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Abstract

Large-scale data collections represented by graphs are everywhere: social networks, chem-

ical molecules, protein networks, the world wide web, and many more examples. The

ubiquity of such graph-structured data calls for developing methods to understand and

utilize information represented under this form. Graph Neural Networks (GNNs) are

deep-learning based methods which provide the current state of the art performance in

machine learning on graphs. In this work, we analyze the limitation of Graph Attention

Networks (GAT), a common variant of GNNs, to fully explore the structural information

within each locality on graphs, which hinders their ability to learn on non-homophilic

graphs. Inspired by the positional encoding in the Transformers, a deep learning model

of choice in many natural language processing tasks, we propose a framework, termed

GAT-POS, to enhance GATs by incorporating node embeddings from an auxiliary em-

bedding model, which learns the structural and positional information on graphs. In

this framework, the embedding model is plugged into the standard GAT’s architecture

as an auxiliary model, and the supervised task of predicting node labels with the main

model and the unsupervised task of predicting graph context with the auxiliary model

are trained jointly with the same architecture. Experimental results show that the pro-

posed GAT-POS achieves comparable performance as typical GNNs (GATs and GCNs) on

homophilic datasets and outperforms typical GNNs and the recently introduced Geom-

GCN, which is an embedding-enhanced GNN, on non-homophilic datasets.
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Abrégé

Les collections de données à grande échelle représentées par des graphiques sont partout

: réseaux sociaux, molécules chimiques, réseaux de protéines, le web, et bien d’autres ex-

emples encore. L’omniprésence de ces données structurées par des graphiques nécessite

le développement de méthodes pour comprendre et utiliser les informations représentées

sous cette forme. Les réseaux neuronaux de graphes (GNN) sont des méthodes basées

sur l’apprentissage profond qui fournissent les performances actuelles de l’état de l’art

dans l’apprentissage machine sur des graphes. Dans ce travail, nous analysons les limites

des Graph Attention Networks (GAT), une variante commune des GNN, pour explorer

pleinement les informations structurelles dans chaque localité sur les graphes, ce qui lim-

ite leur capacité à apprendre sur des graphes non-homophiles. Inspirés par l’encodage

positionnel des Transformers, un modèle d’apprentissage profond de choix dans de nom-

breuses tâches de traitement du langage naturel, nous proposons un cadre, appelé GAT-

POS, pour améliorer les GAT en incorporant des représenta-tions structurelles de nœuds

à partir d’un modèle de représentations auxiliaire, qui apprend les informations struc-

turelles et positionnelles sur les graphes. Dans ce cadre, le modèle de représentations

structurelles et positionelles est intégré à l’architecture standard de la GAT en tant que

modèle auxiliaire, et la tâche supervisée de prédiction des étiquettes de nœuds avec le

modèle principal et la tâche non supervisée de prédiction du contexte du graphe avec le

modèle auxiliaire sont formées conjointement avec la même architecture. Les résultats

expérimentaux montrent que le GAT-POS proposé atteint des performances comparables

à celles des GNN typiques (GAT et GCN) sur des ensembles de données homophiles

et surpasse les GNN typiques et le Geom-GCN récemment introduit, qui est un GNN

amélioré par l’intégration, sur des ensembles de données non-homophiles.
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Chapter 1

Introduction

1.1 Graph Structured Data

Entities in the world do not exist independently of each other. Instead, there always exist

interactions and relationships among them. There are several examples in the real world

with such interactions and relationships among entities, such as atoms in molecules, neu-

rons in brains, individuals in societies, etc. Such interactions and relationships between

entities are usually referred to as structures. Accordingly, the data collected via the ob-

servation of entities with structure is termed structured data. A natural and ubiquitous

way to describe a collection of structured data is to represent them with a network, or

its mathematical term, a graph, in which the entities are represented as nodes while the

pairwise interactions or relationships between entities are represented as edges.

With the rapid growth of the internet and modern technology, large-scale data collec-

tions represented by graphs are everywhere: social networks, chemical molecules, protein

networks, purchasing records, the world wide web, and many more examples. The ubiq-

uity of such graph-structured data calls for developing methods to understand and utilize

information represented under this form.
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1.2 Deep Learning on Graphs

With plentiful data, people intend to learn from those data and develop models and al-

gorithms that improve with experience, and assist humans in making predictions and

decisions with those intelligent systems. The study of such algorithms and systems is

usually referred to as the field of machine learning.

Among machine learning methods, deep learning approaches have been enjoying tremen-

dous popularity in the past decade. Models in deep learning tackle the learning problem

by learning representations of the input data jointly with a predictive model for the spe-

cific downstream task. Those models usually are built by stacking multiple layers of

differentiable non-linear transformations and trained in an end-to-end learning process.

The class of models in deep learning is referred to as deep neural networks.

The vanilla neural networks (i.e., Multilayer perceptrons (MLP)) learn from a collec-

tion of entities independently. However, considering the natural existence of structures,

researchers have attempted to develop neural networks that exploit the spatial and struc-

tural information with entities. Therefore, instead of considering each example as an

individual entity, a collection of entities and the structure among them is considered as

an example (e.g., an image with multiple pixels in image classification, a sentence with

words in sentiment analysis). Alternatively, one can consider an example as an entity

with interactions with other entities (e.g., a pixel in an image in semantic segmentation, a

user or an item in the recommendation tasks).

Currently, several architectures of neural networks have been proposed to learn from

structured data, which is embedded in some Euclidean spaces, such as grid structures and

sequence structures1. For instance, Recurrent Neural Networks (RNNs) are proposed to

work on data with sequential structures [Rumelhart et al., 1986]. RNNs are compatible

with input sequences with different lengths by taking in entities in each sequence recur-
1Since grid structures and sequence structures have been termed lattice graphs [Acharya and Gill, 1981]

and sequence graphs [Alekseyev and Pevzner, 2009] respectively, they can be viewed as special cases of
graphs.
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rently. As another example, Convolutional Neural Networks (CNNs) are well-defined

and proven to be efficient on data with sequential structures [Collobert and Weston, 2008]

and grid-like structures [LeCun et al., 1989], based on their shared-weights architecture

and translation invariance characteristics.

However, a lot of structured data cannot be represented by structures embedded in

Euclidean spaces. Thus, there has been an increasing interest in generalizing deep learn-

ing methods to non-Euclidean structured data represented by graphs recently. Graph

Neural Networks (GNNs) [Frasconi et al., 1998, Sperduti and Starita, 1997, Gori et al.,

2005, Scarselli et al., 2008, Bruna et al., 2014, Kipf and Welling, 2017, Velickovic et al.,

2018,Hamilton et al., 2017,Monti et al., 2017,Defferrard et al., 2016,Atwood and Towsley,

2016, Duvenaud et al., 2015, Li et al., 2015] are arguably among the most widely used

deep neural network architectures specifically designed to operate on graph-structured

data and have been proven effective on many graph-structured domains. Nevertheless,

GNNs still have several limitations in terms of stability and expressive power. The ar-

chitecture design of GNNs is challenging considering the properties of graphs in rela-

tion to the varying number of the spatial coordinates (i.e., dependent on the number of

the observed examples), permutation invariance of adjacent nodes, and different sized

neighborhoods.

In this thesis, we analyze some shortcomings of GNNs, with a focus on convolutional-

based GNNs, and propose a framework to enhance the Graph Attention Network (GAT),

which is one of the top performing GNNs. Presently, most typical GNNs are categorized

into spectral approaches and spatial approaches 2.

On the one hand, spectral approaches originated from the extension of convolutions to

general graphs, termed spectral convolutions, by finding the corresponding Fourier basis

given by the eigendecomposition of the graph Laplacian (i.e., a matrix representation of a

graph) [Bruna et al., 2014]. However, this extension is based on the operators introduced

for similarity graphs [Belkin and Niyogi, 2002, Chung and Graham, 1997]. The spectral
2A comprehensive introduction will be included in section 2.2.
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convolution and its localized approximations [Defferrard et al., 2016, Kipf and Welling,

2017] are under the restriction of exploring the underlying group invariances of similarity

graphs.

On the other hand, spatial approaches aim to define operators on the neighborhood of

each node, as a local area, with shared-weights architectures and translation invariance

alike CNN. Due to the various coordinates and permutation invariance of neighboring

nodes, the operators are usually defined as pooling operations and their variants (e.g.,

mean-pooling, max-pooling [Hamilton et al., 2017] and sum-pooling [Xu et al., 2019]).

Alternatively, the operators can be defined as adaptive filters with coefficients parame-

terized as content-based weighting functions for stronger expressive power [Monti et al.,

2017, Velickovic et al., 2018].

Even though GNNs are working well on learning node representations on graphs with

high homophily and haven been proven to capture graph structures in a manner similar

to Weisfeiler-Lehman (WL) algorithm [Weisfeiler and Lehman, 1968], most GNNs are

based on the assumption that edges indicate the similarity between node pairs and learn

representations of nodes exploiting the group structure introduced by the graphs. Such

characteristics of GNNs might lead to the oversmoothing problem [Li et al., 2018, Zhao

and Akoglu, 2020] when learning semantic representations of nodes, as learned repre-

sentations of nodes within the same connected component tend to be close. Thus, when

the structure only indicates the existence of interactions or relationships (beyond similar-

ity), such as several words within a sentence, typical GNNs might fail to learn it. One

exception is worth mentioning that a number of GNNs considering edge attributes [Mur-

phy et al., 2019, Gilmer et al., 2017] can go beyond such limitations. However, those

GNNs only work on graph datasets providing edge attributes while there are numerous

datasets in the real world without edge attributes, which are the focus of this thesis and

the aforementioned GNNs.

Inspired by the positional encoding in the Transformer [Vaswani et al., 2017], a well-

known language model based on neural attention mechanisms, we propose a framework

4



to enhance GATs by incorporating node embeddings from an embedding model, which

learns the structural and positional information of nodes on graphs. We call the proposed

framework Graph Attention Networks with Auxiliary Positional Embedding Models (GAT-

POS). With inspirations from the Transformer [Vaswani et al., 2017] and the comparison

between attention mechanism and convolutions on images [Cordonnier et al., 2020,Zhao

et al., 2020], we propose two versions of graph attentional layer incorporating the learned

positional embeddings in different ways. We also introduce embedding variants which

properly take advantage of the receptive fields of GNNs. Furthermore, in order to sup-

port end-to-end training and better train the embedding model, we adopt a joint training

scheme inspired by [Weston et al., 2008] that connects the auxiliary positional embedding

model with the main architecture, plugs the unsupervised learning objective into the cor-

responding layers of the auxiliary model, and trains the supervised tasks (i.e., predicting

node labels) and unsupervised tasks (i.e., learning graph context) jointly using the same

architecture simultaneously.

Our framework has been evaluated on multiple datasets, including citation networks [Yang

et al., 2016,Kipf and Welling, 2017,Velickovic et al., 2018], as examples of graph-structured

datasets with high homophily, as well as actor co-occurrence networks and Wikipedia net-

works, as the representatives of non-homophily graph-structured datasets. Furthermore,

we have investigated the benefits and shortcomings of different versions of the proposed

GAT-POS, and have discussed the potential directions to improve the proposed approach

as future works to further address the discussed shortcomings.
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Chapter 2

Background

2.1 Notation

This section provides a reference for commonly used notation across the thesis (Table 2.1).

Additional notation for individual chapters will be introduced where necessary.

Table 2.1: Notation Table

Example Explanation

G, H, I A lowercase italic letter denotes a scalar or scalar-valued

random variable.

x, y, z a lowercase bold letter denotes a vector or vector-valued

random variable.

X,Y,Z a uppercase bold letter denotes a matrix or matrix-valued

random variable.

X,Y,Z Calligraphic letters typically denote sets. An exception is L

which is used to denote the scalar-valued objective functions.

5 (·; \),l(·; \) A function with parameter dependency denoted with a greek

letter \ or q. The parameter dependency can be dropped for

simplicity.
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G8 or x(8) The 8-th element of vector x.

X(8, 9) The 8, 9-th element of matrix X.

I3 The 3 ⇥ 3 identity matrix.

diag(x) A diagonal square matrix with entries on the diagonal as the

elements of the vector x.

R3 The 3-dimensional real space.

f(x),f(X) The element-wise non-linear activation function on vector x

or matrix X.

SoftmaxX(x8) The softmax function defined as exp(x8)Õ
x
9
2X exp(x 9 )

[xky] The concatenation of two vectors x 2 R3G and y 2 R3H that the

[xky] 2 R3G+3H

[x, y]
| The stacking of vectors x, y 2 R3 that [x, y]| 2 R2⇥3

G = (V, E) A graph G with a set of vertices (nodes1) V and a set of edges

E 2 V ⇥V; by default, we consider undirected and

unweighted graphs.

(E, D) 2 E The undirected edge between vertex E and D; (E, D) , (D, E).

(E ! D) 2 E The directed edge from vertex E to D; (E ! D) < (D ! E)

A 2 R|V|⇥|V| The adjacency matrix representing the E in G; By default,

A(E,D) = 1 iff (E, D) 2 E or (E ! D) 2 E and A(E,E) = 0

3E,8E 2 V

D 2 R|V|⇥|V|

3E is the node degree of node E that 3E :=
Õ
D
A(E,D) ; The

diagonal matrix D is the degree matrix of the graph such that

D(E,E) := 3E

x8, y8, h8 2 R< The input, output and hidden vector representations of <

dimension of vertex (example) 8 of a model or a module.

1Note that in the thesis we use the terms vertex and node interchangeably
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X,Y,H 2

R|V|⇥<

The input, output and hidden matrix representations of all

vertices (examples) of a model or a module, in which each

rows is a vector representation of <-dimension.

N(E) :

V ! 2V
A function return a set of nodes {D | (E, D) 2 E} given E 2 V as

the argument.

2.2 Graph Neural Networks

Representation learning on graphs is one of the most rapidly growing domains in the

world of machine learning. Among numerous models in the domain, Graph Neural Net-

works (GNNs) [Frasconi et al., 1998, Sperduti and Starita, 1997, Gori et al., 2005, Scarselli

et al., 2008,Bruna et al., 2014,Kipf and Welling, 2017,Velickovic et al., 2018,Hamilton et al.,

2017, Monti et al., 2017, Defferrard et al., 2016, Atwood and Towsley, 2016] are a class of

models with novel network architectures specially designed for learning the rich struc-

ture in the graph-structured data. Considering the central importance of GNNs in this

thesis, a comprehensive introduction will be given in the following.

2.2.1 Preliminaries

Problem Statement

Given a graph ⌧ = (V, E) with a set of = vertices V and a set of edges E, the goal is to

learn representations for the vertices in V considering the structure of the graphs.

Inputs as Graphs Under an arbitrary fixed order of vertices, the vertices V can be

represented by a corresponding attribute matrix 2
X = [x1, . . . , x=]

|
2 R=⇥3 , where xE 2 R3

2Note that, for clarification, we denote the input features of nodes as node attributes. In the thesis, the
term node features may refer to the output of one filter applied to the previous layer corresponding to the
concept of feature maps in CNNs on images.
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is a 3-dimension representation of node E, describing the attributes of the node. In some

cases (e.g., in graph signal processing), the attribute matrix might downgrade to a vector

if the input attribute of each node is a scalar.

Under the same order, the edges can be represented by an adjacency tensor A 2

R=⇥=⇥3
0, in which, A(E,D,·) is the representation of node-pair of E and D. We denote the

unordered node-pair as (E, D) = (D, E) and the ordered node-pair from E to D as (E ! D).

Usually, when (E, D) 8 E (or similarly (E ! D) 8 E), A(E,D,·) should be an all-zero vector.

In this thesis, we look at simple undirected graphs without edge attributes and focus

on the case of node-level representation learning for node classification tasks. Node at-

tributes are assumed available in our scenario unless otherwise stated. Accordingly, we

consider the adjacency matrix A 2 {0, 1}=⇥=, such that A(E,D) = A(D,E) = 1 iff3
(E, D) 2 E.

Correspondingly, the neighborhood is defined as N(E) = {D | (E, D) 2 E, D 2 V} for E 2 V.

Note that, unless otherwise stated, we assume that there is no self-loop by default in

the graphs as well as our definition of N(·). However, adding a self-loop for each node

in the graph and including the center-node in each neighborhood is not uncommon [Kipf

and Welling, 2017].

Representation Learning and Downstream Tasks Given the inputs, the goal of graph

representation learning can be formulated into a more general concept of learning repre-

sentations for target subgraphs4 induced by the corresponding node-sets with manually

set sizes. The sizes of subgraphs control the specific tasks of learning, with examples as

follows:

• when the sizes are one, the task is denoted as learning representations for vertices

(node level);

• when the sizes are two, the task is learning representations for links or node-pairs

(edge level / node-pair level);
3The shortened of if and only if.
4The nodes and the edges associated with them.
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• when the sizes are considered as infinity or the sizes of input graphs, the task is

learning representations for graphs (graph level);

Currently, most GNNs focus on the node-level representation learning (i.e., learning node

representations) and, for multiple downstream tasks such as graph classification and

node classification, plug-in a readout function on the learned node representations as the

output layer. The node representations can be trained jointly with the output layer for the

downstream tasks in a supervised or semi-supervised manner. Alternatively, the node

representations can be pretrained in an unsupervised manner, for predicting graph con-

texts, and then finetune a plug-in output layer for the downstream task with the learned

node representations frozen or active.

In the thesis, we focus on the node-level representation learning and mainly introduce

GNNs for node classification tasks. Overall, we mainly consider the models supporting

an end-to-end training process, where the overall GNN-framework is trained with respect

to all downstream tasks simultaneously.

Supervised Learning and Semi-supervised Learning Typically, node classification

tasks can be trained and evaluated in either the supervised, the semi-supervised or the

unsupervised setting. In the supervised setting, the training examples (i.e., nodes) and

their corresponding labels are observed during the training stage while the test examples

and validation examples are only observed during evaluation. In contrast, unsupervised

learning allows the model to observe all examples, but no labels are available during

training. Semi-supervised learning falls between supervised learning and unsupervised

learning; in this setting, models are allowed to observe the training examples and their

labels as well as some unlabeled examples during training.

Besides, there are some models learning representation for nodes in an unsupervised

manner. After getting the representations, an extra prediction module taking those rep-

resentations as inputs is trained in a supervised manner with observed examples as a
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separate model or fine-tuning layers 5. This is common when evaluating the unsuper-

vised learning model with downstream tasks [Hamilton et al., 2017], and supposed to be

considered under the supervised or semi-supervised setting for the whole models.

In the thesis, we focus on the semi-supervised setting where the models are trained

with labeled and unlabeled nodes.

Inductive and Transductive Setting By convention, in supervised learning, the ex-

amples for evaluation will not be observed in the training stage. By contrast, under the

unsupervised setting, the model will observe all examples without labels and, for in-

stance to infer the clustering pattern or detect the anomalies in the data. However, in the

semi-supervised setting, models can observe labeled examples and unlabeled examples

in the training stage. Thus, under the semi-supervised learning, there exist two types of

settings, the inductive and the transductive settings. The main difference between them

is that in the inductive setting, models need to predict the labels of examples unobserved

during training, while under the transductive setting, models will predict the labels for

unlabeled examples observed in the training stage.

Note that for graph representation learning, there are two types of cases under the

inductive setting. One is that the unseen examples are within the new observed connected

components in the graph, such as node classification tasks on protein-protein interaction

dataset (PPI) discussed in [Velickovic et al., 2018]. Thus, they will not affect the graph

structure of the previously observed examples. From the other perspective, this case can

be viewed as training GNNs on one or several graphs and evaluating the models on some

other graphs.

The other case is more challenging in that the unobserved examples have edges con-

nected to the previously observed nodes in the evaluation stage, such as tasks on the

Reddit dataset presented in [Hamilton et al., 2017]. In this case, the graph structure of pre-

viously observed nodes will be changed during evaluation. In other words, needless to
5In the case of fine-tuning layers, the original models learning representation can be either frozen or

trained during supervised learning part.
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say that GNNs have to generalize to unseen examples, even the predicted labels for those

previously observed examples are not consistent across the training and the evaluation

stages, due to the change of the graph structure associated with those examples.

Inspirations of Graph Neural Networks

Neighborhood as Spatial Locality Inspired by CNNs, a GNN tends to construct on

filters exploiting spatial locality based on translation-invariance with the shared-weights

architectures, which allow parallel computation and fewer parameters to train. Instead

of a square region around a center pixel in the case of images as an example, each locality

in a graph is controlled by the edges, termed neighborhood.

