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Abstract

This thesis summarizes our work on the entanglement entropy of cosmological perturbations.

The purpose of this work is to connect and build upon progress in momentum space entan-

glement in quantum field theory, open quantum cosmological systems, the decoherence of

primordial fluctuations in the early universe and the entropy of gravitational perturbations

arising from a squeezed super-Hubble vacuum state. We discuss the origin of this entropy

from gravitational nonlinearities and mode-couplings arising from quantum vacuum fluctua-

tions. We demonstrate that the entropy of scalar cosmological perturbations can be viewed

as momentum space entanglement entropy between sub- and super-Hubble modes. We cal-

culate this entropy in a specific cosmological model, the inflationary universe. We find an

upper bound on the duration of inflation to allow for a graceful exit consistent with the

second law of thermodynamics.
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Abrégé

Cette thèse résume nos travaux sur l’entropie d’intrication quantique des perturbations cos-

mologiques. Le but de ce travail est de bâtir sur les récents progrès sur l’entropie d’intrication

quantique et la théorie des champs pour les appliquer dans un context cosmologique, ou plus

précisément sur les fluctuations cosmologique. Nous discutons de l’origine de cette entropie

à partir des non-linéarités gravitationnelles et des couplages de modes résultant des fluctu-

ations du vide quantique. Nous démontrons que l’entropie des perturbations cosmologiques

scalaires peut être considérée comme une entropie d’intrication de l’espace cinétique entre

les modes sous-et super-Hubble. Nous calculons cette entropie dans un modèle cosmologique

spécifique, l’univers inflationnaire. Nous trouvons une limite supérieure sur la durée de

l’inflation pour permettre une sortie gracieuse compatible avec la deuxième loi de la thermo-

dynamique.
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Preface

This work expresses an initial curiosity in the intersection of quantum information theory

and physical cosmology. We begin with an outline of the scope and structure of this thesis.

The first chapter reviews the fundamentals. We use a result from the general theory

of relativity to introduce big bang cosmology, we explore the framework’s predictions and

shortcomings. Upon setting the stage for a paradigm shift connecting observations to the

universe’s quantum mechanical origin, we introduce inflationary cosmology. We briefly re-

view the quantum-to-classical transition of fluctuations in the early universe, the theory of

cosmological perturbations and the concept of entanglement entropy.

The second chapter connects topics we reviewed. We discuss reheating, a period of

massive entropy generation, and the evolution of scales in the quantum theory of cosmological

perturbations. We build-up a conceptual understanding of the entanglement entropy of

cosmological perturbations.

The third chapter is our research paper. The article opens with motivation. We review

that interactions suppress off-diagonal terms in the density matrix for our system, the super-

Hubble modes. We calculate the entropy of cosmological perturbations due to the squeezing

of the vacuum state of super-Hubble modes during inflation. We compute the entanglement

entropy for super-Hubble modes and show that it is greater than the entropy for the squeezed

vacuum. We require that the entanglement entropy is smaller than the thermal entropy after

inflation. We conclude with a discussion of our findings.

The fourth chapter reviews this work and ends with closing remarks.

Figures include sketches from a variety of sources repurposed in a manner consistent in style and notation,

omitting non-essential information. The Appendix includes all original figures and captions cited in this work.
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Chapter 1

Background

Cosmology is the study of our universe at its grandest scales, in space and time. We begin

our review of modern cosmology by introducing the foundation stone this field is built upon,

the cosmological principle.

“There is nothing special, cosmologically, about the Earth; therefore our large-scale ob-

servations are the same as those which would be made by observers anywhere else in the

universe.” [2]

To set the stage for some physics, we introduce a system of coordinates.

“We consider the universe as a cosmic fluid whose atoms are galaxies. How can we get

our bearings in such a fluid? Our time coordinate t is the proper time, measured by standard

clocks falling freely with the fluid. These clocks lie at the intersection of the grid of spatial

coordinate lines. Thus the coordinate grid is expanding with the galaxies, just as grid lines

drawn on a rubber balloon expand as it is blown up. These coordinates which share in the

expansion of the universe are described as comoving coordinates.” [2]

Observations support the simplifying assumption that small-scale disparity in energy

density are averaged out; the universe looks the same in every direction. A comoving observer

sees the same at every point, in all-directions. We say that space exhibits translation and

rotation invariance at cosmological scales. These symmetries allow us to study a universe

that is homogeneous and isotropic.
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1.1 Standard “Big Bang” Cosmology

Spatial homogeneity, isotropy and expansion of a topologically flat space, allow us to write the

metric of spacetime representing the simplest model of cosmology in comoving coordinates.

ds2 = −dt2 + a(t)2dx2 (1.1)

This Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric describes a uniformly growing

separation of spatial coordinates, scaled by a function of time a(t), the scale factor. The

flat FLRW metric describes our universe today at large distance scales. As the universe

expands, the scale factor governs the growth of physical distance and correspondingly scales

the comoving separat between any two points. We relate physical and comoving spatial

separations as follows.

∆xphysical = a(t)∆x (1.2)

We describe the dynamics of an evolving universe by studying this metric, as a solution to

the Einstein equation. First, we approximate the matter in our universe as a perfect fluid,

whose stress tensor will follow. The stress tensor relates the energy and pressure density

with the four-velocity and the metric.

Tµν = (p+ ρ)UµUν + pgµν

=⇒ T µν = diag(−ρ, p, p, p)
(1.3)

Denoting a physical time derivative with an over-dot, we define the Hubble parameter.

H ≡ ȧ

a
(1.4)

To use the Einstein equation, one must compute the Einstein tensor, we state its relevant

components to derive the Friedmann equations.

Gtt = 8πGTtt

=⇒ H2 =
8πG

3
ρ

(1.5)

The time component of the Einstein equation reveals the first Friedmann equation. The

spatial component of the Einstein equation, combined with the first Friedmann equation
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presents the second Friedmann equation.

Gii = 8πGTii

=⇒ (
ä

a
) = −4πG

3
(3p+ ρ)

(1.6)

The Friedmann equations are equations of motion of an expanding universe. They allow us

to support insightful predictions punctuating the narrative of universal evolution.

Next, taking the time derivative of the first Friedmann equation and using the second

Friedmann equation allows us to the evolution of energy density as a function of energy,

pressure density and the Hubble parameter.

ρ̇ = −3H(ρ+ p) (1.7)

This is the continuity equation which limits the transfer of energy to a continuous flow

governed by the evolution of the scale factor. We use the continuity equation to describe the

evolution of an ideal gas with the following equation of state.

p = wρ (1.8)

Dust, defined as cold pressure-less matter, is described purely by an energy density ρm, where

the equation of state parameter w = 0. The continuity equation produces an expression to

describe the evolution of the energy density associated with dust, ρm ∼ a−3(t). Similarly,

we can determine the evolution of different forms of energy density, such as radiation with

ρrad ∼ a−4(t) and dark energy, with ρ̇DE(t) = const. Studying the evolution of the energy

density reveals distinct periods in the universe’s evolution where the dominant form of energy

density changes. These are summarized in the following figure. We denote the time of equal

matter and radiation, teq.
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Figure 1.1: The radiation-, matter- and dark energy-dominated epochs.

From Hubble’s prediction of an expanding universe, to today’s wealth of data from ob-

servations, evidence has established that the universe is growing. Evolving our model of the

universe backwards in time reveals that physical separations were smaller in the past. Phys-

ical laws require the conservation of the mass-energy content of the universe. The energy

density of the universe must have been compressed into a primordial soup of plasma. This

is standard “big bang” cosmology. Standard cosmology did not stand up to scrutiny, we now

demonstrate some of its shortcomings.
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A problem in the evolutionary history proposed by standard cosmology, is a discrepancy

made clear with the observation of the cosmic microwave background (CMB). The following

figure [3] compares a (blue) past light cone of current observations and a (red) forward light

cone from the frame of the CMB, inferred from standard cosmology. The light cones fail to

overlap. Standard cosmology fails to explain why causally disconnected patches demonstrate

temperature fluctuations about the same mean. This is the horizon problem.

Figure 1.2: A spacetime diagram depicting the horizon problem.
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Density fluctuations in the early universe can be viewed as energy over-densities and

under-densities, relative to the mean. This picture implies the existence of a gravitational

potential gradient, sustaining an accretion of matter. Density fluctuations and the action

of gravity, build a hierarchy where the rich in energy density get richer, and the poor get

poorer. Eventually, slight energy over-densities, by virtue of their initial condition, seed

full-fledged galaxy clusters. This is the theory of cosmological structure formation.

At large scales, there exist non-random correlations between galaxies. Density perturba-

tions produced before the time of equal matter and radiation, are unexplained by a causal

mechanism in standard big bang cosmology. At the time of equal matter and radiation

teq, marking a significant energy scale in theories of structure formation, we compare the

comoving distance between two galaxies ∆Gal. and the comoving light cone between them

lc(teq). The comoving light cone between the galaxies is the Hubble radius (the inverse of

the Hubble parameter in natural units), at the time of equal matter and radiation. The

dissonance is demonstrated in the following figure [4]. We note ∆Gal. > lc(teq). Therefore,

the formation of structure is not sufficiently explained by standard cosmology. This is the

structure formation problem.

Figure 1.3: A spacetime diagram depicting the structure formation problem.
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Precise observations of the CMB demonstrate that the universe is close to flatness today.

Standard cosmology claims this means it was much closer to flatness earlier in its history.

Let us study why this is the case, and why a flat universe is at a repulsive fixed point in a

radiation- or matter-dominated epoch. Using the first Friedmann equation, we describe the

evolution of an expanding universe, regardless of its curvature, as follows.

H2 + εT 2 =
8πG

3
ρ (1.9)

Where ε = k
(aT )2

and k describes the curvature of the topology. k = 0 represents a flat

universe with a critical energy density ρc, defined as follows.

ρc =
3H2

8πG
(1.10)

In standard cosmology with conserved total entropy, the quantity ε is constant. We observe

the following.
ρ− ρc
ρc

=
3

8πG

εT 2

ρc
∼ 1

T 2
(1.11)

As temperature increases, the curvature approaches flatness. We observe a small deviation

from flatness today meaning the universe must have been extremely close to flat in the past.

At high temperatures, say T = 1015GeV , the energy density would have been extremely

close to the critical density.
ρ− ρc
ρc

∼ 10−50 (1.12)

Standard cosmology requires an unstable initial condition with very little curvature. This is

the flatness problem.

The horizon, flatness and structure formation problems with standard cosmology moti-

vated an altered retelling of the narrative, one that entails a period of accelerated expansion,

the current paradigm of theoretical cosmology.
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1.2 Inflation

Inflation is a growth spurt, where the geometry of spacetime undergoes an all but immedi-

ate transition from the minute scales of quantum mechanics to the astronomical proportions

governed by the general theory of relativity. Let’s read this spacetime diagram [4] chrono-

Figure 1.4: A spacetime diagram depicting how inflation maintains causality.

logically, following the forward light cone, lf (t). In the beginning, space expands uniformly

until standard cosmological evolution is modified, the expansion of space grows rapidly, this

is the advent of inflation. This rush of growth is short-lived. The brakes are pulled and the

original pace of universal expansion is restored. This transition entails the conversion of the

field driving inflation into observable standard model fields, warming up the universe once

again — this is called reheating. Next, charged particles are bound into electrically neutral

atoms — this is called recombination. Hydrogen atoms, fresh from the oven, settle into

stable energy states. At this point, matter is sparse enough for the free streaming of light

toward us. That is to say, the mean free path of light is at least the size of the observable

universe. Our act of looking back today, is depicted by the past light cone lp(t). Inflationary

16



cosmology connects observations with a narrative of universal evolution from a primordial

soup of plasma — saving the original big bang theory.

