A Domain Specific Language for the
Models and Data (MODA) Framework
in Model-Driven Engineering

Mercy Asamoah

A thesis submitted to McGill University
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

McGill

Department of Electrical and Computer Engineering

McGill University
Montreal, Quebec, Canada

August 2023

(© Mercy Asamoah 2023

Abstract

Over the years, software engineering technology has improved and advanced massively, and as
such, it has greatly impacted the development cycle of systems. Some systems can now even
be developed entirely with little human involvement with the help of model-driven engineering
techniques. Recently, systems have become very data-centric; hence there is the need to understand
if these systems can be built in a model-driven way and how data-centric approaches fit into this
picture. The Models and Data (MODA) framework is a conceptual reference framework that
clarifies the various roles that models and data play in software development and operation of socio-
technical systems. Using this framework, we are able to view the various parts of the system that
serve as models and different kinds of data, analyze the role they each play, and finally understand
how they work together to make the system function. The authors of the MODA framework outline
the architecture and vast applicability of the framework but there is currently no tool support to
help practitioners build MODA models. Also, the broad applicability of the framework is claimed
but only preliminary evidence is given. This thesis introduces a domain-specific language and tool
support for the MODA framework. As there is currently no existing metamodel for the framework,
this thesis contributes to the existing framework with a well-defined metamodel that accurately
depicts the framework’s elements. To further validate this metamodel, a tool was built using the
Xtext and Sirius language engineering environments. This tool enables modelers to create their own
MODA models to represent the socio-technical system they would want to analyze. Furthermore,
an evaluation of the proof-of-concept tool and the MODA framework with the help of an education-
based exploratory study gives further evidence of the broad applicability of the MODA framework

by representing key courses in the Applied Artificial Intelligence minor and Software Engineering

i

Abstract

minor to further demonstrate the framework and tool’s applicability to a broad range of concepts,

technologies, and processes.

iii

Abrégé

Au fil des ans, la technologie du génie logiciel s’est améliorée et a progressé considérablement, et
en tant que telle, elle a eu un grand impact sur le cycle de développement des systemes. Certains
systemes peuvent méme maintenant étre développés entierement avec peu d’intervention humaine a
I’aide de techniques d’ingénierie basées sur des modeles. Récemment, les systemes sont devenus tres
centrés sur les données; il est donc nécessaire de savoir si ces systeémes peuvent étre construits selon
une maniere basée sur les modeles et comment les approches centrées sur les données s’integrent dans
ce projet. ”The Models and Data” (MODA), le cadre Modeles et donnés est un cadre conceptuel de
référence qui clarifie les différents roles que jouent les modeles et les données dans le développement
logiciel et ’exploitation de systemes sociotechniques. A Taide de ce cadre, nous sommes en mesure
de visualiser les différentes parties du systéme qui servent comme modeles et différents types de
données, d’analyser le réle que jouent chacune et, enfin, de comprendre comment elles fonctionnent
ensemble pour faire fonctionner le systéeme. Les auteurs du cadre MODA décrivent I’architecture
et la vaste applicabilité du cadre, mais il n’existe actuellement aucun outil de soutien pour aider les
praticiens & construire des modeles MODA. De plus, 'applicabilité large du cadre est revendiquée,
mais seules des preuves préliminaires sont fournies. Cette these présente un langage spécifique
au domaine et un outil de soutien pour le cadre MODA. Comme il n’existe actuellement aucun
métamodele pour le cadre, cette these en contribue un métamodele bien défini qui décrit en détail
les éléments du cadre. Pour valider davantage ce métamodele, un outil a été construit a l'aide
des environnements d’ingénierie linguistique Xtext et Sirius. Cet outil permet aux modélisateurs
de créer leurs propres modeles MODA pour représenter le systéme sociotechnique qu’ils souhaitent

analyser. En outre, une évaluation de I'outil de preuve de concept et du cadre MODA a I’aide d’une

v

Abrégé

étude exploratoire basée sur I’éducation fournit une preuve supplémentaire de 'applicabilité large
du cadre MODA en représentant des cours clés de la mineure en génie logiciel et de la mineure en
intelligence artificielle appliquée, afin de démontrer davantage I'applicabilité du cadre et de 'outil

a un large éventail de concepts, technologies et processus.

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Gunter Mussbacher for
his invaluable guidance, support, and mentorship throughout my research journey. I learned so
much from him over the past few years. His expertise and encouragement have been instrumental
in shaping this thesis.

Secondly, I would like to thank Professor Benoit Combemale of the University of Rennes for his
valuable feedback and for taking the time to review my models. His insights and suggestions have
significantly improved the quality of my research.

To Professor Jorg Kienzle and the entire research group, I am grateful for their collaborative
efforts and for engaging in insightful discussions about various courses with me.

I would also like to extend a thank you to my friend Younes for his assistance. His contributions
have greatly enriched my work, and I am grateful for his unwavering support.

I would like to express my heartfelt gratitude to my friends, for their encouragement and
assistance. To my family, I am eternally grateful for their unconditional love, encouragement,
and belief in my abilities. Their unwavering support has been a constant source of inspiration
throughout this endeavor.

Finally, I am indebted to God for His grace and provision throughout my MS program and for

guiding me to this point in my journey.

vi

Table of Contents

Abstract ii
Abrégé e e iv
Acknowledgements e vi
Table of Contents s vii
List of Tables ix
List of Figures e X
List of Programs e xi
List of Abbreviations xii
1 Introduction e 1
1.1 Problem Definition and Motivation 1
1.2 Thesis Methodology and Contributions 3
1.3 Thesis Overview 4

2 Background 6
2.1 Models and Data e 6
2.2 The MODA Framework e 8
2.3 Xtext . . . e 15
2.4 Eclipse Modeling Framework 18
2.5 SITIUS . o v o o s, 21
2.6 SUummary e e e e 22

3 MODA Metamodel e 23
3.1 MODA Metamodel 24
3.1.1 Metamodel Variation 1 24

3.1.2 Metamodel Variation 2o 26

3.1.3 Metamodel Variation 3 27

3.1.4 Metamodel Variation 4o 28

3.1.5 Final Metamodelo 29

3.2 Metamodel Validation Rules 29
3.3 SUMmMATY e e 32

vil

Table of Contents

4 Sirius Tool Implementation and Verification 33
4.1 Metamodel e 33
4.2 Viewpoint Specification Project o 35

4.2.1 Defining a Diagramo 35
4.2.2 Nodes e 36
4.2.3 Edges e 37
4.2.4 Palette e e 37
4.2.5 Validation e 41
4.3 Diagram Representation oL L 42
4.4 SUMMATY . . . o v v e e e e e e e e e 43

5 MODA Education Application 44
5.1 ECSE 326 - Software Requirements Engineering 45
5.2 ECSE 223 - Model-based Programming 51
5.3 ECSE 321 - Introduction to Software Engineering 53
5.4 ECSE 428 - Software Engineering Practise 57
5.5 ECSE 429 - Software Validation 60
5.6 ECSE 439 - Software Language Engineering 63
5.7 ECSE 250 - Fundamentals of Software Development 67
5.8 ECSE 551 - Machine Learning for Engineers 69
5.9 ECSE 552 - Deep Learning Lo 73
5.10 Discussion and Observations 76

5.10.1 Discussiono 7
5.10.2 Observations 0 e e e 77
B.A1T Summaryo e e 80

6 Related Work e 81
6.1 Review of Related Work 84
6.2 SUMmMATry e 92

7 Conclusion e e 93
7.1 Contributions and Findings L oo 93
7.2 Future Work e 94

Bibliography e 96

Appendices

A Xtext Textual Language Definition for the MODA Metamodel 106

B Java Code for Metamodel Validation 112

viil

3.1 Action Types Depicted in Variation 1

6.1 List of MODA Papers Found from the Google Scholar Search

List of Tables

X

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

List of Figures

The MODA Framework 9
Smart Power Grid Models Diagram oL 12
Examples of the MODA Framework 14
Ecore Representation of Xtext Language, 18
Metamodel Representation of Xtext Language 19
Genmodel Representation of Xtext Language 19
Sirius Representation of Xtext Language 21
MODA Metamodel - First Variation 24
MODA Metamodel - Second Variation 26
MODA Metamodel - Third Variation 27
MODA Metamodel - Fourth Variation 28
MODA Metamodel e e 29
Ecore Representation of the MODA Framework 34
Diagram Definition in Sirius Perspectiveo 35
Snapshot of Metamodel Linkage in the Sirius Perspective 36
Snapshot of Relation-based Edges Properties for Action A 37
Snapshot of Palette Setup for Model Node Creation Tool 38
Snapshot of the Properties for the Node Creation Model 38
Snapshot of the Properties for Setting a Name for the ModelNode 39
Snapshot of Palette Setup for the Edge Creation Tool 39
Snapshot of the Properties for an Edge Creation 40
Snapshot of Palette Setup for the Edge Reconnection Tool 40
Snapshot of the Validation Rules in the Sirius Perspective 41
Snapshot of the Warning for the Semantic Validation Rule ModelValidationTest . . 41
Business Process Modeling and Mining 42
ECSE 326 MODA Diagram e 46
ECSE 223 MODA Diagram ot 51
ECSE 321 MODA Diagram o ittt et e e 54
ECSE 428 MODA Diagram ot 58
ECSE 429 MODA Diagram e 61
ECSE 439 MODA Diagram ot 64
ECSE 250 MODA Diagram e 67
ECSE 551 MODA Diagram e 70
ECSE 552 MODA Diagram e 74
Heat Map Showing the Occurrence of Elements and Actions in each Course 78

2.1
2.2

4.1
4.2
4.3
4.4

Al
A2
A3
A4
A5

B.1

List of Programs

Xtext Grammar Language L L 15
Xtext Textual Model o 17
AQL Code for DataNode e 36
AQL Code for ModelNode e 36
AQL Code for Precondition Expression of Action A 37
AQL Code for Connection Complete Precondition of Action C 40
Xtext Grammar for Variation 1 106
Xtext Grammar for Variation 2 e 107
Xtext Grammar for Variation 3 108
Xtext Grammar for Variation 4 e 109
Xtext Grammar for Final Metamodel 110
Java Code for Metamodel Validation 112

xi

Al
API
AQL
ATDD
ATL
BDD
CASE
CI
CNN
DL
DSL
DT
EMF
GAN
GRL
IDE
JVM
L-MODA
LSTM
MDE
ML
MLP
MODA
MOF

List of Abbreviations

Artificial Intelligence

Application Programming Interface
Acceleo Query Language

Acceptance Test Driven Development
ATLAS Transformation Language
Behavior-driven Development
Computer-Aided Software Engineering
Continuous Integration
Convolutional Neural Network

Deep Learning

Domain-specific Language

Digital Twin

Eclipse Modeling Framework
Generative Adversarial Network
Goal-oriented Requirement Language
Integrated Development Environment
Java Virtual Machine

Languages, Models, and Data

Long Short-Term Memory Network
Model-driven Engineering

Machine Learning

Multilayer Perceptron

Models and Data

Meta-Object Facility

xii

LIST OF ABBREVIATIONS

MP-MODA
NLP
NN
OCL
OMG
ORM
QA
RNN
SAL
SCADA
SDK
SDLC
SE
SLE
SPG
STS
SVM
TDD
UCM
UML
UPTN
URN
USE
VAE
VM
VSM
XMI
XML
XP

Multi-Plane Models and Data
Natural Language Processing

Neural Network

Object Constraint Language

Object Management Group

Object Relational Mapping

Quality Assurance

Recurrent Neural Network
Self-Adaptable Language

Supervisory Control and Data Acquisition
Software Development Kit

Software Development Life Cycle
Software Engineering

Software Language Engineering

Smart Power Grid

Socio-technical System

Support Vector Machines

Test-driven Development

Use Case Map

Unified Modeling Language

Urban Public Transportation Network
User Requirements Notation
UML-based Specification Environment
Variational Autoencoder

Virtual Machine

Viewpoint Specification Model

XML Metadata Interchange
Extensible Markup Language

Extreme Programming

xiil

Introduction

In this introductory chapter, we provide the motivation for our research, the problem definition,
the description of our approach and contributions, as well as the thesis outline for the remaining

chapters.

1.1 Problem Definition and Motivation

Over the years, software engineering technology has improved and advanced massively, and as such,
it has greatly impacted the development cycle of systems. Some systems can now even be developed
entirely with little human involvement, i.e., more and more aspects of software engineering are now
automated. Model-driven Engineering (MDE) [27] [118] is a discipline of software engineering that
focuses on using models and model transformations to increase software development automation

and level of abstraction. The practices in MDE have been proven to improve the effectiveness and

1.1. Problem Definition and Motivation

efficiency of the development of software [39]. On the other hand, systems now require large vol-
umes of data to run efficiently. The recent success of Artificial Intelligence (AI) and, in particular,
Machine Learning (ML) [12] highlights the importance of data in the development, maintenance,
evolution, and execution of systems built with MDE techniques. In sectors such as transportation,
energy, and healthcare, numerous systems are considered socio-technical, given the human, orga-
nizational, and social factors considered during the system life cycle [31]. Socio-technical systems
can have wide-reaching consequences for the lives of their users.

During software development, questions may arise such as “what problem is the system going
to solve?”, “what type of data can be adopted to achieve this?”, “what kind of models can be
designed or implemented to build this system?”, and “what processes can be assumed to achieve
this?”, among others. Answers to these questions are crucial in getting a system to function. The
Models and Data (MODA) framework is a conceptual reference framework that clarifies the various
roles models and data play in software development and operation of socio-technical systems. In a
previous publication [31], the authors introduce the MODA framework and discuss and anticipate

that the framework may be used:

e as a teaching tool to shed light on the roles of data sources, models, and associated actions

across a wide range of life cycles of systems;

e to sort and analyze complicated engineering technologies and processes that will inform im-

portant engineering decisions involving significant systems (e.g., smart grid systems); and

e to better integrate diverse types of data sources and models by situating existing research

methodologies or initiating new research programs.

The authors outline the architecture and vast applicability of the MODA framework [31] but there
is currently no tool support to help practitioners build MODA models. Furthermore, the broad
applicability of the framework is discussed but only preliminary evidence is given. The framework is
claimed to apply to every software engineering tool, technology, and process. While some examples
are given to support this point, a more comprehensive and tangible way of checking its applicability

is missing.

1.2. Thesis Methodology and Contributions

1.2 Thesis Methodology and Contributions

This thesis introduces (i) a Domain-specific Language (DSL) as well as tool support (i.e., editor)
for the MODA framework and (ii) an evaluation of the proof-of-concept tool and the MODA
framework with the help of an education-based analysis. One can use this DSL to illustrate the
various models in a chosen domain and how these models interact with the data presented for the
selected socio-technical system. The exploratory studies in this thesis focus on understanding how
easily we can break down systems into their respective components and represent them with the
individual aspects of the MODA framework. Using this framework, we will be able to view the
various parts of the system that serve as models and data (i.e., input, output, measured or external
sources of data) to the system, analyze the role they each play, and finally understand how they
work together to make the system function effectively. This study further validates the framework
and tool’s applicability to various concepts, technologies, and processes. The contributions of this

thesis to this area of study are as follows:

e As there is currently no existing metamodel for the framework, we implement a metamodel

to accurately define the elements of the MODA framework.

e Expanding on prior knowledge of the MODA framework, we build a proof-of-concept editor
that supports this framework and graphically visualizes how models and data work together
in a selected socio-technical system. This editor is initially tested by specifying all existing

models from the original MODA publication [31].

e To further validate the applicability of the MODA framework, there has to be a criterion
to help us define the scope of tools, technologies, or processes to be considered during the
exploratory study. We choose an education-based analysis, as many tools, technologies, and
processes are taught in university courses. To further narrow the scope to a manageable size,
we look at key courses offered in two minor programs at McGill University. We model the
technologies, tools, and techniques used in select courses offered in the Software Engineering
Minor degree and Applied AI Minor degree at the Department of Electrical and Computer
Engineering. Finally, we validate if MODA will allow us to think and reason about these

courses with the help of our prototype editor.

1.3. Thesis Overview

e Observations and analysis are carried out to try and identify areas that the MODA framework
does not capture and how effective the framework is in modeling many situations. While
the MODA framework generally allows the courses to be captured well, the analysis reveals
aspects of the framework that may need additional investigation or expansion beyond the

existing definitions provided by the original MODA framework [31].

1.3 Thesis Overview

This thesis is organized into seven chapters as follows:

e Chapter 1: Introduction
This chapter covers the problem context, problem definition, thesis methodology and contri-

bution, and the thesis overview. The author contributed to the full chapter.

e Chapter 2: Background
This chapter provides the background information needed to understand this thesis, i.e., the
Eclipse Modeling Framework (EMF) [45], Ecore [44], Sirius [48], and an overview of the
Models and Data (MODA) framework, including its types of models and data, and their

various roles. The author contributed to the full chapter.

e Chapter 3: MODA Metamodel
This chapter presents the various variations of the metamodels implemented for the MODA
framework. We discuss why each variation was considered and how that led to the final
metamodel. We also discuss how the final metamodel is validated to ensure accuracy. The

author contributed to the full chapter.

e Chapter 4: Sirius Tool Implementation and Verification
This chapter presents the proof-of-concept tool built to support the MODA framework. We
delve into how we implement and specify the tool with Sirius, its setup, application, and

validation. The author contributed to the full chapter.

e Chapter 5: MODA Education Application

This chapter presents the courses selected to analyze the framework in an exploratory study

1.3. Thesis Overview

and discusses the various views and perspectives obtained from the analysis. The author

contributed to the full chapter.

Chapter 6: Related Work
This chapter presents a review of relevant literature. The author contributed to the full

chapter.

Chapter 7: Conclusion
This chapter summarizes the contributions of the thesis and discusses future work. The

author contributed to the full chapter.

Appendix A: Xtext Textual Language Definition for the MODA Metamodel
In this appendix, the Xtext textual language used to implement the various variations of the

MODA metamodel is presented. The author contributed to the full appendix.

Appendix B: Java Code for Metamodel Validation
The Java code used for validating the framework is presented in this appendix. The author

contributed to the full appendix.

Background

This chapter provides the background knowledge required to understand the remaining parts of
the thesis. First, we discuss models and data and their applicability. We then discuss the MODA
framework and its components. Finally, we touch on Xtext, Ecore, and Sirius, i.e., the technologies

used to implement the tool support for the MODA framework.

2.1 Models and Data

Modeling is used in many societies and disciplines because it provides a better understanding and
rationale of a system. A model is a representation of reality that is abstracted for a specific purpose.

A model plays a [31]:

e a descriptive role if it documents a present or previous aspect of the system under study (which

could be a software-intensive system or a natural system), making it easier to comprehend

2.1. Models and Data

and analyze;

e a prescriptive role if it is a description of the system to be built, driving the constructive pro-

cess, including runtime evolution in the case of self-adaptive systems (i.e., models@Qruntime);

e a predictive role if it is being used to forecast facts that cannot or will not be measured (which

creates new knowledge and allows decision-making and trade-off analyses to be performed).

As cited by Combemale et al. [31], Engineering, Scientific, and Machine Learning models are
some examples of types of models. An engineering model is meant to drive the creation of the
future system, maybe with some automation [80]. Along with clearly specified notations for their
models, they frequently use systematic procedures and techniques. They can also be used to create
software-based systems, physical systems for a system to be developed for a certain objective that
complies with physical laws, or both e.g., cyber-physical systems. A scientific model is a depiction
of a portion of a real-world phenomenon [53]. Based on accepted scientific information establishing
a theory, it is used to define, measure, illustrate, or replicate the phenomenon in order to explain
and study it. A machine learning model is derived from sample data, also known as training data,
by automated learning algorithms to generate predictions or decisions without being specifically
trained to do so [149].

Each model type can take on multiple roles. A scientific model is descriptive at first, but its
primary goal is to become predictive, allowing for what-if scenarios [28]. It becomes prescriptive
when embedded in a socio-technical system. An engineering model is often descriptive at first (e.g.,
a domain model detailing essential ideas and relationships), then transformed into a prescriptive
model at the design stage. However, once the system is created according to the specifications, the
model returns to being descriptive as a kind of documentation [61]. Engineering models can also be
predictive models; an architecture model, for example, might be used to forecast the performance
of a particular setup. A machine learning model is typically employed in a predictive role, with
the goal of inferring new information from hypothetical input data. It could be descriptive about
a present or previous connection, or prescriptive if the findings are utilized to influence decisions.

Knowledge and data are required as input for any of the following types of models. Each model
type has a different amount of necessary knowledge or the necessity of having the required data

available to develop the models. For example, to choose the appropriate ML technique, determine

7

2.2. The MODA Framework

the ML meta-parameters, choose the input and output variables, and then derive a customized
model from the data, there is a need for problem-specific knowledge in ML models. In engineering
models, domain knowledge and, in certain cases, data are primarily used to improve or tune the
models.

Along with the relative relevance of knowledge and data in the model-building process, the
sequence in which models and data are considered varies by model type. External data (e.g.,
expert or domain knowledge expressed in requirements or constraints) or measured data are used
to build descriptive engineering models (e.g., exploitation data from previous systems). After
then, engineering models are utilized to specify how the future system would be constructed. ML
typically starts with input or output system data or measurable data for training and iteratively
(e.g., through feedback loops) revises the model to meet the problem at hand, with the generated
models being the major output of the process. External data (e.g., real-world observations) plays
a key part in scientific models, whereas off-the-shelf models aim to describe actual events and are

thus updated and improved on a regular basis.

2.2 The MODA Framework

To ensure comprehensive support throughout the life cycle of present and future complex socio-
technical systems, particularly those heavily reliant on software, it is imperative to adopt a syn-
ergistic approach that combines various models and well-established methodologies. By leveraging
the collective advantages of these models, diverse goals can be effectively met, thereby ensuring
the overall success of the systems. Combemale et al. [31] present a conceptual Models and Data
(MODA) framework to assist this integration through engineering processes, which explicitly ties
the varied roles of the model types to four forms of data: input data, output data, measured data,
and external data. The MODA framework offers valuable insights into the integration of diverse
model types with distinct functions, including data sources and associated actions. This framework
provides a comprehensive and generalized perspective on typical software development processes,
technologies, and systems. In addition to the data being delivered to and generated by the running
system, it also encompasses the collection of data related to the software and its environment,

such as performance data. To effectively handle the evolving data, descriptive, predictive, and pre-

2.2. The MODA Framework

scriptive models are employed to process this vast amount of information and facilitate necessary
modifications to the system.

The MODA framework is depicted in Figure 2.1. The running software is indicated in purple, the
socio-technical system in blue, the different model roles in green, and several types of data are

displayed in yellow. The arrows reflect actions connected to the models and data. !

E""ﬁ Analysis, decision, and change (F)

9., Prescriptive Model -, Predictive Model
m (prescriptive) m (predictive)
Preparation for prediction (E)
== Generation (G)
.. Descriptive Model
m (descriptive)

Eﬂ Deployment (H)
==} Generalization, calibration (D)

[==}] Output processing (B)

== Enactment (| == Input processing (A
= o == Input p g (A) ¢:5 Input / Sensor sy, Output!
= ; =/ Actuator Data
L Data (input) U] (output)

{"'-E:-:/‘ Data (input) (output) (measurement) (external)

@ Measurement (C)
5=z Measured Data %22 External Data
Ll (measurement) Ll (external)

4 4
‘E”"n, Other interplay (J)

Socio-Technical System .
g @ Running Software

Figure 2.1: The MODA Framework

e The running software processes input data and generates output, as shown by the arrows A
and B, labeled Input processing and Output processing, respectively. Input processing refers
to the handling and interpretation of incoming data received by the system. This data serves
as the input for the software, providing the necessary information for further processing. On
the other hand, output processing involves the generation of results or output by the software.

This output represents the outcome or response of the system’s processing based on the input

!The icons used to represent the various elements of the MODA framework are referenced as follows: action icon
made by Freepik from “www.flaticon.com”, socio-technical system icon made by Eucalyp from “www.flaticon.com”,
running software icon made by Parzival’ 1997 from “www.flaticon.com”, model icon made by Pixel perfect from
“www.flaticon.com”, and data icon made by Parzival’ 1997 from “www.flaticon.com”

2.2. The MODA Framework

data it received. It could be in the form of computations, calculations, transformed data, or

any other relevant information produced by the software.

The C arrow labeled Measurement represents information and data gathered from monitoring
the system. The information gathered might be filtered or aggregated in real-time, as well as

saved for later use.

External data, the final type of data, is any information that falls outside the scope of the
software in the present version of the system. This external data can originate from vari-
ous sources or systems that interact with the software, such as external databases, external
sensors, third-party APIs, or other external interfaces. In the future, the external data can
be used to enhance the functionality of the system, provide additional insights, or support
specific operations. However, it is important to note that the system does not directly control

or manage this external data (J arrow) currently.

The D arrow, labeled Generalization and Calibration, represents two aspects in the context
of the described system. Generalization refers to the strategies employed to derive a descrip-
tive model from diverse types of data. These techniques include conceptual generalization
methods such as abstraction and synthesis, as well as statistical approaches such as regres-
sion, differential equation analysis, data mining, and advanced machine learning techniques.
Generalization can occur in real-time or offline. Calibration, on the other hand, involves the
techniques utilized to configure and adjust the data for the purpose of generating a descriptive

model.

The E arrow, Preparation for prediction, focuses on preprocessing techniques that combine
data with descriptive models to create predictive models. These models are employed to
generate predictions, commonly known as predictive modeling. This process often requires
additional steps such as interpolation and extrapolation techniques, statistical methods (e.g.,
regression), and preparatory measures for simulating and training ML models like neural

networks.

The F arrow, labeled as Analysis, decision, and change, represents activities related to de-

cision support and the implementation of modifications to the prescriptive model based on

10

2.2. The MODA Framework

those decisions. These activities often involve conducting what-if analysis and making ad-
justments accordingly. What-if scenarios can be carried out manually or automatically, and
the implementation of decisions can take various forms. In self-adaptive systems, a decision
may require reconfiguration, which can be achieved by modifying the prescriptive architec-
ture model (e.g., through model transformations) or updating configuration files. In the case
of a software product line, anticipated adjustments can be made by selecting characteristics
that define previously designed alternatives and then modifying the prescriptive model, for

instance, through techniques such as model merging.

The G arrow, represented as Generation, illustrates the typical software development opera-
tions involved in constructing lower-level prescriptive models based on higher-level prescriptive
models. This process involves translating more abstract design models or requirements models
into executable code. Various approaches such as model transformations, model instantiation,

and compilers are employed to facilitate this generation process.

The H arrow, Deployment, pertains to the activities associated with deploying, executing,
or interpreting low-level, executable models such as code. This phase involves putting into

operation the implemented changes or improvements.

The I arrow, labeled Enactment, represents activities that are executed or enforced within a
socio-technical system utilizing prescriptive models that incorporate human or social compo-
nents. These components can include laws, policies, standards, or other measures that guide

behavior and actions.

Consider the development of a Smart Power Grid (SPG) application, which is an automated

system specifically designed to monitor and regulate the distribution grid. This system is capable

of establishing automatic communication between the power provider and the load consumers in

order to swiftly restore electricity in the event of a power outage caused by faults or disruptions

in the grid. Figure 2.2 shows an example of the MODA framework in the context of an SPG.