The neighborhood of node E, N(E) : V ! 2V , is defined as the set of nodes adjacent

to E, {D | (E, D) 2 E}. In some cases, the definition may also refer to the subgraph induced

by those adjacent nodes, with the edges between nodes preserved. If N(E) is defined to

include E, it is called a closed neighborhood, and otherwise called an open neighborhood.

In fact, the neighborhood is extendable to :-hop (: � 0), in which the adjacent nodes

is extended to the set of nodes reachable in :-hop through a path (i.e., the nodes D with

the shortest path of : from or to node E).

We further define that if : = 0, the neighborhood denotes the center nodes itself and

the GNN layer will be downgraded to a fully connected layer shared by all nodes. On

the other hand, if : ! 1, the neighborhood is the connected component which the target

node belongs to. Unless otherwise stated, we refer the terms neighborhood to the first-

hop neighborhood.

Considering the properties of different sized neighborhoods and permutation invari-

ance, a filter of GNNs is expected to be compatible with different sized localities and

satisfy the permutation invariance to the input order.

Neural Message Passing Another inspiration of GNNs comes from message-passing

algorithms on loopy graphs (e.g., Loopy Belief Propagation [Yedidia et al., 2003]), which
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are widely used in probabilistic graphical models (PGMs). In message-passing algo-

rithms, a state of a node E will be updated conditional on the message from its adjacent

nodes (first-hop neighborhood) iteratively till convergence. Message-passing algorithms

are computationally efficient, thanks to the localized propagation procedure [Weiss, 2000].

Weight-sharing architecture is also feasible by introducing parameterized potential based

on neural networks [Kim et al., 2017].

Most GNNs, especially spatial GNNs, have a similar update rule that a node’s repre-

sentation is updated with the information aggregated from its neighborhood.

Thus, [Gilmer et al., 2017] proposed a common framework called Message Passing

Neural Networks (MPNNs) which includes a large number of GNNs in the literature.

Those GNNs can be formulated as follows,

m
C+1
8

=
’
92N(8)

"C

⇣
h
C

8
, h

C

9
, e8 9

⌘

h
C+1
8

= *C
⇣
⌘
C

8
,<

C+1
8

⌘ (2.1)

where e8 9 denotes the attribute of the edge between node 8 and 9 , if available; hC
8

the rep-

resentation of node 8 at timestep C or layer C; "C (·),*C (·) can arbitrary functions.

Accordingly, those GNNs following the similar update rules to message passing algo-

rithms are also termed as Neural Message Passing algorithms or Neural Message Passing

GNNs (NMP-GNNs).

Weisfeiler-Lehman Algorithm and Isomorphism Test Weifeiler-Lehman algorithm

(WL-algorithm) and Weisfeiler-Lehman Isomorphism Test (WL-Test) are also considered

to be with a close relationship with GNNs. WL-test is designed to identify whether two

graphs are considered isomorphic, that there exists a mapping between nodes of these

two graphs which preserves nodes adjacencies.

WL-algorithm also holds an iterative updating rule till convergence. In each iteration,

for a node E, its adjacent nodes’ labels will be considered as a multiset and compressed by

13



injective functions (i.e., hash function) to update the label of node E. Typically, each node

will be initialized with the same label (i.e., 1) and the above iteration will be repeated for

up to # (the number of nodes) iterations or convergence. After this procedure, if two

graphs have different partitions of nodes by final compressed labels (i.e., represented as

the number of nodes with each compressed label), these two graphs are not isomorphic.

Note that WL-algorithm cannot guarantee that two graphs with the same partitions of

nodes are isomorphic.

Many spatial GNNs can be viewed as doing WL-algorithm with parameterizing the

compress functions as Neural Networks (NN) and termed as WL-GNNs. There are also

some GNNs inspired by higher-order WL-test which extends operations on nodes to

subgraphs, in order to enhance the ability to capture a structural representation of the

graph [Morris et al., 2019, Maron et al., 2019].

Summary In many works in the literature, the WL-GNNs and NMP-GNNs are con-

sidered to be the same type of GNNs. However, their perspectives are different. For

updating a node’s representation, WL-GNNs usually emphasize how to encode its closed

or open neighborhood represented as a multiset, while the NMP-GNNs focus on how a

message is passed to the node from its neighbors. Thus, WL-GNNs have a close relation-

ship to deep learning on sets, while NMP-GNNs are usually viewed as pairwise learning

models similar to message-passing algorithms.

Note that, almost all GNNs can be viewed as learning higher-level features of a node

by applying a linear or non-linear feature extractor on its (:-hop) neighborhood as gener-

alized convolutional filters. However, even though a large amount of GNNs can be inter-

preted as WL-GNNs or neural message-passing algorithms, some GNNs are not able to be

interpreted through these perspectives. For instance, GNNs aggregate information from

higher-hop or even infinite-hop neighborhoods such as [Bruna et al., 2014, Defferrard

et al., 2016] and GNNs with a non-symmetric filter on each neighborhood (GraphSAGE-
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LSTM) [Hamilton et al., 2017] cannot be understood as WL-GNNs or neural message

passing algorithms.

Convolution-based and Recurrent-based Graph Neural Networks

The abovementioned inspiring algorithms have two architectures. CNNs stacks multi-

ple layers to build a non-linear filter overall, while WL-algorithm and message-passing

algorithms will repeat some operations iteratively until convergence or reaching some

criteria.

As a consequence, there are two genres of the overall architectures of GNNs, Convo-

lutional GNNs, and Recurrent GNNs.

Convolutional Graph Neural Networks Inspired by CNNs, convolutional GNNs

treat the operation of aggregating information from the neighborhood (a.k.a message

passing) as a generalized convolutional filter on graphs. A GNN is built on stacking

several layers of such filters with non-linear activation functions. Note that each layer

has separate parameters to train, probably with different input and output dimensions.

Such like CNNs, stacking of multiple locally convolutional GNN filters with non-

linear activation function will lead to non-linear filters that are increasingly global. In

other words, the networks start from representations of small parts of the input and then

assemble representations of larger areas from them.

Most GNNs [Bruna et al., 2014, Defferrard et al., 2016, Kipf and Welling, 2017, Monti

et al., 2017,Hamilton et al., 2017,Velickovic et al., 2018] introduced in this thesis will be of

this genre.

Recurrent Graph Neural Networks Inspired by methods with iterative updates, re-

current GNNs [Sperduti and Starita, 1997, Frasconi et al., 1998, Gori et al., 2005, Scarselli

et al., 2008, Li et al., 2015, Yoon et al., 2019] adopt the architecture of recurrent neural net-

works (RNNs). An iteration of neural message passing is considered as an RNN cell and
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the node representations will be updated iteratively as the hidden states in RNNs. Note

that, unlike convolution GNNs, recurrent GNNs repeat the same cells multiple times.

The recurrent-based GNNs will not stop iterating until reaching some stop criteria, such

as convergence and stop signals from another recurrent GNN as a controller. This process

is usually computationally expensive and not scalable to large-scale graphs.

Overall, the ability of filters in GNNs to encode neighborhoods is not affected by the

convolutional or recurrent architectures. Moreover, recurrent GNNs and convolutional

GNNs are actually interchangeable by switching stacking filters and iterating filters.

In this thesis, we will have a focus on covering the literature related to convolutional

GNNs, which are more common and more scalable, and have a comprehensive analysis

of the advantages as well as the shortcomings of each filter in convolutional GNNs.

2.2.2 Spectral Graph Neural Networks

Spectral Convolutional Networks on Graphs

In learning representations with the spatial structures, CNNs are well-defined and ex-

tremely efficient on structures in Euclidean spaces, such as grids in image tasks and se-

quences in audio recognition tasks, based on the spatial convolutional theorem.

Thus, generalizing CNNs to non-euclidean structures, like graphs, is a significant step

for designing the architecture of a deep model for graphs.

[Bruna et al., 2014] firstly introduces a spectral construction of the convolutional net-

works via the spectrum of graph Laplacian inspired by the Graph Fourier transform,

which is widely used in spectral clustering and graph signal processing [Von Luxburg,

2007, Chung and Graham, 1997].

Spectral Convolutions on Grids and Graphs First, the spectral convolutions are

constructed for grids. The structure of an image is represented as a weighted similar-
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ity graph ⌧ = (V, E) with = nodes (i.e., AED � 0,8E, D 2 V). Note that representing an

image as an unweighted graph can be an alternative option. By representing an image

as a graph, one can reach the unnormalized graph Laplacian (combinatorial Laplacian)

defined as L = D � A
6, where D is the degree matrix with its diagonal DEE =

Õ
D2[1,=] AED.

The graph Laplacian is a matrix representation of an undirected graph which can be used

to find useful properties of the graph.

With the graph Laplacian, we can transform the nodes’ signals in the graph from the

vertex domain to the spectral domain via graph Fourier transform, which is analogous to

transforming signals from the time domain to the frequency domain with classical Fourier

transform.

For better understanding, we consider encoding the nodes under the assumption that

nodes which are ”close” (i.e., AED is large) should have a ”similar” label. This assumption

is also known as the smoothness assumption. The goal is to find a mapping to encode the

nodes in the graphs interpreting the smoothness introduced by the graph.

We assume that the mapping consists of several labeling functions. A labeling function

is defined as 5 : V ! R for encoding nodes in the graph . For simplicity, each labeling

function is represented by a vector m = [<1, . . . ,<=], B.C.<E = 5 (E),8E 2 V, termed label-

ing vector. A natural definition of the smoothness introduced by the labeling function on

the graph, | |r 5 | |2
A

is defined as follows,

| |r 5 | |
2
A
=

’
E

’
D

AED [<E � <D]
2 = m

|
Lm (2.2)

In addition, we add an extra constraint to the labeling vectors such that | |m| | = 1 and

labeling vectors are orthogonal to each other, in order to get rid of redundant encoding.

Then, the smoothest labeling vector is a constant vector:

v0 = argmin
m2R=,| |m| |=1

| |r 5 | |
2
A
= (1/

p
=) � 1=, (2.3)

6The symmetric normalized graph Laplacian L = I �D
�

1
2AD

�
1
2 can be an option as well.
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where 1= 2 1= is an all-one vector of dimension =. And each successive labeling vector is

defined as follows,

v8 = argmin
m2R=,| |m| |=1,m?{v0,...,v8�1}

| |r 5 | |
2
A
. (2.4)

With the extra constraints, the above equations can be solved by the eigendecomposition

of the graph Laplacian L = V⇤V|, where V is a matrix consisting of = eigenvectors while

⇤ is a diagonal matrix whose diagonal is a vector of eigenvalues corresponding to V

(⇤(8,8) = _8).

Then the smoothness introduced by each labeling function is | |r 5 | |2
A
= m

|
Lm = _m|m =

_, where m is an eigenvector of L and _ is the corresponding eigenvalue. Thus, via

reordering the V according to the eigenvalue, one can get an eigenvector-matrix V =

[E0, . . . , E=�1]
|
2 R=⇥= corresponding to aforementioned labeling vectors.

It is worth noting that, with the aforementioned extra constraints, I= = VV
|, where

I= 2 R
=⇥= is an identity matrix. Thus, for a node signal x 2 R= (each node has a scalar

signal), x = VV
|
x is held. In other words, with V, one can transform a node signal from

the vertex domain to the spectral domain and vice versa.

Therefore, we can construct spectral convolutions with a filter defined in the spectral

domain, based on V. It is worth mentioning that the spectral construction of convolu-

tions can be directly generalized to any structure as long as it can be represented by a

graph Laplacian. Thus, it is straightforward to apply the spectral convolutions to general

graphs.

Inspired by the fact that the eigenvalues can modulate the smoothness, the authors

define a filter F 2 R=⇥= as a diagonal matrix with parameters on its diagonal. Then the

spectral convolutions transform input signals x 2 R= to output signals y 2 R= with a filter

F as follows,

y = VFV
|
x. (2.5)

Spectral Convolutional Neural Networks With those on hand, the spectral convo-

lutional networks can be constructed based on spectral convolutions for a graph with
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multi-dimensional node attributes. The filter of the spectral convolutional networks at a

layer transforms an input X 2 R=⇥�8= to an ouput Y 2 R=⇥�>DC ,

Y·, 9 = f

 
V

�8=’
8=1

F8 9V
|
X·,8

!
, for 9 = 1 . . . �>DC , (2.6)

where V is a matrix of eigenvectors of the graph Laplacian7, ordered by eigenvalues in

descending; F8 9 is a learnable diagonal matrix modulating the smoothness introduced by

the corresponding eigenvectors; and f is arbitrary nonlinear activation function.

The spectral convolutional networks support subsampling as well. Since only the first

3 eigenvectors in descending of the graph Laplacian are useful in practice, one can utilize

Vd instead, which consists of the first 3 columns of V. The cutoff frequency of 3 depends

on the intrinsic regularity of the graph, as well as the target sample size.

However, spectral CNNs have three shortcomings. The first is that the filters of spec-

tral convolutions are not localized with respect to the spatial structure, requiring the

whole graph in computation. Consequently, the computation of the eigendecomposi-

tion with a complexity of O(=
3
) as well as the matrix multiplications with a complexity of

O(=
2
) prevents spectral CNNs from being scalable. Moreover, without the localized con-

straint introduced by subsampling, the spectral convolutions tend to filter delocalized

templates. The second shortcoming is the matrix of eigenvectors transforming signals

to the spectral domain is sensitive to the perturbation of the graph structure due to the

global computation, limiting the capacity of generalization to unseen nodes under the in-

ductive setting. The third shortcoming is that the construction of spectral convolution is

based on the assumption that the edges indicate similarity and the graph has an under-

lying group invariance. Therefore, the filters might not work if the graph does not have

a group structure or the group structure does not commute with the Laplacian. Further-

more, when the spectral CNNs are applied to graphs, in which an edge only indicates the

7For a general graph, the symmetric normalized graph Laplacian L = I � D
�1/2

AD
�1/2 is preferred,

considering the computational issues on irregular graphs [Chung and Graham, 1997].
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existence of interaction rather than the similarity, the theoretical foundation is not solid

anymore.

Fast Localized Spectral Filters

In order to tackle the first shortcoming of spectral CNNs [Bruna et al., 2014], [Defferrard

et al., 2016] modify the spectral filter to a localized filter in a ball of radius  ( -hops

from the central vertex) by a  -order approximation based on Chebyshev polynomial.

The symmetric normalized graph Laplacian L = I �D
�1/2

AD
�1/2 is considered here.

In [Bruna et al., 2014], a filter with parameters \ 2 R= is directely defined on the

spectral domain as 6\ = diag(\) where diag : R= ! R=⇥= is a function to construct a

diagonal matrix whose diagonal is the argument. The spectral convolutions transform a

node signal x 2 R= to y 2 R= as follows:

y = (V6\V
|
)x (2.7)

where (V6\V
|
) 2 R=⇥= can be understood as a transformation matrix (between nodes)

controlling how signal from a node is transmitted to another node. We can understand

such a transformation matrix is a function of the graph Laplacian and a filter defined on

the spectral domain.

In [Defferrard et al., 2016], the filter is understood as a function of the eigenvalues of

L, denoted as 6\ (⇤). In order to reach strictly localized filters, filter is defined as,

6\ (⇤) =
 �1’
:=0

\:⇤:

, (2.8)
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where ) = [\0, . . . , \ �1] 2 R is a vector of polynomial coefficients. Note that L
: =

(V⇤V|): = V⇤:

V
|. Thus, Eq 2.7 becomes as follows,

y = V6\ (⇤)V|x

= V(

 �1’
:=0

\:⇤:

)V
|
x

= (

 �1’
:=0

\:L
:

)x

(2.9)

Therefore, if (
Õ
 �1
:=0 L

:
)(E,D) = 0, then the transformation matrix (V6\ (⇤)V|) 2 R=⇥= will

masked the signal from node D to node E. Thus, this localized filter is equal to masking

the signal transformation from node D to E if 3⌧ (E, D) >  , where 3⌧ denotes the shortest

path distance between two nodes on the graph ⌧. Consequently, the filter is localized to

 -hop neighborhoods strictly.

Moreover, the 6\ 0 (⇤) requires O(=
2
) operations for the multiplication with the Fourier

basis V,

However, computing either L
 or the eigendecomposition of L is computationally

expensive, requiring at least O(=
2
) operations.

To reduce the computation cost, the 6\ (⇤) is parameterized to a polynomial function

allowing to be computed recursively from ⇤. The Chebyshev polynomial is a good option

that the term of order : is computed recursively as ): (G) = 2G):�1(G) � ):�2(G) with )0 =

1,)1 = G. Therefore, the filter is parameterized as the truncated expansion as follows,

6\ (⇤) =
 �1’
:=0

\:): (⇤̃) (2.10)

where the parameter ) = [\0, . . . , \ �1]| 2 R is the vector of Chebyshev coefficients and

): (⇤̃) 2 R=⇥= is the Chebyshev polynomial of order : . The ⇤̃ = 2⇤/_max� I=, which is a di-

agonal matrix of scaled eigenvalues in [�1, 1]. The _<0G denotes the maximal eigenvalues
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in ⇤. Accordingly, the transformation matrix can be rewritten as follows,

6\ (!) = V6\ (⇤)V|

=
 �1’
:=0

\:): (L̃)

(2.11)

where L̃ = 2L/_<0G � I= is the scaled Laplacian corresponding to the scaled eigenvalues.

The above mentioned filter can generalized to transform the input signals with �8=

channels to the output signal with �>DC channels as follows,

Y·, 9 =
�8=’
8=1

6\8 9
(L)X·,8 (2.12)

where input X 2 R=⇥�8= and output Y 2 R=⇥�>DC ; the �8= ⇥ �>DC vectors of Chebyshev

coefficients \0
8 9

2 R are the trainable parameters of the localized spectral convolutional

networks.

Besides Chebyshev polynomial, approximating spectral convolutions with the Lanc-

zos algorithm [Susnjara et al., 2015] can be an alternative. Based on it, [Liao et al., 2019]

proposed another localized spectral graph convolutional networks called LanczosNet.

Graph Convolutional Networks

Following [Defferrard et al., 2016], [Kipf and Welling, 2017] proposed Graph Convolu-

tional Networks (GCNs) with the approximated first-order localized spectral convolu-

tions.

Based on the fast localized spectral filters in [Defferrard et al., 2016], for node signal

x 2 R=, GCNs limit the order : as 1 and further approximate with the assumption _<0G ⇡ 2,

as follows,

6
0

\
⇤ x ⇡ \

0

0x + \
0

1(L � I=)x = \00x � \
0

1D
�
1
2AD

�
1
2x, (2.13)

with two free parameters \00 and \01.
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In order to address the overfitting problem and minimize the number of operations,

GCNs introduce a renormalization trick to reduced the number of free parameters as fol-

lows,
6\ ⇤ x ⇡ \

0

0x + \
0

1(L � I=)x

⇡
\=\ 00=�\

0

1

\ (I= +D
�
1
2AD

�
1
2 )x

⇡ \ (D̃
�
1
2 ÃD̃

�
1
2 )x

(2.14)

where Ã = A + I= and D̃(8,8) =
Õ
9
Ã8 9 , which is equal to adding self-loop to the graph. \ is

the learnable parameter for each channel of signals.

Therefore, for multiple feature channels, the filters of GCNs transform the input sig-

nals X 2 R�8= with �8= channels to the output signals Y 2 R�>DC with �>DC channels,

Y = D̃
�
1
2 ÃD̃

�
1
2X⇥ (2.15)

where ⇥ 2 R�8=⇥�>DC is a matrix of learnable parameters.

Even though each filter will only convolve the first-hop neighborhood of a node, :

successive applications of such filters can effectively aggregate the information from the

:-hop neighborhood in the neural network model as classical CNNs on grids.

Because each filter of GCNs only considers the first-hop neighbors, the approximated

Fourier basis + in [Bruna et al., 2014,Defferrard et al., 2016] is downgraded to coefficients

only based on node degrees for neighborhood aggregation. Thus, GCNs enjoy efficient

computation and excellent scalability.

Moreover, because the filters in GCNs only consider the first-hop neighborhood, each

filter of GCNs can be formulated into a formula of a neural message passing algorithm.

Considering updating the representation of node E from xE = X(E,·) to yE = Y(E,·) , the filter

of GCNs can be reformulated into,

yE =
’

D2N(E)[{E}

D̃
�1/2
(E,E)

· D̃
�1/2
(D,D)

· xD . (2.16)
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Thus, GCNs are viewed as a bridge between spectral GNNs and spatial GNNs, and

inspire several spatial GNNs.

