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ABSTRACT 
 

Background 

Resection of subpial tumors adjacent to critical brain areas is one of the most high-stakes 

surgical procedures that lacks opportunities for safe deliberate practice. Furthermore, 

performance-based assessment in neurosurgical apprenticeship is inefficient and vulnerable to 

subjectivity. Utilizing Artificial Intelligence (AI) to classify neurosurgical psychomotor 

expertise, we developed the first AI-powered tutor in neurosurgical simulation training, known 

as the Virtual Operative Assistant (VOA), to augment technical skills acquisition training by 

providing intelligent feedback. 

 

Objectives 

Determine how learning with the VOA compares with training by remote expert instruction in 

performing virtual reality brain tumor resections and experiencing emotions and cognitive load. 

 

Methods 

A multi-institutional randomized controlled trial compared VOA’s automated audiovisual 

metric-based feedback vs remote verbal debriefing with expert instruction and no-feedback 

controls. Medical students performed six simulated subpial brain tumor resections: five practice 

attempts followed with feedback and one complex realistic attempt evaluated skill retention and 

transfer. A deep learning model, Intelligent Continuous Expertise Monitoring System (ICEMS 

Expertise Score) and blinded Objective Structured Assessment of Technical Skills (OSATS) 

evaluated performance. Participants reported emotions before, during and after training and 

completed a cognitive load questionnaire following training.  
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Results 

Seventy medical students from four institutions were randomly assigned to VOA (n=23), 

Instructor (n=24), and Control (n=23) Groups. 350 practice attempts were assessed by ICEMS, 

and 70 realistic attempts were evaluated by ICEMS and OSATS. During practice, VOA training 

resulted in a significant improvement of participants’ Expertise Scores that was on average 0.66 

(95% CI 0.55-0.77) and 0.65 (95% CI 0.54-0.77) points higher than Instructor and Control 

Groups (p<.001).  Realistic attempt’s average Expertise Score was significantly higher in the 

VOA group compared to instructor and control groups (mean difference 0.53; 0.49, respectively, 

p<.001). VOA and instructor group’s realistic attempt OSATS ratings were not significantly 

different. OSATS ratings demonstrated that VOA feedback resulted in significantly higher 

overall performance, economy of movement, and respect for tissue compared to control while 

expert instruction significantly improved instrument handling, respect for tissue, and economy of 

movement compared to control. There was no significant between-groups difference in cognitive 

load, positive-, and negative-activating emotions. 

 

Conclusion 

VOA’s quantitative automated benchmark feedback demonstrated superior performance 

outcome, improved skill transfer, with equivalent OSATS ratings and similar cognitive and 

affective responses compared to remote expert instruction.  
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RÉSUMÉ 

Contexte 

La résection de tumeurs subpiales adjacentes à des zones cérébrales critiques est l'une des 

procédures chirurgicales aux enjeux les plus élevés, qui manque de possibilités de pratique 

délibérée sûre. De plus, l'évaluation basée sur la performance dans l'apprentissage de la 

neurochirurgie est inefficace et vulnérable à la subjectivité. En utilisant l'intelligence artificielle 

(IA) pour classifier l'expertise psychomotrice neurochirurgicale, nous avons développé le 

premier tuteur alimenté par l'IA dans la formation neurochirurgicale par simulation, connu sous 

le nom d'Assistant Opératoire Virtuel (VOA), pour augmenter la formation à l'acquisition de 

compétences techniques en fournissant un retour intelligent. 

 

Objectifs 

Déterminer comment l'apprentissage avec le VOA se compare à la formation par l'instruction 

d'un expert à distance en effectuant des résections de tumeurs cérébrales en réalité virtuelle et en 

ressentant des émotions et une charge cognitive. 

 

Méthodes 

Un essai contrôlé randomisé multi-institutionnel a comparé le retour d'information automatisé 

basé sur des mesures audiovisuelles du VOA à un débriefing verbal à distance avec instruction 

d'un expert et à des contrôles sans retour d'information. Des étudiants en médecine ont effectué 

six résections simulées de tumeurs cérébrales subpiales : cinq tentatives d'entraînement suivies 

d'un retour d'information et une tentative réaliste complexe ont permis d'évaluer la rétention et le 

transfert des compétences. Un modèle d'apprentissage profond, le système intelligent de 



 vi 

surveillance continue de l'expertise (ICEMS Expertise Score) et l'évaluation objective structurée 

des compétences techniques (OSATS) en aveugle ont évalué les performances. Les participants 

ont fait part de leurs émotions avant, pendant et après la formation et ont rempli un questionnaire 

sur la charge cognitive après la formation.  

 

Résultats 

Soixante-dix étudiants en médecine de quatre institutions ont été répartis au hasard dans les 

groupes VOA (n=23), Instructeur (n=24) et Contrôle (n=23). 350 tentatives de pratique ont été 

évaluées par ICEMS, et 70 tentatives réalistes ont été évaluées par ICEMS et OSATS. Au cours 

de la pratique, la formation VOA a entraîné une amélioration significative des scores d'expertise 

des participants qui étaient en moyenne 0,66 (IC 95 % 0,55-0,77) et 0,65 (IC 95 % 0,54-0,77) 

points plus élevés que ceux des groupes instructeur et témoin (p<.001).  Le score moyen 

d'expertise de la tentative réaliste était significativement plus élevé dans le groupe VOA par 

rapport aux groupes instructeur et contrôle (différence moyenne 0,53 ; 0,49, respectivement, 

p<.001). Les notes OSATS de la tentative réaliste du groupe VOA et du groupe instructeur 

n'étaient pas significativement différentes. Les évaluations OSATS ont démontré que le feedback 

de la VOA a entraîné une performance globale, une économie de mouvement et un respect des 

tissus significativement plus élevés par rapport au groupe témoin, tandis que l'instruction experte 

a amélioré de manière significative la manipulation des instruments, le respect des tissus et 

l'économie de mouvement par rapport au groupe témoin. Il n'y avait pas de différence 

significative entre les groupes en ce qui concerne la charge cognitive, les émotions positives et 

négatives. 
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Conclusion 

Le feedback quantitatif automatisé de VOA a démontré un résultat de performance supérieur, un 

transfert de compétences amélioré, avec des évaluations OSATS équivalentes et des réponses 

cognitives et affectives similaires par rapport à l'enseignement expert à distance.   
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INTRODUCTION 

 In competency-based medical education, the use of simulation technologies has become a 

central tool to augment patient safety, enable repetition of challenging tasks, and provide 

opportunities for deliberate practice.1 Neurosurgery is a branch of medicine known for its high 

stakes and complex procedures, where small errors can result in significant patient morbidity.2 

For example, an incorrectly performed subpial resection of a brain tumor near the motor cortex 

can result in healthy tissue damage leading to a patient’s loss of movement. This is a commonly 

performed procedure that requires competency in multiple areas including bimanual 

psychomotor proficiency and the appreciation of important anatomical structures.3 In fact, 

technical performance has been demonstrated to account for up to one quarter of the variability 

in patients’ post-operative complications and is directly associated with patient outcomes.4,5 

Therefore, it is critical to provide learners with sufficient training that ensures their technical 

mastery.  

 Employing virtual reality on high fidelity surgical simulators, researchers and educators 

can replicate the visual, auditory, and haptic experience of challenging procedures for practice 

without posing imminent risk to patients. Furthermore, computers running these simulated tasks 

can record large multimodal datasets on the user’s interaction with the virtual world, such as the 

position of instruments and the volumes of blood emitted, or tumor and brain resected.6 Utilizing 

artificial intelligence (AI) methods to analyze and compare datasets from experts and novices, 

our team demonstrated an ability to accurately classify individuals based on established 

performance metrics.7-11 These metrics are measurable components of performance that act as 

features for prediction or classification by machine learning algorithms, and by relying on 
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transparent AI and expert consultation, our team has ensured that these metrics are 

understandable and teachable.12  

 Besides the advantage of streamlining objective assessment of technical competency, 

researchers can use machine learning algorithms to generate intelligent tutoring systems. An 

intelligent tutoring system refers to an autonomous pedagogical agent that evaluates students’ 

progress and provides personalized formative feedback to enhance performance.13 In medical 

education, there have been a number of intelligent tutoring systems developed for teaching 

conceptual knowledge14,15, however, the difficulty in measuring performance posed a challenge 

to developing systems for teaching procedural skills. With advances in virtual reality simulation, 

recording and evaluating performance by intelligent machines has become possible. As such, our 

team developed the first intelligent tutoring system for teaching technical skills in surgical 

simulation.16  

 The Virtual Operative Assistant (VOA) utilizes a type of a machine learning classifier 

algorithm known as a linear support vector machine, to predict learners’ competency in safety 

and instrument movement, and automatically provides metric-specific audiovisual feedback to 

enhance their proficiency where lacking.16 Although it promises to provide learners with an 

efficient platform for deliberate practice with formative feedback, it is unclear if learning with 

the system is effective and leads to enhanced performance. The system’s ability in fostering an 

appropriate cognitive and affective learning environment also remains to be elucidated. The aim 

of this thesis is to investigate VOA’s effectiveness as a learning platform and compare it with 

conventional instruction from an expert. The findings reported here can inform residency 

programs’ decisions in supplementing their curriculum with intelligent tutors.  
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BACKGROUND 

Simulation in Surgical Education 

According to a 2018 report commissioned by the Canadian Patient Safety Institute, over 

the next 30 years, medical accidents will take the lives of roughly 24000 Canadians in acute care 

and cost our health care system 1.3 billion dollars every year.17 From these incidents, surgical 

errors leave the costliest burden, and accidents in brain surgery specifically are most likely to 

leave a long-lasting dent in a patient’s quality of life. Simulation has proven to be useful in high-

risk professions, such as aviation and the military, for preparing pilots and special operation 

officers to train for and anticipate complex situations before they arise.18-20 The use of simulation 

in surgery has not kept pace with its development in other fields, but presently, it is a field of 

much intensive research.21  

 Simulation enables the replication of real-life scenarios, procedures, and operations 

which can occur in the workplace. It provides a risk-free environment where learners can 

explore, take actions, and importantly make mistakes without any real consequences. Although 

there are various degrees of fidelity in simulation, from simple benchtop models to highly 

immersive virtual reality, the aim is to place learners in familiar environments while requiring 

them to make decisions in relation to the scenario’s circumstances. Because of its highly 

standardized, reproducible, and competency-specific features, simulation-based training has 

become an area of great promise for assessment and feedback in surgical training.22-24  

 Simulation-based training is empirically rooted in several educational theories. Foremost, 

it offers potentially unlimited opportunities for repetition, the backbone of deliberate practice.25 

The popularized 10,000-hour rule predicates that individuals can master any task if they spend 

roughly that amount of time practicing their craft.26 With the current 80-hour per week resident 
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work-hour restrictions, mandated by the American Council of Graduate Medical Education to 

improve residents’ fatigue and burnout,27,28 not only are residents less exposed to operative 

procedures29 but it would take them 125 weeks of uninterrupted practice to master a technical 

procedure. Furthermore, the 10,000-hour rule can be misleading because repetition alone is 

insufficient to lead to mastery. Vince Lombardi’s famous quote that “only perfect practice makes 

perfect” highlights focused repetition with expert feedback for attaining expert performance.30,31  

In self-regulated learning (SRL), the path to mastery is illuminated by students’ growing 

awareness of their performance objectives and ability to set specific, measurable, attainable, 

relevant, and time-based goals.32 Because simulation tasks often have competency-specific 

learning objectives, learners are more likely to develop the metacognitive abilities, such as 

forethought and self-reflective observation, to set specific goals and critically evaluate their 

performance towards those competencies.33,34 Finally, the realism of simulation training 

promotes situated learning where learners consolidate their knowledge through immersion and 

active participation in the professional context in which the theory is applied.35 In-situ simulation 

incorporates the sociocultural elements of situated learning and enables multidisciplinary teams 

to learn together in communities of practice.36,37 

  In designing highly immersive simulation training, it is essential to consider the 

intervention’s emotional and cognitive demands to ensure effective acquisition of skills. 