Inflation requires a special form of matter described by an equation of state parameter

w = −1, This corresponds to a period where the universe becomes vacuum-dominated. This

is captured by the de Sitter solution to the equations of general relativity. This is a space

where the density of matter and radiation fall, as the universe expands. We further require

that inflationary expansion last 60 e-folds, where the number of e-folds is N = ∆ ln a. This

constraint on the scale factor, solves the horizon problem [3].

Vacuum energy comes from the potential of a scalar field φ, the inflaton. We write

equation of motion of a scalar field, in a maximally-symmetric spacetime evolving in size as

follows. Over-dots denote derivatives with respect to physical time t, the prime denotes a

derivative with respect to φ and V is the potential of the scalar field.

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.13)

Our evolving universe exhibits accelerating expansion if the inflaton’s potential energy ex-

ceeds its kinetic energy, and the second derivative of φ is sufficiently small. To be precise,

we require the following.

φ̇2 � V (φ)

|φ̈| � |3Hφ̇|, |V ′|
(1.14)

These conditions are satisfied if we require that the following slow-roll parameters are suffi-

ciently small. Here m̄p = (8πG)−1/2 is the reduced Planck mass.

ε =
m̄2
p

2
(
V ′

V
)2

η = m̄2
p(
V ′′

V
)

(1.15)

These conditions ensure the inflaton slowly rolls down a potential. Furthermore, we use the

inflaton energy density to describe the evolution of the scale factor by rewriting the first

Friedmann equation.

H2 =
1

3m̄2
p

(
φ̇2

2
+ V (φ)) (1.16)
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We visualize the evolution of the inflaton in the following figure.

Figure 1.5: The inflaton evolves like a ball rolling down a hill.

Next, we take a closer look at how quantum fluctuations transition into the domain of

classical physics in inflationary cosmology.
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1.3 Quantum-to-Classical Transition of Fluctuations in

the Early Universe

“According to the inflationary scenario, all inhomogeneities in the universe are of genuine

quantum origin” [5].

Today, we do not explicitly notice quantum mechanical properties imprinted in cosmo-

logical observations. We list two properties demonstrating the transition of fluctuations from

the quantum to the classical.

1. The quantum state for metric perturbations produced in the early universe becomes

highly squeezed, as the universe expands (λperturbations > H−1(t)). A squeezed quan-

tum state exhibits less fluctuations of one variable (and a compensatory increase in

fluctuations of its complement). A highly squeezed state is one where the uncertainty

is minimized for one variable (and maximized for its complement), while maintaining

Heisenberg’s uncertainty principle [6].

2. “Decoherence through the environment distinguishes the field amplitude basis as be-

ing the pointer basis”. Therefore, perturbations are rendered indistinguishable from

classical inhomogeneities.

We observe that quantum fluctuations of a scalar field and scalar fluctuations in the

metric of spacetime grow into observable anisotropies in the cosmic microwave background.

These points will be revisited in the coming sections, including our next discussion.
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1.4 Theory of Cosmological Perturbations

The theory of cosmological perturbations is a framework linking theoretical models of the

early universe and state-of-the-art observations. The following figure depicts the evolution

of energy scales.

Figure 1.6: Evolution of scales in inflationary cosmology.

The Hubble radius is fixed during inflation. A fixed comoving length scale (with wavenum-

ber k) grows exponentially during inflation. Perturbations in the metric of spacetime come

in three flavours: scalar, vector and tensor perturbations. We consider linearized scalar

perturbations. We study their coupling with matter, for independent Fourier modes. In

our work, we follow perturbations for a particular mode in two domains, sub-Hubble and

super-Hubble. These are characterized in the following figure.
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Figure 1.7: Metric perturbations as sub- and super-Hubble.

In our review of the quantum theory of cosmological perturbations, we follow a comoving

mode in its transition between sub- and super-Hubble domains [7].

1. Sub-Hubble fluctuations originate, mode by mode, in their quantum vacuum state, at

the advent of inflation.

2. As spatial separations grow exponentially, the length scale of fluctuations grows more

rapidly than the fixed Hubble radius. When the Hubble radius matches the length

scale of fluctuations, perturbations freeze out.

3. Fluctuations propagate on super-Hubble scales until re-entering the Hubble horizon

at late cosmological times.

4. On larger scales, the amplitude vk increases as the scale factor. This corresponds to the

squeezing of the quantum state, at Hubble radius crossing. As the quantum vacuum

state is squeezed, fluctuations manifest an observable, classical nature.

Let’s elaborate. We begin with the equation of a free scalar matter field ϕ in in an

unperturbed expanding background.

ϕ̈+ 3Hϕ̇− ∇
2

a2
ϕ = 0 (1.17)

The spatial gradient term dominates on sub-Hubble scales. The solution to the equation

of motion describes oscillation of sub-Hubble fluctuations. Consider the Einstein-Hilbert

action for gravity with our free scalar matter field, here g is the determinant of the metric

of spacetime.

S =

∫
d4x
√
−g
[
− 1

16πG
R +

1

2
∂µϕ∂

µϕ− V (ϕ)

]
(1.18)
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In a fixed, longitudinal gauge, the metric and matter perturbations take the following form.

ds2 = a2(η)
[
(1 + 2φ(η,x))dη2 − (1− 2ψ(t,x))dx2

]
ϕ(η,x) = ϕ0(η) + δϕ(η,x)

(1.19)

In the hopes of reducing the degrees of freedom, the author of [7] notes that the free scalar

matter field has no anisotropic stress at linear order, thus ψ = ϕ. Next, they determine a

variable v in terms of which the action can be written in canonical form. We summarize

their result.

S(2) =
1

2

∫
d4x

[
v′2 − v,iv,i +

z′′

z
v2

]
(1.20)

Where the Mukhanov variable, v, is defined as follows.

v = a

[
δϕ+

ϕ′0
H
φ

]
(1.21)

Where H = a′

a
is the comoving Hubble parameter, implying that the prime denotes a deriva-

tive with respect to conformal time and z =
aϕ′

0

H . Thus, they present the equation of motion

following the action in canonical form in terms of the variable vk, the kth Fourier mode of v.

v′′k + k2vk −
z′′

z
vk = 0 (1.22)

The mass term in this equation of motion is given by the Hubble scale, as follows.

k2
H ≡

z′′

z
' H2 (1.23)

The time-dependence of the mass leads to the propagation and growth of cosmological per-

turbations. For sub-Hubble perturbations, k > kH , the solutions for vk are constant am-

plitude oscillations. These oscillations freeze out at Hubble radius crossing, k = kH . At

super-Hubble scales, k << kH the solutions for vk increase as z.

We further develop this discussion in the second chapter. In the next section, we shift

gears, pausing our discussion of cosmology.
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1.5 Entanglement Entropy

The axioms of quantum mechanics hold for a closed system, one that does not interact with

its surroundings. When considering an interacting, open quantum system, they break down

as follows.

“States are not rays in a Hilbert space. Measurements are not orthogonal projections.

Evolution is not unitary.” [8]

Consider a bipartite quantum system: a closed quantum mechanical system where two

open sub-systems A and B interact. We decompose the closed system’s Hilbert space into

two corresponding spaces of states.

H = HA ⊗HB (1.24)

Given a state of the full system |ψ〉 ∈ H, we ask: What is the state of sub-system A? Can one

use knowledge of the closed system to find the state of an open sub-system, i.e. |ψA〉 ∈ HA?

[9]

The challenge in describing the state of sub-system A is that its state is correlated with

that of its complement, sub-system B. The correlation, or mixing, of states between two

open sub-systems is quantum entanglement.

We capture the states of a quantum system in its density matrix ρ, defined by the

following outer product.

ρ = |ψ〉〈ψ| (1.25)

To fully describe the states of a sub-system, one accounts for an ensemble of orthogonal

states |ψAi 〉, weighted by probabilities pi. The density matrix of sub-system A, ρA, is defined

as follows.

ρA =
∑
i

pi|ψAi 〉〈ψAi | (1.26)

The density matrix of a bipartite system can reveal the states of one sub-system when it is

reduced. The reduced density matrix of system A can be defined by tracing over the states

of the other sub-system.

ρA ≡ TrBρ (1.27)
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Armed with the reduced density matrix, we define the entropy of a bipartite system. For a

system, described by an ensemble of states, we consider the Von Neumann entropy.

S ≡ −
∑
i

pi log pi = −Tr(ρA log ρA) (1.28)

Now, we relate quantum entanglement and the Von Neumann entropy.

1. A system with one possible state occupies that state with unit probability. Knowing

a system’s state with certainty implies no ignorance, no entropy. A closed quantum

system does not interact. It could exist in a pure state, without entanglement.

2. Quantum entanglement correlates the states of interacting quantum sub-systems. The

entropy, as a measure of classical uncertainty, arises from the mixed nature of an

interacting quantum sub-system.

3. Through interactions, open quantum sub-systems, become entangled. We identify an

uncertainty in the state of a sub-system, upon its interaction with another. Thus the

degree of uncertainty due to quantum entanglement is captured by the Von Neumann

entropy. The entropy of the reduced density matrix of sub-system A, is also the

entanglement entropy of A.

In our work, we consider entanglement in momentum-space between sub- and super-

Hubble modes. We aim to describe the states of super-Hubble modes by tracing over the

space of sub-Hubble modes. Next, we bring the elements of this review together.
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Chapter 2

Problem Setup

In order to setup the problem, we further develop elements from the Background to explain

what we mean by the entanglement entropy of cosmological perturbations. First, we resume

our discussion of inflationary cosmology. The next phase of universal evolution is one of

massive entropy production. Afterwards, we revisit our discussion of cosmological pertur-

bations while framing the interactions between sub- and super-Hubble modes as quantum

entanglement. Here we aim to bridge the basics with our research paper.
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2.1 Reheating

In inflationary cosmology, entropy is generated in a phase that restores heat after the uni-

verse’s super-cooled expansion, this is reheating. Let’s take a closer look at entropy during

and after inflation.

1. Consider an inflating patch. As the patch grows exponentially, its temperature falls

exponentially.

T ∝ exp (−Ht) (2.1)

This is a period of super-cooling. If our inflating patch is a closed system, then our

first guess is that the total entropy remains fixed.

2. The entropy per comoving volume, the entropy density, of our inflating patch falls as

its temperature.

s ∝ T 3, (2.2)

where the initial volume of the patch is H−3.

3. After inflation, the inflaton decays into standard model fields, producing heat, and

with it entropy.

sf ∝ T 3
reheating (2.3)

The entropy Sf after inflation in a fixed comoving volume is larger than the initial

entropy at the onset of inflation by a factor of exp(3H∆t), where ∆t is the duration

of inflationary expansion and we have assumed reheating is efficient, that temperature

after inflation is only slightly smaller than temperature at the beginning of inflation.

Following similar reasoning, Kolb and Turner estimate that reheating raises the entropy of

the universe by 10130 [10]. Next, we demonstrate another estimate they present, the extent

of the non-adiabatic nature of inflationary cosmology.
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In the following figures, we characterize adiabatic growth by a constant product of tem-

perature and the scale factor.

Figure 2.1: The evolution of the scale factor and the temperature in standard cosmology.