The running software in this situation is the smart grid system. This consists of digital and other

cutting-edge technologies, sensors, and applications that manage and monitor the transportation

of power from all generation sources to satisfy the various electricity needs of end customers. The

11

2.2. The MODA Framework

socio-technical system in context encompasses a broader scope that extends beyond the running
software. It incorporates various stakeholders involved in the system, such as the users (consumers
of energy), energy companies (providers of energy), regulators (government bodies), advertising

companies, and more.

@ Improve smart grid, hence
N enabling feedback loop
%. Models from smart grid 0 Dynaic load
m management (prescriptive) @ balancing model
= (predictive)

== Construct over time

Encourage people or companies to
@“h reduce consumption through
advertising campaigns |E‘“'d Deploy improved version
7. Usage and supply
«-Lv model (descriptive)

== calibrate
SmartGrid | &y
-%- System o Data
ﬁ Socio-Technical System = Monitor usage and power

availability

Consider extreme prolonged weather condition (e.g., a
E"“h polar vortex or a heatwave) by integrating external data
about weather

Figure 2.2: Smart Power Grid Models Diagram

These entities play significant roles within the system, contributing to its functioning and in-
fluencing its dynamics. Information gathered from sensors and household meters are examples of
input data for SPG, and the output data includes information, metrics, and data on power avail-
ability and power to be transmitted to an end user. Measured data will be the amount of power an
end user consumes. In the case of an external source of data, extreme prolonged weather conditions
could affect the distribution and transmission of power to an end user. Hence, weather information
when necessitated could be utilized in the future to improve power transmission and distribution
(i.e., action type J). For generalization and calibration (i.e., action type D), by correlating received
data on electricity consumption with transmitted power, the power company can determine if the
end user is consuming more power than is being transmitted to them. Scientific models, such as
those modeling the flow of distribution and transmission lines, can be developed to estimate the av-
erage power generation required based on received consumption data. Machine learning techniques

can also be employed to analyze electricity consumption patterns. In preparation for prediction

12

2.2. The MODA Framework

(i.e., action type E), in the context of electricity consumption predictions, the SPG system can
utilize historical consumption data, weather conditions, and other relevant factors to forecast the
future power consumption of end users. These predictions help the power company anticipate and
prevent power outages caused by imbalances in supply and demand. Additionally, by leveraging
neural networks, hidden behavioral patterns can be uncovered, offering insights that can be used to
prevent potential issues or incidents in the future. Prescriptive models would include safety regu-
lations, simulations, SCADA (Supervisory Control and Data Acquisition) systems, communication
algorithms, and other relevant components. When considering analysis, decision, and change (i.e.,
action type F), a forecast may indicate an upcoming storm in a particular month that could po-
tentially damage transmission lines. In response, a decision may be made to proactively disconnect
power through those lines and notify end users of the anticipated power outage, advising them to
switch to their renewable energy sources, such as solar power systems.

Action type G (i.e., Generation) is not evident in the smart grid example as depicted in the
MODA paper [31], but the generation process could involve transforming higher-level prescriptive
models, such as architectural designs or requirements specifications, into lower-level models that can
be executed as code. This could include generating code for components responsible for monitoring
energy consumption, optimizing power distribution, or managing renewable energy sources. Once
the application has been developed, it is deployed (i.e., action type H) to replace the previous
version, making it operational and ready for use. Regarding action type I, initiatives may be
undertaken to encourage individuals or companies to reduce their energy consumption. This can
be achieved through various means, such as advertising campaigns, which promote awareness and
provide incentives for adopting energy-efficient practices. These efforts aim to influence human
behavior and drive positive changes in energy consumption patterns.

In addition to socio-technical systems like SPG, MODA generalizes to other systems, technolo-
gies, and processes that are currently in practice. Figure 2.3 illustrates the applicability of MODA
that is claimed in the original paper [31]. Figure 2.3(a) illustrates a software development methodol-
ogy (i.e., Waterfall Process Model for Software Development). Figure 2.3(b) (i.e., Business Process
Modeling and Mining) illustrates ways for modeling and mining business processes. MODA can
also be used in system development as shown in Figure 2.3(c), which illustrates the development

of Simple Mobile Apps.

13

2.2. The MODA Framework

Improve business process models
Prescriptive Model: describeand (=) for an enterprise, hence enabling 9. Predictive Model
.. constrain allowed business processes feedback loop I (predictive)
[T by sequences of business activities in
-2 an enterprise (e.g., BPMN)
(prescriptive)

=) analyze
@lComrolbd by deployed < D;‘,ﬁg::::n':::fk
Usually no explicit predictive model nor E (==} Enactment process engines % " (descriptive)
(=) & F arrows, as they aro playediperformed
%" by software engineers by inferring a
design from the i : o
5 Freseritve Modet requremerts, sion rom the analysis O A (=5] Process mining: synthesize
4T design, implementation (prescriptive) i o o
(descriptive)
Reauraments et e (B) Business Activities Y Data
== Deployment e (== Manually derived
i Sree iy e @ Socio-Technical System == Process logs
handed over o the next
phase to drive the design
(s %%y External Data: expert/domain
(8 Final system & knowledge (external)
(a) Waterfall Process Model (b) Business Process Modeling and Mining

Prescriptive Model:
implementation
(prescriptive)

7.
a-Lw

Usually does not start with formal elicitation
of user requirements, but rather with an idea
ﬂ that is developed and deployed as quickly as
possible (skipping D, E, and F); over time a
descriptive model is possibly built from the
data

Deals effectively with

requirements volatility

and makes use of easy

data collection, enabling IEg DeploYment
data-based elicitation,

DevOps-based continuous

improvement, & feedback-driven

development

from Minimum Viable @ . .
(G Ty fs+27 Data: idea, domain knowledge
odl ® LA 4 s

@ Rroduct t:p‘; s o eventually user feedback

== User feedback

(c) Simple Mobile Application

Figure 2.3: Examples of the MODA Framework

Based on the examples provided, it is evident that the MODA framework plays a crucial role
in facilitating a comprehensive understanding of how different model roles and data sources are in-
tegrated. The framework allows for a systematic approach to analyzing and incorporating various
models, such as descriptive, predictive, and prescriptive models, within the context of a given sys-
tem. Furthermore, it helps to identify the relationships and dependencies between these models and
how they interact with different data sources. Using the MODA framework, one can gain insights
into the overall software development process, from initial data analysis and model generalization
to prediction, analysis, decision-making, deployment, and enactment. In addition, this framework
provides a structured perspective on the integration and utilization of models to address complex
challenges in software engineering, ultimately improving our understanding of the interplay between

different model roles and data sources.

14

2.3. Xtext

2.3 Xtext

Xtext [50] is a framework for creating programming languages and domain-specific textual lan-
guages. Utilizing a powerful grammar language, Xtext allows a language engineer to define a
language. As a result, the language engineer receives a complete infrastructure that includes a
parser, linker, type-checker, compiler, and editing support for (i) Eclipse, (ii) any editor that ad-
heres to the Language Server Protocol, and (iii) the preferred web browser [41]. An Xtext grammar

language example is shown in Program 2.1 [51].

Program 2.1: Xtext Grammar Language

1 grammar org.xtext.example.mydsl.MyDsl with org.eclipse.xtext.common.Terminals
2 generate myDsl "http://www.xtext.org/example/mydsl/MyDsl"

3

4 DomainModel:

(elements+=Type) *;

(Type:

8 DataType | Entity;
9
10 DataType:
11 'dataType' name=ID;
12
13 Entity:

14 'entity' name=ID ('extends' superType=[Entity])? '{'

15 (features+=Feature) *

16 A

17

18 Feature:

19 (many?='many')? name=ID ':' type=[Typel;

The start rule is always the first rule in the grammar.
DomainModel: (elements+=Type)*;

It states that a DomainModel has any number (*) of Types which are added (+=) to a feature

called elements. The Type rule delegates to the rule DataType or (|) the rule Entity.

15

2.3. Xtext

Type: DataType | Entity;

The rule DataType begins with the keyword ‘datatype’, followed by an identifier which is parsed
by a rule called ID. The super grammar org.eclipse.xtext.common.Terminals defines the rule ID

and parses a single word (i.e., an identifier).
DataType: ‘datatype’ name=ID;
The definition of the keyword entity is presented first in the rule Entity, then a name.

Entity: ‘entity’ name=ID (‘extends’

superType=[Entity])? ‘{’(features+=Feature)* ‘}’;

The clause with the ‘extends’ keyword follows, which is optional and parenthesized (7). The
parser rule Entity is not invoked in this case because the feature named superType is a cross-
reference, and only one identifier (the ID rule of the referenced Entity rule) is parsed instead.
During the linking process, the actual Entity to assign to the superType reference is determined
based on the parsed ID rule. The last part of the Entity rule specifies features between curly braces,

which applies the next rule.
Feature: (many?=*‘many’)? name=ID ¢’ type=[Type];

The boolean type of the feature many is implied by the assignment operator (?=). The presence
of the keyword ‘many’ in a model indicates that the value of the boolean type is true. Then, a
name is defined and a cross-reference to a Type.

Once the grammar has been defined, the code generator is run to produce the various language
parts. This creates an Ecore and genmodel file, which are then used to initialize an Ecore diagram,
i.e., the metamodel, for the domain described with the Xtext language. The Eclipse IDE [46]
integration can now be tested by running the generated Eclipse plugin in a new runtime window.
The generated Eclipse plugin is an editor for models that conform to the Xtext grammar.

Using a datatype String, Program 2.2 shows a textual model that conforms to the language

definition in Program 2.1.

16

2.3. Xtext

Program 2.2: Xtext Textual Model

dataType String

entity Author {

name: String

entity Post {
title: String

content: String

entity Blog extends Post {
author: Author

many comments: Comment

entity Comment {

content: String

As seen in the grammar in Program 2.1, all the keywords are found in single quotation marks
(i.e., ¢) and are highlighted in purple. These keywords are used when defining the respective
classes. For example, when defining a dataType it must begin with the keyword dataType, and an
entity must begin with the keyword entity. Using a dataType String as seen in Program 2.2, four
entities are defined in the textual model example. The entity author has a name. A post has a
title and some content. A blog extends a post (i.e., a blog is a post). The entity blog has the same
attributes as the entity post, has an author, and also has many comments. Author and comments
reference entities author and comment, respectively (i.e., an entity is composed of features which
can be many, as seen in the rule on lines 13 - 19 in Program 2.1). A comment also has some

content.

17

2.4. Eclipse Modeling Framework

2.4 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a collection of Eclipse plug-ins that can be used to create
code or other output based on the modeling of a data model [79]. EMF distinguishes the actual
model and the meta-model. Since a model is a specific instance of this metamodel, the metamodel
specifies the structure of the model. The developer can specify the metamodel using various tools,
such as XML Metadata Interchange (XMI) [158], Java annotations, Unified Modeling Language
(UML) [158], or an Extensible Markup Language (XML) [159] schema [79]. EMF generates Java
code from a metamodel specified with Ecore which is part of the core EMF, as is runtime support
for the models, which includes change notification, persistence support with XMI serialization by
default, and a very effective reflective Application Programming Interface (API) [143] for handling
EMF objects in general. Accessors for the meta-objects are included to represent each class, each
feature of each class, each interface, each operation of each class or interface, each enum, each literal

of each enum, and each data type [44].

i:j platform:fresource/org.xtext.example.mydsl/model/generated/MyDsl.ecore
i myDsl
~ H DomainModel
Srelements : Type
v [Type
= mame : EString
E DataType -> Type
~ H Entity -> Type
= super Type : Entity
o3 features : Feature
v H Feature
= many : EBoolean
= name : EString

=etype @ Type

Figure 2.4: Ecore Representation of Xtext Language

The EMF metamodel consists of two parts: the Ecore and the genmodel description files. The
details of the declared classes are contained in the Ecore file. Using the same example specified
with the Xtext language, its corresponding Ecore file is shown in Figure 2.4. Initializing the
Ecore diagram generates a graphical representation of the metamodel as shown in Figure 2.5. The

genmodel file includes extra data for code generation, such as file and path information.

18

2.4. Eclipse Modeling Framework

[0.%] elements

Q Tyre

O name : EString

[0.1] type

[pemainMadel | |

[Feature |

B entity

[pataType

= many : EBaalean = false

£ name : EString

]

[0.4] foatures

[0..1] superType

Figure 2.5: Metamodel Representation of Xtext Language

Property

Al

L T A Y

Bundle Manifest

Code Style
Compliance Level
Copyright Fields
Copyright Text
Eclipse Platform Version
Language

Model Documentation
Model Mame
Mon-MLS Markers
0SGi Compatible
Runtime Compatibility
Runtime Jar

Runtime Platform
Runtime Version

Edit

Editor

Maodel

Model Class Defaults
Model Feature Defaults
Templates & Merge

> Tests

Value

v true

=

I=g8.0

Ut falze
I=generated by Xtext 2.29.0
I=2022-12 - 4.26
=

1=

I= MyDsl

g false

v false

s false

% falze

I=IDE

=220

Figure 2.6: Genmodel Representation of Xtext Language

The control parameters for the code generation process are also contained in the genmodel

file. This is shown in Figure 2.6. Generating all code from the genmodel creates the EMF model

implementation in Java.

19

2.4. Eclipse Modeling Framework

An Xtext grammar is mapped to class diagram elements in the metamodel as follows:
e rule — class

e = — multiplicity, zero or one

e += — multiplicity, zero to many

e [T'ype] — association with Type

e Type — composition with Type

e | — generalization

e 7= — boolean attribute

e =PrimitiveType — attribute of PrimitiveType (non-boolean) (e.g., name=ID)

Relating the Xtext grammar in Program 2.1 to the metamodel in Figure 2.5, a DomainModel
has a composition (i.e., no square brackets) of zero to many elements (i.e., the operator +=) with
the class Type. The superclass Type consists of two subclasses, DataType and Entity (i.e., operator
). A DataType has a non-boolean attribute (i.e., name=ID), where the primitive type ID is mapped
to EString in the metamodel. An Entity also has a non-boolean attribute (i.e., name=ID), but in
addition has a zero to one (i.e., the operator =) association (i.e., square brackets) with itself, as well
as a composition of zero to many elements with the class Feature. Finally, the Feature class has an
attribute many, which is an example of the boolean operator (i.e., 7=). It refers to the fact a feature
can optionally be designated as many (i.e., the 7= operator, a boolean attribute). Furthermore,
a feature has a name and can have a zero or one (i.e., the operator =) association with the class
Type. The operators * and ? found in lines 5 and 15, and line 14 respectively in Program 2.1 are
general multiplicity operations in Xtext; exactly one (i.e., the default, no operator), zero to one
(i.e., the operator ?), one to many (i.e., the operator +), and zero to many (i.e., the operator *).
These operators further refine effectively the multiplicity defined by the = and += operators but

are not reflected in the metamodel. However, they are enforced by the generated editor.

20

2.5. Sirius

2.5 Sirius

Sirius [48] is an Eclipse project that leverages Eclipse Modeling technologies, such as EMF, to facil-
itate the rapid development of customized graphical modeling workbenches. It provides a flexible
and adaptable framework for model-based architecture engineering, allowing language engineers to
tailor the workbench to their specific requirements. Sirius employs a viewpoint-based methodol-
ogy, which enables teams working on complex architectures to effectively collaborate and address
specific topics within their domain. Models are created, visualized, and edited on the Sirius system
using interactive editors known as modelers. Depending on the nature of visual representations,
these modelers might be of many types. By default, Sirius supports three types of representations:
tables, trees (hierarchical representations), and diagrams (graphical modelers). Programming can

be used to add new representations.

Comment
Blog many comments \
7 content: String
autho
Author
Post name: String

content: String
title: String

Figure 2.7: Sirius Representation of Xtext Language

By using the appropriate configuration file, known as the Viewpoint Specification Model (VSM) [49],

it becomes possible to define how specific elements of the metamodel should be represented visually.

21

2.6. Summary

For instance, the VSM can be used to specify that a particular class should be represented by a
green circle and its attributes should be represented by a grey rectangle. A red arrow points to
an associated class, and a grey triangle represents an inheritance relationship between two classes.
Figure 2.7 shows a mockup sample visualization of the running example illustrated in Program 2.2.

This provides a visual representation of the grammar example, allowing for a better under-
standing. By presenting the information in a graphical format, the visualization aims to enhance

clarity and facilitate comprehension of the example’s meaning.

2.6 Summary

In this chapter, we present essential background information related to models, data, the MODA
framework, and the key technologies utilized for their representation. These technologies, namely
Xtext, EMF, Ecore, and Sirius, hold significant relevance to this thesis. Chapter 3 offers an in-depth
overview of the MODA metamodel. It incorporates an exploration of different variations that were
explored and considered during the development process before arriving at the final metamodel

design.

22

MODA Metamodel

In this chapter, we introduce the variations of the metamodel for the Models and Data (MODA)
framework by outlining their main ideas and the design choices made to produce the respective
version. The initial paper on MODA [31] does not define a metamodel for the framework, hence
we opted to develop one as this is a prerequisite for developing a models editor for the MODA
framework. We use the Xtext language engineering framework to develop the domain-specific
textual language for the models of the MODA framework. Xtext is used to define the grammar of
the textual language from which a metamodel is then generated in the Ecore format, which is a

component of EMF.

23

3.1. MODA Metamodel

3.1 MODA Metamodel

Numerous analyses and investigations were considered before the final metamodel was developed.
This section details all the different variations of the metamodel and why each was taken into
consideration. Each variation is thoroughly discussed, highlighting the reasons for its consideration
and providing details of its advantages and disadvantages. By delving into the nuances of each vari-
ation, this section offers an understanding of the decision-making process behind the development

of the final metamodel.

3.1.1 Metamodel Variation 1

The first variation that was considered when designing the metamodel for the MODA framework

is depicted in Figure 3.1.

B oata
3 name : EString
[0..1] ActionD
| Brw | [Bows | [Bwessues | [external
‘ ’ ‘ ’ ‘ ’ [0..*] dpta
[odel fo.1 Actionc fo.1 Actionfo. 1 Actions
0..1] ActionB
S name - £sting
0..1] ActionA
101 B Bss
[Ey— P e —
3 state : EString fl0--*]
| ‘ ‘ [0..1] ActionH
[0..1] Actionl
[0..*] runnings oftw:
[v T oo 1
[0..1] ActionG

[0..*] models

Figure 3.1: MODA Metamodel - First Variation

There is a root class called Moda with a description and it is composed of Model, Data, Run-
ningSoftware, and STS. MODA can have 0...* models, data, runningSoftware, and sts depending
on the socio-technical system. Both the Model and Data classes are superclasses and have a name.
DescriptiveModel, PredictiveModel, and PrescriptiveModel all inherit from the superclass Model
and Input, Output, Measured, and Ezternal all inherit from the superclass Data. RunningSoftware

has a name and state. Aside from the current data (i.e., input, output, external, and measured

24

3.1. MODA Metamodel

data), the RunningSoftware also has another form of data: state (i.e., the information that the
system currently has). If one provides a system with some input data, it will do something with
this input and make the necessary changes if need be. For example, a library system already has
books. If one adds a new book to this collection, the number of books increases by one, and
hence the current state of the library system changes. A system can only behave differently if the
provided information is different. Socio-technical System (S7TS) has a name and may or may not
have a RunningSoftware. Actions A through J are modeled as individual relationships. A class
may optionally have actions that show the relationship from or to that class. Each allowed action
is modeled explicitly in this variation. Table 3.1 outlines the type of Action, its name, and the

class they move from and to in the metamodel for this variation. Action J has a bi-directional

relationship between ST'S and externalData.

Table 3.1: Action Types Depicted in Variation 1

Action Type Action Name From To
Action A Input processing Data (input) RunningSoftware
Action B Output or actuator data RunningSoftware Data (output)
Action C Measurement RunningSoftware Data (measured)
Action D Generalization, calibration Data Model (descriptive)
Action E Preparation for prediction Model (descriptive) | Model (predictive)
Action F Analysis, decision, and change | Model (predictive) | Model (prescriptive)
Action G Generation Model (prescriptive) | Model (prescriptive)
Action H Deployment Model (prescriptive) | RunningSoftware
Action 1 Enactment Model (prescriptive) STS
Action J Other interplay (bidirectional) STS Data (external)

In Appendix A, Program A.1 depicts the Xtext grammar that was specified for the first vari-
ation of the MODA metamodel. The main advantage of this model is that it clearly shows every
relationship between each class and action, as depicted in the MODA framework in Figure 2.1.
The allowed source and target of an action in the MODA framework are modeled explicitly by a
directed association in this variation. The downside is that the metamodel is rather complex, and
a simpler metamodel that illustrates the MODA framework would make it easier to (i) understand
the framework and (ii) manipulate MODA models. Furthermore, the metamodel is inflexible, i.e.,
it does not allow to specify MODA models where some actions or models do not exist. For example,
the metamodel always expects data to be connected to a descriptive model and it is not possible to

connect data to a prescriptive model. If the metamodel were to support all of these possibilities,

25

3.1. MODA Metamodel

then it would be even more complex. Finally, the metamodel does not allow the description of an

action in more detail, because the actions are modeled as associations.

3.1.2 Metamodel Variation 2

The second variation that was considered when designing the metamodel for the MODA framework
is depicted in Figure 3.2. The Moda root class is still composed of Model, Data, RunningSoftware,
and STS. However, actions are now reified into the Action class and the Action class is now also
composed in the Moda root class. An Action has a name and a type. The name allows the action
to now be described in more detail. The type of action is modeled as an enumeration class that
contains all the types available (A to J). The remainder of the metamodel, i.e., the structure of

Data and Model, remains unchanged from the first variation.

[0..*] data

¢ ActionType —.—
[Moda [runningsoftware
[Action

3 name : EString

1 name : EString
o3 state : EString

3 type : ActionType = A

[Moder

1 name : EString

B ss [pata

=1 name : EString

[0..*] models

| [externa | [Measure d |

Figure 3.2: MODA Metamodel - Second Variation

The main advantage of this metamodel is that it no longer explicitly shows how each action
is connected to the other classes in the metamodel, making the metamodel less complex. All the
action types are now modeled in an enumeration that depicts the action. The downside is that
the metamodel does not clearly show how the Action class is connected to the other classes in the
MODA framework, e.g., the fact that Action A only goes from input data to the running software
is not captured in the metamodel anymore. Actions are only composed in the root class, and no
other relationship is established between the other classes and the Action class. Instead, these

relationships are implicit and assumed to exist by convention.

26

3.1. MODA Metamodel

3.1.3 Metamodel Variation 3

The third variation that was considered when designing the metamodel for the MODA framework
is depicted in Figure 3.3. The Moda root class is now composed of an Action and an Element. The
Action class represents the arrows or links defined in the MODA framework, and the Element class
represents every other building block shown in the framework. The Data, Model, RunningSoftware,
and Socio-Technical System (STS) classes all inherit from this super class and hence also inherit
its attributes (i.e., name), its associations (target of associations from Action), and its composition
with the root class. The remainder of the metamodel, i.e., the structure of Data and Model, remains

unchanged from the second variation.

B vod
[0..*] actions
= i : EString

@ ActionType

A
o 0..%] elements
-C
=D
-

F [Action] Element ‘ | [runningsoftware
= G [0..1] to

= name : EString 3 name : EString [state : EString

. 1 type : ActionType = A | [0..1] from

)

Zﬁ | i1
] Model | Bow | | B s |

[B0 |[B [B | [Bows || Brow [Bweswes |[Boem |

Figure 3.3: MODA Metamodel - Third Variation

The main advantage of this model is that it solves the problem encountered in the second
variation of the metamodel shown in Figure 3.2. Also, all other classes are modeled as subclasses
to a superclass called Element. A relationship from and to is also established between an element
and an action, clearly showing how an action is connected to an element in the framework. However,
while there is now a relationship between action and element, the specific constraints for a type

of action (e.g., Action A must go from input data to the running system) are not covered by this

27

3.1. MODA Metamodel

metamodel. Furthermore, the subclasses solution prevents a model to play more than one role at
a time which is certainly possible (e.g., a model may play a prescriptive as well as descriptive role

over time). Finally, this variation of the metamodel is still more complex than it needs to be.

3.1.4 Metamodel Variation 4

The fourth variation that was considered when designing the metamodel for the MODA framework
is depicted in Figure 3.4. This variation is very similar to the variation shown in Figure 3.3. We
modeled the respective subclasses of the Model class as attributes to the class, and this simplified
the metamodel even further. The main advantage of this metamodel is that it is now possible for
a model to have more than one model role at a time. This could also be achieved by applying the
player-role pattern to the Model class. The boolean attributes are chosen because they result in a
simpler metamodel.

The disadvantage is that a similar issue exists for the Data class as it did exist for the Model
class in the earlier variations. With the current metamodel, it is not possible for a piece of data
to be, e.g., input and output at the same time. This may not be an issue if only one system is
modeled at a time, but more complex MODA models may cover a set of systems where the output

of one system may be the input of another system.

“ ActionType

[Action
- B — [0..1] to
I name : EString 3 name : EString
[0..1] from

= type : ActionType = A

il \ \ \ |

I
9 [0..] elements | D Model | | D Data | | D RunningSoftware | D sTs |

T [0..1] runningsoftware

B rput |

1 descriptive : EBoolean = fals¢ I state : EString

[0..*] action: =1 predictive : EBoolean = fals

3 prescriptive : EBoolean = fals¢

Figure 3.4: MODA Metamodel - Fourth Variation

28

3.2. Metamodel Validation Rules

3.1.5 Final Metamodel

The fifth and final variation that was considered when designing the metamodel for the MODA

framework is depicted in Figure 3.5.

Element
D Action [0..1] to l?]
o mr I name : EString
= ActionType 1 name : EString [0..1] from
A I type : ActionType = A
*
B [0..*] elements
=€ ﬁ
— D Model | | D Data] D RunningSoftware [D STS
=1 descriptive : EBoolean = fals¢ = inputData : EBoolean = false I state : EString
=1 [0..*] actions 1 predictive : EBoolean = false [outputData : EBoolean = false
= [prescriptive : EBoolean = false¢ O measuredData : EBoolean = falsg
| [Moda | I externalData : EBoolean = fals¢

=3 description : EString

(I

[0..1] runningsoftware

Figure 3.5: MODA Metamodel

The final metamodel is very similar to the variation shown in Figure 3.4. We further modeled
the Data class just as the Model class in Figure 3.4 and this was the last consideration for the
MODA metamodel. In this metamodel, we model the types of data used in the framework as
attributes that can either be an input, output, measured, or external source of data. While this is
the least complex metamodel for the MODA framework, it also allows one piece of data to be of
several types. The final metamodel still does not explicitly enforce constraints related to each type

of action, because validation rules are specified as explained in the next section.

3.2 Metamodel Validation Rules

A few validation rules were established to act as a way of checking a model and ensuring a model’s
well-formedness. The validation rules restrict which actions can be created so that invalid connec-
tions cannot be made for a MODA model. These rules are written with the Java programming
language and can be found in Appendix B. Each rule has a condition, and if a model is modeled
improperly, it produces an error message. The following is a list of the rules specified in the Object

Constraint Language (OCL) [47].

