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Abstract

In the past decade, online video has risen to become one of the most common ways of sharing
and consuming media. With so much video content readily-available, browsing or processing
these data is difficult due to the long duration of a typical video. Video summaries, on the other
hand, provide an effective way for viewers to enjoy the highlights of a video without having to
watch the entire video.

In this work, we propose a system that automatically summarizes hockey broadcasts into
highlight videos. We leverage the audience of a game—both the broadcasters and the crowd—to
decide which shots should be included in the final highlight reel. We argue that since the game
is directly sourced by the crowd and the broadcasters, our direct approach is more effective than
similar techniques in the literature which rely on external annotators.

Our system accomplishes this by first extracting video and audio features using convolu-
tional neural networks (CNN) and searching for key indicators of excitement (e.g. cheering
or celebration). Lastly, the best highlights are dynamically selected under a set of constraints
(such as output duration) and composited into the final summary. Our results demonstrate that
this technique accurately extracts the most exciting moments of a hockey game while avoiding
the bias from using predetermined metrics or external annotations.
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Abrégé

Dans le passé, les vidéos en ligne ont pris de l’ampleur pour devenir une des façons les plus
communes pour partager et consommer les médias. Avec autant de contenu vidéo disponible,
la consultation ou le traitement de ces données est difficile vu la longueur d’un vidéo typique.
Les résumés vidéos, d’un autre côté, fournissent une façon efficace pour les consommateurs
d’apprécier les points importants d’un vidéo sans devoir le regarder au complet.

Dans ce travail, nous proposons un système qui résume automatiquement les émissions de
hockey en un court vidéo des points forts. Nous tirons avantage du public d’un match, à la fois
des spectateurs de l’émission et la foule, pour décider quelles parties devraient être incluses
dans la bande des points forts. Nous affirmons que puisque la partie s’inspire directement de la
foule et des spectateurs, notre approche directe est plus efficace que les techniques similaires
dans la littérature qui se fit à des commentateurs extérieurs.

Notre système accomplit cela d’abord en extrayant les caractéristiques vidéo et audio en
utilisant des réseaux neuronaux convolutionnels (RNC) et en cherchant pour des indicateurs
clés d’enthousiasme (p.ex. des acclamations ou des célébrations). Enfin, les meilleurs points
forts sont sélectionnés de façon dynamique selon un ensemble de contraintes (comme la durée
du résultat) et sont montés pour former le résumé final. Nos résultats démontrent que cette
technique extrait avec précision les meilleurs moments d’une partie de hockey tout en évitant
les influences des métriques prédéterminées ou les commentateurs externes.
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1
Introduction

1.1 Challenges of video summarization

Video summarization is the task of condensing an input video into a summary that is composed
of a subset of the original content. Such summaries provide an excellent way for viewers to
enjoy or preview the contents of a video without the full-time commitment. As such, video
summaries are used for television shows, sports broadcasts, advertisements, live-streaming, and
video previews on streaming websites such as YouTube or Netflix. The process of creating these
summaries is a manual and time-consuming process; as a result, automatic video summarization
is an appealing alternative.

This task is challenging for several reasons, but most prominently because it is difficult to
formulate in a manner which is readily solved by conventional techniques in computer vision
and machine learning. After all, what is the best way for a video summary to be composed?
One might argue that only the most interesting or exciting moments of a video should be re-
tained; another may argue that a summary should be comprehensive and reflect the entirety of
the video. The problem, however, lies in attempting to define the "interestingness" of a video
quantitatively. Even if we could do this, how would we design an algorithm which would gener-
ate video summaries that appeal to a broad audience? A segment of a video may be fascinating
to one viewer and irrelevant to another. Video summarization is inherently an ill-posed prob-
lem, as there is an infinite number of ways to summarize a video, any of which may be equally
valid depending on the viewpoint of the audience [1].

1



1.1 Challenges of video summarization

Furthermore, there is a significant variation in the structure and contents of videos in gen-
eral. For instance, a sports broadcast tends to have a different duration, structure, and features
than a first-person video filmed using a mobile phone. It is unlikely that two videos, especially
those of greatly varying genres, would be best summarized by a single approach. As such, a
given technique may be very effective at handling a specific type of video but fail to generalize
to another type.

Typically, videos contain spatiotemporal, audio, and occasionally textual data. Each mode
may provide insights about the content of the video and can be processed jointly or indepen-
dently to compose a video summary. By incorporating multiple modalities into our system, we
can detect more complex interactions within videos; for example, an event may be detected
by using clues from both the visual and audio streams simultaneously. The trade-off, however,
is that the inclusion of multiple modes of information comes at the expense of design com-
plexity and computational cost. Each mode of information is distinctly formatted and must be
carefully processed before they can be combined. In conjunction with the overhead of working
with videos, which are incredibly dense in information, this often pushes computation time and
cost beyond a level that is acceptable for practical application.

To tackle this problem, we use a supervised deep learning approach. Namely, we use con-
volutional neural networks (CNNs) to analyze both the visual and audio stream of the video.
Given an appropriately annotated dataset, CNNs can learn to automatically extract features
which correspond to certain actions or events occurring in a video. This can then be used to
build a system which makes decisions on how to summarize a video based on the features
detected. Normally, this would be done by a human.

Lastly, there lies the issue of obtaining enough data to train a deep neural network. In this
case, we will be working with video data—in contrast to single images (video frames). Videos
include the temporal dimension and are significantly denser in information as a result. Large
open-source databases of videos (with annotations for summarization) are rare and usually
contain far fewer data samples than datasets containing only images. Moreover, since people
provide these annotations, they are potentially also biased, and may not truly represent the best
moments of a video.
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1.2 Video summarization for hockey broadcasts

1.2 Video summarization for hockey broadcasts

While video summaries are incredibly useful for previewing content, there are significant chal-
lenges in automatically creating summaries that are interesting to a broad audience. In this
work, we focus on the automatic summarization of sports broadcasts, specifically ice hockey.
Working with sports broadcasts presents its own set of challenges. However, it also allows us
to mitigate many of the earlier discussed problems by leveraging two invaluable resources—
the crowd and the play-by-play announcers. By utilizing the spectators (composed of both the
crowd and the announcers), we can design a system that detects the highlights of the game and
intelligently produces a summary.

In a typical video summarization pipeline, the video is analyzed and searched for individ-
ual key moments of interest; these highlights are then linked together to form the final sum-
mary. In general, this works quite well, and many techniques found in the literature follow
this framework. However, among the existing methods for finding highlights and forming sum-
maries, most techniques do not emphasize the composition of the video. Once the highlights
are detected, they are usually concatenated into a summary without further consideration. This
approach may be effective in some contexts, but we argue that it is not enough to produce
compelling sports broadcast summaries.

Several additional issues arise when generating hockey summaries. How should the final
length of the video be constrained? Out of the candidate video clips, which best complement
each other and should be chosen to form the summary? Where should these clips start and end?
Including a clip that begins a few seconds too early leaves the viewer without context; a clip
that ends a few seconds too soon leaves the viewer dissatisfied. Special care must be taken when
forming the summary in order to generate high-quality results.

To address these issues, we design our system using two principal components: the high-

light detector and the highlight selector. The highlight detector uses the reaction of the au-
dience as a collective indicator of exciting moments in the game. By analyzing the visual and
audio streams of a video, we can search for cues that correspond to the occurrence of an excit-
ing event, for instance, the cheering of the crowd or the excitement in the announcers’ voice.
Furthermore, by analyzing multiple modes of the video, we can better detect highlights that
may not be obvious when only viewing the video or listening to the audio on their own. Ulti-
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1.2 Video summarization for hockey broadcasts

mately, using the audience as a basis for driving the summarization process allows us to bypass
the bias found in human annotations or manually designed features. Once the highlights of the
broadcast are found, the highlight selector (i.e., a deep network) chooses which of them should
be included in the summary. This is done in a manner which considers constraints such as the
maximum or minimum duration of the summary, since there are often many more highlights
in a hockey game than there is space to include in a summary. The overall flow of information
through the video summarization system is depicted in Figure 1.1.

In our implementation, the highlight detector is based on 3D CNNs adapted for a multi-
modal input using fused neural networks (Chapter 3), and the highlight detector is based on
an adversarial neural network (Chapter 4). Both the components are trained individually and
then joined sequentially to form the overall system; the input to the system is a full hockey
broadcast, and the output is a highlight video. The rationale behind this choice of technology
will be discussed at length for both the highlight detector and the highlight selector in Chapters
3 and 4, respectively.

To generate our training dataset, we use publicly available NHL hockey broadcasts. We
process these hockey broadcasts into a format that can be used to train the deep networks
(i.e., CNNs) which comprise both the highlight detector and the highlight selector (to be dis-
cussed). Moreover, to pretrain our network, we also utilize Audio Set [2], which is an extensive
collection of annotated audio clips collected from millions of videos on YouTube. Since this
dataset includes samples of cheering, we can use it for detecting reactions from the crowd (with
minimal modifications). This approach allows us to train our system with minimal need for
additional annotation; furthermore, it also opens up the possibility of extending the technique
to other sports or genres of video with audiences.

In short, our main contributions are as follows: (1) we propose an audience-informed system
for automatic summarization of hockey broadcasts; (2) we investigate the application of multi-
modal 3D CNNs for highlight detection in hockey broadcasts; (3) we design a highlight selector
that chooses which of the detected highlights should be included in the final summary.
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Hockey 
Broadcast

Video Stream

Audio Stream

Highlight DetectionInput

Multi-modal CNN
Highlight 
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Highlight 
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Adversarial 
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Hockey

Summary
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Figure 1.1: An overview of our proposed video summarization system. First, a highlight de-

tector (based on a multi-modal CNN) finds the most exciting moments of a hockey broadcast
based on cues from the audience and play-by-play announcers. Typically, there will be far more
highlights in a hockey game than there is space to include in a summary. Therefore, once the
highlights of the hockey broadcast are found, a highlight selector (based on an adversarial
network) chooses which of these highlights should be included in the final summary.
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2
Literature Review

There are several schemes for video summarization. Although these approaches may vary
greatly, they all attempt to address a fundamental problem: how can we employ a computer
program to determine what parts of a video are interesting to a viewer? In this chapter, we will
examine various techniques from the literature, with an emphasis on those applicable to sports
broadcasts.

2.1 Overview

The vast majority of video summarization techniques are based on machine learning, which is a
family of algorithms that utilize training data to make predictions or decisions without explicit
programming. Most machine learning techniques can broadly be classified into three categories:
supervised, unsupervised, and semi-supervised learning. In the context of video summarization,
supervised learning approaches take advantage of annotated datasets, where videos are paired
with a mask (or frame importance scores), which act as ground truth for training a model. On the
other hand, unsupervised learning techniques seek to extract information from a video, typically
using explicitly designed features, which are then classified or used to assign an importance
score to each frame. Semi-supervised learning techniques utilize a combination of labelled and
unlabelled data, and usually have the advantage of requiring less annotated data than strictly
supervised methods.

A typical video summarization framework selects which frames of a video should be in-
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2.2 Supervised video summarization

cluded in the summary based on a set of criteria (or some decision-making process). In general,
a video is decomposed into a set of subshots, before selecting which subshots should be linked
together to form a summary—shots selected in this manner are commonly referred to as high-

lights.

The criteria chosen to decide which subshots should be selected as highlights are highly
varied, but in general, attempt to determine how interesting or important a given subshot is.
For example, a technique may look for the presence of important entities [3] in a shot (such
as people) to detect highlights. Another technique may optimize for metrics such as visual or
semantic redundancy by examining low-level features such as histograms, motion, or colour
[4, 5]. More recent approaches may forego explicitly designing any criteria and instead rely on
deep neural networks (trained with annotated data) to predict which subshots are interesting
[6, 7]. To compute these criteria, one may examine the visual, audio, or textual information
present in a video , as discussed in Chapter 1; each of these modes may contain cues or features
which are useful for computing how important a frame or shot is.

Another consideration is the scope of application for a given technique. Some approaches
may be designed for general use and to be broadly applied to videos with varying genres,
structure, content, and duration (e.g., for videos found on YouTube or social media). Other
techniques focus on specific genres of videos, such as sports broadcasts, surveillance videos, or
user-recorded content, by exploiting domain knowledge. For instance, sports broadcasts may
have certain camera angles or sounds corresponding to the occurrence of specific moments of
interest. Ultimately, the choice of criteria depends on the application; e.g., it may be desirable
to maximize interest when summarizing a sports broadcast into a highlight reel or it may be
optimal to minimize redundancy when summarizing documentaries. In this chapter, we will be
examining both general and domain-specific approaches, with an emphasis on sports broad-
casts.

2.2 Supervised video summarization

The most straightforward approach is to formulate the problem as a supervised learning task.
In this approach, an input video is represented as a sequence of frames or subshots (including
the audio and text), and the output is a mask indicating which of them should compose the
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2.2 Supervised video summarization

summary. Generally, a feature extractor is used to extract features from the input, and another
model (such as a classifier) determines which parts of the video should be included in the
summary. The system is then trained by using an annotated dataset. In short, the summarization
task is reduced to binary classification or regression by assigning a label or score for each frame
or subshot of a given video. Under this framework, the most important considerations are the
choice of features to extract, the design of the model(s), and the training procedure.

A promising starting point is to take advantage of the existing methods for automatically
extracting and classifying features from videos (e.g., for video classification or event recogni-
tion) using supervised deep learning [8, 9, 10, 11]. In recent approaches, LSTMs [12, 13, 14]
and CNNs (2D/3D) [6, 15, 16, 14] are commonly used as both the feature extractor and the
classifier. A typical framework for summarizing videos in this manner is illustrated in Figure
2.1 and Figure 2.2. In contrast to their classical counterparts, which are based on low-level
cues (e.g. colour, histograms, motion) or explicitly designed features, these networks automat-
ically learn from a dataset to extract relevant features from the video. In terms of training these
networks, popular datasets include TVSum [17] and SumMe [18] which each contain approx-
imately 25-50 videos from a variety of genres (news, documentaries, egocentric, etc.). These
datasets are also commonly used to benchmark various techniques against each other. For our
application, however, we are not aware of any public benchmarks or datasets for evaluating the
summarization of hockey broadcasts.