Figure 2.2: The evolution of the scale factor and the temperature in inflationary cosmology.
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The great production of heat following inflation comes with a rise in entropy. The fol-

lowing figure demonstrates the evolution of entropy in inflation as a function of the scale

factor.

Figure 2.3: The evolution of entropy in inflationary cosmology.

Next we look closely at a contribution of this total entropy due to quantum entanglement.
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2.2 Crossing the Horizon

Let’s recall our discussion of momentum modes in the theory of cosmological perturbations.

During inflation the Hubble radius, in physical coordinates, is constant but the comoving

Hubble radius falls. Modes that are initially sub-Hubble become super-Hubble. Something

interesting happens when the length of the comoving scale matches the Hubble radius, we

call this horizon crossing. This is demonstrated in the following figure.

Figure 2.4: The physical length of a comoving scale relative to a growing horizon.

Before inflation, sub-Hubble fluctuations oscillate. When the length of a comoving scale

matches the Hubble radius, we say that fluctuations freeze out [7], this means that oscillations

stop. Beyond Hubble radius crossing, the quantum state describing a mode of fluctuation

is a squeezed state. At the limit of large squeezing, quantum perturbations become indis-

tinguishable from a classical stochastic process. Squeezing provides a necessary condition

for classicalization. This explains our observation of anisotropies in the cosmic microwave

background.
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Sub- and super-Hubble Fourier modes evolve independently only at first order. At higher

order there are cross terms mixing different modes. This is due to the nonlinear nature of

Einstein’s equations. The modes become entangled. We note that the environment (the sub-

Hubble modes) measures a system (the super-Hubble modes), and this causes a decoherence

in the quantum state of cosmological perturbations [11, 12].

Non-linear interactions, lead to a non-vanishing entropy of the density matrix describing

the super-Hubble modes. In our work, we aim to compute the entanglement entropy in

non-linear interactions between sub- and super-Hubble momentum modes, in an inflationary

universe. This is what we mean by the entanglement entropy of cosmological perturbations.
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Chapter 3

Entanglement Entropy of

Cosmological Perturbations

Abstract

We show that the entropy of cosmological perturbations originating as quantum vacuum

fluctuations in the very early universe, including the contribution of the leading nonlinear

interactions, can be viewed as momentum space entanglement entropy between sub- and

super-Hubble modes. The interactions between these modes causes decoherence of the super-

Hubble fluctuations which, in turn, leads to a non-vanishing entropy of the reduced density

matrix corresponding to the super-Hubble inhomogeneities. In particular, applying this to

inflationary cosmology reveals that the entanglement entropy produced by leading order

nonlinearities dominates over that coming from the squeezing of the vacuum state unless

inflation lasts for a very short period. Furthermore, demanding that this entanglement

entropy be smaller than the thermal entropy at the beginning of the radiation phase of

standard cosmology leads to an upper bound on the duration of inflation which is similar to

what is obtained from the Trans-Planckian Censorship Conjecture.
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3.1 Introduction

There has recently been a lot of interest in entanglement entropy in the context of quantum

field theory and gravity (see e.g., [15] for reviews). In particular, the entanglement entropy of

a conformal field theory is holographically related to properties of the bulk in the context of

the AdS/CFT (anti-de-Sitter bulk/conformal field theory on the boundary [16]) correspon-

dence (see e.g., [17]). In the same context, entanglement entropy can be related to properties

of black holes in the AdS bulk [18]. The relationship between the bulk Einstein equations

and properties of entanglement of the boundary CFT was explored in [19]. Entanglement

entropy considerations have also been applied directly to black holes physics (see [20] for a

review), and to de Sitter space in [21, 22]. There are also attempts to build up spacetime

itself from quantum entanglement [23].

Most considerations of entanglement are based on a position space separation of the

domain; for example, the separation between the inside of a black hole and the outside.

However, in cosmology it is more natural to work in momentum space because it is the

properties of the momentum modes of cosmological fluctuations which are generally probed

(such as the power spectrum). Momentum space entanglement has been considered in [24]

(see also [25]), and we will use methods from that work extensively.

Entanglement is a crucial, and rather essential, feature of quantum mechanical systems.

In many early universe scenarios, the cosmological fluctuations which we measure today are

postulated to emerge from quantum vacuum perturbations. This is the case not only in

inflationary cosmology [26], but also in the Ekpyrotic scenario [27] and in the matter bounce

scenario [28]. Cosmological perturbations (see e.g., [7, 29] for reviews) are small amplitude

fluctuations about the homogeneous and isotropic cosmological background. Because of their

small amplitude, the inhomogeneities are generally described in Fourier space. To leading

order, each Fourier mode evolves independently, and each mode obeys a harmonic oscillator

equation with a time-dependent mass. The Hubble radius H−1(t) (where H is the Hubble

expansion rate) plays a key role in the dynamics of the modes: on sub-Hubble scales the

canonical fluctuation variable oscillates, while it is squeezed on super-Hubble scales.

Successful early universe scenarios have the common feature that the fluctuation modes
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which are probed today in cosmological observations were sub-Hubble in the early universe

phase, thus allowing a causal generation mechanism. In the classes of models we consider

here, the initial state for the fluctuations is taken to be the quantum vacuum state1. When

the fluctuation modes exit the Hubble radius, their state becomes a squeezed vacuum state.

The Hilbert space of states thus naturally divides into two parts - the super-Hubble mode

space HA(t) and the sub-Hubble mode space HB(t):

HA(t) =
∏
Hk |k| < Hc(t)

HB(t) =
∏
Hk |k| ≥ Hc(t) (3.1)

where Hk is the harmonic oscillator Hilbert space of the k’th mode and H−1
c (t) stands for

the comoving Hubble radius. It is natural to consider the space of super-Hubble modes to

be the system we consider, and the space of sub-Hubble modes to be the bath which we

integrate over. Note that the comoving Hubble radius decreases as a function of time in

the early universe phase of the models which we consider. This means that modes exit the

Hubble radius. Hence, the boundary between the two Hilbert spaces HA and HB depends

on time: the dimension of the system Hilbert space is increasing. This is a specific feature

of a system on a dynamically expanding background. Furthermore, although not explicitly

stated above, we shall assume an ultraviolet (UV) cutoff (MPl) for the bath modes so that

there is always a constant supply of modes which we integrate over. We assume that some

underlying UV theory is able to provide the details of the dynamics of the modes lying in

the range k > MPl and shall not consider them in our work.

As mentioned above, in this paper, we consider the entropy of the space of super-Hubble

modes which results from the entanglement with the bath of sub-Hubble modes. The question

of entropy of cosmological perturbations has been considered previously. For example, in

[31–33] the entropy of a classical field was studied, and the results were applied to compute

the entropy of cosmological perturbations and gravitational waves in an inflationary universe.

In [31–33], the source of entropy can be traced back to the loss of information about the

phases of the fluctuations for super-Hubble modes, while a similar calculation for the coherent

1String gas cosmology [30] does not fit into this class since there the initial fluctuations are taken to be

thermal.
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state basis was shown in [34]. In [35], the issue of entropy of cosmological perturbations was

reconsidered, taking the loss of information which leads to entropy generation to be the loss

of information due to the spreading of the wave function of the super-Hubble modes which

results from squeezing. Entropy generation as a consequence of coupling to an environment

was studied in [36]. In [37], entropy generation of cosmological fluctuations as a consequence

of a truncation of the hierarchy of Green’s functions was considered.

What was not considered in these previous works on entropy generation is the role of

nonlinearities. Because of the nonlinear nature of the Einstein equations, there is always a

mixing of modes for cosmological perturbations. In particular, there is a mixing between

the sub- and super-Hubble modes. As discussed in [5, 11, 38, 39], this leads to decoherence

of the reduced density matrix of super-Hubble modes2. This decoherence is crucial in order

to explain why the cosmological perturbations become classical even though they have a

quantum origin. The resulting density matrix of the super-Hubble modes is no longer that

of a pure state, and hence leads to a non-vanishing entropy which we compute in this paper.

We stress that, as shall become apparent later on, we calculate a lower bound on the amount

of entanglement entropy of scalar density perturbations, produced in any model of inflation,

due to the minimal gravitational nonlinearities which must always be present. Additional

couplings or fields, or considering interactions between scalar and tensor modes, would lead

to enhanced amounts of entropy production.

There are some similarities between our work and that of [44], where decoherence through

neglecting observationally inaccessible correlators was considered, and that of [45] where

decoherence via entropy field loops was studied (decoherence of fluctuations through entropy

loops was considered earlier in [46]). There is also a connection with the work of [47] where

super-Hubble entanglement through inflaton decay was considered.

Our notation is as follows: We use natural units in which the speed of light, Planck’s

constant and Boltzmann’s constant are set to one. We consider a spatially flat background

2See also [40] where the decoherence of super-Hubble modes as a consequence of the interaction with

sub-Hubble modes was studied using different techniques, [41] where the decoherence through interaction

with gravitational waves was considered, and [42, 43] where decoherence due to coupling to a more general

environment was analyzed.
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cosmology such that the metric can be written as

ds2 = −a2 (η)
[
dη2 − dx2

]
, (3.2)

where η is the conformal time which is related to the physical time t via dt = adη, and x

are the comoving spatial coordinates. The Hubble parameter is given in terms of the scale

factor a(t) by

H(t) =
ȧ

a
, (3.3)

where the overdot represents the derivative with respect to t. We emphasize that the Hubble

radius plays a crucial role in our analysis. Sub-Hubble modes of the canonical fluctuation

variable oscillate while those on super-Hubble scales are squeezed [7, 29]. We denote the

Planck mass by MPl.

In the next section, we give a first pass at arriving at the entropy of cosmological per-

turbations due to the squeezing of super-Hubble modes during inflation. In Sec-3.3, we

review the well-known argument that interaction between the perturbation modes, arising

from minimal gravitational nonlinearities, leads to a suppression of the off-diagonal terms in

the density matrix for the super-Hubble modes. This justifies an assumption used in Sec-3.2

for calculating the entropy due to the squeezed state. Finally, having set up our dominant

interaction term in Sec-3.3, we go on to calculate the entanglement entropy density for our

system (super-Hubble) modes in Sec-3.4. We estimate an order of magnitude for the upper

bound of this quantity and show that it is greater than the entropy for the squeezed vacuum,

as calculated in Sec-3.2. In Sec-3.5, interestingly we find an upper bound on the duration

of inflation by requiring that this entanglement entropy remains smaller than the thermal

entropy produced at the end of inflation3. We discuss our main findings in Sec-3.6.

3This bound is similar to the bound obtained [48] by invoking the Trans-Planckian Censorship Conjecture

(TCC) [49].
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3.2 Reduced Density Matrix of Super-Hubble Modes

3.2.1 The Squeezed Vacuum

We consider linear scalar cosmological perturbations about the background metric (3.2). As-

suming that the matter source of the fluctuations has no anisotropic stress, the perturbations

are described by a single field ζ(x, t), the curvature perturbation in comoving gauge. The

metric including these fluctuations is

ds2 = −a2(η)
[
dη2 − (1 + 2ζ)dx2

]
. (3.4)

The action for cosmological perturbations has a canonical kinetic term if we use the rescaled

field (we are following the notation of [50])

χ(x, η) ≡ z(η)ζ(x, η) (3.5)

with

z2(η) ≡ 2 εH a
2M2

pl c
−2
s , (3.6)

where εH is the first “slow-roll” parameter defined via

εH ≡ −
Ḣ

H2
, (3.7)

and c2
s is the speed of sound squared of the matter source. Although, later on, we shall

only consider models of single-field inflation with no derivative self-couplings, we are keeping

cs 6= 1 at this stage so that our expressions remain as general as possible4.