2.2.3 Spatial Graph Neural Networks

Spectral GNNs are well defined and efficient on graphs, however, , they cannot support

inductive node representation learning with unseen graphs well because generalizing to

unseen nodes requires “aligning” newly observed graph structure. However, the Fourier

basis or the approximate localized variants (i.e., + in [Bruna et al., 2014] and the approxi-

mated coefficients in [Defferrard et al., 2016,Kipf and Welling, 2017]) in filters of spectral

GNNs are fixed and inferred from the observed graph during training, which are fixed

but should be changed during evaluation due to newly observed nodes in the evalua-

tion stage. Therefore, Spectral GNNs cannot generalize to unseen nodes in the inductive

setting well.

In fact, if the unseen nodes are in a separate connected component, the spectral GNNs

might still work well by computing the Fourier basis for the new connected component

during inference, if the newly observed connected component, considered as a separate

graph, has a similar group-structure pattern with the previously observed graph. How-

ever, computing the Fourier basis or those approximated coefficients for newly observed

connected components requires extra operations which are computationally costly. This

type of inductive node-level representation learning has close relationship with the graph-

level tasks such as graph classification.

In the case that the new observed nodes during evaluation are connected to the pre-

viously observed graph, considered as with the newly observed subgraph, the spectral

GNNs usually fail on generalizing to unseen nodes because the Fourier basis or its ap-

proximation might differ largely from the training stage to the evaluation stage.

Therefore, several Graph Neural Networks are designed from the spatial perspective

to get rid of the graph Laplacian, for the inductive node representation learning [Hamil-

ton et al., 2017,Velickovic et al., 2018,Monti et al., 2017,Atwood and Towsley, 2016]. Unlike
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the construction of the spectral convolutions, spatial GNNs introduce feature extractors

on the local spatial neighborhood of nodes with learned or fixed coefficients independent

of the graph Laplacian.

Owe to the support of inductive setting, spatial GNNs have been applied to many

tasks, including geometry learning [Monti et al., 2017], inductive node classification on

large-scale graphs with sampling schemes [Hamilton et al., 2017], and graph classifica-

tion [Xu et al., 2019], etc.

Considering a large amount of related literature and the space limit in the thesis, we

will only introduce typical spatial GNNs closely related to our proposed models in the

following.

Mixture Model CNNs

Mixture Model CNNs (MoNet) [Monti et al., 2017] is proposed to generalize CNNs on

non-Euclidean structured data, not only for graphs but also with a focus on manifolds.

Instead of the perspective of graph Laplacian, MoNet introduces a concept of Pseudo-

coordinates from the perspective of geometry.

To be compatible with deep learning on manifolds, the notations and the perspectives

of MoNet are different from previously introduced GNNs. However, these notations and

perspectives can be utilized in the case of learning on the graph.

First, let X be a 3-dimensional differentiable manifold, possibly with boundary mX. X

corresponds to an undirected weighted graph ⌧ from the perspective of graph learning.

A smooth real functions (scalar fields) on the manifold is denoted by 5 : X ! R, which is

corresponding to the node signal in a graph. A point on a manifold or a vertex of a graph

is denoted as G 2 X and points H 2 N(-) are considered in the neighborhood of G. For a

G with each such H, MoNets associate a 3-dimensional vector uED as pseudo-coordinates. In

these coordinates, a weighting function (kernel) is defined as w⇥ = (l1(u), . . . ,l� (u)), pa-

rameterized by trainable parameters ⇥. Then, a function named patch operator for neigh-

25



bor information aggregation can be written in the following form,

⇡ 9 (G) 5 =
’

H2N(G)

l9 (u(G, H)) 5 (H), 9 = 1, . . . , �, (2.17)

where � represents the dimensionality of the extracted patch.

With the patch operator, a spatial generalization of the convolution on non-Euclidean

domains can be defined by a template-matching procedure with a filter 6 as follows,

( 5 ¢ 6) (G) =
�’
9=1

6 9⇡ 9 (G) 5 (2.18)

where 6 9 are trainable parameters.

The weighting function is designed as parametric kernels with learnable parameters.

The frame work is agnostic to the particular choice of the weighting function. The weight-

ing function utilized in [Monti et al., 2017], is

l9 (u) = exp(�
1

2
(u � -

9
)
|⌃�1

9
(u � -

9
)) (2.19)

where ⌃ 9 2 R3⇥3 and -
9
2 R3⇥1 are covariance matrix and mean vector of a Gaussian

kernel as trainable parameters.

Similar to previously mentioned GNNs, such filters can be generalized to node fea-

tures with multiple channels.

GraphSAGE

GraphSAGE [Hamilton et al., 2017] is proposed to learn low-dimensional representations

of nodes in large graphs in the inductive setting. The learned node representations can

be utilized in different down-stream tasks, including node classification and link pre-

diction. GraphSAGE supports not only to learn node representations with down-stream

tasks in a supervised manner, but also to pretrain node representations unsupervisedly by
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predicting graph contexts and finetune a plug-in prediction layer for downstream tasks

afterward. The unsupervised learning scheme is introduced in section 2.5.2.

The architecture of each layer in GraphSAGE consists of neighbor aggregation and

node representation update. The former is a feature extractor on the closed or opened

neighborhood, which includes and excludes the center node, respectively. The latter is to

concatenate the representation of the center node and the neighborhood representation

from neighbor aggregation and feed the concatenated representation to a fully connected

layer with a nonlinear activation function, which can be understood as a concatenation-

based skip connection in [Huang et al., 2017].

For node E, a layer of GraphSAGE transform the input representation xE of node E to

its output node representation yE as follows,

xN(E) = AGGREGATE ({xD,8D 2 N(E)})

yE = f
�
W · [xE kxN(E)]

� (2.20)

where xN(E) denotes the representation of the neighborhood of node E; Aggregate denotes

the neighborhood aggregation function.

Three aggregation functions are introduced in [Hamilton et al., 2017]: Mean-aggregator,

LSTM-aggregator and Pooling-Aggregator, showed as the following,

AGGREGATEmean =
1

|N (E) [ {E}

’
D2N(E)[{E}

xE,

AGGREGATELSTM = LSTM (c( [xD, . . . , xD0]
|
)) ,8D, D

0
2 N(E),

AGGREGATEpool = max({f(WpoolxD + b),8D 2 N(E)}),

(2.21)

where LSTM : R·⇥3 ! R3
0 takes in a sequence of vectors represented as a matrix and

output the last hidden states; c : R<⇥3 ! R<⇥3 denotes a random permutation operation

of a matrix along the first dimension.
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In GraphSAGE, the local neighborhood of a node is viewed as a multiset. Therefore,

the aggregation function, or so-called neighbor aggregator, is expected to be symmetric

(permutation invariant) in ideal cases.

Among the three aggregators introduced, the Mean-aggregator can be viewed as the

inductive version of GCNs, which is permutation invariant and does not depend on the

graph Laplacian. However, it is not trainable and essentially based on mean-pooling

operations within local neighborhoods. By contrast, the LSTM-aggregator has a better

expressive capability because it is trainable by considering each local neighborhood as a

sequence of nodes. But it is not inherently permutation invariant and relies on the random

permutation of neighbors during the training stage. The Pooling-aggregator is symmet-

ric and trainable, inspired by [Qi et al., 2017]. The max-pooling in pooling-aggregator

can be replaced by mean-pooling, and there is no significant difference in performance.

However, it is not spatially trainable because all trainable parameters are shared by all

nodes in the neighborhood. In other words, there are no specific trainable parameters

dependent on different nodes in the neighborhood.

Besides the aggregators, the representation fusion part can be viewed as a general-

ized skip-connection similar to the one introduced in [Huang et al., 2017], which allows

preserving lower-level semantic information learned in previous layers. This leads to sig-

nificant gains in performance, especially for those aggregators not considering the center

node.

Moreover, GraphSAGE also introduces a neighborhood sampling scheme that a fixed-

size set of neighbors are randomly and uniformly sampled from the full neighborhood

for neighbor aggregation. The fixed size of sampled neighborhoods allow the consumed

memory and expected runtime of GraphSAGE in a single batch to be predictable. In

addition, the random sampling scheme still allows GraphSAGE to access the information

of the full neighborhood of each node with multiple training epochs. The neighborhood

sampling scheme is essential for representation learning on large-scale graphs owe to the

predictable and controllable memory consumption and runtime in a single batch.
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There are also several works discussing the neighborhood sampling scheme. How-

ever, since it is less related to our work, we do not discuss works related to it in detail

here.

Graph Attention Networks

Recalling previously mentioned spatial GNNs, including GCNs, we can simply catego-

rize them into two genres, spatially fixed (i.e., GCNs [Kipf and Welling, 2017], GraphSAGE-

Mean, GraphSAGE-Pooling [Hamilton et al., 2017], GIN [Xu et al., 2019]) and spatially

learnable (i.e., MoNet [Monti et al., 2017], GraphSAGE-LSTM [Hamilton et al., 2017]).

GNNs in the former genre aggregate neighbors with fixed coefficients, while those in the

latter genre aggregate neighbors with coefficients as trainable parameters or parameter-

ized as a neural network. Each filter of spatially fixed GNNs can be decomposed into

a pooling layer or a fixed kernel filter shared by all channels on neighborhoods and a

fully connected layer shared by all nodes. Such filters are able to capture the natural

group structures of graphs by denoising the node representation via smoothing the local

neighborhoods. However, using a fixed spatial filter shared by all layers might filter the

features with a single template multiple times and lead to extreme results. For example,

stacking too many GCN-layers might lead to the oversmoothing problem that all nodes

representations converge to a similar value. Considering the theoretical foundation of

spectral GNNs and mean-pooling-based spatial GNNs, they frequently suffer from the

oversmoothing problem since they are essential blurring kernels.

Therefore, it is meaningful to construct a spatial learnable filter in order to adaptively

learn node representations in the graph. However, due to the property of permutation

invariance, a common way to construct a spatial learnable filter is to build an adaptive

filter [Zamora Esquivel et al., 2019] with content-based weighting functions.

Inspired by the powerful language model, Transformer, self-attention [Vaswani et al.,

2017] is introduced into Graph Neural Networks [Velickovic et al., 2018]. Owe to the

characteristic of the attention mechanism, the spatial filters of Graph Attention Networks
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(GAT) are symmetric as well as trainable with respect to feature channel space and spatial

space. The comprehensive introduction of the attention mechanism and Transformer will

be in Section 2.3.

From the perspective of the attention mechanism, a GAT layer is essentially a self-

attention layer with masking preventing nodes from attending to unconnected nodes. It

can be viewed as a variant of the self-attention layer in the decoder of Transformer [Vaswani

et al., 2017], in which the masking prevents positions from attending to subsequent posi-

tions. From the perspective of GNNs, a GAT layer allows a node to aggregate information

from a local neighborhood with different importances. For each node, the aggregation im-

portances, represented as the attention scores, are computed based on the representation

of the center node as the query and the representations of nodes in its neighborhood as

keys.

The framework of GAT is agnostic to the particular choice of attention mechanism.

The particular attention mechanism architecture utilized in [Velickovic et al., 2018], with

input node representations xE,8E 2 V, is as follows,

4ED = LeakyReLU (a[WxE kWxD])

UED =

8>><
>>:

exp(4ED)Õ
D
02N(E)[{E } exp(4ED0)

, if D 2 N(E) [ {E}

0 , otherwise

(2.22)

where 4ED 2 R and UED 2 R are called prenormalized and normalized attention coefficients;

a and W are trainable vector and matrix; LeakyReLU denotes the LeakyReLU nonlinearity

function (with negative input slope as 0.2).

Note that in [Velickovic et al., 2018], the closed neighborhood of each node is con-

sidered. However, considering the open neighborhood can be an alternative if skip-

connection architecture in GraphSAGE [Hamilton et al., 2017] is introduced. Neverthe-

less, because the attention mechanism outputs a categorical distribution by normalizing

across all keys, the attention coefficients are different due to the change of the set of keys

(i.e., the key set of each neighborhood includes or excludes the center node).
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Similar to Transformer [Vaswani et al., 2017], GATs also employ multi-head attention

mechanism with  -independent heads,

yE =

8>><
>>:

[k
 

:=1f(
Õ
D2N(E)[{E} U

:

ED
·W

:
xD)] , if on the hidden layers

f(
1
 

Õ
D2N(E)[{E} U

:

ED
·W

:
xD) , if at the output layer (final layer)

(2.23)

in which, a: and W: denotes the trainable parameters in :th attention head in eq 2.22.

Graph Isomorphism Networks

Graph Isomorphism Network (GIN) is a framework for graph-level representation learn-

ing [Xu et al., 2019]. It is proved to be one of the GNNs with the most expressive power

to capture different graph structures. By considering the neighbors of a node as a multi-

set, the aggregation of a GNN with the most expressive power needs to be injective with

input as multisets. Each layer of GINs transform the input representations xE,8E 2 V to

the output representations yE,

yE = MLP
©≠
´
(1 + n) · xE +

’
D2N(E)

xD
™Æ
¨

(2.24)

where MLP denotes multi-layer perceptrons; n can be a learnable parameter or a fixed

scalar value.

GINs is one of the most expressive powerful GNNs for graph isomorphism test be-

cause summation is an injective operation while some operations utilized by other GNNs,

such as averaging, max-pooling, are not injective. However, GINs do not show signifi-

cantly better and even show worse performance on node-level tasks (i.e., node classifica-

tion), probably because capturing the distribution (proportion) of elements in a neighbor-

hood is more important than capturing the exact multiset.
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2.2.4 Neural Message Passing

As aforementioned, many GNNs can be formulated into a framework of Neural Message

Passing [Gilmer et al., 2017]. These type of GNNs have some typical characteristic in

common,

• The locality is a first-hop neighborhood;

• The representation of a neighborhood is a linear transformation of the nodes in the

neighborhood.

The general formulation for message passing, or termed as neighbor information ag-

gregation, of neural message passing GNNs-(NMP-GNN) is as follows,

yE = f(
’

D2N(E)

UED ·WxD) (2.25)

where xE 2 R3 , yE 2 R3
0 is the input and output representation vectors of node E respec-

tively; W 2 R3
0
⇥3 is the weight matrix; f denotes arbitrary non-linear activation function;

UED 2 R is the aggregation coefficient from D to E.

Linear Transformation of Neighborhood The aggregation coefficients UED in NMP-

GNN control how a node treats the information from information. They can be inter-

preted from multiple perspectives, such as the smoothness factor between nodes, or the

aggregation importances of the neighbors given the center node. However, overall, sim-

ilar to CNNs, it is a linear transformation of values of nodes in a neighborhood with

coefficients {UED}.

The design of the aggregation coefficients can be in multiple ways, as follows,

• as a constant as a hyperparameter; i.e., UED = 1, equivalent to sum-pooling in GIN [Xu

et al., 2019];

• inferred from the structural property of center node 8; i.e., UED = 1
|N (E)[{E}|

, equivalent

to mean-pooling in GraphSAGE-Mean [Hamilton et al., 2017];
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• inferred from the structural information of the center node and neighbor nodes; i.e.,

UED = 1p
( |N (E) |+1) ( |N (D) |+1)

; equivalent to GCNs [Kipf and Welling, 2017];

• UED parameterized to a neural network on representation of nodes; i.e., MPNNs [Gilmer

et al., 2017] and GATs [Velickovic et al., 2018].

Generalized Depthwise Separable Convolution From the general equation of NMP-

GNN, one can notice that the coefficients for spatial (i.e., for aggregating information from

adjacent nodes) and the weights for projecting feature channels to new a channel space,

are separable.

This form is, in fact, close to the concept of Depthwise Separable Convolutions for

images in Xception [Chollet, 2017]. In Xception, the convolution operation is separated

into two parts, depthwise convolution which is a spatial convolution performed indepen-

dently over each channel of input, and pointwise convolution which is essentially a 1 ⇥ 1

convolution projecting its input channels onto a new channel space.

Similarly, we can also separate NMP-GNNs into the depthwise operations with ag-

gregation coefficient UED, and the pointwise operations with feature projecting weights

W. Instead of a spatial filter for input channels, in the abovementioned NMP-GNNs, the

spatial filter in depthwise operations is shared by all input channels.

Moreover, we can further extend {UED 2 R} shared by all channels to multiple {U
:

ED
2

R, : = 1, . . . , } (i.e.,  spatial filters in total) that input channels are split into  groups

and the input channels in :th group are assigned with U:
ED

, inspired by the group convolu-

tion in InceptionNets [Szegedy et al., 2015, Szegedy et al., 2016, Szegedy et al., 2017]. This

extension matches the architecture of multi-tower MPNN [Gilmer et al., 2017] and multi-

head GAT [Velickovic et al., 2018]. If  equal to the dimension of input channels, it is the

same as depthwise separable convolutions except for U:
ED
,88, 9 , : in NMP-GNN are not

trainable parameters indexed by related positions. In this case, the max-pooling aggrega-

tion in GraphSAGE-Pooling [Hamilton et al., 2017] can be reformulated into NMP-GNNs.
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Therefore, we can also view the generalized convolution on graphs in GNNs in the

form of the depthwise separable convolutions. In general, depthwise separable convolu-

tions are with similar expressive power with conventional convolutions with fewer pa-

rameters to train in a specific order (i.e., a pointwise convolution followed by a depth-

wise convolution) [Chollet, 2017]. This provides the ground for designing depthwise and

pointwise operations separately in GNNs.

In the following paragraphs, we will discuss the spatial filter in the depthwise opera-

tions of NMP-GNNs.

Note that one can also insert hidden layers after the input layer, before the output

layer, or switching the order of depthwise and pointwise operation in each layer of NMP-

GNNs.

Depthwise Pooling or Depthwise Convolution In those GNNs with fixed aggre-

gation coefficients, the spatial filters of depthwise operations are fixed during training

and inference. Therefore, we can view such depthwise operations as generalized pooling

operations or fixed convolutional kernels spatially.

Even though such depthwise pooling operations can capture the natural clustering

information by smoothing, stacking too many such depthwise pooling (i.e., more than

3 layers) might cause severe information loss on spatially due to over sub-sampling or

smoothing the neighborhoods. Consequently, instead of smoothing the representations of

nodes in the same cluster to be similar, the representations of nodes in the graph become

similar overall. This is called the oversmoothing problem [Zhao and Akoglu, 2020] and

is considered a common issue of many GNNs.

Adding residual-connections, by addition [He et al., 2016], gating [Pham et al., 2018],

concatenation [Huang et al., 2017] mechanism, to NMP-GNNs can preserve node identity

and mitigate the oversmoothing [Kipf and Welling, 2017, Hamilton et al., 2017, Li et al.,

2015, Velickovic et al., 2018, Xu et al., 2018, Gilmer et al., 2017].
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Furthermore, parameterizing {UED} to a neural network can make the filter more ex-

pressive than simple pooling operation by introducing learnable parameters.

Such filters can be interpreted as adding a generalized gating mechanism when each

node aggregate information from each neighbor [Gilmer et al., 2017] or assigning cat-

egorical probabilities across each neighborhood in aggregation [Velickovic et al., 2018].

More sophisticated cases, such as applying any type of feature extractor to the neighbor-

hood as a whole, are feasible, but these cases may not be included in NMP-GNNs (i.e.,

GraphSAGE-LSTM [Hamilton et al., 2017]).

Factors Controlling the Aggregation In NMP-GNNs, the local neighborhoods pro-

vide the natural clustering information from graph structure. However, the definition of

aggregation coefficients (a.k.a, the coefficients of the spatial linear transformation) may

also introduce other inductive biases.

Assume that a filter updates the representation of node E by aggregating neighbors’ in-

formation. The mean-pooling filters in GraphSAGE-Mean [Hamilton et al., 2017] assume

that all neighbors contribute to the center nodes equally, in which {UED},8D 2 N(E) only

depend on the size of N(E). Instead of normalizing the neighborhood from the perspec-

tive of the center node, the filters in GCNs [Kipf and Welling, 2017] consider a symmetric

normalization U8 9 = 1p
( |N (E) |+1) ( |N (D) |+1)

,8D 2 N(E). Besides, the sum-pooling spatial filters,

in GINs [Xu et al., 2019] and GG-NN [Li et al., 2015], attempt to encode the size of each

neighborhood as well. We view such filters are controlled by the local structural property

of nodes (i.e., node degrees).

By contrast, filters in GATs [Velickovic et al., 2018] and MPNN [Gilmer et al., 2017]

tend parameterize {UED} to neural networks with inputs as the representations of nodes.

We view such filters are controlled adaptively by the semantic representations of nodes.

