
SABLEWASM: A STATIC COMPILER AND

RUNTIME FOR WEBASSEMBLY

Hongji Chen, School of Computer Science

McGill University, Montreal

August, 2021

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

©Hongji Chen, 2021

Abstract

WebAssembly is a relatively new language, introduced to improve the performance of

compute-intensive workloads in web-based applications. It offers a compact binary byte-

code intended to allow for fast compilation and improved optimization opportunities

over dynamic web languages like JavaScript. These properties, however, also make it

an interesting target for static execution, enabling web code to run outside of a browser

as well as within it. In this thesis, we describe SableWasm, a static, multi-pass compiler

system that translates sandboxed WebAssembly applications to native shared libraries.

Our work covers several different aspects of compiler design. First, we provide an effi-

cient and extensible WebAssembly module parsing and validation framework, with im-

proved execution speed and memory footprint compared to the reference baseline. We

then define a middle-level intermediate representation and build an analysis and trans-

formation framework. We explore several classic data-flow analyses, such as dominator-

tree construction within the framework, and additionally identify several WebAssembly

specific optimization opportunities, which we address through custom transformation

passes. SableWasm also incorporates several in-progress extension proposals including

the SIMD vector operation extension. Optimized intermediate code is then converted

to native code through a backend implementation with the help of the LLVM compiler

framework and a runtime that enables C/C++ programs to interact with the WebAssem-

bly module directly. Finally, we evaluate SableWasm by benchmarking against several

well-known testing suites and observe performance improvement compared to the base-

line implementation.

i

Abrégé

WebAssembly est un langage relativement nouveau, introduit pour améliorer les perfor-

mances des charges de travail gourmandes en calcul dans les applications Web. Il offre un

bytecode binaire compact destiné à permettre une compilation rapide et des opportunités

d’optimisation améliorées par rapport aux langages Web dynamiques comme JavaScript.

Ces propriétés, cependant, en font également une cible intéressante pour l’exécution sta-

tique, permettant au code Web de s’exécuter à l’extérieur d’un navigateur ainsi qu’à

l’intérieur de celui-ci. Dans cette thèse, nous décrivons SableWasm, un système de compi-

lateur statique multi-passes qui traduit les applications WebAssembly en bac à sable en

bibliothèques partagées natives. Notre travail couvre plusieurs aspects différents de la

conception d’un compilateur. Premièrement, nous fournissons un cadre d’analyse et de

validation de module WebAssembly efficace et extensible, avec une vitesse d’exécution

et une empreinte mémoire améliorées par rapport à la ligne de base de référence. Nous

définissons ensuite une représentation intermédiaire de niveau intermédiaire et constru-

isons un cadre d’analyse et de transformation. Nous explorons plusieurs analyses de

flux de données classiques, telles que la construction d’arbres dominants dans le cadre,

et identifions en outre plusieurs opportunités d’optimisation spécifiques à WebAssembly,

que nous abordons via des passes de transformation personnalisées. SableWasm intègre

également plusieurs propositions d’extension en cours, y compris l’extension d’opération

vectorielle SIMD. Le code intermédiaire optimisé est ensuite converti en code natif via une

implémentation backend à l’aide du framework de compilateur LLVM et d’un runtime

qui permet aux programmes C/C++ d’interagir directement avec le module WebAssem-

bly. Enfin, nous évaluons SableWasm en comparant plusieurs suites de tests bien connues

et observons une amélioration des performances par rapport à la mise en œuvre de base.

ii

Acknowledgements

First, I would like to extend my deepest gratitude to Professor Clark Verbrugge. The work

would not have been possible without his support and advice, especially during a global

pandemic. Second, I would like to thank Professor Laurie Hendren for her guidance in

the field of compiler design in my early days as an undergraduate student. Finally, I

would like to thank my colleagues and friends, especially my Sable lab mates, for their

encouragement throughout the entire thesis journey.

iii

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iii

List of Figures . vii

List of Tables . viii

1 Introduction 1

1.1 Contribution . 2

1.2 Thesis outline . 4

2 Background 6

2.1 Emscripten and Asm.js . 6

2.2 WebAssembly . 9

2.3 WebAssembly Extensions . 13

2.4 WebAssembly System Interface (WASI) . 16

2.5 LLVM Compiler Infrastructure . 18

3 Frontend 23

3.1 Bytecode Parser . 23

3.2 WebAssembly Bytecode Representation . 26

3.3 WebAssembly Bytecode Validation . 29

3.4 Performance Evaluation . 31

iv

4 Middle-level Intermediate Representation 35

4.1 MIR Module Entities . 38

4.2 MIR Initializer Expressions . 41

4.3 MIR Instructions . 43

5 Middle-level Intermediate Representation Translation and Optimization 52

5.1 Translating WebAssembly to MIR . 52

5.1.1 Structured-Control-Flow Construct 53

5.1.2 Instruction Reduction . 58

5.2 Analysis Framework . 64

5.2.1 Dominators and Dependence . 65

5.2.2 Control-Flow Graph Simplification . 67

5.2.3 Type Inference . 71

6 Backend and Runtime 75

6.1 Instance Layout . 75

6.2 WebAssembly Entities . 79

6.3 Code Generation . 85

6.4 Interface with C/C++ . 91

7 Evaluation 95

7.1 Experiment Setup . 95

7.2 RQ1: How does SableWasm perform compare to others? 99

7.3 RQ2: Does optimization over input modules matter? 111

7.4 RQ3: How much does SIMD extension improve in performance? 114

8 Related Work 118

9 Future Work and Conclusion 123

v

List of Figures

1.1 The SableWasm compiler and runtime . 2

2.1 Adler 32 in C, asm.js and text-format WebAssembly 8

2.2 A illustration of WASI . 17

2.3 A illustration of LLVM compilation pipeline 19

2.4 Adler 32 in LLVM . 20

3.1 SableWasm parser . 24

3.2 SableWasm bytecode representation . 27

3.3 SableWasm validation pass . 29

3.4 Frontend memory footprint comparison . 32

4.1 Fibonacci in translated SableWasm MIR . 37

4.2 SableWasm MIR Module-level entities . 38

4.3 SableWasm MIR Initializer Expression . 41

4.4 SableWasm MIR Instructions . 44

5.1 WebAssembly block translation pattern . 53

5.2 WebAssembly if translation pattern . 55

5.3 WebAssembly loop translation pattern . 57

5.4 SableWasm MIR Analysis and Optimization Framework 65

5.5 Control-flow graph simplification example 68

5.6 Control-flow graph simplification result . 71

vi

6.1 SableWasm WebAssembly instance . 76

6.2 SableWasm WebAssembly linear memory . 80

6.3 SableWasm WebAssembly linear global . 83

6.4 Simple C++ SableWasm loader function . 93

7.1 Benchmarks with naive (-O0) on Wasmtime 101

7.2 Benchmarks with naive (-O0) on Wasmer (Cranelift) 102

7.3 Benchmarks with naive (-O0) on Wasmer (LLVM) 103

7.4 Benchmarks with optimized (-O3) on Wasmtime 105

7.5 Benchmarks with optimized (-O3) on Wasmer (Cranelift) 106

7.6 Benchmarks with optimized (-O3) on Wasmer (LLVM) 107

7.7 Benchmarks with SIMD extension (-O3 -msimd128) on Wasmtime 108

7.8 Benchmarks with SIMD extension (-O3 -msimd128) on Wasmer (Cranelift)109

7.9 Benchmarks with SIMD extension (-O3 -msimd128) on Wasmer (LLVM) . 110

7.10 Comparision between optimized and naive input modules 113

7.11 Polybench gemm benchmark kernel . 114

7.12 Comparision between SIMD-enabled and optimized input modules 115

7.13 Polybench gemm code snippet . 116

vii

List of Tables

3.1 Frontend execution speed comparison . 33

6.1 SableWasm shared libraries exported symbols 79

6.2 SableWasm runtime builtin functions for linear memory 81

6.3 SableWasm runtime builtin functions for indirect table 83

7.1 the Polyhedral benchmark suite (Polybench) 96

7.2 the Ostrich benchmark suite (Ostrich) . 97

7.3 the NAS parallel benchmark suite (NPB) . 98

7.4 Geometric mean of speedups compare to Wasmtime and Wasmer 111

viii

Chapter 1

Introduction

Web-based applications have grown in popularity in recent years. From the early days

of simple web applets to current full-blown programs, their codebase’s complexity and

size has grown rapidly. Due to the design of most browsers, programmers have to choose

JavaScript or its dialects to implement them. This approach is quite successful; how-

ever, it still leaves several problems unsolved. First, JavaScript is a scripting language

and employs many dynamic features that prevent backend runtime environment from

efficient execution, such as dynamic typing. Additionally, when porting existing appli-

cations to JavaScript, especially those with a large codebase where manually translating

source code line-by-line is not feasible, a nontrivial source-to-source compiler is needed

due to the structural difference between native binaries and JavaScript source codes.

To address these problems, the WebAssembly working group was established in 2017

and proposed a new standard for distributing applications over the Internet. WebAssem-

bly focuses on safety, performance, portability and module compactness. These prop-

erties also make it an interesting target for static execution, enabling sandboxed appli-

cations outside of browsers. Although WebAssembly started as an intermediate for-

mat for distributing compiled programs over the Internet, it is not limited to the Web.

The WebAssembly working group, in its famous WebAssembly introduction paper [8],

also shows that WebAssembly can serve as an open standard for embedding in a multi-

1

WebAssmebly
Module
(.wasm)

Parser Frontend SableWasm
Optimizations

Frontend
Code Generator

Backend
Code Generator

LLVM Optimizations

Shared
Libraries

(.so)

WebAssembly
Bytecode

Bytecode
AST

SableWasm
MIR

SableWasm
MIR

LLVM
Intermediate
Representation

Native
Executable
Binary

SableWasm
Runtime Host Program

SableWasm

LLVM Backend

LLVM
Intermediate
Representation

LLVM

Figure 1.1: The SableWasm compiler and runtime

contexts environment. To this end, the WebAssembly community further designed the

WebAssembly System Interface (WASI), which provides a standardized interface for We-

bAssembly modules to access native features such as the file system.

WebAssembly is also an evolving language. Although the WebAssembly commu-

nity has published the minimum viable product (MVP) WebAssembly, the community is

still actively proposing and experimenting with new language features, such as excep-

tion handling and garbage collection. These additional language features are proposed

in language extension proposals that modify the current WebAssembly specification syn-

tactically and semantically. Thus, a well-designed WebAssembly runtime environment

system should be modular and extensible, leaving space for future design changes.

1.1 Contribution

This thesis aims to design and implement a runtime environment that enables WebAssem-

bly to run outside of the browser. To this end, this thesis makes three major contributions.

2

Figure 1.1 illustrates the SableWasm compiler and runtime system. We mark our contri-

butions in this thesis as shaded boxes in the figure.

Implementing a WebAssembly runtime system Our first contribution is a standalone

WebAssembly runtime environment with support for the WebAssembly System Inter-

face (WASI). We first start by implementing a custom extensible parser frontend for We-

bAssembly binary format, shown as the ‘Parser Frontend’ in figure 1.1. We then define a

‘middle-level’ representation (MIR) for SableWasm. To match modern hardware, Sable-

Wasm MIR is a register-based control flow graph representation of the program, while,

on the other hand, WebAssembly operates over a stack-based virtual machine. Hence,

translating between them is nontrivial. Therefore, we design and implement a frontend

code generator that lowers WebAssembly bytecode into SableWasm MIR, shown as the

‘Frontend Code Generator’ in figure 1.1. SableWasm MIR plays a critical role in the Sable-

Wasm system. First, it provides a middle ground where we implement an extensible and

straightforward optimization framework. With the help of the framework, we experi-

ment with several analyses and optimizations on SableWasm MIR. Second, SableWasm

MIR also separates the frontend from the backend. Currently, we implement an ahead-of-

time (AOT) compiler backend using the LLVM compiler infrastructure [15], shown as the

‘Backend Code Generator’ in figure 1.1. However, there are several challenges when low-

ering SableWasm MIR into LLVM intermediate representation. For example, SableWasm

MIR, similar to WebAssembly bytecode, utilizes several abstract high-level concepts such

as linear memory and indirect function calls. These operations cannot be trivially mapped

to LLVM instructions and require runtime library support. Hence, the last component of

SableWasm is a runtime library that provides builtin runtime functions for the generated

modules and defines an easy-to-use interface for the host system, shown as the ‘Sable-

Wasm Runtime’ in figure 1.1.

Adding support for WebAssembly extensions Our second contribution in this thesis is

to experiment and adopt several in-progress WebAssembly language extensions. Sable-

3

Wasm is designed to be extensible and currently implements four post-MVP WebAssem-

bly features. The most interesting one among them is perhaps the fixed-width SIMD

operation extension which defines vector-based operations that can operate on multiple

data simultaneously, packed into special vector registers and supported by modern hard-

ware. The SIMD extension in WebAssembly introduces one additional value type and

approximately 240 new instructions to the specification. As we have discussed earlier in

this section, SableWasm MIR provides a middle ground where we perform optimization

on the program. Therefore, we would like to keep the size of the SableWasm MIR instruc-

tion set simple. To achieve this goal, we carefully design a set of reduction patterns in the

frontend code generator that significantly reduce the number of instructions needed. We

also generalize our backend code generator that targets LLVM by emitting corresponding

vector operation instructions.

Evaluating system performance Our last contribution in this thesis is to investigate

how SableWasm performs and the factors that affect the performance. Here we focus on

three research questions: First, how does SableWasm perform comparing to other existing

WebAssembly runtime implementations? Second, does optimization over the input We-

bAssembly modules affect SableWasm’s overall performance? Finally, does the SIMD op-

eration extension bring performance improvement to the system? To answer these ques-

tions, we analyze the performance of three well-known benchmark suites, Polybench [36],

Ostrich [9], and NPB [33]. We also examine generated LLVM intermediate representations

in SableWasm to search for factors contributing to the slow down in the system.

1.2 Thesis outline

This thesis consists of nine chapters in total, including the introduction chapter. Chap-

ter 2 discusses the background information that helps the understanding rest of the the-

sis. It first presents the motivation for WebAssembly and WebAssembly System Interface

4

(WASI), followed by a brief overview of the LLVM intermediate representation. Chapter 3

to chapter 6 discusses the design of implementation of the SableWasm system. Chapter 3

starts with presenting the custom extensible and efficient parser frontend for WebAssem-

bly binary format. Chapter 4 continues the discussion of SableWasm by describing Sable-

Wasm MIR’s design. Chapter 5 discusses the code generating strategies used when lower-

ing WebAssembly bytecode to SableWasm MIR and the optimization framework. Chap-

ter 5 also presents several optimization passes we experimented with the framework,

such as control flow graph simplification and type inference. Chapter 6 illustrates the last

component of SableWasm, the LLVM backend and the runtime support library. In chap-

ter 7, we investigate the performance of SableWasm by presenting benchmark results and

discussing several possible theories for the slowdown. Finally, chapter 8 discusses related

work and chapter 9 presents our conclusion along with future work.

5

Chapter 2

Background

This chapter provides background information that helps to understand the thesis. We

first revisit the rise of asm.js and its toolchain, Emscripten, followed by an introduction to

WebAssembly and its standardized WebAssembly System Interface (WASI). Finally, we will

give a brief overview of the LLVM compilation framework.

2.1 Emscripten and Asm.js

In the past decade, web-based applications are gaining popularity, and due to the design

of most browsers, programmers tend to choose JavaScript or its dialects to implement

them. One natural problem is how to compile programs that target the native platform

to run over the internet. Making the situation more challenging, programs with a large

codebase, such as games requiring complex video and physical computation, are nearly

impossible to translate line-by-line manually. In 2010, Alon Zakai started the first at-

tempt at translating source code that targets native platforms into JavaScript [34]. After

two years of development, he published Emscripten that translates LLVM intermediate

representation into asm.js, a JavaScript subset [37]. An asm.js program shares a similar

programming model to that which one would expect on the native platform. The detailed

6

asm.js specification is available on the official website 1. We will visit several critical fea-

tures in asm.js with examples in figure 2.1 (page 8). These examples are implementations

of the Adler-32 hashing algorithm used in ZLib compression library [4] 2, in both C and

its corresponding generated asm.js with Emscripten.

Function prologue and type annotation JavaScript is a dynamically typed language.

Hence, a proper implementation needs to verify the types of variables when needed. Al-

though several optimization techniques can eliminate some of the checks and improve the

execution performance, such language features can still incur a significant performance

loss. Asm.js adds type annotations to function parameters and expressions to address this

problem. In figure 2.1b, Emscripten generates parameter annotations for parameters $0 1

and $0 2 at line 2 and line 3 respectively. The trailing bitwise ‘or’ operation against zero

hints that both arguments are integral values since bitwise operations are only defined

for integral values in JavaScript. Emscripten also annotates float-point numbers with

the unary positive operation, ‘+’, which we do not show in the example. A system that

supports asm.js directly can quickly recover the type information from the annotations,

which, in theory, can improve both the compilation and execution performance. On the

other hand, for a system that does not recognize asm.js, the program above is still a valid

JavaScript program, and the type annotations ensure the correct semantics for numeric

operations.

Control flow LLVM employs a register-based intermediate representation with a control

flow graph (CFG). However, JavaScript uses structured control flow and does not allow

arbitrary jump statements similar to one would expect in C. Hence, when translating

LLVM IR to asm.js, Emscripten mimics the branch instructions between basic blocks in

the generated code with JavaScript control-flow statements. Emscripten uses a pattern-

based translation and classifies control flow changes into three categories. In figure 2.1b,
1asm.js specification: http://asmjs.org/spec/latest/
2Revisiting Fletcher and Adler Checksums:

http://www.zlib.net/maxino06_fletcher-adler.pdf

7

http://asmjs.org/spec/latest/
http://www.zlib.net/maxino06_fletcher-adler.pdf

1 uint32_t adler32(void const *buffer_, size_t length_) {
2 uint8_t const *buffer = (uint8_t const *)buffer_;
3 uint32_t a = 1;
4 uint32_t b = 0;
5 for (size_t i = 0; i < length_; ++i) {
6 a = (a + buffer[i]) % 65521;
7 b = (a + b) % 65521;
8 }
9 return (b << 16) | a;

10 }

(a) C

1 function $adler32($0_1, $1_1) {
2 $0_1 = $0_1 | 0;
3 $1_1 = $1_1 | 0;
4 var $2_1 = 0, $3_1 = 0, $4_1 = 0;
5 $3_1 = 1;
6 if ($1_1) {
7 while (1) {
8 $3_1 = (HEAPU8[$0_1 + $2_1 | 0] + $3_1 >>> 0) % 65521 | 0;
9 $4_1 = ($4_1 + $3_1 >>> 0) % 65521 | 0;

10 $2_1 = $2_1 + 1 | 0;
11 if (($2_1 | 0) != ($1_1 | 0)) { continue }
12 break;
13 };
14 $2_1 = $4_1 << 16;
15 }
16 return $2_1 | $3_1;
17 }

(b) asm.js

1 (type $t0 (func (param i32 i32) (result i32)))
2 (func $adler32 (export "adler32") (type $t0)
3 (local $l0 i32) (local $l1 i32)
4 get_local $p1
5 if $I0
6 (set_local $l1 (i32.const 1))
7 loop $L1
8 (i32.rem_u
9 (i32.add

10 (get_local $l1)
11 (i32.load8_u (get_local $p0)))
12 (i32.const 65521))
13
14 end
15 (i32.or
16 (i32.shl (get_local $l0) (i32.const 16))
17 (get_local $l1))
18 return
19 end
20 i32.const 1)
21 (memory $memory (export "memory") 2)

(c) Text-format WebAssembly

Figure 2.1: Adler 32 in C, asm.js and text-format WebAssembly

8

we demonstrate two of the three control-flow structures, if and loop, at line 6 and line 7

respectively. Asm.js also has a third control flow structure, block, which we do not show

in the example. A block structure is similar to a loop structure and can be translated to a

while loop with an always-false condition. A branch instruction referring to the block is

equivalent to a break statement in this case. WebAssembly adopts a similar design, and

we will revisit this in the later section with more details.

Byte array as heap Emscripten uses multiple typed array views that share a single un-

derlying byte array buffer to simulate the heap in a native programming model. In fig-

ure 2.1b, the asm.js example uses HEAPU8, an unsigned byte view over the byte array at

line 8, to access the data passed by the pointer via the first argument. Asm.js also offers

other array views such as HEAPI32 and HEAPF32 which allows programs to access 32-bit

signed integers and single-precision floating-point numbers on the heap. This technique

also inspires the linear memory design in WebAssembly, which we will discuss later in

the chapter with more details.

Emscripten is quite successful. Experiment results show that it can port most of the

C/C++ programs of non-trivial code size to the web with approximately 50-67% of native

performance 3 without any missing significant features.

2.2 WebAssembly

Although Emscripten with asm.js is successful, there are still several problems that re-

main unaddressed. One of them is the parsing overhead. As asm.js is a strict subset

of JavaScript, parsing the generated program is a non-trivial task due to the complexity

of JavaScript grammar. Additionally, because Emscripten emits generated programs in

asm.js, the output size grows significantly faster than the native binary. Another problem

regards the generated programs’ safety, especially when running an untrusted module

3Alon Zakai’s presentation on Emscripten at CppCon:
https://kripken.github.io/mloc_emscripten_talk/cppcon.html

9

https://kripken.github.io/mloc_emscripten_talk/cppcon.html

received over the internet. In 2017, the WebAssembly community established and pro-

posed a new standard for distributing programs over the internet to address these prob-

lems. The design of WebAssembly focuses on safety, performance, portability, and com-

pactness. The introduction paper describes the detailed structure, validation rules [35],

and execution semantics of WebAssembly [8]. Here we will only visit some of the key

points that help understand the rest of the thesis. In figure 2.1c we also present a simple

WebAssembly program that implements the Adler32 hashing.

Module structure WebAssembly modules can have four different kinds of entities: func-

tions, indirect tables, linear memories, and globals. Modules are also able to import and ex-

port entities by names. In figure 2.1c, we define a function and a linear memory and export

them under name adler32 and memory respectively. WebAssembly functions can de-

fine an arbitrary number of local variables and a possibly empty sequence of instructions

as the body. All instruction operates over an implicitly declared stack. The control-flow

will return from the function by either a return instruction or reaching the end of the

body. WebAssembly linear memories have bounds consisting of a pair of integers, rep-

resenting the lower bound and upper bound respectively, 4 in units of 16-KiB pages. In

figure 2.1c, at line 21, we defined a linear memory with a minimal size of 32-KiB. We-

bAssembly linear memory can also associate with zero or multiple data segments. Each

data segment contains a constant evaluated expression, representing the initialization off-

set, and a sequence of bytes that the runtime environment will copy from. WebAssembly

indirect tables are similar to linear memories, but they store function pointers instead of

bytes. A indirect table has a type that consists of an upper and lower bound similar to lin-

ear memory, as well as a function type indicating the type of the function pointers allowed

5. WebAssembly tables also introduce their initializer, element segments. The element seg-

ment is similar to the data segment, but it initializes function pointers instead of bytes.

4The upper bound is optional
5Currently, the function type must be funcref which is a union type of all possible function types.

10

Another difference between linear memories and indirect tables is that indirect tables are

immutable after initialization to ensure the module’s safety 6.

Linear memory Similar to asm.js, WebAssembly programs can access one or multiple

linear memories 7. The memory is unmanaged, and it is the program’s responsibility to

handle the layout correctly. The program can grow the linear memory if needed via the

memory.grow instruction; however, the runtime environment is not obligated to increase

the linear memory. The program can check the result of the command via the instruction’s

return value. Asm.js also allows the growth of the heap byte array. However, due to the

limitations of JavaScript, this operation is usually quite expensive, as there is no efficient

realloc algorithm provided in JavaScript, and it requires allocating a byte array with

a larger capacity and copying byte-by-byte. WebAssembly specification does not impose

requirements on the time complexity of growing the linear memory, yet it encourages

any implementation to avoid copying. Unlike native heap memory, there is no alignment

requirement on load-store instructions; i.e., load-store can start at any byte in the mem-

ory with the probable additional cost for unaligned access. However, there are boundary

checks applied to the linear memory. Any out-of-bound access will result in a runtime

panic. Additionally, WebAssembly specification requires any runtime environment im-

plementation to zero-initialize the linear memory.

Indirect table Asm.js represents function pointers using first-class function values, thanks

to JavaScript. However, in WebAssembly, every entity is referred to with indices repre-

senting references, and value types only consist of integral types and floating-point types

8. Hence, we need something creative to implement the function pointers in WebAssem-

bly. The solution utilizes one special instruction call indirect and indirect tables.

