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ABSTRACT 

A periodic cellular material, also known as lattice material, is a periodic, reticulated micro-

truss structure made up of a large number of elements; it is generated by tessellating a unit 

cell, composed of a small number of elements, in an infinite periodicity. Lattice materials are 

used to expand the properties of the solid material from which they are constructed to ranges 

of properties that depend on the lattice cell geometry, besides the material relative density, ρ . 

The development of lattice materials results in expanding the materials selection design space, 

thereby providing tailored materials for advanced engineering applications. 

Recent progress on this new family of materials has led to a classification which categorizes 

lattice materials into two groups, namely, bending dominated and stretching dominated. The 

former contains lattice materials that collapse by the local bending of their microscopic 

constituents, generating mechanical properties that are far from optimal. The latter includes 

lattice cell topologies that collapse by the stretching of their cell elements, giving a much 

higher stiffness and strength per unit mass. Despite this recent research advance in the 

understanding of the failure mechanics of lattice materials, important challenges need to be 

addressed. i) To date, the current approaches for modeling infinite periodic lattice structures 

are applicable to certain lattice topologies only. A robust, automated, analytical procedure to 

characterize the mechanical properties of a lattice material with an arbitrary microscopic 

topology is missing. ii) The strategy followed in literature to shape the cross-sections of 

slender cell elements into circular shapes, results in a local buckling failure of the lattice 

elements. To avoid this collapse, researchers have proposed to increase the cross-section size 

of the microscopic elements; this resistance increase, however, occurs at the expense of the 

material weight. iii) A stretching dominated lattice material offers mechanical properties that 

are remarkably better than a bending dominated material. Its structure consisting of fully 

triangulated topologies might yet contain several redundant members that bring about 

undesired extra weight as well as non-conformal and non-morphing structural behavior. 

The work reported in this thesis aims at improving the current multiscale mechanics models 

as well as the structural analysis tools for the design of lattice materials. Three main 

contributions that help to address the issues mentioned above arise from this thesis. 
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(i) A systematic, matrix based, procedure for the theoretical modeling and characterization 

of lattice materials with arbitrary cell topologies is presented, with the goal of integrating 

it with an iterative routine to tailor the material properties. To this end, the Bloch-wave 

method and the Cauchy-Born hypothesis are applied, respectively, to model periodic 

wave-functions and to homogenize the microscopic properties of the lattice infinite 

periodic microstructure that generates the material effective properties. Stiffness selection 

charts are presented for pin- and rigid-jointed architectures of lattice materials to help 

designers select the best lattice topology for a given engineering application. 

(ii) Multiscale design charts of lattice materials are developed to enable designers to 

determine simultaneously the micro- and the macro-scale geometric parameters that meet 

prescribed requirements as well as enhance the specific load carrying capacity of a lattice 

structure. The criterion used to develop these charts is to impose the coincidence between 

the elastic buckling and the material yielding failures at different length scales. The cross-

section design method of shape transformers is used to determine the best cross-section 

shape and size of the microscopic cell elements as well as of the macroscopic members.  

(iii) Finally, a new class of lattice materials is proposed, namely, tensegrity lattice material, 

which has a stretching dominated behavior with less redundancy than a typical stretching 

dominated topology. This class of lattice materials can support all modes of macroscopic 

loadings due to the lattice non-linear geometrical stiffness resistance that is associated 

with first-order, infinitesimal, periodic, internal mechanisms.  
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RÉSUMÉ 

Les matériaux cellulaires périodiques, aussi connus sous le nom de matériaux réseaux, sont 

constitués d’un grand nombre d’éléments de micro-treillis réticulés qui sont assemblés de 

manière périodique ; ils sont construits en assemblant un grand nombre de cellules composées 

d’un petit nombre d’éléments pour former un pavé dont la périodicité peut être infinie. Les 

matériaux réseaux servent à modifier les propriétés des matériaux solides qui les constituent 

selon la topologie des cellules ou la densité relative, ρ . Le développement des matériaux 

réseaux permet d’élargir la gamme de matériaux pouvant servir dans la conception 

d’applications avancées. 

Les progrès récents dans cette nouvelle famille de matériaux ont mené à leur regroupement 

dans deux catégories: les matériaux dominés par le fléchissement et ceux dominés par 

l’étirement. Les premiers contiennent des matériaux réseaux qui s’affaissent par le 

fléchissement localisé de leurs cellules, conduisant à des propriétés qui ne sont pas optimales. 

Les derniers contiennent une topologie de cellules qui s’affaissent par l’étirement de leurs 

éléments, produisant ainsi une plus grande résistance par unité de masse. Malgré les avancés 

récentes dans la compréhension du mécanisme d’affaiblissement des matériaux réseaux, 

certains défis importants demeurent. i) Les modèles existants de structures réseaux 

périodiques sont applicables à certaines topologies seulement. Une procédure robuste, 

automatisée et analytique pour caractériser les propriétés mécaniques des matériaux réseaux 

ayant une topologie microscopique arbitraire doit être développée. ii) La stratégie utilisée 

dans la littérature pour former la section transversale d’éléments de cellule minces en formes 

circulaires mène à un affaiblissement des éléments du treillis par gondolement. Pour éviter cet 

affaissement, les chercheurs ont proposé d’augmenter la taille de la section transversale des 

éléments microscopiques. Cependant, cette augmentation de la résistance se fait au détriment 

du poids du matériau. iii) Les matériaux réseaux qui sont dominés par l’étirement offrent des 

propriétés mécaniques très supérieures à celles des matériaux  dominés par le fléchissement. 

Leur structure, constituée uniquement de topologies triangulaires, pourrait toutefois contenir 

plusieurs membres superflus qui ajoutent un poids indésirable et un comportement structurel 

qui ne se conforme pas aisément. 
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Le travail décrit dans cette thèse a pour but d’améliorer les modèles mécaniques existants à 

plusieurs échelles ainsi que les outils d’analyse structurelle servant à la conception de 

matériaux réseaux. Les trois contributions principales de cette thèse, abordant les 

problématiques mentionnées plus haut, sont les suivantes: 

(i) Une procédure systématique basée sur les matrices est présentée pour la modélisation et 

la caractérisation des matériaux réseaux possédant une topologie cellulaire arbitraire. 

Cette procédure peut être intégrée à une routine itérative pour ajuster les propriétés d’un 

matériau. La méthode ondulatoire de Bloch et l’hypothèse de Cauchy-Born sont 

appliquées, respectivement, pour modéliser les fonctions d’ondes périodiques et pour 

homogénéiser les propriétés microscopiques de la microstructure périodique des treillis, 

responsable des propriétés effectives du matériau. Des tableaux de sélection de la dureté 

sont présentés pour des architectures de matériaux réseaux à joints rigides ou à boulons. 

Ces tableaux permettent de choisir la meilleure topologie de treillis pour une application 

donnée. 

(ii) Des tableaux de conception multi-échelle pour les matériaux réseaux sont développés 

pour permettre aux concepteurs d’établir simultanément les paramètres géométriques 

microscopiques et macroscopiques qui satisfont aux exigences prescrites et qui 

améliorent la capacité de charge de la structure en treillis. Le critère utilisé pour 

développer ces tableaux est que le gondolement élastique doit coïncider avec 

l’affaiblissement du matériau par écoulement à toutes les échelles de longueur. La 

méthode de transformation de formes est utilisée afin de définir la meilleure forme pour 

la section transversale, la taille des éléments cellulaires microscopiques, ainsi que celle 

des membres macroscopiques. 

(iii) Finalement, une nouvelle classe de matériaux réseaux est proposée pour les matériaux 

dont le comportement est dominé par l’étirement et qui ont moins de membres superflus 

que les matériaux typiquement dominés par l’étirement. Cette classe de matériaux peut 

soutenir tous les modes de chargement macroscopiques grâce à la résistance géométrique 

non linéaire du treillis qui provient de mécanismes périodiques infinitésimaux du premier 

ordre. 

 



VIII 

 

ACKNOWLEDGEMENTS 

Working as a Ph.D. student at McGill University was a magnificent as well as a challenging 

experience to me. In all these years, many people were instrumental directly or indirectly in 

shaping up my academic career. It was hardly possible for me to thrive in my doctoral work 

without the precious support of those personalities. Here is a small tribute to all those people. 

First of all, I wish to thank my supervisor Professor Damiano Pasini for introducing me to the 

world of cellular solids. It was only due to his valuable guidance, cheerful enthusiasm and 

ever-friendly nature that I was able to complete my research work in a respectable manner.  

My special thanks to Professor Jorge Angeles (McGill University) and Professor A. Srikantha 

Phani (University of British Columbia) for their valuable discussions and for providing me 

valuable references that remarkably helped me in my work. My thanks also extend to 

Professor Francois Barthelat (McGill University) for his valuable discussions during my 

experimental work. I would like to thank Professor Larry Lessard and Professor Pascal 

Hubert (McGill University) for giving me access to the facilities in the structures and 

composite materials laboratory necessary to perform my experiments. My thanks extend 

towards Ing. Eric Lavoie of the Experimental Laboratory of the Hydro-Quebec Research 

Institute in Varennes, Canada where the specimens necessary for my experimental work were 

manufactured, for his technical assistance during the manufacturing process. Many thanks 

also to Mrs Joyce Nault, the graduate secretary in the Mechanical engineering department at 

McGill University, for her help in all the administrative matters that was necessary for my 

work at McGill University.   

I would like to thank the National Sciences and Engineering Research Council of Canada 

(NSERC), The faculty of Engineering at McGill University and Mr Les Vadasz for providing 

the financial support for my research project through, the NSERC/D3 fellowship, the McGill 

Engineering Doctoral Award (MEDA) and Les Vadasz Doctoral Award, respectively. 

I wish to thank my sisters Azza and Salwa and my brother-in-law Nader for their constant 

support and encouragement in all my professional endeavours. Finally, I wish to express my 

gratitude to my wife "Mayada" for her continuous emotional and moral supports.  

 

 

 



IX 

 

CLAIM OF ORIGINALITY 

The author claims the originality
1
 of the main ideas and research results reported in this 

thesis, the most significant being listed below: 

• The development of a systematic matrix based procedure for the classification and 

characterization of lattice materials. 

• The Dummy Node Rule (DNR) and the Dummy Node Scheme (DNS) for the static 

analysis of pin-jointed lattice structures and materials. 

• The development of the comprehensive (material and geometrical) stiffness 

Characteristics of periodic lattice structures and materials. 

• Introducing the structuring concepts of Periodicity Induced Stability (PIS) and 

Periodicity Induced Tensegrity (PIT). 

• Introducing and characterizing the Tensegrity Lattice Materials (TLM) as a new class 

of open cell cellular solids. 

• The development of multiscale design charts of macroscopic mechanical members 

manufactured of lattice materials. 

• Integrating the concept of cross-sectional shape transformers into the design process 

of lattice materials. 

 

 

 

 

 

 

 

 

 

 

 

 

1
Some of the reported results have in part been published in (Elsayed, M.S.A. and Pasini, D., 2009; 

2010a; 2010b). 



X 

 

PUBLICATIONS ARISING FROM THIS THESIS 

Refereed Journal Papers 

1. Mostafa S.A. Elsayed and Damiano Pasini, “Analysis of the Elastostatic Specific Stiffness of 

2D Stretching-Dominated Lattice Materials”, Journal of Mechanics of Materials, Vol. 42, 7, 

pp. 709-725. (2010a). 

2. Mostafa S.A. Elsayed and Damiano Pasini, “Multiscale Structural Design of Columns Made 

of Regular Octet-Truss Lattice Material”, International Journal of Solids and Structures Vol. 

47, 14-15, pp. 1764-1774, (2010b). 

3. Mostafa S.A. Elsayed, Pasini D., "Mechanics of 2D Pin Jointed Lattice Structures", AES 

Technical Reviews, Part B: International Journal of Advances in Mechanics and Applications 

of Industrial Materials, Vol. 1, 1, pp. 83 – 91, (2009). 

4. Mostafa S.A. Elsayed and Damiano Pasini, “Stiffness Properties of Rigid-Jointed Periodic 

Cellular Solids”, Submitted to the International Journal of Solids and Structures, Manuscript 

Number: IJSS-D-10-00777. (2010c). 

5. Mostafa S.A. Elsayed and Damiano Pasini, “Comprehensive Stiffness of Prestressed Periodic 

Structures and Cellular Materials”, Submitted to the Journal of Materials Science and 

Engineering A, Manuscript Number: MSEA-S-10-04036. (2010d). 

Refereed Conference Papers 

1. Mostafa S.A. Elsayed and Damiano Pasini “Theoretical and Experimental Characterization 

of the 3
4
.6 2D Lattice Material”. ASME 2010 International Design Engineering Technical 

Conferences & Computers and Information in Engineering Conference IDETC/CIEC August, 

15-18, 2010, Montreal, Qc, Canada. 

2. Mostafa S.A. Elsayed and Damiano Pasini “Structural Performance Analysis and 

Characterization of Novel 2D Stretching Dominated Infinite Lattice Materials”, ASME 2009 

International Design Engineering Technical Conferences & Computers and Information in 

Engineering Conference IDETC/CIE, Aug 30- Sept 2, 2009, San Diego, California, USA. 

3. Mostafa S.A. Elsayed, Hébert Clément, and Damiano Pasini “Structural Analysis of Pin 

Jointed Lattice Structures”. Third International Conference on Advances and Trends in 

Engineering Materials and their Applications AES-TEMA 2009. McGill University, July 6-10 

2009. 



XI 

 

4. Mostafa S.A. Elsayed and Damiano Pasini “Multi-Scale Model of the Effective Properties of 

the Octet-Truss Lattice Material”, AIAA Technical Conferences, Victoria, BC, Canada, 

September 10-12, 2008. 

Technical Reports 

1. Mostafa S.A. Elsayed, "The Bloch’s Theorem". McGill University, Technical Report No. 

TR-MDOG-09-01 (2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 

 

TABLE OF CONTENTS 

CHAPTER 1. Introduction........................................................................................................ 1 

1.1 Lattice Materials................................................................................................................ 3 

1.2 Problem Statement............................................................................................................ 5 

1.3 Research Objectives.......................................................................................................... 6 

1.4 Thesis Outline................................................................................................................... 7 

CHAPTER 2. Literature Review............................................................................................... 8 

2.1 Introduction....................................................................................................................... 8 

2.2 Statics of Truss-Like Finite Structures.............................................................................. 8 

2.2.1 Determinacy Analysis and Classification of Pin-Jointed Finite Structures................. 8 

2.2.2 Pre-Stressed Mechanisms............................................................................................ 11 

A. Tensegrity Structures: A Class of Pre-Stressed Finite Structures................................. 13 

A.1 The Concept of Tensegrity........................................................................................ 13 

A.1.1 Definition of a Tensegrity Structure.................................................................... 13 

A.2 Statics of Tensegrity Structures................................................................................ 16 

2.3 Statics of Infinite Periodic Lattice Structures and Materials............................................. 17 

2.3.1 Geometrical Classification of Periodic Lattice Structures........................................... 18 

A. Planar Lattice Structures................................................................................................ 18 

B. Spatial Lattice Structures............................................................................................... 19 

2.3.2 Determinacy Analysis and Classification of Infinite Periodic Lattice Structure......... 19 

2.3.3 Effective Mechanical Properties of Cellular Materials................................................ 24 

2.3.4 Bloch-Wave Method.................................................................................................... 27 

A. The Bloch’s Theorem.................................................................................................... 27 

A.1 The Bloch’s Theorem and its Applications in Solid State Physics........................... 28 

A.2 Bloch’s Theorem in Continuum Mechanics............................................................. 29 

A.3 Statement of the Bloch’s Theorem in Continuum Mechanics.................................. 30 

A.4 Applications of the Bloch's Theorem in the Literature of Periodic Structures and 

Lattice Materials.............................................................................................................. 

 

31 

2.4 Concluding Remarks Emerging From the Literature........................................................ 33 

CHAPTER 3. Determinacy Analysis and Classification of Pin-Jointed Infinite Periodic 

Lattice Structures....................................................................................................................... 

 

34 

3.1 Introduction....................................................................................................................... 34 



XIII 

 

3.2 Equilibrium and Kinematic Matrix Systems of Unit Cell Finite Structures..................... 34 

3.2.1 Definition of the Unit Cell of a Lattice Structure........................................................ 34 

A. Node Bases Group......................................................................................................... 35 

B. Bar Bases Group............................................................................................................ 36 

3.2.2 Equilibrium System of the Unit Cell Finite Structure................................................. 36 

3.2.3 Kinematic System........................................................................................................ 37 

3.2.4 Duality of the Kinematic and the Equilibrium Matrices.............................................. 38 

3.3 Determinacy Analysis of the Finite Structure of the Unit Cell......................................... 38 

3.3.1 Four Fundamental Subspaces...................................................................................... 39 

3.4 Stiffening Effect of States of Self Stress........................................................................... 40 

3.4.1 The Necessary Condition for First-Order Infinitesimal Mechanisms: The Product 

Force Vector Approach......................................................................................................... 

 

40 

A. Mode (i) of Structural Response.................................................................................... 41 

B. Mode (ii) of Structural Response................................................................................... 41 

B.1 Product Force Vector Analysis................................................................................. 42 

B.2 Global State of Self-Stress........................................................................................ 43 

B.2.1 Vector of Linear Combination Constantsγ ........................................................ 43 

B.2.2 Vector of Imposed Elongations 0e ....................................................................... 44 

C. Combined Response of the Structure............................................................................ 45 

3.4.2 The Sufficient Condition for First-Order Infinitesimal Mechanisms: The 

Definiteness of the stress tensor Quadratic Form................................................................. 

 

46 

3.5 Determinacy Analysis of the Infinite Periodic Structure.................................................. 47 

3.5.1 Direct Translational Bases........................................................................................... 47 

3.5.2. Direct Translational Vector......................................................................................... 47 

3.5.3. Position Vectors.......................................................................................................... 47 

3.5.4. Direct Lattice.............................................................................................................. 48 

3.5.5 Reciprocal Lattice........................................................................................................ 48 

3.5.6 Bloch's Theorem.......................................................................................................... 49 

A. Bloch-Wave-Function.................................................................................................... 49 

B. Wave-Functions Transformation Matrices..................................................................... 50 

3.6 Stiffening Effect of Periodic States of Self-Stress to Periodic states of Internal 

Mechanisms............................................................................................................................. 

 

53 



XIV 

 

3.6.1 The Necessary Condition for First-Order Infinitesimal Mechanisms: The Product 

Force Vector Approach......................................................................................................... 

 

53 

A. Mode (i) of Infinite Periodic Structural Response........................................................ 54 

B. Mode (ii) of Infinite Periodic Structural Response........................................................ 54 

B.1 Product Force Vector Analysis of Infinite Periodic Structures................................. 55 

C. Combined Response of the Infinite Periodic Lattice..................................................... 56 

3.6.2 The Sufficient Condition for First-Order Infinitesimal Mechanisms: The 

Definiteness of the Stress Tensor Quadratic Form............................................................... 

 

56 

3.6.3 Stiffening Effect of Periodic States of Self-Stress to Periodic States of Internal 

Mechanisms at wave-number )0,0(=ω .............................................................................. 

 

57 

3.7 The Dummy Node Rule for the Analysis of Pin-Jointed Periodic Lattice Structures....... 59 

3.7.1. Extending the Mathematical Description of the Unit Cell......................................... 60 

A. Lattice Bases.................................................................................................................. 61 

A.1 Dummy Node Bases Group...................................................................................... 61 

A.2 Node Bases Group.................................................................................................... 61 

A.3 Bar Bases Group....................................................................................................... 62 

3.7.2 The Dummy Node Rule............................................................................................... 62 

A. Proof of the DNR........................................................................................................... 63 

3.7.3 The Application of the Dummy Node Rule for the Determinacy Analysis of Lattice 

Structure: The Dummy Node Scheme.................................................................................. 

 

66 

A. Proof of the Validity of the Elimination Scheme.......................................................... 68 

A.1 Equilibrium Analysis................................................................................................ 68 

A.2 Kinematic Analysis................................................................................................... 70 

3.8 Classification of Pin-Jointed Infinite Periodic Lattice Structures..................................... 72 

3.9 Conclusion......................................................................................................................... 72 

CHAPTER 4. Effective Elastic and Strength Properties of Pin-Jointed Lattice Materials....... 75 

4.1 Introduction....................................................................................................................... 75 

4.2 Relative Density of 2D Lattice Material........................................................................... 76 

4.3 Effective Elastic Properties of 2D Lattice Materials......................................................... 76 

4.3.1 Macroscopic Strain Generated by Microscopic Mechanisms...................................... 76 



XV 

 

A. Cauchy-Born Hypothesis............................................................................................... 76 

4.3.2 Microscopic Element Deformations in Terms of Macroscopic Strain Field............... 78 

4.3.3 Macroscopic Strain Energy Density: Material Elastic Moduli.................................... 80 

4.4 Effective Strength Properties of Lattice Materials............................................................ 81 

4.4.1 Plastic Yield Strength.................................................................................................. 83 

4.4.2 Elastic Buckling Strength............................................................................................ 84 

4.5 Lattice Materials Stiffness Selection Design Charts......................................................... 85 

4.6 Conclusion......................................................................................................................... 85 

CHAPTER 5. Multiscale Structural Design of Columns made of Regular Octet-Truss 

Lattice Material.......................................................................................................................... 

 

89 

5.1 Introduction....................................................................................................................... 89 

5.2 Description of the Regular Octet-Truss Cell..................................................................... 90 

5.3 Geometric Variables.......................................................................................................... 90 

5.4 Modeling the Effective Properties of the Octet-Truss Lattice Material............................ 94 

5.4.1. Relative Density.......................................................................................................... 95 

5.4.2. Elastic Properties........................................................................................................ 95 

5.4.3 Strength Properties....................................................................................................... 96 

A. Plastic Yield Strength.................................................................................................... 96 

B. Elastic Buckling Strength.............................................................................................. 97 

5.5 Collapse Surfaces.............................................................................................................. 100 

5.5.1 Yield Collapse.............................................................................................................. 100 

5.5.2 Buckling Collapse Surfaces......................................................................................... 102 

5.6 Examples........................................................................................................................... 103 

5.6.1 Example 1.................................................................................................................... 103 

5.6.2 Example 2.................................................................................................................... 104 

5.7 Design Charts for the Regular Octet-Truss Lattice Material............................................ 107 

5.8. Multiscale Design of an Axially Loaded Macroscopic Member..................................... 109 

5.8.1 Design Chart for Macroscopic Strut............................................................................ 109 

5.8.2 Multiscale Design Charts............................................................................................. 112 

5.9 Conclusion......................................................................................................................... 113 

CHAPTER 6. Experimental Characterization of the 6.3
4

 2D Lattice Material....................... 115 



XVI 

 

6.1 Introduction....................................................................................................................... 115 

6.2 Design of Specimens......................................................................................................... 115 

6.2.1 Design of the Microscopic Cell Element..................................................................... 117 

6.2.2 Design of the Specimen Macroscopic Dimension....................................................... 118 

6.2.3 Design of the Specimen Thickness.............................................................................. 119 

6.3 Theoretical Mechanical Properties of the Designed Lattice Material............................... 121 

6.4 Experimental Set-up and Instrumentation......................................................................... 122 

6.5 Tests and Test Results....................................................................................................... 124 

6.5.1 Compression Test........................................................................................................ 124 

6.5.2 Tension Test................................................................................................................. 126 

6.5.3 Shear Test.................................................................................................................... 127 

6.6 Discussion......................................................................................................................... 128 

6.7 Conclusion......................................................................................................................... 130 

CHAPTER 7. Stiffness Properties of Rigid-Jointed Micro-Structured Lattice Materials......... 132 

7.1 Introduction....................................................................................................................... 132 

7.2 Equilibrium and Kinematic Systems of Unit Cell Rigid-Jointed Finite Structure............ 133 

7.3 Stiffness System of Unit Cell Rigid-Jointed Finite Structure........................................... 135 

7.4 Stiffness System of Rigid-Jointed Infinite Lattice Structure............................................ 138 

7.5 The Homogenization Process of the Stiffness Properties of Periodic Microstructure: 

The Macroscopic Stiffness of Lattice Material....................................................................... 

 

141 

7.5.1 Cauchy-Born Hypothesis............................................................................................. 141 

7.5.2 Microscopic Nodal Deformations in Terms of Macroscopic Strain Field................... 142 

7.5.3 Homogenized Macroscopic Stiffness of Lattice Material........................................... 144 

7.6 Application of the Developed Methodology to Thirteen 2D Lattice Topologies............. 145 

7.6.1 Effectiveness of Nodal Rigidity................................................................................... 148 

7.7 Anisotropy of Lattice Material.......................................................................................... 151 

7.8 Discussion and Concluding Remarks................................................................................ 157 

CHAPTER 8. Comprehensive Stiffness and Classification of Periodic Lattice Materials and 

Structures................................................................................................................................... 

 

158 

8.1 Introduction....................................................................................................................... 158 

8.2 Comprehensive Stiffness System of Unit Cell Finite Structure........................................ 160 

8.2.1 Comprehensive Stiffness of bar and frame Elements.................................................. 161 

A. Comprehensive Stiffness of a Bar element: an Element in a Pin-Jointed Lattice  



XVII 

 

Structure............................................................................................................................. 161 

B. Comprehensive Stiffness of a Frame element: an Element in Rigid-Jointed Lattice 

Structure............................................................................................................................. 

 

163 

8.3 Macroscopic Stiffness of Lattice Material: the Homogenization Process of the 

Stiffness Properties of the Microscopic Lattice Structure....................................................... 

 

167 

8.4 Classification of Lattice Material...................................................................................... 168 

8.5 Effectiveness of the Geometrical Stiffness and its Contribution to the Lattice Material 

Stiffness Resistance................................................................................................................. 

 

171 

8.5.1 The Kagome Lattice Material...................................................................................... 171 

8.5.2 The 
23 4.3 Lattice Material........................................................................................... 173 

8.6 Conclusion......................................................................................................................... 175 

CHAPTER 9. Conclusions and Future work............................................................................. 177 

9.1 Conclusions....................................................................................................................... 177 

9.2 Suggestions for Future Work............................................................................................ 180 

BIBLIOGRAPHY...................................................................................................................... 182 

Appendix A. Bravais Lattices.................................................................................................... 196 

A.1. 2D Bravais Lattices......................................................................................................... 196 

A.1.1. List of 2D Bravais Lattices........................................................................................ 196 

A.2. 3D Bravais Lattices......................................................................................................... 198 

A.2.1. List of 3D Bravais Lattices........................................................................................ 198 

Appendix B. Definitions and Concepts of Solid State Physics and Quantum Mechanics 

Necessary for the Statement and Proof of the Bloch's Theorem............................................... 

 

201 

B.1 The Observable- Operators in Quantum Mechanics........................................................ 201 

B.2 The Schrödinger equation................................................................................................. 201 

B.3 The Translation Operator TR............................................................................................. 203 

B.4 The Wave-function, ψ(x,t)................................................................................................ 204 

B.4.1 Properties of the wave-function, ψ(x,t)....................................................................... 204 

Appendix C. The Bloch’s theorem in Solid State Physics........................................................ 206 

C.1 The Bloch's Theorem........................................................................................................ 206 

C.2 First Proof of the Bloch’s theorem................................................................................... 206 

C.3 Second Proof of the Bloch’s theorem............................................................................... 209 

Appendix D Mathematical Representation of Lattice Assemblies............................................ 211 



XVIII 

 

D.1 Atomic Structure and Symmetries................................................................................... 211 

D.1.1 Primitive Unit Cell...................................................................................................... 212 

A. Bravais Lattices............................................................................................................. 213 

B. Wigner-Seitz Primitive Cell.......................................................................................... 214 

D.1.2 Conventional Unit Cells.............................................................................................. 214 

D.1.3 Lattices with Basis...................................................................................................... 214 

D.2 Reciprocal Lattice............................................................................................................. 215 

D.3 Brillouin Zones................................................................................................................. 217 

D.4 Point Group Symmetry and its application to the reduction of the first Brillouin Zone..  218 

D.4.1 Point Group Theory of Lattice Symmetries................................................................ 219 

A. Mathematical Group...................................................................................................... 219 

A.1 The Cyclic Group...................................................................................................... 220 

A.1.1 The nth Root of Unity nC ..................................................................................... 220 

A.2 The dihedral group nD .............................................................................................. 221 

APPENDIX E. Determinacy Analysis of 2D Infinite Lattice Structures: Applications............ 223 

E.1 Square Lattice Structure.................................................................................................... 223 

E.2 Lattice Structure with Schlafli symbol of
23 4.3 ................................................................ 228 

E.2.1 Unit Cell Equilibrium System..................................................................................... 228 

E.2.2 Determinacy Analysis of Unit Cell Finite Structure................................................... 230 

E.2.3 Infinite Lattice Determinacy Analysis......................................................................... 230 

E.2.4 Stiffening Effect of Periodic States of Self-Stress to Periodic Internal Mechanisms. 232 

E.3 Kagome Lattice Structure................................................................................................. 235 

E.3.1 Determinacy Analysis of Unit Cell A of the Kagome Lattice Structure..................... 235 

E.3.2 Determinacy Analysis of the Infinite Kagome Lattice Structure................................ 238 

E.3.3 Stiffening Effect Analysis of the Kagome Lattice at Wave-Number.......................... 249 

E.3.4 Stiffening Effect Analysis of the Kagome Lattice at Wave-Number.......................... 251 

E.4 Determinacy Analysis of the Kagome Lattice at Wave-Number )0,0(=ω .................... 253 

E.5 Summary of the Determinacy Analysis Results of the 19 Lattice Topologies................. 257 

APPENDIX F. Effective Elastic and Strength Properties of Pin-Jointed Lattice Materials: 

Applications............................................................................................................................... 

 

265 

F.1 Characterization of the Semi-Double-Braced Square Lattice........................................... 265 

F.2 Characterization of the 6.3
4

 Lattice Material................................................................... 273 



XIX 

 

F.3 Double Hexagonal Triangulation (DHT).......................................................................... 276 

F.4 Full Triangulation ( 63 )..................................................................................................... 276 

F.5 Hexagonal Honeycombs................................................................................................... 277 

F.6 Kagome Lattice................................................................................................................. 277 

F.7 Square Lattice................................................................................................................... 278 

F.8 Semi-Uni-Braced Square Lattice...................................................................................... 278 

F.9 Uni- Braced Square Lattice............................................................................................... 278 

F.10 Double- Braced Square Lattice.......................................................................................
 

278 

Appendix G. Elastic Properties of Rigid Jointed 2D Lattice Materials: Applications.............. 280 

G.1 Example............................................................................................................................ 280 

G.2 Square Lattice Material.................................................................................................... 285 

G.3 Kagome Lattice Material.................................................................................................. 286 

G.4 Lattice Material with Schlafli Symbol of
23 4.3 ................................................................ 286 

G.5 Lattice Material with Schlafli Symbol of 6.34
................................................................. 287 

G.6 Double Hexagonal Triangulation (DHT) Lattice Material............................................... 288 

G.7 Semi-Uni- Braced Square (SUBS) Lattice Material........................................................ 288 

G.8 Triangular- Triangular (TT) Lattice Material................................................................... 289 

G.9 Semi-Double Braced Square (SDBS) Lattice Material.................................................... 290 

G.10 Uni- Braced Square (UBS) Lattice Material.................................................................. 290 

G.11 Double-Braced Square (DBS) Lattice Material............................................................. 291 

G.12 Patched Kagome' Lattice Material................................................................................. 292 

G.13 Semi-Hexagonal Triangulation (SHT) Lattice Material................................................ 293 

Appendix H. Comprehensive Stiffness Properties of 2D Pin- and Rigid-Jointed Lattice 

Materials: Application............................................................................................................... 

 

294 

H.1 Square Lattice Material.................................................................................................... 294 

H.2 The 
23 4.3  Lattice Material............................................................................................... 296 

H.3 Triangular Lattice Material.............................................................................................. 298 

H.4 Lattice Material with Schlafli Symbol of
23 4.3 ................................................................ 298 

H.5 Lattice Material with Schlafli Symbol of 6.34
................................................................. 299 

H.6 Double Hexagonal Triangulation (DHT) Lattice Material............................................... 300 

H.7 Semi-Uni- Braced Square (SUBS) Lattice Material........................................................ 301 



XX 

 

H.8 Triangular- Triangular (TT) Lattice Material................................................................... 302 

H.9 Semi-Double Braced Square (SDBS) Lattice Material.................................................... 303 

H.10 Uni- Braced Square (UBS) Lattice Material.................................................................. 303 

H.11 Double-Braced Square (DBS) Lattice Material............................................................. 304 

H.12 Patched Kagome Lattice Material.................................................................................. 305 

H.13 Semi-Hexagonal Triangulation (SHT) Lattice Material................................................ 306 

H.14 Kagome lattice material.................................................................................................. 307 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XXI 

 

LIST OF FIGURES 

1.1 Material selection chart-Materials' density versus Young's modulus property space.................... 1 

1.2 Different types of monolithic and hybrid materials....................................................................... 2 

1.3   Filling gaps in a metal selection chart by mapping properties of Aluminum alloy through the 

development of aluminum cellular solids (Foams and Lattice Materials)...........................................  

 

3 

1.4 Microstructure of cellular materials............................................................................................... 4 

1.5 Examples of recent applications of lattice materials...................................................................... 4 

2.1 Different types of 2D frameworks................................................................................................. 10 

2.2 Example of a purest tensegrity structure........................................................................................ 15 

2.3 Examples of classes 1, 2 and 3 of tensegrity structures................................................................. 15 

2.4 2D regular lattice structures........................................................................................................... 18 

2.5 2D semi-regular lattice structures.................................................................................................. 20 

2.6 2D other lattice structures.............................................................................................................. 21 

2.7 3D polyhedral cells......................................................................................................................... 22 

2.8 Examples of Double Layered Grids............................................................................................... 22 

2.9 Structure of a unit cell of the regular octet-truss lattice material................................................... 22 

3.1 (a) Kagome lattice structure; (b) Cell envelope; (c) Unit cell........................................................ 35 

3.2 Three node equilibrium in pin-jointed structure............................................................................ 37 

3.3 Three node kinematics in pin-jointed structure.............................................................................. 38 

3.4 A generic unit cell with its periodic displacement boundary conditions....................................... 50 

3.5  (a) Lattice structure; (b) Cell envelope; (c) Unit cell A; (d) Unit cell B without dummy nodes; 

(e) Unit cell B with dummy nodes....................................................................................................... 

 

60 

3.6 A lattice structure (left) and the assembly of three unit cells (right) that are tessellated in the 

direction of the horizontal translational basis...................................................................................... 

 

64 

4.1 The relative Young's modulus in the x direction of the stretching dominated lattice material 

versus its relative density..................................................................................................................... 

 

86 

4.2 The relative Young's modulus in the y direction of the stretching dominated lattice material 

versus its relative density..................................................................................................................... 

 

87 

4.3 The relative Shear modulus of the stretching dominated lattice material versus its relative 

density.................................................................................................................................................. 

 

88 

5.1 Structure of a unit cell of the regular octet-truss lattice material................................................... 91 

5.2 Multiscale geometrical details of macroscopic member manufactured of lattice material............ 92 



XXII 

 

5.3 Variation of the shape transformers of the cross-section area and second moment of area for 

different cross-section shapes............................................................................................................... 

 

93 

5.4 Variation of the lattice material relative density with respect to cross-section efficiency and to 

area shape transformer........................................................................................................................ 

 

99 

5.5 Elastic and plastic collapse surfaces of the octet-truss lattice material evaluated for the relative 

direct stresses and normalized with respect to the material relative density........................................ 

 

102 

5.6 Efficiencies of different cross-section shapes at specified ψA=0.6................................................ 105 

5.7 Elastic and plastic collapse surfaces and the effect of cross-section efficiency on the structural 

performance.......................................................................................................................................... 

 

106 

5.8 Design chart of the microscopic architecture of 2D lattice materials............................................ 110 

5.9 Design chart of mechanical members loaded in axial compression............................................... 112 

6.1 (a) Specimens in the manufacturing work space (b) The A2 EMB system................................... 116 

6.2 Parametric detailed dimensioning of the microscopic and the macroscopic constituents of a 

lattice material specimen...................................................................................................................... 

 

117 

6.3  Shear specimen mounted into the three rail shear fixture and installed into the test machine 119 

6.4 CAD drawing of the test specimens along with loading directions............................................... 121 

6.5 Schematic drawing of the test set-up.............................................................................................. 123 

6.6 Experimental set-up and instrumentation....................................................................................... 123 

6.7 Compression test............................................................................................................................ 124 

6.8 A ruptured x-oriented compression specimen................................................................................ 125 

6.9 Compression test results-(a) x- oriented specimens (b) y- oriented specimens............................. 126 

6.10 Tension specimens-(a) Tension specimen, y-oriented, with the holding plates (b) Ruptured, x- 

oriented, tension specimen................................................................................................................... 

 

127 

6.11 Tension test results-(a) x- oriented specimens (b) y- oriented specimens................................... 128 

6.12 Shear test results.......................................................................................................................... 129 

7.1 A frame element along with all internal and external forces and deformations fields................... 134 

7.2 Generic unit cell with its periodic equilibrium boundary conditions............................................. 139 

7.3 Relative Young's modulus in the horizontal direction versus relative density of selected 2D 

lattice materials.................................................................................................................................... 

 

146 

7.4 Relative Young's modulus in the vertical direction versus relative density of selected 2D lattice 

materials............................................................................................................................................... 

 

147 

7.5 Relative shear modulus versus relative density of selected 2D lattice materials........................... 148 

  



XXIII 

 

7.6 Contribution percentage of the microscopic bending stiffness of microscopic cell elements to 

the macroscopic Young's modulus in the horizontal direction of the lattice material versus the 

material relative density....................................................................................................................... 

 

 

149 

7.7 Contribution percentage of the microscopic bending stiffness of microscopic cell elements to 

the macroscopic Young's modulus in the vertical direction of the lattice material versus the 

material relative density....................................................................................................................... 

 

 

150 

7.8 Contribution percentage of the microscopic bending stiffness of microscopic cell elements to 

the macroscopic shear modulus versus the material relative density................................................... 

 

151 

7.9 Infinitesimal stress field of lattice material.................................................................................... 152 

7.10 Polar plot of the variation of the Young's modulus of lattice material in the x- direction with 

the angle  [ ]oo 360,0∈θ  for material relative......................................................................................... 

 

154 

7.11 Polar plot of the variation of the Young's modulus of lattice material in the y- direction with 

the angle  [ ]oo 360,0∈θ  for material relative......................................................................................... 

 

155 

7.12 Polar plot of the variation of the shear modulus of lattice material in the xy- direction with the 

angle  [ ]oo 360,0∈θ  for material relative density.................................................................................. 

 

156 

8.1 Statically and kinematically indeterminate framework.................................................................. 159 

8.2 Bar element (left) and frame element (right) along with nodal degrees of freedom...................... 162 

8.3 Variation of the elastic moduli of the Kagome lattice material with the nominal strain of the 

solid material........................................................................................................................................ 

 

172 

8.4 Variation of the shear moduli of the 
23 4.3  lattice material with the nominal strain of the solid 

material................................................................................................................................................. 

 

174 

8.5 Comparison of the elastic moduli of the Kagome and the 
23 4.3 lattice materials......................... 

 

 

 

 

 



XXIV 

 

LIST OF TABLES 

2.1 Classes of pin-jointed structures.................................................................................................. 11 

2.2 Common cell topologies considered in the literature of lattice material..................................... 23 

3.1 Classes of infinite periodic lattice structures............................................................................... 72 

3.2 Classification of 2D infinite periodic lattice structures............................................................... 73 

6.1 Height of tension and compression specimens............................................................................ 118 

6.2 Width of the tension and compression specimens....................................................................... 119 

6.3 Summary of the compression test results.................................................................................... 125 

6.4 Summary of the tension test results............................................................................................. 127 

6.5 Summary of the shear test results................................................................................................ 128 

6.6 Comparison between the theoretical and the experimental characterization results................... 131 

8.1 Classification of lattice materials................................................................................................. 169 

8.2 Classification of lattice materials................................................................................................. 170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1 

Introduction 

One of the main objectives in engineering design is the selection of the optimum material for a 

given application. A number of optimization techniques have been developed for this purpose. An 

excellent technique to scan candidate materials for given functional requirements and geometry is 

the creation of material selection charts (Ashby, M.F., 2005). Fig (1.1) shows a material selection 

chart developed for the Young's modulus and density. Such chart helps selecting the material with 

the optimum stiffness (or compliance) for a specific application. 

 

 

 

 

 

 

 

 

 

Fig (1.1) Material selection chart- Materials' density versus Young's modulus property 

space 

As shown in Fig (1.1), the design space in a material selection chart is discontinuous. A material 

is generally described by the coordinates of a point. Materials falling within the same class cluster 

together in the same boundaries forming a bubble-like region. However, gaps exist where no 

material can achieve certain properties. Filling those gaps and finding alternative materials are 

among the main motives of material scientists and engineers.  

Several methods were proposed to develop new materials, such as metal alloys and polymers. 

Among those, there are methods attempting to integrate a material with either air, or fluid or a 
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combination of solid materials to allow the superposition or interpolation of their properties. Such 

materials are referred to as Hybrid Materials (Ashby, M.F., 2005). Examples of hybrid materials 

include composites, sandwich and cellular materials. Fig (1.2) shows the five families of 

monolithic materials and the different types of hybrid materials.      

 

 

 

 

 

 

 

 

 

 

Fig (1.2) Different types of monolithic and hybrid materials 

A cellular material can be considered as a structured material whose building blocks are the 

material cells. When a solid material is structured into a cellular material with microscopic 

architecture, the single valued material property expands to assume a range that depends on the 

cellular material microscopic topology, besides the relative density, ρ , of the cellular material.  

An example of mapping material properties to populate empty gaps of a material selection chart is 

shown in Fig (1.3). Here, an aluminum alloy is shaped into a cellular solid with augmented 

material properties that occupy new regions of the material chart. These new materials result in 

expanding the material design space, thereby providing tailored advanced materials for new 

applications. 

Cellular materials are found in nature, such as wood, bees' honeycombs, trabecular bones. 

Engineered cellular materials are generally classified into foams and lattice materials (Deshpande, 

 



 

V.S., et.al. 2001a). Foam is mostly produced by the introduction of gas bubbles into a melt 

(Gibson, L. J. and Ashby, M. F., 1997).

 

 

 

 

 

 

 

Fig. (1.3) Filling gaps in a metal selection chart by mapping properties of Aluminum alloy 

through the development of aluminum cellular solids (Foams and Lattice Materials) 

(Elsayed, M.S.A., Pasini, D., 2008)

Microscopic structural analysis shows that fo

nodal connectivity at the cell vertices, typically three to four elements connectivity at a node, as 

shown in Fig (1.4c). The random cellular structure results in a less controllability of the foam 

properties and the low nodal connectivity results in a microscopic bending dominated failure 

mode, where the microscopic cells eventually collapse by the local bending of their walls. These 

features generate mechanical properties that are far from optimal. 

1.1 Lattice Materials 

A lattice material can be defined as a periodic, reticulated micro

number of elements; it is generated by tessellating a unit cell, composed of a few number of 

elements, in an infinite periodicity, eithe

2010).  

Figures (1.4a) and (1.4b) show the microstructures of two examples of planar lattice materials 

along with their unit cell finite structures and cell envelopes. A cell envelope is a virtua

a periodic lattice structure that represents the structural periodicity.

Ultra Low Density Aluminum Octet

3 

V.S., et.al. 2001a). Foam is mostly produced by the introduction of gas bubbles into a melt 

(Gibson, L. J. and Ashby, M. F., 1997). 

 

Fig. (1.3) Filling gaps in a metal selection chart by mapping properties of Aluminum alloy 

through the development of aluminum cellular solids (Foams and Lattice Materials) 

(Elsayed, M.S.A., Pasini, D., 2008) 

Microscopic structural analysis shows that foams have a random cellular structure and a low 

nodal connectivity at the cell vertices, typically three to four elements connectivity at a node, as 

shown in Fig (1.4c). The random cellular structure results in a less controllability of the foam 

and the low nodal connectivity results in a microscopic bending dominated failure 

mode, where the microscopic cells eventually collapse by the local bending of their walls. These 

features generate mechanical properties that are far from optimal.  

A lattice material can be defined as a periodic, reticulated micro-truss structure made up of a large 

number of elements; it is generated by tessellating a unit cell, composed of a few number of 

elements, in an infinite periodicity, either in a two or three-dimensional spaces (Fleck, N.A., et.al., 

Figures (1.4a) and (1.4b) show the microstructures of two examples of planar lattice materials 

along with their unit cell finite structures and cell envelopes. A cell envelope is a virtua

a periodic lattice structure that represents the structural periodicity. 
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V.S., et.al. 2001a). Foam is mostly produced by the introduction of gas bubbles into a melt 

Fig. (1.3) Filling gaps in a metal selection chart by mapping properties of Aluminum alloy 

through the development of aluminum cellular solids (Foams and Lattice Materials) 
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The main advantage of lattice materials over foams is the precise control of its microstructure. 

This has made them strong candidates for many applications in the biomedical, aerospace and 

automotive sectors. Fig (1.5) shows two examples of the use of lattice material in biomedical and 

aerospace engineering (Hongqing V. W., 2005). 

 

 

 

 

 

(a) Triangular 2D lattice structure; (b) 2D lattice structure with topology of Schlafli symbol

3.4.32
; (c) Foam 

Fig (1.4) Microstructure of cellular materials 

 

 

 

 

(a) Hip replacement mechanisms (b) Turbine blades 

Fig (1.5) Examples of recent applications of lattice materials (Hongqing V. W., 2005) 

The precise control of the lattice material microstructure allows generating materials with tailored 

properties and controlled nodal connectivity. Controlling the nodal connectivity enables the 

development of a type of lattice material that collapses by the stretching of its cell members, 

giving a much higher stiffness and strength per unit mass. This type is known as a stretching 

dominated lattice material. For instance, structural analysis of the stretching dominated lattice 

material shows that its stiffness and strength scale up with the densities ratio of the lattice material 

to the solid material, ρ , where the solid material is the material used to manufacture the lattice 

material. On the other hand, the stiffness and strength of the bending dominated lattice materials 

are governed, respectively, by  
2ρ  and 

23ρ (Gibson, L. J. & Ashby, M. F., 1997). The different 
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scaling laws have a strong impact on the strength and stiffness of the material. For example, at

01.0=ρ , the stretching dominated lattice material is hundred times stiffer and ten times stronger 

than the bending dominated counterpart.  

1.2 Problem Statement 

There are several open research issues within the scope of the static response analysis and 

characterization of lattice materials that need to be addressed. The following summarizes the 

research issues that this thesis aims to address. 

(i) To distinguish between the bending dominated and the stretching dominated lattice materials, 

it is required to analyze the static and the kinematic determinacy states of the pin-jointed 

version of the lattice microstructure. It is also required to search for any modes of 

macroscopic strain field developed by inextensional microscopic mechanisms within the 

lattice microstructure. The determinacy analysis of finite pin-jointed frameworks is well 

established in literature, as the state of the art survey illustrates in the second chapter of this 

thesis. An accurate prediction of the performance of lattice materials requires extending the 

determinacy analysis of finite structures to account for pin-jointed infinite periodic structures. 

Such an analysis was performed in literature, although the method bears a few shortcomings. 

For example, the analysis of Hutchinson (2004), using the Bloch-wave method, focused 

mainly on a special type of topology where the cell elements of the unit cells are all 

contained within their cell envelope, as no elements extend between adjacent unit cells, such 

as the topology of the triangular lattice shown in Fig (1.4a). On the other hand, the 

characterization of topologies, such as the 3.4.32
lattice (Fig (1.4b)), using the Bloch-wave 

method represents a challenge since the unit cell does not contain any nodes on the cell 

envelope to retrieve the lattice periodicity. Thus a robust analytical procedure to characterize 

lattice materials with any arbitrary microscopic cell topology needs to be developed. 

(ii) To date, no study has investigated the interactions between the periodic states of self-stress 

and the periodic internal mechanisms developed within an infinite lattice structure. Thus, the 

contribution of the periodic states of self-stress to the comprehensive stiffness of lattice 

materials in the form of non-linear geometrical stiffness remains an open issue. 

(iii) A few number of lattice topologies develop a stretching dominated behavior. Stretching 

dominated lattice materials are mostly structured as a combination of fully triangulated 

topologies in 2D or 3D. Often, these cell topologies generate highly redundant 

microstructures that hold many limitations, including extra weight, non-conformal and non-
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morphing behavior of the material. The search for new stretching dominated lattice concepts 

which are less redundant than the current stretching dominated lattice materials needs to be 

explored.  

(iv) The microscopic members of a stretching dominated lattice material are generally loaded in 

axial tension or compression; this load distribution triggers instability, which might involve 

elastic buckling failure. In the literature, current methods proposed the design of slender 

microscopic cell elements with circular solid cross-sections only, which resulted in collapse 

modes that are dominated by local buckling. To increase buckling resistance, the size of the 

cell member cross-sections, i.e. the relative density of the lattice, is increased at the expense 

of the weight of the material. Multiscale strategies that enable simultaneously selecting the 

micro- and the macro-scale cross-sectional shape parameters of the members of the lattice 

material need to be developed.  

1.3 Research Objectives 

(i) Develop a robust, automated, matrix-based procedure for the determinacy analysis and 

characterization of periodic lattice structures and materials. The procedure must be able to 

model and characterize a lattice material with any arbitrary unit cell topology. 

(ii) Validate the developed theoretical modeling procedure by conducting experimental studies. 

(iii) Investigate the stiffening effect of the periodic states of self-stress on the periodic internal 

mechanisms and use the results of this analysis to classify infinite periodic lattice structures.  

(iv) Formulate the non-linear geometrical stiffness generated by the states of self-stress, 

especially in lattice structures that involve microscopic internal mechanisms.  

(v) Assess the impact of the microscopic geometrical stiffness of lattice structures to the 

macroscopic, homogenized, stiffness characteristics of lattice materials. 

(vi) Search for new lattice material concepts that have a stretching dominated behavior, yet less 

redundant than the typical stretching dominated topologies, available in literature. 

(vii) Generate multiscale design charts for the simultaneous optimum selection of the micro- and 

the macro-scale geometric parameters that can meet prescribed design requirements as well 

as enhance the specific load carrying capacity of lattice structures. Resort to the cross-

section design method of the shape transformers to model cross-section shape and size of 

the microscopic cell elements as well as the macroscopic members manufactured of lattice 

material. 
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1.4 Thesis Outline 

The thesis is organized in nine chapters. After this introduction, chapter two reviews the literature 

on the effective properties of cellular solids. The effect of the states of self-stress on the 

macroscopic performance of lattice materials and structures is outlined. The literature of pre-

stressed mechanisms and tensegrity structures are also reviewed where the recent developments as 

well as the open areas of research are presented. Research questions emerging from the state of 

the art on this subject are given to motivate the rest of this thesis. In chapter three, the 

determinacy analysis of periodic infinite structures is conducted where the stiffening effect of the 

periodic states of self-stress on the periodic internal mechanisms is investigated. Chapter four 

presents an automated, robust, matrix-based, procedure for the analysis and characterization of 

pin-jointed lattice materials. In chapter five, the multiscale design of columns made of 3D octet-

truss lattice material is addressed. In this chapter, the efficiencies of the cell element cross-

sections of the lattice material are considered among the design parameters. The chapter presents 

multiscale design charts which can be used by designers to select the macroscopic and the 

microscopic attributes of columns manufactured of octet-truss lattice material. To verify the 

methodology developed in chapter four, we conduct in chapter six an experimental study that 

characterizes the elastic properties of the 2D triangular-hexagonal lattice material with the 

Schlafli symbol of 34.6 cell topology. We manufactured titanium alloy specimens with 34.6 

topology of lattice material and conducted quasi-static tests to determine its elastic moduli and 

compare them with the results obtained in chapter four. In chapter seven, the elastic properties of 

rigid-jointed lattice materials are characterized where the bending stiffness of the microscopic cell 

elements are considered along with their axial stiffness. The comprehensive stiffness of lattice 

materials and structures are characterized in chapter eight where the geometrical stiffness 

developed by the geometrical non-linearity of lattice structures is computed and superimposed to 

the structure's material stiffness. The comprehensive stiffness computations are used for the 

classification of lattice materials. The thesis ends in chapter nine with a set of conclusions and 

suggestions for future work. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

This chapter reviews the literature on the determinacy analysis and characterization of finite as 

well as infinite periodic lattice structures. Different approaches to determine the effective 

mechanical properties of cellular solids are discussed. Fundamental topics on pre-stressed 

mechanisms and tensegrity structures are also reviewed with the goal of demonstrating the 

significance of the concept of states of self-stress in developing the geometrical stiffness of finite 

frameworks and highlighting their potential significance in enhancing the performance of infinite 

periodic lattice structures and materials. Additional open areas of research in the literature of 

lattice structures and materials are detailed including sizing and shaping of cell element cross-

sections of lattice structures and materials. The chapter concludes with a list of open, un-resolved 

issues that motivate the remainder of this thesis.  

