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Abstract

This thesis examines the topological phonon phases of realistic isotope superlattices (ISL).

It is shown that, in one dimension, the ISL can be mapped onto the Su–Schrieffer–Heeger

(SSH) model and exhibits a similar topological phase transition after some transforma-

tion. The transformation we considered is the differences between neighboring displace-

ments instead of the displacement alone. Then, a worked-out phononic crystal (PC) de-

sign is presented using experimental material data, which exhibits a topological phase

transition. The PC is a beam of alternating radii lengths made of stainless steel. Finally,

using Langevin baths, the heat transport of the ISL is evaluated for the different phases.

The model demonstrated a potential heat rectification device.
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Abrégé

Cette thèse examine les phases de phonons topologiques de super-réseaux isotopiques

(SRI) réalistes. Il est montré que, dans une dimension, le SRI peut être mis en correspon-

dance avec le modèle de Su-Schrieffer-Heeger (SSH), qui présente une transition de phase

topologique similaire après avoir effectué une certaine transformation. La transformation

que nous avons considérée considère la différence entre les déplacements voisins au lieu

du déplacement seul. Nous présentons ensuite un modèle de cristal phononique (CP)

élaboré à l’aide de données matérielles expérimentales, qui présente une transition de

phase topologique. Ce CP est cylindre de de rayons alternés en acier inoxydable. Enfin,

à l’aide de bains thermiques de Langevin, le transport de chaleur du SRI est évalué pour

les différentes phases. Le modèle a démontré un dispositif potentiel de rectification de la

chaleur.
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Chapter 1

Overview

1.1 Topology

In 1741, Leonhard Euler proposed a solution to the Königsberg bridge problem, a mathe-

matical puzzle involving seven bridges on two landmasses and an island in a town called

Königsberg [1]. The question was whether a person could walk through the town while

only crossing each bridge once. His solution led to the development of a field of mathe-

matics known as topology.

Sphere Doughnut Mug

=≠

Figure 1.1: Example of three topological objects where the mug and doughnut are topo-

logically equivalent while the sphere is not.

Topology is a field in mathematics that studies the attributes of geometrical object

deformations. Topology classifies geometrical objects into two categories: topologically
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equivalent and topologically distinct. Geometrical objects that can be deformed without

creating or closing a hole, tearing or gluing, nor passing through themselves are topo-

logically equivalent. Homeomorphism and homotopies deformations in topology are the

only allowed deformations that preserve an object’s topology [2]. Homeomorphism is the

one-to-one mapping of a continuous function between topological spaces with an inverse

function. An example is when an object undergoes continuous bending and stretching

into a new shape. Under smooth deformations, two geometrical objects’ properties are

invariant if the properties do not change, while we deform them into each other without

losing the properties. A well-known example is a sphere, a doughnut, and a coffee mug,

as shown in Figure 1.1. A sphere is deemed topologically distinct from a doughnut and

a coffee mug, while the doughnut and coffee mug are considered topologically equiva-

lent. The topological invariant, in this case, is the genus number g, which represents the

number of holes the object has. This example is concerned with objects’ surfaces, and to

define the topological invariant as in reference [3], we use the Gauss-Bonnet theorem, as

follows:

� =
1

2⇡

Z

S

KdA (1.1)

where � is the Euler characteristic for a sphere of radius R is 2 and K = 1/R2 is the

gaussian curvature, here related to the genus number g by � = 2� 2g.

In summary, any two geometrical objects that can be deformed into each other are

topologically equivalent if their topological properties are invariant. Then, the most cru-

cial question is what topological invariants is the one that characterizes the system. A

critical example of a topological invariant in the field of topological condensed matter is

the winding number, which we will discuss later in chapter two.
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1.2 Topological insulators

Topological phases are a new domain of physics that has gained attention since the quan-

tum Hall effect was first discovered in 1980 by Von Klitzing [4]. The quantum Hall effect

is considered to be the first known topological phase. Topological phases can exist in

1D [5], 2D [6], or 3D [7] geometrical objects. Not only are quantum systems topological

phases, but classical systems also can exhibit topological phases [8]. The materials that

demonstrate the quantum Hall effect are considered a subset of materials classified as

topological insulators. In general, insulators are the materials with an energy gap split-

ting the excited state electrons from the ground state. This separation of states permits

topological classification founded on adiabatic continuity. Two insulating materials are

equivalent if their Hamiltonian can be gradually transformed from one to the other so

that the system constantly stays in the ground state. The energy gap determines how

slowly the adiabatic process should be, if possible. A topological insulator is a material

conducting at the outside boundary and insulating at the inside bulk. To understand

topological insulators, we can start with the Su–Schrieffer–Heeger (SSH) model, which

is a 1D model [9]. This 1D model is essential because, despite its simplicity, it will make

understanding the fundamental concepts in topological insulators easier. In chapter two,

we will start with defining metals and their properties while touching base on conducting

and insulating band gaps. Then, we will introduce the SSH model and define the mean-

ing of topology in a 1D material. By the end of the second chapter, we will summarize the

experimental results and describe some potential applications of topological insulators.

1.3 Topological phononics

In recent years, physicists have been working on a phononic version of the SSH model.

Mass-spring models as a representation of the SSH model have been proposed to un-

derstand the topological phases in phonons and photons. The most common method is

replacing the hopping amplitudes (electron site) of the SSH model with the spring (mass)

3



in the Mass-spring model [10]. Other proposed modifications can be obtained by adding

fixed/heavy masses at the edges to preserve the chiral symmetry of the model in 1D [11].

In 2D, one way to preserve chiral symmetry was by introducing a dent beneath the Mass-

spring model floor [12]. The emerging phononic topology field will allow scientists to

exploit phonons and develop new material [10]. Some candidate materials are currently

being investigated to show the phononic topology. Tungsten diselenide and sodium chlo-

ride [13], graphene [14], and silicon [15] are a few examples of explored materials that

show the topological behavior of phonons. The potential of phononic topology applica-

tions ranges from topological quantum computation [16], to phononic devices [17], and

topological phononic materials [18]. In chapter three, we explain phonons from a classi-

cal point of view and discuss some important features of a diatomic chain. Then, chapter

four will discuss our work to look at the diatomic chain topologically and discuss its

similarities with the SSH model.

1.4 Topological heat transport

Heat transport is an essential and well-established topic in many fields. The importance

of heat transport can be seen in every house and new technology, from smartphones to

electric cars, in nanoscale systems, and in mega constructions. However, topological heat

transfer is a new area that started to earn attention in the last couple of years. The re-

cent interest in topological heat transport is because of the latest advances in developing

topological materials. Heat transport started with Fourier’s law of heat conduction in

1822, which is a phenomenological law. Heat transport is a well-studied topic; however,

at low dimensions, there is no single model that can work for all cases. Our focus will

be on 1D models, precisely the heat baths method. The most common heat bath method

is the Langevin bath, which we will discuss in more detail in chapter five. In 2012, Kan-

nan, Dhar, and Lebowitz [19] analyzed the heat transport in a chain of alternating masses,

showing an even–odd number of masses dependency. Then, in 2017, a group of physi-

4



cists [20] used the Langevin baths to find an analytical solution for the thermal conduc-

tance of a system with alternating masses by using nearest neighboring coupling. In

2018, another group studied the topological thermal effects in classical dimerized micro-

and nanomechanical lattices [21]. Chapter five will examine the results of applying the

Langevin baths method to our 1D phononics model.
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Chapter 2

SSH model

In this chapter, we examine the SSH model in more detail. Physicists developed many

models to understand topological insulators. The SSH model is a 1D model invented by

Wu Su, John Schrieffer, and Alan Heeger in 1979 to understand a polyacetylene poly-

mer [9], which was an attempt to explain the increased electrical conductivity of doped

polyacetylene polymer. The tight binding model describes spinless electrons hopping in

a chain of alternating two bond types. Even though it is a 1D model, the basic concepts

we will learn will apply to 2D and 3D models. This chapter is strongly inspired by refer-

ences [22, 23].

2.1 Metals

n+1n-1 n n+2n-2

-t

… …

Figure 2.1: 1D tight binding Hamiltonian representation.
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This section will explain the basic concepts and tools physicists use to distinguish

a conductor from an insulator. We start with a 1D tight-binding model of the crystal

lattice of atoms, as seen in Figure 2.1. As we move these atoms toward each other, their

eigenstates overlap, so their wave functions form bonding and anti–bonding states. This

overlapping allows the electrons to delocalize and tunnel inside this chain of atoms. We

represent the tunneling potential by �t, as shown in Figure 2.1. The Hamiltonian of this

model is as follows:

H = �
NX

i,j

ti,j |ii hj| (2.1)

where i and j are the lattice sites and tij is the overlap integral between these two sites.