During module initialization, the runtime environment will initialize the indirect table

according to the element section. Each call indirect instruction associates with an in-
6This is subject to change in the reference type extension
7In the current version of WebAssembly, at most one linear memory is allowed within a single module
8WebAssembly may introduce more primitive value types in the future.

11

dex and an expecting type. The runtime environment will perform both a validity check

on the index and a type check against the expecting type. Unlike the linear memory, the

indirect table is not growable at runtime and is currently immutable once the initializa-

tion phase is complete. An indirect table does not limit the function pointers stored to be

internal functions nor even WebAssembly functions. The function pointer can even be a

host native function; many runtime environment implementations utilize this feature to

register native call-back functions to WebAssembly modules.

Structured control flow Another WebAssembly’s key feature is the structured control

structure. Unlike the native binary and most of the bytecode representations that utilize

labels and offsets, WebAssembly has structured control flow instructions and classifies

them into three categories, block, if and loop, similar to asm.js. Each control flow instruc-

tion can optionally associate with a value type, representing the change on the operand

stack once the control block exits 9. A block control flow is perhaps the simplest struc-

ture. It introduces a label index to the context. The label is only referable within the block

construct by indices. If a branch instruction refers to the block’s label, the runtime envi-

ronment will redirect the control flow as if it reaches the block’s end. An if control flow

is similar to the block control flow with two significant differences. One is that it will im-

plicitly consume a 32-bit integer from the stack and choose the branch accordingly. The

other difference is that it can optionally have a false branch. If the false branch is missing,

the runtime environment will redirect the control flow to reach the if’s end, similar to the

block control flow structure. The last control flow structure is loop. The only difference be-

tween the loop control structure and block structure is when a branch instruction refers to

it. When a branch instruction refers to a loop block, the runtime environment will redirect

the control flow to the loop’s beginning instead of the end. In the figure 2.1c, we present

9WebAssembly multivalue extension relaxes the requirement and allows structured control instruction
to have a function type. If a control instruction associate with a function type, the parameter types refer to
the value consumed from the operand stack and result types refer to the value added to the operand stack.

12

the if structure on line 5, and loop structure on line 7. The example does not contain a block

structure, but there is no difference between it and a loop structure at the syntax level.

Generally speaking, WebAssembly’s performance, compared to its native counterpart,

varies significantly from test case to test case. On the browser side, WebAssembly can fin-

ish most test cases within 10% slower than the native version and all test cases within

two times slower [8]. Another test shows similar results for most test cases, except one

case is 2 times to 3.4 times slower than native, depending on the input size [12]. For

generated code size, the community introduction paper claims 85.3% compare to native

implementations. WebAssembly is not only successful in the field of Web-based applica-

tions. It also defines a portable format for distributing programs over the internet, similar

to what we have seen in Java and its virtual machine. GraalVM now has its interpreter for

WebAssembly modules, TruffleWasm [28], and can execute WebAssembly modules with

impressive performance with only 4% slower than WebAssembly reference implementa-

tion in most of the cases, and even 4% faster in PolybenchC.

2.3 WebAssembly Extensions

In the previous section, we presented the core part of WebAssembly published by the

community in late 2016 as a minimal viable product (MVP). Although the WebAssem-

bly MVP is powerful enough to host most of the applications [20], there still exists room

for improvement. These post-MVP proposals enhance the functionality of WebAssembly

by introducing new instructions or modifying existing module constructs. For example,

MVP WebAssembly has no support for exception handling. Thus, when compiling pro-

grams implemented in C++, users need to turn off the compiler’s exception feature explic-

itly. The exception handling post-MVP extension addresses the problem by introducing

a special try block, which enables user-defined stack unwinding. Most post-MVP exten-

sions are still in the early stage of development and may merge into core WebAssembly

in the future. This project implemented several post-MVP features such as integral value

13

sign extension, non-trapping floating-point conversion, multivalue semantics, and fixed-

width SIMD vector operation. In this section, we will quickly visit these post-MVP feature

extensions.

Integral value sign extension MVP WebAssembly only has 32-bit and 64-bit integral

values. However, many programming languages support integers with a smaller width.

Thus, implementing short integral values in WebAssembly is quite awkward. To alleviate

the problem, MVP WebAssembly has instructions that can perform load and store of 8-

bit and 16-bit integers with signed or zero extension semantics. However, what if one

already has a short integer on the stack and would like to perform a sign extension?

Unfortunately, there are no immediate solutions. One possible work-around is to store

the value to the linear memory and then sign extend with the load instruction’s help,

which is quite expensive. The sign extension proposal introduces new instructions that

perform the sign extension for stack values. For example, i32.extend8 s consumes a

32-bit integer from the stack then performs the sign extension to the operand as if the

operand is an 8-bit integer. The proposal also introduces similar instructions for 64-bit

integers.

Non-trapping float-to-int conversion MVP WebAssembly offers floating-point-to-integer

conversion with implicit range checks to fulfill the no-undefined behaviour design goal

of the language. If the desired integer type cannot accurately represent the floating-point

value, the runtime environment should trap. However, in most other languages, such

as LLVM, the conversion yields an undefined result without trapping in such scenarios.

Thus, if one wants to simulate the conversion between floating-point and integers faith-

fully, an if block with manual checks is usually required. This proposal introduces satu-

rated value conversion to address the problem. If the desired integer type cannot repre-

sent the resulting number, the instruction employs saturated semantics. More specifically,

if the floating-point value is more significant than the maximum representable value of

the integer type, the maximum value is returned, and the same holds in the case of value

14

underflow. This extension also lays the foundation of SIMD vector operations to achieve

more hardware-like semantics, which we will see later in this section.

Multivalue The multivalue proposal focuses on two aspects of WebAssembly, the func-

tion return value and the types of structured-control-flow constructs. In MVP WebAssem-

bly, the function can have at most one return value. The proposal generalizes the function

type by allowing functions to return multiple return values. For structured-control-flow

constructs, MVP WebAssembly requires that any instructions within the construct cannot

consume stack values outside of the stack frame. Additionally, the construct can put at

most one value onto the stack when it exists. One advantage of having such strict rules

on structured-control-flow constructs is that the validation rule is trivial, and the runtime

system can compute the stack height with minimal effort. However, this has its draw-

backs. For example, this method causes the bloat of local variables. When entering a

structured-control-flow construct, the program needs to push all the values it may need

to the local variables, then load them back to the stack later, which is quite expensive.

The multivalue proposal relaxes such constraints by allowing the control-flow-construct

to have a function type. Function types’ parameter types indicating the type of values

that the construct will consume, and the result types hint at the type of values that will be

pushed onto the stack.

SIMD vector operations Single-instruction-multiple-data (SIMD) is a powerful tool for

implementing high-performance programs. Many modern compilers, such as GCC, have

auto-vectorization analysis and transformation to automatically rewrite scalar codes in

parallel form [23]. Before WebAssembly, many attempts have been made to implement

SIMD operations over the internet, most notably, SIMD.js 10. The design of the SIMD vec-

tor operation proposal is based on the design of SIMD.js. Currently, the proposal focuses

on 128-bit vector operation, which is widely available on different hardware architectures

such as SSE [27], and ARM Neon [11]. The proposal introduces a new value type v128

10https://hacks.mozilla.org/2014/10/introducing-simd-js/

15

https://hacks.mozilla.org/2014/10/introducing-simd-js/

representing a 128-bit vector. Note that the vector type does not contain any knowledge

about the element type and how to interpret the lane, which is the number and the type

of elements packed into a single vector, depends on the instruction. The SIMD vector

operations proposal takes instructions from the intersection among different hardware

architectures to ensure the module’s portability. For example, i32x4.add will interpret

both operands as packed 32-bit integers and perform lane-wise addition between them,

while f64x2.sqrt will interpret its operand as a packed double-precision floating-point

numbers. Most of the instructions are a direct generalization of the scalar operations in

MVP WebAssembly. One notable difference is the floating-point conversion semantics.

In MVP WebAssembly, the conversion will trap in the case of overflow or underflow. In

contrast, in the SIMD vector proposal, packed floating-point value conversions follow

similar semantics to those defined in the non-trapping float-to-int conversion proposal.

2.4 WebAssembly System Interface (WASI)

In the previous section, we introduce WebAssembly as a new format for delivering pro-

grams over the internet. The question then arises: can we push WebAssembly beyond the

browser? On the other hand, if we want to compile the native program into WebAssem-

bly, how do we translate operating-system-specific commands, such as file access? Taking

a step further, how do we ensure the safety of the generated program? In the early days

of development, Emscripten generates JavaScript glue code that mimics the operating

system syscalls. However, this ad-hoc solution results in messy and nonportable code.

To address these problems, the WebAssembly community started the process of stan-

dardizing the system interface for modules 11. The WASI interface design focuses on two

aspects, portability and safety, following the WebAssembly design philosophy. The in-

terface is still under active development at the time of thesis writing. In this project, we

implement the interface functions only if they are needed while designing the backend

11WASI initial announcement:
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/

16

https://hacks.mozilla.org/2019/03/ standardizing-wasi-a-webassembly-system-interface/

WebAssembly Runtime

Module WASI

WASI
Standardized

Interface Operating
System

Runtime
Implementation

__wasi_proc_exit exit

Figure 2.2: A illustration of WASI

library to be extensible. The official API documentation provides a detailed view on the

design of the interface 12. Figure 2.2 gives a general illustration of the relationship among

the WebAssembly module, the runtime environment, and WASI. Here we will focus on

several key points of the design.

WASI ABI model WASI classifies modules into two categories, commands and reactors.

A command module has a single entry function, namely start and all the other exported

functions are hidden from the user. On the other hand, a reactor module has an optional

initialization function named initialize. If the initialization function is present, the

runtime environment is obligated to invoke such a function before calling others. The

runtime environment may invoke either the start or initializer function once during a

module’s lifetime. Additionally, every WASI-compatible model needs to export a lin-

ear memory under the name memory, and all addresses referred by modules are offsets

within this linear memory. Similarly, modules will also export an indirect table under

the name indirect function table. The runtime environment will pass function

pointers through the indirect table. Additionally, WASI requires the runtime environment

to provide all WASI API under module name wasi snapshot preview1 13.

Sandbox As we described above, WASI API follows WebAssembly’s design philoso-

phy, safety, performance, portability, and compactness. WASI modules execute under a

12WASI API documentation:
https://github.com/WebAssembly/WASI/blob/main/phases/snapshot/docs.md

13This will change in the future, as WASI is still in the standardization phase.

17

https://github.com/ WebAssembly/WASI/blob/main/phases/snapshot/docs.md

capability-based security system to ensure the safety of the host environment. The host

runtime system will provide a sandboxed environment for each model. For example,

for file system access, WASI standard library C works with a virtual file system for each

module with the help of libpreopen 14 15.

Non-invasive and extensible In our discussion above, one may notice that a WASI-

compatible module is also a valid WebAssembly module on its own. WASI does not intro-

duce new instructions or sections to the module; instead, it provides additional function-

alities through imported external functions. The design of WASI is also highly extensible

and split into separate modules. Currently, the WASI working group focuses on devel-

oping the core part that provides most of the POSIX interface, but it may add additional

features in the future.

2.5 LLVM Compiler Infrastructure

The last section of this chapter briefly overviews the compiler pipeline design and LLVM

compilation framework. Designing a robust and efficient compiler in terms of both gen-

erated code and compilation speed is challenging. The LLVM compiler framework [15]

alleviates the problem by introducing a standardized intermediate representation (IR) be-

tween the compiler frontends and backends. Backend developers can target their analysis

and transformations on the IR instead of specializing in different languages. On the other

hand, frontend developers can translate the source language into the IR and expect the

backend to support multiple target platforms with efficient code generation. Figure 2.3

illustrates the LLVM compilation pipeline. In this project, we are more interested in the

frontend of the framework. The LLVM official documentation and tutorial provide full

details of their intermediate representation 16. Here we will only discuss several major

14libpreopen: https://github.com/musec/libpreopen
15In the more recent version of WASI libc, libpreopen is no longer required.
16LLVM Language Reference Manual: https://llvm.org/docs/LangRef.html

18

https://github.com/musec/libpreopen
https://llvm.org/docs/LangRef.html

Source LLVM IR

Language
Specific
Frontend

Analysis and
Transformation

LLVM Frontend

Generic
Machine

Instruction

IR
Translator

Legalizer,
Register

Selection, ...

Machine
Instruction

Instruction
Selection

Peephole
Optimization,

LLVM Backend

LLVM

Figure 2.3: A illustration of LLVM compilation pipeline

differences between LLVM IR and WebAssembly that help understand the thesis. We

also provide an implementation of Adler-32 hashing in LLVM IR generated with Clang

in figure 2.4.

Register-based IR against stack-based IR In WebAssembly, all instructions operate

over an implicitly declared stack. For example, in figure 2.1c at line 20, a 32-bit inte-

ger constant instruction, i32.const, will push the constant value on the stack, and a

32-bit add instruction, i32.add will pop two values off the stack as left-hand-side and

right-hand-side operands accordingly, then push the sum onto the stack. On the other

hand, LLVM utilizes a register-based IR, which is more similar to what one would expect

on a native machine. In figure 2.4, each value for example, %0, %1, etc is a virtual regis-

ter. Later in the backend, the register allocation pass will map the virtual registers into

physical registers using register allocation algorithms.

Control flow, basic block, and φ instruction As we saw in previous sections, WebAssem-

bly has specialized instructions to manage the program’s control flow. On the other hand,

LLVM took a more traditional approach to the problem. In 1991, researchers from IBM

introduced static single assignment (SSA) form to ease the difficulty of writing program

analysis and transform passes [2]. In SSA, each value has its definition exactly once, and

19

1 define i32 @adler32(i8* %0, i64 %1) {
2 2:
3 %3 = icmp eq i64 %1, 0
4 br i1 %3, label %6, label %10
5
6 4: ; preds = %10
7 %5 = shl nuw i32 %20, 16
8 br label %6
9

10 6: ; preds = %4, %2
11 %7 = phi i32 [1, %2], [%18, %4]
12 %8 = phi i32 [0, %2], [%5, %4]
13 %9 = or i32 %8, %7
14 ret i32 %9
15
16 10: ; preds = %2, %10
17 %11 = phi i64 [%21, %10], [0, %2]
18 %12 = phi i32 [%20, %10], [0, %2]
19 %13 = phi i32 [%18, %10], [1, %2]
20 %14 = getelementptr inbounds i8, i8* %0, i64 %11
21 %15 = load i8, i8* %14, align 1
22 %16 = zext i8 %15 to i32
23 %17 = add nuw nsw i32 %13, %16
24 %18 = urem i32 %17, 65521
25 %19 = add nuw nsw i32 %18, %12
26 %20 = urem i32 %19, 65521
27 %21 = add nuw i64 %11, 1
28 %22 = icmp eq i64 %21, %1
29 br i1 %22, label %4, label %10
30 }

Figure 2.4: Adler 32 in LLVM

hence, the use-definition chain (UD chain) is trivial to compute. The UD chain presents

the relationship between variable declarations and variable-uses in a graph. It helps the

analysis pass to efficiently pinpoint the variables and identify if the variable declaration

is necessary. However, in most programs, this information needs to be merged from dif-

ferent control-flows; for example, in a for-loop, the loop counter may be defined in the

loop initialization and on each loop iteration. The SSA introduces a special instruction,

φ instruction, explicitly marking the merge of definitions from different execution paths.

LLVM adopts this design principle in its intermediate representation. In figure 2.4 we

have multiple φ instructions. For example, at line 11 and 12, value %7 and %8 represent

a and b accordingly. We know that a and b initialized to 0 and 1 upon entry and updated

on each iteration from our C implementation. In the generated LLVM IR, these merges

20

induce φ instructions. For a (%7), if the control flow is from the beginning of the function,

we set its value to 1, and on the other hand, if the control flow is from the loop iteration,

we update its value accordingly. The different paths inducing a φ instruction are indicated

by basic block numbers. A basic lock groups the maximum number of instructions with-

out control flow transfer. At line 11, we see the φ instruction merges the definition coming

from the %2 which is the entry block and %4. Additionally, φ instructions must appear

before any other instructions within the same basic block, as they model the merging of

values and do not have any execution semantics.

Memory and load-store instruction The last significant difference between WebAssem-

bly and LLVM IR is on the memory and its related instructions. As we discussed earlier, a

WebAssembly module can have access to multiple linear memories 17. One might confuse

WebAssembly’s linear memory with the concept of address space in LLVM IR. LLVM IR

associates each address with an integer value, namely, the address space. However, un-

like linear memory in WebAssembly, which has no difference between one and another,

the LLVM backend interprets the address space differently for various architectures. For

example, in the PTX backend, a backend target for Nvidia GPUs, the implicit address

space 0 refers to traditional main RAM, and address space 4 represents the address shared

by both main RAM and GPU RAM 18. For most architectures, the implicit address space

is the only address space available to the programmer. Another difference between We-

bAssembly and LLVM IR is in the design of load-store instructions. Load store instruc-

tions in both languages have an attribute of alignment. However, LLVM IR interprets this

attribute differently from WebAssembly. In WebAssembly, the alignment attribute acts

as a hint to the runtime environment. If the alignment hint is unsuitable, the runtime

environment should still proceed under a possible penalty in the performance. However,

in LLVM IR, the alignment attribute is a requirement. Any memory access that violates

17In the current version of WebAssembly, only one linear memory is allowed per module
18An introduction for PTX backend:

https://llvm.org/devmtg/2011-11/Holewinski_PTXBackend.pdf

21

https://llvm.org/devmtg/2011-11/Holewinski_PTXBackend.pdf

the alignment attribute will result in undefined behaviour, usually a runtime panic. A

load-store instruction in LLVM IR with alignment set to one will never fail. However, it

will be significantly less efficient as the backend will likely generate byte-wise load and

concatenation instructions.

We visited some of the background information that helps with understanding the

thesis in this chapter. The next chapter will start from the beginning of the system imple-

mentation, the WebAssembly parsing and validation frontend.

22

Chapter 3

Frontend

This chapter describes the frontend of SableWasm. The frontend consists of two parts, the

bytecode parser and the validation pass. WebAssembly is a continuously evolving lan-

guage, and its community might add new instructions in the future. Hence, the design

of the parser and the bytecode validation phase closely follows WebAssembly’s specifica-

tion and is modular to ensure the framework’s extensibility. Additional functionalities are

provided via a read-only view of the module structure. The design of the parser and the

validation phase focuses on performance, both in execution time and memory footprint.

3.1 Bytecode Parser

One of WebAssembly’s binary format design goals is to be simple to parse. Although

open-source bytecode parsing and validation libraries have become available at this point,

such as WABT 1 provided by the WebAssembly community, there was no suitable library

at the time when the project starts. Thus, for SableWasm, we implemented our bytecode

parsing frontend instead. The bytecode parser consists of three components: the byte-

source reader, WebAssembly bytecode parser and the parser delegate. This section will

1WebAssembly Binary Toolkit: https://github.com/WebAssembly/wabt.git

23

https://github.com/WebAssembly/wabt.git

WASMReader Parser«interface»
Reader

«interface»
CustomSectionParser

«interface»
ParserDelegate

«interface»
ExtensionParser

Name

Producers

NonTrappingFPToInt SIMD

ModuleBuilder

.wasm

Figure 3.1: SableWasm parser

give a brief description of each component, and figure 3.1 presents a general illustration

of the parser design.

Byte-source reader The byte-source reader consists of two parts, the byte-buffer reader

and the WebAssembly reader. The byte-buffer reader provides essential functionalities

such as reading and skipping ahead. Additionally, the byte-buffer reader also needs to

support rewind and enforce an end-of-stream barrier. Any out of bound access, either

beyond the barrier or if the byte stream is exhausted, will signal via exceptions. On the

other hand, the WebAssembly reader provides a richer interface to the parser, such as the

ability to decode LEB-128 encoded integers and parse WebAssembly value types. The

WebAssembly reader is also responsible for validating the result before passing it to the

parser. In the case where the result is invalid, the reader throws exceptions similar to the

byte-buffer reader.

WebAssembly parser WebAssembly parser is the kernel part of the parsing framework.

As we discussed earlier in this chapter, one of the primary design goals of the frame-

work is its extensibility. Hence, the SableWasm parser is modular and consists of three

parts: the parser core, the custom section parser and the instruction extension parser. The

grammar for the WebAssembly binary representation is quite simple, and therefore, the

24

parser core implements a simple top-down recursive descent parser with a single byte

look-ahead.

Custom sections are a special section defined in the WebAssembly standard. They are

essentially a binary data chunk tagged with a string name. How to interpret the binary

data can be different in each case. These custom sections can either be standardized by

the community or defined as specific to a toolchain. In this project, we implement two

custom sections standardized by the WebAssembly working group, namely Name section

and Producer section. The Name section gives human-readable names to functions and

their local variables that help with program debugging. The specification does not require

these names to be the same as the import or export names. There is no direct support for

more detailed debug information encoding in WebAssembly at the time of thesis writing;

however, extensions are working on this problem, such as DWARF for WebAssembly 2.

The Producer section is relatively simple. It only encodes information about the toolchain

that generates the module, such as the toolchain name and version. All custom section

parsers in SableWasm are derived from the base class CustomSection. The parser core

will dispatch the binary chunk to the corresponding custom section parser based on the

name tag. Each custom section parser manages its results and does not communicate to

the parser delegate directly.

Instruction extension parsers focus on another different aspect of the WebAssembly

module. In the background section, we have visited several extensions that merged with

the WebAssembly specification. A quick reminder, WebAssembly extensions can insert

or modify the instructions defined in the minimum-viable-product (MVP) specification.

The SableWasm WebAssembly parser employs instruction extension parsers to address

this problem. When the parser intends to parse an instruction, it will iterate over all its

instruction extension parsers in a chained manner. If the instruction opcode is not recog-

nized by any registered instruction extension parser nor in the minimum-viable-product

specification, the parser will signal the error by throwing an exception. An instruction

2DWARF for WebAssembly: https://yurydelendik.github.io/webassembly-dwarf/

25

https://yurydelendik.github.io/webassembly-dwarf/

extension parser can also override the default behaviour for MVP instructions by han-

dling instructions early, though, in the current version of WebAssembly, no extensions

modify the semantics of these instructions. In this project, we implement two instruc-

tion extension parsers, the non-trapping-float-to-int conversion parser and SIMD parser,

which handles the instructions introduced by the extensions as their names suggest.

Parser delegate The last part of the SableWasm WebAssembly bytecode parser is the

parser delegate. The parser delegate and the parser core directly implement the typi-

cal delegation pattern seen in many other projects, separating the parsing logic from the

heavy lifting of module construction. One can implement a validation pass at this level

without module construction. However, in this project, we implement our bytecode val-

idation pass after the module construction, giving space for further projects focusing on

bytecode-level transformation. We will discuss the implementation of such a validation

pass later in the chapter.

In this section, we gave a brief overview of the parser framework introduced in Sable-

Wasm. In the next section, we will discuss the WebAssembly bytecode representation

used in the project and several techniques to improve the performance and ensure flexi-

bility.

3.2 WebAssembly Bytecode Representation

The WebAssembly specification provides compact representations in both binary and text

formats [8], and might subject to change in the future. In SableWasm, we implement our

bytecode representation as close to the specification as possible. Hence, in the future,

if the community alters the specification, we can straightforwardly update the bytecode

representation without introducing extra complexity. In figure 3.2, we present an illus-

tration of the bytecode representation used in SableWasm. The WebAssembly bytecode

representation in SableWasm consists of three layers: the module, the entities, and the

26

ModuleBuilder WebAssembly
Modulebuild

1

FunctionType Exports

WebAssembly
Module View

n..

... ...

WebAssembly Entities

Function
... ...

Instruction

Unreachable

... ...

I32x4ExtAddPairwiseI16x8U

Extends

Extends

WebAssembly
Instructions

Figure 3.2: SableWasm bytecode representation

instructions, which we will discuss in detail later in this section. Compared to the rep-

resentation given in the WebAssembly specification, the only difference we have is the

Function. The standard WebAssembly bytecode representation splits the function sec-

tion into two different sections, function and code, to achieve its one-pass validation goal.

The function section contains the type of all functions defined in the module, similar to

function declarations in other programming languages. Later in the module, the code sec-

tion defines them. On the other hand, in SableWasm, we merge these two sections into

a single Function object. A Function in SableWasm bytecode representation contains

both its type and body definition.

WebAssembly module view The WebAssembly module structure only serves as a stor-

age container for the bytecode representation and itself does not provide an interface to

the user, except by retrieving entities by index. Additionally, the WebAssembly standard

binary format focuses more on compactness instead of usability, which leads to complex-

ity when retrieving the information. For example, to avoid duplication, the function types

are stored in their own section, namely, the type section. Later in the module, any refer-

27

ence to the type becomes indices within this section. Another example is entity indices.