There are various trade-offs among the choices of model to use. For instance, the architec-
ture of LSTMs gives them the capacity to consider both long-term and short-term relationships
in the data better than CNNs alone. Consequently, Zhang et al. [12] argue that visual analysis
alone is not enough to determine redundancy, and that long-term dependencies are essential for
interpreting high-level semantics in a video (leading to higher quality summaries). 3D CNNs,
on the other hand, typically only examine temporal data within a small window determined
by the size of the convolution filters in the network architecture; despite this, [6, 19, 11] have
shown that they are effective at summarizing videos. More recent architectures have addressed
this weakness and have implemented mechanisms to model long-term dependencies across
time in CNNs as well; for example, the attention-based CNN proposed by Chen et al. [20].
Ultimately, the choice of feature extractor is flexible and can be interchanged depending on the
constraints of the application.
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2.2 Supervised video summarization

Figure 2.1: A supervised summarization system using CNNs proposed by Yao et al. [6]. A video
is split into a set of video frame chunks, sss, and fed into two fused CNNs designed to analyze
the spatial and spatiotemporal streams. The CNN system learns (from a dataset) to predict a
highlight score for each chunk in the video. This procedure is repeated for each chunk and a
highlight curve is generated for the entire video; the most interesting moments are then selected
as highlights.

9



2.2 Supervised video summarization

Figure 2.2: A pipeline for summarization using semantic clustering proposed by Otani et al.
[15]. A video is split into a set of video frame segments and fed into a CNN. The CNN embeds
the video segments into a semantic feature space, which are then subsequently clustered. Fi-
nally, video segments are chosen from a variety of clusters to form a summary which minimizes
redundancy and monotony.

Aside from the choice of model, the formulation of the training objective is also important
for properly training neural networks. For example, Yao et al. [6] highlights an issue with train-
ing models for summarization through classification. Since choosing subshots is inherently a
ranking problem, they argue that this task is better characterized by regression than classifica-
tion (since binary classification doesn’t distinguish which subshots are most interesting relative

to each other). To work around this, they propose a pairwise ranking scheme, in which the
classifier is trained by being presented two subshots and tasked with identifying the maximally
interesting subshot of the pair. Using this method, Yao et al. [6] show that a fusion of 2D and
3D CNNs can effectively learn to rank highlights in user-generated videos. Yet another way
to model the summarization problem is through clustering. Otani et al. [15] train a system of
neural networks to extract features that represent the semantic content of the video; these are
then clustered and used to form the summaries (by choosing subshots from a variety of seman-
tic clusters). This is a simple approach that excels in dealing with videos where semantically
redundant content is abundant.

Unsurprisingly, supervised learning approaches have also demonstrated success when ap-
plied to sports broadcasts. For example, Tejero et al. [7] show that CNNs can learn to detect
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2.3 Unsupervised and semi-supervised video summarization

highlights after being trained on the frames and the optical flow of an annotated dataset of
Kendo videos. Similarly, Lin et al. [21] use a combination of LSTMs and CNNs to summa-
rize baseball videos. For golf broadcasts, Merler et al. [22] uses an assortment of CNNs to
simultaneously extract features from the visual, audio, and text streams. Their analysis of the
information is very extensive and involves a combination of cheering detection, broadcaster
voice tones, text analysis, expression recognition, TV graphics, game statistics, etc. In each
of the previous examples, a highlight score versus time graph is generated for the video, and
the most interesting moments are used to form a summary. With the exception of [22], these
approaches suffer from the same weakness as many of the other supervised techniques and is
prone to a shortage of annotated data or biases in the annotations.

As demonstrated by the previous examples, the choice of model, and how we choose to
formulate the summarization problem plays a crucial role in controlling the characteristics of
neural networks after training. This is especially useful when dealing with specific genres of
videos, i.e., hockey broadcasts, where we know beforehand what type of issues will be most
prominent. Using this, we can choose which aspects of the hockey game we wish our summa-
rization system to place emphasis on by carefully selecting which models we use and how we
formulate the training objective.

2.3 Unsupervised and semi-supervised video summarization

In unsupervised video summarization, the formulation of the problem is similar—given a video,
find a mask which tells us which frames should form the summary. As discussed in the chapter
overview, the video is divided into a set of subshots, and a metric is computed to quantify the
"importance" of the shot. Importance can be defined in a number of ways but usually consists of
measuring notions such as the presence of important entities, diversity (redundancy), motion,
saliency, temporal spacing (spacing of the selected shots throughout the video), etc. [23, 24, 25,
3, 26, 27]. Overall, there is no general metric that is better than all of the others, and the best
metric to use depends on the task.

Early unsupervised approaches tended to use low-level cues as the primary unit of consid-
eration. Wolf [28] analyzes motion in films by first computing optical flow on the videos and
then summarizing the shots by looking for moments of pause, meant to place emphasis for
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2.3 Unsupervised and semi-supervised video summarization

the viewer. Similarly, Ma et al. [29] propose a framework that utilizes motion, attention, and
saliency to find highlights in videos of varying genres (home videos, sports, television, etc.).
Yihong et al. [30] use a method based on feature dimensionality reduction (through singular-
value-decomposition) and clustering; they form a feature matrix by sampling frames from the
video and analyzing the colour histograms. Afterwards the features are clustered, and a subshot
is selected to represent each cluster.

In the context of sports broadcasts, Baoxin et al. [31] and Tjondronegoro et al. [32] propose
unsupervised methods for summarization in sports videos. Their frameworks exploit domain
knowledge in soccer videos to automatically detect events such as whistles, cheering or changes
in cinematography. They examine low-level features such as the proportion of soccer field pix-
els to total pixels (to determine breaks in gameplay), or the intensity of specific frequencies in
the audio stream. Similarly, Ekin et al. [33] proposes a framework that uses a mixture of low-
level features (e.g. shot changes, dominant colours) and semantic features (e.g. goal detection,
referee detection) to summarize soccer videos; their pipeline is depicted in Figure 2.3. While
these techniques are simple and can detect certain events in a game, they require explicitly
designing each feature and generally are not robust to variations in the broadcast.

In terms of semi-supervised learning, another technique is to incorporate feature extrac-
tors that have been trained on relevant datasets beforehand, e.g. objects, or entities, to extract
higher-level information. For instance, Lu et al. [5] proposes a story-driven approach to sum-
marization by analyzing the connection between objects. They argue that significant events in
a video may be connected and form a coherent story. To this end, they introduce a story metric
that quantifies the ability of significant objects in one subshot to influence objects of another
subsequent subshot in a coherent manner. After detecting the objects in the video, a graph is
constructed which models the probability that objects appear with respect to one another—
these probabilities are then used to compute a numeric value for influence. For example, in an
egocentric video, the appearance of a bowl may be connected to the appearance of food later in
the video. This is a very intuitive notion for egocentric videos, where events may be connected
in predictable sequences. With that being said, it may be difficult to extend this technique to
non-egocentric videos where there isn’t a clear sequence of events, and the same objects are
constantly re-appearing throughout the video without correlation.
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2.3 Unsupervised and semi-supervised video summarization

Figure 2.3: An unsupervised pipeline for summarization of soccer broadcasts by Ekin et al.
[33]. This system relies on several modules explicitly designed to detect certain events in a
soccer broadcast (shot boundaries, goals, slow-motion replays, etc.) using low-level cues such
as motion, colour, or lines. A rule based system is used to determine which of the events should
be included in the summary (e.g., all goals should be included, etc.).
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Figure 2.4: The adversarial LSTM system proposed by Mahasseni et al. [35]. A set of video
frames xxx (indexed by time t) is passed into a selector LSTM that chooses a subset of frames, sss,
which is then encoded by another LSTM to yield a feature vector, eee. The system is trained in
an adversarial manner; the generator attempts to reconstruct xxx from its encoded representation
eee, and the discriminator is tasked with distinguishing x̂̂x̂x from xxx.

Keane et al. [34] evaluate the events in hockey broadcasts and deploys an entropy-based
metric as well as a "cumulative event interest score" to locate the most interesting moments
in hockey broadcasts. They argue that selecting the most exciting events in a video may not
maximize interest to a viewer and that a succession of medium excitement events in a short
period may be more relevant. To this end, they propose accumulating and combining the impact
of individual events within some window to determine the excitement at a given time as a
"cumulative event interest score." They also argue that simply choosing the most exciting events
would lead to monotonous summaries, and consequently use an entropy-based metric which
penalizes the selection of multiple events of the same type. While this approach is effective, it
requires that each event occurring within the hockey broadcast is labelled and detected. Due to
the duration of a hockey broadcast, this requires manually annotating and classifying thousands
of events per video—this is often impractical and greatly limits the scope of application.

More recently, generative adversarial networks (GANs) have also been investigated for
video summarization. GANs functions by casting two neural networks against each other in
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a game; for instance, training a CNN tasked with detecting artificial images against a CNN
tasked with generating artificial (but realistic) images. In the context of video summarization,
Mahasseni et al. [35] propose a system of LSTMs trained in an adversarial fashion to sum-
marize videos. Their system is abstracted into three main components, the summarizer, the
generator, and the discriminator, as depicted in Figure 2.4. First, the summarizer consists of
two networks: a selector LSTM tasked with selecting highlights (a set of frames) from a video,
and an encoder LSTM tasked with encoding the frames chosen by the selector LSTM into a
fixed-length representation (in some feature space). Next, the generator takes the encoded out-
put from the summarizer and uses yet another LSTM to decode and reconstruct the original
video from its encoded representation. Finally, the discriminator consists of an LSTM tasked
with discriminating between the original videos, and their reconstructions from the generator. In
short, a set of loss functions are defined such that this adversarial system of networks is trained
to maximally confuse the discriminator. This occurs when the discriminator can no longer dis-
tinguish the difference between the videos reconstructed by the generator, and their original
counterparts. The adversarial network effectively learns to summarize videos and attains state-
of-the-art performance on several datasets, even outperforming supervised techniques. This is
a very interesting result, as it demonstrates that we can learn networks that extract and recon-
struct videos without having to explicitly design any features or mechanisms as in most of the
preceding techniques.

2.4 Conclusion

In summary, video summarization can be solved by many techniques, which vary depending on
the domain of application and desired results. Moreover, we have seen numerous machine learn-
ing approaches used for video summarization. Techniques ranging from explicitly designed fea-
tures to CNNs, LSTMs, and GANs, work well for video summarization, each with their own
advantages and disadvantages. Lastly, we have seen the effectiveness of highlight-driven video
summarization for sports broadcasts. This intuitive approach creates summaries by detecting
the most exciting moments in the game. In the next section, we will discuss the design of the
first component of our video summarization system: the highlight detector.
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3
Highlight Detection

In this chapter, we discuss the methodology used to design our video summarization system.
We begin by discussing the procedure we used to curate and process our dataset of hockey
broadcast videos. Next, we detail the first component of our system, the highlight detector, and
the procedure used to train it. Finally, we present a set of experiments that compare and contrast
various approaches and parameters that we considered when designing the highlight detector
(e.g., CNN architecture choice or preprocessing parameters). The results of these experiments
then guide the final design of our highlight detector.

3.1 Overview

Our goal is to design a video summarization system for hockey broadcasts that produces com-
pelling highlight videos in a minimally biased and practical manner (e.g., not requiring an ex-
cessive amount of annotated data or computation time). While there are numerous approaches
to video summarization (as discussed in Chapter 2), highlight detection is an especially effec-
tive method for sports broadcasts, where there are usually specific moments in the broadcast
which are of significant interest to a viewer. To this end, we design a highlight detection module
tasked strictly with automatically finding these critical moments of interest.

Our approach primarily considers the detection of highlights to produce video summaries;
this is an effective approach for sports broadcasts where a handful of exciting moments in the
broadcast can sufficiently portray a hockey game. That being said, this type of approach is not
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always effective for video summarization in general. In other domains and applications, it may
be beneficial to include non-highlights into a video summary. This may be done to provide
context and improve the overall coherence of the resulting summary. Although, we refer to
"summarization" and "highlight detection" interchangeably in the context of this thesis, these
terms are not synonymous in general.

The initial design decisions are then to choose which criteria (or procedure) to select high-
lights with, which model(s) to use, and which method to train the system with. For our first
decision, we chose to look for cues corresponding to highlights as the primary driver behind
our detection process. To facilitate this, we build a dataset of highlights that we can use to train
a model. We accomplish this by taking advantage of the spectators of the game (the crowd and
the announcers) to dictate which parts of the hockey broadcast should be considered a highlight.
By capturing the spectators’ excitement, we have collected an ensemble of opinions on whether
that particular moment of the game is exciting or not. Moreover, using the spectators allows us
to mitigate the bias found in human-annotated datasets, which typically only have a few anno-
tators per data sample. Using this approach, we collect and annotate a dataset (approx. 1500
videos) of hockey clips where the spectators demonstrate excitement (cheering or excitement
in the announcers’ voices). This dataset contains clips from multiple NHL hockey seasons and
is used to train and evaluate our highlight detection system.

Supervised deep learning techniques are a practical and straightforward solution to video
summarization. Furthermore, we have also seen that it is beneficial to analyze multiple modes
(i.e., video and audio), when detecting highlights (as discussed in Chapter 2). Consequently, we
build our highlight detector using a set of CNNs designed to analyze both the video and audio
streams simultaneously for cues corresponding to highlights. We achieve this by using fusion
to combine several neural networks into a single system. In conjunction with our dataset of
highlights, this lets us train a highlight detector by posing the problem as a binary classification
task; each frame of the video is predicted to be either a highlight or non-highlight. This is then
later used to drive the overall summarization process.