We start with the statics of pin-jointed finite structures before extending the review to the infinite 

periodic lattice structures.  

2.2 Statics of Truss-Like Finite Structures 

2.2.1 Determinacy Analysis and Classification of Pin-Jointed Finite Structures 

The mechanical behavior of pin-jointed frameworks is largely governed by their determinacy state 

in the form of static and kinematic determinacy. The static determinacy is used to determine the 

different modes of states of self-stress experienced by a structure. A state of self-stress is defined 

as a vector of element forces generated within an unloaded framework. On the other hand, the 

kinematic determinacy is used to determine the different modes of mechanisms experienced by a 

pin-jointed structure. The modes of mechanisms include the rigid-body motions and the states of 

internal mechanisms; here the states of internal mechanisms are considered as the different modes 

of structural deformations that are conducted with undeformed elements. While many structural 

frameworks are designed and manufactured with rigid-joints, the performance of pin-jointed 

frameworks is an excellent guide to predict the performance of their rigid-jointed versions 

(Pellegrino, S., Calladine, C. R., 1986; Hoff, N.J. and Fernandez-Sintes, J., 1980; Parkes, E.W., 

1974; Timoshenko, S.P. and Young, D.H., 1965).   
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Maxwell (Maxwell, J.C., 1864) set a rule for the minimum number of bars necessary for a pin-

jointed framework to be kinematically determinate, namely, "simply-stiff" structure; these 

minimum numbers of bars are, (2j-3) and (3j-6) in 2D and 3D frameworks, respectively, where j 

is the number of nodes within a framework. A framework with less number of bars than the 

minimum condition of Maxwell is a mechanism, unless its nodes are set to be rigid. In this case 

the framework behavior is bending dominated as the structural failure is dominated by the 

bending stresses in its constituents. If the number of bars is more than the minimum condition of 

Maxwell, then the structure is over constrained, namely, "over-stiff" structure. Simply-stiff and 

over-stiff structures are kinematically determinate frameworks which have a stretching dominated 

behavior as the failure mode is dominated by the axial stress of the structural constituents. Even if 

simply- and over-stiff frameworks are manufactured as rigid-jointed, which introduce secondary 

bending stresses into their elements, the structural failure is still dominated by axial stresses; thus 

these structures are still classified as stretching dominated.  

Examples of such kind of frameworks are shown in Fig (2.1). Fig (2.1a) is a mechanism that can 

resist a loading once its nodes are set to rigid, as shown in Fig (2.1b), where the structure becomes 

bending dominated. Fig (2.1c) shows a pin-jointed simply-stiff structure which can support any 

loading and is classified as stretching dominated. Even with rigid nodes (Fig (2.1d)) introducing 

secondary bending stresses into the structural constituents, the framework is still classified as 

stretching dominated.  

Part A of Fig (2.1e) shows an over-stiff structure that contains a redundant element in the 

diagonal, while part B shows a mechanism. According to Maxwell's rule (Maxwell, J.C., 1864), 

combining part A and B of Fig (2.1e) apparently generates a simply-stiff structure; however, this 

is not the case, as part B remains a mechanism. Calladine (Calladine, C. R., 1978) and Pellegrino 

(Pellegrino, S., Calladine, C. R., 1986; Pellegrino, S., 1993) reviewed the linear-algebraic basis of 

Maxwell’s rule. As a result, they reformulated the problem to obtain the generalization of 

Maxwell's rule, which includes information about the states of self-stress and the states of internal 

mechanisms within the framework. 

The analysis of the frameworks shown in Figs (2.1e) and (2.1f) using the generalized Maxwell's 

rule shows that each of these structures contains one internal mechanism and one state of self-

stress. However, according to Maxwell's rule the structure of Fig (2.1f) is a mechanism that 

cannot support any loading. This is not the case as the static equilibrium of the external load, F, 

and the elements axial load, t0, can be expressed as: 
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Fig (2.1) Different types of 2D frameworks 

where ∆ is the structural deformation, 0t  is a pre-stress in the elements, E is the material Young's 

modulus, A the elements cross-sectional area and L0 is the elements' initial length. The result of 

eqn (2.1) indicates that the structure in Fig (2.1f) supports external loading, which qualifies this 

structure as a "pre-stressed mechanism". 

A statically and kinematically indeterminate framework is a pin-jointed structure with states of 

self-stress and states of internal mechanisms; while some of those internal mechanisms generate a 

kinematic mobility that allows finite displacements with every additional external load increment 

(e.g. the framework of Fig (2.1e)), other types are unique as the structure encounters only first 

order infinitesimal displacement accompanied by higher order strains (e.g. the framework of Fig 

(2.1f)). Such kinds of structures are pre-stressable and can be found in many engineering and 

natural systems (Kuznetsov, E.N., 1997; Tilbert, G., 2002). Examples of pre-stressed engineering 

systems include cable systems (e.g. cable nets), tensegrity frameworks, pneumatic domes and 

fabric roofs.  

Table (2.1) shows four types of pin-jointed structures found in engineering problems (Pellegrino, 

S., 1992; Pellegrino, S., 1988). For structures of type four, further analysis is required to 

investigate the stiffening effect of the states of self-stress on the states of internal mechanisms. 

B 
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This study would allow discriminating between bending dominated structures (e.g. the structure 

shown in Fig (2.1e)) and pre-stressed mechanisms (e.g. the structure shown in Fig (2.1f)). 

Table (2.1) Classes of pin-jointed structures 

Type 
# of modes of 

states of self-stress 

(s) 

# of modes of states of 

internal mechanisms 

(m) 

Description Class 

I s = 0 m = 0 
Statically & kinematically 

determinate 

Simply-stiff 

(Stretching dominated) 

II s = 0 m > 0 

Statically determinate & 

kinematically 

indeterminate 

Mechanism 

(Bending dominated) 

III s > 0 m = 0 
Statically indeterminate & 

kinematically determinate 

Over-stiff 

(Stretching dominated) 

IV s > 0 m > 0 
Statically & kinematically 

indeterminate 

Mechanism 

(Bending dominated or 

qualified as pre-stressed 

mechanism) 

2.2.2 Pre-Stressed Mechanisms 

Pre-stressed mechanisms are common assemblies in structural engineering. Widespread types 

include pneumatic domes, cable systems and cable nets, fabric roofs and tensegrity structures. As 

shown in §2.2.1, pre-stressed mechanisms are statically and kinematically indeterminate 

structures. Static analysis of pre-stressed mechanisms finds its roots in the works of Mohr (1885), 

Maxwell (1864) and Levi-Civita and Amaldi (1930), Calladine (1982), Calladine and Pellegrino 

(1986; 1991), Volokh and Vilnay (1997) and Kuznetsov (1997; 2000).   

Pellegrino and Calladine (1986) reported a methodology to verify the pre-stressability of statically 

and kinematically indeterminate frameworks. They derived the equilibrium and the kinematic 

systems of pin-jointed finite structures and used the fundamental subspaces of the kinematic and 

the equilibrium matrices to investigate the existence of any states of self-stress and states of 

internal mechanisms. They also developed a methodology to recognize the states of rigid-body 

motions and distinguish them from internal mechanisms for structures that are not constrained 

into a foundation. To study the stiffening effect of the states of self-stress on the internal 

mechanisms they developed the product force vector approach. The product force vector is the 

vector of nodal forces developed in the new geometrical configuration of the structure after 

undergoing the inextensional deformations generated by the internal mechanisms. The work of 

Pellegrino and Calladine (1986) was criticized by Kuznetsov (1989) who showed that the 

stiffening effect developed by the product force vector is just a necessary but not sufficient 
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condition for the structure to impart a positive definite stiffness; positive or semi-positive 

definiteness of the stiffness matrix is a sufficient condition to qualify an internal mechanisms into 

a first-order infinitesimal mechanisms. This drawback in the work of Pellegrino and Calladine 

(1986) was addressed later by the same authors (Calladine, C. R., and Pellegrino, S. (1991)), who 

set a matrix-based algorithm to distinguish between first-order infinitesimal mechanisms, higher 

order mechanisms and finite mechanisms.  They formulated a generalized state of self-stress as a 

linear combination of the individual states of self-stress experienced by the structure. They 

conducted an iterative algorithm to determine the linear combination constants necessary to 

generate the generalized state of self-stress which is capable of imparting positive or semi-positive 

definiteness of the geometrical stiffness of the structure. Further remarks on the topic can be 

found in Calladine and Pellegrino (1991; 1992). 

Kuznetsov (1997) investigated statically and kinematically indeterminate frameworks. He 

developed an algorithm for the resolution of any applied load to a structure into two orthogonal 

components. One component is resisted by the determinate part of the structure while the other 

part is resisted by the geometrical stiffness developed by the structure's geometrical non-linearity.   

Other approaches (Guest 2006; Livesley, R. K., 1975; Connelly, R., Whiteley, W., 1996) used a 

generalized methodology by analyzing the comprehensive stiffness of a structure to investigate 

the stiffening effect of the states of self-stress on the internal mechanisms. The comprehensive 

stiffness of a structure is the superposition of the structure's material stiffness and geometrical 

stiffness. Guest (2006) developed a simple unified approach to derive the comprehensive/tangent 

stiffness of pre-stressed pin-jointed finite structures. He also reviewed the different approaches 

available in literature to derive the comprehensive stiffness of pre-stressed structures including: 

the conventional energy based methods (Livesley, R. K., 1975; Bickford, W. B., 1998; Reddy, J. 

N., 2002; McGuire, W., 2000; Cook, R.D., et. al., 2001), Rigidity theory and pre-stress stability 

method (Connelly, R., Whiteley, W., 1996) and the method of Pellegrino and Calladine (1986). 

Guest (2006) showed that the method of Pellegrino and Calladine (1986) is a special case of the 

other approaches as the geometrical stiffness is developed if the structure experiences 

inextensional deformations developed by first-order infinitesimal mechanisms.  

In this thesis, we are particularly interested in tensegrity structures, as a class of pre-stressed 

mechanisms. We will employ this concept to develop a new class of periodic structures and lattice 

materials. The following is a review on the statics of tensegrity structures. 
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A. Tensegrity Structures: A Class of Pre-Stressed Finite Structures 

This section presents the evolution of the concept of tensegrity and describes the statics of 

tensegrity structures. 

A.1 The Concept of Tensegrity 

The concept of tensegrity has received a great attention among scientists and engineers in many 

fields and relative applications. Wroldsen (2007) in his PhD thesis gives a detailed description of 

the origin of the concept of tensegrity. In the early 19th century, the Russians constructivists were 

the first to introduce this concept. Gough (1998) provided details of some of the Russian 

constructivists in what is called the spatial constructions. She provided details of the work of Karl 

Ioganson (1890-1929) and other Russians in the field of tensegrity structures. The North 

American literature of tensegrity is a controversy between Snelson and Buckminster Fuller. This 

controversy has been discussed in several papers by Sadao (1996), Snelson (1996) and Emmerich 

(1996) to name a few. The concept of tensegrity structure was first introduced as a form of an 

artwork by Snelson in 1948 (Snelson , 1965). Later, Buckminster Fuller, after recognizing the 

engineering relevance of this concept, introduced the term “tensegrity”, to describe the integration 

of struts within a net of strings (Fuller, 1962; Fuller, 1976). 

Independently, David Georges Emmerich (1925-1996) investigated the same concept in France in 

the late 1950s and early 1960s. He named it as "self-tensioning structures". Emmerich 

investigated these ideas and developed several double-layer structures while experimenting 

different ways of interconnecting the basic elements (Emmerich, 1966). 

D’Estree Sterk (2003; 2006) presented tensegrity structures as a possible building envelope for 

responsive architecture as the term "responsive architecture" was introduced by Negroponte 

(1975) for buildings that are able to change form in order to respond to green architecture 

requirements. In aerospace, the concept of tensegrity is used in building lightweight deployable 

structures; a review of such kind of structures can be found in Tilbert (2002). In the field of 

robotics, biologically motivated tensegrity robots are examples of the use of the concept of 

tensegrity (Skelton and Sultan, 1997; 2003; Aldrich et al., 2003a; 2003b). 

A.1.1 Definition of a Tensegrity Structure 

Different definitions and structuring techniques are introduced in the literature of tensegrity 

structures. In 1927, Buckminster Fuller introduced several geometries wherein the concept pre-
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stressability is incorporated in the form of rigid bodies, in compression, stabilized by a network of 

strings in tension. The compressed rigid bodies were generally a set of rods that touch among each 

other. He introduced also the geodesic domes as a type of tension structures where the tension 

strings were attached to more than one node on the rods other than their ends, (Sadao, 1996).  

In 1948 Snelson introduced an art form, which later described as the purest possible class of 

tensegrity structures, where the rigid bodies were a discontinuous set of thin rods, in compression, 

stabilized by a continuous network of strings, in tension. The rigid rods were not touching one 

another, and the strings were only attached at the two nodes of the rods, (Snelson, 1965), as 

shown in Fig (2.2). 

To this point, the term tensegrity was not yet introduced, later, Buckminster Fuller, after 

recognizing the engineering relevance of this concept, introduced the term “tensegrity”, to 

describe the integration of struts within a net of strings (Fuller, 1962; Fuller, 1976). 

In 1976 Pugh described the mechanical principle of tensegrity structures with an analogy to 

balloons. The inside pressure of the balloon is higher than that of the surrounding medium, and is 

pushing in the outward direction against the balloon surface. The elastic balloon is then deformed 

outwards until static equilibrium is reached between internal air pressure and external pressure 

from the balloon skin and the surrounding medium (Pugh, 1976). 

In 1994, Hanaor defined a tensegrity structure as an internally pre-stressed, free-standing pin-

jointed network, in which the cables or tendons are tensioned against a system of bars or struts, 

(Hanaor, 1994). This wide definition included the early works of Buckminster Fuller as tensegrity 

structures. It is worth mentioning here, that this definition did not put any restrictions about the 

compression elements being forming a discontinuous set of rigid compressed rods, in contrast to a 

previous definition. Skelton et al. (2001a) supported this definition by presenting the term "Class 

k" to distinguish the different types of tensegrity structures included in this broader definition of 

Hanaor (1994). Their definition is “A Class k tensegrity structure is a stable tensegrity structure 

with a maximum of k compressive members connected at the node(s)”. Examples of classes 1, 2 

and 3 tensegrity structures are shown in Fig (2.3). However, in 2003, Motro proposed a very strict 

definition for a tensegrity structures; he stated that “a tensegrity systems are spatial reticulate 

systems in a state of self-stress; all their elements have a straight middle fibre and are of 

equivalent size; tensioned elements have no rigidity in compression and constitute a continuous 

set. Compressed elements constitute a discontinuous set; each node receives one and only one 

compressed element” (Motro, 2003). This definition includes only the purest tensegrity structures, 
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similar to the one introduced by Snelson in 1948 and exclude earlier structures introduced by 

Fuller. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2.2) Example of a purest tensegrity structure introduced by Snelson (1965) 

This definition is very strict, that is why many researchers disagreed with some of its aspects. For 

example, Wroldsen (2007) disagreed about the statement that all the elements of a tensegrity 

structure should have a straight middle fibre and be of equivalent size. Motro’s definition is also 

in conflict with former definitions of tensegrity frameworks. For example, Hanaor (1988) 

invented the double layer tensegrity grids where some rods were touching at the nodes, and still 

defined them as tensegrity structures. 

 

 

 

 

 

 

 

 

 

Fig (2.3) Examples of classes 1, 2 and 3 of tensegrity structures introduced by Skelton et al. 

(2001a) 
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So far, all definitions agree upon the fact that a tensegrity structure is a self-standing pre-stressed 

mechanism, i.e. no boundary conditions are necessary to stabilize any internal mechanism. There 

is also consensus about the absence of compression stiffness in tension elements, strings or 

tendons. However, Calladine (1978) replaced the tension strings by a set of rigid bars, similar to 

the compression elements, and used a matrix based technique to study the determinacy of the 

structure and the effect of the pre-stress on the inherent internal mechanisms within the 

framework (Calladine, 1978).  According to the assumption of Calladine, the definition of a 

tensegrity structure can be generalized to include any self-standing structure that has internal 

mechanisms stabilized by pre-stressing. 

A.2 Statics of Tensegrity Structures 

Calladine (1978) applied Maxwell’s rule (Maxwell, 1864) on the calculation of the equilibrium 

and stiffness of frames to investigate the statics of tensegrity structures. Calladine (1978) 

demonstrated examples in which the structure has fewer elements than what is required from 

Maxwell’s rule, but yet it is not a mechanism. These exceptions were described by Maxwell, who 

concluded that the stiffness of these frames were of inferior order. The state of self-stress of 

tensegrity structures make them statically and kinematically indeterminate with infinitesimal 

mechanisms, which means that infinitesimal changes in geometry are possible without changing 

the length of any members (Calladine, 1978, Sultan, 2006).  

Tarnai (1980) also researched pin-jointed tower structures with cyclic symmetry through 

Maxwell's rule (1864). He established conditions for kinematic and static indeterminacies of these 

structures by observing the rank of the equilibrium matrix. He proved that both the kinematic and 

static indeterminacies were independent of the number of stages, and how these properties were 

separated, in his tower structures. Pellegrino and Calladine (1986) and Calladine and Pellegrino 

(1991) elaborated on the findings of Calladine (1978) and examined the physical significance of 

the vector subspaces of the equilibrium matrix for pin-jointed structures being both kinematically 

and statically indeterminate. They developed a matrix-based algorithm to distinguish between first 

order infinitesimal mechanisms and higher order infinitesimal, or finite, mechanisms. Hanaor 

(1988) presented a unified algorithm for analysis and optimal pre-stress design of pre-stressed 

pin-jointed structures. The proposed algorithm is based on the flexibility method of structural 

analysis. The algorithm is used on both i) geometrically rigid (kinematically determinate) and 

statically indeterminate (Statically redundant) structures, where pre-stress is caused by to the lack 

of fit, and ii) kinematically indeterminate (not geometrically rigid) and statically indeterminate 
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(statically redundant) structures with infinitesimal mechanisms, where pre-stress is needed for 

geometric integrity. The latter category includes tensegrity structures. He also emphasized how 

the pre-stress could increase the load bearing capacity of certain structures. Hanaor (1992) 

provided guidelines for the design of double layer tensegrity domes. Although this analysis is 

linear and only valid for small displacements, it still provides useful information for design 

purposes and experimental work. 

Murakami (2001), Murakami and Nishimura (2001a) and Murakami and Nishimura (2001b) 

developed equations within a finite framework for both static and dynamic analysis of tensegrity 

structures using three-dimensional theory of elasticity for large deformations. They conducted 

modal analysis of pre-stressed configurations to characterize the infinitesimal modes. 

Motro et al. (1986) presented some results from an experimental study of linear dynamics of a 

structure consisting of three rods and nine strings where the dynamic characteristics were found 

from the harmonic excitation of nodes. Several aspects have been investigated by Motro and co-

workers; examples include self-stressability (Kebiche et al., 1999), form-finding (Vassart and 

Motro, 1999, Zhang et al., 2006) and design algorithms (Quirrant et al., 2003) of tensegrity 

structures.  

Oppenheim and Williams (2000) examined the effects of geometric stiffening, the nonlinear 

force-displacement relationship, observed when tensegrity structures are subject to perturbation 

forces. They concluded that such structures could be relatively soft in the vicinity of the static 

equilibrium. 

Skelton et al. (2001c) and Skelton (2005) presented a theory for Class 1 structures from 

momentum and force considerations. De Oliveira (2005) developed a general theory for Class k 

structures from energy considerations. De Oliveira (2006) presented simulation results from a 

comparison study of different formulations. 

2.3 Statics of Infinite Periodic Lattice Structures and Materials 

Throughout this thesis we will use the two terms "lattice materials" and "lattice structures". A 

lattice material is a lattice structure with global macroscopic length scale much larger than that of 

its microscopic constituents. In particular, the wavelength of any loading applied to a lattice 

material is much larger than that of the length of its microscopic elements. On the other hand, a 

lattice structure is subjected to loadings of wavelengths that are comparable to the lengths of its 

constituents.  
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2.3.1 Geometrical Classification of Periodic Lattice Structures 

A. Planar Lattice Structures 

The topologies of a 2D lattice structure are generally classified as regular, semi-regular and others 

(Cundy and Rolett, 1961; Frederickson, 1997; Lockwood and Macmillan, 1978). A regular lattice 

is composed of a unique regular polygon type, which can only be a triangle, a square, or a 

hexagon, as shown in Figure (2.4). In the semi-regular lattices, more than one regular polygon is 

used to tessellate the plane. There are eight topologies for the semi-regular lattices, as shown in 

Figure (2.5).  

 

 

 

 

 

 

a- Square- 44 b- Triangular- 36 c- Hexagonal- 63 

Fig (2.4) 2D regular lattice structures 

An example of a semi-regular lattice is the "triangular–hexagonal" lattice, which is known as the 

Kagome lattice (Syozi, 1972; Hyun and Torquato, 2002), shown in Fig (2.5a). In the regular and 

the semi-regular lattices, all nodes of a lattice are constrained to have the same connectivity, 

where the connectivity represents the number of elements connected at a node. By relaxing this 

constraint, an infinite number of 2D lattice topologies can be generated. In Figure (2.6) we show 

only eight topologies of other lattice structures.  

The features of the constant nodal connectivity in the regular and the semi-regular lattice 

structures have been used to classify the lattices (Cundy and Rolett, 1961; Frederickson, 1997; 

Lockwood and Macmillan, 1978). For example, the Schlafli symbols (Cundy and Rolett, 1961) 

were introduced to name the lattice by a series of numbers describing the order of the regular 

polygons around a lattice node. For instance, the square, the triangular and the hexagonal lattices 

are named respectively, as 44 , 
63  and 

36 . The notion of 
63 indicates that there are six (6) regular 

triangular (3) polygons successively surrounding each lattice node. Each of Figs (2.4a), (2.4c) and 

(2.5a) illustrates two types of unit cells that can be used for the tessellation of the same lattice 

structures.  
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B. Spatial Lattice Structures 

Spatial lattice structures can be constructed by tessellating polyhedra to fill the space. There are 

nine fundamental polyhedra, shown in Fig (2.7), of which only two, the cube and the rhombic 

dodecahedra, can be tessellated to fill the space and generate regular spatial lattice structure 

(Gibson and Ashby 1997). Other lattice structures can be constructed using combinations of 

different polyhedra. For example, a combination between the tetrahedra and the octahedra is used 

to generate the concept of octet-truss lattice (Deshpande et al. 2001a), shown in Fig (2.9). 

Restricting the periodicity of the 3D lattice to a finite set of cells in the out of plane direction 

generates the layered grids, such as the double layered grids (Kollar and Hegedus, 1985; Lan, 

1984; Wright, 1965). Double layered grids occupy a plate like structure; they are composed of 

two layers of planar lattice material parallel to one another and connected by a set of bars and 

nodes forming a lattice core. Examples of double layered girds are shown in Fig (2.8). One of the 

famous double layered grids is the Kagome Double Layered Grid (KDLG). For details about the 

KDLG, the reader is referred to (Hutchinson, R. G., 2004). 

In table (2.2) we show a summary of the common cell topologies considered in the literature of 

lattice material. Most of the topologies in Table (2.2) are bending dominated. It is also found that 

most of the topologies considered in literature have square or hexagonal symmetry in 2D and 

cubic symmetry in 3D (Christensen, R.M., 2000). 

2.3.2 Determinacy Analysis and Classification of Infinite Periodic Lattice Structure 

As explained in §2.2.1, the generalized Maxwell’s rule, derived by Calladine (Calladine, C. R., 

1978) and Pellegrino (Pellegrino, S., Calladine, C. R., 1986; Pellegrino, S., 1993), can be used to 

obtain an accurate prediction of the determinacy state of finite structures. However, the analysis 

of periodic lattice materials requires extending the model to an infinite structure. Such an 

extension was proposed by Deshpande et. al. (2001b) who examined the pin-jointed mechanics of 

a restricted set of infinite-periodic lattice topologies. They considered only topologies wherein the 

nodes are similarly situated, i.e. the framework appears the same and in the same orientation 

regardless of the viewpoint. In 2D, these are the regular square and triangular lattices; in 3D, this 

set includes the regular octet-truss. The generalized Maxwell’s rule, was used to prove that the 

necessary but not sufficient nodal connectivity, Z, of a structure to be stretching dominated is Z=4 

and Z =6 in 2D and 3D, respectively. 
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a- Kagome- 3.6.3.6 b- 4.6.12 c- 33.42 d- 32.4.3.4 e- 3.4.6.4 f- 3.122 g- 4.82 h- 34.6 

Fig (2.5) 2D semi-regular lattice structures 
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a- Double Hexagonal Triangulation; b- Semi-Uni- Braced Square (SUBS); c- Triangular- 

Triangular  d- Semi-Double- Braced Square; e- Equilaterals- Hexagon; f- Uni- Braced 

Square; g- Double- Braced Square; h- Patched Kagome 

Fig (2.6) 2D other lattice structures 
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(a) Tetrahedron, (b) Triangular prism, (c) Square prism, (d) Hexagonal prism, (e) 

Octahedron, (f) Rhombic dodecahedron, (g) Dodecahedron (h) Truncated octahedron, and 

(i) Icosahedron 

Fig (2.7) 3D polyhedral cells (Deshpande et al., 2001b) 

 

 

 

 

 

 

 

 

Fig (2.8) Examples of Double Layered Grids (DLG) (Makowski, Z S, 1981) 

 

 

 

 

 

 

 

Fig. (2.9) Structure of a unit cell of the regular octet-truss lattice material 
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On the other hand, the sufficient nodal connectivity was proven to be Z=6 and Z =12 in 2D and 

3D, respectively. For double-layered grids, they found that the sufficient nodal connectivity is 

Z=9. 

Table (2.2) Common cell topologies considered in the literature of lattice material 

2D Lattice Topologies 

Cell 

Geometry 

Cell Name Reference Cell 

Geometry 

Cell Name Reference Cell 

Geometry 

Cell Name Reference 

 

Square 

(Pack of 

cells) 

Alethea, 2004; 

Côté, et.al., 

2006 

 

Optimized 

Ground 

Truss 

(Pack of 

cells) 

Sigmund, 1994 

 

Optimized 

Ground 

Truss 

(single cell) 

Sigmund, 

1994 

 

Rectangular 

(Pack of 

cells) 

Alethea, 2004 

 

Optimized 

Ground 

Truss 

(Pack of 

cells) 

Sigmund, 1994 

 

Negative 

Poison’s 

ratio (Pack 

of cells) 

Sigmund, 

1994 

 

Mixed 

(square-

triangle) 

(Pack of 

cells) 

Alethea, 2004 

 

Optimized 

Ground 

Truss 

(Pack of 

cells) 

Sigmund, 1994 

 

Negative 

poison ratio 

(single cell) 

Sigmund, 

1994 

 

Hexagonal 

(Pack of 

cells) 

Christensen, 

2000 

 

Optimized 

Ground 

Truss 

(Pack of 

cells) 

Sigmund, 1994 

 

Triangular-

Triangular 

(Pack of 

cells) 

Hutchinson, 

2004 

 

Kagome 

(Pack of 

cells) 

Christensen, 

2000 

 

Star 

(Pack of 

cells) 

Christensen, 

2000 

 

Triangular 

(Pack of 

cells) 

Hutchinson, 

2004 

Diamond 

lattice 

Côté, et.al., 

2006 

Truss 

triangular 

plate 

Evans, E.G., 

et.al., 2001 

Truss 

triangular 

plate 

Prud’homme

, C., et.al., 

2002 

3D Lattice Topologies 

 

Octet-truss Deshpande, 

et.al.,2001 

 

Circumfere

ntial cubic 

packing 

Thomas, 2005 

 

Radial 

Cubic 

packing 

Hongqing, 

V.W., 2005 

 

Weaire-

Phelan cell 

(2 cells 

pack) 

Weaire & 

Phelan, 1994 

 

Simplest 

foam model 

Gibson, & 

Ashby, 1997 

 

Kelvin cell 

(2 Cell 

pack) 

Kelvin, 1887 

Sandwich and Layered Grids 

KDLG Wallach & 

Gibson, 2001 
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Quirant J, et.al., 

2003 

Lattice 
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material 

Fan, H.L., 

et.al., 2008 

 

Hutchinson (2004) and Hutchinson and Fleck (2006) considered the determinacy analysis of 

infinite lattice structures subjected to a periodic node-displacement field. They showed that some 

microscopic lattice structures can experience microscopic internal mechanisms that do not appear 

at the macroscopic level, thus the lattice material is still classified as stretching dominated. 
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However, they did not investigate the stiffening effect of the microscopic states of self-stress on 

the microscopic internal mechanisms. 

The stiffening effect of states of self-stress on the internal mechanisms is investigated on small 

scale of finite structures in what is called pre-stressed mechanisms; however, no study considered 

such analysis for infinite periodic structures. 

2.3.3 Effective Mechanical Properties of Cellular Materials 

The analysis and characterization of foams were conducted long earlier than for lattice materials. 

Initial studies on foams assumed that their mechanical properties are linearly dependent on the 

relative density, an assumption that was later proved inaccurate. A good understanding of the 

mechanical properties of foams was given by Gent and Thomas (1959) and Patel and Finnie 

(1970). Based on the solid materials used to manufacture the cellular material, three classes of 

cellular materials exist in literature, namely, ceramic, polymers and metals (Ashby, M.F., 2010). 

Polymeric cellular materials, especially two-dimensional honeycombs, are extensively 

investigated in literature (Gibson and Ashby 1997) with a detailed description of the thermal, 

mechanical and electrical properties of foams. Foaming of metals (Davis NG, et. al., 2001; 

Körner,C., 2008) led to an in-depth study of their mechanical properties and their possible 

applications (Ashby et al. 2000; Colombo and Scheffler 2005; Shwartz et al. 1998; Banhart et al. 

1999, 2001; Banhart and Fleck 2003). Similar studies are applied to the ceramic foams (Brezny 

and Green 1989; Huang and Gibson 1991a,b, 1993; Vedula et al., 1998a,b).  

The advantages of periodic lattice materials over foams were elaborated by Evans et.al. (2001). 

These advantages were proven experimentally by Deshpande et.al. (2001a), Deshpande and Fleck 

(2001), Wallach and Gibson (2001), Chiras et al. (2002) and Wang et al. (2003). 

Through continuum mechanics, Kollar and Hegedus (1985) examined the homogenization of the 

effective properties of lattice materials, where the mechanical response of the microstructure of 

the material is averaged or "smeared -out" over the macroscopic length scale of the lattice. 

Bardenhagen and Triantafyllidis (1994), Schraad and Triantafyllidis (1997a; 1997b) and 

Triantafyllidis and Bardenhagen (1996) explored the effective response of lattice materials 

subjected to macroscopic strain gradients. Hassani and Hinton (1998a; 1998b; 1998c) presented 

variation and finite element solution techniques for the homogenization and the topology 

optimization of the effective properties of some composites with ordinary periodic geometries.  
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Different approaches are used in literature for modelling the effective properties of lattice 

materials, including, the linear and the non-linear Cauchy continua, the micro-polar continua, 

finite difference and Bloch-wave methods. 

Askar and Cakmak (1968) considered the double-braced square lattice topology; in particular they 

studied its static and dynamic responses. The lattice was assumed as a set of masses lumped at the 

nodes that are linked by flexible, extensible, unshearable linearly-elastic beams connecting the 

nearest neighbours and the second nearest neighbours. They used this model to derive the strain 

energy density of the lattice, where the static and the kinematic functions of the node degrees of 

freedoms are derived using first-order Taylor series expansion. Finally, they differentiated the 

strain energy density with respect to the strain gradients to obtain the effective work-conjugate. 

Banks and Sokolowski (1968) followed a similar method to obtain the effective "couple stress" 

continuum (Koiter, 1964) of a 2D rectangular lattice. The methods of Askar and Cakmak (1968) 

and Banks and Sokolowski (1968) were criticized by Bazant and Christensen (1972), as they 

considered only the first-order terms in the Taylor series expansions (Abramowitz, M., Stegun, I. 

A. 1970; Thomas, G.B.; Finney, R. L. 1996; Greenberg, M. 1998) of the static and kinematic 

functions of the nodal degrees of freedom. In the work of Bazant and Christensen (1972), they 

considered rectangular planar lattice under initial stress to show certain second-order Taylor series 

terms should be kept for the calculation of the effective strain energy density function. These 

second-order terms were converted to first-order using the divergence theorem (Stewart, J., 2008; 

Byron, F., Fuller, R., 1992). Bazant and Christensen (1972) used the beam-column equations 

(Cross, 1932; Horne and Merchant, 1965; Livesley, 1975; Livesley and Chandler, 1956) to model 

the microscopic cell elements, for which they obtained the micro-polar effective moduli. It is 

found that the effective stiffness derived by Bazant and Christensen (1972) may lose its positive 

definiteness conditions under certain initial lattice loadings. This drawback was considered in 

Bazant and Christensen (1973).  

Renton (1984) analyzed beam-like mechanical members made of pin-jointed spatial lattice 

materials. He used the finite difference approach for such analysis as he applied the finite-

difference calculus to the linearly elastic stiffness matrix of the truss element within each unit cell. 

The node deformations were assumed as a series of characteristic deformation modes in the form 

of a finite polynomials and complex exponentials. After applying the unit cell boundary 

conditions, the element tension forces were derived for the following elastic properties 

characterization. This approach was applied to beam-like structures with square, triangle, and 

tetrahedron-based unit cells. 
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Sigmund (1994) used topology optimization to develop lattice materials with prescribed semi-

positive definite constitutive tensors.  He called the problem as an inverse problem involving the 

search of a material with given homogenized coefficients; this problem required finding the 

interior topology of a base cell that minimizes compliance while meeting volume constraints 

defined by the prescribed constitutive parameters. Other researchers developed lattice materials 

with negative Poisson`s ration (Phan-Tien and Karihaloo, 1994). 

Schraad and Triantafyllidis (1997a) investigated the scale and imperfection effects on the 

macroscopic properties of a non-linearly elastic, pin-jointed, periodic, planar lattice structure of 

finite size. They applied the method of Bardenhagen and Triantafyllidis (1994) and proved that 

the macroscopic moduli of lattice materials are independent of the scale of the unit cell to the 

macroscopic length of the lattice if a uniform macroscopic strain field is applied.  

Hohe and Becker (1999) and Hohe et al. (1999) computed the effective elastic stiffness properties 

of rigid-jointed lattice materials by applying uniform, macroscopically, symmetric stress and 

strain constraints to the unit cell stiffness matrix. They also studied the anisotropic behavior of the 

lattice material by showing how the elastic moduli vary with the lattice orientation.  

Christensen (2000) reviewed the linear elastic stiffness properties of common lattice materials.  

Numerical topology optimization techniques were used by Hyun and Torquato (2002) to generate 

optimally stiff 2D  lattice materials;  they showed that the Kagome and the full triangulated 

topologies satisfies the upper Hashin-Sthrikman bounds (Hashin and Shtrikman, 1962) in the low 

relative density limit.  

Deshpande et al. (2001a) investigated the effective elastic stiffness and collapse mechanisms of 

the octet-truss lattice materials. Deshpande and Fleck (2001) investigated the collapse of 

sandwich beams with octet-truss core using three-point bending approach. General topological 

design rules have been presented in Evans et al. (2001) for truss-core lattice materials. Brittain et 

al. (2001) described the manufacture, testing and analysis of tetrahedral lattice structure with 

macroscopic dimensions on the order of one centimeter and microscopic dimensions on the order 

of millimeters. They used soft lithography, electrochemical plating and welding, and various 

folding and die-stamping operations to manufacture beam-like lattice structures. The performance 

of the manufactured structure was evaluated using four-point bending tests (Hollenberg, G. W., et. 

al., 1971), through which the effective flexural rigidity and the effective shear rigidity of the 

material were measured. Brittain et al. (2001) found that their non-optimized tetrahedral lattice 

beam was much less stiff than an optimized box beam of the same weight and material, and its 

maximum load capacity was also lower. Chiras et al. (2002) used a similar analysis to interpret 
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their finite-element modeling and experimental testing of investment cast, tetragonal-truss core 

sandwich panels. They found that the stiffness and strength of tetragonal core truss panel are near-

optimal in comparison with the octet-truss core sandwich beams analyzed by Deshpande and 

Fleck (2001), and their results agreed with the analytical results given by Ashby et al. (2000), 

Deshpande et al. (2001a), Deshpande and Fleck (2001) and Wicks and Hutchinson (2001). Chiras 

et al. (2002) found also that the truss sandwich panel response is asymmetric: the trusses in 

tension exhibit strain hardening behavior while truss in compression exhibit strain softening 

behavior due to plastic buckling of the core members. 

Although the aforementioned research works were successful in characterizing most of the 

effective properties of lattice materials, little was known about the periodic collapse mechanisms 

of pin-jointed versions of lattice materials. Such analysis was conducted using the Bloch-wave 

method. 

2.3.4 Bloch-Wave Method 

The Bloch-wave method is based on the Bloch's theorem (Grosso, G. and Pastori-Parravincini, G., 

2000). Since the Bloch's theorem is used extensively in this thesis for modelling and 

characterization of periodic lattice structures and lattice materials, the literature of this theorem is 

detailed thoroughly in the following sections.  

A. The Bloch’s Theorem 

The mathematical representation of periodic structures, detailed in Appendix D, is used in this 

thesis to describe periodic waves propagating through infinite lattice structures using the Bloch’s 

theorem.  

The Bloch’s theorem finds its roots in the field of solid-state physics of metals. It was first 

introduced to describe the transport of electron particles within the crystal structure of a solid; 

later it was used to obtain a solution of the Schrödinger equation that models wave-functions of 

the electron particles (Altmann, S. L., 1991; Brillouin, L., 1946; Cantrell, C. D., 2000; Grosso, G. 

and Pastori-Parravincini, G., 2000; Jones, W. and March, N. H., 1973). Although grounded in the 

literature of solid-state physics, the Bloch’s theorem is extensively used in the field of continuum 

mechanics, as detailed by the work presented in § 2.3.4(A.2). 

 

 



28 

 

A.1 The Bloch’s Theorem and its Applications in Solid State Physics 

The historical progress of the theories dealing with the transport properties in metals and its 

correlation with the material electrical characteristics can be reported as follows. Three years after 

Thomson's discovery of the electron in 1897, Drude suggested that the electron transport 

properties of metals might be understood by assuming that their electrons are free and in thermal 

equilibrium with their atoms, in what was called the free electron gas theory (Ashcroft, N., 

Mermin, N., 1976). This theory was refined by Lorentz (Ashcroft, N., Mermin, N., 1976). 

Assuming that the mean free path of electrons was limited by collisions, where the mean free path 

of an electron is the distance that the electron passes between two successive collisions with other 

electrons, Lorentz was able to derive Ohm's law for the electrical conductivity. He also obtained 

the ratio of the thermal to electrical conductivity in excellent agreement with experiments. This 

ratio, divided by the absolute temperature, is called the Wiedemann-Franz ratio and had been 

recognized to be universal fifty years earlier (Altmann, S. L., 1991).  

The free electron gas theory, however, had two major shortcomings. First, it predicted a large 

component of the specific heat of a metal which was not observed experimentally. Second, the 

comparison of the theory with experimental data indicated that the mean free path of the electrons 

became extremely large at low temperatures; for this phenomenon the model offered no 

justification (Altmann, S. L., 1991). 

In 1928, Sommerfeld revised Lorentz's formulations by using quantum statistics, which solved the 

above problem; the specific heat was predicted without losing the description of the transport 

properties. This theory remains at the basis of the understanding of most transport properties of 

metals and semiconductors (Altmann, S. L., 1991). Sommerfeld’s model assumed that the free 

electrons, also called the valence electrons, within a metal behave as gas particles in vacuum. The 

resistivity of the metal is computed based on the mean free path which is determined by statistical 

mechanics, through which the distance between two successive electron scatterings is calculated. 

This measure represents the distance an electron travels within the metal before two successive 

collisions with other electrons. In this model, however, the structure of the lattice was not taken 

into account (Brillouin, L., 1946).  

Although the free electron gas theory was successful in explaining many fundamental phenomena 

in solid state physics, it failed explaining the disagreement of the predictions of metal resistivity at 

low temperatures with their experimental measurements.  

At about the same time, in 1928, Houston and Bloch solved the quantum-mechanical wave 

equation for electrons in a regular periodic structure. They found that the mean free paths are 
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arbitrarily large if there were no defects in the periodicity, thereby putting the free-electron theory 

on a firm basis (Cantrell, C. D., 2000). 

Felix Bloch in his "Reminiscences of Heisenberg and the early days of quantum mechanics" 

(1976) (Grosso, G. and Pastori-Parravincini, G., 2000) explained how his investigation of the 

theory of conductivity in metal led to what is now known as the Bloch’s Theorem. He considered 

wave-functions in a one-dimensional periodic potential and used Fourier analysis to find that the 

wave differed from the plane wave of free electrons only by a periodic modulation. He concluded 

that scattering of electrons is caused not by the lattice itself but by defects in the lattice, due to 

either thermal fluctuation and/or to impurities. At low temperatures, electron mean free paths in 

metals should increase up to a limit that is set by the density of the impurity. This behavior is 

observed experimentally and supports Bloch's framework (Brillouin, L., 1946). 

For the statement and proof of the Bloch’s theorem in solid-state physics the reader is referred to 

appendix C.  

A.2 Bloch’s Theorem in Continuum Mechanics 

A closer look at the literatures of the Bloch’s theorem in solid-state physics one can find a close 

analogy with the dynamics boundary value problems in continuum mechanics. A similar 

formulation to the wave-function assumed by the Bloch’s theorem, as a solution for the 

Schrödinger equation presented by F. Bloch in 1928, was proposed by Rayleigh 1887. Rayleigh, 

in his paper (Ashcroft, N., Mermin, N., 1976) on the vibration of strings excited by a time-varying 

tension and on the propagation of waves through a medium endowed with a periodic structure, set 

forth all the basic aspects of Floquet theorem (Marder, Michael P., 2000) and Bloch’s theorem (F. 

Bloch, Dec. 1976) for periodic structures. He explained the phenomenon of selective wave 

reflection, i.e., why a periodic structure transmits certain waves while totally reflecting others. 

Rayleigh (Lord Rayleigh., 1887) then considered the equation of vibrating string with periodic 

mass density per unit length. This equation has the form: 

2

2

2102

2
),(

...
4

cos
2

cos
),(

t

txw

l

x
m

l

x
mm

x

txw
T

∂

∂








+







+







+=

∂

∂ ππ
   (2.2) 

where T is the tension, l is the distance over which the mass density is periodic, x is the spatial 

coordinate along the periodic length of the string and t is the time. Assuming a simple harmonic 

motion of the form: 
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Or 
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Following Hill, Rayleigh assumed a particular solution of the form: 
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where in the uniform mass limit, 0Θ±=c , which is the Floquet solution (Marder, Michael P., 

2000) with a characteristic exponent ic.   

A comparison between the wave-function formulation proposed by Bloch as a solution for the 

Schrödinger equation and the one dimensional periodic solution proposed by Hill and Rayleigh in 

dynamics problem of continuum mechanics, one can find they are similar. The Floquet-Bloch 

theorem (Bloch, F., 1928; Floquet, G., 1883) discusses and shows this similarity, first given in a 

one-dimensional setting by Floquet and later rediscovered by Bloch and generalized to any 

periodic structure in one, two or three-dimensional spaces. The basis of the two theories is a 

mathematical concept, where an assumption of a perfectly periodic medium is set forth.  A 

solution is assumed having a spatial term multiplied by a periodic term, which describes the 

periodicity of a perfectly periodic structural reciprocal space. The reciprocal space is the Fourier 

transform of the wave-function representing the solution in its reciprocal space.  

In the past 30 years, the Bloch’s theorem has been widely accepted and regularly used in 

continuum mechanics problems as an alternative framework to the finite-difference methods.  

A.3 Statement of the Bloch’s Theorem in Continuum Mechanics 

In continuum mechanics, the Bloch’s theorem may be stated as follows (Hutchinson R.G., 2004): 

any spatially-periodic discrete field,ψ , (defined over a periodic structure made up of discrete unit 

cells) may be decomposed into a summation of characteristic modes, 





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the discrete position vector (basis) over the lattice unit cell, ω is the discrete wave vector and 
→

R is 

the Bravais lattice position vector. Group theory (Armstrong, M. A., 1988; Hill, V. E., 2000; 

Aschbacher, M., 2000; James, G. and Liebeck, M., 2001) may be used to show that these modes 

are given by: 
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ωψ ,Rr  parameterized by the wave vector ω . Alternatively, this may be proved using 

Fourier analysis (Iorio, R. J. and De Magalhaes Iorio, V., 2001; Stein, E. M. and Shakarchi, R., 

2003). 

A.4 Applications of the Bloch's Theorem in the Literature of Periodic Structures and Lattice 

Materials 

An example of the applications of the Bloch-wave methods in continuum mechanics is the 

analysis of Anderson (Anderson, M. S., 1981; 1983) on the buckling of periodic, reticulated 

cylindrical shells. Anderson (1981) calculated the variation of axial buckling load for a 

macroscopic structure on the form of an iso-grid cylinder. This lattice structure was previously 

analyzed by Forman & Hutchinson (1970) (Thompson, J. M. T., Hunt, G. W., 1983) using finite 

difference methods. The key point for the application of the Bloch`s theorem in continuum 

mechanics is that the two analysis procedures of Anderson and Forman and Hutchinson yielded 

the same results. Furthermore, the analogy of the formalisms between the Bloch's theorem and 

Rayleigh formalisms emphasizes the validity of the use of the Bloch-wave methods for the 

applications of continuum mechanics in periodic mediums. 

Anderson and Williams (1986) extended the approach of Anderson (1981) to the buckling and 

natural vibration of any lattice structure having repetitive geometry and loading. Their pin and 

rigid-jointed analyses of the 3D hexahedral lattice plate agreed with the earlier work of Noor et al. 

(1978) using finite element methods and the equivalent, continuum-plate hypothesis. 
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The Bloch’s theorem was also employed in the dynamic analysis of periodic structures. Mead 

(1973; 1996) used the Floquet-Bloch theorem, the one-dimensional version of the Bloch’s 

theorem, to analyze the in-plane and out-of-plane vibration behavior in stiffened panels.  

Triantafyllidis and Schnaidt (Triantafyllidis, N. and Schraad, M. W., 1998; Triantafyllidis, N. and 

Schnaidt, W. C., 1993) analyzed the elastic stability of a planar, rigid-jointed square lattice 

material. Using the beam-column form of the Euler-Bernoulli beam stiffness matrix (Affan, A., 

1987; Timoshenko, S. P. and Young, D. H., 1945), they first considered the primitive unit cell as 

a finite structure of rigid-joints and elastic beams. To convert this finite problem to the desired 

problem of periodic, infinite extent, they then made the assumption that the nodal (rigid-joint), 

infinitesimal displacement field (including rotations) could be represented using Bloch’s theorem. 

Thus, the generalized displacement field was taken as doubly-periodic over the entire lattice. 

In 2006, Phani, et.al. (2006) used the Bloch’s theorem to study the wave propagation in two 

dimensional infinite lattices. They determined the frequency band-gaps for different two 

dimensional lattice topologies. Phani and Fleck (2008) investigated the phenomenon of elastic 

boundary layers under quasi-static loading using the Floquet-Bloch formalism for two-

dimensional, isotropic, periodic lattices.  

Hutchinson (2004) and Hutchinson and Fleck (2006) characterized the effective elastic, plastic 

and buckling properties of pin and rigid-jointed lattice materials using the Bloch-waves method. 

First they formulated the static and the kinematic systems of the pin-jointed structure of the unit 

cell of the lattice material and used the Bloch's theorem to describe the periodic propagation of the 

nodal and the elements static and kinematic wave-functions. These functions were employed to 

reduce the derived systems of the unit cell into the irreducible forms of the infinite lattice. Once 

the irreducible static and kinematic systems are computed, they derived the states of self-stress 

and the states of internal mechanisms associated with each wave-number generated from the 

irreducible Brillouin zone of the reciprocal space of the infinite lattice structure (Brillouin, L., 

1946). They used the Cauchy-Born hypothesis (Bhattacharya, K., 2003; Ericksen, J. L., 1984; 

Pitteri, M., & Zanzotto, G., 2003; Maugin, G. A., 1992; Born, M., & Huang, K., 1954) to 

homogenize the microscopic lattice response due to the effect of an assumed uniform macroscopic 

strain field applied to the lattice. Using this method, they derived an explicit expression of the 

microscopic element deformations in terms of the macroscopic strain field which are employed to 

derive the macroscopic strain energy density. By applying Castigliano's theorem (Wempner, 

G.A., 1981), they derived the effective, averaged, macroscopic properties of several 2D lattice 

topologies with pin- and rigid-joints.  
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Although the method of Hutchinson (2004) and Hutchinson and Fleck (2006) was successful in 

predicting the different modes of states of self-stress and the states of internal mechanisms, they 

did not explore the interaction between these static and kinematic modes; in addition the possible 

effects on the lattice macroscopic performance in the form of geometrical, non-linear, behavior 

were not considered. Their method was successful in characterizing simple topologies where all 

cell elements are included within the cell envelope (e.g. topologies of Figs (2.4a,b,c)); their work 

also did not include a robust matrix analysis procedure for lattice materials that are constructed of 

unit cells that have cell elements intersecting their envelopes not at their end nodes but extending 

between adjacent unit cells (e.g. topologies of Figs (2.5b,c,d,e,f,g,h)).  

2.4 Concluding Remarks Emerging From the Literature 

From the aforementioned literature review, it is concluded that: 

1. The stiffening effect of the states of self-stress on the states of internal mechanisms in infinite 

periodic lattice structures is still an open area of research. So far, no study looked at this 

concept applied to lattice materials. This requires investigating the contribution of the states of 

self-stress to the comprehensive stiffness of lattice structures and materials through the 

formulation of the geometrical stiffness, especially for the static and kinematic indeterminate 

topologies. 

2. The work of Hutchinson (2004) and Hutchinson and Fleck (2006) are meritorious in 

characterizing lattice materials and providing a deep understanding on the different modes of 

the static and kinematic indeterminacy. However, the development of a systematic, automated, 

matrix-based algorithm that can be applied to any arbitrary microscopic lattice topology needs 

to be addressed. 

