

Multicore Acceleration of Sparse Electromagnetics

Computations

David Moisés Fernández Becerra

Doctor of Philosophy

Department of Electrical & Computer Engineering

McGill University

Montreal, Quebec

July 2011

A thesis submitted to McGill University in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

© 2011 David Fernández

 ii

DEDICATION

This thesis is dedicated to my loving family Adriana, Diana, Alejandro, my

parents José and Margarita a continuous source of inspiration, and my special

angel Blanca.

 iii

ABSTRACT

Multicore processors have become the dominant industry trend to increase

computer systems performance, driving electromagnetics (EM) practitioners to

redesign their applications using parallel programming paradigms. This is

especially true for computations involving complex data structures such as

sparse matrix computations that often arise in EM simulations with the finite

element method (FEM). These computations require pointer manipulation that

render useless many compiler optimizations and parallel shared memory

frameworks (e.g. OpenMP). This work presents new sparse data structures and

techniques to efficiently exploit multicore parallelism and short-vector units (the

last of which has not been exploited by state of the art sparse matrix libraries) for

recurrent computationally intensive kernels in EM simulations, such as the

sparse matrix-vector multiplication (SMVM) and the conjugate gradient (CG)

algorithms. Up to 14 times performance speedups are demonstrated for the

accelerated SMVM kernel and 5.8x for the CG kernel using the proposed

methods over conventional approaches for two different multicore architectures.

Finally, a new method to solve the FEM for parallel processing is presented

and an optimized implementation is realized on two different generations of

NVIDIA GPUs (manycore) accelerators with performance increases of up to

27.53 times compared to compiler optimized CPU results.

 iv

ABRÉGÉ

Les processeurs multicœurs sont devenus la tendance dominante de

l'industrie pour accroître la performance des systèmes informatiques, forçant les

concepteurs de systèmes électromagnétiques (EM) à reconcevoir leurs

applications en utilisant des paradigmes de programmation parallèle. Cela est

particulièrement vrai pour les calculs impliquant des structures de données

complexes comme les calculs de matrices creuses qui surviennent souvent dans

des simulations électromagnétiques (EM) avec la méthode d'analyse par

éléments finis (FÉM). Ces calculs nécessitent de manipulation de pointeurs qui

rendent inutiles de nombreuses optimisations du compilateur et les bibliothèques

de mémoire partagée parallèle (OpenMP, par exemple). Ce travail présente de

nouvelles structures de données rares et de nouvelles techniques afin d’exploiter

efficacement le parallélisme multicœur et les unités de vecteur court (dont le

dernier n'a pas été exploité par des bibliothèques de matrices creuses à la fine

pointe de la technologie) pour les noyaux de calcul intensif récurrents dans les

simulations EM, tels que les multiplications matrice-vecteur rares (SMVM) et des

algorithmes à gradient conjugué (CG). Des performances d’accélérations jusqu'à

14 fois supérieures sont démontrées pour le noyau accéléré par SMVM et

jusqu'à 5,8 fois supérieures pour le noyau CG en utilisant les méthodes

 v

proposées par rapport aux approches conventionnelles pour deux architectures

multicœurs différentes.

Enfin, une nouvelle méthode pour résoudre la FÉM pour le traitement

parallèle est présentée et une implantation optimisée est réalisée sur deux

générations d’accélérateurs de GPU NVIDIA (multicœur) avec des

augmentations de performances allant jusqu'à 27,53 fois par rapport aux

résultats du CPU optimisé par compilateur.

 vi

ACKNOWLEDGMENTS

I would like express my deepest respect and gratitude to my supervisors,

Professors Dennis D. Giannacopoulos and Warren J. Gross, who have

continuously provided their keen insight and guidance, key to the success of this

doctoral thesis. Their advice has always kept me focused on the big picture, the

take home message and the special sauce. Special thanks to Professor Dennis

Giannacopoulos for his financial support in the most stringent times and our

frequent talks; they were always a cheerful ending to our meetings. I would also

like to thank my sponsor, la Universidad del Zulia, for offering me the opportunity

and financial support to realize my doctoral studies in this prestigious university.

To my wife Adriana and children Diana and Alejandro whose love and support

continuously inspires me. To my parents that always support me unconditionally

and continue to be my role models, to my brothers and sisters Daniel, Mónica,

Shirley, Reinier, and my mother-in-law that can always find ways to cheer me.

Special thanks to Maryam Mehri Dehnavi a great colleague with whom I did

great research. Also to Kevin Guangran, a good friend through this long road.

Last but not least, I like to thank my colleagues in the Computational

Electromagnetics Lab with whom I spent many endearing moments and that

made my stay a pleasant experience.

 vii

TABLE OF CONTENTS

DEDICATION .. ii
TABLE OF CONTENTS ... vii
LIST OF FIGURES .. ix

LIST OF TABLES ... xii
LIST OF ACRONYMS .. xiii
Chapter 1 Introduction .. 1

1.1 Motivation ... 1
1.2 Literature Review ... 5

1.2.1 Modern Technological Trends .. 6
1.2.2 Previous Work in SMVM and CG for Multicore ... 9

1.3 Main Objective of this Work ... 15

1.4 Thesis Organization ... 15
Chapter 2 Review of Sparse Matrix Concepts, the Sparse Matrix-Vector Multiplication and
Conjugate Gradient Algorithm .. 17

2.1 What are Sparse Matrices? .. 18
2.2 Structure in Sparse Matrices .. 19

2.3 Sparse Matrix Formats ... 21
2.3.1 General Sparse Formats ... 21
2.3.2 Sparse Matrix Formats that Exploit Matrix Structure .. 23

2.3.3 Sparse Matrix Formats for Vector Processing .. 24
2.4 Sparse Matrix Repositories .. 26
2.5 Overview of Sparse Matrix History and Software .. 26

2.6 A Closer Look at the Sparse Matrix-Vector Multiplication (SMVM) Operation 27
2.7 The Conjugate Gradient (CG) Algorithm .. 31

2.8 Summary of Bottlenecks for SMVM and CG .. 35
Chapter 3 Accelerating the SMVM Algorithm for Multicore Processors ... 37

3.1 A Naïve Approach to Parallelizing the SMVM Kernel on Multicore Processor 37

3.2 Overview of Multicore Architecture and their Programming Challenges 40
3.2.1 Architectural Characteristics of the Two Hardware Platforms Used 40
3.2.2 Programming Challenges for Exploiting Architectural Features 43

3.3 Putting it All Together: A New Sparse Matrix Format and SMVM Kernel for Parallel
Multicore Computing .. 47

3.3.1 The New Pipeline-Matched Sparse (PMS) Matrix Format .. 48

3.3.2 Vectorizing the SMVM Algorithm with PMS .. 53
3.3.3 Scheduling Multiple Cores with the Vectorized SMVM ... 55

 viii

3.4 Experimental Results ... 59
3.4.1 Experimental Setup ... 60

3.4.2 Test Results .. 61
3.5 Concluding Remarks .. 69

Chapter 4 Blocked PMS Format ... 72

4.1 Blocking PMS for the SMVM Kernel .. 72
4.1.1 The Blocked-Pipeline-Matched (BPMS) Sparse Matrix Format 72

4.1.2 Enhancing Block Structure in BPMS .. 77
4.1.3 Vectorized SMVM and Multicore Parallelization for the BPMS Format 78

4.2 Experimental Results for SMVM .. 84

4.3 Conjugate Gradient Results ... 90
4.4 Concluding Remarks .. 94

Chapter 5 A Parallel Approach to Solving the Finite Element Method ... 97

5.1 New FEM Single Element Solution (FEM-SES) Method: Alternate Fine-Grained Parallelism
in the Solution of FEM .. 98

5.1.1 FEM-SES Mathematical Formulation ... 101

5.1.2 The 2-Step Iterative Relaxation Method ... 102
5.2 Proof of Concept Results ... 104

5.3 Parallelizing Results for the FEM-SES Method ... 107
5.3.1 Multicore Results for the Intel Platform ... 108
5.3.2 Manycore Adaptation of the FEM-SES Method .. 110

5.4 Related Work ... 125
5.5 Concluding Remarks .. 128

Chapter 6 Conclusions and Future Work ... 130

6.1 Original Contributions ... 131
6.2 Future Work ... 133

Appendix A: Compilation of Modern Matrix Libraries ... 136

Appendix B: A Flexible and Portable Multithreaded Library for Sparse Matrix Computations
(FPMSparseLib).. 140

B.1 Description of the Library and the Sparse Matrix Data Structure 142
B.2 Description of the Sparse Matrix Data Structure Used in the Library 142

Bibliography .. 145

 ix

LIST OF FIGURES

Figure 1: Dominant computational kernels in electromagnetic simulations. 5
Figure 2: Sparse matrix non-zero pattern representation (can___24 from Matrix Market [42])..... 19
Figure 3: Example of structured and unstructured sparse matrices. ... 20

Figure 4: Representation of a general sparse matrix in the COO, CSR, CSR and MCSR formats.
 ... 23

Figure 5: Sparse matrix-vector multiply kernel using the CSR format. The algorithm to the left
uses an inner (dot) product approach with stride-1 access to matrix data; whereas, the algorithm
to the right uses a saxpy approach with non-sequential access to matrix data. 29

Figure 6: Conjugate gradient algorithm. Where ε is the tolerance used, α and β are the

constants used to update the x vector of unknowns and the new search directiond , r is the
residual vector, and ∂ and q are temporary variables. ... 33

Figure 7: Two parallel approaches to the sparse matrix-vector multiplication. The example
presented here assumes a multicore processor with 4 cores. The color in each block refers to the
processor in charge of the computations for that block. The white vector in subfigure (a) is
broadcasted across all processors. The blue vectors in subfigure (b) are summed by the same
processor, thus are the same color. .. 38
Figure 8: Block diagrams of the architectural features of modern multicore processors. Subfigure
(a) shows the diagram for the homogeneous multicore Intel Core 2 Quad processor family [65],
and subfigure (b) shows the diagram for the Cell BE heterogeneous multicore processor family
[12]. .. 42
Figure 9: Representation of a sparse matrix in CSR format and the new Pipeline-Matched Sparse
(PMS) representation assuming a vector pipeline with of two floating point numbers. 50
Figure 10: Strip-mining or loop-unrolling of the inner loop in the dot-product version of the SMVM
algorithm for a strip-size of 4 using the PMS format configure for 4-SPFP vector units (128-bit
wide SIMD units).. 55
Figure 11: Two-level partitioning scheme of a matrix. Coarse grained partitions generate row
blocks, and fine grained partitions create smaller data sets to transfer in a block fashion. 58
Figure 12: Double-buffering implementation for the Cell-SPEs. The fine grained partitions are
defined to be the size of a single buffer in the SPEs. .. 58

Figure 13: Speedup results presented as the time ratio of SMVM-CSR/SMVM-PMS for each
hardware platform. ... 63
Figure 14: Performance in MFlops/s of the SMVM kernel for the CSR and PMS formats. 65

Figure 15: Performance scaling results of the SMVM kernel for the Cell BE and the Intel
processor using the CSR and PMS sparse formats. ... 67

 x

Figure 16: Representation of a sparse matrix in BCSR format and the new block pipeline-
matched sparse (BPMS) representation ... 75