The linear cosmological perturbations about the classical background geometry can be

canonically quantized [26]. We insert the ansatz for the fluctuating metric and matter into

the total action (joint gravitational and matter action) and expand to quadratic order. Since

at linear order each Fourier mode evolves independently, we can reduce the quantization to

the standard quantization of a set of harmonic oscillators, the oscillators having a time

dependent mass coming from the time dependence of the background. In terms of the

4In the case cs = 1, the action is
∫

d4x 1
2

[
(∂µχ)

2 − z′′

z χ
2
]
.
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usual ladder operators, the quadratic Hamiltonian H2 corresponding to scalar cosmological

perturbations takes the form

H2 =
1

2

∫
d3k

(2π)3

[
csk
(
ckc
†
k + c-kc

†
-k

)]
− 1

2

∫
d3k

(2π)3

[
i

(
z′

z

)(
ckc-k − c†kc

†
-k

)]
, (3.8)

where a prime denotes a derivative with respect to conformal time. As can be seen from

(3.8), the squeezing term dominates in the limit aH � csk, for a given mode. In other

words, the time-dependent squeezing interaction is dominant for super-Hubble modes.

This quadratic Hamiltonian generates the following equation of motion for the ladder

operators

dck
dη

=

(
z′

z

)
c†k − icskck . (3.9)

Given an initial condition at an instant of time, η0, we can solve for this as

ck (η) = eiθk(η) cosh [rk (η)] ck (η0)

+ e−iθk(η)+2iφk(η) sinh [rk (η)] c†-k (η0) . (3.10)

In the above, rk and φk are the squeezing parameter and the squeezing angle, whereas θk

denotes the action of the rotation operator. The number of particles in a given mode k

is proportional to the squeezing parameter nk ∼ sinh2 rk. For inflation, the leading order

time-dependence of these parameters is given by [51]

rk (η) = − sinh−1

(
1

2cskη

)
, (3.11)

φk (η) = −π
4
− 1

2
tan−1

(
1

2cskη

)
, (3.12)

θk (η) = −kη − tan−1

(
1

2cskη

)
. (3.13)

Given the quadratic Hamiltonian, the evolution operator U0(η) can be written as

U0 (η, η0) |0k, 0-k〉 = Sk (η)Rk (η) |0k, 0-k〉 , (3.14)
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where Sk (rk, φk) andRk (θk) are the two-mode squeezing and rotation operators, respectively,

which are defined as [51]

Sk := exp
[rk

2

(
e−2iφk c−kck − h.c.

)]
, (3.15)

Rk := exp
[
−iθk

(
c†kck + c†−kc−k + 1

)]
. (3.16)

At the level of the quadratic Hamiltonian, the U0(η) is unitary. However, once interaction

terms are introduced, the evolution becomes necessarily non-unitary in the presence of bath

modes [50]. The effect of the rotation operator is only to change the phase and would be

of no consequence to us, and hence we drop it from hereon. The effect of the two-mode

squeezing operator on the vacuum leads to the squeezed vacuum, which is defined as

|SQ (k, η)〉 ≡ Sk (rk, φk) |0k, 0-k〉 (3.17)

=
1

cosh rk

∞∑
n=0

e−2inφk tanhn rk |nk, n-k〉 ,

where

|nk, n-k〉 ≡
[

1

n!

(
c†kc
†
-k

)n]
|0k, 0-k〉 . (3.18)

For a given mode k, it is easy to see that this state is normalized, as follows:

〈SQ (k, η) |SQ (k, η)〉

=
1

cosh2 rk

∞∑
n=0

∞∑
m=0

e−2i(n−m)φk tanh(m+n) rk δm,n

=
1

cosh2 rk

∞∑
n=0

tanh2n rk = 1 , (3.19)

as required. The squeezed vacuum of all the modes can be obtained in a straightforward

manner as the tensor product state

|SQ(η)〉 ≡
∏
k

|SQ(k, η)〉 . (3.20)

3.2.2 The Reduced Density Matrix

The straightforward definition of the density matrix, corresponding to the squeezed state

given in (3.20), is

ρ = |SQ(η)〉 〈SQ(η)| . (3.21)
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If we calculate the entropy corresponding to this state, naturally this is going to be zero since

it is a pure state, given by the evolution of the vacuum under the quadratic Hamiltonian

(3.8). More concretely, the density matrix expressed in terms of the two-mode occupation

number basis reads

ρ =
∏
k

∏
p

∞∑
n=0

∞∑
m=0

1

cosh rk cosh rp
e−2iφk(n−m) tanhn rk tanhm rp |nk, n-k〉 〈mp,m-p| , (3.22)

which is still a pure density matrix.

Let us show this more explicitly, as follows. Our state can be written as a product state

|ψ〉 = |ψ〉A ⊗ |ψ〉B , (3.23)

where |ψ〉A is the product state of all the super-Hubble modes, and |ψ〉B over the sub-Hubble

modes. Since we are focusing on the super-Hubble modes, our reduced density matrix is

obtained by tracing over the the sub-Hubble mode Hilbert space.

ρA ≡ TrBρ =
∑
j

〈j |ψ〉 〈ψ| j〉 , (3.24)

where the sum is over the basis states of the Hilbert space of sub-Hubble modes. In the

absence of entanglement between the sub- and super-Hubble modes, and given that the

states of both subsystems are pure, the reduced density matrix ρA also corresponds to that

of a pure state and hence has vanishing entropy.

So far, however, we have neglected any coarse graining or nonlinear effects. In particular,

we have neglected entanglement effects between sub- and super-Hubble modes which are

inevitably present because the equations of gravity are nonlinear. In the following we will

take a first look at the entropy of cosmological perturbations after loss of some information

about the state. In the following section we then show that this loss of information is an

inevitable consequence of the entanglement between sub- and super-Hubble modes.

3.2.3 First View on Entanglement Entropy of Cosmological Per-

tubations

In order to get a non-vanishing von-Neumann entropy of the reduced density matrix ρA, we

need to coarse-grain it in a suitable way to derive a mixed density matrix. In [31,32], it was
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observed that the phase associated with the squeezing angle is sensitively dependent on the

density perturbation whereas the amplitude is not. As a consequence, the coarse-grained

entropy in [31, 32] was defined by averaging over the squeezing angle, which also leads to

decoherence. In our setup, a similar “averaging” over the squeezing angles would lead to

setting the off-diagonal elements to zero in the number basis, leading to a reduced density

matrix of the form

ρsq =
∏
k

∞∑
n=0

1

cosh2 (rk)
tanh2n (rk) |nk, n-k〉 〈nk, n-k| .

(3.25)

A different perspective of arriving at the above form for the reduced density matrix would

be to consider only the diagonal entries of (3.22), whereas assuming that the off-diagonal

elements quickly fall-off to zero. The usefulness of this perspective lies in the fact that one

does not have to refer to the phase in order to derive the reduced density matrix. However,

now we need to justify our choice of ignoring the off-diagonal elements for the density matrix.

One way to argue would be to consider that there are a lot of particles created for a given

mode, with opposite momenta, with φk being the phase of each of these particle pairs.

But if we want to use the destructive interference, while group averaging these phases, as

being responsible for suppressing the off-diagonal terms, then we are back to our previous

argument. Instead, one might follow the arguments of [35,52] to justify the reduction of the

density matrix as a result of assuming a distribution of coherent states as our initial state –

instead of the usual vacuum – as a manifestation of our ignorance regarding initial conditions.

If one assumes this as the starting point, it can be shown that the off-diagonal terms are

naturally suppressed as long as one invokes equipartition of probabilities for the initial states

in the ensemble [52]. We are neither advising this approach nor suggesting that it is better

than considering the averaging procedure over random phases, but just pointing out that

there have been different justifications for considering the above form of the reduced density

matrix (3.25). In the next section, we will give an improved analysis and explain the decay

of the off-diagonal elements as a consequence of decoherence resulting from entanglement

between the modes.
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The von-Neumann entropy associated with this reduced density matrix is given by

scsq = −Tr (ρsq ln ρsq)

= −
∏
k

[
1

cosh2 rk
ln

(∏
p

1

cosh2 rp

)
− tanh2 rk

cosh2 rk
ln

(∏
p

tanh2 rp

cosh2 rp

)

−tanh4 rk

cosh2 rk
ln

(∏
p

tanh4 rp

cosh2 rp

)
− . . .

]

= −
∞∑
n=0

[∏
k

tanh2n rk

cosh2 rk
ln

(∏
p

tanh2n rp

cosh2 rp

)]
(3.26)

First, we expand the product in the logarithm as a sum of logs, i.e.

ln

(∏
k

tanh2n rk

cosh2 rk

)
=
∑
k

ln

(
tanh2n rk

cosh2 rk

)
. (3.27)

Using this in (3.26), we can rewrite the entropy density (per comoving volume) as

scsq = −

(
∞∑
n=0

∏
p

tanh2n rp

cosh2 rp

)(∑
k

∞∑
m=0

tanh2n rk

cosh2 rk
ln

(
tanh2n rk

cosh2 rk

))
. (3.28)

Using the normalization (3.19), the term in the first parentheses is equal to 1. The entropy

gets simplified to

scsq =
∑
k

∞∑
n=0

ln
(
cosh2 rk (tanh rk)

−2n)
cosh2 rk

tanh2n rk

=
∑
k

ln
(
cosh2 rk

)
cosh2 rk

∞∑
n=0

tanh2n rk −
∑
k

ln
(
tanh2 rk

)
cosh2 rk

∞∑
n=0

[
n tanh2n rk

]
=

∑
k

ln
(
1 + sinh2 rk

)
−
∑
k

sinh2 rk ln
(
tanh2 rk

)
=

∑
k

[(
1 + sinh2 rk

)
ln
(
1 + sinh2 rk

)
− sinh2 rk ln

(
sinh2 rk

)]
. (3.29)

In the large occupation number limit, nk = sinh2 rk � 1, we get back the same expression

for the entropy density s ≈
∑

k ln
(
sinh2 rk

)
, as derived in [31,32]. However, we derived this

result from the von-Neumann entropy formula for a quantum density matrix instead of using

the Shannon entropy for a classical field. Note that one should expect that our expression

matches that for the classical calculation, done earlier, only in the large squeezing limit.

In this sense, one should view
∑

k ln
(
sinh2 rk

)
as the classical limit of the von-Neumann
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entropy calculated here within a quantum field theoretic approach, and it is thus compatible

with previous results [31, 32] of considering the entropy of a classical field. Our result also

matches with previous works as presented in [35].

In the case of slow-roll inflation with an approximately constant Hubble constant we can

estimate the resulting entropy density by integrating over all super-Hubble modes and apply

a infrared cutoff: we do not consider modes with wavelengths larger than the Hubble radius

H−1 at the beginning of inflation. With the convention that the scale factor is set to one

at the beginning of inflation, this implies that in (3.29) we need to integrate over all values

of k with H < k < aH. At any time, this integral is dominated by the modes exiting the

Hubble radius at that time, and we thus obtain5

scsq ∼ a3H3 . (3.30)

To obtain the entropy density per physical volume element, we have to divide the above by

a3, and we hence get

ssq ∼ H3 . (3.31)

Before moving on, let us note that the entropy calculated in this section is not quite

an entanglement entropy as it arises from the squeezing of the cosmological perturbations.