3. Recent advances in rapid prototyping and rapid manufacturing technologies (Kruth, at.al., 

2005; Rochus, et.al., 2007; Waterman and Dickens, 1994) encourages extending the 

structuring of lattice materials to include cell member cross-sections. Sizing and shaping of the 

lattice material cell member cross-sections are not considered yet in literature (Fleck, N.A., et. 

al., 2010; Ashby, M.F, 2010). However, few researchers examined experimentally the effect of 

using hollow cylindrical cross-sections on the effective properties of lattice material 

manufactured at the meso/macro scales (Douglas T. Q. & Haydn N.G. W., 2005).No design 

methodology has been proposed so far in this area. 
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CHAPTER 3 

Determinacy Analysis and Classification of Pin-Jointed Infinite 

Periodic Lattice Structures 

3.1 Introduction 

In this chapter, we present a systematic, matrix-based, procedure for the determinacy analysis of 

periodic lattice structures with any arbitrary cell topology. We consider the lattice as a periodic 

micro-truss structure with pin-jointed members. Matrix methods of linear algebra are used for the 

determinacy analysis where the fundamental subspaces of the equilibrium or the kinematic 

matrices are computed to determine the states of self-stress and the states of internal mechanisms. 

For lattice topologies with unit cells that have microscopic cell elements intersecting their 

envelopes not at their end nodes but extending between adjacent unit cells, we develop the 

Dummy Node Rule (DNR). The stiffening effect of the periodic states of self-stress on the 

periodic internal mechanisms is assessed using the product force vector approach and the 

definiteness of the stress matrix developed by first-order, infinitesimal, periodic, internal 

mechanisms. The proposed analysis technique is applied to 19 2D lattice topologies, whereas their 

determinacy analysis results are used for their classification. Infinite, periodic, lattice structures 

are classified into three classes, namely, stretching dominated, bending dominated and tensegrity 

lattice structures. The proposed analysis presented in this chapter can be easily extended to 3D 

lattice topologies. 

3.2 Equilibrium and Kinematic Matrix Systems of Unit Cell Finite Structures 

We first define the parameters of the unit cell, the building block of periodic lattice structures, 

before reviewing its equilibrium and kinematics matrix systems, necessary for the determinacy 

analysis, as proposed by Calladine and Pellegrino (1986).  

3.2.1 Definition of the Unit Cell of a Lattice Structure 

In continuum mechanics, a periodic lattice structure can be characterized by adopting the notions 

of crystal physics (Grosso and Pastori-Parravincini, 2000). The crystal structure is generally 

described by its lattice and its crystal bases. The lattice is represented by the cell envelope which 

defines the structure periodicity.  
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Fig (3.1) (a) Kagome lattice structure; (b) Cell envelope; (c) Unit cell 

Fig (3.1a) shows the Kagome lattice structure along with its unit cell and the cell envelope. The 

lattice structure is shown by the thin lines while the cell envelope is shown by the thick lines. The 

cell envelope, shown in Fig (3.1b), is the geometrical property of the lattice used to fill the plane 

in a periodic fashion. To ensure a proper tessellation, which contains no gaps and overlaps, the 

cell envelope should exhibit a minimum level of symmetry, as defined by the Bravais lattice 

symmetry (Brillouin, 1946). Here, the cell envelope is a regular hexagon which represents the 

hexagonal symmetry of the Kagome lattice structure. 

The structure of the unit cell, enclosed within the cell envelope, consisting of a set of bars 

connected between a set of nodes, shown in Fig (3.1c), can be represented by two groups, namely, 

the node bases group and the bar bases group. 

A. Node Bases Group 

The node bases group, NG , is the mathematical group that contains the position vectors of all 

nodes in the unit cell ∃ { }
jlN jjjG ,...,,...,1≡ , where lj is the position vector of node l  and  

 

y 

3.6.3.6 

Cell 

Envelope 

��� ��� 

�� 

�� 

Unit Cell 

(0,0) x 

(a) (b) (c) 

... Bar geometric centroid        

... node   

o 1 

2 3 

4 

5 

4 

3 

2 

1 

6 

6 
5 



36 

 

{ }jl ,...2,1∈ . j is the total number of nodes within the unit cell structure.  

B. Bar Bases Group 

The bar bases group, BG , is the mathematical group that contains the position vectors of all bars 

in the unit cell ∃ { }bmB bbbG ,...,,...,1≡ , where mb is the position vector of the geometric centroid 

of bar m where { }bm ,...2,1∈ .  b is the total number of bars within the unit cell. 

3.2.2 Equilibrium System of the Unit Cell Finite Structure 

The static equilibrium system of a structure that has b elements connected between j nodes is 

represented by: 

 ft =A      (3.1) 

where 
bnj

R
×∈A , n=2 in 2D and n=3 in 3D, is a Jacobian matrix with entries of the direction 

cosines that transforms the vector of tension forces of the structural elements 
b

Rt ∈  to the vector 

of the nodal forces 
nj

Rf ∈ (Kuznetsov, E. N., 1997; 2000).     

  

Consider only three nodes, i, j and k that are connected by two bars a and b, as shown the 

framework in Fig (3.2). For node “i”, the equilibrium of its forces with the force of element “a”, 

ta, is given by: 
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where ixaf  and iyaf  are, respectively, the x and the y components of the portion of the force of 

node "i" that is in equilibrium with the axial force in element "a". Similarly, the distribution of 

axial force ta to the node “j” is formulated as: 
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Fig (3.2) Three node equilibrium in pin-jointed structure 

Equations (3.2) and (3.3) can be assembled in matrix form as: 
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     (3.4) 

The same formulation can be generated to other elements and nodes.  The final assembled system 

is the equilibrium system of the pin-jointed framework. 

3.2.3 Kinematic System 

The kinematic system of a framework that consists of b bars and j nodes can be formulated as: 

   ed =B       (3.5) 

where 
njb

R
×∈B , n = 2 in 2D and n = 3 in 3D, is a Jacobian matrix of entries of direction cosines 

that transforms the vector of nodal displacements 
nj

Rd ∈  to the vector of element deformations 

b
Re ∈ (Kuznetsov, E. N., 1997; 2000). 

Element “a” of the pin-jointed framework, shown in Fig (3.3), is connected between the two 

nodes i and j; the compatibility equation of this element can be formulated as: 

aajyiyjyjxixjxiyjyiyixjxix eldrrdrrdrrdrr =−+−+−+− )()()()(
 

 (3.6a) 

which can be arranged in matrix form as: 
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where ea is the axial deformation in element “a”.  

 

 

 

 

 

 

Fig (3.3) Three node kinematics in pin-jointed structure 

The same compatibility relation can be written for all framework elements and assembled in what 

is called the kinematic system of the pin-jointed framework. 

3.2.4 Duality of the Kinematic and the Equilibrium Matrices 

By applying the Principle of Virtual Work (Timoshenko and Young, 1945) to the unit cell 

structure we obtain: 

etdf
TT δδ .. =       (3.7) 

where the superscript T denotes the algebraic transpose of a vector and δ is the virtual 

displacement increment.  Substituting eqns (3.1) and (3.5) into eqn (3.7), results in: 

dtdt
TTT δδ BA =      (3.8) 

which leads to the following relation: 

TAB =       (3.9) 

To evaluate the determinacy state of the unit cell finite structure, we examine the four 

fundamental vector subspaces of the equilibrium matrix, as described below.  

3.3 Determinacy Analysis of the Finite Structure of the Unit Cell 

The determinacy state of a pin-jointed framework can be evaluated by computing the four 

fundamental subspaces of the equilibrium or the kinematic matrices (Pellegrino & Calladine 

(1986).  
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3.3.1 Four Fundamental Subspaces 

The four fundamental subspaces of the equilibrium matrix are defined as: 

1. Row(A): the row space of the equilibrium matrix represents the basis for the equilibrium bar 

tension vectors t without self-stress,  where dim(Row(A)) = rA as  rA is the rank of the 

equilibrium matrix. 

2. Col(A): the column space of the equilibrium matrix represents the basis for the equilibrium 

external force vectors f, where dim(Col(A)) = rA.  

3. Null(A): the null space of the equilibrium matrix represents the basis for all bar tensions t in 

equilibrium with f = 0, i.e. the modes of states of self-stress. The states of self-stress are 

the modes of element tension forces developed in a framework with zero external loading. 

The number of states of self-stress, s, are given by dim(Null(A)) = b-rA = s, as b is the 

number of columns within the equilibrium matrix or simply the  number of bars within the 

finite framework. 

4. Null(AT): Kinematically, this subspace is composed of all modes of “inextensional” nodal 

displacements d compatible with e = 0 since Null(AT)= Null(B); the number of all 

mechanisms m is given by m= dim(Null(AT)) = nj-rA, as j is the number of nodes within 

the framework and n = 2 in 2D and n =3 in 3D. On the other hand, the number of internal 

mechanisms, im, is given as im=m-rm, where rm is the number of rigid-body modes for 

structures that are not constrained into a foundation where rm = 3 in 2D and rm = 6 in 3D. 

Details about the above four fundamental subspaces can be found in Pellegrino & Calladine 

(1986). Pellegrino (1993) redefined the four fundamental subspaces using the technique of the 

singular value decomposition (Horn, R. A., et. Al., 1985; 1991; Strang G., 1998).  

It is worth mentioning here that the states of mechanisms computed from the null space of the 

kinematic matrix include both modes of rigid-body motion and modes of internal mechanisms.  

The rigid-body mechanisms arise as the structure of the unit cell is not constrained into a 

foundation. To distinguish between the rigid-body mechanisms and the internal mechanisms, 

Pellegrino & Calladine (1986) presented a simple strategy that is applicable for any finite 

framework. Interested readers are referred to (Pellegrino, S., Calladine, C. R., 1986). 

 The next step is to investigate the stiffening effect of states of self-stress to the states of internal 

mechanisms. 

 

 



40 

 

3.4 Stiffening Effect of States of Self Stress 

Stable statically and kinematically indeterminate pin-jointed structures are qualified as pre-

stressed mechanisms. As described in Chapter two, pre-stressed mechanisms are common 

assemblies in structural engineering, e.g. pneumatic domes, cable systems and cable nets, fabric 

roofs and tensegrity structures. Tensegrity structures are unique type among the pre-stressed 

mechanisms as the kinematic indeterminacy in the form of internal mechanisms is tightened-up by 

the modes of self-stress, triggered by their infinitesimal displacements, generating a self-standing 

structure without any external supports.  

Calladine and Pellegrino (1986) developed the product force vector approach to examine the 

stiffening effect of the states of self-stress to first-order infinitesimal mechanisms; an approach 

that was proven a necessary but not sufficient to classify the kinematic indeterminacy as first-

order infinitesimal mechanisms (Kuznetsov, E.N., 1989). Calladine and Pellegrino (1991) 

modified the product force vector approach to test the positive definiteness of a quadratic form 

that is computed using the states of self-stress and the states of internal mechanisms within the 

pin-jointed assembly. They proved that a positive definite quadratic form is a sufficient condition 

to qualify an internal mechanism as a first-order infinitesimal mechanism. This approach is 

followed in this thesis and shown in the following section. 

3.4.1 The Necessary Condition for First-Order Infinitesimal Mechanisms: The Product 

Force Vector Approach 

A statically and kinematically indeterminate pin-jointed framework responds to external loading 

by two modes: (i) in the first mode, the structure bar tension forces, t, increase by tδ which 

implies that the structure carry the external loading with a minor geometrical changes; (ii) in the 

second mode, the structure deforms in an inextensional manner under constant stress until the 

structure geometry changes to a new balanced configuration. A combined response of the two 

modes is dependent on the external loading. Kuznetsov (1997) developed a methodology to 

resolve external load into two orthogonal modes whereas each mode triggers one of the above 

structural responses.  

Consider a structure subjected to two orthogonal modes of external loading 
nji

Rf ∈)(
and 

njii
Rf ∈)(

 as j is the number of nodes of the framework with n = 2 in 2D and n = 3 in 3D. Also, 

assume that the structural response to these two external loading is 
)(i

d and 
)(ii

d , respectively. In 
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the following we analyse the structural response to each of these two modes as well as the 

analysis of their combined response. 

A. Mode (i) of Structural Response  

Similar to eqn (3.1), the equilibrium system of a structure, composed of b bars, connected 

between j nodes and subjected to a loading
)(i

f , is formulated as: 

)(i
ft =A       (3.10) 

where 
nji

Rf ∈)(
 is the vector of external forces applied to the nodes of the framework. Since 

mode 
)(i

f of the external loading triggers only mode (i) of the structural response, then, any 

redundant bar in the structure provides zero resistance to the external loading. The different 

vectors corresponding to the redundant elements in the structure are grounded in the column space 

of the equilibrium matrix, the non-pivotal columns of the equilibrium matrix, A . The non-pivotal 

modes in the column space of the equilibrium matrix can be determined by evaluating the reduced 

row echelon form (Strang G., 1998) of the equilibrium matrix and determining its pivot columns. 

Other non-pivotal columns correspond to the redundant bars within the structure. Since the 

redundant bars generate zero loading resistance, then, the non-pivotal columns can be eliminated 

to generate the matrix system: 

)(
^^

i
ft =A       (3.11) 

where 
( )sbnj

R
−×∈

^

A is the truncated equilibrium matrix that is developed by eliminating the non-

pivotal columns of the equilibrium matrix, corresponding to redundant elements in the structure. 

The entries in the tension force vector, t , that correspond to those redundant elements are also 

eliminated to generate the truncated vector 
^

t .  

B. Mode (ii) of Structural Response 

A structure that has internal mechanisms, if loaded by an external loading, 
)(ii

f , that is not in the 

column space of its equilibrium matrix, excites the modes of internal mechanisms, mode (ii) of 

structural response. The structure undergoes inextensional deformations, under constant axial 

forces in its bars, until it changes configuration to a new balanced position. The response of Mode 

(ii) is obtained through the product force vector analysis. 
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B.1 Product Force Vector Analysis  

The inextensional deformation of pin-jointed structure that has im states of internal mechanisms 

can be formulated as: 

   βD=d                                                         (3.12) 

nj
Rd ∈  is the generalized inextensional deformation vector experienced by the structure. 

imnj
R

×∈D is a matrix with the im states of internal mechanisms concatenated into its columns. j 

is the number of nodes within the structure. 
im

R∈β is a vector of arbitrary constants used to 

develop a linear combination of the different modes of internal mechanisms.  

Consider the framework shown in Fig (3.3), for which the static equilibrium of node i in its 

original configuration can be formulated as: 
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If the structure of Fig (3.3) undergoes a mechanism motion which displaces its nodes by 

(dqx,dqy),where dqx and dqy are the nodal displacements in the x and y directions, respectively and 

{ }kjiq ,,∈ , then, the static equilibrium of node i can thus be written as: 
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Subtracting eqn (3.13) from eqn (3.14) generates the product force vector as: 
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where pix and piy are the product force vector components of node i in the x and y directions, 

respectively. Similar computations are generated for other nodes within the structure and the 

resulting product force vectors of all nodes are recast into a column vector of dimension 2j in 2D 

or 3j in 3D. Similar computations can also be generated for other modes of internal mechanisms. 

All columns of product force vectors are concatenated together as the columns of the product 

force vector matrix, PFV . The generalized product force vector, PFV, can be formulated as: 
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)(ii
fPFV == βPFV      (3.16) 

This derivation of the product force vector is based on a single state of self-stress. For structures 

that possess more than one state of self-stress a linear combination of the different modes of states 

of self-stress is developed in what we call the global state of self-stress. 

B.2 Global State of Self-Stress 

The vector of tension forces of the structural elements can be expressed as: 

Gff Sttt +=+= γSS     (3.17) 

where 
b

f Rt ∈ is the vector of axial forces in the structural elements that are developed by the 

nodal applied external forces f . 
sb

R
×∈SS is the states of self-stress matrix which is formed by 

concatenating the modes of the structural states of self-stress into the columns of the SS  matrix as 

s is the number of states of self-stress in the structure. 
s

R∈γ is a vector of arbitrary constants 

which is used to generate a linear combination of the structural states of self-stress.  

A global state of self-stress, GS , is expressed as: 

γSS=GS      (3.18) 

 as GS is the linear combination of all modes of states of self-stress within the structure.  

B.2.1 Vector of Linear Combination Constants,γ   

The vector of linear combination constants is evaluated by imposing the orthogonality condition 

that the vector of element deformations, e , is orthogonal to the null space of the equilibrium 

matrix, A (Pellegrino, S., 1990). This orthogonality condition is formulated as:  

0=e
T

SS      (3.19) 

It is worth mentioning the following point. As the null space of the equilibrium matrix, A, 

generating the states of self-stress, is identical to the left-null space of the kinematic matrix, B, 

generating modes of elements deformation, then, this orthogonality condition is a natural property 

of the structures as the subspaces of the equilibrium matrix in the form of the null space and the 

left-null space are naturally orthogonal in engineering structures (Pellegrino, S., 1993). 

The element deformation vector, e, can be expressed as: 

tee F+= 0      (3.20) 
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where 
b

Re ∈0 is the vector of imposed axial element deformation generated in the redundant 

elements of the structure due to heating, misfit or pre-stressing of the structure using technologies 

of active and adaptive members (Sener, M., et.al., 1994). F is a flexibility diagonal matrix that is 

formulated as: 

   
i

i

EA

l
ii =),(F      (3.21) 

where il and iA are, respectively, the length and the cross-sectional area of element i and E is the 

solid material Young's modulus. The solid material is the material used to manufacture the 

structure. Assume the length of bar elements of the structure can be expressed in terms of a 

reference length, L, as: 

Lcl kk =      (3.22) 

where kc is a constant that depends on the geometry of the structure and { }bk ,...,1∈ . b is the 

number of elements within the structure. Considering a unified cross-sectional area of all elements 

in the structure and substituting eqn (3.22) into eqn (3.21) results in: 

  kc
EA

L
kk 








=),(F  or  cFF 








=

EA

L
    (3.23) 

where kckk =),(cF . 

Substituting eqn (3.17) into eqn (3.20), then substituting the result into eqn (3.19) and 

rearranging, results in: 

( ) ( )f
TT te FSSFSSSS +−=

−

0

1
γ     (3.24) 

Considering only the axial forces developed by the imposed elongations, 0e , modifies eqn (3.24) 

into: 

( ) 0

1
eTT SSFSSSS

−
−=γ     (3.25) 

B.2.2 Vector of Imposed Elongations, 0e   

The imposed elongations are applied to the redundant elements in the structure. The redundant 

elements are determined by computing the reduced row echelon form (Strang G., 1998) of the 

equilibrium matrix and determining the non-pivotal columns. Once the non-pivotal columns in the 

equilibrium matrix are determined, the vector of imposed elongations, 
b

Re ∈0 , is formulated as: 
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   Lcie i00 )( ε=      (3.26a) 

where 0ε is a nominal strain assumed in the redundant elements which is used to control the level 

of tension field within the structure. For the purpose of the determinacy analysis we consider

10 =ε . )(0 ie  is the ith entry of the imposed elongation vector, 0e , { }ri ,..,1∈ and the r's are 

indices of the redundant elements in the unit cell structure. Other indices corresponding to pivotal 

elements in the equilibrium matrix are set equal to zero in the imposed elongation vector, 0e

Assuming a reference length of unity, 1=L , eqn (3.26a) can be written as: 

  icie 00 )( ε=    or      cee 00 ε=     (3.26b) 

where 
b

c Re ∈  is a vector with entries, corresponding to redundant elements, of topological 

constants, c 's, defined in eqn (3.22). Other entries in 
b

c Re ∈ are set to zero. 

Substituting eqn (3.25) into eqn (3.18) generates the global state of self-stress as: 

( ) 0

1
eS TT

G SSFSSSSSS
−

−=      (3.27) 

The global state of self-stress can be used to generate the product force vector. 

C. Combined Response of the Structure 

The combined response of the structure can be computed by the superposition of the two modes 

of structural response, mode (i) and mode (ii). This can be done by adding eqn (3.11) and eqn 

(3.16) which results in: 
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where augA  is the augmented equilibrium matrix that includes the bases of the statically 

determinate framework and the modes of the product force vector developed by the different 

modes of inextensional deformations. 

The augmented equilibrium matrix can be used for the determinacy analysis of the structure in its 

new configuration, i.e. after undergoing the inextensional deformation to the new balanced 

configuration. This can be done by computing the four fundamental subspaces of the augmented 

equilibrium matrix, as explained in § 3.3.1. An empty null space of the transpose of the 

augmented equilibrium matrix (dim(null(
T
augA ) = 0)) indicates that the states of self-stress are 
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capable of stiffening the internal mechanisms. This is the necessary but not sufficient condition to 

classify the internal mechanisms as first-order infinitesimal mechanisms.   

3.4.2 The Sufficient Condition for First-Order Infinitesimal Mechanisms: The Definiteness 

of the stress tensor Quadratic Form 

Consider a structure that possesses im states of internal mechanisms and one state of self-stress. 

Calladine and Pellegrino (1991) showed that the actual force developed is given by the product 

force vector,  βPFV=PFV  whereas a linear combination of the im internal mechanisms is 

actuated. The work done during this inextensional deformation is given by: 

ββ PFVDTT
W

2

1
=      (3.29) 

which can be written as: 

ββ QT
W

2

1
=       (3.30) 

where PFVDQ T=  is a symmetric matrix. Guest (2006) indicated that the matrix Q is a reduced 

form of the stress matrix, a subset of the geometrical stiffness of the structure, where motion is 

restricted to only inextensional internal mechanisms. 

A sufficient condition for first-order infinitesimal mechanisms can be stated as: 

0>ββ Q
T

      (3.31) 

In other words, the matrix Q has to be positive definite to impart a positive stiffness to any 

internal mechanism in the structure. A simple test for positive definiteness is that the Eigen values 

of the matrix Q should be all positive. 

For structures that possess s states of self-stress, the sufficient condition for first-order 

infinitesimal mechanisms, eqn (3.31), is modified to:  

0
1

>







∑

=
βγβ

s

i
ii

T
Q      (3.32) 

where i
T

i PFVDQ = , iPFV and iγ  are, respectively, the symmetric reduced stress matrix, the 

product force vector matrix and the vector of linear combination constants that are computed at 

the ith state of self-stress as { }.,...,1 si ∈ Assuming that [ ] { } { }sii ,...,101,1 ∈∀−−∈γ , (Calladine 

and Pellegrino, 1991), a simple code can be written to check the existence of a global positive 
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definite matrix on the form of ∑

=
=

s

i
ii

1
γQQG . A global positive definite matrix, GQ , is a 

sufficient condition to classify the internal mechanisms as first-order infinitesimal mechanisms.  

3.5 Determinacy Analysis of the Infinite Periodic Structure 

We apply the Bloch’s theorem, as described by Hutchinson (2004), for the determinacy analysis 

of the infinite lattice structure. To do so, we first define the set of parameters necessary to 

describe the propagation of a periodic wave-function through an infinite lattice structure. 

3.5.1 Direct Translational Bases 

The lattice translational symmetry primitive bases, ka
→

, are referred to as the direct translational 

bases. These translational bases are used to tessellate the unit cell that fills the space under 

translational symmetry. The direct translational bases are feature of the unit cell envelope which 

demonstrates the axes through which the unit cell is tessellated to fill the space.  

3.5.2. Direct Translational Vector 

A direct translational vector, expressed as a linear combination of the direct translational bases, is 

used to translate the reference unit cell to any other cell in the lattice space. This is represented by 

the primitive lattice vector spanned over a set of cells in the lattice space and is defined as: 

∑
=

→→

=
n

k

kk amR
1

     (3.33) 

where km  is any set of integers and n is the dimensional space of the lattice (n = 2 in 2D and n = 

3 in 3D).  

3.5.3. Position Vectors 

The position vectors of bars and nodes of the whole lattice structure can be expressed as a 

function of the bar and the node bases, defined with reference to the unit cell envelope in addition 

to the direct translational vector as: 
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where lp and mq are the node and the bar position vectors, respectively. J and B  are, 

respectively, the numbers of independent nodes and bars within the reference unit cell. The 

independent set of bases is defined in § 3.5.4. 

3.5.4. Direct Lattice 

The direct lattice is the set of independent bar and node bases, over the reference unit cell 

envelope, spanned over the infinite periodic lattice structure by their position vectors. To 

determine this independent set of bar and node vectors over the reference unit cell, we verify 

whether a vector Vi-1 is dependent on a vector Vi over one unit cell period through the relation: 

∑

=

→

− +=
n

k
kkii axVV

1

^

1      (3.35) 

where { }1,0,1
^

−∈kx  is a unit translation vector, If Vi-1 and Vi belong to the node position vectors, 

then { }JlijV li ,...,1& ∈≡≡  and if they belong to the bar position vectors, then

{ }BmibV mi ,...,1& ∈≡≡ . The dependency information is used later to modify the wave-

function over the reference unit cell to generate the periodic wave-function over the infinite 

lattice.  

3.5.5 Reciprocal Lattice 

The reciprocal lattice is itself a Bravais lattice introduced to describe the lattice in terms of 

primitive vectors. The advantage of resorting to the reciprocal lattice is to discretize the 

continuous space of the lattice into a discrete summation of modes at which the lattice 

performance can be examined. The reciprocal lattice can be represented by the primitive vectors 

1

→

b and 2

→

b , which are defined as: 

ijji ab πδ2. =
→→

      (3.36) 

where ja
→

 and ib
→

 are the direct and the reciprocal lattice bases, respectively, and { }2,1, ∈ji  in 

2D or { }3,2,1, ∈ji  in 3D. ijδ  is the Kronecker delta symbol that satisfies:     





=

≠
=

jifor

jifor
ij

1

0
δ     (3.37) 

Thus, the translational vectors of the reciprocal lattice are defined as: 
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[ ) Qbb ⊂∈∀+=
→→

1,0, 212211 ωωωωω     (3.38) 

where 
1ω  and 

2ω  are the covariant components of ω  with respect to the basis 1

→

b  and 2

→

b  and Q  

is the set of all rational numbers. 
1ω  and 

2ω are derived from the irreducible first Brillouin zone 

of the reciprocal lattice in agreement with the Bloch's theorem (Hutchinson, R.G., 2004; Elsayed, 

M.S.A., 2009), described in § 3.5.6.  

3.5.6 Bloch's Theorem 

The Bloch’s theorem is used to extend the analysis of the unit cell to the unbounded periodic 

lattice.  

A. Bloch-Wave-Function 

The Bloch’s theorem is applied to define the propagation of a wave-function over the infinite 

lattice structure. For nodal deformation function, the generalized nodal displacement vectors

( ) 2
, Cpd l ∈ω , where C is the set of all complex numbers, can be expressed over the entire lattice 

as a wave-function of the form: 

( ) ( ) { }JlejdRjdpd
Ri

lll ,...,2,1,,,
2 ∈∀=








+=

→→
ωπωωω    (3.39a) 

where J is the number of independent nodes within the unit cell envelope, 
→

+= Rjp ll  is the 

position vector of any node throughout the lattice and 
→

R  is the Bravais cell vector of any unit cell 

through the entire lattice.  

Similarly, for bar deformation function, the generalized bar deformation vectors ( ) 2, Cqe m ∈ω  

can be expressed over the entire lattice as a wave-function of the form: 

( ) ( ) { }BmebeRbeqe
Ri

mmm ,...,2,1,,,
2 ∈∀=








+=

→→
ωπωωω    (3.39b) 

where B is the number of independent bars within the unit cell envelope and
→

+= Rbq mm  is the 

position vector of any bar throughout the entire lattice. 

To obtain the reduced forms of the kinematic and the equilibrium equations using the generalized 

equations of wave-functions, transformation matrices are defined for finite wave-functions to 
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generate the periodic wave-functions over the entire infinite lattice. This procedure makes use of 

the periodic boundary conditions defined over the unit cell (Langley, 1993; Langley, et.al., 1997). 

B. Wave-Functions Transformation Matrices 

Applying the Bloch’s theorem to the generic unit cell, shown in Fig (3.4), we obtain: 
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µµ
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µ
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+
=

=
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=

=

                 (3.40) 

where q is a generic nodal or element function, such as force and deformation, and T, B, L and R 

denote top, bottom, left and right, respectively. xµ  and yµ  are the wave-numbers, derived from 

the reciprocal space of the lattice and the dependency information of the nodes, and are expressed 

as: 

 

 

 

 

 

 

Fig (3.4) A generic unit cell with its periodic displacement boundary conditions 

ix 12πωµ = , iy 22πωµ =      (3.41) 

where i is the complex number, 1−=i . Eqn (3.40) can be arranged in matrix form as: 

qL 

qLT qT qRT 

qLB qB qRB 

qI qR 

x 

y 
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where T is the transformation matrix from the primitive cell degrees of freedom to the reduced 

cell degrees of freedom.  

The transformation matrices for the element deformations and the nodal displacements wave-

functions are given by: 

ee ~
eT=      (3.43a) 

dd
~

dT=      (3.43b) 

where e~  and d
~

are the element deformations and nodal displacements reduced vectors (periodic 

wave-function), respectively. eT  and dT  are the transformation matrices, used to transform, 

respectively, the full vectors of the element deformations and the nodal displacements to their 

reduced forms. 

To obtain the transformation matrix, T, for a set of vectors, 
n

CV ∈ , we implement the following 

steps. If all vectors are independent, then V can be written as: 

V=I.V       (3.44) 

where 
nn

R
×∈I  is a unit square matrix. On the other hand, if some vectors are dependent vectors, 

then eqn (3.44) can be modified as: 

V=T.Vind      (3.45) 

where Vind is the set of independent vectors. Here, T is a modification of I. Assume that the vector 

with the order n1 in the set, V, is dependent on the vector with the order n2. Then, to modify I, the 

column number n1 in I has to be eliminated, and the element in matrix I with the index I(n1,n2) 

has to be modified to: 
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where { }1,0,12

^

,1

^

−∈xx  according to the vectors dependency relation developed by eqn (3.35). 

This process requires that the dependent vectors are arranged in a descending order during the 

column elimination process to avoid column order swap. 

By substitution of eqn (3.43) into the kinematic system of the finite truss, ed =B , we obtain:  

ed ~~
ed TBT =       (3.47) 

The transformation matrix eT is a complex non-square matrix, which can be inverted by 

multiplying it by the transpose of its conjugate (the Hermitian transpose), 
H
eT  such that: 

ed HH ~~
eede TTBTT =        (3.48) 

The multiplication of a complex matrix by its Hermitian transpose generates the following block 

real matrix, Be: 

eee BTT =H
     (3.49) 

Substituting eqn (3.49) into eqn (3.48) and inverting the real block matrix Be results in: 

edH ~~1 =−
dee BTTB      (3.50) 

Thus, from eqn (3.50), the reduced kinematic matrix can be expressed as: 

dee BTTBB
H1~ −=      (3.51) 

Using eqn (3.51), the irreducible form of the equilibrium system of infinite periodic lattice 

structure can be formulated as: 

( ) ft
TH ~~1 =−

dee BTTB  or  ft
~~~

=A    (3.52) 

where t
~

and f
~

are, respectively, the irreducible wave-functions representing the axial bar forces 

and the nodal forces of the infinite lattice structure. 

The determinacy state of the infinite lattice can be analyzed by computing the four fundamental 

subspaces of the reduced kinematic or equilibrium matrices of the infinite lattice structure. The 

four fundamental subspaces determine the independent sets of periodic mechanisms and periodic 

states of self-stress. This process is performed at the different wave-vectors ( )
21 ,ωω  that are 

computed from the reciprocal lattice irreducible first Brillouin zone (Brillouin, 1953).  

The information obtained from the four fundamental vector subspaces play an important role in 

the classification of infinite periodic lattice structure. It has been demonstrated that periodic 

structures cannot be statically and kinematically determinate (Guest and Hutchinson, 2003). A 

lattice structure that has a kinematically determinate (im=0) and statically indeterminate (s>0) 
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periodic architecture is classified as stretching dominated. On the other hand, periodic lattice 

structures with statically determinate (s=0) and kinematically indeterminate (im>0) periodic 

architectures are classified as bending dominated. For lattice structures with statically and 

kinematically indeterminate (s>0 and im>0) periodic architecture, a further analysis (§ 3.6) is 

required to verify the stiffening effect of the periodic states of self-stress on the periodic states of 

internal mechanisms. If the periodic states of self-stresses stiffen the periodic states of internal 

mechanisms at all wave-numbers, then the periodic structure is classified as a tensegrity lattice 

structure; if this is not the case, then the periodic structure is a bending-dominated. 

It is important to note that, although the determinacy analysis and the classification of periodic 

infinite structures gives an insight into the lattice microscopic performance in the form of element 

redundancy, inextensional collapse mechanisms as well as the role of the periodic states of self-

stress in stiffening the periodic internal mechanisms. However, such analysis finds its importance 

in a periodic structure subjected to loadings of wavelengths comparable to the lengths of its 

microscopic elements. In the case of a lattice material, a further study is required for the analysis 

and the classification of the material. Such analysis is conducted in chapter eight of this thesis.   

We developed an in-house MATLAB code that use point group symmetry to determine the 

irreducible first Brillouin zone and compute the wave-numbers of periodic lattice structures with 

any arbitrary cell geometry. We integrated this code with our analysis routines that we use 

throughout this thesis to analyse and characterize different lattice structures and materials.   

3.6 Stiffening Effect of Periodic States of Self-Stress to Periodic states of Internal 

Mechanisms 

In this section we investigate the necessary and the sufficient conditions for the stiffening effect of 

periodic states of self-stress to the periodic states of internal mechanisms in infinite periodic 

lattice structures.  

3.6.1 The Necessary Condition for First-Order Infinitesimal Mechanisms: The Product 

Force Vector Approach  

In this section, we follow the same approach applied to finite frameworks, § 3.4.1. Consider an 

infinite periodic lattice structure that is subjected to two modes of external loading 
nJi

Cf ∈)(~
and 

nJii
Cf ∈)(~

 as J is the number of independent nodes within the unit cell of the infinite lattice and 

n = 2 in 2D and n = 3 in 3D. Assume that the structural response to these two external loadings is 
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)(~ i
d and 

)(~ ii
d , respectively. In the following we present the analysis of these two modes of 

structural responses as well as the analysis of their combination. 

A. Mode (i) of Infinite Periodic Structural Response  

The equilibrium system of the irreducible form of an infinite periodic lattice structure, subjected 

to a loading
)(~ i

f , is formulated, similar to eqn (3.52), as: 

)(~~~ i
ft =A       (3.53) 

where 
BnJ

C
×∈A

~
is the irreducible form of the equilibrium matrix; B is the number of 

independent bars within the unit cell of the lattice. 
B

Ct ∈
~

 is the reduced vector of axial forces in 

the independent bars and 
nJi

Cf ∈)(~
 is the reduced vector of external forces applied to the 

independent nodes within the unit cell. 

Since 
)(~ i

f triggers only mode (i) of the infinite lattice response as the redundant bars in the lattice 

provide zero resistance to the external loading, accordingly, we develop the truncated equilibrium 

system of the lattice as:  

)(
^^

~~~ ift =A       (3.54) 

where the modes in the column space of the reduced equilibrium matrix, A
~

, corresponding to the 

redundant elements are eliminated by determining the non-pivotal elements in the matrix using 

the reduced row echelon form (Strang G., 1998). Here, 
( )sBnJ

C
−×

∈

^
~
A is the truncated reduced 

equilibrium matrix of the infinite periodic structure and s is the number of periodic states of self-

stress at a specified wave-number. Also, the entries in t
~

corresponding to the redundant elements 

are eliminated to develop the truncated vector, 
^
~
t .  

B. Mode (ii) of Infinite Periodic Structural Response  

Similar to what we explained for finite structures, an infinite periodic structure that has periodic 

internal mechanisms, if loaded by an external loading, 
)(~ ii

f , that is not in the column space of its 

equilibrium matrix, excites the modes of periodic internal mechanisms, mode (ii) of the lattice 

response, and the lattice undergoes inextensional deformations, under constant axial forces in its 
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bars, until the lattice changes configuration to a new balanced position. The response of mode (ii) 

is derived using the product force vector analysis. 

 B.1 Product Force Vector Analysis of Infinite Periodic Structures  

The first step in this analysis is to compute the reduced, global, periodic state of self-stress which 

is expressed as: 

γ~
~ ~

SS=GS      (3.55) 

where GS
~

, 
~

SS  and γ~  are, respectively, the reduced, global, periodic state of self-stress, the 

reduced periodic state of self-stress matrix and the reduced vector of linear combination constants.  

The reduced vector of linear combination constants can be computed as: 

0

1

~~ e

TT ~~~~

SSSSFSS

−














−=γ     (3.56) 

where F
~

and 0
~e are, respectively, the diagonal reduced flexibility matrix, expressed as shown in 

eqn (3.23), and the reduced imposed elongation vector which is computed in the same manner as 

shown in § 3.4.1 (B.2.2). Substituting eqn (3.56) into eqn (3.55), results in the reduced global 

state of self-stress. 

The second step in the analysis is to expand the reduced modes of mechanisms and the global 

states of self-stress to generate, respectively, the kinematical displacements of all nodes and the 

tension forces of all elements within the unit cell. This computation is formulated as: 

   DTD d

~
=                                   (3.57) 

   GG SS
~

eT=                                   (3.58) 

where dT  and eT  are the nodal and the element transformation matrices, given in eqns (3.43).  

The expanded modes of mechanisms along with the expanded global state of self-stress are used 

to formulate the set of product force vectors corresponding to each individual mechanism. The 

developed product force vectors are concatenated into the product force vector matrix, PFV . The 

product force vector matrix is then reduced to the irreducible product force vector matrix, 
~

PFV , 

representing the product force vectors of the infinite lattice structure, which is formulated as: 

ββ PFVTPFV d

~
T=

~
     (3.59) 
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where 
im

R∈β
~

is a reduced vector of linear combination constants that is used primarily to 

generate a global reduced internal mechanism as a linear combination of all modes of internal 

mechanisms within the infinite lattice structure. 

C. Combined Response of the Infinite Periodic Lattice 

The combined response of the structure can be computed by the superposition of the two modes 

of structural response, mode (i) and mode (ii). This can be done by adding eqn (3.54) and eqn 

(3.59) which results in: 
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~

APFVA     (3.60) 

where augA
~

 is the augmented reduced equilibrium matrix that includes the bases of the statically 

determinate periodic lattice structure and the modes of the periodic product force vector 

developed by the different modes of inextensional periodic internal mechanisms. 

Finally, four fundamental subspaces of the augmented reduced equilibrium matrix,

 

augA
~

, is 

computed to determine any periodic internal mechanisms. An empty null space of the transpose of 

the augmented reduced equilibrium matrix (dim(null(
T
augA

~
) = 0)) indicates that the periodic states 

of self-stress are capable of stiffening the periodic internal mechanisms and this is the necessary 

but not sufficient condition to classify the periodic internal mechanisms as first-order infinitesimal 

periodic mechanisms.   

Similar computations can be conducted at the other wave-numbers to investigate the tightening-up 

of the periodic internal mechanisms at the different wave-numbers.  

3.6.2 The Sufficient Condition for First-Order Infinitesimal Mechanisms: The Definiteness 

of the Stress Tensor Quadratic Form 

Similar to the analysis given in § 3.4.2, in infinite lattice structure that possesses im periodic states 

of internal mechanisms and one periodic state of self-stress, a linear combination of the reduced 

product force vectors can be given as: 

β
~~ ~

PFV=PFV      (3.61) 
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 and the work done during this inextensional deformation is given by: 

ββ
~~~

2

1~ ~

PFVDTTW =      (3.62) 

which can be written as: 

ββ
~~~

2

1~

QTW =      (3.63) 

where 
~

PFVDQ
T~~

=  is a symmetric matrix. 

Accordingly, a sufficient condition for first-order infinitesimal periodic mechanisms can be stated 

as: 

0
~~~

>ββ Q
T

     (3.64) 

For multiple periodic state of self-stress case, the sufficient condition is modified to: 

0
~~~~

1
>








∑

=
βγβ

s

i
ii

T
Q  [ ] { } { }sii ,...,101,1~ ∈∀−−∈γ    (3.65) 