29

3.2. Metamodel Validation Rules

. Action name should be unique
context Moda:

inv: self.actions — isUnique(name)

. Element name should be unique
context Moda:

inv: self.elements — isUnique(name)

. At least one model should be present
context Moda:

inv: self.elements — select(ocllsKindOf(Model)) — notEmpty

. At least one of the model attributes should be true
context Model:

inv: self.descriptive or self.predictive or self.prescriptive

. At least one of the data attributes should be true
context Data:

inv: self.input or self.output or self.measured or self.external

. Action A is from Input Data to Running Software
context Action:
inv: (self.type = ActionType :: A) implies (from.oclIsKindOf(Data) and

from.oclAsType(Data).inputData and to.ocllsKindOf(RunningSoftware))

. Action B is from Running Software to Output Data
context Action:
inv: (self.type = ActionType :: B) implies (from.oclIsKindOf(RunningSoftware) and

to.oclIsKindOf(Data).outputData)

. Action C is from Running Software to Measurement
context Action:
inv: (self.type = ActionType :: C) implies (from.oclIsKindOf(RunningSoftware) and

to.ocllsKindOf(Data) and to.oclAsType(Data).measuredData)

30

3.2. Metamodel Validation Rules

9.

10.

11.

12.

13.

14.

15.

Action D is from Data to Descriptive Model or Prescriptive Model
context Action:
inv: (self.type = ActionType :: D) implies (from.ocllsKindOf(Data) and to.oclIsKindOf(Model)

and (to.oclAsType(Model).descriptive or to.oclAsType(Model).prescriptive))

Action E is from Descriptive Model or Data to Predictive Model

context Action:

inv: (self.type = ActionType :: E) implies ((from.ocllsKindOf(Model) and
from.oclAsType(Model).descriptive) or from.ocllsKindOf(Data)) and to.oclIsKindOf(Model)

and to.oclAsType(Model).predictive)

Action F is from Predictive Model, Descriptive Model, or Data to Prescriptive Model

context Action:

inv: (self.type = ActionType :: F) implies (((from.oclIsKindOf(Model) and (from.oclAsType(Model).
predictive or from.oclAsType(Model).descriptive)) or from.oclIsKindOf(Data)) and to.oclIsKindOf

(Model) and to.oclAsType(Model).prescriptive)

Action G is from Prescriptive Model to Prescriptive Model
context Action:
inv: (self.type = ActionType :: G) implies (from.ocllsKindOf(Model) and from.oclAsType(Model).

prescriptive and to.ocllsKindOf(Model) and to.oclAsType(Model).prescriptive)

Action H is from Prescriptive Model to Running Software
context Action:
inv: (self.type = ActionType :: H) implies (from.oclIsKindOf(Model) and from.oclAsType(Model).

prescriptive and to.oclIsKindOf(RunningSoftware))

Action I is from Prescriptive Model to Socio-technical System

context Action:

inv: (self.type = ActionType :: I) implies (from.ocllsKindOf(Model) and from.oclAsType(Model).
prescriptive and to.oclIsKindOf(STS))

Action J is from Socio-technical System to External Data or External Data to Socio-technical

System

31

3.3. Summary

context Action:
inv: (self.type = ActionType :: J) implies ((from.oclIsKindOf(STS) and to.ocllsKindOf(Data)
and to.oclAsType(Data).externalData) or (from.ocllsKindOf(Data) and

from.oclAsType(Data).externalData and to.oclIsKindOf(STS)))

3.3 Summary

This chapter focuses on the introduction and explanation of the various metamodel variations
evaluated for the MODA framework. It highlights their advantages and disadvantages and discusses
why the final metamodel was chosen. In Chapter 4, we focus on presenting the proof-of-concept tool
built to support the MODA framework. This chapter provides details regarding the implementation
and specification of the tool using Sirius. In addition, it covers aspects such as the tool’s setup,

application, and validation, offering a thorough understanding of its functionalities and capabilities.

32

Sirius Tool Implementation and Verification

This chapter introduces the tool built to support the MODA framework. We delve into how we
implement and specify the tool with Sirius, its setup, application, and validation. This tool will
enable one to visualize the MODA framework and its various relationships graphically and also

provide editing capabilities to create new elements and relationships.

4.1 Metamodel

A metamodel is a visual depiction of tangible things for a language. The metamodel for the
MODA framework is defined in Figure 3.5. This metamodel depicts the MODA framework with
all its elements and relationships. We define this metamodel with EMF (Ecore Model), as seen
in Figure 4.1. When the Xtext artifacts are initialized, the remaining projects and dependencies

needed to fully implement the project are automatically generated and added to the main project.

33

4.1. Metamodel

They include the source code in the main project, the separate edit and editor projects, and their

dependencies (i.e., generated in MANIFEST.mf).

platform:fresource/org.eclipse.sirius.sample.moda/model/moda.ecore

~ # moda
v H Moda
= description : EString
Shactions : Action
relements : Elemeant
v H Action
= name : EString
= type : ActionType
=from : Element
=10 : Element
» H Element
= name : EString
» [Data -> Element
= inputData : EBoclean
o outputData : EBoclean
= measuredData : EBoolean
o externalData : EBoolean
~ [Model -> Element
o descriptive : EBooclean
o predictive : EBoolean
o prescriptive : EBoolean
~ H RunningSoftware -> Element
o state : EString
v [STS -= Element
= runtime : RunningSoftware
w B ActionType

= A=0
- B=1
-C=2
-DbD=3
- E=4
- F=5
- G=6
- H=7
= 1=8
-J=8

Figure 4.1: Ecore Representation of the MODA Framework

These projects are needed to test the metamodel in a new runtime window in the Eclipse IDE.

34

4.2. Viewpoint Specification Project

The edit and editor projects can be used to change Sirius’s default icons. A designer can use

separate icons to represent each element, which can be done in these project folders.

4.2 Viewpoint Specification Project

A new runtime eclipse application can be launched based on the Ecore file. Once running, we select
the Sirius perspective, which provides specific Sirius menus and a modeling project. The Sirius
modeling project consists of models and their related graphical representations used to build Sirius
projects. A definition of the modeling workbench is included in the viewpoint specification project.
The viewpoint specification project creation wizard creates a new project with a .odesign file. This
file outlines the modeling workbench to be implemented, and the Sirius runtime will be able to

interpret it.

4.2.1 Defining a Diagram

A diagram is added to the viewpoint and is configured to represent instances of models, as seen in
Figure 4.2.
& Sirius Specification Editor
v [£] platform:/resource/org.eclipse.sirius.sample.moda.design/description/moda.odesign
v [moda
v & models

» & Models Diagram

42 org.eclipse.sirius.sample.moda.design. Services

» El ModelPropertiesView

Figure 4.2: Diagram Definition in Sirius Perspective

As we have already defined the Models Diagram as a metamodel in Figure 3.5, this metamodel
is linked to the Sirius perspective from the Eclipse registry as seen in Figure 4.3.
We then specify the properties of the Models Diagram by specifying its label and domain class

and then add a node to the layer.

35

1

4.2. Viewpoint Specification Project

& Models Diagram

(@) Selected Metamodels :

General

Documentation Name nsURI metamodel URI

Behavior moda http:/fwww.eclipse.orgfsirius/sample/moda platform:fpluginforg.eclipse.sirius.sample.moda/model/moda.ecore#/
Background

Metamodels

Advanced

Figure 4.3: Snapshot of Metamodel Linkage in the Sirius Perspective

4.2.2 Nodes

The nodes represent the elements of MODA, i.e., Data, Model, RunningSoftware, and STS. All
nodes created have an ID, i.e., the name of the node, and a metaclass, i.e., the name of their
associated class from the metamodel. For example for the Data element, the id will be DataNode
and the domain class will be moda::Data. The style of the node specifies the graphical attributes
of the node, i.e., the shape, color, label size, label format, label alignment, and all other properties.
The label expression is a set of rules written in the Acceleo Query Language (AQL). It limits the
range of factors to consider before designing the graphical elements. They also act as the rules that
establish the nature of the element and its associated attributes. Programs 4.1 and 4.2 show the

AQL code written to define the name to be shown for a DataNode and ModelNode, respectively.

Program 4.1: AQL Code for DataNode

aql: self.name + if self.inputData then ' (input) ' else '' endif + if self.outputData then ' (
output) ' else '' endif + if self.measuredData then ' (measurement) ' else '' endif + if

self.externalData then ' (external) ' else '' endif

Program 4.2: AQL Code for ModelNode

aql: self.name + if self.descriptive then ' (descriptive) ' else '' endif + if self.predictive
then ' (predictive) ' else '' endif + if self.prescriptive then ' (prescriptive) ' else ''
endif

For example, Program 4.1 specifies that the name of the Data instance is shown first, and then
input, output, measurement, external are shown if the instance’s inputData attribute, outputData
attribute, measuredData attribute, externalData attribute, respectively, are true. The same applies

to all the other elements i.e., Model, STS, and RunningSoftware.

36

4.2. Viewpoint Specification Project

4.2.3 Edges

The relation-based edges are created to display the relationship between nodes. In reference to the
MODA framework, each relation-based edge represents the various ActionTypes. The source and
target nodes are indicated to provide the mapping from where the edge should start and where it
should end, respectively, as shown in Figure 4.4. For ActionTypeA, it is linked to the Action class
in the MODA metamodel which is referenced in the section called Domain class. This action moves
from a DataNode (i.e., source mapping) to the RunningSoftwareNode (i.e., target mapping). The

source and target mappings make use of the id defined earlier for nodes.

Id*: (7) ActionTypeh Label: (7) ActionA
Domain Class*: (% moda:Action

Source Mapping*: (%) DataMNode

Source Finder Expression: (@) feature:from

Target Mapping*: () RunningSoftwareMode

Target Finder Expression*: (7 feature:to

Semantic Cand...s Expression: (7) feature:actions

Figure 4.4: Snapshot of Relation-based Edges Properties for Action A

The style of the edges can also be specified, i.e., the shape, color, label size, label format, label
alignment, and all other properties. The label expression for the edges is an expression with a
boolean return type that will be evaluated on the relational edge. The edge will not be created if
the boolean result is false. Program 4.3 shows the AQL code written for the precondition expression
of ActionType A, i.e., only actions of type A are visualized according to the properties shown in

Figure 4.4.

Program 4.3: AQL Code for Precondition Expression of Action A

agl: self.type = moda::ActionType::A

4.2.4 Palette

Aside from designing how the tool should depict MODA models, we also included a palette of tools

that help users build new element components, new action components and also give them the

37

4.2. Viewpoint Specification Project

option to reconnect edges from one element to another. Figure 4.5 shows the section for the palette

and an example of how the node creation model tool is set up.

v [Section
v [Node Creation Model
q5'<r|j|r~l|::|de Creation Variable container
5 Container View Variable containerView
~ [Begin
w I Change Context var:container
v [Create Instance moda::Model

*)=Set name

Figure 4.5: Snapshot of Palette Setup for Model Node Creation Tool

The ID and label are set and mapped to the ModelNode as shown in Figure 4.6, to allow access
to all the properties set for a model in Program 4.2. This will enable the created element to have
access to all the properties and rules set for the Model class.

1 Node Creation Model

General 1d*: @ createModel Label: @ Model
Documentation . =

Node Mappings*: (2) ModelNode
Advanced

Precondition: @

Force Refresh:
Elements To Select: @

Inverse Selection Order: @

Figure 4.6: Snapshot of the Properties for the Node Creation Model

Containers are graphical elements within a diagram, displayed in a list or with shapes, squares,
circles, images, etc, and are arranged based on the user’s requirements or design preferences. A
container is created and an instance of the model class composed in MODA will be created within
this container. When a user creates a new instance of the model class whatever properties and rules
are programmed and contained in this container will apply to this new model. The name of the
model is also set as shown in Figure 4.7. An AQL code is written in the value expression section
which is a value to set on the current feature (name in this case) and returns the type supported
by the feature.

The code in Figure 4.7 is used to get the properties set for naming a node as shown in Pro-

38

4.2. Viewpoint Specification Project

gram 4.2 and allows a user to provide a name and set this name for a model. The value expression
is used to identify and track the number of elements created (i.e., modelN). For example, the first
model created is named by default modell, the second model2, and so on, but the modeler can

change the name anytime in the perspective view.

9= Set name

General Feature Name*: @ name

Value Expression: (% agl'models'+container.elements->filter(moda:Model)->size()

Figure 4.7: Snapshot of the Properties for Setting a Name for the ModelNode

Figure 4.8 shows the section for the palette and an example of how the edge creation for

ActionType C tool is set up.

W \{\} Edge Creation Measurement (C)
#51 Source Edge Creation Variable source
51 Target Edge Creation Variable target
51 Source Edge View Creation Variable sourceView
3 Target Edge View Creation Variable targetView
~ [Begin
+ Z: Change Context agl:source.eContainer()
~ [Create Instance moda::Action
(J=Set from
()=Set to
)= Set type

()= Set name

Figure 4.8: Snapshot of Palette Setup for the Edge Creation Tool

The difference between the source, target, sourceView, and targetView is that the source and
target edge creation variable is the source and target of the relation going to be created and the
source and target edge view creation variable is the graphical objects representing the source and
target respectively. The connection start and complete precondition expressions are specified as
shown in the properties tab in Figure 4.9.

These expressions are set to specify from where the edge is going to start and to where it can
go. For example, in this case, an edge for Action C must start from the running software as seen in
Figure 4.9. Furthermore, the expressions also prevent the user from creating a reflexive relationship

to a node other than measured data as shown in Program 4.4 and in Figure 4.9.

39

4.2. Viewpoint Specification Project

\{ Edge Creation Measurement (C)

General Id*: (2) Measurement (C) Label: @

Documentation Edge Mappings*: (@) ActionC
Advanced
Connection Start Precondition: ~ (?) agl:moda::RunningSoftware

Connection Co...Precondition: (@ aql:pi get.di and p get.oclAsT Data).measuredData
Force Refresh:

Elements To Select: ®@

Inverse Selection Order: @

Figure 4.9: Snapshot of the Properties for an Edge Creation

Program 4.4: AQL Code for Connection Complete Precondition of Action C

aql:preTarget.differs(preSource) and preTarget.oclAsType(moda::Data) .measuredData

preSource refers to the object on which the user initially clicked or interacted with first. preTar-
get denotes the object that is being pointed at or hovered over by the user’s cursor. By using this
precondition, the tool is designed to prevent the creation of forbidden links between objects. When
a user attempts to create a forbidden link, the tool will display a specific icon or visual indicator to
indicate that the action is not allowed. Edges can also be reconnected, which is set up similarly to
the edge creation. The only difference is that the source and target edge reconnection properties

are set up separately, each with an individual container as shown in Figure 4.10.

v 4. Reconnect Edge reconnectSource4ActionA v /- Reconnect Edge reconnectTarget4ActionA
51 Source Edge Creation Variable source 1 Source Edge Creation Variable source
f#1 Target Edge Creation Variable target 3 Target Edge Creation Variable target
) Source Edge View Creation Variable sourceView %3 Source Edge View Creation Variable sourceView
5 Target Edge View Creation Variable targetView 5 Target Edge View Creation Variable targetView
fei Element Select Variable element @ Element Select Variable element
~ [Begin ~ [Begin
~ 7> Change Context var:element ~ 2> Change Context var:element
(:9=Set from)=Set to
23 Element Select Variable edgeView #1 Element Select Variable edgeView

Figure 4.10: Snapshot of Palette Setup for the Edge Reconnection Tool

The source container specifies from which element an action can be moved and the target
container specifies to which element it can be moved. This ensures that a user cannot make
a connection that does not conform to the MODA framework. For example, ActionA is from

InputData and to RunningSoftware. Therefore, a user cannot reconnect ActionA to any other

40

4.2. Viewpoint Specification Project

source element except InputData and to any target element except RunninngSoftware.

4.2.5 Validation

Five rules are written to validate the diagrams created by the tool. Figure 4.11 shows a snapshot
of the validation rules generated in the Sirius perspective tool. All the validation rules defined in
Chapter 3 are also specified in the Sirius perspective model. Rules 1 to 5 are defined in Figure 4.11
(i.e., at least one model attribute should be true, at least one data attribute should be true, action
name should be unique, element name should be unique, and at least one model should be present,
respectively).
v %e2|Validation
v || Semantic Validation Rule ModelValidationTest
7 Audit aqgl:self.descriptive or self.predictive or self.prescriptive
v || Semantic Validation Rule DataValidationTest
7 Audit agl:self.inputData or self.outputData or self.measuredData or self.externalData
v || Semantic Validation Rule ActionNameValidationTest
7 Audit agl:self.name -> isUnique
v || Semantic Validation Rule ElementNameValidationTest
7 Audit agl:self.name -> isUnique
v || Semantic Validation Rule ModelTest

7 Audit self.elements = select(ocllsKindOf(Model)) = notEmpty

Figure 4.11: Snapshot of the Validation Rules in the Sirius Perspective

If this rule is violated, a warning message is displayed to inform the designer that there is a
mistake in their diagram. Figure 4.12 shows a snapshot of the warning and the message to be

displayed for the rule At least one model role must be set to true for a model”.

¥l Semantic Validation Rule ModelValidationTest

General ld*: (2) modelTest Label: (2) ModelValidationTest
Level*: Warning
Target Class*: moda::Model
Message: (7) Atleast one model role must be set to true for a model

Figure 4.12: Snapshot of the Warning for the Semantic Validation Rule ModelValidationTest

The remaining rules (i.e., rules 6 to 15) are implemented in the action and element setup. For

41

4.3. Diagram Representation

example, rule 6 states that Action A is from input data to running software, hence in programming
the Sirius perspective view a set of rules are written to determine the source and target of action
A such that it only moves from an input data to a running software. No other connection will be

allowed.

4.3 Diagram Representation

To test the diagram and view how each element is represented graphically as specified and defined
in the elements and node setup, the Sirius perspective view enables an editor which displays the
models contained in the modeling project and their respective representations. A MODA example

from the reference paper [31] is shown in Figure 4.13.

Improve business process models
Prescriptive Model: describe and 'E*L{ for an enterprise, hence enabling f- Predictive Model
constrain allowed business processes feedback loop m (predictive)
@ by sequences of business activities in
s an enterprise (e.g., BPMN)
(prescriptive)
@ Processimining: analyze

Descriptive Model:
=] Controlled by deployed f. process mods|

=] Enactment process engines ol " (descriptive)

E"‘h Process mining: synthesize

@ Business Activities o \E % B

@ Socio-Technical System =] Process logs

Figure 4.13: Business Process Modeling and Mining

Each element is represented with a rectangle and each action is represented with an arrow. Each
element differs based on the color. The Data class is yellow, Model class is green, RunningSoftware
purple, and ST'S blue. Each action type arrow has its unique color as well as seen in Figure 4.13.
The arrow depicts where an element is moving from and to where (i.e., source and target) and
the target is represented with a diamond arrowhead. The names of the elements and actions are
the respective labels, as defined in the definition of the diagram. Unique icons are also used to

represent the various elements to graphically define them.

42

4.4. Summary

4.4 Summary

In this chapter, we present the proof-of-concept tool built to support the MODA framework, focus-
ing on how we implement and specify the tool with Sirius, its setup, application, and validation.
In Chapter 5, we delve into the courses selected to analyze the framework in an exploratory study

and discuss the various views and perspectives obtained from the analysis.

43

MODA Education Application

With an emphasis on minors in Software Engineering (SE) and Applied Artificial Intelligence (AI),
we introduce nine courses offered by the Department of Electrical and Computer Engineering at
McGill University in this chapter. The MODA framework [31] claims that it is applicable to many
concepts, tools, technologies, and processes. An initial indication that this is the case is provided
but a more comprehensive examination of this claim has yet to be done. We are going to do that
with the help of the minors in SE and Applied Al as they help us scope the set of concepts that
need to be modeled; essentially, we are asking the question of to what degree MODA can cover the
concepts in these courses to further validate the claim of wide applicability made by the authors of
the MODA framework.

The SE minor [101] offers a foundation in computer science, computer programming, and soft-
ware engineering practice. The selected key courses taught in this minor that are analyzed in this

thesis are ECSE 326, 223, 321, 428, 429, 439, and 250. The Applied AI minor [100] is designed

44

5.1. ECSE 326 - Software Requirements Engineering

to provide a good foundation for applications of Al techniques in various fields. The selected key
courses taught in this minor that are analyzed in this thesis are ECSE 250, 551, and 552.

As part of the research process, the instructors of seven courses actively participated in the study
by providing valuable insights into the course contents and identified the key concepts and models
needed to be represented within the MODA framework. This structure included a breakdown of
the topics, sub-topics, and relationships between different concepts. The courses were reviewed by
the instructors and a detailed structure of the specific requirements and objectives of each course
were provided to be implemented with the MODA tool. For the remaining two courses (i.e., ECSE
429 and 552), the course structure available to students was carefully analyzed and reviewed. This
analysis involved a thorough examination of the course materials, syllabus, and learning objectives
to identify the key concepts and topics covered in each course. For five courses, the instructors also
verified the MODA models of their courses and gave feedback that improved the final version of
the MODA models.

5.1 ECSE 326 - Software Requirements Engineering

Software requirements engineering [72] [74] is a multidisciplinary effort that functions as a bridge
between the acquirer and supplier domains in order to define and manage the requirements that
must be met by the system, software, or service of interest. As a result, it serves as a link between
the capabilities and opportunities provided by software-intensive technologies and the real-world
demands of stakeholders who will be impacted by the system-to-be. It covers areas such as tech-
niques for eliciting requirements, languages and models for specification of requirements, analysis
and validation techniques, including feature-based, goal-based, and scenario-based analysis, quality
requirements, requirements traceability and management, handling the evolution of requirements,
requirements documentation standards, requirements in the context of system engineering and the
integration of requirements engineering into the software engineering processes. Figure 5.1 shows
the MODA representation of the course.?

Before developing a system or performing any form of analysis on the steps to take to build that

system, there must be some form of planning. Before designing software, the requirements need to

2A MODA model is not a process model but rather a model that shows the roles of models and data and their
actions.

45

5.1. ECSE 326 - Software Requirements Engineering

UML Model, URN Model, Feature Model,

Context Diagram, User Story, Requirements (==} Analysis, decision and change URN Goal Model (strategy), Traceability

Document, Vision Statement, Prototype % Matrix (impact analysis), Risk
f-. (throw away) [Templates for Requirements, an Assessment Report (predictive)
m Requirements Specifications, Vision

Statements] [Checklist] [Requirements
Triage and Prioritization] [Risk Mitigation]
(prescriptive)

[E‘E‘x Prepare for Prediction

=4 Deployment

Persona, Problem Statement, Traceability
Matrix, Questionnaire/Survey Report
¢ (quantitative), System Documentation
@ (quantitative), UML Model, URN Model,
e Feature Model, Context Diagram
[Templates for Personas and Problem

@ Prototype System (evolutionary) Statements] (descriptive)

== Requirements Elicitation

== Input data

Questionnaire/Survey Report
.04+ (qualitative), System Documentation
@ - (qualitative), Interview Transcript,
@ Output data Observation/Ethnography Report
(input) (output) (external)

Figure 5.1: ECSE 326 MODA Diagram

be clearly outlined. We modeled all the processes, tools, and technologies used in ECSE 326 with
MODA and categorized each as either a model or data based on the role they play in helping one
develop requirements for a system. Some tools and technologies clearly operate on data or models
but they cannot be modeled as data or models directly because they do not create data or models.
We adapt the MODA framework by mentioning these tools and technologies in square brackets in
data or models to be able to still capture their use in the course. We use this approach for all
courses.

Data is information from the stakeholders on what software they want to build, its functional-
ities, and any other information that will help the developer create the software. This is external
data by definition because it is not yet connected to a running system. The monitored data of
a running system could also be useful in this context but the course does not explicitly focus on
that (i.e., the course focuses mainly on the input and output data in the context of evolutionary
prototypes). Hence, we do not include monitored data in Figure 5.1. Before beginning to build the
software, the requirements engineer steps in and analyses the data, generalizing it in some cases.

The type of generalization that happens is called requirement elicitation. It is the process of

46

5.1. ECSE 326 - Software Requirements Engineering

learning about a system’s requirements through dialogue with clients, users, and other parties in-
volved in its development. In elicitation, one may seek to learn about the domain, problem, and
constraints; identify information sources and applicable methodologies; and create a first document
that mainly contains user requirements and elicitation notes [17]. Some elicitation techniques result
in more data, while others help generalize data into models. Hence, the requirements elicitation
arrow in Figure 5.1 refers mostly to model-based requirements elicitation in its widest sense. Qual-
itative questionnaires/survey reports, interview transcripts, observation or ethnography reports,
and any other qualitative system documentation are some of the elicitation techniques that result
in more data as they try to discover the requirements for the system.

Surveys and questionnaires gather information from many people who respond to a specific
question. When there are many or when stakeholders are geographically dispersed and there is
the need to gather the same information from them, the survey/questionnaire elicitation technique
is preferred. System documentation represents the outcome of the process of documenting the
description of the software system and its components in detail [11].

One of the main elicitation techniques used is interviews. For example, the requirements en-
gineer may use interviews to elicit information from a person or group by posing questions and
documenting the responses in a formal or informal setting [99].

Observation or Ethnography report is a document that attempts to discover social, human, and
political factors which may impact requirements. Ethnography seeks to collect what is ordinary or
what people do (i.e., aim at making the implicit explicit), study the work context, and watch work
being done [94].

The requirements engineer may then develop model-based artifacts, such as a persona, problem
statement, traceability matrix, questionnaire/ survey report, system documentation, UML model,
URN model, feature model, and context diagram. These are considered the descriptive model in
MODA as they are models that describe the existing system, with templates used for personas and
problem statements considered tools for these descriptive models. Note that we include persona
and problem statements as well as quantitative elicitation outcomes as descriptive models because
we take a very broad definition of model: anything with a clearly defined structure beyond natural
language documents.

A persona is an archetypical user of a system, a template of the type of person who would

47

5.1. ECSE 326 - Software Requirements Engineering

interact with it. It is often used as a stand-in for a real person when they are not available. The
idea is that if you want to create effective software, it must be tailored to a specific user [14].

A problem statement asks the question, ”What can be done” for a project to succeed, to meet
the needs of its stakeholders who are not involved in the development. The template for a problem
statement provides a structured outline that can be applied to a specific problem or challenge that
the software system intends to solve. When the problem statement is not well-thought-out, there
is the risk of creating a product that solves the wrong problem [9].

A traceability matriz is an artifact that links test cases, standards, regulations, certification
documents, and design artifacts, among others, with requirements at various levels. Often, a
customer’s requirements and requirement traceability are documented or captured in a database
or online tool. As this is an ongoing process, all this happens during the Software Development
Life Cycle (SDLC) [59]. For example, one goal of a traceability matrix is to confirm that all
requirements are verified through test cases, ensuring that no functionality is overlooked while
performing software testing.

While qualitative questionnaire/survey reports and system documentation are categorized as
data, they are descriptive models when they are quantitative in nature, because they abstract from
the data as they capture or report numerical responses (i.e., multiple choice options, metrics, scales,
etc) from participants that are analyzed statistically.