Figure 17: Bandwidth reduction examples when applying the reverse Cuthill-Mckee algorithm. . 79
Figure 18: Partitioning example for the "can___24" matrix after reordering using the level-set
vector generated in RCMK. The number along the brackets to the right of the matrix identifies the
worst case scenario for the size of the blocks that could be generated by such partitioning........ 80
Figure 19: Blocked sparse matrix-vector kernel using the BPMS format. 80

Figure 20: Steps to compute the 1st-level partitions of the 2-level partitioning scheme and to
statically load balance a matrix in BPMS format across several processors. 83
Figure 21: Speedup results for the SMVM kernel with the PMS, BPMS and BCSR with respect to
the CSR format for one Intel-core. ... 87
Figure 22: Multicore performance scaling in GFlops/s for the SMVM kernel using the CSR, BCSR,
PMS and BPMS formats on the Intel Core 2 Quad processor. ... 90

Figure 23: Speedup scaling for the conjugate gradient method using BPMS with 1 to 4 Intel CPU
cores. ... 92
Figure 24: Conjugate gradient performance results in GFlops/s using 4 Intel cores. 92

Figure 25: Scaling of the CG performance in GFlops/s for the modified PMS (MPMS) format. ... 94
Figure 26: Complete workflow used to compute the CG algorithm with the vectorized SMVM
kernel and the 2-level partitioning scheme. ... 96
Figure 27: Comparison of classic finite element method (FEM) workflow (top figure) with respect
to the proposed single element solution (FEM-SES) method (bottom Figure). 100

Figure 28: The 2-step iterative relaxation method. Step 1 shows examples of how to compute the
solutions for elements with 1, 2, and 0 BCs. The examples here correspond to triangular
elements with first order basis functions. .. 103

Figure 29: 2D section of electrostatic coaxial cable. The inner conductor is fixed at 10V and outer
conductor at 0V. The space between the conductors is considered free space. The insert shows a
3D representation of the cable being model. ... 105

Figure 30: Energy results for the FEM and FEM-SES. ... 106
Figure 31: Iterations scaling of the FEM-SES method for increasing number of unknowns. 106

Figure 32: Profiling results for the sequential FEM-SES method. ... 108
Figure 33: Multicore implementation of the FEM-SES method for the Intel processor. 109
Figure 34: Performance comparison of the proposed FEM-SES method running on four Intel
cores compared to a single core vectorized FEM using CG algorithm. The blue and red lines
indicate the time of the two versions of FEM, and the green dotted line represents the speedup of
the parallel FEM-SES method with respect to the single core optimized FEM-CG. 110

Figure 35: Basic architecture of NVIDIA’s first generation G80 CUDA enabled graphic cards. . 112
Figure 36: Basic architecture of NVIDIA’s third generation FERMI graphic cards. 114

 xi

Figure 37: Workflow to parallelize the 2-step iterative relaxation method on NVIDIA GPUs. 117
Figure 38: Kernel 1-CUDA kernel used to compute the single element solutions in FEM-SES. 118

Figure 39: Speedup of the Fermi GPU FEM-SES implementation versus the classic FEM
sequential implementation on the Intel CPU using a CG solver. .. 122
Figure 40: Speedup of the GPU solution times with respect to the CPU times. 122

Figure 41: Time distribution of the kernels used to implement the 2-step iterative relaxation
method. .. 125

Figure 42: Dense matrix libraries classification. .. 137
Figure 43: Sparse matrix libraries classification. ... 138
Figure 44: Sparse direct and iterative solver libraries. .. 139

Figure 45: Library organization by functionality. .. 141
Figure 46: Sparse matrix data structure. ... 143

 xii

LIST OF TABLES

Table 1: Classification of important sparse matrix libraries based on the concurrent model
implemented. ... 28
Table 2: Main bottlenecks for the sparse matrix-vector multiplication (SMVM) and the conjugate
gradient (CG) algorithm. .. 36
Table 3: Programming challenges for implementing scientific kernels (e.g. SMVM) on modern
multicore processors. .. 48
Table 4: Finite element (FE) test matrices from the Matrix Market repository [42]. The matrices
are square with number of rows and columns equal to the matrix rank (in column 3). The number
of nonzeros (NZ) are shown in column 4, column 5 has the percentage fill of the matrix with
respect to the dense case, the total nonzeros with padding are shown in column 6, and column 7
contains the percentage of added nonzeros. .. 62

Table 5: SMVM speedup scaling using different formats for the "s3dkq4m2" matrix (5). 68
Table 6: Finite element (FE) test matrices from the Matrix Market repository [42]. 85

Table 7: SMVM performance comparison results for the BPMS, PMS and BCSR SMVM kernels
for the Intel Core 2 Quad and Cell BE processors. ... 89
Table 8: Comparison of architectural features for the GeForce 8800 GT and the GeForce GTX
480 GPUs. In the Fermi GPU, shared memory and L1 Cache share a common space of 64KB.
 ... 112
Table 9: Finite element mesh dimensions for the 2D coaxial cable test case and solution times in
seconds (last three columns) for the 2-step iterative relaxation method. 121
Table 10: Limiting performance factors for the GPU kernels. ... 123
Table 11: Performance results for the FEM-SES method of the hand optimized CPU code versus
the GPU implementations. ... 125
Table 12: Classification of sparse matrix libraries according to the concurrent paradigm
implemented. ... 136
Table 13: Library description and file dependency. ... 144

 xiii

LIST OF ACRONYMS

CPU: central processing units.
GPU: graphic processing units.
CMP: chip multiprocessor.
SMP: symmetric multi-processor.
CE: computational electromagnetics.
EM: electromagnetics.
FEM: finite element method.
SIMD: single instruction multiple data processing (also short vector processing).
SIMT: single-instruction multiple-thread (model used by NVIDIA GPUs).
CSR: compressed sparse row, also called compressed row storage (CRS)
BCSR: blocked compressed sparse storage.
PMS: pipeline-matched sparse matrix format.
BPMS: blocked pipeline-matched sparse matrix format.
SPD: symmetric positive definite matrices.
SMVM: sparse matrix-vector multiply.
saxpy: scalar a x plus y (x, y : vectors) following the LAPACK convention.
(P)CG: (preconditioned) conjugate gradient algorithm.

 1

Chapter 1
Introduction

1.1 Motivation

Computational electromagnetics (CE) is increasingly an area of active

research whose applications are not only important in electrical engineering

areas (e.g. communications, circuit design, optics, electromagnetic compatibility,

etc.) but also influence importantly other areas of knowledge such as medicine

[1], biology [2], and geophysics [3] to mention a few. Regardless of the particular

electromagnetic (EM) application, there is a continuous demand for more

detailed simulations obtained in reasonable times, using evermore complex

models, both to better understand the particular problem and to create more

efficient solutions without confronting the high costs associated with design

prototyping, testing and refinement.

The solution of such increasingly complex computational electromagnetic

(and generally challenging scientific) problems has relied, in part, on the

continual advances in microprocessor technology, namely increasing clock

speeds and instruction level parallelism, during the past three decades which

came to be known as the free ride [4]. However, technological limitations

(frequency, power, radiation, cross-talk and other) have dictated the need to

explore new alternatives. The partial solution to some of these problems has

 2

been sought with some degree of success by integrating multiple central

processing units (CPUs) cores in a single die, namely multicore1 processors. The

independent computing cores in multicore processor are clocked at lower

frequencies than their single core predecessors, which make imperative the use

of parallel programming to benefit from such newer architectures. Even though

multicore processors increase system performance by providing modest parallel

resources, they also require greater programming effort which might not

compensate for the gain in performance as argued in a recent study from a group

at Berkley [5]. Moreover, this group points out that the strategy followed by

manycore2 processors can provide a longer-term solution to current technological

limitations capable of higher performance. Although manycore processors offer

higher performance through increased number of simpler processing cores with

similar programming effort as that required by multicore ones, they are only

efficient on compute intensive data-parallel applications and have yet to

overcome several other limitations to become a viable solution for these specific

1 The term multicore processors refers to the new technology trend that integrates several
general purpose processor cores into a single die, sharing part of the cache hierarchy usually at
level 2 or 3 depending on the actual implementation.
2 The term manycore processors refers to chips with hundreds of simple processing cores inside
a single die. These cores are often grouped into small cluster that may share a local memory
hierarchy and are all connected though the global memory system and specialized interconnects
fabrics.

 3

applications [6]. Modern graphic processing units (GPUs) are examples of these

manycore processors.

The trend towards multicore/manycore microprocessors clearly established

the need to address parallel programming paradigms early in application

development to benefit from the computing potential of emerging mainstream

architectures, creating new programming opportunities and challenges. In

particular for the EM community it portrays the need to redefine numerical

methods, specifically their dominant computing kernels, in parallel terms.

Consequently, the constant demand for more detailed simulation can only be

satisfied with new clever numerical methods implementations that efficiently use

modern computational resources. The main objective of this work is to present

new techniques to efficiently exploit the different hardware architectural features

found in modern multicore/manycore processor to accelerate EM computations.

Three numerical methods stand out in EM simulations, the finite difference

time domain (FDTD) method, the method of moments (MOM, also known as

boundary integral equation method BIE), and the finite element method (FEM).

Among these, the FEM has enjoyed great popularity mainly due to its ability to

provide continuous solutions throughout the modeled space, model irregular

geometries (a limiting factor for FDTD), and generate sparse linear systems (as

 4

opposed to the dense systems of MOM) that can be efficiently exploited

computationally.

The solution of the sparse linear systems obtained from the FEM is frequently

the most time consuming operation in these simulations. The sparse matrix-

vector multiplication (SMVM) Ax b= , where a sparse matrix A usually multiplies

a dense vector x to yield a dense vectorb , is one of the dominant computing

kernels in popular iterative solvers such as the conjugate gradient (CG) method

that often dominates computational time. In fact it has been recently classified as

the second of the “Seven Dwarfs” (most frequently found kernels in scientific

computations) in [5], and it represents a central topic of this work, as shown in

Figure 1, among other contributions. Emphasis is made on accelerating the

conjugate gradient method with the accelerated sparse matrix vector

multiplication kernels on homogeneous and heterogeneous multicore processors;

although a specific contribution for manycore processors is also presented to

accelerate FEM.

 5

Figure 1: Dominant computational kernels in electromagnetic simulations.

1.2 Literature Review

A wealth of knowledge has been developed in sparse computations for over

five decades starting from the 1960’s. Most of the work done up to recent years

had been concerned with deploying sparse algorithms on single core processors,

symmetric multi-processors (SMP), mainframes and more recently on clustered

processors. The new trend towards multiple core processors and heterogeneous

systems has radically redefined hardware platform for these algorithms, thus

requiring similar changes in sparse algorithms and data structures. This

subsection presents a brief overview of the modern technological trends that

have motivated the changes in modern sparse computations, followed by

relevant contributions in the context of the sparse matrix vector multiplication and

the conjugate gradient algorithm to accelerate these operations mainly related to

multicore processors. Although this section provides an overview of the previous

 6

work done related to this work and identifies the caveats in knowledge, a set of

comprehensive references are provided in the following chapters as required to

support the design decisions taken. In particular, Chapter 2 studies in detail the

concepts related to sparse matrices, SMVM and CG providing also citing

landmark references.