Because i and j are independent, we can impose tij = tji, and it is clear that tii corresponds

to the onsite potential. Thus, the Hamiltonian becomes Hermitian (assuming tij is real).

Now, we define the translation operator as T =
P

i |i+ 1i hi|. Assuming that ti,i+n ⌘ tn,

and onsite potential tii = 0, the Hamiltonian becomes the following:

H = �
X

n

tnT
n + h.c (2.2)

Because H and T commute ([H, T ] = 0), using the following plane wave basis states,

which is an eigenbasis of the translation operator, we can diagonalize the Hamiltonian in

equation (2.1):

|ki = 1p
N

X

j

eikj |ji (2.3)

Acting on |ki by the translation operator, we get Tm |ki = eikma |ki, where a is the

lattice constant and, in our case, the lattice spacing between the two atoms. Thus, the

Hamiltonian has eigenvalues ✏(k) where H |ki = ✏(k) |ki. The eigenvalues are as follows:

✏(k) = �
X

n

tne
�ikna + c.c (2.4)
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By only allowing hopping to the nearest neighbor and setting t1 = t and all other

tn = 0, we get the following:

✏(k) = �2t cos ka (2.5)

Plotting E vs. k is the dispersion relation (as seen in Figure 2.2). We call the range

of k from �⇡/a to ⇡/a the Brillouin zone. The Brillouin zone’s importance comes from

illustrating the system’s behavior, and it is convenient to choose the Fermi energy equal

to zero (because energies are always measured with respect to how far they are from the

Fermi energy in condensed matter physics). Because of the Pauli principle, the maxi-

mum available occupancy is two electrons for the same momentum state. The edges of k

(k = ±⇡/a) are called the Brillouin zone edges, and as we can see, there are no gaps and

electrons can hop between atoms. Therefore, this model represents a metal.

-3 -2 -1 1 2 3

k �

a

-2

-1

1

2

Energy
Dispersion

EF k "
#

Energy

Figure 2.2: Energy dispersion relation of a 1D tight binding Hamiltonian. The orange

curve represent the filled states.
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2.2 Band insulators

Let us take the same model as in the previous section but with slight modifications. In the

previous model, we assumed the presence of hopping between periodic atoms (as seen

in Figure 2.3). In this section, we will assume free electrons with parabolic dispersions of

the form E = h2k2/2m. Similar to the previous section, placing one electron per lattice

site will result in a no-gap Brillouin zone, and the system acts like a metal. Nevertheless,

in the 1930s, Rudolf Peierls showed that this system was unstable and prone to distortion

regardless of choice of dispersion.

Electronic density

!

"!

Peierl’s transition

Figure 2.3: 1D lattice that undergoes a Peierl’s transition. Lattice constant a becomes 2a

after distortion. The darker regions represent electronic density.

Now, let us consider the model in the previous section where the atoms have spacings

of a; here, we have a uniform electric density. By distorting the system by moving every

two atoms toward each other, as in Figure 2.3, the lattice has two atoms per unit cell. The

system has unit cells with interunit cell spacing of 2a and periodically modulated electric

density, which is called the charge density wave. The distorted system has a total energy
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greater than the undistorted system. We can estimate the energy of the system, as in [24],

using the elastic approximation, as follows:

�Elattice =
1

4
K�2 (2.6)

where K is the elasticity constant determined by the material and � is the distortion,

which is quadratic. In the low distortion limit, the electric energy per unit length is ap-

proximately:

�Eelectric ⇡
A2�2

⇡
ln |�| (2.7)

where A is the proportionality constant, loosely saying it represents some kind of cou-

pling between the electrons and phonons. The total energy per unit length is �Elattice +

�Eelectric and can be optimized as follows:

d

d�
[�Etotal] =

1

2
K� +

2A2

⇡
� ln |�|+ A2

⇡
� = 0 (2.8)

By calculating the second derivatives, we can check that the maxima are at � = 0 and

the minima correspond to:

�min = ±e�1/2e�ka/4⇡ (2.9)

By substituting �min into Etotal, we get a negative change in energy. Thus, the system

gains energy by distorting itself by �min; this is known as Peierl’s instability. Plotting the

Brillouin zone for this system as in Figure 2.4, we see that the periodicity is doubled, and

the Brillouin zone edges are from k = + ⇡
2a to k = � ⇡

2a . This doubling in the periodicity

causes the Brillouin zone to have a bandgap, as seen in Figure 2.4. This bandgap separates

the filled states from the empty states at the new Brillouin zone edges, making the system

a band insulator.
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Figure 2.4: The dispersion after lattice distortion, where the new Brillouin zone boundary

is k = ± ⇡
2a

2.3 SSH model

In 1979, Su, Schrieffer, and Heeger (SSH) introduced a model to describe a 1D carbon

molecule called polyacetylene. Polyacetylene is a chain of repeating units (C2H2) with

alternating bonds between the carbon atoms (see Figure 2.5). We denote the unit cell of

two carbon atoms by atom A and atom B, where the bonds are t(1� �) and t(1 + �). Thus

the second quantized Hamiltonian is as follows:

H = t
LX

i=1

[(1� �)c†A,icB,i + (1 + �)c†B,icA,i+1 + h.c.] (2.10)

t2 t1 t2

Nt = 4

Figure 2.5: 1D chain of the SSH model.
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where i is indexing the unit cell, and c† and c are the creation and annihilation oper-

ators, respectively. These operators satisfy the anticommutation relations and have the

following properties:

{ci, c†j} = �i,j {ci, cj} = 0

c† |0i = |1i , c |0i = 0

c† |1i = 0, c |1i = |0i

(2.11)

To rewrite the Hamiltonian in the momentum space, we use the translation symmetry

of the chain to solve for the dispersion relations such that:

c↵,i =
1p
L

X

k

ei
#»
k . #»rick,↵ (2.12)

H =
X

↵2A,B

c†↵,kh↵�(k)c�,k (2.13)

H(p)↵�k =

2

4 0 t(1� �) + t(1 + �)eika

t(1� �) + t(1 + �)e�ika 0

3

5 (2.14)

For simplicity, we set the lattice spacing a = 1 and t = 1. We can write the Hamiltonian

using the Pauli matrices as follows:

H↵�
k = [(1� �) + (1 + �) cos k]�x + [(1 + �) sin k]�y + 0 · �z + 0 · I ⌘ #»

dk · #»� + ✏k�0 (2.15)

where ✏k = 0 and 1 = �0, the vector
#»
dk is:

#»
dk = ((1� �) + (1 + �) cos k, (1 + �) sin k, 0) (2.16)

12



This Hamiltonian can be diagonalized in terms of
#»
dk and ✏k, and the outcome is two

bands:

E±
k = ±

���
#»
dk
���+ ✏k = ±

q
d2x + d2y + d2z + ✏k (2.17)

which in this case is:

E±
k = ±

p
((1� �) + (1 + �) cos k)2 + ((1 + �) sin k)2

= ±
p

(1� �)2 + 2(1� �2) cos k + (1 + �)2

= ±
p

2 + 2�2 + (2� 2�2) cos k

(2.18)

1 2 3 4 5 6

-2

-1

1

2

!"

#(") & = 0

)

1 2 3 4 5 6

-2

-1

1

2

! ≠ 0$(&)

(&

)

Figure 2.6: The dispersion relation of SSH model, where � = 0 is gapless and � 6= 0 has a

gap.

We can see the resulting bands in Figure 2.6. For � = 0, the dispersion relation is

gapless. When � is finite, the model is dimerized and the dispersion relation is gapped.

Let us focus on the gapped system. The condition that
���
#»
d k

��� 6= 0, which is the condition

of no energy levels crossing, means that all
#»
d k does not hit the origin point

#»
d = (0, 0, 0).

Plotting the vector in the (dx, dy) plane, changing k results in two types of closed paths

where one encircles the origin and the other does not, depending on the delta value, as

shown in Figure 2.7.

This result means that we have two distinct types of insulators that cannot be con-

nected unless we cross a gapless point. This property is only possible because dz = 0,
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!"

!#

$ < 0

$ > 0

Figure 2.7: Parameter space where the two closed lines represent two different paths by

varying k while � is fixed at either > or < than 0, while the gapless point located at the

origin.

which is imposed by chiral symmetry (Ŝ) and inversion and time–reversal symmetry

(T̂ Î). We will discuss chiral symmetry in the next section.

The � > 0 and � < 0 represent two different topological phases. The way to distinguish

between these two topological phases is by introducing a topological property called the

winding number. A winding number is an integer that represents the number of times

the path encircles the origin, as shown in Figure 2.7. For the SSH model, the winding

number is either 1 or 0. The winding number is a topological invariant, also called an adi-

abatic invariant, which describes an insulating Hamiltonian that does not change under

adiabatic deformations.