The way we manage to get a nonzero result for a density matrix arising from a quadratic

Hamiltonian (3.8) is by employing some yet-to-be-specified coarse-graining, due to which the

pure density matrix in (3.22) is reduced to a mixed one (3.25), by ignoring the off-diagonal

terms. In the next section, we shall give a rigorous argument as to how gravitational non-

linearities, responsible for decohering the quantum fluctuations into classical perturbations,

necessarily render the density matrix diagonal. In this way, the entanglement between sub-

and super-Hubble modes, due to mode-mixing arising from gravitational non-linearities, is

also responsible for the entropy of cosmological perturbations calculated above6.

5A more explicit calculation for this has been shown in Sec-3.4.
6The key point is that this is in addition to the explicit entanglement entropy due to such interaction

terms which we shall calculate later on.

42



3.3 Nonlinearities, Decoherence and Entropy Genera-

tion

Here we review the analysis of [39] which shows how the purely gravitational interactions

which are inevitably present because of the nonlinearity of General Relativity lead to a

decoherence of the reduced density matrix of the super-Hubble modes as a consequence of

the interaction with the sub-Hubble fluctuations. For our purposes, we will focus on the case

of inflation.

We shall now take into account the effects of the cubic Hamiltonian in addition to the

quadratic Hamiltonian discussed in the previous section. This is the leading term which

generates entanglement between the sub- and super-Hubble modes. We are considering the

full cubic action for the density perturbations in the presence of a single matter field. If the

matter is a canonically normalized scalar field, then the speed of sound cs = 1. In more

general models, c2
s can be smaller than one, and this can significantly increase the size of

the cubic interaction terms, resulting in a significant contribution to the equilateral-shape

non-Gaussianity parameter fNL. However, as a first pass, let us only consider vanilla matter

models with cs = 1, which should be sufficient to estimate a lower bound on the entanglement

entropy for models of inflation.

We take the form of the cubic contribution to the Hamiltonian from [53], from now on

setting cs = 1, which is a generalization of the results from [54].

S3 = M2
Pl

∫
dt d3x

[
a3ε2Hζζ̇

2 + aε2Hζ(∂ζ)2 − 2aεH ζ̇∂iζ∂iχ̃

+a3εH(ε̇H − η̇H)ζ2ζ̇ +
ε2H
2
a∂iζ∂iχ̃

− d

dt

(
a3εH(εH − ηH)ζ2ζ̇

)]
(3.32)

where χ̃ = a2εH∂
−2ζ̇. We have also introduced the second “slow-roll” parameter:

ηH =
1

H

ε̇H
εH

. (3.33)

We shall ignore the non-local terms that contain χ̃ since those are not the dominant

terms in the action. Additionally, there are also terms which would get cancelled with each
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other (such as the ˙ηH term in the second line would get cancelled by a similar term from the

third line of (3.32)). Since, in the case of inflation, the dominant mode of ζ has frozen out

on super-Hubble scales, we will neglect interaction terms which contain ζ̇. Furthermore, we

shall restrict our analyses only to the leading order terms in the slow-roll parameters, and

would thus be left with the second term in the first line of (3.32) (the other terms being

higher orders in εH and ηH , or contain a ζ̇). Hence, the dominant term in the interaction

Hamiltonian is (after integration by parts, and recalling that Hint = −Lint)

Hint =
M2

Pl

2

∫
d3x ε2H a ζ

2(∂2ζ) . (3.34)

The Hint we are considering arises purely from gravitational non-linearities, originating from

the cubic Lagrangian given in (3.32). As discussed above, in a model of single-field slow roll

inflation without any derivative self-interaction, this would be the dominant term. However,

for a nontrivial speed of sound model, there can a different term which significantly enhances

the cubic interaction. This would lead to both a faster rate of decoherence as well as a greater

amount of entanglement entropy. In this sense, our calculation should be understood to yield

the minimum amount of entanglement entropy that must be produced in any inflationary

model; multiple fields or more complicated interactions would only enhance our results.

Note here that there is an additional term, not shown above in the cubic Lagrangian,

that is of the exact same form, ζ2(∂2ζ), but with a pre-factor εHηHa [55]. This term is part

of a large number of terms which are typically removed by a field redefinition [54] and do not

affect the correlation functions for calculating the bispectrum. Strictly speaking, we should

keep this term if we are interested in calculating the entropy corresponding to the ζ field

(and not for the redefined one). However, we drop it here to avoid additional clutter since

it is straightforward to include its effects at the end by adding a factor of εHηH , in addition

to the ε2H in (3.34), to our results.

Having setup our interaction terms, we begin the evolution at the conformal time η0, in

a pure Gaussian product state of all of the modes, which has the wave function

Ψ[A,B](η0) = ΨG[A](η0)ΨG[B](η0) , (3.35)

where in this case we have indicated which variables the individual states depend on. As a
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consequence of the interactions, the state evolves into

Ψ[A,B](η) = ΨG[A](η)ΨG[B](η)ΨI [A,B](η) (3.36)

at a later time η, where the third factor is a consequence of the interaction Lagrangian.

The interaction contribution to the wave function is given by

ΨI [A,B](η) = exp
[∫

k,k′,q

ζkζk′ζqF(k, k′, q; η)
]
, (3.37)

where k, k′ stand for sub-Hubble modes, and q stands for a super-Hubble mode, and the ker-

nel function F(k, k′, q; η) is given by an integration over time of the interaction Hamiltonian

in momentum space (see [39] for details) with the property that its imaginary part blows

up as η → 0. In the above, the integration runs over all momenta with the property that

k + k′ + q = 0 (momentum conservation).

The reduced density matrix of the super-Hubble modes can be obtained by integrating

over the sub-Hubble ones. In the field representation we have

ρA(ζ, ζ̄) =

∫
DBΨ[ζ, B])Ψ∗[ζ̄ , B] , (3.38)

where DB stands for the integration over the sub-Hubble modes B. Eq. (3.38) yields

ρA(ζ, ζ̄) = ΨG[ζ]ψG[ζ̄]

∫
DB|ΨG[B]|2exp

[∫
k,k′,q

ζkζk′
(
ζqF(k, k′, q) + ζ̄qF∗(k, k′, q)

)]
≡ ΨG[ζ]ΨG[ζ̄]D[ζ, ζ̄] , (3.39)

where D[ζ, ζ̄] is the decoherence factor. Focusing on a single super-Hubble mode q, the

decoherence factor is

D[ζ, ζ̄] ∼ exp
[
−4π(∆ζq)

2

q3

∫
k+k′=−q

PG(k)PG(k′)(ImF(k, k′, q))2
]
, (3.40)

where the time dependence of the factors has been suppressed, where PG is a property of

the Gaussian wavefunction, and

∆ζq = ζq − ζ̄q . (3.41)

As is clear from (3.40), the decoherence factor decays in time on super-Hubble scales since

the imaginary part of F blows up. Note that the decoherence effect is dominated by the
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Hubble scale modes. There is no UV divergence in the loop diagram which produces the

interaction. This is a consequence of the specific form of our interaction Lagrangian.

To conclude this section, we have reviewed how the interaction with the sub-Hubble

modes leads to decoherence of the super-Hubble ones. For a particular mode, decoherence

happens after Hubble radius crossing. The important thing for us is the fact that decoherence

leads to the damping of the off-diagonal terms such that the reduced density matrix of the

super-Hubble modes become diagonal very quickly. In the previous section, we had calculated

the entropy corresponding to the squeezing of the super-Hubble modes, assuming that their

density matrix turns diagonal which we have given a concrete justification for in this section.

As promised, we show that even for the entropy of the cosmological perturbations which

solely arises from the quadratic Hamiltonian, nonlinearities play a crucial role by making

the density matrix diagonal. In the following section, we will compute the entanglement

entropy which the non-Gaussianities directly generate.

3.4 Enhanced Entanglement Entropy due to Nonlin-

earities

3.4.1 Setup

Having set up our interaction terms, let us discuss how one can calculate the entanglement

entropy of the cosmological perturbations due to the effects of these coupling terms. To

calculate the entanglement entropy, we shall follow the prescription of [24], and generalize

their results for flat spacetime to inflationary backgrounds.

Given our breakup of the Hilbert space (3.1) H = HA⊗HB into system and environment

modes, our Hamiltonian can be expressed as

H = HA ⊗ I + I⊗HB + λHint , (3.42)

where HA,B denote the free part of the Hamiltonian and λ is a time-dependent constant. The

ground state of the free theory, neglecting the interactions, is denoted by |0, 0〉 = |0〉 ⊗ |0〉,
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and one can write the interacting vacuum of the entangled system as

|Ω〉 = |0, 0〉+
∑
n6=0

An|n, 0〉+
∑
n6=0

BN |0, N〉

+
∑
n,N 6=0

Cn,N |n,N〉 , (3.43)

where |n〉 denotes an n-particle state of the system (in fact, a product state over all super-

Hubble k modes), and |N〉 is the corresponding state for the bath.

Following the analyses of [24], one finds that the leading order contribution to the entan-

glement entropy for such a system can be written as

Sent = −λ2 log
(
λ2
) ∑
n,N 6=0

|Cn,N |2

(E0 + Ẽ0 − En − ẼN)2
,

(3.44)

where we can express the matrix element Cn,N in terms of standard perturbation theory as

Cn,N = 〈n,N |Hint|0, 0〉 . (3.45)

Note that our definition of Cn,N differs slightly from that of [24] for later convenience. Before

going on to calculate this matrix element, and the corresponding entanglement entropy for

our cosmological system, let us review the flat space calculation first through an explicit

example.

3.4.2 Calculation for flat space

Considering a cubic interaction term, one can write the action for a massive scalar field as

S =

∫
d4x

(
−1

2
(∂µϕ)2 − 1

2
m2ϕ2 − λ

3!
ϕ3

)
. (3.46)

For a flat (3 + 1)-dimensional spacetime, the field can be decomposed in terms of the usual

ladder operators as

ϕ(x) =

∫
d3k

(2π)3
√

2ωk

(
ake

−i k.x + a†ke
i k.x
)
, (3.47)

where ωk =
√
m2 + k2. Here, instead of putting the fields in a box as in [24], we choose

to work with continuous field variables, as would be more appropriate for cosmological per-

turbations later on. However, we still have a scale µ which separates our system from the
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environment, using the same convention as in [24]. In other words, we are interested in

calculating the entanglement entropy between the modes with momenta k above and below

µ. In this case, the only nontrivial contribution to the matrix element would be from an

excited state of a 3-particle one which can be written as

|p1p2p3〉 = a†p1
a†p2

a†p3
|0〉 . (3.48)

Recalling that the interaction Hamiltonian is (λ/3!)ϕ3, λ having dimension of mass, the

required matrix element (3.45) can be written as

Cflat
n,N =

∫
d3x 〈p1p2p3|

[∫
d3k

(2π)3
√

2ωk

(
ake

−i k.x + a†ke
i k.x
)]3

|0〉

=

∫
d3x 〈p1p2p3|[∫

d3k1

∫
d3k2

∫
d3k3

1

(2π)9√ωk1ωk2ωk3

(
a†k1

ei k1.x
)(

a†k2
ei k2.x

)(
a†k3

ei k3.x
)]
|0〉

=
1

23/2

∫
d3x

[
1

√
ωp1ωp2ωp3

ei (p1+p2+p3).x

]
=

1

23/2

(2π)3

√
ωp1ωp2ωp3

δ3 (p1 + p2 + p3) . (3.49)

In the second line above, we only keep the creation operators as required, whereas in the third

line we have used the orthonormality property of the inner product to eliminate the integrals

over (k1,k2,k3). In the final step, we used the integration over the spatial coordinate, and

the remaining delta function implies that at least one of the spatial momenta must be above,

and at least one below, the scale demarcating the system and the environment.