UML [2] is a modeling standard for software system design. This is also useful in requirements
engineering, which employs UML models such as use case diagrams, class diagrams for domain
models, activity diagrams, state machines, and to a certain degree, sequence diagrams [157].

A URN model [71] [15] is a standardized requirements engineering language that clearly com-
municates business goals and high-level functional needs to all stakeholders.

An illustration of the products classified as features in a family of systems is called a feature
model. A feature of a system is a distinguishing trait, attribute, or characteristic. The link between
the parent and child features, as well as which features are required, optional, and dependent upon,
are all clearly mapped out in this model, which describes features and their dependencies [98]. A
feature model specifies which combinations of features are valid and which are not.

A context diagram shows the input or output data flow between external entities (either stake-

holders or external systems) and the system to be developed. It clearly shows the scope or bound-

48

5.1. ECSE 326 - Software Requirements Engineering

aries of the system to be developed [24].

ECSE 326, to some extent, also covers a level of prediction in the form of a goal model, trace-
ability matrix, and risk assessment. A URN goal model captures stakeholders’ business goals,
alternatives, decisions, and rationales. This model plays the role of the predictive model as it helps
make some forecasts about the system. In particular, the aspect of the goal model that is predictive
is the outcome of a goal model strategy, i.e., the specification of which solutions to consider and
to what extent when analyzing stakeholder satisfaction. This helps depict a plan of action that
aids the requirements engineer in planning, directing, and making forecasts that can help offer
useful insight into the system. The traceability matrix, when used as a predictive model, focuses
more on impact analysis and dependency analysis, which covers any analysis of changes that can
occur within the system when deployed and their potential consequences. Risk assessment reports
are the reports created after a risk assessment of the software system has been performed. Risk
assessments are done to determine all aspects of the system or artifacts that may be harmful to
the system during and after development. The report is predictive as it provides information on
future effects on the system and their likelihood.

The requirement engineer then makes some analyses, decisions, and changes based on the data
and information collected so far. Then, the engineer creates some form of specification for the sys-
tem to be built. The techniques used in making these specifications are modeled as the prescriptive
model of the system. Some techniques used for descriptive models can also be used for prescriptive
models but changing the focus from describing what exists to prescribing what should exist. The
techniques that serve as both descriptive and prescriptive models include the UML model, URN
model, feature model, and context diagram. User stories, requirement documents, vision state-
ments, and prototype systems (throw-away) are the remaining models that play only a prescriptive
role.

A user story is a sentence, in a simple business language, that describes functionality to support
the responses to the Who, What, and Why questions when posed and is often from the viewpoint
of the user or client [52].

A requirements document is a document that contains all of the requirements of a product.
It is written in such a way that people can understand what a product should do. However, in

general, the document should avoid anticipating or defining how the product will function so that

49

5.1. ECSE 326 - Software Requirements Engineering

interface designers and engineers can later use their expertise to provide the best solution to the
requirements [153]. The requirements document [21] clearly and accurately describes each of the
essential requirements of the system and its external interfaces. Each requirement must be designed
in such a way that it is feasible and objectively verifiable by a prescribed method (e.g., by inspection,
demonstration, analysis, or test).

A vision statement is a document of the system’s present and long-term goals, typically provided
by a stakeholder [82]. The key structure of a vision statement captures the target customer (i.e.,
for), the statement of the need (i.e., who), the product name and category, the primary competitive
alternative, and a statement of the primary differentiation. The software product vision statement
describes the core essence and overall objective of the software product and its outcome [126].

A software prototype is a quick implementation of a few features of the final system. It tries
to solicit early opinions from stakeholders and prompts further elicitation [19]. When there is
unavoidably no intention of putting the prototype in the final system, it becomes a throw-away
prototype. When there is a plan to develop a highly robust prototype in a structured manner
that will be continuously refined and possibly be turned into the actual system, it becomes an
evolutionary prototype [152]. Hence, such prototypes are deployed to all relevant stakeholders and
the output of the prototype is used to further improve the system.

Some tools used to implement these techniques include templates for requirements, requirements
specifications, and vision statements. These templates specify the required structure of the artifact.
Furthermore, checklists, requirements triage and prioritization, and risk mitigation are techniques
used during the specification of requirements.

Checklist is a document that contains a list of procedures and tests that aid in determining
whether a product is ready for deployment [96]. Checklists are widely used in a variety of disciplines
to reduce human error and improve safety and performance. In addition, checklists can also be
used as mnemonic devices, acting as a "reminder system” to assist experts in consistently applying
procedures and processes [135].

Requirements triage and prioritization is the process of knowing which requirements are to be
satisfied when there is a limited number of resources and time [136].

Risk mitigation is the process of dealing with identified and evaluated risks before they have

a negative impact on a project (i.e., dealing with a concern before it develops into a crisis). If an

50

5.2. ECSE 223 - Model-based Programming

undesired event has already occurred on the project, it becomes an issue rather than a risk. Since
no one can accurately anticipate the future with certainty, risk management is used to minimize the
likelihood or impact of potential problems. Doing this increases the project’s likelihood of success

and lessens any financial or other effects of risks that cannot be avoided [38].

5.2 ECSE 223 - Model-based Programming

Model-based programming [78] is the process of integrating models with programming. The objec-
tive of this course is to introduce model-driven engineering for the modern development of software
systems by identifying the concepts of a domain and their relationships with the help of a key struc-
tural modeling notation (i.e., UML class diagrams), expressing executable behavior with behavioral
modeling notations (i.e., UML sequence diagrams and UML state machines), using code auto-
generated from UML models in an application, expressing natural language constraints to make
UML class diagrams more precise, and applying appropriate design patterns. This project-based
course focuses on abstraction in software engineering, structural modeling, state-based modeling,
modeling of object-oriented systems, code generation, natural language constraints in modeling
notations, architectural and design patterns, integrated development environments, programming
tools (i.e., debugging, continuous build or integration, version control and code repositories, de-
fect and issue tracking, refactoring), and code review processes. Figure 5.2 shows the MODA

representation of the course.

Structural Model (Umpie), Behavioral Model Structural Model (UML Class Diagram, UML
R e e (== n Object Diagram, Umple), Behavioral Model
(Umple), Acceptance Test (BDD with i Manually Derived (UML Sequence Diagram, UML State Machine,
Gherkin/Cucumber.io), Unit Test (Java, JUnit), Umple), Acceptance Test (BDD with
% Natural Language Constraint for Class Diagram, -, Gherkin/Cucumber.io), Unit Test (Java, JUnit),
«Llw JavaProgram [Eclipse] [Debugger] [Git] #Lw Natural Language Constraint for Class
[GitHub] [GitHub Issue Tracker] [Gradle] Diagram, Java Program [Eclipse] [Debugger]
[Architectural and Design Patterns] [Git] [GitHub] [GitHub Issue Tracker] [Gradle]
(prescriptive) [Architectural and Design Patterns]

(descriptive)
==} Code Generation [Umple]
'E‘},‘I Generalization
== peployment
‘ q Input data
@ Running Software ‘ > \E” Data (input) (output)

‘ ~=1! Output data

Figure 5.2: ECSE 223 MODA Diagram

51

5.2. ECSE 223 - Model-based Programming

The data represents the problem domain and what is to be modeled and this data is then
generalized and formulated. The type of data that exists in this course is input and output data
(i.e., observations). These observations are obtained from the currently running software. These
observations are used to further adjust the problem domain and get a clearer picture of what needs
to be modeled. Modeling is the process of producing a representation of a domain or software. The
modeling engineer designs or develops structural diagrams (i.e., UML Class Diagram, UML Object
Diagram, Umple), behavioral models (i.e., UML Sequence Diagram, UML State Machine, Umple),
acceptance tests (i.e., BDD), unit tests (i.e., JUnit), and programs (i.e., Java), and writes natural
language constraints for the class diagram. These are all modeled as the descriptive model according
to MODA. Although these models could also be all used as prescriptive models, only some are used
in this course to implement a system. They include Umple for the structural model and behavioral
model, acceptance tests (i.e., BDD), unit tests (i.e., JUnit), natural language constraints for class
diagrams, and the Java program. A large part of the Java program is generated automatically from
the Umple models.

Structural Modeling is a type of modeling that is used to represent classes and objects found
in the domain or in the software. This is done by using tools such as UML to create structural
diagrams (i.e., class diagrams and object diagrams). Umple also supports class diagrams.

Behavorial Modeling involves depicting the system’s states, actions, and how its components
interact. UML sequence diagrams and state machines are two types of behavioral models used in
this course. UML sequence diagrams are visual representations that illustrate the order and flow
of operations in a system. They provide a clear depiction of how objects interact and communicate
with each other during a particular scenario or sequence of events [103]. UML state machines
are modeling techniques used to describe the behavior of a system or process by defining a set of
states and the transitions between them. Each entity or sub-entity within the system is always
in one specific state at any given time, and the state can change based on certain conditions or
triggers. This approach helps to organize and understand how the system progresses from one state
to another, ensuring that there are clear and defined pathways or rules for transitioning between
states [156]. Umple also supports state machines.

Behavior-driven development (BDD) [122] is an agile approach that promotes teamwork and

collaboration among business stakeholders, developers, and testers and emphasizes describing the

52

5.3. ECSE 321 - Introduction to Software Engineering

system’s behavior using explicit scenarios and examples. In ECSE 233, the employed BDD approach
uses Gherkin features and scenarios. Gherkin is a business-readable, domain-specific language
designed specifically for describing behavior, and allows the removal of logic details from behavioral
tests. Gherkin serves two functions, project documentation, and test automation [23].

Natural language constraints for class diagrams are the constraints written for class diagrams
in a natural language, such as English, to help refine the models by specifying a condition to which
the model must conform. In addition, after the constraints are implemented, they can be validated
to check that the model adheres to the constraints [63].

Architectural and design patterns can be viewed as frameworks that assist in designing and
structuring software systems and aim to help solve specific design problems in a software system.
Architectural patterns [132] are the larger blueprint of the system as design patterns [121] are more
focused on how the components of the software system are built.

Once the modeling is complete, the engineer reviews and analyses the models to determine the
accuracy and completeness of the models. If there is the need for some changes to be effected, the
models are revisited and readjusted to these revisions and the code undergoes multiple iterations
(i.e., action G). This process goes on until the engineer is satisfied with a final model. The tools and
technologies used to define both descriptive and prescriptive models in a programming language
include Eclipse, Debugger, Git [55], GitHub and GitHub Issue Tracker [56], Gradle [68], and archi-
tectural patterns and design patterns. Once a final model is obtained, the system is implemented

and deployed.

5.3 ECSE 321 - Introduction to Software Engineering

Software engineering [160] [62] is a systematic approach to developing computer software using
engineering principles. A software engineer is someone who applies the engineering design process
to create, maintain, test, and evaluate software. The software development process involves var-
ious activities such as defining requirements, writing code, assessing quality, managing changes,
and continuously improving the software throughout its life cycle. Software engineering ensures
that software is developed using established engineering techniques to achieve reliable and efficient

results [155]. This course offers students a thorough introduction to the fundamental concepts

93

5.3. ECSE 321 - Introduction to Software Engineering

and methodologies of software engineering, focusing on developing large-scale software systems.
Students will learn the basic concepts, methods, and best practices of software engineering. In ad-
dition, they will study different stages of software development, requirements engineering, software
design principles, testing, and software maintenance. The course covers software systems’ design,
development, and testing, including different stages of the software life cycle, such as requirements
analysis, software architecture and design, implementation, integration, test planning, and main-
tenance. As part of the course, students get to work on a group project, which builds them up to

collaborate on projects. Figure 5.3 shows the MODA representation of the course.

Don(l):in Mc::ell (tUmpIk:z, Datab?ts)eRnDnesitgthF;,ostgrte?QL), Domain Model (UML, Umple), Database Design
ject Relational Mapping with Hibernate), = ; (PostgreSQL), Object Relational Mapping (ORM with
N A :ﬂ Manually Derived gre pA L L E UL LT I wi
ﬁi JavaScript Program (web frontend, Vue s), Java y 7. Hibernate), JavaScript Program (web frontend, Vue.js),
oL Program (mobile frontend, backend), Unit Test (JUnit) m Java Program (mobile frontend, backend), Unit Test
[Android SDK] [GitHub] [Spring/SpringBoot] [Gradle] (JUnit) [Androis SDK] [GitHub] [Spring/SpringBoot]
[Heroku] (prescriptive) [Gradle] [Heroku] (descriptive)

Code Generation (Umple)
==} Deployment

'ﬁ Generalization

@ Input data

@ Website and Android

e A

— » N5 Data (input) (output)
[==3) Output data &) b :

Figure 5.3: ECSE 321 MODA Diagram

Data is vital to make informed decisions, creating effective solutions, and improving software.
In this course, input and output data are defined. The output data represents observations. These
observations are obtained from the currently running software and are used to further adjust the
problem domain and get a clearer picture of what needs to be modeled. The data is generalized
into models for further development. Generalizing the data helps simplify and organize complex
information for more accessible analysis and use in software development.

In building the application required in the course, the students are to gather requirements,
design a multi-tier software solution to satisfy those requirements, implement the system, validate
that the system is meeting the requirements, and develop a release pipeline to automate the software
delivery process. Just as in the industry, the software engineer will have to do these and more to get
an application, whether web or mobile, up and running. Domain model, database design, Javascript

program (i.e., web frontend, Vue.js [139]), and Java program (i.e., mobile frontend, backend) are

54

5.3. ECSE 321 - Introduction to Software Engineering

used when developing a software system. All these techniques are modeled as both descriptive and
prescriptive models.

Domain modeling is a software engineering and analysis technique to describe and represent the
entities and relationships within a specific problem domain [114].

Database design refers to the process of organizing and structuring data in a way that is suitable
for storage and efficient retrieval. The designer analyzes the data requirements and determines how
the different data elements relate to each other. This information is then used to create a database
model that defines the structure and organization of the data. A database management system is
used to effectively manage and handle the data based on the design [146]. PostgreSQL is a powerful
open-source object-relational database management system that is used for managing structured
data. It is known for its reliability, scalability, and extensive feature set [107].

Object Relational Mapping (ORM) is a programming technique that enables developers to use
object-oriented paradigms to interact with relational databases. ORM tools allow developers to
manipulate and retrieve data using object-oriented syntax and concepts by mapping data stored in
databases to objects in programming languages [151]. Hibernate is an ORM for Java programming
that allows developers to map object-oriented models to relational databases. Hibernate handles
object-relational impedance mismatch issues by substituting high-level object-handling functions for
direct, persistent database accesses. Developers can use hibernate to define mappings between Java
classes and database tables, specifying how objects and their properties are stored and retrieved
from the database [148].

Javascript and Java are the programming languages used to develop the frontend and backend
for web and mobile application in this course. Front-end development and back-end development
are two fundamental aspects of software development. Front-end development focuses on the parts
of a website or web application that users directly interact with. This involves creating and improv-
ing the user interface, enhancing the visual elements of web pages, and working on any issues during
the debugging process. Back-end development primarily focuses on the server-side functionalities
of a website or web application. Back-end developers focus on writing code that facilitates commu-
nication between web browsers and databases. They concentrate on ensuring the website’s proper
functioning by working with APIs, coding interactions with databases, utilizing libraries, design-

ing data architecture, and handling other related tasks. The back-end and front-end development

95

5.3. ECSE 321 - Introduction to Software Engineering

collaborate to provide users with a functional and interactive experience [117].

JUnit is a testing framework designed to make it easy for Java programmers to write and execute
tests. It provides a foundation for running testing frameworks on the Java Virtual Machine (JVM)
and includes the TestEngine API, which allows developers to create their own testing frameworks
that can run on the JVM. With JUnit, developers can write tests to validate the behavior of their
Java code and ensure that it functions as intended [6].

Once the software engineer has analyzed and made the necessary decisions and changes, they
develop the software system by writing the actual code and implementing the designed solution.
The code undergoes multiple iterations of implementation, testing, and debugging until a final
working version is achieved. Code generation from Umple models into Java code is also used. First,
the development phase entails translating the requirements and specifications into a functioning
software product. Next, the engineer utilizes their programming skills and expertise to create the
necessary algorithms, data structures, and functionalities outlined in the system design. These help
ensure the development process follows established practices and standards for efficient and effective
software development. The tools and techniques used to model both prescriptive and descriptive
models include Android Software Development Kit (Android SDK) [32], GitHub, Spring/Spring
Boot [128], Gradle [68], and Heroku [115].

Android SDK is a software development kit, that encompasses different elements such as APIs
that enable interaction with Android devices, tools for application development and debugging,
pre-configured system images for testing on emulators or real devices, and documentation to aid
developers in understanding and utilizing the Android platform [32].

GitHub is a platform and cloud-based service that facilitates software development and version
control using Git. It provides developers with a centralized location to store and manage their
code, enabling collaboration and efficient workflow management [56].

Spring is a framework that offers a comprehensive programming and configuration model for
building enterprise applications using Java. Spring boot simplifies the process of creating stan-
dalone, production-ready applications based on the Spring Framework. It provides a streamlined
approach where you can simply run your Spring applications without the need for complex setup
or configuration [128].

Gradle is a free and open-source build automation tool that prioritizes flexibility and perfor-

o6

5.4. ECSE 428 - Software Engineering Practise

mance. It allows developers to define their build processes using either the Groovy or Kotlin
programming languages. With Gradle, developers have the flexibility to customize and optimize
their build scripts according to their specific project requirements [68].

Heroku is a cloud platform that allows developers to deploy, manage, and scale applications. It
supports a wide range of programming languages and frameworks, including Java, Ruby, Python,
Node.js, Go, PHP, and more [115].

Once the application is completely programmed and functioning as required, it is deployed.
Then, all application system functionality is accessible via the web or mobile front-end for the

respective stakeholders.

5.4 ECSE 428 - Software Engineering Practise

Software process elements [137] [108] are the building blocks that make up a software development
process. They are the various activities, tasks, and artifacts involved in the entire software devel-
opment life cycle, from the initial conception of the software to its final deployment. A software
engineer utilizes engineering principles in developing software and typically assumes responsibility
for designing the overall system of a software application. Upon completion of the coding phase,
software engineers conduct thorough testing to ensure that the software meets the specified engi-
neering requirements. While the exact origin of the term remains uncertain, the inaugural software
engineering conference, supported by NATO, took place in 1968 [112]. The conference aimed to
tackle the issues of inconsistency and unreliability prevalent in software development and empha-
sized the importance of improving quality assurance (QA) and reliability. A consensus reached at
the conference was that the systematic approach employed in traditional engineering disciplines
should be extended to software development, given that those disciplines were already designed
with similar objectives in mind. A software engineer typically oversees multiple coding projects,
but software engineering encompasses much more than simply writing code. In reality, it covers all
stages of the SDLC, starting from budget planning and extending to analysis, design, development,
software testing, integration, quality assurance, and retirement [161].

In this course, students are taught the software practices to adhere to in the industry related to

designing and commissioning large software systems. They are also introduced to the ethical, social,

o7

5.4. ECSE 428 - Software Engineering Practise

economic, safety, and legal issues in software development, as well as the metrics, project manage-
ment, costing, marketing, control, standards, Computer-Aided Software Engineering (CASE) tools,
and bug/feature management when developing software. Figure 5.4 shows the MODA representa-

tion of the course.

@ Static analysis, Dynamic
Process Model (Test-driven Development (TDD), “ analysis, Reviews
Acceptance Test-driven Development (ATDD),
7. Behavior-driven Development (BDD), Interative
f]i', Incremental Models, Continuous Integration (Cl))
[Scrum] [XP] [Kanban] [Grooming] [Task analysis]
[Clean code techniques] (prescriptive)

Process Model (Test-driven Development (TDD),

Acceptance Test-driven Development (ATDD),

Behavior-driven Development (BDD), Interative

* Incr tal Models, Conti Integration (CI))
[Scrum] [XP] [Kanban] (descriptive)

=) Deployment ==} Generalization
@ Input data
@ Rty o —~0 {2’ Data (input) (output)
A ==} Output data = (external)

Figure 5.4: ECSE 428 MODA Diagram

There is some form of data that is generalized and by leveraging such data, organizations can
gain valuable insights into various aspects of their software development practices. The combination
and analysis of relevant internal and external data can help improve processes within organizations.
Test-driven Development (TDD), Acceptance Test Driven Development (ATDD), Behavior-driven
Development (BDD), iterative incremental models, and Continuous Integration (CI) are modeled
as both descriptive and prescriptive models because they define specific methodologies useful in
software development by providing guidance on how best to manage and structure the process.

TDD [22] is a development approach where tests are written before the actual code is written.
One primary goal of TDD is that it helps the developer think through the requirements, then write
the code afterward, aiming to help developers write clean codes [67].

ATDD is a collaborative method that involves business stakeholders, developers, and testers,
to ensure that the software meets the required standards by creating upfront acceptance tests. It
aligns development with user expectations and business goals. ATDD encourages the whole team
to work together and gain a clear understanding before starting development [60].

BDD [122] is an agile approach that promotes teamwork and collaboration among business

stakeholders, developers, and testers and emphasizes describing the system’s behavior using explicit

o8

5.4. ECSE 428 - Software Engineering Practise

scenarios and examples. It encourages teamwork to clearly define how the application should
work through discussions and real-life examples. BDD combines techniques from TDD, object-
oriented analysis, and domain-driven design to help teams work together efficiently in developing
software [144].

Tterative incremental models describe a series of incremental steps in software development.
The iterative process usually begins with a partial implementation of the software requirements
and enhances the versions that are evolving until the system is completely implemented and de-
ployable [131].

CI [34] is the development practice that automates and integrates code changes from several
contributors into a central repository. This practice helps detect and resolve errors early in the
development process, improving collaboration and reducing the risk of integration issues [113].

Static analysis, dynamic analysis, and reviews are performed as a way of analyzing, evaluating,
and improving the quality of code and then making some level of decisions and changes to the soft-
ware system. The tools and technologies used in the course include Scrum, Extreme Programming
(XP), Kanban, grooming, task analysis, and clean code techniques.

Scrum is an agile project management framework that provides teams with a structured ap-
proach to managing and organizing their work. The framework is based on values, principles, and
practices that guide the team’s activities throughout the project lifecycle [33].

XP is a collection of engineering practices applied by numerous IT companies. It emphasizes
aspects that are technical in software development. It emphasizes practices such as test-driven
development, pair programming, continuous integration, and coding standards [10].

Kanban is a framework that implements DevOps and agile software development. It focuses on
real-time communication, capacity management, and visual representation of work, allowing teams
to view the state of every work at any time [111].

In agile software development, grooming is the process of reviewing and refining the product
backlog. It involves getting rid of user stories that are no longer necessary, adding new user stories
to meet new requirements, changing the priority of existing stories based on their importance,
estimating effort, and clarifying requirements. Grooming sessions help everyone understand the
work, find connections, and prepare for development [109].

Task analysis is a technique that breaks down complex activities into smaller, easier-to-handle

99

5.5. ECSE 429 - Software Validation

tasks. It helps understand the steps and actions needed to complete a specific task. This information
helps design user interfaces and guide software development and testing. It is a valuable tool for
project managers as it helps them overcome several project obstacles and create competent teams.
By breaking down complex activities into smaller, manageable tasks, task analysis enables better
planning, organization, and resource allocation, leading to improved project outcomes [92].

Clean code techniques offer guidelines and strategies for developers to write code that is easy
to read and maintain. These techniques also emphasize good naming practices for variables and
functions, organizing code effectively, and avoiding repetitive code, resulting in manageable and
quality code.

All the tools and technologies in this course when implemented in real-world software devel-
opment processes do not just end there. There is a form of feedback loop that occurs because
software engineering practices happen every day. They promote adaptability, collaboration, agility,
and continuous improvement throughout the software development cycle up until and even after

the system is deployed.

5.5 ECSE 429 - Software Validation

Software Validation [1] [105] [130] ensures that a software system meets the specified requirements
to fulfill its intended purpose. In software validation, the engineer asks, “Are we building the right
product?”. Building the right software product implies developing a requirements specification that
accurately captures the needs and objectives of the stakeholders. If this document is incomplete or
incorrect, the developers may be unable to build the desired product per the stakeholders’ expecta-
tions [142]. The course focuses on the methods and techniques used to validate and verify software
systems. It emphasizes the importance of testing and verification techniques in building reliable
and high-quality software systems. ECSE 429 provides students with the necessary knowledge
and skills needed to plan, execute, and evaluate software testing activities. The course covers the
correct and complete implementation of software requirements, including requirements analysis,
model-based analysis, design analysis, and extensive software testing at the unit and system levels,
considering aspects like performance, risk management, and software reuse. The emerging field of

ubiquitous computing is also explored in relation to software development. Figure 5.5 shows the

60

5.5. ECSE 429 - Software Validation

MODA representation of the course.

Static and dynamic analysis, code

Unit Test (JUnit, AssertJ, Mockito), review, decision and change [Gerrit] Program (API), Unit Test (JUnit, AssertJ,
- Integration Test, Acceptance Test, Model- q [SonarQube] [Infer] [Code - Mockito), Integration Test, Acceptance
m based Test, Exploratory Test [Maven] Coverage] [Formal verification by rIl Test, Model-based Test, Exploratory Test

[Gradle] [Docker] (prescriptive) model checking] (descriptive)

'Eﬂ Deployment E";l Generalization

@ Input data

> {E‘Ef Data (input) (output)

@ Software Syst
e == Output data

Figure 5.5: ECSE 429 MODA Diagram

Data in software validation can be either input, output, measured, or external, but only input
and output data is emphasized in this course. During the validation process, the input data is the
data provided to the software, output data are responses generated by the software, measured data
refers to the data that is generated when the software is being executed, and finally, external data
can be any data from external sources that are used to help validate the software. This data is
generalized as generalization helps the data become more useful to eventually derive insights and
support decision-making in software development. Software developers and QA engineers are key
stakeholders in software validation and the sections of this course are mainly carried out by these
engineers. The developer creates Application Programming Interfaces (APIs) (i.e., the descriptive
model according to MODA), as part of the software development process and performs several
tests to ensure the code is of good quality and functionality. These tests include integration tests,
acceptance tests, model-based tests, and exploratory tests. Just like software programs and models
that are first prescriptive to define what a system must do and then become descriptive to describe
an existing system, these tests are also all modeled as descriptive and prescriptive models. Tests
also first prescribe what the system must do, and then become descriptive, describing what the
system currently does.

APIs [140] are mechanisms that facilitate communication between software components by
utilizing a set of definitions and protocols. For example, consider a weather app on a phone. The
app needs access to daily weather data, which is stored in the weather bureau’s software system. In

order for the app to retrieve and display weather updates on a phone, the app communicates with

61

5.5. ECSE 429 - Software Validation

the weather bureau’s system through APIs. These APIs define how the app can request weather
data and receive the appropriate responses. By leveraging APIs, the weather app can seamlessly
access and present the desired weather information on a mobile device [13]. APIs are often the
focus of tests.

Unit testing is a software testing approach that focuses on evaluating the individual units of
source code. These units include computer program modules, along with their associated control
data, usage procedures, and operating procedures. The purpose of unit testing is to ensure that
each unit of code performs as expected and functions correctly on its own [76]. Tools such as
JUnit [6], AssertJ [3], and Mockito [88] are used to perform unit tests.