Learning has a significant affective component that is often under-recognized,38 and simulation 

has been shown to elicit various emotional states, including stress.39 This is important because 

achievement emotions have been demonstrated to influence learners’ academic and performance 

outcomes.40,41 Students’ affective states can initiate situationally appropriating information 

processing and self-regulating strategies that in turn focus attention, motivation, and cognitive 
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resources on achievement related activities.42,43 As a result, strength of emotions can shape 

learners’ behaviour in how they approach goal-oriented tasks.  

In general, emotions are categorized based on their valence (subjective feeling) and 

arousal (level of physiological activation).44 Positive activating emotions, such as hope and 

enjoyment, are positively related to achievement, while negative deactivating emotions, such as 

boredom and hopelessness, generally impair achievement.45 Positive deactivating emotions, such 

as relaxation and relief, and negative activating emotions, such as anger and anxiety, can result in 

both adaptive and maladaptive behavioural responses that support learning depending on their 

strength and the context of learning.46 For example, feeling slightly anxious before an exam may 

motivate students to invest more time in preparing, whereas feeling overly anxious may lead to 

panic and an inability to perform.  

 Even though learning involves emotions, it is predominantly an intellectual task. 

According to the information processing theory, learning is a cognitive process that leads to a 

permanent change of knowledge or skill.47 According to this theory, we learn by processing 

novel information in our short-term memory and incorporating them with previously established 

schemas stored in our long-term memory. Schemas are domain-specific knowledge constructs 

that require cognitive resources to build.47 Multimodal input from our sensory organs first enter 

our working memory that selects relevant information to create and organize representative 

mental models. These models are then integrated with existing schemas and get encoded in our 

long-term memory.  

Cognitive theory of learning introduces three assumptions. First is the notion of dual 

coding, which suggests that humans have two separate channels for processing visual and 

auditory information. Second assumption is that we have a limited capacity in the amount of 
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information that can be processed in each channel at one time.48 Third, is the notion of active 

processing where engaging in active learning is done by selectively attending to relevant 

incoming information, thus by virtue, ignoring irrelevant information.49 Integrating these 

cognitive assumptions with information processing theory leads to the basis of cognitive load.50  

According to this theory, we have limited cognitive resources thus learning may be 

impaired when the task demands exceed available cognitive capacity.51,52 This theory introduces 

three types of cognitive load: Germane, intrinsic, and extrinsic load. Germaine load is the 

generative cognitive processing needed for making sense of the information, and it is impacted 

by the learner’s motivation to learn and their strategies to organize and integrate the information. 

Intrinsic load is the inherent demands of learning the material. A topic with a higher intrinsic 

cognitive load refers to one with complex and more interconnected components. Extrinsic load is 

the extraneous cognitive demand imposed on the learners that requires them to separate relevant 

from non-relevant information. It is related to instruction design, how the information is 

presented, and has no bearing on the intrinsic difficulty of the concepts.  

Although the inherent difficulty of a subject and a learner’s motivation are beyond the 

control of instructors, there are some strategies to reduce extrinsic load through effective 

instructional design.50-53 Removing seductive details, such as background music, reduces 

extraneous load according to the coherence principle, while segmentation (i.e., chunking related 

information into meaningful parts) has a positive effect on learning and transfer.54 Highly 

immersive simulation training involves many interactive information elements which is reported 

to disproportionately increase multimodal processing and task complexity for novice learners.55 

Because this can influence learners’ performance and learning outcomes,56 it is important to 

consider cognitive load in the design and evaluation of novel pedagogical platforms.  
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Simulation in Neurosurgery 

Surgical simulators can be divided into two general categories: Physical or virtual 

simulations. Physical simulations allow for direct manipulation of either real biologic tissue or 

synthetic objects (e.g., 3D printed models, box trainers). Biologic models range from human 

cadavers, used for example in spinal decompression simulation training,57 to ex-vivo animal 

tissues, such as chicken wings for practicing microvascular anastomosis58 or bovine brain to 

practice brain tumor resection.59 These models provide excellent realism of the anatomical 

structures and the haptic experience of tissue manipulation, but they are costly to preserve, non-

reusable, and may raise ethical, health, and safety issues. Synthetic objects, such as a gel-based 

3D printed Willis’ Circle for aneurysm training,60 are less costly to produce and maintain, are 

mass-producible, and thus more accessible, but they often lack the dynamic realism of living 

tissue. This is especially important for neurosurgery where interpreting tactile and kinesthetic 

information with surgical instruments is essential, because the small operating field may leave 

insufficient visual feedback for navigation or tissue discrimination.61,62 

Virtual simulations involve interaction with computer-generated visual, auditory, or 

tactile information that can either be supplemented to the real physical environment, as in the 

case of augmented reality, or entirely encompass the environment like in virtual reality.63 

Augmented reality provides learners with relevant information, such as live imaging,64 or 

annotations, such as the accurate insertion path for a pedicle screw,65 that can be used in remote 

instruction.66 However, limitations such as fatigue and cognitive overload are important 

considerations for their successful integration in surgical practice. Although virtual reality 

simulators are less accessible due to their high initial cost,67 they offer several advantages. First, 

they are highly immersive, so learners are engaged in a specific surgical scenario that is designed 
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to create the audiovisual and haptic feeling of that operation. Second, the virtual reality 

simulations are consistent and repeatable that makes them both a useful tool for potentially 

unlimited practice opportunities and for conducting randomized controlled trials. Finally, 

because virtual reality simulators are computer-based systems, large volumes of data are 

recorded on users’ interaction in the virtual environment that contain valuable information on the 

trainee’s performance.68-70  

 The NeuroVR (CAE Healthcare, Montreal, Canada), formerly known as NeuroTouch 

(Figure 1), is a high-fidelity virtual reality simulator with haptic feedback that recreates the 

audiovisual and haptic experience of various neurosurgical procedures.6,71 On this platform, 

learners look through a simulated neurosurgical microscope and interact with the virtual 

environment utilizing both hands and simulated instruments. The simulation scenarios illustrate 

the realistic anatomy, authentic dynamic movements (e.g., bleeding), and accurate physical 

properties (e.g., density) of the biologic tissues they represent.72 As such, the face and content 

validity of this platform – i.e., its ability to represent the real-life surgical procedure and require 

the specific bimanual psychomotor skills for that procedure, respectively – has been reported by 

expert consultants. Furthermore, utilizing machine learning methods to evaluate the collected 

data from the simulation trial, its construct validity – i.e., the simulator’s ability to differentiate 

expertise groups – has been established.7,71  

Among other neurosurgical and spinal procedures, this platform offers two subpial tumor 

resection scenarios; a basic “practice” scenario (Figure 2) that covers the fundamental 

competencies and a “realistic” scenario (Figure 3) that is more complex and can be used to 

evaluate skill retention.72,73 Both simulations involve the removal of a gioma-like primary human 

brain tumor using a simulated aspirator in the dominant hand and simulated bipolar forceps in 
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the non-dominant hand. Previous piloted studies have shown that most experts and novices can 

complete the practice scenario in 5 minutes and the realistic scenario in 13 minutes.7 

With the new training demands caused by the coronavirus disease 2019 (COVID-19) 

pandemic,74 some authors have highlighted the role of simulation in neurosurgery to help these 

challenges.75,76 Diminished case volume and increased learner time spent away from the 

operating room due to social distancing measures have led to innovative remote-based solutions 

through simulation to prevent further disruption in training.77-79 Although there are numerous 

distance simulation opportunities for practicing clinical knowledge, such as online virtual 

patients,80 practicing hands-on technical skills at home is more challenging. Some residency 

programs provided simulation kits that include physical models and box trainers for residents to 

practice at home. Junior surgical residents at Stanford University, for example, received silicone-

based 3D printed hematoma models with the appropriate surgical instruments. Learners practiced 

this procedure at home, followed an online module that included the case description, and had 

the opportunity to discuss with a senior resident or consultant upon completion.79  

There is evidence to suggest that distributed self-regulated training at home using the 

Fundamentals of Laparoscopy box trainer leads to an equivalent performance outcome compared 

to centralized instructor-regulated training for residents.81 Early learners such as medical 

students, however, are more likely to require supportive instructions at early stages of training 

that ensure successful “scaffolding” – i.e., provide temporary support until a learner can carry 

out the task.82 As such, using simulation methods for training junior learners, providing expert 

feedback and instruction through either augmented reality headsets or videotelephony software is 

an appropriate remote-based methodology.66,83 Providing remote instruction requires an objective 

method to assess performance and trained instructors who can reliably use this tool.   
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Performance Assessment in Surgery – The Convention 

Throughout the history of western medicine, surgery has been regarded as a craft and the 

notion of technical skill, despite being a characteristic element of a master surgeon, has taken 

different meanings based on distinct cultural and historical contexts. As such, similar to other 

crafts, the standards of excellence have changed through time.84 

New technology and innovation have played critical roles in defining an expert surgical 

performance. For example, before the advent of general anaesthesia in mid-19th century, the 

speed of an operation and the surgeon’s agility marked a masterful surgeon who could minimize 

patients’ suffering during painful procedures. Robert Liston, a 19th century Scottish surgeon 

became a prominent figure of this era for performing limb amputations in just under a few 

minutes. However, with William Morton’s demonstration of diethyl ether’s anaesthetic effects in 

1846, the audience in the surgical theatre observed a new form of performance: movements that 

occurred at a slower tempo, focused on precision for procedures that became more invasive.84  

As a craft, learning surgery followed the apprenticeship paradigm, where trainees 

observed and learned from a skilled master. Like other skill-dependent vocations, the Halstedian 

model of “see one, do one, teach one” allowed learners to gradually assume more responsibility 

and require less supervision until they became capable of teaching the skill themselves.85 

However, in the modern world this model shows inefficiencies that researchers, program 

directors, and national licensing bodies have begun to address by developing competency-based 

medical education (CBME) curriculums.86 In Canada, for example, residents’ progress in the 

professional setting is measured through successful accomplishment of several Entrustable 

Professional Activities (EPAs). An EPA is a key task, specific to a specialty or a procedure, that 

a trainee can be trusted to perform in the health care context once sufficient competence has been 
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demonstrated.87 These activities attempt to bridge the apprenticeship model with the CBME 

framework by providing a structure for on-the-job assessment of learners’ progression and 

facilitating feedback related to steps associated with a specific clinical task.88 The EPAs help to 

standardize the core competencies required for a certain surgical procedure and ensure 

consistency in surgeons’ procedural expertise.87  

However, for the training of basic technical skills, utilizing EPAs alone presents 

challenges. Foremost, procedural definitions of specific EPAs provide little information on 

composites of technical quality. They also remain prone to bias and subjectivity, require expert 

consultant time for supervision and assessment, and impend on the availability of patient cases, 

that result in lower reproducibility, higher cost and may expose patients to increased risk.  

