the first column of Figure 

8.8 still persists when template T6 is used. The reason for this is as follows. The 

transformations used to compute the average warp are computed from the domain 

of colinl to each of the subjects. Consider the transformation T(x) for locations x 

in the left central sulcus of colinl. The temp1ate sulcus is 10cated on one edge of the 

population distribution of left central sulci. Only those subjects that near to that 

edge of the distribution will correctly match to the template sulcus. The subjects on 

the other side of the distribution will not, so the warp average does not generate a 

displacement towards the centre of the distribution as one would hope. For the warp 

average to be truly representative of the population, the initial image must itself be 

able to match the population sulci, e.g. as 00244 does. 

Overall Best Template 

Normalization using template T4 shows the best overall1ocalization for 4 of 8 struc­

tures. 
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8.3 Summary 

Four strategies are presented for modifying an image with the goal of producing a 

better image for use as a template. 

The first strategy is to form an average of the intensity of several inputs. This 

doesn't change the location of any structures in the image, but it can improve the 

signal-to-noise ratio of an image [HHC+98] which may aid in registration. Template 

T7 is an average of 27 different images of the same individual and i8 a better tem­

plate than T5, a single image of that individual. Intensity averaging is also used 

in conjunction with warp averaging. In this context, the average not only improves 

the signal-to-noise ratio, but may also remove small, variable folds thus simplifying 

the template image. Template T4 is the average of 40 different individu aIs that are 

nonaffinely spatially normalized and then transformed by a warp average, while tem­

plate T3 is an individual with the equivalent anatomy also transformed by a warp 

average, The intensity-averaged T4 performs better than T3. Thus, the results from 

both pairs of templates indicate that intensity averaging aids the registrations. 

The second strategy is to identify a representative individual image. This is 

implemented for these experiments by measuring the distance from a mean gray 

matter structure to the gray matter of 152 brains from the ICBM data set. The 

distribution of these distances is shown in Figure 8.2. The individu al of that set 

closest to the mean gray matter, template Tl, is a better ternplate than an arbitrarily 

chosen individual (template T5). 

The third strategy applies a medium-dimensional warping to an image in order 

to match the overall shape of the cortex sornewhat better than by a low-dimensional 

affine matching. This strategy is of uncertain value, showing improvement in localiz­

ation with image 00244 (templates Tl and T2) but not with image colin27 (templates 

T7 and T8). 

The fourth strategy registers an initial template to the population, computes the 

average of these warps and applies that warp to the initial template. This strategy 

successfully improves the performance with image 00244 (ternplates Tl and T3) and 

also with image colinl (templates T5 and T6). 

Three of the four strategies show clear improvement in localization: intensity 

averaging, warp averaging, and choosing a representative individual. Indeed, the 

best overall performance is obtained with template T4, which was generated by 

applying aU three of these strategies simultaneously. Thus, a good template for 

spatial normalization can be obtained by applying the warp average and the intensity 
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average strategies, starting with a well-chosen individual image. 



Chapter 9 

Comparison of 2D and 3D Spatial 

N ormalization 

This chapter compares the localization obtained on the cortical surface after a 3D 

spatial normalization with the localization obtained after a 2D normalization. 

In order to compare spatial normalization using a 3D method with a 2D spatial 

normalization, the results of one method must be transferred into the space of the 

other. The 2D results can be very easily transferred into }R3, as each location of the 

standard auxiliary space corresponds to a location on the native surface mesh of the 

template which, in turn, is assigned a point in }R3. Doing the comparison in }R3, 

however, implies that the distances (e.g. dispersion) are measured without regard to 

the surface geometry. Since the main aim of using a 2D spatial normalization is to 

take the surface geometry into account, the comparison is instead performed in the 

2D auxiliary space. 

9.1 Mapping Functions 

Let l be the template MR image, and J be the MR image of a particular subject. The 

labels for the subject are given in the native space of J and will ultimately be mapped 

to the standard space which is the auxiliary space associated with the template. 

Recall from Chapter 6 that the mapping from an MR image to the corresponding 

auxiliary 2D space (the sphere in this thesis) comprises two steps. The first step 

lS to extract a triangulated surface mesh that follows the desired cortical boundary. 

For the work in this thesis, this is the inner cortical surface. The mapping from the 

domain of image l to surface mesh MI is denoted El, The second mapping is from 

the mesh MI to the sphere, and is denoted III. The corresponding pair of mappings 

216 
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for image J are denoted E] and TI], respectively. See Figure 9.1. 

The 3D approach to spatial normalization computes a mapping from VI C ]R3 to 

]R3, shown as mapping T3D in Figure 9.1. Using T3D , label information in V] can be 

transferred to VI as described in Section 4.1 and illustrated in Figure 4.1. From VI, 

it is a simple matter to map this label data using El and TIl to the standard space, 

namely the sphere SI' 

The 2D approach to spatial normalization computes the mapping T2D : SI -+ Si. 

In this case, the labels in V] are preprocessed to bring them onto the surface M], as 

discussed in Section 7.1.2; see Figure 7.16. From mesh M], the labels are mapped 

onto the sphere using TI] and then resampled after spatial normalization using the 

approach discussed in Section 7.1 and illustrated in Figure 7.1. 

The two routes for mapping from the domain of image J, V}, to the standard 

space, sphere SI, to be compared are as follows. The 3D approach is to resample the 

labels onto the space of l using T3D , then project the label data using El followed 

by TIl. The 2D approach is to project the label data using E] followed by TI], then 

resample the labels using T2D . 

The mapping T3D is a 3D spatial transformation as discussed in Chapter 2 and 

computed using ANIMAL as discussed in Section 3.7. The mapping denoted T2D is 

the 2D spatial transformation discussed in Chapter 5 and computed using the surface 

registration described in Section 6.7. Mappings TIl and TI] from the surface mesh to 

the auxiliary space §2 are each a reverse iterative deformation mapping described in 

Section 5.2, and used for all the 2D work in this thesis. The mappings El and E] of 

Figure 9.1 are simply projection to the nearest surface point. 

9.2 Input Images 

In order to keep the comparison as fair as possible, the same template, the same 

population of subjects and the same set of labels are used for both normalization 

strategies. Based on the results of Chapter 8, the template is selected to be ICBM 

subject 00244, the best individual template tested. The subject population is the set 

of 40 ICBM subjects for which the manual frontal sulcus labels described in Section 

4.1.2 are available. 
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1 J 

MJ 

SJ 

Figure 9.1: There are two routes to get label data from the domain of image J to 
the standard space, sphere SI: (3D) resample the labels onto the space of template 
image 1 using T3D , then project the data using E] followed by rh; (2D) project the 
labels using E], followed by II], then resample the label data using T2D . 
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9.3 Label Data 

The comparison is done using the same four frontal sulci as used in Chapt ers 4 and 7. 

For the experiments in the latter chapter, the labels of each subject were projected 

onto the corresponding surface mesh, as described in Section 7.1.2. This projection 

operation effectively changes the region of space that is labelled, from the original 

CSF space of a sulcus (as shawn in Figure 4.13) to the gray matter / white matter 

interface bounding the sulcus. 

In arder that the 2D and 3D spatial normalizations compared both use the same 

set of initial labels, a new set of 3D labels is produced by assigning the label associated 

with surface vertex v to a voxel if the latter intersects any surface triangle incident to 

v. Figure 9.2 shows the 3D labels generated using this procedure. The same labels 

as they appear on the auxiliary spherical surface are shawn in Figure 9.3. 

9.4 Results 

The results are an analyzed on the sphere using the localization measure described 

in Section 7.3. For aIl 8 structures, the localization was better when using the 2D 

spatial normalization, as shawn in Figure 9.4. 