For the training procedure, we utilize an approach based on transfer learning. The video and
audio cues we are searching for in hockey broadcasts are not unique to this domain. Because of
this, we pretrain our neural networks on data samples from existing datasets containing cheering
or speech samples. After pretraining, we can then train our networks on the dataset of hockey
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Figure 3.1: Overview of the highlight detector architecture. A hockey broadcast is split into its
constituent video and audio streams which are then fed into a fused neural network. Within
the highlight detector a CNN processes each input modality, which are then finally joined by a
combination layer. This combined output is finally fed into a fully-connected layer to produce
the final classification prediction.

highlights that we have curated (using a standard machine learning pipeline). Effectively, this
permits us to achieve high performance (i.e., accuracy), while simultaneously keeping the high-
light dataset relatively small in size. Altogether, the resulting system is straightforward and does
not require an extensively annotated dataset to train.

Lastly, we run a set of experiments to analyze the effectiveness of various design decisions.
Most prominently, this includes the choice of neural network architecture, the training proce-
dure, and the choice of hyperparameters. We then use the results of these experiments to choose
the best design for our highlight detection system.

3.2 Dataset and preprocessing

3.2.1 Gathering the hockey broadcast dataset

First, we gather a dataset of full-length hockey broadcasts from the NHL. To accomplish this,
we downloaded hockey broadcasts using the NHL’s replay-on-demand online streaming ser-
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vice1. In total, 565 full-length broadcasts were gathered from regular-season and play-off games
played during the 2017-2018 and 2018-2019 NHL hockey seasons. Additionally, the NHL pro-
duces and releases a highlight video (5 to 8 minutes in duration) for each broadcast. We have
downloaded these summaries and paired them with their corresponding broadcasts.

The dataset amounts to approximately 1700 hours of video footage (at 29.97 frames-per-
second, totalling 183 million frames). Technically, each video has a resolution of 640x360
pixels (360p), 29.97 frames per second, 128 kilobytes-per-second stereo audio (sampled at 48
kilohertz), and MP4 encoding at an average bit-rate of 1288 kilobytes-per-second. The average
duration for a video is 3 hours for a full broadcast, and 7 minutes for the NHL produced sum-
maries. The entire dataset contains significantly more samples than required to train a highlight
detector; instead, we work with a subset of approximately 150 videos to derive our highlight
dataset.

3.2.2 Preprocessing and cleaning

The first step in our preprocessing procedure is to remove irrelevant portions of the hockey
broadcasts, i.e. the commercial breaks. Due to the formatting of the downloaded broadcasts,
commercial content is absent from the videos. Instead, a placeholder image is displayed, with-
out any audio signal, while the broadcast is on commercial break. In order to detect and re-
move the commercial breaks, we analyze the audio track of the video. The audio is separately
extracted, and the intensity is processed with a moving average filter (using a window of 2 sec-
onds). The resulting signal is thresholded to find segments of silence exceeding 15 seconds in
duration. On average, approximately 1 hour of empty footage was removed from each broad-
cast using this method. At this point, the videos are ready to be annotated into the highlight and
non-highlight partitions (to be discussed shortly).

After the annotation process, the videos are formatted for use with a machine learning
pipeline. That is, the video and audio streams are individually extracted and processed into
a format appropriate for input into a deep neural network. In this case, due to the extensive
amount of data that needs to be processed and analyzed, the video and audio tracks are down-
sampled in advance. For each broadcast: (1) the video frames are extracted at 5 frames-per-

1NHL replay-on-demand service: https://nhllive.com/en/
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second and down-sampled to a resolution of 224-by-224 pixels; (2) the audio is down-sampled
to a 16-kilohertz single-channel signal and the loudness normalized.

3.2.3 Annotating the highlight dataset

We assemble a secondary dataset of highlights from the overall hockey broadcast dataset. This
is accomplished by manually viewing the hockey broadcasts (and their NHL-produced sum-
maries) to find exciting moments of gameplay. For our application, we deem that a moment in
the game is exciting if there is visible or audible excitement from the spectators of the game.
Prominent examples of this are audible cheering or excitement in the announcers voice. After
finding these exciting segments, we record the start and end time of the exciting moment.

Likewise, to annotate the negative samples, we review the same broadcasts and find mo-
ments where the spectators are not demonstrating excitement. The start and end time of these
moments are then recorded. Since negative samples greatly outnumber positive samples, only
a random subset of the negative samples is included in the final dataset of highlights. This is
done to avoid producing a highly imbalanced dataset which introduces challenges during the
training and evaluation stages of building the highlight detector. Altogether, the dataset consists
of approximately 750 positive samples and 750 negative samples. These samples are extracted
from 151 hockey games played during the 2017-2018 and 2018-2019 NHL hockey seasons
(i.e., a subset of the broadcasts we downloaded).

3.3 A framework for detecting highlights in sports video

3.3.1 Visual analysis with convolutional neural networks

We detect highlights in the broadcast by computing the probability that, at any given time, t,
there is an exciting event (without distinction as to what type of event is occurring). This is
accomplished by using a system of deep neural networks, which takes a video clip as an input
(e.g., a 5-second clip of a proposed highlight) and outputs the predicted probability of being a
highlight on the range r0, 1s. There are several considerations when designing such a system;
namely, the preprocessing of the video and audio streams, the architecture of the CNN, and
ultimately how the CNN is trained.
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The choice of preprocessing procedure ultimately impacts what type of CNN architecture
can be chosen due to computational constraints. In order to capture the temporal aspect of the
video, the input to the CNN is composed of 3D chunks of data. These chunks typically contain a
few seconds of continuous footage, generated by iterating over the video with a sliding window.
In this approach, the size and stride of the moving window are hyperparameters. This procedure
is illustrated in Figure 3.2.

In general, it is impractical to feed every single frame into the CNN during training or
inference—the amount of time captured in each input segment must be balanced with the
time resolution of the sliding window. For instance, a 5-second input-segment (window) at
30 frames-per-second would require an input size of 150 frames. Spanned over 2 hours, with a
stride of 1 second, this amounts to approximately 1 million frames per video. Such a substantial
input is often impractical or impossible to work with due to computer memory limitations or
computation time. Instead, it is more practical to sample frames from the video at a reason-
able frequency. For example, 5 seconds of footage sampled at 5 frames-per-second, formatted
as a sliding window with a stride of 2-3 seconds yields a much more manageable amount of
information to process per video.

The next consideration is the choice of CNN architecture(s), as shown in Figure 3.1. While
effective options are abundant, the main concerns, in this case, would be the ability to handle
temporal and multimodal data while staying within reasonable computation constraints (i.e.,
something possible to compute on consumer-grade hardware). To handle temporal data, the
two main architectures we have seen are CNNs and LSTMs, which both have been demon-
strated to perform well on several computer vision tasks. For the CNNs, further modifications
are usually needed for them to support sequential inputs. We use a temporal-pooling based ap-
proach to accomplish this due to effectiveness versus the number of extra parameters required
(as demonstrated in [9, 36]). This is done by taking a CNN, which generally only supports a 2D
input, and passing each frame of the input video clip through the network. Each frame passed
through the network generates an N -dimensional embedding; the embeddings from each input
frame are then stacked (on the temporal dimension) and subject to a max operator. Finally,
the resulting N -dimensional output is passed through a series of fully-connected layers (i.e., a
feedforward network) to produce the final output, as in a typical 2D CNN architecture.
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Figure 3.2: The sliding window procedure used to iterate over the frames of an input video.
As part of the preprocessing step, a sliding window passes over the video, and frames falling
within its range are subsampled (at even intervals) to produce a chunk of data. The chunk of
data is composed of video and audio frames that are synchronized in time and are eventually
used as input to the highlight detector.

3.3.2 Audio analysis with convolutional neural networks

Similar to the visual case, we employ CNNs to analyze the information in the audio stream.
The first step is to convert the preprocessed 1D audio signal into a 2D format that can be used
with a 2D CNN. To implement this, we convert the audio signal into a 2D format by computing
the Mel spectrogram [37] of the audio signal; this technique has seen widespread in audio
analysis and has been demonstrated to work well as an input to CNNs [38, 39, 40, 2]. The
resulting spectrogram is a 2D image in which the horizontal axis represents time, the vertical
axis represents frequency, and the pixel value represents intensity. This image’s dimensions are
left as a hyperparameter, e.g., 96-by-64 pixels for each second of audio. An example of this is
shown in Figure 3.3.
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Figure 3.3: An example of a Mel spectrogram used to train our highlight detector. The spectro-
gram is a 480-by-64 pixels image generated from 5 seconds of audio, where the horizontal axis
represents time, and the vertical axis represents frequency. The image is generated from a 1D
audio signal and can be used to classify sounds into different categories.

Unlike the case with the video stream, there is significantly less information to process, es-
pecially after computing the Mel spectrograms. As such, there are no additional sub-sampling
steps or hyperparameters to consider in the preprocessing. Instead, we compute the Mel spec-
trograms for the entire video and divide them into segments that align with the sliding window
used for the video stream. The resulting video and audio inputs are synchronized in time. The
audio CNN is then trained using a typical machine learning pipeline for images.

3.3.3 Multimodal analysis with fused convolutional neural networks

Our approach utilizes a multimodal input to utilize both the visual and auditory information
available in the video. In this case, we analyze both modes simultaneously to detect high-
lights in the hockey broadcast. We accomplish this by using fusion to join multiple CNNs, each
individually handling a different mode of information. For our experiments, we address two
conventional methods of fusion: early fusion and late fusion. These two types of fusion are
summarized in Figure 3.4.

Late fusion

The most straightforward approach is through late fusion, where several (typically unimodal)
models separately process the input before joining together. In late fusion, each mode of the
input (e.g., video and audio) is passed into a corresponding model that produces an output
vector, yielding v1, v2, ..., vn. The outputs are joined together using a combination layer: this
may involve concatenating, adding, or multiplying the output vectors to produce a combined
vector, p “ fcpv1, v2, ..., vnq, where fc denotes the combination layer. This combined vector
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can then be used as a feature vector for another model, which finally makes a prediction based
on the combined information. For our application, we utilize two CNNs, one for the video and
the other for the audio.

This approach is not without drawbacks. Fusing multiple models comes at a price; namely,
computation cost and computer memory. Late fusion potentially doubles the number of parame-
ters in our model; this can make it challenging to train due to overfitting and instability (caused
by having significantly more parameters). Furthermore, the extra networks required also ex-
acerbate computer memory restrictions, which typically limit the capacity (i.e., parameters or
depth) of neural networks. Nevertheless, fused neural networks remain an effective way of tak-
ing existing single-mode frameworks and adapting it for multimodal support without extensive
changes to the conventional machine learning pipeline.

Early fusion

In early fusion, multimodal data is typically transformed into a joint representation before
being passed as an input to a model. That is, unlike the late fusion scheme, the "combination
layer" is situated at the start of the architecture instead of the end. Conventional methods of
joining together multiple modes are concatenation or using a transformation to project all modes
into a common feature space. Moreover, once the input is combined into a joint representation,
this representation can be used with a single model (as opposed to multiple unimodal models
running in parallel in late fusion).

For our experiments, we use an encoder CNN as the combination layer. It takes the usual
video and audio input and produces a single condensed output (i.e., a 2D vector) which com-
bines the information from both modalities. This vector is then fed into a single CNN, and the
entire system (including the encoder) is trained end-to-end. To implement this, we upsample
the audio spectrograms to match the dimensions of the video frames (224-by-224 pixels); the
video and audio frames are then concatenated and used as the input to the encoder. This ap-
proach allows us to avoid having to design a transform (or some other procedure) to produce
a joint representation of the video and audio data. Instead, the encoder is automatically trained
along with the rest of the system.
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Figure 3.4: Comparison between the early fusion and late fusion techniques. In early fusion, the
input, X1 and X2, are combined into a single representation (i.e., a feature vector) by a com-
bination layer before being input to a model. In contrast, late fusion passes the inputs through
multiple models (for each mode) before joining them in a combination layer; the combined
representation is finally passed into another model to make a prediction.

3.4 Methodology and experiments

3.4.1 Highlight detector architecture

Combining all of the components we have talked about so far, Figure 3.1 depicts a summary
of the system we have designed. Our highlight detector is composed of two main branches,
each of which is a CNN designed to handle video and audio information. The first branch is
a modified CNN that takes 3D chunks of visual information as input (through temporal max-
pooling). The second branch is a standard CNN that takes a 480-by-64-pixels spectrogram as
an input. Like the video stream, this branch takes as an input a sliding window with the same
hyperparameters as the first branch (i.e., the branches have inputs synchronized in time). With
the general pipeline in place, we explore several combinations of CNN architectures, as well as
fusion techniques to determine which one performs best.

First, we run a set of experiments comparing the performance of different CNN architec-
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tures. For the models under consideration, we chose to experiment with the VGG [41, 40, 2],
ResNet [42], and Inception [43] architectures. Each of these models has an extensive record of
being effective for image classification tasks and is ubiquitously used as benchmarks or base-
lines. We also examine the early fusion and late fusion variants of the architecture in each of
these experiments.

In our last set of experiments, we perform an ablation study on our highlight detector. We
examine the system’s effectiveness when presented with only one of the two modes of infor-
mation: video-only and audio-only. These experiments are intended to verify and quantify the
benefit of using fused CNNs instead of a single CNN, in addition to examining the performance
of video-only versus audio-only.

The exact structure and architecture of the highlight detectors we experiment with are

given in Section A.1 in the Appendix.

3.4.2 Training procedure and hyperparameters

The training of the system is also imperative to overall performance. We must consider the
choice of training objective (i.e., the loss function), the optimizer, the organization of the
dataset, and all of the hyper-parameters accrued throughout the design process.