1.2.1 Modern Technological Trends

For over four decades since 1965 the evolution of computer systems

advancements was marked by Moore’s Law. Computer architects chose to

favour increasing single thread performance of general purpose processors over

more expensive vector and symmetric multiprocessor alternatives. Greater

advancements were then evidenced in these general purpose single core CPUs

with increasing transistor counts that enabled larger and more complex cache

designs, superscalar pipelines, and increased clock frequency. The appearance

of cluster computing contributed to the trend of relegating parallel computing to

clusters or grids of computers which constitute today’s supercomputing

environments.

These advancements in turn created several technology challenges among

which three are of particular importance: increased power leakage and

dissipation constraints represents an important concern in modern processors,

mainly referred to as the power wall; frequency increases also lead to more

 7

power demands and transmission problems such as jitter, crosstalk interference

and others, which are referred to as the frequency wall; and the third called

memory wall refers to the gap in performance between the main system memory

and the computing speeds. As this gap continues to grow, feeding sufficient data

to the processor so that it is always kept busy becomes unattainable. Integrating

multiple cores into modern processors has become an alternative to provide the

increasing processing power that users have come to expect.

Multicore processors originally appeared in 2001 with the introduction of the

Power4 processor by IBM and in 2004 with Sun’s UltraSPARK IV. They were

soon followed by the first x86 compatible multicore processor (dual core Opteron,

April 21st) by AMD in 2005, followed in 2006 with the Pentium Dual-Core

processor from Intel and the Niagara processor from SUN Microsystems, all

which established the most important landmark of the decade in computer

architecture advances. On the other hand, general purpose computing on

manycore processors (GPGPU) started to become popular approximately since

2003 [7] (although earlier references exist), however this was restricted to a

reduced community familiar with the specialized graphic development

environments available.

Programming general purpose applications using graphic application

programming interfaces (APIs) required great effort since the applications had to

 8

be written with specialized graphic instructions not related to the actual

operations being done. After the introduction of the Compute Unified Device

Architecture (CUDA) [8] software/hardware architecture in 2006 for general

purpose computing using standard high level programming languages (e.g.

C/C++ and Fortran), manycore processors became an important parallel

computing resource to accelerate applications for the broader scientific

community. This trend has continued to strengthen with other important initiatives

such as AMD’s accelerated parallel processing (APP) software development kit

(SDK), formerly ATI Stream [9, 10] used to program ATI GPUs and the OpenCL

[11] standard for programming parallel of heterogeneous systems. In spite of the

high integer and floating point performance offered by manycore processors

compared to multicore processors, it is important to note that manycore

processors are not a standalone solution by themselves. They are designed for

compute intensive data-parallel applications, performing very poorly for

sequential applications, applications that require more input/output (from here on

I/O-I/O bounded3) operations, and for applications with many low computational

load parallel tasks.

Hybrid multicore processors have also emerged as possible alternatives to

the technological limitations mentioned before. For example the Cell broadband

3 I/O bounded applications are also termed bandwidth bound or limited applications.

 9

engine [12] is a multicore chip with nine processors, one IBM Power cores called

power processor elements (PPEs) and eight vector processors called synergetic

processing elements (SSEs) that deliver high computing power with considerably

lower performance/power ratio than conventional homogeneous multicore

systems. Other types of hybrid chips will appear in the near future which combine

multicore with manycore processors. An example of one such system is the

emerging AMD family of accelerated processing units (APUs) called AMD fusion,

which combines in a single die a general purpose multicore CPU, a discrete

GPU, and memory/IO controller hub (also referred to as Northbridge),

substantially reducing the power consumption of the system [13]. Multicore and

manycore technologies, as well as their future hybrid combinations, constitute the

current trend that is expected to dominate modern microprocessor advances in

the foreseeable future, being implemented in almost all modern processors

offered by the most important industry leaders (e.g., Intel, AMD, IBM, and

NVIDIA).

1.2.2 Previous Work in SMVM and CG for Multicore

An in-depth study to characterize the limiting performance factors for the

sparse matrix-vector multiplication kernel for multicore systems is carried out in

[14] by Goumas et al., using a large set of matrices from different problem

domains. The main contribution of this work is to report its findings as a set of

 10

guidelines to efficiently implement optimizations on the SMVM kernel in modern

processors, but does not introduce new techniques to enhance its performance

nor to leverage vector processing in these new processors. Goumas et al.

identify the inner product as one of the main limiting factors in the SMVM

operations for row schemes, and the saxpy operations for column schemes.

The work by Eun-Jin Im and Katherin Yelick in [15] presents one of the first

attempts to create an optimized toolbox called Sparsity [16, 17] to accelerate the

sparse matrix vector operation. Im et al. use techniques such as register and

cache blocking, loop transformations, multiple vectors, exploiting symmetry,

special diagonal data structures and matrix reordering mainly aimed at

superscalar single core processors. This optimized framework [17] was shown to

obtain up to 4X performance enhancements over conventional sparse

implementations on single core and symmetric multi processor systems. The

most beneficial optimization performance-wise in this work was the register

blocking technique. The same group from Berkley led by Richard Vuduc, James

Demmel, and Kathy Yelick have expanded the work to provide support for

general sparse matrix operations in an autotuning toolbox called Optimized

Sparse Kernel Interface (OSKI) [18], but have yet to offer support for

shared/distributed memory and vector processing.

 11

Similar performance enhancements of up to 2.5x speedup (from 40MFlops/s

to 100MFlops/s) where demonstrated by Toledo [19] by employing similar

techniques (that improve instruction level parallelism and increase locality) to

those in [17] on a RISC POWER2 processor. Pinar and Heath [20] expand on

Toledo’s work by defining variable blocks with a new ordering algorithm to reduce

cache misses due to memory indirections, showing performance increases of up

to 33%.

A later paper by Rajesh Nishtala et al. [21] studies in detail the effect of cache

blocking on modern processors, demonstrating performance of up to 2.93x for

single core processors. Nevertheless, this technique is shown to provide

performance gains under very strict matrix and vector circumstances.

Performance gains are shown only when the input vector is large and the output

vector is small compared to the cache size, and the non-zero pattern of the

sparse matrix exhibit a nearly random distribution. This is commonly not the case

for matrix systems derived from FEM and FDTD methods thus little performance

gain can be expected from cache blocking in these applications.

In [22, 23] Samuels et al. optimize the SMVM kernel using the techniques in

OSKI in addition to vectorization for multicore systems. They show that the most

important gain when computing the SMVM kernel on multicore systems comes

from the parallelization across different processing cores instead of the single

 12

core optimizations of [17, 18]. In particular, this work states that vector

processing using single-instruction multiple-data (SIMD) processing units of

modern homogeneous multicore processors resulted in little or no performance

gain compared to straight C code when compiler optimization flags are used. The

limited performance gains obtained for the SIMD processing in the

aforementioned work can be attributed to the fact that it only uses standard

sparse matrix formats (namely CSR, BCSR and BCOO) that help to implement

blocking techniques, but are not the best suited for vector operations.

Specialized sparse matrix formats for vector computing have been devised in

the past and shown to exploit efficiently vector processors as shown in [24] and

the references therein, even though they require certain structure in the matrix to

be efficient (e.g. non-zeros distributed across diagonals, or similar number of

non-zeros per row). Some specialized sparse formats for vector processing are

ELLPACK-ITPACK [25-28], diagonal format (DIA) [26, 28, 29], and jagged

diagonal storage (JDS or JAD) [30]. Another important approach to exploit vector

processors, less sensitive to the matrix structure, is the segmented scan

operations proposed in [31]; however it was mainly designed for older vector

computers.

Considering that SIMD vector processing has the potential to accelerate

floating point performance from two to four times (for double and single precision

 13

respectively in current processors), the question of enhancing the performance of

the sparse matrix-vector multiplication and that of sparse iterative solvers on

modern multicore/manycore processors while exploiting SIMD vector processing

still remains an open problem.

Relative modern compilations of state-of-the-art knowledge for iterative

solvers have also been presented. Among the most important are the work

presented by Saad in [26, 30] that treats different iterative methods and

eigenproblems with special considerations for parallel processing, as well as the

work of Barrett et al. [32]. Demmel et al. also present a modern compilation of

current state of the art knowledge for eigenproblems, direct methods and iterative

methods in [33] specific to parallel environments. Across these works, three main

bottlenecks for parallelizing iterative solvers are identified: inner products, the

matrix-vector products, and the preconditioning operations. However, most of the

work for iterative solvers has been developed in the context of distributed

memory systems (e.g. clustered systems) with very few references to shared

memory environments. In particular, research in multicore systems for iterative

linear systems is quite an active area considering that these systems have been

available for less than a decade.

One of the earliest works done to accelerate CG for multicore processors is

presented by Wiggers et al. [34]. The acceleration is done on the SMVM

 14

operation using the compressed sparse row (CSR) matrix format, OpenMP to

exploit the parallel cores, and the Intel MKL library for the linear algebra

optimizations. It was determined that the overhead from OpenMP increases with

the number of cores used, which limited the performance of this implementation.

Furthermore, the use of the CSR format also limits the attainable performance of

the optimizations done with the Intel MKL library which accounts for the relative

low performance presented. GPU results are also presented for the 8800 GTX

NVIDIA graphics card that outperformed the multicore results by 2.56X, which

are low performance results for this GPU.

In [35] an approximate inverse preconditioner is used with the BiCG-Stab

method and parallelized using a pool of threads to avoid thread creation and

deletion on a multicore system to overcome standard thread library overheads.

Lee I. [36] presents an adaptation of the general parallel PCG scheme used in

distributed memory systems and adapts it for multicore processing. Lee proposes

a classic threaded barrier scheme to synchronize the execution of threads for the

different operations in the PCG algorithm, and presents performance models for

both the SMVM and preconditioner solve operations that include the effect of

cache hierarchy in multicore processors. However, this work only presents the

theoretical analysis lacking practical result to compare with the performance

models presented.

 15

It also apparent that most of the work done related to the conjugate gradient

solver (linear solvers in general) is mainly concerned with parallelizing the

applications using a shared memory approach, disregarding other possible

optimizations such as vector processing using specialized matrix formats, that

have the potential to enhance the general parallel performance of these solvers.

1.3 Main Objective of this Work

This work aims at accelerating the sparse matrix vector multiplication

operation and the conjugate gradient algorithm exploiting the parallel cores and

vector units of modern multicore processors in the context of finite element

electromagnetics, which are the main voids identified in the literature. To achieve

this goal new sparse matrix formats and algorithms must be devised. The

implementation of such matrix formats and algorithms requires advance data

structures and other basic functionality that can be assembled into a new sparse

matrix library, which is presented as an additional contribution of this work. An

alternate approach to exploiting parallelism in the finite element method is also

proposed as an alternative to accelerating its dominant computing kernels.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows; Chapter 2 reviews

basic concepts, formats and algorithms for sparse matrices. This chapter also

analyses the main bottlenecks of the sparse matrix-vector multiplication and

 16

conjugate gradient algorithms. Next, Chapter 3 presents a new technique to

accelerate the sparse matrix-vector multiplication for multicore processors with

user controlled local memories, showing results to demonstrate its benefits.