The main reason for the superiority of 2D normalization is that the population 

sul ci tend to be mapped onto the corresponding template sulcus. In contrast, the 

3D normalization results show a large number of subjects being mapped to regions 

outside the template sulcus. This is illustrated by the coverage functions displayed in 

Figure 9.5. The result is that the 3D normalization pro duces a larger mean structure, 

which increases the localization measure. 

9.5 Prior Work 

Drury et al. [DECS99] examine the distribution of landmark points after a 3D or a 2D 

mapping. There are a number of differences between their study and the comparison 

done in this chapter: the auxiliary space is the plane, the labels are functional data 

(voxels at the location of the local maxima of a functional MR image), and the surface 

warping is based on anatomical landmark features [JMOO]. The largest difference, 

however, is that the 3D spatial normalization uses a 9-parameter affine mapping, 

rather than a high-dimensional warping as is used here. The comparison is limited 

to a qualitative display of the functional landmark locations from a single subject 
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Figure 9,2: 3D labels for 3D / 2D comparison. Axial slices of one individual are 
displayed, 
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Left Right 

Figure 9.3: 2D labels for 3D / 2D comparison. The same individual is shown as in 
Figure 9.2. 
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Figure 9.4: For each sulcus, the localization value on the surface is displayed for 
spatial normalization in 3D (left bar of each pair) and for spatial normalization in 
2D (right bar of each pair). A set of 40 subjects is used for the measurements. 
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3D Left 3D Right 

2D Left 2D Right 

Figure 9.5: Coverage function shown in shades of grey (white is 0, dark grey is 1) 
for the central sulcus. The views are illustrated on a slightly-opened version of the 
template cortical surface in order to better view inside the sulcus. Note that the 
shading away from the central sulcus is due to the illumination in the 3D rendering 
process used to generate these images. After warping in 3D (shown in the top row), 
many vertices on the bank of the neighbouring sulci have nonzero probability of being 
mapped to the central sulcus. This is particularly evident for the 1eft hemisphere. 
In contrast, the warping in 2D localizes the central sulcus nearly completely inside 
the template central sulcus. 
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displayed on the fiat map after using a 2D or a 3D warping. The 2D pattern is 

quite different from the 3D pattern, which largely refiects their observation that the 

location of sulci "was not adequately compensated by the transformation to Talairach 

space" [DECS99]. In other words, the low-dimensiona13D spatial normalization failed 

to adequately localize the suld. 

Fischl et al. [FSTD99] also compare their own high-dimensional 2D normalization 

to a 9-parameter affine 3D spatial normalization [CNPE94]. They do not compare 

the two spatial normalization procedures in a common space, however. Rather, the 

localization measure after 3D normalization is computed in the standard 3D space 

as V/V, where V is the volume of the union ofthe 3D structures, and V is the me an 

volume of the input structures. The localization measure after 2D normalization is 

computed in the standard 2D space as A/ A, where A is the area of the union of 

the 2D structures, and A is the mean area of the input structures. Since the ratios 

are dimensionless these two measures are comparable, though they are measuring 

localization in two different spaces. AIso, recall from Section 4.3 that this measure 

doesn't account for dispersion. Nevertheless, they show that warping in 2D produces 

smaller localization scores for three sulci and five functionally-defined regions. 

9.6 Summary 

This chapter compares the localization on the surface obtained for four suld using 

either a 3D spatial normalization or a 2D spatial normalization. On a data set of 

40 subjects, the 2D normalization produces a better localization for all four sulci in 

each hemisphere as shown in Figures 9.4 and 9.5. 

In contrast to the previous work of Drury et al. [DECS99] and of Fischl et 

al. [FSTD99], the 3D normalization is carried out using a performance-tuned (see 

Chapter 4) high-dimensional warping algorithm (ANIMAL, described in Section 3.7) 

rather than a 9-parameter affine transformation. Moreover, the template chosen is 

demonstrated in Chapter 8 to Iocalize the sulci very weIl. For example, the central 

column of Figure 8.8 shows that virtually aH the subjects map the central suIe us 

onto the template central sulcus. Compare this to the variability remaining after 

a 9-parameter affine normalization, shown in the 1eft column of Figure 4.14. The 

comparison performed in this chapter is therefore a much more sensitive test as to 

the relative performance for spatial normalization in 3D versus 2D, than previous 

work. 



Chapter 10 

Conclusions and Future Work 

10.1 Summary 

A 3D spatial normalization method is the combination of a template image and a 

registration algorithm that matches the template to an input image. Similarly, a 2D 

spatial normalization method is the combinat ion of a template surface and a regis­

tration algorithm that matches the template to an input surface. The registration 

algorithms are put into a common framework of optimization in or der that they may 

be compared on the basis of the data and model terms employed in the objective 

function, <I>(I, J, T). 

10.1.1 3D Normalization 

Chapt ers 2 and 3 summarize and synthesize the literature on 3D medical image regis­

tration, concentrating on high-dimensional nonaffine transformations. Chapter 2 ar­

gues that a successful spatial normalization of the cortex requires a high-dimensional 

warping, such as the standard mesh warping (Definition 2.4.1). Chapter 3 uses the 

framework of optimization in order to compare different registration algorithms on 

the basis of the data and model terms. At the present time the data term best suited 

for automated spatial normalization is one that performs matching based on image 

intensity alone or in combination with label data (Section 3.8.1). The experiments 

in this thesis concentrate on obtaining the best results using intensity alone. In the 

maximum likelihood framework, the form of the data term corresponds to an as­

sumption about the intensity relationship between registered images. The intensity 

transformation between MR images couId plausibly be a linear or an affine intensity 

transformation, though the latter may better match two tissue classes (Section 3.2.2). 

224 
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Though the principle of coordinate invariance (Section 3.1) does place sorne limits on 

the allowed differential regularization terms (Section 3.3.2), the model terms suitable 

for registering brain images do not have as well-developed a theory as the data terms 

do. Moreover, the objective function is often expressed as a sum of data terms <PD 

and regularization terms <PR, 

and no the ory exists to guide the selection of the parameter À. Thus the segmentation 

variability measure described in Section 4.1 is proposed in or der to evaluate regis­

tration algorithm performance in the context of spatial normalization. This enables 

an objective selection to be made between competing design choices, for regulariza­

tion terms, data terms, and other features of the algorithm (e.g. the node thinning 

heuristic of ANIMAL, Section 3.7.2), as weIl as for selecting an optimal value for 

numerical parameters such as À. 

The 3D experiments in this thesis use the ANIMAL algorithm (Section 3.7), 

which has the following characteristics: 

• the transformation is parameterized as a mesh warping with cubic interpolation 

(Definition 2.4.1), 

• the mat ching is driven by smoothed intensity and smoothed intensity gradient 

features, 

• the data term is a regional version of cross-correlation (Section 3.2.2), 

• the model term is implemented as an elastic smoothing of the transformation 

in a two-step algorithm (Section 3.4.2), 

• control mesh vertices do not participate in the data term if the intensity value 

is below a threshold (the node thinning heuristic, Section 3.7.2), and 

@ a four level coarse-to-fine hierarchy is used: 

1. control vertex spacing of 8 mm, FWHM=8 mm smoothed image data, 

2. control vertex spacing of 4 mm, F\iVHM=8 mm smoothed image data, 

3. control vertex spacing of 2 mm, FWHM=4 mm smoothed image data, 

4. control vertex spacing of 2 mm, FWHM=4 mm smoothed image gradient 

data. 
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In addition to the design elements listed above, there are several numerical paramet­

ers used by the algorithm, as discussed in Section 3.7 and in Section 4.1.1 on page 72. 