where i
T

i

~

PFVDQ
~~

= as { }si ,...,1∈  and s is the number of periodic states of self-stress at a 

specific wave-number. The global reduced stress matrix is expressed as ∑

=
=

s

i
ii

1

~~~
γQQG . It is 

important to note that the matrix GQ
~

 is a complex matrix. A sufficient condition for a complex 

matrix to be a positive definite is that the Eigen values of the Hermetian part of the complex 

matrix are all positive. The Hermetian part of the matrix GQ
~

 is computed as ( )




 +

H

GG QQ
~~

2

1
. 

3.6.3 Stiffening Effect of Periodic States of Self-Stress to Periodic States of Internal 

Mechanisms at wave-number )0,0(=ω  

Computation of the left-null space of the reduced equilibrium matrix, A
~

, at wave-number 

)0,0(=ω , generates a set of modes representing the infinite lattice periodic mechanisms at that 

specific wave-number. Two of those modes of mechanisms are translational rigid-body motion 

and the others are internal mechanisms. In order to have a correct computation of the states of 

self-stress that are associated with the internal mechanisms, the modes of the rigid-body motions 

have to be eliminated from the row space of the reduced equilibrium matrix and the states of self-

stress have to be re-computed based on the resulting new equilibrium matrix. The new computed 

states of self-stress are the accurate states associated with the internal mechanisms which can be 
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used to check the tightening-up of the lattice at wave-number )0,0(=ω . To distinguish between 

the modes of mechanisms, we use the product force vector approach. First, we compute the 

reduced product force vector matrix associated with the set of reduced states of self-stress and the 

reduced mechanisms at wave-number )0,0(=ω . Second, we determine the non-pivotal columns 

in the reduced equilibrium matrix and we generate the truncated reduced equilibrium matrix at 

wave-number )0,0(=ω . We augment the reduced product force vector matrix and the truncated 

reduced equilibrium matrix to generate the augmented reduced equilibrium matrix, augA
~

. The 

reduced row echelon form of the matrix 
T
augA

~
 is computed to determine the non-pivotal modes, 

representing the set of mechanisms after applying the stiffening effect of the global state of self-

stress, along with their indices. If the number of the computed mechanisms is reduced to two, then 

these modes are rigid-body mechanisms and the rest of mechanisms are internal mechanisms that 

are stiffened by the global state of self-stress. However, if the number of the computed 

mechanisms is greater than two an additional filtration step is required to distinguish between the 

rigid body mechanisms and the non-stiffened internal mechanisms. 

If the number of independent nodes within the unit cell is J, then, two modes of rigid body 

mechanisms can be defined for the infinite lattice as: 

( )( )

( )( )

( )( )

( )( ) 1212
~

0112
~

0212
~

1112
~

=+−

=+−

=+−

=+−

id

id

id

id

y

y

x

x

  and { }Ji ,...,1∈    (3.66) 

where xd
~

 and yd
~

are the rigid-body mechanisms in the x and the y directions, respectively. The 

modes of mechanism that are independent of the two modes of rigid-body mechanisms, defined in 

eqn (3.66), are the internal mechanisms while the dependent modes are the rigid-body 

mechanisms. The indices of these modes of rigid-body mechanisms are determined and their 

corresponding rows in the reduced equilibrium matrix are eliminated to form the matrix A
~~

. Again 

the null space of this new reduced equilibrium matrix is computed and the resulting periodic states 

of self-stress are used to form the final global periodic state of self-stress and the stiffening effect 

analysis has to be repeated by the new computed periodic state of self-stress. 

Infinite periodic lattice structures that have unit cells with all their elements enclosed within their 

cell envelope can be directly analysed using the aforementioned proposed analysis technique. 
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However, lattice topologies that have unit cells with elements extending between adjacent unit 

cells, such as those shown in Fig (2.5b-h), require extending the analysis to include the Dummy 

Node Rule which we present in the next section. 

3.7 The Dummy Node Rule for the Analysis of Pin-Jointed Periodic Lattice Structures  

An accurate prediction of the microscopic behavior of periodic lattice structures using the Bloch-

wave method requires the retrieving of all the periodicity information of the kinematic and the 

static wave-functions within the cell envelope. Lattice structures constructed of unit cells that 

involve elements extending between adjacent unit cells do not possess the full periodicity 

information within the configuration of their unit cells; this occurrence (Figs. 2.5b-h) represents a 

challenge for the current methods of analysis. To solve this, a new rule, namely, the Dummy 

Node Rule (DNR) is presented in this section. The definition of the DNR is based on the Bloch`s 

theorem applied to a unit step periodicity across the unit cell envelope assuming that the wave-

function is propagating with a constant amplitude and without any phase change, i.e. at wave-

number )0,0(=ω .  

A simplified scheme for the application of the DNR in modelling a wave-function over the finite 

structure of a unit cell is presented, namely, the Dummy Node Scheme (DNS). The DNS is a 

simple and straight forward method that can be used to generate the unit cell kinematic and 

equilibrium matrices that are employed in the analysis of the infinite lattice structures. It is also 

used in the application of the Cauchy-Born hypothesis (Bhattacharya, K., 2003; Ericksen, J. L., 

1984; Pitteri, M., & Zanzotto, G., 2003; Maugin, G. A., 1992; Born, M., & Huang, K., 1954) 

necessary for the homogenization process of the microscopic characteristics of lattice structures, 

as will be shown in chapter four.  

The first step in the DNS is to introduce dummy nodes at the intersection points between the cell 

envelope and the elements extending between adjacent unit cells. These dummy nodes are treated 

as part of the finite structure of the unit cell which is used to derive the static and the kinematic 

analytical models of the unit cell finite structure. In this step, the DNS establishes the kinematic 

and the equilibrium periodic relationships of the wave-function propagating across the dummy 

nodes and also across the microscopic elements connected to those dummy nodes.  

The statement of the DNR requires extending the mathematical description of the unit cell to 

account for the dummy nodes.  
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3.7.1. Extending the Mathematical Description of the Unit Cell 

The DNR requires extending the unit cell parameters, defined earlier in §3.2.1, to account for the 

dummy nodes, namely, the dummy node bases group.  These lattice parameters are shown in 

details in Fig (3.5) and briefly defined hereafter. 

Fig (3.5) shows a 2D square lattice structure which is used here as a paradigm for the analysis.  

The lattice structure, in Fig (3.5), is demonstrated by the thin lines while the cell envelopes are 

demonstrated by the thick lines. Unit cells A and B, shown in Figs (3.5c) and (3.5d), respectively, 

can be used to generate the square lattice by infinite 2D tessellation. Unit cell A is a traditional 

cell, where all the cell elements are included within its envelope. Employing unit cell A for the 

determinacy analysis and characterization of the square lattice using the method developed earlier 

in this chapter is straightforward.  

 

 

 

 

 

 

 

 

 

Fig (3.5) (a) Lattice structure; (b) Cell envelope; (c) Unit cell A; (d) Unit cell B without 

dummy nodes; (e) Unit cell B with dummy nodes 

Unit cell B is an alternative unit cell that can be also used to generate the square lattice. However, 

using unit cell B for the determinacy analysis and characterization of the square lattice by 

applying the Bloch-wave method is challenging as the structure of the unit cell does not have any 

nodes that lay on the envelope. We analyze the square lattice using the two unit cells and show at 

the end of this section that they generate similar results which demonstrates the accuracy of the 

DNR and the DNS. 

The bar and the node bases are represented by their position vectors. For this purpose, a Cartesian 

coordinate system is defined for each unit cell in the square lattice, with its origin located at the 

left- bottom node of unit cell A and at the only real node of unit cell B. A length of unity is 

assumed for all microscopic cell elements of the square lattice. 
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A. Lattice Bases 

The set of bases representing the physical lattice structure contains two groups, namely, the node 

bases group and the bar bases group (Elsayed, M.S.A. and Pasini, D., 2010b; Hutchinson R.G., 

2004). In the current study, another group that contains the bases of the dummy nodes is 

introduced, as explained in section A.1.  

A.1 Dummy Node Bases Group 

In lattice structures constructed of unit cells that have cell elements intersecting their envelopes 

not at their end nodes but extending between adjacent unit cells, hypothetical dummy nodes are 

introduced at the intersection points between the microscopic cell elements and the cell envelope, 

as shown in Fig (3.5e).  

The dummy node bases group, DG , is the mathematical group that contains the position vectors 

dd jr ≡  of all the dummy nodes within a unit cell, where { }Dd ,...,1∈ and D is the number of 

dummy nodes within a unit cell. For unit cells A and B of the square lattice, the dummy node 

bases groups are formulated respectively as: Φ=A
DG , where Φ is the empty group and

( ) ( ) ( ) ( ){ }5.0,0,0,5.0,5.0,0,0,5.0 −−=B
DG . 

The superscripts A and B indicate parameters of unit cells A and B, respectively. 

 A.2 Node Bases Group 

The node bases group, NG , is the mathematical group that contains the position vectors of all 

nodes in the unit cell. In a unit cell that contains only real nodes, such as unit cell A, shown in Fig 

(3.5c), { }
jlN jjjG ,...,,...,1≡ , where lj is the position vector of node l  and { }jl ,...2,1∈ . j is the 

total number of nodes within the unit cell structure. If the unit cell contains dummy nodes, such as 

unit cell B shown in Fig (3.5e), then, { }
DjlN GjjjG ∪≡ ,...,,...,1 .  

For unit cells A and B of the square lattice, the node bases groups are formulated, respectively, as: 

( ) ( ) ( ) ( ){ }0,1,1,1,1,0,0,0=A
NG  and ( ) ( ) ( ) ( ){ }5.0,0,0,5.0,5.0,0,0,5.0),0,0( −−=B

NG .  
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A.3 Bar Bases Group 

The bar bases group, BG , is the mathematical group that contains the position vectors of all the 

bars in the unit cell. In a unit cell that contains only real nodes, { }bmB bbbG ,...,,...,1≡ , where mb is 

the position vector of the geometric centroid of a bar m with { }bm ,...2,1∈ .  b is the total number 

of bars within the unit cell structure that are connected between real nodes. In a unit cell that 

contains dummy nodes, then, { } DbmB GbbbG ∪≡ ,...,,...,1 , as the position vectors of the dummy 

nodes are coincident with the position vectors of the bars connected to them. Accordingly, it is 

evident that the dummy node bases group is always defined as a subset of the node bases group 

and the bar bases group.  

For unit cells A and B of the square lattice, the bar bases groups are formulated, respectively, as: 

( ) ( ) ( ) ( ){ }0,5.0,5.0,1,1,5.0,5.0,0=A
BG  and ( ) ( ) ( ) ( ){ }5.0,0,0,5.0,5.0,0,0,5.0 −−=B

BG . 

These unit cell parameters are used to generate the equilibrium and the kinematic systems of the 

unit cell using the DNS which is based on the definition of the DNR. 

3.7.2 The Dummy Node Rule 

In a periodic lattice structure, constructed by tessellating a unit cell composed of bar bases group 

BG , node bases group NG and dummy node bases group ND GG ⊂ ,∀ independent bar element 

n, with position vector Bn Gb ∈ , which is connected between independent dummy node j, with 

position vector Dnj Gbj ∈≡ , and real node l, with position vector Nl Gj ∈ , ∃ a dependent bar 

element m, with position vector Bm Gb ∈ , that is connected between dependent dummy node i, 

with position vector Dmi Gbj ∈≡ , and real node k, with position vector Nk Gj ∈ , such that: 

kji ajj
→

+= λ       (a) 

knm abb
→

+= λ      (b) 

nm nn
^^

=       (c) 

ωλπi
nm ett

2−=      (d) 

ωλπωλπωλπ i
nm

i
nm

i
nm eeeeeeeee

2
12

2
21

2 +=+==  (e) 



63 

 

ωλπi
ji eff 2−=      (f) 

ωλπi
ji edd 2=       (g) 

( )
kkl

ki
k

i
li

jaj

jj
dedd

−+

−
−=

λ

ωλπ2
   (h) 

( )
kkl

jli
klj

jaj

jj
eddd

−+

−
−= −

λ

ωλπ2
   (i) 

where ka
→

 is the direct translational basis of the lattice, { }1,1 −∈λ is a unit integer that defines the 

dummy nodes periodicity relation across the cell envelope. λ  is a subset of kx
^

, defined in eqn 

(3.35); 
^

n , t , f , d and e denote, respectively, a unit vector in the direction of an element, an 

element tension force, nodal force, nodal displacement and an element axial deformation. The 

subscripts i, j, m, and n denote, respectively, dummy node i, dummy node j, element m and 

element n. On the other hand, the subscripts m1 and m2 denote, respectively, the portion of 

element m included within the reference unit cell envelope and the portion of element m out of the 

reference unit cell envelope. Similarly, subscripts, n1 and n2 denote, respectively, the portion of 

element n out of the reference unit cell envelope and the portion of element n included within the 

reference unit cell envelope. ω is a wave-number derived from the irreducible first Brillouin zone 

of the lattice and i appearing in the exponential power is the complex number 1−=i . It is noted 

that, due to the translational symmetry of the lattice, the dummy nodes are always introduced in 

pairs where, within a pair, the two dummy nodes are mutually, periodically, dependent on one 

another with one-step integer translation, as defined by eqn (3.35). 

A. Proof of the DNR 

For the proof of the DNR, we examine the lattice topology shown in Fig (3.6). After the proof we 

resume the analysis of the square lattice structure shown in Fig (3.5) at which we apply the DNS 

to derive the equilibrium and the kinematic systems of the lattice unit cells.  

Consider elements m and n in the three-unit cell assembly of the lattice structure shown in Fig 

(3.6). Element m is connected to node k, located on the borders between unit cells I and II, and to 

node p that belongs to unit cell III. Element n connected to node q belongs to unit cell I, and to 

node l belongs to unit cell II. The envelope of unit cell II intersects elements m and n at nodes i 
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and j, respectively, where i and j are dummy nodes that we introduce at the intersection points. 

Node i divides element m into two segments m1 and m2 of length Lm1 and Lm2, respectively. On 

the other hand, node j divides element n into two segments n1 and n2 of length Ln1 and Ln2, 

respectively. Elements m and n carry internal tension forces tm and tn, respectively. The portions of 

the nodal forces that are in balance with the tension forces in elements m and n are denoted as fr 

where { }qplkjir ,,,,,∈ . fr is a two dimensional vector that has two components in the x and the y 

Cartesian coordinate directions. 

 

 

 

 

 

 

 

 

 

Fig (3.6) A lattice structure (left) and the assembly of three unit cells (right) that are 

tessellated in the direction of the horizontal translational basis. The structural elements are 

presented by the continuous lines and the cell envelopes are presented by the dashed lines. 

Real structural nodes are presented as (O) and the dummy nodes are presented as (����) 

Geometrical inspection of the three cells assembly in Fig (3.6) shows that element m is 

periodically dependent on element n. Accordingly, eqns (a-c) of the DNR are proven directly, 

where: 

1

→

+= ajj ji      (3.67) 

1

→

+= abb nm      (3.68) 

nm nn
^^

=      (3.69) 

The value of λ  in eqn (a) of the DNR is decided upon the dependency relation between the two 

dummy nodes, which is equivalent to kx
^

 defined by eqn (3.35).  
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Using the bar dependency relation defined in eqn (3.68), the Bloch's theorem can be applied to 

define the wave-functions propagating across the microscopic cell elements in the form of the 

tension forces and the axial deformations. The tension forces and the axial deformations of 

elements m and n are expressed as: 

ωπi

nm ett 2=      (3.70) 

ωπi

nm eee 2

11 =      (3.71) 

ωπi

nm eee 2

22 =      (3.72) 

 By splitting the three-unit cells assembly into separate cells, as shown in Fig (3.6), applying the 

conditions of static equilibrium, and considering the static equilibrium of unit cell II, we can write 

eqn (3.70) as: 

ωπi

nm ett 2−=      (3.73) 

which proves eqn (d) of the DNR. Adding the left and the right hand sides of eqn (3.71) to the left 

and the right hand sides of eqn (3.72) in an alternative manner, results in eqn (e). Eqn (e) of the 

DNR is necessary for the computation of the strain energy density, necessary for the stiffness 

computation of the homogenized lattice material. 

From Fig (3.6), it can be deduced that nodes k and p are dependent on nodes q and l, respectively, 

such that: 

1

→

+= ajj qk      (3.74) 

1

→

+= ajj lp      (3.75) 

Using the dependency relations, defined in eqns (3.74) and (3.75), the Bloch's theorem can be 

applied to describe the wave-functions propagating across the nodes. Considering also the anti-

periodic constraints necessary for the static equilibrium of the lattice, the nodal forces and the 

nodal displacements of nodes k and q, and nodes p and l are related as: 

ωπi

qk eff
2−=      (3.76) 

ωπi

lp eff
2−=      (3.77) 

ωπi

qk edd
2=      (3.78) 

ωπi

lp edd
2=      (3.79) 

Rearranging eqns (3.76) and (3.77), eqn (f) of the DNR can be derived. Similarly, the 

rearrangement of eqns (3.78) and eqn (3.79) yields eqn (g) of the DNR. 
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Equations (h) and (i) express the displacements of the dummy nodes as a linear interpolation of 

the displacements of the real nodes within the unit cell envelope. For instance, the displacement of 

the dummy node j is expressed in eqn (i) of the DNR as a linear interpolation of the displacements 

of nodes l and k. As shown in § 3.7.3, the degrees of freedom associated with the dummy nodes 

are eliminated from the derived matrix systems. However, it is necessary to derive all types of 

structural response by using the parameters given within the unit cell envelope, which is the 

notion of modelling lattice structures by considering only the unit cell. 

 3.7.3 The Application of the Dummy Node Rule for the Determinacy Analysis of Lattice 

Structure: The Dummy Node Scheme 

In this section, the DNR is applied to the determinacy analysis of lattice structures. Here, a 

method is developed as a simple and straightforward scheme for the application of the DNR, 

which we name the DNS. In particular, DNS is used to obtain the equilibrium and the kinematic 

systems of unit cell finite structure.  

To derive the equilibrium and the kinematic systems of unit cells that have cell elements 

extending between adjacent unit cells involves the following steps: 

Step 1: Hypothetical dummy nodes are defined at the intersection points between the microscopic 

cell elements, extending between neighbouring unit cells, and the cell envelope. The kinematic 

and the equilibrium matrices of the finite microstructure are then formulated to take into account 

the dummy nodes.  

Step 2: Once the kinematic and the equilibrium systems are formulated, the degrees of freedom 

associated with the hypothetical dummy nodes are eliminated from the generated matrices.  

The degrees of freedom associated with the dummy nodes appear in: (i) the row space of the 

equilibrium matrix, also in (ii) the column space of the kinematic matrix. To eliminate the degrees 

of freedom associated with the dummy nodes, all modes in the row space of the equilibrium 

matrix and the column space of the kinematic matrix that are associated with the dummy nodes 

are eliminated. The same elimination technique is applied to the nodal force and the nodal 

displacement vectors.  

For the square lattice structure, shown in Fig (3.5), the equilibrium and the kinematic systems of 

the finite structure of unit cell A are formulated as: 
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  (3.80) 

The equilibrium and the kinematic systems of unit cell B are formulated as: 

   

 

 

 

(3.81) 

 

 

 

 

The second step is the elimination of all degrees of freedom associated with the dummy nodes. 

The modes associated with the dummy nodes in the kinematic and the equilibrium systems are 

surrounded by the dotted rectangles shown in eqn (3.81). This process yields eqn (3.81) to the 

form: 
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Equation (3.82) represents the equilibrium and the kinematic systems of the finite structure of unit 

cell (B), shown in Fig (3.5d). The dependency relations of the real node bases and also those of 

the bar bases are then derived to be used along with the definition of the Bloch's theorem to 

express the irreducible forms of the matrix systems of eqn (3.82). The irreducible forms of the 

equilibrium and the kinematic systems of unit cells A and B, developed for the infinite square 

lattice structure, are used to predict the lattice behavior at different wave-numbers as the wave-
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numbers are derived from the irreducible first Brillouin zone of the reciprocal lattice. It is realized 

that the analysis using the two unit cells identically predicts the microscopic performance of the 

infinite periodic square lattice structure which is classified as a bending dominated lattice 

structure. This result illustrates the accuracy of the DNR and the DNS. Examples for the 

application of this methodology are reported in Appendix E. 

A. Proof of the Validity of the Elimination Scheme  

Consider the two elements, m and n in the three-unit cells assembly of the lattice structure shown 

in Fig (3.6). A unit vector in the direction of elements m and n can be written as: 
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A.1 Equilibrium Analysis 

Consider segment m1 of element m, the static equilibrium of forces of nodes k and i with the 

tension force in the element tm can be formulated as: 
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Similarly, consider segment m2 of element m, the static equilibrium of forces of nodes i and p 

with the tension force in the element tm can be expressed as: 
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The assembly of eqns (3.85) and (3.86) into one matrix system results in: 
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From eqn (3.87) one can realize that the coefficients of the dummy node, i, are set to zero, which 

enables the elimination of the node from the matrix system, which results in:   
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The same reasoning can be applied to element n, where the equilibrium of the nodal forces of 

nodes q, l and j with the element tension force tn can be expressed respectively in eqns (3.89) and 

(3.90) as: 
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The assembly of eqns (3.89) and (3.90) in one matrix system results in: 
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Now, we consider only the equilibrium of the portions of elements m and n that are included 

within the envelope of cell II. Those are segment m1 of element m and segment n2 of element n.  

Using the DNR, the static relations of dummy nodes i and j and elements m and n at wave-number 

( )0,0=ω can be formulated as: 

nm nn
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=  , nm tt −=  and ji ff −=     (3.92) 

Now, consider the equilibrium of segment m1 of element m, formulated in eqn (3.85), and the 

equilibrium of segment n2 of element n (eqn (3.90)). The assembly of eqns (3.85) and (3.90) in 

one matrix system results in: 
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Applying the conditions of eqn (3.92), results in: 
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where the subscript denotes the applied condition. Finally the matrix system of eqn (3.94) is 

reduced to: 
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which is equivalent to the elimination of the degrees of freedom of the dummy nodes i and j from 

the matrix system. It should be noted that the matrix system obtained in eqn (3.95) is identical to 

the results obtained in eqn (3.88) and eqn (3.91). 

A.2 Kinematic Analysis 

Consider segment m1 of element m; the kinematic compatibility of displacements of nodes k and i 

with the deformation of the element portion, 1me  can be written as: 
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Similarly for segment m2 of element m, the kinematic compatibility of displacements of nodes i 

and j with the deformation of the element portion, 2me  can be formulated as: 
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The assembly of eqns (3.96) and (3.97) into one matrix system results in: 

mmm

p

i

k

mm

p

i

k

mmmm eee

d

d

d

nn

d

d

d

nnnn =+=























−=























−− 21

^^^^^^

0   (3.98) 

From eqn (3.98) one can realize that the coefficients of the dummy node, i, are set to zero, which 

enables the elimination of the node from the matrix system that results in:   
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The same reasoning can be applied to element n, where the kinematic compatibility of the 

displacements of nodes q, l and j with the element deformation, ne  can be expressed respectively 

in eqns (3.100) and (3.101) as: 
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The assembly of eqns (3.100) and (3.101) into one matrix system results in: 
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Now, we consider only the kinematic compatibility of the portions of elements m and n that are 

included within the envelope of cell II. Those are segment m1 of element m and segment n2 of 

element n.  

Using the DNR the kinematic relations of dummy nodes i and j and elements m and n at wave-

number ( )0,0=ω can be formulated as: 

 nmnmnm eeeeee ==+=+ 1221  and ji dd =    (3.103) 

Consider the kinematic compatibility of segment m1 of element m, given in eqn (3.96), and the 

kinematic compatibility of segment n2 of element n, given in eqn (3.101), the assembly of these 

two eqns in one matrix system results in: 
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Applying the conditions of eqn (3.103), results in: 
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where the subscript denotes the applied condition. Finally the matrix system of eqn (3.105) is 

reduced to: 
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which is equivalent to the elimination of the degrees of freedom of dummy nodes i and j from the 

matrix system.  

The previous analysis shows that the application of the DNS helps significantly to simplify the 

matrix computation of lattice structures. Failure of eliminating the degrees of freedom associated 
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with the dummy nodes results in inaccurate results as the analysis is carried out for pin-jointed 

lattice structure. 

In the determinacy analysis of infinite periodic lattice structures, the DNS is employed to derive 

the equilibrium and the kinematic systems of the unit cell finite structure. Once the equilibrium 

and the kinematic systems of the unit cell are established, the technique described in §3.5 is 

applied to the real structure of the unit cell, including only the real nodes and bars, of the unit cell 

to generate the irreducible equilibrium and kinematic systems of the infinite lattice structures.  

3.8 Classification of Pin-Jointed Infinite Periodic Lattice Structures 

Infinite periodic lattice structures are classified into three classes, namely, Stretching Dominated 

Lattice Structure (SDLS), Bending Dominated Lattice Structure (BDLS) and Tensegrity Lattice 

Structure (TLS), as shown in table (3.1). This classification is based on the determinacy state of 

the infinite lattice and the stiffening effect of the periodic states of self-stress to the periodic 

internal mechanisms. 

We apply the determinacy analysis procedure, developed in this chapter, to the nineteen lattice 

topologies, shown in Figs (2.4), (2.5) and (2.6) and we classify them in light of their determinacy 

state after checking the stiffening effect of the periodic states of self-stress to the periodic internal 

mechanisms. The determinacy analysis results are reported in Appendix E.  

Table (3.1) Classes of infinite periodic lattice structures 

 Static determinacy Kinematic determinacy Stiffening effect Class 

I s > 0 m = 0 - SDLS 

II s = 0 m > 0 - 
BDLS 

III s > 0 m > 0 No 

IV s > 0 m > 0 Yes TLS 

The nineteen lattice topologies are classified in table (3.2) based on their determinacy analysis 

results, reported in Appendix E. Two lattice topologies out of the nineteen are classified as 

Tensegrity Lattice Structures, namely, the 33.42 lattice, shown in Fig (2.5c), and the Equilaterals-

Hexagon (EH) lattice, shown in Fig (2.6e). 

3.9 Conclusion 

A systematic, matrix-based, procedure for the determinacy analysis of periodic structures with 

any arbitrary cell topology using the Bloch-wave method has been presented. A new rule, namely, 

the Dummy Node Rule supported by the Dummy Node Scheme, has been proposed to simplify 



73 

 

the analysis of infinite periodic structures that have unit cells with cell elements extending 

between adjacent unit cells. The stiffening effect of the periodic states of self-stress to the periodic 

internal mechanisms has been assessed using the Product Force Vector approach and the 

definiteness of the stress matrix developed by first-order, infinitesimal, periodic, internal 

mechanisms. The proposed analysis technique has been applied to 19 2D lattice topologies 

whereas their determinacy analysis results are used for their classification. Numeric results of this 

analysis are reported in Appendix E where the steps of the analysis for the square, the Kagome 

and the 23
4.3  lattice topologies are demonstrated in details.  

Table (3.2) Classification of 2D infinite periodic lattice structures 

Lattice Topology Class Lattice Topology Class 

Square (Fig (2.4a)) BDLS 34.6 (Fig (2.5h)) SDLS 

Triangular (Fig (2.4b)) SDLS DHT (Fig (2.6a)) SDLS 

Hexagonal (Fig (2.4c)) BDLS SUBS (Fig (2.6b)) BDLS 

Kagome (Fig (2.5a)) BDLS TT (Fig (2.6c)) SDLS 

4.6.12 (Fig (2.5b)) BDLS SDBS (Fig (2.6d)) SDLS 

33.42 (Fig (2.5c)) TLS EH (Fig (2.6e)) TLS 

32.4.3.4 (Fig (2.5d)) SDLS UBS (Fig (2.6f)) SDLS 

3.4.6.4 (Fig (2.5e)) BDLS DBS (Fig (2.6g)) SDLS 

3.122 (Fig (2.5f)) BDLS PK (Fig (2.6h)) SDLS 

4.82 (Fig (2.5g)) BDLS   

 

It is found that the infinite Kagome lattice structure has a bending dominated behavior as the 

lattice experiences a periodic internal mechanism at wave-number )0,5.0(=ω that is not 

tightened-up by any periodic state of self-stress.  This result, however, is different than the 

classification of the Kagome lattice material whereas the Kagome lattice material. Kagome lattice 

material is classified in literature (Elsayed, MSA and Pasini, D., 2010; Hutchinson RG, 2004) as 

stretching dominated lattice material as the collapse internal mechanism, computed at wave-

number )0,5.0(=ω , vanishes at the macroscale as the microscopic properties of the lattice are 

smeared-out by homogenization. Details about this analysis are given in chapters four and eight of 

this thesis. We show in chapter four, that the pin-jointed, infinite, periodic, structure of the 

Kagome lattice, gains its stability when it is handled as a lattice material, i.e. when it is used in 

manufacturing mechanical elements with macroscopic length scale much larger than those of its 

microscopic constituents as well as loaded by macroscopic loadings with wavelengths much 

larger than those of its elements; a phenomenon that we named Periodicity Induced Stability 

(PIS). 
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It has been found that there are three types of infinite, periodic, lattice structures, namely, 

stretching dominated, bending dominated and tensegrity lattice structures. Two lattice topologies 

out of the selected nineteen are classified as Tensegrity Lattice Structures (TLS), as shown in 

table (3.2). 
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CHAPTER 4 

Effective Elastic and Strength Properties of Pin-Jointed Lattice 

Materials 

4.1 Introduction 

This chapter presents a matrix-based procedure to characterize the effective specific stiffness and 

strength properties of 2D lattice materials with any arbitrary cell topology. Unlike previous works, 

the current study automates the analysis process to include lattice materials whose unit cell has 

elements extending between adjacent unit cells and thus intersecting their envelopes. The main 

challenge in the analysis of this periodic lattice structures is that the unit cell does not have the 

full information concerning its nodal kinematic and static periodicity. For this reason, we employ 

the DNR, developed in chapter three, which enables the analysis of lattice material with any cell 

topology.  

The lattice material is considered here as a pin-jointed infinite micro-truss structure. The Cauchy-

Born hypothesis (Bhattacharya, K., 2003; Born, M., & Huang, K., 1954; Maugin, G. A., 1992; 

Pitteri, M., et,al., 2003; Ericksen, J. L., 1984) is used to homogenize the lattice material elastic 

properties by formulating the microscopic lattice nodal deformations in terms of a macroscopic, 

hypothetical, homogeneous, strain field applied to the material as assumed by the Cauchy-Born 

hypothesis. This formulation, in turn, is used to express the microscopic element deformations in 

terms of the macroscopic strain field, from which the material macroscopic stiffness properties are 

derived. In this process, the DNS is a necessary step to construct the nodal periodicity within the 

unit cell, which is used to apply the Cauchy-Born kinematic Boundary condition to the nodal 

deformation wave-functions. The developed characterization method is applied to ten lattice 

topologies, five of which have unit cells with a square Bravais lattice symmetry and the other five 

have unit cells with a hexagonal Bravais lattice symmetry. Finally, charts representing the relative 

elastic moduli of the stretching-dominated lattice materials versus its relative density are 

developed. These charts assist in the selection of the best topology of a stretching-dominated 

lattice material for a given application that requires a material with specific stiffness properties. 

The analysis is conducted here for 2D lattice materials; however the methodology can be simply 

extended to include 3D lattice materials. 
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4.2 Relative Density of 2D Lattice Material 

Assuming that the mass of the boundary elements of a unit cell, i.e. elements lying on the cell 

envelope, are divided equally among the neighbouring cells, then, the relative density of the 2D 

lattice material can be expressed as: 









==

L

H
CT

L ρ

ρ

ρ
ρ

      (4.1) 

where 
ρ
TC  is a constant depending on the topology of the 2D lattice material, H and L are, 

respectively, the in-plane thickness and the length of a reference cell element. 	
  and 	 are the 

densities of the lattice material and the solid material, respectively; where the solid material is the 

material used in manufacturing the lattice material.  

4.3 Effective Elastic Properties of 2D Lattice Materials 

4.3.1 Macroscopic Strain Generated by Microscopic Mechanisms 

As described in Chapter three, the Bloch’s theorem allows characterizing mechanisms 

corresponding to periodic nodal displacement fields. To examine the macroscopic strain field 

generated by periodic mechanisms, we resort to the Cauchy-Born hypothesis (Bhattacharya, K., 

2003; Born, M., & Huang, K., 1954; Maugin, G. A., 1992; Pitteri, M., et,al., 2003; Ericksen, J. L., 

1984).  

A. Cauchy-Born Hypothesis 

From the definition of the Cauchy-Born hypothesis (Hutchinson R.G., 2004), the infinitesimal 

displacement field of a periodic node in a lattice structure can be formulated as: 

( )
→→

+==







+ RjdRjd ll .0,, εεε      (4.2) 

Where ε is an assumed homogeneous macroscopic strain field applied to the lattice material along 

a set of unit cells spanned by the vector
→

R .  )0,( =εljd  is the periodic displacement field of 

node lj . Assume that the periodic nodes defined by the position vectors 
lj and 

→

+ Rjl , are the 

two periodic nodes i and j within a lattice structure, then, eqn (4.2) can be formulated in matrix 

form as:   
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where u and v are the nodal displacement components in the x and y directions, respectively, and 

node i is the dependent node, while node j is the independent node. In terms of the engineering 

strain (Renton, J.D., 2002), eqn (4.3) can be reformulated as: 
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which in turn can be expressed as: 
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   (4.5) 

Equation (4.5) is the kinematic boundary condition of the Cauchy-Born hypothesis. Applying this 

boundary condition to the unit cell nodal displacement vector, d, results in: 

εΕTd += dd
~

      (4.6) 

where dT is the nodal transformation matrix, formulated in eqn (3.43b), that transforms the nodal 

displacement vector of the unit cell, d , to the periodic reduced vector of nodal displacements of 

the infinite lattice, d
~

.  

Substituting eqn (4.6) into the kinematic system of the unit cell (eqn (3.5)) results in: 

{ } ed =+ εΕTB d

~
     (4.7) 

Where B  and e are, respectively, the kinematic matrix and the vector of element deformations of 

the unit cell finite structure. 

Substituting eqn (3.43a) into eqn (4.7) and inverting Te, results in: 

ed ~~~~
=+ εΕB       (4.8) 

Where dee BTTBB H1)(
~ −=  is identical to the reduced kinematic matrix of the infinite lattice at 

wave-number ( )0,0=ω , and BΕTBΕ ee
H1)(

~ −= . 

From eqn (4.6) one can realize that the Cauchy-Born kinematic boundary condition is applied to 

the kinematic compatibility system of the lattice microstructure to express an explicit relation 

between the microscopic nodal displacements and a homogeneous, averaged, macroscopic strain 
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field, ε . A key parameter to establish this relation is the existence of the complete information of 

nodal periodicity within the unit cell envelope. The Cauchy-Born hypothesis cannot be applied to 

the kinematic compatibility relations of unit cells such as those shown in Fig (2.5b-h) without 

resorting to the DNS. This is described by the steps below.  

Step 1: Hypothetical dummy nodes are introduced at the intersection points between the 

microscopic cell elements that extend between neighbouring unit cells, and the cell envelope. 

These dummy nodes are used to generate the kinematic and the equilibrium matrices of the finite 

microstructure of the unit cell, as described in chapter (3).  

Step 2: The unit cell bases dependency check, formulated in eqn (3.35), is applied to the total 

group of node bases (including the dummy nodes) to determine the dependent and the 

independent set of nodes. 

Step 3: the dependency relations generated in step 2, is now used to apply the Cauchy-Born 

kinematic boundary condition to the kinematic system of the unit cell generated in step 1. This 

results in a formulation similar to eqn (4.7).  

Distributing the bracket in eqn (4.7), results in: 

{ ed =+
2

1

~
εBΕBTd321

     (4.9) 

where )
~

dim()dim(~ de
Rd

×∈dBT and 
3)dim( ×

∈
e

RεBΕ . The first term in the left hand side of eqn 

(4.9) includes the degrees of freedom associated with the dummy nodes.   

Step 4: the degrees of freedom associated with the hypothetical dummy nodes, in term (1) of eqn 

(4.9), are eliminated from the matrix systems in the same manner as described in § (3.7.3).  

Step 5: Substituting eqn (3.43a) into eqn (4.9) and inverting Te, results in: 
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Equation (4.10) is the complete reduced kinematic system representing the infinite lattice 

structure. 

4.3.2 Microscopic Element Deformations in Terms of Macroscopic Strain Field 

Equation (4.10) is a matrix system that expresses the periodic element deformations in terms of 

the macroscopic strain field,ε , and the periodic nodal displacements, d
~

. This matrix system is 
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rearranged to express the periodic element deformations in terms of the macroscopic strain field 

and independent on the periodic nodal displacement field, d
~

. This is done by generating the 

following augmented matrix: 
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In (4.11), I is a unit square matrix with dimension equal to dim( e~ ). The next step is to find the 

reduced row echelon form of the matrix expressed in (4.11) and collect the rows in the sub 

matrices (2) and (3) that correspond to zero rows in the sub matrix (1). This process generates the 

two matrices  Ε
~~

 and I
~

, which are used to write the following expression: 

[ ] eored ~~~~~~~~~
0 IΕIΕ ==+ εε     (4.12) 

The matrix system generated in eqn (4.12) is used to find an explicit expression of the element 

deformations in terms of the macroscopic strain field. This can be obtained by inverting the 

matrix I
~

. To invert the matrix I
~

, we resort to the Moore-Penrose pseudo-inverse technique that 

depends on generating the Singular Value Decomposition (Pellegrino, S., 1993; Horn, Roger A. 

1985; 1991; Strang G., 1998) of the matrix I
~

as: 

HS.V.DI =
~

     (4.13) 

The singular value decomposition of a matrix nm
R

×∈I
~

 generates the diagonal matrix 
nm

R
×∈V

, which contains the non-negative Eigenvalues of matrix I
~

; the square unitary matrix  
mm

R
×∈S

and the conjugate transpose matrix HD . The Moore-Penrose pseudo-inverse of the matrix I
~

, is 

then formulated as: 

( ) ( )( ) ( )HI SVD
11 ~~ −−

=      (4.14) 

where the term ( ) 1~ −
V is formulated by: (i) eliminating the rows and the columns of matrix V that 

have zero diagonal values, and then (ii) obtaining the reciprocal of the diagonal entries of the 

matrix resulting from (i).   

Multiplying eqn (4.14) to both sides of eqn (4.12), results in the following expression of the 

element deformations in terms of the macroscopic strain field: 

( ) εε MΕI =

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−
eore ~

~~~~ 1
       (4.15) 
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Computing the null space of matrix M, gives the independent modes of macroscopic strain field 

generated with inextensional microscopic element deformations. An empty null space of matrix 

M indicates that the lattice material can support all macroscopic modes of strain fields. In other 

words, the material does not collapse by periodic mechanisms or any special modes of 

macroscopic loading.  

Finally, the deformations of all elements in the unit cell can be expressed by substituting eqn 

(4.15) into eqn (3.43a) as: 

εMTe=e
 

      (4.16) 

4.3.3 Macroscopic Strain Energy Density: Material Elastic Moduli 

The macroscopic strain energy density of a lattice can be averaged by considering the element 

deformations of a unit cell with b bars which is defined as (Hutchinson, R. G. & Fleck, N.A., 

2006): 

∑

=Υ
==

b

k
kketσW

12

1
:

2

1
ε

  

   (4.17) 

where Υ  is the unit cell area, 
kt  is the tension force in the kth bar element. σ and ε  are the 

macroscopic stress and strain fields, respectively. Since the lattice structure considered in the 

current analysis is a pin-jointed structure, then, the bar elements of the unit cell carry only axial 

loads. Accordingly, the tension force in a bar element, k, can be expressed as 

 ( ) kk eLEAt /=      (4.18) 

where E is the Young’s modulus of the solid material, A is the cross-sectional area of the bar 

element, and L is the bar length. Substituting eqn (4.18) into eqn (4.17) results in: 

 ∑

=Υ
==

b

k
ke

L

EA
σW

1

2

2
:

2

1
ε     (4.19) 

Substituting eqn (4.16) into eqn (4.19) results in: 

( )∑

=

−










Υ
=

b

k
k

L

EA
σW

1

2

:,
2

:
2

1
εε Μ     (4.20) 

where ( ):,kΜ  is the kth row in the matrix M. Using eqn (4.20), the macroscopic fourth order 

stiffness tensor of the lattice material can be computed as: 

jjii

iijj

W
k

−−

∂∂

∂
=

εε

2

     (4.21) 
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where i and j ∈{1,..,n} and n=2 or n=3 in 2D or 3D, respectively. 

Once the macroscopic stiffness tensor is computed, the macroscopic compliance matrix can be 

obtained by inverting the stiffness matrix, where 
1−= LL KC is the linearly elastic, fourth-order, 

compliance tensor of the lattice material.  

For a general anisotropic material the compliance tensor is given by: 
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The compliance tensor can be used to compute the lattice material elastic moduli as: 
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υ      (4.23) 

Where LE , Lυ  and LG are, respectively, the Young's modulus, the Poisson’s ratio and the shear 

modulus of the lattice material. 

4.4 Effective Strength Properties of Lattice Materials 

From eqn (4.16), a relationship between the microscopic cell element deformations and the 

macroscopic strain field is developed as: 

εε Ge MMT ==e       (4.24) 

where GM is a compatibility matrix that transforms the macroscopic strain vector, ε , into the 

microscopic cell element deformation vector, e. Multiplying eqn (4.24) by matrix ML , generates 

a relationship between the microscopic cell element strain vector, µε , and the macroscopic strain 

field as: 

εεµ GLL MMM ==e     (4.25) 
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where ML is a dim(e) x dim(e) diagonal matrix with element ML(q,q)=1/Lq, Lq is the length of the 

element q and { }bq ,...,1∈ , b is the number of elements within the unit cell. The multiplication of 

the Young’s modulus of the solid material, E, to the matrix ML generates the constitutive law of 

linear bar elements, with unit cross-sectional areas, that comprise the microscopic lattice structure 

within the unit cell. 

Since the lattice material considered here is modelled as a micro-truss with pin-jointed bar 

elements, the microscopic strain induced in the cell elements, µε , is an axial strain field along the 

axes of the cell elements that are manufactured of solid material. Multiplying both sides of eqn 

(4.25) by the Young’s modulus of the solid material, E, generates the microscopic cell element 

stress vector as: 

εεµ GLµ MMσ EE ==     (4.26) 

By substituting eqn (4.22) into eqn (4.26), the microscopic stress field, σµ, can be expressed in 

terms of the macroscopic stress field, σ , as:    

σσµ LGL CMME=      (4.27) 

 Considering eqn (4.1), the matrix system in eqn (4.27) can be expressed as: 

σ
ρ

σ µ Λ
1

=       (4.28) 

where Λ  is a matrix in which the values of its entries depend on the topology of the unit cell as 

well as the deformations of the microscopic cell elements. The matrix system in eqn (4.28) can be 

expanded as: 
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    (4.29) 

Equation (4.29) is used to derive the strength properties of the lattice material. By applying three 

distinct stress fields, [ ]Txx 00σ , [ ]Tyy 00 σ and [ ]Txyσ00  to the lattice, we obtain the 

critical macroscopic strength of the lattice material as: 

( )( )
ρσρ

σ
σ µσ

µ cr
cr

cr
L iC

i
)(

:,max
==

Λ
   

 (4.30) 
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where  { }3,2,1∈i , ( ) cr
Lxx

cr
L σσ =  at i=1, ( ) cr

Lyy
cr
L σσ =  at i=2 and  ( ) cr

Lxy
cr
L σσ =  at i=3. ( )

xx
cr
Lσ  

and ( )
yy

cr
Lσ  are the lattice material critical direct strength in the x and the y directions, 

respectively. ( )
xy

cr
Lσ  is the lattice material critical shear strength in the x-y plane. )(iCσ is a 

constant that depends on the topology of the 2D lattice material and the deformations of the 

microscopic cell elements. 

In eqn (4.30), 
cr
µσ is dependent on the microscopic failure mode of the material. Since the 

microscopic elements of the pin-jointed lattice materials are subjected only to either tension or 

compression, then there are two possible failure modes: plastic yielding or instability elastic 

buckling, governed by the microscopic element slenderness ratio.  

4.4.1 Plastic Yield Strength 

If the plastic yielding of the microscopic cell elements is the dominant failure mode, then, the 

microscopic critical strength is equal to ys
cr σσ µ = , where ysσ is the solid material yield strength. 

The lattice material macroscopic plastic yield strength is expressed as: 

( )( )
ρ

σ
σ

i

ysy
L

:,max Λ
=      (4.31) 

where  ( ) y
Lxx

y
L σσ =  at i=1, ( ) y

Lyy

y
L σσ =  at i=2 and  ( ) y

Lxy

y
L σσ =  at i=3. Where ( )

xx

y
Lσ  and 

( )
yy

y
Lσ  are the macroscopic direct yield strengths of the lattice material in the x and y directions, 

respectively. ( )
xy

y
Lσ  is the macroscopic yield shear strength in the x-y plane of the lattice 

material.   

Dividing both sides of eqn (4.31) by ysσ  generates the relative macroscopic yield strengths of the 

lattice material as: 

( )( )
ρρ

σ

σ
σ )(

:,max

1
iC

i

y

ys

y
Ly

L ===
Λ

    (4.32) 

where 
( )( )i

iC y

:,max

1
)(

Λ
=  is a constant that depends on the microscopic topology of the lattice 

material and the deformation of the microscopic elements. 
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4.4.2 Elastic Buckling Strength 

The Euler critical buckling load of an axially loaded member in compression is: 

2

2
2

L

EI
cPcr

π
=       (4.33) 

where E is the Young’s modulus of the material, I is the smallest second moment of area of the 

member cross-section, L is the length of the member and c is a factor that depends on the 

rotational stiffness of the member end boundaries. For a pin jointed element at which the rotation 

is freely allowed, c=1. If the rotation is totally prohibited by a fixed boundary conditions, then 

c=2. In practice, the value of the factor c of a lattice material is between 1 and 2. We consider the 

factor c=1, for the lattice material is assumed as a pin-jointed micro-truss. 

The critical buckling strength of a microscopic cell element loaded in compression can be 

computed by dividing eqn (4.33) by the cross-section area of the element which results in: 

AL

EI

A

Pcrb

2

2π
σµ ==      (4.34) 

Considering 2D lattice materials constructed of microscopic cell elements with rectangular cross-

sections and by substituting eqn (4.1) into eqn (4.34), results in: 
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     (4.35) 

Considering the microscopic critical buckling strength as the dominant failure mode of the 2D 

lattice material, then the macroscopic critical bucking strength of the 2D lattice material can be 

formulated by substituting eqn (4.35) into the term of 
b
µσ in eqn (4.30) which results in:  

( ) ( )( )
( )( )3

2

2

:,max12
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









=

Λ

    (4.36) 

Where ( ) b
Lxx

b
L σσ = at i=1, ( ) b

Lyy
b
L σσ =  at i=2 and ( ) b

Lxy
b
L σσ = at i=3. ( )

xx
b
Lσ  and ( )

yy
b
Lσ are the 

lattice material direct critical buckling strength in the x and y directions, respectively, on the other 

hand, ( )
xy

b
Lσ is the lattice material shear critical buckling strength in the x-y plane. Dividing both 

sides of eqn (4.36) by the solid material yield strength, results in the lattice material macroscopic 

relative critical buckling strength as: 
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    (4.37) 

It can be deduced from eqn (4.37) that the relative critical buckling strength of the 2D lattice 

material is not only a function of the relative density of the lattice material but also of the solid 

material strength and elastic properties.  

The accuracy of employing the DNS in the application of the Cauchy-Born hypothesis is verified 

analytically as we consider a lattice topology that can be characterized by two candidate unit cells, 

namely, the Semi-Double-Braced square lattice, shown in Fig (2.6d). One unit cell requires the 

application of the DNS as it contains elements intersecting the cell envelope; the other has all of 

its elements contained within the envelope, thus there is no need to apply the DNS. The 

characterization processes using the two unit cells generate similar results which verify the 

accuracy of the DNS. Details of this example are reported in Appendix F.    

4.5 Lattice Materials Stiffness Selection Design Charts 

The stiffness analysis procedure, described above, is carried out for the lattice topologies shown 

in Figs (2.4a,b,c), (2.5a,h) and (2.6a,b,d,f,g) and the results are reported in Appendix F. The 

resulting stiffness properties are plotted on charts representing the relative elastic moduli of the 

stretching-dominated lattice materials versus its relative density. These charts assist in the 

selection of the best topology of stretching-dominated lattice materials for given applications that 

require materials with specific stiffness properties. The final results are shown below. 

4.6 Conclusion 

This chapter has described a systematic matrix-based procedure for the specific stiffness and 

strength characterization of lattice materials with any arbitrary topology. This procedure is 

efficient for the automation of the characterization process of complex microscopic topologies. 

The procedure has been applied in details to two lattice topologies of which one has a square 

Bravais lattice symmetry and the other has a hexagonal Bravais lattice symmetry. The stiffness 

characterization process is applied to other eight lattice materials and the elastic moduli of the 

stretching dominated topologies are plotted on design charts that can help in the selection process 

of lattice materials that generate specific stiffness required by certain applications.  It is found that 

the lattice materials with cell topologies, shown in Fig (2.6b) and (2.6d) exhibit 11 % increase of 

the specific stiffness compared to the Kagome and the full triangulation lattice materials. On the 



 

other hand, the lattice material with cell topology shown in Fig (2.6g) shows 17 % improvement 

in the specific shear modulus compared to the Kagome and the full triangulation lattice materials.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4.1) The relative Young's modulus in the 

material versus its relative density
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other hand, the lattice material with cell topology shown in Fig (2.6g) shows 17 % improvement 

the specific shear modulus compared to the Kagome and the full triangulation lattice materials.

 

Fig (4.1) The relative Young's modulus in the x direction of the stretching dominated lattice 

material versus its relative density 
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Fig (4.2) The relative Young's modulus in the 

material versus its relative density
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Fig (4.2) The relative Young's modulus in the y direction of the stretching dominated lattice 

material versus its relative density 
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Fig (4.3) The relative Shear modulus of the stretching dominated lattice material versus its 
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Fig (4.3) The relative Shear modulus of the stretching dominated lattice material versus its 
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CHAPTER 5 

Multiscale Structural Design of Columns made of Regular Octet-

Truss Lattice Material 

5.1 Introduction 

This chapter focuses on the structural design of the microscopic architecture of a lattice material 

with regular octet-truss cell topology and on the multiscale design of an axially loaded member 

manufactured of this type of cellular solid. The rationale followed here hinges on the coincidence 

of the failure modes of a stretching dominated lattice material, which experiences two types of 

microscopic failure modes, namely, elastic buckling and plastic yielding. A lattice material that 

fails by the elastic buckling of its cell elements without reaching the plastic yielding is far from 

optimum, since the element becomes unstable without fulfilling its potential yield resistance, 

where the element fails in the elastic region at a loading lower than the load inducing its plasticity. 

To improve this behavior, researchers found critical values of the relative densities for different 

cell topologies at which the buckling failure of the cell elements can be avoided (Fan, et.al., 

2008). Such strength improvement was achieved at the expense of the lattice material density, 

which therefore had to be increased, as the cell element’s slenderness ratio was decreased by 

either lowering its length or by scaling up its radius of gyration. However, no attention to the 

potential of shaping the cross-section was considered. So far, studies on lattice material have 

considered microscopic cell elements with circular solid cross-sections. A few studies have 

investigated experimentally the behavior of lattice material with cylindrical hollow cross-sections 

(Wadley, 2002). Due to recent development in micro manufacturing technologies, namely rapid 

prototyping and rapid manufacturing (Kruth, at.al., 2005; Rochus, et.al., 2007; Waterman and 

Dickens, 1994), shaping microscopic structural elements in more efficient geometries has become 

feasible. Such progress on the manufacturing process encourages exploiting the potential of 

shaping and sizing the cross-sections of the cell elements to increase the lattice material strength. 

This chapter examines the impact of shaping the cell element cross-sections of the lattice material 

on its structural performance. We resort to recent studies that have investigated the effect of cross-

section geometry on the performance of macroscale structures under different loading (Pasini, 

2007; Pasini, et.al., 2003; Pasini, et.al., 2006). We first illustrate that enhancing the cell elements’ 

buckling resistance by shaping their cross-sections allows the design of low density lattice 
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material that fail by plastic yielding rather than buckling and, thus, fully exploit the material 

strength. Then, we examine an axially loaded member manufactured of octet-truss lattice material 

with the aim of fully exploiting its load carrying capacity. For this purpose, the structural member 

is optimized by imposing the coincidence between three failure modes, namely, the local buckling 

(buckling of the microscopic cell elements), global buckling (buckling of the macroscopic 

structure) and the plastic yielding of the lattice material. Design charts are developed to enable a 

multiscale design of a macroscale member subjected to axial compression and manufactured of 

regular octet-truss lattice material. The charts help compare and select simultaneously the micro 

and the macro structural design parameters. 

 5.2 Description of the Regular Octet-Truss Cell  

This work focuses on a lattice material with regular octet-truss cell topology. Fig (5.1) shows the 

microscopic topology of a unit cell of the lattice material examined here. The unit cell can be 

viewed as a regular octahedron core that is surrounded by eight regular tetrahedrons distributed on 

its eight faces. The cell has a Face Centered Cube (FCC) lattice structure with cubic symmetry 

generating a material with an isotropic behavior (Renton, 2002); its nodes are similarly situated 

with 12 cell elements connectivity at each node.  

Determinacy analysis of the pin-jointed version of this microscopic topology shows that this unit 

cell is statically and kinematically determinate. However, when the unit cell is tessellated to 

generate the periodic material, the resulting microstructure becomes highly redundant and 

statically indeterminate, a feature common to all stretching dominated cell topologies (Guest, 

et.al., 2003).  

In literature, works on the octet-truss lattice material consider the geometry of each cell element 

as uniform along their length and with circular solid cross-section. It has been demonstrated that a 

lattice material that fully exploits the yield strength of the cell elements can be designed at the 

expenses of its relative density (Fan, 2008). As a result, the lattice material density must be 

increased to critical values, under which the cell elements buckle. In this work, we circumvent 

this strategy. Rather than increasing the material density, we chose to strengthen the buckling 

resistance of each cell element by shaping its cross-sections into a more efficient geometry. 

5.3 Geometric Variables 

To model the effective properties of the regular octet-truss lattice material, we define a range of 

modeling parameters. Fig (5.2) shows the geometrical details of a macroscopic mechanical 
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member that is hierarchically parameterized and manufactured of a lattice material. On the 

microscale, three parameters S, D and D0 are defined for a cell element cross-section of an 

arbitrary shape and size, where S, D and D0 are, respectively, the shape, the envelope, and the 

envelope of a reference square. 

 

 

 

 

 

 

 

 

Fig. (5.1) Structure of a unit cell of the regular octet-truss lattice material 

To model the efficiency of a cross-section, dimensionless parameters, named as shape 

transformers, can be defined to classify shapes into families and classes as well as to describe 

their geometrical properties (Pasini, 2007). 

For example, the shape transformers of the area and of the second moment of area of a cross-

section are defined as:  

D
A

A

A
=ψ       (5.1a) 

D
I

I

I
=ψ                     (5.1b) 

where Aψ   and Iψ are, respectively, the area and the second moment of area shape transformers; 

A  and I  are, respectively, the area and the second moment of area of an arbitrary cross-section 

and DA  and DI  are the area and the second moment of area of the cross-section envelope, 

respectively.  

Shape transformers can be used to define the cross-section efficiencies of alternative shapes for 

given loading requirements. For example, the cross-section geometric efficiency, λ , controlling 

the bending stiffness and the elastic buckling can be defined as: 

A

I

ψ

ψ
λ =       (5.2) 

x 
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z 



92 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5.2) Multiscale geometrical details of macroscopic member manufactured of lattice 

material 

On the other hand, the effect of scaling the cross-section size is governed by two dimensionless 

multipliers, u and v, where u and v scale, respectively, the width B0 and the height H0 of the 

reference square envelope, Do, to the required dimensions of the cross-section. As a result, u and v 

can be expressed as: 

0B

B
u =       (5.3a) 

0H

H
v =       (5.3b) 

where B and H are, respectively, the width and the height of the cross-section envelope. Using 

eqns (5.1) and (5.3), the area and the second moment of area of a cross-section can be expressed 

as: 

0uvAA Aψ=       (5.4a) 

0
3
IuvI Iψ=                        (5.4b) 

where A0 and I0 are, respectively, the area and the second moment of area of the reference square. 

For the shape of the cross-section, shown in Fig (5.2), the shape transformers of the second 

moment of area and that of the area, Iψ  and Aψ , can be expressed as: 

3
1 cdI −=ψ               (5.5a) 

cdA −= 1ψ              (5.5b) 
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Aψ

Iψ  

where c=b/B and d=h/H and 10 ≤≤ c  and 10 ≤≤ d . By using eqns (5.5), the cross-section 

efficiency is expressed as: 

cd

cd

−

−
=

1

1 3

λ       (5.6) 

A change of c and d in the interval of [0,1] results in values of Iψ  and Aψ  in the range of [0,1] 

while λ  range is [1,3]. Similar formulation can be expressed for different shape classes, e.g. 

ellipses and diamonds (Pasini, 2007; Pasini, et.al., 2003; Pasini, et.al., 2006).  

The limiting curves that show the variation of Iψ  and Aψ with the variation of the two 

parameters c and d is plotted in Fig (5.3) for the three cross-section shapes considered in this 

study. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5.3) Variation of the shape transformers of the cross-section area and second moment 

of area for different cross-section shapes 

In Fig (5.3), the bending efficiency necessary to assess the bending and the buckling resistance of 

a cross-section can be evaluated by computing the tangent of the angle formed by the line 

extending from the origin of the graph to the point representing the shape of each cross-section.  
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The buckling resistance of the microscopic cell element of the lattice material is governed by the 

radius of gyration, rg, of the element cross-section, besides by its length. The radius of gyration is 

linked to the second moment of area by the expression: 

2
gArI =       (5.7) 

To express eqn (5.7) in terms of the shape transformers, we substitute eqns (5.4) and (5.5) into 

eqn (5.7) and use eqn (5.2) to obtain the following expression (Pasini, et.al., 2003): 

2
0

22
gg rvr λ=      (5.8) 

where rg0 is the radius of gyration of the reference cross-section.  

In addition to modeling the cross-section geometry, we introduce also another parameter, s, which 

models the length L of the cell element with respect to the length L0 of a reference prismatic 

element. Similar to u and v, this scaling multiplier is expressed as: 

0L

L
s =        (5.9) 

Expressions (5.1) to (5.9) are used in this work to model the geometrical properties at the micro 

and macroscopic scales of the structure. To distinguish between scales' parameters, we use 

throughout the whole chapter the subscript “e” for the microscopic parameters and “G” for the 

macroscopic ones. 

5.4 Modeling the Effective Properties of the Octet-Truss Lattice Material 

In this section, the effective properties of the regular octet-truss lattice material are formulated as 

a function of the shape properties of the cell element cross-sections. Cross-sections with double 

symmetry with respect to their principal axes are examined. The properties considered include the 

material density, the elastic and the strength properties and the material collapse surfaces. For 

comparison, we report here also the formulations of the regular octet-truss lattice material found 

in literature (Deshpande, et.al., 2001), where the cell element geometry of the lattice material is 

assumed to be uniform with circular solid cross-section. The properties of previous models are 

identified here with the suffix “a”; whereas the suffix “b” is used for our models, which are 

governed by the parameters presented in § 5.3. It is assumed that the solid material, used in 

manufacturing the lattice material is elastic-perfectly plastic and has an isotropic behavior with a 

Poisson's ratio of 3/10 =υ . 
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5.4.1. Relative Density 

If we assume that the mass of the boundary elements of the unit cell are divided equally among 

the neighbouring cells, then the relative density of the regular octet-truss lattice material can be 

expressed as:  
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where ae is the radius of the cell element cross-section. L

−

ρ  is the relative density of the lattice 

material, Lρ is the density of the lattice material and ρ  is the density of the solid material used to 

manufacture the lattice material.  

5.4.2. Elastic Properties 

The regular octet-truss cell geometry has a cubic symmetry, which generates a material with 

isotropic properties (Renton, 2002). The compliance matrix of an isotropic material can be 

expressed as: 

( )

( )

( )

























+

+

+

−−

−−

−−

=

L

L

L

LL

LL

LL

LE

υ

υ

υ

υυ

υυ

υυ

1200000

0120000

0012000

0001

0001

0001

1
C   (5.11) 

where Lυ  and LE  are, respectively, the lattice material Poisson’s ratio and Young’s modulus. 

By using the direct stiffness method, the relative Young’s modulus of the octet-truss lattice 

material can be expressed as: 
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where LE , LE
−

 and E  are respectively, the Young's modulus of the lattice material, the relative 

Young’s modulus of the lattice material and the Young’s modulus of the solid material. 

Combining eqns (5.12a) to eqn (5.10a) and eqns (5.12b) to eqn (5.10b) results in: 
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The Poisson’s ratio of the regular octet-truss lattice material is found to be 3/1=Lυ . Therefore, 

the full compliance matrix of the regular octet-truss lattice material can be formulated as: 
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The relative shear modulus, LG
−

, and the relative bulk modulus, L

−

κ , of the regular octet-truss 

lattice material can then be expressed as: 
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where G  and κ are, respectively, the shear and the bulk moduli of the solid material. 

Equations (5.13), (5.15) and (5.16), show that the elastic properties of the regular octet-truss 

lattice material are independent of the geometrical attributes of the cell elements. It can be 

realized that the ratio of the relative elastic moduli to the relative density is “1/9”, a constant that 

depends on the topology of the regular octet-truss cell.   

5.4.3 Strength Properties 

A. Plastic Yield Strength 

By using the direct stiffness method, axial and shear yield strengths of the regular octet-truss 

lattice material can be formulated as: 
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where 0yσ  and yLσ  are the direct yield strengths of the solid material and the lattice material, 

respectively. 0yτ  and yLτ  are the shear yield strengths of the solid material and the lattice 

material, respectively.  

Combining eqns (5.17a) and (5.18a) into eqn (5.10a) as well as combining eqns (5.17b) and 

(5.18b) into eqn (5.10b) give: 

L
y

yL
yL

−−

== ρ
σ

σ
σ

6

1

0

         (5.19a) 

L
y

yL
yL

−−

== ρ
τ

τ
τ

6

1

0

         (5.19b) 

where yLyL στ
2

1
=  and 00

2

1
yy στ =  are obtained from the Mohr’s circle of an isotropic material 

in pure shear.  

Equations (5.19) shows that, also the yield strength properties of the regular octet-truss lattice 

material are independent of the cell elements geometry where the ratio of lattice material relative 

direct and shear strengths to its relative density is a constant.  

B. Elastic Buckling Strength 

The Euler critical buckling load of an axially loaded member in compression is expressed as: 

2

2
2

L

IE
kPcr

π
=      (5.20) 

where E is the Young’s modulus of the material, I is the smallest second moment of area of the 

member cross-section, L is the length of the member and k is a factor that depends on the 
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rotational stiffness of the member end boundaries. For a pin jointed element where joint rotation 

is freely allowed, 1=k . If the rotation is fully constrained by fixed boundary conditions, then 

2=k . In practice, the value of the factor k  of a stretching dominated lattice material is between 

1 and 2. We idealize the octet-truss lattice material as a pin jointed micro-truss structure with

1=k , which is a safe design assumption.   

Equations (5.8-5.9) along with eqn (5.20) are used to express the critical buckling stress of the 

regular octet-truss lattice material as: 
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where  

cr

e

−

σ  and 
cr
eσ are, respectively, the relative critical buckling strength and the critical 

buckling strength of the regular octet-truss lattice material. 