As a result, criteria-based assessment methods, such as Global Rating Scales (GRS), the 

Ottawa Surgical Competency Operating Room Evaluation (O-SCORE), or the Objective 

Structured Assessment of Technical Skills (OSATS), help to overcome these challenges and 

reduce the subjectivity in technical assessment of EPAs.89,90 By defining specific operative 

qualities to observe in the learner’s performance and providing a Likert scale for rating, these 

methods increase agreement among evaluators on what constitutes an expert surgical 

performance and help in directing feedback towards actions that lead to a better operative 

quality.23  

From the criteria-based assessment methods, the OSATS visual rating has emerged as a 

versatile tool in technical skill assessment for various surgical subspecialities and has 

demonstrated predictive validity by establishing technical skills as an independent predictor of 

patient outcomes.4,91 As one of the first tools developed to evaluate surgical skills objectively, it 

has been subject to numerous studies in multiple surgical subspecialties, and as a result, it is 
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often regarded as one of the gold-standard tools for technical assessment in surgery.92 OSATS’s 

versatility lies in defining technical competency based on general operative qualities. The 

original scale includes seven domains of performance that are rated visually on a 5-point Likert 

scale. These include: 1) Respect of tissue, 2) Time and motion, 3) Instrument handling, 4) 

Knowledge of instruments, 5) Flow of operation, 6) Use of assistants, and 7) Knowledge of 

specific procedure.89 These categories comprise multiple aspects of a surgical performance and 

are not restricted to a single procedure.92   

In surgical training, the OSATS can be used for both summative and formative 

assessment. Summative assessment involves high-stakes decisions regarding an individual’s 

progress, such as certification or the completion of residency.23 For example, post-graduate year 

1 (PGY1) general surgery residents at multiple institutions, including the University of Toronto, 

are required by their programs to complete the Fundamentals of Laparoscopic Surgery 

examination that includes a multi-station technical skill summative assessment based on the 

OSATS.93 Formative assessment involves low-stakes evaluations aimed at improving trainee 

learning in various domains through appropriate feedback. Because routine use of criteria-based 

assessment in formative evaluation remains limited to instructor availability, it can be labour-

intensive and costly to implement by training programs.23 As such, the utility of OSATS in 

composing formative feedback for learners and its resulting effect on subsequent performance is 

understudied.94 

In neurosurgery, the OSATS global rating scale was demonstrated to be a feasible and 

reliable tool of performance assessment in the operating room. In one study, 299 procedures by 8 

pediatric neurosurgery residents were evaluated intraoperatively by one of the 6 supervising 

attending surgeons. This group demonstrated that faculty members scored senior residents 
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(PGY6) significantly higher than junior residents (PGY3-4) for the “knowledge of instruments” 

domain. When procedure difficulty was considered, for expert-level procedures, such as pineal 

tumor resection or revascularization surgery for Moyamoya, senior residents’ scores from 

attending surgeons were significantly higher than the scores given to junior residents.95 

Furthermore, evidence from our group demonstrated that a modified OSATS visual rating scale 

can be reliably used to assess virtual reality simulations of neurosurgical procedures and that 

some performance domains of the OSATS demonstrate significant correlations with some of the 

simulator’s performance metrics.96  

As a result, in this project, our group utilized the OSATS visual rating scale to aid 

instructors of the study in assessing on-screen performances of medical students during virtual 

reality brain tumor operations. The scale was tested for internal consistency and raters were 

trained prior to recruitment to enhance inter-rater reliability. Because the simulated operations 

were performed without an assistant and participants were not evaluated on their knowledge, 

three OSATS domains, “Knowledge of instruments”, “Use of assistants”, and “Knowledge of 

specific procedure”, were eliminated for being inapplicable to this study. Instead, two categories, 

namely “Overall” and “Hemostasis”, were introduced to assess the overall operative quality and 

participants’ ability to successfully control bleeding, respectively.96 Both categories were 

previously studied and found to be relevant for simulated neurosurgical procedures. Furthermore, 

because of a time limit to perform the operations, “Time and motion” was adjusted to “Economy 

of movements”.  
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Performance Assessment in Surgery – The New 

 Artificial intelligence (AI) is a broad term which refers to computers that can learn about 

the world flexibly, make inferences about what they see and hear, and achieve human-like 

understanding of information. Machine learning is a subset of AI that refers to the process where 

computers learn to recognize patterns in data from the examples provided to them and improve 

their performance using classification algorithms.97 Machine learning algorithms can make 

predictive models that take in large amounts of information and classify the output into different 

categories. A k-nearest neighbour (KNN), artificial neural networks (ANN), and support vector 

machines (SVM) are typical machine learning algorithm structures, and each contain unique 

characteristics that gives them advantage for certain types of data.9 Deep learning is a type of 

machine learning that consists of an ANN with multiple hidden layers. This allows algorithms to 

analyze more complex relationships within data and even identify novel features that enhance 

their decision making.97   

 AI has proven to be a useful tool in enabling humans to understand hidden complexities 

and make accurate predictions to keep up with our expanding ability to generate, record, and 

store information. Surgery is no exception to big data. New technologies have allowed 

researchers to collect intraoperative audiovisual recordings, capture instrument motion, or track 

surgeon’s eye movements, that may prove to be useful in evaluating performance and ensuring 

patient safety.98 In fact, more studies are demonstrating AI’s aptitude in differentiating surgical 

maneuvers, detecting instruments, and predicting surgical skill from real surgical footage.99-101  

Unfortunately, because most algorithms conducting intraoperative assessment utilize 

unsupervised deep learning methods, it is difficult to understand how the AI model is making its 

decision with our current technologies. This is known as the “Black Box” problem, and it is a 
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major consideration in designing deep learning algorithms whose output decisions could have 

serious implications during high-stakes procedures like surgery.102 Supervised deep learning is 

one way to make these algorithms more transparent. In this process a multilayered neural 

network is trained on data with a set of pre-defined features therefore providing stakeholders 

with a level of control on the criteria used for the algorithm’s decision making.98 One advantage 

of deep learning models is their ability to output real-time decisions using complex data.  

To do so in the context of surgical performance assessment in simulation, our group 

recently developed the Intelligent Continuous Expertise Monitoring System (ICEMS).8 This 

system uses a type of a recurrent neural network, known as a long short-term memory (LSTM) 

model, that evaluates timeseries input for ongoing assessment of expertise during procedures. 

The system makes an expertise prediction, that ranges from -1.00 (a “novice”) to +1.00 (an 

“expert”), for every 0.2-seconds of the simulated procedure based on 16 performance features. 

These 16 metrics include the acceleration, velocity, force application, and the change in force 

application of each instrument, the instrument tip separation distance, the change in instrument 

tip separation distance, rates of brain and tumor resection, and four metrics associated with 

bleeding. The ICEMS has demonstrated ability to differentiate the performance of four groups 

(i.e., consultant surgeons and fellows, PGY4-6 senior residents, PGY1-3 junior residents, and 

medical students) based on their mean “Expertise Score”; the average of expertise predictions for 

the entire procedure.8 This system is a granular, objective, and feasible tool to measure 

performance outcome in randomized trials that can potentially require the assessment of 

hundreds of procedures.  
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Intelligent Tutoring Systems 

Intelligent tutoring systems are educational platforms that integrate assessment with 

personalized feedback.13 In undergraduate medical education, there have been several intelligent 

tutoring systems developed to support learning clinical knowledge.103 These systems have 

predominantly focused on the training of non-technical skills, such as medical students’ 

diagnostic reasoning,104 communication skills,105 and clinical decision-making abilities.106 The 

reason behind this is partly due to technological limitations in turning a surgical performance 

into data. Doing so requires generating enough data, from experts and novices on standardized 

procedures, so that AI algorithms can explore the composites of expert performance and 

elucidate clear learning objectives of the task.103  

From an educational standpoint, the assessment rubric used by the algorithms need to 

contain explicit competency criteria that will ensure transparency in summative evaluation and 

can be used for formative feedback purposes.23 Hence, supervised machine learning algorithms 

that use pre-defined features are also very useful. One problem with AI models, especially in 

supervised machine learning, is that they can be sensitive to the input data. In other words, too 

much variation in the surgical procedure, the tools involved, or the skills required may adversely 

influence their accuracy.107 As a result, developing and testing new AI models holds promise in 

virtual reality simulation where the procedures are uniform, the data recordings are consistent, 

and the simulation environment is tightly controlled.1 By collecting performance data on the 

subpial resection scenarios of the NeuroVR from expert consultants, residents, and medical 

students, our team identified measurable expert competence benchmarks.7  

Having quantifiable benchmarks of expert performance, our team leveraged machine 

learning to design an intelligent tutoring system known as the Virtual Operative Assistant 
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(VOA).16 This is an automated learning platform that uses raw data from the NeuroVR simulator 

to calculate learners’ metric scores, classify their expertise (e.g., as either a novice or an expert), 

and determine whether their performance is within the expert benchmark for a given metric. If 

the learner is classified as a novice for any of the metrics, the system provides audiovisual 

feedback with specific actionable instructions to excel.16   

VOA’s predictive model is in the form of a linear support vector machine, that classifies 

learners’ competence based on their metric scores. From roughly 6000 possible benchmark 

criteria, 270 relevant and teachable metrics were kept after expert consultation, and from these, 

four that most significantly determined an expert were selected by the support vector machine 

algorithm. These metrics were maximum bipolar force and mean bleeding rate (associated with 

safety), and average instrument separation distance and mean bipolar acceleration (associated 

with instrument movement).16  Utilizing these metrics, VOA achieved an accuracy of 82% where 

all of the 28 experts (i.e., consultant surgeons, fellows, and senior residents in PGY4-6) were 

correctly classified as an “expert” but 4 of the 22 novices (i.e., junior residents in PGY1-3 and 

medical students) were incorrectly classified as “expert”.16 

 VOA follows the competency-based model of the Royal College of Physicians and 

Surgeons of Canada and assesses individuals in two steps, first helping them reach competency 

in safety metrics (STEP-1) before allowing them to proceed to STEP-2 of the training for the 

evaluation of metrics associated with instrument movement.16,108 This form of segmentation is 

thought to benefit junior learners and mitigate cognitive load.54 By integrating personalized 

performance assessment and feedback, VOA is the first intelligent tutoring system for teaching 

psychomotor technical skills in surgical simulation. As such, we sought to test its effectiveness 

and compare it with the more conventional expert apprenticeship and instruction method. 
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Instructor Training 

To best reproduce the apprenticeship learning experience for a controlled experiment 

during the COVID-19 pandemic posed some challenges, notably, that we needed to restrict 

contact and the number of individuals on site. Additionally, the presence of an expert instructor 

in the simulation room for one group, would introduce certain variables that may influence 

participants performance and emotions in a way that may not be possible to control for the other 

groups. Therefore, we decided to pursue remote instruction and use established assessment and 

debriefing methods in surgical instruction, namely the OSATS and the Promoting Excellence 

And Reflective Learning in Simulation (PEARLS) debriefing guide, respectively.89,109 However, 

given the number of instruction hours required for a well-powered study, it was difficult to 

involve consultant neurosurgeons. Thus, we designed a three-week workshop and trained senior 

residents to take the role of an expert instructor. This training would also help to calibrate raters’ 

criteria-based assessment, increase consistency, and ensure standardized feedback.4,93  

Two senior neurosurgery residents (PGY5), with operative experience of the subpial 

procedure, received a structured training that prepared them for providing remote instruction. 