2.4 Chiral Symmetry

Before we discuss winding numbers and polarization, we need to understand chiral sym-

metry. The concept of symmetries is essential to classify topological insulators; however,

we can see topological phases without looking at symmetries. Symmetry is a mathemati-

cal tool that makes the math involved in the concepts of condensed matter models simple.
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Chiral symmetry is a unitary and anticommutative matrix with a hamiltonian h, which is

equal to the combination of two nonunitary symmetries. Chiral symmetry is defined as

follows:

Ŝ = Ĉ · T̂

where Ĉ is the particle-hole symmetry and T̂ is the time-reversal symmetry. The time-

reversal symmetry is defined as an operator that takes the time t to time �t. At the same

time, particle-hole symmetry is defined as an operator that turns particles into holes (i.e.,

particle annihilation). The chiral symmetry matrix always squares to 1 (Ŝ2 = 1), so chiral

symmetry is either present or absent, depending on the particle-hole symmetry and time-

reversal symmetry combinations. We end up with 10 possibilities, as shown in Table 2.1.

Ŝ Ĉ T̂
1 +1 +1
1 -1 -1
1 -1 +1
1 +1 -1
0 0 +1
0 0 -1
0 +1 0
0 -1 0
1 0 0
0 0 0

Table 2.1: This table shows all possible topological properties of different systems’ sym-

metries. The three integers (0, 1,�1) means there is either no symmetry, there is symmetry

and it squares to +1, there is symmetry and it squares to �1, respectively.

This table is called the 10-fold classification, which classifies different topological prop-

erties for different systems depending on the system’s symmetries and dimensionality.
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2.5 SSH winding number and polarization

By the end of the section 2.3, we mentioned the winding number and how it classifies

two distinct topological phases. Before we discuss the SSH winding number, we need to

define a winding number. For any bounded region R, the local winding number is defined

as the number that equals how many times the curves are bounding R counterclockwise

minus the times the curves bound R clockwise. Figure 2.8 shows a few examples of the

winding number.

Winding number = 0

Winding number = 3Winding number = 1 Winding number = 2

Winding number = -2 Winding number = -1

Figure 2.8: Examples of regions with different winding numbers.

For the SSH model, we need to look at how many times dk winds the origin. We can

represent any single particle Hamiltonian with chiral symmetry as follows:

h(k) =

2

4 0 qk

q†k 0

3

5 (2.19)

where qk = dx(k)� idy(k). The winding number for this Hamiltonian is defined in [22]

as follows:

v =
i

2⇡

Z

k

Tr
h
qk@kq

†
k

i
(2.20)
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Now, we will discuss the polarization, and by the end of this section, we relate it to the

winding number. From quantum mechanics, we know that the total polarization P is the

sum of all occupied bands’ polarization. Here, the polarization of each occupied band, as

defined in the reference [23], is as follows:

Pn = � e

2⇡

Z 2⇡

0

dk hun
k | i@k |un

ki ⌘
e

2⇡
�n (2.21)

Ptotal =
X

n2occupied

Pn (2.22)

where n is defined as the occupied band index that has a corresponding eigenvector

|un
ki. Performing the above differentiation and integration, we get the following SSH total

polarization:

Ptotal =
e

2
mod e (2.23)

Previously, we defined two bands for the SSH model. One is � > 0, and the other is

� < 0. � = ±1 are extreme cases of dimerization which could give more intuition. Let

� = 1; then, the eigenvector is:

��u±
k

↵
=

1p
2

2

4⌥eik

1

3

5 (2.24)

where the Ek = ⌥1. Because the SSH model has spatially separated charges, these

charges produce polarization.

On the other side, for � < 0, let � = �1. The eigenvector is:

��u±
k

↵
=

1p
2

2

4±1

1

3

5 (2.25)

where Ek = ±1. Following the same steps as the one for � = 1, we get the total

polarization for � = �1 as follows:
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Ptotal = 0 mod e (2.26)

The following equation relates the polarization and winding numbers:

P = e
v

2
mod e (2.27)

!"

!#

!$

a)

!"

!#

!$

b)

Figure 2.9: Two ways to close the gap, where a) shows closing the gap without breaking

the chiral symmetry and b) shows breaking the chiral symmetry case.

The winding number for the SSH is either 0 or 1, and to change it from one to the

other, we must either break the chiral symmetry or close the bulk gap, as shown in Figure

2.9. We need to examine the edge states to understand the physical differences between

various winding numbers.

2.6 Edge states

The SSH Hamiltonian has a bulk and edge, and this distinction between the two parts of

the material helps us understand the energy eigenstate behaviors. In the thermodynamic

limit where � = 1 and � = �1, the edge state’s emergence and absence are apparent, as
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shown in Figure 2.10. We call these two simple cases the two fully dimerized cases, where

the SSH chain dissociates into a detached sequence of dimers.

1 + # 1 + # 1 − #1 − #1 − #

# = 1

# = −1

Figure 2.10: 1D chain of the SSH model where two limits illustrate the edge states.

Looking at the bulk in the fully dimerized limits, we have two cases: the trivial

case and a topological case. In the trivial case where � = �1, the momentum-space

Hamiltonian of the bulk is H(k) = �x, which is independent of the wavenumber k.

While in the topological case, where � = 1, the bulk momentum-space Hamiltonian is

H(k) = �x cos k + �y sin k. The energy eigenvalues of these two fully dimerized limits are

E(k) = ±1, which is independent of the wave number k. The particles in these limits are

not moving along the chains because the chain consists of disconnected dimers.

In the topological case, we can see the most straightforward example of edge states

because at the edges of the SSH chain, each edge hosts a single eigenstate. Because of

chiral symmetry, the edge states have zero energies because the SSH model forbids onsite

potentials. Hence, this creates states at the edge that require zero energy.

After establishing the fully dimerized limit, we can move away to a more general case.

By varying the delta from 1 to -1, we can examine the finite SSH model’s energy spectrum

and wave functions, as shown in Figure 2.11 (adapted from [25]). As we can see, the edge
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Figure 2.11: The left two plots show the energy spectrum of a finite size (N = 20 and

N = 21) SSH model. The right three plots show the wave functions of an SSH model. a)

shows the bulk state wave function of a SSH model of size 20. b) and c) show the edge

states of an SSH model of sizes 20 and 21, respectively. Here, r is the hopping parameters

ratio (r = t1/t2), and rc is where the edge states are located in the band edge

states, which have nearly zero energies, have localized wave functions at the edge cells.

The next few sections will look into the edge states’ effects and how they relate to the

winding number and bulk-boundary correspondence.
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2.7 Number of Edge states

Assume a gapped Hamiltonian in the thermodynamic limit N �! 1; each unit cell has

two nonzero states that are chiral symmetric partners, that is, one is positive and the other

is negative. In contrast, the zero energy states are finite and limited to a single sublattice

(as shown below) such that there are NA states for sublattice A and NB states on sublat-

tice B. The number NA �NB is conserved and can be explained by applying an adiabatic

deformation, as follows:

1. Let d be a continuous parameter defined as d : 0 �! 1. Take into account the energy

eigenstates in the thermodynamic limit at the left end of a gapped chiral symmetric one

dimensional Hamiltonian in an energy window from �✏ < E < ✏ with ✏ in the bulk gap.

For all values of d, the energy of the bulk gap exceeds 2✏ because the Hamiltonian respects

chiral symmetry.

2. For d � d0 (d0 is the point where the deformation moves a zero energy state | 0i to

energy E > 0), the deformation moves a nonzero energy edge state | 0(d = 0i to be zero

energy E0(d) = 0.

3. � | 0(d)i, which is the chiral symmetric partner of | 0(d)i, moves simultaneously to be

zero energy states.

These new zero energy edge states are PA | 0(d0)i on sublattice A and PB | 0(d0)i on sub-

lattice B; therefore, the number NA�NB is conserved. During this deformation, the initial

zero energy state | 0i becomes negative in energy at some point d = d0. At the same time,

another state must be created with positive energy, which is a chiral symmetric partner.

In this case, both NA and NB decrease by 1, so NA � NB does not change. In addition,

nonzero energy states can move in or out of the �✏ < E < ✏ energy window during

the deformation, but this does not affect NA � NB. For the wavefunctions of the zero

energy states, the gap condition forbids edge states from having any shape other than ex-

ponential decay toward the bulk wavefunction, which implies that NA�NB must remain
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unchanged. These previous discussions demonstrate that NA � NB are conserved; thus,

they are a topological invariant.