By combining eqns (5.21a) to (5.10a), and (5.21b) to (5.10b), eqns (5.21) can be modified as: 
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From eqn (5.22a), it can be seen that the critical buckling strength of the lattice material with 

uniform cell elements of a circular solid cross-section is a function of the material relative density 

as well as the solid material properties. On the other hand, eqn (5.22b) shows that, in lattice 

materials with shaped cell element cross-sections, the critical buckling strength is also a function 

of the geometrical attributes of the cell element cross-section. 

To avoid failure by buckling, we impose the condition: 

yL
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Substituting eqns (5.17a) and (5.22a) into inequality (5.23) gives:  
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Fig (5.4) Variation of the lattice material relative density with respect to cross-section 

efficiency and to area shape transformer 

The equality form of expression (5.24) is the critical relative density, 

*

La

−
ρ , of the regular octet-

truss lattice material with circular solid cell element cross-sections. As formulated, 

*

La

−

ρ  is only a 
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function of the solid material properties. The geometrical attributes of the cell element are 

included together with the cell topology properties in the constant 

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
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To formulate the critical relative density, 
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Lb

−
ρ , as a function of the geometrical properties of the 

cell element cross-section, we combine eqn (5.18a) and (5.22b) with inequality (5.23), and write: 
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The contribution of the shape of the cell element cross-section can be isolated by rearranging eqn 

(5.25) as: 
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The effect of the cross-section efficiency and area shape transformer on the lattice material critical 

relative density is shown in Fig (5.4), where eqn (5.26) was plotted for the three shape families 

(rectangular, elliptical and diamond) considered in this work. For a given area shape transformer, 

eAψ , each family of cross-section shapes generates its own specific trend of critical relative 

density which provides the minimum critical density that minimizes eqn (5.26). From Fig (5.4), 

we gather that for the whole range of eAψ the family of the rectangles has the potential to 

minimize 
e

eA

λ

ψ
 better than the other shapes. 

5.5 Collapse Surfaces 

A lattice material subjected to static loading encounters four types of collapses, namely, plastic 

yielding (strength failure), elastic buckling (instability failure), creep (deformation increase under 

constant loading) and relaxation (load carrying capacity decrease under constant deformations). In 

the following analysis, strength and stability collapses are examined. 

5.5.1 Yield Collapse 

The elements of a stretching dominated lattice material are always loaded axially, either in tension 

or compression. Unlike the collapse surfaces of solid materials (Beer, et.al., 1981) which, in the 
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case of ductile materials, are based on combined stresses derived from the Mohr's circle in the 

form of maximum shear stresses, e.g. Trisca, or the maximum distortion energy, e.g. the Von 

Mises; the yield collapse of the stretching dominated lattice material is based on axial yielding of 

microscopic cell elements through load transformation from the macroscopic stress field into the 

microscopic elements. If we assume that each microscopic element of the octet-truss lattice 

material has a slenderness ratio that prevents buckling, then all the cell members will fail by 

plastic yielding. Following the approach of Deshpande, et.al., 2001, we consider a load case 

where the regular octet-truss cell is loaded by two forces in the x and the z principal directions, as 

shown in Fig (5.1). If the yield strength, 0yσ , is the same in tension and compression, the elastic 

yielding collapse surface in the x-z plane can be formulated as: 
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Combining eqn (5.10a) to (5.27a) and (5.27b) as well as eqn (5.10b) to (5.27c) and (5.27d), then, 

the plastic yielding collapse surfaces of the regular octet-truss lattice material can be formulated 

as: 
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From eqns (5.28), it can be deduced that for the regular octet-truss lattice material the ratios of the 

plastic collapse stresses to the relative density are independent of the cell elements geometry.  
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5.5.2 Buckling Collapse Surfaces  

Assume that the regular octet-truss cell is loaded by two forces in the x and z principal directions, 

as shown in Fig (5.1), then, the critical buckling collapse surfaces in the x-z plane can be 

formulated as: 
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Fig (5.5) Elastic and plastic collapse surfaces of the octet-truss lattice material evaluated for 

the relative direct stresses and normalized with respect to the material relative density 

By normalizing eqns (5.28a), (5.29a) and (5.29c) with respect to the relative density of the lattice 

material, we can express the collapse surfaces as:  
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Buckling (for a generic cross-section) 
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The relative direct stresses normalized with respect to the material relative density are plotted in 

Fig (5.5). 

For octet-truss lattice material with cell elements of circular solid cross-sections, the parameter 

“p”, which represents the relative strength to the relative density ratio, is expressed as:  
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For a generic cell element cross-sections, the parameter p is expressed as:  
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The impact of shaping cell element cross-sections on the strength to mass ratio of the lattice 

material is shown in the following examples. 

5.6 Examples 

5.6.1 Example 1 

Consider an octet-truss lattice material with relative density of 0174.0=
−

Lρ  that is manufactured 

of steel AISI L2 (tempered at 205oC) which has compressive yield strength of 1835 MPa, a 

Young’s modulus of 210 GPa and a density of 7940 kg/m3. Starting with a preliminary design, the 

structural performance of the lattice material is compared in two scenarios: 

a) The lattice material has cell elements of circular solid cross-sections of radius ae=0.2557 mm 

and length Le=10 mm. If these values are substituted into eqn (5.31a), we obtain 164.0=ap . 
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b) The lattice material has generic cell elements with geometrical attributes that have the values of 

ue=2.5, ve=se=1, Le0=10 mm, Ae0=0.4107 mm2, reg0=0.185 mm, and ψeA=0.2. Similarly, 

substituting these values into eqn (5.31b) gives ebp λ129.0= .  

Assume that the generic cross-sections have efficiency 1=eλ , then, the lattice material in both 

cases (a) and (b) fails by elastic buckling. However, as explained in the previous sections, an 

axially loaded structure that fails by buckling is far from optimum since the material fails before 

reaching its yielding strength, therefore, we optimize our design by increasing the buckling 

resistance until it coincides with the plastic yield strength. In the case of the circular solid cross-

sections, this strategy results in increasing the relative density of the lattice material from 0.0174 

to 0.035. On the other hand, in the case of cell element with generic cross-sections, the relative 

density of the material can be left constant, while the shape of the cross-section can be tuned to 

generate an efficiency of 56.2=eλ . This value can be provided by a cross-section of the 

rectangular family with a geometry described, for example, by c=1 and d=0.849. As a result, 

shaping the cell element cross-sections of the regular octet-truss lattice material with 56.2=eλ  

increases the stress carrying capacity of the material from ( ) 164.00 =
−

Ly ρσσ  to 

( ) 33.00 =
−

Ly ρσσ  and reduces the structural weight of 50%. 

5.6.2 Example 2 

In this second example, the effect of changing the efficiency of alternative cell element cross-

sections on the collapses surfaces is investigated. In particular, the cross-section efficiency of the 

cell elements is optimized in order to increase the buckling resistance until it reaches the material 

yielding.  

Assume a solid material with yield strain εy0=0.05, and assume that the cross-section geometry of 

the cell elements is described by Ae0=4 µm2, ue=ve=1, and has shape properties of ψeA=0.6 and 

element length Le=1 cm. Using the derived expressions, from previous section that characterize 

the lattice material properties, those properties can be computed as: 
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Elastic buckling collapse surface  
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As expected, eqn (5.32c) depends on the cell element cross-section efficiency, eλ , of the lattice 

material. Resorting to the cross-section selection chart, shown in Fig (5.6), the efficiency of 

alternative cross-section shapes can be computed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5.6) Efficiencies of different cross-section shapes at specified ψA=0.6 

In Fig (5.6), we prescribed the area shape transformer (ψeA=0.6) which contributes to the lattice 

material density. The condition ψeA=0.6 is illustrated by the dashed vertical line that intersects the 

limiting curves of the alternative cross-section shapes available. The cross-section efficiency, eλ , 

is simply the slope of a segment connecting a point to the origin of the chart. 
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If we determining the value of the efficiency, eλ , of the cross-section that is selected from Fig 

(5.6) and substitute it into eqn (5.32c), then, the collapse surfaces can be obtained (Fig (5.7)) for 

the cross-sections meeting the requirement ψeA=0.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5.7) Elastic and plastic collapse surfaces and the effect of cross-section efficiency on 

the structural performance 

In Fig (5.7), the plastic yielding collapse surfaces are superimposed to the elastic buckling 

collapse surfaces of the lattice material under the load case corresponding to two direct stresses in 
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the x-z plane.  Fig (5.7) shows four failure modes corresponding to Mode I=

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The optimum lattice material is obtained when the elastic buckling resistance is increased until it 

is equal to the yielding failure strength (Ashby, 2005; Weaver and Ashby, 1997). In this example, 

such a criterion is achieved at 5.1=eλ , which can be satisfied, for example, by a rectangular 

cross-section with c=1 and d=0.48. Although higher efficiencies can be obtained, no increase in 

the structural performance can be achieved, as for 5.1>eλ  the plastic yielding will dominate the 

failure mode.  

Whereas prescribed in this example, the cell element length will be considered design variable in 

the next sections. 

5.7 Design Charts for the Regular Octet-Truss Lattice Material 

In this section, a design chart is developed to help selecting the microscopic attributes of the 

regular octet-truss lattice material that best minimize its relative density for a given strength 

requirement Lσ . Here, the cell element length multiplier, es , as well as the shape of a double 

symmetry cross-section are considered as design variables.  

For the purpose of developing such a chart, we formulate the problem in optimization terms as 

follows: 

Minimize   L

−

ρ  

With respect to es  and eAψ  

Subject to LyL
cr
e σσσ ==                           (5.33) 

 and 1≥ee vu  

The equality constraint (5.33) is imposed to use the material strength to its maximum extent.  

Before plotting the chart, we rearrange in three steps the expressions of the objective function 

L

−

ρ  and the constraint yL
cr
e σσ = . The goal is to make them functions solely of the geometric 



108 

 

variables of the cell element, which include the cell element length multiplier, es , and the cross-

section efficiency eλ . 

Step 1) es is reformulated by substituting eqns (5.18a) and (5.21b) into eqn (5.33), which results 

in the expression: 
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In eqn (5.34), the cell element length multiplier is controlled by the cell element cross-section 

shape through eλ . For convenience, we redefine es  with the following parameter eΩ  as: 
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Step 2) The octet-truss lattice material yield strength 
yL

σ is expressed as a function of eΩ  and 

eAψ . Here, eqn (5.35) is used to reformulate es  in terms of eΩ and to substitute the result into 

eqn (5.18a) which is rewritten as:  
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By rearranging eqn (5.36), the contribution of the cell element geometry to the strength of the 

lattice material can be isolated, and 
yL

σ  can be redefined as: 
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Step 3) Finally, the objective function, L

−

ρ , is expressed in terms of the design variables. From 

eqn (5.35), es is expressed in terms of eΩ  and the resulting expression is substituted into eqn 

(5.10b) which is given by:  

2
e
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eL C
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− ψ
ρ       (5.38) 
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π
. As noted previously, eqn (5.38), similarly to eqn (5.36), 

is dependent on 
2
e

eA

Ω

ψ
 through the coefficient Ce.  

The previous relations are now plotted into the design chart shown in Fig (5.8). The lightest lattice 

materials that minimize 
2

e

eA

Ω

ψ
 in eqn (5.38) are the solutions displayed at the left-top corner. The 

black lines, which guide the choice of eΩ , represent the cell element lengths, eqn (5.35), of 

different cross-section shapes. Iso-stress contours
*

yLσ , eqn (5.37), are also superimposed to help 

the designer to select the best cell element cross-section shape and its length for a given 
Lσ  

requirement. 

Since 
Lσ is specified by the problem, eqn (5.37) is used to determine

*

yLσ , after having scaled the 

element cross-section with a value of ee vu that meets the strength requirement. Although a 

specific ratio of ee vu can be generated by an infinite combinations of values of eu and ev , in 

practice the maximum dimension of the cubic envelope of the microscopic octet-truss lattice cell 

must be limited by the minimum dimensions of the structure at the macroscopic scale. 

5.8. Multiscale Design of an Axially Loaded Macroscopic Member 

The chart presented in the previous section helps design the lattice material at the microscale. In 

this section, the design of a real macroscopic pin jointed strut manufactured of octet-truss lattice 

material is examined. The structure is subjected to a compressive force F with octet-truss lattice 

material properties ρL (density), EL(Young’s modulus) and σyL (yield strength). The lattice material 

is manufactured of a solid material that has density, ρ, Young’s modulus, E, and yield strength, 

σy0. As mentioned in § 5.3, the macroscale parameters are specified by the subscript G. 

§ 5.8.1 examines the design chart for a macro-scale strut; § 5.8.2 present the multiscale design of 

the strut, which involves the simultaneous use of both the micro and macroscale design charts.  

5.8.1 Design Chart for Macroscopic Strut 

Similar to the previous section, we pose the design problem of the strut under compressive force F 

as follows: 
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Minimize   m  

With respect to Gs  and GAψ  

Subject to  cr
GyLfs σσσ ≤=  

  GG vu ≥  

where m is the mass of the macroscopic structure, Gs is the strut length multiplier, yLσ is the yield 

point of the strut, sf is a design safety factor and σ  is the axial stress generated by the external 

force F. To plot the macroscopic structure design chart, we rearranged the above expression in 

three steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5.8) Design chart of the microscopic architecture of 2D lattice materials 

Step 1) Similar to the microscopic cell element length multiplier, es , the macroscopic strut length 

multiplier, Gs , is formulated as: 
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Now, eqn (5.39) is rearranged to isolate the macroscopic cross-section geometrical parameters 

where a new expression of Gs  is redefined as:  
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Step 2) To avoid the yielding of the macroscopic strut under the compressive loading, F, the yield 

constraint yLfs σσ = , is written as a function of the external force, F, such that: 
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Isolating Gv in eqn (5.40), and substituting its expression into eqn (5.41) results in: 
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In eqn (5.42), the cross-section shape contribution is isolated and the strut yielding point is 

redefined as:  
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Step 3) The objective function, m, is expressed in terms of the design variables as: 

GAGLGCm ψρ Ω=
−

     (5.44) 
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Figure (5.9) visualizes the macroscopic design chart that can be used to select the best geometrical 

attributes of a strut in axial compression for a given macroscopic loading. In Fig (5.9), the black 

lines are the plots of eqn (5.40), obtained for different cross-section shapes. They represent the 

correspondent strut length multiplier, Gs , which is determined from GΩ through eqn (5.40), after 

the cross-section height is scaled with the value of Gv  that meets the load requirement. In 



112 

 

 

addition, eqn (5.43) is plotted in Fig (5.9) to represent iso-stress lines that intersect the curves GΩ . 

From this chart, the designer can select the best element length and cross-section shape of the 

macroscopic strut.  

Next section shows how to combine Fig (5.8) and (5.9) for a multiscale design of a lattice 

structural member. 

5.8.2 Multiscale Design Charts 

We consider a multiscale design problem which involves the optimization of a column 

manufactured of octet-truss lattice material at both the micro and the macro scales. The design 

requirements are set at the structure as well material level. At the column level, the length, LG, the 

external load, F, and the design safety factor, sf, are prescribed; while at the material scale the 

requirements include the solid material properties of the yield strength, 0yσ , the Young’s 

modulus, E , and the density, ρ . For the reference element, the baseline of the geometric 

parameters are reg0, Ae0 and Le0 at the microscale and LG0, rGg0 and AG0 at the macroscale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (5.9) Design chart of mechanical members loaded in axial compression 
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In this problem, the objective of fully exploiting the material strength at each length scale requires 

the design of a column in which the three failure modes, namely, the local buckling cr
eσ  (buckling 

of the microscopic cell elements), global buckling cr
G

σ  (buckling of the macroscopic structure) 

and the plastic yielding failure of the strut yLσ , occur simultaneously, i.e. cr
GyL

cr
e σσσ == . The 

rationale behind is the following: if any of the three failure modes dominates the structural failure, 

any performance enhancement that shifts the other two failure modes to higher limits will not 

contribute to the global structural performance (Weaver and Ashby, 1997). Based on this 

criterion, we now combine the charts shown in Fig (5.8) and Fig (5.9) to design a column made 

out of regular octet-truss lattice material. 

At the macroscale, we first determine the column length multiplier, Gs = LG/LG0 , from which we 

calculated GΩ  through eqn (5.40), after scaling the cross-section with Gv  to meet the load 

requirement. When GΩ is obtained, the cross-section shape of the strut can be selected in Fig 

(5.9) for different values of the constraint 
*
GyLσ . Substituting the selected 

*
GyLσ  into eqn (5.43) 

allows obtain the plastic strength yLσ  that will be used as an input in Fig (5.8) for the design of 

the lattice material. yLσ  is then used in Fig (5.8) to determine 
*
eyLσ  through eqn (5.37), after 

scaling the cell-element cross-section with the appropriate ee vu , as explained in § 5.7. The 

obtained value *
eyLσ  corresponds to an iso-stress line, whose intersections with eΩ  define the cell 

element multiplier of the lattice. The criterion to use when moving along such an iso-stress line is 

that of minimizing the mass of the structure, i.e. minimizing the density of the lattice material. As 

described in eqn (5.38), the lattice materials that best minimize 
2
e

eA

Ω

ψ
 are the solutions displayed at 

the left-top corner of Fig (5.8).  

5.9 Conclusion 

Under compression, a column manufactured of regular solid material experiences two types of 

failure modes, namely, the global buckling and the yield failure. A lattice material column, on the 

other hand, may also fail for either the local buckling or yielding of its microscopic cell element. 

To fully exploit the strength of a strut made of lattice material, the global buckling and the 

yielding failures must occur simultaneously with the microscopic failure modes. To achieve this, 
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this chapter presented multiscale design charts for the selection of the geometric properties for 

both the cell elements and the column cross-section. The charts help to gain insight into the 

impact that the structural geometry at both the micro and macroscale has on the overall resistance 

of the column.  
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CHAPTER 6 

Experimental Characterization of the 3
4
.6 2D Lattice Material 

6.1 Introduction  

Lattice materials have been extensively studied over the last decade. Among these studies, 

experimental investigations of cellular solids provided a deep understanding of the material 

mechanical behavior (Xiaogang Chen1, et.al., 2008a; 2008b;  Queheillalt, D. T., Wadley, H. N.G., 

2005; Maiti, S. K., et.al., 1984; Zhou1, Q., Mayer, R.R., 2002; Gibson, L. J. , 1989; Parsons, R.T., 

2009; Andrews, E.W., et.al., 1999; Hinnerichs, T.D., et.al., 2006). It is found that the material 

performance under dynamic loading dramatically changes compared to the one under static 

loading, as the effect of the strain rate on the material response is significant. Thus for static 

applications, quasi-static characterization, at which the material is loaded by a strain rate in the 

order of 10-3, is always recommended (Lee, S., et.al., 2006).  

In this chapter, the effective elastic properties of the 34.6 lattice material are characterized 

experimentally. A detailed description of the design procedure of the test specimens is presented. 

Three quasi-static tests are performed, namely, uniaxial tension, uniaxial compression and pure 

shear. The comparison of the experimental data to the theoretical results, calculated following the 

procedure described in chapter four, shows that the former are in good agreement with the latter. 

The maximum error obtained of 15.2% is acceptable according to the literature on experimental 

studies of cellular solids (Ashby, M., et.al., 2000). This result verifies the fidelity of the 

characterization methodology presented in chapters three and four. 

6.2 Design of Specimens 

To determine the material fourth order stiffness constants in the x, y and xy directions, three types 

of tests are performed on the 34.6 lattice material: uniaxial tension, uniaxial compression and pure 

shear. By inspecting the microstructure of the 34.6 lattice material, shown in Fig (E.2h), one can 

realize that the lattice has different geometrical orientations in the x and y directions. Accordingly, 

two types of specimens are designed for the tension and the compression tests. The first type is x- 

oriented, with orientation similar to that shown in Fig (E.2h); the second type is y- oriented, which 

is a 90o rotation about the z- axis in Fig (E.2h). 

The rapid manufacturing facility at the Hydro-Quebec Research Institute in Varennes, Canada 

(Hydro-Quebec Research Institute, 2009), was used to manufacture the test specimens. The 
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facility is powered by the A2 Arcam Electron Beam Melting (EBM) system (Arcam AB®, 2010a), 

shown in Fig (6.1b). The A2 Arcam EBM system is provided by Arcam AB®. EBM is a type of 

additive manufacturing of metal parts where the parts are manufactured by melting metal powder 

layer-by-layer using a beam of electrons in a high vacuum chamber. EBM is one of the rapid 

manufacturing technologies. For details about the EBM technology and other rapid manufacturing 

technologies, the reader is referred to references (Kruth, J.P., et.al., 2005; Waterman, N. A., 

Dickens, P., 1994; Rochus, P., et.al., 2007). 

To manufacture the specimens by the EBM system, a Stereolithography (STL) CAD file for the 

designed specimens was prepared using AutoCAD2010 and imported into the A2 EBM system 

interfacing software. A snapshot of the interfacing software screen showing the designed 

specimens in the manufacturing workspace is shown in Fig (6.1a). 

  

 

 

 

 

 

 

Fig (6.1) (a) Specimens in the manufacturing work space (b) The A2 EMB system provided 

by ARCAM AB® 

The Ti6Al4V ELI Titanium Alloy is the solid material used for manufacturing the specimens. 

Based on tensile coupon test reults provided by ARCAM AB® (Ti6Al4V ELI Titanium Alloy, 

2010b), solid parts made of Ti6Al4V ELI Titanium Alloy and manufactured by EBM have a yield 

strength of MPays 940=σ , ultimate strength of MPaus 990=σ  and a modulus of elasticity of 

GPaE 120= . 

Fig (6.2) shows the dimensions required to fully parameterize the lattice material specimens. Two 

envelopes are shown in Fig (6.2). The first is the cell envelope which is a feature of the periodic 

lattice structure. The cell envelope is defined to tessellate the unit cell to the infinite lattice (also 

shown in Fig (E.2h)). The second is the size envelope, which is defined here in order to compute 

the distance occupied by the unit cell in the x and the y directions. We annotate the dimensions of 

the size envelope as Bc and Hc in the x and the y directions, respectively. 

On the other hand, Le, He and Be are, respectively, the cell element length, the cell element cross-

section in-plane thickness and the cell element cross-section out of plane depth. Finally, Hs, Bs 

   
(a) (b) 
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and ts are, respectively, the specimen height, the specimen width and the specimen thickness. It 

should be noted that the depth of the specimen, ts, is equal to the microscopic cell element out of 

plane depth, Be. 

 

 

 

 

 

 

 

 

Fig (6.2) Parametric detailed dimensioning of the microscopic and the macroscopic 

constituents of a lattice material specimen 

6.2.1 Design of the Microscopic Cell Element 

For the design of the 34.6 lattice material, the dimensions of the microscopic cell elements are 

computed by following the approach reported in chapter 5. This approach optimizes the lattice 

material by generating a coincidence between three failure modes, namely, microscopic elastic 

buckling failure of the cell elements, lattice material plastic yielding failure and the macroscopic 

elastic buckling failure of the specimen. The approach also goes further by considering sizing and 

shaping of the cell element cross-sections to minimize the weight of the lattice material. The 

design is based on elastic perfectly plastic solid material as post yielding failure is not considered 

in the current study. We start by assuming that the lattice material has microscopic cell elements 

with solid rectangular cross-sections. The in-plane thickness is assumed to be mmH e 1= . 

Although shaping the geometry of the cell element cross-sections enhances the lattice material 

performance in the form of higher strength to weight ratio, simple rectangular geometry of cell 

element cross-sections are used here as we are mainly interested in validating our theoretical 

analysis technique developed in chapters 3 and 4.   

The length of the microscopic elements is computed to impose a coincidence between the two 

microscopic failure modes, namely, the plastic yielding of the solid material and the elastic local 

buckling of the microscopic elements. Following the approach developed in chapter 5, to avoid 

buckling of the microscopic cell elements, its length is obtained as: 

 

y 

x 
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By substituting mm1=eH , GPa120=E and MPa940=ysσ into eqn (6.1), the length of the 

microscopic cell element can be computed as mm24.10=eL . Using a dimensional safety factor 

of 2 and rounding the results to the nearest integer, the final length of the microscopic cell 

element is approximately mm5=eL . Using the length of the microscopic cell element, the 

dimensions of the size envelope can be computed as mm00.15=cB  and mm43.14=cH  for the 

x- oriented lattice. For the y- oriented lattice, the dimensions of the size envelope are 

mm00.15=cH and mm43.14=cB .  

6.2.2 Design of the Specimen Macroscopic Dimension  

To compute the specimen height, Hs, we resort to the ASTM standards Designations C363- 00 

and C364- 99, and estimate the height of the tension and the compression specimens as shown in 

table (6.1). 

Table (6.1) Height of tension and compression specimens 

 Specimen Height 

 x- Oriented y- Oriented 

Tension 144 mm 150 mm 

Compression 73 mm 76 mm 

The ratio of the specimen size to the cell size affects the measurement of the mechanical 

properties of the cellular materials (Ashby, M., et.al., 2000). In uniaxial tension or uniaxial 

compression tests, the upper and the lower ends of the specimen are in contact with the loading 

grips while the sides of the specimen are free. As a result, the cells, which are close to the sides of 

a specimen, contribute less to its load carrying capacity, which also results in less contribution to 

the overall stiffness and strength of the material. It is found that the measured values of the 

stiffness and the strength of the tested cellular materials increase with the ratio of the specimen 

size to the cell size. It is determined empirically (Ashby, M., et.al., 2000) that for uniaxial loading, 

in either tension or compression, the width of the specimens should be at least seven times the 

cells size ( cs BB 7≥ ). This enables the computation of the specimen widths as shown in the table 

(6.2). 
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Table (6.2) Width of the tension and compression specimens 

 Specimen Width 

 x- Oriented y- Oriented 

Tension 105 mm 101 mm 

Compression 105 mm 101 mm 

For the shear test, we use the standard three-rail shear method (ASTM Standards, D 4255/D 

4255M- 01), as shown in Fig (6.3).  Since the sides of the shear specimen are all clamped into the 

stiff three-rail fixture, which produces a stiffening effect by contributing into the lattice material 

boundary stiffness, experiments have shown that the boundary stiffening effect becomes 

negligible when the ratio of the specimen size to the cell size is greater than 3 ( cs BB 3≥ ) (Ashby, 

M., et.al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

Fig (6.3) Shear specimen mounted into the three rail shear fixture and installed into the test 

machine 

This enables the computation of the lattice material width on each side of the three-rail shear 

fixture to be 42 mm. The height of the shear specimen is constrained by the height of the three-rail 

fixture to 140 mm. 

6.2.3 Design of the Specimen Thickness 

The compression specimen has the critical thickness since it is subjected to an elastic, global, 

macroscopic buckling failure. The thickness of the compression specimen is obtained by imposing 
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a coincidence between the two macroscopic failure modes, namely, the plastic yielding of the 

lattice material and the elastic global buckling of the specimen. 

Two simple cases are considered here: a column with a rectangular solid cross-section under 

compressive loading and a thin plate with rectangular cross-section under distributed compressive 

loading or pure shearing. The thickness of the compressive specimen is computed by considering 

it first as a column and then as a plate; the higher dimensions between the two is selected to avoid 

any geometric instability. 

For a column, made of lattice material, with length, sH , and a rectangular solid cross-section of 

width, sB , and thickness, st , the Euler critical buckling stress is defined as (Megson, T.H.G., 

2003): 

2
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where the constant c is dependent on the column end boundary conditions.  

For thin plates with rectangular solid cross-section and subjected to a compressive distributed 

loading, the critical buckling stress of the plate is expressed as (Howard, D. Curtis, 1997): 
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where Lν and EL are the macroscopic lattice material Poisson’s ratio and Young’s modulus, 

respectively. C is a constant that depends on the plate boundary conditions: the Poisson’s ratio of 

the lattice material and the plate aspect ratio (plate length to width ratio). The Poisson`s ratio for 

the 34.6 lattice topology is computed in § 4.5.2 as ( ) ( ) 0.5434==
yxLxyL υυ .  

Imposing the coincidence between the macroscopic buckling stress, crσ , and the lattice material 

yield strength, 
y

Lσ , using the equality constraint (
y

Lcr σσ = ), results in the following expression 

of the thickness for the compression specimen: 
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 where xxxxC  and xxyyC  are the fourth order compliance constants of the lattice material, as 

shown in eqn (4.22). )(iC
y

is the i lattice material strength constant computed in eqn (4.32). The 

boundary condition constants for pinned-pinned columns and pinned-free- pinned-free plates with 

aspect ratio of 0.695 are commonly found in literature (e.g. Howard, D. Curtis, (1997)) as c=1 and 

C=4.9.  

Substituting the computed values into eqn (6.4), gives a thickness of the compression specimen of 

mmts 20.6= . This value is considered a nominal thickness for all specimens. 

 

 

 

 

 

 

 

  

 

 

(a) Shear (b) Tension, x- oriented (c) Tension y- oriented (d) Compression y- oriented (e) 

Compression x- oriented 

Fig (6.4) CAD drawing of the test specimens along with loading directions 

Using the computed dimensions of the microscopic and the macroscopic constituent of the test 

specimens, an STL CAD file is generated for five models, namely, shear specimen, x- oriented 

and y- oriented compression specimens and the same for the tension specimens, as shown in Fig 

(6.4). The STL file was provided to the rapid manufacturing facility of the Hydro-Quebec 

Research Institute in Varennes, Canada, where fifteen specimens were manufactured, three for 

each specimen design. 

6.3 Theoretical Mechanical Properties of the Designed Lattice Material 

Using the theoretical geometric details of the designed lattice material, used in creating the STL 

CAD file, the relative density of the material is then computed as: 
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Using the value of the relative density, the stiffness and strength properties of the designed lattice 

material can be computed as: 
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The compliance matrix is computed as: 
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From the compliance properties in eqn (6.8), the elastic moduli of the lattice material can be 

written as: 
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These values of the stiffness and strength are compared with the results obtained from the 

experiments. 

It should be noted that the A2 EBM system, provided by ARCAM AB®, has a model-to-part 

accuracy of mm20.0± per 100 mm range models (Arcam AB® Setting the standard for Additive 

Manufacturing, 2010c). This tolerance is verified experimentally where the in-plane thickness of 

the microscopic cell elements of the manufactured specimens are found as: mm01.01±=eH . 

6.4 Experimental Set-up and Instrumentation 

A schematic drawing of the full experimental set-up is shown in Fig (6.5); while Fig (6.6) shows 

the instrumentation used for the testing at McGill University. 
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Fig (6.5) Schematic drawing of the test set-up 

The experimental set-up is composed of the MTS® hydraulic tensile test machine; a load cell, 

model MTS 647 Hydraulic Wedge Grip, with maximum capacity of 100 KN that is attached to the 

upper axis of the MTS machine; a hydraulic controller, model MTS 685 hydraulic grip supply 

controller, that governed the operation of the grips of the load cell as well as the lower grips 

installed on the lower axis of the MTS machine to hold or release specimens or fixtures; an 

extensometer, model 632-31E-24, attached to the specimens to measure the axial strain; a data 

acquisition system, model MTS FLEX Test SE, that receives the inputs of three channels 

transferring the measurements of the load cell forces, the extensometer strain and the crosshead 

displacement; and a computer connected to the data acquisition system through the FLEX Test SE 

Station Manager interface software (version 3.5C 1815). 

 

(a) 100 KN MTS machine (b) load cell (c) specimen (d) extensometer (e) data acquisition 

system (f) computer (g) grips hydraulic controller 

Fig (6.6) Experimental set-up and instrumentation  

To avoid the inertia effect (Song, B., 2007) and the strain rate dependency of the results (Krempl, 

E., Khan, F, 2003; Sarsfield, H., et.al., 2007; El-Magd, E., et.al., 2003), quasi-static tests are 

considered for the current study where a strain rate of the order of 
13

10
−−

s is adopted (Lee, S., et. 

Al., 2006). 
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6.5 Tests and Test Results 

6.5.1 Compression Test 

Fig (6.7) shows a compression specimen during the test. Rather than holding the specimen by the 

upper and the lower grips of the MTS machine, which resembles fixed boundary conditions, we 

insert the upper and the lower flat faces of the specimen between the flat faces of hard steel, thick 

plates that are held horizontally by the grips of the MTS machine at 2000 psi. The compression 

specimen is then compressed between the two plates.  

 

 

 

 

 

 

 

Fig (6.7) Compression test 

This assembly resembles pin jointed boundary conditions, since the ends of the specimen are free 

to rotate while its vertical movement is controlled by the grips motion and its horizontal 

movement is constrained by the friction force between the specimen and the steel plate surfaces. 

This is similar to the boundary conditions used in the theoretical analysis to compute the critical 

thickness of the specimen that prevents buckling. 

To measure the axial strain, the extensometer is connected to the specimen as shown in Fig (6.7). 

The test is performed at crosshead speed of 0.5 mm/min. This speed applies a strain rate of 

-1-4
s1.14x10  for the x- oriented specimens and 

-1-4
s1.11x10  for the y- oriented specimens. Three 

measurements, namely, the axial strain, the load cell force and the crosshead displacement, are 

transferred via three analog channels into the data acquisition system which digitizes the data and 

transfers it into a computer through the FLEX Test SE Station Manager interface software where 

the data is saved into a file of DAT format. The test runs until the rupture of the specimens, as 

shown in Fig (6.8).   

The DAT file is then post processed in MATLAB (The Mathworks™) where a simple code is 

developed to compute the nominal stress, Nσ , and to plot the stress strain diagram. 

The nominal stress is computed as: 

 

Steel 

plates 



 

where t is the time, )(tF  is the load cell force, and 

specimen which is expressed as: 

 

 

 

Fig (6.8) A ruptured 

The test is performed for six specimens, three of which are 

oriented. Figs (6.9a) and (6.9b) show the test results. Since the plots do not clearly show the yield 

point of the lattice material, the yield strength is de

Johnston, E.R., 1981). In this method, the yield strength at 0.2% offset is obtained by drawing a 

line parallel to the straight part of the stress

002.0=ε . The parallel line intersects the stress

strength. The strength and the stiffness results are summarized in table (6.

set, the mean,
−

x  and the standard deviation, 

Table (6.3) Summary of the compression test results

 

Specimen (
(

1 108.4

2 111.8

3 105.

x  108.

std 
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Fig (6.8) A ruptured x-oriented compression specimen   

The test is performed for six specimens, three of which are x- oriented, whereas the others are 

oriented. Figs (6.9a) and (6.9b) show the test results. Since the plots do not clearly show the yield 

point of the lattice material, the yield strength is determined by the offset method (Beer, F.P., 

Johnston, E.R., 1981). In this method, the yield strength at 0.2% offset is obtained by drawing a 

line parallel to the straight part of the stress-strain curve, through the point of strain that is equal to

. The parallel line intersects the stress-strain curve at the point of 0.2% offset yield 

strength. The strength and the stiffness results are summarized in table (6.3). For each experiment 

and the standard deviation, std, are calculated.  

) Summary of the compression test results 

x- oriented y- oriented 

( )
xx

y
Lσ  

(MPa) 

xxxxE (GPa) ( )
yy

y
Lσ (MPa) yyyyE  

(GPa)

108.4 20.3 129.7 21.5 

111.8 22.7 129.7 21.9 

105.3 20.8 114.4 20.9 

108.5 21.3 126.6 21.4 

2.7 1.1 7.2 0.4 

  

 (6.10) 

section area of the 

 (6.11) 

oriented, whereas the others are y- 

oriented. Figs (6.9a) and (6.9b) show the test results. Since the plots do not clearly show the yield 

termined by the offset method (Beer, F.P., 

Johnston, E.R., 1981). In this method, the yield strength at 0.2% offset is obtained by drawing a 

strain curve, through the point of strain that is equal to

strain curve at the point of 0.2% offset yield 

). For each experiment 
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(a) x- oriented specimens (b) y- oriented specimens 

Fig (6.9) Compression test results 

6.5.2 Tension Test 

Since the width of the grip wedges of the MTS machine is small compared to the width of the 

tension specimens, four plates, with rough surfaces and with width larger than that of the tension 

specimens, are manufactured of hard steel and are used to hold the tension specimens, as shown in 

Fig (6.10a). The grips then hold the specimens by applying the pressure force over the plates to 

distribute the load uniformly along the width of the specimens. The steel plates at each end of the 

tension specimens hold a depth of 20 mm; accordingly, the gauge lengths of the tension 

specimens become 104 mm for the x- oriented specimens and 110 mm for the y-oriented ones. 

The same procedure described for the compression test is followed here. The test is performed at a 

crosshead speed of 0.5 mm/min. This speed applies a strain rate of 
-1-5s8.01x10  for the x- 

oriented specimens and 
-1-5

s7.58x10  for the y- oriented specimens. The tension test is performed 

until rupture of the specimens, as shown in Fig (6.10b). The nominal stress, Nσ , is computed 

from the generated data using eqn (6.10) and the stress strain diagrams are generated for 3 sets of 

data of the x- oriented specimens, Fig (6.11a), and other three sets of data of the y- oriented 

specimens, Fig (6.11b). 

Tensile yield strengths are considered as the maximum stresses achieved in the stress-strain 

diagrams of Fig (6.11). The stiffness of the specimens in tension is computed as the average slope 

 
(a) 

Specimen 1 

Specimen 2 

Specimen 3 
9.671 

Theory 

0
.0

0
5

 

 
(b) 

Specimen 1 

Specimen 2 

Specimen 3 

Theory 

0
.0

0
6

1
7

 

11.48 



127 

 

of each curve in Fig (6.11). The strength and the stiffness results are summarized in table (6.4), 

where the mean and the standard deviations of the data are also given. 

 

 

 

 

 

 

 

 

(a) Tension specimen, y-oriented, with the holding plates (b) Ruptured, x- oriented, tension 

specimen 

Fig (6.10) Tension specimens 

Table (6.4) Summary of the tension test results 

 
x- oriented y- oriented 

Specimen ( )
xx

y
Lσ  (MPa) xxxxE  (GPa) ( )

yy

y
Lσ  (MPa) yyyyE  (GPa) 

1 111.0 19.9 123.5 19.7 

2 107.2 18.4 126.2 19.7 

3 106.2 18.4 124.4 19.7 
−

x  
108.1 18.9 124.7 19.7 

std 2.1 0.7 1.1 0 

6.5.3 Shear Test 

The standard three-rail shear method (ASTM Standards, D 4255/D 4255M- 01) is used to perform 

the shear test, as shown in Fig (6.3). The shear specimen is mounted into the three-rail shear 

fixture and sand paper is placed between the specimens and the fixture surfaces to increase the 

friction and prevent slipping. The fixture is then mounted into the grips of the MTS machine 

where the specimen is loaded at a crosshead speed of 0.5 mm/min. An average shear strain rate is 

considered which is computed as the crosshead speed divided by the width of the lattice material. 

This generates an average shear strain rate of rad/s1.98x10-4
. The test is continued until the 

rupture of the specimen. The generated data is post processed to generate the stress- strain 

diagram as shown in Fig (6.12) where the nominal stress is calculated as: 

 

(a) (b) 

10 mm 
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where sA0  is the initial shear area of the specimen which is computed as: 

sss tHA 20 =       (6.13) 

 

 

 

 

 

 

 

 

 

 

 

 (a) x- oriented specimens (b) y- oriented specimens 

Fig (6.11) Tension test results 

The yield strength is considered as the maximum stress reached in the three tests of Fig (6.12) and 

the stiffness of the specimens is considered as the average slope of the curves of Fig (6.12). 

Finally, the data are summarized in table (6.5) along with their respective statistical information. 

Table (6.5) Summary of the shear test results 

Specimen y
Lτ  (MPa) G  (GPa) 

1 68.4 6.3 

2 66.4 6.3 

3 65.5 7.7 
−

x  
66.7 6.8 

std 1.2 0.7 

6.6 Discussion 

A comparison between the theoretical results and the mean values of the experimental results is 

presented in table (6.6). The percentage error is computed as the difference between the 

experimental and the theoretical results divided by the value of the theoretical result. 

(b) 

Specimen 1 

Specimen 2 

Specimen 3 

Theory 

0
.0

0
6

1
7

 

11.48 

(a) 

Specimen 1 

Specimen 2 

Specimen 3 

9.671 

Theory 



129 

 

Table (6.6) shows that the theoretical analysis predicts lower values for the stiffness and the 

strength when compared to the experimental results. It is shown that the maximum percentage 

error obtained is 15.2%, which is an acceptable error in the experimental studies on cellular solids 

(Ashby, M., et.al. 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (6.12) Shear test results 

Error propagation in experimental studies has different sources (Dieck, R.H., 1997). For instance, 

in the experimental characterization of foams, error propagation is largely affected by the 

uncertainty in defining the material microscopic attributes due to the foam stochastic 

microstructure (Ramamurty, U., Paul, A., 2003). On the other hand, lattice materials are produced 

with an exact periodic microstructure; therefore, it is expected that other reasons have contributed 

to the propagation of the reported errors in the current study. For instance, the theoretical results 

are obtained by considering the lattice material as a microscopic pin-jointed truss structure. This 

assumption implies that the axial stiffness of the microscopic cell elements is the only stiffness 

considered in the model. However, in practice, a lattice material component is manufactured as a 

rigid-jointed reticulated structure, which implies that the bending stiffness of the microscopic 

elements contributes to the overall material stiffness and strength, even if the material 

microstructure is kinematically determinate.  Moreover, the mechanical properties of the Ti6Al4V 

ELI Titanium Alloy are expected to be a function of the manufacturing parameters of the rapid 

manufacturing technique used to build the specimens. These manufacturing parameters in turn 

have their effect on the phase content and grain size of the solid material microstructure. For 
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instance, Engel and Bourell (Engel, B. and Bourell, D.L., 2000) investigated the effect of the 

processing parameters used in the preparation of the Titanium alloy powder that is used in the 

selective laser sintering (SLS), a technique of additive manufacturing. They found that pre-

treatment of titanium powder alloy has a significant effect on the SLS results. Without pre-

treatment, titanium alloy powder flows poorly and creates a balling effect that includes the 

formation of molten cluster masses developed from the laser exposure during the SLS process, 

rather than wetting and joining together the molten powder between the current and the previous 

layers. Mechanical parts produced using such powder are expected to have poor surface finish, 

poor mechanical properties, and low density due to the large porosity. The theoretical models 

developed in chapter 4 of this thesis did not consider the effect of the EBM manufacturing 

parameters. This idealization is expected to contribute to the propagation of the reported errors in 

table (6.6). Lastly, the current study considered only three specimens per each test; by increasing 

the number of specimens, it is expected that the computed error percentage would be reduced. 

Further investigations are recommended to determine the impact of the selected manufacturing 

technique on the solid material properties and predict the expected errors due to the assumptions 

made in the theoretical models. 

6.7 Conclusion 

The effective mechanical properties of a novel 2D lattice topology, with the Schlafli symbol 34.6, 

have been characterized experimentally. The effective mechanical properties include the effective 

stiffness and the effective uniaxial and pure shear strength properties. The theoretical and the 

experimental results are compared and showed good agreement. This result verifies the theoretical 

model developed in chapter 4. 

Further theoretical and experimental investigations are required to interpret the unclear post 

yielding behavior of the material. The 34.6 lattice material has shown some ductility during the 

compression test, as illustrated by the plateau part of the curve in Fig (6.9), whereas the tensile 

test shows a clear brittle behaviour, as illustrated in Fig (6.11) by the sudden rupture of the 

specimens. Additional analysis is also required to characterize both theoretically and 

experimentally the material collapse surfaces. To experimentally characterize the collapse 

surfaces of the lattice material, it is recommended to manufacture and test three sets of lattice 

material specimens. The first set should be designed to fail in the elastic-buckling-dominated 

regime, the second set should be designed to fail in the buckling-yielding boundary regime and 

the third set in the plastic-dominated regime. The theoretical models should be validated for each 
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one of these failure modes; the microscopic failure mechanisms should also be investigated and 

interpreted with respect to the material macroscopic collapse regimes. 

Table (6.6) Comparison between the theoretical and the experimental characterization 

results 

  Theoretical Experimental Error (%) 

C
o

m
p

re
ss

io
n
 ( )

xx

y
Lσ  (MPa) 96.7 108.5 12.2    

( )
yy

y
Lσ  (MPa) 114.8 126.6 10.3 

xxxxE (GPa) 18.6 21.3 14.3 

yyyyE  (GPa) 18.6 21.4 15.2 

T
en

si
o

n
 

( )
xx

y
Lσ  (MPa) 96.7 108.1 11.8 

( )
yy

y
Lσ  (MPa) 114.8 124.7 8.6 

xxxxE (GPa) 18.6 18.9 1.5 

yyyyE  (GPa) 18.6 19.7 5.9 

 y
Lτ  (MPa) 59.0 66.7 13.0 

G (GPa) 6.0 6.8 12.2 

 

Furthermore, it is necessary to determine the material principal stresses and their relation to the 

lines of ruptures depicted in Figs (6.8) and (6.10b) for the compression and the tension tests, 

respectively. The compression test specimen, shown in Fig (6.8), had a rapture line inclined 450 

with respect to the direction of loading; on the other hand, the tensile test specimen, shown in Fig 

(6.10b), had a V-shaped rupture line. Preliminary analysis for such behaviors in hexagonal 

honeycombs was investigated recently by Joshi, et.al. (Shraddha Joshi, et.al., 2010). They 

experimentally studied the damage of hexagonal honeycombs under in–plane shear loading. Five 

different hexagonal meso-structures were experimentally investigated using polycarbonate (PC) 

coupon samples. The samples were manufactured using 3D printing, a technique of rapid 

prototyping. Effective shear stress-strain curves of the PC honeycomb coupons were generated for 

each shear test. They showed that the failure modes of the PC honeycombs changed primarily 

with both the cell wall thickness and the principal load directionality within the lattice material. 
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CHAPTER 7 

Stiffness Properties of Rigid-Jointed Micro-Structured Lattice 

Materials 

7.1 Introduction 

Microscopically architectured lattice materials are mainly manufactured as rigid-jointed 

frameworks with elements loaded in both axial and bending modes. Although a stretching 

dominated lattice mainly fails by axial stresses, its microscopic constituents still experience 

secondary bending stresses developed during the material deformation. Thus, an accurate 

prediction of the lattice material stiffness properties is obtained by modelling the material as a 

rigid-jointed, periodic, framework.  

Several numerical and analytical approaches were developed to model the effective properties of 

rigid-jointed lattice materials (Timoshenko, S.P., Gere, J.M., 1961). Most numerical approaches 

approximated the performance of lattice materials by studying the response of a finite structure in 

the form of a unit cell or a finite cluster of cells. Modelling the characteristics of lattice materials 

using analytical continuum models are also presented; these approaches, however, yield to 

unacceptable results once the in-plane bending of the lattice microscopic element, associated with 

its rigid-jointed architecture, are considered in the analysis (Noor, A.K. and Nemeth, M.P., 1980). 

To overcome this difficulty, a micro-polar continuum model is used to characterize lattice 

materials (Bazant, Z.P., Christensen, M., 1972; Noor, A.K. and Nemeth, M.P., 1980; Eringen, 

A.C., 1968; Eringen, A.C., 1966). Recently, the Bloch's theorem is used to model the propagation 

of equilibrium and kinematic wave-functions through infinite periodic structures which are 

employed to predict the homogenized stiffness and strength properties of rigid-jointed lattice 

materials (Hutchinson R.G., 2004). 

In this chapter, we present a matrix-based methodology to model and characterize the stiffness 

properties of lattice materials with rigid-jointed microstructure. The microscopic members of the 

unit cell are modelled as frame elements which are used to derive the stiffness system of the unit 

cell microstructure. This stiffness system is employed to predict the stiffness behavior of the 

periodic lattice structure where the Kinematic and the equilibrium wave-functions, propagating 

through the infinite lattice, are modelled using the Bloch's theorem. A modified Cauchy-Born 

kinematic boundary condition is used to express the microscopic nodal deformations in terms of a 
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homogeneous macroscopic strain field applied to the lattice material. After calculating the nodal 

forces and deformations, the principle of virtual work and the Hill-Mandel principle of macro-

homogeneity are used to derive the homogenized stiffness of the material. The Bond-stress and 

strain orthogonal transformations are applied to a homogenized infinitesimal stress field within 

the lattice to evaluate the stiffness anisotropy emerging in the lattice material. In the second part 

of this chapter, the proposed procedure is applied to 13 planar lattice topologies to obtain closed-

form expressions of their material stiffness and elastic properties which are reported in Appendix 

G. Charts representing the relative elastic moduli of the lattice material versus its relative density 

are developed which can be used as design charts that assist in the selection of the best lattice 

topology for a given stiffness requirement. Furthermore, polar coordinate maps are generated to 

capture the anisotropic behavior of the selected lattice topologies. The effectiveness of the 

bending stiffness of the microscopic members of the lattice on the homogenized elastic properties 

of the stretching dominated lattice topologies is also examined.  

7.2 Equilibrium and Kinematic Systems of Unit Cell Rigid-Jointed Finite Structure 

To derive the equilibrium system of a finite rigid-jointed truss like structure, we first consider a 

linearly elastic, straight frame element, k, connected between nodes i and q (Fig (7.1)). To 

demonstrate the internal forces and deformations fields, the element is sectioned at A-A into two 

segments, I and II. Two Cartesian coordinate systems are defined in Fig (7.1). The first coordinate 

system, 11 yx − , is local to element k with the " 1x -axis" in the same direction of the neutral axis of 

the element and " 1y -axis" is perpendicular to the " 1x -axis". The other coordinate system is the 

global coordinate system x-y with the x- and the y-axes in the horizontal and the vertical 

directions, respectively. The 1x -axis is oriented by an angle α  in the counter clock wise direction 

from the x-axis. 

The static equilibrium of segment I of element k can be written as: 
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Fig (7.1) A frame element along with all internal and external forces and deformations fields 

 

where kP , kV , kM and kl are respectively, the internal axial and shear forces, the internal 

bending moment and the length of element k, where { }bk ,...,1∈ . On the other hand, 
1ixf and 

1iyf  

are the forces acting on node i in the 1x  and 1y  directions respectively; im is the bending moment 

acting on node i where { }ji ,...,1∈ . 

Similarly, the static equilibrium of segment II in element k is given by: 
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where
1qxf and 

1qyf  are the forces acting on node q in the 1x  and 1y  directions respectively. qm is 

the bending moment acting on node q. 

I 

II 
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The assembly of eqn (7.1) and eqn (7.2) into one matrix system results in: 
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k ft =A    (7.3) 

Equation (7.3) is the equilibrium system of element k derived in its local coordinate system (

11 yx − ). l
kA  and l

kf are, respectively, the equilibrium matrix and the nodal force vectors of 

element k in the local coordinate system ( 11 yx − ). kt  is element k internal forces vector. 

Recalling eqn (3.9), representing the duality relation between the equilibrium and the kinematic 

matrices of frameworks, and considering eqn (7.3), the kinematic system of the frame element 

shown in Fig (7.1) can be expressed in the local coordinate system ( 11 yx − ) as: 
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where l
kB  and l

kd are, respectively, the kinematic matrix and the nodal deformation vector of 

element k in the local coordinate system ( 11 yx − ), and ke is element k internal deformation vector. 

1ke , 2ke  and kΦ  are element k axial, lateral and bending deformations, respectively.  

7.3 Stiffness System of Unit Cell Rigid-Jointed Finite Structure 

The stiffness system of a structure that has b elements connected between j nodes is expressed as: 

fd =K      (7.5) 

where 
njnj

R
×∈K is the stiffness matrix of the structure that relates its nodal deformation vector, 

njRd ∈ , to the applied force vector, 
nj

Rf ∈  (McCormac, J.C., 2006). 

The internal forces of a framework, composed of b elements, can be related to its internal 

deformations through the relation: 

et C=       (7.6) 
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where 
bb

R
×∈C  is the constitutive diagonal matrix that relates the vector of element forces, 

b
Rt ∈ , to the vector of element deformations, 

bRe∈ .  