This three-week workshop followed principles of traditional expert apprenticeship supported by 

modules of independent deliberate practice guided by self-regulated learning. The resident’s 

learning objectives were to 1) achieve expert competence in performing two subpial resection 

scenarios, 2) assess screen-recorded performance videos of students, and 3) provide debriefing 

and constructive feedback. To reduce bias in the instructors’ assessment and instruction during 

the trial, they were blinded to the AI metrics during this training.  

First, in two ninety-minute sessions of apprenticeship, residents observed and performed 

the practice and realistic simulated brain tumor removals, one scenario type per session, under 
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the supervision of an expert. The goal here was to provide high-level coaching to the instructors 

in performing the scenarios and familiarizing them with standards of expertise used for 

assessment on the previously validated OSATS visual rating scale.96 Then, each instructor had 

three one-hour sessions of deliberate practice with the explicit goal of improving performance to 

the expert level. Between simulations, instructors completed self-assessment of their screen-

recorded performance to actively engage with their learning, make strategic choices that change 

their behaviour, and practice assessing videos using the OSATS scale. This fosters self-regulated 

learning strategies that enhances instructors’ metacognitive processes and allows them to 

critically evaluate other student’s performances.  

Finally, in two one-hour sessions of “Transition to Instruction”, instructors worked in 

pairs to provide peer assessment and feedback to each other, and rate pre-recorded on-screen 

performance of medical students separately for inter-rater reliability assessment. A feedback and 

debriefing script based on the PEARLS guide109 was developed for instructors to follow during 

the training sessions with student participants. Feedback script is based on the OSATS 

assessment guide. It describes the lacking competency and the relevant OSATS category, and 

provides actionable instructions, given by senior consultants, on how to excel. Instructors had the 

freedom to rephrase statements or provide feedback outside the list, if necessary, in which case it 

was recorded and used future participants.  

Assessment data was collected and analyzed for the OSATS scale’s internal consistency 

and the evaluators’ inter-rater reliability. Table 1 demonstrates that prior to study recruitment, 

the scale showed a good internal consistency (α=0.82, 95% CI 0.77-0.87) and instructors 

achieved good inter-rater reliability (ICC=0.84, 95% CI 0.79-0.88). 
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THE STUDY OBJECTIVES 

 Because the VOA is the first intelligent tutoring system in teaching surgery, its 

effectiveness compared with learning from a human expert is unknown. Therefore, this thesis 

aims to determine if the VOA is effective and compare it with remote expert instruction in 1) 

improving surgical performance, and 2) eliciting emotions and cognitive load. The primary 

research question was how do students learning with the VOA perform compared with those 

learning with a human mentor? The secondary research question was what are the affective and 

cognitive responses to these different modes of instruction? 

 

THE STUDY HYPOTHESIS 

 Our hypothesis was that the VOA feedback would be non-inferior to remote expert 

instruction in performance outcomes, but it would lead to stronger negative emotions and higher 

cognitive load. Although studies comparing intelligent tutoring to expert instruction in learning 

technical skills are lacking, for conceptual knowledge, previous research comparing an 

intelligent algebra tutor to class instruction in high school students found no significant 

difference in the students’ mathematics scores after one year.110 Past findings have indicated that 

intelligent tutoring resulted in gradually stronger feelings of boredom, frustration, and 

confusion.111,112 This, in addition to a higher number of interactive elements involved in virtual 

reality simulation as a result of VOA feedback, led us to hypothesize that learners may 

experience higher cognitive load.55,113,114 
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ABSTRACT  

Importance: To better understand the emerging role of Artificial Intelligence (AI) in surgical 

training, efficacy of intelligent tutoring systems, such as the Virtual Operative Assistant (VOA), 

must be tested and compared to conventional educational approaches. 

Objective: Determine how VOA compares with remote expert instruction in learners’ 

performance, emotional, and cognitive outcomes during surgical simulation training. 

Design: Instructor-blinded randomized controlled trial comparing VOA feedback with remote 

expert instruction and no-feedback controls. Cross-sectional data collected from January to April 

2021.  

Setting: McGill Neurosurgical Simulation and Artificial Intelligence Learning Centre, Montreal, 

Canada. Participants performed simulated surgical procedures with feedback delivered on site. 

Expert instructors observed participants’ on-screen performance, provided live verbal feedback 

remotely. 

Participants: Medical students from multiple institutions recruited through programs’ social 

media and student networks.  

Interventions: Five feedback sessions of 5 minutes each during a single 75-minute session, 

including 5 practice followed by 1 realistic virtual reality simulated brain tumor resections. 

Audiovisual metric-based feedback from VOA (VOA group) or verbal scripted debriefing and 

feedback from an instructor (instructor group) compared with control group receiving no 

performance feedback. 

Main Outcome(s) and Measure(s): Primary 1) change in procedural performance, quantified as 

an “Expertise Score” by a validated deep learning assessment algorithm known as Intelligent 

Continuous Expertise Monitoring System (ICEMS) for each practice resection. 2) Learning and 
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retention, measured as performance on realistic tumor resection by ICEMS and blinded 

Objective Structured Assessment of Technical Skills (OSATS). Secondary 1) strength of 

emotions before, during and after intervention, 2) cognitive load after intervention, measured by 

self-report questionnaires. 

Results: Seventy medical students (41 female [%58.6]; mean [SD] age, 21.8 [2.3] years) from 

four institutions randomly assigned to VOA (n=23), instructor (n=24), and control (n=23) 

groups. All participants included in final intention-to-treat analysis. ICEMS assessed 350 

practice resections, ICEMS and OSATS evaluated 70 realistic resections. During practice, VOA 

significantly improved Expertise Scores 0.66 (95% CI 0.55-0.77) and 0.65 (95% CI 0.54-0.77) 

points higher than instructor and control groups (p<.001). Realistic resections’ Expertise Score 

was significantly higher for VOA group compared to instructor and control groups (mean 

difference 0.53; 0.49, respectively, p<.001). VOA and instructor group’s realistic resection 

OSATS ratings were not significantly different. Compared to controls, VOA significantly 

enhanced overall score, expert instruction significantly improved instrument handling. No 

significant between-groups difference in cognitive load, positive activating, and negative 

emotions.  

Conclusions and Relevance: VOA’s quantitative benchmark feedback demonstrated superior 

performance outcome, improved skill transfer, non-inferior OSATS ratings, and equivalent 

cognitive and affective responses compared to remote expert instruction indicating advantages 

for its use in simulation training.  

Trial Registration: ClinicalTrials.gov Identifier NCT04700384. 
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INTRODUCTION  

Mastery of bimanual psychomotor skills is a defining goal of surgical education,84,115 and 

wide variation in surgical skill among practitioners is associated with adverse intraoperative and 

postoperative patient outcomes.4,5 Novel technologies, such as surgical simulators utilizing 

artificial intelligence (AI) assessment systems, are improving our understanding of the 

composites of surgical expertise and have the potential to reduce skill heterogeneity by 

complementing competency-based curriculum training.1,68,116 Virtual reality simulation and 

machine learning algorithms can objectively quantify performance and improve precision and 

granularity of bimanual technical skills classification using expert benchmarks.7,9,10 These 

systems may enhance surgical educators’ ability to develop more quantitative formative and 

summative assessment tools to manage future challenging pedagogic requirements. The COVID-

19 pandemic has significantly altered surgical trainees’ ability to obtain intraoperative instruction 

necessary for skill acquisition,117 and innovative solutions such as AI-powered tutoring systems 

may help in addressing such disruptions.118  

An intelligent tutoring system refers to an educational platform driven by computer 

algorithms that integrate assessment with personalized feedback.13 Our group has developed an 

intelligent tutoring system called the Virtual Operative Assistant (VOA) that utilizes a machine 

learning algorithm, support vector machine, to classify learner performance on validated 

benchmarks and provides goal-oriented, metric-based audiovisual feedback in virtual reality 

simulations.16 Following the competency-based medical education model of the Royal College of 

Physicians and Surgeons of Canada,86 and to mitigate extrinsic cognitive load through 

segmentation,54 the system guides learners in two steps: First, helping trainees reach competency 

in safety metrics before evaluating metrics associated with instrument movement and 
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efficiency.16  The VOA intelligent tutoring system is designed for surgical simulation training, 

but its effectiveness compared to conventional surgical instruction is unknown. 

Expert-led tele-mentoring and virtual clerkships use technologies such as augmented 

reality headsets and videotelephony softwares.66,83 With the ongoing pandemic, these adaptations 

may provide alternatives to intraoperative surgical instruction.119 For this study, we followed 

gold standards of assessment and debriefing in surgical education – Objective Structured 

Assessment of Technical Skills (OSATS)89 and Promoting Excellence And Reflective Learning 

in Simulation (PEALRS) debriefing guide109 – to design a standardized expert-led remote 

training as the traditional control.  

We sought to investigate VOA’s educational value by comparing it to remote expert 

instruction in enhancing technical performance and learning outcome of medical students during 

brain tumor resection simulations and eliciting emotional and cognitive responses that support 

learning. Our hypothesis was that VOA feedback would be non-inferior to remote expert 

instruction in performance outcomes but lead to stronger negative emotions and higher cognitive 

load. 

 

METHODS  

This multi-institutional instructor-blinded randomized controlled trial was approved by 

McGill University Health Centre Research Ethics Board, Neurosciences-Psychiatry, and 

registered on US National Library of Medicine (ClinicalTrials.gov, NCT04700384). This report 

follows Consolidated Standards of Reporting Trials involving AI120 and Best Practices for 

Machine Learning to Assess Surgical Expertise.12  
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Participants 

Medical students, with no surgical or virtual reality simulation experience were invited to 

voluntarily participate. Recruitment information was shared among student networks, social 

media, and interest groups. Selection was based on meeting inclusion criteria, enrollment in 

Medicine Preparatory, first- or second- year of a medical program in Canada, and not meeting 

the exclusion criteria, participation in surgical clerkship or previous experience with the 

NeuroVR (CAE Healthcare, Montreal, Canada) simulator. All participants signed an informed 

consent form prior to participation. Participant demographic information is outlined in Table 2. 

 

Randomization  

Students were stratified by gender and block randomized to three intervention arms using 

an internet-based computer-generated random sequence (random.org). Group allocation was 

concealed by study coordinator and instructors were notified of appointment times one day in 

advance for scheduling purposes. CONSORT flow diagram is outlined in Figure 4.  

 

Study Procedure 

After written consent, a background information questionnaire was administered that 

recorded baseline emotions, experiences that may influence bimanual dexterity (video games,121 

musical instruments122), deliberate practice (competitive sports123), or prior virtual reality 

navigation. Students were not informed of the trial purpose or assessment metrics. Participants 

performed 5 practice simulated tumor resections (Figure 2),73 followed by feedback or no-

feedback (control), then 1 realistic tumor resection simulation (Figure 3)72 to evaluate learning 

and skills transfer. Two self-report questionnaires administered upon completion of the fifth and 
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sixth resections assessed participants’ emotions during and after the learning session, 

respectively, and measured cognitive load after training.  