For spectral GNNs considering more than first-hop neighborhood [Bruna et al., 2014,

Defferrard et al., 2016], even though they are not strictly NMP-GNNs, they also have an

operation to aggregate information from nodes in the desired :-hop neighborhoods. The
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Model Local
Neighborhood

Aggregation function Representation Update

GCN N
0
(E) = N(E) [ {E} hE =

Õ
D2N 0(E) UED ·WxD

UED = 3̃
�1/2
E

· 3̃
�1/2
D

yE = f(hE + b)

GraphSAGE
(Mean)

N
0
(E) = N(E) [ {E} hE =

Õ
D2N 0(E) UED ·WxD

UED = 1/|N 0
(E) |

yE = f(WhE +WA4BxE + b)

GraphSAGE
(Pooling)

N
0
(E) = N(E) hE =

max
D2N 0(E)

(f(W?>>;xD + b?))

yE = f(WhE +WA4BxE + b)

GAT N
0
(E) = N(E) [ {E} hE =

Õ
D2N 0(E) UED ·WxD

UED = LeakyReLU(a
|
;
WxE +

a
|
A
WxD)

yE = f(hE + b)

GIN N
0
(E) = N(E) [ {E} hE =

Õ
D2N 0(E) UED · xD

UED =
⇢
n if D = E
1 otherwise

yE = MLP(hE)

where N(E) denotes the open neighborhood of node E and N
0
(E) denotes the neigh-

borhood definition utilized by the model; W·, b·, a· are trainable parameters; n are
fixed or trainable parameter; f denotes non-linear activation function; MLP denotes
multilayer-perceptrons; 3̃E denotes the adjusted node degrees after adding self-loop.

Table 2.2: Summary of NMP-GNNs;

mapping from the spatial domain to the spectral domain can be viewed as constructing

graph partitions and aggregating information from each partition.

Summary Table A list of common NMP-GNNs is summarized in the Table 2.2 with-

out considering the multihead or high-dimensional aggregation coefficients cases.

2.3 Attention Mechanism

Attention mechanisms are widely used in many domains such as natural language pro-

cessing [Bahdanau et al., 2015,Shaw et al., 2018,Wang et al., 2019,Vaswani et al., 2017,Dai

et al., 2019], computer vision [Xu et al., 2015,Bello et al., 2019,Cordonnier et al., 2020,Zhao

et al., 2020], etc. Inspired by the fact that people might pay more attention to some words

or some regions when reading or viewing, attention mechanism aims to allow to aggre-

gate the information from a set of entities with different focuses, given a condition.
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2.3.1 Soft Attention and Hard Attention

In general, there are two variants of attention, ”hard” attention and ”soft” attention mech-

anism. ”Hard” attention mechanisms [Itti et al., 1998, Larochelle and Hinton, 2010, Alexe

et al., 2012,Ba et al., 2014,Xu et al., 2015] allow stochastic hard selection on focused entities

and are trainable by maximizing an approximate variational lower bound or equivalently

by Reinforce [Williams, 1992]. On the other hand, ”soft” attention mechanisms [Bahdanau

et al., 2015,Luong et al., 2015,Vaswani et al., 2017] are deterministic and output the prob-

abilities to pay attention to candidates. Consequently, ”soft” attention mechanisms are

trainable by standard back-propagation methods and easily embedded into deep mod-

els.

Considering our proposed method is based on ”soft” attention, we would the atten-

tion mechanism is a ”soft” attention in the following sections, unless otherwise stated.

2.3.2 The Computation of Attention

In order to aggregate information from a set of < target entities with different impor-

tances, given a certain condition, attention mechanisms are factorized into two functions,

the attention coefficients computation and the aggregation function with attention coeffi-

cients.

An entity 8 in the target set has two representations, the key representation k8 (short-

ened as key) and the value representation v8. (shortened as value). The key representation

is utilized in the attention coefficients computation as a condition given by the target 8,

while the value representation is aggregated as the target information of 8 in the aggrega-

tion function.

Usually, the attention computation function l(·), expects two arguments for comput-

ing the attention score for an entity 8 in the target set. One is the key k8 2 R3: of entity 8,

which contains the information of the target’s condition. The other one is a given condi-

tion of the aggregation, represented by the query vector q 2 R3@ . Typically, when aggre-
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gating information from the target set for an entity, the query is considered a condition

representation of it. The attention computation function will output an unnormalized

attention score B8 2 R for each query and key pair. Note that, the attention mechanism

requires the convert the unnormalized attention scores to a categorical distribution for

each query over its set of keys. In other words, the attention score for each target will be

normalized by softmax over the target set.

With the attention scores from attention computation, the aggregation function will

aggregate the value representation of each target, with the corresponding attention scores.

The set of values corresponding to the set of targets is denoted by V = {v8}, 8 = 1, . . . ,<.

Therefore, an attention mechanism can be written as the following,

s8 = l(q, k8,K)

c =
<’
8=1

s8 · v8

(2.26)

where c is the output representation of attention mechanism. K denotes the set of keys

considered.

This architecture of attention modules is called query-key architecture and is widely

utilized in many attention-based models- [Bahdanau et al., 2015, Vaswani et al., 2017,

Velickovic et al., 2018].

Attention Coefficient Computation Function l(·)

Typically, l(·) will output probabilities of a multinomial distribution for keys given a

query. Sometimes, the query can be replaced by a learnable seed vector, embedded into

the module as learnable parameters. A number of typical variants are summarized in

Table 2.3.
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Name Attention Coefficient Function l(q, k8,K) Citation

Content-base s8 = SoftmaxK
�
cosine(q, k8)

�
[Graves et al., 2014]

Additive/Concatenate s8 = SoftmaxK
�
v
| tanh(W · [qkk8])

�
[Bahdanau et al., 2015, Luong et al., 2015]

Dot-product s8 = SoftmaxK
�
q
|
k8

�
[Luong et al., 2015]

General s8 = SoftmaxK
�
q
|
Wk8

�
[Luong et al., 2015]

Scaled Dot-product s8 = SoftmaxK
�
q
|
k8

p
3:

�
[Vaswani et al., 2017]

Location-Base s8 = SoftmaxK
�
Wk8

�
[Luong et al., 2015]

Pooling by Attention s8 = SoftmaxK
�
v
|
k8

�
[Lee et al., 2019b]

where v,W are learnable vector and matrix respectively; cosine denotes the cosine
similarity cosine(x, y) = x

|
y

kxk2·kyk2
, where kxk2 =

qÕ
3G

8=1 x
2
(8)

is the ;2-norm of x; tanh(G) =
exp(2G)�1
exp(2G)+1 is the tangent element-wise activation function.

Table 2.3: Summary of Attention Modules with Query-Key Architecture.

Matrix Computation of Attention Coefficients

The attention mechanism described above can be easily generalized to work on several

queries if they share the same set of keys. For computational efficiency, the computation

of attention coefficients can be rewritten in matrix form and compute attention coefficients

for queries in parallel.

Thus, the set of = queries Q and the set of < keys K are written in matrix form

Q 2 R=⇥3@ and K 2 R<⇥3: respectively. Notably, even though written in matrix-form,

attention mechanisms are working on set-structured inputs and need to satisfy permuta-

tion invariance [Vaswani et al., 2017, Lee et al., 2019b].

If the queries do not share the same set of keys completely, masking can be introduced

to the key matrix K of the union of key-sets, to specify a customized key set for each query

and prevent implausible connections [Vaswani et al., 2017, Velickovic et al., 2018].

For example, the scaled dot-product attention can be rewritten to,

Attention(Q,K,V,M) = Masked-Softmax

✓
QK

|
p
3:

,M

◆
V (2.27)

where Maksed-Softmax(X,M)(8, 9) :=
(exp(X)�M) (8, 9)Õ

<

9
0=1 (exp(X)�")) (8, 9 0)

and M 2 {0, 1}=⇥< is a masking

matrix that implausible connections are maksed as 0 and otherwise as 1.
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Multihead Attention

Instead of performing a single attention computation in one attention layer, Transformer

[Vaswani et al., 2017] employs ⌘ parallel attention heads, computing attention coefficients,

and attentional aggregation within each head separately. Each attention head can be

viewed as a separate attention mechanism. However, all attention heads share the same

set of queries, keys and values. In order to capture different information with different

attention heads, queries, keys, and values will be linearly transformed by three trainable

weight matrices respectively, ahead of being fed into an attention head. Each attention

head will have the corresponding trainable weight matrices.

The output representations of each head would be concatenated as the layer output.

Multi-head attention allows the model to jointly attend to information from different rep-

resentation subspaces at different positions, while with a single attention head, averaging

inhibits this.

Here is an example of multihead attention,

MultiHeadAttention(Q,K,V) = [head1; . . . ;head⌘]W$

where head8 = Attention(QW&

8
,KW

 

8
,VW

+

8
)

(2.28)

where W&

8
2 R3@⇥3

0
@
,W

 

8
2 R3:⇥3

0

: ,W
+

8
2 R3E⇥3

0
E and W

$

8
2 R⌘3

0
E
⇥3E . Usually, 30

:
= 3:/⌘, 30@ =

3@/⌘, 3
0
E
= 3E/⌘ to keep the total computational cost similar to that of single-head attention

with full dimensionality. The multi-head attention techniques can be introduced to most

variants of attention mechanisms to enhance the capacity.

Similar ideas have been employed in Inception networks [Szegedy et al., 2015,Szegedy

et al., 2016,Szegedy et al., 2017] and Xception networks (a.k.a Depthwise separable CNNs).

40



Self-Attention

Recalling the attention-mechanism with query-key architecture, if the input queries and

keys are corresponding to the same set of entities, the attention mechanism is called self-

attention or intra-attention.

Self-attention has been utilized successfully to compute a representation of the set

of inputs in various tasks such as reading comprehension, abstractive summarization,

textual entailment, and learning task-independent sentence representations [Cheng et al.,

2016, Parikh et al., 2016, Paulus et al., 2018, Lin et al., 2017].

Besides, self-attention can work as a feature extractor on a set of input entities, by

directly attending to them, as introduced in Transformer [Vaswani et al., 2017] and its

variants, instead of attending to the hidden states of an encoder. Such self-attention

mechanisms have been proven to be efficient and powerful in the NLP domain, and have

recently been generalized to other domains as well.

2.3.3 Alignment Model and Feature Extractor

The ”Soft” attention mechanism is originally introduced as an alignment model bridging

encoder and decoder in tasks such as machine translation and image caption generation

[Bahdanau et al., 2015,Xu et al., 2015]. With the attention mechanism, each hidden state of

the decoder can aggregate information from all hidden states of the encoder with focuses.

This frees the encoder-decoder based model from having to squash all the information

from a source to a fixed-length vector. In this case, the input representations of the atten-

tion mechanism are assumed to contain structural information encoded by the encoders.

Transformer [Vaswani et al., 2017] introduces self-attention mechanisms that directly

attends to the inputs instead of the hidden states of RNNs or CNNs. In this case, the self-

attention is utilized as a feature extractor to compute representations of its input in the

encoder and decoder of the Transformer. Compared to CNNs and RNNs, self-attention

has some advantages. For example, in sequence tasks, compared to CNNs, self-attention
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can easily generalize to input sequences of unseen length in the training stage and cap-

ture long-range dependencies. Compared to RNNs, self-attention allows for significantly

more parallelization. The proposed method in [Vaswani et al., 2017], Transformer, is a

model architecture eschewing recurrence and relying entirely on attention mechanisms

to capture global dependencies between input and output. There are a large number

of variants based on the Transformer for tasks in NLPs and other domains [Shaw et al.,

2018,Dai et al., 2019,Huang et al., 2018a,Cordonnier et al., 2020,Bello et al., 2019,Lee et al.,

2019b, Zhao et al., 2020, Wang et al., 2019].

Notably, the self-attention mechanism cannot inherently capture positional and struc-

tural information of input entities [Vaswani et al., 2017, Lee et al., 2019b]. Therefore, to

better work on structured data, such as sequences and grids, the positional or structural

information is injected to inputs for the self-attention mechanism. One of the most com-

mon techniques is adding ”positional encodings” or ”positional embeddings” to the input

representations before the first self-attention layer. The details about positional encoding

are discussed in section 2.3.4.

2.3.4 Positional Encoding/Embedding in Attention

Since the attention mechanism is inherently permutation invariant, it cannot capture the

positional information or higher-order structural information among a set of entities.

Therefore, for attention mechanisms as feature extractors, we need to inject positional

information or structural information manually.

Note that, for attention mechanisms as alignment models, it is unnecessary to do

so, if CNNs or RNNs in the encoder and the decoder have already embedded posi-

tional/structural information into representations.

We will introduce some methods to enhance the attention mechanisms with the infor-

mation of structure, with a focus on those attention mechanisms as feature extractors.

One common way to inject positional information is adding positional encodings or

learnable positional embeddings for input entities to their representations before the self-
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attention layer, which is originally for sequential input [Vaswani et al., 2017]. Nearly

identical performance are achieved by the variants of Transformer [Vaswani et al., 2017]

coupled with positional encodings and learnable positional embeddings. [Shaw et al.,

2018] further modifies the learnable positional embeddings from for each absolute posi-

tion to relative positions. [Wang et al., 2019] generalizes the encodings to tree-structure to

model the complicated structural information in trees and rename the positional encod-

ing as structural encoding.

For simplicity, in the following, we will refer all of them to positional embeddings,

regardless of whether they are learnable or not, for sequences or other structures.

We will discuss different types of positional embeddings and different ways to inject

positional embeddings to attention mechanisms in detail in the following sections.

The Definition of Positional Embeddings

Positional Embeddings are defined as representations that carry the information about

the position, order, structure of entities among the input.

The first positional embedding utilized by the attention mechanism is the one intro-

duced in Transformer [Vaswani et al., 2017]. This position embedding aims to provide the

order information of each word in a sentence.

The definition of the position embedding is,

%⇢(?>B,28) = sin
⇣
pos/1000028/3model

⌘
,

%⇢(pos,28+1) = cos
⇣
pos/1000028/3model

⌘
,

(2.29)

where pos denotes the order of the word in the sentence; sin and cos are sine and cosine

functions respectively.

There are two reasons to utilize the sinusoidal function. First, it allows the model

to extrapolate the sequence lengths longer than the ones encountered during training.

Second, it allows the model to easily infer the relative positions from absolute positions.
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Learned and Fixed Positional Embeddings

The positional embeddings utilized in [Vaswani et al., 2017] are pre-computed and fixed

during training. The learned version of positional embeddings [Gehring et al., 2017] are

also evaluated in [Vaswani et al., 2017] and produce nearly identical results.

However, with other modifications and on other tasks, learned and fixed positional

embeddings may perform differently.

Absolute and Relative Positional Embeddings

In [Vaswani et al., 2017], each word in a sentence is assigned a positional embedding, car-

rying the absolute positional information within a sentence. Thus, this type of positional

embeddings is called absolute positional embeddings.

One of the reasons to utilize sinusoidal function for positional embeddings is that it

allows the model to infer relative positional information from absolute positional embed-

dings. Therefore, on tasks relying on relative differences more than absolute positions,

directly learning positional embeddings for pairwise relations (i.e., the distance between

two positions) to capture relative positional information might be more efficient [Shaw

et al., 2018, Huang et al., 2018b].

[Shaw et al., 2018] proposes an efficient way of incorporating learned relative posi-

tion embeddings with self-attention, which shows significant improvements in machine

translation tasks. With the hypothesis that the precise relative position information is

not useful beyond a certain distance, clipping the maximum valid distance is utilized for

better generalization to sequence length not seen during training.

For modeling symbolic music, [Huang et al., 2018b] further proposes a memory-efficient

implementation of relative-position based attention mechanisms, which is able to work

on very long sequences. Furthermore, according to the experimental results, Transformer

with relative positional embeddings can better generalize to sequences longer than train-

ing examples than the one with absolute positional embeddings.
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The fixed relative positional embeddings are introduced in [Dai et al., 2019], in order

to enable the model to consider the previous segment when learning entities in the cur-

rent segment, which benefits the long-range dependencies modeling. Compared to the

learned relative positional embeddings, the advantage of fixed positional embeddings

is the inductive bias built into the sinusoidal positional encoding, which is beneficial to

generalization to longer sentence length. Furthermore, a trainable weight matrix for po-

sitional embeddings is introduced in each head of the attention mechanism.

From Sequence to Other Structures

The above-mentioned positional embeddings are mostly for input with sequential struc-

ture. However, positional embeddings are generalizable to more complicated structures.

[Wang et al., 2019] proposes structural position representations to model the latent

structure of the input sentence, such as the tree-structure of grammar dependency trees.

Moreover, [Bello et al., 2019, Cordonnier et al., 2020, Zhao et al., 2020] extend abso-

lute/relative sinusoid positional encoding in [Vaswani et al., 2017] to two dimensional

grid structures for tasks on images. Theoretically, with specific positional embeddings

and sufficient attention heads, self-attention can be a feature extractor on images as ex-

pressive as any convolutional layer [Cordonnier et al., 2020, Zhao et al., 2020].

With those variants of positional embeddings for attention mechanism, one might

raise the following questions:

• With suitable positional embeddings, can (self-)attention mechanism be a general

feature extractor for data with different structures?

• How to define positional embeddings for more complicated structures than sequences,

trees, and grids?
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2.3.5 Other Variants of Attention Mechanism

Besides those above-mentioned attention mechanisms, there are some variants comput-

ing the marginal probabilities or the masking scores of keys as the attention coefficients

instead of the categorical probabilities.

Structured Attention Network [Kim et al., 2017] extends the standard attention to a

conditional random field (CRF). Instead of the probabilities of a multinomial distribu-

tion, it computes marginal probabilities for keys as the attention coefficients. Moreover,

with inference methods for graphical models, structured attention networks are able to

capture structural dependencies between keys without additional methods to inject posi-

tional and structural information. Structured attention networks can work on sequences,

trees [Kim et al., 2017], as well as on grids [Zhu et al., 2017]. The structured attention net-

works can be viewed as an alternative of the positional encoding to enhance the standard

attention mechanism with positional and structural information. However, in practice,

the structured attention mechanism suffers from high computational cost.

Self-attention graph-pooling [Lee et al., 2019a] using GNNs to compute ”attention

coefficients” for nodes in a graph. However, the ”attention scores” here can be any scores

from non-linearity activation functions such as Tangent and Sigmoid function, which is

closer to the masking scores from gating mechanisms in Long short-term memory net-

works [Hochreiter and Schmidhuber, 1997], Gated recurrent units [Cho et al., 2014] and

Gate Linear Unit [Dauphin et al., 2017].

Co-attention is another variant of attention mechanism [Lu et al., 2016, Yu et al., 2017,

Yu et al., 2019]. Instead of computing probabilities for a multinomial distribution for each

query, the co-attention considers all connections between queries, and keys are under one

multinomial distribution.
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2.4 Auxiliary Embedding Models

2.4.1 Supervised Learning with Auxiliary Embeddings

In [Weston et al., 2008], an architecture combining a deep model and an embedding model

is proposed in order to fully explore unlabeled data during the training stage of transduc-

tive semi-supervised learning. In general, in this architecture, the main deep model aims

to tackle the supervised task (i.e., predicting the class labels), while the embedding model

learns an unsupervised task (i.e., predicting the connections between nodes) to explore

unlabeled data as an auxiliary task or a regularizer. It is worth mentioning that the em-

bedding model is plugged into the main architecture as an auxiliary model. Thus, the

supervised and the unsupervised tasks will be trained simultaneously using the same

overall architecture.

The overall objective function will become,

L =
!’
8=1

LB ( 5B (x8, y8)) + _

!+*’
8, 9=1

LD ( 5D (x8, x 9 )), (2.30)

where ! and * denote the indices of labeled and unlabeled examples respectively; sub-

script B and D denote supervised and unsupervised parts of the loss function or model,

respectively; the supervised and unsupervised models may share part of their architec-

ture.

If the auxiliary task can guide the embedding model to learn information beneficial for

the supervised task, this framework is supposed to outperform the standard one in the

semi-supervised learning under the transductive setting.

Besides plugging the auxiliary models into the main model, there are three ways to

connect the unsupervised tasks to the main model to assist the framework to explore

unlabeled examples (demonstrated in Figure 2.1)
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where Sup. denotes the supervised task and Unsup denotes the unsupervised task;

Aux-Layer denotes a layer of the auxiliary embedding model.

Figure 2.1: Three Modes of Embedding Model in Deep Architectures

2.4.2 Semi-Supervised Learning with Graph Embeddings

[Yang et al., 2016] present a semi-supervised learning framework called Planetoid, with

a similar idea to [Weston et al., 2008]. In Planetoid, the main model aims to predict the

class label of entities while an auxiliary embedding focuses on predicting graph context

to learn the structural information of entities in the graph.

In the transductive version, the auxiliary embedding model learns node embeddings

by the unsupervised tasks of predicting graph context. The auxiliary embedding model

is plug into the main model by concatenating the output from hidden layers in the main

model and the node embeddings from auxiliary model. The supervised task and unsu-

pervised task are trained with the overall architecture simultaneously.