Recalling eqns (3.1) and (3.5), representing, respectively, the equilibrium and the kinematic 

systems of a framework, and considering eqns (7.5) and (7.6), the following relation can be 

established between the stiffness, the equilibrium, the kinematic and the constitutive matrices as: 

ACBK =      (7.7) 

On the other hand, the constitutive law that relates the internal forces and the internal 

deformations of a linear frame element, k, can be expressed as: 
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where E is the Young’s modulus of the solid material, A is the cross-sectional area of the frame 

element. 

Substituting eqns (7.3), (7.4) and (7.8) into eqn (7.7), the stiffness system of a linearly elastic 

frame element k can be expressed as: 
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where 
l
kK  is the linearly elastic stiffness matrix of element k. The stiffness matrix system of eqn 

(7.9) can be reformulated as: 
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where 
bar
kl

K and 
beam
kl

K  are the element axial and bending stiffness matrices, respectively, as 

beam
k

bar
k

l
k ll

KKK += .  

The length of the microscopic cell elements can be expressed in terms of a reference length, L, as: 

Lsl kk =       (7.11) 

where ks is a constant that depends on the geometry of the unit cell and { }bk ,...,1∈ . b is the 

number of elements within the unit cell. 

Substituting eqn (7.11) into eqn (7.10), assuming a unit reference length, results in: 
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(7.12) 

Formulation similar to eqn (7.12) can be generated to other elements which can then be assembled 

in a global matrix system. The final assembled system is the stiffness system of the rigid-jointed 

microscopic structure of the unit cell. In order to assemble the stiffness systems of the individual 

cell element into the global matrix system of the structure, the nodal degrees of freedom of the 

element have to be transformed from the element local coordinate system, ( 11 yx − ), to the global 

coordinate system (x-y) using the counter clockwise rotation defined by the orthogonal affine 

transformation as: 
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 or l
kk dd Q=  (7.13) 

where kd  and 
l
kd  are the nodal deformation vectors of element k in the global, (x-y), and the 

local, ( 11 yx − ), coordinate systems, respectively. Q is the counter clockwise rotational orthogonal 

transformation matrix. Similar transformation can be applied to the nodal forces as: 

l
kk ff Q=      (7.14) 

where kf and l
kf are the nodal forces in the global and the local coordinate systems, respectively. 

This kind of transformation is a unitary transformation where Q is a unitary matrix (Strang G., 

1998). To express the local nodal forces in terms of the global nodal forces, the matrix, Q, in eqn 

(7.14) has to be inverted. The inverse of a real unitary matrix is its transpose. Therefore, eqns 

(7.13) and (7.14) can be formulated as: 

k
Tl

k ff Q=      (7.15) 

k
Tl

k dd Q=      (7.16) 

where TQ is the transpose of matrix Q. 

Substituting eqns (7.15) and (7.16) into eqn (7.12), the stiffness system of the cell element in the 

global coordinate system (x-y) is expressed as: 

{ } { } kk
Tbeam

k
bar
kk

beam
k

bar
kkk fddd

ll
=+=+= QKKQKKK   (7.17) 

where 
Tbar

k
bar
k l

QQKK = and 
Tbeam

k
beam
k l

QQKK = are, respectively, element k global axial and 

bending stiffness matrices.  

The assembled global stiffness system of the unit cell finite structure is formulated as: 

{ } fdd
beambar =+= KKK     (7.18) 

7.4 Stiffness System of Rigid-Jointed Infinite Lattice Structure 

The Bloch's theorem is used here to generate the irreducible form of the stiffness system of the 

unit cell. This irreducible form is the stiffness representation of the infinite lattice structure. 
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Similar to the approach found in (Elsayed, M.S.A. & Pasini, D., 2010b; Hutchinson R.G., 2004), 

we first generate the transformation matrices necessary to transform the equilibrium and the 

kinematic wave-functions of the unit cell to its periodic irreducible forms by apply the Bloch’s 

theorem.  

Recalling eqn (3.42), the kinematic transformation system is expressed as: 

 
~

,

000

000

000

000

000

000

000

000

000

qqor

q

q

q

q

Ie

Ie

Ie

I

Ie

I

Ie

I

I

q

q

q

q

q

q

q

q

q

LB

L

B

I

RT

LT

RB

LB

R

L

T

B

I

yx

y

x

x

y

T=





















































=



































+µµ

µ

µ

µ

µ

  (7.19) 

 

 

 

 

  

 

 

 

 

Fig (7.2) Generic unit cell with its periodic equilibrium boundary conditions 

where T is the transformation matrix from the primitive cell degrees of freedom to the reduced 

cell degrees of freedom. q is a generic nodal or element deformation functions, and T, B, L and R 

denote top, bottom, left and right, respectively. xµ  and yµ  are the wave-numbers, derived from 

the reciprocal space of the lattice along with the dependency relations of the nodes and elements 

bases. The transformation matrices for the nodal displacements wave-functions are obtained such 

that: 

~

dd T=      (7.20) 

LTf  

x 

y 
Lf  

LBf  Bf  
RBf  

Rf  

RTf  
Tf  

If  Lfe xµ  

LTfe xµ  

LBfe yx µµ +  RBfe yµ  Bfe yµ  
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where 
~

d is the element deformations and the nodal displacements reduced vectors (periodic wave-

function), respectively. 

The same concept, used to derive the kinematic transformation matrix, can be applied to generate 

the equilibrium transformation matrix that takes into account the anti-periodic constraints 

necessary for the static equilibrium of the lattice. 

For the cluster of four generic unit cells shown in Fig (7.2), the application of the Bloch’s theorem 

allows writing the following relations: 

0=+ LR fef xµ , 0=+ BT fef yµ
,       

0=+++
+

LBRBLTRT fefefef yxyx
µµµµ

                 (7.21)     

 Equation (7.21) can be arranged in matrix form as: 
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(7.22) 

where 
HT is the Hermitian (the conjugate transpose) of the transformation matrix T. 

The transformation matrices are generated by accounting for the dependency relations of the bars 

and the nodes bases, as expressed by eqn (3.35). 

Eqns (7.20) and (7.22) are substituted into the stiffness system of the unit cell, eqn (7.5), to derive 

its periodic reduced form as: 

~~~

fd =K       (7.23) 

where 
~

K  is the reduced stiffness matrix of the infinite lattice structure, expressed as: 

KTTK H=
~

     (7.24) 
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7.5 The Homogenization Process of the Stiffness Properties of Periodic Microstructure: The 

Macroscopic Stiffness of Lattice Material 

The stiffness properties of the microscopic lattice structure are homogenized to generate the 

effective macroscopic stiffness properties of the lattice material. This is done by using the 

Cauchy-Born hypothesis (Bhattacharya, K., 2003; Born, M., & Huang, K., 1954; Maugin, G. A., 

1992; Pitteri, M., et,al., 2003; Ericksen, J. L., 1984).  

7.5.1 Cauchy-Born Hypothesis 

From the definition of the Cauchy-Born hypothesis (Bhattacharya, K., 2003), the infinitesimal 

displacement field of a periodic node in a lattice structure can be formulated as: 

→−−−→

+







==








+ RjdRjd ll .0,, εεε      (7.25) 

where )0,( =
−

εlJd  is the periodic displacement field of node lj . Assume that the periodic nodes 

defined by the position vectors lj and 
→

+ Rjl , are the two rigid nodes i and j within a lattice 

structure, then, eqn (7.25) can be formulated in matrix form as:   
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  in 2D   (7.26) 

where u and v are the node displacement field components in the x and y directions, respectively, 

and node i is the dependent node, while node j is the independent node. In terms of engineering 

strain (Renton, J.D., 2002), eqn (7.26) can be reformulated as: 
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  in 2D  (7.27) 

which in turn can be expressed as: 
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   (7.28) 

Applying this boundary condition to the unit cell node displacement vector, d, results in: 

−

+= εΕT
~

dd      (7.29) 

Equation (7.29) is the rigid-jointed modified kinematic boundary condition of the Cauchy-Born 

hypothesis. 

Substituting eqn (7.29) into the stiffness system of the unit cell (eqn (7.18)) results in: 

{ } fdd
beambar =









++=








+
−−

εε ΕTKKΕTK
~~

   (7.30) 

Multiplying both sides of eqn (7.30) by the Hermetian of the transformation matrix, 
HT , and 

substituting eqn (7.22) into the outcome, results in:  

{ } 0
~~~

===








++=








+
−−

ffdd
HbeambarHH TΕTKKTΕTKT εε   (7.31) 

Rearranging eqn (7.31), results in: 

{ } { }
−

+−=+ εΕKKTTKKT
beambarHbeambarH

d
~

  (7.32) 

Equation (7.32) can be split into two matrix systems as: 

−

−= εΕKTK
barH

bar

d
~~

     (7.33) 

−

−= εΕKTK
beamH

beam

d
~~

     (7.34) 

where TKTK
barHbar =

~

and TKTK
beamHbeam=

~

are the axial (bar) and bending (beam) stiffness 

matrices, respectively. 

7.5.2 Microscopic Nodal Deformations in Terms of Macroscopic Strain Field  

The microscopic nodal deformation can be computed in terms of the macroscopic strain field 

using eqns (7.33) and (7.34). This can be done by multiplying both sides of eqns (7.33) and (7.34) 



143 

 

by the inverse of the stiffness matrices. However, the microscopic stiffness matrices contain, in 

their column and row spaces, two modes of translational rigid body motion, as the lattice is not 

constrained into a foundation. The column and the row spaces of the stiffness matrices might 

contain also other modes associated with microscopic mechanisms within the lattice structure. In 

order to compute the inverse of the stiffness matrices, all modes related to rigid body motion as 

well as those modes related to internal mechanisms have to be eliminated from the column and 

the row spaces of the stiffness matrices. This can be done by computing the reduced row echelon 

form (Strang G., 1998) of the two matrices 
bar

~

K and 
beam

~

K  , then determine the non-pivotal 

modes in the row and the column spaces. A simple elimination strategy can be conducted as 

follows: assume that a non-pivotal mode is determined with the index np in the stiffness matrix 

bar
~

K , then, all the values in the row and the column of the stiffness matrix with the index np have 

to be set to zero while the diagonal value has to be set to unity; i.e. 0:),()(:,
~~

== npnp
barbar KK

and 1),(
~

=npnp
barK . On the other hand, all the values in the row with the rank np in the right 

hand side matrix of eqns (7.33) and (7.34) have to be set to zero. Once the elimination process is 

complete, the stiffness matrices can be inverted and an expression of the microscopic nodal 

displacements in terms of the assumed macroscopic strain field can be written as: 

( )
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−














−= ε

red
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    (7.35) 

( )
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









−= ε

red

beamH
beam

redbeamd ΕKTK

1
~~

   (7.36) 

where bard
~

and beamd
~

 are, respectively, the microscopic nodal deformations corresponding to the 

axial and the bending stiffness resistances. 

bar

red

~

K  and 

beam

red

~

K  are, respectively, the bar and the 

beam reduced stiffness matrices generated after eliminating modes associated with the rigid body 

motions and the internal microscopic mechanisms from the stiffness matrices. 

The generalized deformation of all nodes within the unit cell can be computed by substituting 

eqns (7.35) and (7.36) into eqn (7.29), which results in: 
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 (7.38) 

Expression of the generalized microscopic nodal forces in terms of the macroscopic strain field 

can be computed by direct substitution of eqns (7.37) and (7.38) into the stiffness system of the 

unit cell presented in eqn (7.18), which results in: 
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7.5.3 Homogenized Macroscopic Stiffness of Lattice Material 

The generalized nodal forces and deformations, formulated in the previous section, are used to 

derive the rigid-jointed lattice material macroscopic stiffness properties using the principle of the 

virtual work (Timoshenko, S. P., & Young, D. H., 1945) and the Hill-Mandel principle (Maugin, 

G. A., 1992) of macro-homogeneity which results in: 
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where Y  is the unit cell in-plane area. 
bar
LK and 

beam
LK are, respectively, the lattice material 

homogenized, fourth order, axial and bending stiffness tensors.  

Recalling eqn (4.1), the relative density of a 2D lattice material is given by: 


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


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H
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L ρ

ρ

ρ
ρ      (7.43) 
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where 
ρ
TC is a constant depends on the geometry of the unit cell. Considering an out of plane 

depth of the 2D lattice equal to a unit length, a cell element reference length of unit length, L=1, 

and substituting eqns (7.43) into eqns (7.41) and (7.42) result in: 
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Once the macroscopic stiffness tensor is computed, the macroscopic compliance matrix can be 

obtained by inverting the stiffness matrix, where CL=KL
-1 is the linearly elastic fourth order 

compliance tensor of the lattice material which is used to compute the lattice material elastic 

moduli. 

7.6 Application of the Developed Methodology to Thirteen 2D Lattice Topologies 

The methodology presented above is now applied to 13 lattice topologies. Their closed form 

expressions of the stiffness matrix along with its elastic moduli and Poisson's ratios are included 

in Appendix G. Charts representing the relative elastic moduli of the lattice material versus its 

relative density are developed in Figs (7.3- 7.5).  These charts assist the selection of the best 

topology of a lattice material for a given application that requires a material with specific stiffness 

properties. 
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Fig (7.3) Relative Young's modulus in the horizontal direction versus relative density of 

selected 2D lattice materials 
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Fig (7.4) Relative Young's modulus in the vertical direction versus relative density of 

selected 2D lattice materials 
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Fig (7.5) Relative shear modulus versus relative density of selected 2D lattice materials 

7.6.1 Effectiveness of Nodal Rigidity 

The effectiveness of the nodal rigidity of the microscopic lattice on the stiffness characteristics of 

the stretching dominated lattice topologies is examined here. The contribution of the bending 

stiffness of the microscopic cell elements to the macroscopic stiffness of the lattice material is 

assessed by the relations: 
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The above relations are plotted in Figs (7.6-7.8). The results show that the closer the topology to 

the full triangulation, the less the contribution of the microscopic bending stiffness to the 

homogenized macroscopic stiffness of the lattice material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (7.6) Contribution percentage of the microscopic bending stiffness of microscopic cell 

elements to the macroscopic Young's modulus in the horizontal direction of the lattice 

material versus the material relative density 
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Fig (7.7) Contribution percentage of the microscopic bending stiffness of microscopic cell 

elements to the macroscopic Young's modulus in the vertical direction of the lattice material 

versus the material relative density 
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Fig (7.8) Contribution percentage of the microscopic bending stiffness of microscopic cell 

elements to the macroscopic shear modulus versus the material relative density 

7.7 Anisotropy of Lattice Material 

Fig (7.9) illustrates the infinitesimal stress field of a lattice material considered here to examine 

the anisotropic behavior of the homogenized stiffness characteristics of the material. The 2D 

infinitesimal stress field ( )xyyx τσσ ,,   is transformed counter clockwise by an angle 

[ ]oo 360,0∈θ  to a new stress field ( )
θθθθ

τσσ yxyx ,, . An efficient technique to convert the 

material elastic properties from the ( )yx − coordinates to the ( )θθ yx − coordinates is the use 

of the Bond-stress and strain transformation matrices (AULD, B. A., 1990; Hoffmeister, B. K., 

2000; Bond, W. L., 1943; Hearmon, R. F. S., 1946; Bin, L., 2010). The linearly elastic stress field 

in the ( )yx − coordinates can be related to the strain field in the same coordinate system by 

Hooke's law such that: 
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εσ K=      (7.49) 

where K is the fourth order, linearly elastic, stiffness tensor. 

As demonstrated by Bond, the stress field in the ( )yx −  coordinates, σ , can be transformed to 

a stress field in the ( )θθ yx −  coordinates, θσ , using the Bond-Stress Transformation matrix, 

σM , such that: 

σσ σθ M=      (7.50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (7.9) Infinitesimal stress field of lattice material 

 

The 2D Bond-Stress Transformation matrix is given by: 
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Similarly, the corresponding strain field in the ( )yx −  coordinates, ε , can be transformed to a 

strain field in the ( )θθ yx −  coordinates, θε , using the Bond-Strain Transformation matrix, 

εM , such that: 

εε εθ M=      (7.52) 
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Inverting the matrices in eqns (7.50) and (7.52) and substituting the results into eqn (7.60), results 

in: 

θεσθ εσ 1−= KMM      (7.53) 

The above results in: 

T
σε MM =−1

     (7.54) 

where 
T
σM  is the transpose of σM . 

Substituting eqn (7.54) into eqn (7.53), results in: 

T
σσθ KMMK =      (7.55) 

If we set the material relative density as unity, i.e. 1=
−

Lρ , for the 13 topologies, we can plot 2D 

polar charts (Figs. 10-12) illustrating the variation of the Young's moduli in the θx and θy  

directions as well as the shear modulus in the θθ yx  direction. The results of the elastic properties 

of the rigid-jointed lattice are given in Appendix G for the 13 topologies examined in this chapter. 
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Fig (7.10) Polar plot 

of the variation of 

the Young's 

modulus of lattice 

material in the x- 

direction with the 

angle  

[ ]oo 360,0∈θ  for 

material relative 
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Fig (7.11) Polar plot 

of the variation of 

the Young's 

modulus of lattice 

material in the y- 

direction with the 

angle  

[ ]oo 360,0∈θ  for 

material relative 

−
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Fig (7.12) Polar plot 

of the variation of the 

shear modulus of 

lattice material in the 

xy- direction with the 

angle  [ ]oo 360,0∈θ  

for material relative 

density 1=
−

Lρ  
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7.8 Discussion and Concluding Remarks 

This chapter has presented a theoretical approach to calculate the elastic properties of micro-truss 

lattice materials with rigid-jointed architecture. Closed form expressions of the elastic moduli, 

Poisson's ratios and relative densities have been obtained for 13 lattice topologies (Appendix G). 

The results for each topology have been plotted into selection charts that illustrate the variation of 

the elastic moduli of the lattice material with respect to their relative density.  

The chapter has also examined the bending stiffness contribution that the microscopic constituents 

of stretching dominated lattice material provide to the homogenized macroscopic stiffness of the 

material. The main outcome of this analysis, plotted in Figs (7.6-7.8), has shown that the closer 

the microscopic topology of the stretching dominated lattice material to the full triangulation, the 

less the microscopic bending stiffness contribution of the micro-truss members. The contribution 

is negligible for lattice structures that possess no microscopic internal mechanisms in their pin-

jointed versions of micro-truss (Elsayed, M.S.A., Pasini, D., 2010b). On the other hand, it is 

found that the Kagome lattice has constituent members, whose bending resistant contribute up to 

8% to the overall direct stiffness of the material. This is the highest contribution among the 

selected topologies. Although the semi-uni-braced square lattice topology has internal 

mechanisms, the bending stiffness contribution of its microscopic constituents is limited to 

2.1%.The reason for this is that uni-directional loading in either x- and/or y- directions (see 

appendix G) of the pin-jointed version of the semi-uni-braced square lattice does not excite its 

internal mechanism. On the other hand, the contribution of the bending stiffness Fig (7.8) of the 

microscopic constituents to the homogenized shear stiffness is 17.5% for the semi-uni-braced 

square lattice since this topology has microscopic internal mechanisms that are excited by shear 

macroscopic loadings. Finally this work has studied the anisotropic behavior of the lattice 

material by analysing the transformation of the material elastic properties through an angle

[ ]oo
360,0∈θ . Results for the selected topologies are illustrated in the polar plots of Figs (7.10-

7.12) which shows their elastic moduli sensitivity to the change of load direction. The analysis 

and design charts developed in this chapter help to gain insight into the lattice topology that can 

be selected to best meet prescribed stiffness requirements. The charts help to explore the potential 

that these hybrid materials have in filling the gaps emerging in the material properties charts. 

Other plots have been presented to estimate the errors between theoretical results of pin-jointed 

micro-trusses and their real behavior, generally obtained through experiments. Finally, polar maps 

have been generated to reveal the anisotropic behavior of the selected micro-truss.  
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CHAPTER 8 

Comprehensive Stiffness and Classification of Periodic Lattice 

Materials and Structures 

8.1 Introduction 

Two types of nonlinearities are encountered in structural analysis, namely, material and 

geometrical nonlinearities. The former is developed due to the nonlinear elastic, plastic and/or 

viscoelastic behavior of the material. The latter starts once the structural deformations exceed the 

infinitesimal limit at which the deformations are sufficiently large to generate a change in the 

initial geometry of the structure. In this case, the equilibrium system of the deformed structure 

cannot be assumed to be equal to its original undeformed state, as supposed by the theory of linear 

elasticity; rather it must be formulated in its deformed configuration. The modified equilibrium 

system is expressed by an additional term, namely the geometrical stiffness.  

The geometrical stiffness can emerge due to both compressive and tensile loads acting on the 

constituent members of a structure. When developed by compression in the structural 

constituents, the overall stiffness of the structure reduces to the bifurcation point where the 

structure fails by buckling. On the other hand, a geometrical stiffness developed by tensile loading 

of the structural constituents results in an enhanced loading resistance.  

Whereas geometrical nonlinearities are present, although often negligible in the responses of any 

structure, their effect becomes significant in kinematically indeterminate, under-constrained, 

frameworks. A kinematically indeterminate framework is a pin-jointed structure with internal 

mechanisms, i.e. alternative modes of structural deformations are encountered with undeformed 

elements. Some of these internal mechanisms generate finite displacements at each increment of 

the external load; other mechanisms are unique as the structure encounters only first order 

infinitesimal mechanisms accompanied by higher order strains. Such kinds of structures are pre-

stressable and can be found in several natural and engineering systems (Kuznetsov, E.N., 1997;  

Tilbert, G., 2002), e.g. cable systems (e.g. cable nets), tensegrity frameworks, pneumatic domes 

and fabric roofs.  
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Fig (8.1) Statically and kinematically indeterminate framework  

Example of a pre-stressable structure is shown in Fig (8.1). The determinacy analysis of the finite 

framework, shown in Fig (8.1), shows that this structure contains one internal mechanism and one 

state of self-stress. The static equilibrium between the external load, F, and the element axial 

forces, t0, is expressed as: 

3

3
00

02
∆+∆=

L

EA

L

t
F       (8.1) 

where ∆ is the structural deformation, 0t  is a pre-stress in the elements, E is the material Young's 

modulus, A the element cross-sectional areas and L0 is the element initial lengths. The initial stress 

in the elements can be formulated as: 

0
0

0 δ
L

EA
t =        (8.2) 

where 0δ is the initial axial deformation of an element. Substituting eqn (8.2) into eqn (8.1), 

results in: 














∆+∆= 3

0

02
0

1
2

LL

EA
F δ      (8.3) 

For unit length elements, 10 =L , one can find that a pre-stressed structure bears an external 

loading greater by one order of magnitude than its counterpart supported by the un-prestressed 

structures. As per eqn (8.3), the external loading is proportional to ∆0δ
 
if the initial stress of

00 >t . On the other hand, with no initial stress, 00 =t , the external load is proportional to 3∆ . 

This simple example demonstrates the significance of the geometrical resistance initiated by the 

axial pre-stressing of the constituents of a statically and kinematically indeterminate framework. 

 

F 

t0 t0 t0 t0 

t+t0 t+t0 

L0 L0 
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From literature (Mohr, O., 1885; Maxwell, J.C., 1864; Levi-Civita, T., Amaldi, U., 1930; 

Calladine, C.R., 1982; Pellegrino, S., Calladine, C.R., 1986; Calladine, C.R., Pellegrino, S., 1991; 

Volokh, K.Yu., Vilnay, O., 1997; Kuznetsov, E. N., 2000; Deshpande, V. S., et.al., 2001a; 

Hutchinson R.G., 2004), it appears that many efforts are established in the analysis of the 

determinacy state of finite and infinite frameworks. However, the impact of the determinacy state 

on the static response of the structures in the form of comprehensive stiffness characteristics has 

been only investigated on finite frameworks (Guest, S., 2006; Pellegrino, S., Calladine, C.R., 

1984; Connelly, R., Whiteley, W., 1996; Sener, M., et.al., 1994; Pellegrino, S., 1992; 1990; 

1988).  

The current chapter extends the literature of this topic to model the comprehensive stiffness of an 

infinite periodic structure where the material stiffness characteristics are generalized to account 

for the geometrical non-linearity of periodic frameworks. The analysis is conducted on pin- and 

rigid-jointed periodic architectures. The resulting geometrical stiffness is used along with the 

material stiffness to obtain the comprehensive stiffness of the lattice structure. With particular 

emphasis on lattice materials, the chapter presents the derivation of their homogenized 

comprehensive, fourth order, stiffness tensor, from which the Poisson's ratios and the elastic 

moduli of the lattice material are derived. Examples of deriving the comprehensive stiffness 

properties of lattice materials with square and 23
4.3  lattice topologies are presented Appendix H 

to demonstrate and explain numerically the steps of the analysis. The comprehensive stiffness of 

pin-jointed lattice materials is used for their classification. Finally, the effectiveness of the 

geometrical stiffness in enhancing the stiffness resistance of lattice material is analysed where the 

contribution of the geometrical stiffness to the comprehensive stiffness of the Kagome and the 

23
4.3 lattice materials is demonstrated at different levels of nominal strains of the solid material.    

8.2 Comprehensive Stiffness System of Unit Cell Finite Structure 

In the following, we start by formulating the comprehensive stiffness system of the finite structure 

of the unit cell before generalizing it to include the comprehensive stiffness of the infinite 

structure of the lattice. Finally, the infinite stiffness characteristics are homogenized to derive the 

macroscopic stiffness properties of the lattice material. 

The stiffness system of a structure that has b elements connected between j nodes is presented in 

eqn (7.5). To account for the geometrical stiffness, eqn (7.5) is modified as: 

 ( ) fdGE =+ KK      (8.4) 
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where 
njnj

E R
×∈K and 

njnj
G R

×∈K are the material and the geometrical stiffness matrices, 

respectively. 

8.2.1 Comprehensive Stiffness of bar and frame Elements 

Different approaches exist in the literature to derive the comprehensive stiffness characteristics of 

finite structures with pin- and rigid-jointed architectures. Guest (2006) presented a unified 

derivation for the comprehensive stiffness of pin-jointed finite structures. On the other hand, 

many introductory text books on structural analysis (McCormac, J.C., 2006; Przemieniecki, J. S., 

1968; Livesley, R. K., 1975; Bickford, W. B., 1998; Reddy, J. N., 2002; McGuire, W., 2000; 

Cook, R.D., 2001) present a pin- as well as a rigid-jointed conventional geometrical stiffness 

derivations and formulations using the energy method. Pellegrino and Calladine (Pellegrino, S., 

Calladine, C.R., 1984; 1986) developed an approach based on the product force vector analysis. 

They considered a finite pin-jointed structure where the geometrical stiffness is only employed, as 

a special case, whenever there is an inextensional internal mechanism excited. Another approach 

is based on the theory of rigidity (Connelly, R., Whiteley, W., 1996) where the stability of the 

prestressed structures is discussed.  

In this chapter, we follow the traditional formulation developed by Cook, et.al. (2001). We start 

by deriving  the comprehensive stiffness matrices of each individual element within the finite 

structure before  assembling them together in one global matrix system, which represents the 

comprehensive stiffness of the finite structure of the unit cell. 

A. Comprehensive Stiffness of a Bar element: an Element in a Pin-Jointed Lattice Structure 

Consider the linearly elastic, uniform and straight bar element, k, connected between nodes i and 

q, shown in Fig (8.2a). The bar element is oriented in the ( )11 yx −  local coordinate system, where 

the 1x - axis is coincident with the bar neutral axis. 

The axial strain in the bar is determined using the following large-deflection strain-displacement 

equation: 

2

11

11

11 2

1











∂

∂
+

∂

∂
=

x

e

x

e kykx
xxε     (8.5) 

where 
1kxe and 

1kye  are, respectively, the axial and the lateral linear displacements along the bar 

element in its local coordinate system. 
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Fig (8.2) Bar element (left) and frame element (right) along with nodal degrees of freedom 

The bar deformations are linearly related to the nodal deformations using the assumed shape-

functions, as follows: 
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where klx1=ξ . 

The strain energy, Uk, stored in a linearly elastic, uniform and straight bar element can be 

expressed as: 

( )∫=
kl

xxk dx
AE

U
0

1
2

112
ε     (8.7) 

Substituting eqn (8.6) into eqn (8.5), substituting the result into eqn (8.7) and neglecting higher-

order terms (terms with power four), result in: 

 ( ) ( )( )22

2

22

1111111111
2

2
2

2
qyqyiyiyixqx

k

qxqxixix
k

k dddddd
l

AE
dddd

l

AE
U +−−++−=  (8.8) 

The axial force in the bar element can be expressed as: 

( )
11 ixqx

k

k dd
l

AE
P −=      (8.9) 

Substituting eqn (8.9) into eqn (8.8) gives: 

1
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( ) ( )2222

11111111
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P
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l

AE
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Using Castigliano`s theorem (Renton, J.D., 2002), the nodal force-displacement relation, 

representing the bar element stiffness system, can be written as: 
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or     ( ) l
k

l
k

bar
kG

lbar
kE

l
fdpp =+ KK     (8.12) 

where 
bar
kE

l
p K   and 

bar
kG

l
p K are, respectively, bar k material and geometrical stiffness matrices in 

the bar local coordinate system. The letters p , l , E and G  correspond to pin-jointed, local 

coordinate, material and geometrical, respectively. { }bk ,...,1∈  where b  is number of elements in 

the unit cell. 

The length of the bar can be expressed in terms of a reference length, L, as: 

Lcl kk =       (8.13) 

where kc is a constant that depends on the geometry of the unit cell. 

Considering a reference length of unity and substituting eqn (8.13) into eqn (8.11) result in: 
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B. Comprehensive Stiffness of a Frame element: an Element in Rigid-Jointed Lattice 

Structure 

Following the above procedure, the comprehensive stiffness of a linearly elastic, uniform and 

straight frame element, k, connected between nodes i and q of a rigid-jointed structure (Fig (8.2b)) 

can be written, neglecting the shear strain contribution to the stiffness, as: 
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or     ( ) l
k

l
k

frame
kG

l
r

beam
kE

l
r

bar
kE

l
r fd =++ KKK     (8.16) 

where 
bar
kE

l
r K , 

beam
kE

l
r K  and 

frame
kG

l
r K are the axial stiffness, the bending stiffness and the 

geometrical stiffness of the frame element. The subscript r corresponds to rigid-jointed. For 

details about the derivation of eqn (8.15), the reader is referred to (Cook, R.D., et.al., 2001). 

Considering a reference length of unity and substituting eqn (8.13) into eqn (8.15), we obtain: 
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(8.17) 

Equations (8.12) and (8.16) can be applied to each element of the unit cell for pin- and rigid-

jointed lattices, respectively, before assembling them into the global matrix system of the stiffness 

of the whole finite structure. In order to assemble the stiffness systems of the individual cell 

elements into the global matrix system of the unit cell structure, the nodal degrees of freedom of 

the element have to be transformed from the element local coordinate system, ( 11 yx − ), into the 

global coordinate system (x-y) using, the counter clockwise rotation, orthogonal transformation, 

see § 7.3 for the orthogonal transformation of degrees of freedoms of frame elements. For a bar 

element, the orthogonal transformation matrix is formulated as: 
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Using the transformation matrices, the comprehensive stiffness systems of the bar and the frame 

elements in the global coordinate system (x-y) are formulated in eqns (8.19a) and (8.19b) , 

respectively, as:
 
 

( ) ( ) kk
Tbar

kG
l
p

bar
kE

l
pk

bar
kGp

bar
kEpk

bar
kCp fddd =+=+= QKKQKKK   (8.19a) 
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where ( ) Tbar
kE

l
p

bar
kEp QKQK = and ( ) Tbar

kG
l
p

bar
kGp QKQK = are, respectively, bar element k global 

axial and geometrical stiffness matrices. 

 ( ) ( ) kk
Tframe

kG
l
r

beam
kE

l
r

bar
kE

l
rk

frame
kGr

beam
kEr

bar
kErkkCr fdQdd =++=++= QKKKKKKK  

 (8.19b) 

where ( ) Tbar
kE

l
r

bar
kEr QKQK = , ( ) Tbeam

kE
l
r

beam
kEr QKQK = and ( ) Tframe

kG
l
r

frame
kGr QKQK =  are, 

respectively, frame element k global axial, bending and geometrical stiffness matrices. 

The assembled global stiffness system of the pin-jointed and the rigid-jointed unit cell finite 

structures are formulated, respectively, as: 

{ } fdd
bar
Gp

bar
EpCp =+= KKK      (8.20a) 

{ } fdd
frame
Gr

beam
Er

bar
ErCr =++= KKKK     (8.20b) 

As shown in eqns (8.14) and (8.17), it is necessary to determine the axial forces in the individual 

elements of the unit cell in order to compute their geometrical stiffness matrices which are 

assembled into the global stiffness system of the unit cell. Details of computations of axial forces 

in the elements of the unit cell are presented in § 3.4.  

As explained in § 3.4, the axial forces in the structural elements are composed of two terms: (i) 

ft  developed by the applied external loading, f, and (ii) GS ,  developed by the imposed 

deformations into the redundant elements of the lattice structure. Both terms contribute to the 

structural geometrical stiffness. The current study focuses on the geometrical stiffness generated 

by the second term GS as we are interested in studying ranges of stiffness characteristics offered 

by lattice materials and structures regardless of external loading. Once the applied external 

loading, in the form of macroscopic stress or strain fields, is determined, the term of the axial 

forces, ft , can be obtained  and a similar strategy can be followed to compute the additional 

geometrical stiffness developed by , ft . 

The stiffness system of the unit cell finite structure can be easily extended to the stiffness system 

of the infinite lattice structure by applying the Bloch's theorem, see § 7.4. Details of the 

computation of the axial forces in the infinite lattice structure can also be found in § 3.4. 
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8.3 Macroscopic Stiffness of Lattice Material: the Homogenization Process of the Stiffness 

Properties of the Microscopic Lattice Structure: 

The stiffness properties of the microscopic lattice structure are homogenized to generate the 

comprehensive, effective, macroscopic stiffness properties of the lattice material. This is done by 

using the Cauchy-Born hypothesis (Bhattacharya, K., 2003; Born, M., Huang, K., 1954; Maugin, 

G. A., 1992; Pitteri, M., & Zanzotto, G., 2003). Details of the application of the Cauchy-Born 

hypothesis are given in chapters four and seven. 

Using the Cauchy-Born hypothesis, expressions of the nodal forces and deformations in terms of 

the macroscopic strain field are generated which can be expressed symbolically as: 

  εbar
E

d
p

bar
Ep d M= ,  εbar

E
f
p

bar
Ep f M=     (8.21a) 

  εbar
G

d
p

bar
Gp d M= , εbar

G
f
p

bar
Gp f M=     (8.21b) 

  εbar
E

d
r

bar
Er d M= , εbar

E
f
r

bar
Er f M=     (8.21c) 

  εbeam
E

d
r

beam
Er d M= , εbeam

E
f
r

beam
Er f M=     (8.21d) 

  εframe
G

d
r

frame
Gr d M= , εframe

G
f
r

frame
Gr f M=     (8.21e) 

where M matrices are transformation matrices from the vector of macroscopic strain field to the  

microscopic nodal forces and deformations. The superscripts, "d" and "f" indicate parameters 

corresponding to nodal displacements and nodal forces, respectively. 

The generalized nodal forces and deformations, formulated in eqn (8.21), are used to derive the 

macroscopic stiffness properties of pin- and rigid-jointed lattice materials using the principle of 

virtual work (Timoshenko, S. P., & Young, D. H., 1945) and the Hill-Mandel principle (Maugin, 

G. A., 1992) of macro-homogeneity which result in: 
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where ρ
Tc and Y are, respectively, a density constant that depends on the topology of the unit cell 

and the in-plane area of the unit cell.  

Using eqns (8.22), the comprehensive stiffness of a lattice material is formulated as: 

bar
LGp

bar
LEpLCp KKK +=     (8.23a) 

frame
LGr

beam
LEr

bar
LErLCr KKKK ++=    (8.23b) 

It worth mentioning that the 
bar
LEr

bar
LEp KK = . 

8.4 Classification of Lattice Material 

 Using eqn (8.23a), the comprehensive stiffness of pin-jointed lattice materials, it is possible to 

search for any macroscopic strain fields developed with zero macroscopic stress. A deformation 

with zero stress indicates failure of the lattice material as the strain field is developed due to 

inextensional periodic internal mechanisms in the infinite microstructure of the lattice. The failure 

macroscopic strain fields can be determined by computing the null space of the stiffness matrix. 

The existence of such strain fields is used as the criterion to classify lattice materials.  

Lattice materials can be classified into three classes, namely, Stretching Dominated Lattice 

Materials (SDLM), Bending Dominated Lattice Materials (BDLM) and Tensegrity Lattice 

Materials (TLM). Assume
m
Em  and m

Cm are the numbers of macroscopic strain fields computed, 

respectively, from the null spaces of the material stiffness and the comprehensive stiffness 

matrices of the pin-jointed lattice material, the three classes can be determined as shown in table 

(8.1). 

SDLMs are stable thanks to the material stiffness resistance of their pin-jointed versions. 

Although geometrical stiffness might be developed in SDLMs due to the static indeterminacy, 

however the role of the geometrical stiffness is limited in enhancing the material stiffness 

resistance rather than imparting stability. The secondary bending stiffness developed in SDLMs 
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due to the rigid-jointed nature of the materials' microstructures remains of a minor effect to the 

overall stiffness resistance of the SDLMs. 

 

Table (8.1) Classification of lattice materials 

Type m
Em  

m
Cm  Class 

I 0=m
Em  0=m

Cm  SDLM 

II 0>m
Em  0>m

Cm  BDLM 

III 0>m
Em  0=m

Cm  TLM 

 

In BDLMs, neither the material nor the geometrical stiffness resistances of the pin-jointed 

versions of the material microstructures can impart stability against macroscopic loadings. The 

only way to develop a loading carrying ability in the BDLM is to count for the bending stiffness 

of their microscopic constituents. 

Pin-jointed versions of the TLMs are unstable under their material stiffness resistances. However 

they gain stability once their geometrical stiffness is superimposed to their material stiffness 

generating the material comprehensive stiffness.  

This classification strategy is applied to the 13 lattice topologies, characterized in Appendix H, 

and the results are reported in table (8.2).     

Recalling results of table (3.2) which summarizes the classification of infinite periodic lattice 

structures, it is realized that the Kagome and the SUBS infinite periodic structures are classified 

as BDLSs while the Kagome and the SUBS lattice materials are classified as SDLM. We recall 

that such kind of topologies generate SDLMs that are structured by the concept of Periodicity 

Induced Stability (PIS). A lattice material structured by the concept of PIS, has a bending 

dominated infinite periodic microstructure, however, by considering the periodicity imposed by 

the Cauchy-Born kinematic boundary condition, the lattice material gains a macroscopic stable 

behavior as it fails extensionally under all modes of macroscopic loading. 

Triangular - Triangular (TT) lattice materials received a considerable attention in literature 

(Hutchinson, R.G., 2004; Hutchinson, R.G. & Fleck, N.A., 2006). Hutchinson (2004) analyzed 

the infinite periodic lattice structure of the TT lattice and he found that this lattice does not 



170 

 

possess any microscopic internal mechanisms. This result is coincident with our result as we 

classified this periodic lattice structure as SDLS. 

Table (8.2) Classification of lattice materials 

Topology 0ε  m
Em & m

Cm  Class 

Square - 0>m
Em , 0>m

Cm  BDLM 

Triangular - 0=m
Em , 0=m

Cm  SDLM 

33.42 [ ] { }01,10 −−∈ε  0>m
Em , 0=m

Cm  TLM 

34.6 [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

DHT [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

SUBS [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

TT [ ] { }01,10 −−∈ε  0>m
Em , 0=m

Cm  TLM 

SDBS ] ]1,00 ∈ε  0=m
Em , 0=m

Cm  SDLM 

UBS - 0=m
Em , 0=m

Cm  SDLM 

DBS [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

Patched Kagome [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

SHT [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

Kagome [ ] { }01,10 −−∈ε  0=m
Em , 0=m

Cm  SDLM 

 

Hutchinson (2004) also studied the macroscopic behavior of the TT lattice and found this lattice 

deforms inextensionally under, macroscopic, hydrostatic, strain field as the TT microscopic 

topology of the TT lattice evolves to the Kagome lattice topology at which the lattice gains 

stability and develop SDLM. We reached to the same result once we consider only the material 

stiffness resistance of the TT lattice material. However, extending the analysis of the TT lattice to 

account for the geometrical stiffness of the lattice generates a stable TT lattice material as it 

generates a full rank comprehensive stiffness matrix capable of supporting all macroscopic strain 

fields. This result, classifies the TT lattice material as a TLM. 

The last topology that we would like to highlight is the 23 4.3 lattice, it is found that the infinite 

periodic lattice structure of the 23 4.3 topology has tensegrity behavior and is classified as TLS; 

similarly, considering only the material stiffness resistance of the 23 4.3 lattice material generates a 



171 

 

bending dominated behavior, however accounting for the macroscopic geometrical stiffness of the 

lattice generates a stable lattice material which classifies the 23 4.3 lattice material as TLM. 

Another structuring concept can be introduced, namely, the Periodicity Induced Tensegrity (PIT). 

TLMs that are architectured of BDLS are lattice materials structured by the PIT concept. So far, 

we did not determine a topology that has such behavior. 

8.5 Effectiveness of the Geometrical Stiffness and its Contribution to the Lattice Material 

Stiffness Resistance:  

We demonstrate the effectiveness of the geometrical stiffness and its contribution to the lattice 

material stiffness resistance by analysing the elastic properties of two lattice materials, the 

Kagome and the 23 4.3 lattice materials.   

8.5.1 The Kagome Lattice Material 

Using the comprehensive stiffness properties of the Kagome lattice material, computed in 

Appendix H, it is possible to compute its relative elastic moduli (Elastic moduli of lattice material 

divided by the elastic modulus of the solid material used in manufacturing the lattice material) and 

Poisson's ratios as: 

For pin-jointed Kagome lattice material: 

( ) ( )

( ) ( )
)6(

)2(

),2(
16

1
,

)6(

)2(

0

0

0
0

0

−

+
−==

−=
−

−
==

−−

ε

ε
νν

ερ
ε

ε
ρ

yxLCpxyLCp

LLCpLyyLCpxxLCp GEE

 

 (8.24a) 

For rigid-jointed Kagome lattice material: 
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Fig (8.3) Variation of the elastic moduli of the Kagome lattice material with the nominal 

strain of the solid material 

The effect of the geometrical stiffness can be ruled out by substituting 00 =ε in eqns (8.24) as it 

results in expressions of the elastic properties developed by material stiffness resistance rather 

than their comprehensive stiffness. 

Considering a Kagome lattice material with relative density of 1.0=
−

Lρ , and considering a 

nominal strain range of 2.0:00 −=ε , the variation of the lattice material elastic moduli against 

the solid material nominal strain is shown in Fig (8.3). 

From Fig (8.3) it can be realized that the geometrical stiffness of the Kagome lattice material is of 

minor contribution to its comprehensive stiffness. Since the Kagome lattice material has a 

stretching dominated behavior then the material stiffness dominates the stiffness resistance of the 

lattice. 
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 8.5.2 The 23 4.3 Lattice Material 

The relative elastic moduli and Poisson's ratios of the 23 4.3 lattice material can be formulated as: 

For pin-jointed 23 4.3 lattice: 
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For rigid-jointed 23 4.3 lattice:  
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(8.25b) 

From eqn (8.25) it can be realized that the geometrical stiffness of the 23 4.3 contributes only to the 

material shear modulus as the Young's moduli are functions only in the lattice material relative 

density. 

Considering a 23 4.3  lattice material with relative density of 1.0=
−

Lρ , and considering a nominal 

strain range of 2.0:00 −=ε , the variation of the lattice material shear moduli against the solid 

material nominal strain is shown in Fig (8.4). 

From Fig (8.4) it can be realized that the geometrical stiffness of the pin-jointed 23 4.3 lattice 

material contributes significantly to its comprehensive stiffness. The geometrical stiffness 

becomes of less effect in the case of the rigid-jointed 23 4.3 lattice material. 

From Fig (8.5) it can be realized that the 23 4.3 lattice material has Young's moduli that are better 

than those of the Kagome lattice material. On the other hand, the Kagome lattice material 

generates a better shear modulus at 00 =ε , than that developed by the 23 4.3 . By considering the 

geometrical stiffness, both lattice materials generate an equal shear stiffness resistance at 

234.00 −=ε and the 23 4.3 lattice material generates better shear resistances at 234.00 −<ε . 
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Fig (8.4) Variation of the shear moduli of the 23 4.3  lattice material with the nominal strain 

of the solid material 
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Fig (8.5) Comparison of the elastic moduli of the Kagome and the 23 4.3 lattice materials 

8.6 Conclusion 

 This chapter presented a matrix based approach to derive the comprehensive stiffness of periodic 

lattice structures and materials. The developed methodology is applied on pin- and rigid-jointed 

lattice structures. Homogenized stiffness characteristics of lattice materials are also derived. The 

effectiveness of the geometrical stiffness on the comprehensive stiffness of lattice materials is also 

discussed. Simple examples of deriving the comprehensive stiffness of the square and the 23 4.3  

lattice materials are reported and reported in Appendix H. The developed approach is applied to 

11 lattice topologies where the homogenized comprehensive stiffness of lattice materials 

structured of pin- and rigid-jointed versions of those 11 topologies are reported in appendix H. 

The comprehensive stiffness properties of pin-jointed lattice materials are used for their 

classification. Three types of lattice materials are recognized, namely, SDLM, BDLM and TLM. 

TLMs are unstable under their material stiffness resistance where the materials possess 
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macroscopic strain fields generated by periodic internal mechanisms. Once the geometrical 

stiffness is superimposed to their material stiffness to formulate the lattice comprehensive 

stiffness, the lattice materials become stable and can support all macroscopic loadings, as the 

macroscopic kinematism is stiffened up by the geometrical stiffness developed by the tension 

fields in the lattice microstructure.    
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CHAPTER 9 

Conclusions and Future work 

9.1 Conclusions 

1. An automated, systematic, matrix-based procedure for the determinacy analysis of infinite 

periodic structures with any arbitrary cell topology using the Bloch-wave method is developed. A 

new rule, namely, the Dummy Node Rule, supported by a simple scheme for its implementation, 

namely, the Dummy Node Scheme, is proposed to simplify and automate the analysis of infinite 

periodic structures that have unit cells with cell elements extending between adjacent cells.  

2. The stiffening effect of the periodic states of self-stress to the periodic internal mechanisms is 

assessed using the Product Force Vector approach and the definiteness of the stress matrix 

developed by first-order, infinitesimal, periodic, internal mechanisms. The result of this analysis 

is used for the classification of periodic structures where three classes of periodic truss-like 

geometries are recognized, namely, stretching dominated, bending dominated and tensegrity 

lattice structures. It is found that the stretching dominated lattice structures are kinematically 

determinate. The bending dominated lattice structures are kinematically indeterminate and can be 

also statically indeterminate; however, the periodic states of self-stress fail in suppressing the 

internal mechanisms as the mechanisms are described as of a finite type. Tensegrity lattice 

structures are statically and kinematically indeterminate and the states of self-stress are capable of 

tightening-up the internal mechanisms as the mechanisms are classified as first-order infinitesimal 

mechanisms. The proposed analysis technique is applied to 19 2D lattice topologies and their 

determinacy analysis results are used for their classification. From the nineteen, two lattice 

topologies are classified as tensegrity lattice structures. 

3. A systematic matrix-based procedure for the characterization of the specific stiffness and 

strength properties of lattice materials with any arbitrary microscopic topology is presented. The 

procedure makes use of the dummy node scheme to characterize lattice topologies with unit cells 

that have cell elements extending between adjacent unit cells. The elastic moduli of the stretching 

dominated topologies are plotted on design charts that can help select lattice materials that 

generate specific stiffness required by certain applications.  It is found that lattice materials with 

the semi-uni-braced square and the semi-double-braced square topologies exhibit 11 % increase in 

the Young's moduli compared to the Kagome and the full triangulation lattice materials. On the 
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other hand, the lattice material with the double-braced square topology shows 17 % improvement 

in the specific shear modulus compared to the Kagome and the full triangulation lattice materials. 

4. The developed characterization method is verified experimentally; the elastic and strength 

properties of the lattice material with the topology that has the Schlafli symbol of 6.3
4

are tested. 

Three quasi-static tests are conducted to characterize the direct and the shear elastic and strength 

properties of the lattice material; the results are found in a good agreement with the theoretical 

ones. The maximum deviation of the experimental results from the theoretical computations is 

15.2%, which is an acceptable error in the experimental studies on cellular solids. 

5. Multiscale design charts for the selection of the geometric attributes of both the cell elements 

and columns made of octet-truss lattice material are presented. The charts help gain insight into 

the impact that the micro and macroscale geometry has on the overall strength of such columns. It 

is also a useful tool for designers to quickly determine the microscopic and the macroscopic 

geometrical details of their structural design. The design charts are developed by resorting to the 

method of shape transformers. It is demonstrated that shaping and sizing the cross-sections of the 

microscopic cell elements enhance the microscopic buckling resistance, which results in 

designing lattice materials with very low relative densities. Case studies are presented to 

demonstrate that the developed multiscale design strategy might save up to 50% of the structural 

weight as compared with the traditional design procedures.  

6. An analytical approach to calculate the elastic properties of micro-truss lattice materials with 

rigid-jointed architectures is presented. Closed form expressions of the elastic moduli, Poisson's 

ratios and relative densities are obtained for 13 lattice topologies. The results for each topology 

are plotted into selection charts that illustrate the variation of the elastic moduli of the lattice 

material with respect to the material relative density. The contribution of the bending stiffness of 

the microscopic constituents of the stretching dominated lattice materials to their macroscopic 

homogenized stiffness properties is also analyzed. It is found that the closer the microscopic 

topology of the stretching dominated lattice material to the full triangulation, the less the 

microscopic bending stiffness contribution of the microscopic members. The contribution is 

negligible for lattice structures that possess no microscopic internal mechanisms in their pin-

jointed counterpart. On the other hand, it is found that the Kagome lattice has constituent 

members whose bending resistant contribute up to 8% to the overall direct stiffness of the 

material. This is the highest contribution among the selected topologies. Although the semi-uni-
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braced square lattice topology has internal mechanisms, the bending stiffness contribution of its 

microscopic constituents to the Young's moduli of the material is limited to 2.1%.The reason for 

this is that uni-directional loading in either x- and/or y- directions of the pin-jointed version of the 

semi-uni-braced square lattice does not excite its internal mechanism. On the other hand, the 

contribution of the bending stiffness to the homogenized shear stiffness is 17.5% for the semi-uni-

braced square lattice since this topology has microscopic internal mechanisms that are excited by 

shear macroscopic loadings.  

7. The anisotropic behavior of the lattice materials is also analyzed. The transformation of the 

material elastic properties through an angle [ ]oo
360,0∈θ  is demonstrated on polar plots showing 

the variation of the lattice material elastic moduli with the direction of the applied load.  

8. A matrix-based approach to derive the comprehensive stiffness of periodic truss-like structures 

and materials is presented. The developed methodology is applied to pin- and rigid-jointed lattice 

architectures. The effectiveness of the geometrical stiffness on the comprehensive stiffness of 

lattice materials is also discussed. The developed approach is applied to 13 lattice topologies 

where the homogenized comprehensive stiffness of lattice materials structured of pin- and rigid-

jointed versions of those 13 topologies are reported.  