The WebAssembly specification requires that every import entry in the import section

implicitly introduces an index in its corresponding class. These indices should come be-

fore any definition introduced in the module. These two rules suggest that to retrieve

an entity by index, one should first iterate over all the imports and then locate the en-

tity accordingly, which is a relatively expansive operation. To address these problems,

we implement a read-only view of the WebAssembly module that caches the indices and

provides additional features.

Instructions SableWasm takes a traditional ‘abstract syntax tree’ approach to bytecode

instruction representation. The frontend represents each instruction using a correspond-

ing class derived from a common base class, namely Instruction, and an expression

with a vector of instruction pointers. One observation is that the heap memory us-

age grows rapidly, as each instruction requires a unique heap-allocated object, which

is not optimal. In WebAssembly, instructions operate over an implicitly defined stack,

and for most of the operations, there are no operands attached to them. For example,

F32x4Nearest has no operand; it will pop a value from the stack, treat it as a vec-

tor of packed single-precision floating-point values, round them to the nearest integer,

and finally push the result back to the stack. From the bytecode representation point of

view, there is no difference between multiple instances of the same instruction. Hence,

we use pointers that point to object singletons to represent instructions without operands

to reduce memory consumption. However, this introduces a problem in distinguishing

a pointer that points to an object from one referring to an actual heap-allocated object

which requires memory deallocation. To address this problem, we use tagged pointers.

For a non-heap allocated singleton object, we tag the least significant bit in the pointer

with zero; and on the other hand, we tag that of a heap-allocated object pointer with one.

Later, we only need to examine the pointer’s least significant bit within the destructor and

deallocate memory when needed. With tagged pointer techniques, we can significantly

28

WebAssembly
Module View ExprValidationVisitorExprValidation

Context

Operand StackLabel Stack

TraceCollector

«interface»
ValidationError

WellformedError

TypeError

Figure 3.3: SableWasm validation pass

reduce the memory needed to store the bytecode representations while maintaining their

polymorphic nature. As less memory allocation is needed, we also observe performance

improvement in terms of execution time, which we will later see in this chapter.

This section gave an overview of the bytecode representation used in SableWasm and

several techniques to improve its performance. In the next section, we will move to the

validation pass implementation in SableWasm.

3.3 WebAssembly Bytecode Validation

The WebAssembly specification defines detailed static validation rules both for well-

formedness and type-soundness. Similar to the parser framework, we implement our

validation pass as close to the specification as possible. If there are changes to the spec-

ification in the future, we can adopt them with minimal effort. The validation pass im-

plementation consists of three parts: the validation context, the validation visitor, and the

trace collector as illustrated in figure 3.3. Later in the section, we will give a brief intro-

duction to each of the components. The detailed validation rule, both well-formedness

and type-soundness, are listed in the WebAssembly introduction paper [8], and a separate

29

paper that focuses on validation [35]. Note that these two papers only present the valida-

tion rules for the minimum viable product (MVP) WebAssembly and each extension may

modify the specification. The additional validation rules introduced by the extensions

adopted by SableWasm are relatively trivial. Hence, we will not give a detailed descrip-

tion here, and one should consult the extension proposals for detailed information.

Validation context The validation context implements the context defined in the We-

bAssembly specification. It provides an easy way for the validation visitor to access

the WebAssembly entities’ declarations. The validation context itself does not perform

any error signalling. The validation context also manages the operand stack and the la-

bel stack. The operand stack stores the type information gathered from the instruction

within the expression while the label stack keeps track of the signatures of the control

flow structures. The operand stack also records the requirements generated from type

variable sequences and checks if there are contradictions among them.

Validation visitor The validation visitor is the core driver part of the validation pass. It

implements all the validation rules for each instruction and derives from the visitor tem-

plate. In the current state of implementation, the design of the validation visitor is not

modular, and hence, if additional instructions are added to the project later, direct modi-

fication is required. The validation visitor also handles all the error signalling. However,

it does not construct the error objects by itself. The task is deferred to the trace collector.

For most of the instructions, the validation rule is quite simple, involves only popping

and pushing values to the operand stack. Currently, the validation visitor will stop at the

first error it encounters due to the WebAssembly validation rules’ design.

Trace collector The last part of the validation pass implementation is the trace collector.

It locates the position of the instruction that currently undergoes validation. It first keeps

track of the section where the instruction lives with an enumeration and uses a stack to

track how to locate it. Every time the validation visitor enters a nested construct such

30

as if, block or loop, it pushes the construct to the site stack and pops when a nested

expression finishes validation. If the validation visitor locates an error, the trace collector

will build the error by moving the trace stack into the error object.

In this section, we presented the validation pass implementation in SableWasm. In the

next section, we will perform some experiments to evaluate the system’s performance in

terms of both execution speed and memory footprint.

3.4 Performance Evaluation

This section presents the performance benchmark comparison between the SableWasm

parser frontend and the WebAssembly binary toolkit (WABT) offered by the WebAssem-

bly community group. The benchmarks focus on both the execution time and memory

footprint. We will first present the benchmark setup and then evaluate the data collected

from the experiment.

Benchmark setup Experiments were performed on a server with a six-core Intel Core

processor at 3.7 GHz standard clock frequency and an L3 cache of 12MiB. The server runs

Ubuntu 18.04 with Linux kernel version 4.15.0 and 32GiB of memory. For the bench-

mark subject, we choose Pyodide 3, a WebAssembly implementation of Python 3.8. The

project has reasonable complexity, and the size of the module is quite significant, which

reduces the measurement errors during the benchmark. The WebAssembly binary toolkit

(WABT) we used during the benchmark is version 1.0.23, and we perform module valida-

tion with its wasm-validate command. This command should parse the WebAssembly

module, construct an internal bytecode representation, and finally perform a validation

pass over it. This procedure is similar to what we used in the SableWasm frontend. For

the execution speed experiment, we time the execution speed with the shell builtin time

command. We perform ten runs for each implementation in total and then compute the

3Pyodide project: https://github.com/pyodide/pyodide

31

https://github.com/pyodide/pyodide

(a) SableWasm

(b) WABT

Figure 3.4: Frontend memory footprint comparison

32

average execution speed. For memory footprint, we use the Massif tool provided by

Valgrind [22]. Massif is a heap profiler that collects heap memory usage throughout a

program lifetime, which we will use to compare two implementations.

Benchmark result We will go over the finding over the execution speed first and then

analyze the memory footprint. Table 3.1 gives the result of the execution speed bench-

mark. The data is relatively consistent over a total of ten runs, where the SableWasm

frontend achieves around 1.5x to 1.7x speedup compared to wasm-validated provided

by WABT. On average, the SableWasm frontend is 1.6x times faster than WABT’s imple-

mentation.

Run SableWasm WABT Speedup

Run #1 0.311 0.523 1.682
Run #2 0.308 0.511 1.659
Run #3 0.307 0.511 1.664
Run #4 0.329 0.513 1.559
Run #5 0.336 0.520 1.548
Run #6 0.317 0.534 1.685
Run #7 0.315 0.518 1.644
Run #8 0.335 0.522 1.558
Run #9 0.311 0.513 1.650
Run #10 0.335 0.574 1.713
Average 0.320 0.524 1.635

Table 3.1: Frontend execution speed comparison

On the topic of memory footprint, figure 3.4a and figure 3.4b shows the memory con-

sumption trace for SableWasm and WABT, respectively. As we can see from the figures,

SableWasm consumes approximately 108MiB at peak while WABT uses around 506MiB,

suggesting a 4.6x reduction in memory footprint. More specifically, SableWasm spends

about 38MiB for bytecode representation, and WABT takes roughly 64MiB, indicating a

1.7x reduction for bytecode representation only. Note that in SableWasm’s heap memory

trace, we can accurately determine the memory consumption of bytecode representation

using debug symbols. However, this is not the case for WABT, where the debug infor-

33

mation is stripped from the executable. In this experiment, we estimate the memory

consumption for bytecode representation via the vector that contains the opcode.

Overall the SableWasm frontend implementation performs better than WABT in terms

of both execution speed and memory footprint. Of course, SableWasm is a static compiler

that will only perform parsing and validation at compile-time and does not affect the

overall execution time for emitted executables. However, in the future, if one would like

to implement a just-in-time (JIT) style compiler, the SableWasm parsing and validation

frontend can effectively improve the response time of the JIT compiler.

We visited the design and implementation of the SableWasm frontend, which takes

care of parsing, validating and constructing a bytecode representation in this chapter. In

the next chapter, we will move to the next phase in the SableWasm compilation pipeline,

the middle-level intermediate representation.

34

Chapter 4

Middle-level Intermediate

Representation

This chapter describes SableWasm’s middle-level intermediate representation (MIR), which

has a critical role in the entire compilation pipeline. The MIR acts as a middle ground

between the WebAssembly bytecode frontend and various possible backends. Currently,

SableWasm only implements one backend that utilizes the LLVM compilation framework,

but adding more backend support should not require significant modification on the MIR.

It also implements an analysis and transformation framework where we perform several

optimizations over the MIR. We will first go over the overall design of the MIR, and later

move to the translation rules and analysis framework in the chapter 5.

In the previous chapters, we covered the design of WebAssembly bytecode. A quick

reminder, WebAssembly is a stack-based intermediate representation (IR) where all in-

structions operate over an implicitly declared operand stack. There are several advan-

tages of a stack-based IR. Perhaps the most important one is its portability. A stack-based

IR makes fewer assumptions on the machine than a register-based one. One can even

provide an implementation for a hypothetical device with only one register. Another ad-

vantage is the code size. Experiments show that, in general, a stack-based IR is smaller

35

in size than its corresponding registered version [30]. When designing a binary format

that ships executables over the internet, the stack-based IR seems to be a better choice for

WebAssembly.

Nevertheless, there are no silver bullets: a stack-based IR design also has its draw-

backs. One of them is the difficulty faced when performing code analysis and transfor-

mation over the module. As for each instruction, its operands implicitly come from the

stack; the value use-definition relationship between instructions is not apparent to the

analysis, and recovering such connection between instructions from the IR is not a trivial

task.

On the other hand, we have the register-based intermediate representation, commonly

abstracted to assume an infinite number of registers and requiring a register allocation

algorithm to map them to actual, physical registers. For each instruction in register-based

IR, it has its operand encoded in the instruction. Hence, the use-definition relationship

will become explicit to the analysis and transformation.

The main design goal for SableWasm MIR is to provide an analysis platform for the

entire compiler system. Thus, we implement our MIR as an infinite register machine.

We also take a traditional approach in various other aspects. For example, instead of

using the structured control flow similar to what WebAssembly offers, we use control-flow

graphs (CFGs) to represent the relationship between basic blocks. The SableWasm MIR

is also in single static assignment (SSA) form [2], as covered in the background chapter.

The design for instruction and module-level entities in SableWasm MIR is quite similar

to what WebAssembly instruction offers. One can view the SableWasm MIR as a mixture

of the target LLVM intermediate representation and the source WebAssembly bytecode.

We also adopt several design features from LLVM IR into MIR, such as automatically

managed use-site lists, which provide each AST node with an efficient way to access their

use sites. In SableWasm MIR, all elements are derived from the base class ASTNodewhich

implements these features that are helpful later in MIR analysis and transformation.

36

1 @export memory
2 memory %memory:0 : {min 2}
3
4 table %table:0 : {min 1, max 1} funcref
5
6 global %global:0 : var i32 = i32 66560
7
8 function %fibonacci : [i32] -> [i32] {
9 {(arg)%0:i32}

10 #pred = {}
11 %entry:
12 %1 = local.get (arg)%0
13 br.table %BB:1 0:%BB:2 1:%BB:0
14
15 #pred = {%entry}
16 %BB:0:
17 %2 = const i32 1
18 br %exit
19
20 #pred = {%entry}
21 %BB:1:
22 %3 = local.get (arg)%0
23 %4 = const i32 -1
24 %5 = int.add %3 %4
25 %6 = call %fibonacci(%5)
26 %7 = local.get (arg)%0
27 %8 = const i32 -2
28 %9 = int.add %7 %8
29 %10 = call %fibonacci(%9)
30 %11 = int.add %6 %10
31 local.set (arg)%0 %11
32 br %BB:2
33
34 #pred = {%BB:1, %entry}
35 %BB:2:
36 %12 = local.get (arg)%0
37 br %exit
38
39 #pred = {%BB:2, %BB:0}
40 %exit:
41 %13 = phi i32 [%2, %BB:0] [%12, %BB:2]
42 ret %13
43
44 }

Figure 4.1: Fibonacci in translated SableWasm MIR

37

Module

Memory Global ElementDataFunction Table

BasicBlock «interface»
InitializerExpr

Figure 4.2: SableWasm MIR Module-level entities

Figure 4.1 shows a simple function that calculates Fibonacci numbers with a recursive

method in SableWasm MIR. With the help of the figure, we will go through the detailed

design of SableWasm later in the chapter. We will first present the module-level entity and

their initializer expressions, such as functions, then move to the design of each instruction

defined in MIR.

4.1 MIR Module Entities

SableWasm module-level entities are the top-level elements in a translation module. They

are direct implementations of the WebAssembly module entities defined in the specifica-

tion. Figure 4.2 presents a general illustration of the SableWasm module-level entities. In

this section, we will cover the design of each entity and compare it with its WebAssembly

correspondent. All SableWasm module-level entities can optionally have import and ex-

port annotates, except data and element. These annotations correspond to the import

and export entries defined in the WebAssembly specification.

Function In figure 4.1, we have a function definition at line 8. A function declaration

in SableWasm provides information about the type, local variables, and name. A func-

tion definition should satisfy all the function declaration requirements and, in addition,

38

provide a function body using basic blocks. The design of the function declaration and

definition in SableWasm is quite similar to that of WebAssembly. The only major differ-

ence is how to represent the function body. We will come back to this in the later sections

within this chapter when we discuses the design of SableWasm MIR instructions.

Global SableWasm’s global variable declaration and definition follow the design in We-

bAssembly. In SableWasm, we relax several of the constraints defined in the WebAssem-

bly specification and its extensions. In the SIMD extension proposal, the 128-bit vector

type, v128, is only suitable within the function body. There is no direct way to pass a

vector value to the host environment, as there is a lack of standard representation for

128-bit packed vectors in JavaScript 1. In SableWasm, we treat all primitive types uni-

formly. Thus, a global variable can contain an integral value, a floating-point value, or

even a packed SIMD vector. The type for the SableWasm MIR global variable follows the

specification in WebAssembly; it consists of a value type and a constness modifier. In fig-

ure 4.1, we have a global variable definition at line 6, which introduces a mutable 32-bit

integral value. All global variable definitions in SableWasm must provide a value ini-

tialization via an initializer expression. In SableWasm MIR, all initialization expressions

are constant expressions, meaning that the host system can deduce the resulting values

at the module initialization phase. At runtime, the host system will first evaluate these

expressions and then initialize the global variables accordingly. We will come back to the

initialization expressions in detail later in this chapter.

Memory and Data Memory and Data are implementations of the WebAssembly linear

memory and its initializer, respectively. One might think that there is no need to separate

the memory initializer from the memory entity definition, as in WebAssembly specifi-

cation, all data section entries must provide a valid linear memory index. In the early

version of SableWasm, we indeed adopt such implementation. However, this approach

might be subject to a significant change in an extension that might soon merge to the We-

1This might subject to change in the future.

39

bAssembly specification. The WebAssembly bulk memory operation extension proposal

2 introduces new instructions, such as memory.fill that directly refers to a data sec-

tion segment. Moreover, the proposal relaxes the constraints on the linear memory index.

Now the index can behave as a flag indicating whether the data segment itself is active

or not and no longer serves as a linear memory index. Hence, to make our framework

‘futureproof’, we separate linear memory declarations from their initializers. Figure 4.1

presents a linear memory definition at line 2. SableWasm memory entities also adopt

WebAssembly’s linear memory type. The type consists of a pair of unsigned integers,

indicating the lower bound and upper bound of the memory size in WebAssembly pages.

The example above defines a memory with a minimal size of 2 pages, 128KiB, and ex-

ports it under the name ‘memory’. It, however, does not provide any example for data

initializers, although they are quite easy to understand: a data initializer is essentially a

binary chunk with an initialization offset, and is semantically equivalent to a data section

entry in an ELF file.

Table and Element SableWasm’s table and element entity implement the indirect table

and its initializer, namely element segment, accordingly. They follow the same princi-

ple as the memory and data entity in the previous section. Currently, like a data seg-

ment entry, WebAssembly’s element section entry must refer to a valid indirect table via

an index. In the future, this may also subject to change. The WebAssembly reference

types extension proposal 3 introduces instructions such as table.fill that are able to

have direct access to element segment initializers. table.fill instruction is similar to

memory.fill defined in the bulk memory operation extension. It will copy a sequence

of compile-time defined function pointers into an indirect table at runtime. Thus, when

we design our table entity, we also split the declarations from their initializers. The type

for table entity is the same as the table type in WebAssembly. It consists of a pair of un-

2WebAssembly bulk memory operations:
https://github.com/WebAssembly/bulk-memory-operations

3WebAssembly reference types: https://github.com/WebAssembly/reference-types

40

https://github.com/WebAssembly/bulk-memory-operations
https://github.com/WebAssembly/reference-types

InitializerExprASTNode

Constant

GlobalGet

initializer

Extends

Extends

Extends

Figure 4.3: SableWasm MIR Initializer Expression

signed integers, indicating the lower bound and upper bound for the number of function

pointers stored in the indirect table. In SableWasm MIR, we treat memory entities and

table entities as black boxes, and its concrete implementation is deferred to the backend.

In the example shown in figure 4.1, the module defines a table entity at line 4 that stores

exactly one function pointer. Note that the table entity does not require users to initialize

the value for all entries. The table entity default initializes all entries to null pointers.

In this section, we covered the design for module-level entities in SableWasm. They

are pretty similar to the those defined in the WebAssembly specification. In the next

section, we will move the design of SableWasm initialization expressions.

4.2 MIR Initializer Expressions

WebAssembly defines a particular form of expression for initialization, namely constant

expressions. They can appear in three locations in the current specification. First, global

variables declaration can contain constant expression as their initialization values. Ad-

ditionally, data section entries and element section entries can have constant expressions

as the offsets for their initialization payload. In SableWasm MIR, we define initializer

expressions that act similar to what constant expressions do in WebAssembly. Figure 4.3

gives a general illustration about SableWasm MIR initializer expressions. The initializer

expressions are quite simple. In the current WebAssembly and SableWasm, an initializer

41

expression can be either a constant value or refer to an imported global via GlobalGet

instruction. Hence, in principle, currently, a SableWasm MIR initializer expression is es-

sentially a single instruction. In the future, one may generalize such constraints by allow-

ing more complex constructs in initializer expressions.

Constant The Constant instruction represents a single constant value for the initializer

expression. In WebAssembly, a constant value can be one of the following: a 32-bit or 64-

bit integer, a floating-pointer number, or a 128-bit SIMD vector 4, and the specification

encodes the type within the instruction opcode. Hence, there are multiple instructions in

WebAssembly to introduce a constant. In SableWasm, we do not encode the type into the

opcode, and Constant instruction is the only instruction that takes care of the task. In

figure 4.1, we have a constant initializer at line 6 that initializes the value of the global to

a 32-bit integer with a value that equals 66560. When querying the type of a Constant

instruction, SableWasm will infer it according to its payload constant.

GlobalGet The GlobalGet instruction is exactly same as the WebAssembly’s global.get

in terms of execution semantics. The WebAssembly specification allows any initializer

expression to refer to an imported 5 global value. As these values are initialized before

entering the module, reading their value is always valid during module initialization.

The example in figure 4.1 does not provide an example of GlobalGet as an initializer

expression, as they are less frequently used compared to constant initializer expression,

especially for global values. However, in some ABI implementations, data section entries

and element section entries require reading from global values serving as base pointers.

SableWasm also infer the type for GlobalGet initializer expression in a similar fashion as

Constant. In this case, the type of instruction is the same as the referred global variable

without the ‘constant’ modifier.
4With WebAssembly SIMD128 extension
5This might subject to change in the future version of WebAssembly

42

In this section, we covered the design and implementation of initializer expressions in

SableWasm. They are pretty simple in the current design. We will now move to the next

part in the SableWasm design, the MIR instructions.

4.3 MIR Instructions

SableWasm MIR uses a control-flow-graph (CFG) based representation in static single as-

signment (SSA) form to represent code body in function definitions. We have provided

an introduction to CFG and SSA in the background chapter. Here is a quick recap. CFG

splits the control flow within the function into basic blocks. A basic block represents

the most extended instruction sequence without control flow transfer, such as branching.

Note that for function calls, we take a similar approach to that of LLVM. We will come

back to this in detail later in this section. Additionally, SSA requires that all values must

have unique definition sites. Hence, in SSA form, the use-definition chain is trivial to

compute, while in a traditional CFG, one would need to extract this from the graph with

the help of a reaching definition analysis. The SableWasm MIR instruction set is similar to

WebAssembly bytecode in terms of semantics for most of the instructions. However, it

operates over an infinite register machine instead of a stack-based machine, and in some

cases, semantics differ in order to keep the size of the SableWasm instruction minimal.

In this section, we will cover the design and implementation of SableWasm MIR instruc-

tions. The following section will cover the translation strategy between WebAssembly

bytecode and the SableWasm MIR and instruction reduction rules. Figure 4.4 provides a

general illustration of the design of the SableWasm MIR instruction set. The SableWasm

MIR instruction set can currently cover all the instructions defined in WebAssembly spec-

ification, including several extensions such as multivalue and SIMD vector operations.

Terminating instructions As discussed above, SableWasm splits the function control

flow into basic blocks containing the maximum number of consecutive instructions with-

43

Instruction

Unreachable

Branch

Call

CallIndirect

Select

LocalGet

LocalSet

GlobalGet

GlobalSet

Constant

Compare

Unary

Binary

Load

Store

Cast

Pack

Unpack

Phi

MemoryGuard

MemorySize

MemoryGrow

VectorSplat

VectorExtract

VectorInsert

VectorByteShuffle

Intrinsic

Conditional

Unconditional

Switch

Extends

Extends

IntUnary

FPUnary

SIMD128Unary

SIMD128IntUnary

SIMD128FPUnary

IntBinary

FPBinary

SIMD128Binary

SIMD128IntBinary

SIMD128FPBinary

Extends

Extends

SIMD128FPCompare

SIMD128IntCompare

FPCompare

IntCompare

Extends

BasicBlock

Function

Terminating
Instructions

Call

Local and
Global

Accessors

Numerical
Operations

Load and
Store

Multi-value
Extension
Support

Linear
Memory

Manipulation

Vector Operations

Figure 4.4: SableWasm MIR Instructions

44

out control flow transfer. In addition, SableWasm, similar to many other SSA form in-

struction sets, defines a particular group of instructions called terminating instructions.

These instructions signal a control flow transfer out of the current basic block, and they

must only appear as the last instruction in any given basic block. SableWasm defines

four different terminating instructions: unreachable, unconditional branching, condi-

tional branching, and table branching. If the control flow reaches a Unreachable in-

struction, the runtime system will signal a runtime panic. The Unreachable instruction

in SableWasm is identical to its counterpart in WebAssembly in terms of semantics. The

Unconditional instruction is an unconditional control flow transfer, as the name sug-

gests. It refers to a target basic block as the operand. At runtime, the instruction will al-

ways transfer the control flow to the target basic block. Unconditional is similar to the

br instruction defined in WebAssembly specification. On the other hand, Conditional

is a conditional branching. It takes a value and two target basic blocks as its operands.

At runtime, the instruction will first compare the value against integral value zero. If

the value equals zero, the instruction will transfer the control flow to the ‘false’ basic

block, otherwise, to the ‘true’ basic block. SableWasm’s Conditional instruction is sim-

ilar to br.cond defined in WebAssembly. The last terminating instruction defined in

SableWasm is Switch. Switch instruction is comparable to the br.table instruction

in WebAssembly. The instruction takes a value, a list of target basic blocks, and a default

branching basic block as its operands. At runtime, Switch will interpret the value as an

integral value and dispatch accordingly. If the value is within the branching list’s range, it

will redirect the control flow to the target basic block referred to by the index. Otherwise,

Switch will transfer the control flow to the default basic block.