 

Simulator  

The NeuroVR simulates neurosurgical procedures on a high-fidelity platform that 

recreates the visual, auditory, and haptic experience of resecting human brain tumors (Figure 1).6 

Because this simulator records timeseries data of users’ interaction in the virtual space,71 

machine learning algorithms have been demonstrated to successfully differentiate surgical 

expertise based on validated performance metrics.7,8,10 

 

Virtual Reality Tumor Resection Procedures  

Subpial resection is a neurosurgical procedure in oncologic and epilepsy surgery 

requiring coordinated bimanual psychomotor ability to resect pathologic tissue with preservation 

of surrounding brain and vessels.3 Students’ objective was to remove a simulated cortical tumor 

with minimal bleeding and damage to surrounding tissues using a simulated aspirator in the 

dominant hand and a simulated bipolar forceps in the non-dominant hand, for manipulating 

tissues and cauterizing bleeding.72,73 Participants received standardized verbal and written 

instructions on instrument use and performed orientation modules to understand each 

instrument’s functions. Individuals had 5 minutes to complete each practice resection and 13 

minutes for the realistic resection. The first practice subpial resection was considered baseline 

performance. 
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Interventions  

Five minutes were allowed for intervention between practice resections. Both 

experimental arms follow principles of deliberate practice guided by self-regulated learning 

(SRL),32,124 where formative assessment enables finding areas of growth, setting goals, and 

adopting strategies that enhance competence.31 Feedback students received and progress towards 

learning objectives was monitored by either the VOA or an instructor.  

 

Virtual Operative Assistant Intelligent Tutoring  

VOA predicts a competence percentage score based on four metrics: assessment criteria 

selected through expert consultation, statistical, forward, and backward support vector machine 

feature selection.16 Competence is evaluated in two steps, safety (STEP-1) and instrument 

movement (STEP-2), each associated with two metrics: mean bleeding rate and maximum 

bipolar force application for STEP-1, average instrument tip separation distance and mean 

bipolar acceleration for STEP-2. Learners must achieve “expert” classification for safety metrics 

in STEP-1 before moving to STEP-2 to learn instrument movement metrics and achieve 

competency. Individuals classified as “novice” in any metric, receive automated audiovisual 

feedback (Figure 5).16 

 

Remote Expert Instruction  

Delivering traditional apprenticeship learning during the COVID-19 pandemic for a 

controlled experiment requires steps that minimize contact and ensure consistency. Two senior 

neurosurgery residents (M.B., A.A., post-graduate year 5) who had experience performing 

human subpial resection procedures, completed standardized training (Appendix 1) to perform 
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simulations within consultants’ benchmarks, reliably rate on-screen performances using a 

modified OSATS visual rating scale,96 and provide feedback from a modified PEARLS 

debriefing script.109 Instructors were blinded to AI assessment metrics. Prior to recruitment, 

OSATS scale demonstrated good internal consistency (α=0.82, 95% CI 0.77-0.87) and 

instructors achieved good inter-rater reliability (ICC=0.84, 95% CI 0.79-0.88). 

Each participant’s live on-screen practice performance was assessed remotely by one 

randomly selected instructor who completed an Assessment Sheet (Figure 6, Appendix 2). 

During debriefing, instructors followed a modified PEARLS script and provided feedback from a 

list of instructions, suggested by consultants, depending on students’ competency. Table 3 

contains details on feedback interventions. 

 

Control Group  

Control participants received no performance assessment or feedback and were instructed 

to use the time between simulations to reflect and set goals for the following trial. This follows 

principles of experiential learning through active experimentation and reflective observation,125 

establishing a baseline for performance improvement and learning with no feedback.  

 

Outcome Measures  

Primary outcome was interaction effect of feedback on surgical performance 

improvement over time during 5 practice resections, measured by the Intelligent Continuous 

Expertise Monitoring System’s (ICEMS) Expertise Score: average of expertise predictions 

(range, -1.00 to +1.00, reflecting “novice” and “expert”, respectively) computed for every 0.2-

second of the procedure, by a deep learning algorithm utilizing a long short-term memory 
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(LSTM) network, using 16 metrics and simulator’s raw data as input.8 Learning and skill 

retention was evaluated based on realistic tumor resection performance by both the ICEMS and 

blinded OSATS assessment. Secondary outcomes were differences in strength of emotions 

before, during, and after training, and cognitive demands required by each intervention, 

measured by Duffy’s Medical Emotions Scale,44 and Leppink’s Cognitive Load Index,53 

respectively, using self-report questionnaires. 

  

Statistics 

Ad-hoc analysis to achieve 80% statistical power (β=0.20), estimating moderate primary 

outcome effect of 35%, with two-sided test at α=0.05, revealed minimum of 23 participants 

required for each intervention arm. Collected data was examined for outliers and normality. 

Levene’s test for equality of variance and Mauchly’s test of sphericity met assumptions of 

analysis of variance. Two-way mixed ANOVA investigated interaction of group assignment 

(between-subjects) and time (within-subjects) on learning curves and emotion self-reports. One-

way ANOVA tested between-group differences in learning, cognitive load, and OSATS scores. 

Baseline performance was assigned as covariate in the mixed model. Repeated measures 

ANOVA examined within-subjects changes of performance in each group. Significance was set 

at p<.05. All statistical analyses were performed on SPSS Version 27 (IBM Corporation, Version 

27). Expertise Score predictions were conducted in MATLAB (MathWorks Inc. 2020a release).  

 

RESULTS  

Seventy medical students (41 female [58.6%]; mean [SD] age, 21.8 [2.3] years) from four 

institutions (McGill University, 32 [45.7%]; Laval University, 19 [27.1%], University of 
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Montreal, 17 [24.3%], University of Sherbrooke, 2 [2.9%]) were randomly assigned to either 

VOA (n=23), instructor (n=24) or control (n=23) groups. Between-group distribution of baseline 

characteristics was balanced. Three-hundred and fifty practice and 70 realistic resections were 

scored by the ICEMS. Blinded experts evaluated 70 video recordings of realistic performances 

using the OSATS scale. There was no between-groups baseline performance difference. All 

VOA group participants passed the safety module (STEP-1) and 14 (61%) completed instrument 

movements competency (STEP-2) by the end of training (Figure 7). 

 

Performance During Practice Tumor Subpial Resection 

Mixed ANOVA demonstrated that within-subjects performance changes depended on the 

type of feedback. VOA’s feedback group achieved 0.66 (95% CI 0.55-0.77, p<.001) and 0.65 

(95% CI 0.54-0.77, p<.001) points higher Expertise Scores than instructor and control groups, 

respectively (Figure 8A). Mean Expertise Scores in instructor and control groups were not 

significantly different. 

VOA group demonstrated Expertise Scores improvements between trials (Figure 8A). 

Pairwise comparisons demonstrated that learners performed significantly better than baseline 

after intelligent tutoring feedback (mean difference 0.37, 95% CI 0.18-0.56, p<.001, with Trial-

1; 0.51, 95% CI 0.29-0.74, p<.001, with Trial-2; 0.65, 95% CI 0.41-0.89, p<.001 with Trial-3; 

0.61, 95% CI 0.36-0.86, p<.001 with Trial-4). There was significant improvement from Trial-1 

to Trial-3 (0.28, 95% CI 0.55-0.02, p=.02) and Trial-4 (0.24, 95% CI 0.00-0.49, p=.04). Learning 

curves demonstrate steady improvement from baseline to Trial-3 that plateaus at Trial-3 and 4. 

Three VOA feedback instances resulted in average group performance above 0.00: ICEMS’s 

“novice” threshold (Figure 8A). 
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Three of 4 VOA metrics used for competency training, maximum bipolar force 

application, average instrument tip separation distance and mean bipolar acceleration, 

demonstrated improvement in VOA group and significant differences to instructor and control 

groups (Figure 8B-D). There was no significant between-groups difference in bleeding rate due 

to wide participant variability in this metric. Although VOA feedback was more effective in 

enhancing metric scores compared to expert instruction, compared to control, remote expert 

feedback significantly reduced average instrument tip separation distance (mean difference -3.28, 

95% CI -6.36 to -0.21, p=.034) (Figure 8C). Eight of the 16 ICEMS metrics not trained by the 

VOA had significantly improved in the VOA group compared to instructor and control 

conditions (results not shown) suggesting that feedback on 4 AI-selected safety and instrument 

movement metrics resulted in improved bimanual psychomotor performance in other benchmark 

metrics. 

 

Realistic Tumor Resection Performance 

VOA group achieved significantly higher Expertise Scores in the realistic subpial 

resection than instructor and control groups (mean difference 0.49, 95% CI 0.34-0.61, p<.001; 

0.53, 95% CI 0.40-0.67, p<.001, respectively) (Figure 9A). Realistic subpial resection’s global 

OSATS ratings showed no significant difference between VOA and instructor groups, consistent 

with an equivalent qualitative performance outcome. Compared to control group, feedback 

significantly improved participants’ respect for tissue (mean difference 1.17, 95% CI 0.40-1.95, 

p=.002, VOA; 0.85, 95% CI 0.08-1.62, p=.027, instructor) and economy of movement (mean 

difference 1.35, 95% CI 0.39-2.31, p=.004, VOA; 1.07, 95% CI 0.12-2.02, p=.024, instructor), 

while expert instruction significantly enhanced instrument handling (mean difference 1.18, 95% 
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CI 0.22-2.14, p=.012), VOA resulted in significantly higher overall scores (mean difference 1.04, 

95% CI 0.13-1.96, p=.021)  (Figure 9C). Completing VOA’s instrument movement competency 

correlated significantly with higher economy of movement (Pearson coefficient 0.25, p=.03) 

suggesting successful acquisition of the relevant competency. 

 

Emotions and Cognitive Load  

Within-subjects, there was a significant increase in positive activating emotions (mean 

difference after-before 0.36, 95% CI 0.16-0.55, p<.001) and a significant decline in negative 

activating emotions (mean difference after-before -0.59, 95% CI -0.85 to -0.34, p<.001) 

throughout the simulation training (Figure 10A-C). Significant interaction effect in positive 

deactivating emotions demonstrated that instructor group participants felt more relieved and 

relaxed during training compared to learners in VOA and control groups (mean difference 0.75, 

95% CI 0.19-1.31, p=.01; 0.71, 95% CI 0.14-1.27, p=.01, respectively). No between-subjects 

difference in intrinsic, extrinsic, and germane cognitive load were found (Figure 10D).  

 

DISCUSSION  

Surgical performance is an independent predictor of postoperative patient outcomes91 and 

technical skills acquired in simulation training improve operating room performance.126-128 

Repetitive practice in a controlled environment and educational feedback are key features of 

simulation-based surgical education,129 however, use of autonomous pedagogical tools in 

simulation training is limited. To our knowledge, this is the first study that compares 

effectiveness of an AI-powered intelligent tutoring system with expert instruction in surgical 

simulation while assessing affective and cognitive response to such instruction.  
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In this randomized controlled trial, our findings demonstrated effective use of intelligent 

tutoring in surgical simulation training. VOA feedback improved performance during practice 

and realistic simulation scenarios, measured quantitatively by Expertise Scores, and enhanced 

operative quality and students’ skill transfer, observed by OSATS during the realistic tumor 

resection. Objective metric-based formative feedback through intelligent tutoring demonstrated 

advantages compared to remote expert instruction. It helped students achieve higher expertise by 

bringing awareness to their metric goals during resections and setting measurable performance 

objectives, two effective strategies of learning theory.35 Feedback on AI-selected metrics had an 

extended effect on supplementary performance criteria used in both OSATS and ICEMS. VOA’s 

learning platform is flexible and allows learners with different levels of expertise to practice and 

receive personalized formative feedback based on interest and time availability. VOA did not 

bring participants’ Expertise Scores to the level of senior experts (ICEMS > 0.33)8 suggesting 

areas for future research and improvement.  