First, to partition the dataset, we follow standard machine learning practices. The dataset
(made of approximately 1500 data samples) is first split into three randomized partitions: the
training set (60%), the validation set (20%), and the testing set (20%). We train our highlight
detector using the training set and then evaluate our design’s performance on the validation set
(which is then used to adjust hyperparameters). Once we have completed our experiments, we
use the test set to report our final results.

In terms of hyperparameters for training the CNNs, we need to choose settings for the input
size, the optimizer, and the training loop. For the input, we sample the video with a sliding
window that has a width of 5 seconds, a resolution of 5 frames-per-second, and a stride of 2
seconds. In all of our experiments, we use the Adam [44] optimizer with an initial learning rate
of 5x10´4. For the training loop, we use the binary-cross-entropy loss (BCE) function, a batch
size of 16, and 30 epochs of training in each experiment; the model with the overall best loss is
kept.
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To implement late fusion, we use a combination layer that consists of a two-layer feedfor-
ward network with an input layer size of 1152 features, 512 features in the hidden layer, and an
output size of 1. As for early fusion, we use a combination layer that concatenates an upsampled
copy of the audios spectrogram, and the video frames (as discussed in Section 3.3.3); both the
spectrogram and video frames have dimensions of 224x224 pixels to produce a concatenated
input with dimensions of 428x224 pixels.

3.4.3 Evaluation

To evaluate our highlight detector’s performance, we consider two main metrics: accuracy and
binary-cross-entropy (BCE) loss. Since we are building a highlight detector, including shots
that are false positives, would be highly detrimental to the quality of the resulting summaries.
As such, we are interested in ensuring that the system achieves a high degree of precision, i.e.,
it should have a low number of false positives. With that being said, we still need to maintain
adequate recall to ensure that enough highlights are being detected per game to form a summary
with sufficient duration. Because of this, and since our dataset is balanced, we use accuracy as
our primary indicator of performance. Accuracy simultaneously accounts for the importance
of true positives and true negatives while being easily interpretable compared to a metric such
as F-score. On the other hand, BCE measures the difference between our models’ predicted
probability versus the ground-truth. By minimizing for BCE during training time, we penalize
the model heavily for making incorrect classifications with a high degree of confidence.

3.5 Results

In total, we experiment with 4 architectures in two different fusion configurations. Additionally,
we perform a set of ablation experiments in which the input is limited to only video or audio.
The results of all the experiments are summarized in Table 3.1.

First, we find that using a single model, video-only or audio-only approach is viable. Our
experiments show that ResNet34 attains 96.74% accuracy and a BCE loss of 0.1024 when
only(!) video data are available to the model. Similarly, we see that InceptionV4 attains similar
results in the same situation. This performance level exceeds expectations, as the highlight
clips were annotated based only on auditory cues (e.g., cheering). Nevertheless, the video-only
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CNNs are also capable of learning to detect visual cues associated with the auditory cues such
as cheering or excitement in the announcers’ voices.

Similarly, we see strong performance from the audio-only models as well. For these ex-
periments we use 3 non-pretrained models (VGG19, ResNet34, InceptionV4) and 1 model
(VGG19) pretrained on AudioSet [2]. Of the non-pretrained models, ResNet34 is the strongest
and attains an accuracy of 97.36%. On the other hand, VGG19 leads overall with an accuracy
of 98.22% and a BCE loss of 0.0664. As expected, using a model pretrained on a large dataset
of sounds yields a significant increase in performance; in this case, a decrease of error rate from
2.64% to 1.78%.

Turning to the multimodal experiments, we analyze the same architectures (duplicated for
the video and audio streams) in both the early fusion and late fusion configurations. We find
that ResNet34 in the late fusion configuration performs best and attains an accuracy of 98.54%
accuracy. In terms of the best BCE loss, ResNet34 in the early fusion configuration results in
a loss of 0.0541. Compared to the unimodal experiments, nearly all of the architectures see
a significant increase in performance. Moreover, both early fusion and late fusion are viable
choices for highlight detection.

With that being said, when comparing the performance of multimodal models (that use
both video and audio) to unimodal models which only utilized audio data, we did not see a
large improvement in performance. For example, the multimodal variant of ResNet34 (using
both audio and video) has only 0.9% more accuracy than the audio-only version of ResNet34,
despite utilizing substantially more data. We suspect that this is due to using the reaction of the
audience and the play-by-play announcers as the primary cue for defining a highlight. Since this
cue is based on audio (i.e., cheering or excitement in the announcers’ voices), it follows that
the video data do not provide an abundance of additional information that isn’t already present
in the audio.

Lastly, we experiment with a mixture of architectures, i.e., using a different model for each
of the video and audio streams. In this set-up, we find that a combination of ResNet34 for the
video stream, and VGG19 for the audio stream performs best, with an accuracy of 98.82%
and BCE loss of 0.0309. Our results demonstrate that using both video and audio improves the
highlight detector’s classification accuracy and BCE loss by a significant margin. The highlight
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detector learns to find indications of excitement in both the video and audio, as well as cues
which might only be apparent when analyzing both modes together, but not either in isolation.

As an aside, we note that although we use a balanced dataset for our experiments (i.e., our
dataset has a similar number of positive and negative samples), this distribution of data is usu-
ally not found in practice. A typical hockey broadcast will contain significantly more negative
segments (i.e., segments of the game that are not highlights) than positive segments, and there-
fore we should ensure that our highlight detector maintains a high degree of accuracy in such a
scenario. In this case, when examining the accuracy of the models we experimented with, we
observed that the highlight detector maintained approximately the same level of accuracy when
dealing with both positive and negative samples. Therefore, we can expect our models to be
highly accurate even if the data under consideration are unbalanced (i.e., the distribution of the
data is skewed towards positive or negative samples).

3.6 Conclusion

In this chapter, we propose an audience-driven highlight detector for highlight detection. We
show that by analyzing the audience of hockey broadcasts, we can effectively train a highlight
detector with a relatively small dataset. Our experiments demonstrate the viability of using
multimodal CNNs through a variety of neural network fusion techniques. Through experimen-
tation, we settled on a combination of a modified ResNet34 and VGG19 architectures designed
to handle visual and auditory data, respectively. This configuration detects highlights in hockey
broadcasts with a high degree of accuracy while maintaining a relatively simple and intuitive
design.

With a functional highlight detector now completed, the next step in designing our system is
finding a way to create compelling summaries using the detected highlights. We seek to improve
upon the conventional approach in highlight-driven video summarization, where highlights are
just concatenated without further consideration. To this end, we propose a module explicitly
designed to pick and choose which highlights should actually be included in the final summary.
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Table 3.1: Highlight detector architecture versus accuracy and BCE loss

Model Fusion Acc. (%) Loss

VGG19 (video only) N/A 81.65 0.4068
ResNet34 (video only) N/A 96.74 0.1024

InceptionV4 (video only) N/A 96.15 0.1234

VGG19 (audio only) N/A 64.50 0.5891
ResNet34 (audio only) N/A 97.63 0.0698
InceptionV4 (audio only) N/A 96.15 0.1324
VGG19 (pretrained, audio only) N/A 98.22 0.0664

VGG19 (video + audio) Late 98.19 0.0653
ResNet34 (video + audio) Late 98.54 0.1028
InceptionV4 (video + audio) Late 97.04 0.1131
VGG19 (video + audio) Early 64.45 0.6756
ResNet34 (video + audio) Early 97.92 0.0541

InceptionV4 (video + audio) Early 96.45 0.1009

ResNet34 (video) + VGG19 (pretrained, audio) Late 98.82 0.0309

ResNet34 (video) + InceptionV4 (audio) Late 96.44 0.1059
InceptionV4 (video) + VGG19 (pretrained, audio) Late 98.81 0.0418
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4
Summary Formation

4.1 Overview

Given that the highlight detector is complete, we can take a full-length hockey broadcast and
decompose it into a set of highlight clips. In general, there will be more highlight clips than
there is space to include in the summary, i.e., hockey summaries are usually between four and
eight minutes in duration, and there is no guarantee that all of the detected highlights will fit
in this space. Moreover, while the highlight detector can find highlights, it does not consider
which highlights complement or conflict with each other when placed in the same summary.
Therefore, we require some sort of selection or filtering process to choose which highlights
should actually be used to form the final summary.

To this end, the second component of our video summarization system is the highlight se-
lector. It takes a set of highlight candidates from the highlight detector and selects which of
the candidates should form the final video summary. This second component directly comple-
ments the highlight detector, and together they form our complete video summarization system.
In short, the highlight selection problem is: given a limited duration for a summary, how do we
best determine which highlights should be included to create a compelling hockey summary?

Evaluation

The highlight selection task is challenging because it is difficult to explicitly define what charac-
teristics in a candidate are conducive to creating high-quality hockey summaries. After all, what
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4.1 Overview

makes a summary pleasing to a viewer? A conventional approach usually considers some form
of accuracy metric (e.g. recall, precision, and F-score) measured against a human-annotated
dataset. However, only having a high degree of "accuracy" does not guarantee that a summary
will be pleasing to view. Other considerations usually include representation and diversity. A
quality summary should portray an accurate representation of the game to the viewer—as such,
it should include most (if not all) of the key events that occur during the hockey game. Further-
more, a good summary should also represent a variety of content found within the broadcast
to avoid monotony; this typically refers to diversity in visual, semantic, or temporal content.
For instance, a good hockey summary should feature a diverse set of events that takes place at
different times throughout a game. Lastly, we also consider the notion of coherence when gen-
erating our summaries. A good summary should portray events with context and avoid abruptly
changing shots before an event is concluded. For example, a goal in a hockey game should be
presented with some "set-up" leading to the goal and show some of the aftermath. Therefore, we
should strive for a highlight selector that produces summaries satisfying these criteria (through
the selection of the right set of candidates).

Ranking candidates using value functions

For our baseline approach, we consider a straightforward technique that uses an explicitly de-
signed value function to assign a value to each of the candidates. The highest scoring candidates
are then selected and joined together into a summary (i.e., the candidates are ranked by a value
function, and only the best are chosen). This is very similar to the metric-driven video summa-
rization approaches discussed earlier in Section 2.3, where a value is assigned to each moment
(or segment) of a video based on its features. The key distinction is that we are not using a
value function to determine what and where the highlights are (that is the job of the highlight
detector), but only as a means of filtering some of them out.

A typical value function measures features such as the presence of important entities; for
example, motion, visual diversity (among the selected candidates), etc. A more sophisticated
value function may also attempt to account for the interaction between different video clips
(e.g., do specific clips redundantly portray the same content, or do certain clips complement
each other?). In general, the main consideration behind this value-based approach is figuring
out which features in a video the value function should measure.
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4.1 Overview

Adversarial learning

As opposed to the above, we examine a more recent and advanced technique based on deep
learning. Rather than explicitly designing a value function and having to figure out which fea-
tures to measure, we instead use a deep network that automatically learns to filter the highlight
candidates. Typically, deep networks learn to summarize videos by training on an annotated
dataset. The deep network is presented an input video and is tasked with finding which shots
should form a summary. This summary is then evaluated by comparing it to summaries gener-
ated by human annotators. While this is an effective technique, it isn’t applicable in our situation
because we are working with an unlabelled dataset. Moreover, this would counter what we are
trying to achieve by relying on the crowd to dictate highlights, rather than using human-made
annotations.

For this reason, we use an approach that can function without labelled data. While there
are several types of unsupervised learning techniques that could work for our application, we
decided to investigate adversarial learning due to recent works demonstrating its effectiveness
(e.g., Mahasseni et al. [35] and Rochan et al. [45]). The idea behind this approach is to create
a system of deep networks that have objective functions that compete with one another, and
using this as a means for training the components of the system (this will be discussed in
Section 4.3). Training the system in this manner allows us to bypass the need for an annotated
dataset of hockey summaries and bypass the need to design any explicit value functions (such
as in the value-based approach).

Chapter organization

To summarize, the highlight selection task is non-trivial, and there are many different ways of
interpreting the problem. In this chapter, we examine both of the approaches discussed above,
namely: (1) the value-based approach and (2) the adversarial-learning-based approach. For both
of these techniques, we formulate the problem, discuss various design decisions, and explore
each technique’s strengths and weaknesses. The results of these experiments (and, therefore,
the overall video summarization system) will be discussed in Chapter 5.
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4.2 Creating summaries by using value functions

4.2 Creating summaries by using value functions

For our first experiment, we address the highlight selection task using a conventional value
function-based technique. In this approach, a set of highlight candidates is received from the
highlight detector, and then a highlight selector chooses which candidates to keep by assigning
a value to each of the candidates under consideration. This effectively allows us to rank the
"quality" of the highlight candidates, and therefore we can select the best subset from which
to form a summary. Before delving into the highlight selector’s details, we indicate the flow of
information through the complete video summarization system is as follows:

1. We pass the hockey broadcast under consideration through the highlight detector and
obtain a graph, P ptq, that plots the probability of a highlight occurring versus the video’s
time (down to a resolution of 0.2 seconds). This graph is processed with a moving average
filter with a window of 1 second to reduce noise in the signal. An example of a signal
from the highlight detector (and its corresponding graph) is depicted in Figure 4.1.

2. This graph is thresholded (at P ptq “ 0.50) and converted into a binary mask indicating
the locations of the predicted highlights throughout the entire broadcast. In the mask,
a value of one indicates a highlight, and a value of zero indicates a so-called "non-
highlight".

3. We assume that each continuous nonzero segment in the binary mask is considered to be
a potential highlight candidate. The broadcast is subsequently decomposed into a set of
highlight candidates according to this definition. The resulting set of video clips is the
output of the highlight detector and consequently the input to the highlight selector.

4. A subset of the highlight candidates is chosen by the highlight selector and concatenated
into the final summary. In this case, the candidates are evaluated and ranked by a value
function, and the best candidates are selected.