9. The comprehensive stiffness properties of pin-jointed lattice materials are used for their 

classification. Three types of lattice materials are recognized, namely, stretching dominated, 

bending dominated and tensegrity lattice materials. Tensegrity lattice materials are unstable under 

their material stiffness resistance where the materials possess macroscopic strain fields generated 

by periodic internal mechanisms. Once the geometrical stiffness is superimposed to their material 

stiffness to formulate the lattice material comprehensive stiffness, the tensegrity lattice materials 

become stable and can support all macroscopic loadings, as the macroscopic kinematism is 

stiffened-up by the geometrical stiffness developed by the tension fields in the lattice 

microstructure. Two lattice materials with the 23 4.3 and the Triangular-Triangular topologies are 

classified as tensegrity lattice materials. It is found that, at zero nominal strain, the pin-jointed 

23 4.3 lattice material has Young's moduli that are better than those of the pin-jointed Kagome 

lattice material. On the other hand, at nominal strain of 234.00 −=ε , the 23 4.3 lattice material 

generates a shear modulus that is equal to the shear modulus of the Kagome lattice material. This 
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analysis demonstrates the significance of the geometrical stiffness in enhancing the stiffness 

resistance of periodic lattice materials.     

10. Two structuring concepts are introduced, the periodicity induced stability and the periodicity 

induced tensegrity. Bending dominated lattice structures are involved in both structuring concepts 

which develop stretching dominated lattice materials in the former and tensegrity lattice materials 

in the latter. Since the pin-jointed counterpart of a bending dominated lattice structure is not 

stable, the lattice material macroscopic stability is developed due to the periodic pattern of wave-

functions propagation through the lattice microstructure. This feature is imposed in the 

characterization process by the application of the Cauchy-Born kinematic boundary condition. 

9.2 Suggestions for Future Work 

This study has shed some new light on the mechanics of lattice materials. Much remains to be 

done; the following are some suggestions. 

1. Discrete Topology Optimization of Lattice Materials 

Since this study has automated the analytical characterization process using the Bloch-wave 

method, it is possible to integrate the presented methodology to discrete topology optimization 

routines. For instance, a unit cell of a lattice material with a generic envelope can be generated by 

the ground-truss method (Da Silva Smith, O., 1996; 1998). This ground-truss unit cell can be 

optimized to maximize or minimize specific properties or can be tailored to meet specific design 

requirements.      

2. Smart Lattice Materials, Adaptive Stiffness and Damping Characteristics 

Pre-stressing has a significant effect on the stiffness and damping characteristics of structures 

(Elsayed, M.S.A. and Sherif, H.A., 2006). Statically indeterminate lattice materials have 

redundant microscopic cell elements. Embedding active members to replace these redundant 

elements enables the generation of different levels of pre-stressing within the lattice 

microstructure. The effect of pre-stress on the material stiffness and damping characteristics can 

be investigated.  

Also, the redundant elements offer a multiple load paths within the microscopic architecture of the 

cellular solid which is a desirable feature in aerospace applications. The impact of adopting lattice 
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materials in aircrafts and vehicle structural designs can be investigated as well as their application 

in the field of vibration and acoustics.     

3. Tensegrity Lattice Materials and Morphing Structures and Materials 

Tensegrity structures are well known for their flexibility and adaptability especially for their use 

as morphing structures (Moored, K.W., and Bart-Smith, H., 2007). It is suggested to investigate 

the capabilities of tensegrity lattice materials as morphing materials where the control of the 

length of specific elements within the lattice microstructure could change the macroscopic 

geometry of the structural cellular components. 
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Appendix A 

Bravais Lattices 

A.1. 2D Bravais Lattices 

In 2D, the location of every point in a Bravais lattice can be described as 

2211

→→→

+= ananR     (A.1) 

where 1

→

a  and 2

→

a  are linearly independent two dimensional vectors called the primitive vectors 

and n1 and n2 Є Z, the integer numbers group. 

A.1.1. List of 2D Bravais Lattices 

In 2D, there are five Bravais lattices, 

1. Square Lattice:  

The square lattice is symmetric under reflection about both x and y axes and with respect to 90° 

rotations. 

 

 

 

 

 

 

Fig (A.1) Square Lattice 

2. Rectangular Lattice:  

When compressed along one axis, the square lattice loses the 90° rotational symmetry and 

becomes the rectangular lattice. 
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Fig (A.2) rectangular lattice 

3. Hexagonal Lattice:  

The hexagonal (or triangular) lattice is invariant under reflections about the x and y axes as well as 

with respect to 60° rotations. 

 

 

 

 

 

 

 

Fig (A.3) Hexagonal Lattice 

4. Centered Rectangular Lattice:  

The centered rectangular lattice results from a compression of the hexagonal lattice and loses the 

60° rotational symmetries. 
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Fig (A.4) Centered Rectangular Lattice 

5. Oblique Lattice:  

An arbitrary choice of 1

→

a  and 2

→

a  with no special symmetry, results in an oblique lattice. This 

lattice still possesses inversion symmetry. 

 

 

 

 

 

 

 

Fig (A.5) Oblique Lattice 

A.2. 3D Bravais Lattices 

In 3D, the location of every point in a Bravais lattice can be described can as 

332211

→→→→

++= anananR     (A.2) 

where 1

→

a , 2

→

a  and 3

→

a  are linearly independent three dimensional vectors called the primitive 

vectors and n1, n2  and n3 Є Z, the integer numbers group. 

A.2.1. List of 3D Bravais Lattices 

In 3D, there are fourteen Bravais lattices, 
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1. Triclinic cell 

 

Fig (A.6) Primitive cell 

2. Monoclinic cells 

                

Primitive cell            Base centered cell 

Fig (A.7) Monoclinic cells 

3. Orthorhombic cells 

 

 

 

                                                  

(a) Primitive; (b) Base centered; (c) Face centered; (d) Body centered 

Fig (A.8) Orthorhombic cells 

 

 

 

    

(a) (b) (c) (d) 
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4. Tetragonal Cell 

                   

Primitive cell           Body centered cell 

Fig (A.9) Tetragonal Cell 

 

5. Rhombohedra Cell 

 

Primitive cell 

Fig (A.10) Rhombohedra Cell 

6. Hexagonal Cell 

 

Fig (A.11) Hexagonal Cell 

7. Cubic Cell 

                                                  

    Primitive                           Body centered                      Face centered 

Fig (A.12) Cubic Cell 
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Appendix B 

 Definitions and Concepts of Solid State Physics and Quantum 

Mechanics Necessary for the Statement and Proof of the Bloch's 

Theorem 

B.1 The Observable- Operators in Quantum Mechanics: 

Associated with each measurable parameter in a quantum mechanical system is a quantum 

mechanical operator. Such operator arises because in quantum mechanics, real world is described 

by waves (the wave-functions) rather than with discrete particles whose motion and dynamics can 

be described with the deterministic equations of Newtonian mechanics. Part of the development 

of quantum mechanics is the establishment of the operators associated with the parameters needed 

to describe the system.  

The observable associated with the total energy of the quantum system is the Hamiltonian. As 

with all observables, the spectrum of the Hamiltonian is the set of possible outcomes when the 

total energy of a system is measured.  

The time dependent Hamiltonian is represented as: 

t
hiH

∂

∂
=      (B.1) 

where i is the complex number, h is the Plank’s constant divided by π2 . The time independent 

Hamiltonian is represented as: 

)(
2

2

xV
m

P
H +=     (B.2) 

where, P is the quantum particle momentum, m is the mass of the particle and V(x) is the potential 

energy of the system.  

B.2 The Schrödinger equation: 

The Schrödinger equation in quantum mechanics plays the role of Newton’s laws and 

conservation of energy in classical mechanics. It predicts the future behavior of a dynamic system 

by providing the probability of events outcome. 
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In classical mechanics, a single degree of freedom system contains a lumped mass m attached to a 

spring of stiffness K at one end while the other end of the spring is fixed to the foundation and in a 

harmonic oscillation, has a total energy E. This total energy is equal to: 

EKxmv =+ 22

2

1

2

1
     (B.3) 

where,  v is the particle velocity. By using the concept of conservation of energy in classical 

mechanics, the total energy of the system is always a constant. Using Rayleigh’s theorem, eqn 

(B.3) can be employed to derive the system equation of motion. 

Using the Newtonian approach, the equation of motion of the single degree of freedom system 

can be derived as: 

   Kxma −=       (B.4) 

where a is the particle acceleration. 

In quantum mechanics, the total energy, E, of a particle is represented as: 

V
m

P
VTE +=+=

2

2

1
     (B.5) 

where P is the particle’s momentum, m is the mass of the particle. T and V are the kinetic and the 

potential energies of the particle, respectively.  

By adopting Einstein’s Light Quanta hypothesis (1905), the total energy of the quantum particle 

can be related to the frequency of its wave as follows: 

  ( ) ωπ
π

hf
h

hfE === 2
2

    (B.6) 

where f is the frequency of the particle wave and ω  is the angular frequency of the particle wave. 

Using the De Broglie hypothesis (1924), the momentum of particle is related to its wave length as 

follows: 

   Kh
hh

P ===
λ

π

πλ

2

2
    (B.7) 

where λ  is the wave length of the particle’s wave, k is its wave number. 

Schrödinger expressed the wave-function of the particle as a complex plane wave which is 

expressed as: 

( )tKxi
Aetx

ωψ −
=),(       (B.8) 

Differentiating the wave-function with respect to time and position gives: 

ωψ
ψ

i
t

−=
∂

∂
     (B.9a) 
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ψ
ψ

iK
x

=
∂

∂
     (B.9b) 

By comparing eqns (B.9a) and (B.6) and eqns (B.9b) and (B.7), the following expressions can be 

obtained: 

t
hiE

∂

∂
=

ψ
ψ      (B.10a) 

ψψ 222
∇−= hP     (B.10b) 

where 













∂

∂
+

∂

∂
+

∂

∂
=∇

2

2

2

2

2

2
2

zyx
. Substituting eqns (B.10a) and (B.10b) into eqn (B.5) gives 

the Schrödinger Equation as: 

ψψ
ψ

V
m

h

t
hi +∇−=

∂

∂ 2
2

2
    (B.11) 

B.3 The Translation Operator TR: 

In Euclidean geometry, a translation is moving every point a constant distance in a specified 

direction. A translation can also be interpreted as the addition of a constant vector to every point, 

or as shifting the origin of the coordinate system. A translation operator is an operator TR such 

that:  

 







+=







 →→→

RrfrfTR      (B.12) 

The translation operator can be represented in matrix form as: 

 


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

=
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R
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R

T      (B.13) 

If the function 






→

rf  is a fixed vector such that 
∧∧∧→

++=







krjrirrf zyx , then: 
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B.4 The Wave-function, ψ(x,t) 

In 1923, De Broglie had shown that electrons have wave-properties, in what is now called De 

Broglie hypothesis. Based on this hypothesis, each particle in quantum mechanics is represented 

by a wave-function ψ(x,t), such that ψ(x,t).ψ(x,t) gives the probability of finding that particle at a 

time “t” in a position “x”. These wave-functions are used in the Schrödinger equation (Jones, W., 

March, N. H., 1973).  

The formulae for describing the behavior of electron waves might be expected to be similar to that 

describing classical waves. For instance, in continuum mechanics the equation of motion 

describing the wave on a stretched string can be expressed as: 

   
2

2

2

2 ),(),(

t

txy

Tx

txy

∂

∂
=

∂

∂ ρ
    (B.15) 

where, ),( txy  is the wave-function describing the spring lateral displacement at time t and 

position x along its axis; ρ and T are the mass per unit length and the tension force in the string, 

respectively. 

In quantum mechanics, the plan electromagnetic wave is represented by the equation: 

   
2

2

22

2 ),(1),(

t

txE

Cx

txE

∂

∂
=

∂

∂
    (B.16) 

Where, ),( txE  is the wave-function describing the total energy of the particle at a time t and a 

position x and C is the speed of light. 

Comparing eqns (B.15) and (B.16), it can be seen that the equation of motion of a plan 

electromagnetic wave of a particle in quantum mechanics has a similar mathematical formulation 

of that in continuum mechanics. This can be justified by comparing eqn (B.16) to Rayleigh’s 

theorem, 1887 (Ashcroft, N., Mermin, N., 1976), for the derivation of the equation of motion of a 

one dimensional system in continuum mechanics.  

 B.4.1 Properties of the wave-function, ψ(x,t) 

A wave-function, ψ(x,t), must have the following properties: 

1. ψ(x,t) contains all the measurable information about the particle. 

2. The sum of its square, ψ(x,t).ψ(x,t), over the whole space is 1, i.e. the probability that the 

particle exists in its domain is 100%. In other words, the wave-function must possess the 
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ability of normalization which means that the sum of the probabilities over the whole space is 

unity. This is expressed mathematically as: 

1. =∫
r

drψψ     (B.17) 

where, r is the spatial coordinate of the particle space. This property allows the wave-

function calculated from the Schrödinger equation to be used to determine any physical 

observable.   

3. It must be continuous over its boundaries. 

4. It must be a solution of the Schrödinger equation. 

5. It allows energy calculations via the Schrödinger equation. 

6. It establishes the probability distribution in three dimensions. 
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Appendix C 

The Bloch’s theorem in Solid State Physics 

C.1 The Bloch's Theorem 

The Bloch’s theorem for the description of electron motion in solids is a theory of non-interacting 

electrons. Instead of moving about in free space, the electrons now move about in a periodic 

potential, )(
→

rU , which is generated by the periodic structure of the solid atomic lattice. The 

periodicity of the atomic lattice structure makes )(
→

rU  obeys the periodic relation:  

)()(
→→→

=+ rURrU      (C.1) 

For all bases 
→

R  in a Bravais lattices that are mapped by translational symmetry. 

The Bloch’s theorem can be stated as: 

The Eigen states of one dimensional Hamiltonian are expressed as: 

)(2/22
→

+∇−= rUmhH      (C.2) 

where )()(
→→→

=+ rURrU  for all 
→

R  in a Bravais lattice, can be chosen to have the form of a plane 

wave times a function with periodicity of the Bravais lattice which is expressed as: 

)()(
→→ →

= ruer nk
rik

nkψ     (C.3) 

where   )()(
→→→

=+ ruRru nknk  for all 
→

R  in a Bravais lattice. 

For details of the different parameters presented in this Appendix, see Appendix B. 

From eqn (C.3), the Bloch’s theorem can be stated in an alternative way as: 

)()(
→→→ →

=+ reRr Rik ψψ     (C.4) 

C.2 First Proof of the Bloch’s theorem 
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A simple proof of the Bloch’s theorem can be obtained by considering the special case of a one 

dimensional ring of lattice points as shown in Fig (C.1). 

            

            

            

            

       

 

 

Fig. (C.1) One dimensional ring of lattice points 

Assume that the number of points in the lattice, shown in Fig (C.1), is N. These lattice points are 

equally separated by distance a. A one dimensional lattice points can be represented as: 

∧→

= lnaR      (C.5) 

where Nn ≤≤0 is an integer number and
∧

l is a unit vector in the circumferential direction of the 

circular lattice. The potential in this lattice, V, is periodic and can be formulated as: 

)()(
→→→

+= RrVrV      (C.6) 

Since the potential is periodic, it is expected that any wave-function, )(
→

rψ , representing a 

physical property of a particle moving in this potential will differ from its value at 







+

∧→

lar by a 

factor C. This can be formulated as: 

 )()(
→∧→

=+ rClar ψψ      (C.7) 

Similarly, the wave-function at )2(
∧→

+ lar  can be formulated as: 

)()2( 2
→∧→

=+ rClar ψψ     (C.8) 

Following the same procedure, then, the wave function at (x+Na) is formulated as: 

)()(
→∧→

=+ rClNar
Nψψ     (C.9) 

After N steps the value of the wave-function is back to its original value, that means: 

)()(
→∧→

=+ rlNar ψψ     (C.10) 

a 



208 

 

By comparing eqns (C.9) and (C.10), then: 

1=N
C      (C.11) 

That means C has N values representing the N roots of unity. This is represented as: 

N

ni

n eC

π2

=      (C.12) 

where  10 −≤≤ Nn . Substituting eqn (C.12) into eqn (C.7) results in: 

)()(

2
→→→

=+ reRr N

ni

ψψ

π

    (C.13) 

Assume a periodic function 






→

ru  that has a periodicity similar to that of the lattice, such that: 









=








+

→→→

ruRru      (C.14) 

An expression for the wave-function in eqn (C.14) can be formulated as: 









=

→→

→

ruer Na

rni π

ψ

2

)(      (C.15) 

The solution expressed in eqn (C.15) satisfies eqn (C.13), where: 









+=








+

→→








+

→→

→→

RrueRr Na

Rrni π

ψ

2

    (C.16) 

By substituting eqn (C.14) into eqn (C.16) and expanding the bracket in the exponent of eqn 

(C.16) results in: 

 Na

Rni

erRr

→









=








+

→→→
π

ψψ

2

    (C.17) 

Introducing 
Na

n
k

π2
=  modifies eqn (C.17) into: 

→









=








+

→→→
Rik

erRr ψψ     (C.18) 

Equation (C.18) is the Bloch’s theorem for one dimensional lattice. Similarly, the proof can be 

expanded to the two and three dimensional cases. 
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C.3 Second Proof of the Bloch’s theorem 

For each Bravais lattice vector 
→

R , a translation operator RT is defined such that, when it operates 

on any function 






→

rf , shifts the argument by 
→

R , as shown in eqn (B.12, Appendix B). 

Since the Hamiltonian is periodic, then: 

















=
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
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


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


=








+








+=















 →→→→→→→→→→→

rTrHRrrHRrRrHrrHT RR ψψψψ

 

(C.19) 

From eqn (C.19), it can be stated that: 

RR TrHrHT 







=







 →→

     (C.20) 

From eqn (C.20), the result of applying two successive translations does not depend on the order 

in which they are applied, since for any wave-function, 






→

rψ , it can be stated that: 














++=








=








→→→→→

'
'' RRrrTTrTT RRRR ψψψ    (C.21) 

From eqn (C.21), the following expression is formulated: 

'''
RRRRRR TTTTT

+
==     (C.22) 

From eqns (C.20) and (C.22), it can be deduced that TR for all Bravais lattice vectors 
→

R and the 

Hamiltonian H form a set of commuting operators. It follows from a fundamental theory of 

quantum mechanics that the eigen states of H can therefore be chosen to be simultaneous eigen 

states of all the TR, such that: 









=







 →→

rrH εψψ      (C.23a) 

















=







 →→→

rRcrTR ψψ     (C.23b) 

The Eigenvalues 






→

Rc  of the translation operators are related because of the condition presented 

in eqns (C.23a) and (C.23b), for on the one hand: 
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
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RRR

ψψψ '
''    (C.24) 

on the other hand, according to eqn (C.22): 


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


















+=
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
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
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''    (C.25) 

If follows that the Eigenvalues must satisfy: 









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
+

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''

RcRcRRc      (C.26) 

Now, let ai be three primitive vectors for the Bravais lattice. Then, ( )iac  can be written as: 

( ) iix
i eac

π2
=       (C.27) 

By suitable choice of the xi, it then follows by successive applications of eqn (C.26) that if 
→

R  is a 

general Bravais lattice vector given by: 

332211 anananR ++=
→

    (C.28) 

Then: 

( ) ( ) ( ) 321
321

nnn
acacacRc =







→

   (C.29) 

But this is precisely equivalent to:  

→

=






→
Rik

eRc      (C.30) 

where 332211 bxbxbxk ++=           (C.31) 

where ib are the reciprocal lattice vectors. 

From the previous derivation, it can be deduced that the Eigen states 






→

rψ of H can be chosen 

such that for every Bravais lattice vector
→

R : 
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R ψψψψ    (C.32) 

Equation (C.32) is precisely the Bloch’s theorem.  
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Appendix D 

Mathematical Representation of Lattice Assemblies 

In continuum mechanics, a lattice material can be characterized by adopting the notions of crystal 

physics (Grosso and Pastori-Parravincini, 2000). In the following sections we review the 

mathematical representation of atomic lattice structures of the condensed matter. Similar 

representation is used to model lattice materials in continuum mechanics. 

D.1 Atomic Structure and Symmetries 

Due to the complexity of the condensed matter, where it involves a huge number of atoms, the 

possibility of solving all underlying equations in full details is very expensive and might be 

impossible. Accordingly, the laws of greatest importance are the principles of symmetry. 

The first step to describe how atoms are arranged is to group them in crystal forms. A crystal 

consists of a small group of atoms that forms a unit cell. This unit cell repeats itself infinitely with 

specific symmetry either in one, two or three dimensional spaces in what is called crystalline 

order. This microscopic arrangement forms the macroscopic solid. That means the whole 

macroscopic matter behavior can be described by studying a few number of atoms on the 

microscopic level thanks to the microscopic structural symmetry. However, it should be noted that 

the real world matter is never perfect. Impurities play an important role in defining material 

properties.  

As the nineteenth century progressed, an elaborate mathematical theory of symmetry was 

developed to show that the symmetries of natural crystals could be identified by the symmetries of 

regular lattices. For details of the different types of symmetry operators, the reader is referred to 

references (Brillouin, L., 1946; Schwarzenbach, D., 1996).  

A lattice can be defined as a translational infinitely periodic arrangement of points. On the other 

hand, the crystal is a translational infinitely periodic arrangement of bases. In a crystal structure, 

the lattice governs the structural periodicity that defines the way the crystal is infinitely 

constructed in a translational symmetry, while the bases are responsible about what part of the 

structure repeats itself within each period. Therefore, a crystal structure can be formulated as: 

  Crystal= Lattice + Basis    (D.1) 
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Figure (D.1) shows the two dimensional lattice of a square crystal structure. The unit cell of the 

lattice is shown in the middle of Fig (D.1) with the primitive bases 1

→

a and 2

→

a of the lattice 

translational symmetry. The primitive bases (vectors) of a lattice, { }3,2,1, ∈
→

ia i , where i=1, i=2 or 

i=3 in one, two or three dimensional space lattices, respectively, are a set of independent vectors 

in the space of the lattice that are used to identify the infinite crystal bases as their linear 

combinations. The crystal bases of the square lattice are shown on the right of Fig (D.1). These 

crystal bases include one point basis, 1

→

j , and two connectivity lines bases, 1

→

b and 2

→

b . Applying 

the lattice translational symmetry on the crystal bases generates the infinite crystal structure.     

 

 

 

 

 

 

 

Fig (D.1) 2D Square Crystal Structure 

To define the lattice translational symmetry, a unit cell is defined for each type of lattice. Two 

types of unit cells are available in literature, the primitive unit cell and the conventional unit cell, 

also known as the regular unit cell. In the following, the concepts of primitive and conventional 

cells are explained.   

D.1.1 Primitive Unit Cell 

The primitive unit cell of a lattice is a volume of space that, when translated by all the primitive 

vectors of the lattice, just fills the space without either overlapping itself or leaving voids. The 

primitive cell must have only one lattice point, or it may be adequately positioned to contain more 

lattice points on its circumference.  

Assume 1

→

a , 2

→

a  and 3

→

a  are the primitive vectors of a three dimensional lattice, then the primitive 

cell of this lattice is always chosen as the set of points 
→

R  represented as:  

Square Crystal Square Lattice 

Unit Cell 

1

→

a

2

→

a

Crystal Basis 

1b  

2b  

1j  
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Hexagonal lattice  

(not a Bravais lattice) 

p Q 
R 

Square lattice  

(a Bravais lattice) 

332211

→→→→

++= axaxaxR     (D.2) 

where x1, x2 and x3 are coefficients that have values in the range of [0,1]. This choice has 

sometimes the disadvantage that the primitive cell is not precisely representing the lattice 

symmetry. This problem is solved by choosing a different cell which is a conventional cell. In the 

following, the types of primitive unit cells are presented. 

A. Bravais Lattices 

There are two equivalent ways to define a Bravais lattice:  

(1) An infinite array of discrete points with arrangement and orientation to each other that 

appears exactly the same, from whichever of the points of the array is viewed.  

For example, in the hexagonal lattice, shown in Fig (D.2), points P and R have the same 

arrangement and the same orientation with respect to other points in the lattice, however, point Q 

has a different orientation, it is rotated 1800 from points P and R. Accordingly, the Hexagonal 

lattice is not qualified as a Bravais lattice. On the other hand, all point of the square lattice, shown 

in Fig (D.2), have the same arrangement and orientation. Accordingly, the square lattice is a 

Bravais lattice.  

The other definition of a Bravais lattice can be stated as: 

(2)  A Bravais lattice consists of all the points with position vectors 
→

R of the form: 

∑
=

→→

=
m

i

ii anR

1

    (D.3) 

where in is an integer number, ia
→

 is the lattice primitive vectors, and i=1, 2 or 3 corresponding 

to one, two or three dimensional Bravais lattices. 

 

 

 

 

 

 

Fig (D.2) A Bravais and a non-Bravais lattices 
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A comparison between definition one and two shows that the invariant geometry of the Bravais 

lattice is granted by translational symmetry presented by the position vector
→

R . Details of the 

different types of Bravais lattices available in literature, in 2D and 3D spaces, are reported in 

Appendix A. 

 B. Wigner-Seitz Primitive Cell 

A technique to construct a primitive unit cell that has the symmetry of the Bravais lattice was 

presented by E. P. Wigner and Frederick Seitz (Wigner, E. and Seitz, F., 1933; Seitz, F., 1936; 

Brillouin, L., 1946) who developed what is called the Wigner-Seitz unit cell.  

The cell may be chosen by first selecting a lattice point in the lattice space; then, lines are drawn 

from that point to all other nearby lattice points. At the midpoint of each constructed line, another 

line is drawn normal to each of them. In the case of a three-dimensional lattice, a perpendicular 

plane is drawn at the midpoint of the lines between the lattice points. By using this method, the 

smallest area or volume that is enclosed between the set of intersecting normal lines in 2D or 

intersecting normal planes in 3D is called the Wigner-Seitz primitive cell. All area or space within 

the lattice are filled by this type of primitive cell and leave no gaps. 

D.1.2 Conventional Unit Cells 

Instead of using a primitive unit cell to generate the Bravais lattice, a better choice can be 

considered, where a different unit cell can be chosen which reflects the symmetry of the lattice. 

This type of cell is called the conventional unit cell. The conventional unit cell is always larger in 

size than that of the primitive unit cell and can contain more than one lattice point inside its 

envelope. The bases of the conventional unit cell are always a linear combination of the primitive 

cell bases. 

D.1.3 Lattices with Basis 

The description of the crystal structure as a Bravais lattice is an idealization. Real lattice structure 

is far from the simple Bravais lattices representation. Instead, a real crystal structure can be 

described by its underlying Bravais lattice together with a description of the arrangement of the 

lattice points within the primitive cell envelope. These lattice points are represented by bases 

vectors.  
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In other words a crystal structure is a Bravais lattice with bases. Fig (D.3) illustrates the difference 

between a Bravais lattice and a lattice with bases. Both crystals and lattices are similar, however 

the left lattice is perfectly positioned that all the crystal points are located on the lattice points. On 

the right lattice, the crystal points have to be defined by additional bases which repeat itself with 

the lattice to construct the whole crystal structure. 

 

 

 

 

 

 

Fig (D.3) Square Lattice 

D.2 Reciprocal Lattice 

The reciprocal lattice plays a fundamental role in most studies of periodic structures. It is a 

mathematical tool to simplify the study of the behavior of the periodic function within a periodic 

lattice structure.  

The reciprocal space, also called Fourier space, k- space, or momentum space, in contrast to the 

real space or the direct space, is a set of imaginary points constructed in such a way that: 

1. The direction of a vector from one point to another coincides with the direction of a normal to 

the real space planes, where, in a specific direction within a lattice, all lattice points are on a 

series of equally separated planes called the crystal planes. The separation between these 

planes is called the interplanar distance. 

2. The separation of the points in the reciprocal space (absolute value of its primitive vector) is 

equal to the reciprocal of interplanar distance of the real space (direct lattice).  

Consider a set of points 
→

R constituting a 2D Bravais lattice, also, consider a plane wave that 

propagates through this lattice structure that has the wave-function of, 

→

rike , where 1−=i  is 

the complex number, k is a wave number and 
→

r is a spatial position vector (basis) in the plane of 

the lattice. At a specific value of k, such a plane wave has the periodicity of the Bravais lattice. 

The set of wave vectors, k, that yields plane waves with the periodicity of a given Bravais lattice 

is derived from the lattice reciprocal space. k belongs to the reciprocal space of a Bravais lattice of 

Square Bravais 

lattice 

Square Bravais lattice 

with a Basis 



216 

 

points 
→

R , provided that the relation, given in eqn (D.4), holds for any basis 
→

r , and for all 
→

R  in 

the Bravais lattice. 

→

→→

=








+

rik
Rrik

ee     (D.4) 

Factoring out 

→

rike , the reciprocal lattice can be expressed as the set of wave vectors k satisfying 

the relation: 

1=

→

Rike      (D.5) 

for all 
→

R  in a Bravais lattice.  

It should be noted that a reciprocal lattice is defined with a reference to a particular Bravais 

lattice. A Bravais lattice that determines a given reciprocal lattice is often referred to as the direct 

lattice.  

If 1

→

a , 2

→

a  and 3

→

a  are the linearly independent three dimensional primitive vectors of the direct 

lattice, then, the reciprocal lattice can be constructed by the three primitive vectors 1

→

b , 2

→

b  and 

3

→

b  that are defined as: 

ijji ab πδ2=⋅
→→

    (D.6) 

where { }3,2,1, ∈ji  and ijδ  is the Kronecker delta symbol that satisfies: 





=

≠
=

jifor

jifor
ij

1

0
δ     (D.7) 

Using eqns (D.6) and (D.7), the reciprocal lattice primitive basis can be expressed as: 









×⋅

×
=

→→→

→→
→

321

32
1 2

aaa

aa
b π     (D.8a) 









×⋅

×
=

→→→

→→
→

321

31
2 2

aaa

aa
b π     (D.8b) 
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







×⋅

×
=

→→→

→→
→

321

21
3 2

aaa

aa
b π     (D.8c) 

The reciprocal lattice points can be expressed in terms of a vector 
→

K  which is a linear 

combination of ib
→

, expressed as: 

332211

→→→→

++= bkbkbkK      (D.9) 

where 21,kk  and 3k are integers. 

To construct the reciprocal lattice, the following procedure is followed (Schwarzenbach, D., 

1996): 

a. Select a point as an origin from the direct space. 

b. From this origin, lay out the normal to every family of parallel planes in the direct lattice. 

c. Set the length of each normal equal to π2  times the reciprocal of the interplanar distance for 

its particular set of planes.  

d. Place a point at the end of each normal.  

D.3 Brillouin Zones 

The Wigner-Seitz primitive cell of the reciprocal lattice is known as the First Brillouin Zone. The 

first Brillouin zone is a zone in which the behavior of the function is fully described. This can be 

shown by a one dimensional model example. The two and three dimensions can be derived easily 

from this case. The one dimensional model of a free electron within a periodic potential is shown 

in Fig (D.4). Here, the variation of free electron energy, En, is shown with respect to the wave 

number, k. 
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Fig (D.4) Variation of the free electron energy with respect to the wave number in a periodic 

potential 

From Fig (D.4), it can be seen that the zone [-π/a ; π/a] is fully sufficient to describe the value of 

the energy. This zone is called the First Brillouin zone. Because the other Brillouin zones are less 

used, the “First Brillouin Zone” is sometimes just named as the “Brillouin Zone”.  

A further reduced zone in the reciprocal space of the lattice can be used to fully analyze the 

behavior of periodic wave-functions. This reduced zone is derived from the first Brillouin zone 

and is referred to as the Irreducible Brillouin Zone. The irreducible Brillouin zone is computed 

using point group symmetry. In the following, the basics of point group symmetry are described.   

D.4 Point Group Symmetry and its application to the reduction of the first Brillouin Zone  

The zone for the study of the properties of the periodic function can be further reduced due to the 

symmetry that exists in the direct lattice. One can notice that because of the reflection to the ‘En 

(vertical)- axis’ in the example of the free electron, shown in Fig (D.4), the analysis can be further 

reduced to the zone [0; π/a] which is the irreducible Brillouin zone for this case.  

The point group symmetry of a lattice can be determined by resorting to the rotational and 

reflection symmetries that the lattice possesses. For example, Fig (D.3) shows that if any node is 

fixed in the plane of the lattice, the same lattice orientation can be maintained for any 2/π  

rotation or integer multiple thereof. Similarly, if the reflection of a lattice about either a 

horizontal, vertical, or 4/π -diagonal lattice lines, an identical lattice can be obtained. Thus the 

square lattice has four-fold rotational symmetry and two independent lines of reflection about the 

centre node. These symmetries are those of a regular square polygon and are labelled as D4 in 

group-theoretic notation (Schwarzenbach, D., 1996). If one of the lattice bars is fixed at its 

midpoint and then the same exercise is performed, it can be found that the lattice now has two 

En 

k 
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folds rotational symmetry and one independent line of reflection. These symmetries are those of a 

rectangular polygon and are labelled D2 in group-theoretic notation.  

D.4.1 Point Group Theory of Lattice Symmetries 

Point group symmetry is a mathematical group composed of the elements of the rotation and the 

reflection and sometimes a combination of the both. A structure belongs to point group symmetry 

is a structure that if one applies all the elements of the group to the structure it remains with the 

same geometrical orientation. The point group symmetry thus gives the equivalent directions 

within the direct lattice. Consequently it also gives the equivalent points in the reciprocal lattice, 

especially the points of the Brillouin zone. Knowing the point group symmetry of a structure, it is 

possible to reduce it to a smallest zone of the irreducible Brillouin zone. Each point of the 

irreducible Brillouin zone is representative of a set of points that is generated by the elements of 

the point group symmetry linked to the structure. This is commonly called equivalent class in 

mathematic. 

The point group symmetry is easily determined once the primitive unit cell has been identified. 

Here, standard solid-state physics terminology, notation and the basic definitions of group theory 

are revised (Armstrong, M. A., 1988; Hill, V. E., 2000; Aschbacher, M., 2000; James, G. and 

Liebeck, M., 2001).  

A. Mathematical Group 

A mathematical group consists of a set G for which a product operation, acting on elements g and 

h of G and forming another element of G, is defined and written as g.h, such that this operation is 

associative and expressed as: 

( ) ( ) Gkhgkhgkhg ∈∀= ,,....    (D.10) 

A group G contains an identity element e such that: 

Ggegge ∈∀= ..    (D.11) 

and each element g has an inverse g-1 as a member of G, where: 

Ggegggg ∈∀== −−
..

11
   (D.12) 

The product of an element g with itself is written as g2 = g.g; similarly g3 = g2.g, g-2 = (g-1)2 etc... 

If the number of elements in G is finite, then G is finite where the number of elements in G is 

called the order of G and is written as G . Note that a group G is said to be Abelian if g .h = h.g 

for all g and h in G.  
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In point group theory, we are concerned with two mathematical groups, the dihedral and the 

cyclic groups. 

A.1 The Cyclic Group 

In group theory, a cyclic group, also called a monogamous group, is a group that can be generated 

by a single element, in the sense that the group has an element “a”, called a “generator” of the 

group, such that, when written multiplicatively, every element of the group is a power of “a”. The 

Order of the cyclic group is “n” where “n” is a positive integer. Example of the cyclic groups is 

the nth root of unity group which is denoted by nC . 

A.1.1 The nth
 Root of Unity nC  

In mathematics, the nth roots of unity, or de Moivre numbers, are all the complex numbers that 

yield 1 when raised to a given power n. They are located on the unit circle of the complex plane, 

and in that plane they form the vertices of an n-sided regular polygon with one vertex on 1. 

Example of such group is the cyclic group Cn, such that: 

{ }12 ,...,,,1 −= n
n aaaC     (D.13) 

where Cn is formed by the products of “a” with restriction that powering “a” leads to unity. Here 

“a” can be formulated as:  

n

i

ea =       (D.14) 

Where 1−=i . Normalizing “a” to the trigonometric functions cycle, by dividing it by ( π2/1 ), 

gives the form: 

n

i

ea

π2

=      (D.15) 

From eqn (1.16), ea
n == 1 , this can be proved by the Euler’s form representation in the 

complex plan.  
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Fig (D.5) the third root of unity 

Figure (D.5) shows the third root of unity in the complex plan. This can be formulated by Euler’s 

rule, where: 

( ) ( )xixe
ix

sincos +=      (D.16) 

( ) ( )xixe
ix

sincos −=−
    (D.17) 

From eqns (D.16) and (D.17),  

 eieea
i

n

n

i

n ==+==













= 1)2sin()2cos(2

2

πππ
π

   (D.18) 

A.2 The dihedral group, nD  

In mathematics, a dihedral group is the group of symmetries of a regular polygon, including both 

rotations and reflections (mirroring). A regular polygon with “n” sides has 2n different 

symmetries, n rotational and n reflection symmetries. The associated rotations and reflections 

make up the dihedral group nD .  

Let “a” denotes the rotational symmetry element and “b” denoted the reflection symmetry 

element, then a dihedral group can be defined as 

112
..,,:,

−− ==== ababebeabaD
n

n     (D.19) 

Note that in executing the dihedral group operations, order is important, i.e. a.b means do a then 

do b. i.e. rotate first then reflect second. The order of the dihedral group nD  is 2n, where n 

elements for rotation and n for reflection, with 3≥n . Example of a dihedral group is the point 
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group symmetry of the equilateral triangle which generates the fully triangulated lattice. As 

shown in Fig (D.6). 

 

Fig (D.6) The equilateral triangle is D3-symmetric 

In Fig (D.6), this is a 3D  dihedral group with order 6, 3 rotation elements and 3 reflection 

elements. The rotational element is 3

22 i

n

i

eea

ππ

== , i.e. the three rotation elements can be 

constructed by three rotations of 120o counter clock wise around O. and the three reflection 

elements can be performed around OA, OB and OC. 

Table (D.1) shows the point group symmetries of some 2D lattice structures that are analyzed 

throughout this thesis. 

Table (D.1) Point group symmetries of 2D lattice materials 

Name Schlafli Symbol Connectivity Point Group 

Square 44 4 D4 

Hexagonal 63 3 D6 

Triangular 36 6 D6 

Kagome 3.6.3.6 4 D6 

Triangular- Triangular 31.32.31.32 4 D3 

Triangular- Square 33.42 5 D2 

Triangular- Hexagonal 34.6 5 C6 
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APPENDIX E 

Determinacy Analysis of 2D Infinite Lattice Structures: 

Applications 

The determinacy analysis and the classification methodology, developed in chapter three, is 

applied to the nineteen lattice topologies, shown in Figs (E.1), (E.2) and (E.3) and their results are 

reported in this Appendix. Steps of the analysis for the square, the Kagome and the 23 4.3 lattice 

topologies are demonstrated in details. 

 

 

 

 

 

 

 

 

a- Square- 44 b- Triangular- 36 c- Hexagonal- 63 

Fig. (E.1) 2D regular Lattice Structures 

E.1 Square Lattice Structure 

The analysis of the square lattice structure, shown in Fig (E.1a) is examined here. After the 

evaluation of the equilibrium and the kinematic systems (eqn (3.82)) of unit cell B of the square 

lattice, shown in Fig (E.1a), the technique described in §3.5 is applied to the real structure of the 

unit cell. The dependency relations of the bar and the node bases are computed, as shown in Table 

(E.1). 

 

 

 

 

 

 

 
  

(b) (c) 

�� 
y 

(0,0) x 

y 

(0,0) 

�� 

(a) 

B 

A 

Cell 

Envelope 

��� 

��� 

Unit Cell 

B 

A 

x 

�� 

�� 

y 

(0,0) x 

Cell 

Envelope 

Unit Cell 

Cell 

Envelope 

Unit Cell 

��� 

��� 

�� 
�� 

��� 

��� 

y 

(0,0) x 

y 

(0,0) x 

�� 

�� 

�� 

�� 

44 
36 63 

Real nodes Dummy nodes 

A 

B 

A 

B 



224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a- Kagome- 3.6.3.6 b- 4.6.12 c- 33.42 d- 32.4.3.4 e- 3.4.6.4 f- 3.122 g- 4.82 h- 34.6 

Fig (E.2) 2D semi-regular Lattice Structures 
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a- Double Hexagonal Triangulation; b- Semi-Uni- Braced Square (SUBS); c- Triangular- 

Triangular  d- Semi-Double- Braced Square; e- Equilaterals- Hexagon; f- Uni- Braced 

Square; g- Double- Braced Square; h- Patched Kagome 

Figure (E.3) 2D other lattice topologies 
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Table (E.1) Dependency analysis results for the square lattice unit cells 

Cell A- nodes Cell B- nodes 

Independent Dependent 
1

^

x  2

^

x  Independent Dependent 
1

^

x  2

^

x  

1j  
4j  1 0 - -

 
- - 

1j  
2j  0 1 - - - - 

1j  3j  1 1 - - - - 

Cell A- Bars Cell B- Bars 

Independent Dependent 
1

^

x  2

^

x  Independent Dependent 
1

^

x  2

^

x  

1b  3b  1 0 1b  3b  1 0 

4b
 2b  0 1 4b

 2b  0 1 

 

 

 

 

 

 

 

Fig (E.4) The first Brillouin zone and irreducible first Brillouin zone of the square lattice 

shown in Fig (3.5a) 

The reciprocal lattice bases of the square lattice are computed as )0,1(1 =
→

b  and )1,0(2 =
→

b which 

are used to construct the reciprocal lattice. The first Brillouin zone is determined and point group 

symmetry is used to determine the irreducible first Brillouin zone of the lattice. The irreducible 

first Brillouin zone of the square lattice along with its wave-numbers are shown in Fig (E.4) and 

table (E.2), respectively. 

The periodicity information, given in table (E.1) is used to derive the transformation matrices of 

the bar and the node deformation vectors at the different wave-numbers, given in table (E.2). The 

transformation matrices are used for the reduction of the equilibrium and the kinematic systems of 

the unit cell to the irreducible forms of the infinite lattice at the different wave-numbers, as shown 

in eqns (E.1), for the analysis using unit cell B, shown in Fig (E.1a). 
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Table (E.2) Wave-numbers of the reciprocal space of the square lattice 

No 
1ω  2ω  

1 0.25 0.5 

2 0 0.5 

3 0.5 0.5 

4 0.1667 0.3333 

5 0 0.25 

6 0.25 0.25 

7 0 0 
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For the determinacy analysis of the infinite square lattice using unit cell A, shown in Fig (E.1a), 

the following results are obtained: 
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   (3.2g) 

where iss is the ith mode of periodic states of self-stress as { }si ,...,1∈  and s is the number of 

periodic states of self-stress within the lattice at a specific wave-number. jd
~

 is the jth mode of 

periodic states of internal mechanism as { }imj ,...,1∈  and im is the number of periodic states of 

internal mechanisms within the lattice  at a specific wave-number. 

Comparing eqns (E.1) and (E.2), taking into consideration the square symmetry of the lattice, one 

can realize that the two unit cells identically predict the microscopic determinacy state of the 

infinite periodic square lattice structure. 

Extending the analysis to consider the stiffening effect of the periodic states of self-stress to the 

periodic states of internal mechanisms, indicates that the states of self-stress developed at wave-

numbers ( )5.0,0=ω , ( )25.0,0=ω  and ( )0,0=ω  are not capable of stiffening the corresponding 

periodic internal mechanisms. It is concluded that pin-jointed infinite periodic square lattice 

structure collapses by periodic internal mechanisms and thus classified as a bending dominated. 

E.2 Lattice Structure with Schlafli symbol of 33.42  

The lattice structure with the Schlafli symbol of 33.42, shown in Fig (E.2c) is analyzed here.  

E.2.1 Unit Cell Equilibrium System 

The finite structure of the unit cell has the following bases groups: 

The dummy node bases group: 

( ) ( )

( ) ( )























−−









−−










−











+










+−

=

1,5.0,0,5.0,
4

3
,25.0,

4

3
,25.0

,0,5.0,1,5.0,
4

3
1,25.0,

4

3
1,25.0

DG
 



229 

 

The node bases group: 
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The bar bases group: 
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By applying the DNS, the equilibrium system of the unit cell, including the degrees of freedom of 

the dummy nodes, is computed as: 
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 (E.3) 

Eliminating the degrees of freedom associated with the dummy nodes results in: 



230 

 





















=





















































−−

−−

−

−−

y

x

y

x

f

f

f

f

t

t

t

t

t

t

t

t

t

2

2

1

1

9

8

7

6

5

4

3

2

1

00000023231

1000015.05.00

00232300001

015.05.010000

 (E.4) 

E.2.2 Determinacy Analysis of Unit Cell Finite Structure 

Computing the four fundamental subspaces of the equilibrium matrix of the unit cell indicates that 

this unit cell is statically determinate and kinematically indeterminate with eleven modes of 

mechanisms of which three are rigid-body mechanisms and eight are internal mechanisms. 

E.2.3 Infinite Lattice Determinacy Analysis 

  The direct translational bases are computed as: 










+=

→

2

3
1,5.01a  and 











+−=

→

2

3
1,5.02a . The dependency analysis results for the node and bar bases group 

indicates that all real nodes are independent. The bar bases dependency relations are shown in 

table (E.3). 

Table (E.3) Dependency analysis results for the bar bases of the 23 4.3  lattice unit cell 

Bar bases dependency 

Independent Dependent 
1

^

x  2

^

x  

2b  6b  0 -1 

3b
 7b  -1 0 

4b  9b  -1 1 

5b
 8b

 -1 1 

The reciprocal lattice bases are computed as: ( )2679.0,11 =
→

b  and ( )2679.0,12 −=
→

b . The 

reciprocal lattice bases are used to construct the reciprocal lattice, the first Brillouin zone is 

determined and point group symmetry is used to determine the irreducible first Brillouin zone, 

shown in Fig (E.5), and the wave-numbers are computed and reported in table (E.4). 
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Fig (E.5) The first Brillouin zone and the irreducible first Brillouin zone of the 23 4.3  lattice 

 

Table (E.4) Wave-numbers of the reciprocal space of the 23 4.3  lattice 

No 
1ω  2ω  

1 0.61603 0.38397 

2 0.61603 0.13397 

3 0.38397 -0.13397 

4 0.38397 0.11603 

5 0.5 0.5 

6 0.73205 0.26795 

7 0.5 0 

8 0.26795 -0.26795 

9 0.4 0.1 

10 0.25 0.25 

11 0.36603 0.13397 

12 0.25 0 

13 0.13397 -0.13397 

14 0 0 

 

The dependency relations, given in table (E.3), are used to formulate the transformation matrices, 

necessary to reduce the equilibrium system of the unit cell to the irreducible form of the infinite 

lattice at each wave-number, given in table (E.4), which are used for the determinacy analysis of 

the infinite lattice structure. The results of the determinacy analysis of the infinite 23 4.3 lattice 

are reported in table (E.5).   
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Table (E.5) Determinacy analysis of the semi-regular 33.42 lattice 

Wave-numbers # SSS1 # SIM2 

1ω  2ω  

0.61603 0.38397 1 0 

0.61603 0.13397 1 0 

0.38397 -0.13397 1 0 

0.38397 0.11603 1 0 

0.5 0.5 2 1 

0.73205 0.26795 1 0 

0.5 0 1 0 

0.26795 -0.26795 1 0 

0.4 0.1 1 0 

0.25 0.25 2 1 

0.36603 0.13397 1 0 

0.25 0 1 0 

0.13397 -0.13397 1 0 

0 0 3 2 
1SSS...States of Self-Stress; 2SIM...States of Internal Mechanisms 

From table (E.5), it can be deduced that the 23 4.3 infinite lattice is statically and kinematically 

indeterminate at wave-numbers ( )25.0,25.0=ω , ( )5.0,5.0=ω and ( )0,0=ω ; and statically 

indeterminate and kinematically determinate at all other wave-numbers.  

E.2.4 Stiffening Effect of Periodic States of Self-Stress to Periodic Internal Mechanisms 

The 23 4.3 lattice has only two mechanisms at wave number ( )0,0=ω  which are translational 

rigid-body mechanisms. Thus, the lattice does not possess any internal mechanisms at ( )0,0=ω . 

The stiffening effect of the periodic states of self-stress to the periodic states of internal 

mechanisms is examined at wave-numbers ( )5.0,5.0=ω  and ( )25.0,25.0=ω . 

i. At Wave-Number ( )5.0,5.0=ω  

First, we test the necessary condition for the stiffening effect using the product force vector 

approach. The reduced equilibrium matrix of the infinite lattice and the associated periodic states 

of self-stress and periodic states of internal mechanisms at wave-number ( )5.0,5.0=ω  are 

formulated as: 
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 (E.5) 

To determine the non-pivotal columns in the reduced equilibrium matrix, we formulate the 

reduced row echelon form of the matrix as: 

( )
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The non-pivotal columns are the columns with indices 4 and 5. Considering a unit reference 

length, 1=L and a unit nominal strain, 10 =ε , the reduced imposed elongations vector and the 

reduced flexibility matrix are computed as: 
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which are used to compute the reduced vector of linear combination constants as: 
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The reduced global state of self-stress is computed as: 
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The reduced periodic internal mechanism matrix is computed as: 
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The reduced periodic internal mechanism matrix and the reduced global state of self-stress are 

expanded to include, respectively, the deformations of all nodes and axial forces of all elements of 

the unit cell, which results in: 
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The global state of self-stress and the global internal mechanism are used to derive the product 

force vector as: 
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Columns 4 and 5 are eliminated from the reduced equilibrium matrix to generate the truncated 

reduced equilibrium matrix which is augmented to the product force vector matrix to generate the 

augmented reduced equilibrium matrix as: 
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Computing the four fundamental subspaces of the augmented equilibrium matrix indicates that 

this matrix is of full rank and the periodic internal mechanism is suppressed by the periodic states 

of self-stress; thus the structure becomes stable. 

We test the sufficient stiffening condition; the result is in agreement with the necessary condition, 

as the periodic internal mechanism is tightened up by the periodic states of self-stress in a range of 

linear combination constants that span the whole range of [ ]1,1− .  

The same computations are applied to the lattice at wave-number ( )25.0,25.0=ω  which 

generates identical results to the analysis at ( )5.0,5.0=ω . The determinacy analysis results of 



235 

 

the infinite lattice structure after the first-order infinitesimal deformation are reported in table 

(E.6). 

Table (E.6) Determinacy analysis of the semi-regular 33.42 lattice 

Wave-numbers 
# SSS # SIM 

PFV1 

1ω  2ω  # SSS # SIM 

0.61603 0.38397 1 0 - - 

0.61603 0.13397 1 0 - - 

0.38397 -0.13397 1 0 - - 

0.38397 0.11603 1 0 - - 

0.5 0.5 2 1 0 0 

0.73205 0.26795 1 0 - - 

0.5 0 1 0 - - 

0.26795 -0.26795 1 0 - - 

0.4 0.1 1 0 - - 

0.25 0.25 2 1 0 0 

0.36603 0.13397 1 0 - - 

0.25 0 1 0 - - 

0.13397 -0.13397 1 0 - - 

0 0 3 2 2 2 
1PFV...Product Force Vector. 

 

E.3 Kagome Lattice Structure  

Figure (E.2a) shows the Kagome periodic lattice structure along with the periodic structure unit 

cell and the cell envelope.  

E.3.1 Determinacy Analysis of Unit Cell A of the Kagome Lattice Structure (Fig (E.2a))  

For unit cell A, shown in Fig (E.2a), assuming the origin of the 2D Cartesian coordinate is located 

at point o, the node bases group of the unit cell of the Kagome lattice is formulated as:  
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Similarly, the bar bases group is formulated as:  
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Using the node and the bar bases groups, the equilibrium system of the unit cell of the Kagome 

lattice is formulated as: 
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  (E.16) 

where it is the axial force in element i as { }6,5,4,3,2,1∈i . jxf and jyf are, respectively, the x and 

y components of the force of node j as { }6,5,4,3,2,1∈j . 

The kinematic matrix of the unit cell of the Kagome lattice can be easily computed and the 

kinematic system of the unit cell finite structure can be formulated as: 
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where ie is the axial deformation in element i as { }6,5,4,3,2,1∈i . jxd and jyd are, respectively, 

the x and y components of the displacement of node j as { }6,5,4,3,2,1∈j . 