In contrast to our hypothesis and previous reports, where learning with an intelligent tutor 

elicited negative emotions, impairing students’ use of SRL strategies,111,112 learning bimanual 

tumor resection skills with VOA demonstrates a gradual decline in negative activating emotions 

with an overall increase in positive emotions, comparable to human instruction. Encouragingly, 

VOA participants did not report this learning experience required significantly higher cognitive 

demands compared to the other interventions, demonstrating clear and comprehensible 

intelligent tutoring feedback that required minimal extraneous load. 

Although the full-impact of COVID-19 on surgical education remains unclear,130 it is 

important to prepare for future challenges through focused research and further development of 

effective remote learning platforms.76 We report two potential methods to address remote 
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learning with the goal of enhancing task performance, from which, intelligent tutoring is more 

efficient and effective. Similar to previous studies,131,132 our findings suggest that scripted 

feedback by instructors established a supportive learning environment where participants felt 

stronger positive deactivating emotions during practice, however, this did not result in greater 

performance. Studies suggest that there is no statistically significant difference in complication 

rates, operative time, and surgical outcomes between tele-mentoring and in-person 

instruction,133,134 but there is limited evidence comparing their educational effectiveness on 

technical performance. In this study, remote instruction was inferior to intelligent tutoring, based 

on quantifiable metrics but further research is necessary to determine if that remains the case 

with in-person coaching. Our remote-based method was considered feasible by instructors 

because they could easily join to provide virtual debriefing and technical instruction.  

The AI algorithm utilized in this study failed to detect instructor group’s performance 

improvements according to OSATS ratings for practice and realistic scenarios (Figure 11). 

OSATS categories like instrument handling, describe a subjective qualitative composite of 

actions that AI systems have difficulty measuring from raw data. ICEMS functions at a deeper 

level by analyzing the interaction of several underlying metrics that contribute to expertise. 

These systems are less able to assess operative strategies, such as a systematically organized 

tumor resection plan, that students may acquire more readily from expert instruction. These types 

of procedural instruction may take more educator time to become apparent as changes in 

learners’ metrics scores. Our findings suggest that monitoring specific AI-derived expert 

performance metrics, such as bipolar instrument’s acceleration and providing personalized 

quantitative learner feedback on these metrics, is an efficient methodology to guide behavioral 

changes towards a higher operative quality. However, integrating metric objectives with the task 
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goals may be challenging and require expert input. Most participants (93%) reported that they 

would prefer learning with feedback from both expert instruction and intelligent tutoring, 

suggesting complementary features from both methods could enhance the learning experience. 

With increasing efforts to capture live operative data,98 combining intraoperative use of 

intelligent tutoring and expert surgical instruction may accelerate the path to mastery. 

 

Limitations  

Although this AI-powered virtual reality simulation platform allows detailed quantitative 

assessment of bimanual technical skills, it fails to capture the full spectrum of competencies 

required in surgery. Other limitations include the sample cohort, use of volunteers, instructor 

experience level, and the remote instruction context that limited in-person expert feedback 

delivery due to the pandemic. Future studies should focus on evaluating the effectiveness of 

intelligent tutoring systems compared with both remote and in-person expert instruction on 

learner simulated surgical performance. Investigations combining intelligent tutoring with 

personalized expert feedback and debriefing may also increase our understanding of the value of 

these technologies.  

 

Conclusion  

Performing simulated brain tumor resections was more effective with feedback from an 

intelligent tutor compared with learning from remote expert instruction. VOA significantly 

improved Expertise and OSATS scores in a realistic procedure while fostering an equivalent 

affective and cognitive learning environment.   
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THESIS SUMMARY 

Discussion 

To test the effectiveness of an intelligent tutoring system in neurosurgical simulation 

training, a parallel design instructor blinded randomized controlled trial was conducted with 70 

medical student participants from four Canadian institutions. Participants’ technical performance 

improvement, skill acquisition and transfer, emotions, and cognitive load were measured in three 

intervention arms. 

Foremost, VOA’s feedback was successful in directing behavioural actions that changed 

participants’ scores on VOA’s intrinsic metrics. Three of the four VOA metrics, maximum 

bipolar force application, average instrument tip separation distance, and mean bipolar 

acceleration, significantly decreased from baseline after VOA feedback (Figure 8C-D). 

Furthermore, all individuals receiving the VOA training passed the safety competency and a 

majority (61%) completed the instrument movement competency as well (Figure 7). The 

competencies acquired during the five practice resections were transferred to the realistic tumor 

resection scenario and observed by blinded instructors on the OSATS scale (Figure 9C). A 

significant positive correlation between completion of VOA’s instrument movement competency 

and the OSTAT’s economy of movement scores further demonstrated effective learning and skill 

transfer from metric-based assessment and feedback.  

An important question raised by scholars is if intelligent tutoring feedback results in 

improved performance only in the metrics measured by the system, or whether it yields to 

performance changes in other areas.135 In this study, VOA improved performance of medical 

students in three OSATS categories of respect for tissue, economy of movement, and the overall 

quality (Figure 9C). By examining all 16 metrics of the ICEMS, we also found improved 
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performance after VOA feedback in eight other metrics not included in the VOA. From these 

metrics, four were directly associated with the VOA feedback. These were average bipolar force 

application, average change of bipolar force application, the velocity of the bipolar, and the 

change in instrument tip separation distance. VOA’s feedback could have a conceivable direct 

effect in these metrics. For example, reducing the maximum force applied with the bipolar will 

directly affect the average bipolar force application. However, we identified four extrinsic 

metrics that demonstrated performance improvement in the VOA group despite having no direct 

or conceivable immediate relation with the VOA feedback. These included the rates of tumor 

and healthy tissue removal, and the acceleration and velocity of the aspirator.  

We observed changes in the movement of the dominant hand (acceleration and velocity 

of the aspirator) due to feedback on the metrics associated with the non-dominant hand which is 

a topic of investigation by our team. This inter-manual transfer of skills was also observed in a 

different randomized controlled trial involving non-dominant hand training in laparoscopic 

surgery.136 Functional neuroimaging may provide some answers to the unknown mechanism  

behind these observations. A study investigating brain activation using functional near-infrared 

spectroscopy (fNIRS) demonstrated that the use of chopsticks in the left hand of right-handed 

individuals led to bilateral activation of the motor cortex and premotor area, whereas, its use in 

the dominant hand only activated the contralateral primary motor area (M1).137 This suggests that 

perhaps the awareness required to control non-dominant hand movements, results in a change of 

movements of the dominant hand due to functional dominance and network asymmetry between 

the two hemispheres.137,138 This is interesting considering that three of VOA’s four AI-selected 

metrics assess learners’ use of their non-dominant hand in this bimanually complex surgical task, 

and our results show that practicing on these metrics is an efficient method of training.  
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Student’s learning through remote instruction did not improve as well as the VOA group 

in the same metrics. But they improved significantly better than the control group in instrument 

tip separation distance (Figure 8C) and the rate of healthy tissue removal, two of the 16 ICEMS 

performance metrics. However, because they were instructed to use the bipolar more frequently, 

their force metrics of the non-dominant hand were significantly higher, thus more novice, than 

the control participants (not shown). This is perhaps another reason why there was no 

statistically significant difference in the Expertise Score between these groups. Instructor group 

participants achieved a higher OSATS score in respect for tissue, economy of movement, and 

instrument handling in the realistic tumor resection compared to the no-feedback control (Figure 

9C). This enhanced quality was not detected by the ICEMS, but it demonstrated that remote-

instruction and scripted feedback were effective in enhancing aspects of the operative quality. 

This is still a significant finding because instructors in this study were limited in formal teaching 

experience and instructional freedom such as the use of visual demonstrations. Randomized trials 

comparing VOA training with in-person coaching are necessary to perform and they will be 

considered when it is safe and feasible to do so.  

The remote-instruction sessions were reported to be feasible by the instructors as they 

could join the sessions virtually from anywhere with an internet connection and a computer 

device. Our methods outline a systematic approach to train post-graduate medical trainees to 

reliably use educationally relevant tools, such as criteria-based assessment rubrics and structured 

debriefing guides, to effectively train undergraduate medical students. This may prove to be a 

useful tool in remote and under-resourced areas where the proportion of available expert 

instructors may be fewer than 1 neurosurgeon per several million people.139 Previous studies 

utilizing tele-mentoring in neurosurgery have also shown to be feasible in enhancing anatomical 
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understanding of medical students or guiding residents in exposing the anterior circulation of a 

cadaver.140 However, because access to expensive virtual reality simulators, neurosurgical 

equipment, and human cadaver facilities is likely to be limited in remote areas for training, future 

studies are required to assess whether similar technical performance outcomes will be observed 

in more accessible simulation models. 

The cognitive load findings of this study demonstrated that the type of feedback did not 

affect learners’ perception of the task complexity (i.e., intrinsic load), or their cognitive 

processing devoted to learning the task (i.e., germane load) (Figure 10D). Our sample was a 

motivated cohort of medical student volunteers who had expressed a high interest to pursue a 

surgical specialty training in the future (mean interest [SD], 3.80 [1.10] out of 5), Table 2. 

Participants attending this training were eager to learn about neurosurgery and gain technical 

experience, but they were relatively novice and had no surgical experience which may explain 

the high germane load reported by all three groups. A more experienced cohort with well-

established mental models of surgery and prior neurosurgical simulation exposure may report 

that learning this procedure requires less internal cognitive resources.  

Intrinsic load findings show that this surgical task had a moderate difficulty for medical 

students and there was a significant positive correlation (Pearson coefficient 0.39, p=.001) 

between strength of negative activating emotions during training and intrinsic load. Cognitive 

load imposed for comprehending feedback by both the VOA and instructors was surprisingly 

low. As described previously, highly immersive simulation training for novice learners is 

generally thought to increase cognitive load for novice learners.56 We had hypothesized that 

adding intelligent tutoring to the simulation training would further increase the interactive 

elements involved and thus lead to higher extrinsic load.113 But VOA’s feedback component did 



 53 

not significantly increase the extrinsic cognitive load compared to no-feedback in the control 

group and remote-instruction by experts. This also suggests that medical students required a 

similar level of cognitive processing to comprehend instructions from the intelligent tutor as they 

did for understanding the instructions from experts. This is also promising because learners could 

effectively use the system independently for deliberate practice of basic skills.  