With this framework in place, the primary consideration is figuring out how to design a
value function that assigns a meaningful value to each of the candidate clips. Effectively, we
can tailor the characteristics of the summary produced by our system through the design of the
value function used by the highlight selector. To this end, we investigate three different value
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4.2 Creating summaries by using value functions

functions, each of which places emphasis on different characteristics of the candidates under
consideration.

4.2.1 Probability-weighted candidates

The most straightforward value function to use (in this context) would be to assign each can-
didate a score based on its probability of being a highlight, the computation of which will be
discussed shortly. Using this method, the highlight selector chooses the candidates with the
strongest individual probability of being a highlight and joins them into a summary. Of note,
since the highlight probability is from the highlight detector, this value directly incorporates the
information from the spectators (i.e., the crowd and the announcers).

Due to its simplicity, this value function does not consider if specific candidates complement
or conflict when placed in the same summary. Moreover, the value function does not consider
other properties of the highlight candidates, e.g., the duration of the event, or the time at which
the event occurs during the broadcast. For these reasons, we use this value function as our
baseline to compare against the effectiveness of more sophisticated techniques.

Recall that there is a highlight probability associated with each moment in time of the
broadcast (predicted by the highlight detector). Since each highlight candidate is formed by a
continuous segment of video footage, we compute the highlight probability for a candidate by
averaging the highlight probability associated with each second of that clip. We refer to this
value as the probability score of a highlight candidate. For instance, if a highlight candidate
occurs within the first ten seconds of the hockey broadcast, its probability score is computed by
averaging the ten highlight probabilities predicted by the highlight detector for that period of
time.

The computation of the probability score is summarized by Equation 4.1 and the overall
value function by Equation 4.2. As for the notation: (1) ci represents the i-th highlight candidate
in a broadcast (bounded between the times ti,1 and ti,2); (2) Spciq represents the probability
score for the i-th candidate; (3) P ptnq represents the highlight probability at a given time tn

during the broadcast; and (4) the value function is denoted by V pciq.
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4.2 Creating summaries by using value functions

(a) (b)

(c) (d)

Figure 4.1: An example of the cheering probability versus time signal received from the high-
light detector (for a single broadcast). The cheering probability signal is converted into a binary
mask by applying a threshold; the resulting mask is split into continuous segments, which form
a set of highlight candidates. Figures 4.1(a) depicts the moving average of the signal, and Fig-
ure 4.1(b) shows the mask obtained by thresholding the probability at p “ 0.5. Figures 4.1(c)
and 4.1(d) show a close-up look of the plot in Figure 4.1(a) and 4.1(b).
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4.2 Creating summaries by using value functions

Spciq “ 1

ti,2 ´ ti,1

ti,2ÿ

tn“ti,1

P ptnq (4.1)

V pciq “ Spciq (4.2)

4.2.2 Duration-weighted candidates

For our next experiment, we consider a value function that weighs the candidates based on their
duration; this is represented as a value function by Equation 4.3. The rationale behind this is
that high duration highlights contain more content than their low duration counterparts, and
therefore should be weighed more heavily. This, of course, is a heuristic, but, nonetheless it
still makes an interesting experiment.

V pciq “ Spciq ˚ durationpciq (4.3)

In contrast to the baseline probability-only approach, this value function places a significant
emphasis on the duration of the individual candidates. It, therefore, penalizes highlight candi-
dates with low durations, even if they have high probability scores. Consequently, the sum-
maries formed using this technique lean heavily towards candidates that simultaneously have
a strong probability score and a high duration. We also expect that choosing candidates with
longer durations will result in summaries with fewer false positives since high duration candi-
dates are the result of the highlight detector making several consecutive positive predictions. It
is also more likely that the resulting summary will be more coherent since fewer candidates are
forming the summary (and therefore, there are fewer transitions between scenes).

As an aside, by taking this approach, the highlight selection task becomes an optimization
problem (known as the knapsack problem [46]) where one tries to fit the maximum value of
items into a limited space (given that each item has a different size and value). In this analogy,
the limited space is represented by the maximum time allocated to the summary, while the size
of the item is the duration of the candidate, and the value is proportional to the candidate’s
probability score.
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4.2 Creating summaries by using value functions

4.2.3 Proximity-weighted candidates

Lastly, we consider a value function that uses the heuristic that several exciting events occurring
in close succession are more exciting than a single isolated event. Of course, this is not true
in general, but such a heuristic has been previously shown to be effective for summarizing
hockey broadcasts [34]. By analyzing when the highlight candidates occur during the game, we
can add a bias to highlights that are clustered together. This "proximity term" is computed by
comparing the distances between each of the highlight candidates. In doing so, the summaries
formed by our highlight selector will favour highlights occurring near each other, even though
the individual highlights may not have a very high probability score.

Before running this experiment, it is unclear how this type of weighing of candidates will
impact the characteristics of the resulting summary. We suspect that there may be an increase
in the number of false positives (due to less emphasis on the probability score). However, it
is also more likely that the candidates selected will complement and provide context for each
other (since they occur close together during the game).

To compute this value function, we add a bias based on the distance in time for every
combination of highlight candidates pairs (i.e., the first candidate compared to the second, then
the first candidate compared to the third, and so forth). This is expressed by Equation 4.4, in
which the i-th highlight candidate (centered at time ti) is compared against every other j-th
candidate occurring at time tj . The choice of the distance function (and how it tapers off with
increasing distances) is relatively arbitrary. In our case, we kept things simple, and computed
the bias using the reciprocal of the squared distance (in time) between two highlights. Lastly,
the proximity term is scaled using a hyperparameter, α “ 0.01, in order to keep the magnitude
of the bias relatively small compared to the probability score. As desired, the proximity term in
the resulting value function is maximized when several candidates are within close proximity
(in time) with one another.

V pciq “ P pciq ` α
N´1ÿ

j“0

1

pti ´ tjq2loooooooomoooooooon
proximity term

(4.4)
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4.2 Creating summaries by using value functions

4.2.4 Methodology

Highlight selection process

Having designed the value functions, the next step is figuring how to apply them to generate a
summary. We use an iterative approach to implement the candidate selection process, which is
summarized as follows:

1. First, we assign a value to each highlight candidate under consideration using a value
function. After assigning the values, all of the candidates are ranked and sorted accord-
ingly.

2. We set an initial threshold equal to the mean value of all of the candidates. All candidates
with values above this threshold are tentatively included in the summary.

3. If the resulting summary has a duration that falls within given minimum and maximum
constraints, we terminate the highlight selection process and keep the summary. In gen-
eral, we enforce a minimum summary duration of five minutes and a maximum duration
of eight minutes.

4. Otherwise, if the summary has a duration that does not meet these standards, we raise or
lower the threshold slightly (e.g., by ten percent) and repeat this procedure until a satis-
factory summary is produced. For example, if the initial threshold produces a summary
with an excessive duration, the threshold is iteratively raised until a summary is produced
with a satisfactory duration.

The advantage of using this approach is that we effectively have a dynamic threshold for
what candidates are included in the summary. If this were not the case, it would be difficult (and
ineffective) to use a static threshold, since the value of candidates across different broadcast is
highly varied.

Dataset

For this section of experimentation, we retain the same dataset used to train and evaluate the
highlight detector from Chapter 3. Although we are not training any models for the optimization-
based approaches, we retain the same partitioning of training and validation data from the high-
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4.3 Creating summaries by using adversarial neural networks

light detector. For the test evaluation (to be discussed in Section 5.2), we use a new partition of
testing data that does not overlap with the previous dataset.

As previously discussed (in Section 3.2.1), this dataset was composed by a set of full-length
NHL hockey broadcasts played during the 2018-2019 and 2019-2020 hockey seasons. For each
of the broadcasts, the highlight detector generates a set of highlight candidates; together, these
highlight candidates form the dataset used to experiment with the highlight selector. We refer
to this dataset as the highlight candidate dataset. Moreover, for each of these broadcasts, the
NHL produces and releases a professionally produced summary—we have also gathered these
summaries and paired them with their original broadcasts. We henceforth refer to this dataset
as the NHL summary dataset and will be using it for training the adversarial networks.

4.3 Creating summaries by using adversarial neural networks

Until this point, the value functions we have discussed have relied on explicitly designed fea-
tures to measure the value of highlight candidates. A significant downside, however, is that it
is usually difficult or unclear how these features should be designed in order to generate high-
quality summaries. For instance, if we are trying to automatically generate hockey summaries
that appear professionally-produced (i.e., high-quality), it is difficult to define what features or
characteristics make an excellent hockey summary. In reality, a professionally-produced sum-
mary contains a multitude of fine details that would be impractical to measure using a handful
of explicitly designed features. Consequently, a solution to this problem is not trivial by using
value functions or other similar techniques.

An alternative solution to this problem is to use a deep network in conjunction with a
human-annotated dataset. This approach would follow a typical supervised learning pipeline,
which involves training a deep network to select highlight candidates based on a database of an-
notations. In this context, however, trying to solve this problem with supervised learning would
be impractical due to the requirement of a large and extensively annotated dataset of hockey
broadcasts. Since there are no public datasets of this nature, we would have to generate one
ourselves; this would be an extremely time-consuming and expensive process. For instance, to
annotate a sports broadcast, we would have to sort through several hours of content and label
which parts should be included in a summary.
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4.3 Creating summaries by using adversarial neural networks

Instead, we formulate the problem in a manner where we can use deep networks to im-
plicitly learn how to produce summaries with characteristics similar to professionally produced
hockey summaries without using annotations. To accomplish this, we leverage existing tech-
niques for image generation, most notably, generative adversarial networks and adapt them for
videos instead. Our approach is built upon previous works that have shown adversarial learning
to be effective for video summarization, e.g. Mahasseni et al. [35] and Rochan et al. [45].

Adversarial networks

Adversarial networks function by casting two neural networks with opposing tasks against each
other and using this conflict as a means of training both networks simultaneously. A typical
application for this is artificial image generation, but it can also be extended to many other
applications, such as video summarization.

For example, if we were trying to generate artificial images of human faces, we would build
a system composed of a generator network tasked with generating images of human faces, and
a discriminator network tasked with distinguishing between generated and real images. When
trained using a dataset of real human faces, the generator and discriminator would both learn
how to perform their respective tasks by "competing" against each other. At first, the "fake"
samples created by the generator would not be very plausible and have a very different distri-
bution of features than the "real" samples. However, as the network progresses during training,
the generator creates increasingly more realistic images capable of fooling the discriminator.
Likewise, the discriminator becomes increasingly adept at distinguishing between "real" and
"fake" images. This feedback cycle trains both networks to perform their respective tasks, and
eventually, the "fake" samples created by the generator have characteristics similar to the "real"
samples. This concept has been previously demonstrated (e.g., Goodfellow et al. [47], Karras
et al. [48], among many others) to be capable of training a generator that can produce very
realistic images.

For our application, we seek to utilize adversarial learning and adapt it for generating
hockey summaries instead of images; this procedure is depicted in Figure 4.2. In the place
of a dataset of real images, we utilize the dataset of NHL summaries that we gathered earlier
(discussed in Section 3.2.1). Recall that for each broadcast in our hockey broadcast dataset, we
have paired it with a summary professionally produced by the NHL. While these NHL sum-
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maries may not be perfect, they set a high standard for automatically generated summaries.
Therefore, in this analogy (compared to image generation), we use the NHL summaries as the
"real" samples for training the generator and discriminator. Here, the key idea is that we are us-
ing this procedure to train a generator network that can select highlight candidates that produce
"fake" hockey summaries with the characteristics of "real" professionally-produced summaries.
Beyond this, the labelling of certain summaries as "real" or "fake" does not actually mean any-
thing in this context.

Using this, we design a system of deep networks where we task one network with generating
a "fake" summary (by selecting a subset of the highlight candidates) and another network with
the task of distinguishing our generated summaries from "real" NHL-produced summaries. We
refer to these two networks as the generator and the discriminator (i.e., in the same manner
as their image generating analogues). The pair of networks are trained using an adversarial
objective function where the discriminator is penalized for failing to distinguish between the
generated and real summaries, and the generator is rewarded for fooling the discriminator.

In short, we are interested in using adversarial learning to train a generator that can automat-
ically produce summaries (through the selection of highlight candidates) with characteristics
similar to professionally produced summaries created for NHL hockey games. Additionally, by
using adversarial learning, we can forego having to explicitly design any metrics to measure
the "quality" of a summary, as well as bypassing the need to produce an extensively labelled
dataset. After training, we can combine the generator with the highlight detector (that we de-
signed in Chapter 3), to form an end-to-end video summarization system. The highlight detector

finds the most exciting moments in the broadcast, and the highlight selector picks the subset of
highlights that form the best summary. The overall architecture being discussed in this section
is summarized in Figure 4.3.
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Figure 4.2: A sketch depicting the flow of information through an adversarial system for video
summarization. First, a "fake" summary is generated by passing highlight candidates (deter-
mined by the highlight detector) through a generator. The generator creates this summary by
selecting a subset of the highlight candidates. For the "real" data sample, we use a summary
produced by the NHL for the same broadcast. Both "real" and "fake" samples are presented to a
discriminator, which predicts a classification for both samples. From this classification, the loss
functions are computed for the deep network and backpropagated to adjust the parameters of
the entire system. The system is trained in this manner until the generator can produce "fake"
summaries with similar characteristics to "real" NHL summaries.

4.3.1 Generator

The first component of the overall adversarial system is the generator. At a glance, its function
is to produce a summary from a subset of highlight candidates presented to the system. These
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highlight candidates are generated in the same way as in the value-based approach discussed
previously (i.e., by analyzing the highlight probability graph generated from the highlight de-
tector). The generator itself is composed of two deep networks, where each component has its
own purpose. Namely, (1) the highlight selector, and (2) the autoencoder. The highlight selec-
tor is tasked with filtering the highlight candidates, and the autoencoder is included to facilitate
the training of the overall adversarial system (composed of a generator and a discriminator).