Besides the transductive version, Planetoid also introduces an inductive formulation,

in order to support inductive learning, in which the node embeddings learned is parame-

terized as a function of input features. The architectures of the transductive and inductive

version of Planetoid are demonstrated in Figure 2.2.

As validated by the experimental results in [Yang et al., 2016], learning information of

graph structure with the unsupervised task can assist the main model to better explore
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the structural information in the graph-structured data, especially when the main model

cannot explicitly model the structure of the graph.

Note that the framework is agnostic to the choice of the auxiliary embedding mod-

els and the unsupervised task. In particular, the auxiliary embedding model utilized in

[Yang et al., 2016] is based on the multilayer perceptrons (MLPs) and the unsupervised

objective function utilized is following the one in Eq 2.42 in [Tang et al., 2015], which is

discussed in section 2.5.2.

These series of works provide a potential approach that utilizes an embedding model

to capture graph context (i.e., positional and structural information) as an auxiliary model

to provide structural information to the main model.

2.5 Embedding Learning on Graphs/Networks

Since there is a large number of corpora related to learning embeddings or vector repre-

sentations for nodes in graphs or networks, we will only introduce those works highly

related to our approach, considering the limited space in the thesis.

Those methods are usually called network embedding methods or (node-level-output)

graph embedding methods [Cai et al., 2018], which usually focus on capturing the infor-

mation from structures and ignore the input feature representation.

2.5.1 Word Embedding Learning on Text

Before introducing network embedding methods, we will introduce a Word2vec [Mikolov

et al., 2013a, Mikolov et al., 2013b], which is a group of related models to produce word

embeddings from large corpora of text, because some techniques introduced in it are

widely utilized in many embedding methods.

Learning word embeddings from large corpora of text is widely embraced in the natu-

ral language processing domain (NLP), with the goal to model the relationships between
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Figure 2.2: Architecture of Planetoid: Transductive v.s. Inductive;
where dashed arrow represents a feed-forward network with an arbitrary number of lay-
ers and solid arrows denote direct connections.
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words within the dataset. Word2vec can capture precise syntactic and semantic word

representations and is endowed with a relatively lower computational cost when learn-

ing large scale datasets. Some techniques introduced in Word2vec, such as Skip-gram and

the Continuous Bag of Words (CBOW) architectures, and the negative sampling strategy

are widely utilized in embedding learning methods in many domains.

CBOW and Skip-gram

CBOW and Skip-gram are widely used architectures to learn word embeddings in the

NLP domain and, as such, have inspired many embedding models in other domains.

In general, CBOW follows the idea of the bag-of-words in that the words within a

certain range of a target word, denoted as the context, are used to predict the target word

with a log-linear classifier. Note that the order of words in the context does not influence

the projection of the context, and the weight matrix between the input and the projection

layer is shared across all word positions.

Skip-gram has a similar idea to CBOW. The difference is that, given a word as the

input, Skip-gram aims to predict the words surrounding the current word, as context.

Increasing the range of context can improve the quality of the learned word embeddings.

However, it also increases the computational cost. Therefore, in order to take distant

words into consideration, a sampling scheme is introduced. However, considering the

more distant words are less likely related to the current word, the sampling scheme gives

a lower probability to sample the distant words.

The architectures of CBOW and Skip-gram are shown in Figure 2.3.

Negative Sampling

For the log-linear classifier in Skip-gram architecture, the full softmax is computationally

expensive when the number of candidate words is large. Alternatively, there are a few

works aiming to approximate the full softmax. Two typical alternatives are hierarchical
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where FC denotes the C-th word. The arrow denotes linear transform and there is a
log layer on the output.

Figure 2.3: The Architectures of CBOW and Skip-gram.

softmax [Morin and Bengio, 2005] and Noise Constrastive Estimation (NCE) [Gutmann

and Hyvärinen, 2012, Mnih and Teh, 2012]. Specifically, NCE converts the multinomial

classification problem (softmax) to a binary classification problem (logistic regression)

with the belief that a good model should differentiate data from noise via logistic re-

gression. The idea of learning to distinguish data from noise is similar to the hinge loss

(a.k.a margin ranking loss), which trains the model to rank the data over noise [Collobert

and Weston, 2008]. When it comes to learning vector representations, negative sampling

further simplifies NCE, by getting rid of some constraints as well as the asymptotic con-

sistency guarantees of NCE.

The negative sampling will convert the objective function to as follows,

logf(v0|
F>

vF�
) +

:’
8=1

E
F8⇠%= (F

[logf(�v0|
F8

vF�
)] (2.31)

where f denotes sigmoid function; v0
F>

denotes the vector representation of a target word

F>; vF�
denotes the vector representation of the input word F� ; v0F8

denotes the vector rep-
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resentation of a negative sample F8 which is sampled from the noise distribution %= (F);

and : denotes the number of negative samples drawn for each data example.

2.5.2 Node Embedding Learning on Graphs/Networks

Inspired by Word2vec, there are several network embedding techniques learning node

embeddings with a similar architecture.

DeepWalk

DeepWalk [Perozzi et al., 2014] is one of the first approaches, currently widely used as a

benchmark in model comparisons. The key part of DeepWalk is to use a stream of short

random walks to extract sequences from a graph. Afterward, the node embeddings are

learned via the Skip-gram model introduced in Word2vec [Mikolov et al., 2013b].

Node2vec

The idea of Node2vec [Grover and Leskovec, 2016] is similar to Deepwalk in that they

turn each node in a graph into words in a sentence. The difference is that Node2vec is

equipped with a search bias variable U to balance two neighborhood sampling strategies:

the breadth-first-search strategy (BFS) and the depth-first-search strategy (DFS), for the

random walks. The reason is that, as two extreme sampling schemes, BFS is ideal for

learning local neighborhoods, while DFS is better to capture global variables. Thus, using

a search bias to control the priorities between them can lead to better sampling from a

graph.
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More specifically, assuming a random walk just traversed edge (C, E), C, E 2 V and

resides at node E, the unnormalized transition probability from node E to node G is

cEG = U?@ (C, G) · A(E,G)

U?@ (C, G) =

8>>>>><
>>>>>:

1
?

if 3CG = 0

1 if 3CG = 1

1
@

if 3CG = 2

(2.32)

where A is the (weighted) adjacency matrix; ? and @ are two hyper-parameters controlling

the priorities of BFS and DFS; 3CG denotes the shortest path between node C and node G.

Structural Deep Network Embedding

Besides those methods relying on random walks, some network embedding methods

consider first-order and second-order proximities defined on graphs instead of converting

graphs to sequences through random walks.

Structural Deep Network Embedding (SDNE) [Wang et al., 2016] utilizes the autoencoder-

based framework, considering the following metrics:

• First-order proximity: two nodes should be considered similar if they share an edge;

• Second-order proximity: two nodes are considered similar if they share many neigh-

boring nodes.

In SDNE, the input vector of node 8 is defined as the 8th row of the adjacency matrix,

x8 := A(8,·) 2 R
=. For each node in the graph, the corresponding input vector will be fed to

an autoencoder, which reconstructs an output vector x̂8 2 R= given an input vector x8 for

node 8.

Let h(:)

8
denote the representation of node 8 from the :-th hidden layer of the autoen-

coder. The h
(:)

8
is expected to be a low-dimensional representation of node 8 encoded by

the autoencoder.

54



For the first-order proximity, the loss function is defined by predicting the connec-

tions between each node-pair based on the low-dimensional representations of nodes, as

follows:

L1BC =
=’

8, 9=1

A(8, 9) kh
(:)

8
� h

(:)

9
k
2
2 (2.33)

where k · k
2
2 denotes the square of the ;2 norm.

The second-order proximity is preserved by the reconstruction of the autoencoder,

which is analogous to predicting the neighbors of each node given the corresponding

input vector via the autoencoder in an unsupervised manner,

L2=3 =
=’
8=1

k (x̂8 � x8) � b8k
2
2 (2.34)

where � denotes the Hadamard product; b8 = [181, . . . , 18=] 2 R= is a vector to impose more

penalty to the reconstruction error of the non-zero elements in (x̂8 � x8), where 18 9 = 1 if

A(8, 9) = 1, otherwise 18 9 = V > 1, in which V is a hyperparameter.

By combining loss functions for both proximities and regularization, the overall objec-

tive function is:

L = L2=3 + UL1BC + _LA46 (2.35)

where LA46 is ;2-norm regularizer applied to weight matrices in the autoencoder; U and _

are hyperparameters controling the priorities of three loss functions.

LINE: Large-scale Information Network Embedding

Similar to SDNE, LINE [Tang et al., 2015] also considers first-order and second-order

proximities. The main difference is that LINE view proximities from a probabilistic per-

spective.

55



For the first-order proximity, the joint probability (to be connected) between node D

and E is defined as follows,

?1(D, E) =
1

1 + exp(�h|
8
· h
|
9
)
, (2.36)

where hD 2 R3 is the low-dimensional vector representation of node D. The objective

function for the first-order proximity should be,

L1BC = 3 ( ?̂1(·, ·), ?1(·, ·)) (2.37)

where ?̂1(D, E) :=
A(D,E)

/
is the empirical probability for the first-order proximity, in which

/ =
Õ

(D,E)2E A(D,E) ; 3 (·, ·) is a distance function. By utilizing KL-divergence as the distance

function, the objective function becomes,

L1BC =
’

(D,E)2E

A(D,E) log ?1(D, E) (2.38)

Similarly, for the second-order proximity, the authors define the conditional probabil-

ity of ”context” E generated by node D as follows:

?2(E |D) =
exp(h|

E
· hD)Õ|V|

:
exp(h|

:
· hD)

(2.39)

The corresponding empirical conditional probability is ?̂(E |D) = A(D,E)

3D

. Thus, the objective

function for second-order proximity is as follows,

L2=3 =
’
D2V

_D3 ( ?̂2(·|D), ?2(·|D)) (2.40)

where _D is a factor to represent the prestige of vertex D, as an importance factor, which

can be the degree or estimated via algorithms such as PageRank [Page et al., 1999]. By

replacing the 3 (·, ·) with KL-divergence, the corresponding objective function is defined
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as,

L2=3 = �

’
(D,E)2E

A(D,E) log ?2(E |D).. (2.41)

To reduce the computational cost, the final objective function combining first-order

and second-order proximities is approximated with negative sampling [Mikolov et al.,

2013b], as follows,

L =
’

(D,E)2E

 
logf(h|

D
· hE) +

)’
8=1

E
E=⇠%= (V) [logf(�h

|
E=

· hD)]

!
(2.42)

where %= (V) is the noisy distribution for edge (D, E) in negative sampling; ) is the number

of negative edges for each edge. For a target node D, the node E is usually called a positive

example, and the nodes E= from negative sampling are termed as negative examples.

Node Embedding Learning with GNNs

The aforementioned embedding models learn node embeddings in an unsupervised man-

ner with delicately designed objective functions. However, those models do not con-

sider node attributes when learning node embeddings and are not able to generalize the

learned node embeddings to the unseen nodes during training, which is known as induc-

tive learning.

If given node attributes, the aforementioned embedding models may be able to sup-

port inductive learning by parameterizing the learned positional embeddings as a func-

tion of the input node attributes. However, those models usually generalize poorly be-

cause the graph structure is not considered explicitly during inference.

Thus, in order to learn node embeddings in an unsupervised manner and better sup-

porting inductive setting, [Hamilton et al., 2017] proposed to learn node representations

with GraphSAGE with an unsupervised loss function for predicting graph context (i.e.,

Eq 2.42). Theoretically, GraphSAGE can provide node embeddings, which generalize

to unseen nodes better than those from the non-GNN-based models, because the graph
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structure associated with unseen nodes can be explored during inference. Specifically,

the definition of positive examples for a graph in Eq 2.42 can be extended from the ad-

jacent nodes of the target node D to a node that co-occurs near D on fixed-length random

walks [Hamilton et al., 2017].

Nevertheless, both embedding models rely on parameterizing the learned node em-

beddings as a function of node features. Thus, if the node attributes contain little infor-

mation, neither those embedding models nor GraphSAGE can learn high-quality node

representations in the inductive setting [Li et al., 2020b]. An extreme example is that

when all nodes have the same node attributes, GraphSAGE cannot produce discrimina-

tive node embeddings. Besides GraphSAGE, other GNNs can be utilized to learn node

embeddings in an unsupervised manner supporting the inductive setting, in cases where

the GNN of choice can support inductive setting.

2.6 Graph Neural Networks with Embedding/Encoding En-

hancement

Recalling the analysis on the shortcomings of GNNs in section 2.2.4, some works aim to

enhance GNNs with embedding models capturing graph contexts.

2.6.1 Geometric Graph Convolutional Networks

[Pei et al., 2020] argues that even though NMP-GNNs have been successfully applied

to representation learning on graphs, two fundamental weaknesses of their aggregators

limit their ability to represent graph-structured data: the incapacity to explore the struc-

tural information of nodes within each neighborhood and the inability to capture long-

range dependency. The former weakness is because most NMP-GNNs view each neigh-

borhood as a multiset, ignoring the structural dependencies between nodes within each
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local area. The latter is because the filters of NMP-GNNs are localized, focusing on filter-

ing local phenomena, which limits their ability to capture long-range dependencies.

Therefore, [Pei et al., 2020] proposes a geometric aggregation scheme for GCNs,

termed Geometric Graph Convolutional Networks (Geom-GCN), to tackle the two weak-

nesses abovementioned.

First, Geom-GCN introduces an embedding module to map the nodes in a graph to

a latent continuous space in order to capture the structural information of the graph.

The authors introduce three potential embedding methods, Isomap [Tenenbaum et al.,

2000], Poincare embedding [Nickel and Kiela, 2017] and struc2vec [Ribeiro et al., 2017].

Note that the embedding methods are trained on the input graph separately, and the

end-to-end training is not supported. In particular, the learned node embeddings are 2

dimensional.

With the learned node embeddings zE,8E 2 V, termed latent space node embeddings,

Geom-GCNs introduce an extended neighborhood scheme. Besides the conventional

definition of the neighborhood on graph , termed neighborhood-in-graph N6 (E), Geom-

GCNs define the neighborhood-in-latent-space as NB (E) := {D |D 2 V, 3 (zE, zD) < d} where

d is a pre-given hyperparameter and the 3 (·, ·) is the distance function dependent on

the particular metrics in the latent space. Then, the overall neighborhood is defined as

N
0
(E) = (N (E),NB (E)), termed the structural neighborhood. For a center node E, Geom-

GCNs can aggregate not only nodes in the first-hop neighborhood (neighborhood-in-

graph) but also the nodes close to node E in the latent space. Thus, Geom-GCNs can

aggregate nodes, not in the localized neighborhood but have strong relationships with

the center node regarding the global graph structure.

Furthermore, Geom-GCNs further propose a bi-level aggregation scheme. With each

aggregation, nodes in neighborhoods are classified to be with different relations to the

center nodes, by a relational operator g : (zE, zD) ! A 2 ' considering the node em-

beddings in latent space, where ' is the set of the geometric relationships. The nodes

with each relation will be assigned with a specific aggregation function similar to rela-
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g(zE, zD) zE [0] > zD [0] zE [0]  zD [0]

zE [1]  zD [1] upper left upper right
zE [1] > zD [1] lower left lower right

Table 2.4: The Relational Operator of Geom-GCN

tional GCN [Schlichtkrull et al., 2018]. There are 8 relations considered in Geom-GCNs,

4 for neighborhood-in-graph and 4 for neighborhood-in-latent-space. In particular, the

relational operator utilized in Geom-GCN is defined in Table 2.4, with relationship set

' ={upper left, upper right, lower left, lower right}. Accordingly, Geom-GCNs can ex-

plore the local structural information within neighborhoods by the relational operator g

as well as capture long-range dependencies with the extended neighborhood scheme.

2.6.2 Distance Encoding for Graph Neural Networks

Similar to Geom-GCN, [Li et al., 2020b] introduces an encoding scheme to enhance the

GNNs.

Many well-known GNNs under aggregation-update framework actually mimic the

1-Weisfeiler-Lehman (WL) Algorithm, including GCN [Kipf and Welling, 2017], Graph-

SAGE [Hamilton et al., 2017], GAT [Velickovic et al., 2018], MPNN [Gilmer et al., 2017],

GIN [Xu et al., 2019], etc. Therefore, those GNNs, termed WL-GNNs, also inherit the

limitation of the 1-WL test in representing structural information of a set of nodes.

Therefore, Distance Encoding (DE) [Li et al., 2020b] is proposed to enhance GNNs in

learning the structural representation of a target node set S. Intuitively, DE is designed to

encode certain distance metrics from S to a node D. DEs have two definitions. One is for

nodes with respect to a target set, while the other is defined between two nodes. Starting

with the former, DE for a target set S is defined as an encoding function Z (·|S) : V !

R: , mapping nodes in the graph to :-dimensional vectors. For simiplicty, Z (·|S) can be

defined as a set aggregation (e.g., sum-pooling) for DEs between nodes D, E, denoted as
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Z (D |E), where E 2 S as follows:

Z (D |S) = AGG({Z (D |E) |E 2 S}) (2.43)

With the before-mentioned definition, what information can be captured by DE for a

target set is dependent on the choice of DE between nodes.

The authors define two types of DE between nodes, as examples, which capture shortest-

path-distance (SPD) and generalized PageRank scores (GPR) [Li et al., 2019] respectively:

ZB?3 (D |E) = 53(;DE), ;DE = ((W)DE, (W
2
)DE, . . . , (W

:

)DE, . . . )

where W = AD
�1 is the random walk matrix

53 can be heristics or parameterized as a neural network

Z6?A (D |E) =
’
:�1

W: (W
:

)DE = (

’
:�1

W:W
:

)DE, W: 2 R,8: 2 N.

where {W: }:�0 is a weight sequence for PageRank

(2.44)

After getting DE, the authors also introduce two variants of Distance Encoding En-

hanced GNNs. The first one utilizes DE as extra node attributes, termed DE-Enhanced-

GNN (DEGNN). The other one, based on the first one, proposed to leverage DE between

two nodes to control the aggregation procedure of DEGNN, termed as DE-Aggregation-

GNN (DEAGNN).

In DEGNN and DEAGNN, the generalized definition of the adjacency matrix is de-

fined as A 2 R|V|⇥|V|⇥·, in which, AE,E,· denotes the node attributes of node E while AE,D,·

denotes the attributes of the node-pair (E, D) (AE,D,· is a zero vector if (E, D) 8 E). DEGNN

has the aggregation procedure:

AGG

✓n
52

⇣
h
(;)

D
,AED

⌘o
D2N(E)

◆
, (2.45)
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while DEAGNN has the aggregation procedure as:

AGG
⇣n⇣

52

⇣
h
(;)

D
,AED

⌘
, Z (D | E)

⌘o
D2+

⌘
, (2.46)

where h
(0)
E

:= [AEE kZ (E |S)].

Note that DEAGNN can be viewed as a generalization of the Transformer with posi-

tional encoding [Vaswani et al., 2017] to the graph domain.

Since DE purely depends on the graph structure, without the dependency on node

identifiers and node attributes, DE has generalization ability to unseen nodes, without

the constraint from node attributes.
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Chapter 3

Methods

3.1 Introduction

Recalling the abovementioned GNNs, they still have limitations due to their inherent

characteristics, considering our focused problem statement introduced in Subsection 2.2.1.

The spectral CNNs on graph [Bruna et al., 2014] are based on the operator given by

the graph Laplacian. However, the operator is originally proposed for spectral cluster-

ing with graphs constructed by similarity, termed similarity graphs, and based on the

smoothness introduced by the graph Laplacian [Von Luxburg, 2007, Belkin and Niyogi,

2002, Chung and Graham, 1997]. Thus, it can discover the underlying group invariance

in the graph if it can be found via the graph Laplacian. Correspondingly, if the graph

does not have a group structure or the group invariance cannot be captured by the graph

Laplacian, it might fail to explore the structural information in the graph. There are many

cases like this in the real world, in which edges only indicate the existence of some inter-

actions instead of similarity, such as words in a sentence represented as a sequence. The

variants that approximate spectral CNNs with Chebyshev Polynomials [Defferrard et al.,

2016,Kipf and Welling, 2017] inherit the same limitation since they follow the spectral con-

struction of convolutions. Regardless of the constructed similarity graphs, there exist real-

world graph-structured datasets in which an edge indeed indicates the similarity between
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the two nodes connected. This property is usually referred to as homophily [McPherson

et al., 2001] and is rather common. This explains why spectral GNNs have been proven

effective on many graph-structured datasets, which are homophilic. Accordingly, we de-

note the graphs, in which edges only indicate the existence of interactions instead of sim-

ilarity, as non-homophilic graphs.