The entanglement entropy for this system can be then evaluated by plugging in the above

expression into (3.44)

sflat
ent = −λ2 log

(
λ2
) 1

23 (2π)6
× (3.50)∫

{p}µ

∏
d3pi

δp1+p2+p3

ωp1ωp2ωp3 (ωp1 + ωp2 + ωp3)
2

where the integrals are over a set of momenta such that there can only be two configurations

of interest – either one of (p1, p2, p3) is greater than µ while the rest are below µ, or two of

them are above while one is below µ. We have also divided the total entanglement entropy

by the (infinite) volume to express it as an entanglement entropy density (≡ Sflat
ent /Vol).
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3.4.3 Vacuum & Interaction Hamiltonian

Let us first outline the differences we anticipate between the flat space calculation above and

our case for cosmological perturbations. Firstly, the interaction parameter λ = λ(η) will now

be time-dependent. Secondly, the vacuum for the system modes is now given by the squeezed

vacuum, and the mode functions corresponding to the vacuum in curved spacetime will have

a different form of their momentum dependence. Since the vacuum of the super-Hubble

modes will now be the squeezed vacuum, there now are contributions of terms with both

creation and annihilation operators in our case. Finally, a major conceptual difference arises

from the fact that the scale separating our system from the bath is given by the (comoving)

Hubble scale which is time-dependent since we are working with comoving coordinates (and,

in addition, by itself has a weak time-dependence of its physical value during inflation), and

is not some arbitrary, tunable parameter µ as in the flat space case. With this in mind, let

us begin by factoring the Hamiltonian for the overall system as

H = Hsys +Hbath +Hint , (3.51)

where the Hsys and Hbath is the quadratic Hamiltonian, for the super and sub-Hubble modes

respectively, as given in (3.8). Next, we write down the vacuum modes for the unperturbed

systems, ignoring nonlinearities, as

|0, 0〉 = |0〉k>aH ⊗ |SQ(η)〉k<aH . (3.52)

The |0, 0〉 is the vacuum state for both the system as well as the bath modes. For the super-

Hubble modes, the vacuum is given by the squeezed state as given in (3.20). On the other

hand, we have the usual Minkowski vacuum for the sub-Hubble modes, denoted by |0〉.

The explicit form of the interaction Hamiltonian naturally depends on the choice of the

interaction term we choose between the perturbation modes. As mentioned earlier, for this

paper, we shall restrict ourselves to only cubic perturbation terms which arise naturally

from gravitational nonlinearities in any model of inflation, as captured by our interaction

Lagrangian given in (3.32). We emphasize once again that considering more complicated

interactions or more fields can lead in a different term dominating Hint, which would end up

producing enhanced amounts of entanglement entropy. In this precise sense, we give a lower

bound on the amount of entropy production coming from scalar modes during inflation.
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For our dominant interaction term of the form

M2
Pl

∫
dt d3x a ε2H ζ (∂ζ)2 , (3.53)

we can write down the interaction Hamiltonian by converting the ζ field to our canonical

field χ, and then expanding in terms of the creation and annihilation operators in momentum

space. We find the following expression [56]:

λ(η)Hint = λ(η)

∫
∆

[√
k2k3

k1

(
c†−k1

c†−k2
c†−k3

+ ck1c
†
−k2

c†−k3
+ . . .

)
+

√
k2k1

k3

(
c†−k1

c†−k2
c†−k3

+ . . .
)

+

√
k1k3

k2

(
c†−k1

c†−k2
c†−k3

+ . . .
)]

. (3.54)

where all the terms in the parentheses (. . . ) are the same and include all possible (momentum-

conserving) combinations of the ladder operators. We have also defined∫
∆

:=
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

(2π)3 δ3(k1 + k2 + k3). The difference in the momenta dependence of

our choice of Hint from, say, one with time-derivatives such as L3 ∼ ζ(ζ ′)2, would be that

some of the terms in the expression above would come with a minus sign since, in that case,

the interaction term couples the field with its conjugate momentum [50]. The prefactor is

given by (keeping in mind that we go from cosmic time to conformal time)

λ(η) =

√
εH

2
√

2 aMPl

, (3.55)

where, as anticipated, we get a time-dependent interaction parameter. We now have all the

ingredients – the vacuum state and the interaction Hamiltonian – to calculate the matrix

element given in (3.45).

3.4.4 Matrix element

Let us revisit our calculation of the matrix element for the cubic Lagrangian in Minkowski

space. The crucial difference between that calculation and the one for inflation would be that

instead of only keeping the term which solely involves creation operators from the interacting

Hamiltonian, we shall also have to consider terms of the form ck1c
†
−k2

c†−k3
and ck1ck2c

†
−k3

.

This is easy to understand since for the case of flat spacetime, the only nonzero contribution

for the matrix element between the Minkowski vacuum and an excited state (with, say, three
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particles for a cubic interaction) can come if we sandwich a term consisting of three creation

operators in between. If there exists any annihilation operator, it would simply annihilate

the vacuum, resulting in zero. On the other hand, for inflation, we have a tensor product of

the Minkowski vacuum for the sub-Hubble modes and the squeezed vacuum for thr super-

Hubble ones (3.52). In this case, the ladder operator(s) corresponding to the sub-Hubble

modes must be creation ones c†−k whereas the one(s) corresponding to the super-Hubble

modes can be either c†−k or ck. This is so because an annihilation operator ck does not

annihilate the squeezed vacuum |SQ(k, η)〉. One can see this explicitly from the form of the

two-mode squeezed vacuum, as given in (3.17).

Having said this, let us list all the possible choices of interaction terms which can appear

in the matrix elements:

• Terms of the form c†−kc
†
−kc

†
−k: There can be either two system (super-Hubble) modes

and one bath (sub-Hubble) mode or vice-versa.

• Terms of the form ckc
†
−kc

†
−k: There can be either two system modes and one bath

mode or vice-versa. However, the annihilation operator must always correspond to the

super-Hubble mode.

• Terms of the form ckckc
†
−k: There must be two system modes, corresponding to the

two annihilation operators, and can, therefore, only be one bath mode.

• The terms proportional to ckckck necessarily yield zero for the matrix element since

the annihilation operator corresponding to any of the bath modes annihilates the

Minkowski vacuum.

Let us consider the first case in detail in the following calculation while we leave the

details of the other terms for the Appendix. Therefore, the term of interest for us from the

Hint (3.54), for calculating (3.45), is the following:(√
k2k3

k1

+

√
k1k3

k2

+

√
k1k2

k3

)
c†−k1

c†−k2
c†−k3

⊂ Hint .

Next, we need to find the explicit action of a creation operator on the squeezed vacuum.

Using the definition of the two-mode squeezed state from (3.17), we can formally express the
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action of a creation operator on it as

c†−p |SQ (k, η)〉 . (3.56)

Schematically, it implies that we are considering an excited state with a particle of energy p

over our squeezed vacuum. A similar iteration would create higher order excited states over

the squeezed vacuum. However, recall that for a cubic interaction term, the only non-zero

contribution to the matrix element comes from having the first excited state over both the

squeezed and the Minkowski vacuum. Also, since we are only considering cubic interactions,

there can be only two choices — either one of the modes is in the system and two are in the

bath or two of them are in the system while one is in the bath. However, it will be clear

from the following that the dominant contribution to the entanglement entropy comes from

having two of the modes in the bath and one in the system. This is not at all surprising

keeping in mind that the decoherence rate is also dominated by having two short-wavelength

modes and one long-wavelength one.

Let us consider the former option first, i.e. p1, p2 > aH while p3 < aH. The appropriate

excited state to consider is of the form

|n,N〉 =
∣∣1-p1

1-p2

〉
⊗ c†−p3

|SQ (k, η)〉 . (3.57)

The only other novelty for our calculation is the effect of the squeezed vacuum on the inner

product. Recall the standard result

〈SQ(k, η)| cpc†−q |SQ(k, η)〉 = [〈SQ(k, η)| |S(k, η)Q〉+ 〈SQ(k, η)|Np |SQ(k, η)〉] δ3(p + q)

=
(
1 + sinh2 rp

)
δ3(p + q) , (3.58)

where we have written things schematically to avoid clutter. To explicitly see how this result

comes about, one should write down the unitary transformation of the creation and anni-

hilation operator under the squeezing operator, i.e. S†cS and S†c†S as linear combinations

of c, c†, dropping all momenta indices. Also, note that S† = S−1. See the Appendix for

more details. The rest of the calculation follows exactly that of flat space, and it is easy to

evaluate the matrix element as

(c†c†c†)Csq
n,N = (2π)3

(
1 + sinh2 rp3

)(√p2p3

p1

+

√
p1p3

p2

+

√
p1p2

p3

)
δ3(p1 + p2 + p3) . (3.59)
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It is clear that for our choice of p1, p2 ∈ bath while p3 ∈ system, the dominant term in

the above comes from the third term
(
Cn,N ∝

√
p1p2
p3

)
. It is also evident from the above

calculation that if we had two modes in the system and one in the bath, then the dominant

term in the matrix element would have the form

(c†c†c†)C fold
n,N = (2π)3

(
1 + sinh2 rp2

) (
1 + sinh2 rp3

)(√p2p3

p1

+

√
p1p3

p2

+

√
p1p2

p3

)
δ3(p1 + p2 + p3)

≈ (2π)3
(
1 + sinh2 rp2

) (
1 + sinh2 rp3

)(√p1p3

p2

+

√
p1p2

p3

)
δ3(p1 + p2 + p3) (3.60)

where we have chosen p1 > aH and p2, p3 < aH. Already at this stage we can see that the en-

tanglement entropy for cosmological perturbations, during inflation, peaks in the “squeezed”

limit p3 � p1 ≈ p2, given the momentum structure of the matrix element, for (c†c†c†)Csq
n,N

whereas it gets its maximum contribution in the “folded” limit p3 + p2 ≈ p1 for the other

case (c†c†c†)C fold
n,N .

3.4.5 Entanglement entropy

Let us recall the formula for the leading order term in the entanglement entropy

Sent = −λ2 ln(λ2)
∑
n,N 6=0

|Cn,N |2(
E0 + Ẽ0 − En − ẼN

)2 ,

(3.61)

where a sum is implied on both types of Cn,N calculated in (3.59) and (3.60). Note our slight

difference in convention of defining the matrix element Cn,N as in (3.45), with that of [24].

In order to calculate the entanglement entropy, we need to reinstate factors of the coupling

parameter λ(η) =
√
εH/

(
2
√

2 a(η)MPl

)
as well as the energy corresponding to the ground

and excited states, both for the Minkowski and the squeezed vacuum, considered above.

However, what we really need in the above formula is the energy difference between the first

excited state and the ground state, for both the Minkowski and the squeezed vacua. This

is the same for both the system and the bath modes and is given by ωk := k for (nearly)

massless scalar excitations.