Using the total entropy as a performance measure for ANIMAL in the context of 

spatial normalization, the following changes are shown to pro duce improved perform­

ance (Section 4.1.1): omit node thinning, omit gradient fit, use correlation coefficient 

as the data term, and use parameters similarity=0.3, stiffness=l, weight=1. Figure 

4.10 shows the quantitative improvement of these changes in terms of reduced en­

tropy throughout the brain while Figure 4.11 shows the improvement qualitatively 

in terms of increased sharpness in the intensity average image. 

In arder to gauge the generalizability of conclusions drawn using the ANIMAL al­

gorithm, consider the transformation class, data term, and regularization used. The 

transformation obtained is a mesh warping, a very flexible and commonly-used para­

meterization [BK89, KPH+96, RSH+99, KLF99, RCRMOl, SD02, Dav96, CRM96], 

and thus not a limiting factor. The data term is based on image intensity assuming 

an affine relationship between the registered images, a very reasonable assumption 

for registering images of the same modality, as discussed in Section 3.2.2. Finally, 

the regularization method is a very simple elastic method. As discussed in Section 

1.2, there is no theory to suggest an optimal regularization method, so the empir­

ical performance remains the best guide. While localization results as measured in 

this the sis are not currently available for other registration methods, comparing the 

performance of two registration algorithms can be done qualitatively by comparing 

the mean intensity images. The sharpness of Figure 4.11 compares well with similar 

images obtained using other methods [SD03, RFS01], suggesting that the tuned AN­

IMAL algorithm performs as well as any in the field. Thus there is every reason to 

believe that the other elastic methods will pro duce results similar to those described 

in this thesis. 

10.1.2 2D Normalization 

Chapters 5 and 6 summarize and synthesize the literature on cortical surface regis­

tration. The 2D problem shares many characteristics of the 3D problem: spatial 

normalization in 2D is set up as registration with a template, and the registration al­

gorithms are described in a framework of optimization. Thus, these chapt ers mainly 

highlight the features unique to the 2D problem. 

One difference is that there are two additional steps required, illustrated in Figure 

5.1. First, the cortical surface mesh must be identified from the MR image; here 

there are sever al competing definitions of cortical surface mesh from which to choose 
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(Section 5.1). Second, the mapping from the surface situated in 3D to an auxiliary 

2-manifold must be defined and computed (Section 5.2). From the point of view of 

surface registration, the auxiliary space is used for computational convenience. The 

main choiee for cortical surface and auxiliary space is to choose between a disc or 

sphere topology. In the latter case, one can choose to use one sphere per cortical 

hemisphere or a single sphere for both hemispheres. For this work the sphere topology 

is chosen, so as to avoid having to identify the hemisphere boundaries in the the image 

[DECS99]. The cortical surfaces are extracted using ASP [Mac98], which results in 

a single sphere comprising both cortical hemispheres. Thus, a single unit sphere is 

used as the auxiliary space for experiments in this thesis. The spatial normalization 

mapping is from the sphere to itself, parameterized as a sphere triangulation warp 

(Definition 5.4.8). 

In contrast to 3D image registration where the matching problem is based on the 

image data itself, the surface registration problem, does not have such a real-valued 

function given as part of the problem specification, so one must be created (Section 

6.2.2). In order to match the pattern of sulcal folding, a function is defined that 

refiects the geometry of the folding pattern. In Section 7.1.1, two possible functions 

are tested: the me an surface curvature, and the crown distance transform. The mean 

surface curvature requires smoothing and, for the smoothing scheme used (Section 

6.7.1), the crown distance transform produced better results as shown in Figure 7.5. 

Though the smoothing scheme could use more investigation, the experiments in this 

thesis use the crown distance transform feature data as it currently pro duces better 

results. 

The data terms, model terms, and registration algorithms suit able for surface 

registration are adaptations of existing methods for image registration. The main 

challenge is to accommodate the spherical topology. The 2D experiments in this 

thesis use the sphere to sphere warping algorithm proposed in Section 6.7, which has 

the following characteristics: 

• the transformation is parameterized as a triangulation warp (Definition 5.4.8), 

• the mat ching is driven by the crown distance transform feature (Section 6.2.2), 

® the data term is a regional version of cross-correlation (Section 3.2.2), 

® the model term is implemented as an elastic smoothing of the transformation 

in a two-step algorithm (Section 3.4.2), and 
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@ four levels of coarse-to-fine hierarchy are used, refining the mesh by quadrisec­

tion (Section 6.5) between levels. 

In addition to the design elements listed ab ove , there are sever al numerical paramet­

ers used by the algorithm, as discussed in Section 6.7. Using the total entropy as a 

performance measure in the context of spatial normalization, the optimal values for 

the algorithm parameters are shown (Section 7.l.1) to be: penalty ratio a = 0.05, 

smoothing weight w = 1, search radius IS = 0.5, and neighbourhood radius 'n = 2.8. 

The anatomical variability, as measured by the total entropy, is reduced after surface 

normalization and the entropy maps of Figure 7.14 show that the reduction occurs 

aIl across the sphere. The sharper images of average feature data shown in Figure 

7.15 is further qualitative evidence of the global feature alignment. 

As discussed above for the ANIMAL algorithm for 3D, general conclusions may be 

drawn from the experiments with the surface registration proposed in this thesis. The 

transformation is parameterized using a triangulation warp that can be made as fine 

as needed, and so captures a very wide class of transformations. The data matching 

is based on the folding pattern, which is the common method for mat ching surface 

anatomy [VEDD+01, FSTD99, VD99]. And finally, the regularization method, while 

simple, is demonstrated in Chapter 7 to be effective in producing good matches of 

the gyral and sulcal anatomy. Thus there is every reason to believe that the other 

elastic methods for mat ching surface anatomy will produce results similar to those 

described in this thesis. 

10.1.3 Injectivity 

As discussed in Chapter 1, due to the smoothing used the data analysis do ne after 

spatial normalization is effectively comparing small regions about Ji(x) at each point 

x of the standard space rather than a point-to-point comparison. Thus, a smaH 

amount of noninjectivity in the spatial mappings can be tolerated. Using the op­

timal parameters, a set of 39 individuals is spatiaHy normalized to check whether 

the generated transformations are commonly non-injective. For 3D, the results in 

Figure 4.8 show that while there are pockets of non-injectivity, overall the Jacobian 

determinant is negative at only 0.2% of the control mesh vertices. 

In 2D, the situation is similar in that a triangle mesh warping is not necessarily 

injective and the algorithm of Section 6.7 does not enforce injectivity. A set of 151 

surfaces are spatially normalized using the optimal parameters and the transform­

ation is found to be injective except for 1 % of the target sphere area as shown in 
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Figure 7.11. 

For both 3D and 2D, the small amount of noninjectivity found is tolerated for 

this work. 

10.1.4 Variability Comparison 

Two competing spatial normalization methods, each having been tuned, can be com­

pared by using each to spatially normalize a population and examining the residual 

variability in the two cases. 

If homologous structures are being aligned by the spatial normalization, th en gray 

matter is expected to align more often with gray matter, and similarly white matter 

with white matter. This will generate more consistent labellings at each voxel, so 

the anatomical variability, as measured by total entropy, should decrease. However, 

the converse is not true: a decrease in entropy at a voxel because it is consistently 

assigned the label gray matter does not mean that the gray matter cornes from the 

same su1cus in each individu al. The right column of Figure 4.14 demonstrates that 

this can happen. Thus it is of interest to quantify the variability of structures smaller 

than the totality of white matter or of gray matter. For the experiments ofthis thesis, 

a manual segmentation of frontal sulci, shown in Figure 4.13, is used. Since the gray 

matter of different sulci have different labels, the total entropy of the sulcus labelling 

is sensitive to mismatching of sulci, in contrast to the situation described for tissue 

class labels. 