Unlike the spectral GNNs, the spatial GNNs define the localized operator on a neigh-

borhood in two ways, either based on a pooling operator and its variants, or defined as

an adaptive filter with a content-based weighting function. The spatial GNNs based on

the pooling operators, such as mean-pooling, max-pooling [Hamilton et al., 2017] and

sum-pooling [Xu et al., 2019], coarsen the learned node representations within each lo-

cal area. Unlike the pooling layer for images or graph pooling layers [Lee et al., 2019a],

such operations do not perform any downsampling, but instead, act similar to a fixed

blurring convolutional kernel for images. Therefore, such spatial GNNs can work well

on homophilic graphs, by exploiting the underlying group invariances by blurring each

local area.

By contrast, the spatial GNNs with adaptive filters are more expressive and, in a way,

go beyond blurring local areas because they aggregate information from neighbors with

different trainable coefficients. The coefficients of each adaptive filter are usually pro-

duced by a pairwise content-based weighting function in current works, such as mixture

models [Monti et al., 2017] and attention mechanism [Velickovic et al., 2018]. However,

such content-based weighting functions applied to the local neighborhood, can at most

explore the co-occurrence of nodes in each local area, while the edges exist between nodes.

In other words, the local structural information of each local area is not fully explored

because the content-based weighting functions cannot inherently explore the structure

in each neighborhood. Consequently, without the guide from structural information,

content-based adaptive filters might result in smooting the localities [Chen et al., 2020]

and still fail in non-homophilic cases. Despite that, the spatial GNNs with adaptive filters
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are supposed to have better expressive power and potential to work on non-homophilic

graphs, if endowed with some enhancements.

Therefore, we aim to propose a framework to enhance the content-based adaptive

filters of spatial GNNs with extra structural information to better learn on graphs beyond

the homophily. Specifically, we propose a framework to enhance GATs by incorporating

node embeddings from an auxiliary embedding model, which learns the structural and

positional information of nodes on graphs. The framework is termed Graph Attention

Networks with Auxiliary Positional Embedding Models (GAT-POS).

In the Transformer [Vaswani et al., 2017] and its variants [Shaw et al., 2018, Dai et al.,

2019], in order to enable the attention mechanism to exploit the sequence structure of the

words in a sentence, the positional encoding is incorporated in the attention mechanism.

In the works from [Cordonnier et al., 2020, Zhao et al., 2020], the authors also extend

the aforementioned positional encoding to two dimensions when generalizing attention

mechanism as localized operators for images.

Inspired by them, we introduce a kind of embeddings, which provide node-level po-

sitional and structural information in the graph, and modify the graph attentional layer

in GATs to incorporate them. However, considering general graphs’ properties, there is

no straightforward way to generalize the positional encoding for sequences and grids to

general graphs. Thus, inspired by the learned positional representations in [Shaw et al.,

2018], we propose to learn node embeddings that to capture structural and positional in-

formation of the nodes in the graph, termed positional embeddings on graphs. For sim-

plicity, we term the information about the graph context, including structural, positional

and locational information, as structural information of graphs. With the positional em-

beddings containing the information of spatial structure, each filter in GATs is expected

to adaptively extract features from local areas considering the semantic information and

structural information. Specifically, the positional embedding model is trained to learn

graph context with an unsupervised loss task, while the main model, a modified GAT,

is trained with a supervised task to predict node labels. Furthermore, inspired by the
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works from [Weston et al., 2008, Yang et al., 2016], we plug the embedding model into

our modified GAT architecture as an auxiliary model, and train the supervised and the

unsupervised tasks simultaneously. Therefore, our framework enjoys the benefits of end-

to-end training. Furthermore, the learned positional embeddings are not only predictive

of the graph context but also potentially beneficial to predict node categories.

It is worth mentioning that the information captured by positional embeddings is de-

pendent on the choice of the embedding model as well as the objective of the unsuper-

vised task. Our framework is agnostic to a specific type of node embeddings, if they can

provide beneficial information in relation to the structure of the graph.

3.2 Motivation

3.2.1 Semantic Information and Structural Information

Revisiting the representation learning on graphs, there are two sources of information

in graph-structured data, the information from node attributes and the information from

graph structures. However, for different tasks, there may require different emphases.

In graph isomorphism tasks, the specific semantic information for each node seems

less important, while the structural rule of each node deserves more attention. Accord-

ingly, models in such tasks tend to preserve as much structural information as possible

while the learning of the semantic information of each node can be compromised [Xu

et al., 2019].

In contrast, for node classification tasks, the semantic representations of nodes are

more important than the explicit structure of the graph. Thus, in such tasks, models

intend to learn the semantic representations of nodes with the graph structure [Kipf and

Welling, 2017,Velickovic et al., 2018,Hamilton et al., 2017]. In these cases, the meaningful

semantic information should be preserved as much as possible while the information of

structure is supposed to be an auxiliary.
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Therefore, a good model for graph isomorphism tasks might not perform well on node

classification tasks and vice versa.

In general, for representation learning on graphs, an ideal model should have the

ability to fully explore both the semantic and structural information and learn node rep-

resentations incorporating both of them adaptively.

3.2.2 Positional Embeddings for Graph Attention Networks

Filters beyond Blurring Convolutional Kernels

Recalling the discussion about current GNNs in Section 3.1, most GNNs are designed to

work on homophilic graphs. According to the previous analysis, the filters of spectral

GNNs, as well as pooling-based spatial GNNs, are reminiscent to blurring convolutional

kernels.

A model stacking several (i.e., 2 or 3) GNN layers with such filters can work well on

homophilic by discovering the underlying group structures. However, with an increasing

number of such layers, the learned node representations would converge to similar val-

ues. This issue is usually referred to as the oversmoothing problem [Li et al., 2018, Zhao

and Akoglu, 2020].

Theoretically, spatial GNNs with content-based adaptive filters have the potential to

go beyond blurring kernels. However, in practice, many such GNNs also suffer from

the oversmoothing problem, which implies that the learned content-based adaptive fil-

ters still end up as blurring convolutional kernels [Chen et al., 2020]. This is reasonable

because the weighting functions of such filters cannot fully explore the structural informa-

tion within each local area. Without incorporating any structural information, the learned

adaptive filters generated by a content-based weighting function likely end up as a blur-

ring kernel.
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Therefore, in order to construct a GNN model applicable to non-homophilic graphs,

it is necessary to define a filter which is able to exploit structural information as well as

semantic information of the nodes.

GATs Lack the Positional Embeddings on Graph

A sentence with several words with sequence structure is a natural and special case of

non-homophilic graphs since the edges between words indicate the interactions rather

than the similarity. The Transformer [Vaswani et al., 2017] has been proven effective and

powerful in language modeling, learning word representations balancing semantic and

positional information from numerous sentences. This implies that a content-based at-

tention mechanism incorporating positional information has the potential to learn com-

plicated semantic representations with structure.

However, the GATs, as a representative of spatial GNNs with content-based adaptive

filters, do not incorporate any type of positional and structural information. In the fol-

lowing, we will analyze the difference between graph attention mechanism and standard

attention mechanism and discuss how to enhance the expressive power of GATs to learn

non-homophilic graphs.

On the one hand, with GNNs architecture, GATs are able to explore the natural group-

ing information of the graph by modeling the co-occurrences of nodes in the neighbor-

hood. Each filter of GATs computes the aggregation coefficients as the attention scores

for a neighborhood with center nodes as query and all nodes in the closed neighborhood

as keys and values. However, similar to the standard attention mechanism, each filter of

GATs cannot inherently capture the structural information within the neighborhood. In

other words, each local area of a graph (i.e., neighborhood) is considered as a multiset,

which is actually a depth-1 tree (a.k.a a star graph).

On the other hand, the arguments of the attention mechanism at the first layer of

standard GATs are the node attributes or node representation without information about

graph structure and node position. Thus, the aggregation coefficients disregard any po-
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tentially useful structure information. Consequently, neither the first layer of GATs nor

the successive layers would output node representations with any useful structural infor-

mation within each local area in the graph.

In order to enable the attention mechanism to consider the structure in the target

keys, a widely used solution in the NLP domain is to add positional encodings or em-

beddings [Vaswani et al., 2017] to entities as discussed in section 2.3.4.

Therefore, we aim to provide a type of node embedding, which captures the infor-

mation contained in the graph structure and helps GATs overcome the abovementioned

shortcomings. Since we expect the node embeddings can provide the information about

the structural closeness at graph level between two nodes, following the terms positional

encoding [Vaswani et al., 2017] and positional representations [Shaw et al., 2018], we term

them as positional embeddings for graphs.

Positional Embeddings on Graph

It is worth noting that, unlike sequences, trees, or grids [Vaswani et al., 2017, Wang et al.,

2019, Dai et al., 2019, Bello et al., 2019], defining positional information on general graphs

is challenging.

Thus, we propose to learn node-level graph embeddings (a.k.a node representations of

graphs) that are predictive of graph context, termed positional embeddings. The learned

positional embeddings are fed to GATs to enable the attention mechanism in filters to

learn meaningful node representation considered the structural information of the graph.

Inspired by learned positional representations [Shaw et al., 2018], we further set the

positional embeddings trainable during the supervised training of GATs. Since GATs can

incorporate positional embeddings in multiple ways, we choose to follow the framework

of [Weston et al., 2008] and learn the positional embeddings through an auxiliary model.

The positional embeddings extracted from this auxiliary model are then plugged into the

main GAT model. Note that the semantic node representations from the main GAT and

the positional embeddings from the auxiliary model are trained jointly to learn positional
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embeddings that are not only predictive of the graph context, but also useful for the su-

pervised task of the main model.

3.3 Model Architecture

Our proposed model consists of two parts, the auxiliary embedding model, which learns

the positional node embeddings, and the main model, which is a modified GAT incorpo-

rating the positional embeddings from the auxiliary embedding model.

3.3.1 Auxiliary Embedding Model

As discussed in the previous section, we proposed to build an auxiliary embedding model

to learn positional representation predictive of graph context. The goal is to enable the fil-

ters of GATs to capture the structural information from the graph structure, which cannot

be inherently leveraged with the original formulation of GAT. By incorporating positional

embeddings predictive of graph context, the filters of GATs can not only explore the struc-

tural information within each local area but also be aware of other information of graphs

beyond the locality.

The particular auxiliary embedding model setup utilized by us closely follows the

node-level graph embedding methods based on proximity discussed in section 2.5.2 (i.e.,

LINE [Tang et al., 2015], Planetoid [Yang et al., 2016] and GraphSAGE [Hamilton et al.,

2017]). The positional embeddings learned by such embedding models can capture the

proximity between node pairs from the spatial structure of the graph, which is essential

structural information that cannot be inherently leveraged with the original formulation

of GATs. Particularly, we base our proposed auxiliary embedding models on two widely

used node-level graph embedding approaches: Planetoid [Yang et al., 2016] and Graph-

SAGE [Hamilton et al., 2017].

70



Note that our framework is agnostic to the particular choice of auxiliary embedding

model. One alternative option, as an example, is the node representations capturing the

structural rule of each node [Srinivasan and Ribeiro, 2020].

Furthermore, instead of training two the main model and the embedding models sep-

arately, we plug the embedding model into GATs as an auxiliary architecture based on the

work from [Weston et al., 2008]. The supervised tasks for the main model (i.e., learning

node labels) and the unsupervised tasks for the auxiliary model (i.e., predicting graph

context) are trained using the same architecture simultaneously. With such architecture,

the auxiliary embedding model can learn positional embeddings not only predictive of

graph context but also beneficial for the supervised tasks. Moreover, end-to-end training

is also supported because of the simultaneous training on the overall framework.

Planetoid

The auxiliary embedding model of Planetoid is a multiple layer perceptron. We consid-

ered both the inductive and transductive version of Planetoid. The transductive version,

referred to as Planetoid-transductive, learns the representation embedding for each node

in the observed graph by learning to predict the graph context. This version relies on

the index of nodes observed, which means it cannot be applied to the inductive setting.

To be compatible with the inductive setting, the inductive version of Planetoid, referred

to as Planetoid-inductive, parameterizes the node embeddings as a function of node at-

tributes. Therefore, the learned representations can be generalized to new observed nodes

and graphs, through the shared node attributes. However, there are two shortcomings

of Planetoid-inductive. First, this method highly relies on how discriminative the node

attributes are and whether the graph structure commutes with node attributes. For ex-

ample, Planetoid-inductive cannot output two different positional embeddings for two

nodes with different proximities to the third node if they have the same node attributes.
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In the thesis, we will utilize Planetoid-inductive as one possible auxiliary model con-

sidering its desired inductive property. However, in the transductive learning setting, the

Planetoid-transductive may outperform without the dependence on node attributes.

GraphSAGE-Mean

The other auxiliary embedding model we utilize is a GNN-based embedding model,

GraphSAGE, which, unlike Planetoid, considers the graph-structure during inference.

Consequently, GraphSAGE is supposed to have better generalization in the inductive set-

ting because the learned node representation of a node E is parameterized to a function

of the attributes and the structure associated with the nodes in the :-hop neighborhood

of the node E.

In this thesis, we focus on one of the versions of GraphSAGE, which utilizes a mean-

aggregator, referred to as GraphSAGE-Mean. Other versions of GraphSAGE are also ap-

plicable, but we do not include them in the comparison due to time and computational

constraints. In the following sections, the term GraphSAGE may refer to the GraphSAGE-

Mean without further clarification.

3.3.2 Graph Attentional Layer with Positional Embeddings

Each standard graph attentional layer in GATs only incorporates the node representations

from the last layers (i.e., content-based attention mechanism), which focuses on captur-

ing the semantic information by smoothing the neighborhoods. Thus, there is no extra

positional or structural information other than the natural clustering information of the

neighborhood.

Inspired by the positional encoding in Transformer [Vaswani et al., 2017] and its vari-

ants, we modify the graph attentional layer to be compatible with extra positional em-

bedding.
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Attention Coefficients Computation

In the attention scores computation, we need to incorporate the positional embeddings

as well as the node representations. To do so, we choose to concatenate the node rep-

resentations and positional embeddings before being fed to the attention computation.

Utilizing concatenation instead of summation used in [Vaswani et al., 2017] can lead to

more flexibility to fuse representations of different sizes [Huang et al., 2017].

Thus,

x
0

E
= [xE | |pE] (3.1)

where pE is the positional representation of node E produced by the auxiliary embedding

model.

For instance, the computation in eq 2.22 will become,

4ED = LeakyReLU
�
a
|
[W

0
· x

0

E
kW

0
· x

0

D
]
�

= LeakyReLU
�
a
|
[W · xE +W?pE kW · xD +W?pD]

� (3.2)

where W
0 is the trainable matrix for the representation fusing the node representations

and the positional embeddings, W? is a trainable matrix for the positional embeddings.

Aggregation with Positional Representations

When considering the attentional aggregation in GATs, we have two options.

One is to follow the Transformer and inject the positional embeddings to the node

representations before the first graph attentional layer. Note that in this case, no extra

positional embeddings are considered in the following layers. For example, considering
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only one attention head, the first layer of graph attentional layer is computed as follows,

4ED = LeakyReLU
�
a
|
[WxE +W?pE kWxD +W?pD]

�

UED =

8>><
>>:

exp(4ED)Õ
D2N(E)[{E } exp(4ED)

, if D 2 N(E)

0 , otherwise

yE = f
⇣ ’
D2N(E)[{E}

UED · (WxD +W?pD)

⌘
(3.3)

The successive layers follow the same computation steps as the standard graph atten-

tional layer (eq 2.22).

The other option is to consider positional embeddings in the attention coefficients

computation, but not take them into account in the neighbor aggregation step. For in-

stance, also considering a single attention head, one graph attentional layer is defined as

follows,
4ED = LeakyReLU

�
a
|
[Wx2 +W?p2kWxD +W?pD]

�

UED =

8>><
>>:

exp(4ED)Õ
D2N(E)[{E } exp(4ED)

, if D 2 N(E)

0 , otherwise

yE = f
� ’
D2N(E)[{E}

UED ·WxD

�
(3.4)

This type of modification is inspired by the works of [Zhao et al., 2020, Cordonnier et al.,

2020] which extend attention mechanism to images. In this case, such a layer filters merely

on the node representations, mainly capturing the semantic information, with coefficients

based on the node representations as well as positional embeddings.

Note that UED 2 R is a scalar shared by all feature channels and the extension to multi-

head attention can be employed.

3.3.3 Graph Attention Network with Auxiliary Positional Embedding

Considering the different options of auxiliary positional embedding model and graph

attentional layer with positional embedding, we explore four versions of our proposed
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framework, which we call Graph Attention Networks with Auxiliary Positional Embed-

dings (GAT-POS).

The main differences between versions lie on the following points,

1. the architecture of the auxiliary embedding model;

2. the architecture of graph attentional layer which incorporates positional embed-

ding;

3. the interaction between the main model and the auxiliary model in the forward

inference and gradient backward steps.

Notation

In the following sections, for simplicity, let h;
E

denote the representation of node E at ;th

layer of the main model consisting of modified graph attentional layers. h0
E

is initialized

as the node attributes xE, and the final prediction is defined as yE := h
!

E
. The main model

can consist of graph attentional layers, fully connected layer, as well as normalization

layers (i.e., batch normalization, layer normalization and ;2 normalization layer). Since

we aim to compare how positional embeddings can enhance GATs, we retain the original

architecture of the standard GATs in our main-model, which is stacking several graph

attentional layers.

We also let p
C

E
denote the representations of node E at the Cth layer of the auxiliary

positional embeddings model (shortened as aux-model). In the Planetoid-transductive

aux-model, p0
E

is initialized as the Eth column of the identity matrix I= 2 R=⇥=, where = is

the number of nodes in the input graph. This is equal to learning a representation based

on a learned 3-dimensional embedding for each node, where 3 is the dimension of the

first hidden layer. Note that Planetoid-transductive is only applicable to the transductive

setting because the number of nodes, =, needs to be fixed during training and evaluating.

In the aux-models based on Planetoid-inductive and the GraphSAGE, p0
E

is initialized as
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xE, which is equal to parameterizing the based node embedding in transductive version

to a function of node attributes.

Thus we can reformulate the aux-model as,

Planetoid:

p
C

E
= f(WC

4<1
p
C�1
E

)

GraphSAGE:

p
C

E
= f(WC

4<1
[p
C�1
E

k
1

|N (E) |

’
D2N(E)

p
C�1
D

])

(3.5)

where f is a non-linearity (i.e., ReLU) if C < ) , and usually set as identity function in the

final layer.

We assume that the last layer of the model (i.e., the output layer) is !, the last layer of

the aux-model is ) , and the number of node classes is ⇠.

GAT-POS-Transformer

This version follows the architecture of Transformer [Vaswani et al., 2017], where for

each node, the positional embedding is injected into the node representation before being

fed to the first graph attentional layer. Accordingly, this version is termed GAT-POS-

Transformer.

Main Model with Graph Attentional Layers We consider the main model as !

stacks of graph attentional layers. Then, the ;th graph attentional layer is defined as

follows,
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where W
;

:
and a

;

:
are the weight matrix and vector respectively of the :th attention head

at the ;th layer.

Auxiliary Embedding Models We consider a )-layer auxiliary positional embed-

ding model based on Planetoid-transductive, Planetoid-inductive and GraphSAGE. Note

that the positional embeddings of node E from the ;th layer of auxiliary model is denoted

as p;
E
.

Supervised Loss The supervised loss is applied to the predicted labels of nodes from

the output of the main model and the corresponding labels to guide the model to learn

the category of nodes. The specific loss function utilized is the cross-entropy error over

all labeled examples,

LY({ŷE}E2Y!
, {yE}E2Y!

) = �

’
E2Y!

y
|
E
log ŷE (3.7)

where Y! is the set of nodes with labels (i.e., the nodes in training, validation in the corre-

sponding stages); y|
E

denotes the label of example E while ŷE denotes the predicted label

of example E from the output layer of the main model.

Without further description, all proposed versions will have the same supervised loss.

Unsupervised Loss The unsupervised loss is meant to be applied to the learned po-

sitional embeddings of all observed nodes during training from the auxiliary model and

guide the learned embeddings to contain positional information of the nodes in the graph.

The particular setup we utilized is based on the one utilized in LINE [Tang et al., 2015],

Planetoid [Yang et al., 2016], GraphSAGE [Hamilton et al., 2017] without random walks

augmentation. This objective function has been utilized to guide the node embeddings to

capture structural information of the graph in many graph/network embedding models,

as discussed in Section 2.5.2.
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where %= (E) denotes the distribution negative sampling for node E and & is the number

of negative samples per edge (i.e., for a neighbor of node E, sample & non-adjacent nodes

of node E as negative samples).