2.8 Bulk-boundary correspondence

After introducing the two topological invariants, the winding number, and the number

of edge states (NA � NB), we will investigate the bulk-boundary correspondence. The

bulk-boundary correspondence is simply the relationship between the two topological

invariants. We can predict the edge states’ low energy physics using the winding number

invariant. We used the bulk Hamiltonian to solve the winding number and edge (bound-

ary) states’ low energy physics for the number of edge states invariant, and this is where

the relationship gets its name.

Consider the fully dimerized limit again, as shown in Figure 2.12. The edge states

are not limited to the two boundaries of the chain. By dividing the bulk into different

domains, we can have edge states between different insulating domains at the domain

walls. One edge state in the bulk domain is a single isolated site; because the onsite

potential is not allowed, the site is a zero energy state. Another example is a trimer where

the two edges form a zero energy eigenstate considering the odd superposition, that is:

H(|N,Bi � |N + 1, Bi) = 0 (2.28)

n=3 n=6 n=7

Figure 2.12: Fully dimerized SSH chain. The chain has three domains where the bound-

aries of the domains (domain walls) are represented by the yellow shading. The domain

walls can be either localized like at the unit cell n = 3 or a superposition of two sites like

the odd superposition at the trimer unit cells n = 6 and n = 7.
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Now, consider a generic SSH chain with a domain wall (not the fully dimerized limit).

Like the edge states at the generic SSH chain ends, the domain walls will have wavefunc-

tions that decay exponentially into the bulk. Considering two separate domain walls,

bonding and antibonding states will form at the walls’ two edge states, that is, hybridize.

In addition, the domain walls will hold half an electronic charge, a phenomenon called

fractionalization.

2.9 Edge state solution

Consider an SSH model with N unit cells and where the intercell and intracell hopping

amplitudes are (1 � �) and (1 + �), respectively. We can calculate the zero energy edge

states as follows:

H =
NX

m=1

((1 + �m) |m,Bi hm,A|+ h.c.) +
N�1X

m=1

((1� �m) |m+ 1, Ai hm,B|+ h.c.) (2.29)

This Hamiltonian has a zero energy eigenstate if:

H
NX

m=1

(am |m,Ai+ bm |m,Bi) = 0 (2.30)

where we need to solve for am and bm; hence, the above equation reduces to a 2N set

of equations, as follows:

(1+�m)am+(1��m)am+1 = 0; (1��m)bm+(1+�m)bm+1 = 0; where m = 1, . . . , N�1

(2.31)

where the boundary equations are the following:

(1 + �N)aN = 0; (1 + �1)b1 = 0 (2.32)
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Solving for am and bm using the first set of equations, we get:

m = 2, . . . , N : am =
m�1Y

j=1

�(1 + �j)

(1� �j)
a1 (2.33)

m = 1, . . . , N � 1 : bm =
�(1 + �N)

(1� �m)

N�1Y

j=m+1

�(1 + �j)

(1� �j)
bN (2.34)

Obeying the boundary equations above results in:

b1 = aN = 0 (2.35)

In the generic case of SSH, the above result establishes that there is no zero energy

eigenstate am = bm = 0. However, a zero energy state does not exist in the thermo-

dynamic limit, N �! 1; we can accept two approximate solutions by defining the bulk

average values, where the average intercell hopping is stronger than the intracell. Hence,

we define the following:

log |(1 + �)| = 1

N � 1

N�1X

m=1

log |(1 + �m)|; log |(1� �)| = 1

N � 1

N�1X

m=1

log |(1� �m)| (2.36)

The solution for aN and bN becomes:

|aN | = |a1|e�(N�1)/⇠; |b1| = |bN |e�(N�1)/⇠ |(1 + �N)|
|(1 + �1)|

(2.37)

where ⇠ = 1
log |(1��)|�log |(1+�)| is the localization length. We can approximate the zero

energy solutions using the bulk average values and ⇠ > 0, as follows:

|Li =
NX

m=1

am |m,Ai ; |Ri =
NX

m=1

bm |m,Bi (2.38)
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Now, hybridizing the two states |Li and |Ri under H will result in an exponentially

small energy splitting. Using adiabatic elimination, we can estimate the splitting and

energy eigenstates. Hence, the overlap is the following:

hR|H |Li =
��a1e�(N�1)/⇠(1 + �N)bN

��ei� (2.39)

where � 2 [0, 2⇡). The approximation of the energy eigenstates are the following:

|0+i = e�i�/2 |Li+ ei�/2 |Rip
2

; E+ =
��a1e�(N�1)/⇠(1 + �N)bN

�� (2.40)

|0�i = e�i�/2 |Li � ei�/2 |Rip
2

; E� = �
��a1e�(N�1)/⇠(1 + �N)bN

�� (2.41)

The above results show that the hybridized state’s energy is exponentially small com-

pared with the system size. The exact solution for uniform hopping can be written as

in [25] as follows:

��� edge
±

E
=

M�1X

n=0

(�)n[sinh ((N � 2n)) |2n+ 1i± sinh ((2n+ 2)) |2n+ 2i] (2.42)

where N is even and N = 2M and k = ⇡/2+ i and  = |log(r)|
2 � rN (1�r2)

2 +O(r2N) and

r = t1/t2, which are the hopping parameters ratio. For an odd N , the solution is:

��� edge
0

E
=

MX

n=0

(
�t1
t2

)n |2n+ 1i (2.43)

As we can see, there are two edge states for an even N , while there is only one edge

state for an odd N , and their solutions are as given above.
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2.10 Numerically computing the winding number

This section will discuss how to compute the winding number numerically. This method

is adapted from [26]. The below method only works for closed systems. Let j = N/2 be

the central unit cell and basis of states that we will work with, which is defined as follows:

|0⌘i =
X

i

↵⌘i |�ii (2.44)

where (⌘ = A,B) sites are localized on the cell, while |�ii are the energy eigenstates of

the Hamiltonian H . The energy eigenstates satisfy the following two conditions:

|��ii = � |�ii

and E�i = �Ei such that · · · < E�2 < E�1 < 0 < E1 < E2 < . . .

where � is the chiral operator defined as � = �A � �B (�A,B are the projectors onto

the A or B sublattices, respectively). To solve it explicitly, let us define an operator M as

follows:

M =
QBAXQAB �QBAQABX �QABXQBA +QABQBAX

2
(2.45)

where Q = P+ � P� is the flat band analog to any generic Hamiltonian H , P+ is

the projector on the positive energy eigenstates, and P� is the projector on the negative

energy eigenstates. Then, we can rewrite Q as Q = QAB+QBA = �AQ�B+�BQ�A (where

�A,�B are projectors onto A and B sublattices respectively). Finally, X is the unit cell

operator, which is a matrix with diagonal elements corresponding to the unit cell index.

The winding number for the j unit cell is defined as:

v(j) =
X

⌘=A,B

hj⌘|M |j⌘i (2.46)

If we are only interested in the central unit cell j = N/2, the winding number becomes:
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Figure 2.13: Winding number of the SSH model in the central region. We can see that the

blue line has a winding number of 1. Here, m = n/2 is the index of the unit cell and n

represents the lattice site along the chain of total length N = 100, where � = 0.5.

v(N/2) =
X

⌘=A,B

h(N/2)⌘|M |(N/2)⌘i (2.47)

where |N/2i has a negligible overlap with the edge states; we can use the identity

�BQ = Q�A. Note that the chiral operator is local and diagonal in the position basis and

that �A and �B are projectors, so the commutators [X,�A] = [X,�B] = 0. Hence, the

winding number is:

v(N/2) = [
((�BQ�A)(Xm�AQ�B � �AQ�BXm)� (�AQ�B)(Xm�BQ�A � �BQ�AXm))

2
][N/2,N/2]

(2.48)

In Figure 2.13, we show the winding number along the SSH chain. We see that the

local winding number is 1 in the middle of the chain for the topological phase (� > 0) and

N even.
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2.11 End of Chapter

In 2016, Meier, An, and Gadway prepared the SSH model [27]. The SSH model is the basis

for developing TI materials. These TI materials have many applications, such as enhanc-

ing photodetector [28,29], improving magnetic devices [30–32], working as more efficient

field-effect transistors [33, 34], and implementing topological quantum computation [16].

The previous applications resulted from extending the SSH model to 2D and 3D materi-

als. The theoretical implication of the SSH model in photonic and phononic systems also

revealed practical applications [35, 36].
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Chapter 3

Classical phononic model

The field of lattice vibration started with Einstein’s Brownian motion theory and the dis-

covery of atoms’ existence in 1902 [37]. A decade later, Born and von Kàrmàn introduced

the first lattice vibration model that laid down all the basic concepts for the modern the-

ory of lattice vibration [38]. In this chapter, we discuss the diatomic chain, which is the

typical starting point in most modern solid state physics books such as Kittel’s book [39];

his book greatly influences this chapter. However, the existence of atoms was discovered

in the 1900s; in [40], the authors claim that Lord Kelvin studied the behavior of diatomic

lattices in the 1880s and presented them in his famous Baltimore lectures on molecular

dynamics and wave theory of light in 1904 [41].