Highlight selector

The first component of the generator is the highlight selector. The highlight selector’s task is to
analyze the frames from each of the highlight candidates, and output a mask indicating which

of the candidates should be chosen. The chosen candidates are then concatenated to generate
a summary. It turns out that the highlight selection task is very similar to a video classification
task. Therefore, the design of the highlight selector shares a very similar design to the highlight
detector discussed in Chapter 3.

The highlight selector’s objective is analogous to an image classification problem, with
the main distinction being that we are working with frames from multiple videos, instead of
single images. Therefore, like the highlight detector, we can solve this problem by using a
CNN adapted to temporal data such as videos. Using the same method as before, we adapt
the CNN to handle 3D inputs by using temporal pooling (discussed in Section 3.3.1)—this
technique is reasonably effective, simple, and computationally efficient. Moreover, we have
already successfully used this technique for building the highlight detector.

The highlight selector’s input is composed by extracting the frames from each of the can-
didate clips and concatenating them into a 3D matrix of frames. We use a matrix to represent
the data because the highlight selector considers multiple candidates simultaneously. For ex-
ample, if there are N highlight candidates proposed by the highlight detector, we sample L

frames (spaced equally in time) from each of the candidates and stack them together into a N

by L matrix of frames. After passing this input through the highlight selector (i.e., a CNN), a
mask indicating which of the N candidates should be kept in the final summary is produced;
this is then used to generate a summary from the highlight candidates. The exact details and
formatting of the data will be discussed shortly in Section 4.3.3.

44



4.3 Creating summaries by using adversarial neural networks
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Figure 4.3: The overall architecture for the adversarial summarization system. It takes a set of
highlight candidates from which a subset is chosen by the highlight selector to form a summary.
The artificial summary is passed through an autoencoder that produces an encoding (i.e., an
embedding). The discriminator, composed of a feedforward network, attempts to classify the
encoding as real or fake. Furthermore, the encoding is passed through a decoder to create a
reconstruction of the summary; this is used to compute the reconstruction loss during training
time.
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Encoder

Due to the varying durations of the summaries generated by the highlight selector, the genera-
tor is also tasked with encoding the generated summaries into an embedding (in some arbitrary
feature space of hockey summaries). As such, the second component of the generator is the
encoder. The encoding procedure simplifies the process of comparing data from different sum-
maries by allowing us to design the generator to produce a fixed-size output (which would not
be guaranteed otherwise). Furthermore, the encoding step significantly reduces the computa-
tional cost and memory usage of the discriminator (to be discussed shortly), making it easier to
work with large inputs such as hockey broadcasts.

To accomplish this, we build and train the encoder using an autoencoder architecture. Au-
toencoders function by using an encoder and decoder pair trained in unison to learn compact
representations of data automatically. That is, by using an autoencoder, we can train an encoder
without requiring any additional data. In this architecture, an encoder is tasked with compress-
ing an input into an embedding, and a decoder is tasked with reconstructing the embedding
back into the original input.

Compressing the input into an embedding creates a bottleneck of information within the sys-
tem and forces the encoder to learn compact representations of the input. On the other hand, the
decoder is included to ensure that these compact representations retain the information of the
original input. This procedure is summarized in Figure 4.4. The overall system is then penalized
during training time based on the difference between the original input and the reconstructed
output. By training the system in this manner, the encoder automatically learns to create com-
pressed representations of the input (that retain most of the inputs original information) due
to the autoencoder architecture’s bottleneck of information. As for the choice of models, we
base both the encoder and decoder off of CNNs, since they are well suited for tasks involving
images.
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Figure 4.4: An example of a typical autoencoder architecture [49]. An input image is processed
by a model and compressed into an encoding, which creates a bottleneck of information in the
system. This encoding is subsequently processed by another model tasked with reconstructing
the original input from its compressed representation. By training the system to produce an
output which closely resembles the original input, the autoencoder learns to create compact
representations of the input due to the bottleneck of information in the system.

To summarize, the encoder takes a summary generated by the highlight selector and pro-
duces a compact embedding to represent the video. This embedding is then presented to the
discriminator, which is tasked with classifying it as a real or artificial. Using an encoder allows
us to design the discriminator to accept a fixed-size input, simplifying the design process, and
reducing the computational requirements of the overall system. Lastly, by using an autoencoder
architecture, we can automatically train the encoder without any additional datasets.

4.3.2 Discriminator

The second component of the overall adversarial system is the discriminator. The discrimina-
tor is tasked with taking an encoded summary (produced by the generator’s encoder component)
and classifying it as either real or generated. In other words, the discriminator is a classifier.
Since most of the computation is performed by the generator, the discriminator is very simple
in comparison; it consists of a single feedforward network that takes a feature vector (embed-
ding) as an input and produces a single value indicating the probability that the input is the
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encoding from a real video summary.

During training, several sets of highlight candidates (from multiple broadcasts) are passed
through the generator to create a set of generated embeddings. This is then mixed with a pool
of real embeddings generated by passing NHL-produced summaries through the generator’s
encoder. Next, the discriminator is presented with embeddings from both real and generated
summaries and is tasked with distinguishing between the two. The discriminator is penalized
for making misclassifications, and the generator is penalized when the discriminator makes
correct classifications. Typically, this training procedure is very noisy, and the generator and
discriminator’s performance will continually oscillate due to the nature of their conflicting ob-
jectives. The overall adversarial system is trained in this manner until the generator can generate
summaries that fool the discriminator with a high degree of accuracy.

Ideally, upon convergence during training, the generated summaries will have similar char-
acteristics to the real summaries; if so, we have successfully trained a generator (and thus
highlight selector) that creates realistic appearing summaries. This is not always the case, and
there are several failure modes associated with training adversarial networks. For example, the
discriminator may learn much more quickly than the generator, and "dominate" its adversary,
resulting in the system failing to train properly. Alternatively, the system’s performance may
oscillate and diverge, resulting in poor performance from both the generator and the discrimi-
nator. In these cases, the hyperparameters associated with each of the components are adjusted
(through trial and error), and the training procedure is repeated. The final set of hyperparam-
eters we used are reported in Section 4.3.3. Finally, upon completion of training, the trained
highlight selector is extracted from the generator and joined with the highlight detector to form
the complete video summarization system.
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4.3.3 Methodology

The exact structure and architecture of the adversarial networks we experiment with are

given in Section A.2 in the Appendix.

Loss functions

The generator and discriminator characteristics are determined by the choice of training objec-
tives (i.e., loss functions) used during the training procedure. We keep things simple for our
application and use a standard binary cross-entropy loss (BCE) function for both the genera-
tor and discriminator. The BCE loss penalizes the generator when the discriminator makes a
correct prediction and penalizes the discriminator when it makes an incorrect prediction. As
for the autoencoder, we use a mean-squared-error (MSE) loss function to quantify the recon-
struction error. The MSE loss function measures the autoencoder’s capability to reconstruct the
original input presented to the system. Recall that due to the information bottleneck present in
the autoencoder architecture, this type of loss function encourages the encoder to learn compact
representations (embeddings) of the input which preserve the information of the original input.

s “ Spxq
e “ Aepsq
ŷ “ Dpeq
x̂ “ Adpeq

(4.5)

Before we define the loss functions of the adversarial system, we first assign a symbol to all
of the components and variables we have discussed so far. We denote the candidate frames (for-
matted as a feature matrix) as x, the reconstructed feature matrix as x̂, the generated summary
as s, the ground truth label as y (i.e., real or fake), the discriminator’s predicted classification
as ŷ, and the encoded representation of the input as e. The encoder is denoted by Aepsq, the
decoder as Adpeq, the highlight selector as Spxq, and the discriminator as Dpeq.

Equation 4.5 summarizes the flow of information through the adversarial system using the
above notation. Moreover, using this notation, the generator and discriminator have their loss
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functions defined by Equation 4.7 and Equation 4.8, respectively. Both of these loss functions
are essentially just a standard BCE loss function (as discussed above). Additionally, the gener-
ator’s loss function includes a reconstruction loss (i.e., mean-squared-error loss). As discussed
in Section 4.3.1, this reconstruction loss is included to train the autoencoder component of the
generator.

Finally, the overall loss function of the system is given by Equation 4.6 (see below), where
the loss functions for the generator and discriminator are denoted by LG and LD, respectively.
This is an adversarial objective where the minimization of a component’s loss function maxi-
mizes its counterpart’s loss function.

Ladv “ LG ` LD (4.6)

LGpx, x̂, y, ŷq “ ´py logpŷq ` p1 ´ yq logp1 ´ ŷqq ` ||px ´ x̂q||2looooomooooon
reconstruction error

(4.7)

LDpy, ŷq “ ´py logpŷq ` p1 ´ yq logp1 ´ ŷqq (4.8)

Figure 4.5: The loss functions for the adversarial system. Equation 4.6 represents the overall
training objective composed by the generator and discriminator’s loss functions. The genera-
tor’s loss function is given by Equation 4.7, and the discriminator’s loss function is given by
Equation 4.8. Both of these loss functions are based on BCE, which penalizes the networks for
making incorrect predictions (i.e., when y differs from ŷ).

Training procedure

The adversarial system is trained using a standard deep learning pipeline. A batch of training
samples are presented to the system, and an output is generated for each sample. The loss
function is evaluated using the output, and an optimizer adjusts the parameters of the system.

In this case, the highlight candidates for each broadcast in the dataset are precomputed us-
ing the highlight detector to form the input dataset. This data is then divided into batches and
randomly fed into the generator, which produces a generated summary and a corresponding
embedding for each sample in that batch. Next, the NHL-produced summary corresponding to
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that samples broadcast is fed into the encoder to produce an embedding from a "real" summary.
The discriminator is then presented with embeddings from real and generated videos, and then
tasked with making a classification for the inputs. The loss functions are subsequently evalu-
ated based on the discriminators predictions, and then the loss is backpropagated to update the
parameters of the system (as discussed in Section 4.3.1).

This procedure is repeated until the system’s validation loss functions either converge or
begin to diverge, at which point the training is stopped. We use a stochastic gradient descent
(SGD) optimizer for training all system components, with a learning rate of 1x10´2 and a batch
size of 1 or 2 (due to memory constraints).

Dataset

We use a dataset of 200 NHL hockey broadcasts (randomly) sourced from the highlight candi-
date dataset for our experiments. Each broadcast is paired with their NHL-produced summary
video from the NHL summary dataset (as previously discussed in Section 4.2.4). The videos
used in these experiments do not overlap with any of the videos used to train or evaluate the
highlight detector designed in Chapter 3. Moreover, for the test evaluation (to be discussed in
Section 5.2), we use another new partition of testing data to report our final results.

Lastly, this data are partitioned into a training and validation set. The training set is used to
train the adversarial system, and the validation set is used to guide design decisions (i.e., we
adjust the hyperparameters of the system based on the results of using the validation set). Upon
completing all of our experiments, the test set is evaluated and used to report the final results.

Note that since we have access to NHL-produced summary videos, we could have used
these as ground-truth for training a highlight selector in a supervised fashion (rather than the
adversarial formulation we have discussed). In doing so, however, we would no longer be de-
signing an “audience-informed” video summarization system, since we would no longer be
using the reaction of the crowd and announcers to dictate what should be a highlight. This, of
course, would be counter to what we are trying to accomplish in this thesis.
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4.3 Creating summaries by using adversarial neural networks

Preprocessing, data formatting, and hyperparameters

The generator takes a set of highlight candidates formatted as a matrix of frames as input. Each
candidate, cn, is represented as a three-dimensional stack of frames (with a height of L). The
frames from all of the N candidates (per broadcast) are then stacked into a feature matrix,
C “ rc1, cn, cn`1...cN s.

These frames are obtained by subsampling L frames from each of the candidates at a re-
duced framerate and resolution. Since each of these clips’ duration is variable, each candidate
cn is zero-padded and truncated to maintain a fixed length of L frames-per-candidate. Similarly,
the number of detected highlights per broadcast is also variable, and therefore we keep the N

best candidates and discard the remainder in order to maintain a fixed number of candidates
per broadcast. Altogether, we chose to use: (1) L “ 15, and N “ 30, and (2) a resolution of
112x112 pixels sampled at 2 frames-per-second, with 3 channels dedicated for colour. Using
these parameters, each candidate feature matrix, cn, has dimensions of [15x3x112x112]. The
resulting matrix of RGB images (for each broadcast) has a fixed shape of [30x15x3x112x112];
this matrix is now ready to be input to the generator.

The generator takes this [30x15x3x112x112] feature matrix and produces a binary mask
indicating which of the 30 candidates should be selected using its highlight selector component.
This mask is then multiplied with the candidate feature matrix, to produce a feature matrix in
which specific columns are zeroed out. In doing so, the information of the unchosen candidates
from the feature matrix, and therefore this processed matrix represents a summary generated
from a subset of the candidates.

The next step is to encode the summary feature matrix data into an embedding, which
can finally be input to the discriminator. The encoder accomplishes this and produces an M -
dimensional embedding from the input feature matrix. For our application, we set M “ 256,
resulting in a 256-dimensional encoding for each summary produced by the generator. Finally,
this embedding is input to the discriminator, which predicts the probability (on the range [0, 1])
that the input is a real summary, instead of a generated summary.

52



4.3 Creating summaries by using adversarial neural networks

Conclusion

In this chapter, we discuss the design of the highlight selector component. Its purpose is to take
a set of highlights (determined by cues from the audience and play-by-play announcers) and
select which of them should be included in the generated summary. This is done because there
are far more highlights in a hockey broadcast than there is space for in a hockey summary. We
formulate two different approaches to the highlight selection problem: a value-based approach,
and an adversarial learning-based approach. These techniques are fundamentally different, and
therefore present their own set of strengths and weaknesses.