Based on this new technique, an alternative approach is proposed for cache

based multicore processors in Chapter 4.

Chapter 5 presents an alternative approach to solving the finite element

method for multicore and manycore environments that does not use traditional

direct or iterative solver approaches. Finally, Chapter 6 presents the conclusions

and future directions of this work.

 17

Chapter 2
Review of Sparse Matrix Concepts, the Sparse Matrix-Vector

Multiplication and Conjugate Gradient Algorithm

Sparse matrices5 where initially used in the 1960s by Electrical Engineers to

solve linear systems derived from electric networks according to Saad [30],

although the term “sparse matrix” is attributed in [37, 38] to Harry M. Markowitz

for his work in economics in 1957. The motivation then was to alleviate the

memory (counted in Kilobytes at the time) and computational demands of the

ever-growing linear systems in spite of using more complex data structures and

algorithms; moreover, in those days some problems where simply not feasible to

solve using dense representations. These more complex sparse representations

resulted in substantial memory savings in the orders of 2()O n locations, and

computational savings of order of 3()O n operations [14] for compute intensive

kernels such as the GEneral Matrix Multiply, also known as GEMM following the

LAPACK [39] notation. Since then sparse matrix computations have gained much

popularity and are now the standard approach to solve increasingly complex

systems whenever sparse matrices are available. Deciding when to represent a

matrix as sparse or dense is somewhat of an art and it commonly depends on

the definition used of sparse matrix. This chapter presents the basic definitions

5 The term “system” will be used interchangeably with that of “matrix” or “matrices” throughout this
work.

 18

related to sparse matrices that will be used throughout this dissertation and

analyses the bottlenecks in the sparse matrix-vector multiplication and conjugate

gradient algorithm.

2.1 What are Sparse Matrices?

Sparse matrices are usually defined in terms of the relationship among the

zeros and non-zeros entries in the system. In [40] Duff defines sparse matrices in

terms of “the ratio of the zero to non-zero entries in the matrix”, implying that the

matrix is mainly populated with zero entries (i.e. making the matrix aspect ratio

zero/nonzero greater than one). An example of a sparse matrix is presented in

Figure 2, showing only the distribution pattern of the matrix nonzeros. The sparse

matrix illustrated in this figure is a square matrix of rank 24 with 160 nonzeros,

which results in a zero/nonzero ratio of 2.6. This is actually a small value that

often occurs in small matrices, whereas bigger matrices usually have a much

greater aspect ratio.

A more practical definition (that will be used throughout this work) based on

those provided by Duff [40] and more recently Stathis [41] defines a sparse as:

A system where the number of non-zeros and/or their distribution provides

advantage in performance or resource wise when the matrix is represented

and operated in compressed form (only using its non-zero entries).

 19

Figure 2: Sparse matrix non-zero pattern representation (can___24 from Matrix
Market [42])

2.2 Structure in Sparse Matrices

The non-zero entries distribution in sparse matrices will vary significantly

depending on several factors such as the numerical method used, the problem

dimensionality and its geometry, and the meshing method among others.

Depending on the combinations of these factors, a matrix may be classified as

structured or unstructured (or irregularly structured) [30]. Structured matrices

refer to those where the non-zeros are distributed in a regular pattern inside the

matrix usually along diagonals. The non-zero distribution may also be composed

of small dense blocks laid out in a block diagonal pattern. On the other hand,

unstructured matrices are those that do not exhibit a regular pattern in their non-

zero entry distribution. The matrix structure is important when defining efficient

ways of representing sparse matrices both for storage and computations.

 20

(a) Structured

(b) Unstructured

Figure 3: Example of structured and unstructured sparse matrices.

For example a totally random sparse matrix will have no regularity in its

nonzero distribution so it can be classified as irregularly structured or

unstructured. Matrices derived from rectangular grids using the Finite Difference

Method (FDM) will normally give rise to regularly-structured matrices, whereas

matrices derived from complex mesh geometries using the Finite Element (FEM)

or Finite Volume Methods (FVM or method of moments-MoM) may lead to

unstructured matrices. An example of structured and unstructured matrices is

presented in Figure 3, where the x-axis and y-axis represents the column and

row indices respectively. The next section presents some important sparse

matrix formats identifying those that exploit structure in sparse matrices.

 21

2.3 Sparse Matrix Formats

A sparse matrix may be represented in several different ways using

specialized formats. Different formats have been created to exploit special

characteristics of the matrix structure, algorithm or machine-architecture

targeted, but all share the common goal of storing and operating on the non-zero

entries of the sparse matrix. This subsection presents some of the most

important sparse matrix formats.

2.3.1 General Sparse Formats

Amongst the many different formats that exist, there are four commonly used

to represent sparse matrices that make no assumption on the matrix nonzeros

structure, the COO, CSR, CSC and MSR. The simplest format is called the

coordinate format (COO) or triplet format, since it stores each entry of the sparse

matrix in a triplet structure containing the matrix value, its row index and column

index. If the nonzero values of the matrix are stored in a specific order (e.g. by

rows or columns) then a more efficient representations of the matrix indices may

be done, which is the approach used in the other three general formats.

The second format is called compressed sparse row (CSR) format, also

referred to as compressed row storage (CRS), AJI (from A, JA-column indices,

IA-row indices), or YALE format. In CSR three vectors represent the sparse

matrix; the first vector usually called A stores the matrix nonzero (nz) values in

 22

row order; the second called JA (or AJ), stores the column indices of the nonzero

values; and the third vector, IA (or AI), contains the index to the first element of

each row, including an additional index with the total number of nonzeros. Many

efficient libraries used to solve linear systems implement this format or some

variation of it, as is the case with PETSc [43]. The third format is the column

counterpart of CSR termed compressed sparse column (CSC) format, where the

nonzeros are stored by columns, while the second vector stores the row indices

of each nonzero element, and the third contains the indices of the elements that

begin a new column in the data and row index vectors.

The fourth of the general formats is the modified compressed sparse row

(MSR) that contains only two vectors. The first vector stores the nonzero

elements of the main diagonal first, then skips the n+1 position and then stores

the remainder nonzero elements of the sparse matrix. The second vector stores

the index values that point to the beginning of each row for the off-diagonal

elements in the first vector, then skips the n+1 position and stores the column

index of the corresponding nonzero elements in the first vector. Figure 4 shows a

general sparse matrix and its representations in each of the four general formats

described. It is obvious from this figure that the COO format is the most inefficient

as far as storage is concerned which has relegated its use to mainly storing

sparse matrices, especially since the other formats can be readily derived from it.

 23

Figure 4: Representation of a general sparse matrix in the COO, CSR, CSR and
MCSR formats.

2.3.2 Sparse Matrix Formats that Exploit Matrix Structure

Other formats take advantage of the regularity in the nonzero distribution;

these formats and many others are described in [30, 44], but only the most

popular ones are described here. For structured matrices with nonzero diagonal

patterns the compressed diagonal storage (CDS) format or diagonal (DIAG or

DIA) format can be efficiently used. This format stores the matrix by diagonals in

a nd*n array where nd is the number of the matrix diagonals and n is the number

of matrix columns. An auxiliary vector of size nd containing the offsets of each

diagonal stored from the main diagonal. This format is also well suited for vector

processing due to its long diagonal vector structures.

 24

If the matrix nonzeros are grouped into small dense clusters regularly across

the matrix (not all in diagonal patterns) then a more efficient pattern may be used

called the blocked compressed sparse row (BCSR or BSR) format. The BSR

format is also useful to implement cache and register blocking techniques to

exploit specific architectural features in a target processor. BSR is a blocked

version of the CSR format that stores the matrix row-wise in three arrays. The

first vector stores the matrix values row-wise in small dense matrices of the same

size; the vector size is bdim*num_blocks, where bdim is the non-zeros per block

and num_blocks is the number of blocks in the matrix. Next, the column index of

the first element in each block is stored in a column index vector; finally, the

indices to the elements of each block starting a new row-block are stored in a

row index vector. This format compresses the row and column index information

providing important memory savings.

2.3.3 Sparse Matrix Formats for Vector Processing

The two most popular formats for vector processors documented in [30, 44]

are the ELLPACK-ITPACK (ELL) format and the jagged diagonal sparse (JDS)

format, which provide long vectors of the same size (for ELLPACK-ITPACK) or

mostly the same size (JDS) well suited for vector processing and loop

transformation techniques (e.g. loop unrolling). Both formats assume that the

number of nonzeros per row is nearly the same, otherwise they are not efficient.

 25

Sparse matrices in ELL are stored in two dense matrices. The first, stores the

matrix values by rows padding with zeros each row to match the size of the

largest row. The second matrix stores the index column of each element in the

first matrix. If most of the matrix rows contain the same number of nonzeros,

regardless of their distribution, then this format will provide an efficient way to

store and process the matrix. If the matrix has several groups of rows of the

same size then the JDS format is more efficient. JDS requires the matrix rows to

be ordered from the largest to the shortest one. Once the rows are ordered the

matrix values are stored column-wise in a vector as follows: first, the first element

in each row is stored in the first column; next, the second element of each row is

stored in the second columns, and this procedure continues until all matrix values

are stored. A second vector is used to store the column indices of the nonzeros

in the same order as they were stored; and finally, a third vector is used store the

pointers to the matrix values that begin a new column, with an extra index to

determine the size of the last column.

Many other special purpose sparse matrix formats exist, a summary of such

formats can be found in the work by Saad [28, 30], Barret et al. [32], Stathis [41],

Vuduc [16] and the references therein. This dissertation adopts the three

characters naming scheme proposed in [28] for its compact referencing of

different sparse matrix formats.

 26

2.4 Sparse Matrix Repositories

The matrices used in this work were obtained from the Matrix Market

repository [42]. These matrices can also be obtained from the University of

Florida Sparse Matrix Collection [45]. These repositories contain the entire

Harwell-Boeing Sparse Matrix Collection (Release I), Yousef Saad's SPARSKIT

collection, the Nonsymmetric Eigenvalue Problem (NEP) collection of Bai, Day,

Demmel and Dongarra, and matrices generated from other sources.

2.5 Overview of Sparse Matrix History and Software

Direct methods were the first to be implemented for solving sparse systems;

this was the main topic of the first “Sparse Matrix” symposium [46] held in 1968.

These classic methods, namely Gauss elimination, LU and Cholesky

decompositions including matrix pivoting, reordering and partitioning techniques,

have been documented in a comprehensive survey by Duff [40] in 1977 and

latter in a book by Duff, Erisman and Reid [47] in 1986. A more updated

reference on sparse direct methods can be found in the book by Timothy Davis

[48] from 2006, which revisits LU and Cholesky decomposition and introduces

QR decompositions with state of the art algorithms most of which are currently

being used in MatLab with some variations.

Early work on iterative solvers for sparse systems has been compiled in the

book by Richard Varga [49], and the work by Young and Hageman [50, 51].

 27

Fixed-points methods where used to solve sparse systems in the 1960’s, a little

after direct solvers for sparse systems and then projection methods came to

dominate the solution of sparse systems to date. A modern treatment on iterative

methods for sparse linear systems can be found in the book by Saad [30]. Both

direct and iterative methods are also studied in the classic reference book by

Golub and Van Loan [52].