3.1 Diatomic chain

In current solid state physics books, two atoms per primitive cell model, which is also

called the diatomic linear chain, is a model that studies a chain of atoms with alternating

masses M1 and M2. This model is not an accurate representation of actual solids, but

studying the model can give a good insight into the structure of such a system.

Before we start with the model, we need to clarify a fundamental approximation in the

theory of lattice dynamics. For any neighboring atoms, the potential energy � between
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Figure 3.1: Diatomic chain with alternating masses m1 and m2 connected by springs.

the two atoms can be written as a Taylor expansion around the minimum point r0, as

follows:

�(r) = �0 +
1

2

@2�

@r2

���
r0
r0(r � r0)

2 +
1

3!

@3�

@r3

���
r0
(r � r0)

3 + . . .

The derivatives are executed at r = r0, and in this case, the linear term is zero because,

by definition, @�/@r is evaluated at the equilibrium distance r0. This approximation is

called the harmonic approximation, in which we neglect all terms with a power higher

than two. However, the harmonic approximation might seem trivial and extreme, but its

impact is powerful. The harmonic approximation is the only model with an exact solution

in lattice vibration theory. Also, it can maintain many system features that persist after

adding higher-order terms, such as the thermodynamic properties of materials, which we

consider in chapter 5 when discussing thermal rectification.

Consider a chain of atoms M1 and M2 connected by springs with a force f , as seen

in Figure 3.1. In this chapter, we take an infinite 1D chain, while in the next chapter, we

consider a finite chain not fixed at the ends. We start with the equations of motion of

this system; by Newton’s law, we know that the coupling forces and forces of inertia are

equal, so we have the following:

M↵ün↵i +
X

m�j

�m�j
n↵i um�j = 0 (3.1)
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where u is the displacement, ↵ and � are the atoms in cell n, i and j are the spacial

direction of the displacement, and �m�j
n↵i is the coupling constant, which is the second

derivatives of the potential, here defined as follows:

@2�

@rn↵i@m�j
= �m�j

n↵i (3.2)

The chain in Figure 3.1 will only consider one directional component, i. While ↵ and

� equal 1 and 2, respectively, the m index has the values n + 1,n, and n � 1 because only

the nearest neighbors interact. The equation of motion then becomes the following:

M1ün1 + �
n�1,2
n1 un�1,2 + �

n1
n1un1 + �

n2
n1un2 = 0

M2ün2 + �
n1
n2un1 + �

n2
n2un2 + �

n+1,1
n2 un+1,1 = 0

(3.3)

We further assume the coupling constants �n�1,2
n1 = �n2

n1 = �n1
n2 = �n+1,1

n2 = �f and

�n1
n1 = �

n2
n2 = +2f , so the equation of motion is:

M1ün1 + f(2un1 � un2 � un�1,2) = 0

M2ün2 + f(2un2 � un1 � un+1,1) = 0
(3.4)

Because the lattice is periodic, we can use the below ansatz to find a solution, which

can be done using a plane wave equation to represent the displacement un↵, as follows:

un↵ =
1p
M↵

u↵(k)e
i(nka�!t) (3.5)

By inserting the above plane wave ansatz into the equation of motions, we get the

following:
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(
2f

M1
� !2)u1 � f

1p
M1M2

(1 + e�ika)u2 = 0

�f
1p

M1M2

(1 + eika)u1 + (
2f

M2
� !2)u2 = 0

(3.6)

Thus, the dynamical matrix is the following:

D(k) =

2

4
2f
M1

�fp
M1M2

(1 + e�ika)

�fp
M1M2

(1 + eika) 2f
M2

3

5 (3.7)

This matrix is a straightforward eigenvalue/eigenvector equation, where !2 are the

eigenvalues of the matrix, which has two solutions. Thus, this dynamical matrix has two

normal modes. Because the matrix is Hermitian, the two eigenvalues should be real and

can be either positive or negative. In cases where !2 is negative, it results in ! being

imaginary. This case can be interpreted as the potential energy surface curved opposite

to the displacements of atoms in the normal mode; that is, the crystal is unstable. From

the above matrix, we can get the dispersion relation by subtracting the dispersion relation

squared !2 from the above dynamical matrix and taking the determinant to be zero, such

that:

det
�
D(k)� !21

 
= 0 (3.8)

!2 = f(
1

M1
+

1

M2
)± f [(

1

M1
+

1

M2
)2 � 4

M1M2
sin2 ka

2
]1/2 (3.9)

Thus, we can notice that the dispersion relation has a periodicity in k, which is one

reciprocal lattice vector, that is:

k =
2⇡

a
(3.10)
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The above periodicity does not only apply to one lattice; instead, we can show that

this property can be generalized to all lattices, as follows:

D�j
↵i (k) = D�j

↵i (k +G) where G · rn = 2⇡m (3.11)

where rn = an. Therefore, the above eigensolutions should meet the following condi-

tions:

!(k) = !(k +G) and !(�k) = !(k) (3.12)

Examining the limiting cases at the Brillouin zone boundary can provide insights into

what is happening inside the system. At the edge where k is very small, k ⇡ 0, we have

the following:

!2 = !2
1 = 2f(

1

M1
+

1

M2
)�O(k2) and !2 = !2

2 =
f 2a2

2(M1 +M2)
k2 ⇠= 0 (3.13)

While in the limit where k = ⇡/a, we have the following ! :

!2 = !2
1 =

2f

M2
and !2 = !2

2 =
2f

M1
(3.14)

We call the branch !1 the optical branch and !2 the acoustic branch. The relationship

between ! and k for M1 > M2 is shown in Figure 3.2. For k = 0 at the optical branch,

the center of mass is fixed, while M1 and M2 move opposite each other. If M1 and M2

were two atoms of an opposite charge, this motion would be similar to a motion caused

by an electromagnetic wave. The frequency of this kind of wave for some crystals is in

the infrared frequency range. Thus, if the system describes a vibrating ionic crystal, the

branch can be excited by an electric field of a light wave; hence, it is called an optical

branch. While in the limit k = 0 at the acoustic branch, M1, M2, and their center of
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mass movements are in the same direction. This motion is similar to a long wavelength

acoustical vibration, which is where the name originated.

Acoustic mode

Optic mode

Figure 3.2: Two diagrams of the diatomic chain vibrations that show the acoustic mode

vs. the optical mode.

At the k = ⇡/a limit, the solutions represent that one atom is stationary while the other

is moving in the opposite direction to the moving atom in the neighboring unit cell. This

limit makes it very hard to distinguish between optical and acoustic modes compared

with the limit k = 0, where the distinction between in-phase/out–of–phase motions is

obvious.

In Figure 3.3, we can see the full set of solutions for !(k) for the values of k. The

two curves represent optical and acoustic modes. Figure 3.3 shows multiple features of

the model. At k = ⇡/a, the system has zero group velocity, that is, @!/@k = 0 for both

solutions. Thus, the waves are standing waves that correspond to atoms’ motion being

opposite to each other in each neighboring unit cell. Another feature is that the solutions

for all k are invariant when changing the sign of k; that is, the solutions for k equal the

solutions for �k. The last feature is that the solutions are invariant under the addition of

a reciprocal lattice vector, which here is ±2⇡n/a.
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Figure 3.3: Dispersion relation of the diatomic chain with mass ratio 1/µ = M2/M1 = 0.9.

3.2 Phonons as quantization of elastic waves

In the previous section, we introduced a lattice vibration. When quantized, the energy

of this vibration is called a phonon. In this section, we derive the phonon Hamiltonian

into a set of harmonic oscillators. By using the same chain in the previous section, the

displacement q of atom n can be expressed using the normal coordinate Qj(k), where k is

the wavenumber, is as follows:

qln =
1p
Nmn

(
X

j,k�0

an,j(k)e
ikxl

nQj(k) +
X

j,k>0

an,j(�k)e�ikxl
nQj(�k)) (3.15)

where:

Qj(k) =
1

2
(A0,j(k)e

�i!j(k)t + A0,j(k)e
i!j(�k)t) =

1

2
(A0,j(k)e

�i!j(k)t + A⇤
0,j(�k)ei!j(k)t) (3.16)

So now the Hamiltonian is diagonalized as follows:
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H = T + V =
1

2

X

k,j

{Pj(k)P
⇤
j (k) +Qj(k)Q

⇤
j(k)!