However, as discussed at the end of Section 4.1.2 on page 83, the entropy of the 

sulcus labelling does not capture the spatial spread of the distribution of normalized 

sulci. The total entropy can decrease if the input sulci are weIl matched to, say, two 

folds on the template, regardless of how widely separated in space are the two folds, 

as illustrated in Figure 4.15. To capture the spatial aspect of variability, a dispersion 

measure akin to median absolute deviation of univariate statistics lS proposed in 

Section 4.2. Dispersion is defined as the me di an distance from a central structure to 

each of the input structures. Each structure is a closed point set and the distance 

between point sets is measured using a trimmed Hausdorff distance (Equation 4.7) to 

reduce sensitivity to outliers. This distance measure is chosen because it is applicable 

to any closed point set, e.g. the gray matter object, and the sulcus structures given 

as a set of voxels that are used in this thesis. It does not require a point-ta-point 

mat ching of the structures nor does it require any manual intervention (apart from 

perhaps initially delimiting the structures). 

Three methods for obtaining a central abject about which dispersion can be 
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measured are discussed in Section 4.2. One option is to measure dispersion about 

the template structure as in Section 4.2.2. This could be useful to gauge suitability 

of that template for the purpose of automated labelling, sin ce labelling requires that 

the template structure be accurately matched to the corresponding structure in the 

population. The second option is to use the Vorob'ev mean structure, which lS 

possibly useful when the input structures contain a lot of overlap, as is the case for 

larger structures such as gray matter. The Vorob'ev mean of the gray matter is 

used successfully in Chapter 8 to select a more representative individual from the 

population of brains, for use as a template. The third option is the distance mean, 

which is useful for small structures that do not necessarily overlap greatly such as 

the frontal sulcus structures. 

A measurement of the localization of a given structure after applying spatial 

normalization should capture the notion that the normalized structures should be 

neither too disperse, nor coyer too large a volume, as illustrated in Figure 4.25. From 

the notion of confidence intervals on the realline, which locate the region in which a 

given fraction of the population is concentrated, an analogous measure for extended 

objects 18 proposed. The localization measure is the size of the distance mean after 

dilating by the dispersion measure .. This measure takes into account both the size of 

the me an as well as the dispersion about it. AlI of the definitions can be taken over 

to the sphere and used in 2D as well (Chapter 7). When comparing two competing 

spatial normalization methods, the smaller localization value is preferred. 

The localization measure is used in Chapter 8 to show that a good template 

for spatial normalization can be obtained by applying the warp average (Section 

8.1.4) and the intensity average (Section 8.1.1) strategies, starting with a well-chosen 

individu al image (Section 8.1.2). 

The localization measure is used in Chapter 9 on a data set of 40 subjects, to show 

that the 2D normalization pro duces a better localization than 3D normalization. In 

contrast to the previous work, which compared high-dimensional 2D warping with 

a low-dimensional warping in 3D (a 9-parameter affine transformation) [DECS99, 

FSTD99], the 3D normalization is carried out using a performance-tuned, high­

dimension al warping algorithm (ANIMAL). 

10.2 Conclusions 

The impetus of this work was to investigate the question of whether it is better to 

perform spatial normalization in 2D or in 3D, for the purposes of brain mapping. 
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There are clearly sorne situations where 3D normalization is required, e.g. whenever 

non-cortical structures are of interest. It is equally clear that the analysis of func­

tionaI brain mapping data may suffer when performed in 3D since the smoothing 

and averaging of data can easily mix together signaIs from opposite banks of a sul­

eus when they lie close together in 3D, whereas the locations may be quite distant 

as measured along the surface. This is the main motivation behind identifying the 

cortical surface and doing the data analysis on it. While there remains some chal­

lenges in identifying the cortical surface and mapping functional data to it, especially 

data from fast imaging methods which do not have the resolution of the anatomical 

images used in this thesis, we may imagine that these problems will be solved. It is 

then of considerable interest to know whether homologous anatomy of the cortex can 

be better aligned when modelled as surfaces, or whether a 3D registration algorithm 

can match the cortex sufficiently that data no longer has to be averaged over such a 

large region so as to mix together signaIs from the opposite banks of a sulcus. 

This question can be answered empirically by performing a spatial normalization 

with a 3D algorithm and with a 2D algorithm and comparing the results. It is clear 

that the 3D algorithm must be a high-dimensional warping, rather than simply affine 

as the previous comparisons have done [DECS99, FSTD99]. In order to ensure that 

the results are generalizable, each algorithm should be representative of a whole class 

of algorithms. Moreover, it became clear that the template used has a large impact 

on the quality of the resulting spatial normalization, so a good method for choosing 

a template was also required. 

3D Spatial N ormalization 

For 3D experiments, the ANIMAL algorithm was readily available in the lab. It was 

developed to match sub-cortical structures and had not been completely successful in 

mat ching sulci, even incorporating explicit sulcaI constraints [CLG E98]. Therefore, l 

employed the segmentation variability (total entropy) described in Chapter 4 in or der 

to explore the performance of ANIMAL over a range of parameters. This proved to 

be a very effective tool for probing any design aspect of a registration algorithm. 

This procedure can be applied equally weIl to any registration algorithm. 

After this tuning, the performance of ANIMAL is believed to be comparable 

to other elastic registration methods, as discussed above. Localization results as 

measured in this thesis are currently not available for other registration methods, so 

comparing the performance of two registration algorithms can only be done qualitat­

ively. Comparing the intensity average in Figure 4.11 with similar images obtained 
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using other methods [SD03, RFSOl] indicates that the tuned ANIMAL produces a 

similarly-sharp result. Thus, conclusions drawn from experiments using ANIMAL 

are expected to apply to other elastic 3D registration methods. 

To compare ANIMAL with fluid registration methods, note that the transforma­

tion for the latter is generally parameterized in the same manner, Le. using a mesh 

warping [CRM96, BNG96]. While the "re-gridding" technique used by Christensen 

means that the final transformation is actually a concatenation of several mesh warp­

ings with variable control vertex spacings, this technique could equally well be used 

in an elastic transformation if required. The data term used in fluid methods is gen­

erally based on image intensity using the sum-of-squared difference criterion, <PSSD 

(Equation 3.8 on page 32), which is a less general assumption than the affine relation­

ship implied by <Pcc used in ANIMAL. The data matching behaviour of ANIMAL 

should therefore be no worse than that of an algorithm using <PSSD. The main differ­

ence between the methods, therefore, is the regularization. The claimed advantage 

of fluid registration over elastic is that the former allows injective mat ching with lar­

ger deformations, un der certain conditions [Ami94, DGM98, JMOO]. It is true that 

the transformations generated using ANIMAL are not injective but, as discussed 

ab ove , the amount of non-injectivity is tolerable in this situation. As for large de­

formations, the results of this thesis suggest that the transformations produced using 

elastic model terms are sufficient to capture cortical variability of a normal popula­

tion. For example, Figure 8.8 indicates that ANIMAL is able to match successfully 

the central sulcus, as long as a good template is chosen, e.g. template Tl in the 

middle column. Note, however, that this conclusion is based on a population of 

normal anatomies. It is likely that the large deformation properties make a fluid 

registration more appropriate than an elastic registration in a situation for which 

there truly is a large difference in the images, e.g. one has a tumour or other large 

structural change and the other image does not. 