Note that the sum over (n,N) translates into integrals over all the momentum modes in

the formula (3.44). Recall that there was a similar integral over all momentum modes also in
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the expression of the entropy arising from the squeezing part of the quadratic Hamiltonian,

as shown in (3.29). However, unlike in that case, we would have the integrals over all

momentum conserving configurations involving (p1,p2,p3) and not over individual modes

as is expected for an entanglement entropy coming from cubic interactions. Keeping this is

mind, the entanglement entropy (per unit comoving volume) is given by

(c†c†c†)sent = −(2π)3λ2 ln(λ2)

∫ aH

H

d3p3

(2π)3

∫ aMPl

aH

d3p2

(2π)3

∫ aMPl

aH

d3p1

(2π)3
δ3(p1 + p2 + p3)×(

p1p2

p3

) (
1 + sinh2 rp3

)2

(p1 + p2 + p3)2

−(2π)3λ2 ln(λ2)

∫ aH

H

d3p3

(2π)3

∫ aH

H

d3p2

(2π)3

∫ aMPl

aH

d3p1

(2π)3
δ3(p1 + p2 + p3)×[(√

p1p3

p2

+

√
p1p2

p3

)2
(
1 + sinh2 rp2

)2 (
1 + sinh2 rp3

)2

(p1 + p2 + p3)2

]
=: I1 + I2 , (3.62)

where we have only kept the dominant terms from the matrix elements (3.59) and (3.60).

It is important to discuss the limits of the above integral first: We have introduced MPl as

the natural physical UV cutoff and the comoving wavenumber at the beginning of inflation

as the infrared cutoff. We set ai = 1 for the scale factor at the beginning of inflation (and

therefore, in our convention, a is always > 1). We also assume that the Hubble parameter,

H, remains constant during inflation. Furthermore, the UV cutoff for the comoving momenta

is given by aMPl which signifies the fact that the integration of the environment is over a

fixed number of bath modes, even though we are considering an accelerating background.

This is so because although the environment is continuously depleted by modes getting

redshifted into the system, there is also a constant supply of modes from the UV into the

bath7. However, the system has an increasing phase space of modes as more and more modes

become super-Hubble as time goes on, and given our infrared cutoff which states that there

were no comoving modes which were super-Hubble before inflation started. Naturally, we

have to assume that inflation starts at a finite time in the past which reinforces the need of

having an UV cutoff for the perturbation modes.

Let us now estimate the integrals I1 and I2 given in (3.62). For I1, when we have two

7This mode creation is a source of non-unitarity which is one of the arguments for the TCC [48,49].
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bath modes and one system mode, the integrand would naturally have its largest contribution

coming from the squeezed limit, as shown below:

I1 = −(2π)3λ2 ln(λ2)

∫ aH

H

d3p3

(2π)3

∫ aMPl

aH

d3p2

(2π)3

∫ aMPl

aH

d3p1

(2π)3
δ3(p1 + p2 + p3)×(

p1p2

p3

) (
1 + sinh2 rp3

)2

(p1 + p2 + p3)2

= −λ2 ln(λ2)

∫ aH

H

d3p3

(2π)3

∫ aMPl

aH

d3p2

(2π)3

(
p2

√
p2

2 + p2
3 + 2p2p3 cos Θ

p3

)
×(

1 + sinh2 rp3
)2(√

p2
2 + p2

3 + 2p2p3 cos Θ + p2 + p3

)2

≈ −λ2 ln(λ2)

∫ aMPl

aH

d3p2

(2π)3

∫ aH

H

d3p3

(2π)3

(aH)4

24 p5
3

∼ εH

3 (2π)4 26 a2M2
Pl

(aH)4 [(aMPl)
3 − (aH)3]×[

1

H2
− 1

(aH)2

]
× ln

(
λ2
)

. εH H2 MPl a
5 ln(λ2) . (3.63)

In the second line, we have killed the p1 integral using the delta function, introducing the

angle Θ between p2 and p3. In the next line, we introduce the crucial approximation that

the integrand peaks in the limit Θ→ π/2 and p2 � p3, i.e. the squeezed limit. This would

help us in getting an upper bound on the entanglement entropy corresponding to the I1

term. We have also used the expression for the squeezing parameter from (3.11) and used

the approximation that 1 + sinh rk ≈ sinh rk, for large squeezing, in this step. It is then easy

to see that the integration over the bath modes is dominated by the upper limit (the UV

cutoff scale), while the integral over the system mode p3 is dominated by the lowest value

of p3, i.e. by the infrared (IR) cutoff scale. We have only kept the leading terms in the

integrals in the same spirit to arrive at our lower estimate for the entropy density, ignoring

numerical factors. We note that a factor of a3 should be divided from the final result in order

to account for the entanglement entropy density (total entropy per unit physical volume).

We are then left with a factor of (a/ai)
2 (recall, we have set ai = 1) and this reflects the fact

that the phase space of the system modes is growing, and the contribution to the p3 integral

is dominated by the IR cutoff. Collecting everything, the estimate8 of the entanglement

8To remind the readers, this is a lower bound on the amount of entanglement entropy produced in any
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entropy per unit physical volume coming from I1 is given by

sI1ent . εH H2 MPl a
2 ln(λ2) , (3.64)

where a > 1 is such that the number of e-foldings of inflation is given by N := ln a in our

convention.

Let us now first show that the contribution coming from I2 to the entanglement entropy

density would be subdominant to the above result. In this case of having two system and

one bath mode, the largest contribution to the integrand would come from the folded limit

p1 ≈ p2 + p3. Following the calculation as in the previous case, we can arrive at an upper

bound for the estimate of this term in a similar way. However, note that once we eliminate the

integral over the bath mode p1 using the delta function, none of the system mode integrals

which are left have any dependence on MPl. The other difference lies in the additional

squeezing terms leading to an extra factor of the IR cutoff in the final result, namely,

sI2ent . εH H5 1

M2
Pl

a3 ln(λ2) . (3.65)

Once again, we have expressed this final result in terms of the entanglement entropy per unit

physical volume and have only given a rough estimate of the upper bound. Thus, we find

f :=
sI1ent

sI2ent

=
1

a

(
MPl

H

)3

, (3.66)

which means that sI2ent shall always remain subdominant to sI1ent, provided f > 1 ⇒ N <

3 ln(MPl/H). In the next section, we shall show that combining the observed scalar power

spectrum with the fact that the entanglement entropy of cosmological perturbations during

inflation remain smaller than the thermal entropy produced during (p)reheating leads to this

condition being always satisfied. Therefore, we can always ignore the entanglement entropy

corresponding to having two system and one bath mode when compared to that of having

two sub- and one super-Hubble mode.

Note that the above estimates were calculated using the approximations of squeezed and

folded shapes, in which the integrands reach their peak values. The full integrals do not lend

model of inflation since we are only considering cubic interactions of density perturbations alone, which

come from minimally coupling a scalar field to GR. There are necessarily other sources such as those due to

non-Gaussian terms for tensor perturbations.
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themselves to having simple analytic forms and we have thus avoided writing them down

explicitly. The effect of removing these approximations would result in some small numerical

factors appearing in front of our estimates, as in (3.64). However, recall that we have only

shown here the result of the calculation of the entanglement entropy coming from the terms

of the form c†−kc
†
−kc

†
−k, arising from the interaction Hamiltonian in (3.54). As mentioned

earlier, there are other terms, proportional to ckc
†
−kc

†
−k and ckckc

†
−k, which also contribute to

the entanglement entropy. As shown in the Appendix, in the limit of large squeezing, rk � 1,

the contribution of all of these terms are either proportional to sI1ent or to sI2ent. Naturally, we

neglect the terms proportional to sI2ent since they are sub-dominant. And the terms which are

proportional to sI1ent shall add to our estimate for the entanglement entropy density (3.64).

All of this is to say that in our order of magnitude estimate for the entanglement entropy

density of cosmological perturbations during inflation, there should be some O(1) numerical

factor appearing, namely

sent ∼ O(1) ln(λ2) εH H2 MPl a
2 . (3.67)

There are two sources which contribute to this O(1) number – one from the additional

terms, as shown in the Appendix, and the other coming from the fact that we are estimating

the integral by its upper bound. From now on, we shall drop this number as well as the

logarithmic factor in our upcoming discussions.

Now that we have an estimate for the entanglement entropy due to the gravitational

nonlinearities, let us compare this with the contribution coming from the squeezing part of

the quadratic Hamiltonian, as in (3.29). As mentioned earlier, for large rk � 1, the entropy

density (per physical volume), coming from (3.29), is given by (3.31)

ssq =
1

a3

∫ aH

H

d3k ln
(
sinh2 rk

)
∼ H3 , (3.68)

where we have, once again, ignored some small numerical factors.

Although sent corresponding to cubic interactions arising from gravitational nonlinearities

is suppressed by a factor of εH (as it should be), it is still greater than ssq. One way to easily

see this is to approximate the value of the observed scalar power spectrum as

Pζ ∼
1

εH

(
H

MPl

)2

∼ 10−9 , (3.69)
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such that εH ∼ 109 (H/MPl)
2. Let us define the ratio

t :=
sent

ssq

∼ εH

(
MPl

H

)
a2 ∼ 109

(
H

MPl

)
e2N . (3.70)

As we shall see from the bounds on N that we will derive in the next section, this quantity

t > 1 and thus the entanglement entropy from non-Gaussianities would be larger than that

corresponding to the squeezed vacuum, provided inflation lasts a reasonable amount of time

and is not fine-tuned to be extremely small. This is quite a remarkable result since this

implies that the entanglement entropy due to (cubic) gravitational nonlinearities are larger

than that due to the (squeezing part of the) quadratic action!

3.5 Upper bound on the duration of inflation

We have seen that the entanglement entropy density of cosmological perturbations produced

by nonlinearities builds up during a period of inflation as

a

ai
= eN , (3.71)

where N is the number of e-foldings of inflation, and ai is the value of the scale factor at the

beginning of inflation (which we had set equal to 1 in the last section, for simplicity). In order

to allow a graceful exit from inflation consistent with the second law of thermodynamics, it

is important to make sure that the entropy due to these interactions remain subdominant

to the entropy in the thermal radiation state after inflation. This thermal entropy density

is given by

sth =
4π2

45
g∗T 3

R , (3.72)

where TR is the initial temperature of the radiation bath, and g∗ is the number of spin

degrees of freedom in the radiation bath. Assuming rapid thermalization after inflation, and

nearly constant Hubble parameter during inflation, this yields

sth '
4π2

45
g∗H3/2M

3/2
Pl . (3.73)

Making use of the result (3.67), the requirement

sth > sent (3.74)
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yields the condition

N <
1

4
ln

(
MPl

H

)
+

1

2
ln ε−1

H (3.75)

(modulo numerical factors). The value of εH is given in terms of H and MPl via the equation

(3.69), invoking the observed value of the amplitude of the power spectrum of cosmological

perturbations. Inserting the resulting relation for εH yields

N <
5

4
ln

(
MPl

H

)
− 9

2
ln 10 , (3.76)

which is very close the bound [48]

N < ln

(
MPl

H

)
(3.77)

which results from the TCC [49]. Note that this bound on the duration of the inflationary

phase is the same as derived in [57], where it was argued that beyond that time the de Sitter

phase cannot be given a well-defined classical background interpretation due to the buildup

of entanglement9.

We are thus led to speculate the the TCC may have a derivation based on entropy

considerations and the second law of thermodynamics. It is already known that entropy

considerations have also proven useful [60] to derive the de Sitter swampland conjecture

[61, 62], one of the various constraints on effective field theories to be consistent with string

theory (see e.g. [63,64] for reviews).