Emotions elicited by the VOA platform were generally positive and equivalent to the 

control and instructor groups. All groups reported a significant increase in positive activating 

emotions (i.e., hope, gratitude, and happiness) and a significant decline in negative activating 

emotions (i.e., anxiety and confusion) with no significant between-subjects difference. The 

similarity in individuals’ emotional responses to positive and negative activating emotions 

indicates that any performance difference observed between groups was likely the result of the 

instructional component of feedback. It is important to highlight that the VOA does not register 

learners’ emotional cues and is not designed to provide psychological support. Embedding 

emotional state reasoning in intelligent tutoring systems has been attempted in the past and they 

could be considered for VOA’s future improvements.141 To do so, VOA’s feedback model will 

need to incorporate two supporting algorithms; a classifier that can accurately predict learners’ 

affective state and a decision-tree to personalize the metric-specific feedback with effective 

emotion regulating strategies. This can be attempted using Emotion Regulation in Achievement 

Situations (ERAS) model as the theoretical framework for the decision-tree and learners’ skin 

conductance rate as input for the emotions classifier.43,46 However, how much benefit this would 

add to the VOA remains to be investigated. 

  A previous study comparing Affective AutoTutor, an emotion-sensitive intelligent tutor 

for teaching introductory physics concepts, with regular AutoTutor found no significant learning 
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gains between the two systems, but it also demonstrated that the animated pedagogical agent was 

more effective only for students with low-domain knowledge.142 Similar results were found in a 

separate study that showed despite the affect-aware intelligent tutor’s ability to reduce boredom 

and off-task behaviour, it did not result in a significant post-test performance difference 

compared to control.143 Enhancing engagement is important for learning conceptual knowledge, 

but for hands-on technical activities, such as this surgical simulation training, affect-aware 

intelligent tutors are unlikely to further enhance engagement. Post-graduate learners who would 

use the VOA will have a higher domain knowledge than medical students, therefore the effect of 

emotion-sensitive feedback for them is likely to be small.  

 Debriefing by an expert instructor is likely to be a more effective approach to benefit the 

VOA platform. As demonstrated by our results, remote instruction resulted in learners feeling 

significantly more relaxed and relieved during the simulation training compared to the VOA 

condition and it was better than the VOA in significantly improving instrument handling 

performance compared to control. Research on structured debriefing in medical education has 

demonstrated many benefits for mastery learning.131 This type of learner-centered coaching helps 

students become more reflective on their performance and fosters a psychologically safe learning 

environment that helps learners accept challenges.144 As indicated above, instructors may 

provide helpful strategies to align the objectives of the task with VOA’s metric goals to ensure 

learners develop the appropriate techniques. Future trials that combine complementary features 

from both methods are warranted. A blended approach that integrates VOA’s metric-based 

assessment and feedback with structured debriefing and instruction from experts is likely to 

further enhance the performance and Expertise Score attainable by medical students.  
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Limitations and Future Directions 

 It must be noted that this virtual reality simulation training focused on only one element 

of surgical competence, which is the technical skills required to perform a sensitive step of a 

procedure involving multiple stages. As such, learners’ expertise was measured solely based on 

their psychomotor ability to perform this task within experts’ benchmarks. True surgical 

expertise is multifaceted and involves several other competencies, including team 

communication, leadership, and clinical reasoning. Therefore, this report’s findings regarding the 

effectiveness of the VOA are limited to technical skill acquisition in virtual reality simulation.  

 The sample cohort in this study involved motivated medical student volunteers which 

increases the chance of bias, especially in self-report responses. Because this mode of 

simulation-based learning is most likely to be used for surgical training of post-graduate trainees 

this study’s cohort limits the generalizability of our findings. Future trials must involve surgical 

residents, but the main limitation with that would be recruiting a sufficient sample size. With 

only a few neurosurgical residents per institution, a collective effort is required by the training 

programs to accrue enough individual for a well-powered study. Even then, this sample may be 

too small to yield sufficient power if it were to be randomized to more than two groups. 

Therefore, studies involving medical students can continue to inform us on effective instructional 

elements of intelligent tutoring before they could be incorporated as an appropriate intervention 

for residents.  

 Remote instruction by trained residents is limited in both the formal teaching experience 

of the instructors and their ability to demonstrate technical information. Our results suggest that 

for a medical student sample, trained residents can provide effective instruction. However, expert 

neurosurgeon consultants with extensive educational experience would be more appropriate for a 
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resident population. It is important for future studies to compare the effect of in-person coaching 

alone with intelligent tutoring supplemented by either in-person or remote-instruction. Because 

instructors in this study were blinded to the assessment metrics used by the VOA, investigating 

the combined effect of in-person instruction with VOA feedback in this study was not feasible.  

 While other simulation-based training studies have been able to demonstrate the transfer 

of skills from virtual reality to the operating room or to improve procedural performance on 

cadavers,126,128 doing so remains a challenge in simulations involving brain tumor surgery. The 

human brain is a soft tissue that significantly loses its natural consistency following preservation. 

Ex-vivo animal brains with gel-based tumors offer a suitable alternative as they can be acquired 

fresh and prepared for training.59 This would help in testing the transferability of skills learned 

from the VOA to a controlled laboratory environment. To obtain information on the effect of AI 

feedback on real operative performance, a training program needs to be designed where some 

learners undergo virtual reality training with AI tutoring and in-person instruction while others 

receive virtual reality training with only in-person instruction. This longitudinal approach would 

also enable researchers to track the complication rates and postoperative outcomes of patients to 

see if this feedback can lead to a meaningful effect in patients’ quality of life. 
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TABLES 
 
Table 1. OSATS Scale Consistency and Inter-Rater Reliability  
 

OSATS 
Category 

Intraclass 
Correlation 
Coefficient  

Cronbach’s 
Alpha 

Pearson’s 
Correlation 
Coefficient  

Mean Score 
Rater 1 (± SD) 

Mean Score 
Rater 2 (± SD) 

Instrument 
Handling  
 

0.913 0.908 0.839 4.67 (± 1.21) 4.50 (± 1.37) 

Respect for 
Tissue 

0.845 0.834 0.738 4.50 (± 2.43) 4.00 (± 1.90) 

Hemostasis 
 

0.819 0.821 0.702 4.17 (± 2.64) 3.33 (± 2.34) 

Economy of 
Movement 
 

0.828 0.802 0.825 3.83 (± 1.17) 4.00 (± 2.28) 

Flow 
 

0.786 0.755 0.647 4.00 (± 1.67) 3.83 (± 2.40) 

Overall 
 

0.836 0.809 0.717 3.83 (± 1.72) 3.83 (± 2.40) 

 

Table 1. OSATS Scale Consistency and Inter-Rater Reliability. Instructors’ assessment 

results of pre-recorded medical student performance at the end of the standardized instructor 

training. Both instructors rated the same 20 pre-recorded videos of medical students’ 

performance. Intraclass correlation coefficient (ICC) is a measure of the inter-rater reliability. 

ICC values between 0.75-0.90 indicate good reliability. Cronbach’s alpha (𝛼) is a measure of 

how closely related a set of scale items are. 𝛼 values between 0.70-0.90 indicate good internal 

consistency. Positive correlation between both raters on. Individual items of the OSATS scale.  
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Table 2. Demographic Characteristics of Included Participants.  
 
 

  Medical Student, No. (%) 

Characteristic 
Control Group  
(n = 23) 

VOA Group  
(n = 23) 

Instructor Group  
(n = 24) 

Age, mean (SD) 21.7 (2.4) 21.9 (2.5) 21.8 (2.1) 

Gender  

Male 9 (39) 10 (43) 10 (42) 

Female 14 (61) 13 (57) 14 (58) 

Undergraduate Medical Training 
Level  

Med-P (Preparatory)a 9 (39) 10 (43) 7 (29) 

First Year 8 (35) 8 (35) 9 (38) 

Second Year 6 (26) 5 (22) 8 (33) 

Institution  

McGill University  14 (61) 8 (35) 10 (42) 

University of Montreal  3 (13) 7 (30) 7 (29) 

University of Laval 6 (26) 7 (30) 6 (25) 

University of Sherbrooke 0 1 (5) 1 (4) 

Dominant hand  

Right  23 (100) 21 (91) 22 (92) 

Left 0 2 (9) 2 (8) 

Interest in pursuing surgery, mean 
(SD)b 3.7 (1.0) 3.9 (1.1) 3.8 (1.2) 

Video Games  

Not at all 15 (65) 15 (65) 16 (67) 
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  Medical Student, No. (%) 

Characteristic 
Control Group  
(n = 23) 

VOA Group  
(n = 23) 

Instructor Group  
(n = 24) 

1-5 hrs/wk 5 (22) 6 (26) 5 (21) 

6-10 hrs/wk 2 (9) 2 (9) 2 (8) 

>11 hrs/wk 1 (4) 0 1 (4) 

Play musical instruments   

Yes 12 (52) 8 (35) 13 (54) 

No 11 (48) 15 (65) 11 (46) 

Did competitive sports in the past 5 
years  

Yes 12 (52) 17 (74) 17 (71) 

No 11 (48) 6 (26) 7 (29) 

Prior VR experience in any domain  

None 14 (61) 12 (52) 12 (50) 

Passive (Google Earth, Videos, etc.) 8 (35) 10 (43) 9 (38) 

Active (Games, Simulation, etc.) 1 (4) 1 (5) 3 (12) 

Prior experience with any VR 
surgical simulator  

Yes 1 (4) 0 0 

No 22 (96) 23 (100) 24 (100) 
 
Abbreviations: VOA, Virtual Operative Assistant; Med-P, Medicine Preparatory; VR, Virtual Reality 

a Medicine Preparatory (Med-P) is a one-year preparatory program for graduates of the Quebec Collegial (CEGEP) system who 

have been offered a position from the medical program of McGill University or University of Montreal. 

b Rated on a Likert Scale (1-5), with 1 indicating less interest and 5 indicating more interest.  
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Table 3. Intervention Comparison Table 
 
 Virtual Operative Assistant  Remote Expert Instruction 

 
Task Goal Complete resection of the tumor with minimal bleeding and damage to 

healthy tissues. 
Learning Objectives 
(Competency 
Criteria) 

Safety: 
1. Maximum force applied with the 
bipolar forceps  
2. Mean rate of bleeding 
Movement: 
3. Mean instrument tip separation 
4. Mean Acceleration of the bipolar 
forceps 

Safety: 
1. Respect for Tissue 
2. Hemostasis 
Movement: 
3. Instrument Handling 
4. Economy of Movement 
5. Flow 
Overall Quality: 
6. Overall 

Performance 
Assessment Tool 

Criteria-based assessment using a 
machine learning classifier 
algorithm. Four AI-selected metrics 
used by a support vector machine for 
performance classification and 
quantitative benchmark evaluation.  

Criteria-based assessment using the 
Video Assessment Sheet (Appendix 
2). Six relevant performance 
categories selected by experts for 
performance assessment on a 7-point 
Likert scale. 

Learning Theory Mastery learning through deliberate 
practice guided by self-regulated 
learning.  

Mastery learning through deliberate 
practice guided by self-regulated 
learning.  

Feedback Delivery Audiovisual metric-specific feedback 
provided autonomously and 
immediately depending on the 
participant’s competency. 

Live verbal debriefing with scripted 
feedback and instructions provided 
immediately depending on the 
participant’s competency. 

Feedback Content Metric-specific videos played based 
on the learner’s individual needs that 
describe the appropriate assessment 
criteria, demonstrate novice and 
expert performance examples, and 
provide actionable instructions to 
excel. Senior consultants with 
extensive subpial experience 
provided instructions and 
performance in the videos. 