Template Selection 

While the entropy measure is a useful global indication of alignment, it does not 

capture spatial variability of individual structures, as discussed at the end of Section 

4.1.2 on page 83. Thus, I developed a measure of dispersion using distance between 

point sets and the distance mean of a random closed set. It became clear that the 

template that was selected (arbitrarily) for the experiments of Chapter 4 was not 

able to be matched well to the population. For example the left central sulcus of half 

the input brains was matched to the wrong fold of the template. In order to find 
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a more representative individu al to use as a template, l used the distance measure 

from the mean gray surface. This proved to be a much more effective template, and 

was further improved by using warp averaging and intensity averaging, as shown in 

Chapter 8, 

2D Spatial NormaHzation 

As no corresponding 2D registration algorithm was available, l wrote one as dis­

cussed in Chapter 6, modelled on the successful pattern of ANIMAL. The numerical 

parameters were obtained by a 2D segmentation variability measure, as described 

in Section 7,1, ultimately producing a surface registration that is very effective at 

aligning anatomy, as evidenced by the reduction in localization measures shown in 

Figure 7.25, and the sharper images of average feature data shown in Figure 7.15. 

As argued ab ove , the design of this algorithm is representative of the class of 

elastic warping based on mat ching sulcal and gyral features. Thus the results of 

experiments using this algorithm are expected to be representative. 

3D versus 2D 

With a representative algorithm for 3D image registration and for 2D surface regis­

tration, as weIl as a demonstrably good-quality template, we can now approach the 

motivating question with sorne confidence that the finding will hold generally. To 

answer this question, l obtained the frontal sulcus labelling of Figure 4.13 and then 

used the localization measure described in Section 7.2 to gauge the amount of vari­

ability remaining on the surface after spatial normalization. As shown in Chapter 

9, the localization was sm aller after 2D normalization, for all 8 structures examined. 

The main reason for this is that the 2D normalization generally managed to map 

the individual sulci into the template sulcus, whereas the 3D normalization mapped 

many individuals to neighbouring sulci, as illustrated in Figure 9,5. Thus the 2D 

normalization should enhance the analysis of surface-based data better than a 3D 

normalization. 

10.3 Future Work 

Using the tuning methodology of Section 4.1.1, there are many aspects of both AN­

IMAL (Section 3.7) and the surface warping algorithm (Section 6,7) that remain 

to be investigated and improved upon. Testing for convergence in terms of iterate 
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change of the inner loop may yield improved exeeution time by eliminating useless 

iterations. The link between the amount of data smoothing and the control grid 

vertex spacing could be investigated. Non-isotropie smoothing [PM90, KS96], whieh 

preserves edge location, might be a better choice. The surface warping algorithm 

should have the data term retain a constant sampling density, independently of the 

chosen neighbourhood radius value. 

FUrther work on localization should be done, such as repeating the 3D /2D com­

parison of Chapter 9 using the warp average and intensity average template T4, the 

best template tested in Chapter 8. 

The improvements to ANIMAL should enhance its ability to label gyral struc­

tures, given a suitable template image. Finally, the new surface matching algorithm 

is certain to be useful in spatially normalizing functional or structural data on the 

surface. 



Appendix A 

G lossary of Terms 

l-ring neighbourhood Let Cv, E) be a graph, and v E V. The l-ring neighbour­

hood of v is the set of neighbours of v, i.e. the set {u : (u, v) E E}. 

26 neighbours On a 3D mesh, a 26-neighbours of v are the vertices of the 3 x 3 x 3 

block centered on v, other than v itself. 

ANIMAL Automated Nonlinear Image Matching and Anatomical Labeling, regis­

tration software by D. L. Collins [CHPE95], summarized in Section 3.7. 

antipodal Let p E §2. The point -p is antipodal to p. 

ASP Anatomic Segmentation using Proximities, surface extraction software by D. 

MacDonald [MKAEOO]. 

axial Imaging plane. For an upright person, the axial plane is parallel to the fioor. 

bijective A mapping that is both injective and surjective. 

bounded set A subset A of a metric space is bounded if it is contained in an open 

baIl of finite radius. 

brain stem A bundle of nerve fibres attached to the underside of the cortex and 

descending into the spinal column. 

closed set A subset A of a metric space is closed if for each convergent sequences 

in A, the limit is also in A. 

compact set A set A C IR3 is compact if, and only if, it is bounded and closed. 

In a general met rie space X, a set A is compact if, and only if, each infinite 

235 
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sequence of points {Pn} in A contains an infinite subsequence, say {qn} which 

converges to a point in A. 

complete metric space A metric space (X, d) for which each Cauchy sequence 

converges to a point in X. A sequence ls Cauchy if for every E > 0, :JN such 

that p, q > N ==} d(xp , Xq) < E. 

convex A point set is said to be convex if, for any pair of points x and y in the set, 

the line segment xy also lies in the set. A real-valued fun ct ion of a vector space 

is convex if its domain is a convex set and the function satisfies f(tx+(l-t)y) :::; 
tf(x) + (1 - t)f(y) for aH x, y in the space and all t E [0,1]. 

convex hull Given a discrete set of points P = {Pi E ]Rd : i = 1, ... ,N}, the convex 

hull of P is the smallest convex set containing P. 

coronal Imaging plane. For an upright person, the coronal plane ls perpendicular 

to the fioor and contains the left-right direction. 

corpus callosum Large bundle of nerve fibres connecting the two cerebral hemi­

spheres. 

cortex The superficial coat of gray matter of the brain. 

crown See gyral crown. 

cryosection Refers to techniques in which the specimen is frozen and sliced into 

sections. 

CSF Cerebral Spinal Fluid. 

decimate Reduce the complexity (the number of vertices, edges, and facets) of a 

polyhedral surface mesh, generally with the aim that the new surface remains 

an approximation of the old surface. 

distance transform For a point set A, the distance transform dA(x) is the length 

of the short est path from x to a point in A. 

eigenfunction Let C be a linear differential operator. A function f ls an eigenfunc­

tion of C if it satisfies Cf = )..f for sorne).. E R 

embedded graph A planar graph with a specified circular ordering of the neigh­

bours at each vertex. The embedding defines the graph faces. 
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Euclidean space The metric space (]Rn, d), where d(x, y) = V2::~=1 (Xi - Yi)2. 

filtering Transformation of a signal, whether scalar (e.g. image intensity 1) or vector 

(e.g. transformation function T), by convolution with sorne kernel. Sometimes 

described as smoothing. 

function Any mapping between sets. The domain set could be a set of functions; 

sorne authors refer to this as a functional, but that distinction is not used in 

this thesis. 

fun dus See sulcal fundus. 

FWHM Full Width at Half Maximum, an expression of the extent of a function f (x) 

given by the distance between two extreme values of x at which the function 

value is half its maximum value. 

genus The genus of a surface is equal to the maximum number of nonintersecting 

closed curves that can be drawn on the surface without separating it. A sphere 

has genus zero, the torus has genus one. 

geodesic A locally short est curve. A geodesic in ]Rn is a straight Une. On a 2-sphere, 

a geodesic is a great circle. See shortest path. 

graph A pair (V, E) where V is a finite set of vertices, and E = {(u, v) : u, v E V} 

is a set of edges. AIl graphs in this the sis are undirected, i.e. edge (u, v) is 

considered the same as edge (v, u) . 

gyral crown The ridge running along the top of a gyrus. 

gyrus Fold of brain tissue; see Figure 1.2. 

halfedge data structure Data structure for storing an orientable 2-manifold poly­

hedral surface. If vertices u and v are neighbours, the data structure stores 

two directed halfedges, (u,v) and (v,u) [Ket99]. 