2} (3.17)

where Q⇤(k) = Q(�k). Thus, the equation of motion from this Hamiltonian is:

Q̇j(k) =
@H

@P ⇤
j (k)

= Pj(k)

Ṗj(k) =
�@H
@Q⇤

j(k)

(3.18)

which gives:

Q̈j(k) = Ṗj(k) = �!2
jQj(k) (3.19)

The above equation of motion is equivalent to an uncoupled 2N harmonic oscillator’s

motion.

Now, looking at the system quantum mechanically, Qj(k) and Pj(k) should satisfy

the following commutation relation, substituting Qj(k) and Pj(k) with Q̂j(k) and P̂j(k),

respectively:

[Q̂⇤
j(k), P̂j0(k

0)] = [Q̂j(k), P̂
⇤
j0(k

0)] = i~�(k � k0)�j,j0

[Q̂⇤
j(k), Q̂j(k

0)] = [P̂ ⇤
j (k), P̂j(k

0)] = 0
(3.20)

where �(k � k0) = 1 for k = k0 ± 2⇡n/a and �(k � k0) = 0 otherwise.

Next, we define the creation operator b̂†j(k) and annihilation operator b̂j(k) as follows:

b̂†j(k) =

r
!j(k)

2~ Q̂j(k)� i

s
1

2~!j(k)
P̂j(k)

b̂j(k) =

r
!j(k)

2~ Q̂j(k) + i

s
1

2~!j(k)
P̂j(k)

(3.21)
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The Hamiltonian then becomes:

H =
1

2

X

k,j

(P̂ ⇤
j (k)P̂j(k) + !2

j Q̂
⇤
j(k)Q̂j(k)) =

1

2

X

k,j

~!j(b̂
†
j(k)b̂j(k) +

1

2
) (3.22)

Thus, the system has a Hamiltonian similar to a 2N harmonic oscillator. Looking at

the system as a harmonic oscillator makes it easy to adapt it so that it can incorporate

quantum mechanics. However, starting with harmonic approximation does not explain

some properties, such as thermal expansion and conductivity and behavior such as phase

transitions. We can modify the model by introducing higher-order anharmonic terms, as

needed. This technique has shown promising results, for example, by allowing the force

constants to change to explain the thermal expansion.

3.3 End of chapter

Phonons’ dispersion relation in 2D and 3D materials has been studied intensively [42,43]

because most production materials are in these two classes. However, 1D materials are

less critical in commercial uses but have significant theoretical implications. The 1D di-

atomic chain dispersion relation has been validated experimentally recently [44, 45]. The

theoretical implication of this simple 1D chain is practical in many fields, from efficient

optical transmission [46] to acoustical devices [47]. Another essential concept regarding

phonons is heat transport, which we will discuss in the last chapter.
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Chapter 4

Topological phononic model

4.1 Phononic model setup

t2 t1 t2

Nt = 4

Figure 4.1: 1D chain of the SSH model.

m1 m2 m1 m2 m1

Nm = 5

Figure 4.2: 1D chain of the phononic model.

We start with a diatomic chain of alternating masses (m1 and m2). These masses are

connected by a spring with a spring constant k (as seen in Figure 4.2). We will show that

these masses are analogous to the SSH model’s intercell hopping parameters t1 and t2,

while the spring constant corresponds to the sites in the SSH chain. The corresponding

dynamical matrix is as follows:
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Hm =

2

66666666666664

k
m1

� k
m1

0 . . .

� k
m2

2k
m2

� k
m2

0 . . .

0 � k
m1

2k
m1

� k
m1

0 . . .
... 0 � k

m2

2k
m2

� k
m2

0
... 0

. . . . . . . . .
... 0 � k

mn

k
mn

3

77777777777775

n = 2 (even) and n = 1 (odd) (4.1)

Below is a derivation for the phononical topology analogous to the SSH model, which

can be found in Ref. [22]. Deriving the bulk momentum-space Hamiltonian, we can apply

Bloch’s theorem because the bulk is translation invariant. The Bloch eigenstates are as

follows:

| n(p)i = |pi ⌦ |un(p)i

where |pi = 1p
N

PN
m=1 e

imp |mi, for p 2 {�p, 2�p, . . . , N�p} with �p = 2⇡
N and |un(p)i =

an(p) |Ai+ bn(p) |Bi. We apply Fourier transform only on the external degree of freedom

to have periodicity in the Brillouin zone.

Ĥ(p+ 2⇡) = Ĥ(p); |un(p+ 2⇡i = |un(p)i

4.2 Phononic model dispersion relation

Solving for the eigen energies and Ĥ | n(p)i = !2 | n(p)i, we get the following:
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Figure 4.3: Dispersion relation of SSH and phononic of the infinite periodic lattice.

2

66666666666666664

k
m1

� k
m1

0 . . .

� k
m2

2k
m2

� k
m2

0 . . .

0 � k
m1

2k
m1

� k
m1

0 . . .
... 0 � k

m2

2k
m2

� k
m2

0
... 0 � k

m1

2k
m1

� k
m1

0
... 0

. . . . . .
... 0 � k

mn

k
mn

3

77777777777777775

2

66666666666666664

A

B

Aeip

Beip

...

AeiNp

BeiNp

3

77777777777777775

= E(k)

2

66666666666666664

A

B

Aeip

Beip

...

AeiNp

BeiNp

3

77777777777777775

(4.2)

Thus, the matrix H(p) of the bulk momentum-space hamiltonian is as follows:

H(p) =

2

4
2
m1

� 1
m1

(1 + e�ip)

� 1
m2

(1 + eip) 2
m2

3

5 (4.3)

E(p) =
±
p

m2
1 +m2

2 + 2m1m2 cos(p) +m1 +m2

m1m2
(4.4)

 (p) =
⇣

±e�ip
p

e2ip(m2
1+m2

2+2m1m2 cos(p)+m1+m2

m1m2
, 1

⌘0
(4.5)

Calculating the eigenvalues of the above matrix and plotting the result, we get the

dispersion relations shown in Figure 4.3.

The above results are the infinite case where the phononic model dispersion relation

matches the topological phase changes in 1D topological insulator dispersion relations.
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For the finite case, we need to transform our matrix to show the equivalency, and we let

k = 1.

H̃ = m1m2H � (m1 +m2)I (4.6)

H̃ =

2

66666666666664

�m1 �m2 0 . . .

�m1 m1 �m2 �m1 0 . . .

0 �m2 m2 �m1 �m2 0 . . .
... 0 �m1 m1 �m2 �m1 0

... 0
. . . . . . . . .

... 0 �mn �mn

3

77777777777775

mn =

8
>><

>>:

m1 if mn = m2,

m2 if mn = m1

(4.7)

�H̃

2

66666666666666664

y1

y2

y3

y4
...

yN�1

yN

3

77777777777777775

= E

2

66666666666666664

y1

y2

y3

y4
...

yN�1

yN

3

77777777777777775

Because the SSH model is one element less than the phononic model, the above Dy-

namical matrix can be reduced to the following:
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2

66666666666664

0 m1 . . .

m1 0 m2 0 . . .

0 m2 0 m1 0 . . .
... 0 m1 0 m2 0

... 0
. . . . . . . . .

... 0 m1 0

3

77777777777775

2

66666666666664

y1 � y2

y2 � y3

y3 � y4

y4 � y5
...

yN�1 � yN

3

77777777777775

= E

2

66666666666664

y1 � y2

y2 � y3

y3 � y4

y4 � y5
...

yN�1 � yN

3

77777777777775

(4.8)

As we can see, equation 4.7 has no chiral symmetry but equation 4.8 does, also the

transformed matrix is similar to the SSH model, and the chiral symmetry is preserved

in the phononic model because there are no diagonal elements in the matrix. Therefore,

we can have an edge state analogous to the SSH. Comparing the transformed phononic

Dynamical matrix to the SSH model is shown below.

The SSH and phononic models give identical bandgap and topological edge states in

infinite and finite cases. The energies of the transformed mass-spring Hamiltonian have

extra energy because of an additional mass in the phononic chain compared with the SSH

chain. Figure 4.4 does not include the extra energy, though the value of that extra energy

is E = m1 + m2. As we can see in Figure 4.4, the remaining energies are the same. One

notable difference is that the positive energies are shifted by one in terms of k. Also, we

look at (yn�1 � yn) instead of (yn).

This means that if we consider the difference in displacement between neighboring

masses, the corresponding dynamical matrix can be mapped exactly onto the SSH model.