The unsupervised loss in other versions proposed follows the same goal and definition

without extra specification.

A demonstration of GAT-POS-Transformer with two-layer main model and two-layer

auxiliary model (! = ) = 2) is shown in Figure 3.1.

GAT-POS-CNN

Unlike GAT-POS-Transformer which is very similar to the Transformer, we attempt to

build another version closer to CNNs on grids, inspired by [Cordonnier et al., 2020,Zhao

et al., 2020]. In this version, the positional embeddings will be considered in attention co-

efficients computation, but will not be aggregated in the neighborhood aggregation step.

The goal is to consider the attention mechanism enhanced by positional embeddings as a

generalized localized convolution filter where the learned coefficients for linear smooth-

ing depend on not only the related position information, like conventional CNNs, but

also the current node representation. However, the positional embeddings will not be

injected into the node representation and aggregated in neighbor aggregation like CNNs.

Accordingly, this version is termed GAT-POS-CNN.
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, input: ⌧ = (V, E),X

GAT-Layer-1 Aux-Layer-1
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where each rectangle denotes the operation of a layer; the black arrows denote for-
ward propagation and the green arrows denote backpropagation; the subscriptions
are dropped for simplicity.

Figure 3.1: A Demonstration of GAT-POS-Transformer.

Auxiliary Embedding Models We consider a )-layer auxiliary positional embed-

ding model based on Planetoid-transductive, Planetoid-inductive and GraphSAGE. Note

that the positional embeddings of node E from the ;th layer of aux-model is denoted as

p
;

E
.

Main Model with Graph Attentional Layers In this version, we consider the main

model with ! graph attentional layers, where the ;th graph attention layer is defined as

follows,
U
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ward propagation and the green arrows denote backpropagation; the subscriptions
are dropped for simplicity.

Figure 3.2: A Demonstration of GAT-POS-CNN

where W
;

:
and U

;

:
are the weight matrices for node representations and positional em-

beddings respectively in the :th attention head at the ;th layer; a;
:

is the weight vector in

the :th attention head at the ;th layer.

Supervised and Unsupervised Losses The supervised and unsupervised losses in

the version are the same as those introduced before.

A demonstration of GAT-POS-CNN with two-layer main model and two-layer aux-model

() = ! = 2) is shown in Figure 3.2.
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GAT-POS-CG

Recalling the GAT-POS-CNN, the bases of the attention mechanism at each layer is the

node representations at the previous layer and the positional embeddings shared across

layers. Unlike GAT-POS-Transformer, the positional embeddings will not be updated as

parts of the node representations. Even though the graph structure retains across layers,

each node representation is actually representing a number of nodes aggregated previ-

ously and the corresponding structural information might be different at different layers.

This is corresponding to the concept of receptive fields of each neuron in CNNs on im-

ages.

In other words, after neighborhood aggregation, the corresponding structural infor-

mation between each node pair is supposed to be corresponding to different order con-

nectivities at different layers.

Therefore, we introduce two variants of GAT-POS-CNN to satisfy this hypothesis.

The first variant proposed is to update the positional embeddings for different graph

attentional layers with GNNs (i.e., GraphSAGE in our case) in the auxiliary embedding

model. From the perspective of receptive fields, we tend to utilize GraphSAGE to make

the receptive fields of the positional embeddings corresponding to the receptive fields of

the node preresntations at different layers.

We design the auxiliary embedding model with a combination of Planetoid-inductive

and GraphSAGE, in which the unsupervised loss, modeling the first-order proximity in

the graph, is applied to a hidden layer of the auxiliary model. We term this variant as

GAT-POS-CNN with GNN updated Positional Embedding (shortened as GAT-POS-CG).

Auxiliary Embedding Models In order to validate if the receptive field of the posi-

tional embeddings needs to correspond to the receptive field of the node representations,

we consider an () +!)-layer auxiliary model which fuses Planetoid-inductive and Graph-

SAGE.
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Intuitively, we need to apply the unsupervised loss capturing the first-order proximity

of each node-pair, to the hidden layer before GraphSAGE layers. Therefore, considering

the inductive learning, we let the first ) layers of auxiliary model follow the Planetoid-

inductive architecture while the last ! layers follow the architecture of GraphSAGE. Thus,

the unsupervised loss is applied to the positional embeddings at )th layer, learning the

first-order proximity of nodes in the graph. The following GraphSAGE layers serve as

an encoding function to produce positional embeddings that cover different hops neigh-

borhoods, corresponding to the main model. Note that, the unsupervised loss would not

back-propagate gradients to the last ! layers of the auxiliary model. The last ! layers

(GraphSAGE layers) will only receive gradients from the supervised loss, and be guided

to encode the positional embeddings. The positional embeddings of node E from the ;th

layer of auxiliary model is denoted as p;
E
.

Main Model with Graph Attentional Layers Corresponding to the () + !)-layer

auxiliary model, we consider a main model with (! + 1) graph attentional layers. The ;th

graph attentional layer (1  ;  ! + 1) is defined as follows,
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where W
;

:
and U

;

:
are the weight matrices for node representations and positional em-

beddings respectively in the :th attention head at the ;th layer; a;
:

is the weight vector in

the :th attention head at the ;th layer.

Supervised Loss The definition of supervised loss is the same as the one in GAT-

POS-CNN.
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Unsupervised Loss The unsupervised loss utilized in GAT-POS-CG follows the same

goal and definition of the previous ones. However, this unsupervised loss is applied to

the positional embeddings from the )th layer of the auxiliary model.
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where %= (E) denotes the distribution negative sampling for node E and & is the number

of negative samples per edge (i.e., for a neighbor of node E, sample & non-adjacent nodes

of node E as negative samples).

A demonstration of the GAT-POS-CG with a two-layer main model and a two-layer

auxiliary model () = 1, ! = 1) is shown in Figure 3.3.

GAT-POS-CML

Another variant of GAT-POS-CNN proposed is to assign an unsupervised loss to each

GAT layer in order to capture positional embeddings regarding different receptive fields

of each node at different layers. In this variant, instead of encoding positional embed-

dings with GraphSAGE, we learn positional embeddings capturing different order of

proximities at different layers by controlling the sets of positive neighbors and negative

neighbors for each node in unsupervised losses at different layers. We term this variant

as GAT-POS-CNN with Multiple Unsupervised Losses (shortened as GAT-POS-CML).

Auxiliary Embedding Models Similar to the auxiliary model in GAT-Pos-CG, in this

version, we consider a () + !)-layer auxiliary model. To validate that assigning different

unsupervised losses to different layers can learn different positional embeddings captur-

ing different order of proximity, we utilize the architecture of Planetoid-inductive to get

rid of the effect of encoding positional embeddings from GraphSAGE.
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Figure 3.3: A Demonstration of GAT-POS-CG

There will be an unsupervised loss function capturing the ;th order of proximities of

nodes based on the positional embeddings at () + ; � 1)th layer of the auxiliary model,

starting from the )th layer. The ;th order of proximities can be understood as whether a

node D is in the ;th-hop neighborhood of node E. The positional embeddings of node E

from the ;th layer of auxiliary model is denoted as p;
E
.

Main Model with Graph Attentional Layers Considering the () +!)-layer auxiliary

model, the main model consists of (! + 1) graph attentional layers. Corresponding to

the positional embeddings from the () + ; � 1)th layer of auxiliary model, the ;th graph
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attentional layer (1  ;  ! + 1) is defined as follows,
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where W
;

:
and U

;

:
are the weight matrices for node representations and positional em-

beddings respectively in the :th attention head at the ;th layer; a;
:

is the weight vector in

the :th attention head at the ;th layer.

Supervised Loss The supervised loss is the same as the previous ones.

Unsupervised Loss The unsupervised losses are following the goal and definition

as the previous ones. The unsupervised loss here will be adapted layer-wise to match the

receptive fields at the corresponding layer of the main mode. In particular, we consider

an ;-hop neighborhood in the unsupervised loss at () + ; � 1)th layer of auxiliary model.
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where N
;
(E) denotes the ;th-hop neighborhood of node E.

By considering the positive neighbors of node E as the nodes in N
;
(E), the unsuper-

vised loss can guide the positional embeddings at the corresponding layers to learn the

;th order proximities.

A demonstration of GAT-POS-CML with a two-layer main model and a two-layer

auxiliary model () = 1, ! = 1) is shown in Figure 3.4.
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Figure 3.4: A Demonstration of GAT-POS-CML

3.4 Comparison with Related Works

The most closely related works of our proposed approach are the very recently intro-

duced Geom-GCN [Pei et al., 2020] and DE for GNNs [Li et al., 2020b], both of which we

discussed in section 2.6.

3.4.1 Comparison with Geom-GCN

There are three differences between Geom-GCN and GAT-POS. First, the embedding

model in GAT-POS is jointly trained with the main architecture simultaneously as an aux-

iliary model, which allows the positional embeddings to capture structural information

86



of the graph while taking the downstream task into consideration. With the joint-training,

GAT-POS supports end-to-end training like typical GNNs.

Second, instead of applying an adaptive filter with a weighting function based on

structural embeddings, we utilize a graph attentional aggregator, which incorporates

both semantic information and structural and positional information. It is worth men-

tioning that the attention mechanisms have been proven to benefit from both kinds of

information in language modeling and image classification tasks [Vaswani et al., 2017,

Zhao et al., 2020]. In addition, some previous works have shown that feature extractors

considering both types of information are more expressive than those only considering

structural, positional, or locational information in image classification tasks [Zhao et al.,

2020, Cordonnier et al., 2020].

Third, for a node E, Geom-GCNs propose an extended neighborhood that includes

nodes near node E in the space of positional embeddings as extra neighbors in aggre-

gation. The extended neighborhood scheme assumes that the nearness in the embedding

space indicates a potential interaction between two nodes. However, we are not sure how

extending a neighborhood will affect the attention coefficients computed since there is a

normalization over the neighborhood in attention computation. Thus, we leave it as a

potential future direction.

3.4.2 Comparison with Distance Encoding

Compared to the embedding models in Geom-GCNs and GAT-POS, DE in DEAGNN and

DEGNN is an encoding approach without training with respect to an objective function.

This is more close to the positional encoding utilized in Transformer [Vaswani et al., 2017]

and many variants of it [Dai et al., 2019,Cordonnier et al., 2020,Zhao et al., 2020]. Advan-

tageously, DE enjoys a better generalization for inductive learning because it can directly

apply to unseen examples without retraining on them or generalizing previously learned
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information to them based on node attributes 1. For instance, in the most extreme case

that there are no node attributes available, DE can still support inductive learning.

However, without training with objective functions, intuitively, the structural infor-

mation captured by distance encoding might be limited and highly dependent on the

choice of the encoding scheme.

1The generalization of a model to unseen examples usually requires the observed examples and unseen
examples share properties of the same feature space.
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Chapter 4

Experiments

4.1 Models in Comparison

In the experiments, we include three models, GCN [Kipf and Welling, 2017], GAT [Velick-

ovic et al., 2018] and Geom-GCN [Pei et al., 2020], into the comparison as baselines.

Firstly, through experiments, we show that our proposed approach can effectively en-

hance GATs by fully exploring and balancing the structural information and the semantic

information. Thus, we include the standard GAT as one of our baselines in order to val-

idate our claims. Furthermore, the GCN is also included as a representative of spectral

GNNs based on graph Laplacian.

Moreover, we aim to emphasize the benefits of allowing the attention mechanism of

GAT to consider both node content representations and the positional ones, as well as

the joint training of positional embeddings and the main architectures. Thus, the Geom-

GCN, an enhancement framework with a similar architecture to GAT-POS, is included in

the comparison as our direct opponent. Specifically, three variants of Geom-GCNs cou-

pled with different embedding methods are considered, namely Geom-GCN with Isomap

(Geom-GCN-I), Geom-GCN with Poincare embedding (Geom-GCN-P), and Geom-GCN

with struc2vec embedding (Geom-GCN-S).
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GAT-POS-T-GS GAT-POS-T-PI GAT-POS-T-PT

GAT-POS-C-GS GAT-POS-C-PI GAT-POS-C-PT

GAT-POS-CG-GS GAT-POS-CML-PI GAT-POS-CML-PT

where the GAT-POS-T and GAT-POS-C denote GAT-POS-Transformer and GAT-
POS-CNN, respectively. The suffixes GS, PI and PT indicate the auxiliary mod-
els based on GraphSAGE, Planetoid-inductive and Planetoid-transductive, respec-
tively.
Note that for GAT-POS-CG and GAT-POS-CML, the auxiliary models are specially
defined; details are discussed in section 3.3.3.

Table 4.1: Table of GAT-POS Variants in Comparison.

Since the work from [Li et al., 2020b] was under review and no public code was

available at the time of writing this thesis and the experiments of the thesis were already

reaching the end, we did not include GNNs enhanced by Distance Encoding (DE) in our

comparisons considering the submission time limit.

To fully understand our framework through experiments, we consider the two main

versions of our framework, GAT-POS-Transformer and GAT-POS-CNN, coupled with

three choices of auxiliary embedding models, based on Planetoid-transductive, Planetoid-

inductive, and GraphSAGE, respectively. Besides the comparison between different ver-

sions, we also focus on comparing different auxiliary embedding models. The compari-

son between GraphSAGE and Planetoid-inductive illustrates whether considering graph

structure during inference can preserve more useful positional information when param-

eterizing the positional embeddings to a function of node attributes. In order to measure

the information loss due to the parameterization to a function of node attributes in in-

ductive auxiliary embedding models, the Planetoid-transductive is also included in the

comparison. Additionally, we also include two variants of GAT-POS-CNN, GAT-POS-CG

and GAT-POS-CML, coupled with their corresponding auxiliary embedding models.

In total, we consider nine variants of our frameworks, as shown in Table 4.1.
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4.2 Datasets

Recalling the previous discussion about typical GNNs and our proposed frameworks

in section 3.1, we aim to show through experiments that the framework of GAT-POS

can enhance the capacity of GATs to learn on non-homophilic graphs. Meanwhile, GAT-

POS is expected to maintain a comparable performance of typical GNNs on homophilic

graphs.

As previously discussed, homophilic graph-structured datasets, in which edges indi-

cate semantic similarity between nodes, are relatively less challenging for typical GNNs.

Typical GNNs, including spectral and spatial GNNs, have been proven effective on ho-

mophilic graphs, owe to their neighborhood aggregation architectures. We include three

widely used citation networks (i.e., Cora, Citeseer and Pubmed) [Yang et al., 2016, Kipf

and Welling, 2017,Velickovic et al., 2018] as representatives of homophilic datasets. Since

typical GNNs have already performed well on homophilic datasets, the goal is to give

a sanity check that our proposed approach can reach a comparable performance in this

setting.

The non-homophilic graph-structured datasets are more challenging since the edges

within them only indicate the existence of interactions rather than semantic similarity.

Under this setting, GNNs with filters blurring each local area might fail to capture local

phenomena if connected nodes are semantically similar in their representations. Without

exploiting the structural, positional and/or locational information, GNNs with content-

based adaptive filters, e.g. GATs, might end up with a blurring kernel and suffer from the

non-homophilic setting. As such, we anticipate that the positional embeddings of GAT-

POS will prove themselves especially beneficial for non-homophilic datasets. Thus, we

focus on the experiments on non-homophilic datasets to demonstrate that our proposed

approach is indeed able to enhance the capacity of GAT under non-homophilic setting by

combining semantic and structural information. We consider two Wikipedia page-page
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networks (i.e., Chameleon and Squirrel) and the Actor co-occurrence network (shortened

as Actor) following [Pei et al., 2020] as our non-homophilic datasets.

The homophily level of those datasets can be summarized by the mean of the index

introduced in [Pei et al., 2020], which is computed as follows,

V =
1

|V|

’
E2V

# E’s neighbors who have the same labels as E
# E’s neighbors

. (4.1)

This index measures the similarity between a node and its neighbors in terms of node

labels. A large V value implies that the graph is homophilic. Note that a small V value

can only indicate the non-homophily rather than heterophily (the tendency to connect

semantically different nodes). Correspondingly, it is worth mentioning that an edge in

non-homophilic datasets indicates the existence of interaction or relationship rather than

the semantic dissimilarity.

The homophily measure values of the datasets in our experiments are summarized in

Table 4.2 to justify our choices of homophilic and non-homophilic datasets.

Dataset Homophilic Datasets Non-homophilic Datasets

Cora Citeseer Pubmed Chameleon Squirrel Actor

V 0.83 0.71 0.79 0.25 0.22 0.24

Table 4.2: The Homophily Measure V on Datasets in our Experiments.

The basic statistics of datasets in experiments are provided in Table 4.3.

Cora Citeseer Pubmed Chameleon Squirrel Actor

# Nodes 2708 3327 19717 2277 5201 7600
# Edges* 5429 4732 44338 36101 217073 33544
# Features 1433 3703 500 2325 2089 931
# Classes 7 6 3 5 5 5

*: the directed graphs are converted to undirected graphs in preprocessing.

Table 4.3: Summary of the Datasets Used in our Experiments.

92



Note that, following the vast majority of the graph neural network literature, we con-

verted all graphs to undirected graphs in the experiments.

4.3 Experimental Setup

For all graph datasets, we randomly split nodes of each class into 60%, 20%, and 20% for

training, validation and testing. The final experimental results reported are the average

classification accuracies of all models on the test sets over 10random splits for all graph

datasets. This is similar to the experimental setup in [Pei et al., 2020].

4.3.1 Hyperparameter Setting

We utilize the final hyperparameter settings of baseline models from [Pei et al., 2020] in

our experiments, since they have already done extensive hyperparameter search for all

methods on the validation set of each dataset. For our proposed GAT-POS, we perform

hyperparameter search on the number of hidden units, the initial learning rate, the weight

decay, and the probability of dropout. For fairness, the hyperparameter search is per-

formed on the same searching space as the models tuned in [Pei et al., 2020]. Specifically,

the number of layers of GNN architectures is fixed to 2 and the Adam optimizer [Kingma

and Ba, 2014] is used to train all models.

Final Hyperparameter Setting of Baseline Models

The final hyperparameter setting is dropout of ? = 0.5, initial learning rate of 0.05, pa-

tience of 100 epochs, and weight decay of 5e-5.

In GCN, the number of hidden units is 16 (Cora and Citeseer), 64 (Pubmed), 48 (Chameleon

and Squirrel), and 32 (Actor). Note that, in Geom-GCN, the number of hidden units is 8

times as many as the number of hidden units in GCN since Geom-GCN has 8 virtual

nodes (virtual relations) [Pei et al., 2020]. For each attention head in GAT, the number
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of hidden units is 8 (Cora, Citeseer, Pubmed), 48 (Chameleon and Squirrel), and 32 (Ac-

tor). GAT has 8 attention heads in the hidden layer for all datasets, 8 (Pubmed), or 1 (the

other datasets) attention heads in the output layer. We use ReLU as the activation for

Geom-GCN and GCN, and ELU for GAT.

Hyperparameter Setting of GAT-POS

In GAT-POS, we tune the hyperparameters, including the probabilities of dropout, the

initial learning rate, the weight decay, the number of attention heads in each layer of the

main model, as well the number of layers, the number of hidden units and the activation

of the main model and the auxiliary model. For fair comparison, we follow the constraint

on the main architecture from [Pei et al., 2020] and set the number of layers as 2 for both

the main architecture and the auxiliary embedding model.

For the hyperparameters of the probabilities of dropout, the initial learning rate, the

weight decay and the activation, we perform a manual hyperparameter search accord-

ing to previous works [Kipf and Welling, 2017, Velickovic et al., 2018] as well as prior

empirical evidence. The hyperparameter tuning for the auxiliary embedding models is

performed similarly based on the results from [Yang et al., 2016,Hamilton et al., 2017]. The

manual hyperparameter search is conducted by attempting some previously utilized set-

tings of hyperparameters without searching algorithms. Even though the searching space

of hyperparameters is smaller, considering the limited time and computation resources,

we perform a manual hyperparameter search on those less sensitive hyperparameters.

For the hyperparameters of the main architectures (i.e., modified GATs), including

the number of hidden units, the number of attention heads at each layer and residual

connection, the hyperparameter search is performed with a hyperparameter optimization

algorithm called Asynchronous Successive Halving Algorithm (ASHA) [Li et al., 2020a]1.