The works referenced here and in Chapter 1 have given rise to numerous

sparse matrix libraries mainly targeted at shared or distributed memory systems.

Table 1 shows some of the most important sparse matrix libraries known today

(refer to Appendix A for a more extensive reference of other important dense and

sparse matrix libraries) characterized by the concurrent model they implement.

The libraries shown here are concerned either with exploiting local memory

hierarchies or optimizing distributed memory executions, but none exploits SIMD

processing which is a central theme in this work.

2.6 A Closer Look at the Sparse Matrix-Vector Multiplication (SMVM) Operation

The sparse matrix-vector multiplication operation (also called SpMV or

SpMxV) is one of the most recurrent and time consuming kernels in scientific

computing, where a sparse matrix A multiplies a dense vector x to generate a

dense vector b as shown in (1).

 Ax b= (1)

 28

Table 1: Classification of important sparse matrix libraries based on the
concurrent model implemented.

The main objective of the SMVM kernel is to limit the number of computations

and storage to the matrix non-zero entries only, taking advantage of the sparsity

nature in the matrix. This apparently simple operation has been and continues to

be the subject of much research to optimize its performance as presented in

section 1.2.2. A classic SMVM algorithm using the CSR format is presented in

Figure 5, where the matrix nonzeros are stored in A_VAL, AJ stores column

indices and the AI contains the row pointers.

Concurrent model Library

Sequential

Sparselib++ [53]: iterative solvers.
C(X)sparse [48]: direct solvers.
ITSOL(SparseKit) [44]: iterative solvers.
Sparsity [17]: sparse matrix vector multiply.
Oski [18]: sparse BLAS.

Distributed memory
(MPI)

PSBLAS [54]: sparse BLAS and direct and iterative
solvers.
pARMS [55]: sparse iterative solvers.
PETSc [43]: PDE sparse iterative solvers.

 29

Figure 5: Sparse matrix-vector multiply kernel using the CSR format. The
algorithm to the left uses an inner (dot) product approach with stride-1 access to
matrix data; whereas, the algorithm to the right uses a saxpy approach with non-
sequential access to matrix data.

There are three main performance bottlenecks in the sparse matrix-vector

multiplication kernel as follows:

• The matrix entries have no data (temporal) reuse and little spatial locality6.

• Depending on the sparse matrix format used, access to the multiplying x-

vector or the results b-vector is indirect and irregular; i.e. the vector

elements are fetched using the matrix index information thus usually little

spatial and temporal locality is available.

• There is a great deal of instruction overhead in the SMVM kernel required

to identify the proper range of non-zeros to compute on (e.g. per row,

column, diagonal etc.) and fetch the vector data using the indirect indexing

mentioned before.

6 Temporal locality for data refers to the reuse of the same memory location in at least two distinct
instructions at different times. Spatial locality refers to the use of nearby memory locations [51].

 30

Depending on the choice of sparse format and algorithmic implementation

(e.g. how the matrix is traversed, by rows, columns, diagonals, etc.) the effect of

these three limiting factors may be minimized or maximized. Nevertheless, these

choices are often influenced by other subtle factors such as the architecture of

the target processor and the programming language used. In general, one aims

at selecting a sparse format that exploits the matrix structure and an algorithm

that accesses matrix data sequentially (i.e. in a streaming fashion) with a stride-1

access pattern, also referred to as sequential locality [56]. An example of this is

provided by Petersen and Arbenz in [57] page 148, where they show results for

different implementations of the sparse matrix-vector multiplication kernel where

the algorithm is formulated in terms of dot-products or saxpy operations for a

shared memory system. These results show that on any of the two approaches

the outer loop is the most beneficial to parallelize. Even though the performance

scalability of the two approaches is similar as stated by the authors, their results

also consistently show that as the processor number grows the dot-product

approach is better than the saxpy version, which can be mainly attributed to less

synchronization points in the former approach.

Now considering the efficiency of the SMVM kernel with respect to

computations and data transfers, one immediately observes that it is bandwidth

 31

bound7 (or I/O bound). In SMVM, each nonzero (nz) matrix entry will be multiplied

by an entry of the x vector and accumulated per row to generate a single entry of

the results vector b, which amounts to computing 2*nz floating point operations

(flops8) per SMVM execution.

On the other hand, each multiplication will require loading 2 floating point

operands (a matrix value and a value from the x vector) and an extra floating

point operand is required for the accumulation, finally the results must be stored

requiring an additional data transfer. This means that theoretically, for each

nonzero entry in the sparse matrix, SMVM requires a total of 4 floating point data

transfers. Now relating the useful work done per amount of data transfer, one

obtains a ratio of 2/4 or one half of flops/nz which explains the low percentage of

processor peak performance ~10% that is usually attained when computing the

SMVM kernel [18].

2.7 The Conjugate Gradient (CG) Algorithm

Among modern sparse iterative solvers the conjugate gradient (CG) algorithm

is one of the most popular for solving symmetric positive definite (SPD) systems

7 Computational kernels can be limited either by the number of operations that can be executed
concurrently called compute bound, or by the number of data transfers that are required to load
and store the results called bandwidth bound (or input/output-I/O bound), see Kung [50] page
198.
8 In this work the acronym flops will be used to refer the total number of floating point operations
to compute, while flops/s will be used for the performance metric number of floating point
operations per second.

 32

due to its convergence properties, efficient computations and low storage

requirements. The conjugate gradient method approximates the solution by

constructing a Krylov subspace based on orthogonal residuals and the previous

search directions which are made to be A-conjugate. The use of the orthogonal

residuals and the A-conjugate search directions simplify importantly the algorithm

implementation, which only requires storing a few vectors to compute successive

iterates, reducing the operation count from 2()O n to ()O nz where n represents

the rank of a square matrix. Since the original CG algorithm proposed in the

seminal paper by Hestenes and Stiefel in 1952 [58] many version of the

conjugate gradient algorithm have been developed. This work uses an efficient

version of the CG algorithm presented by Shewchuk in [59] as shown in Figure 6.

A short explanation of the CG algorithm is presented next.

The main loop of the conjugate gradient algorithm is organized in three basic

steps; the first step computes the new iterate using a line search procedure; the

second step determines the new residual based on the previous residual and the

projection of the previous search direction; and finally, the third step computes

the next search direction making it A-conjugate to the previous search directions

(current Krylov subspace). These are the general steps of the conjugate gradient

algorithm and while they may be organized in different ways they have been

presented here following the order of the algorithm in Figure 6.

 33

Figure 6: Conjugate gradient algorithm. Where ε is the tolerance used, α and
β are the constants used to update the x vector of unknowns and the new search

directiond , r is the residual vector, and ∂ and q are temporary variables.

The remainder of this section briefly analyses the main computing kernels in

the conjugate gradient algorithm and its bottlenecks. Only the linear algebra

operations in the for-loop of CG are analyzed, disregarding all scalar operations,

since they make up the bulk of the computations. Three types of basic linear

algebra operations are used in the main loop of the CG algorithm, particularly for

the algorithm in Figure 6 these operations are: three vector updates or saxpy

operations (in lines 9, 13, and 17) of ()O n complexity, two dot-products (in lines 8

and 15) also of ()O n complexity, and one SMVM operation (in line 7) of ()O nz

 34

complexity. Among these BLAS operations the dominant computing kernel is the

SMVM as it was pointed out in section 1.2.2 (making CG 3/2()O n [59]); thus, the

main bottleneck in CG are the same ones that were analyzed in the previous

subsection for SMVM. This also justifies that most of the previous work focused

on accelerating the SMVM kernel as means to accelerating CG performance.

Although the SMVM is the dominant computing kernel in CG, the other

operations that represent a challenge, especially from the parallel processing

point of view, are the two dot-products. The dot-products require reduction

summations and become synchronization points in the CG algorithms. On the

other hand, the vector updates operations can be computed very fast in an

embarrassingly parallel fashion. A final observation of importance regarding CG

performance bottlenecks is that CG is an intrinsically sequential algorithm. Most

of the operations in CG depend on the results of the previous operation, except

for current solution approximation (i.e. iterate) and residual updates (saxpy

operations) that can occur concurrently.

Chronopoulos and Gear present a variant of CG [60] with increased data

locality since the vectors are loaded only once per iterations, and only one

synchronization point because the two dot-products are located in the same point

in the algorithm. Moreover, the two dot-products are independent and can be

computed concurrently. However, this increased data locality and reduced

 35

synchronization point is attained at the expense of 2n extra flops [33].

Chronopoulos and Gear further increase locality and parallelism by creating an

“s” size Krylov subspace per iteration, but increases the operation count requiring

an additional SMVM operation and incurring in possible instability. This instability

may lead convergence towards the dominant eigenvector instead of the true

solution vector as stated in [33].

2.8 Summary of Bottlenecks for SMVM and CG

Table 2 presents a summary of the main bottlenecks identified for the SMVM

and the CG algorithms that have been identified in this chapter, some of which

will be solved for general sparse matrices in the following chapters.

The following two chapters present new ways to accelerating the sparse

matrix-vector multiplication kernel for different types of modern multicore

processors using both the multiple cores available and exploiting the vector units

found in them.

 36

Table 2: Main bottlenecks for the sparse matrix-vector multiplication (SMVM) and
the conjugate gradient (CG) algorithm.

SMVM

• The matrix entries have no data (temporal) reuse and little spatial
locality.

• Vector access is indirect and irregular.
• Large instruction overhead compared to useful floating point operations.
• Low flops/Data-access ratio (less than 1, thus being I/O-bound).
• Performance dependence on matrix format and algorithm combination.

CG

• Intrinsically sequential algorithm.
• Dot-products become synchronization points and must be parallelized

carefully since they require reduction sum.
• Those of SMVM.

 37

Chapter 3
Accelerating the SMVM Algorithm for Multicore Processors

This chapter presents a novel way of accelerating the sparse matrix-vector

multiplication algorithm on multicore processors using short vector units (SIMD

units) and multiple cores.

3.1 A Naïve Approach to Parallelizing the SMVM Kernel on Multicore Processor

Parallelism for the sparse matrix-vector multiplication operation can be

implemented in different ways. Starting from the two SMVM algorithms in Figure

5 (see section 2.5) that show the traditional implementations of the SMVM kernel

using the dot-product (inner-product) approach and the saxpy approach, we can

define naïve ways to parallelize them as explained next. Two simple schemes

can be used to parallelize the dot-product version (see Figure 7.a), either

parallelizing the outer for-loop (in line 1 of Figure 5.a), which assigns a set of dot-

products to each processing-core/processor-node9; or the inner for-loop (in line 3

of Figure 5.a), which would imply computing every dot-product using all

processors resulting in increased amount of communication among processors

leading to very poor performance.

9 Term “processor” will be used to refer to processing-cores in a multicore system. Without loss of
generality or ambiguity, this term will also be used to refer to different compute-nodes in a
distributed memory system. The loose use of this term is appropriate since most of the algorithms
presented can be implemented for both shared and distributed memory systems.