Note that the winding number calculated for (yn � yn�1) using the method in chapter

two is equal to 1 for m1 < m2 and to 0 for m1 > m2. However, computing the winding

number for yn does not yield 1 or 0. The extra eigenvalue of equation 4.7 breaks the chiral

symmetry. Therefore, (yn � yn�1) is topological, but (yn) is not. Here the mass-spring

system with size N is equivalent to the SSH model with size N � 1.
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Figure 4.4: Top left: Numerical solution of the eigenvectors for the transformed phononic

model of size 20 and SSH model of size 19, which shows all eigenvectors shifted by 1. Top

right: Numerical solution of the eigen vectors for the transformed phononic model of size

50 and SSH model of size 49, which shows three eigenvectors (the central and the nearest

two). Bottom: Numerical solution of eigen energies for the transformed phononic model

and SSH model of size 50 and 49, respectively.
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Figure 4.5: The local winding number of the original and transformed dynamical matrix

for two cases starting with a smaller or larger mass. For chains of size n=19, the local

winding number is one for the �y case when we start with the smaller mass, while it is

zero for the case when we start with the larger mass.

44



4.3 Phononic crystals

In this section, we design a 1D elastic phononic crystal (PC) that simulates our alternating

mass model. PCs are manufactured materials constructed from a periodical structure of

different geometries. PCs are attractive because they behave under specific conditions

like tight-binding models, that is, they have a band gap. In 2015, the topology of a 1D

phononic crystal acoustic system was investigated [48]. Then, a few other variations of

phononic crystals with various geometries and materials were explored to understand

the topology of these systems [49, 50].

The 1D crystal consists of a stainless steel beam with an alternating cross-sectional

radii, as shown in Figure 4.6. The alternating cross-section allows us to see the topolog-

ical properties of such a system. The below table shows the material’s properties in a

simulation of the system. The specifications are selected to obtain an experimentally con-

venient frequency with an inexpensive setup. The system can loosely be interpreted as

the phonons are in the beam and the change of radius makes it a superlattice.

! = 1$$

! = 10$$

! = 20$$

ℎ = 1$$

ℎ = 1$$

ℎ = 1$$

Figure 4.6: 1D phononic crystal beam geometry and details.

Material Young’s modulus (E) Density (⇢) Possion’s ratio
Stainless steel 200 GPa 8060 kg/m2 0.27

Table 4.1: Material specification of the PC.
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4.3.1 Discretizing the 1D phononic crystal

After constructing the phononic crystal, we decided to discretize it to test the extreme

limits and see how the system behaves. This geometry is easy to discretize because we

have cylinders with different cross-sectional areas, so the only variable in this case is the

radius ri. Figure 4.7 represents a unit cell discretization. Then, the discretized mass and

spring constant k are as follows:

mi = ⇢Ai�x ki =
EAi

�x
(4.9)

where ⇢ is the material density, E is the Young’s modulus of the material, and Ai = ⇡r2i .

∆"

#$ #%

#&'$	 #&

Figure 4.7: Discretizing the 1D phononic crystal.

We compare the phononic model of alternating masses with the discretized phononic

crystal above (see also Figure 4.8). The dynamical matrix is as follows (assuming �x =

L/i, where L is the length of each element, assumed all equal):

DM =

2

66666666664

k1
m1

� k1
m1

0 . . .

k1
m2

k1+k2
m2

� k2
m2

0 . . .

0 � k2
m3

k2+k3
m3

� k3
m3

0
... 0

. . . . . . . . .

0 � kN
mN

kN
mN

3

77777777775
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m1 m2 m1m2 m2m1 m1

Figure 4.8: Comparing the phononic model of alternating masses (TB), shown on top and

continuous phononic crystal, shown at the bottom.

Then, we ran the Matlab code to compute and plot the wavefunctions and frequencies

of the two models to compare them. We used the [V,D] = eig(DM) function, which

returns two vectors V and D that represent the wavefunction and frequency, respectively.

The results are shown in Figures 4.9 and 4.10.
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Figure 4.9: Starting with the smaller mass (even case). Top right: the wavefunction and

Top left: the frequency of phononic model and descrtized PC systems of size 50. Bottom:

The energy in terms of E = !2� (m1+m2)k
m1m2

. These results were obtained using the numbers

in Figure 4.6 and Table 4.1, where �x = 0.1mm.
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Figure 4.10: Starting with the larger mass (even case). Top right: the wavefunction and

Top left: the frequency of phononic model and descrtized PC systems of size 50. Bottom:

The energy in terms of E = !2� (m1+m2)k
m1m2

. These results were obtained using the numbers

in Figure 4.6 and Table 4.1, where �x = 0.1mm.
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Figure 4.11: Top: Starting with the smaller mass (odd case). Top left: the frequency of

phononic model and descrtized PC systems of size 51. Top right: The energy in terms of

E = !2 � (m1+m2)k
m1m2

. Middle: Starting with the larger mass (odd case). Middle left: the

frequency of phononic model and descrtized PC systems of size 51. and Middle right:

The energy in terms of E = !2 � (m1+m2)k
m1m2

. Bottom: the wavefunction for the case that

starts with the smaller mass (odd case). These results were obtained using the numbers

in Figure 4.6 and Table 4.1, where �x = 0.1mm.
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4.4 End of Chapter

Figure 4.11 shows the topological and nontopological solutions for the odd masses case,

which depends on the masses ratio m1/m2. When we start with the smaller mass, the sys-

tem behaves topologically, whereas starting with the larger mass makes it non-topological.

The above design of the experiment’s results shown in Figures 4.9, 4.10, and 4.11 are ex-

perimentally realistic parameters. The next step would be to manufacture a beam of stain-

less steel with the specific requirements shown in Figure 4.6 and Table 4.1. The vibrations

can be measured by vibration sensors. These vibration sensors could be a microphone

(mechanical) or a vibrometer (optical). Then, the local winding number can be evaluated

using the difference (yn � yn�1).
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Chapter 5

Heat transport

Fourier introduced the law of heat conduction in the nineteenth century. As observed in

various experiments, Fourier’s law accurately describes heat transport phenomena; thus,

it is considered a phenomenological law. The law states that the heat transfer rate through

a material and temperature gradient are negatively proportional ( #»q = �rT ), where  is

the material conductivity constant. This equation gives rise to the heat diffusion equation

when defining the local energy density u(x, t), which satisfies the continuity equation
@u
@t +r · q = 0.

@T (x, t)

@t
=

1

c
r · [rT (x, t)] (5.1)

where c is the specific heat per unit volume c = @u/@T . The heat diffusion equation de-

scribes the heat carriers’ motion: phonons, molecules, and electrons. These heat carriers

move diffusively by going into random collisions. However, this picture of heat transport

is valid for 3D materials; the description cannot be generalized to 1D and 2D materials. In

recent years, theoretical physicists have been working on accurately describing 1D and 2D

materials’ heat transport phenomena [51]; Ref. [51] initiated this chapter. The two most

common methods for studying heat transport in low dimensional systems are connecting

the system to heat reservoirs, analyzing the nonequilibrium steady state, and studying

the conductivity and equilibrium correlation function using the Green–Kubo relation.
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5.1 Langevin baths

This section will focus on one method we have used in our research: the heat bath model,

specifically Langevin baths. We also discuss the definition of temperature, heat current,

and thermal conductivity in 1D systems. Here, consider a 1D chain of particles with the

nearest neighbor interaction potential U . The 1D system is in an external potential V , and

the Hamiltonian is as follows:

H =
NX

l=1

[
p2l
2ml

+ V (xl)] +
N�1X

l=1

K

2
(xl � xl+1) (5.2)

where l denotes the particle’s number, ml is the particle’s mass, xl is the particle’s

position, and pl is the particle’s momentum. For simplicity we assume that the particles

cannot cross each other and the interparticle potential ordering is maintained. In this case,

a heat current will be induced by connecting the above Hamiltonian to heat reservoirs.

l=3l=2

x4x2 x3

l=5l=4l=1
x5x1

TL TR

Heat Reservoir Heat Reservoir

Figure 5.1: 1D Langevin model.

In the Langevin bath method, we represent heat reservoirs as additional force terms

added to the edge particles (the particles in contact with the reservoirs, l = 1 and l = N ).

This additional force term is dissipative and behaves stochastically, forming Gaussian

white noise. Thus, the equation of motion becomes the following:
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ṗ1 = f1 �
�

m1
p1 + ⌘L(t)

ṗl = fl for l = 2, 3, . . . , N � 1

ṗN = fN � �

mN
pN + ⌘R(t)

fl = �@H
@xl

(5.3)

where fl is the Newtonian force and ⌘L,R are the stochastic terms corresponding to the

left or right side, which is Gaussian, and � is the dissipative term of the left or right side

that fluctuates dissipatedly, as follows:

h⌘L(t)⌘L(t0)i = 2�TL�(t� t0)

h⌘R(t)⌘R(t0)i = 2�TR�(t� t0)

h⌘L(t)⌘R(t0)i = 0,

(5.4)

where TL,R are the left and right reservoirs’ temperatures and h·i is the average over

time.
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5.2 Numerical computation of heat transport

TL TR

TRTL

Figure 5.2: Langevin bath systems of size 10 (even case) with different arrangements of

large and small masses. The orange line connecting the heat reservoirs to the masses is

the coupling constant �.