Note that the hyperparameter searching space of the main architecture is the same as the

models tuned in [Pei et al., 2020] for fairness.
1Also known as AsyncHyperBand, the Async version of HyperBand [Li et al., 2017]
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The hyperparameter search is performed monitoring the validation loss. The splitting

scheme of datasets in the hyperparameter search is introduced in detail as follows.

Data Splitting in Hyperparameter Search The hyperparameter search is supposed

to be performed monitoring the classification accuracies on the validation set.

However, considering that we are following the random splitting scheme of [Pei et al.,

2020] in the final evaluation, in order to avoid overfitting a certain data split or being ex-

posed to the test set, we introduce the following data splitting scheme for hyperparameter

search for datasets without a fixed public split. Note that the hyperparameter search is

performed for each version of GAT-POS on each dataset independently.

For each variant of GAT-POS on each dataset, the hyperparameter search is performed

as follows. First, we get 10 splits by random splitting for the final evaluation, which are

utilized by all models. In particular, we use the splits provided by [Pei et al., 2020] for a

fair comparison with other baselines. For each aforementioned split, termed outer-split,

the test set is retained and ignored during the hyperparameter search. Then, we would

get 5 random splits for training and validation with the test set retained, termed inner

split, for tuning hyperparameters. Afterward, a hyperparameter search is performed on

each outer split and each inner split independently.

The best configuration of hyperparameters of a variant of GAT-POS on a dataset is

decided based on the average validation losses over all inner and outer splits.

It is worth mentioning that the hyperparameter search by ASHA strictly follows the

scheme aforementioned, while the manual search might not go over all inner and outer

splits for some GAT-POS variants and datasets.

Hyperparameter Searching Space As previously discussed, the searching spaces of

hyperparameters is decided according to [Pei et al., 2020, Kipf and Welling, 2017, Velick-

ovic et al., 2018,Yang et al., 2016,Hamilton et al., 2017] and prior empirical evidence. Note

that the searching space of the main architecture strictly matches the setting in [Pei et al.,

2020] for fairness.
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Hyperparameter Searching Space Searching Method
Initial learning rate [5e-1, 5e-2, 5e-3]

Manual

Weight decay [5e-3, 5e-4, 5e-5, 5e-6]
Dropout probabilty [0, 0.5]
# hidden units (auxiliary) [16, 32, 64, 128]
Activation (auxiliary) [ReLU, ELU]
Activation (main) [ReLU, ELU]

# hidden units (main)* [8, 16, 32, 48, 64]

ASHA# attention heads (main) hidden-layer: [1, 4, 8, 12, 16]
output-layer: [1, 4, 8, 12, 16]

Residual connection (main) [True, False]
where main and auxiliary denotes the hyperparameters for main architecture
and auxiliary embedding model respectively.
*: for graph attentional layers in main architecture, # hidden units is for each
attention head.

Table 4.4: Summary of Searching Spaces for Hyperparameters

We provide a summary of searching spaces for hyperparameters, as shown in Ta-

ble 4.4.

Final Hyperparameter Setting of GAT-POS According to the result of the manual

hyperparameter search, we set the initial learning rate as 5e-3, weight decay as 5e-4, the

dropout of ? = 0.5 and the number of hidden units for the auxiliary model as 64 for all

variants of GAT-POS on all datasets in our experiments. Besides, the activation functions

of the auxiliary model and the main architecture are set as ReLU and ELU, respectively.

We notice that the different GAT-POS variants almost shared the same optimal hyper-

parameter setting according to the hyperparameter searching results from ASHA2. Thus,

we set all GAT-POS variants with the same hyperparameter setting, summarized in Ta-

ble 4.5.

Similar to the setting in [Pei et al., 2020], we also use an early stopping strategy on the

cross-entropy loss on the validation set, with a patience of 100 epochs.
2Some variants have several configurations of hyperparameters with tied performance.
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Hyperparameter Cora Citeseer Pubmed Chameleon Squirrel Actor
# hidden units 8 8 8 32 8* 32
# attention heads [8, 1] [8, 1] [8, 1] [16, 1] [16, 1] [16, 1]
Residual connection True True True True True True
where [8, 1] in # attention heads denotes 8 attention heads in hidden layer and 1
attention head in output layer.
*: some configuration of hyperparameters are ignored due to out of GPU mem-
ory.

Table 4.5: Summary of the Final Hyperparameters Setting of GAT-POS

4.4 Experimental Results

As previously mentioned, for each model and dataset, experiments are run with 10 ran-

dom splits with splitting ratios 60%, 20% and 20% for training, validation and testing

respectively. The specific splits utilized are provided by [Pei et al., 2020]. For each split,

we have 10 runs of experiments with different random seeds for model initialization.

The results of our comparative evaluation experiments are summarized in Table 4.6

and 4.7. We report the mean classification accuracy (with standard deviation) on the test

set.

Results on Homophilic Datasets The experimental results on homophilic graph

datasets are presented in Table 4.6.

On the homophilic datasets in our experiments, most instantiations of GAT-POS reach

comparable results with typical GNNs. Note that although there are on average differ-

ences across different GAT-POS variants and typical GNNs, most results are within the

standard deviation of each other. One interesting exception to note might be GAT-POS-T-

PT, which is worse than other variants of GAT-POS. According to the previous discussion

and the experimental results on non-homophilic graphs discussed in the following, we

argue that transductive auxiliary embedding models can learn more dedicated positional

embeddings. Therefore, we suspect that injecting positional embeddings from Planetoid-

transductive directly to the node representations leads to redundant structural informa-
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Homophilic Datasets
Accuracy Cora Citeseer Pubmed

GCN 85.67 ± 0.94% 73.28 ± 1.37% 88.14 ± 0.32%
GAT 87.06 ± 0.98% 74.79 ± 1.89% 87.51 ± 0.43%

GeomGCN-I 84.79 ± 2.04% 78.84 ± 1.51% 89.73 ± 0.54%
GeomGCN-P 84.68 ± 1.59% 73.77 ± 1.59% 88.15 ± 0.57%
GeomGCN-S 85.25 ± 1.46% 74.42 ± 2.52% 84.80 ± 0.62%

GAT-POS-T-GS 87.90 ± 0.97% 75.30 ± 1.10% 88.17 ± 0.54%
GAT-POS-T-PI 85.90 ± 1.47% 72.88 ± 1.98% 86.41 ± 0.69%
GAT-POS-T-PT 82.32 ± 1.75% 66.68 ± 2.01% 84.68 ± 0.82%
GAT-POS-C-GS 87.31 ± 1.40% 74.71 ± 1.33% 87.59 ± 0.38%
GAT-POS-C-PI 87.29 ± 1.52% 74.67 ± 1.31% 87.57 ± 0.48%
GAT-POS-C-PT 86.61 ± 1.13% 73.81 ± 1.27% 87.56 ± 0.48%

GAT-POS-CG-GS 87.01 ± 1.64% 74.70 ± 1.31% 87.58 ± 0.51%
GAT-POS-CML-PI 87.60 ± 1.69% 74.77 ± 1.34% 87.58 ± 0.48%
GAT-POS-CML-PT 86.25 ± 1.29% 74.65 ± 2.01% 87.53 ± 0.48%

The best performing method is highlighted.

Table 4.6: Summary of Results in terms of Classification Accuracies for Homophilic

Datasets.

tion on homophilic datasets. Thus, GAT-POS-T-PT suffers from a more severe overfitting

problem than other variants.

These observations are in line with our expectations on homophilic datasets since

merely learning underlying group-invariances can lead to good performance on graph

datasets with high homophily. The evaluation experiments on homophilic graphs serve

as a good sanity check for the proposed approach prior to verifying its potential on more

challenging non-homophilic datasets.

Note that the performance improvements of GeomGCNs are highly dependent on the

choices of embedding models. Overall, GeomGCN-I outperforms all other models on

average on Citeseer, but tend to be on par with their baseline (GCN) on other homophilic

datasets. Moreover, for Cora, GeomGCN seems to exhibit higher standard deviations

than the baselines.
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Non-Homophilic Datasets
Accuracy Chameleon Squirrel Actor

GCN 65.22 ± 2.22% 45.44 ± 1.27% 28.30 ± 0.73%
GAT 63.88 ± 2.42% 41.19 ± 3.38% 28.49 ± 1.06%

GeomGCN-I 57.35 ± 1.85% 31.92 ± 1.04% 29.14 ± 1.15%
GeomGCN-P 60.68 ± 1.97% 35.39 ± 1.21% 31.92 ± 0.95%
GeomGCN-S 57.89 ± 1.65% 35.74 ± 1.47% 30.12 ± 0.92%

GAT-POS-T-GS 65.99 ± 2.66% 47.79 ± 2.16% 34.75 ± 1.16%
GAT-POS-T-PI 63.79 ± 2.35% 47.96 ± 3.29% 34.59 ± 1.01%
GAT-POS-T-PT 65.55 ± 2.38% 51.62 ± 1.84% 34.97 ± 1.27%
GAT-POS-C-GS 64.39 ± 2.16% 43.56 ± 3.15% 34.78 ± 1.00%
GAT-POS-C-PI 67.65 ± 2.82% 42.58 ± 1.66% 34.65 ± 1.21%
GAT-POS-C-PT 67.76 ± 2.54% 52.90 ± 1.55% 34.89 ± 1.38%

GAT-POS-CG-GS 65.92 ± 2.29% 48.39 ± 1.61% 34.89 ± 1.08%
GAT-POS-CML-PI 66.67 ± 2.15% 47.44 ± 2.33% 34.98 ± 1.04%
GAT-POS-CML-PT 67.48 ± 3.08% 50.94 ± 2.77% 35.03 ± 1.44%

The best performing method is highlighted.

Table 4.7: Summary of Results in terms of Classification Accuracies for Non-homophilic

Datasets.

Results on Non-homophilic Datasets The experimental results on non-homophilic

graph datasets, summarized in Table 4.7, demonstrate that our framework reaches better

performance than baselines in general.

Unexpectedly, GeomGCNs do not show significant improvement compared to typical

GNNs on undirected graphs. One possible reason is that their extended neighborhood

scheme cannot include extra useful neighbors in the aggregation, but rather introduces

redundant operations and parameters to train on undirected graphs.

Concerning the different architectures of GAT-POS, GAT-POS-C slightly outperforms

the other variants overall. The potential reason is that the learned semantic node repre-

sentations are not stained by injecting positional embeddings explicitly.

Regarding the choices of the auxiliary embedding models, there is no remarkable dif-

ference between GraphSAGE and Planetoid-inductive according to the experimental re-

sults.
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Even though the datasets in our experiments are under the transductive setting, we

involve the comparisons between the transductive-based and inductive-based embed-

ding models to understand the information loss due to the parameterization of posi-

tional embeddings as a function of node attributes with or without graph structures. On

Chameleon and Actor datasets, the three auxiliary embedding models have comparable

results, which illustrates that the framework of GAT-POS has the potential to support the

inductive setting.

However, on Squirrel, the auxiliary embedding models based on Planetoid-transductive

remarkably outperform the inductive-based auxiliary embedding models. These obser-

vations are probably because the space of node attributes is insufficient to support the

parameterized function to output positional embeddings. For instance, the auxiliary em-

bedding models based on Planetoid-inductive will fail to produce different positional

embeddings for two nodes with the same node attributes. Thus, supporting inductive

learning when the node attributes are not informative enough will be the future research

direction of our framework.

Even though with shortcomings in supporting the inductive setting under certain con-

ditions, the experimental results on the non-homophilic datasets illustrate the enhanced

ability of our proposed approach to learn on non-homophilic graphs.

4.5 Ablation Study on Joint Training

The framework of GAT-POS consists of two parts, the main model with graph atten-

tional layers incorporating positional embeddings and the auxiliary model learning the

positional embeddings jointly trained with the main model. One remarkable difference

between GAT-POS and the previous work Geom-GCN is that we utilize a joint-training

scheme for the support of end-to-end training as well as the extra guidance to the embed-

ding model from the supervised task. In order to understand the contribution from each

component of GAT-POS, we present an ablation study to evaluate the contributions from
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Datasets Chameleon Squirrel Actor

Joint-Training True False True False True False
GAT-POS-T-GS 65.99 ± 2.66% 62.94 ± 1.88% 47.79 ± 2.16% 42.50 ± 1.74% 34.75 ± 1.16% 34.75 ± 1.10%
GAT-POS-T-PI 63.79 ± 2.35% 63.73 ± 1.92% 47.96 ± 3.29% 42.30 ± 1.50% 34.59 ± 1.01% 34.78 ± 1.24%
GAT-POS-T-PT 65.55 ± 2.38% 65.42 ± 2.13% 51.62 ± 1.84% 50.79 ± 1.35% 34.97 ± 1.27% 34.66 ± 1.17%
GAT-POS-C-GS 64.39 ± 2.16% 63.18 ± 1.43% 43.56 ± 3.15% 42.75 ± 1.85% 34.78 ± 1.00% 34.68 ± 0.99%
GAT-POS-C-PI 67.65 ± 2.82% 63.14 ± 1.02% 42.58 ± 1.66% 42.49 ± 1.68% 34.65 ± 1.21% 34.91 ± 1.00%
GAT-POS-C-PT 67.76 ± 2.54% 65.75 ± 1.81% 52.90 ± 1.55% 50.63 ± 1.29% 34.89 ± 1.38% 34.95 ± 0.95%
GAT-POS-CG-GS 65.92 ± 2.29% 63.38 ± 1.74% 48.39 ± 1.61% 42.68 ± 1.63% 34.89 ± 1.08% 35.13 ± 0.99%
GAT-POS-CML-PI 66.67 ± 2.15% 63.31 ± 2.11% 47.44 ± 2.33% 42.07 ± 1.41% 34.98 ± 1.04% 34.87 ± 0.86%
GAT-POS-CML-PT 67.48 ± 3.08% 63.33 ± 1.93% 50.94 ± 2.77% 42.26 ± 1.42% 35.03 ± 1.44% 34.92 ± 1.41%

The winning variants in the comparison are highlighted.

Table 4.8: The Ablation Study of Joint-Training of Auxiliary Embedding Model

joint-training. In the ablation study, we consider a variant of GAT-POS without jointly-

trained auxiliary embedding models. Instead, the embedding models will be trained with

the unsupervised task in advance to learn positional embeddings. Afterward, the main

model will be trained with the supervised task solely, incorporating positional embed-

dings from the embedding models as extra node attributes. For fairness, the architecture

of each version of GAT-POS will remain the same except that the main model and the

embedding model are trained separately. The results of the comparison are summarized

in Table 4.8.

On Chameleon and Squirrel, most instantiations of GAT-POS with joint-training reach

better results than without joint-training overall. However, the joint-training also leads to

relatively larger standard deviations.

On Actor datasets, the difference of performances between the instantiations of GAT-

POS with joint-training and those without joint-training is not notable. This might be

because, on Actor dataset, the positional embedding is probably less affected by the su-

pervised signals.

Therefore, in most of the cases, enabling joint training of the main model and the

auxiliary embedding model is beneficial.

Moreover, it is worth noting that the variants of GAT-POS without joint-training still

outperform Geom-GCNs by a notable margin, which implies the advantage of having an
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attention mechanism incorporate semantic and structural information, especially when

compared to the weighting function utilized in the filter of Geom-GCNs, which only con-

siders the structural information.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis, we have introduced a framework to enhance the GAT models with a posi-

tional embedding to better explore both the semantic information of each node and the

structural information contained in the graph. In particular, we extended the standard

GAT formulation by adding an auxiliary embedding model, connected to the supervised

GAT model, and its respective unsupervised objective function to predict the graph con-

text. Although we focused on extending the original GAT formulation, our proposed

framework is compatible with most current graph deep learning based models, which

leverage graph attentional layers. Moreover, it is worth mentioning that this framework

is agnostic to the choice of auxiliary embedding models as well as the particular setup of

the graph attentional layers.

Experiments on a number of graph-structured datasets, especially those with more

complicated structures and edges joining nodes beyond simple feature similarity, suggest

that this framework can effectively enhance GATs by leveraging both graph structure and

node attributes for node classification tasks, resulting in increased performances when

compared to baselines as well as recently introduced methods.
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When comparing different types of positional embeddings, we notice that in datasets

where the node attributes are not discriminative enough, such as in the Squirrel dataset,

transductive auxiliary embedding models outperform the inductive ones. This indicates

that the positional embeddings learned cannot be mapped to the space of the node at-

tributes injectively. Therefore, the parameterization of positional embeddings by means

of a function of node attributes leads to a loss of structural information. Even though

our proposed framework can assist GATs better balance the structural information and

semantic information of the nodes, we have not been able to improve the capacity of

GAT-based approach when generalizing to unseen nodes, i.e. the inductive learning set-

tings. The research on improving the generalization capacity is left for future work.

Finally, through an ablation study, we have further emphasized the benefits of our

proposed framework by showing that the performance improvements do not only come

from the joint training of both parts of the model but rather from endowing GATs with

node positional information.

5.2 Future Works

There are a number of directions related to our framework worth exploring as the future

works.

The first is about what structural information captured by the positional embeddings

is actually needed. The learned positional embeddings might be able to capture more

complicated structural information while the fixed and encoded positional embeddings

are usually more computationally efficient. In the case of sequences, the learned posi-

tional embeddings and the encoded positional encoding do not show significant differ-

ences in the performance of Transformer [Vaswani et al., 2017]. It is worth exploiting

whether in the cases of more complicated structures, i.e., grids, trees and general graphs,

the learned positional embeddings will better benefit the attention mechanism than en-

coded positional embeddings. One recent fixed and encoded positional embeddings for
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general graphs is distance encoding [Li et al., 2020b]. It is an interesting direction to

comprehensively compare different types of learned positional embeddings and encoded

positional embeddings on general graphs.

Second, as mentioned in the previous section, the bottleneck of the capacity to gen-

eralize to unobserved nodes lies on the auxiliary embedding models in our frameworks.

Currently, most embedding models on graphs are parameterized by means of the func-

tions of node attributes to support the inductive setting. Therefore, the generalization

ability of our framework is at most as good as inductive GNNs. Thus, how to improve

the generalization ability of the embedding models on graphs in the inductive setting will

also be a direction worth investigating.

Another direction that can be investigated is to directly design a framework of adap-

tive spatial convolutional kernels generated by operations exploiting the structure within

each local area (i.e., neighborhood), without positional embeddings. The spatial GNNs

with trainable aggregation coefficients, such as MoNets [Monti et al., 2017], MPNNs [Gilmer

et al., 2017] and GATs [Velickovic et al., 2018], can be viewed as a generalization of adap-

tive convolutional kernels [Zamora Esquivel et al., 2019] to the graph domain. Regardless

of the other benefits introduced by adaptive convolutional kernels on images, for graphs,

at least spatial trainable convolutional kernels can be built upon it. Note that the infor-

mation captured by the adaptive convolutional kernels highly depends on how the coef-

ficients are generated 1 Currently, the generating functions of the adaptive kernels in the

above-mentioned GNNs cannot fully explore the structure within each local area because

of treating the nodes in each neighborhood as a multiset. For example, the filter coeffi-

cients of GATs (i.e., the attention scores) are generated by the attention mechanism, which

views the nodes in each neighborhood as a multiset and ignores the structural dependen-

cies among them. This is the reason why we need to incorporate the extra structural

information via positional embeddings in attention mechanisms. Thus, alternatively, we
1The concept of generation here is different from the one in generative models; here the generation only

denotes the coefficients are produced by a function as the output. We utilize the term generate follow-
ing [Zamora Esquivel et al., 2019].
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could eventually design an operation, which is inherently able to explore structural de-

pendencies in each locality, to generate the adaptive kernels. For instance, one could

replace the standard content-based attention mechanism in GATs with the structured at-

tention mechanism of [Kim et al., 2017]. The structured attention mechanism describes

attention computation as a conditional random field (CRF) and computes the attention

scores as marginal probabilities with inference algorithms in probabilistic graphical mod-

els. With inference algorithms for CRF, the learned filter coefficients are supposed to

capture the structural information in each local area. Furthermore, we can abandon the

attention mechanism and alternatively learn filter coefficients with inference algorithms

on each local area represented as a CRF. Such operations can be parameterized as a neural

network according to previous works [Zheng et al., 2015, Gao et al., 2019], which repre-

sent the whole input image or input graph as a CRF. Since we consider each locality as

a CRF, exact inference algorithms are feasible in each neighborhood. For instance, the

belief propagation is an exact inference algorithm applicable to a local neighborhood rep-

resented as a star-graph (i.e., a depth-1 tree). Therefore, the operation of learning filter

coefficients is computationally tractable and guaranteed to converge within two steps.

Compared to our current framework, this type of adaptive convolutional kernels can be

applied to many GNN-based frameworks, by replacing other GNNs, without extra archi-

tecture.
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