Function call In SableWasm, we provide two instructions for function calls defined in

WebAssembly specification: direct function calls and indirect function calls. Call repre-

sents a direct function call where the callee is known at compile time. It takes a function

and a list of arguments as operands. On the other hand, CallIndirect defines an in-

45

direct function call. It implements the indirect function call protocol described in the

WebAssembly specification. A quick reminder, in WebAssembly, an indirect function call

takes an indirect table, the table index, the expecting function type, and a list of values as

arguments. At runtime, the system should first check if the index is valid for the indirect

table and fetch the function pointer and its actual signature accordingly. Then, the system

should compare the signature against the expecting type. If the signature matches, the

runtime system will transfer the control flow to the function referred to by the function

pointer. Implementing the signature verification mechanism is backend-specific; we will

return to this topic in the next chapter. Note that we do not treat function call instructions

as terminating instructions, even though they transfer the control flow to other locations.

In SableWasm MIR, we follow the design like that used in the LLVM intermediate repre-

sentation, where it is assumed that the control flow will continue to the next instruction

after returning from the function call. Hence, from the basic block’s local perspective,

their control flow is pre-determined, and there is no difference compared to other non-

terminating instructions.

Local and global variable access In WebAssembly, instructions have access to locals

defined by their parent functions and global variables defined by their enclosing mod-

ule. The SableWasm MIR defines getter and setter instruction for both local and global

variables to implement the specification. Their semantics are the same compare to We-

bAssembly’s counterparts. We will skip the detail here, but one can consult the We-

bAssembly specification for detailed information.

Numerical operations In SableWasm, we classify the numerical operations into three

different categories, the Compare instructions, Unary instructions, and Binary instruc-

tions. The Compare instructions implement the comparison between values, such as

‘equal to’. They always yield a 32-bit integer as WebAssembly specification suggests. The

Unary and Binary, as their name suggests, perform unary and binary operations be-

tween values. The result of Unary and Binary instruction is dependent on the opcode.

46

On the other hand, we can also orthogonally classify the instructions into integer, floating-

point, packed integer, and packed floating-point numbers. Note that in MVP WebAssem-

bly, there are only integer and floating-point value operations; the SIMD operation exten-

sion proposal adds the packed value operation to the instruction set. In the WebAssembly

SIMD extension proposal, the vector value does not store its size and content information

in the types. Instead, the packed value instructions’ opcodes keep track of the shape of the

vector values, which leads to the bloated instruction opcodes. In SableWasm, we separate

the instruction opcode from the vector shape. For each of the packed value operations, it

must have either a SIMD128IntLaneInfo or SIMD128FPLaneInfo. Figure 4.4 shows

all the classes of numerical operations defined in SableWasm. For detailed opcodes in

each numerical instruction class, one can consult SableWasm’s source code.

Load and Store Load and Store instruction provides access to the linear memory for

SableWasm MIR. Although in the current version of WebAssembly, the module can con-

tain at most one linear memory, and all WebAssembly’s load and store instructions im-

plicitly refer to this linear memory 6. In SableWasm MIR, we take a different approach.

The SableWasm MIR’s Load instruction takes a linear memory and an integer value as

operands. At runtime, the value will be treated as the address (or offset) to the start of the

linear memory, and the instruction yields the fetched result. In WebAssembly, the load

instruction associates with a type and an extension method. For example, i32.load8 s

loads an 8-bit integer from the linear memory, and then sign extends the fetched byte

into a 32-bit integer. In SableWasm, the Load instruction associates to a type and an

integer value, namely the load width. The load width must equal to or smaller than

the width of the type. Also, SableWasm Load always perform zero-extension on loaded

value. Hence, when translating WebAssembly’s sign-extended load into SableWasm’s

Load, one must combine the load instruction with a cast instruction. We will come back

to this in chapter 5. The Store instruction also associate with a store width. Like the load

6This might change in the future version of WebAssembly.

47

width defined for Load instruction, the store width must also be equal to smaller than the

store value type’s width. The system will first bit truncate the value at runtime and then

store the result into the linear memory. One may notice that in SableWasm, we erase the

alignment attribute and offset attribute defined in WebAssembly. Currently, we do not

support alignment hints from the WebAssembly module. In SableWasm, the Load and

Store always have the alignment requirement of one byte. This implies that the Load

and Store can happen anywhere in the linear memory, corresponding to WebAssembly’s

linear memory specification.

Linear memory manipulation WebAssembly specification defines two instruction that

works with linear memories: memory.size, memory.grow. Like the WebAssembly’s

load instruction we covered in the previous paragraph, all these instructions operate

over the implicitly defined unique linear memory within the module. In SableWasm,

we provide similar MemoryGrow and MemorySize instruction. The semantics of Sable-

Wasm’s memory manipulation instructions are the same as their WebAssembly counter-

parts, except that the linear memory needs to be explicitly stated. In SableWasm, we

introduce one additional instruction, MemoryGuard which is an explicit memory bound-

ary check. In WebAssembly, all load and store instruction need to check for linear

memory out of bound error before access. SableWasm separates the bound check from

the memory access. One advantage of this is that one may implement static memory

bounds check elimination optimization over SableWasm MIR. Additionally, one backend

may provide different strategies for handling boundary checks, such as utilizing invalid

virtual memory pages with the operating system’s help. In this case, we only need to

modify the translation pattern for MemoryGuard. MemoryGuard takes a linear memory

and an integer value as the operand. It also associates with an integer immediate, known

as the guard width. At runtime, the system will perform a boundary check over the lin-

ear memory starting from the given address to determine if it contains at least a given

48

number of bytes ahead. If there are not enough bytes available, the system should signal

a runtime panic.

Pack and Unpack WebAssembly multivalue specification 7 relaxes the constrains on the

function type. Functions now can return multiple values instead of at most one value. To

support these features, we introduce Pack and Unpack instructions, along with extend-

ing WebAssembly’s type system. Pack instructions group multiple values into a single

ordered tuple, while the Unpack reverse the operation by retrieving the value from tu-

ples by index. In the case where a function returns multiple values, we thus use a tuple

instead. SableWasm treats tuples as first-class values; however, currently, tuples cannot

be recursive. We will come back to this in chapter 5, when we visit the type systems of

SableWasm MIR. The index of the Unpack must be an immediate value in the current

version of SableWasm MIR and is verified at compile time.

Vector operations In the previous paragraph, we introduce the numeric operations de-

fined in SableWasm MIR. However, several instructions do not fit into either Unary

or Binary instructions. Hence, to faithfully support the SIMD operations introduced

by the extension proposal, we add four vector-specific operations into SableWasm MIR.

They are VectorSplat, VectorExtract, VectorInsert and VectorByteShuffle.

VectorSplat will broadcast the operand value to all lanes in the result vector. Sable-

Wasm MIR defines vector splat operation for both packed integer vector and packed

floating-point vector. VectorExtract is similar to the extractelement defined in

LLVM intermediate representation. It takes a vector as the operand and also associates

itself with an immediate integer value. At runtime, the system extracts the value of the

given lane and yields as a result. VectorInsert is similar to insertelement defined

in LLVM. It will replace the vector operand with a given value and yields the updated

vector as a result. Note that in the WebAssembly SIMD extension proposal, there are

more instructions defined that modify the individual lane value of the vector, such as

7WebAssembly Multi-value Proposal: https://github.com/WebAssembly/multi-value

49

https://github.com/WebAssembly/multi-value

V128Load32Lane which loads a 32-bit value into a specific lane within the vector. In

this project, we would like to keep our instruction set simple; hence, these instructions are

reduced into multiple SableWasm MIR instructions. We will come back to this in chap-

ter 5 when we discuss the instruction reduction rules. The last instruction we introduced

is the VectorByteShuffle. VectorByteShuffle is similar to shufflevector de-

fined in LLVM, except that it allows rearranging bytes instead of lanes. Currently, the

VectorByteShuffle only operates over an array of immediate integer values. Com-

pare to the lane shuffle semantics, byte shuffle semantics provides more precise control

over the result value. One can trivially simulate a lane shuffle with a byte shuffle. The We-

bAssembly SIMD extension proposal only defines shuffle for i8x16, which correspond-

ing to the byte shuffle semantics. However, in the future, if another shape vector supports

shuffle operation, one can generalize the implementation with minimal modification.

Cast Cast models the conversion of values to their equivalent form in other types. In

SableWasm MIR, we do not distinguish between value conversion and value extension.

We treat signed and zero extensions as a kind of value conversion. The Cast instruction

takes a single value as the operand, and it associates itself with a cast opcode. At run-

time, it will perform the conversion according to the opcode, and if the result cannot be

accurately represented in the target type, the system should signal a runtime error. The

cast opcodes are direct implementations of their WebAssembly counterparts, and we will

skip the detail here. One may refer to the WebAssembly specification for more details.

Intrinsic The last SableWasm MIR instruction we are going to cover in this section is the

Intrinsic instructions. Most WebAssembly instructions can be represented by using

the SableWasm MIR instructions, which we covered earlier in this section. However, there

are still several corner cases. For example, the WebAssembly SIMD extension proposal

defines Q-format rounding multiplication, a type of fix-point multiplication, for packed

16-bit integers. Another example is the swizzle operation. A swizzle operation is sim-

ilar to a shuffle operation, except that it takes another vector as the shuffle indices vector

50

instead of an array of immediate integer values. These operations are only defined for

a specific vector shape and will introduce unneeded complexity to the SableWasm MIR

if we generalize them to all possible vector shapes. Hence, here we group these instruc-

tions as the Intrinsic instructions. There is no direct mapping to LLVM instruction for

most of them, even with the intrinsic functions provided by the framework. Hence, the

backend is encouraged to support these instructions with runtime library routines.

In this section, we discussed the design of the SableWasm MIR instruction set, and

in the next chapter, we will move to the translation strategy between WebAssembly and

SableWasm MIR along with the analysis and transformation framework.

51

Chapter 5

Middle-level Intermediate

Representation Translation and

Optimization

The previous chapter presented the SableWasm middle-level intermediate representation

(MIR), a static-single-assignment (SSA) control flow graph (CFG) representation of a We-

bAssembly program. This chapter focuses on the translation strategy used when lowering

WebAssembly into the SableWasm MIR. We will first start by presenting the translation

patterns used and then discuss the analysis and optimization framework.

5.1 Translating WebAssembly to MIR

In this section, we will cover the translation between WebAssembly bytecode and Sable-

Wasm MIR. We have covered the design of SableWasm MIR instructions previously. One

may notice that for most of the instructions, especially for the numerical operations, Sable-

Wasm MIR shares the same semantics as WebAssembly. Hence, the translation rules for

these instructions are pretty trivial, and we will not cover them in detail in this section.

52

Current BB

... ...

Landing BB

n x Phi nodes ...
Label Insert Point

<expr> Insert Point

block [m] -> [n] <expr> end :

Operand Value Stack

... ...

m x values ...

... ...

m x values ...

n x Phi nodes ...

br %LandingBB

Figure 5.1: WebAssembly block translation pattern

Instead, this section will focus on the translation rules for the structured control flow

constructs and WebAssembly instructions that require reduction during translation.

5.1.1 Structured-Control-Flow Construct

Translating from stack-based IR to register-based IR is not trivial, especially when non-

linear control flow structures appeared. This problem appeared in many runtime system

implementations, such as Numba [13], a just-in-time (JIT) compiler for Python. Usu-

ally, one needs some algorithm to recover the control flow structure from annoying jump

instructions. Luckily, in WebAssembly, we can translate the stack-based bytecode into

register-based basic blocks in linear time, thanks to the structured control flow constructs

and their validation rules defined in WebAssembly. In this section, we will cover the

translation patterns used for WebAssembly’s structured-control-flow constructs, namely

block, if and loop.

Block In the background chapter, we provide a general illustration of the three struc-

tured control flow constructs. As a quick recap, block is the simplest form of a struc-

tured control flow construct. It implicitly introduces a label at the end of its enclosing

53

instructions. A branch instruction referring to this label will redirect the control flow to

the end of the block. Figure 5.1 illustrates the translation pattern for WebAssembly block

in SableWasm MIR. We will first clarify some of the terminologies we used in the figure,

and we will use the same terms later in the loop and if pattern discussion for consis-

tency. Expr Insert Point refer to the starting position for the generated instructions when

we recursively translate the instructions within the enclosing expression of the block

instruction. Furthermore, Label Insert Point refer to the position for generated instruc-

tions when we finish the recursive translation and resume to the parent expression of the

block instruction. A label stack entry is a tuple consisting of a pointer to the landing basic

block, a list of φ nodes expecting merge values, and a pointer to the label insert point. The

translation pattern for block is pretty simple; we continue on the current basic block and

prepare the landing basic block for the block instruction as a branch instruction within

the expression may refer to the label. Additionally, to fully support multi-value extension

in WebAssembly, we also need to prepare the φ nodes in the landing basic block. Sable-

Wasm generates the φ nodes based on the type of the block instruction. WebAssembly

validation rules ensure that the expression within the block can access exactly m values

from the stack and put n values onto the stack. Finally, we will append an unconditional

branch to the landing basic block because in WebAssembly, if the control flow reaches the

bottom of the block expressions, it will implicitly fall through. For the operand stack, we

will first pop m values from the stack as block instruction’s type suggests and push the

φ nodes as the result values. Then, we need to set up the boundary between the operand

stack for the expression contained within the block. Figure 5.1 represents this with the

bold line in the result operand value stack. The last step is to push the m values back to

the stack, as they are passed to the expression within the block.

If The next control-flow structure defined WebAssembly is if. WebAssembly’s if is

an expression instead of a statement that appears in many other languages such as C.

The if expression can yield some values indicated by its type. Figure 5.2 illustrates the

54

Current BB

... ...

Landing BB
Label Insert Point

if [i32] -> [] <expr> end :

Operand Value Stack

... ...

i32 value

... ...

br.cond %cond
%trueBB
%LandingBB

True BB

<expr> Insert Point

Current BB

... ...

Landing BB

Label Insert Point

if [m, i32] -> [n] <expr_true> else <expr_false> end :

br.cond %cond
%trueBB
%falseBB

True BB
<expr_true> Insert Point

n x Phi nodes

br %landingBB

br %landingBB

False BB

br %landingBB

<expr_false> Insert Point

Operand Value Stack

... ...

m x values ...

... ...

n x Phi nodes ...

m x values ...

... ...

n x Phi nodes ...

m x values ...

True Value Stack

False Value Stacki32 value

Figure 5.2: WebAssembly if translation pattern

55

translation patterns in SableWasm. There are two types of if instruction defined in We-

bAssembly specification. The first case is a ‘partial’ if instruction, where it only contains

the ‘true’ branch. From WebAssembly validation rules, it’s easy to show that the only pos-

sible type is [i32]->[], even with the multi-value extension proposal. This implies that

the expression within the if instruction must start with an empty operand stack. Hence,

the translation pattern for the partial if is quite straightforward: we only need to pop the

condition value from the operand stack and construct a conditional branch based on this

value in the current basic block. On the other hand, we also have ‘full’ if instructions

with both ‘true’ and ‘false’ expressions. The validation rules ensure that both expressions

must have the same type. The translation pattern is more complex compare to that of

a ‘partial’ if. In this case, we have to prepare the landing basic block similar to what

we did for the block construct. We need to generate n φ nodes for data-flow mergers

from the ‘true’ branch, the ‘false’ branch, and any possible branch instruction within both

nested expressions. Similarly, we need to pop m values from the stack for operand values

stack and then push n φ nodes. And, within both nested expressions, push m values back

to the stack.

Loop The last control-flow structure defined in WebAssembly is loop. Figure 5.3 gives

a general illustration of SableWasm’s translation pattern for loop instructions. Similar

to the ‘partial’ if we discussed in the previous paragraph, one can show that, under

WebAssembly’s validation rules, the parameter types for the loop instruction must equal

to the result types. The loop instruction is similar to the block instruction, except that if

any branch instruction refers to it, the branch instruction should transfer the control flow

to the start of the expression within the instruction instead of the end. Thus, we need

to prepare a standalone basic block for the nested expression in loop, along with the φ

nodes to merge value on each loop iteration. Note that we also introduce φ nodes in the

landing basic block. One may argue that there is no need for these φ nodes, as only one

block can reach the loop exit, and no value merging will occur. Indeed, these φ nodes will

56

Current BB

... ...

Label Insert Point

loop [n] -> [n] <expr> end :

br %loopBB

n x Phi nodes

LoopBB

<expr> Insert Point

Operand Value Stack

... ...

n x values ...

... ...

n x Phi nodes ...

n x Phi nodes ...
n x Phi nodes

br %landingBB

LandingBB

Figure 5.3: WebAssembly loop translation pattern

always be trivial φ nodes, which have only one possible value inflow. However, this is

due to the limitation of our translation framework.

In this section, we discussed the translation patterns for WebAssembly structured con-

trol flow constructs. Thanks to WebAssembly validation rules, the types for these struc-

tured control flow instructions explicitly mark value merging and imply possible φ nodes.

Furthermore, one can show that the control graph generated above is indeed in SSA form.

However, the directly generated control flow graph is not easily understandable by users.

This mainly comes from two facts. First, the WebAssembly-targeting compiler may gener-

ate awkward patterns to fit in the structured control-flow constructs. Second, SableWasm

translation patterns for structured-control flow constructs are not optimal.

57

5.1.2 Instruction Reduction

This section will cover the instruction reduction rules used when lowering WebAssem-

bly bytecode to SableWasm MIR. In the background chapter, we mentioned that one of

WebAssembly’s design goals is to be as compact as possible. Thus, when the commu-

nity designed the WebAssembly instruction set, they fused several typical instruction

sequences into single instructions. For example, SIMD vector operation extension defines

v128.load8x8 s which first load 8 8-bit integers into a vector, and then sign-extends

them into 16-bit integers. Another example will be v128.load32 lane which loads a

32-bit value, either a 32-bit integer or a single-precision floating-point number into a given

vector. Such design is understandable for WebAssembly as binary size does matter when

shipping applications over the internet. But, for SableWasm, a static compiler, we focus

more on the size of the instruction set instead of the size of the intermediate representa-

tion. It is harder to write analysis for a bloated instruction set, as one needs to consider

more instruction cases. Hence, when lowering WebAssembly bytecode to SableWasm

MIR, we replace some WebAssembly instructions with SableWasm MIR instructions se-

quences.

Eqz

[..., %n i32] i32.eqz =⇒ %t0 = i32.const 0; %t1 = int.eq %n %t0
[..., %n i64] i64.eqz =⇒ %t0 = i64.const 0; %t1 = int.eq %n %t0

WebAssembly defines a unary eqz operations for all integer values. As the name sug-

gests, eqz compares the operand value against zero and yields one if true, zero other-

wise. In SableWasm MIR, we group all comparison instructions into the Compare class,

and eqz does not fit into the class as it is not a binary operation. Hence we rewrite the

eqz as Compare instruction with opcode as Eq.

Load

[..., %base i32] i32.load offset=%offset align=%align =⇒
%addr = int.add %base %offset
memory.guard %mem %addr 4

58

%t0 = load.32 i32 %mem %addr
[..., %base i32] i32.load16_s offset=%offset align=%align =⇒

%addr = int.add %base %offset
memory.guard %mem %addr 2
%t0 = load.16 i32 %mem %addr
%t1 = cast i32.extend.16.s %t0

[..., %base i32] i32.load16_u offset=%offset align=%align =⇒
%addr = int.add %base %offset
memory.guard %mem %addr 2
%t0 = load.16 i32 %mem %addr

In the SableWasm instruction design section, we introduced the Load and MemoryGuard

in SableWasm MIR. A quick recap, SableWasm MIR Load instruction, compare to its We-

bAssembly counterpart, assumes access is in-bound, does not support offset attribute,

and always performs zero-extension on partial loads. Hence, to properly support We-

bAssembly’s load instructions, we need to reduce them with the strategy shown above.

For load instructions that do not require value extensions, such as i32.load, we first cal-

culate the actual starting address, perform a memory boundary check with MemoryGuard,

and then perform the memory read. On the other hand, for a partial load operation, we

need first to perform the load operation using the same protocol as a normal load. Then,

if a sign extension is needed, we will add its corresponding cast instruction. In the ex-

ample above, we demonstrate this with WebAssembly’s i32.load16 s. In this case,

SableWasm appends a Cast instruction with opcode i32.extend.16 after the load op-

eration.

Store

[..., %base i32, %val i64] i64.store offset=%offset align=%align =⇒
%addr = int.add %base %offset
memory.guard %mem %addr 8
store.64 %mem %addr %val

[..., %base i32, %val i64] i64.store16 offset=%offset align=%align =⇒
%addr = int.add %base %offset
memory.guard %mem %addr 2
store.16 %mem %addr %val

Similar to the Load instruction we discussed earlier, the Store instruction also assumes

the memory access is always in range and does not provide the offset attribute. How-

59

ever, a Store instruction will always perform truncation instead of extension. Further,

the only possible truncation is the bit-truncation by discarding bits starting from the most

significant bit. The instruction reduction rules for WebAssembly store instructions is

similar to those for load instructions. In the example above, we demonstrate the rules

with i64.store and its partial store version, i64.store16 which only stores the low-

est two bytes into linear memory. SableWasm inserts MemoryGuard instructions in a

similar fashion to load instructions. Note that we do not insert an explicit Cast instruc-

tion to perform the truncation. A Store instruction will implicitly truncate the value

according to the store width; in this case, it will truncate the 64-bit integer into a 16-bit

integer.

SIMD extension proposal reduction rules

[..., %lhs v128, %rhs v128] v128.andnot =⇒
%t0 = v128.not %rhs
%t1 = v128.and %lhs %t0

[..., %lhs v128, %rhs v128] i16x8.extmul_low_i8x16_s =⇒
%t0 = cast i16x8.extend.low.i8x16.s %lhs
%t1 = cast i16x8.extend.low.i8x16.s %rhs
%t2 = v128.int.mul i16x8 %t0 %t1

[..., %lhs v128, %rhs v128] i16x8.extmul_low_i8x16_u =⇒
%t0 = cast i16x8.extend.low.i8x16.u %lhs
%t1 = cast i16x8.extend.low.i8x16.u %rhs
%t2 = v128.int.mul i16x8 %t0 %t1

The SIMD extension proposal introduces approximately 240 instructions into the We-

bAssembly instruction set. However, not all of them are simple single operation instruc-

tions. The SIMD extension proposal also follows WebAssembly’s design goal to ensure

the compactness of the generated program. The proposal suggests reduction rules for

several SIMD operation instructions, and in SableWasm, we take advantage of them to

reduce the size of the instruction set. The first applicable instruction is the andnot opera-

tion for vectors. The andnot is equivalent to performing bitwise ‘not’ on the right-hand-

side operand, and then a bitwise ‘and’ operation between the left-hand-side operand and

the temporary result. SableWasm reduces andnot into a not instruction followed by a

60

and instruction, as shown in the example above. The second group of reducible instruc-

tions is the ExtMul instructions. The SIMD extension proposal defines ExtMul for all

packed integer vectors except packed 64-bit integers. They are equivalent to first widen-

ing the vector using the appropriate extension and then multiplying two operands. In

the example above, we demonstrate with i16x8.extmul low i8x16 s which performs

an ExtMul operation for packed 8-bit integers. SableWasm implements this instruction

by first performing a sign extension on the lower half of the vector and multiplying

the temporary result as shown above. SableWasm also applies a similar procedure to

i16x8.extmul low i8x16 u, except that it uses a zero-extension in the Cast instruc-

tion instead of sign-extension.

SIMD load with zero-padding
[..., %base i32] v128.load32_zero offset=%offset align=%align =⇒

%addr = int.add %base %offset
memory.guard %mem %addr 4
%t1 = load.32 i32 %mem %addr
%t2 = const v128 0
%t3 = v128.int.insert i32x4 0 %t2 %t1

The WebAssembly SIMD extension proposal also introduces many variations of load op-

erations. The first variation is the ‘zero-padding’ load operation. The ‘zero-padding’ load

is equivalent to loading a scalar from the linear memory and then inserting it into a zero-

initialized vector. We demonstrate this with the example above. We first use the protocol

we discussed above to load a scalar 32-bit integer. Then, we insert it into a zero vector

using VectorInsert instruction. The WebAssembly SIMD extension proposal defines

‘zero-padding’ load operations for all packed integers and packed float-point numbers.

The reduction rules for them are similar to the pattern above.

SIMD load and splat
[..., %base i32] v128.load32_splat offset=%offset align=%align =⇒

%addr = int.add %base %offset
memory.guard %mem %addr 4
%t1 = load.32 i32 %mem %addr
%t2 = v128.int.splat i32x4 0 %t1

61

The second variation of SIMD vector load is the ‘load-and-splat’ load operation. This

type of load operation is a combination of scalar load operation and vector splat opera-

tion. It first loads a scalar from the linear memory and then broadcasts the value to all

vector lanes. SableWasm uses a similar reduce rule compared to the ‘zero-padding’ load

operation, except that instead of inserting the scalar into a zero-initialized vector, we use

VectorSplat to broadcast it. The example above demonstrate this with v128.load32 splat.