 38

Processor

1

2

4

(a) Dot-product approach using row-blocks

3
* = *

A (row blocks) x
(broadcast)

b
(vector-segments)

1 2 43

A (column-blocks) b
(vector add)

x
(vector-segments)

= + + +

(b) SAXPY approach using column-blocks

Figure 7: Two parallel approaches to the sparse matrix-vector multiplication. The
example presented here assumes a multicore processor with 4 cores. The color
in each block refers to the processor in charge of the computations for that block.
The white vector in subfigure (a) is broadcasted across all processors. The blue
vectors in subfigure (b) are summed by the same processor, thus are the same
color.

Even though a choice exist, it only makes sense to parallelize the outer for-

loop of the dot-product approach, since it leads to independent computations

among the coloured row-blocks and yields independent segments of the results

vector as shown in Figure 7(a).

An analogous situation occurs when parallelizing the saxpy approach. Also

here the sensible choice is to parallelize the outer for-loop (in line 2 of Figure

5.b), assigning different column-blocks and segments of the multiplying vector to

each processor as shown in Figure 7.b. The main drawback would be the

amount of processor synchronization required to sum the contributions of each

column-block product as they become available. Even though this parallel

approach requires greater amount of synchronization than the dot-product one, it

was widely used in older vector processor mainly because of the long vector

 39

computations in the saxpy operations and the column data layout of matrices in

the Fortran programming language.

Up until now the discussion has purposely omitted implementation details in

order to keep the descriptions general, but it is now time to introduce two

important considerations required for an efficient parallel implementation. The

first is the choice of the sparse matrix format; although it was somewhat intuitive

that the dot-product approach would benefit from row storage (e.g. CSR) while

the saxpy approach would benefits from column storage (e.g. CSC). It is

important to stress that the performance of the sparse matrix-vector multiplication

(and other important linear algebra kernels) is directly dependent on the sparse

matrix format used as mentioned in section 2.5.1 and commented repeatedly in

the literature [16, 24, 28, 29, 57, 61-64] and others. Moreover, the amount of

parallelism that can be efficiently exploited in SMVM varies significantly

depending on the sparse matrix format used, which has lead to the various

sparse matrix formats as commented in section 2.3.3. The second relevant

subject is the hardware architecture used. The hardware architecture imposes

additional challenges to the parallelization process of the SMVM and the sparse

matrix format and algorithm used. The limiting factors of the SMVM kernel were

already identified in section 2.5.1 and will be used in this section to enhance

SMVM performance; however, the hardware architecture features that impose

 40

additional performance constraints have not been reviewed, this is the subject of

the next section before proposing the new optimized SMVM kernel.

3.2 Overview of Multicore Architecture and their Programming Challenges

Modern multicore processors have various architectural features that maybe

exploited to enhance their performance. This section briefly describes the most

important architectural features found in multicore processors and the algorithmic

requirements to exploit them. The discussion will be based on two types of

multicore processors (see Figure 8): homogeneous (where all processing cores

have the same architectures) and heterogeneous (where there are different types

of processing cores embedded in a single chip).

3.2.1 Architectural Characteristics of the Two Hardware Platforms Used

The first processor used in this work is the Intel Core 2 Quad (Q6600, code

name Kentsfield) that is a traditional cache based architecture representative of

homogeneous multicore processor. This processor contains four cores clocked at

2.40GHz with 64KB of L1 cache10 (32KB-data/32KB-instructions), 4MB of L2

cache per core-pair, and 4GB of global DDR2 (double data rate DRAM 2) shown

in Figure 8.a. The Intel Core 2 Quad processor family supports the Intel

streaming SIMD extensions SSE, SSE2 and SSE3 [65]. The processor has 128-

bits (16Bytes) wide SIMD units that can compute 4-way single precision floating

10 Both L1 and L2 have 64B cache lines.

 41

point (SPFP) operations or 2-way double precision floating point (DPFP)

operations per SIMD instruction.

The second processor used is a simplified version of the Cell BE processor

(found in the PS3) representative of heterogeneous multicore processors. This

simplified Cell BE contains two distinct type of cores [12]: one PowerPC (named

PPE) general purpose processor (GPP) and six SIMD processors (called SPEs)

both clocked at 3.2GHz. The PPE has a traditional two level cache hierarchy

(L1:32KB-data/32KB-instructions and L2:512KB both with 128-bit cache lines)

whereas the SPEs have a 256KB user controlled memory (scratch-pad type

memory), and both have access to a 256MB Rambus extreme data rate (XDR)

DRAM global memory. In the Cell processor the PPE is commonly used for

administrative and control tasks while the SPE cores are used as the main

computing resource. SPEs are high performance SIMD cores with software

controlled memory hierarchy, a 4-way SPFP SIMD and 2-way DPFP SIMD

pipeline (128-bit wide), and limited hardware support for branch prediction. They

have a large register file (128-128b registers), and a 256KB on-core software

managed memory called Local-Store (LS). A distinct characteristic of the SPEs

from other processors is that transfers to/from LS and main system memory must

be explicitly programmed by the user, which requires some extra effort but yields

more efficient memory management for predictable access patterns.

 42

(a) Intel Core 2 Quad Processor

(b) Cell BE Processor

Figure 8: Block diagrams of the architectural features of modern multicore
processors. Subfigure (a) shows the diagram for the homogeneous multicore
Intel Core 2 Quad processor family [65], and subfigure (b) shows the diagram for
the Cell BE heterogeneous multicore processor family [12].

 43

3.2.2 Programming Challenges for Exploiting Architectural Features

To take advantage of the hardware features described in the previous section

it is necessary to satisfy certain conditions described next.

a) Short-Vector Units or SIMD Units

SIMD units are the first architectural feature of interest. Most of modern day

multicore processors have SIMD units that enable vector processing, as is the

case for both of the architectures presented in Figure 8. In order to use these

vector units one generally requires conforming to certain data layout and size

constraints, while using specialized SIMD instructions to direct the execution to

the vector units instead of the scalar units.

In the case of Intel processors, the data layout and size constraints are very

relaxed thus allowing the programmer great flexibility to choose the type of data

and layout that is better suited for their applications purpose while using the

SIMD units. Although this is possible, the guidelines provided in chapter 4 of

Optimization Reference Manual [66] for the IA32 architectures require data to be

aligned in 16-byte (16B) memory boundaries to make efficient use of SIMD units.

This can be achieved with special data structures and zero-padding techniques.

For the Cell BE processor all data requires to be aligned to natural memory

boundaries (1, 2, 4, 8 and 16B boundaries), but 16B memory boundaries are

suggested (see chapter 19 of [12]) to maximize performance. Moreover, memory

 44

transfers strictly require the data to be multiples of 16B (unless smaller data sets

are required), which implies that all declared data must have a size multiple of

16B.

On the other hand, to enable vector execution one requires using special

vector instructions. There are three ways to use these special instructions [66],

the first is to explicitly program assembly code for each type of processor with the

required vector instructions; the second way, is to use special high-level vector

intrinsic11 [67, 68] for the particular high level language employed; and the third,

is to rely on the compiler optimizations to auto-vectorize the desired code. This

last alternative is not viable for sparse matrix operations, since the compiler

cannot make assumptions on data that is managed by pointers and complex data

structures, which is the case for sparse matrix operations. Support for vector

intrinsics is available in all modern C/C++ and Fortran compilers, and it is the one

used in this work for both architectures. Intrinsics are also a portable abstraction

11 High-level vector intrinsics (or just vector intrinsics) refer to a set of high level languages (e.g.
C, C++, Fortran, etc.) instructions that are inlined to one or more assembly language instructions
of a given hardware by the compiler to provide access to vector operations. In a more broader
sense the term “intrinsic” or “built in functions” refers to special high-level language functions
handled by the compiler in a programming language that provide access optimized code for a
given operation or low-level hardware functionality that is otherwise not available. Intrinsics are
commonly used to access vector operations and for parallel directives in some parallel
frameworks such as OpenMP.

 45

used by the compilers, which can select the best set of assembly instructions

depending on the underlying hardware.

A final considerations regarding SIMD vectorization is that it should only be

used in compute intensive sections of the code. These are found in long running

code-loops that are then manipulated using loop transformation techniques [69]

to vectorize the code. Common loop transformations used to vectorize scientific

codes are loop-unrolling, strip-mining and loop-blocking. The first two will be

explained in some detail when the SMVM vectorized kernel is presented.

Conclusion 1.a: take the time to properly design data structures considering

size and alignment for SIMD processing.

Conclusion 1.b: use intrinsics to exploit vector processing whenever the

compiler provides support for it.

Conclusion 1.c: use loop transformations techniques to enable vector

processing.

b) Memory hierarchy

It was already pointed out in the previous section that memory alignment is

key to efficient execution, but one must also consider enhancing temporal and

spatial memory locality to make efficient use of data caches in cache based

architecture and the local store memories in the Cell-SPEs. Little can be done

with temporal locality for the matrix entries since they are only used once per

 46

SMVM, however spatial locality can be enhanced with proper data structures to

allow stride-1 access to data thus enhancing data locality. Following this line of

thought, data structures should be designed as structure of arrays (SoA) instead

of array of structures (AoS) as suggested in section 4.5 in [66] and chapter 22 in

[12].

Conclusion 2: favour data structures that implement SoA instead of AoS to

increase locality.

c) Parallel Cores

The last important hardware feature to cater for is the parallel cores in

multicore processors. Since multicore processors use a similar shared memory

model as the one used in older symmetric multi processors (SMPs), a straight

forward approach would be to launch as many working threads as parallel cores

in the target processor and to schedule the workload to different threads. The

main concerns here are:

• How to partition the data and schedule it across different cores.

• How to balance the workload.

• Programming efficient parallel algorithms to manage the parallel work

keeping to a minimum the parallel book keeping.

Programmers often rely on parallel shared memory frameworks such as

OpenMP [70] to take care of these issues. Such approaches usually work well

 47

when dealing with dense matrix systems, but for sparse matrix computations

where complex sparse formats and pointers are required this is not feasible,

hence one must directly use the threaded libraries available in each system (e.g.

Posix threads [71], Intel Threading Building Blocks (Intel TBB) library [72], and

AMD x86 Open64 Compiler Suite [73]).

Conclusion 3: need to use lower level threaded libraries to reduce parallel

overhead and deal with complex data structures.

A summary of the most important challenges for parallelizing scientific kernels

(e.g. SMVM, CG, etc.) on multicore processors are presented in Table 3.

3.3 Putting it All Together: A New Sparse Matrix Format and SMVM Kernel for

Parallel Multicore Computing

Implementing an efficient sparse matrix-vector multiplication kernel requires

designing a sparse matrix format and an algorithm that takes into account the

bottlenecks of the SMVM operation summarized in Table 2, and the

programming challenges imposed by the hardware summarized in Table 3. This

section first presents the new sparse matrix format designed for this purpose

(namely the pipeline-matched sparse matrix format, or PMS, the first contribution

of this work) and then explains the new algorithm implemented.

 48

Table 3: Programming challenges for implementing scientific kernels (e.g.
SMVM) on modern multicore processors.

Architectural features Programming challenges

Vector processing
(SIMD)

• Memory alignment and sizes (multiples of 16B).
• Use of vector intrinsics whenever available.
• Employ loop transformations.

Memory hierarchy • Use SoA data structures.