Note that we have derived a lower bound on the entanglement entropy due to the minimal

gravitational nonlinearities (ignoring those due to tensor perturbations). We might speculate

that if we were to do a more detailed calculation, our entropy bound on N might turn out to

be in even closer agreement with the bound from the TCC. Note that the bound (3.76) can

be relaxed if we consider H to be decreasing substantially during inflation, or if the thermal

history of the universe after inflation is non-standard. However, as shown in [65,66], in these

cases the TCC bound is also relaxed. Note, also, that if we take into account entanglement

9In a later paper [58], another (and much larger) time scale was introduced as the time scale beyond

which the actual de Sitter background breaks down. It was then argued [59] that low energy effective field

theory remains valid up to that time.
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entropy due to modes which were already super-Hubble at the beginning of inflation, the

bound can be strengthened, in the same way that the TCC bound is strengthened if we

consider pre-inflation evolution [66, 67]. Finally, it has also been pointed out that deriving

the TCC from different quantum gravity arguments can, by itself, lead to a refinement of

it [68] and can bring it closer to our bound.

Returning to the discussion at the end of the previous section concerning the ratio of the

entropies produced by nonlinear entanglement effects on one hand, and by pure decoherence

of the linear modes on the other, we see that if the duration of inflation saturates the above

bound (3.76), then the entanglement entropy dominates by a factor of (MPl/H)3/2, the result

we promised to derive earlier. In other words, unless inflation lasts for a very short period

of time, sent would always dominate over ssq.

Note that a related bound on the duration of inflation based on entanglement consider-

ations was given in [69], where it was argued that, interpreting the current horizon entropy

of the Universe as entanglement entropy, there is a number of e-foldings of inflation before

which there is no entropy and we cannot talk about a de Sitter background.

3.6 Conclusions and Discussion

In this work, we have derived the entanglement entropy of inflationary scalar perturba-

tions, corresponding to nonlinearities arising from gravity. Although entropy of cosmological

perturbations is a rich subject by itself, what is novel to our work is that we calculate the

entanglement entropy to the leading order of cubic interactions, going beyond the calculation

of entropy corresponding to the squeezing of the super-Hubble vacuum state. Remarkably,

we show that this cubic (and higher order) interactions are essential even to calculate the

entropy corresponding to the quadratic Hamiltonian. This is so because decoherence arising

from these terms is what is responsible for reducing the pure density matrix to a mixed

one, by suppressing the off-diagonal terms. These higher order interaction Hamiltonians

themselves lead to mode-couplings such that there is an entanglement between the super-

and sub-Hubble modes which is a direct manifestation of the quantum origin of these vac-
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uum fluctuations10.The entanglement entropy corresponding to these interactions is what we

have calculated for the first time by treating the super-Hubble modes as our system and the

sub-Hubble ones as a bath.

Our result shows that the entanglement entropy density scales as H2MPl (a/ai)
2, where

ai is the scale factor at the beginning of inflation. In order to allow for a graceful exit from

inflation consistent with the second law of thermodynamics, this entropy must be smaller

than the thermal entropy after inflation. This leads to an upper bound on the duration of

inflation which is very close to the bound obtained from the TCC. Interestingly, the non-

linearities produce the dominant contribution to the entropy of cosmological perturbations,

surpassing the one for the squeezed vacuum, provided ε > (H/MPl) (ai/a)2 and is not fine-

tuned to be extremely small. Using the upper bound derived on the duration of inflation,

this translates into the statement that the entanglement entropy due to cubic interactions

dominate over the one due to the (quadratic) squeezing term, provided inflation does not

last for a very short period of time.

As we have shown, the calculation of the entanglement entropy of cosmological perturba-

tions simplifies when done in momentum space. It is easy to appreciate this properly if one

compares our result with that for determining the full non-unitary evolution of the density

matrix of the system modes as has been done, for instance, in [50] (see [56] for the case of

tensor modes). The time evolution of the reduced density matrix involves non-Hamiltonian

terms, and might even contain non-Markovian terms, which depend on the so-called Lindblad

operator. If one were to try and calculate the solution of the time-dependent reduced den-

sity matrix and then evaluate the von Neumann entropy associated with it, the calculation

would become much harder and rather intractable. In this paper, we give a complementary

way of calculating the entanglement entropy without having to deal with the full dynamics

since, as emphasized earlier, we only require to calculate certain matrix elements for our

purposes. The fact that these two seemingly different methods yield the same result for the

10This property of the entanglement entropy corresponding to the interactions alone is something unique for

models of the early-universe which explain macroscopic perturbations as originating from quantum vacuum

fluctuations, unlike the entropy corresponding to the squeezing of the modes which can also be interpreted

as some type of classical Shannon entropy.
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entanglement entropy has been shown in [70] for any quantum field theory. In addition,

going to momentum space makes it easy to impose a UV cutoff for the bath modes, as has

been done in this case.

The natural next step for us would be to calculate the entanglement entropy correspond-

ing to primordial gravitational waves. Once again, assuming the simplest model of inflation,

nonlinearities would arise from gravitational interactions which would lead to decoherence

and entropy production. Therefore, this calculation would also give an improved lower bound

on the amount of entropy which must be produced in any model of inflation. Furthermore,

the leading interactions between the tensor perturbations are not slow-roll suppressed which

typically lead them to decohere faster than their scalar counterpart [56]. Anticipating along

similar lines, we expect that the entanglement entropy of tensor modes would be somewhat

enhanced, and this will be studied in future work. The cubic interactions coupling tensor

and scalar modes also need to be taken into account which will result in enhancing both the

entanglement entropy density of the scalar as well as the tensor perturbations.

Finally, we note that our analysis has been done in the context of inflationary cosmol-

ogy, but the methods also apply to other early universe scenarios in which the primordial

fluctuations are quantum in origin, in particular to the matter bounce and to the Ekpyrotic

scenarios.
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Appendix: Full Entanglement entropy

In the main body of the paper, we have shown in detail the derivation of the entanglement

entropy due to the c†−kc
†
−kc

†
−k terms coming from the interaction Hamiltonian in (3.54).

However, as mentioned earlier, there are other terms which also contribute to the entropy.

Let us first consider the terms of the form ckc
†
−kc

†
−k appearing in (3.54):[

cp1
c†−p2

c†−p3
+ cp2

c†−p2
c†−p3

+ cp3
c†−p2

c†−p3

](√p1p2

p3

+

√
p1p3

p2

+

√
p2p3

p1

)
. (3.78)

For terms such as these, we can have two possibilities as before – two sub-Hubble modes

and one super-Hubble mode or the other way around. Let us take the former case first. In

this case, if p1, p1 > aH and p3 < aH, then the first term proportional to

√
p1p2

p3

would

naturally be the dominant one. For this case, the only term which contributes would be

the last one, proportional to cp3
. This is a crucial argument, so let us emphasize it again –

the matrix element can be nonzero if there is no annihilation operator present in the inner

product corresponding to sub-Hubble modes. The reason for this is the same as why there

were no annihilation elements present in the inner product for the flat space calculation.

In this case, we need to calculate an inner product of the form

〈SQ(k, η)| cpcq |SQ(k, η)〉 = 〈0k, 0-k|S†k (rk, φk) cpcqSk (rk, φk) |0k, 0-k〉

= −eiφp cosh rp sinh rp δ
3(p + q) . (3.79)

In deriving this, we have used the transformation of the annihilation operator under the

unitary action of the squeezing operator, namely [71]

S−1aS = a cosh r + a†eiφ sinh r , (3.80)

where we have dropped the momentum indices for simplicity. We have also used the fact

that S† = S−1.

The matrix element corresponding to this term would be given by

(cc†c†)Csq
n,N ∼ −(2π)3

(
eiφp3 cosh rp3 sinh rp3

) √p1p2

p3

δ3 (p1 + p2 + p3) . (3.81)

Now let us recall that what enters in the formula of the entanglement entropy is not

(cc†c†)Csq
n,N but rather its amplitude squared, i.e.

∣∣∣(cc†c†)Csq
n,N

∣∣∣2. In the limit of large squeezing,
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sinh rp3 ≈ cosh rp3 � 1, and it is easy to see that the entanglement entropy corresponding

to this term would be the same as that coming from sI1ent, as in (3.64).

Let us now return to our other possibility of having two super-Hubble modes p2, p3 < aH

and one sub-Hubble mode p1 > aH. In this case, once again, the only nonzero contribution

comes from the term proportional to cp3 in (3.78). Of course now one of the creation

operators, c†p2
, corresponds to a super-Hubble mode and thus we have an inner product of

the form 〈SQ(k, η)| cpc†−q |SQ(k, η)〉 in addition to the one appearing in (3.79). Collecting

these terms, the matrix element can easily be calculated to give

(cc†c†)C fold
n,N ∼ −(2π)3

(
eiφp3 cosh rp3 sinh rp3

) (
1 + sinh2 rp2

) (√p1p3

p2

+

√
p1p2

p3

)
δ3 (p1 + p2 + p3) .(3.82)

Once again, it is easy to see that in the limit rp3 � 1, the contribution of this term to the

entanglement entropy would be exactly the same as that of sI2ent. Thus, the contribution of

this term would be subdominant, for the same reason as that of sI2ent.

Finally there remains one last type of terms which arise from the interaction Hamiltonian

(3.54), which are proportional to ckckc
†
−k. These are the terms which go as[

cp1
cp2
c†−p3

+ cp2
cp2
c†−p3

+ cp3
cp2
c†−p3

](√p1p2

p3

+

√
p1p3

p2

+

√
p2p3

p1

)
. (3.83)

For such terms, the only nonzero contribution appears when there are two super-Hubble

and one sub-Hubble mode. In this case, there shall appear two factors of the inner product

〈SQ(k, η)| cpcq |SQ(k, η)〉 in the matrix element (ccc†)C fold
n,N . It should be clear from the

calculations above that the entanglement entropy corresponding to this term shall be the

same as sI2ent and shall, therefore, be sub-dominant. Once again, we have assumed the large

squeezing limit to arrive at this conclusion.
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Chapter 4

Conclusion

This thesis presents an overview of our work in determining the entanglement entropy of

cosmological perturbations.

First, we reviewed the fundamentals of cosmology, assuming an understanding of Ein-

stein’s theory of general relativity. Next, we discussed the quantum theory of cosmological

perturbations. Moreover, we discussed bipartite quantum systems in order to define the

entanglement entropy. In a discussion of reheating and squeezed vacuum states, we identi-

fied links connecting elements of our review. This developed intuition for what we call the

entanglement entropy of cosmological perturbations.

In our research paper, we presented the momentum-space entanglement entropy density

of scalar perturbations in the metric of an inflationary spacetime, due to the non-linear

nature of Einstein’s equations. We saw that quantum decoherence leads to the tracing out

of non-diagonal density matrix elements, producing a reduced density matrix describing the

quantum states of super-Hubble modes. We compared this to the total thermal entropy in

reheating, yielding an upper bound on the duration of inflation in line with the second law

of thermodynamics and ensuring a graceful exit from accelerated expansion. We closed our

paper with next steps and anticipate an application of our methodology to different models

of cosmology.

This thesis was simply a glimpse into the author’s learning experience in the past year.

We hope readers enjoyed being a part of this journey.
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Appendix

The following figure is adopted from [13].
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The following figure is adopted from [3].
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The following figures are adopted from [4].
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The following figure is adopted from [14].
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The following figure is adopted from [7].
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The following figures, adopted from [10], denote the scale factor R(t).
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