The value-based technique works by ranking the highlight candidates based on a value func-
tion and only selecting the best highlights to include in a summary. This technique is intuitive
and straightforward—it allows the user to design the objective functions as they please, and
therefore its results are also easily interpretable. However, the downside is that it is unclear as
to what properties make a good video summary. Consequently, it is not easy to explicitly design
objective functions that are truly conducive to generating good summaries.

The adversarial learning-based technique functions by using a system of deep networks that
work in unison to select highlight candidates that produce compelling summaries automatically.
This approach is motivated by recent works demonstrating that this technique is very useful for
video summarization tasks. Another advantage is that we do not have to explicitly design any
features which indicate the quality of a summary, and instead, we can leave that task for the
network to learn on its own. While attractive in theory, adversarial-learning techniques tend to
be much more complicated than conventional summarization techniques, and more challenging
to train than a typical deep network.

In the next chapter, we examine the performance of both of these approaches evaluated on
a testing set of data. Specifically, we evaluate how the two techniques differ in specific criteria
such as accuracy, diversity, representation, and coherence—all of which are essential to forming
an excellent video summary.
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5
Video Summarization: Results

5.1 Overview

Thus far, we have discussed the design of the highlight detector and highlight selection com-
ponents of the video summarization system. The highlight detector (Chapter 3) finds the most
exciting moments of the broadcast based on the crowd and the play-by-play TV announcers.
This is followed by a highlight selector (Chapter 4) that decides which of these should be kept
in the final summary. The resulting end-to-end system is summarized in Figure 5.1. In this
chapter, we present and discuss the results of our complete video summarization system when
evaluated on a test set (composed of NHL hockey broadcasts). We accomplish this by using the
video summarizer to produce a set of hockey summaries (from the testing set), and then ana-
lyzing which variations of our system (to be discussed shortly) produce the “best” summaries.
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5.1 Overview

Hockey Broadcast

Video StreamAudio Stream

Video CNNAudio CNN
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Figure 5.1: The complete end-to-end video summarization system. First, a set of highlight can-
didates are detected by a highlight detector (Chapter 3) based on information from the crowd
and the play-by-play announcers. This set of highlight candidates are then filtered by a highlight
selector (Chapter 4), which combines the selected highlights together to form a summary.
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We begin by discussing the criteria and methodology that we use to evaluate the results
of the summarization system. One of the most significant challenges was how to determine a
meaningful way to evaluate the quality of a summary that could be explicitly defined. While
a human can view a summary and subjectively conclude whether it is interesting or not (as a
whole), it is unclear which features or characteristics of the summary led to that conclusion.
This, of course, makes measuring the performance of a video summarization system extremely
difficult, if not impossible.

Typically, to evaluate the quality of an automatically generated summary, most existing
methods (e.g., [6], [7], [12], and [24]) will consider the overlap (or accuracy) between a par-
ticular automated summary under consideration and human-generated annotations that serve as
ground-truth. We follow a similar approach, except with the distinction that our ground-truth is
not derived by human annotators, but instead is based on the excitement of both the crowd and
the play-by-play announcers. Since accuracy only gives us only one perspective on the quality
of the summary, we also consider two additional criteria: representation and coherence, both of
which are essential to forming a compelling hockey summary.

In total, we analyze five different variations of our video summarization system; these are
comprised of the three value functions discussed in Section 4.2 and two different versions of
the adversarial network discussed in Section 4.3. Finally, we use the three criteria mentioned
above to evaluate the performance of each one of these variations of the video summarization
system.

5.2 Evaluation

The quality of the summaries generated by any of the methods we have discussed so far (i.e.,
the value functions or adversarial networks from Chapter 4) is highly subjective and difficult to
define analytically. To deal with this, we propose a set of criteria to measure the various charac-
teristics of automatically generated summaries. In the absence of a single metric to directly (and
automatically) measure the concept of "quality", this set of criteria will be employed to indicate
how the characteristics of the summaries change with respect to the different techniques.

Recall from the literature review in Section 2.3, there are several existing metrics that at-
tempt to measure the quality of a summary; common examples include accuracy, diversity,
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redundancy, saliency, and representation [15, 26, 27, 29]. The choice of metric to use is some-
what arbitrary, but ultimately depends on the context of the application. In this case, we choose
criteria that (we believe) are conducive to high “quality” hockey summaries.

The first criterion we consider is "accuracy". We measure this by examining the generated
summaries for the presence of false positives (i.e., footage without excitement from the crowd).
Moreover, we also consider the presence of non-gameplay footage when measuring the accu-
racy of a summary (e.g., interviews, analyst desk commentary, etc.). These clips may contain
excitement from the crowd but are still undesirable because they do not show the hockey game.
Accuracy is mostly non-subjective and can be consistently measured. It is also a commonly
used metric in the literature when analyzing the performance of a summarization technique
[6, 7, 12, 13, 26]. For these reasons, this will be the metric that we primarily consider when
judging the performance of a technique.

Following that, we also attempt to measure the "representativeness" of a summary. The
rationale behind this is that a hockey summary should accurately portray the original hockey
broadcast’s content. For example, a good hockey summary should include most of the goals
scored (or any other major event). Similarly, a hockey match is typically played across three
gameplay periods, and therefore a representative summary should also display some content
from each of the periods (i.e., the summary should be sufficiently diverse). Unlike accuracy,
measuring the "representativeness" of a summary is subjective and difficult to report in a mean-
ingful manner. This metric is also much less common in the literature, but it is still occasionally
used to measure the quality of video summaries, e.g. [26] or [27]. Because of this, we take care
to be precise and unambiguous with our definitions to minimize bias in the evaluation. Despite
these drawbacks, including metrics other than just accuracy helps us better analyze how the
summaries change with respect to different techniques.

Lastly, we consider if the generated summaries are "coherent" when viewed. A high-
quality summary should be logical and consistent—any events that are displayed should be
presented with some degree of context. For instance, if a highlight features a goal being scored
in a hockey game, the summary should also include the moments leading up to that event. Like-
wise, any events being portrayed in the summary should be shown in its entirety (i.e., without
being cut off). Similar to trying to measure "representativeness", this metric is highly subjec-
tive and difficult to report. As a result, this type of metric is rarely seen in the literature, with
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some exceptions such as [5]. Regardless, it is a highly important characteristic for creating
compelling hockey summaries and is therefore worth examining.

In total, the rubrics we use for evaluating the characteristics of the summaries is split into
three sections: (1) accuracy, (2) representation, and (3) coherence. We evaluate all three criteria
for each of the summaries generated using the testing set (discussed in Section 5.3).

5.2.1 Accuracy

The first metric we evaluate is the "accuracy" of the video summarization system. We compute
this by examining whether there are any false positives or non-gameplay footage in the sum-
maries. The definition of false positives follows the same criteria initially discussed in Section
3.2.1; that is, a false positive is a shot that does not contain any audible or visible excitement
from the crowd or the play-by-play announcers. For example, a shot which portrays a hockey
player skating across the ice, without any reaction from the crowd or announcers, would be con-
sidered a false positive. As for non-gameplay footage, we define this as footage included in the
summary which does not show the hockey game. Common examples of this are interviews or
mid-game events that take place in the broadcast between the hockey gameplay periods. While
such footage may exhibit excitement from the crowd, they are undesirable because they do not
represent the hockey game. Since this metric can be reliably measured with minimal bias (i.e.,
it is mostly independent of the evaluator), we use this is as the primary metric for judging the
capability of a technique.

False positives and non-gameplay footage are highly detrimental to the viewing experience
of a video—even the presence of a few erroneous clips (i.e., clips that are not highlights) can
make a viewer uninterested and confused. It follows that we should select a variation of our
video summarizer that is highly accurate.

Recall that the complete video summarization system is a two-step procedure formed by
the combination of a highlight detector and a highlight selector. While the highlight detector
we have designed is highly accurate (i.e., we observed approximately 98% accuracy in the
experiments of Section 3.5), false positives still inevitably appear in the summaries.

This is because the highlight detector does not analyze the entire hockey broadcast at the
same time, but instead only a small segment at a time. As previously discussed (in Section
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3.3), the hockey broadcast is split into many "chunks" which each represent a few seconds of
gameplay. Each of these chunks is determined to be either "highlight" or "non-highlight" by
the highlight detector, and therefore the highlight detector may have to make thousands of pre-
dictions per hockey broadcast. Consequently, even if the highlight detector is highly accurate,

there will still be several false positives per broadcast. With that being said, the number of
false positives is also mitigated by the highlight selector in the second stage of the summariza-
tion process. The highlight selector acts as a secondary filter for false positives by filtering the
highlights detected by the highlight detector.

For our evaluation, we specify that a summary with two or fewer false positives is satis-
factory. We determine this for each summary generated using the testing set and repeat the
procedure for each variation of the video summarization system we are considering. This pro-
cess is implemented by visually inspecting each of the summaries generated using the testing
set. Although this may seem unnecessary, we choose to compute this metric visually to stay
consistent with the other metrics that we will be soon discussing (i.e., representation and co-
herence), which are not feasible to automate.

5.2.2 Representation

Next, the summaries produced by our system should be "representative" of the entire hockey
broadcast they are summarizing. That is, the summary should capture most (if not all) of the
significant events that occur during the game and leave the viewer with an accurate depiction of

the game. For example, the most significant events of a hockey game are the goals (in general),
and therefore a representative summary of a hockey broadcast should portray most of the goals
that occur during a game. If this were not the case, the viewer might not receive an authentic
depiction of the hockey game.

Additionally, a hockey game is played across several gameplay periods. Following the same
reasoning as above, a good summary should ensure that each of these periods is covered to
some extent. For instance, even if one gameplay period was significantly more interesting than
the others, the summary should still minimally cover all of the periods to represent the game
properly.

Unlike the case with accuracy, we have not explicitly designed the video summarization

59



5.2 Evaluation

system to generate representative summaries. Specifically, neither the highlight detector nor
the highlight selector is designed (or trained) with objective functions that reward any of the
criteria discussed above. Regardless, we expect that different variations of the video summarizer
will produce summaries that differ in this characteristic (which, therefore, makes this criterion
worth observing).

We define that a summary is satisfactorily representative if it features at least one clip from
each of the gameplay periods in the broadcast, and at least one clip for the majority of the goals
scored during the game (there are typically three periods in a hockey game). As in the case of
determining accuracy, this characteristic is manually evaluated for each summary under consid-
eration (i.e., each summary generated using the testing set). We perform the evaluation visually
due to the lack of a practical way to automate this process (i.e., automating the evaluation would
be a significant challenge in itself).

5.2.3 Coherence

Lastly, and perhaps the most difficult to determine, is the notion of creating "coherent" video
summaries. A hockey summary should tell a clear and logical story about the hockey broadcast
it is summarizing when viewed. In other words, the summary should be free of footage that
is presented without context or abruptly interrupted. This property, like the two previously
discussed characteristics, is essential to forming compelling hockey summaries.

For example, if a hockey team scores a goal on the opposing team, the video should show a
few seconds of the build-up to that moment, and also a few seconds of the aftermath. Similarly,
when the summary portrays an event taking place (such as a play on the opposition’s goal), the
footage should show the event in its entirety, without being abruptly cut short. Without these
crucial moments before and after an event, the viewer is left confused without context or is left
unsatisfied. Similar to the presence of false-positives in a summary, the inclusion of incoherent
footage is highly detrimental to the viewing experience of a hockey summary, and should be
avoided as much as possible.

Similar to the case with representation, we do not explicitly design the video summarization
system to generate summaries that are "coherent". With that being said, we expect that the sum-
maries generated using different variations of our video summarizer, will produce summaries

60



5.3 Results

that vary greatly in their level of “coherence”.

We define that a summary with two or fewer incoherent clips is satisfactory for the purposes
of our evaluation. As in the case with the previously discussed criteria, this is visually evalu-
ated for all summaries under consideration due to the lack of a practical way to automate this
process.

5.3 Results

To report our results, we visually review the summaries generated from the hockey broadcasts
in the testing set and record whether each summary satisfies the criteria discussed above (i.e.,
accuracy, representation, and coherence). This procedure is repeated for each variation of the
video summarization system we are considering; our evaluation results are summarized in Table
5.1.

Furthermore, we examine two different approaches for forming hockey summaries, split
into a total of five variations. The first value-based approach consists of the three value functions
discussed in Section 4.2. The second adversarial-based approach consists of two versions of the
adversarial network as discussed in Section 4.3. All of the approaches use the highlight detector
designed in Chapter 3 but differ in the choice of highlight selector, as is discussed in Chapter
4. As for the testing dataset, we use a set of 30 broadcasts from the 2018-2019 NHL hockey
season. These broadcasts are a separate partition of hockey games and have not been used to
previously train or validate any of the video summarization system components.

We assign a score for each characteristic (i.e., criterion) based on the fraction of the sum-
mary videos that satisfy the constraints discussed above. For example, if every video produced
by a given technique is free of false positives (and non-gameplay footage), it would score a
perfect 100 on the accuracy category. By examining the outputs produced by each of these ap-
proaches, we find that each technique produces summaries with greatly varying characteristics.
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Summarization method versus criteria scores

Technique Accuracy Representation Coherence Average

Probability-weighted (baseline) 53.3 50.0 50.0 51
Duration-weighted 53.3 60.0 66.7 60

Proximity-weighted 50.0 66.7 30.0 49

Adversarial (ResNet18) 53.3 36.7 60.0 50
Adversarial (ResNet34) 56.7 33.3 63.3 51

Table 5.1: The results from evaluating five variations of our video summarization system on
a testing set. Three variations are based on value-functions, and the other two are based on
adversarial learning. Each variation is used to produce a set of generated summaries from a
testing set of NHL broadcasts. The resulting summaries are then visually reviewed, and a score
for each criterion is computed out of 100, based on the fraction of the summaries that are
satisfactory.