Integration Testing is a part of software testing where testing is conducted on several complete,
integrated systems to assess their ability to successfully communicate with each other and to meet
the specified requirements [69].

Acceptance testing is a type of testing carried out to determine if a system meets its specified
acceptance criteria and to allow the customer or end user to decide whether or not to accept the
system [69)].

Model-based testing is a way of testing software or systems using models that represent how the
software should behave. These models help testers generate and run tests to check if the software
is working correctly [150].

Ezxploratory testing is a software testing approach that involves a simultaneous process of learn-
ing, test design, and execution. It emphasizes the discovery of defects that may not be adequately
addressed by predefined test cases. This type of testing relies on the expertise and intuition of
individual testers to explore the software system and uncover potential issues that may have been
overlooked. It allows for a more flexible and adaptable testing process, enabling testers to dynam-
ically adjust their approach based on real-time observations and insights [104].

Code reviews [29] are a systematic code assessment intended to identify bugs and improve code
quality. A code review is an important step in the software development process to get a second
opinion on the solution and implementation before it is merged into an upstream branch such as
the main branch [57]. GitHub [56] and Gerrit [54] are tools used to perform code reviews. Static
analysis is performed as part of code review by using static analysis tools such as SonarQube [7]

and Infer [5], to analyze and measure source code quality, identify bugs, vulnerabilities, and other

62

5.6. ECSE 439 - Software Language Engineering

code issues, and provide ways to improve and maintain the code. Code coverage, which represents a
percentage of the program’s source code that is executed when a specific test suite is run [145], and
model checking, which is a formal verification technique done to make sure that a system behaves
correctly based on a specific model, are performed to ensure that the software system is functioning
and meets every requirement.

Once the code has been inspected and reviewed and is up to standard, an analysis is performed
to evaluate the overall functionality of the software system, and based on the analysis, decisions are
made, and changes are made where need be. If the tests pass, the software system is deployed and
made available to the respective stakeholders. If not, a report is generated and sent back to the
respective engineer for review and change. The build or deployment tools and technologies used
include Maven [87], Gradle [68], and Docker [4], as they are the technologies used in automating

and validating the software.

5.6 ECSE 439 - Software Language Engineering

A software language is an artificial language used in the development of software systems [154].
Software Language Engineering (SLE) is concerned with the principled techniques and concepts
for the construction of software languages [18]. Software languages come in many shapes and sizes,
including programming languages, modeling languages, data format languages, specification lan-
guages, etc. This course focuses on practical and theoretical knowledge for developing software
languages and models. It covers areas such as principles of model-driven engineering, concern-
driven development, foundations for model-based software development, structural, intentional,
and behavioral models as well as configuration models, constraints, metamodeling, model transfor-
mations, language engineering, domain-specific languages, models of computation, model analyses,
and modeling tools. The objective of this course is to give students a strong foundation to succeed
in a model-driven engineering environment by exposing them to various types of model analysis, in-
troducing them to metamodeling to specify the abstract syntax, the concrete syntax, and execution
semantics of languages, understanding how execution semantics may be specified, teaching them
how to transform, merge, reuse, and generate models. Figure 5.6 shows the MODA representation

of the course.

63

5.6. ECSE 439 - Software Language Engineering

Class Diagram (UML, MOF, Ecore, Umple), Ix_—“% Manually Derived
Feature Model, URN Model, State Machine 2
Ij'ﬂ (Yakindu), Language Specification (Xtext), I"r'l URN Goal Model (strategy) (predictive)
“~~" Constraint (OCL, USE, Viatra), Java Program i
(prescriptive)

E"pl Prepare for Prediction

'I"‘;‘l Model Transformation, Code Generation [ATL] [Acceleo] [EMF]

Class Diagram (UML, MOF, Ecore,
Umple), Object Diagram, Feature
7. Model, URN Model, State Machine
m (Yakindu) Language Specification
(Xtext), Constraint (OCL, USE, Viatra),
Java Program (descriptive)

':“"ﬂ Generalization

{s=%’ Data (input) (output)
(external)

Figure 5.6: ECSE 439 MODA Diagram

The data represents the problem domain and what is to be modeled. This data is generalized
and formulated to produce an output which in terms of MODA is a model. As is the case with
many modeling notations, the same kind of model can be used as a descriptive or a prescriptive
model. This is also the case for a language engineer. The language engineer designs or develops the
respective structural diagrams, i.e., often class diagrams using the following tools and technologies
to describe an existing language or build a new language. These tools and technologies include
Meta-Object Facility (MOF) [127], Ecore [44], Xtext [50], UML-based Specification Environment
(USE) [123], OCL [47], and Viatra [119]. Often, these techniques are generative, i.e., Java programs
are generated from their models. Other tools and technologies are used as examples of metamodels
(Feature Model [147], URN [71], State Machine [156]) or to specify sample systems (UML [2],
Umple [133], object diagrams, Yakindu [70]). Note that object diagrams are not used to define a
new system.

A class diagram is a type of UML diagram that uses classes to capture details about the entities
that make up the system and the static relationships between them. A class is a description of
a set of similar objects that have the same structure and behavior. An object is an instance of
a class and an object diagram shows how the actual instances of a class are related at a specific

instance of time [106]. Many technologies used in this course build on class diagrams. Meta Object

64

5.6. ECSE 439 - Software Language Engineering

Facility (MOF) is an Object Management Group (OMG) standard for model-driven engineering.
It is a language that is used for defining languages, including modeling languages such as UML.
MOF defines the abstract syntax of modeling languages, allowing them to be precisely defined
and understood by different tools and platforms [102]. Ecore is a diagram editor that allows one
to design a domain model. It provides a design environment for modeling classes, datatypes,
references, attributes, and all the classical Ecore constructs [35]. Umple is a modeling tool and
programming language family that facilitates model-oriented programming. It extends object-
oriented programming languages like Java, C++, PHP, and Ruby by adding abstractions such as
attributes, associations, and state machines that are derived from UML. With Umple, one can
create UML diagrams textually [133].

Feature modeling is a domain analysis technique that is used to define the software product line
and system families. Features are used to identify and organize the commonalities and variabilities
within a domain, and to model the functional and non-functional properties [36].

The User Requirements Notation (URN) is a graphical language that combines the Goal-oriented
Requirement Language (GRL) [25] and Use Case Maps (UCMs) [16] for modeling and analyzing
requirements. It allows engineers to define and analyze goals, scenarios, and their relationships
in a lightweight and semi-formal manner. URN helps in discovering and specifying requirements
for new or evolving systems, and it facilitates the analysis of these requirements for accuracy and
comprehensiveness [95].

State machines, commonly used in computer science and represented in UML, are a way to
organize and control the behavior of a device, computer program, or other (often technical) process
works. They ensure that an entity or its parts are always in one specific state from a set of
possible states. Transitions between states are clearly defined and depend on specific conditions.
This enables precise control and coordination of how the system operates based on its current
state [156].

Xtext is a framework for defining programming languages and domain-specific textual languages,
by utilizing a powerful grammar language [50].

UML-based Specification Environment (USE) is a system that helps in specifying and validating
information systems using a simplified version of UML and OCL [47]. It allows one to describe a

model using UML class diagrams (i.e., classes, associations, etc). Additionally, OCL expressions

65

5.6. ECSE 439 - Software Language Engineering

can be used to define additional rules and constraints for the model. OCL is a language used to
express constraints and rules in model-driven development. It is specifically designed to work with
EMF and is often used alongside UML and other modeling languages. With OCL, one can define
precise constraints and expressions that are applied to models and their elements. These constraints
serve as checks to ensure that models are correct and consistent, meeting the specified rules and
requirements [47]. One of the key features of USE is its ability to animate the model (i.e., simulate
and test the model against various requirements). During the animation, snapshots of the system’s
states can be created and manipulated, which gives a better understanding of how the system
behaves in different scenarios [134]. VIATRA offers a framework for querying and transforming
models, facilitating the seamless exchange of information across different documents and models,
as it focuses on optimizing the efficiency of these operations. The framework is designed to support
the reactive programming paradigm, enabling event-driven transformations that dynamically adapt
to changes in the models. This means that transformations can be performed in real time as the
models evolve, ensuring the accuracy and timeliness of the results [119].

The URN goal model is modeled as the predictive model according to MODA. A goal model
captures stakeholders’ business goals, alternatives, decisions, and rationales. These are modeled as
the predictive model as they help make some forecasts about the system. The aspect of the goal
model, modeled as a predictive model in the MODA framework, focuses more on the strategies,
which include the model goals, stakeholders’ indicators, rationale, and decisions. This helps depict
a plan of action that aids in planning, directing, and making forecasts that can help offer useful
insight for the system. URN is used as an example software language in this course.

According to the MODA paper [31], the Generation action represents the typical software de-
velopment activities that use high-level prescriptive models (e.g., requirements models) to produce
lower-level prescriptive models (e.g., design models or executable code). The techniques used here
include model transformations, which are covered by ECSE 439. Model transformation is an au-
tomated way of modifying and creating models. It is the automatic manipulation of input models
to produce output models that conform to a specification and have a specific intent. This is done
to convert models to other software artifacts (e.g., models or code). ATL [43] and Acceleo [42] are

tools used to transform models, and EMF [45] is used to generated Java code.

66

5.7. ECSE 250 - Fundamentals of Software Development

5.7 ECSE 250 - Fundamentals of Software Development

Software development [89] encompasses the entire process of creating software programs. It involves
designing the software to meet business needs, developing it according to the design, and deploying
it for actual use. There may also be ongoing maintenance of the software, depending on the
project [141]. The fundamentals of software development course is designed to teach students a
logical and systematic approach to problem-solving. It provides them with the necessary skills to
tackle technical challenges and develop reliable software solutions. The course emphasizes industry-
standard best practices in software engineering, promoting the creation of high-quality and scalable
code. Through a mix of theoretical learning and practical application, students acquire the abilities
to solve complex problems, build robust software systems, and meet the professional standards of
the software engineering field. The course focuses on software development using object-oriented
programming. It covers basic data structures such as lists, stacks, and trees as well as algorithms
for searching and sorting. In addition, students learn about asymptotic notation (Big O) and are
introduced to tools and practices used in professional software development. Figure 5.7 shows the

MODA representation of the course.

===) Professional software
development practice Code Documentation (JavaDoc), Data

F:*fl Structure and Algorithm (Java SE), Unit Test
om (JUnit) [Eclipse] [Git] (descriptive)

Code Documentation (JavaDoc), Data ‘
F’1’1 Structure and Algorithm (Java SE), Unit
=" Test (JUnit) [Eclipse] [Git] (prescriptive)

== Generalization
'E"ﬂ Deployment

== Output data

(@\? Running Software System ey

kil \-Q-'f Data (input) (output)
=] Input data

Figure 5.7: ECSE 250 MODA Diagram

Data aids in decision-making and improves the overall software development process. It provides
valuable insights for developers to make decisions, create designs that meet user needs, conduct

testing, optimize performance, and drive continuous improvement. Data in software development

67

5.7. ECSE 250 - Fundamentals of Software Development

plays a significant role in enabling developers to make informed decisions, create effective solutions,
and continuously improve their software products. According to the MODA framework data in
software development takes various forms. Input data serves as the information fed into the system,
while output data represents the results or outcomes generated by the software. Measured data
refers to the data collected during the execution of the software, which can be used for analysis and
evaluation. Finally, external data can also be utilized in software development, depending on the
socio-technical system being considered, to provide additional context, information, or resources
for the development process. Data in software development plays a significant role in enabling
developers to make informed decisions, create effective solutions, and continuously improve their
software products. All four types of data are used in software development but only input and
output data are emphasized in this course. The data is then generalized into models for developing
software. Generalizing the data helps simplify and organize complex information, making it easier
to analyze, model, and use in the software development process. Data structures and algorithms
(in the Java programming language) and unit tests (in JUnit) are modeled as both the descriptive
and prescriptive models of this course according to MODA. Code documentation is modeled in
addition as a descriptive model.

Code documentation is the practice in which software developers provide clear explanations and
visuals to describe the functionality and usage of their code. It makes the code easier to understand,
use, and reproduce [20].

Data structures [8] [93] are the fundamental components in computer science that determine
how data can be organized, stored, and retrieved in a computer’s memory. Data structures help
us work with data efficiently, allowing us to design better algorithms and software systems. The
problem domain and its requirements determine which data structure is best for the problem. The
proper selection of the appropriate data structure can significantly influence the efficiency and
performance of software systems

An algorithm [8] is a finite sequence of clear and precise instructions used to solve specific
problems or perform calculations. It provides a systematic approach to problem-solving by outlining
the steps required to achieve the desired result. They are essential because they provide a structured
and efficient way to solve problems and achieve desired outcomes in computer programs.

Unit testing is performed with JUnit and focuses on evaluating the individual units of source

68

5.8. ECSE 551 - Machine Learning for Engineers

code.

Once the developer writes the code and makes documentation, the relevant development prac-
tices are implemented to ensure the creation or development of excellent software that meets user
requirements and industry standards. According to MODA, these professional practices are labeled
as ActionF because they help in analysis, effecting changes, and making decisions to help optimize
and improve the software under development. These practices are taught and explained in detail
in ECSE 428.

The tools and technologies used to develop the software include Eclipse and Git [55]. Once the
software development process is completed, and all the necessary practices are applied to refine
and improve the software, the result is a functional and operational software system (albeit small

as needed for this course).

5.8 ECSE 551 - Machine Learning for Engineers

Machine learning (ML) [26] [90], a sub-field of computer science and artificial intelligence (AI), aims
to accurately mimic the way humans learn using data and algorithms while steadily increasing its
accuracy [120]. ML has become an essential aspect of technology because of its capability to take
data of any form, learn the data, and then make predictions based on an algorithm. As a result,
ML massively aids in decision-making within applications and businesses, which optimizes growth
metrics. The structure of the course taught at McGill covers areas such as fundamental ideas and
challenges of machine learning, regression and classification under supervised and unsupervised
learning, the curse of dimensionality, dimension selection and reduction, estimation of errors, and
empirical verification; placing a focus on ethical procedures and practices for the deployment of
real systems. Figure 5.8 shows the MODA representation of the course.

ML always begins with data. Data can be of any form, i.e., text, images, or numbers, but
pictures may either be very noisy or too sharp, and text may contain unwanted characters, such as
punctuations which may not be necessary for the model to learn. Data preprocessing is the process
of cleaning up unclean data. Often, there is an extensive dataset available online that can be used
to train machine learning algorithms, but before it can be fed into a machine learning model, the

data must be cleaned and processed in some way, regardless of whether the ML engineer wishes to

69

5.8. ECSE 551 - Machine Learning for Engineers

@ Visualization Phase (precision,) . i
accuracy, F1 score) Supervised Learning Model (Support Vector Machines

(SVM), Convolutional Neural Networks (CNN), Multilayer
e . . 7. Perceptron (MLP), Naive Bayes, Random Forrest,
rji‘fﬂ redictionlusaclin Sy§te_m Design m Decision Trees, Linear Regression, Logistic Regression,
e Models (prescriptive) Polynomial Regression), Unsupervised Learning Model
(Clustering) [Bias] [Variance] [Regularization] (predictive)

Data Training and Validation
== [Pandas] [Numpy] [SciKit
Learn] [PyTorch]

7., Cleaned and Preprocessed Data
m (descriptive)

Data Preprocessing and Feature Extraction
=) Phase (dimensionality reduction, linear
% transformation, normalization) [Numpy]
[Pandas] [SciKit Learn] [PyTorch]

Collected or Generated Dataset used in
%+y Data Cleaning Phase (NLP, Noise
Ll Reduction) [Numpy] [Pandas] [SciKit
Learn] [PyTorch] (external)

Figure 5.8: ECSE 551 MODA Diagram

obtain this pre-existing data or create a new dataset for the task. Furthermore, the data must be
formatted correctly to produce better results. For instance, Random Forest does not handle null
values; as a result, all null values from the initial raw data set must be managed if this method is
to be used. In addition, the format of the data must meet specific constraints for ML models [40].
Hence data needs to be cleaned and processed before being passed as input to an ML model.
Natural Language Processing (NLP) is used in data cleaning to preprocess and clean textual data
before it can be used to train machine learning models. Techniques such as stop word removal,
tokenization, spelling check, and text normalization among others are used. Noise reduction on
the other hand is used to reduce “noise” in a dataset by removing or reducing irrelevant data
points. Numpy, Pandas, SciKit Learn, and PyTorch are the tools and ML libraries used in the
data-cleaning phase to prepare the data for the model.

After the data is cleaned, it is pre-processed and manipulated to fit the ML model to enhance
the data and make it more meaningful. Techniques such as feature extraction, dimensionality
reduction, linear transformation, and normalization are incorporated.

If there are a lot of input variables, the performance of the ML model can diminish. Feature

Ezxtraction is a technique for reducing the number of features in the dataset by extracting new

70

5.8. ECSE 551 - Machine Learning for Engineers

features from existing ones and subsequently throwing out the original features. It preserves the
most information necessary to replicate the original data while reducing feature space [86]. Dimen-
sionality reduction is a method used to cut down on the number of variables used as input in the
training dataset [138].

Raw data comes in different distributions which, makes it difficult to analyze and create models
without some preprocessing. Normalization is the process of changing the shape of the distribu-
tion. With normalization, the values of the numeric data are adjusted to a common scale without
changing the range [81]. Transformation converts an input from one domain to an output of the
same or another set. A machine-learning model transforms its input data into meaningful outputs,
a process that is “learned” through exposure to known input and output examples. As a result,
the central problem in machine learning and deep learning is to meaningfully transform data (i.e.,
to learn useful representations of the input data; representations that are closer to the expected
output) [110].

An ML system functions as descriptive if it can use data to throw more light on what happened,
predictive if it forecasts what is going to happen, and prescriptive if it can use data to suggest what
can be done [65]. According to the MODA model, this cleaned and processed dataset is modeled
as the descriptive model as it readily represents the input to the ML model. The ML algorithm
learns from known input and output data to forecast outputs when fed unseen data as input. The
data is split into three: the training, validation, and testing datasets. The training data is initially
fed to the ML model to learn and adapt and the validation data is used as a check to verify how
accurately the model is able to predict the known output data. Once the model is run several times
and its performance is good enough, the ML engineer will then pass the test data as input to the
ML model, i.e., the data set is unknown to the model, to make predictions that can be used as
a reference for decision-making and problem-solving. The training data is the input data to the
various ML models or algorithms. These models can be categorized into different types of learning,
but the two major ones focused on in this course are supervised and unsupervised learning.

Supervised learning is a type of learning in ML that classifies data and makes accurate pre-
dictions by training the ML algorithm with a labeled dataset [91]. For example, one practical
application is the classification of spam emails into a distinct folder in an email account’s inbox.

Supervised learning can further be divided into two: classification if the target outcomes are cate-

71

5.8. ECSE 551 - Machine Learning for Engineers

gories or labels and regression if the target outcomes are weight or height, scores or income [124].
Linear, Logistic, and Polynomial Regression are typical regression algorithms, while Support Vec-
tor Machines (SVM), Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), Naive
Bayes, Random Forrest, Decision Trees, and Linear Classifiers are standard algorithms for classifi-
cation in ML.

Unsupervised learning is a type of learning in ML that uses algorithms to analyze and cluster
unlabelled datasets [91]. These algorithms can accurately discover similarities, differences, and
patterns hidden in the data without any human involvement, which is relevant in exploratory data
analysis and image recognition [66]. K-Means Clustering is one example of an algorithm used for
unsupervised learning. According to MODA, the predictive models covered by this course are the
machine learning models resulting from supervised or unsupervised learning. The tools used for
the predictive models are used to analyze and understand the performance and behavior of the ML
models. They are bias, variance, and regularization.

Bias and variance are ML prediction errors and the goal of any ML model is to find a model that
reduces the prediction errors on unseen data. Bias is the difference between the model’s average
prediction and the true value that is to be predicted. The bias indicates the trained model’s ability
to predict the true target. The lower the bias, the better a trained model is. Variance is a measure
of the variability of the predicted values for a given input using the trained model. The lower the
variance, the more precisely a trained model can make predictions. Regularization on the other
hand is a concept that is implemented for the trade-off of the bias and variance and helps to reduce
the prediction error. Some common regularization techniques include modifying the cost function,
K-Fold Cross-Validation, and further modifying the ML algorithm [162].

Once training is complete, the model produces an output. The output data is visualized and
analyzed to determine if the model is the best model to be used to solve a problem. For example,
for a generic classification problem to determine if a person is suffering from Y disease, we want
to build a model to indicate either Yes or No. Initial output is fed to the model to train the
model. Then when the model is trained, the predicted output is compared with the actual output
to determine if the ML model could accurately predict the output. Various statistical analyzes are
carried out to determine how far or close the model is to the expected output. Based on the results,

the model parameters can be adjusted. The model can be trained several times while adjusting

72

5.9. ECSE 552 - Deep Learning

the key parameters that affect the algorithm’s behavior. A feedback loop can be observed in the
predictive model, and this loop will stop once the accuracy of the model is sufficiently good, and
then the model can be finalized. If the final model is integrated into system design models to make

predictions for the system that are realized by the system, then it serves as the prescriptive model.

5.9 ECSE 552 - Deep Learning

Deep Learning (DL) is a subset of machine learning, which comprises a neural network with three
or more layers. These neural networks make an effort to mimic how the human brain functions,
however, they fall far short of being able to match it, enabling it to “learn” from vast volumes of
data. Additional hidden layers can help to tune and refine for accuracy even if a neural network with
only one layer can still make approximation predictions [64]. The structure of the course taught
at McGill covers areas such as an overview of mathematical background and basics of machine
learning, deep feedforward networks, regularization for deep learning, optimization for training deep
learning models, convolutional neural networks, recurrent and recursive neural networks, practical
considerations, applications of deep learning, recent models and architectures in deep learning.
Figure 5.9 shows the MODA representation of the course.

Deep learning differs from machine learning by the type of data that it works with and the
methods in which it learns. Some of the data pre-processing required for machine learning, in
general, is eliminated by deep learning. These algorithms are able to ingest and interpret unstruc-
tured data, such as text and images, and automate feature extraction, reducing the need for human
subject-matter experts. For example, a set of photos of different pets can be categorized as “cat”,
“dog”, “hamster”, etc. Deep learning algorithms can decide which characteristics (e.g., ears), are
most important for differentiating one species from another [64]. Similar to ML, the data in deep
learning can either be selected from a wide range of available open-source datasets or generated
from scratch, depending on the domain that one will want the algorithm to learn.

Before anything is done on the dataset to perform DL analysis on it, the engineer needs to
understand the basic mathematical concepts needed to understand DL. These include concepts
such as linear algebra, probability, and information theory. The engineer must also have some

knowledge and understanding of the basics of ML and generally how ML algorithms are used to

73

5.9. ECSE 552 - Deep Learning

Supervised Learning Model (Convolutional Neural Network
(CNN), Long Short-Term Memory Network (LSTM), Recurrent

[==) Performance metrics, . Neural Network(RNN), Multilayer Perceptron (MLP),
9. Prediction used in System Design % Baseline methods m Representation Learning, Gradient-based Learning),
olw Model (prescriptive) Unsupervised Learning Model (Clustering, Variational
Autoencoder (VAE), Generative Adversarial Network (GAN))
[Backpropagation] [Early stopping] [Dropout] (predictive)

Parameter Initialization and
‘E'";{ Strategies, Architecture Design,
Hyperparameter Tuning

.. Cleaned and Preprocessed Data
-lw (descriptive)

Data Preprocessing, Normalization,
(=== Transformation and Augmentation Phase
(dimensionality reduction, linear
transformation, normalization, NLP)

i3 Collected or Generated Dataset
= (external)

Figure 5.9: ECSE 552 MODA Diagram

make predictions and inform decisions. The data is first cleaned and preprocessed in preparation for
the DL algorithms. After the data is cleaned, it is pre-processed and manipulated to fit the model.
The data preprocessing techniques used in ML can be used for DL models. Techniques such as
dimensionality reduction, normalization, transformation, and NLP, among others, are incorporated
to prepare, process, and clean the dataset to make it viable for the learning algorithms.

Once the data is prepared, parameter initialization and strategies for DL can now be selected for
the type of dataset at hand, the design of the architecture, and hyperparameter tuning techniques
are put in place to prepare the model for prediction (i.e., Action E).

Parameter initialization and strategies are very critical to the model’s performance and the
right method needs to be selected. It defines the way to set the initial random weights for the
DL algorithm. For example, the gradients and weights are initialized with a zero initialization
approach, which causes the neurons to learn the same features during training. Any constant
initialization strategy will actually perform horribly. If there are two hidden units in the neural
network and the biases and weights are both initialized at 0, then the output of both hidden units in
this network will be relu(x1, x2), if forward propagated with an input (x1, x2). As a result, the cost

will be affected by both hidden units in exactly the same ways, leading to identical gradients. Thus,

74

5.9. ECSE 552 - Deep Learning

throughout training, both neurons will develop in a symmetrical manner, successfully preventing
distinct neurons from picking up different information [77].

The architecture design of a Neural Network (NN) relates to its overall structure in terms of
how many units it has and how these components are linked to one another. The majority of neural
networks are structured into layers, which are groups of units. The layers in most neural network
topologies are organized in a chain pattern, with each layer being a function of the layer before it.
The key architectural issues in these chain-based systems are the network depth and the width of
each layer [58].

Hyperparameter tuning involves identifying the best values for a learning algorithm’s hyperpa-
rameters to achieve optimal performance when applied to any given dataset. By finding the ideal
combination of hyperparameters, the model’s performance is maximized, resulting in improved re-
sults and reduced errors as measured by a predefined loss function. The process aims to fine-tune
the algorithm to ensure the best possible outcome for a specific task or problem [97].

Depending on the problem domain, a DL algorithm is selected to be used to run predictions. If
the engineer does not know which algorithm will be the best fit to make predictions, the data can be
trained with a number of DL algorithms and the one that produces the best accuracy and precision
can be selected as the best-fit algorithm to make predictions. DL can be classified into supervised
and unsupervised learning. Some of the algorithms for supervised learning include Convolutional
Neural Network (CNN), Long Short-Term Memory Network (LSTM), Recurrent Neural Network
(RNN), Multilayer Perceptron (MLP), Representation Learning, and Gradient-based Learning,
among others. Clustering, Variational Autoencoders (VAEs), and Generative Adversarial Networks
(GANSs), among others, are some examples of unsupervised learning. Some of the techniques used
to better tune these algorithms include backpropagation, early stopping, and dropout.

Backpropagation [30] is widely employed in the training of feedforward neural networks. It is
a key component of many popular deep learning algorithms, such as MLP and CNN. The goal of
backpropagation is to adjust the weights of the neural network’s connections in order to minimize
the difference between the predicted output and the desired output. They are highly effective
in calculating the gradient of the loss function concerning the weights of the network. This effi-
cient computation of gradients enables the network to learn and adjust its parameters, leading to

improved performance and better accuracy [163].