Hausdorff space A space in which any two points have disjoint neighbourhoods. 

Hilbert space A vector space with an inner product < x, y > for which the metric 

defined by d(x, y) = Ilx - yll, where IIxll = v< x, x>, turns it into a complete 

metric space. 

homeomorphism A continuous, injective mapping with a continuous inverse. 
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homogeneous coordinates A coordinate system for which (Xl, X2, ... ) and ('\XI, '\X2, ... ) 

for any ,\ f. 0 represent the same point. Homogeneous coordinates for a point 

in Rn are given by a set of n + 1 numbers, (Xl, ... , Xn, W) that correspond to 

the Cartesian coordinates (xI/w, ... , xn/w). 

homologue A biologically corresponding component. 

homology A biological correspondence; similar in position and structure but not 

necessarily in function. 

ICBM International Consortium for Brain Mapping, a collaboration of sever al neuroima­

ging labs [MTE+95]. 

infimum The infimum of a nonempty set A c ~ is the largest number that is less 

than or equal to aU a E A. If A is not bounded from below, then the infimum 

is defined to be -00. 

injective A mapping f : A -+ B is injective if f(x) = f(y) ===> X = y. Synonym 

for "one to one" mapping. 

interpolation The computation of values between ones that are known using values 

at surrounding points. 

magnetic resonance imaging Imaging technique based on the interaction of nuc­

lear magnetic fields of the sample with an externally-imposed field. 

Mahalanobis distance Let X be a random variable drawn from an n-dimensional 

normal density with mean IL = EX and covariance matrix ~ = E(X - IL) (X -

ILf. The Mahalanobis distance from X to IL is r where r2 = (x- ILf~-I(X- IL). 

manifold An n-manifold is a connected Hausdorff space each point of which pos­

sesses a neighbourhood that is homeomorphic to an open subset of Euclidean 

n-space, ~n. A polyhedral surface (e.g. representing the cortex) and the sphere 

§2 are examples of 2-manifolds. 

mesh A graph that has a point in ~3 associated to each vertex. In this thesis, 

two kinds of mesh are used. The first, used for 3D warping (see Definition 

2.4.1), has a vertex set isomorphic to the set of NIN2 N3 triples {(i,j, k) : i E 

[1,2, ... , NI];j E [1,2, ... , N2]; k E [1,2, ... , N3]} with an edge set {((i,j, k), (u, v, w)) : 

Ji - uJ + Jj - vJ + Jk - wJ = 1}. This kind of mesh is sometimes referred to 

as a grid. The second kind of mesh is a an embedded graph where each face 
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is a triangle, sometimes referred to as a triangulated mesh. This kind of mesh 

is used to represent the surface of the cortex, both in its native configuration 

and after being projected to the unit sphere. A triangulated mesh is also used 

for sphere triangulation warping (Definition 5.4.8). 

metric Let X be a set. A mapping d ; X x X ----} ]R is a metric if it satisfies the 

following conditions for aU x, y, z E X: (i) d(x, y) 2: 0; (ii) d(x, y) = ° {:} x = y; 

(Hi) d(x, y) = d(y, x); (iv) d(x, z) ~ d(x, y) + d(y, z). The standard Euclidean 

distance function is an example of a metric for points in ]Rn. 

metric space The pair (X, d) where X is a set and dis a metric on X. 

modality An image generation technology or technique; examples are: PET, X-ray, 

and T1- weighted MR. 

MR Magnetic Resonance. 

MRI Magnetic Resonance Imaging, or Magnetic Resonance Image. 

Newton methods Class of optimization methods that determine the step direction 

and length by minimizing a quadratic approximation to the objective function, 

i.e. <l>(x + p) ~ <l>(x) + pTV<p(x) + ~pTHp, at the current iterate, where the 

Hessian, H, is an n x n matrix of second derivatives of <p evaluated at x. This 

approximation is minimized by setting p = -H-1y<P, an expensive operation 

when n is large. See quasi-Newton methods. 

open ball Given a real r > 0, and a point p in metric space (X, d), the open baIl 

B(p,r) is defined as {x EX: d(p,x) < r}. 

open set A subset A of a metric space is open if for each a E A, there is an open 

ball centred at a contained in A. 

partial volume effect An artifact that appears in MR images when a voxel en­

compasses two or more types of tissue. The signal intensity recorded for such 

a voxel is a mixture of the signal intensities for the component tissues. 

planar A graph is planar if it can be drawn in the plane without graph edges 

crossing. 

quasi-Newton methods Class of optimization methods that derive the search dir­

ection as p = - B-1 V <P, where the matrix B is an approximation to the Hessian 
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(see Newton methods), but easier to update for the next iteration than is the 

true Hessian. 

sagittal Imaging plane. For an upright person, the sagittal plane is perpendicular 

to the floor and contains the front-back direction. 

segmentation Division of a digital image into regions. Each voxel is assigned to a 

certain class. 

shading artifact Refers to a smooth variation in signal intensity across an image; 

also called intensity nonuniformity. 

shortest path A path between two points, x, y such that no other path between x 

and y is shorter. A short est path is a geodesic. The converse is not necessarily 

true. 

simple polygon A polygon in the plane is given as an ordered list of vertex po­

sitions, (vo, VI,···, Vn = Va), with edges formed by the line segments Vi-IVi, 

i = 1, ... , Vn . The polygon is simple if edges do not intersect, except at the 

shared vertex Vi between edges Vi-IVi and ViVi+!. 

sine Abbreviation of sine cardinal, the function is defined as sinc(x) = sin(1fx)j1fX 

for x :/: 0, and sinc(O) = 1. 

sUce Intersection of a plane with a 3D image. Images are often displayed using three 

orthogonal slices through the volume. 

smoothing See filtering. 

steepest descent Aline search optimization method that always chooses the ob­

jective function gradient, - V<I>, as the search direction. 

sulcal fundus The "valley floor" of a sulcus. 

sulcus Furrow or groove of the brain; see Figure 1.2. 

supremum The supremum of a nonempty set A c lR is the smallest number that 

is greater than or equal to an a E A. If A is not bounded from ab ove , the 

supremum is defined to be 00. 

surjective A mapping f : A -+ B is surjective if, for each b E B, there exists at 

least one a E A such that f (a) = b. Sometimes denoted an "on to" mapping. 



APPENDIX A. GLOSSARY OF TERMS 241 

tissue classification A segmentation into tissue classes, e.g. gray matter, white 

matter, CSF, or background. 

triangulated graph An embedded graph for which the faces all have three edges. 

ventricles Cavities in the brain filled with cerebral spinal fiuid. 

volume Short for volumetrie image. 

volumetrie image 3D image. 



Appendix B 

On the Reliability of Triangle 

Intersection in 3D 

Over the course of this thesis work the question arose as to whether two brain 

surfaces intersect, where each is modelled as a triangulated polyhedron. For example, 

l had occasion to check whether or not the two surfaces generated by ASP were 

truly concentric. Surface intersection can be checked using brute force in O(n2 ) 

time by testing each pair of triangles for intersection. However, by enclosing each 

triangle in an axis aligned bounding box, an algorithm of Edelsbrunner and Overmars 

[E085, ZE02] can be used to find the intersecting bounding boxes efficiently, in 

roughly 0 (n 10g2 n + k) time for n boxes in total and k pairs of intersecting boxes. 

Then, only the k triangle pairs whose corresponding bounding boxes overlap need to 

be tested. 