After defining the Langevin bath equations in the previous section, we implemented

the equations using Matlab to investigate the heat transport of the system. We started

with equation (5.3), where we defined dt = 0.05, all constants k = 1, and 0.5  mn  2.

Our numerical accuracy is within the range of dt
p

k/m ⌧ 1 because the characteristic

frequency is
p

k/m. Because our system consists of free–standing alternating masses,

we picked a weak coupling constant � connecting the right and left masses to the heat

reservoirs, as in Figure 5.2. Then, we computed the Fourier transform of the displacement

as a function of energy (E = !2), where ! is the radial frequency (see Figure 5.3). The left

figure in 5.3 shows different coupling constants’ effects on the energy. In this case, the

chain has an edge state at E = m1 +m2 = 2.5, where m1 = 0.5 and m2 = 2.

Furthermore, there are N�1 = 20 resonance energy levels in the band. Thermalization

between the reservoirs and masses depends on the coupling, and for small coupling, the

thermalization becomes slower. For the system to reach thermalization, the simulation

must run long enough, as shown in Figure 5.3. For the time plot, we fixed the coupling

constant � = 0.01, and we computed the temperature of three masses m at n = 1, 11, 21.
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Figure 5.3: Left figure: Energy dependence of the Fourier transform of the mass displace-

ment. The average of the absolute value for all the masses is shown for different values

of the coupling to the thermal reservoirs �. Right figure: The time dependence of the

temperature for the first, middle, and last masses. A chain of length 21 is used here with

m2n+1 = 0.5 and m2n = 2 for n=1 to 10. Each time data point is averaged over 200, 000

time steps and 100 different configurations. Here, we used TL = 1.5 and TR = 0.5.

The time plot shows that the middle mass at n = 11 has the slowest thermalization rate,

which saturates at time t ⇠ 106.

Now, we look at the temperature of each mass of the system. Using the fluctuation-

dissipation theorem, we can solve for the temperature at each given mass in the chain.

Because Boltzmann’s constant of kB = 1 is used in our choice of units, the fluctuation-

dissipation theorem gives:

Tn = mnhv2ni (5.5)

The temperature dependence on sites are shown in Figure 5.4. The system we inves-

tigate is a chain of size N = 21 (the odd case). The two arrangements are either m1 < m2

and m1 > m2, and each configuration has a unique solution. For m1 < m2, the system

exhibits a topologically nontrivial state with two edge modes. However, for m1 > m2,

the system is topologically trivial with zero edge mode. For the topologically non-trivial

case (m1 < m2), we see a strong temperature dependence near the edges, indicating the
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Figure 5.4: Left figure: Temperature dependence along the odd number chain (N = 21)

shown on the left scale. The corresponding heat current is shown on the right scale. The

two possible configurations of the odd number chains are shown in the illustration. Right

figure: Temperature dependence along the even number chain (N = 20) for different

values of the nonlinearity parameter �D. Here, m1 = 0.5 and m2 = 2. In both figures, the

temperature of the left reservoir is 1.5 and 0.5 for the right reservoir; At time t = 106.

existence of edge states. However, in the other case, where there are no edge states, the

system has no temperature variation. Thus, this case has no temperature dependence on

the positions of the masses. To find the heat current of each of two consecutive masses (n

and n+ 1), we use the following equation:

Jn+1/2 = �k

2
h(vn + vn+1)(xn+1 � xn)i (5.6)

The above equation implies that the heat current does not depend on the position of

the masses along the chain. Likewise, the heat current is independent of the presence

or absence of the two edge states in the system. However, for the standard SSH model,

the absence of the edge states results in electric current suppression at the band center.

For clarification, we evaluate the classical heat transport, not the quantum heat transport.

We would need to use a different phonon distribution for quantum heat transport, while

here, we have used the classical Poisson temperature distribution because we are working

with Langevin reservoirs.
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5.3 Thermal rectification

Thermal rectification is a phenomenon in which thermal transport along a specific direc-

tion depends on the temperature gradient or heat current sign [52]. Thermal rectifica-

tion is an exciting property, and an impressive outcome occurs if the alternating masses

phononic system can exhibit this phenomenon. The even mass chain is a suitable candi-

date for thermal rectification because it has edge states at the chain edges, here depending

on the mass ratio m1/m2. Thermal rectification develops when there is an asymmetric

heat current exchange between the left and right reservoir and system. An essential ele-

ment for thermal rectification is to have a nonlinear potential. Therefore, we introduce an

additional non-linear potential in the Hamiltonian (5.2) with the following form:

V (xn) = �Dx
4
n (5.7)

where �D is the strength of the nonlinearity. Figure 5.4 shows the computed temper-

ature per mass of an even chain with an asymmetric edge state configuration. The zero

nonlinearity case has a comparable pattern to the odd chain of masses case, where there

is a nonuniform temperature on the side at the edge state location. In the even chain pre-

sented in Figure 5.4, we set the smaller masses to be at the odd sites of the chain, which

lead to an edge state at the left side of the chain. When we raise the nonlinearity, an ex-

citing effect happens: the temperature along the chain oscillates with the higher temper-

ature at the smaller masses. This is a result of the enhanced scattering from the nonlinear

potential, which leads to an absolute heat current reduction, as shown in Figure 5.5.

To understand the heat rectification, we inverted the temperatures of the heat baths.

Figure 5.5 shows a relative rise in rectification with the increasing nonlinearity. Notice

that the absolute value of the heat current is larger for the case where the edge state and

lower temperature bath are on the same side. By switching m1 and m2, the larger absolute

heat current is inverted, thus creating a directional heat switch. However, the relative
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Figure 5.5: Left figure: Temperature dependence along the even number chain (N = 20)

for a nonlinearity parameter �D = 0.1 and with m1 = 2 and m2 = 0.5. The absolute values

of the heat currents are also shown for the two cases. Right figure: Dependence of the

relative heat rectification on �D for the two cases (m1 = 0.5 and m1 = 2). The relative heat

rectification is given by �J = 2J(TL>TR)+J(TL<TR)
J(TL>TR)�J(TL<TR) . The absolute value of the heat current

is depicted as a function of �D on the right scale.

rectification’s relatively small, only a few percent, yet it is large enough to be observable

in an experimental setup.

5.4 End of Chapter

Previous work has shown an alternating temperature distribution along the chain [19];

however, no rectification has been demonstrated. To conclude, the edge state structure

of an alternating masses system SSH–like model can generate classical heat current rec-

tification in the presence of nonlinear potential. The system’s topological nature permits

understanding heat rectification in 1D phononic materials that can be extended to higher

dimensions using an alternating binary mass distribution, which is in contrast to a mass

gradient along the chain. A topological graphene setup such as the Mob̈ius graphene

strip is a potential candidate for thermal rectification [53].
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Chapter 6

Conclusion

Throughout the current thesis, we have studied the 1D chain of alternating atoms and

their topological properties. Chapter one briefly introduced the significant milestones

of the literature review that led to our present research thesis. These milestones in sci-

ence started with topology, and then, the topological insulator was the first topology

integration into physics. The success of the topological insulator led physicists to look

for different systems that exhibit topological properties, such as topological phononics.

Because heat transport is conducted through phonons, we briefly examined the concept

of topological heat transport.

In chapter two, we learned the fundamental concepts of topology in condensed mat-

ter physics by exploring the SSH model. This chapter has provided the essential context

for the work presented later in chapters four and five. We started with the tight binding

model representation of metals, and then, we explored the band insulators to investi-

gate the dispersion relations of conductors and insulators. After this, we introduced the

SSH model, examined its topological properties, and defined the fundamental concepts

of topology in condensed matter physics.

Chapter three formed a basis for the classical view of phonons, specifically the di-

atomic chain. We defined the dynamical matrix for the system and analyzed the disper-

sion relation of such a system.
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Chapter four aimed to identify the topological behavior of our phononic model. Based

on a comparative analysis of the SSH model and our phononic model, it can be concluded

that phononic models with specific conditions can behave topologically. We further show

the equivalence between the phononic and SSH models. By the end of chapter four, we

proposed an experiment that can be conducted in future work to test the topological na-

ture of the phononic crystal.

In chapter five, we analyzed heat transport for a topological phononic crystal. The

results demonstrate that phononic crystals are practical when used as heat rectifiers. Our

work opens the door to studying heat rectification in topological phononic crystals of

different arrangements and dimensions.
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