Similar to the ‘zero-padding’ load operation, ‘load-and-splat’ is defined for all packed in-

tegers and packed float-point numbers.

SIMD load lane

[..., %base i32, %vec v128]
v128.load32_lane offset=%offset align=%align lane=%lane =⇒

%addr = int.add %base %offset
memory.guard %mem %addr 4
%t1 = load.32 i32 %mem %addr
%t2 = v128.int.insert i32x4 %lane %base %t1

The next variation of the SIMD vector load operation is the ‘load-lane’ load operation. The

example above demonstrates the procedure with a sample of WebAssembly’s v128.load32 lane

which reads a 32-bit integer from linear memory and inserts it into a specific lane of a

given vector. SableWasm first lowers the load semantic using the same protocol as we dis-

cussed above and then inserts to the given vector using the VectorInsert instruction.

Again, the WebAssembly SIMD extension proposal defines ‘load-lane’ load operation for

all shapes of packed integers and floating-point numbers. In WebAssembly SIMD load

operation variations, one may already notice that we only have a width associated with

them instead of types. This is because WebAssembly SIMD operations do not distinguish

the shape of the vector. Hence, there is no difference in loading a 32-bit integer and a

single-precision floating number, as they both consume 32-bit storage. But in SableWasm,

we distinguish between packed integers and packed floating-point numbers for the SIMD

instruction shape record. On the other hand, SableWasm also erases shape information

from the vector value, and it is the responsibility of the instruction to interpret the value

62

correctly. Thus, when we perform a load operation, we always assume that we are load-

ing packed integers. In the examples above, the 32-bit load with translate to ‘load a 32-bit

integer’.

SIMD load and extend

[..., %base i32] v128.load16x4_s offset=%offset align=%align =⇒
%addr = int.add %base %offset
memory.guard %mem %addr 8
%t1 = load.64 v128 %addr 8
%t2 = cast i32x4.extend.low.i16x8.s %t1

[..., %base i32] v128.load16x4_u offset=%offset align=%align =⇒
%addr = int.add %base %offset
memory.guard %mem %addr 8
%t1 = load.64 v128 %addr 8
%t2 = cast i32x4.extend.low.i16x8.u %t1

The last variation of a load operation is the ‘load-and-extend’ load operation. It is a com-

bination of partial load and extension on the lower half of 128-bit vectors. In the example

above we present examples for v128.load16x4 s and v128.load16x4 u. The previ-

ous instruction loads four 16-bit integers into the lower lanes of the vector and performs

sign-extension on the result to get a packed 32-bit integer vector. v128.load16x4 u per-

forms a similar operation, except that it performs zero-extension instead of sign-extension.

A quick reminder, SableWasm MIR Load instruction can apply to any primitive value

type and supports partial loading by annotating with a smaller load-width. In the case

of the partial load, SableWasm MIR Load always loads bytes starting from the least sig-

nificant bit and performs zero-extension on the result. SableWasm takes advantage of

the Load instruction’s design when lowering the ‘load-and-extend’ load operation. In

the example above, we partially load a 128-bit vector with a 64-bit value which cor-

responds to loading four 16-bit integers from the linear memory. Note that this Load

instruction yields a vector of 16-bit integers with four zero values in its higher lanes

and loaded values in its lower lanes. Thus, we only need to perform a Cast opera-

tion with opcode i32x4.extend.low.i16x8.s to reach the desired result. SableWasm

treats v128.load16x4 u using a similar procedure, except that it uses zero-extension

63

instead of sign-extension. Finally, like other load operation variations discussed above,

WebAssembly defines the ‘load-and-extend’ load operation for all packed integer and

packed floating-point numbers.

SIMD store lane
[..., %base i32, %val v128]
v128.store32_lane offset=%offset align=%align lane=%lane =⇒

%addr = int.add %base %offset
memory.guard %mem %addr 4
%t1 = v128.int.extract i32x4 %val %lane
store.32 %mem %addr %t1

Similar to the ‘load-lane’ load operation variation, the WebAssembly SIMD extension pro-

posal also defines direct lane store instruction for 128-bit vectors. The above example

demonstrates the reduced rules for these instructions. Let’s take v128.store32 lane

as example. SableWasm MIR first calculates the address and sets up a memory boundary

check use a protocol similar to what we have seen above. Then, it extracts the lane value

by using VectorExtract instruction and stores it into linear memory. Like WebAssem-

bly load instructions, the store instruction does not distinguish between packed inte-

gers from packed floating-point numbers. In SableWasm, we always assume the store

vector is packed integers.

5.2 Analysis Framework

SableWasm also implements an analysis and optimization framework over its middle-

level intermediate representation (MIR). The framework consists of two parts, passes

and drivers. The SableWasm analysis and transformation framework only provides es-

sential support for managing passes, compared to other more advanced frameworks,

such as McSAF [3], an optimization framework for MATLAB language. Figure 5.4 il-

lustrates the current state of the framework in SableWasm. Currently, we implement

three different drivers. SimpleModulePassDriver accepts module passes and op-

erates on the module level. At the time of thesis writing, we haven’t explored inter-

64

«interface»
Driver

«interface»
ModulePass

«interface»
FunctionPass

SimpleModulePassDirver

SimpleFunctionPassDirver

SimpleForEachFunctionPassDriver

PrettyPrintPass

CFGSimplifyPass DominatorPass TypeInferPass LocalNumberingPass LocalElemPass

Figure 5.4: SableWasm MIR Analysis and Optimization Framework

procedural analysis for SableWasm MIR in detail, and the only module pass implemented

is the pretty-print pass. In the future, one can add additional inter-procedural analy-

ses to SableWasm, by implementing the ModulePass interface. The second driver is

the SimpleFunctionPassDriver. As its name suggests, it manages FunctionPass

instead. FunctionPass implements intra-procedural analysis that operates over ba-

sic blocks. SableWasm currently implements multiple intra-procedural analyses, such as

dominator tree construction. We will cover these passes in detail in this section. The

last driver in SableWasm is SimpleForEachFunctionPassDriver which is a wrap-

per class for SimpleFunctionPassDriver. It works with FunctionPass but takes a

module as an argument.

5.2.1 Dominators and Dependence

Dominator tree and immediate dominance are close related to static single assignment

(SSA) form, and Ron Cytron’s classic paper on converting control flow graph (CFG) to

SSA [2] shows that SSA directly derives from them. The dominator tree represents the

dominance relationship between basic blocks. A basic block is a dominator of another if all

65

control flow reaching the later block must go through the first block. On the other hand,

immediate dominance defines a stricter relationship between basic blocks. A basic block

is an immediate dominator of another if it satisfies two conditions. First, the candidate

block must be a dominator block of the second one. Second, it does not dominate any

other blocks that dominate the second block. Although the SableWasm MIR is already in

SSA form, the dominator tree is still helpful in the later analysis and backend code gener-

ation. One may notice that the dominator relationship in SSA is comparable to the same

problem in graph theory. Indeed, they are the same problem if we treat the basic blocks

as vertices and control flow paths as edges among them. A direct solution to compute the

dominator set utilizes forward analysis within O(n2), respecting to the number of basic

blocks in the CFG. More efficient algorithms can yield the dominator set within almost

linear time, such as Tarjan’s algorithm [17], and its refined version [6]. Currently, Sable-

Wasm compiles programs usually with smaller functions that contain approximately 200

basic blocks at most. Hence, an efficient complex algorithm does not have too much room

for improvement. In the future, if this becomes the bottleneck of the compilation pipeline,

one should replace the implementation with a better algorithm. This section will present

the forward analysis implementation briefly, and it is a classic implementation for domi-

nator tree construction.

Formalisms In the rest of the section, we will use dom(·) to represent the set of strict

dominators for a given basic block. The set of strict dominators for A is the set of domina-

tors for A subtracting A itself. Hence, ‘block A is a strict dominator for block B’ implies

that A ∈ dom(B). Similarly, BBidom is an immediate dominator for basic block A, if and

only if, BBidom ∈ dom(A)) ∧ (∀B ∈ dom(A), BBidom /∈ dom(B). Finally, the dominator

tree represents all basic blocks with tree nodes and adds directed edges according to the

immediate dominator relationship.

Dataflow analysis The algorithm is a classic forward dataflow analysis. In this para-

graph, we will quickly cover the key points in the algorithm. For more detailed informa-

66

tion, one should consult Cytron’s paper on SSA construction. During pass initialization,

we first set the following, ∀A ∈ BB \ {BBentry}, dom(A) = BB, where BB denotes the set

of all basic blocks that appeared in the control flow graph, and BBentry denotes the entry

basic block for CFG. For the entry basic block, we set dom(BBentry) = {BBentry} instead.

The initialization value is a conservative guess of the result, and the next step is to refine

it. The iterative step rule is as follow,

∀A ∈ BB, dom(A) =

{A} ∪ ⋂
B∈pred(A)

dom(B)


Here, pred(·) denotes the predecessor of the given basic block. The general idea is that a

basic block that dominates all its predecessors must also dominate the given basic block

for each of the basic blocks. The stop criteria for the dominator analysis are also quite

simple. If there are no more changes in the result, the forward analysis will terminate.

Implementation SableWasm implements the forward dataflow analysis we discussed

above with class DominatorPass. In addition, the analysis pass object shares its result

with a helper class DominatorPassResult which provides helper methods for access-

ing the result, such as calculating the immediate dominator and constructing the domi-

nator tree from the result sets. Finally, SableWasm uses several techniques to improve the

performance, such as modeling the set with sorted arrays.

In this section, we presented the dominator analysis in SableWasm. The dominator

analysis is quite common among compiler implementations, and it will play a critical

role in the later part of the project.

5.2.2 Control-Flow Graph Simplification

In section 5.1, we illustrated the translation rules from WebAssembly bytecode to Sable-

Wasm MIR. Unfortunately, the translation rules yield suboptimal control flow graphs.

Hence, in this section, we will incrementally improve the control flow graphs by fixing

67

1 function %foo : [i32] -> [i32] {
2 {%operand:i32}
3 %entry: #pred = {}
4 %0 = local.get %operand
5 %1 = const i32 2
6 %2 = int.rem.s %0 %1
7 %3 = int.eqz %2
8 br.cond %3 %BB:0 %BB:1
9

10 %BB:0: #pred = {%entry}
11 br %BB:3
12
13 %BB:1: #pred = {%entry}
14 br %BB:4
15
16 %BB:2: #pred = {}
17 br %BB:3
18
19 %BB:3: #pred = {%BB:2, %BB:0}
20 %4 = const i32 1
21 br %exit
22
23 %BB:4: #pred = {%BB:1}
24 %5 = const i32 0
25 br %exit
26
27 %exit: #pred = {%BB:4, %BB:3}
28 %6 = phi i32 [%4, %BB:3] [%5, %BB:4]
29 ret %6
30 }

1 (func $foo
2 (param $operand i32) (result i32)
3 block ;; label = @1
4 block ;; label = @2
5 local.get $operand
6 i32.const 2
7 i32.rem_s
8 i32.eqz
9 if ;; label = @3

10 br 1 (;@2;)
11 else
12 br 2 (;@1;)
13 end
14 end
15 i32.const 1
16 return
17 end
18 i32.const 0)

Figure 5.5: Control-flow graph simplification example

several obvious issues we found, such as trivial φ nodes and unnecessary branching. The

control flow graph simplification also performs dead code elimination and unreachable basic

block elimination. This section presents the patterns, along with their transforming strate-

gies used in SableWasm. The general design of the simplification pass is similar to what

one would expect in a peephole optimizer [19]. It iterates through the control flow graph,

scans for matched patterns, and if it finds any optimization opportunities it will apply

transformation strategies immediately. In the future, one may generalize this simplifica-

tion pass into a fully-featured peephole optimizer, using a domain-specific language for

patterns similar to Alive [16, 18] for LLVM to ensure extensibility and correctness of the

patterns. The simplification pass will terminate once the execution reaches a fixed point,

where there are no more optimization opportunities.

68

Trivial φ nodes The first pattern we found in generated SableWasm MIR is the trivial φ

nodes. Trivial φ nodes refer to the φ nodes with only one candidate value. In section 5.1.1,

we present the translation patterns for loop instructions in WebAssembly and mentioned

that the pattern is suboptimal and will result in trivial φ nodes. A quick reminder, the

loop instruction needs to insert φ nodes to the landing basic block, which necessarily has

non-merging control flow as an effect of a limitation in our translation framework. To

address this, we search for %t0 = phi t [%t1, %path] for all possible type t. The

transformation strategy is to replace all appearances of value %t0 with value %t1. As

the φ nodes do not map to any operations and are only introduced by SSA to explicitly

mark value merging, removing them from the control flow graph does not change the

semantics of the program. When replacing the values, SableWasm uses the use-site lists

managed by the ASTNode to boost the performance.

Redundant branching The second pattern focus on redundant branching. Redundant

branching can also come from the translation patterns for structured control flow. One

may already notice that we will always generate a landing basic block for the instruction

for every structured control flow construct. However, when the control flow constructs

are the last instructions in their enclosing expression, the landing basic blocks will only

contain a single branching instruction. Figure 5.5 demonstrates an unoptimized exam-

ple. On the right-hand side, the WebAssembly function is a simple function that returns

one when the operand is an even number and zero otherwise. On the left-hand side is

its corresponding SableWasm MIR before simplification. Clearly, %BB:0 and %BB:1 are

redundant. The redundant branch elimination pattern looks for basic blocks with a single

inward flow and attempts to merge them with their predecessors. In the example, the

optimizer will try to merge %BB:1 and %BB:4 by moving the Constant instruction into

%BB:1, and redirecting the branching in %BB:1 from %BB:4 to %exit.

Dead basic block The third pattern we have in SableWasm to simplify the control flow

graph is dead basic block elimination. In figure 5.5, we have a dead basic block, namely

69

%BB:2. These dead basic blocks again come from SableWasm’s translation patterns.

When we are translating the control flow constructs, we always prepare the landing basic

block. However, in many cases, the control flow may not reach the landing basic block. In

the example above, we have a WebAssembly return instruction appear in the block’s

nested expression. The translation patterns for return instruction is naive, which cre-

ates a branch to the exiting block and configures the φ nodes accordingly. Hence, in this

case, the landing basic block will never have an inward flow. In SableWasm MIR, we

do not consider these unreachable basic blocks malformed. However, in many backends,

these are considered bad behaviour. In addition, these basic blocks also interfere with

other optimizations. In the example in figure 5.5, %BB:3 does not satisfy the redundant

branching elimination pattern because it does not have a unique inward flow. However,

one of them, %BB:2, is a dead block. Thus, we may find more optimization opportunities

by removing dead basic blocks from the control flow graph. In SableWasm, we identify

the dead basic block via a mark-and-sweep algorithm. Starting from the entry block, we

mark all the basic blocks that are reachable. Then we iterate overall basic blocks, and if

the basic block does not have the flag, we add them to the delete list. Finally, we remove

all the basic blocks within the delete list from the control flow graph.

Dead value The last pattern we have in the control flow graph simplification pass is

dead value elimination. Dead value elimination is similar to the dead basic block elimi-

nation, except that it works with values instead of basic blocks. Unfortunately, the exam-

ple in figure 5.5 does not contain any dead values. However, the idea is quite simple to

understand. Most of the dead values come from WebAssembly’s drop instruction which

discards values from the implicit operand stack. In a non-SSA control flow graph, one

usually needs first to perform liveness analysis and reaching definition analysis to determine

if the value is dead. But in SSA, one can quickly recover this information from the use-

definition chain, and in SableWasm, the base class ASTNode automatically manages it.

Thus, the optimizer will iterate over all values within the control flow graph and check

70

1 function %foo : [i32] -> [i32] {
2 {%operand: i32}
3 %entry: #pred = {}
4 %0 = local.get %operand
5 %1 = const i32 2
6 %2 = int.rem.s %0 %1
7 %3 = int.eqz %2
8 br.cond %3 %BB:0 %BB:1
9

10 %BB:0: #pred = {%entry}
11 %4 = const i32 1
12 br %exit
13
14 %BB:1: #pred = {%entry}
15 %5 = const i32 0
16 br %exit
17
18 %exit: #pred = {%BB:1, %BB:0}
19 %6 = phi i32 [%4, %BB:0] [%5, %BB:1]
20 ret %6
21 }

Figure 5.6: Control-flow graph simplification result

if others refer to it. If not, it then verifies if the instruction is droppable. A droppable

instruction is an instruction such that if we remove it from the control flow graphs, no

observable effects should happen, similar to the concept of ‘pure’ for functions. Finally,

if instructions are both dead and droppable, the optimizer will remove them from the

control flow graph.

In this section, we covered the flow graph simplification pass in SableWasm. The

optimizer will iteratively run four patterns that we have discussed above until it reaches

a fixed point. Figure 5.6 shows the result of running these optimizations on the input

shown in figure 5.5. Compared to the original, the simplified version is more readable.

Moreover, by reducing the number of basic blocks, we can improve other analyses in

SableWasm.

5.2.3 Type Inference

This section presents the type system for SableWasm MIR. SableWasm MIR is a statically

typed language with a pretty straightforward type system. However, one may already

71

notice that SableWasm MIR does not annotate every instruction with a type, unlike many

other compiler intermediate representations. Instead, SableWasm computes the types for

values on-demand via a set of type inference rules. The type system for SableWasm MIR

generalizes from the MVP WebAssembly type system and its extension proposals with a

few modifications. The formal definition for SableWasm MIR types are as follow,

〈primitive_type〉 ::= i32 | i64 | f32 | f64 | v128
〈tuple_type〉 ::= (N, 〈primitive_type〉. . .)
〈type〉 ::= 〈primitive_type〉 | 〈tuple_type〉 | () | ⊥

Here we will skip the discussion for primitive type and the type checking rules for its

corresponding instructions as they are equivalent to the MVP WebAssembly type system.

The tuple type consists of an unsigned integer and a list of primitive types. They model the

return types of multi-value return functions or Pack instructions. Finally, we introduce

the unit type, (), and the bottom type, ⊥. One can consider the unit type as void in the

C programming language. It represents no value present, but the type is valid. On the

other hand, the bottom type, ⊥, signals that the pass cannot assign any valid type to the

term. In the rest of this section, we will focus our discussion on extensions made due to

two major WebAssembly extension proposals, multi-value and SIMD operation.

Multi-value WebAssembly multi-value extensions allow functions to have more than

one return values, which is quite interesting. Usually, low-level bytecode representa-

tion does not directly support this feature, and it usually only appears in higher-level

language designs, such as Python. In section 4.3, we introduced two instructions Pack

and Unpack, along with how we represent multi-value for functions. As a quick recap,

SableWasm uses tuples to denote the multi-value return for functions. The Pack instruc-

tion collects values and constructs a tuple containing them, while on the other hand, the

Unpack extracts primitive values from tuples. Let’s focus on the Pack instruction first.

The typing rule for Pack is straightforward. If we can infer types for all candidate values,

we say that the Unpack instruction has a tuple type consisting of the number of candidate

72

values and a list of element types. On the other hand, if any of the candidate values result

in a non-primitive type, the Pack instruction is the ⊥ type. More formally,

Γ ` v0 ⇒ t0, . . . , vn ⇒ tn ∀i, ti ∈ primitives
Γ ` pack v0, . . . , vn ⇒ 〈n, t0 . . . tn〉

Γ ` ∃i, vt /∈ primitives
Γ ` pack v0, . . . , vn ⇒ ⊥

Here the set primitives is the set of all possible primitive types in the SableWasm MIR

type system. For Unpack instructions, the type checker will first check if the immediate

index is within the tuple size. If the index is out of bounds, the type checker will assign the

instruction with bottom type ⊥. Otherwise, it will take the type from the tuple specified

by the index. Formally,

Γ ` v ⇒ 〈n, t0 . . . tn〉 0 ≤ k ≤ n

Γ ` unpack k v⇒ tk

Γ ` v ⇒ 〈n, t0 . . . tn〉 otherwise
Γ ` unpack k v⇒ ⊥

We also generalize the function type in WebAssembly so that SableWasm MIR’s function

type will always have a single return value. We use the following strategy to map We-

bAssembly’s function type into SableWasm MIR function type. In the case where there

are no return values, we translate the return type into unit type. For example, SableWasm

translate [i32] -> [] into [i32] -> (). On the other hand, if the function type has

exactly one return value, the translation rule is trivial. Finally, when there are multiple

return values, we pack them into a single tuple. For example, SableWasm use [i32] ->

(2, i32, f32) to represent [i32] -> [i32, f32] in WebAssembly.

SIMD operations Section 4.3 presented the instruction design in SableWasm MIR. We

mentioned that WebAssembly’s 128-bit vector value, added by the SIMD operation exten-

sion proposal, does not store their shape information in the type. WebAssembly’s design

gives us two choices in SableWasm when designing a type system for vector operations.

First, we can erase all the shape information for values and carefully plan the instruction

semantics to ensure that all the operations have defined behaviour at runtime. Second,

another approach is to add shape information back to the values’ types. If there is a mis-

73

match in shape information, either the translation visitor can insert a bit cast, or the type

checker can reject the program. In SableWasm MIR, we take the first approach by erasing

all the shape information from the vector values. Chapter 6 will introduce the second

approach in detail. The semantics for SIMD instructions in SableWasm MIR follows the

WebAssembly’s specification. We always store the value using the little-endian method

and the vectors start their first lane from the least significant bit.

In this section, we talked about the type inference pass in SableWasm MIR. Similar to

the dominator analysis we seen in section 5.2.1, the type infer pass does not optimize the

control flow graph. But they are critical in the backend when we lower the SableWasm

MIR into LLVM. We will come back to this in detail in chapter 6.

74

Chapter 6

Backend and Runtime

This chapter discusses the last component of the SableWasm compilation pipeline: the

code generation backend and runtime support for generated shared libraries. Currently,

SableWasm has only one backend based on the LLVM compiler infrastructure. However,

in the future, one can easily extend the system by adding more backends that lower Sable-

Wasm MIR into other target languages. Another problem that appears when designing a

backend is how SableWasm MIR entities map to native constructs. In SableWasm, we take

an instance-based approach. The SableWasm runtime library will manage all entities in

an instance object. The system will pass it to the generated native functions as the first ar-

gument, similar to ‘this’ pointer in many C++ implementations. In the rest of this chapter,

we will first go through the design of the instance object, followed by the implementa-

tion of WebAssembly entities. Finally, we will discuss the code generation strategies used

when lowering SableWasm MIR to LLVM intermediate representation and the interaction

between generated shared libraries and the hosting language.

6.1 Instance Layout

This section discusses the WebAssembly instance implementation in SableWasm. A

WebAssembly instance hosts all the runtime structures that the generated shared libraries

75

Memory Metadata Pointer

Table Metadata Pointer

Global Metadata Pointer

Function Metadata Pointer

Memory Instance Pointer

... ...

Table Instance Pointer

... ...

Global Instance Pointer

... ...

Function Context Pointer

Function Pointer

... ...

SableWasm WebAssembly Instance

struct instance {
memory_metadata_t *memory_metadata;
table_metadata_t *table_metadata;
global_metadata_t *global_metadata;
function_metadata_t *function_metadata;
memory_t *memories[NUM_MEMORY];
table_t *tables[NUM_TABLE];
global_t *globals[NUM_GLOBAL];
struct {

struct instance *context;
function_t *function_ptr;

} *functions[NUM_FUNCTIONS];
};

Figure 6.1: SableWasm WebAssembly instance

require, such as linear memories and indirect tables. Figure 6.1 illustrates the design of

the WebAssembly instance. SableWasm’s WebAssembly instance object consists of two

parts, metadata entries and entity pointers. One may also notice that the instance object’s

size may vary from one module to another depending on how many entities are declared.

This behaviour is intentional by design. The SableWasm runtime system needs to com-

pute the address of the pointers based on the metadata information on the fly. By packing

all pointers in a consecutive memory region, we reduce one layer of indirection for the

runtime system, and in theory, may improve runtime performance. On the other hand,

the generated shared library has all the entities address inlined as the backend can com-

pute them during code generation, which does not incur any performance loss. For most

of the entities, they are pretty straightforward, and we will skip the discussion here. In

76

the rest of the section, we focus on three aspects: the metadata entries, the function entity

representations, and the instance initialization protocol in SableWasm.