Testing whether a pair of triangles intersect, given their coordinates in floating 

point numbers, is a straightforward computation, but it turned out to be surprisingly 

fragile code. This appendix reports on the implementation of a robust triangle 

intersection test. This is joint work with Sue Whitesides that has previously appeared 

in a conference publication [R\V03]. My contributions to this work include aIl the 

coding and experiments, and the majority of the paper text. 

B.I Abstract 

Implementors of triangle/triangle intersection tests often opt to forego exact calcula­

tions for speed reasons. It is widely known that such code will fail for certain inputs, 

but it is not evident from the literature that published intersection tests implemented 

using floating-point arithmetic are not stable. We show how such a test can fail on 

242 
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a triangle pair that is widely separated in space. We find that an exact intersection 

test can be implemented with a modest speed penalty. 

B.2 Introduction 

Surfaces are often modeled using polyhedra composed of many triangles. When 

two such surfaces are checked for intersection, a preprocessing step using bounding 

volumes (arranged hierarchically [GLM96] or not [ZE02]) is used to quickly eliminate 

many triangle pairs from further consideration. For the pairs that remain, a fast 

method of checking for intersection is required. In geometric computing, speed cornes 

at the cost of reliability. 

Reliability of computational geometry algorithms has been studied for many 

years, see e.g. [Yap97] for an overview. Algorithms are classified as exact if the 

result is always correct for the input given, robust if the result is always correct 

for sorne perturbation of the input, and non-robust otherwise. A robust algorithm 

for which the perturbation is bounded is called stable. Most work on robustness 

has examined classical computational geometry algorithms such as computing the 

Delaunay triangulation or the arrangement of a set of lines, for which the comb in­

atorial output must satisfy nontrivial consistency properties. Triangle intersection, 

having a single bit of output, is trivially robust. The interesting question is whether 

an algorithm is stable or exact. 

Exact computation can be achieved by using extended precision arithmetic to 

compute each quantity used for a branching test in the algorithm [YD95, LYOl]. 

Extended precision arithmetic is generally implemented in software, and thus cornes 

at a cost in execution time. In sorne contexts, e.g. graphies or virtual reality systems, 

speed is paramount and an inexact, but stable, triangle intersection test is perfectly 

acceptable. We show, however, that published triangle intersection codes of Beld 

[Be197] and of Müller [M0l97] are not stable. Such code can be made stable using 

a general arbitrary precision arithmetic package such as LEDA's reals [BMS96] or 

the CORE library [KLPY99], but the resulting speed penalty is prohibitive for many 

applications. Instead, we use the orientation tests of Shewchuk [She97] to implement 

an exact triangle intersection test, with a modest penalty in speed. 

B.3 Inexact Intersections 

It is instructive to first examine testing for line segment intersection in the plane. 
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D 

A -:4------
-e-?----....----B 

c' 

Figure B.l: Problematic case for segment intersection. Point C lies close enough to 
the li ne through AB that the fioating point computation of the orientation predicate 
fails, whereas the orientation for point D is correctly computed. The test result is 
as if the input on the right were given instead. Note that the perturbation from C 
to C' may be arbitrarily large. 

B.3.1 Segment Intersection 

It is weIl known (e.g. O'Rourke [O'R98]) that this problem can be phrased in terms 

of the 2D orientation predicate, which is given by the sign of a degree-2 polynomial 

in the coordinate values of three points. The predicate value indicates on which 

side of the directed line through two points lies the third point. An implementation 

of this predicate in fioating point arithmetic can fail when the value is very small, 

which corresponds to the three points being nearly collinear. Two non-intersecting 

segments are shown in the 1eft panel of Figure B.I. If the orientation test for point C 

with respect to line AB fails, the segment intersection test incorrectly reports that 

the segments do intersect. In effect, the intersection algorithm behaves as if it were 

given the perturbed input pictured on the right panel of Figure B.l. 

This is a particularly egregious error, sinee the segments may be arbitrarily far 

apart. Note also that this problem is exacerbated by the common practice of using 

an "epsilon" for numeric comparisons, i.e. a fioating point number x is deemed to be 

equal to fioating point value y when lx - yi < E. The segments in this example will 

then be deemed intersecting if the orientation value < E even when the approximate 

computation correctly returns a positive number. 

Several algorithms for computing the sign of the orientation predicate exactly 

using existing fioating point hardware have been implemented and used for segment 

intersection testing [OTU87, She97, GROO]. 
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L 

Figure B.2: Triangle intersection. Line L is the intersection between the planes 
supporting each triangle. 

B.3.2 Triangle Intersection 

Testing whether two 3D triangles intersect can be reduced to computing the 3D 

orientation predicate, given as the sign of a degree-3 polynomial in the coordinate 

values of four points [ABM97, O'R98]. The predicate value indicates on which side 

of the oriented plane determined by three points lies the fourth point. 

Let the input triangles be Tl and T2 , each specified using coordinat es of its 

three vertices. Let the planes supporting the triangles be denoted by 'ifl and 'if2, 

respectively. Testing whether triangle T2 intersects 'ifl is a matter of testing each 

vertex of T2 against 'ifl using the orientation predicate. If aU vertices lie strictly to 

one side of the plane, T2 does not intersect 'ifl; otherwise they do intersect. 

The code of Müller [M0l97] operates as foUows. Test whether triangle Tl intersects 

'if2, then test whether triangle T2 intersects 'ifl. If both are true, construct the li ne 

L = 'ifl n 'if2, compute intersection of L with each triangle, then test whether the two 

segments (on L) intersect. This code, being implemented with fioating point, suffers 

from the analogous fiaw as the segment-segment intersection previously described. 

Two nearly-coplanar triangles may be arbitrarily far apart, yet declared intersecting 

if the orientation test fails for one vertex. We have observed this situation in practice 
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Figure B.3: Potential problem for ERIT method. 

for triangles generated by the tessellation of an ellipsoid, and for triangles generated 

with random coordinate values. 

The ERIT code [HeI97] operates by first testing whether 1f1 intersects T2• If 

so, then the segment 52 = T2 n 1f1 is constructed and tested for intersection with 

triangle Tl. The segment/triangle intersection is computed in 2D after projection 

to a suit able plane. Consider an input (pictured on the 1eft of Figure B.3) in which 

(after projection) triangle Tl (ABC in figure) is skinny and segment 52 (PQ in 

figure) is nearly collinear with lines supporting edges AB and BC of Tl' Suppose 

that the location of Q with respect to the edge lines is correctly decided, but the 

approximate 2D orientation tests place P below lines AB and BC. The intersection 

test is computing as if it were given the perturbed situation pictured in the right 

panel of Figure B.3 and incorrectly declares that 52 intersects triangle Tl, hence the 

two triangles intersect. 

In short, both methods can fail on a widely-separated triangle pair. Using a 

bounding-box preprocessing step will alleviate but not eliminate this problem. 

B.4 Exact Intersection 

Triangle intersection can be made exact using an exact orientation test. Using exten­

ded precision arithmetic unconditionally to compute the exact value of the orientation 

test polynomial is possible, but slow. Practical implementations of the orientation 

test use a floating point filter to handle most cases, reverting to the full computation 

only when the value is close to zero [BBP98, BFS98, She97]. The idea is that a 
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large fraction of inputs can be decided using fioating point arithmetic. The easy 

cases are filtered out quickly, leaving only a few hard cases for exact computation. 

For example, in a mesh generation application, Aftosmis et al. [ABM97] report on 

a helicopter data set for which only 68 out of 1.37 million orientation calculations 

failed to be resolved by the fioating point filter. 