Parallel cores • Explicit threading using thread libraries or
frameworks.

3.3.1 The New Pipeline-Matched Sparse (PMS) Matrix Format

The main objectives of designing a new sparse matrix format was to exploit

short vector (SIMD) units found in modern processors, while offering

opportunities to easily partition and distribute data across the multiple cores. The

design of the new format was also motivated by the fact that traditional sparse

matrix formats do not take into account the programming challenges imposed by

the hardware architecture (e.g. data partitioning on SIMD boundaries, and

memory alignment requirements). Moreover, traditional vector formats such as

ELL [30, 64] (Ellpack/Itpack) and JDS [30] are inefficient for a wide variety of

sparse matrices where the nonzeros per row may vary significantly as mentioned

in Chapter 2, which usually occurs in the finite element method when doing mesh

(h) refinement, interpolation function (p) refinement or hybrid refinement (that

combines both h and p refinements) commonly referred to as hp-refinement.

Thus an additional objective of designing a new sparse matrix format was to

 49

make it tolerant to large variations in non-zeros per row for general sparse

matrices independent of their structure. The final idea that was kept in mind to

design the sparse format is that it is easier and more efficient to compute on a

regular kernel (e.g. dense matrix-vector multiplication) than on a sparse kernel,

thus it would be desirable to produce a sparse format that can be treated as a

dense kernel.

Following these directives a new format called pipeline-matched sparse

(PMS) format was created. PMS is based on the Compressed Sparse Row

(CSR) format, and it comprises four vectors (see Figure 9) as follows:

(i) A_VAL: the first vector stores the nonzero elements of the sparse matrix,

with zero padding by rows to match the SIMD pipeline-width of the target

processor (i.e. 16Bytes for both the Intel and the Cell BE processors).

(ii) AJ: the second vector contains the column indices of the nonzero

elements.

(iii) SUB_ROWS: the third vector stores the number of sub-rows of size equal

to the size of the SIMD pipeline-width per matrix row.

(iv) X_VAL: the last vector contains the elements of x-vector indexed by

column indices in AJ.

 50

Figure 9: Representation of a sparse matrix in CSR format and the new Pipeline-
Matched Sparse (PMS) representation assuming a vector pipeline with of two
floating point numbers.

Once this representation is built, only the fourth vector (X_VAL) need be

modified to solve for different x-vectors. The mapping of the x-vector elements

into the new format (called vector-spreading operation) involves extra

processing, but ultimately this work has to be done in the SMVM kernel

regardless of the sparse format used. By doing this work in advance memory

access patterns become regular (unit-stride access to the x-vector elements is

achieved), offering better spatial locality and reduced cache misses on GPPs.

 51

The proposed pipeline-matched sparse representation renders three

important benefits:

• Enables flexible configuration to exploit SIMD units (low-level parallelism):

by using zero padding the PMS format can be customized for different

SIMD pipeline-widths (e.g. 4 single precision floating point values per

SIMD register, or 4-way pipeline in the Cell processor, or the new 256-bit

wide AVX extension in the Intel Core i5, i7 family – see section 5.13 in

[65])) and efficiently exploit available processor parallelism. In the rare

case where no SIMD units are available, PMS can be configured with a 1-

way SIMD size resulting in no zero padding.

• Enhances spatial locality and regularity in data access patterns: the

irregular-indirect access to the x-vector is solved by mapping the x-vector

into the PMS format apriori regularizing the data access pattern. This

allows a regular stride-1 access to all data required in the SMVM kernel,

and thus creating a “dense-type” kernel with a more efficient execution

even when considering the extra operations required by the zero-padding.

• Provides natural boundaries for data partitions (high-level parallelism): the

zero padding used to generate SIMD vectors in each of the matrix rows

also serves the purpose of defining natural partition boundaries on the

 52

vector boundaries defined. These boundaries can be used to exploit

parallelism across CPU cores, and assure that matrix data is kept aligned.

Compared to the CSR format, PMS requires the storage of an extra floating

point vector of size equal to the number of nonzeros, in addition to the zeros

used to match the pipeline-width of the target architecture. But this extra memory

usage yields benefits in terms of easier data (matrix and vector) partitioning and

subsequent data communication to the parallel computing cores, as well as a

regular computation. Also, because this format already contains the x-vector

there is no need to transfer it separately; in fact the amount of data transferred to

the processing cores is similar to the amount required by the CSR format. Only

three of the four vectors need be transferred to compute the SMVM kernel using

PMS: A_VAL, SUB_ROWS, and X_VAL; whereas CSR requires an additional

vector (the column indices).

PMS can be thought of as a compressed vector storage of the sparse matrix,

with vectors-sizes of the target architecture pipeline-width. Whilst this format was

designed within the scope of FE applications, it can be used to represent other

sparse matrix types regardless of their sparsity pattern, density, symmetry, or

target application since the amount of zeros added is kept to a minimum by doing

it row-wise. This new representation could also be used in non-conventional

multicore architectures or reconfigurable hardware providing similar benefits.

 53

A special data structure called c_array_t was defined to represent all the

sparse matrices and sparse matrix formats used in this work, which is described

in Appendix B. This data structure was designed to accommodate many different

sparse (and dense) matrix formats and to facilitate aligning data to natural

memory boundaries (power of two memory addresses).

3.3.2 Vectorizing the SMVM Algorithm with PMS

The dot-product version of the SMVM algorithm for the CSR format

(presented in section 2.5 and reformatted in Figure 10.a for the PMS format) is

used here as the basis for vectorization. This version was selected since it

assumes a row ordered matrix format (as is the PMS format presented in the

previous section), and because the parallelization of this version will not require

any synchronization for parallel processing as shown in section 3.1.

The first step to vectorize the SMVM code is to apply a loop transformation

technique called strip-mining [63, 66] (also called “loop sectioning”) to the inner

loop (dot-product loop) of the algorithm (see Figure 10.b). This technique creates

strips or segments within a loop, where the strip size usually matches the desired

vector (SIMD) size or smaller so that it can be vectorized. The control variable of

the loop is then incremented by the size of the strips. This technique also

enhances data locality and reduces the conditional evaluation (branching)

overhead. The way strip-mining is applied in this work is effectively the same as

 54

another loop transformation technique called loop unrolling12 (or unwinding), as

referred in [74, 75]; thus, the two terms will be used interchangeably even though

in other contexts these techniques might differ slightly.

Next, the instructions in the stripped loop are vectorized using compiler

intrinsics as shown in Figure 10.c for the Intel processor. The intrinsics for the

Cell BE processor vary but the implementation procedure is the same. The

remaining computation is to reduce the four elements accumulated from the

vectorized dot-product into a single scalar result, which is done in Figure 10.d

using a tree reduction procedure. The vectorization procedure presented in

Figure 10 was easily done because the PMS format was configured to generate

4 SPFP sub-rows for the sparse matrix, thus conforming to the 128-bits SIMD

units assumed. These optimizations and the forthcoming ones (related to

multicore parallelism) have been implemented in a new sparse matrix library that

is briefly described in Appendix B.

12 Loop unrolling is a loop transformation technique used to reduce the branch overhead in loops,
increase the locality and instruction level parallelism inside the loop, thereof improving the
instruction scheduling and overall performance for long running loops (see section 2.2 in [66]).

 55

Figure 10: Strip-mining or loop-unrolling of the inner loop in the dot-product
version of the SMVM algorithm for a strip-size of 4 using the PMS format
configure for 4-SPFP vector units (128-bit wide SIMD units).

3.3.3 Scheduling Multiple Cores with the Vectorized SMVM

For homogeneous multicore processors (such as the Intel Core families)

dividing the workload of SMVM for multicore processing can be done easily by

 56

partitioning the matrix into row-blocks and assigning them to different processing

cores as illustrated in section 3.1. The main concern while doing this is to

properly load balance the work of each core. The row-block nonzeros can be

balanced by using the SUB_ROWS vector in the PMS format to compute the

number on matrix elements in each row-block. Balancing the load in this manner

requires a simple but efficient algorithm with ()O n complexity. Once the row-

blocks partitions are defined, indices for the matrix entries, x-vector entries (in the

PMS format) and SUB_ROW fields are sent to each processing cores and the

SMVM computation may begin.

The multicore parallelism used for the heterogeneous processor such as the

Cell BE requires a slightly different approach, since the small memories in the

SPEs (its main processing cores) require explicit memory transfers between

main memory and SPE’s local-store (LS). A two-level partitioning scheme was

designed to distribute data in shared memory multicore architectures taking into

account the limited memory space available in the SPEs. The data partitioning

scheme was developed to generate coarse-grained (1st level – row-block

partitions) and fine-grained (2nd level – buffer partitions) partitions on the sparse

matrix as shown in Figure 11. The objective of the coarse-grained partitions is to

schedule and load-balance row-blocks across parallel cores. The number of rows

assigned to these coarse partitions (row-blocks) is set to have a uniform

 57

distribution of matrix nonzeros per row-block; whereas, fine-grained partitions are

used to determine the number of matrix chunks to stream within each processing

core.

The fine grained partitioning is used to cope with the limited memory in the

parallel processing cores (cache for GPP cores or LS in the SPEs) and can be

viewed as the cache blocking techniques used to reduce the effect of cache

misses in GPPs. This second partitioning is also key to applying streaming

techniques that enable overlapping communication with computations on the

Cell-SPE cores as illustrated in Figure 12. The technique used to stream data to

the SPUs is called multi-buffering. The multi-buffering implementation done for

the Cell-SPE uses two input and two output buffers (also called double-

buffering), where the main idea is to transfer data to one of the input buffers while

useful work is being done on the other one. Similarly, results are written to an

output buffer, while the previously computed results in the alternate output buffer

are sent back to global memory. As an added benefit of the PMS format, there is

no need to partition the x-vector separately since it is already contained in the

proposed format and thus uses the same partition boundaries as the matrix

nonzeros.

 58

Figure 11: Two-level partitioning scheme of a matrix. Coarse grained partitions
generate row blocks, and fine grained partitions create smaller data sets to
transfer in a block fashion.

Figure 12: Double-buffering implementation for the Cell-SPEs. The fine grained
partitions are defined to be the size of a single buffer in the SPEs.

It is worth noting that the 2-level partitioning scheme proposed here is flexible,

thus different partitioning schemes can be used for the two partition levels.

Moreover, once the coarse-grained partitions are defined the fine-grained

 59

partitions in different row-blocks can be configured independently with different

schemes if so desired.

Overall, this partitioning scheme provides good load balancing for shared

memory architectures. However, when clusters of these multicore processors are

considered a more sophisticated coarse grained partitioning scheme might

become necessary to minimize communications between multicore chips.

Important studies on sparse matrix partitioning based on graph and hypergraph

methods with precise estimation of communication volume are presented in [76-

79]. The study of these methods will be important when implementing efficient

SMVM operations on massively parallel multicore clustered systems which will

be the subject of future work.

3.4 Experimental Results

To examine the performance of the new PMS representation and partitioning

scheme the SMVM kernel was implemented using the two processors described

in section 3.2.1. The Cell processor heterogeneous multicore processor was

installed with a 64-bit Fedora Core 6 Linux operating system and was

programmed using the Cell SDK version 3.1. The Intel homogeneous multicore

processor was installed with a 64-bit Fedora Core 7 operating system. Both a

reference CSR SMVM (referred to as SMVM-CSR) and the PMS version (called

SMVM-PMS) were implemented for validation and comparison purposes.