Metadata One could think of the metadata as the signatures for entities, and indeed, the

SableWasm runtime system prepares the instance object based on the metadata. Further,

shared libraries generated by SableWasm only publicly expose the metadata and initial-

ization function to conceal module details. Metadata encodes the type for the entity. For

linear memories and indirect tables, this is relatively trivial as their types only consist of

an integer pair. In the case of global variables, things are a little bit complicated. A quick

reminder, WebAssembly global variable types keep track of their value type and mutabil-

ity. The first problem here is how to encode WebAssembly value types. One solution is to

use WebAssembly value type binary format. However, this encoding strategy is hard to

maintain as a human cannot directly read them. Here we use the JVM approach for value

type encoding 1. In short, in SableWasm, we encode 32-bit integers as ‘I’, 64-bit inte-

gers as ’J’, single-precision floating-point numbers as ’F’, double-precision floating-point

numbers as ’D’, and finally, 128-bit vectors as ’V’. The second problem is how to encode

mutability. In SableWasm, we use capital letters for constant global variable types and

lower letters for mutable ones. Finally, for function types, we follow a similar design as

we used for global variables. SableWasm encodes a function type into a null-terminated

string. Let’s take [i32, f32] -> [v128] as an example. SableWasm encodes the type

into ‘IF:V’. The colon acts as a separator between parameter types and result types. Note

that ‘:’ itself is also a valid SableWasm function signature string, and represents [] ->

[], a void function with no arguments. Finally, metadata also encodes module names

and entity names for import entities and names for export entities, which play a critical

role later in the module initialization phase.

Function entity representation The WebAssembly specification classifies the functions

into two groups, WebAssembly functions and host functions. WebAssembly functions are

1https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html

77

https://docs.oracle.com/javase/7/docs/technotes/ guides/jni/spec/types.html

any functions defined within a WebAssembly module. On the other hand, host functions

are directly provided by the host system, and from the WebAssembly module’s perspec-

tive, the host functions are black boxes without any knowledge of their internals. Making

things more complex, in MVP WebAssembly, there are no explicit requirements on how

the WebAssembly functions should behave if they are invoked from other modules. Here

we use a similar generalization like the one adopted by Javascript 2. In short, in Sable-

Wasm, if a module exports a function, it exports the function in a closure that captures its

enclosing instance. Suppose a second module invokes the exported closure as an import

function. In this case, the function still only has access to its original module’s entities

and only communicates to the second module via return values. Hence, in SableWasm,

we implement our function as a pair of pointers. The first one refers to its enclosing

instance, and the second one relates to the generated function code. In this chapter’s in-

troduction, we mentioned that we pass the instance object as the first argument to the

generated functions upon function calls. But, what should we give to the host function

invocations? SableWasm defines that for all the host functions, the instance object pointer

will always point to the caller’s enclosing instance so that the host functions can access

the internals of the caller’s module.

Initialization protocol In the last part of the section, we will cover the initialization

protocol we used in SableWasm. The initialization protocol consists of three basic steps:

validation, instance preparation, and initialization. In the validation phase, we load the

shared library with the operating system’s help, such as dlopen on Linux, and check if it

contains all the required symbols. Currently, a SableWasm shared library needs to export

five symbols in total. Table 6.1 illustrates the symbols expected from the generated shared

libraries. The instance initializer function takes a prepared instance object as the argument.

The next step in SableWasm is to construct this prepared instance object. The idea of a

prepared instance object is that we want to separate the memory allocation from the value

2WebAssembly Javascript Interface: https://www.w3.org/TR/wasm-js-api-1/

78

https://www.w3.org/TR/wasm-js-api-1/

initialization. In SableWasm, the runtime system handles the memory allocation, while on

the other hand, the initializer function takes care of the value initialization. In the second

phase, the SableWasm runtime allocates all the entities and attaches them to the module

instance. Note that SableWasm also resolves all the import names at this stage, and it

will only proceed to the next step if all the expecting import entities are set. The import

name binding utilizes the module names and entity names provided by the metadata.

Finally, the last step is the initialization. SableWasm will invoke the initializer function

supplied by the shared library. The initializer function takes care of all kinds of value

initialization, such as setting values for global variables and copying data segments into

linear memories. If the runtime system adequately prepares the instance context, the

initializer function should never fail.

Symbol Name Description
sable global metadata Metadata for global values
sable memory metadata Metadata for linear memories
sable table metadata Metadata for indirect tables
sable function metadata Metadata for functions
sable initialize Instance initializer function

Table 6.1: SableWasm shared libraries exported symbols

6.2 WebAssembly Entities

In the previous section, we discuss the design of the SableWasm WebAssembly instance

object. However, we treat all WebAssembly entities as opaque pointers without div-

ing into the details during the last section. This section will cover the implementation

of the WebAssembly entities along with the runtime library builtin functions in Sable-

Wasm. Before we start this section, we will first present the terms used throughout

the later part of the thesis. In the rest of this chapter, we use sable instance t

to denote the type of the instance object. Similarly, we use a similar format when dis-

cussing WebAssembly linear memories, indirect tables, and global variables. For exam-

79

Metadata

__sable_memory_t *

......

4KiB pages x 164KiB page

Metadata

__sable_memory_t *

......

4KiB pages x 164KiB page

4GiB

Invalid Invalid Invalid Invalid

Figure 6.2: SableWasm WebAssembly linear memory

ple, sable memory t is the type of WebAssembly linear memory in SableWasm. Fi-

nally, we use sable function t refer to the function pointers that point to generated

native functions.

Linear Memory SableWasm implements WebAssembly linear memories with mapped

memory provided by the operating system. It also has a fallback implementation that

uses standard malloc and free procedure from the C library for an operating system

that does not support mapped memory. The fallback implementation is relatively trivial,

and we will not discuss it in the thesis. Here, we will focus on the one that uses mapped

memory. Figure 6.2 illustrates the strategies when mapping WebAssembly linear memory

into native memory. On the top, we have a linear memory with a size of 1 in WebAssem-

bly page size units, or 64KiB. In the figure, we assume the native machine has a page size

of 4KiB, which is typical for most hardware architectures. Here’s a quick recap on the

requirements of WebAssembly linear memories. First, the program can efficiently ran-

dom access any location within the linear memory. Second, at runtime, the module can

query the size of the linear memory. Finally, the program can grow the linear memory

80

if the runtime system allows it. SableWasm implements linear memories using a similar

trick as the one used for ‘malloc’ functions in many C standard library implementations.

From the generated shared libraries’ perspective, the linear memory object points to the

start of a continuous memory chunk. Hence, memory accesses are efficient and require

only one layer of indirection. First, the generated function will fetch the linear memory

base pointer from the instance object and calculate offsets accordingly. SableWasm also

attaches an extra page that manages the metadata of the linear memory at the beginning.

It contains all the records that the runtime system needs to work with the linear mem-

ory, such as the current size and the upper bound. Note that the size of the metadata is

usually way smaller than the page size defined by the native machine. Still, SableWasm

reserves a whole page for it, as we want our linear memory start address to be always

page-aligned in the hope of better performance.

Runtime builtin functions Description
sable memory size Query for the size of the linear memory
sable memory guard Perform boundary check on the linear memory
sable memory grow Attempt to increase the size of the linear memory

Table 6.2: SableWasm runtime builtin functions for linear memory

SableWasm implements additional functionalities through library functions. Table 6.2

illustrates all runtime library builtin functions provided by SableWasm. sable memory size

implements SableWasm’s MemorySize instruction. It takes an argument of a linear mem-

ory instance and returns the size of it in WebAssembly page units. The second runtime

builtin function, sable memory guard corresponds to the MemoryGuard instructions

in SableWasm. It takes a linear memory instance and the expected number of bytes ahead

as arguments. Note that the function does not return any values, and this is intentional by

design. SableWasm runtime library utilizes the C++ exception mechanism to report and

handle errors. If the memory access is out-of-bound, the runtime system will throw an

exception. We will come back to this later in this chapter when discussing the interaction

between generated shared libraries and the host language. Finally, the last runtime builtin

81

function, sable memory grow implements the SableWasm’s MemoryGrow instruction.

The instruction follows its counterpart that appeared in the WebAssembly specification.

It takes a linear memory instance and the number of pages to increase as arguments. If

the operation is successful, the function will yield the new size of the linear memory; oth-

erwise, it returns -1 instead. SableWasm grows the memory by remapping the memory

with the help of the operating system. On Linux, this usually corresponds to a mremap

operation.

In the above implementation, all linear memory bounds checks are explicit and program-

directed, and thus they are relatively quite expensive. To further improve the perfor-

mance, we use a similar technique to that used by many virtual machine implementa-

tions, which utilizes mapped memory access permission flags. Figure 6.2 illustrates this

approach at the bottom. One may notice that MVP WebAssembly works with 32-bit ad-

dressing 3. Hence, the maximum size of the linear memory is 4GiB. Thus, SableWasm

reserves 4GiB of address when allocating a linear memory and marks all the pages be-

yond the current range as invalid pages. This operation is quite efficient as it only works

with the memory address instead of allocating the memory. In this implementation, any

out-of-bound access will result in a memory segmentation fault. Note that this strategy

does yield better performance but results in a non-recoverable error. SableWasm provides

both implementations, and one can select based on their needs. In the next chapter, when

we compare SableWasm’s performance against several other implementations, we always

use the second strategy, as the recoverable code is not required.

Global Compared to the WebAssembly linear memory implementation, SableWasm’s

WebAssembly global variable implementation is relatively straightforward. In the cur-

rent version of WebAssembly, global variables can only store primitive values. There-

fore, SableWasm holds the WebAssembly global variable instance as a union construct of

all possible value types, followed by its type’s character encoding. Figure 6.3 illustrates

3This is subject to change in the future. WebAssembly 64-bit memory addressing:
https://github.com/WebAssembly/memory64

82

https://github.com/WebAssembly/memory64

16 bytes 1 byte

__sable_global_t *

i32, f32 i64, f64 v128 padding

15 bytes

Type

Figure 6.3: SableWasm WebAssembly linear global

SableWasm’s implementation for WebAssembly global variable instances. From the gen-

erated shared libraries’ perspective, the global variable access is equivalent to a simple

load or store operation. Note that, in generated shared libraries, we never need to worry

about the mutability of the global variables because the WebAssembly validation rules

ensure that a valid module should never write to a constant global variable.

Indirect Table The last WebAssembly entity implemented in SableWasm is the indirect

table, and it perhaps is the most complex one among all three of them. A quick reminder,

in the instance layout section, we mentioned that we represent the function instance in

SableWasm using function closures that capture its enclosing context. SableWasm imple-

ments the indirect table using a vector of function closures and their type signatures. The

internals of the SableWasm indirect table is hidden from the generated shared libraries

and only communicates to them via runtime buitlin functions. Table 6.3 illustrates all the

runtime builtin functions provided by SableWasm for indirect tables.

Runtime builtin functions Description
sable table guard Check if a given index is within the indirect table’s range
sable table check Check if the entry has specific type
sable table context Fetch the context pointer of the entry
sable table function Fetch the function pointer of the entry
sable table set Write to indirect table

Table 6.3: SableWasm runtime builtin functions for indirect table

83

sable table guard takes the indirect table instance and the index as arguments.

It is quite similar to MemoryGuard instructions, except that it works with an indirect

table. In addition, it also utilizes the same error handling strategy by throwing an ex-

ception in the case where the index is out-of-bounds. The next runtime builtin function,

sable table check implements the runtime type checking for indirect function calls.

It takes a pointer to an indirect table instance, an index, and a function signature string as

the parameter. We use the same strategy as we have seen in the instance layout section to

encode the expecting type of the function. As in the current SableWasm, the type system

is extremely trivial, there is no complex typing judgment involved, such as subtyping.

Hence, the runtime type checking for indirect function calls is just a simple string com-

parison. In the case of type mismatch, the runtime type checking function also throws an

exception. sable table context and sable table function are the getter func-

tions provided by SableWasm. Both of them take an indirect table instance and an index

as the argument. These two functions assume the access is within range, and the indirect

table entry has the expected function type. We will come back to this later in the chapter

when we discuss the patterns used when lowering SableWasm MIR into LLVM interme-

diate representations. As their names suggest, the first function returns the pointer to

the context instance object, and the second function returns the function code address.

Finally, the last runtime builtin function for indirect tables is sable table set. Al-

though in MVP WebAssembly, indirect tables are immutable, the program cannot alter

them after they initialized 4, the module initialization function still needs the setter func-

tion to setup WebAssembly element segments. The setter function takes an indirect table

instance, an index, a function code address, and its null-terminated type signature string

as the argument. Similar to the getter functions, the setter function assumes the index is

always within range.

The SableWasm runtime library still provides another runtime builtin function that

does not fit into the categories above. SableWasm MIR defines an Unreachable instruc-

4This is subject to change in the future. WebAssembly reference types:
https://github.com/WebAssembly/reference-types

84

https://github.com/WebAssembly/reference-types

tion, which should never reached by any control flow, and if so, it will signal a runtime

panic. In many other languages, Unreachable maps to a hardware trap instruction,

such as ud2 instruction on x86 architecture. However, this behaviour is not acceptable

in SableWasm. ud2 generates a non-recoverable hardware invalid instruction exception,

which will eventually lead to the entire system core dump; on the other hand, SableWasm

expects exceptions thrown from generated shared libraries and should handle them ac-

cordingly. Hence, the SableWasm runtime library provides the sable unreachable

function for the SableWasm MIR Unreachable instruction. We will come back to this

with more details in the following section when discussing the code generation strategy

used when lowering SableWasm MIR into LLVM intermediate representation.

6.3 Code Generation

This section describes the code generation strategy used in the SableWasm LLVM back-

end. For most of the instructions, especially for SableWasm MIR numeric operations, the

translation rules are simple mappings between SableWasm MIR instructions and their

LLVM counterparts. In this section, we will skip the discussion over these trivial map-

ping. Instead, one can consult the SableWasm source code for more details. The rest of the

section will focus on several key aspects: local variable implementation, linear memory

manipulation, indirect function calls, and SIMD instruction operations. One problem that

arises when lowering SableWasm MIR into LLVM intermediate representation is how to

pick the instruction translation order. Any instruction in SableWasm MIR can refer to

values either generated by a previous instruction in the same basic block or instructions

within a dominating block, implying that when lowering SableWasm MIR, we need to

perform a pre-order tree traversal over the dominator tree. However, φ nodes may exist

merging candidate values from prior dominating blocks or due to subsequent backward

branching. Hence, the translation visitor may not have translated the candidate value be-

fore φ nodes. SableWasm backend takes a two-phase translation to address this problem.

85

In the first pass, the backend will translate all the instructions and collect the resulting

values into a map, and in the second pass, the backend will come back to the φ nodes and

fix up the candidate values accordingly.

Function declaration and local variables

function %foo: [i32] -> [f32] {
{(arg) %local0: i32, %local1: f64}
......

}
=⇒
define private float @foo(%__sable_instance_t* %0, i32 %1) {
entry:

%2 = alloca i32, align 4
store i32 %1, i32* %2, align 4
%3 = alloca double, align 8
store double 0.000000e+00, double* %3, align 8
......

}

{%local: i32}
%t0 = local.get %local =⇒ %t0 = load i32, i32* %local, align 4
local.set %local %t0 =⇒ store i32 %t0, i32* %local, align 4

We will first start by examining the translation pattern for lowering SableWasm MIR

functions into LLVM functions and their local variables. The example above presents

a simple function named foo, which takes a single 32-bit integer as the argument and

returns a single-precision floating-pointer number. foo has two local variables. The pa-

rameter implicitly introduces the first one, local0, and the function explicitly defines the

second one, local1. At runtime, local0 will hold the value of the parameter upon en-

try, and local1 will initialize to zero. Compared to the SableWasm MIR function defini-

tion, the one in LLVM intermediate representation (IR) has three major differences. First,

the LLVM function definition has the extra instance object pointer in the arguments, in

the example above, %0. We covered this briefly in the instance layout section. In short, for

all the functions, the SableWasm backend code generator will implicitly add the instance

object pointer as the first argument. The second difference is in the entry block. Sable-

Wasm MIR, similar to WebAssembly, views the local variables as opaque memory slots.

86

However, LLVM IR requires users to manually allocate them in stack memory space via

the alloca instruction. The alloca instruction reserves enough memory on the stack

based on the given type and returns a pointer. In example above, %2 and %3 are two

reserved local variable memory region that correspond to local0 and local1 accord-

ingly. The last difference is that SableWasm IR defines implicit initialization for all local

variables; on the other hand, LLVM alloca instruction leaves the reserved memory with

uninitialized values. Hence, to faithfully implement WebAssembly and SableWasm MIR

specification, we generate store instructions to set the initial values for each local vari-

ables. As for LocalGet and LocalSet instructions, the translation patterns are quite

straightforward. The SableWasm backend code generator maps LocalGet instructions

to load instructions and LocalSet instructions to store instructions as demonstrated

in the example above.

Linear memory operation

Fetching linear memory:
%t0 = getelementptr

inbounds %__sable_instance_t, %__sable_instance_t* %0,
i32 0, i32 4

%memory = load %__sable_memory_t*, %__sable_memory_t** %t0, align 8

%t0 = memory.size %mem =⇒
%t0 = call i32 @__sable_memory_size(%__sable_memory_t* %mem)
%t0 = memory.grow %mem %delta =⇒
%t0 = call i32 @__sable_memory_grow(%__sable_memory_t* %mem, i32 %delta)
memory.guard %mem %offset =⇒
call void @__sable_memory_guard(%__sable_memory_t* %mem, i32 %offset)

In section 6.1 and 6.2, we presented how the instance object manages the linear memory

instance and several runtime functions that implement additional functionalities. The

SableWasm backend code generator takes advantage of the design by mapping Sable-

Wasm linear memory manipulation instructions into builtin function invocations. The ex-

ample above demonstrates the mapping for MemorySize, MemoryGrow and MemoryGuard

instructions. All these instructions map to call instructions to their corresponding builtin

functions with appropriate arguments. Note that all builtin functions require passing the

87

linear memory pointer as an argument. Currently, the WebAssembly module can have at

most one linear memory. Due to the validation rules, such linear memory must present

within the module if linear memory manipulation instructions appear in the program.

Further, as we store linear memory instance pointers before any other entities, one can

show that the linear pointer must be the 5th pointer in the instance object. Hence, the

SableWasm backend code generator fetches the linear memory instance pointer using a

pair of a getelementptr instruction and a load instruction. The getelementptr in-

struction LLVM calculate addresses for entries in a aggregation. The above example cal-

culates addresses base on the type sable instance t which is generated according

to declared entities at compile time.

Linear memory load and store

Load a 32-bit integer:
%result = load.32 i32 %mem %addr =⇒

%t0 = ptrtoint %__sable_memory_t* %memory to i64
%t1 = zext i32 %offset to i64
%t2 = add nuw i64 %t0, %t1
%addr = inttoptr i64 %t2 to i32*
%result = load i32, i32* %addr, align 1

Partial load a 32-bit integer:
%result = load.16 i32 %mem %addr =⇒
......
%t0 = load i16, i16* %addr, align 1
%result = zext i16 %t0 to i32

Store a 32-bit integer:
store.32 %mem %addr %val =⇒

......
store i32 %val, i32* %addr, align 1

Partial store a 32-bit integer:
store.16 %mem %addr %val =⇒

......
%t0 = trunc i32 %val to i16
store i16 %t0, i16* %addr, align 1

SableWasm MIR classifies load and store instructions into two groups, partial and com-

plete. A quick reminder, WebAssembly associates load and store operations with sign ex-

tension mode, while in SableWasm, we define load instruction to perform zero extension,

and store instructions always apply bit truncation. The first example above presents a

88

complete load operation for a 32-bit integer. The translation pattern is relatively straight-

forward. Note that the linear memory instance pointer points to the first byte within the

linear memory. Hence, the SableWasm backend code generator will first calculate the na-

tive write address by summing up offset and base pointer and map the Load instruction

to load in LLVM. The LLVM memory operation, such as load and store has a com-

plementary attribute, align. In the background section, we introduced the attributes

in LLVM. In short, the align attribute marks an alignment requirement for memory ac-

cess operations. As WebAssembly linear memory is comparable to a byte array, in which

read-write can occur at any point, we can only conservatively set the alignment to one in

order to limit the LLVM backend instruction selector from generating instructions with

alignment assumptions. This, in theory, leads to less efficient code. However, later in the

evaluation section, we determine this is not a bottleneck of the entire implementation. In

the future, one can further improve the performance of SableWasm by designing analy-

ses that infer lower bounds for alignment. The second example above demonstrates the

translation pattern for partial load operation. Compared to the complete load instruction,

the translation pattern for partial load instruction has an additional zero-extending oper-

ation, zext at the bottom, to implement the SableWasm MIR partial load semantics. On

the other hand, the translation pattern for both complete and partial store instructions

are very similar to load instructions. The most notable difference is the trunc instruc-

tion in partial store’s translation pattern which performs bit truncation on the operand.

Indirect function call

call.indirect %table %index %expect_ty =⇒
call void @__sable_table_guard(%__sable_table_t* %table, i32 %index)
call void @__sable_table_check(

%__sable_table_t* %table, i32 %index, i8* %expect_ty)
%t0 = call %__sable_instance_t* @__sable_table_context(
%__sable_table_t* %table, i32 %index)

%t1 = call %__sable_function_t* @__sable_table_function(
%__sable_table_t* %table, i32 %index)

%t2 = icmp eq %__sable_instance_t* %t0, null
%t3 = select i1 %t2, %__sable_instance_t* %0, %__sable_instance_t* %t0
%t4 = bitcast %__sable_function_t* %276 to

89

%t5 = call %t4(%__sable_instance_t* %t3,)

The SableWasm backend code generator implements indirect function calls via a series of

builtin function invocations. We have already presented the builtin function in section 6.2;

hence, we will not show them in detail in this paragraph. The first step for calling an indi-

rect function is to check if the index is within range by calling the sable table guard

builtin function. If the index is within range, we then compare the expected function

type with the actual indirect function type with sable table check. Note that this

builtin function also checks if the entry is a null function. If so, it will report an excep-

tion. The SableWasm backend code generator uses a similar technique to encode the

expected function type into a null-terminated string, as we have seen in section 6.1. After

we make sure the indirect function is valid, we can now fetch the context pointer and

function address pointer by using two getter functions, sable table context and

sable table function. Before we invoke the function, we need to check if it is a

host function. A quick reminder, SableWasm will set context pointers for all host func-

tions as null pointers, and when invoking a host function, we need to pass the current

instance object pointer as the context pointer. The SableWasm code generator chooses

the correct context pointer by using a pair of icmp and select instruction. After se-

lecting the correct context pointer, the indirect function is straightforward by casting the

function code address into the function pointer and invoking it appropriately. One may

notice that the indirect function call in SableWasm is costly and involves multiple function

calls. WebAssembly specification does not impose requirements on indirect function call

efficiency, and later in our benchmark, we determine that indirect function calls are not

a performance bottleneck. Hence, the SableWasm code generator focus on extensibility

rather than performance.

SIMD operation The last translation pattern we will cover in the section is the SIMD op-

erations. For most of the SIMD operations, the SableWasm backend code generator maps

to their LLVM counterparts. However, one challenge arises when translating SableWasm

90

MIR into LLVM intermediate representation around the type system. In section 5.2.3, we

presented the type system for SableWasm MIR. A quick reminder, the SableWasm MIR

follows WebAssembly’s design by erasing the shape information from the vector val-

ues, depending on instructions to interpret them correctly. However, LLVM intermediate

representation does require shape information for vectors. Hence, when lowering Sable-

Wasm MIR into the LLVM intermediate representation, the SableWasm backend code

generator needs to insert cast instructions when required. For most of the numerical in-

structions, this is pretty trivial. The backend code generator will first infer an LLVM vec-

tor type based on the SableWasm instruction shape information. For example, v128.add

i16x4 implies that the operand must have type <4 x i16> in LLVM. In the case where

the shape type is unsuitable, the SableWasm backend code generator will insert a bit cast,

bitcast to. The bit cast operation is always valid as, in the current version of Sable-

Wasm MIR, we only work with 128-bit vectors. However, there are still several corner

cases in this strategy. What type should we assign to φ nodes when merging vectors

from multiple control-flow? Also, what type should we assign for load instruction when

shape information is still not yet available? The SableWasm backend code generator takes

advantage of the fact that integer types in LLVM can be arbitrarily long, and more specif-

ically, 128-bit integer, i128, is a valid type in LLVM. The SableWasm backend code gen-

erator will always use i128 as a default type in these corner cases. For example, for load

instruction for SableWasm vectors, the code generator will emit a load instruction with

i128 type, and later when any instruction takes the value as the operand, it will setup

the bit cast instruction accordingly.

6.4 Interface with C/C++

The last section of this chapter will cover the interface between the generated shared li-

brary and the host languages. Currently, SableWasm only has a binder library for C/C++.