5.4 Discussion

5.4.1 Value based approaches

We found that the value-based approaches performed quite well and definitely above expec-
tations. We experimented with three different value functions: probability-weighted, duration-
weighted, and proximity-weighted. Each variation emphasizes different criteria when forming
the summaries.

The simplest of these techniques is the probability-weighted approach, in which highlight
candidates are selected solely based on the probability of being a highlight predicted by the
highlight detector (i.e., the highlight score, as previously discussed). As such, no emphasis is
placed on any of the properties of the candidates themselves (e.g., when the highlight occurs
or the duration of the highlight). For this reason, we consider this first experiment as the base-

line—it effectively reflects how the highlight selector behaves if it were to only consider the
highlight scores of each candidate, and not the overall composition formed by the selected
highlights. This contrasts with the other value-based approaches (and the adversarial approach)
which consider the relationship of a highlight candidate with respect to one another. Therefore,
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by comparing the performance of this approach to the others, we can determine if the high-
light selector is learning to find desirable relationships between highlight candidates (which
ultimately help form higher quality video summaries).

Overall, we found that this probability-weighted approach works quite well despite its sim-
plicity. The approach produces summaries with a low number of false positives and a relatively
low amount of non-gameplay footage. As for its weaknesses, this approach struggles the most
with representation and coherence. We found that most hockey broadcasts had specific game-
play periods that were predicted (by the highlight detector) to be significantly more interesting
than others. As a result, the summaries produced by this approach tended to overrepresent cer-
tain portions of the broadcast. Consequently, many of the summaries produced by this technique
failed to portray the game accurately; for example, by missing many of the goals scored in the
game, or not having any footage from entire gameplay periods. We consider this technique as
our baseline approach, which attains an average score of 0.50 across all of the criteria.

The next technique we looked at was the duration-weighted approach. In this case, the
value function of the highlight selector weighs the candidates based on their duration in ad-
dition to its highlight score. Compared to the probability-weighted approach, this changed the
composition of the resulting summaries drastically. Most notably, the summaries were formed
by significantly fewer candidates (where each tended to have a higher duration). This had the
effect of smoothing out the video since there were much fewer transitions in the overall sum-
mary (i.e., much less jumping around from clip to clip). As a result, these summaries scored
much higher on the coherence criterion, since it was more likely that events portrayed in the
summary were presented in their entirety (as opposed to being abruptly cut-off). Moreover, the
summaries produced by this approach maintained a high degree of accuracy (i.e., a low number
of false positives) and is tied with the probability-weighted approach in performance. On av-
erage, this is the highest performing technique, with an average score of 0.60 across all of the
criteria.

Lastly, we examined a proximity-weighted approach. The rationale behind this is that sev-
eral highlights occurring in close proximity to one another may be more interesting than a single
highlight occurring in isolation. In practice, however, we found that the summaries produced by
this approach were not compelling. We found that valuing candidates based on their proximity
introduced many false positives in the summaries. This is due to the inclusion of many low
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probability highlights (which turned out to be false positives) occurring near each other. Conse-
quently, the proximity-weighted approach scores poorly on the accuracy and coherence criteria
compared to the two other approaches we have examined. Of the value-based approaches, this
technique has the lowest average score of 0.49.

5.4.2 Adversarial learning based approaches

In our second set of experiments, we examined the use of an adversarial network to produce
video summaries. We experimented with two versions of the highlight selector, where the first
is based on ResNet18 [42] and the second is based on ResNet34 [42] (i.e., two different CNNs).
These two deep networks share approximately the same overall architecture and differ in the
number of layers in the network. While there are several other CNN architectures to consider
(e.g., VGG [41] or Inception [43]), we found that these other networks required computational
resources (i.e., memory usage) in excess of commodity hardware, or had significant issues
converging during the training procedure.

We ultimately obtained mixed levels of success with this approach. The adversarial ap-
proaches performed respectably on all categories except for representation, where it struggled
compared to all of the other techniques we have tried so far. Overall, the summaries produced
using the adversarial approach had a low number of false positives and were free of non-
gameplay footage. As for the other qualities, this approach performed similarly to many of
the earlier discussed techniques and suffered from the over-representation of certain portions
of the broadcast. Thus, the summaries failed to portray the entirety of the hockey broadcast
accurately, and missed many critical events during the game (i.e., goals), leading to a low rep-
resentation score. We did not observe a significant difference in the summaries produced by
the ResNet18-based and ResNet34-based highlight detectors—the two variations achieved an
average score of 0.50 and 0.51, respectively. In comparison to the value-based approaches,
this makes the adversarial techniques approximately equal to the baseline (i.e., the probability-
weighted approach discussed above).

While adversarial approaches are attractive on paper, as it allows us to train a video sum-
marizer without annotated data or explicitly designed features, there are also several practical
drawbacks. The first of which is the unstable nature of training adversarial networks, which
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often require extensive experimentation and tuning to train properly. Most of this tuning, un-
fortunately, is done by trial and error.

The next drawback is the lack of interpretability of the network; it is unclear which pa-
rameters (or design choices) affect the characteristics of the output. This, of course, makes
the system difficult to apply in practice. For example, if the video summarizer was producing
summaries with a certain undesirable quality, it is unclear which parameter would need to be
adjusted—this is not the case when using value functions. Despite these drawbacks, the over-
arching technology is still very promising and worth further investigation. Future work could
experiment with different architectures, problem formulations, and incorporate techniques to
improve interpretability or the training procedure’s stability.

5.4.3 Conclusion

In this chapter, we examined the results of our complete video summarization system. This
system was formed by joining the highlight detector designed in Chapter 3, and the highlight
selector designed in Chapter 4. The highlight detector finds potential highlights in the hockey
broadcast by detecting cues of excitement from the crowd and the play-by play announcers.
Due to the limited amount of time allocated to a hockey summary, the highlight selector decides
which of these highlights should be included in the resulting summary.

For our experiments, we use our most accurate highlight detector (as concluded in Section
3.5), and then pair it with five different variations (split into two approaches) of the highlight
selector. This corresponds to the three value-based variations, and two adversarial-based varia-
tions discussed in Section 4.2 and Section 4.3, respectively. We evaluate each of these variations
by inspecting the summaries generated by each technique using a testing set of NHL broadcasts.
To facilitate this process, we considered three criteria that are conducive to compelling hockey
summaries: (1) accuracy, (2) representation, and (3) coherence.

Overall, we found that all of the approaches we examined had their strengths and weak-
nesses, with neither being clearly superior to the other in all aspects. Using an explicitly-
designed value function is by far the most straightforward and interpretable of the two ap-
proaches (i.e., value-function based or adversarial learning based). It allows us to specify which
characteristics should be present in the resulting summaries and optimize for them accordingly.
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5.4 Discussion

Altogether, we found that the duration-weighted approach produced the best hockey summaries
overall, according to this set of criteria. Unlike the other variations we examined, the duration-
weighted approach performs consistently across all criteria, instead of excelling for a certain
criterion and performing poorly on another. With that being said, the adversarial-based ap-
proaches demonstrated that they are viable and competitive with the value-based approaches.
The adversarial approaches allow us to generate summaries without having to explicitly de-
sign any features or value functions but suffer from several practical issues such as a lack of
interpretability (i.e., it is difficult to determine what parameters affect the output) and the insta-
bility of the training process. Future work could address some of these issues and significantly
improve the viability of adversarial learning-based approaches.
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6
Conclusion

In this work, we have investigated several techniques for the automatic summarization of
hockey broadcasts. These summaries allow a viewer to quickly enjoy or preview the contents
of a hockey broadcast without having to commit several hours of their time. While highlight
videos are an effective and accessible way for viewers to watch hockey broadcasts, they are
typically manually generated—a time consuming and expensive process. For this reason, we
designed an end-to-end video summarization system, which automatically finds and composes
the most exciting moments of a hockey broadcast.

The first challenge we addressed was determining the process for finding the most exciting
moments of the hockey broadcast. Typically, this is accomplished by training a model to detect
highlights (e.g., a deep network) using an annotated dataset of videos. However, these annota-
tions are usually generated by humans, which can lead to significant bias due to the subjective
nature of determining what constitutes a highlight. Instead, our approach leverages the spec-

tators of the hockey game (i.e., the audience and the play-by-play announcers) to determine
which parts of a hockey broadcast should be considered a highlight.

To do this, we design a highlight detector that analyzes the broadcast for cues such as cheer-
ing from the crowd or excitement in the announcers’ voices. By using information from the
human spectators, we have effectively collected an ensemble of opinions on the current level of
excitement in the game. This allows us to bypass the need for a human-annotated dataset, which
is time-consuming and expensive to manually annotate, especially for high duration videos such
as hockey broadcasts. At the same time, we mitigate potential bias in the annotations by using
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Conclusion

the collective opinion of a crowd, instead of a handful of annotators.

We build this highlight detector using a multi-modal CNN that simultaneously utilizes infor-
mation from both the visual and auditory streams of the video broadcast. By analyzing multiple

modes of a video, we can detect cues from the audience that may not be obvious when only
looking at only the video or listening to the audio on its own. Through experimentation, we
find that using multiple modes (to train a deep network) yields a significant performance in-
crease over just using visual or audio data alone. To train the highlight detector, we leverage
existing datasets that contain audio samples from relevant categories such as cheering or human
speech. In doing so, we can pretrain our highlight detector on these datasets, and significantly
reduce the amount of data required to train our highlight detector. Using this procedure, we
experimented with numerous CNN architectures and produced a highlight detector that is able
to classify video clips with an accuracy of 98%.

Next, we address the issue of generating compelling video summaries. In contrast to many
other approaches, which typically detect highlights and join them into a summary without fur-
ther processing, we explicitly design a highlight selector to choose which highlights should
actually be included in the final summary. We examine two different approaches to construct-
ing this highlight selector. The first approach frames the task as an optimization problem. Each
highlight candidate is assigned a value based on its properties (e.g., duration or proximity to
other candidates) by using a value function that is subsequently optimized. The second ap-
proach takes a more indirect approach and utilizes a system of deep networks trained using
adversarial learning. Through adversarial learning, we train a generator network that learns to
produce hockey summaries with similar characteristics to professionally produced NHL hockey
summaries.

We analyze the effectiveness of both of these approaches using a rubric composed of both
quantitative and qualitative criteria (i.e., accuracy, representation, and coherence). Our findings
indicate that neither approach is clearly superior to the other, with both techniques presenting
their own set of strengths and weaknesses (in terms of performance and practicality). The value-
based technique is straightforward, interpretable, and practical, while still being able to generate
compelling hockey summaries. The adversarial learning-based approach, on the other hand,
foregoes the need to explicitly design a value function, and instead can automatically learn to
generate hockey summaries by leveraging NHL-produced hockey summaries.
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Conclusion

In conclusion, we present a video summarization system for hockey broadcasts that detects
highlights based on information from the audience of the hockey game. We demonstrate the
effectiveness of using multi-modal CNNs to search hockey broadcasts for cues of excitement
from the audience, and how this can be used for detecting highlights. Next, we present two
different approaches for selecting which of the highlights detected in a broadcast should be
included in the final summary. We examine how the characteristics (e.g., representation and
coherence) of a hockey summary changes with respect to the choice of highlight selection
technique. Altogether, this work presents an end-to-end video summarization system capable
of generating compelling hockey summaries in a practical manner.
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A
Experiment Parameters

In this appendix, we give the exact deep network architectures used to conduct the experiments
in Chapter 3 and Chapter 4.

In total, we use three different preconfigured CNN architectures in our experiments: VGG
[41], ResNet [42], and Inception [43]. Typically, we connect these CNNs using a series of
fully-connected or activation layers. We use the shorthand notation "FC-N" to represent a fully-
connected layer with "N" nodes. Likewise, we use the notation "ReLU" to represent a rectified-
linear-unit [50] activation layer.

A.1 Chapter 3: Highlight detector architectures

The architecture for the highlight detector in the early fusion and late fusion configurations
are given as follows. Detailed discussion regarding the design, intent, and function of these
networks can be found in Chapter 3.
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A.1 Chapter 3: Highlight detector architectures

Table A.1: Early-fusion highlight detector architecture

[Video] [Audio]

Combination Layer (i.e., concatenation)

3D-ResNet or 3D-VGG or 3D-Inception

Temporal pooling

FC-512

ReLU

FC-256

ReLU

FC-1

Table A.2: Late-fusion highlight detector architecture

[Video] [Audio]

3D-ResNet or 3D-VGG or 3D-Inception ResNet or VGG or Inception

Temporal pooling + FC-512 FC-128

Combination Layer (i.e., concatenation)

FC-620

ReLU

FC-512

ReLU

FC-1
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A.2 Chapter 4: Adversarial neural network architectures

A.2 Chapter 4: Adversarial neural network architectures

The architecture for the highlight selector, encoder, decoder, and the discriminator are given as
follows. Detailed discussion regarding the design, intent, and function of these networks can be
found in Chapter 4.

Table A.3: [Generator] Highlight selector architecture

[Video]

3D-ResNet18 or 3D-ResNet34

FC-15360 (30 * 512)

ReLU

FC-512

ReLU

FC-256

ReLU

FC-30

Table A.4: [Generator] Encoder architecture

[Video]

3D-ResNet18 or 3D-ResNet34

Temporal pooling

FC-512

ReLU

FC-512
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A.2 Chapter 4: Adversarial neural network architectures

Table A.5: [Generator] Decoder architecture

[Video embedding (512)]

FC-512

ReLU

FC-2205

ReLU

FC-4410

ReLU

FC-8820

Reshape (8820 Ñ 15x3x14x14)

4x Bilinear Upsampling (15x3x14x14 Ñ 15x3x224x224)

Table A.6: [Discriminator] Feedforward network architecture

[30x Video embedding (512)]

FC-15360 (30 * 512)

ReLU

FC-1024

ReLU

FC-512

ReLU

FC-1
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