One route to an exact computation, advocated by Yap and Dubé [YD95], is to 

take an existing intersection test and replaee the fixed precision calculations with 

(filtered) arbitrary precision arithmetic so that correct branching decisions are guar­

anteed. This is made very easy to do with the CORE arithmetic library [COR03] or 

LEDA [MN99]. Both packages enable exact computation of arbitrary arithmetic ex­

pressions, though the generality cornes at a high cost in running time. Such packages 

store an expression graph, used to perform the exact computations in cases where the 

fioating-point filter fails, so they tend to consume a lot of time and memory building 

the graph [KLN91] even when not needed. We replaeed the arithmetic in Müller's 

code using CORE, for example, and found that it was about 2000 times slower. 

Not willing to pay such a high priee, we build our intersection test around the 

highly optimized implementation of the 3D orientation test by Shewchuk [She97]. 

This code implements a single primitive test, so it can be made much faster than the 

equivalent computation using CORE or LEDA, e.g. by unrolling loops by hand and 

allocating memory in local variables. 

Sinee the 3D orientation predicate uses the sign of a polynomial, we could have 

used instead the exact sign of sum algorithm (ESSA) of Ratschek and Rokne (see 

[GROO]). ESSA requires that each term of the sum be exactly represented in a 

machine fioating-point number. The 2D orientation predicate is degree two in the 

coordinate values, so Gavrilova and Rokne were able to use single-precision coordin­

ate values and a double-precision implementation of ESSA. In 3D, the orientation 

test is degree three in the coordinates, so we cannot represent each term of the sum 

in a double-precision fioating-point word. We would have to li mit the inputs to 17 

bits of precision when using IEEE double-precision numbers (53-bit significand) for 

ESSA. 

Shewchuk's 3D orientation code works with inputs of either single- or double­

precision fioating-point numbers. We use his code to implement an exact triangle 

intersection test as follows. Our code first checks whether triangle Tl intersects 

plane 1l"2. If not, then we have established that the triangles do not intersect and 

we're done. Otherwise, exactly two edges of Tl intersect 1l"2.
1 Each of these edges is 

1 In the general case. Our code also handles the degenerate cases where one vertex or one edge 
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checked for intersection with T2 , again using applications of the 3D orientation test. 

If intersection is not yet established, the same procedure is applied with the roles of 

Tl and T2 interchanged. 

BA.l Timing Experiments 

Pairwise Triangle Intersection 

Our intersection code is expected to be slower than inexact tests. To get a handle 

on the performance penalty incurred, we timed triangle intersection tests using our 

code and using two published codes: TRLTRLINTERSECTO of Moller [M0l97], and 

the TRITRI3DO routine from ERIT 1.1 [HeI97J. Moller's code was updated in 

2001 with a newer, slightly faster version that avoids division. Comparisons such 

as ajb < cjd are re-written as ad < bc. This entails evaluating polynomials of 

larger degree in the coordinates, however. We found that the computation would 

occasionally overflow the exponent of single precision numbers, so we report times 

using the original code. 

We used the codes as-is. ERIT computes using double precision arithmetic, while 

Moller's test uses single precision. This potentially gives the latter an advantage 

in speed, but the limited precision also renders it more fragile. We tested both 

single precision and double precision in our exact implementation. On sorne systems, 

the times were about the same, while others showed single precision to be up to 

30% faster. However, the filter is expected to be more effective when using higher 

precision, so the times reported here use double precision arithmetic. 

The speed of these codes is expected to vary across different hardware, com­

piler, and input data. We report on two platforms. The first is a 360MHz MIPS 

R12000-based IRIX 6.5 system with 256MB memory, compiled using the MIPSpro 

7.30 compiler with flags -02 -n32 -mips4. The second system is a 1GHz Pentium 

III machine with 1GB memory, running linux; the compiler is GNU Gee version 

2.95 with optimization flags -02 -march=i686. We use the CLOCK() system call to 

measure the time, which reports times in units of 10 milliseconds. We repeat the en­

tire dataset a number of times so that the total execution time is at least 10 seconds, 

rendering the error due to dock granularity negligible. 

The input data matters because Shewchuk's routines are adaptive, with four 

levels of filtering. We measure first the best case using coordinates randomly chosen 

in the interval [O,1000J. All determinant signs were resolved at the first level of 

of Tl lies in plane 7r2· 
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Table B.l: Performance of triangle intersection test on pseudo random data. Time is 
given in microseconds per test while the slowdown factor (SlowF) is the time divided 
by the Ume for method Müller. 

MIPS R12000 Pentium III 
Method Time SlowF Time SlowF 

Müller 0.63 1.0 0.80 1.0 
ERIT 0.84 1.3 1.2 1.5 

Exact (lower) 2.1 3.3 2.6 3.3 
Exact (upper) 30 47.6 34 42.5 

filtering, giving the lower bound on the speed penalty. We obtain the upper bound 

by modifying Shewchuk's code so that it never exits early, thereby obtaining a range 

for the speed penalty. 

The results are tabulated Table B.l in terms of the raw time for a test (averaged 

over many repetitions of 10000 randomly-chosen triangle pairs) and also a ratio of 

the time divided by the time for the fastest method (Müller's in our test) giving a 

slowdown factor. We expect the vast majority of instances to be near the lower end 

of the range. This depends on the application, and data characteristics, of course. 

Aftosmis et al. [ABM97] also used Shewchuk's orientation code for their triangle 

intersection test, and found that only 0.005% of the tests failed the first filter. Even 

if 1 % of the triangle pairs fail the filter, our results indicate a slowdown ratio of 3.7 

at most. The exact computation is expected, therefore, to be on the or der of 3-4 

times slower in practice. It is worth keeping in mind, however, that this slowdown is 

only for the triangle intersection code. Real-world applications will only spend part 

of their running time in the triangle intersection routine, so the overall impact on 

the application is not expected to be as great. 

Surface Intersection 

An example real-world application is the surface intersection code discussed at the 

beginning of this appendix. Table B.2 shows the running time for intersecting sur­

faces comprised of various numbers of triangles. Each run tests for the intersection 

of the inner and outer surface as generated by ASP, the times shown in the table are 

an average over 152 such pairs. These timing values are obtained on a linux system 

with a 2.2 GHz AMD Athlon processor. The time penalty is large for surfaces com­

posed of a small number triangles and decreases for more complex surfaces. This is 
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Table B.2: Performance of full surface intersection: the time taken to pro cess the 
bounding boxes as well as the triangle pair tests. Time is shown as mean (standard 
deviation) values, averaged over intersection problems with 152 different brain surface 
pairs. 

#Triangles Time (sec.) Time Penalty 
per surface Müller Exact 

5k 0.080 (0.003) 0.11 (0.009) 38% 
20k 0.54 (0.01) 0.62 (0.04) 15% 
80k 3.7 (0.2) 3.8 (0.2) 3% 

320k 27.9 (0.9) 28 (0.9) 0.4% 

because in the larger problems, the O(n 10g2 n) time for bounding box preprocessing 

dominates over the 0 (k) time to pro cess the intersecting pairs. For cortical surfaces, 

80k or 320k triangles are typical sizes, so the time penalty for exact intersection is 

minimal. 

B.5 Conclusions 

Intersection tests based on approximate arithmetic can fail not only on triangle 

pairs that are in "grazing" contact, but also on pairs that are widely separated. 

The common practice of using "epsilon" for numeric comparison exacerbates the 

problem. Practitioners need to be aware of these issues when implementing primitive 

geometrical tests. 

A straightforward exact implementation can have a relatively small speed penalty, 

as our experiments have demonstrated. 
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