75

5.10. Discussion and Observations

Early stopping and dropout are optimization techniques employed to reduce or prevent overfit-
ting while maintaining the model’s accuracy. The concept behind early stopping is to stop training
before a model starts to overfit. On the other hand, the concept behind dropout involves temporar-
ily dropping out (i.e., set to zero) a random subset of neurons during the training process. Both
techniques help prevent a decline in the performance of the unseen data [58].

Just as in ML, the data set is also split into three in DL: training, testing, and validation dataset.
The training and validation data are what is used in the initial training and hyperparameters are
selected for the algorithm. Then, through the processes of gradient descent and backpropagation,
the deep learning algorithm adjusts and fits itself for accuracy, allowing it to make predictions with
increased precision. The output data is visualized and analyzed to determine if the model is the
best model to be used to solve the problem. Performance metrics such as accuracy, precision, and
heat maps among others can be used. Similar to ECSE 551, a feedback loop can be included in
the predictive model as training and retraining will continue to occur until an optimal accuracy is
reached.

After training a DL algorithm, it becomes capable of making predictions on unseen data (i.e.,
testing dataset). During the initial training, the validation dataset is fed to the trained deep learning
algorithm, which processes the data through its layers to produce the final prediction. The model
has learned from the training data and has adjusted its internal settings (weights and biases)
to make accurate predictions based on the patterns it discovered during training. The model’s
performance is assessed by comparing its predictions to the expected outcomes in the validation
dataset. If the outcomes closely match, it indicates that the model has successfully learned the
underlying patterns and can make reliable predictions. At this stage, the model can be considered
complete and ready for use, and as such the unseen data is passed to the model to make predictions.
If the final model is integrated into system design models to make predictions for the system that

are realized by the system, then it serves as the prescriptive model.

5.10 Discussion and Observations

In this section, the discussion provides insight into the MODA tool and how it is used to model

each course. A detailed analysis of the results obtained from the study is also provided in the

76

5.10. Discussion and Observations

observations, reporting the findings that emerged from the study and shedding light on potential

areas that may needs further investigation.

5.10.1 Discussion

Using the course structure, models and key concepts of the courses provided by each course lecturer,
we analyze and review each model to determine which aspects could be categorized as model, data,
running software, socio-technical system, and action types according to the MODA framework. We
then implement each course with the MODA tool, going through several iterations and gathering
feedback from course instructors, professors in model-driven engineering, and the research group
to gain different perspectives and suggestions for improvement. With the assistance of the MODA
tool, changes and updates are made efficiently to the models during each iteration. The tool makes
it much easier to model each course using the MODA framework and visually understand their
contents. This tool is expected to greatly benefit the modeling community, providing a user-friendly

way to build MODA models effectively.

5.10.2 Observations

Based on the study, it is observed that MODA has broad applicability, as each aspect of the course
is analyzed and explained using the framework. The courses included in the exploratory study
of this thesis cover the main parts of the MODA framework. The core data and aspects of each
course used to teach computer science and engineering students the key concepts of SE and Al
that they will need in the industry are represented by the MODA framework. The prototype tool
introduced in this thesis is able to effectively model all data and model aspects covered in these
courses using the MODA framework. However, there are several tools and technologies used in
each course that are not directly supported by the MODA framework, but they are incorporated
into the respective MODA diagrams by being listed within square brackets of each model and data
element to which they apply. These tools and technologies clearly operate on data or models but
they do not create data or models and hence cannot be mapped directly to data or models. The
framework is nevertheless able to depict each aspect of a course which are model roles, data, action
types, running software, and the socio-technical system at play. The MODA diagram provides a

graphical representation of these courses such that a student can get an overview of what the course

77

5.10. Discussion and Observations

entails, the tools, techniques, and programming languages that are required by just viewing the
MODA model for the course.

Figure 5.10 depicts the heatmaps developed to aid in the analysis of the data obtained from
the exploratory studies. Figure 5.10(a) shows a comparison of the selected courses against the
elements (i.e., model, data, running software, and STS) discussed in the MODA framework and

Figure 5.10(b) shows the respective actions against the selected courses in the exploratory studies.

1.0

0.00 0.00 E 0.17 0.17 0.00 0.17 0.17 0.17 0.00 0.17 0.00 0.00
"
000 000 o 0.17 0.17 0.00 0.17 0.00 0.17 017 0.17 0.00 0.00 08
a 0.17 0.17 0.00 0.17 0.00 0.17 0.17 0.17 0.00 0.00
0.00 0.00 m
E 0.17 0.17 0.00 0.17 0.00 0.17 0.00 0.17 0.00 0.00 0.6
000 000 "
4
EE 0.17 0.17 0.00 0.17 0.00 E 0.00 0.17 0.00 0.00
8
0.00 0.00
- 000 000 000 017 017 017 033 000 000 000 - 0.4
by 0D 000 000 000 2- 017 017 000 017 000 017 000 017 000 000
q
-02
57 0.00 0.00 0.00 0.00 a 0.00 0.00 0.00 0.50 0.17 0.50 0.00 0.00 0.00 0.00
)
& v)@‘ ',\»*b B & & & (ﬁ“ & §- 000 000 o000 [ERKM S 033 000 000 000 000
& & & < & &] " 0 :] 0] ! -00
o v) ¢) « < o ES N N
Elements Actions
(a) Courses x Elements (b) Courses x Actions

Figure 5.10: Heat Map Showing the Occurrence of Elements and Actions in each Course

Using a scale of 0 to 1 in generating the heatmap for the elements, each cell represents the
number of topics (i.e., concepts, tools, technologies, processes) covered by a course and is color-
coded based on its value. The score is calculated by counting the number of topics for a specific
model role in the MODA model of a course and then dividing it by the maximum number of topics
from the descriptive, predictive, or prescriptive model for all courses. Topics in square brackets
are not counted. In each course, there were aspects that are categorized as both descriptive and
prescriptive. Among the courses, ECSE 439 had the highest number of topics represented as
descriptive models, followed by ECSE 223, 321 / 326, 429, and others in descending order. Similarly,
ECSE 439 had the highest number of topics represented as prescriptive models, followed by ECSE
326 / 321, 223 / 429, and others. As for predictive models, they were found in only three courses,
with ECSE 551 having the highest number of topics, ECSE 552 being a close second, and ECSE

326 having the third-highest number of predictive models. As expected, the courses from the SE

78

5.10. Discussion and Observations

minor focus more on descriptive and prescriptive models, with very little coverage of predictive
models, whereas the courses from the Applied AT minor (ECSE 551 and 552) place more emphasis
on predictive models.

The heat map examines the representation of the remaining elements in each course using the
same [0,1] scale used for the models. However, the scoring is adjusted. If a particular element, such
as running software, exists in a course, it is assigned a score of 1, as there was always at the most
one present in each course. This scoring system also applies to the remaining elements (i.e., input
data, output data, measured data, external data, and STS) where a score of 1 indicates that they
are present in a course. Each course has running software except ECSE 439, 551, and 552. Instead
of software applications, ECSE 439 implements software languages and ECSE 551 and 552 focus
on ML models without implementing an application. All the courses indirectly represent a socio-
technical system but the STS is not modeled in any of the courses because it is not emphatically
implied. Similarly, measured data is not modeled in any of the courses. However, this is because
the measurement of running software is not the focus at all for any of the examined courses. This
points to a potential gap in the courses in the coverage of concepts important for models and data.
Each course does include at least one type of data, i.e., input, output, or external data. Some
courses may have two out of the three types, or even all three, but the modeling never shows the
presence of measured data.

Similar to the models, each action is also represented by the number of occurrences in the course
on a scale of 0 to 1, with 1 being mapped to the maximum number of topics for an action in any
of the courses. The action used in every course that is analyzed in this study is generalization and
calibration (i.e., Action D). ECSE 552 has the highest number of topics represented by Action type
D, followed by ECSE 551. When it comes to Action type E (preparation for prediction), ECSE 552
has the maximum, while for Action type F (analysis, decision, and change), both 429 and 551 have
the highest number of representations. As for Action type G (generation), 439 has the maximum
number of representations. The remaining courses each have one representation. It is worth noting
that measured data and STS are not given significant emphasis in the courses, which is why Action
types C (measurement), I (enactment), and J (other interplay) are not utilized. Based on this,
it can be concluded that the framework indeed was successful in modeling courses from McGill

University and provides further evidence that the vast applicability claim is correct.

79

5.11. Summary

Additionally, the analysis uncovers elements of the MODA framework that may require further
exploration or expansion beyond what is already defined by the authors of the framework. This is
observed specifically for ECSE 551 and ECSE 552. It can be observed that there may be a need
for refinement in the predictive model (i.e., similar to Action type G for prescriptive models) as
several iterations of training need to be done to arrive at an optimal ML and DL model. A feedback
loop hence also exists within the prescriptive model and can be in the form of user feedback on
the performance of the model. The feedback received allows for iterative improvements of the
ML/DL model and system design. This includes actions such as retraining the model, adjusting
parameters, and incorporating user feedback. The objective is to consistently improve the model’s
performance and ensure it meets the system’s goals and requirements. However, the MODA model
only covers the feedback loop with a deployed system in a socio-technical context. It does not cover
the feedback loop in the development of an ML/DL model (or software in general) if there is no
deployed system in the loop. This has also been observed by L-MODA [73] which adds additional
feedback loops to MODA. Extending the MODA tool to include L-MODA concepts would allow a

more nuanced modeling of the courses in the exploratory studies.

5.11 Summary

This chapter presents the courses selected to analyze the framework in an exploratory study, dis-
cusses the various views and perspectives obtained from the analysis, and highlights the effectiveness
and potential of the MODA framework in understanding and evaluating educational courses. Chap-
ter 6 presents a review of the relevant literature to this thesis. It covers and summarizes existing
studies, research papers, and scholarly articles that apply the MODA framework in several fields

of interest.

80

Related Work

This chapter focuses on the review of related literature. Using Google Scholar as the main point of
focus, a systematic literature review was concluded for this thesis. First, a search with the keyword
“moda” since 2019 was run and this generated 58,600 results in 0.10 seconds. The year 2019 was
chosen since it was the first year a paper on the MODA framework had ever been published. This
search stream was too broad and resulted in too many articles with many false positives. On
January 11, 2023, an advanced search with the keyword “moda framework” as the exact phrase
anywhere in the article ranging from 2019 - 2023 was made on Google Scholar, and this generated
23 results. 8 papers were directly linked to the MODA framework, 9 papers had the abbreviation
MODA but are not related to models and data, 2 papers were not related to the framework in any
way, and the remaining 4 papers are not written in English. Table 6.1 outlines the resulting list

indicating which papers are applicable to this thesis or not and why.

81

Chapter 6. Related Work

Table 6.1: List of MODA Papers Found from the Google Scholar Search

No| Title of Paper MODA Definition Scope

1 | A Hitchhiker’s Guide to Model-Driven | Models and Data In Scope
Engineering for Data-Centric Systems

2 | Global Decision-Making Over Deep | Models and Data In Scope
Variability in Feedback-Driven Soft-
ware Development

3 | Conceptualizing Digital Twins Models and Data In Scope

4 | Towards self-adaptable languages Models and Data In Scope

5 | On reliability and flexibility of scien- | Models and Data In Scope
tific software in environmental science:
towards a systematic approach to sup-
port decision-making

6 | DataTime:A Framework to smoothly | Models and Data In Scope
Integrate Past, Present and Future into
Models

7 | Al-driven streamlined modeling: expe- | Models and Data In Scope
riences and lessons learned from multi-
ple domains

8 | Reasoning over Time into Models with | Models and Data In Scope
DataTimes

9 | Decision-Making Framework for Evalu- | Multi-Objective Decision Analysis | Not Related
ating Physicians’ Preference Items Us- | Principles
ing Multi-Objective Decision Analysis
Principles

10 | Homeland Security and Emergency | Multi-Objective Decision Analysis | Not Related

Management Grant Allocation Multi-

objective Benefit-Cost Methodology

Principles

82

Chapter 6. Related Work

11

Evaluating the Impact of Culture
on Customer Satisfaction for FMS

Projects

Multiple Objective Decision Analy-

sis

Not Related

12

Assessing Engineering Resilience for
Systems with Multiple Performance

Measures

Multiple Objective Decision Analy-

sis

Not Related

13

The Dynamics of Multidimensional

Poverty in a Cohort of Irish Children

Multidimensional Overlapping De-

privation Analysis

Not Related

14

Measuring Child Poverty in Jakarta
Metropolitan Area Using a Multidi-

mensional Perspective

Multidimensional Overlapping De-

privation Analysis

Not Related

15

I Don’t Care Who You Are: Adult
Respondent Selection Does Not Alter

Child Deprivation Estimates

Multiple Overlapping Deprivation

Analysis

Not Related

16

Prevalence and correlates of multidi-
mensional child poverty in India during

2015-2021: A multilevel analysis

Multiple Overlapping Deprivation

Analysis

Not Related

17

Unfolding the prospects of computa-

tional (bio)materials modeling

Modeling Data

Not Related

18

Urban mobility:Leveraging machine
learning and data masses for the build-

ing of simulators

Not Related

19

“I like relaxing on the trees when the
leaves are falling”: Children’s experi-
ences of relaxation in Early Childhood

Education and Care (ECEC)

Not Related

83

6.1. Review of Related Work

20 | Mobilité urbaine : apprentissage au- Not in English

tomatique pour la construction de sim-

ulateurs a ’aide de masses de données

21 | Framework para formulagdo de prob- Not in English

lemas para inovacao pelo design de

equipamentos médico-hospitalares

22 | Framework para implementacao de es- Not in English

tratégias de inovagao pelo design no
processo de desenvolvimento de produ-
tos de moda em empresas de confecgao

do

23 | Der digitale Fuflabdruck, Schatten Not in English

oder Zwilling von Maschinen und Men-

schen

6.1 Review of Related Work

Combemale et al. [31] were the pioneers of the MODA framework. They present a framework for
conceptual referencing that aims to provide a strategy that is model-driven and also focuses on
data, for incorporating various models and their affiliated data over the entire life-cycle of socio-
technical systems. This framework directly correlates the diverse actions that can be performed on
three roles of models in line with the four types of data: input/output data, measured data, and
external data. The authors claim that the framework supports the characterization of conventional
software development processes, systems, and technologies by (a) explaining how the different
roles of models (i.e., descriptive, predictive, and prescriptive) integrate with the various sources
of data and (b) outlining the necessary actions that connect data and models. In sectors such as
transportation, energy, and healthcare, numerous systems are considered socio-technical, given the
human, organizational, and social factors considered during the system life cycle. MODA aims to

support the entire life cycle of these systems that affect an extensive range of organizations in various

84

6.1. Review of Related Work

communities and stakeholders. The authors claim that MODA is expressive enough to characterize
and generalize cutting-edge engineering approaches and technologies utilized throughout the life
cycle of a system, even if it was developed to describe a variety of novel socio-technical systems.
The authors pose pertinent research questions and discuss how the framework can also assist in
identifying unresolved challenges in the model-driven engineering community. This thesis applies
the concepts introduced by the authors and further validates and expands on this prior knowledge
by developing a metamodel and a prototype tool that can be used to build MODA models.

The software industry is undergoing radical changes in the way that software is developed and
the features it provides consumers. A feedback-driven plan can be used to reduce the uncertainty
over how an application must evolve. The fundamental concept is to gather data from the software
already in use, analyze that data, and apply the findings as a blueprint for future software devel-
opment. Kienzle et al. [75] present and outline the Multi-Plane Models and Data (MP-MODA)
framework, which expands on the MODA framework. In a feedback-driven software development
process where feedback loops are intended to reduce uncertainty, this new framework provides
automation and tool support for a multicriteria decision-making process involving numerous stake-
holders. For example, a company that is implementing a new phone application decides to define
three planes addressing business, software development, and usability concerns, respectively. Each
plane is described by a MODA model. The experts of each plane choose a course of action from the
options available to them within that plane, and because decisions are documented to be dependent
on one another (both intra- and interplane), the experts of each plane can also evaluate how their
choices will affect those of other planes. For example, the software expert may realize that a specific
application feature must be redesigned to suit a target market. MP-MODA then alerts them that
changing the design can impact the choices made by the business experts; hence they need to meet
and look at the available options. The business experts were already aware of the issue but were
looking at a much more general target market. The main point now is that a specific demographic
may use the application more than others if the design is tailored to suit them. They can make the
best decision using MP-MODA to help them identify their intra-plane dependencies. MP-MODA
may point to the fact that updating the design has an impact both positive and negative, and using
information from prior iterations provided through the feedback loop, it estimates that adapting

this new design may take time to develop, which can then impact the choice of release date decided

85

6.1. Review of Related Work

by the business experts. Due to their understanding of these inter-plane (i.e., across different do-
mains) and intra-plane (i.e., within their own domain) dependencies, the experts were able to reach
a consensus that the best course of action is not to update the feature just yet but to prioritize
the work of the development team so that with each new release, they make some changes until
gradually changing the entire application’s design. To sum up, if decisions need to be made while
working on the next software release, MP-MODA can help assess the proposed change’s overall
effects and involve the appropriate stakeholders in the decision-making process. MP-MODA and
the concepts in this thesis differ as MP-MODA extends the MODA framework by incorporating
multiple planes or layers of models and data, and this thesis expands and further validates the
existing MODA framework with a prototype tool and metamodel.

Software languages, similar to natural languages, are continually evolving in response to new
concepts and relationships that arise, often to address specific needs in particular application do-
mains. A Self-Adaptable Language (SAL) is a software language that simplifies the design and
execution of feedback loops and trade-off analyses. It allows users to focus on delivering specific
services for their software system without having to worry about implementing complex feedback
mechanisms from scratch. SAL also provides flexibility to customize the feedback loop based on
feedback from the modeling environment. Self-adaptation requires a feedback loop to respond to
changes and analyze trade-offs, considering factors like energy, time, cost, and quality. There is
a growing need for systems that can consider multiple factors, such as energy, time, cost, and
quality, and cater to a wide range of users. However, modeling and programming such systems
involve complex activities that require different software languages and involve various stakehold-
ers in the software engineering process. Jouneaux et al. [73] introduce the concept of SAL and
explore the integration of a feedback loop into language semantics, leading to the development of
self-adaptable virtual machines, and outline a roadmap highlighting the main expected features
throughout the lifespan of SALs. To better understand the key concepts of SALs, the authors
introduce a conceptual framework called L-MODA (Languages, Models, and Data), which helps
view how different parts of a system are connected (i.e., the running software system and its data,
the modeling environment with its data, models, and the self-adaptable language, and the language
definition environment). By using L-MODA, the authors explore how these elements relate to each

other and contribute to self-adaptation in a software system. After examining three examples of

86

6.1. Review of Related Work

Self-Adaptable Virtual Machines (VMs), the authors observed that the languages’ semantics were
successfully adapted based on the context. The outcomes of the VM experiments indicated that
the effectiveness of the approach relies on factors such as the expressiveness of the target language.
Generally, the authors explore the benefits and challenges pertaining to SAL and the potential
impact on software development practices. L-MODA is another extension of the MODA frame-
work that integrates NLP with models and data, but this thesis expands and further validates the
existing MODA framework with a prototype tool and metamodel.

A Digital Twin (DT) replicates an actual system that is constantly updated with real-time
data throughout its life cycle and can interact with and influence the actual system simultaneously.
DTs can be developed for various reasons, including developing, designing, simulating, analyzing,
and operating non-digital systems to understand, monitor, and optimize the actual system. Many
disciplines use DT's to better understand, regulate, and optimize the behavior of complex systems,
either at design time or during runtime. As a result, DTs are becoming a significant software
engineering technique for managing the complexity of software engineering in a wide range of
application areas. The complexity of systems is increasing rapidly, and models have become critical
for understanding them. As a result, today’s advanced systems are built using models from several
engineering areas. As a result, their DTs must also incorporate diverse heterogeneous models to
address the various features of the system. These models could be engineering models, software
models, or DSL models. These models must be linked to data acquired from the actual system and
its surroundings to make sense of them during the design and runtime of a system. The models
and data make it possible to develop services related to the actual system. Eramo et al. [37]
used the MODA framework to implement a conceptual reference framework for DT. The authors
do not describe specific tools or technologies for implementing DTs by proposing a conceptual
framework but rather categorize artifacts’ many roles and relationships on a conceptual level. The
actual system generates data connected to many parts of the system. The DT takes this data
and employs models to perform various operations on the actual system and its environment.
According to the MODA framework [31], models can play three roles in a DT: descriptive model,
predictive model, and prescriptive model. The authors investigate the technical issues of building
a DT, such as data management, integration, and visualization. They also discuss some of the

unanswered research questions surrounding digital twins, such as how to increase the precision of

87

6.1. Review of Related Work

digital twin models, how to merge digital twins with other technologies (i.e., such as augmented
and virtual reality), and how to cope with the ethical and legal difficulties surrounding the use of
digital twins. Research and practice have resulted in various DT implementations. The authors
identified a collection of DT applications involving several stages of a system life cycle, specifically
design, maintenance, manufacturing, and utilization [129]. The list of DT applications offered is
not exhaustive, but it demonstrates the usefulness of the presented framework, and the described
DT applications demonstrate the appropriateness of its foundation, the MODA framework. The
approach used in this thesis and used in implementing a DT are similar as they both focus on and
utilize the core foundations and building blocks of the MODA framework. However, this thesis
introduces a metamodel and prototype tool for MODA.

Scientific software, such as simulation models, plays a crucial role in decision-making in environ-
mental science. However, to be able to use them effectively in decision-making, certain conditions
are required. Although scientific software is essential for addressing environmental issues like cli-
mate change, its complexity and resource-intensive nature make them less suitable for immediate
decision-making as the primary focus is research and development. In the decision-making process,
stakeholders aim to bring about change within the organization or system under consideration. For
example, in climate change, the government can make decisions by implementing laws and policies.
The goal is to adapt simulation models, initially developed for research purposes, to be more suit-
able for decision-making. This involves improving their execution speed, accuracy, complexity, and
flexibility to explore different scenarios. By making these enhancements, the models can provide
faster, more reliable, and more versatile insights for decision-makers. Scientific models aim to de-
scribe the world and help make decisions based on projections. However, to use them effectively in
decision-making, there is a need to increase the execution speed, thus making the decision-making
process faster. Sallou [116] in their thesis aims to modify scientific models for decision-making in
environmental science by using approximate computing techniques while maintaining their relia-
bility. To ensure the proper use and validity of scientific models, the general features that apply to
all models are first defined, as they help determine if the models can generate reliable projections
and identify the specific conditions in which they produce reliable results. Once the simulation
models are customized, new scenarios are explored using the MODA framework [31], which helps

understand and visualize how models and data are integrated into a cyber-physical system and

88

6.1. Review of Related Work

how they interact with each other according to their respective roles. The author also explored
validating scientific models and proposed a V-Model that emphasizes the importance of using ap-
propriate tools to develop reliable scientific software. Sallou’s thesis focuses on the challenges of
using scientific software to support decision-making in environmental issues and demonstrates how
the loop aggregation technique can address these challenges. By understanding the role of scien-
tific models in decision-making and ensuring their validation, better support for decision-making
in environmental issues can be achieved. First, the author looks at the different kinds of models
used in software: scientific models, engineering models, and machine learning models (also known
as empirical models). In the context of cyber-physical systems, the author compares these models
and observes that scientific and engineering models have many similarities, despite their differences.
In contrast, engineering models with a more prescriptive nature incorporate specific instructions
and extensive knowledge about the real world. This led the author to view models not just as
different types, but rather in terms of the roles they fulfill, and also suggested applying software-
and engineering-oriented techniques to scientific models as well. The MODA framework highlights
the significance of a systematic approach to integrating different models based on their roles and
the associated data. In Sallou’s thesis, the MODA framework improves the decision-making process
by modifying scientific models to make them more predictive. It also emphasizes the importance
of collaboration between different modeling communities, such as software engineering and envi-
ronmental science, to ensure the effective integration of models in a socio-technical system. The
goal is to enhance the efficiency and relevance of model integration for better decision-making. In
Sallou’s thesis, the MODA framework is used to help understand and visualize how models and
data are integrated into a cyber-physical system and how they interact with each. This thesis also
incorporates the MODA framework to help understand and visualize how models and data are
applied in a socio-technical system (i.e., education in the case of this thesis).

Models at runtime have initially been explored for adaptive systems, but they are now recognized
as important for developing complete digital twins. However, using models at runtime for this
purpose brings new challenges, such as seamlessly interacting with different time states of the
system. One possible approach to address this is to integrate temporal, spatial, and predictive
models within the concept of digital twins (i.e., digital twins are based on the MODA framework).

This would allow digital twins to expand their capabilities to include past, present, and future

89

6.1. Review of Related Work

aspects of the system. To address the need for capturing system states based on both time and
space, Lyan et al. [84] [85] propose a new framework called DATATIME. This framework represents
the system state as a directed graph, where nodes and edges have independent local states. The
framework provides a unified interface to query past, present, and predicted future states of the
system. It optimizes the storage of past states, retrieves real-time sensor data, and continuously
learns predictive models for future states. The framework has two main parts. The first part is
for designers who implement changes for users, and it includes the spatial model and predictors
configuration. The second part is the digital twin, which allows users to work with the framework
and analyze the spatial model over time. There is also a third component that represents the effort
required to use the framework in a specific project. The authors also tested the framework in a real-
world urban transportation system in Rennes, France, and evaluated its performance. DATATIME
allows experts in specific fields to combine past, present, and future data within existing information
systems. However, using DATATIME currently requires knowledge of the Scala programming
language, which may not be common among I'T departments in organizations such as Keolis (i.e., a
multinational transportation company that operates public transport systems). To make it easier to
use, the authors plan to provide simplified languages that capture the main concepts of DATATIME,
which will enable easier integration of new data sources, editing of network configurations, and
smoother data analysis processes. The aspect of DATATIME that is implemented with a DT
makes this approach also similar to what is presented in this thesis, as they both focus on and
utilize the core foundations and building blocks of the MODA framework. However, this thesis
goes a step further by introducing a metamodel and a prototype tool specifically designed for
working with MODA.

With time, urban transportation networks will become more closely associated with data and
computing technologies. Not only is the use of sensors becoming easier and less expensive as com-
munication technologies and hardware production methods improve but cities and operators are
also eager to optimize their transportation networks, keeping them efficient and attractive in up-
coming smart cities. Lyan et al. [83] aim to provide domain experts with methods for integrating
heterogeneous data, data analysis capabilities, and predictive models in monolithic frameworks.
In Lyan’s thesis, they propose four contributions that, when combined, support all the eight fea-

tures of their bus network approaches in the state of the art. These features include the need

90

6.1. Review of Related Work

for domain knowledge, heterogeneous data sources, use of real data, spatiotemporal data analysis,
multi-targets predictions, evolution, scalability, and portability. The authors propose a software-
engineered solution for data-centric decision models for urban public transportation networks, with
a real-world application on Rennes, France’s bus network. The first contribution focuses on Urban
Public Transportation Network (UPTN) data quality issues. The second uses large-scale real-world
data to assess the impact of exogenous factors on bus speed. The third one proposes a fine-grained
prediction approach for predicting bus speed using real-world data. The fourth and final one
proposes a framework for bus network operators that provides spatiotemporal data analysis and
prediction tools. They do not emphatically use the MODA framework but just reference it as one
of the existing works that can be leveraged to help tackle UPTN design problems.