For the determinacy analysis of the unit cell of the Kagome lattice, the four fundamental 

subspaces of the equilibrium and the kinematic matrices are computed which indicate that this 

unit cell is statically determinate, as it does not possess any states of self-stress, and kinematically 

indeterminate. The rank of the equilibrium and the kinematic matrices, formulated in eqns (E.16) 

and (E.17), respectively, is found as rA = 6. The ( )T
Null A generates six modes of mechanisms, of 

which three are planar rigid-body motion (two translation and one rotation) as the structure of the 

unit cell is not constrained into a foundation. The six modes of mechanisms are formulated as: 
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Fig. (E.6) Mechanisms experienced by the unit cell of the Kagome lattice (of which three are 

rigid body motions and three are internal mechanisms) 

 

where id is the ith mode of mechanism as { }mi ,...,1∈  and m is the number of mechanisms within 

the framework. m = 6 in the case of the unit cell of the Kagome lattice.  

The mechanisms, formulated in eqn (E.18), can be represented graphically, as shown in Fig (E.6). 

To distinguish between the rigid-body mechanisms and the internal mechanisms, Pellegrino & 

Calladine (1986) presented a simple strategy that is applicable for any finite framework. 

Interested readers are referred to (Pellegrino, S., Calladine, C. R., 1986). 

The unit cell A of the Kagome lattice, shown in Fig (E.2a) is statically determinate, as it does not 

possess any states of self-stress. Accordingly, the analysis of the stiffening effect of states of self-

stress to the states of internal mechanisms is not applicable for such finite structure.  

E.3.2 Determinacy Analysis of the Infinite Kagome Lattice Structure  

For the unit cell envelope of the Kagome lattice, shown in Fig (E.2a), the direct translation bases 

are formulated as: 

Original 

geometry 
Deformed geometry 

   

   

d1 d2 

d3 

d4 d5 d6 
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( )3,11 =
→

a  and ( )3,12 −=
→

a      (E.19) 

The dependency relations of the bar and the node bases are computed using eqn (3.35). For unit 

cell A of the Kagome lattice, shown in Fig (E.2a), it is found that all bar bases of the unit cell are 

independent while the computed dependency relations for the nodes is listed in table (E.7). 

Table (E.7) Dependency analysis results for the Kagome lattice unit cell A 

Nodes dependency 

Independent Dependent 
1

^

x  2

^

x  

1j  
4j  1 -1 

2j  5j  0 -1 

3j  6j  -1 0 

 

The reciprocal lattice bases are computed as: 

 )2887.0,5.0(1 =
→

b  and )2887.0,5.0(2 −=
→

b      (E.20) 

and the irreducible first Brillouin zone along with the wave-numbers are shown in Fig (E.7) and 

table (E.8), respectively. 

 

 

 

 

 

 

 

 

Fig (E.7) the first Brillouin zone and IBZ of the Kagome lattice 
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Table (E.8) wave-numbers of the reciprocal space of the Kagome lattice 

No 
1ω  2ω  

1 0.1 0.2 

2 0.2 0.3 

3 0.125 0.125 

4 0.3 0 

5 0.25 0.25 

6 0.5 0 

7 0 0 

 

Applying the Bloch's theorem, the dependency relations are used to compute the irreducible forms 

of the equilibrium system of the lattice at the different wave-numbers, computed from the 

irreducible first Brillouin zone of the reciprocal lattice. Once the irreducible form of the 

equilibrium system is computed, the corresponding periodic states of self-stress and periodic 

states of internal mechanisms can be computed from the fundamental subspaces of the reduced 

equilibrium matrix. 

At wave-number ( )2.0,1.0=ω : 
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At wave-number ( )3.0,2.0=ω : 
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At wave-number ( )125.0,125.0=ω : 
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At wave-number ( )0,3.0=ω : 
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At wave-number ( )25.0,25.0=ω : 
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At wave-number ( )0,5.0=ω : 
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At wave-number ( )0,0=ω : 
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where 1545.01 =a , 4755.02 =a , 309.03 =a , 9511.04 =a , 2676.05 =a , 8236.06 =a , 

6124.07 =a , 4045.08 =a , 2939.09 =a , 7006.010 =a , 509.011 =a .  

The determinacy analysis of the infinite periodic structure of the Kagome lattice indicates that the 

lattice is statically and kinematically determinate at wave-numbers ( )2.0,1.0=ω and ( )3.0,2.0=ω

, as shown in eqns (E.21a) and (E.21b), and statically and kinematically indeterminate at the rest 

wave-numbers, as shown in eqns (E.21c-g). 

Accordingly, two of the three periodic mechanisms of the Kagome lattice at wave-number 

)0,0(=ω are translational rigid-body motion and only one mode is internal mechanism. 

The different states of self-stress and states of mechanisms experienced by the Kagome lattice at 

the different wave-numbers are represented graphically in Fig (E.8). 
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(a) Real part of internal mechanism; (b) imaginary part of internal mechanism; (c) real part 

of state of self-stress; (d) imaginary part of state of self-stress. 

Fig (E.8a) Kagome lattice states of internal mechanisms and states of self-stress at wave-

number )125.0,125.0(=ω  
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(a) Real part of internal mechanism; (b) real part of state of self-stress. 

Fig (E.8b) Kagome lattice states of internal mechanisms and states of self-stress at wave-

number )0,5.0(=ω  
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(a) Real part of internal mechanism; (b) imaginary part of internal mechanism; (c) real part 

of state of self-stress; (d) imaginary part of state of self-stress. 

Fig (E.8c) Kagome lattice states of internal mechanisms and states of self-stress at wave-

number )0,3.0(=ω  
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(a) Real part of internal mechanism; (b) imaginary part of internal mechanism. 

Fig (E.8d) Kagome lattice states of internal mechanisms at wave-number )25.0,25.0(=ω  

 

 

 

 

 

 

 

 

 

 

 

 

(a) Real part of state of self-stress; (b) imaginary part of state of self-stress. 

Fig (E.8e) Kagome lattice state of self-stress at wave-number )25.0,25.0(=ω  
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Fig (E.8f) Kagome lattice real parts of states of self-stress & states of mechanisms at 

)0,0(=ω  
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E.3.3 Stiffening Effect Analysis of the Kagome Lattice at Wave-Number )25.0,25.0(=ω  

Computing the reduced row echelon form (rref) of the reduced equilibrium matrix, at wave-

number )25.0,25.0(=ω , shown in eqn (E.21e), results in: 
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From eqn (E.22), the non-pivotal column is found at the column of index number six. 

Accordingly, the truncated reduced equilibrium system of the infinite Kagome lattice is expressed 

as: 
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   (E.23) 

Assuming a unit reference length, 1=L and a unit nominal strain, 10 =ε , the reduced imposed 

elongation vector is computed at wave-number )25.0,25.0(=ω  as: 

[ ]Te 1000000

~

=     (E.24) 

and the reduced flexibility matrix is computed as: 

)6,6(
1

IF
~

EA
=      (E.25) 

where )6,6(I is a unit matrix of dimension six by six; E and A are, respectively, the Young's 

modulus of the solid material and the nominal cross-section area of the lattice elements. 

From eqn (E.21e), the reduced state of self-stress matrix of the Kagome lattice at wave-number 

)25.0,25.0(=ω is the same as its state of self-stress as the lattice possesses only one state of self-

stress at this wave-number. 
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Using the state of self-stress in eqn (E.21e), eqn (E.24) and eqn (E.25), the reduced vector of 

linear combination constants of the Kagome lattice at wave number )25.0,25.0(=ω  can be 

computed as: 

5.0
~

−=γ      (E.26) 

Using the state of self-stress in eqn (E.21e) and eqn (E.26), the reduced global state of self-stress 

of the Kagome lattice at wave-number )25.0,25.0(=ω  can be computed as: 
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For the infinite periodic structure of the Kagome lattice, shown in Fig (E.2a), the product force 

vector as well as the reduced product force vector matrices at wave-number )25.0,25.0(=ω  are 

computed as: 

[ ]Tiiii 00000000 −−=PFV    (E.28a)

 

[ ]Tiiii 2378.01727.04118.02992.0002378.01727.04118.02992.0 −−−−−−=
~

PFV

 (E.28b) 

The reduced product force vector matrix, given in eqn (E.28b), is now augmented into the 

truncated reduced equilibrium matrix, given in eqn (E.23), which results in the augmented 

reduced equilibrium matrix of the Kagome lattice at )25.0,25.0(=ω  as: 
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Computing the four fundamental subspaces of the augmented reduced matrix, given in (E.29), 

produce an empty null space of the matrix transpose, i.e. (dim(null(

T

aug

~

A ) = 0)) which indicates 
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that the periodic states of self-stress is capable of stiffening the periodic internal mechanism at 

wave-number )25.0,25.0(=ω . 

For the Kagome lattice, it is found that the periodic mechanisms tighten-up at all wave-numbers 

except at )0,5.0(=ω as the periodic state of self-stress fails to stiffen the periodic mechanism. 

 

E.3.4 Stiffening Effect Analysis of the Kagome Lattice at Wave-Number )0,5.0(=ω  

The reduced row echelon form of the reduced equilibrium matrix, given in eqn (E.21f), of the 

Kagome lattice at wave-number )0,5.0(=ω  is computed as: 
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and the non-pivotal column is found at the column of index number six. Accordingly, the 

truncated reduced equilibrium system of the lattice is computed as: 
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Assuming a unit reference length, 1=L and a unit nominal strain, 10 =ε , the vector of imposed 

elongations and the flexibility matrix are generated as: 

[ ]Te 1000000
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=  , )66(
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×= IF
~
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   (E.32) 

Eqn (E.32) is used to compute the reduced vector of linear combination constants and the reduced 

global state of self-stress as: 
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which are used along with the reduced periodic internal mechanism to generate the product force 

vector as: 
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The reduced product force vector matrix, given in eqn (E.34), is augmented to the truncated 

reduced equilibrium matrix, given in eqn (E.31), which results in the augmented reduced 

equilibrium matrix as: 
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Computation of the four fundamental subspaces of the augmented equilibrium matrix, given in 

eqn (E.35), indicates that the periodic state of self-stress fails to stiffen the periodic internal 

mechanisms as the lattice still experiences the same periodic failure mechanism, given in eqn 
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(E.21f). This result indicates that the pin-jointed infinite Kagome lattice structure collapses with 

infinite periodic mechanisms at wave-number ( )0,5.0=ω . Accordingly, the infinite periodic 

Kagome lattice structure is classified as a bending dominated lattice structure.  

E.4 Determinacy Analysis of the Kagome Lattice at Wave-Number )0,0(=ω  

From eqn (E.21g), the Kagome lattice experiences three states of self-stress and three states of 

mechanisms. Two out of three mechanisms are rigid-body translation and one is internal 

mechanisms. In the following we distinguish between the rigid-body motions and the internal 

mechanisms. 

The set of reduced, periodic, states of self-stress of the Kagome lattice, given in eqn (E.21g), is 

used to generate the reduced state of self-stress matrix as: 
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The reduced row echelon form of the reduced equilibrium matrix, given in eqn (E.21g), is 

computed to determine the non-pivotal elements in the infinite lattice, which results in: 
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which indicates that the non-pivotal columns are the columns with indices 4, 5 and 6. 

Assuming a unit reference length, 1=L and a unit nominal strain, 10 =ε , the reduced flexibility 

matrix, F
~

 matrix and the reduced vector of imposed elongations, 0
~e , are computed as: 
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Using eqns (E.38) and (E.36), the reduced vector of linear combination constants of the Kagome 

lattice, at wave-number )0,0(=ω , can be computed as: 
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The reduced global state of self-stress of the Kagome lattice at wave-number )0,0(=ω  is 

computed as: 
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The set of mechanisms of the Kagome lattice, given in eqn (E.21g), is used to generate the 

reduced mechanisms matrix as: 
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Next, the reduced modes of mechanisms and the global states of self-stress are expanded to 

generate, respectively, the kinematical displacements of all nodes and the tension force of all 

elements within the unit cell, which results in: 
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The expanded modes of mechanisms along with the expanded global state of self-stress are used 

to formulate the set of product force vectors corresponding to each individual mechanism. The 

developed product force vectors are concatenated into the product force vector matrix, PFV . The 

product force vector matrix is then reduced to the irreducible product force vector matrix, 
~

PFV , 

where 
~

PFV represents the product force vector of the infinite lattice structure. These 

computations results in: 
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The non-pivotal columns of the reduced equilibrium matrix of the infinite periodic Kagome 

lattice, at wave number )0,0(=ω , given in eqn (E.21g), are eliminated to form the truncated 
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reduced equilibrium matrix 

^

A
~

. The reduced product force vector matrix, given in eqn (E.43), is 

augmented to the matrix 

^

A
~

 to form the augmented reduced equilibrium matrix as: 
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The left-null space of the augmented reduced equilibrium matrix of the Kagome lattice, shown in 

eqn (E.44), is computed to determine the modes of the un-stiffened mechanisms along with their 

indices, these mechanisms are computed as: 
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It can be realized that the first and the second columns of the mechanisms matrix, D
~

, of the 

Kagome lattice, given in eqn (E.45), are correspondent to translational rigid-body motion in the x 

and the y directions, respectively. Since there are only two mechanisms which both represent 

rigid-body motion, then, no additional filtration is required. The indices of these two mechanisms 

are determined as the 5th and 6th indices in the row space of the augmented reduced equilibrium 

matrix. The nodal degrees of freedom corresponding to these modes have to be eliminated from 

the reduced equilibrium matrix computed in eqn (E.21g) which results in: 

 



















−

−−

−−

−−

=

00866.000866.0

015.0015.0

866.00866.0866.00866.0

5.005.05.005.0

~~
A     (E.46) 

Again the null space and the left-null space of the equilibrium matrix, defined in eqn (E.46), are 

computed to determine the final sets of states of self-stress and the states of internal mechanisms, 

respectively, which are computed as: 
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

















=

1

0

5.0

866.0

~

D , 



























=

100

010

001

100

010

001

~

SS     (E.47) 

The set of states of self-stress can be used to check that the necessary condition for the stiffening 

effect of periodic states of self-stress to the periodic internal mechanism. 

The analysis is expanded to consider the sufficient condition of the stiffening effect. It is found 

that, at wave-number )0,0(=ω , the developed states of self-stress impart positive stiffness as the 

Kagome lattice structure deforms by a first-order periodic internal mechanism. 

E.5 Summary of the Determinacy Analysis Results of the 19 Lattice Topologies 

The infinite determinacy analysis results of the 19 lattice topologies shown in Figs (E.1), (E.2) 

and (E.3) are reported in tables (E9:E27). At each wave number, derived from the irreducible first 

Brillouin zone of the lattice, the States of Self-Stress (SSS) and the States of Internal Mechanisms 

(SIM) are computed. Also, the stiffening effect of the SSSs to the SIMs is checked using the 

Product Force Vector (PFV) approach as the necessary condition. For internal mechanisms that 

satisfy the necessary condition, we check the definiteness of the stress tensor to satisfy the 

sufficient condition of mechanisms to be classified as first-order infinitesimal mechanisms. The 

results obtained here, are used for the classification of the 19 topologies in chapter three.  

 

Table (E.9) Determinacy analysis of the regular square lattice (Fig E.1a) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.25 0.5 0 0 - - 

0 0.5 1 1 1 1 

0.5 0.5 0 0 - - 

0.1667 0.3333 0 0 - - 

0 0.25 1 1 1 1 

0.25 0.25 0 0 - - 

0 0 2 2 2 2 
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Table (E.10) Determinacy analysis of the regular triangular lattice (Fig E.1b) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.1667 0.5833 1 0 - - 

0.4167 0.5833 1 0 - - 

0.25 0.5 1 0 - - 

0 0.5 1 0 - - 

0.3333 0.6667 1 0 - - 

0.5 0.5 1 0 - - 

0.2083 0.4167 1 0 - - 

0 0.25 1 0 - - 

0.1667 0.3333 1 0 - - 

0.25 0.25 1 0 - - 

0 0 3 2 3 2 

 

Table (E.11) Determinacy analysis of the regular hexagonal lattice (Fig E.1c) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.5833 -0.1667 0 1 - - 

0.5 0 0 1 - - 

0.6667 -0.3333 0 1 - - 

0.3889 -0.1111 0 1 - - 

0.25 0 0 1 - - 

0.3333 -0.1667 0 1 - - 

0 0 1 2 2 2 

 

Table (E.12) Determinacy analysis of the semi-regular (3.6.3.6) Kagome 

lattice (Fig E.2a) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.1 0.2 0 0 - - 

0.2 0.3 0 0 - - 

0.125 0.125 1 1 0 0 

0.3 0 1 1 0 0 

0.25 0.25 1 1 0 0 

0.5 0 1 1 1 1 

0 0 3 3 2 2 

 

 

 

 

 

 

 

 

 



259 

 

Table (E.13) Determinacy analysis of the semi-regular 4.6.12 lattice (Fig E.2b) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.4167 0.1667 7 13 2 2 

0.5833 -0.1667 7 13 2 2 

0.5833 -0.4167 7 13 2 2 

0.4167 -0.0833 7 13 2 2 

0.3333 0.3333 7 13 2 2 

0.5 0 7 13 2 2 

0.6667 -0.3333 7 13 2 2 

0.5 -0.5 7 13 2 2 

0.4 -0.1 7 13 2 2 

0.1667 0.1667 7 13 2 2 

0.25 0 7 13 2 2 

0.3333 -0.1667 7 13 2 2 

0.25 -0.25 7 13 2 2 

0 0 7 13 2 2 

 

Table (E.14) Determinacy analysis of the semi-regular 33.42 lattice (Fig E.2c) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.61603 0.38397 1 0 - - 

0.61603 0.13397 1 0 - - 

0.38397 -0.13397 1 0 - - 

0.38397 0.11603 1 0 - - 

0.5 0.5 2 1 0 0 

0.73205 0.26795 1 0 - - 

0.5 0 1 0 - - 

0.26795 -0.26795 1 0 - - 

0.4 0.1 1 0 - - 

0.25 0.25 2 1 0 0 

0.36603 0.13397 1 0 - - 

0.25 0 1 0 - - 

0.13397 -0.13397 1 0 - - 

0 0 3 2 2 2 

 

Table (E.15) Determinacy analysis of the semi-regular 32.4.3.4 lattice (Fig E.2d) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.25 0.25 2 0 - - 

0.75 -0.25 2 0 - - 

0.75 -0.5 2 0 - - 

0.5 -0.5 2 0 - - 

0 0.5 2 0 - - 

0.5 0 2 0 - - 

1 -0.5 2 0 - - 

0.4 -0.1 2 0 - - 

0.25 -0.25 2 0 - - 

0 0.25 2 0 - - 

0.25 0 2 0 - - 

0.5 -0.25 2 0 - - 

0 0 4 2 2 2 
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Table (E.16) Determinacy analysis of the semi-regular 3.4.6.4 lattice (Fig E.2e) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.58333 0.41667 1 1 1 1 

0.58333 0.16667 1 1 1 1 

0.41667 -0.16667 1 1 1 1 

0.41667 0.083333 1 1 1 1 

0.5 0.5 1 1 1 1 

0.66667 0.33333 1 1 1 1 

0.5 0 1 1 1 1 

0.33333 -0.33333 1 1 1 1 

0.4 0.1 1 1 1 1 

0.25 0.25 1 1 1 1 

0.33333 0.16667 1 1 1 1 

0.25 0 1 1 1 1 

0.16667 -0.16667 1 1 1 1 

0 0 3 3 2 2 

 

Table (E.17) Determinacy analysis of the semi-regular 3.122 lattice (Fig E.2f) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.5833 0.4167 0 3 - - 

0.5833 0.1667 0 3 - - 

0.4167 -0.1667 0 3 - - 

0.4167 0.0833 0 3 - - 

0.5 0.5 0 3 - - 

0.6667 0.3333 0 3 - - 

0.5 0 0 3 - - 

0.3333 -0.3333 0 3 - - 

0.4 0.1 0 3 - - 

0.25 0.25 0 3 - - 

0.3333 0.1667 0 3 - - 

0.25 0 0 3 - - 

0.1667 -0.1667 0 3 - - 

0 0 1 4 2 2 

 

Table (F.18) Determinacy analysis of the semi-regular 4.82 lattice (Fig E.2g) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.5 0.25 0 2 - - 

0.5 0.5 0 2 - - 

0.5 0 0 2 - - 

0.33333 0.16667 0 2 - - 

0.25 0.25 0 2 - - 

0.25 0 0 2 - - 

0 0 1 3 2 2 
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Table (E.19) Determinacy analysis of the semi-regular 34.6 lattice (Fig E.2h) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

-0.41667 0.58333 3 0 - - 

-0.33333 0.66667 3 0 - - 

-0.5 0.5 3 0 - - 

-0.27778 0.38889 3 0 - - 

-0.16667 0.33333 3 0 - - 

-0.25 0.25 3 0 - - 

0 0 5 2 2 2 

 

Table (E.20) Determinacy analysis of the semi-regular DHT lattice (Fig E.3a) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.6667 -0.3333 7 0 - - 

0.5 0 7 0 - - 

0.3333 0.3333 7 0 - - 

0 0.5 7 0 - - 

-0.3333 0.6667 7 0 - - 

-0.5 0.5 7 0 - - 

-0.6667 0.3333 7 0 - - 

-0.5 0 7 0 - - 

-0.3333 -0.3333 7 0 - - 

0 -0.5 7 0 - - 

0.3333 -0.6667 7 0 - - 

0.5 -0.5 7 0 - - 

0.3333 -0.1667 7 0 - - 

0.25 0 7 0 - - 

0.1667 0.1667 7 0 - - 

0 0.25 7 0 - - 

-0.1667 0.3333 7 0 - - 

-0.25 0.25 7 0 - - 

-0.3333 0.1667 7 0 - - 

-0.25 0 7 0 - - 

-0.1667 -0.1667 7 0 - - 

0 -0.25 7 0 - - 

0.1667 -0.3333 7 0 - - 

0.25 -0.25 7 0 - - 

0 0 9 2 2 2 
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Table (E.21) Determinacy analysis of the Semi-Uni- Braced Square (SUBS) lattice 

(Fig E.3b) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.25 0.5 1 0 - - 

0.5 0.25 1 0 - - 

0.5 -0.25 1 0 - - 

0 0.5 1 0 - - 

0.5 0.5 2 1 1 1 

0.5 0 1 0 - - 

0.5 -0.5 2 1 1 1 

0.3 0.1 1 0 - - 

0 0.25 1 0 - - 

0.25 0.25 1 0 - - 

0.25 0 1 0 - - 

0.25 -0.25 1 0 1 0 

0 0 3 2 2 2 

 

Table (E.22) Determinacy analysis of the Triangular- Triangular (T-T) lattice (Fig 

E.3c) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

-0.1667 0.4167 0 0 - - 

0.1667 0.5833 0 0 - - 

0.4167 0.5833 0 0 - - 

0.5833 0.4167 0 0 - - 

0.5833 0.1667 0 0 - - 

0.4167 -0.1667 0 0 - - 

-0.3333 0.3333 0 0 - - 

0 0.5 0 0 - - 

0.3333 0.6667 0 0 - - 

0.5 0.5 0 0 - - 

0.6667 0.3333 0 0 - - 

0.5 0 0 0 - - 

0.3333 -0.3333 0 0 - - 

0.2593 0.2963 0 0 - - 

0 0.25 0 0 - - 

0.1667 0.3333 0 0 - - 

0.25 0.25 0 0 - - 

0.3333 0.1667 0 0 - - 

0.25 0 0 0 - - 

0.1667 -0.1667 0 0 - - 

0 0 2 2 2 2 
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Table (E.23) Determinacy analysis of the Semi-Double- Braced Square lattice (Fig 

E.3d) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.5 0.25 2 0 - - 

0.5 0.5 2 0 - - 

0.5 0 2 0 - - 

0.3333 0.1667 2 0 - - 

0.25 0.25 2 0 - - 

0.25 0 2 0 - - 

0 0 4 2 2 2 

 

 

Table (E.24) Determinacy analysis of the Equilaterals- Hexagon Square lattice (Fig 

E.3e) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.4167 0.1667 0 0 - - 

0.3333 0.3333 0 0 - - 

0.5 0 1 1 0 0 

0.2778 0.1111 0 0 - - 

0.1667 0.1667 0 0 - - 

0.25 0 1 1 0 0 

0 0 2 2 2 2 

 

Table (E.25) Determinacy analysis of the Uni- Braced Square lattice (Fig E.3f) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

-0.25 0.5 1 0 - - 

0.25 0.5 1 0 - - 

0.5 0.25 1 0 - - 

-0.5 0.5 1 0 - - 

0 0.5 1 0 - - 

0.5 0.5 1 0 - - 

0.5 0 1 0 - - 

0.1 0.3 1 0 - - 

-0.25 0.25 1 0 - - 

0 0.25 1 0 - - 

0.25 0.25 1 0 - - 

0.25 0 1 0 - - 

0 0 3 2 5 2 
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Table (E.26) Determinacy analysis of the Double- Braced Square lattice (Fig E.3g) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.25 0.5 2 0 - - 

0 0.5 2 0 - - 

0.5 0.5 2 0 - - 

0.1667 0.3333 2 0 - - 

0 0.25 2 0 - - 

0.25 0.25 2 0 - - 

0 0 4 2 2 2 

 

Table (E.27) Determinacy analysis of the Patched Kagome lattice (Fig E.3h) 

Wave-numbers 
# SSS # SIM 

PFV 

1ω  2ω  # SSS # SIM 

0.4167 0.5833 3 0 - - 

0.5833 0.4167 3 0 - - 

0.5833 0.1667 3 0 - - 

0.4167 0.3333 3 0 - - 

0.3333 0.6667 3 0 - - 

0.5 0.5 3 0 - - 

0.6667 0.3333 3 0 - - 

0.5 0 3 0 - - 

0.4 0.3 3 0 - - 

0.1667 0.3333 3 0 - - 

0.25 0.25 3 0 - - 

0.3333 0.1667 3 0 - - 

0.25 0 3 0 - - 

0 0 5 2 2 2 
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APPENDIX F 

Effective Elastic and Strength Properties of Pin-Jointed Lattice 

Materials: Applications 

In this Appendix, we apply the characterization methodology, developed in chapter four, to ten 

lattice topologies. Details of the characterization process of the effective stiffness and strength 

properties are demonstrated for two lattice topologies, namely, the semi-double braced square 

lattice and the 6.3
4

 lattice. The former has a square Bravais lattice symmetry and the latter has a 

hexagonal Bravais lattice symmetry. Results of the effective stiffness characterization of the other 

eight lattice topologies are reported. Stretching-dominated characteristics of the lattices are 

determined and their elastic moduli and strength properties are computed.  

F.1 Characterization of the Semi-Double-Braced Square Lattice 

This section describes the characterization of the stiffness and strength properties of the semi-

double braced square lattice topology that has a square Bravais lattice symmetry. We recall this 

lattice topology, shown previously in Fig (2.6d), into Fig (4.1) to describe its microscopic 

architecture in more details. This lattice structure can be generated by the candidate unit cells: A 

and B. Unit cell B, shown in Fig (F.1e) has eight cell elements of which four intersect the cell 

envelope extending to the adjacent unit cells and the other four are all contained within the cell 

envelope. Unit cell A, shown in Fig (F.1c) has also eight cell elements that are all contained 

within the cell envelope. Four dummy nodes, denoted as d1, d2, d3 and d4, are introduced to unit 

cell B at the intersection points between the cell envelope and the cell elements that extend 

between the adjacent cells.  

The purpose of this example is to demonstrate the accuracy of the DNS as the characterization 

process is carried out by the two unit cells, A and B. Characterization using unit cell A is straight 

forward and does not require the application of the DNS, however, the characterization using unit 

cell B requires the application of the DNS. Both characterization approaches generate the same 

elastic properties for the lattice material, which proves the accuracy of the proposed method. 
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(a) Lattice structure, (b) Cell envelope, (c) Unit cell A, (d) Unit cell B without dummy nodes, 

(e) Unit cell B with dummy nodes 

Fig. (F.1) The Semi-Double-Braced Square Lattice 

The characterization process starts by defining the bar, the node and the dummy node bases 

groups of unit cells A and B as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,0,5.0,5.0,0,0,5.0,5.0,0 −−−−−−=A

BG  

( ) ( ) ( ) ( ) ( ){ }0,1,1,0,0,1,1,0,0,0 −−=
A

NG , Φ=A

DG  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }5.0,5.0,0,5.0,5.0,5.0,5.0,0,5.0,5.0,0,5.0,5.0,5.0,5.0,0 −−−−−−=B

BG  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0,0,1,1,0,0,1,1,0,0,0 −−−−−−=
B

NG  

( ) ( ) ( ) ( ){ }5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0 −−−−=B

DG  

The direct translational bases are formulated as: ( )1,11 =
→

a  and ( )1,12 −=
→

a  

It should be noted that, 81 bjd = , 22 bjd = , 43 bjd =  and 64 bjd = . 

Equation (3.35) is used to derive the node and the bar bases dependency relations as shown in 

table (4.1).  

... Bar geometrical centroid        

... Real node      

... Dummy node  

(a) (c) (e) 

(1-c) 

 
           

1

→

a  2

→

a  

y  

x  

y  
(d) 

(b) 

B 

A 

A B 

x  

y  
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Table (F.1) Dependency analysis results for bases of candidate unit cells of the lattice shown 

in Fig (F.1a) 

Cell A- nodes Cell B- nodes 

Independent Dependent 
1

^

x  2

^

x  Independent Dependent 
1

^

x  2

^

x  

2j  
4j  1 1 2j  

4j  1 1 

2j  3j  1 0 2j  3j  1 0 

2j  5j  0 1 2j  5j  0 1 

- - - - 2dj  4dj  0 1 

- - - - 3dj  1dj  -1 0 

Cell A- Bars Cell B- Bars 

Independent Dependent 
1

^

x  2

^

x  Independent Dependent 
1

^

x  2

^

x  

5b  
7b  1 0 2b  6b  0 1 

6b
 8b  0 1 4b

 8b  -1 0 

 

The bases groups are used to derive the equilibrium and the kinematic systems of the finite 

structure of the unit cells as: 

For unit cell A: 







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
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
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
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−
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AA , ( )TAA AB =  (F.1a) 

For unit cell B: 
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         , ( )TB
d

B
d AB =   

 

 

(F.1b) 

 

 

 

Eliminating the degrees of freedom associated with the dummy nodes, generates the final forms of 

the equilibrium and the kinematic matrices as: 


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B
A  , ( )TBB AB =

 
(F.2) 

where A  and B  are the equilibrium and the kinematic matrices, respectively. The superscripts A 

and B denote unit cells A and B, respectively; and the subscript d denotes a matrix system that 

includes the degrees of freedom associated with the dummy nodes. The dotted rectangle in the 
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formulation of the matrix
B
dA , eqn (F.1b), denotes the modes in the row space of the equilibrium 

matrix that are associated with the degrees of freedom of the dummy nodes and that are 

eliminated to obtain the matrix
BA , eqn (F.2). The superscript T denotes the transpose of the 

matrix, as the kinematic matrix is the transpose of the equilibrium matrix, as shown in §3.2.4.  

Once the kinematic and the equilibrium systems are formulated, the dependency relations (table 

(F.1)) are used to apply the Bloch's wave reduction at the different wave-numbers derived from 

the irreducible Brillouin zone, followed by the determinacy analysis of the infinite structure of the 

lattice. The determinacy analysis of the pin-jointed infinite structure of the lattice depicted in Fig 

(F.1a) shows that this lattice is kinematically determinate and statically indeterminate, which 

typifies this structure as stretching-dominated, as shown in §3.8. 

In the following step, we formulate matrix E of the Cauchy-Born kinematic boundary condition, 

eqn (4.5), as: 





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












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


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−
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−
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5.010

5.001

020

100

5.010

5.001

000

000

000

000

,

5.010

5.001

5.010

5.001

000

000

000

000

5.010

5.001

020

100

5.010

5.001

000

000

000

000

AB
ΕΕ

                     (F.3) 

The above transformation matrix Ε  is used to derive the matrix system, formulated in eqn (4.9), 

as: 
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 These matrix systems are then employed to write the element deformations in terms of the 

macroscopic strain field as: 
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Computing the null space of the right hand side matrices, given in eqn (F.5), generates an empty 

null spaces which indicates that this lattice structure constructs a stretching-dominated lattice 

material as there is no macroscopic strain field generated by inextensional deformations. 

We use the element deformation vectors of the two unit cells, formulated in eqn (F.5), to derive 

the strain energy densities of the lattice. The strain energy densities are employed to obtain the 

homogenized stiffness matrix of the lattice material by applying Castigliano’s theorem. It is found 

that the two deformation vectors generate identical homogenized, fourth order stiffness tensor for 

the lattice material, as:  
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This result demonstrates the accuracy of the DNS in the application of the Cauchy-Born 

hypothesis necessary to homogenize the stiffness properties of lattice materials. 

A similar check for the stretching-dominated behavior of the material can be performed on the 

stiffness tensor, derived in eqn (F.6). This can be done by computing the null space of the 

stiffness tensor which search for any macroscopic strain fields generated by zero macroscopic 

stress fields, i.e. with no material resistance. Applying this check to the stiffness matrix developed 

in eqn (F.6) generates an empty null space which again indicates that this is a stretching-

dominated lattice material. 

Considering an out-of-plane unit length of the lattice, the relative density of the lattice material, 

shown in Fig (F.1a), can be simply formulated as:  









==

−

L

HL
L 3.41

ρ

ρ
ρ       (F.7) 

Using eqn (F.7), the stiffness matrix in eqn (F.6) can be modified as:  
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
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==
−−

 0.1036 00

 00.39640.1036

00.1036  0.3964

L
E

ρL
L

K
K     (F.8) 

Inverting the stiffness matrix, given in eqn (F.8), the elastic moduli of the lattice material, shown 

in Fig (F.1a), can be derived as: 
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To compute the strength properties of the lattice material, shown in Fig (F.1a), the matrix system 

in eqn (4.29) can be computed as: 
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The matrix system in eqn (F.10) can be used to derive the critical strength of the lattice material, 

shown in Fig (F.1a), formulated in eqn (4.30), as: 

ρσσ µ
crcr

L

















=

2071.0

3694.0

3694.0

     (F.11) 

Using eqn (4.32) the plastic yield strength of the lattice material, shown in Fig (F.1a), can be 

computed as in: 
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Similarly, using eqn (4.36) the instability buckling strength of the lattice material, shown in Fig 

(F.1a), can be computed as in: 
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F.2 Characterization of the 6.3
4

 Lattice Material 

In this section we describe the characterization process to determine the stiffness and the strength 

properties of the lattice that has the Schlafli symbol of 6.3
4

which has a hexagonal Bravais lattice 

symmetry. We recall the 6.3
4

lattice topology, shown previously in Fig (2.5h), into Fig (F.2) to 

describe its microscopic architecture in more details.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (F.2) (a) Lattice structure, (b) Cell envelope, (c) Unit cell without dummy nodes, (d) 

Unit cell with dummy nodes 

The unit cell of the 6.3
4

lattice contains 6 real nodes and 24 bars, as shown in Fig (F.2d). Since 

there are 18 intersection points between the cell envelope and the bar elements that extend 

between adjacent cells, we introduce a dummy node for each intersection. The groups of bar and 

node position vectors are used to formulate the kinematic and equilibrium matrices of the unit cell 

structure. 

From the geometry of the unit cell envelope, the direct translational bases can be formulated as 


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
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
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,

2

5
1a , ( )3,22 −=
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a  

Real Nodes 
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the unit cell bar and real node position vectors is computed on a unit cell bases using (eqn (3.35)). 

This test reveals that all the real nodes are independent whereas the bars exhibit dependencies, as 

shown in Table (F.2). 

Table (F.2) Dependency relations of unit cell bars 

 

Independent bars Dependent bars 
1

^

x  2

^

x  

7 14 0 1 

8 19 1 1 

9 18 1 1 

10 17 1 1 

11 22 1 0 

12 21 1 0 

13 20 1 0 

15 24 0 -1 

16 23 0 -1 

The numeric tags of the cell elements (table (F.2)) are used in Fig (F.2) to label the elements of 

the unit cell of the 6.3
4

 lattice. The dependency relations are used to generate the bars and the 

nodes transformation matrices, which are necessary to reduce the kinematic and the equilibrium 

systems to their periodic forms. The reduced equilibrium and kinematic matrices are computed at 

each wave-number, generated from the reciprocal lattice irreducible Brillouin zone, and the 

determinacy state of the infinite structure is computed. 

The determinacy analysis shows that the infinite structure of the 6.3
4

lattice is always 

kinematically determinate and statically indeterminate which indicates that this lattice material is 

a stretching dominated. The DNS is used to generate the matrixΕ , which is necessary to 

formulate the kinematic boundary condition of the Cauchy-Born hypothesis. The singular value 

decomposition is used to formulate the microscopic element deformations in terms of the 

macroscopic strain field through the transformation matrix, M. The null space of the matrix M is 

finally computed to identify any special failure modes of macroscopic strain fields. The analysis 

shows that the 6.3
4

lattice is stable under all macroscopic strain fields. 

The computed element deformations are used to determine the strain energy density (eqn (4.20)) 

and then to compute the macroscopic stiffness (eqn (4.21)) of the lattice. Finally, the compliance 

matrix of the material and the material elastic moduli (eqn (4.23)) can be derived. For a lattice 

material with a unit out of plane thickness, the stiffness and the density are written, respectively, 

in eqns (F.14) and (F.15), as: 
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where LK  is the lattice material stiffness matrix. The relative stiffness can be computed as: 
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where LK
−

 is the lattice material relative stiffness matrix.  

Once the stiffness tensor is computed, the compliance tensor can be computed as: 
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This compliance tensor is used to compute the material elastic moduli as: 
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The Poisson`s ratios of the 6.3
4

lattice material can also be computed as: 

( ) ( ) 0.5434==
yxLxyL υυ

   (F.19) 

The critical strength properties are computed as: 
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Equation (F.20) is used to compute the yield strength properties as: 
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and the buckling strength properties are computed as: 
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In the following we apply the same characterization process to determine the elastic properties of 

other eight lattice topologies. We use the elastic properties derived in this Appendix to develop 

the stiffness selection design charts, presented in chapter 4. 

F.3 Double Hexagonal Triangulation (DHT), shown in Fig (2.6a) 
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F.4 Full Triangulation (36), shown in Fig (2.4b) 
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F.5 Hexagonal Honeycombs, shown in Fig (2.4c) 
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From the stiffness matrix of the hexagonal lattice it can be realized that this lattice material is 

bending-dominated, the stiffness matrix of its pin-jointed lattice version is singular as the lattice 

has two modes of macroscopic strain fields that are developed with zero material resistance. 

These two modes can be generated by computing the null space of the stiffness matrix which 

generates: 
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The pin-jointed hexagonal honeycomb collapses by any macroscopic strain field generated as a 

linear combination of these two modes. Therefore, the compliance matrix and elastic moduli of 

the pin-jointed hexagonal honeycomb lose their significance. We do not present them here. 

F.6 Kagome Lattice, shown in Fig (2.5a) 
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F.7 Square Lattice, shown in Fig (2.4a) 
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The computation of the null space of the stiffness matrix indicates that this lattice material 

collapses at macroscopic strain field of [ ]T100 . Accordingly, the computation of the 

compliance matrix and the elastic moduli are not presented as the material is bending-dominated.  

 

F.8 Semi-Uni-Braced Square Lattice, shown in Fig (2.6b) 
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F.9 Uni- Braced Square Lattice, shown in Fig (2.6f) 
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F.10 Double- Braced Square Lattice, shown in Fig (2.6g)
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The elastic properties of the stretching-dominated lattice materials are plotted on the design 

charts, shown in Figs (4.1), (4.2) and (4.3).  These charts can help in the selection process of 

lattice topologies that generate specific stiffness properties required by certain applications. 
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Appendix G 

Elastic Properties of Rigid Jointed 2D Lattice Materials: 

Applications 

G.1 Example 

In this section, we describe the characterization process, developed in chapter seven, to determine 

the stiffness properties and the elastic moduli of the 2D rigid-jointed lattice material that has a full 

triangulated topology. The full triangulated topology is represented by the Schlafli symbol of 36 

which has a hexagonal Bravais lattice symmetry. We recall the full triangulated lattice topology, 

shown previously in Fig (2.4b), into Fig (G.1) to describe its microscopic architecture in more 

details.  

 

 

 

 

 

 

 

Fig. (G.1) (a) Triangular lattice structure, (b) Cell envelope, (c) Unit cell 

The unit cell of the triangular lattice contains 3 real nodes and 3 bars, as shown in Fig (G.1c). 

Considering the origin of the Cartesian coordinate system to be located at node 1, the bar and the 

node bases groups can be formulated as: 
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Following the nodal numbering shown in Fig (G.1c) and using eqn (G.1), the stiffness system of 

the rigid-jointed finite structure of the unit cell of the triangular lattice is written as: 

 

1 
2 

3 

mb

lj  

x  

y  

... Bar geometrical centroid            ... Rigid node  

(a) (b) (c) 

1

→

a

2

→

a

Unit cell Cell envelope 

1 

2 3 
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where the stiffness systems presented in eqns (G.2) and (G.3) are for the triangular unit cell bar 

and beam stiffness resistances, respectively.  

From the geometry of the unit cell envelope, the direct translational bases can be formulated as: 

( )0,11 =
→

a , 









=

→

2

3
,5.02a . To determine the direct lattice bases, the dependency between the 

unit cell bar and node position vectors is computed on a unit cell bases using (eqn (3.35)). This 

test reveals that all bars are independent whereas the nodes exhibit dependencies, as shown in 

Table (G.1). 

Table (G.1) Dependency Relations of Unit Cell Nodes 

 

Independent nodes Dependent nodes 
1

^

x  2

^

x  

1 2 1 0 

1 3 0 1 

The dependency relations are used to generate the transformation matrices, which are necessary to 

reduce the kinematic and the equilibrium systems to their periodic forms.  
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For the triangular lattice shown in Fig (G.1), the nodal displacements and the nodal forces 

transformation matrix systems are formulated respectively, in eqns (G.4) and (G.5), as: 
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 (G.5) 

Using the transformation matrices, formulated in eqns (G.4) and (G.5) at wave-number ( )0,0=ω

the reduced stiffness system for the triangular lattice, shown in Fig (G.1), can be written as: 
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The Cauchy-Born kinematic boundary condition of the full triangulated lattice is derived as: 
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 Substituting eqn (G.6) into eqns (G.2) and (G.3) and inverting the stiffness matrices after 

eliminating all modes related to rigid-body motion and internal mechanisms, the reduced form of 

the nodal deformations can be formulated for the beam and the bar stiffness resistances. The 

reduced forms of the nodal deformations can be easily expanded into the full nodal deformations 

vector of the unit cell using eqn (G.7). The full vectors of nodal deformations are now substituted 

into eqn (G.2) and (G.3) to compute the vectors of nodal forces.  The microscopic nodal 

deformations and forces are computed in terms of the macroscopic strain field as: 
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Equations (G.8) and (G.9) are now used to compute the macroscopic fourth order stiffness tensor 

as: 
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where the relative density of the triangulated lattice material can be easily computed as 









=

−

L

H
L 3.4641ρ . 

The compliance matrix can be computed using eqn (G.10) and the elastic moduli and Poisson's 

ratios of the rigid-jointed triangular lattice are written as: 



285 

 

 

( ) ( )

( ) ( )
2

2

2

2

2

261875

26625

,
5000

)3625(
,

261875

)26625(

L

L
yxLxyL

LL
L

L

LL
yyLxxL GEE

−

−

−−

−

−−

+

−
==

+
=

+

+
==

ρ

ρ
νν

ρρ

ρ

ρρ

  (G.11) 

 

The characterization method, developed in chapter seven, is applied to other 12 lattice topologies 

and their results are reported in the following sections. 

 

G.2 Square Lattice Material 

 

 

 

 

 

 

 

Fig (G.2) Microstructure of the 2D square lattice material 
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G.3 Kagome Lattice Material 

 

 

 

 

 

 

 

 

Fig (G.3) Microstructure of the 2D Kagome' lattice material 
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 G.4 Lattice Material with Schlafli Symbol of 33.42 

 

 

 

 

 

 

 

Fig (G.4) Microstructure of the 2D lattice material with Schlafli symbol of 33.42 
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G.5 Lattice Material with Schlafli Symbol of 34.6 

 

 

 

 

 

 

Fig (G.5) Microstructure of the 2D lattice material with Schlafli symbol of 34.6 
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G.6 Double Hexagonal Triangulation (DHT) Lattice Material 

 

 

 

 

 

 

 

Fig (G.6) Microstructure of the DHT lattice material 
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G.7 Semi-Uni- Braced Square (SUBS) Lattice Material 

 

 

 

 

 

Fig (G.7) Microstructure of the SUBS lattice material 
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G.8 Triangular- Triangular (TT) Lattice Material 

 

 

 

 

 

 

 

 

Fig (G.8) Microstructure of the TT lattice material 
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G.9 Semi-Double Braced Square (SDBS) Lattice Material 

 

 

 

 

 

 

 

Fig (G.9) Microstructure of the SDBS lattice material 
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G.10 Uni- Braced Square (UBS) Lattice Material 

 

 

 

 

 

 

Fig (G.10) Microstructure of the UBS lattice material 
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G.11 Double-Braced Square (DBS) Lattice Material 

 

 

 

 

 

 

Fig (G.11) Microstructure of the DBS lattice material 
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G.12 Patched Kagome' Lattice Material 

 

 

 

 

 

 

 

Fig (G.12) Microstructure of the patched Kagome' lattice material 
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G.13 Semi-Hexagonal Triangulation (SHT) Lattice Material 

 

 

 

 

 

Fig (G.13) Microstructure of the SHT lattice material 
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Appendix H 

Comprehensive Stiffness Properties of 2D Pin- and Rigid-Jointed 

Lattice Materials: Application 

Following the approach developed in chapter 8, we derive the comprehensive stiffness properties 

to two types of planar lattice materials, the square lattice and the lattice material with Schlafli 

symbol of 23 4.3 .  

H.1 Square Lattice Material 

The material stiffness properties of the pin-jointed and the rigid-jointed square lattice material are 

derived in Appendix G as: 
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where the relative density of the square lattice is formulated as: 







=

−

L

H
L 2ρ . 

To formulate the geometrical stiffness, the axial forces in the microscopic elements of the infinite 

lattice are computed. First we formulate the equilibrium matrix of the pin-jointed unit cell of the 

square lattice as: 

































−

−

−

−

=

0100

1000

0100

0010

0001

0010

0001

1000

A      (H.3) 

The equilibrium matrix of the unit cell, eqn (H.3), is used to formulate the reduced equilibrium 

matrix of the infinite lattice at wave-number )0,0(=ω , using the Bloch's theorem, as: 
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   







=

00

00~
A       (H.4) 

The reduced kinematic matrix of the infinite square lattice can be derived as 
T

AB
~~

= which 

generates a typical matrix to eqn (H.4). Using the reduced equilibrium and kinematic matrices of 

the square lattice at wave-number )0,0(=ω , the states of self-stress and the states of mechanisms 

of the lattice can be derived as: 

   







=

10

01~

SS       (H.5a) 

   







=

10

01~

D       (H.5b) 

From eqn (H.5b), it can be realized that there are only two mechanisms. It can be concluded, 

without applying the product force vector approach, that the two modes of mechanisms are rigid-

body motion of the lattice. Eliminating the modes of rigid-body motion from the row space of the 

reduced equilibrium matrix generates the empty matrix: 

     [ ]=A
~~

     (H.6) 

Again, the null space of the matrix, derived in eqn (H.6), is computed to generate the states of 

self-stress of the infinite square lattice that are associated only with modes of states of internal 

mechanisms which generates an empty null space. This is interpreted as zero element forces. 

Using this result, the comprehensive stiffness of the square lattice material is computed as: 
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Using eqn (H.7), the elastic moduli and Poisson's ratios can be computed only for the rigid-jointed 

square lattice material as: 

( ) ( ) ( ) ( ) 0,
16

1
,

2

1
3

=====
−−

yxLCrxyLCrLLrLyyLCrxxLCr GEE ννρρ  (H.8) 
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H.2 The 23 4.3  Lattice Material 

The material stiffness properties of the pin-jointed and the rigid-jointed 23 4.3  lattice material are 

derived in Appendix G as: 
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where the relative density of the 23 4.3  lattice is formulated as:

 








=

−

L

H
L 6795.2ρ . 

To formulate the geometrical stiffness, the axial forces in the microscopic elements are computed. 

We first formulate the equilibrium matrix of the unit cell of the lattice using the DNR where the 

DNS is employed for this analysis. The equilibrium matrix is used to generate the reduced 

equilibrium matrix of the infinite lattice at wave-number )0,0(=ω , using the Bloch's theorem, as: 
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The reduced kinematic matrix of the infinite lattice can be derived as 
T

AB
~~

= which is used along 

with the equilibrium matrix to derive the states of self-stress and the states of mechanisms of the 

lattice, at wave-number )0,0(=ω , as: 
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The two mechanisms in eqn (H.11) are translational rigid-body motion and no need for the 

application of the product force vector analysis. Also, the non-pivotal columns in the reduced 

kinematic matrix are determined as columns number 3 and 4. The next step is to eliminate the 
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third and the fourth rows in the reduced equilibrium matrix to generate the truncated equilibrium 

matrix as: 
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Again, the null space of the equilibrium matrix, derived in eqn (H.12), is computed to generate the 

states of self-stress of the infinite lattice that are associated only with modes of states of internal 

mechanisms which generates a state of self-stress matrix typical to the one derived in eqn (H.11). 

Next, the vector of imposed elongations and the flexibility matrix are derived which are used to 

derive the reduced global state of self-stress as: 
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The reduced global state of self-stress, eqn (H.13), is expanded to the unit cell level to compute 

the axial forces in all microscopic cell elements which are used to derive the geometrical stiffness 

of the 23 4.3  lattice material.  

The comprehensive stiffness of the 23 4.3  lattice material is derived as:  
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The comprehensive stiffness matrices of other eleven 2D rigid-jointed lattice topologies are 

computed and reported in the following sections.  
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H.3 Triangular Lattice Material 

 

 

 

 

 

Fig (H.3) Microstructure of the 2D triangular lattice material 
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 H.4 Lattice Material with Schlafli Symbol of 33.42 

 

 

 

 

 

 

Fig (H.4) Microstructure of the 2D lattice material with Schlafli symbol of 33.42 
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H.5 Lattice Material with Schlafli Symbol of 34.6 

 

 

 

 

 

 

 

Fig (H.5) Microstructure of the 2D lattice material with Schlafli symbol of 34.6 
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H.6 Double Hexagonal Triangulation (DHT) Lattice Material 

 

 

 

 

 

 

 

Fig (H.6) Microstructure of the DHT lattice material 
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H.7 Semi-Uni- Braced Square (SUBS) Lattice Material 

 

 

 

 

 

Fig (H.7) Microstructure of the SUBS lattice material 
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H.8 Triangular- Triangular (TT) Lattice Material 

 

 

 

 

 

 

 

 

Fig (H.8) Microstructure of the TT lattice material 
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H.9 Semi-Double Braced Square (SDBS) Lattice Material 

 

 

 

 

 

 

 

Fig (H.9) Microstructure of the SDBS lattice material 
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H.10 Uni- Braced Square (UBS) Lattice Material 

 

 

 

 

 

Fig (H.10) Microstructure of the UBS lattice material 
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H.11 Double-Braced Square (DBS) Lattice Material 

 

 

 

 

 

 

Fig (H.11) Microstructure of the DBS lattice material 
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H.12 Patched Kagome Lattice Material 

 

 

 

 

 

 

 

 

Fig (H.12) Microstructure of the patched Kagome lattice material 
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H.13 Semi-Hexagonal Triangulation (SHT) Lattice Material 

 

 

 

 

 

Fig (H.13) Microstructure of the SHT lattice material 
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H.14 Kagome lattice material 

 

 

 

 

 

 

 

 

Fig (H.14) Kagome lattice structure 
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