However, the principle is relatively straightforward, and one can add implementations of

91

the binder function for any other language. In the rest of the section, we will focus our

discussion on the callee wrapper, WASI function implementations and error handling

strategies.

Callee wrapper Section 6.1 mentioned that SableWasm stores a function instance as a

pair of context pointer and function address pointer. Additionally, SableWasm also en-

codes the function types as null-terminated strings. However, all this information is

only available to the host program at runtime. C/C++ is a statically typed language;

hence, we can only specify type contracts on the exported functions at compile-time

and verify the contracts at runtime. Traditionally, one can use a type erased pointer, a

void pointer, to store the function address and reinterpret it to the actual concrete type.

SableWasm presents a helper class that provides type-safe access to the exported func-

tions: WebAssemblyCallee. WebAssemblyCallee takes advantage of the template

metaprogramming system in C++ and generates a null-terminated encoding of an ex-

pected type at compile-time. At runtime, the wrapper class will check the type signature

string against the actual type string before forwarding the function call. If the type signa-

ture string does not match, the system will signal an exception.

WASI interface implementation WebAssembly System Interface (WASI) extends We-

bAssembly by providing syscalls that interact with the host environment. This extension

is non-invasive, and all the syscalls are in the form of imported functions, mainly host

functions. Hence, SableWasm implements the WASI extension using host library func-

tions only. At the shared library initialization phase, the loader will set up WASI host

functions based on the import descriptor. Currently, SableWasm only implements the

minimal WASI interface functions necessary in order to run benchmarks, such as stan-

dard I/O and timing. However, the framework is easy to extend, and all the WASI func-

tion implementations are under the namespace runtime::wasi. Therefore, we will skip

them in detail in the thesis; one can consult the source code for implementation details of

WASI interface functions. One of the project’s future work is to continuously work on the

92

1 using namespace runtime;
2
3 int run(std::filesystem::path const &Path) {
4 WebAssemblyInstanceBuilder InstanceBuilder(Path);
5
6 #define WASI_IMPORT(name, func) \
7 InstanceBuilder.tryImport("wasi_snapshot_preview1", name, func)
8 WASI_IMPORT("proc_exit" , wasi::proc_exit);
9 WASI_IMPORT("clock_time_get", wasi::clock_time_get);

10 WASI_IMPORT("args_sizes_get", wasi::args_sizes_get);
11
12 #undef WASI_IMPORT
13
14 WebAssemblyInstance Instance = InstanceBuilder.Build();
15 WebAssemblyCallee FnStart = Instance->getFunction("_start");
16 try {
17 FnStart.invoke<void>(); // _start : [] -> []
18 } catch (wasi::exceptions::WASIExit const &Exception) {
19 return Exception.getExitCode();
20 }
21 return 0;
22 }

Figure 6.4: Simple C++ SableWasm loader function

WASI system interface and add more features to SableWasm, such as capability-based file

system and networking.

Error handling strategies The last topic we will address in the section is error handling.

SableWasm builds its error handling strategy based on the C++ exception mechanism.

Comparing to other exception handling strategies, this brings us two significant benefits.

First, when generating LLVM intermediate representation for shared libraries, we can

avoid boilerplate code that propagates exceptions. Additionally, on most modern system

ABIs that supports zero-cost exception handling, this gives SableWasm a performance

advantage. On the other hand, this leaves us room for further improvement for pending

WebAssembly extensions, such as the WebAssembly exception handling extension 5. The

WebAssembly exception handling extension generalizes the WebAssembly specification

by adding try catch construct to the syntax, which directly corresponds to the C++

exception handling mechanism.

5WebAssembly exception handling: https://github.com/WebAssembly/exception-handling

93

https://github.com/WebAssembly/exception-handling

In this section, we discussed the interaction between C/C++ and the SableWasm sys-

tem. We will conclude the chapter with a concrete loader function example. Figure 6.4

demonstrates a simple loader function for generated SableWasm shared libraries. In the

example above, we assume the WebAssembly module is a WASI compatible module, and

hence, exports a function named start as the entry function with type [] -> [].

94

Chapter 7

Evaluation

In the previous chapters, we presented the design of the SableWasm compiler and run-

time. This chapter will focus on the performance evaluation in terms of the execution

speed of the generated shared libraries. Here, we focus on three research problems. First,

how does SableWasm perform compared to other WebAssembly runtime environment

implementations? Second, does the optimization over the input WebAssembly module

affect the overall performance? Finally, how much does the WebAssembly SIMD exten-

sion improve comparing to optimized scalar counterparts? We will first present the setup

for experiments used when investigating three questions, and later, the experimental re-

sults for each one of them.

7.1 Experiment Setup

This section presents the setup for the experiments in the remaining part of the chapter.

We conduct the benchmarks on the same server for all experiments. The experiments

were performed on a six-core Intel Core processor at a 3.7 GHz standard clock frequency

and with an L3 cache of 12 MiB. Additionally, the server runs Ubuntu 18.04 with Linux

kernel version 4.15.0 and 32GiB of memory. When measuring the performance, we exe-

cute each benchmark ten times in succession to minimize the measurement error as some

95

Benchmark Name Description
2mm 2 matrix multiplication (D = A.B; E = C.D)
3mm 3 matrix multiplication (E = A.B; F = C.D; G = E.F)
adi alternating direction implicit solver
atax matrix transpose followed by vector multiplication
bicg BiCG sub kernel of BiCGStab linear solver
cholesky Cholesky decomposition
correlation correlation computation
covariance covariance computation
doitgen multiresolution analysis kernel (MADNESS)
durbin Toeplitz system solver
dynprog dynamic programming (2D)
fdtd-2d 2D finite different time domain kernel
fdtd-apml FDTD using anisotropic perfectly matched layer
gauss-filter gaussian filter
gemm matrix-multiply (C = alpha.A.B + beta.C)
gemver vector multiplication and matrix addition
gesummv scalar, vector and matrix multiplication
gramschmidt Gram-Schmidt decomposition
jacobi-1D 1D Jacobi stencil computation
jacobi-2D 2D Jacobi stencil computation
lu LU decomposition
ludcmp LU decomposition (different implementation)
mvt matrix vector product and transpose
reg-detect 2D image processing
seidel 2D Seidel stencil computation
symm symmetric matrix multiplication
syr2k symmetric rank-2k operations
syrk symmetric rank-k operations
trisolv triangular solver
trmm triangular matrix multiplication

Table 7.1: the Polyhedral benchmark suite (Polybench)

of the benchmarks take less than a second to complete. Finally, the final benchmark re-

sult is the average among ten runs except the highest and the lowest. For the benchmark

subject, we choose three different benchmark suits, the Polyhedral benchmark suite (Poly-

bench), the Ostrich benchmark suite (Ostrich), and the NAS parallel benchmarks (NPB).

96

Benchmark Name Description
back-prop backward propagation in a layered neural network
bfs breadth-first search in a randomly generated graph
crc CRC error-detecting algorithm
fft fast Fourier transform
hmm forward-backward algorithm over a hidden Markov model
lavamd 3D space particle simulation
lud LU decomposition
nqueens N-queen problem solver
nw (needle) find optimal alignment of two protein sequences
page-rank page-rank algorithm to measure the importance of a web site
spmv sparse matrix multiplication with a vector
srad diffusion method for ultrasonic and radar imaging

Table 7.2: the Ostrich benchmark suite (Ostrich)

Polybench The Polyhedral benchmark suite (Polybench) [36] contains a group of small

math kernel functions as shown in table 7.1. The description table is adjusted from of-

ficial Polybench documentation 1. In the WebAssembly announcement paper [8], the

community also chose Polybench as the evaluation subject. However, one problem is

that the Polybench is in C. Therefore, the researchers cross-compiled the benchmark us-

ing a modified Clang compiler with an LLVM WebAssembly backend. However, there

is no standardized system interface, such as WASI, proposed by the community when

publishing the paper. Hence, the experiment is measured with an external clock, and all

features that require system interaction are disabled. On the other hand, when evaluating

SableWasm, we use a WASI-enabled 2 Clang compiler to cross-compile the WebAssembly

modules into WebAssembly modules. Each benchmark reports its execution time by is-

suing syscalls to the runtime environment, which in theory, should yield more accurate

results, especially for a just-in-time (JIT) runtime environment.

Ostrich The second benchmark suite we used was the Ostrich benchmark suite [9], il-

lustrated in table 7.2. Comparing to the Polybench, Ostrich focuses on larger scientific

1Polybench: http://web.cse.ohio-state.edu/˜pouchet.2/software/polybench/
2WASI SDK: https://github.com/WebAssembly/wasi-sdk

97

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://github.com/WebAssembly/wasi-sdk

Benchmark Name Description
IS integer sort (bucket sort)
EP Marsaglia polar method for generating random numbers
CG estimate the smallest eigenvalue of a SPD matrix
MG multi-grid on a sequence of meshes
FT fast Fourier transform
BT block tri-diagonal solver
SP scalar penta-diagonal solver
LU lower-upper solver

Table 7.3: the NAS parallel benchmark suite (NPB)

problems instead of computation kernels. The Ostrich benchmark suite supports multi-

ple programming languages, such as Javascript and C. Here, we prepare the WebAssem-

bly module similar to the Polybench benchmark suite with a WASI-enabled Clang com-

piler. However, unlike the Polybench benchmark suite, which does not require any mod-

ification on the source code, we need to tweak the Ostrich benchmark code due to the

limitations of WebAssembly specification. This includes hard-coding the command-line

arguments and replacing throwing an exception with calling the exit function.

NPB The last benchmark suite we selected for evaluating SableWasm is the NAS par-

allel benchmark suite [33], shown in the table 7.3. We choose this benchmark because of

its parallel nature, as the third research question focuses on the SIMD instruction opera-

tions. However, the original NPB benchmark suite is in Fortran, and, at the time of thesis

writing, there is no cross-compiler from Fortran to WebAssembly. Hence, we choose an

OpenMP variant instead 3. Although the currently WASI-enabled Clang does not support

OpenMP, we can still cross-compile into WebAssembly, as OpenMP code trivially reduces

to C.

This section presents the benchmark environment and test cases for the experiments

later in the chapter. One may notice some duplication among three benchmark suites,

such as the upper-lower matrix decomposition (LU, ludcmp) and fast Fourier transform

3NPB OpenMP C: https://github.com/benchmark-subsetting/NPB3.0-omp-C

98

https://github.com/benchmark-subsetting/NPB3.0-omp-C

(FT, fft). However, we will still treat them as different individual test cases for all of them,

as they come with various implementations and may lead to performance differences.

Another problem that arises when preparing WebAssembly modules for benchmark suits

is that some of the generated modules from the WASI-enabled Clang compiler have un-

expected behaviour. In NPB, although the WASI-enabled Clang compile can successfully

translate all test cases for all eight benchmark cases, there are two among eight test cases

that have different behaviour compared to their native counterparts. For example, the

WebAssembly module for the IS benchmark case has a memory access out-of-bounds er-

ror for native and optimized translation. Also, the module for EP failed when compiled

with the optimization flag enabled in the WASI-enabled Clang compiler. We suspect that

some unknown bugs in the toolchain may exist as it is still under active development.

Another possible cause for the problem is that the OpenMP implementation may contain

non-standard operations that result in undefined behaviour. We also test the generated

modules against several other WebAssembly runtime environments, and the result is con-

sistent. The last problem we encountered during benchmarking is around WebAssembly

SIMD operation extensions. As the extension is still under standardization, most runtime

environments only support a subset of all instructions. Hence, when comparing SIMD

operations, some of the benchmark results are infeasible. However, we still manage to

collect SIMD operation performance data for most of the benchmark cases.

7.2 RQ1: How does SableWasm perform compare to others?

This section will compare SableWasm performance against several other WebAssembly

runtime environments, specifically Wasmtime and Wasmer. We will benchmark three

implementations over naive (-O0), optimized (-O3), and SIMD-enabled optimized (-O3

-msimd128) WebAssembly modules compiled from the source. One can consider Wasm-

time 4 as the ‘reference’ implementation of WebAssembly out of the browser and it is

4Wasmtime: https://github.com/bytecodealliance/wasmtime

99

https://github.com/bytecodealliance/wasmtime

maintained by the WebAssembly community group. The system is built upon the custom

compile framework, Cranelift 5. Currently, both Cranelift and Wasmtime are still under

active development and subject to changes in the future. Here, in this project, we anchor

our Wasmtime at version 0.26.0. Wasmer 6 is another community approach for running

WebAssembly sandboxed applications outside of the browser. It comes with a package

manager, WAPM 7, that distributes applications in WebAssembly binary format. Wasmer

supports three compiler backends, LLVM, Cranelift, and a single-pass code generator for

fast compilation. In this chapter, we will focus on the LLVM and Cranelift variants of Was-

mer. Similar to Wasmtime, Wasmer is also under active development at the time of thesis

writing, and we fix the version of Wasmer at 1.0.2. Unlike SableWasm, an ahead-of-time

(AOT) compiler for WebAssembly modules, Wasmtime and Wasmer are both just-in-time

(JIT). Thus, when measuring the benchmark’s performance, we need to isolate the error

induced by the compiler, such as compilation-overhead and warm-up time. To eliminate

the compilation-overhead, we measure the execution time with the internal timing code

by issuing syscalls to the WASI layer. Further, we adjust the benchmark size for Ostrich

and NPB so that each benchmark case takes more than 10 seconds to compute to reduce

the error introduced by the JIT warm-up process.

Figures 7.1 (page 101) to 7.9 (page 110) present the benchmark results. We normalize

the data with respect to the SableWasm’s execution time and present them as speedups.

A number higher than one means that the SableWasm’s performance is better than the

candidate, and on the other hand, a less than one speed-up refers to slow-down. The

error bar is calculated based on the 10th percentile and 90th percentile accordingly.

For naive translated WebAssembly modules, shown in figures 7.1 to 7.3, SableWasm

performs better than Wasmtime in most benchmark cases except seven of them. We sus-

pect that the slow-down comes from the excessive linear memory access. In the current

version of the WASI-enabled Clang compiler, a naive translated module will use linear

5Cranelift: https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
6Wasmer: https://wasmer.io/
7WAPM: https://wapm.io/

100

https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://wasmer.io/
https://wapm.io/

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(c) NPB

Figure 7.1: Benchmarks with naive (-O0) on Wasmtime

101

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0

1

2

3

4

5

6

7

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0

1

2

3

4

5

sp
ee

du
p

(c) NPB

Figure 7.2: Benchmarks with naive (-O0) on Wasmer (Cranelift)

102

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(c) NPB

Figure 7.3: Benchmarks with naive (-O0) on Wasmer (LLVM)

103

memory to simulate stack frame functions instead of using local variables. This means

that when writing to a function’s local variable, SableWasm needs to first load the linear

memory base pointer from the instance object, calculate the address, and then perform

the memory access. Making the case worse, the current SableWasm will always load

the base memory pointer even if a local variable already holds the base pointer. LLVM

cannot effectively eliminate these load instructions, as the linear memory base pointer

in the instance object is volatile. One possible solution to ease the problem is to care-

fully annotate the instance object pointer so that the alias analysis in LLVM can correctly

identify these redundant load instructions. On the other hand, SableWasm performs bet-

ter than Wasmer with both Cranelift or LLVM backend. This is quite interesting as the

current SableWasm is also built upon LLVM. We suspect that two factors are contribut-

ing to the speedup. First, SableWasm employs several optimization techniques to im-

prove the quality of the generated LLVM intermediate representation. When designing

the translation patterns for lowering SableWasm MIR into LLVM IR, we notice that the

quality of LLVM IR has a significant impact on the result performance, especially for auto-

vectorization. Second, Wasmer supports many other safety features that are not specified

in the WebAssembly specification, such as stack probing. These safety features impose

performance drawbacks which may also contribute to the performance difference.

For optimized and SIMD-enabled input WebAssembly modules, show in figures 7.4

(page 105) to 7.9 (page 110) SableWasm performs on par with Wasmtime, except on bench-

mark case durbin. One may also notice that the error for durbin in figure 7.4a is more

significant compared to others. This is due to the nature of the durbin benchmark case.

The durbin benchmark contains a tiny computation kernel function and only takes a

few milliseconds to complete. For Ostrich and NPB, we can adjust the benchmark size to

reduce the measurement errors. However, this is not the case for Polybench, as the input

size is hardcoded. On the other hand, SableWasm performs better than Wasmer in most

of the benchmark cases. Here we will take floyd-warshall as an example. The core

computation function in floyd-warshall is a nested for-loop that iteratively multiplies

104

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(c) NPB

Figure 7.4: Benchmarks with optimized (-O3) on Wasmtime

105

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0

1

2

3

4

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(c) NPB

Figure 7.5: Benchmarks with optimized (-O3) on Wasmer (Cranelift)

106

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.0

0.5

1.0

1.5

2.0

sp
ee

du
p

(c) NPB

Figure 7.6: Benchmarks with optimized (-O3) on Wasmer (LLVM)

107

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(c) NPB

Figure 7.7: Benchmarks with SIMD extension (-O3 -msimd128) on Wasmtime

108

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(c) NPB

Figure 7.8: Benchmarks with SIMD extension (-O3 -msimd128) on Wasmer (Cranelift)

109

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.0

0.5

1.0

1.5

2.0

2.5

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

(c) NPB

Figure 7.9: Benchmarks with SIMD extension (-O3 -msimd128) on Wasmer (LLVM)

110

Benchmark name Wasmtime Wasmer (Cranelift) Wasmer (LLVM)
Naive 1.16 3.04 1.46
Optimized 1.09 1.77 1.46Polybench
SIMD-enabled 1.09 1.71 1.47
Naive 1.06 2.39 1.32
Optimized 1.13 1.83 1.34Ostrich
SIMD-enabled 1.13 1.79 1.33
Naive 1.20 3.05 1.79
Optimized 1.14 1.93 1.45NPB
SIMD-enabled 1.15 1.85 1.69

Table 7.4: Geometric mean of speedups compare to Wasmtime and Wasmer

then adds matrices. This operation is highly parallel. We notice that the performance of

SableWasm is approximately four times better in optimized input and two times better for

SIMD-enabled. Currently, there seems no way to retrieve generated LLVM IR from Was-

mer, and we can only speculate on reasons based on the experiment results. We suspect

that the auto-vectorization may cause this in the LLVM framework. The four times and

two times speedup appears to align with the SIMD vector operations for packed double-

precision floating-point numbers. Thus, Wasmer may contain an awkwardly generated

LLVM intermediate representation that stops the auto-vectorization pass to turn scalar

code into the vectorized form.

In general, we conclude that SableWasm performs on par with Wasmtime on opti-

mized and SIMD-enabled WebAssembly modules and better than Wasmtime and Was-

mer for other benchmark cases, as shown in table 7.4.

7.3 RQ2: Does optimization over input modules matter?

The second problem we would like to investigate in the thesis is whether the optimization

over input WebAssembly modules affects their performance in SableWasm. In theory, a

perfect runtime system should recover all the missed possible optimization from a naive

translated WebAssembly module, which we have seen in many other systems with two-

phase compilation. The most well-known example is perhaps Java. The first compiler,

111

javac, translates Java source files into bytecodes, and on the other hand, the Java virtual

machine (JVM) generates naive executable binaries based on the bytecodes at runtime.

javac will translate the source files faithfully, without complex transformation and opti-

mization, while the JVM optimizes the bytecodes effectively. This design helps the system

to achieve fast compilation while ensuring the quality of the final generated code. In the

current SableWasm, however, the optimization over input WebAssembly modules does

have a significant impact on the overall performance. When investigating the problem,

we compare the SableWasm execution time under naive translated WebAssembly mod-

ules against their optimized counterparts.

For most of the benchmarks, except gramschmidt, we have seen a significant perfor-

mance increase for optimized WebAssembly modules, as shown in figure 7.10. Here we

will take trisolv as an example. We found many optimizations missing when compar-

ing the LLVM intermediate representation generated from a naive WebAssembly module

against an optimized one. The most notable difference is perhaps function inlining and

loop auto-vectorization. In LLVM generated by naive WebAssembly module, SableWasm

does not inline the primary function kernel trisolv into the main function. Thus,

matrices are passed as arguments to the computation kernel via pointers, which holds

back SableWasm from transforming the internal nested loops into parallel form due to

possible data dependencies. We suspect that the translation patterns used in SableWasm

when lowering WebAssembly bytecode into SableWasm MIR confuse the LLVM backend.

Another interesting question is why gramschmidt has similar performance on both in-

put WebAssembly modules. When we compare the LLVM intermediate representation

for both inputs, we found that SableWasm can recover nearly all the optimization in the

computation kernel: the computation kernel for gramschmidt is extremely simple, only

consisting of three non-nested for loops. This further confirms our theory on performance

difference.

112

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

(c) NPB

Figure 7.10: Comparision between optimized and naive input modules

113

7.4 RQ3: How much does SIMD extension improve in performance?

1 void kernel_gemm(int ni, int nj, int nk,
2 DATA_TYPE alpha, DATA_TYPE beta,
3 DATA_TYPE POLYBENCH_2D(C,NI,NJ,ni,nj),
4 DATA_TYPE POLYBENCH_2D(A,NI,NK,ni,nk),
5 DATA_TYPE POLYBENCH_2D(B,NK,NJ,nk,nj)) {
6 int i, j, k;
7
8 //BLAS PARAMS
9 //TRANSA = ’N’

10 //TRANSB = ’N’
11 // => Form C := alpha*A*B + beta*C,
12 //A is NIxNK
13 //B is NKxNJ
14 //C is NIxNJ
15 for (i = 0; i < _PB_NI; i++) {
16 for (j = 0; j < _PB_NJ; j++)
17 C[i][j] *= beta;
18 for (k = 0; k < _PB_NK; k++) {
19 for (j = 0; j < _PB_NJ; j++)
20 C[i][j] += alpha * A[i][k] * B[k][j];
21 }
22 }
23 }
24 }

Figure 7.11: Polybench gemm benchmark kernel

The last question we would like to investigate in the thesis is how much the We-

bAssembly SIMD operation extension improves performance compared to MVP WebAssem-

bly. In this experiment, we compare the execution time between optimized WebAssembly

modules and SIMD-enabled WebAssembly modules. Figure 7.12 illustrates the experi-

ment results. For most benchmark cases, the SIMD extension does not significantly im-

prove the performance, except for five cases in Polybench. Here we will take gemm as an

xample. Figure 7.11 illustrates the computation kernel of the benchmark, and it consists of

a single nested loop that performs floating-point mathematics over two matrices. When

translating the optimized (-O3) input WebAssembly module, illustrated in figure 7.13a,

SableWasm correctly performs loop unrolling on the inner for-loop. However, the LLVM

auto-vectorizer failed to transform the scalar code into a parallel form. On the other hand,

in the case of SIMD-enabled WebAssembly module input (-O3 -msimd128), SableWasm

114

co
rre

la
tio

n
co

va
ria

nc
e

de
ric

he
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i
fd

td
-2

d
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
se

id
el

-2
d

ge
m

m
ge

m
ve

r
ge

su
m

m
v

sy
m

m
sy

r2
k

sy
rk

trm
m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu
lu

dc
m

p
tri

so
lv

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(a) Polybench

ba
ck

pr
op bf

s

cr
c fft

hm
m

la
va

m
d

lu
d

ne
ed

le

nq
ue

en
s

pa
ge

ra
nk

sp
m

v

sr
ad

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(b) Ostrich

BT CG EP FP IS LU M
G SP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

sp
ee

du
p

(c) NPB

Figure 7.12: Comparision between SIMD-enabled and optimized input modules

115

1 %indvars.iv144 = phi i64 [0, %78], [%indvars.iv.next145.1, %79]
2 %.090 = phi i32 [1, %78], [%102, %79]
3 %80 = trunc i64 %indvars.iv144 to i32
4 %81 = add i32 %.096, %80
5 %82 = urem i32 %.090, 1000
6 %83 = sitofp i32 %82 to double
7 %84 = fdiv double %83, 1.000000e+03
8 %85 = load %__sable_memory_t*, %__sable_memory_t** %12, align 8
9 %86 = ptrtoint %__sable_memory_t* %85 to i64

10 %87 = zext i32 %81 to i64
11 %88 = add nuw i64 %86, %87
12 %89 = inttoptr i64 %88 to double*
13 store double %84, double* %89, align 8
14 %90 = add nuw nsw i32 %.090, %.0100
15 %91 = trunc i64 %indvars.iv144 to i32
16 %92 = or i32 %91, 8
17 %93 = add i32 %.096, %92
18 %94 = urem i32 %90, 1000
19 %95 = sitofp i32 %94 to double
20 %96 = fdiv double %95, 1.000000e+03
21 %97 = load %__sable_memory_t*, %__sable_memory_t** %12, align 8
22 %98 = ptrtoint %__sable_memory_t* %97 to i64
23 %99 = zext i32 %93 to i64
24 %100 = add nuw i64 %98, %99
25 %101 = inttoptr i64 %100 to double*
26 store double %96, double* %101, align 8

(a) Optimized

1 %indvars.iv181 = phi i64 [%indvars.iv.next182, %80], [0, %78]
2 %81 = phi <2 x i64> [%102, %80], [<i64 0, i64 1>, %78]
3 %82 = trunc i64 %indvars.iv181 to i32
4 %83 = add i32 %.0126, %82
5 %84 = mul <2 x i64> %81, %79
6 %85 = add <2 x i64> %84, <i64 1, i64 1>
7 %86 = bitcast <2 x i64> %85 to i128
8 %87 = and i128 %86, 79228162495817593524129366015
9 %88 = bitcast i128 %87 to <2 x i64>

10 %89 = extractelement <2 x i64> %88, i64 0
11 %90 = urem i64 %89, 1000
12 %91 = sitofp i64 %90 to double
13 %.splatinsert1 = insertelement <2 x double> poison, double %91, i32 0
14 %92 = extractelement <2 x i64> %88, i64 1
15 %93 = urem i64 %92, 1000
16 %94 = sitofp i64 %93 to double
17 %95 = insertelement <2 x double> %.splatinsert1, double %94, i64 1
18 %96 = fdiv <2 x double> %95, <double 1.000000e+03, double 1.000000e+03>
19 %97 = load %__sable_memory_t*, %__sable_memory_t** %12, align 8
20 %98 = ptrtoint %__sable_memory_t* %97 to i64
21 %99 = zext i32 %83 to i64
22 %100 = add nuw i64 %98, %99
23 %101 = inttoptr i64 %100 to <2 x double>*
24 store <2 x double> %96, <2 x double>* %101, align 8

(b) SIMD-enabled

Figure 7.13: Polybench gemm code snippet

116

takes the direct hint from the WASI-enabled clang compiler and correctly emits the 128-bit

wide vector operations, as shown figure 7.13b.