Model-driven practices have been researched and practiced based on the two qualities they offer,
automation and abstraction. Automation allows for the desired implementation by generating
code automatically, and abstraction makes it easier to create similar systems. However, there
is an argument that model-driven practices have been scarcely adopted because their benefits
do not outweigh the costs. Al techniques can improve the benefits while reducing the costs of
adopting these practices. Still, Al techniques are also not quite used and are generally used in a
few modeling lifecycle activities. This prompts a call for broader applications of Al techniques in
modeling. These developments highlight the need to leverage upcoming Al techniques in modeling
and embrace different models that work together with different types of data. Through their
modeling journey, Sunkle et al. [125] address both concerns to some extent by first using models
to generate code for business-critical enterprise applications and using models to analyze and help
in enterprise problem-solving, which involved numerous industrial case studies where the use of
AT techniques was gradually introduced and increased. The authors in this paper present several
case studies from various domains, including transportation, energy, and health care, in which
Al-driven modeling techniques were used to simplify the modeling process and improve model
performance. They present a description that details how they applied and continue to apply various
AT techniques to help enhance individual solutions. Their perspective on the case studies presented
in the paper shows examples of how Al techniques can be used across multiple modeling activities
and how various artifacts and data can be utilized in modeling. They called this approach Al-driven

streamlined modeling, and the case studies highlight the key benefits of a diverse set of artifacts

91

6.2. Summary

and Al techniques and a discussion of their industrial application contexts. While the MODA
framework discusses the nature of models and their interactions with data, it does not explicitly
address the specific modeling activities where these interactions occur. The authors highlight
and discuss the MODA representations of all the case studies to clarify the modeling activities
where descriptive, prescriptive, and predictive models interact with data. The approach presented
in this paper is similar to this thesis as both involve conducting a study to provide additional
validation for the MODA framework. The authors conclude that for modeling to transition to
the MODA framework in terms of interpretation and implementation, the community needs to
adopt Al techniques in activities relevant to available data and artifacts. The case studies and
their representation as MODA instantiations can aid in corroborating the traditional modeling
activities that are enhanced with AI techniques and perform the roles of prescriptive, descriptive,

and predictive models.

6.2 Summary

This chapter provides an overview of the work completed in this domain. It discusses previous
work by other authors and explains how they applied the MODA framework in several domains
and research. Most of the works done by other authors expand on the MODA framework (e.g.,
L-MODA), analyze and explore the applicability of the MODA framework in other domains, or
apply the concept of the framework in a problem domain. Chapter 7 concludes this thesis and

discusses future MODA improvements.

92

Conclusion

The thesis is concluded in this chapter with a summary of our contributions in Section 7.1 and a

discussion of future work opportunities in Section 7.2.

7.1 Contributions and Findings

The MODA framework, though a conceptual reference framework, provides good insight into the
various roles models and data play in software development and the deployment and operation of
socio-technical systems. This framework helps in developing better models, improving data collec-
tion (i.e., by indicating which type of data will be relevant) and analysis methods, and enhancing
decision-making and understanding in various socio-technical systems such as science, engineering,
business, and social sciences, and how best models and data can be employed in a holistic manner

to represent these systems. Initial work on the MODA framework outlined its architecture and vast

93

7.2. Future Work

applicability, with no tool support to help practitioners build MODA models. Also, though the vast
applicability of the framework is claimed by the authors of the framework [31], only preliminary
evidence is given to support it.

In this thesis, we present a DSL and tool support for the MODA framework and an evaluation
of the proof-of-concept tool with the help of an education-based analysis. As there is currently no
existing metamodel for the framework, we implement a metamodel to accurately define the elements
of the MODA framework. Then we build a proof-of-concept editor that supports the framework
and graphically visualizes how models and data work together in a selected socio-technical system.
Furthermore, in order to validate the vast applicability of the MODA framework, we choose an
education-based analysis (i.e., courses offered in two minor programs at McGill University: the
Software Engineering Minor degree and the Applied AT Minor degree), and model the technologies,
tools, and techniques used in key select courses with the prototype editor tool we built. Hence we
further validate if MODA will allow us to think and reason about these courses in terms of the
types of models and data represented in the course. Finally, observations and analysis are carried
out to try and identify areas that the MODA framework does not capture and how effective the
framework will be in modeling many other situations.

Overall, the MODA framework indeed allows for the modeling of all concepts, tools, and tech-
nologies covered by the selected courses. The MODA framework could be improved by directly
supporting the modeling of tools and technologies that operate on data or models but do not
directly create data or models. Currently, they are implicitly identified with square brackets in
the MODA models. Furthermore, the MODA framework focuses on the feedback loop with the
socio-technical system but does not capture well feedback loops that exist in the development of
machine learning models (or software more generally) as is the case in the L-MODA [73] extension
of MODA. Extending the MODA tool to include concepts from L-MODA would allow for a more

comprehensive and nuanced modeling of the courses in future studies.

7.2 Future Work

The MODA framework can further be explored, improved, and validated as it has great potential

in the modeling and software engineering domain. In addition to the further work and research

94

7.2. Future Work

carried out in this thesis, the following can be done to better improve the MODA framework and
also make it readily available in the industry to be utilized in the SDLC.

Firstly further research can be done in other socio-technical systems such as health, energy, law,
and business among others, to further validate and investigate the vast applicability of the MODA
framework.

To improve the tool implemented in this thesis and make it readily available for external use,
a web-based system can be implemented specifically for the MODA framework. This web-based
system can utilize Sirius web as a platform, allowing designers and developers to build their own
MODA models in the respective domains they need for their software development process. By
providing this capability, the system enables the creation of data-centric and model-driven software
systems that are tailored to the specific requirements of each domain.

This thesis can be expanded with further research in education and other socio-technical systems
with the newly proposed conceptual MP-MODA [75] and L-MODA frameworks [73]. This can be
done to explore whether the current tool has the capability to model these variations or if there
will be a need to extend the tool introduced in this thesis.

Furthermore, no user study was conducted in this thesis hence as to whether the implemented
design of the prototype tool is appropriate or not is not known. A user study can be conducted in
the future to get opinions about the tools and ways to improve as well.

Finally, given some input, the automatic creation of MODA models can be incorporated into the
prototype such that when given a socio-technical system the prototype will be able to seamlessly
predict a MODA model that will help analyze the type of data and model roles that can be
incorporated in a software system before development. The specific input data needed may depend
on the implementation and requirements of the prototype, and this can be further researched to

know exactly what to present as input and its expected output.

95

[10]

[11]

[12]

Bibliography

IEEE Standard for System and Software Verification and Validation. 2012. ISBN 978-0-
7381-7268-2. doi: 10.1109/IEEESTD.2012.6204026.

UML, 2023. https://www.uml.org/.

AssertJ - Fluent Assertions Java Library, 2023. https://assertj.github.io/doc/.
Docker, 2023. https://www.docker.com/.

Infer, 2023. https://fbinfer.com/.

JUnit 5, 2023. https://junit.org/junitb/.

SonarQube, 2023. https://docs.sonarqube.org/latest/user-guide/concepts/.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-
Wesley series in computer science and information processing. Addison-Wesley, 1983. ISBN
9780201000238. URL https://books.google.ca/books?id=k8pQAAAAMAAJ.

Airship. Build A Better Problem Statement For Software Development, 2021. https://rb.
gy/p3bba.

Altexsoft. Extreme Programming: Values, Principles, and Practices, 2021. https:
//www.altexsoft.com/blog/business/extreme-programming-values-principles-and-
practices/.

Altexsoft. System Documentation, 2023. https://rb.gy/négey.

Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Machine Learning from Theory to Algo-
rithms: An Overview. Journal of Physics: Conference Series, 1142:012012, 11 2018. ISSN
1742-6588. doi: 10.1088/1742-6596,/1142/1/012012.

AWS Amazon. What Is An API (Application Programming Interface)?, 2023. https://rb.
gy/chrbj.

Scott Ambler. Personas: An Agile Introduction, 2022. https://rb.gy/33kh1.

Daniel Amyot and Gunter Mussbacher. User Requirements Notation: The First Ten Years,
The Next Ten Years. Journal of Software (JSW), 6(5):747-768, 2011. doi: 10.4304/jsw.6.5.
T47-768.

Mussbacher Gunter Amyot, Daniel. Introduction to Use Case Maps, 2001. https://www.
itu.int/itudoc/itu-t/coml7/urn/urnp5_pp7.ppt.

96

https://www.uml.org/
https://assertj.github.io/doc/
https://www.docker.com/
https://fbinfer.com/
https://junit.org/junit5/
https://docs.sonarqube.org/latest/user-guide/concepts/
https://books.google.ca/books?id=k8pQAAAAMAAJ
https://rb.gy/p3bba
https://rb.gy/p3bba
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://www.altexsoft.com/blog/business/extreme-programming-values-principles-and-practices/
https://rb.gy/n6gey
https://rb.gy/chr5j
https://rb.gy/chr5j
https://rb.gy/33kh1
https://www.itu.int/itudoc/itu-t/com17/urn/urnp5_pp7.ppt
https://www.itu.int/itudoc/itu-t/com17/urn/urnp5_pp7.ppt

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

Hathaway Angela and Hathaway Thomas. Requirements Elicitation Techniques - Simply
Put! Helping Stakeholders Discover and Define Requirements for IT Projects. CreateSpace
Independent Publishing Platform, 2016.

Kleppe Anneke. Software Language FEngineering. Pearson Education, 2008. ISBN
9780321606464, 0321606469.

Van Lamsweerde Axel. Requirements Engineering From System Goals to UML Models to
Software Specifications. Wiley, 2009.

Sarafadeen Ibrahim Ayomide. How to Write Code Documentation, September 2022. https:
//rb.gy/wsT2v.

Ravi Bandakkanavar. Software Requirements Specification Document with Example, 2023.
https://rb.gy/ypkcO.

Kent Beck. Test Driven Development By Example (Addison-Wesley Signature). Addison-
Wesley Longman, Amsterdam, 2002. ISBN 0321146530.

Behat. Writing Features - Gherkin Language, 2023. https://rb.gy/lpfna.

Miro Blog. A Simple Guide to Using and Creating a Context Diagram, 2023. https://rb.
gy/75n5z.

Gregor v. Bochmann. Goal Modeling and GRL, 2009. https://rb.gy/yad%x]j.

G. Bonaccorso. Machine Learning Algorithms. Packt Publishing, 2017. ISBN 9781785884511.
URL https://books.google.ca/books?id=_-ZDDwAAQBAJ.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in
Practice: Second Edition. Synthesis Lectures on Software Engineering, 3:1-207, 3 2017. ISSN
2328-3319. doi: 10.2200/S00751ED2V01Y201701SWE004.

Jean-Michel Bruel, Benoit Combemale, Ileana Ober, and Hélene Raynal. MDE in Practice
for Computational Science. Procedia Computer Science, 51:660-669, 2015. ISSN 18770509.
doi: 10.1016/j.procs.2015.05.182.

G. Carullo. Implementing Effective Code Reviews: How to Build and Maintain Clean
Code. Apress, 2020. ISBN 9781484261613. URL https://books.google.ca/books?id=-
H2VzQEACAAJ.

Y. Chauvin and D.E. Rumelhart. Backpropagation: Theory, Architectures, and Applications.
Developments in Connectionist Theory Series. Taylor & Francis, 2013. ISBN 9781134775811.
URL https://books.google.ca/books?id=B71nu3LDpREC.

Benoit Combemale, Jorg Kienzle, Gunter Mussbacher, Hyacinth Ali, Daniel Amyot, Mojtaba
Bagherzadeh, Edouard Batot, Nelly Bencomo, Benjamin Benni , Jean-Michel Bruel, Jordi
Cabot, Betty H C Cheng, Philippe Collet , Gregor Engels, Robert Heinrich, Jean-Marc
Jézéquel, Anne Koziolek, Ralf Reussner, Houari Sahraoui, Rijul Saini, June Sallou, Serge
Stinckwich, Eugene Syriani, and Manuel Wimmer. A Hitchhiker’s Guide to Model-Driven
Engineering for Data-Centric Systems. IEEE Software, 38(4):71-84, 2021. doi: 10.1109/MS.
2020.2995125. https://doi.org/10.1109/MS.2020.2995125.

97

https://rb.gy/ws72v
https://rb.gy/ws72v
https://rb.gy/ypkc0
https://rb.gy/lpfna
https://rb.gy/75n5z
https://rb.gy/75n5z
https://rb.gy/ya9xj
https://books.google.ca/books?id=_-ZDDwAAQBAJ
https://books.google.ca/books?id=-H2VzQEACAAJ
https://books.google.ca/books?id=-H2VzQEACAAJ
https://books.google.ca/books?id=B71nu3LDpREC
https://doi.org/10.1109/MS.2020.2995125

Bibliography

[41]

[42]

[43]

Developers. Android Studio, 2023. https://developer.android.com/studio.

Claire Drumond. What is Scrum and How To Get Started: A Guide To Scrum: What It Is,
How It Works, and How To Start, 2023. https://www.atlassian.com/agile/scrum.

Paul Duvall, Steven Matyas, and Andrew Glover. Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Signature Series. Pearson Education, 2007. ISBN
9780321630148. URL https://books.google.ca/books?id=PV9qfEdvILOC.

Eclipse. Ecore Tools, 2023. https://www.eclipse.org/ecoretools/overview.html.

Susan Entwisle, Sita Ramakrishnan, and Elizabeth Kendall. Model-Driven Exception Man-
agement Case Study, pages 153-173. IGI Global, 2010. doi: 10.4018/978-1-60566-731-7.ch012.

Romina Eramo, Francis Bordeleau, Benoit Combemale, Mark van den Brand, Manuel Wim-
mer, and Andreas Wortmann. Conceptualizing Digital Twins. IEEE Software, 39:39-46, 3
2022. ISSN 0740-7459. doi: 10.1109/MS.2021.3130755.

Wiegers Karl Eugene and Beatty Joy. Software Requirements. Microsoft Press, 3rd edition,
2013.

Liliana Maria Favre. Non-Mobile Software Modernization in Accordance With the Principles
of Model-Driven Engineering, pages 29-60. 2021. doi: 10.4018/978-1-7998-6463-9.ch002.

Geek for Geeks. ML, — Data Preprocessing in Python, 2023. https://www.geeksforgeeks.
org/data-preprocessing-machine-learning-python/.

Eclipse Foundation. Xtext-Language Engineering Made Easy, 2023. https://www.eclipse.
org/Xtext/index.html.

Eclipse Foundation. Acceleo, 2023. https://www.eclipse.org/acceleo/.

Eclipse Foundation. ATL - A Model Transformation Technology, 2023. https://www.
eclipse.org/atl/.

Eclipse Foundation. Ecore - Eclipsepedia, 2023. https://wiki.eclipse.org/Ecore.

Eclipse Foundation. Eclipse Modelling Framework, 2023. https://www.eclipse.org/
modeling/emf/.

Eclipse Foundation. Eclipse IDE, 2023. https://www.eclipse.org/downloads/.

Eclipse Foundation. Object Constraint Language, 2023. https://projects.eclipse.org/
projects/modeling.mdt.ocl.

Eclipse Foundation. Sirius, 2023. https://www.eclipse.org/sirius/.

Eclipse Foundation. Sirius Modeling Project, 2023. https://www.eclipse.org/sirius/
doc/user/general/Modeling#%20Project.html.

Eclipse Foundation. Xtext, 2023. https://www.eclipse.org/Xtext/.
Eclipse Foundation. Xtext - 15 Minutes Tutorial, 2023. https://www.eclipse.org/Xtext/

documentation/102_domainmodelwalkthrough.html.

98

https://developer.android.com/studio
https://www.atlassian.com/agile/scrum
https://books.google.ca/books?id=PV9qfEdv9L0C
https://www.eclipse.org/ecoretools/overview.html
https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/
https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/
https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/Xtext/index.html
https://www.eclipse.org/acceleo/
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/
https://wiki.eclipse.org/Ecore
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/downloads/
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/doc/user/general/Modeling%20Project.html
https://www.eclipse.org/sirius/doc/user/general/Modeling%20Project.html
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/documentation/102_domainmodelwalkthrough.html
https://www.eclipse.org/Xtext/documentation/102_domainmodelwalkthrough.html

Bibliography

[61]

[62]

Yvette Francino. User Story, 2023. https://www.techtarget.com/
searchsoftwarequality/definition/user-story.

Philip Gerlee and Torbjorn Lundh. Scientific Models. Springer International Publishing,
2016. ISBN 978-3-319-27079-1. doi: 10.1007/978-3-319-27081-4.

Gerrit. Gerrit Code Review, 2023. https://www.gerritcodereview.com/.
Git. Git — Fast Version Control, 2023. https://git-scm.com/.
GitHub. Github, 2023. https://github.com/.

GitLab. What is A Code Review?, 2023. https://about.gitlab.com/topics/version-
control/what-is-code-review/.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Guru99. What is Requirements Traceability Matrix (RTM) in Testing?, 2023. https://
www.guru99.com/traceability-matrix.html.

Markus Gartner. ATDD by Fxample: A Practical Guide to Acceptance Test-Driven Devel-
opment. Addison-Wesley Signature Series (Beck). Addison-Wesley Professional, 1st edition,
2012. ISBN 978-0-321-78415-5.

Robert Heinrich, Reiner Jung, Christian Zirkelbach, Wilhelm Hasselbring, and Ralf Reussner.
An Architectural Model-Based Approach to Quality-Aware DevOps in Cloud Applications,
pages 69-89. Elsevier, 2017. doi: 10.1016/B978-0-12-805467-3.00005-3.

J.L. Hodges. Software Engineering from Scratch: A Comprehensive Introduction Using
Scala. Apress, 2019. ISBN 9781484252062. URL https://books.google.ca/books?id=
Re62DwAAQBAJ.

IBM. Uml Constraints, 2023. https://www.ibm.com/docs/en/dma?topic=elements-uml-
constraints.

IBM. What is Deep Learning?, 2023. https://www.ibm.com/topics/deep-learning.
IBM. What is Machine Learning?, 2023. https://www.ibm.com/topics/machine-learning.

IBM. Unsupervised Learning, 2023. https://www.ibm.com/topics/unsupervised-
learning.

Ambysodt Inc. Introduction To Test Driven Development (TDD), 2022. https://
agiledata.org/essays/tdd.html.

Gradle Inc. Gradle Build Tool, 2023. https://gradle.org/.

ISO/IEC/IEEE. ISO/IEC/IEEE International Standard - Systems and Software Engineering,
2010. ISO/IEC/IEEE 24765:2010(E). pp. vol., no., pp. 1-418, 15 Dec. 2010.

Itemis. YAKINDU Statechart Tools, 2023. https://rb.gy/9z44j.

ITU-T. Z.151 : User Requirements Notation (URN) - Language Definition, 2023. https:
//www.itu.int/rec/T-REC-Z.151/en.

99

https://www.techtarget.com/searchsoftwarequality/definition/user-story
https://www.techtarget.com/searchsoftwarequality/definition/user-story
https://www.gerritcodereview.com/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/topics/version-control/what-is-code-review/
https://about.gitlab.com/topics/version-control/what-is-code-review/
http://www.deeplearningbook.org
https://www.guru99.com/traceability-matrix.html
https://www.guru99.com/traceability-matrix.html
https://books.google.ca/books?id=Re62DwAAQBAJ
https://books.google.ca/books?id=Re62DwAAQBAJ
https://www.ibm.com/docs/en/dma?topic=elements-uml-constraints
https://www.ibm.com/docs/en/dma?topic=elements-uml-constraints
https://www.ibm.com/topics/deep-learning
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/unsupervised-learning
https://www.ibm.com/topics/unsupervised-learning
https://agiledata.org/essays/tdd.html
https://agiledata.org/essays/tdd.html
https://gradle.org/
https://rb.gy/9z44j
https://www.itu.int/rec/T-REC-Z.151/en
https://www.itu.int/rec/T-REC-Z.151/en

Bibliography

[72]

73]

[74]
[75]

Dick Jeremy, Hull Elizabeth, and Jackson Ken. Requirements Engineering. Springer-Verlag,
4th edition, 2017.

Gwendal Jouneaux, Olivier Barais, Benoit Combemale, and Gunter Mussbacher. Towards
Self-Adaptable Languages. pages 97-113. ACM, 10 2021. ISBN 9781450391108. doi: 10.
1145/3486607.3486753.

Bray lan K. An Introduction to Requirements Engineering. Addison-Wesley, 2002.

Joerg Kienzle, Benoit Combemale, Gunter Mussbacher, Omar Alam, Francis Bordeleau, Lola
Burgueno, Gregor Engels, Jessie Galasso, Jean-Marc Jézéquel, Bettina Kemme, Sébastien
Mosser, Houari Sahraoui, Maximilian Schiedermeier, and Eugene Syriani. Global Decision
Making Over Deep Variability in Feedback-Driven Software Development. pages 1-6. ACM,
10 2022. ISBN 9781450394758. doi: 10.1145/3551349.3559551.

Adam Kolawa and Dorota Huizinga. Automated Defect Prevention: Best Practices in Software
Management. Wiley-IEEE Computer Society Press, 2007. ISBN 978-0-470-04212-0.

Katanforoosh Kunin. Initializing Neural Networks, 2019. https://www.deeplearning.ai/
ai-notes/initialization/index.html.

H.S. Lahman. Model-Based Development: Applications. Pearson Education, 2011. ISBN
9780132757188. URL https://books.google.ca/books?id=KeGgvtOaeCgC.

Vogel Lars. Eclipse Modeling Framework (EMF) - Tutorial, 2007 - 2023. https://www.
vogella.com/tutorials/EclipseEMF/article.html.

Edward A. Lee. Modeling in Engineering and Science. Communications of the ACM, 62:
35-36, 12 2018. ISSN 0001-0782. doi: 10.1145/3231590.

Isabella Lindgren. Transformations, Scaling and Normalization, 2019. https://rb.gy/0609d.

Liu Liping. Requirements Modeling and Coding: An Object-Oriented Approach. World Sci-
entific Publishing Company, 2020.

Gauthier Lyan. Urban Mobility : Leveraging Machine Learning and Data Masses for the
Building of Simulators. Theses, Université Rennes 1, September 2021. URL https://theses.
hal.science/tel-03520672.

Gauthier Lyan, Jean-Marc Jézéquel, David Gross-Amblard, and Benoit Combemale. Data-
Time: A Framework to Smoothly Integrate Past, Present and Future into Models. pages
134-144. TEEE, 10 2021. ISBN 978-1-6654-3495-9. doi: 10.1109/MODELS50736.2021.00022.

Gauthier Lyan, Jean-Marc Jézéquel, David Gross-Amblard, Romain Lefeuvre, and Benoit
Combemale. Reasoning Over Time into Models with DataTime. Software and Systems
Modeling, pages 1-25, December 2022. URL https://inria.hal.science/hal-03921928.

Favorskaya Margarita, Pandey R. K., Shaw Rabindra Nath, and Mekhilef Saad. Innovations
in Electrical and Electronic Engineering. page 1002. Springer Nature Singapore, 2021.

Maven. Apache Maven, 2023. https://maven.apache.org/.

Mockito. Tasty Mocking Framework for Unit Tests in Java - Mockito, 2023. https://site.
mockito.org/.

100

https://www.deeplearning.ai/ai-notes/initialization/index.html
https://www.deeplearning.ai/ai-notes/initialization/index.html
https://books.google.ca/books?id=KeGgvtOaeCgC
https://www.vogella.com/tutorials/EclipseEMF/article.html
https://www.vogella.com/tutorials/EclipseEMF/article.html
https://rb.gy/o609d
https://theses.hal.science/tel-03520672
https://theses.hal.science/tel-03520672
https://inria.hal.science/hal-03921928
https://maven.apache.org/
https://site.mockito.org/
https://site.mockito.org/

Bibliography

[89]

[90]

[91]

[92]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]
[102]

[103]

[104]
[105]
[106]

H. Mohapatra and A.K. Rath. Fundamentals of Software Engineering: Designed to Provide
an Insight Into the Software Engineering Concepts. BPB PUBN, 2020. ISBN 9789388511773.
URL https://books.google.ca/books?id=puPJDwAAQBAJ.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning, Sec-
ond FEdition. Adaptive Computation and Machine Learning series. MIT Press, 2018. ISBN
9780262039406. URL https://books.google.ca/books?id=V2BIDwAAQBAJ.

Mehryar Mohri, Ameet Talwalkar, and Afshin Rostamizadeh. Foundations of Machine Learn-
ing. The MIT Press, 2nd edition, 2018.

Mondayblog. Task Analysis and How it Can Help Build a Project Team, August 2022.
https://monday.com/blog/project-management/task-analysis/.

P. Morin. Open Data Structures: An Introduction. Number v. 9 in Online access: Cen-
ter for Open Education Open Textbook Library. Athabasca University Press, 2013. ISBN
9781927356388. URL https://books.google.ca/books?id=ZZCJvrDe5bIC.

Gunter Mussbacher. Lecture Notes on Requirements Elicitation. ECSE 326 Lecture Notes,
Fall 2022. Software Engineering, McGill University.

Gunter Mussbacher. Evaluating Requirements Models with URN: Features, Goals, and Sce-
narios, Winter 2023. Lecture notes for ECSE439/539 (Advanced) Software Language Engi-
neering, McGill University.

Lyubov N. Improve Your Efficiency: Checklists for Software Testing, 2017. https://rb.gy/
sqfpr.

Juan Navas. What is Hyperparameter Tuning?, February 2022. https://www.anyscale.
com/blog/what-is-hyperparameter-tuning.

Damir Nesi¢, Jacob Kriiger, Stefan Stanciulescu, and Thorsten Berger. Principles of Feature
Modeling. pages 62-73. ACM, 8 2019. ISBN 9781450355728. doi: 10.1145/3338906.3338974.

Jerry Nicholas. 9 Elicitation Techniques Used by Business Analysts — Tips and Guidance,
2023. https://rb.gy/fs66h.

McGill Faculty of Engineering. Minor Applied Artificial Intelligence, 2023. https://rb.gy/
u86uc.

McGill Faculty of Engineering. Minor Software Engineering, 2023. https://rb.gy/zp4at.

Richard Paige. The Meta-Object Facility (MOF), July 2006. https://wiki.eclipse.org/
images/0/06/0MCW_chapter04_MOFLecture.York.pdf.

Visual Paradigm. What is Sequence Diagram?, 2023. https://www.visual-paradigm.com/
guide/uml-unified-modeling-language/what-is-sequence-diagram/.

Deepak Parmar. Exploratory Testing, 2023. https://shorturl.at/giRX2.
Hoang Pham. Software Reliability. John Wiley & Sons, Inc., 1999. ISBN 9813083840.

Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell. O’Reilly Media, 2005.