OSATS category-specific feedback 
prompts and actionable instructions 
used in a debriefing script that 
describes the relevant performance 
category and the lacking 
competency, and provides 
instructions tailored to the learner’s 
individual needs. Feedback prompts 
and instructions were provided by 
senior consultants on how to excel.  
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FIGURES 

 
Figure 1. The NeuroVR Simulator Platform 
 
 

   
 
Figure 1. The NeuroVR Simulator Platform. (A) The NeuroVR simulator with the practice 
subpial scenario on the screen. (B) Participant using the handles for subpial tumor resection 
(bipolar instrument with the left hand and the aspirator with the right hand) foot pedals (at the 
bottom of the image) control the activation of the corresponding instruments. (C) Participant 
viewing the screen through the stereoscope and performing the practice subpial scenario.  
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Figure 2. Practice Subpial Tumor Resection Scenario 
 

   

   

 

Figure 2. Practice Subpial Tumor Resection Scenario. (A) Practice subpial scenario at the 

start of the simulation, yellow tissue represents the tumor, instrument on the left is the bipolar 

and the instrument on the right is the aspirator. (B) Participant using the bipolar to lift the pia and 

aspirator utilized to resect the tumor lying beneath the pia. (C) Appearance following resection 

of superficial tumor. Yellow tissue remaining depicts the deeper tumor areas. (D) Participant 

exposing the simulated deep cerebral vessel (red). (E) Instrument injury to the blood vessel 

resulting in bleeding. (F) Complete resection of the tumor.  
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Figure 3. Realistic Subpial Tumor Resection Scenario 
 

 
 

  

   
 
 

Figure 3. Realistic Subpial Tumor Resection Scenario. (A) Realistic subpial scenario at the 

start of the simulation, off-white tissue represents the tumor. (C) Participant while using the 

aspirator causes minor bleeding from the tumor. (D) Participant cauterizing bleeding points. (E) 

Injury to the superficial cerebral vein followed by significant bleeding. (B) Participant using the 

simulated bipolar to lift pia and begins resecting tumor with the simulated aspirator. (F) 

Completed Tumor resection.  
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Figure 4. CONSORT Flow Diagram 
 
 
 

 
 

Figure 4. CONSORT Flow Diagram. 72 participants were assessed for eligibility. Two were 

excluded for not meeting the inclusion criteria of being enrolled in Medicine Preparatory, first, or 

second year of medical school. 70 participants were stratified by gender and block randomized to 

one of three arms. Data from all included participants was used for the final intention-to-treat 

analysis.   
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Figure 5. Learning with the Virtual Operative Assistant (VOA) 
 

   
 
 

Figure 5. Learning with the Virtual Operative Assistant (VOA). (A) Participant viewing the 

VOA’s performance prediction of their practice subpial resection. (B) Participant viewing a 

breakdown of their performance assessment on two safety metrics. A score in the red box 

(depicted by the white dot) suggests falling outside the competence benchmark for that metric. 

(C) VOA plays the appropriate feedback video for the metric that needs improvement.  
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Figure 6. Remote Expert Instruction  
 

  
 
Figure 6. Remote Expert Instruction. Left. Livestream on-screen performance of a 

participant’s practice resection shared virtually with an instructor located remotely. Right. 

Participant debriefing and receiving feedback from the remote instructor after the simulation 

resection through a videotelephony software. 
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Figure 7. Participant’s Progression Through the VOA Training. 
 
  

  
 
 
Figure 7. Participant’s Progression Through the VOA Training. (A) Percentage of VOA 

participants who passed STEP-1 (safety) and STEP-2 (instrument movements) of VOA training 

at a specific trial. (B) Cumulative percentage of VOA participants who passed a specific VOA 

competency on or before a given trial. Data shows that the proportion of individuals who passed 

a competency at a given trial, were likely to pass that competency again in the following trial.   
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Figure 8. Performance Assessment in the Practice Tumor Resections. 

  

  

Figure 8. Performance Assessment in the Practice Tumor Resection Simulations. (A) Mean 

ICEMS Expertise Scores. Negative scores correspond to a novice and a positive score 

corresponds to a more expert performance. Scores in each trial are the average of all predictions 

made for every 200-milliseconds of the simulated procedure (about 1500 predictions for a 5-

minute practice scenario). (B) Maximum bipolar force application is a recording of the highest 

amount of force applied with the bipolar during the entire operation. (C) Average instrument tip 

separation distance measured as the mean distance between the aspirator and the bipolar tips.  
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(D) Average bipolar acceleration measured as the rate of change in the bipolar instrument’s 

velocity. All error bars represent the 95% Confidence Interval of the mean and p-values were 

adjusted by Bonferroni correction for multiple tests. Two-way mixed ANOVA with trial number 

as the within-subjects variable, type of feedback as the between-subjects variable, and baseline 

performance as a covariate, was conducted for the Expertise Scores and metrics data. P-values 

from Tukey’s HSD multiple comparisons post-hoc test is reported for the between-group 

differences. One-way repeated measures ANOVA was conducted to assess pairwise differences 

of VOA group’s Expertise Scores between trials. 
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Figure 9. Performance Assessment in the Realistic Tumor Resection. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 9. Performance Assessment in the Realistic Tumor Resection Simulation. (A) Mean 

ICEMS Expertise Score. One-way ANOVA found statistical difference between three groups 

(p<.001), Tukey’s HSD post-hoc analysis identified difference between the VOA condition and 

both the control (p<.001) and instructor (p<.001) groups. (B) Mean global OSATS rating of the 
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three groups. The global rating is the average score of all 6 items of the OSATS scale. One-way 

ANOVA found no statistical difference between groups (p=.081). (C) Mean performance score 

for individual items of the OSATS scale for three groups. One-way ANOVA identified a 

statistical difference in respect for tissue (p=.002), instrument handling (p=.017), economy of 

movement (p=.003) and overall (p=.028). No significant difference was found in hemostasis 

(p=.164) and flow (p=.552). Tukey’s post-hoc analysis of significant findings with Bonferroni 

correction of multiple tests identified significant difference between the VOA and control group 

in overall (p=.021), a significant difference between the instructor and control group in 

instrument handling (p=.012), and that both the VOA and instructor groups had significantly 

higher respect for respect for tissue (p=.002, VOA; p=.027, instructor) and economy of 

movement (p=.004, VOA; p=.024, instructor) compared to control.  
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 Figure 10. Emotions and Cognitive Load Throughout the Simulation Training 

 

 
 

 

  

 
 

 

 
Figure 4. Emotions and Cognitive Load Throughout the Simulation Training. A) Positive 

Activating emotions (happy, hopeful, grateful) and B) Negative Activating emotions (confusion, 

anxiety) showed a significant within-subjects effect (p<.001) with no significant between-

subjects difference. C) Positive Deactivating emotions (relaxed, relieved) show a group*time 

interaction effect for participants in the Instructor Group during the training. Tukey’s HSD post-
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hoc test showed a significant difference between the instructor group and both VOA (p=.010) 

and control (p=.006) groups in the strength of positive deactivating emotions during training. D) 

Cognitive Load Index (CLI) responses. One-way ANOVA did not find statistical differences 

between groups in intrinsic, extrinsic, and germane cognitive load. Error bars represent the 95% 

Confidence Interval of the mean.  
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Figure 11. Instructor Group’s OSATS Ratings During Practice  
 

 
 
Figure 11. Instructor Group’s OSATS Ratings During Practice. Average global OSATS 

ratings during practice scenario, measured as the mean of the 6 items in the visual rating scale. 

Instructor group’s global OSATS ratings during practice shows performance improvement after 

debriefing and feedback sessions. In this group, average global OSATS scores improved by 0.62 

points (95% CI 0.17-1.07, p=.003) from baseline at Trial-1, 0.86 points (95% CI 0.45-1.27, 

p<.001) from Trial-1 to Trial-2, 0.44 points (95% CI -0.09-0.95, p=.17) from Trial-2 to Trial-3, 

and 0.70 points (95% CI 0.14-1.26, p=.01) from Trial-3 to Trial-4. Figure above depicts the 

learning curve for participants in the instructor Group based on the OSATS scale. Bars represent 

the 95% confidence interval of the mean. 
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APPENDIX  

Appendix 1. Standardized Instructor Training Protocol 

Objective:  

To adapt the traditional apprenticeship learning model to a remote context, we need to ensure 

that the study instructors are trained to: 

1. Perform the simulated practice and realistic subpial resections expertly 

2. Rate students’ performance from screen-recorded videos with consistency and reliability 

3. Deliver constructive feedback in scripted debriefing sessions. 

 

Methods: 

Eight 90-minute learning sessions in a two-week workshop, provided two senior neurosurgery 

resident instructors (A.A., M.B., Post Graduate Year 5) with standardized training to become 

proficient at leading virtual pedagogical sessions remotely for medical student participants of this 

study.  

 

Two sessions involved performing the simulated resections under the supervision of a senior 

consultant, who demonstrated the technical competencies required, explained OSATS’s 

qualitative assessment criteria, and described how to lead an effective debriefing based on the 

PEARLS model. 

 

In the following sessions, instructors trained independently through deliberate practice guided by 

self-regulated learning where they graded their own screen-recorded performance using the 

Assessment Sheet (Appendix 2).  
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Because in traditional apprenticeship experts in the operating room have no access to 

performance metrics and assessment depends only on visual rating, instructors were blinded and 

unaware of the AI assessment metrics to best replicate the current intraoperative instruction and 

reduce potential bias in their assessment and instruction in the study.  

 

At the end of the training, instructors were evaluated by the senior consultant based on their 

ability to achieve technical competence in both simulation resections and lead scripted debriefing 

sessions remotely. Scale consistency and inter-rater reliability was determined from instructor 

ratings of 20 randomly selected videos of medical students’ performance of both realistic and 

practice subpial simulations.  

 

Theories used in training: 

This training utilized two key educational theories: Deliberate practice and self-regulated 

learning (SRL). Both deliberate practice and SRL accelerated learning by leveraging effective 

learning strategies such as drawing upon reflective observation through self-assessment and 

using forethought to set specific performance goals.    
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Appendix 2. Video Assessment Sheet  
 
Initials (rater): 
Subpial Scenario: Practice / Realistic 
 

 
Date: 

Video Number: 
 

What did the participant do 
well? 

Identify up to three areas of 
improvement for this participant: 
 
1. 
 
 
 
2.  
 
 
 
3. 
 
 

List two instructions/feedback 
you would give to this 
participant: 
 
1. 
 
 
 
 
2. 

 
OSATS Visual Rating – 7-point Likert Scale 

 
Instrument Handling: how would you rate this participant’s ability to handle instruments appropriately 
and make fluid movements? 

Novice 1 2 3 4 5 6 7 Expert 
 
Respect for Tissue: what is the level of care this participant shows for the tissue and the surrounding 
brain? 

Novice 1 2 3 4 5 6 7 Expert 
 
Hemostasis: How would you rate this participant’s ability to control bleeding? If no bleeding occurred 
write N/A. 
 

Novice 1 2 3 4 5 6 7 Expert 
 
Economy of Movement: How would you rate this participant’s efficiency of movement? 
 

Novice 1 2 3 4 5 6 7 Expert 
 
Flow: How would you rate this participant’s flow of movement in the operation? 
 

Novice 1 2 3 4 5 6 7 Expert 
 
Overall: How would you rate this participant’s overall performance in removing a considerable amount of 
the tumor competently? 
 

Novice 1 2 3 4 5 6 7 Expert 
 