Conclusion

In this chapter, we evaluated the performance of SableWasm in terms of three aspects.

First, we compared SableWasm’s performance against several other well-known WebAssem-

bly runtime environments, Wasmtime and Wasmer. We concluded that SableWasm per-

forms on par with Wasmtime when the input module is optimized and better in all other

cases. Second, we investigated whether the optimization over input modules affects the

system’s overall performance. Currently, SableWasm heavily relies on the frontend com-

piler to emit efficient code, as the performance gap between naive and optimized input

modules is still quite significant. Finally, we evaluated the effectiveness of WebAssembly

SIMD operation extensions. Our experiments identified several benchmark cases where

explicit SIMD instructions make a measurable difference in the execution speed.

117

Chapter 8

Related Work

In previous chapters, we presented the SableWasm and evaluated its performance against

several well-known benchmark suites. SableWasm is not the only WebAssembly runtime

environment system that allows sandboxed WebAssembly modules to run outside of the

browser. This chapter will provide a quick overview of several existing WebAssembly

host environment implementations. Also, SableWasm does not implement any auto-

vectorization algorithms and heavily depends on LLVM, both in the frontend WASI-

enabled Clang compiler and the SableWasm backend, to generate parallel code. Auto-

vectorization is one of the key research fields in compiler optimization, and much re-

search has been devoted to the field. Therefore, we will briefly cover auto-vectorization

in LLVM in this chapter.

WebAssembly runtime environments

In chapter 7, we mentioned two WebAssembly runtime environments developed by the

community, Wasmtime and Wasmer. Wasmtime perhaps is the earliest non-browser We-

bAssembly runtime environment. It started as a side project during WebAssembly stan-

dardization and is maintained by Bytecode Alliance1. This cross-industry nonprofit or-

1Bytecode Alliance: https://bytecodealliance.org/

118

https://bytecodealliance.org/

ganization focuses on extending WebAssembly and WASI beyond the browser and IoT

devices. Wasmtime is built on the Cranelift compiler framework 2. Cranelift is similar to

LLVM, providing a target-independent intermediate representation that eventually trans-

lates to native executable machine code. Currently, at the time of thesis writing, Cranelift

is still at very early stages and only supports the x86-64 target. Although the Cranelift

started as the backend for Wasmtime, it is not limited to the Wasmtime project. In the

future, Cranelift may replace the fast debug backend in the Rust compiler toolchain and

the Javascript/WebAssembly engine backend in SpiderMonkey.

Wasmer 3 is another WebAssembly runtime environment and maintained by a startup

company. Wasmer shares many similarities comparing to Wasmtime. However, it is more

flexible in design. Currently, Wasmer has three different backends, LLVM, Cranelift, and

a single-pass compiler for fast code generation. Additionally, comparing to Wasmtime,

Wasmer is more aggressive in adding features to WebAssembly. For example, Wasm-

time only supports WASI as the system interface API, while Wasmer supports both the

WASI and Emscripten specifications. Wasmer also comes with a package manager, called

WebAssembly Package Manager (WAPM) 4 which distributed pre-compiled sandboxed

WebAssembly binary modules for various applications.

Wasmtime and Wasmer are both just-in-time (JIT) WebAssembly runtime environ-

ments. There are also ahead-of-time (AOT) compilers for WebAssembly modules. The

most notable one is perhaps the Lucet compiler. Lucet5 is developed by Fastly and shares

a similar design to SableWasm. The initial motivation for Lucet is to create a cloud appli-

cation system that hosts user-uploaded WebAssembly modules. Currently, Lucet powers

Fastly’s Terrarium platform, an in-browser multi-language IDE. The Lucet compiler sys-

tem has two parts, the Lucet shared library compiler, and the Lucet shared library loader.

The Lucet shared library compiler compiles WebAssembly modules into shared libraries,

while Lucet shared library load dynamically loads the shared library and executes the

2Cranelift:https://github.com/bytecodealliance/cranelift
3Wasmer:https://wasmer.io/
4WebAssembly Package Manager (WAPM): https://wapm.io/
5Lucet: https://www.fastlylabs.com/

119

https://github.com/bytecodealliance/cranelift
https://wasmer.io/
https://wapm.io/
https://www.fastlylabs.com/

entry function, start. Unlike SableWasm, Lucet is also built on the Cranelift compile

framework.

All the WebAssembly environments we have discussed in the section are built on com-

plex compiler frameworks such as Cranelift or LLVM. Therefore, one question that arises

naturally is whether WebAssembly is suitable in a resource-constrained environment

such as an embedded system. Scheidl shows that it is possible to translate WebAssembly

bytecode, under these conditions, into native executable code while maintaining decent

performance [29]. One interesting application for WebAssembly is to use it as a form

of distributing programs on IoT devices. For example, Jacobsson and Willén implement

a WebAssembly interpreter on an SoC that communicates and receives modules from a

host device [10]. The system runs on low-power Bluetooth, and in theory, can be used on a

wearable device. Another WebAssembly runtime system, Twine, presented in paper [21],

focuses on taking advantage of hardware features to further improve the performance

of WebAssembly in trusted execution environments (TEE). For example, Twine takes ad-

vantage of the Intel SGX instruction set to ensure the module’s security and achieve up

to 4.1x speedup in performance. This, of course, comes with the drawback of additional

hardware-specific dependencies.

Auto-vectorization

This section will briefly discuss auto-vectorization in compilers, more specifically, the

LLVM compiler framework. Modern CPU architectures support vector operations to

some degree, such as SSE [27], AVX [5] on x86, and Neon [11] on Arm. In recent years,

scalable vector extensions, such as Arm’s SVE [31], offer even more flexibility on vector

size. Although these SIMD instruction set extensions speed up the resulting program,

programmers need to have an in-depth understanding of the hardware system to handle

them correctly through inlined assembly or intrinsic functions. Additionally, these meth-

ods are highly hardware-specific and cause troubles when porting programs to another

120

platform. Another approach to the problem is to ask the compiler to generate vectorized

code from traditional scalar code, hence the name auto-vectorization, which is imple-

mented in many modern compiler systems, such as GCC [23] and LLVM 6. Here we will

take the LLVM auto-vectorizer as an example.

The first attempt for auto-vectorization in LLVM is the basic block vectorizer. It works

with a single basic block at a time and searches for common patterns. If it finds any opti-

mization opportunity, it will rewrite the basic block into parallel form. One might notice

that the basic block vectorizer has no understanding of a loop structure and only perform

auto-vectorization if and only if the operations are already unrolled. To address this prob-

lem, the second generation of auto-vectorizer is a single block loop vectorizer. The single

block loop vectorizer can recognize simple loop structures and consists of two parts the

loop legalizer and the loop transformer. The loop legalizer determines if a loop structure

can undergo auto-vectorization, and if so, the loop transformer will perform the rewrite.

The single block loop auto-vectorizer can also perform loop unrolling if the induction

variables are detected. However, this sometimes leads to very aggressive optimization,

which slows down the generated code. Hence, in late 2012, the LLVM developers ex-

tended the auto-vectorizer with a cost model [24, 25]. The cost model will determine

whether a potential optimization worth it based on the instruction set available on the

target hardware and data dependency between operands.

LLVM also performs another type of auto-vectorization called superword-level paral-

lelism (SLP) auto-vectorization [14]. SLP auto-vectorization combines similar operations

into vector operations, such as memory access and numerical comparison. SLP auto-

vectorization is similar to the basic block auto-vectorizer discussed earlier in this section,

except that it searches patterns in a bottom-up fashion 7.

Although auto-vectorization brings a silver lining to systemically transforming scalar

code into parallel form, it still suffers several drawbacks. The most notable problem is

that the dependency between instructions is usually not apparent to the compiler, es-

6Auto-vectorization in LLVM: https://llvm.org/docs/Vectorizers.html
7https://llvm.org/devmtg/2018-04/slides/Rocha-Look-Ahead%20SLP.pdf

121

https://llvm.org/docs/Vectorizers.html
https://llvm.org/devmtg/2018-04/slides/Rocha-Look-Ahead%20SLP.pdf

pecially in a nested loop structure. Hence, the compiler can only take a conservative

approach when scheduling the program. One possible solution is to employ a polyhedral

model [26] to analyze the data dependency among variables. The polyhedral analysis

creates polyhedra based on the program and applies affine transformations to improve

instruction scheduling incrementally. LLVM implements the polyhedral analysis in the

project Polly [7] 8, which can be used as a compiler plugin and generates scheduling

and scope information for instructions. Later, the LLVM loop auto-vectorizer can take

advantage of this information to provide better cost estimation. Recent work on auto-

vectorization has also exported the use of machine-learning algorithms to make better

decisions on cost versus benefit than can be done by simple cost models [32].

8LLVM Polly: https://polly.llvm.org/

122

https://polly.llvm.org/

Chapter 9

Future Work and Conclusion

WebAssembly has been growing in popularity in recent years as a new format for dis-

tributing sandboxed applications over the internet. In this project, we presented Sable-

Wasm as a standalone ahead-of-time (AOT) compiler for translating WebAssembly mod-

ules into shared libraries. We also implement a runtime environment that enables other

programming languages such as C/C++ to interact with generated shared libraries.

We first started the project with a custom parser for WebAssembly binary format. The

parser focuses on extensibility and performance, as currently, WebAssembly is still under

the standardization process and several syntax extensions might be merged to the speci-

fication soon. We then evaluate the performance of the parser by benchmarking against

wabt, the reference implementation provided by the WebAssembly community, and ob-

serve a 1.6x speedup in execution speed and a 4.6x reduction in memory footprint.

We then define the middle-level representation (MIR) for SableWasm. SableWasm

MIR is a register-based control flow graph representation of the WebAssembly program.

When translating WebAssembly bytecode to SableWasm MIR, we focus on two significant

problems. First, WebAssembly is a stack-based bytecode with structured control flow

structures. Thus, to faithfully translate the bytecode, we define translation patterns that

mimic the semantics of these constructs and reduce them into basic blocks and branching

instructions. The other problem we encountered is regarding the size of the instruction

123

set. As WebAssembly encodes both type and shape information in the instruction op-

code, the WebAssembly instruction set is quite large. Additionally, to reduce the size of

the module, WebAssembly fuses several typical instruction sequences into one single in-

struction, such as load-and-extend. To maintain a small instruction set, we define several

reduction rules for WebAssembly instructions. Unfortunately, these translation patterns

lead to awkward and inefficient code. To address this problem, we implement an anal-

ysis and transformation framework over SableWasm MIR. We then design simplifying

control flow graph pass that incrementally improves the MIR, similar to a ‘peephole op-

timization’ by locating and replacing several common redundant patterns.

The last component of SableWasm is the SableWasm runtime library, which provides

implementations for builtin functions used in the generated shared libraries. It also im-

plements several WebAssembly entities, such as the linear memory and the indirect table.

Currently, the SableWasm runtime library defines an easy-to-use C/C++ interface to the

user and handles errors and exceptions using the exception mechanism in C++.

Finally, we evaluate SableWasm’s performance by benchmarking with three well-

known benchmark suites, Polybench, Ostrich, and NPB. The first question we focus on

in this thesis is how SableWasm performs compared to other existing WebAssembly run-

time environments. We conclude that SableWasm performs on par with Wasmtime and

approximately 1.5x to 2x faster than Wasmer. The second research question is whether

optimization over input WebAssembly modules affects the overall performance in Sable-

Wasm. By comparing the execution time of SableWasm under optimized translated input

modules against that of naive translated input modules, we conclude that, currently, op-

timization over the WebAssembly modules has a significant impact on the performance.

Hence, when designing frontend compilers that target WebAssembly, one should be care-

ful of translation patterns and perform optimizations as early as possible. The last ques-

tion we investigated in this thesis is whether the WebAssembly SIMD extension brings

performance improvement to SableWasm. Experimentally, we can see significant benefit.

124

However, using Polybench, we locate many common patterns that cannot be identified

and rewritten by LLVM’s auto-vectorizer in SableWasm.

Future Work

WebAssembly is a relatively new language, and many of its features are still under the

standardization phase. SableWasm only covers several WebAssembly extensions such

as the multi-value extension and the SIMD operation extension. One excellent opportu-

nity is to implement more WebAssembly extensions in SableWasm, such as the garbage

collection (GC) extension and the exception handling extension. Currently, many high-

level languages, such as AssemblyScript, require static linking with a non-trivial runtime

library when cross-compiling into WebAssembly. Simulating these features results in no-

table increases in code size and a slow down in performance.

Another interesting direction is to add more analysis and transformation in Sable-

Wasm under the optimization framework. More specifically, one can implement an auto-

vectorizer in SableWasm at the MIR level. The evaluation chapter shows that the LLVM’s

auto-vectorizer cannot recognize many apparent patterns and yields inefficient code. We

suspect that the boilerplate code introduced by the translation patterns confuses the auto-

vectorizer. Hence, an auto-vectorizer at the SableWasm MIR level can better understand

the program and, in theory, recover more opportunities within the WebAssembly mod-

ules.

Finally, one can also add more backend support for SableWasm. Currently, SableWasm

is an ahead-of-time (AOT) compiler built on the LLVM compiler infrastructure. One nat-

ural extension of this project to implement a just-in-time (JIT) system that uses LLVM’s

Orc JIT framework. Additionally, one can also explore many profile-guided optimizations

(PGO) techniques used in many other VM languages, such as Java bytecode [1].

125

Bibliography

[1] ARNOLD, M., HIND, M., AND RYDER, B. G. Online feedback-directed optimization

of Java. ACM SIGPLAN Notices 37, 11 (2002), 111–129.

[2] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. Ef-

ficiently computing static single assignment form and the control dependence graph.

ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991), 451–490.

[3] DOHERTY, J., AND HENDREN, L. McSAF: A static analysis framework for MATLAB.

In Proceedings of the 26th European Conference on Object-Oriented Programming (Berlin,

Heidelberg, 2012), ECOOP’12, Springer-Verlag, p. 132–155.

[4] FETZER, C. Student forum. In International Conference on Dependable Systems and

Networks (DSN’06) (2006), pp. 594–594.

[5] FIRASTA, N., BUXTON, M., JINBO, P., NASRI, K., AND KUO, S. Intel AVX: New

frontiers in performance improvements and energy efficiency. Intel white paper 19, 20

(2008).

[6] GEORGIADIS, L., TARJAN, R. E., AND WERNECK, R. F. Finding dominators in prac-

tice. Journal of Graph Algorithms and Applications 10, 1 (2006), 69–94.

[7] GROSSER, T., ZHENG, H., ALOOR, R., SIMBÜRGER, A., GRÖSSLINGER, A., AND

POUCHET, L.-N. Polly-polyhedral optimization in LLVM. In Proceedings of the

First International Workshop on Polyhedral Compilation Techniques (IMPACT) (2011),

vol. 2011, p. 1.

126

[8] HAAS, A., ROSSBERG, A., SCHUFF, D. L., TITZER, B. L., HOLMAN, M., GOHMAN,

D., WAGNER, L., ZAKAI, A., AND BASTIEN, J. Bringing the web up to speed with

WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation (New York, NY, USA, 2017), PLDI 2017, Associa-

tion for Computing Machinery, p. 185–200.

[9] HERRERA, D., CHEN, H., LAVOIE, E., AND HENDREN, L. Numerical computing

on the web: Benchmarking for the future. In Proceedings of the 14th ACM SIGPLAN

International Symposium on Dynamic Languages (2018), pp. 88–100.

[10] JACOBSSON, M., AND WILLÉN, J. Virtual machine execution for wearables based on

webassembly. In EAI International Conference on Body Area Networks (2018), Springer,

pp. 381–389.

[11] JANG, M., KIM, K., AND KIM, K. The performance analysis of ARM NEON tech-

nology for mobile platforms. In Proceedings of the 2011 ACM Symposium on Research

in Applied Computation (New York, NY, USA, 2011), RACS ’11, Association for Com-

puting Machinery, p. 104–106.

[12] JANGDA, A., POWERS, B., BERGER, E. D., AND GUHA, A. Not so fast: Analyzing

the performance of WebAssembly vs. native code. In 2019 USENIX Annual Technical

Conference (USENIX ATC 19) (Renton, WA, July 2019), USENIX Association, pp. 107–

120.

[13] LAM, S. K., PITROU, A., AND SEIBERT, S. Numba: A LLVM-based python JIT com-

piler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC

(New York, NY, USA, 2015), LLVM ’15, Association for Computing Machinery.

[14] LARSEN, S., AND AMARASINGHE, S. Exploiting superword level parallelism with

multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000 Conference on

Programming Language Design and Implementation (New York, NY, USA, 2000), PLDI

’00, Association for Computing Machinery, p. 145–156.

127

[15] LATTNER, C. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-

sis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,

IL, Dec 2002.

[16] LEE, J., HUR, C., AND LOPES, N. P. Aliveinlean: A verified LLVM peephole opti-

mization verifier. In Computer Aided Verification - 31st International Conference, CAV

2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II (2019), I. Dillig and

S. Tasiran, Eds., vol. 11562 of Lecture Notes in Computer Science, Springer, pp. 445–455.

[17] LENGAUER, T., AND TARJAN, R. E. A fast algorithm for finding dominators in a

flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979), 121–141.

[18] LOPES, N. P., MENENDEZ, D., NAGARAKATTE, S., AND REGEHR, J. Provably correct

peephole optimizations with alive. SIGPLAN Not. 50, 6 (June 2015), 22–32.

[19] MCKEEMAN, W. M. Peephole optimization. Commun. ACM 8, 7 (July 1965), 443–444.

[20] MUSCH, M., WRESSNEGGER, C., JOHNS, M., AND RIECK, K. New kid on the web:

A study on the prevalence of WebAssembly in the wild. In Detection of Intrusions and

Malware, and Vulnerability Assessment (Cham, 2019), R. Perdisci, C. Maurice, G. Giac-

into, and M. Almgren, Eds., Springer International Publishing, pp. 23–42.

[21] MÉNÉTREY, J., PASIN, M., FELBER, P., AND SCHIAVONI, V. Twine: An embedded

trusted runtime for webassembly, 2021, 2103.15860.

[22] NETHERCOTE, N., AND SEWARD, J. Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation (New York, NY, USA, 2007), PLDI

’07, Association for Computing Machinery, p. 89–100.

[23] NUZMAN, D., AND HENDERSON, R. Multi-platform auto-vectorization. In Interna-

tional Symposium on Code Generation and Optimization (CGO’06) (2006), pp. 11 pp.–294.

128

[24] POHL, A., COSENZA, B., AND JUURLINK, B. Correlating cost with performance in

LLVM. Proceedings of the 13th International Summer School on Advanced Computer Archi-

tecture and Compilation for High-Performance and Embedded Systems (ACACES) (2017).

[25] POHL, A., COSENZA, B., AND JUURLINK, B. Vectorization cost modeling for NEON,

AVX and SVE. Performance Evaluation 140 (2020), 102106.

[26] QUILLERÉ, F., AND RAJOPADHYE, S. Optimizing memory usage in the polyhedral

model. ACM Trans. Program. Lang. Syst. 22, 5 (Sept. 2000), 773–815.

[27] RAMAN, S. K., PENTKOVSKI, V., AND KESHAVA, J. Implementing streaming SIMD

extensions on the Pentium III processor. IEEE Micro 20, 4 (2000), 47–57.

[28] SALIM, S. S., NISBET, A., AND LUJÁN, M. TruffleWasm: A webassembly inter-

preter on GraalVM. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (New York, NY, USA, 2020), VEE ’20,

Association for Computing Machinery, p. 88–100.

[29] SCHEIDL, F. Valent-blocks: Scalable high-performance compilation of WebAssem-

bly bytecode for embedded systems. In 2020 International Conference on Computing,

Electronics Communications Engineering (iCCECE) (2020), pp. 119–124.

[30] SHI, Y., CASEY, K., ERTL, M. A., AND GREGG, D. Virtual machine showdown: Stack

versus registers. ACM Trans. Archit. Code Optim. 4, 4 (Jan. 2008).

[31] STEPHENS, N., BILES, S., BOETTCHER, M., EAPEN, J., EYOLE, M., GABRIELLI, G.,

HORSNELL, M., MAGKLIS, G., MARTINEZ, A., PREMILLIEU, N., AND ET AL. The

ARM scalable vector extension. IEEE Micro 37, 2 (Mar 2017), 26–39.

[32] STOCK, K., POUCHET, L.-N., AND SADAYAPPAN, P. Using machine learning to im-

prove automatic vectorization. ACM Trans. Archit. Code Optim. 8, 4 (Jan. 2012).

[33] VAN DER WIJNGAART, R. F., AND WONG, P. NAS parallel benchmarks version 2.4.

Tech. rep., NASA Advanced Supercomputing (NAS), 2002.

129

[34] WAGNER, L. Turbocharging the web. IEEE Spectrum 54, 12 (2017), 48–53.

[35] WATT, C. Mechanising and verifying the WebAssembly specification. In Proceedings

of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (New

York, NY, USA, 2018), CPP 2018, Association for Computing Machinery, p. 53–65.

[36] YUKI, T. Understanding polybench/c 3.2 kernels. In International workshop on Poly-

hedral Compilation Techniques (IMPACT) (2014), pp. 1–5.

[37] ZAKAI, A. Emscripten: An LLVM-to-JavaScript compiler. In Proceedings of the ACM

International Conference Companion on Object Oriented Programming Systems Languages

and Applications Companion (New York, NY, USA, 2011), OOPSLA ’11, Association

for Computing Machinery, p. 301–312.

130

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contribution
	Thesis outline

	Background
	Emscripten and Asm.js
	WebAssembly
	WebAssembly Extensions
	WebAssembly System Interface (WASI)
	LLVM Compiler Infrastructure

	Frontend
	Bytecode Parser
	WebAssembly Bytecode Representation
	WebAssembly Bytecode Validation
	Performance Evaluation

	Middle-level Intermediate Representation
	MIR Module Entities
	MIR Initializer Expressions
	MIR Instructions

	Middle-level Intermediate Representation Translation and Optimization
	Translating WebAssembly to MIR
	Structured-Control-Flow Construct
	Instruction Reduction

	Analysis Framework
	Dominators and Dependence
	Control-Flow Graph Simplification
	Type Inference

	Backend and Runtime
	Instance Layout
	WebAssembly Entities
	Code Generation
	Interface with C/C++

	Evaluation
	Experiment Setup
	RQ1: How does SableWasm perform compare to others?
	RQ2: Does optimization over input modules matter?
	RQ3: How much does SIMD extension improve in performance?

	Related Work
	Future Work and Conclusion