101

https://books.google.ca/books?id=puPJDwAAQBAJ
https://books.google.ca/books?id=V2B9DwAAQBAJ
https://monday.com/blog/project-management/task-analysis/
https://books.google.ca/books?id=ZZCJvrDe5bIC
https://rb.gy/sqfpr
https://rb.gy/sqfpr
https://www.anyscale.com/blog/what-is-hyperparameter-tuning
https://www.anyscale.com/blog/what-is-hyperparameter-tuning
https://rb.gy/fs66h
https://rb.gy/u86uc
https://rb.gy/u86uc
https://rb.gy/zp4at
https://wiki.eclipse.org/images/0/06/OMCW_chapter04_MOFLecture.York.pdf
https://wiki.eclipse.org/images/0/06/OMCW_chapter04_MOFLecture.York.pdf
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-sequence-diagram/
https://shorturl.at/giRX2

Bibliography

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

PostgreSQL. PostgreSQL: The World’s Most Advanced Open Source Relational Database,
2023. https://www.postgresql.org/.

Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, January
2014.

Productboard. Backlog Grooming or Refinement, 2023. https://rb.gy/h4h4k.

Pranoy Radhakrishnan. A Short Machine Learning Explanation — In Terms of Linear Alge-
bra, Probability and Calculus, 2018. https://rb.gy/4hcwa.

Dan Radigan. Kanban: How The Kanban Methodology Applies To Software Development,
2023. http://surl.1i/jwblg.

Naur Peter Randell, Brian. NATO Software Engineering Reports. PDF, October 1968.
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

Max Rehkopf. What Is Continuous Integration?, 2023. http://surl.1i/jwbkt.

SAFe. Domain Modeling, March 2023. https://scaledagileframework.com/domain-
modeling/.

Salesforce. Heroku, 2023. https://www.heroku.com/.

June Sallou. On Reliability and Flexibility of Scientific Software in Environmental Science :
Towards a Systematic Approach to Support Decision-Making. Theses, Université Rennes 1,
February 2022. URL https://theses.hal.science/tel-03854849.

Erin Schaffer. Front-end vs Back-end Development: What’s the Difference?, October 2021.
https://rb.gy/s123a.

D.C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer, 39:25-31,
2 2006. ISSN 0018-9162. doi: 10.1109/MC.2006.58.

Oszkar Semerath, Andrds Szabolcs Nagy, and Déniel Varr6. A Graph Solver for the Auto-
mated Generation of Consistent Domain-Specific Models. In 40th International Conference
on Software Engineering (ICSE 2018), pages 969-980. ACM, 5 2018.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning From Theory to
Algorithms. Cambridge University Press, 2014.

Divesh Singh. Differences Between Architecture and Design Pattern, September 2019. https:
//singhdivesh.medium.com/according-to-wikipedia-blafa6deO8c.

John Smart. BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle.
Manning Publications, September 2014. ISBN 9781638353218.

Sourceforge. USE: UML-Based Specification Environment, 2023. https://sourceforge.
net/projects/useocl/.

Springboard. Regression vs Classification, 2023. https://www.springboard.com/blog/
data-science/regression-vs-classification/.

102

https://www.postgresql.org/
https://rb.gy/h4h4k
https://rb.gy/4hcwa
http://surl.li/jwblg
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://surl.li/jwbkt
https://scaledagileframework.com/domain-modeling/
https://scaledagileframework.com/domain-modeling/
https://www.heroku.com/
https://theses.hal.science/tel-03854849
https://rb.gy/s123a
https://singhdivesh.medium.com/according-to-wikipedia-b1afa6de08c
https://singhdivesh.medium.com/according-to-wikipedia-b1afa6de08c
https://sourceforge.net/projects/useocl/
https://sourceforge.net/projects/useocl/
https://www.springboard.com/blog/data-science/regression-vs-classification/
https://www.springboard.com/blog/data-science/regression-vs-classification/

Bibliography

[125]

[126]
[127]
[128]

[129]

[130]

[131]

[132]

[133]
[134]

[135]

[136]

137]

[138]

[139]
[140]

Sagar Sunkle, Krati Saxena, Ashwini Patil, and Vinay Kulkarni. AI-Driven Streamlined
Modeling: Experiences and Lessons Learned from Multiple Domains. Software and Systems
Modeling, 21:1-23, 6 2022. ISSN 1619-1366. doi: 10.1007/s10270-022-00982-6.

Simon Swords. Creating a Software Product Vision Statement, 2017. https://rb.gy/syay7.
Sparx Systems. Meta Object Facility, 2023. https://bit.1ly/40h3FeW.
VMware Tanzu. Spring Boot 3.1.0, 2023. https://spring.io/projects/spring-boot.

Fei Tao, Jiangfeng Cheng, Qinglin Qi, Meng Zhang, He Zhang, and Fangyuan Sui. Digital
Twin-Driven Product Design, Manufacturing and Service With Big Data. The International
Journal of Advanced Manufacturing Technology, 94:3563-3576, 2 2018. ISSN 0268-3768. doi:
10.1007/s00170-017-0233-1.

E. Tran. Verification/Validation/Certification. In P. Koopman, editor, Topics in Depend-
able Embedded Systems. Carnegie Mellon University, 1999. https://users.ece.cmu.edu/
~koopman/des_s99/verification/index.html.

Tutorialspoint. SDLC - Iterative Model, 2023. https://www.tutorialspoint.com/sdlc/
sdlc_iterative_model.htm.

Tutorialspoint. UML Modeling Types, 2023. https://www.tutorialspoint.com/uml/uml_
modeling_types.htm.

Umple. Umple, 2023. https://cruise.umple.org/umple/.

USE. The UML-Based Specification Environment, 2015. https://useocl.sourceforge.
net/w/index.php/Main_Page.

Muhammad Usman, Kai Petersen, Jiirgen Borstler, and Pedro Santos Neto. Developing
and using Checklists to Improve Software Effort Estimation: A Multi-Case Study. Jour-
nal of Systems and Software, 146:286-309, 2018. ISSN 0164-1212. doi: https://doi.org/
10.1016/j.js5.2018.09.054. URL https://www.sciencedirect.com/science/article/pii/
S50164121218302073.

Sairam Vakkalanka. Requirements Triage - Challenges and Solutions. International Journal
of Software Engineering Applications, 3:41-58, 3 2012. ISSN 09762221. doi: 10.5121/ijsea.
2012.3204.

Hans Van Vliet. Software Engineering: Principles and Practice. Wiley, 3rd edition, May
2008. ISBN 978-0-470-03146-9.

Shrivastava Vineeta, Shrivastava Prashant Kumar (Dr), Kamble Megha (Dr), Shrivas-
tava Gourav (Dr), and Udgir Vaibhav. An Introduction to Machine Learning. Blue Rose
Publishers, 2023.

Vue.js. The Progressive Javascript Framework, 2023. https://vuejs.org/.

L. Weir and Z. Nemec. Enterprise API Management: Design and Deliver Valuable Business
APIs. Packt Publishing, 2019. ISBN 9781787285613. URL https://books.google.ca/
books?id=00ikDwAAQBAJ.

103

https://rb.gy/syay7
https://bit.ly/40h3FeW
https://spring.io/projects/spring-boot
https://users.ece.cmu.edu/~koopman/des_s99/verification/index.html
https://users.ece.cmu.edu/~koopman/des_s99/verification/index.html
https://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm
https://www.tutorialspoint.com/uml/uml_modeling_types.htm
https://www.tutorialspoint.com/uml/uml_modeling_types.htm
https://cruise.umple.org/umple/
https://useocl.sourceforge.net/w/index.php/Main_Page
https://useocl.sourceforge.net/w/index.php/Main_Page
https://www.sciencedirect.com/science/article/pii/S0164121218302073
https://www.sciencedirect.com/science/article/pii/S0164121218302073
https://vuejs.org/
https://books.google.ca/books?id=0OikDwAAQBAJ
https://books.google.ca/books?id=0OikDwAAQBAJ

Bibliography

[141]

[142]

[143]
[144]

[145]
[146]
[147]
[148]

[149]
[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

[158]

[159]
[160]

Ivy Wigmore. Software Development, 2023. https://www.techtarget.com/whatis/
definition/software-development.

Wikepedia. Software Verification and Validation, 2023. https://en.wikipedia.org/wiki/
Software_verification_and_validation.

Wikipedia. API, 2023. https://en.wikipedia.org/wiki/APT.

Wikipedia. Behavior-Driven Development, 2023. https://en.wikipedia.org/wiki/
Behavior-driven_development.

Wikipedia. Code Coverage, 2023. https://en.wikipedia.org/wiki/Code_coverage.
Wikipedia. Database Design, 2023. https://en.wikipedia.org/wiki/Database_design.
Wikipedia. Feature Model, 2023. https://en.wikipedia.org/wiki/Feature_model.

Wikipedia. Hibernate (Framework), 2023. https://en.wikipedia.org/wiki/Hibernate_
(framework).

Wikipedia. Machine Learning, 2023. https://en.wikipedia.org/wiki/Machine_learning.

Wikipedia. Model-Based Testing, 2023. https://en.wikipedia.org/wiki/Model-based_
testing.

Wikipedia. Object—Relational Mapping, 2023. https://en.wikipedia.org/wiki/
Objectrelational_mapping.

Wikipedia. Software Prototyping, 2023. https://en.wikipedia.org/wiki/Software_
prototyping.

Wikipedia. Product Requirements Document, 2023. https://en.wikipedia.org/wiki/
Product_requirements_document.

Wikipedia. Software Language, 2023. https://en.wikipedia.org/wiki/Software_
language.

Wikipedia. Software Engineering, 2023. https://en.wikipedia.org/wiki/Software_
engineering.

Wikipedia. UML State Machine, 2023. https://en.wikipedia.org/wiki/UML_state_
machine.

Wikipedia. Unified Modeling Language, 2023. https://en.wikipedia.org/wiki/Unified_
Modeling_Language.

Wikipedia. XML Metadata Interchange, 2023. https://en.wikipedia.org/wiki/XML_
Metadata_Interchange.

Wikipedia. XML, 2023. https://en.wikipedia.org/wiki/XML.

T. Winters, T. Manshreck, and H. Wright. Software Engineering at Google: Lessons Learned
from Programming Over Time. O’Reilly Media, 2020. ISBN 9781492082767. URL https:
//books.google.ca/books?id=V3TTDwAAQBAJ.

104

https://www.techtarget.com/whatis/definition/software-development
https://www.techtarget.com/whatis/definition/software-development
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Database_design
https://en.wikipedia.org/wiki/Feature_model
https://en.wikipedia.org/wiki/Hibernate_(framework)
https://en.wikipedia.org/wiki/Hibernate_(framework)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Object–relational_mapping
https://en.wikipedia.org/wiki/Object–relational_mapping
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Product_requirements_document
https://en.wikipedia.org/wiki/Product_requirements_document
https://en.wikipedia.org/wiki/Software_language
https://en.wikipedia.org/wiki/Software_language
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/UML_state_machine
https://en.wikipedia.org/wiki/UML_state_machine
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/XML_Metadata_Interchange
https://en.wikipedia.org/wiki/XML_Metadata_Interchange
https://en.wikipedia.org/wiki/XML
https://books.google.ca/books?id=V3TTDwAAQBAJ
https://books.google.ca/books?id=V3TTDwAAQBAJ

Bibliography

[161] Kinza Yasar. Software Engineering, March 2023. https://www.techtarget.com/whatis/
definition/software-engineering.

[162] Aaron Zhu. What is Regularization: Bias-Variance Tradeoff, 2022. https://rb.gy/4t1tt.

[163] Vaughan Jack Zola, Andrew. Backpropagation Algorithm, 2022. https://www.techtarget.
com/searchenterpriseai/definition/backpropagation-algorithm.

105

https://www.techtarget.com/whatis/definition/software-engineering
https://www.techtarget.com/whatis/definition/software-engineering
https://rb.gy/4t1tt
https://www.techtarget.com/searchenterpriseai/definition/backpropagation-algorithm
https://www.techtarget.com/searchenterpriseai/definition/backpropagation-algorithm

Xtext Textual Language Definition for the MODA
Metamodel

The Xtext grammars used to implement the various variations of the MODA metamodel as seen
in Chapter 3 are listed in this appendix. The Xtext language engineering environment allowed us
to quickly prototype and analyze each metamodel variation. It allowed us to think through the
metamodel variations critically as to why the final metamodel is concluded and the advantages
and disadvantages of each variation. It was much easier to perform this analysis textually than
graphically, i.e., Ecore modeling.

Programs A.1, A.2, A.3, A4, and A.5 refer to the grammar for the textual language used to
generate the metamodel for variations 1, 2, 3, 4, and the final metamodel, respectively.

Program A.1: Xtext Grammar for Variation 1

grammar org.xtext.example.moda.Moda with org.eclipse.xtext.common.Terminals
generate moda "http://www.xtext.org/example/moda/Moda"

Moda:

description = STRING

(models += Model)*

(data += Data)*
8 (runningsoftware += RunningSoftware)*
9 (sts += STS)*

QU W N -

N

10 ;

11 Model: DescriptiveModel | PredictiveModel | PrescriptiveModel
12 ;

13 DescriptiveModel:

14 'descriptive' name = ID '=>' ActionE=[PredictiveModell

15 ;

16 PredictiveModel:
'predictive' name = ID '=>' ActionF=[PrescriptiveModell]

18 ;

19 PrescriptiveModel:

20 'prescriptive' name = ID '=>' ActionG=[PrescriptiveModel] '=>' ActionH=[RunningSoftware] '=>'
ActionI=[STS]

21

106

Appendix A. Xtext Textual Language Definition for the MODA Metamodel

22 Data: Input | Output | Measured | External
23 '=>' ActionD=[DescriptiveModel]

25 Input:

26 ‘'inputData' name = ID '=>' ActionA=[RunningSoftware]
27

28 Output:

29 ‘'outputData' name = ID

30 ;

31 Measured:

32 'measuredData' name = ID

33 ;

34 External:

35 'externalData' name = ID '=>' ActionJ=[STS]
36 ;

37 RunningSoftware:

38 'runtime' name = ID '=>' ActionB=[Output] '=>' ActionC=[Measured]

39 state = STRING

40 ;

41 sTS:

42 'socioTech' name = ID '=>' runningsoftware=[RunningSoftware] '=>' ActionJ=[Externall

Program A.2: Xtext Grammar for Variation 2

grammar org.xtext.example.moda.Moda with org.eclipse.xtext.common.Terminals
generate moda "http://www.xtext.org/example/moda/Moda"

B O DD

Moda:
description = STRING
(models += Model) *
(data += Data)*
(runningsoftware += RunningSoftware)*
C (sts += STS)*
10 (actions += Action)*
11 ;
12 Action:
13 ‘'action' name = ID
14 'type' type = ActionType
15 ;
16 Model: DescriptiveModel | PredictiveModel | PrescriptiveModel
17 ;
18 DescriptiveModel:
19 'descriptive' name = ID
20 ;
21 PredictiveModel:
22 'predictive' name = ID
23 ;
24 PrescriptiveModel:
25 'prescriptive' name = ID
26
27 Data: Input | Output | Measured | External
28 ;
29 Input:
30 'inputData' name = ID
31
32 Output:
33 'outputData' name = ID

34

N OOt

107

Appendix A. Xtext Textual Language Definition for the MODA Metamodel

35 Measured:

36 'measuredData' name = ID
37

38 External:

39 'externalData' name = ID
40 ;

11 RunningSoftware:

42 'runtime' name = ID

43 state = STRING

A4

45 STS:

46 'socioTech' name = ID '=>' runningsoftware=[RunningSoftware]
AT

48

49 enum ActionType:

50 A = 'A'|

51 B = "'B'l|

52 ¢c="'Cc'l|

53 D= 'D'|

54 E = 'E'|

55 F = 'F'|

5 G = 'G'|

57 H='H'I

58 I ='I'|

59 J =1'J°

Program A.3: Xtext Grammar for Variation 3

1 grammar org.xtext.example.moda.Moda with org.eclipse.xtext.common.Terminals
2 generate moda "http://www.xtext.org/example/moda/Moda"
3

1 Moda:

5 description = STRING

6 (elements += Element)*

7 (actions += Action)*

8 3

9 Action:
10 'action' name = ID
11 from = [Element] '->' to = [Element]

12 'type' type = ActionType
13

14 Element: Data | Model | RunningSoftware | STS
15 ;

16 Model: DescriptiveModel | PredictiveModel | PrescriptiveModel

17 ;

18 DescriptiveModel:

19 'descriptive' name = ID
20 ;

21 PredictiveModel:

22 ‘'predictive' name = ID
23 ;

24 PrescriptiveModel:

25 ‘'prescriptive' name = ID
26 ;

27 Data: Input | Output | Measured | External
28

29 Input:

30 'inputData' name = ID

108

Appendix A. Xtext Textual Language Definition for the MODA Metamodel

31

32 Output:

33 'outputData' name = ID
34

35 Measured:

36 'measuredData' name = ID
37

38 External:

39 'externalData' name = ID
40 ;

41 RunningSoftware:

42 'runtime' name = ID

43 state = STRING

44

45 STS:

46 'socioTech' name = ID '=>' runningsoftware=[RunningSoftware]
47 ;

48

19 enum ActionType:

50 A= 'A"]

51 B = 'B'|

52 ¢ ="'c'l

53 D= 'D'|

54 E="'E'|

55 F = "'F'l

56 G ="'G"l

57 H='H'I

58 I ="'I"|

59 J=1'J

=)
=

Program A.4: Xtext Grammar for Variation 4

1 grammarorg.xtext.example.moda.Moda withorg.eclipse.xtext.common.Terminals
2 generate moda "http://www.xtext.org/example/moda/Moda"
3
4 Moda:
5 description = STRING
6 (elements += Element)*
7 (actions += Action)*
8 ;
9 Action:
10 'action' name= ID
11 from = [Element] '->' to = [Element]
12 'type' type = ActionType
13 ;
14 Element: Data | Model | RunningSoftware | STS
15 ;
16 Model:
17 (descriptive 7= 'descriptive')?
18 (predictive 7= 'predictive')?
19 (prescriptive 7= 'prescriptive')?
20 'model' name= ID
21
22 Data: Input | Output | Measured | External
23
24 Input:
25 'inputData' name= ID
26 ;

109

27
28
29
30
31
32
33
34
35
36
37
38
39
40

W N =

Y O

13

16
17
18
19
20
21
22
23
24
25
26
27

Appendix A. Xtext Textual Language Definition for the MODA Metamodel

Output:

'outputData' name= ID
Measured:

'measuredData' name= ID
External:

'externalData' name= ID
RunningSoftware:

'runtime' name= ID

state = STRING
STS:

'socioTech' name= ID '=>' runningsoftware=[RunningSoftware]

enum ActionType:
‘A
= 'B'|
='c'|
= 'D'|
'E' |
= 'F'|
= 'G'|
= 'H'|
T
IJI

aH D QTMMEOQWE
]

Program A.5: Xtext Grammar for Final Metamodel

grammar org.xtext.example.moda.Moda with org.eclipse.xtext.common.Terminals
generate moda "http://www.xtext.org/example/moda/Moda"

Moda:

description = STRING

(elements += Element)*

(actions += Action)*
Action:

'action' name = ID

from = [Element] '->' to = [Element]

'type' type = ActionType

Element: Data | Model | RunningSoftware | STS

)

Data:
(inputData 7= 'input')?
(outputData ?= 'output')?
(measuredData 7= 'measured')?
(externalData 7= 'external')?
'data' name = ID

Model:
(descriptive 7= 'descriptive')?
(predictive 7= 'predictive')?
(prescriptive 7= 'prescriptive')?
'model' name = ID

110

Appendix A. Xtext Textual Language Definition for the MODA Metamodel

28 ;

29 RunningSoftware:

30 'runtime' name = ID
31 state = STRING

32 ;

33 STS:

34 'socioTech' name = ID '=>' runningsoftware=[RunningSoftware]
35 ;

36 enum ActionType:

37 A=A

38 B ="'B'l

39 ¢c='c'l

40 D= 'D'|

41 E = 'E'l

42 F = 'F'|

13 6 ='G'|

44 H = 'H'|

45 1= '1'|

16 J='J

47

111

O© 00O UL W=

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Java Code for Metamodel Validation

The Java code defines the rules written to validate the MODA metamodel.

Program B.1: Java Code for Metamodel Validation

/*
* generated by Xtext 2.29.0
*/

package org.xtext.example.moda.validation;
import java.util.stream.Collectors;

import org.eclipse.xtext.validation.Check;

import org.xtext.example.moda.moda.Action;

import org.xtext.example.moda.moda.Data;

import org.xtext.example.moda.moda.Moda;

import org.xtext.example.moda.moda.ModaPackage;
import org.xtext.example.moda.moda.Model;

import org.xtext.example.moda.moda.RunningSoftware;
import org.xtext.example.moda.moda.STS;

/*

* This class contains custom validation rules.

*

* See https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html#validation
*/
public class ModaValidator extends AbstractModaValidator {

// action names cannot be repeated

@Check

public boolean checkActionNameIsUniqueWithinModa(Action action) {
var actions = ((Moda) action.eContainer()).getActions();
var actionName = action.getName();

// Check if the action name is already used by another action
long count = actions.stream()

112

34
35
36
37
38
39
40
41
42
43
44
45
47
48
49

Ut Ot Ot Ut
WN— O

ot

ot

ot ¢

ot
00 3 O Ul i~

ot

Ut
N

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Appendix B. Java Code for Metamodel Validation

.filter(a -> a.getName() .equals(actionName))
.count();

if (count > 1) {

warning("Action name must be unique", ModaPackage.Literals.ACTION__NAME) ;

return false; // Name is not unique

// Return true if the name is unique
return true;

}

// elements names cannot be repeated

@Check

public boolean checkElementNameIsUniqueWithinModa(Element element) {
var elements = ((Moda) element.eContainer()).getElements();
var elementName = element.getName();

// Check if the action name is already used by another action
long count = elements.stream()
.filter(a -> a.getName().equals(elementName))
.count () ;
if (count > 1) {
warning ("Element name must be unique", ModaPackage.Literals.ELEMENT__NAME);
return false; // Name is not unique
}
// Return true if the name is unique
return true;
}

// at least one model attribute should be true
@Check
public boolean checkAtLeastOneModelAttributeIsTrue (Model model) {

if (model.isDescriptive() || model.isPredictive() || model.isPrescriptive()) {
return true; // At least one model attribute is true
}
warning("At least one model attribute should be true", ModaPackage.Literals.ELEMENT__NAME);
return false;
}
// at least one data attribute should be true

@Check
public boolean checkAtLeastOneDataAttributeIsTrue (Data data) {

if (data.isInputData() || data.isOutputData() || data.isMeasuredData() ||

data.isExternalData()) {
return true; // At least one data attribute is true

warning ("At least one data attribute should be true", ModaPackage.Literals.ELEMENT__NAME) ;

return false;

}

//At least one model should be present

@Check

public boolean checkAtLeastOneModelPresent(Moda moda) {
for (Element element : moda.getElements()) {

113

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109
110
111
112

113
114
115
116

117
118
119
120

121

122
123
124
125

126

127
128
129
130

131
132
133
134
135
136
137
138
139

Appendix B. Java Code for Metamodel Validation

}

if (element instanceof Model) {
return true; // At least one model is present

X
warning("At least one model should be present", ModaPackage.Literals.ELEMENT__NAME);
return false;

// which elements do arrows A - J move from and to what
@Check

public boolean checkActionTypeDirections(Action action) {

boolean isValid = false;
switch (action.getType()) {

case A:
isValid = action.getFrom() instanceof Data &% ((Data) (action.getFrom())).isInputData() &&
action.getTo() instanceof RunningSoftware;
break;

case B:
isValid = action.getFrom() instanceof RunningSoftware && action.getTo() instanceof Data && ((
Data) (action.getTo())).isOutputData();
break;

case C:
isValid = action.getFrom() instanceof RunningSoftware && action.getTo() instanceof Data && ((
Data) (action.getTo())).isMeasuredData();
break;

case D:
isValid = action.getFrom() instanceof Data && action.getTo() instanceof Model && ((Model) (
action.getTo())) .isDescriptive()
|| action.getFrom() instanceof Data && action.getTo() instanceof Model && ((Model) (
action.getTo())) .isPrescriptive();
break;

case E:
isValid = action.getFrom() instanceof Model && ((Model) (action.getFrom())).isDescriptive()
&& action.getTo() instanceof Model && ((Model) (action.getTo())).isPredictive()
|| action.getFrom() instanceof Data && action.getTo() instanceof Model && ((Model) (action
.getTo())) .isPredictive();
break;

case F:
isValid = action.getFrom() instanceof Data && action.getTo() instanceof Model && ((Model) (
action.getTo())) .isPrescriptive()
|| action.getFrom() instanceof Model && ((Model) (action.getFrom())).isDescriptive() &&
action.getTo() instanceof Model && ((Model) (action.getTo())).isPrescriptive()
|| action.getFrom() instanceof Model && ((Model) (action.getFrom())).isPredictive() &&
action.getTo() instanceof Model && ((Model) (action.getTo())).isPrescriptive();
break;

case G:
isValid = action.getFrom() instanceof Model && ((Model) (action.getFrom())).isPrescriptive()
&& action.getTo() instanceof Model && ((Model) (action.getTo())).isPrescriptive();

break;

case H:

114

Appendix B. Java Code for Metamodel Validation

140

141
142
143
144

145
146
147
148

isValid = action.getFrom() instanceof Model && ((Model) (action.getFrom())).isPrescriptive()
&& action.getTo() instanceof RunningSoftware;
break;

case I:
isValid = action.getFrom() instanceof Model && ((Model) (action.getFrom())).isPrescriptive()
&& action.getTo() instanceof STS;
break;

case J:
isValid = action.getFrom() instanceof STS && action.getTo() instanceof Data && ((Data) (action
.getTo())) .isExternalData()
|| action.getFrom() instanceof Data && ((Data) (action.getTo())).isExternalData() &&
action.getTo() instanceof STS ;
break;

default:
break;

}
if (lisValid) {

warning("Invalid action direction", ModaPackage.Literals.ACTION__TYPE);
}

return isValid;

115

	Abstract
	Abrégé
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	List of Abbreviations
	Introduction
	Problem Definition and Motivation
	Thesis Methodology and Contributions
	Thesis Overview

	Background
	Models and Data
	The MODA Framework
	Xtext
	Eclipse Modeling Framework
	Sirius
	Summary

	MODA Metamodel
	MODA Metamodel
	Metamodel Variation 1
	Metamodel Variation 2
	Metamodel Variation 3
	Metamodel Variation 4
	Final Metamodel

	Metamodel Validation Rules
	Summary

	Sirius Tool Implementation and Verification
	Metamodel
	Viewpoint Specification Project
	Defining a Diagram
	Nodes
	Edges
	Palette
	Validation

	Diagram Representation
	Summary

	MODA Education Application
	ECSE 326 - Software Requirements Engineering
	ECSE 223 - Model-based Programming
	ECSE 321 - Introduction to Software Engineering
	ECSE 428 - Software Engineering Practise
	ECSE 429 - Software Validation
	ECSE 439 - Software Language Engineering
	ECSE 250 - Fundamentals of Software Development
	ECSE 551 - Machine Learning for Engineers
	ECSE 552 - Deep Learning
	Discussion and Observations
	Discussion
	Observations

	Summary

	Related Work
	Review of Related Work
	Summary

	Conclusion
	Contributions and Findings
	Future Work

	Bibliography
	Xtext Textual Language Definition for the MODA Metamodel
	Java Code for Metamodel Validation