 60

3.4.1 Experimental Setup

The SMVM algorithms developed for the two architectures where compiled

using GCC 4.1.2 using “-O2” and “-O3” compiler flag. The Cell-SPE accelerated

version of the SMVM kernel was implemented using specific vector intrinsics [12]

for the SPEs. The Intel compiler collection version 11.0 was also used for the

Intel processor to take advantage of high performance vector intrinsics available

for this processor. All times were taken using the Linux gettimeofday function,

and only the best performance results are shown in each case for the different

combination of optimization flags and compilers used.

The vectorized algorithm for the PMS format on the Intel processor was

already shown in Figure 10.d; the implementation for the Cell BE processor

required a similar process in addition to the memory transfers from global

memory to the local memory of each SPE. This mainly involved intrinsics to

control the asynchronous DMA transfers between SPE LS and the Cell main

memory; and specific intrinsics to perform SIMD multiplications and additions on

4 SPFP elements simultaneously, thus capitalizing the 4-way SIMD pipeline in

the SPEs. The PPE was used to create the SPE threads and schedule the work

to be done.

For both architectures the PMS format was configured to generate 4-SPFP

sub-rows (per matrix row) matching the SPE and SSE3 pipeline width. To

 61

minimize the overhead effect of the SMVM's control statements in the Cell-SPEs,

simple conditional instructions were substituted with bit-selection intrinsics, thus

eliminating the corresponding branch occurrences in the code. Whenever this

was not possible, branch hint instructions were used to reduce the impact of

misprediction latency.

3.4.2 Test Results

A set of finite element matrices with varying sizes and different sparsity

patterns taken from the Matrix Market repository [42] are used to study the

performance and scalability of the new approach (format and algorithm)

presented. These matrices are shown in Table 4 ordered by increasing number

of nonzeros. The first set of results (see Figure 13) present the speedup (SU) of

the SMVM-PMS kernel with respect to a reference SMVM-CSR implementation,

and serve as proof-of-concept to show the effectiveness of the proposed

approach. The comparison is done for each hardware platform independently

using a single computing core with either the CSR format and the classic

algorithm (presented in Figure 5) with compiler optimizations, or the PMS format

with the vectorized kernel shown in Figure 10.d. The speedup is computed as the

wall-clock time ratio of the SMVM-CSR to SMVM-PMS execution times, using

average times from 1000 runs for each kernel.

 62

Table 4: Finite element (FE) test matrices from the Matrix Market repository [42].
The matrices are square with number of rows and columns equal to the matrix
rank (in column 3). The number of nonzeros (NZ) are shown in column 4,
column 5 has the percentage fill of the matrix with respect to the dense case, the
total nonzeros with padding are shown in column 6, and column 7 contains the
percentage of added nonzeros.

Name Rank NZ
Sparsity

%
NZ with
padding

% added
zeros

Sparsity
pattern

1 can___24 24 160 27.78% 208 30.00%

2 cavity26 4562 138187 0.66% 144148 4.31%

3 e40r5000 17281 553956 0.19% 578312 4.40%

4 fidapm37 9152 765944 0.91% 781100 1.98%

5 s3dkq4m2 90449 4820891 0.06% 5001068 3.74%

The speedup results shown in Figure 13 demonstrate that the proposed

vectorization using the PMS format outperforms the automatic vectorization

possible with compiler options using the classic CSR. It is important to observe

that these techniques are useful for moderately small to large matrices, whereas

for smaller matrices little or no performance benefit can be achieved mainly due

 63

to the effective caching of the matrices and vectors when using the CSR format,

as evidenced with matrix (1) for the Intel processor.

1 2 3 4 5
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00
Cell BE (1_PPE/1_SPE)
Intel (1-Core)

Matrix number

Sp
ee

du
p

(ti
m

e
ra

tio
 C

SR
/P

M
S)

Figure 13: Speedup results presented as the time ratio of SMVM-CSR/SMVM-
PMS for each hardware platform.

On the other hand, the results for matrix (1) using the SMVM-PMS in the Cell

BE processor actually slow down computations. This is attributed to the fact that

the CSR version runs in the PPE and only access the Cell global memory; while

the PMS version that runs on an SPE, requires to explicitly transfer all matrix and

vector data from global memory to SPE local-store (LS) using the double-

buffering technique described in the previous subsection. When the data to

transfer is small (either fits in one or a few buffers) there is not sufficient time to

 64

overlap communication with computations and the double-buffering technique is

rendered useless.

Performance results in MFlops/s (million of floating point operations per

second) for single core implementations of the SMVM-CSR and SMVM-PMS

kernels are shown in Figure 14. In this figure it is also evidenced that the

vectorized SMVM-PMS kernel has better performance than the SMVM-CSR for a

single core in each processor, except for matrix (1) for in both processors for the

reasons mentioned earlier. It is also interesting to observe that as the matrix size

(nonzeros) grows the performance of the SMVM-PMS for the Cell-SPE grows

(referred to as CELL-PMS in Figure 14), which is explained by the better

overlapping of computations and communications with the double-buffering

technique used. On the contrary, cache based architectures like the Intel

processor suffer from more cache misses from the bigger data sets, which is

reflected as a decrease in performance for the SMVM-PMS kernel on the Intel

processor (referred to as Intel-PMS in Figure 14). Of course, performance will

also vary depending on the zero padding done, which will be presented next.

 65

1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

CELL-CSR
CELL-PMS
Intel-CSR
Intel-PMS

Matrix number

M
Fl

op
s/

s

Figure 14: Performance in MFlops/s of the SMVM kernel for the CSR and PMS
formats.

The scaling performance results in MFlops/s for the best performing CSR

kernel and the PMS format for the Intel and Cell BE processors are presented in

Figure 15. These results are only for the matrices (2-5) since matrix (1) is too

small to do any efficient parallel work. The performance of matrix (2) does not

scale for any of the formats and platforms used because of its size. Considering

that the SMVM kernel is a I/O-bound algorithm (bandwidth-bound kernel as

mentioned in Chapter 2), the performance scaling from the CSR implementations

and PMS on the Intel processor are expected to be very poor, see Figure 15.a

and Figure 15.b. Only marginal performance benefits are obtained for these

cases up to 2-cores, since the Intel Core 2 Quad processor shared the two L2

caches per core-pair; thus, after increasing the thread count over 2, more cache

 66

misses occur and no further performance gain is possible. Even so, it is also

clear that the SMVM-PMS outperforms the SMVM-CSR for all cases ranging for

4.9X speedups for the smallest test matrix to 1.6X for the largest test matrix.

A better behaviour is observed for the Cell-SPEs, where the performance

increases with the matrix size obtaining up to 3.2 GFlops/s for the largest test

matrix outperforming that of the Intel CPU. This is mainly attributed to the multi-

buffering technique used, which effectively overlaps computations with

communications as shown in Figure 15.c. For the largest test case (~4.8 million

nonzeros) the Cell-SPE SMVM kernel is 3.5X faster than the Intel SMVM-CSR,

2.6X over Intel SMVM-PMS, and nearly 14X faster than the SMVM-CSR

implementation in the Cell-PPE (see speedup results for the biggest test matrix in

Table 5), exhibiting a superlinear speedup compared to the Cell-PPE version.

Although this type of performance is in agreement with the results presented in

[23], the main benefit from the results presented in this dissertation come from

the vector processing and not from the cache-blocking or register-blocking

techniques used in [23].

 67

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

cavity26
e40r5000
fidapm37
s3dkq4m2

Number of cores (threads)

M
Fl

op
s/

s

(a) CSR

1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

2000

cavity26
e40r5000
fidapm37
s3dkq4m2

Number of cores (threads)

M
Fl

op
s/

s

(b) PMS-Intel

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

cavity26
e40r5000
fidapm37
s3dkq4m2

Number of cores (threads)

M
Fl

op
s/

s

(c) PMS-SPE

Figure 15: Performance scaling results of the SMVM kernel for the Cell BE and
the Intel processor using the CSR and PMS sparse formats.

 68

Table 5: SMVM speedup scaling using different formats for the "s3dkq4m2"
matrix (5).

Cores
(threads)

PMS-Intel /
CSR-Intel

PMS-SPE /
CSR-Intel

PMS-SPE /
PMS-Intel

PMS-SPE /
CSR-PPE

1 1.66 0.89 0.54 2.87

2 1.44 1.54 1.07 5.72

3 1.40 1.92 1.37 7.32

4 1.38 2.42 1.76 9.34

5 1.37 3.11 2.28 12.01

6 1.33 3.45 2.58 13.53

The last analysis done is related to the scalability of the PMS format itself.

The question here is how the zero padding scales with the matrix size? The

answer to this question depends on two factors: the size of the vector-pipeline

being matched, which affects the amount of zero-padding performed per row;

and the distribution on nonzeros in the matrix that determines the number of

nonzeros per row and thus the padding required.

For example, in the test cases presented in this chapter the PMS format was

configured to match a 4-SPFP pipeline found in both the Cell BE and Intel CPU

was shown to scale gracefully with the matrix size. This is evidenced in Table 4

where the effect of the zero-padded is less significant for bigger matrices (that

was always less than 5% of the real nonzeros in the matrix) than for small

matrices where it can be significantly higher. Another way to estimate the impact

of the zero-padding for a specific matrix would be given by the following formula:

 69

 % (*((mod)))*100 /pad rows vectorSize avgRowSize vectorSize NZ= − (2)

Here the %pad refers to the percentage of padded zeros, the vectorSize is

the size of the vector-pipeline to match, avgRowSize is the average row size of

the matrix, and NZ represents the real nonzeros in the matrix. If the avgRowSize

of the matrix is not known, an upper-bound for the added nonzeros can also be

estimated as follows:

 *(1)MaxPad numRows vectorSize= − (3)

It is worth noting that for modern multicore processors and even parallel

manycore GPUs the vectorSize will always be small (usually 4 for SPFP, 2 for

DPFP, or 8 for SPFP and DPFP in GPUs), thus matrices with average nonzeros

per row equal-to or bigger-than these values will not suffer from large zero

padding. Nonetheless, the results presented in this section show that the zero

padding done for the PMS format will render better performance for large

matrices than traditional CSR formats.

3.5 Concluding Remarks

This chapter presents the first two contributions of this work, a new sparse

matrix format called pipelined-matched sparse representations or PMS (using the

three character convention discussed in chapter 2) and a 2-level partitioning

scheme with a modified SMVM algorithm (first presented in CEFC 2008 [80] and

 70

published in 2009 [81]) that render the following benefits for SIMD processing of

the SMVM kernel in multicore environments:

• Enable exploiting short-vector (SIMD) processing units regardless of the

sparse matrix nonzero pattern, and adaptable to different vector (SIMD)

pipeline sizes depending on the target architecture.

• Enhance spatial locality in the matrix entries.

• Alleviate the indirect and irregular vector access of the SMVM kernel by

creating a “dense-type” approach to solving a dense problem.

• Facilitate data partitioning, distribution, and load balancing.

• Limits the amount of data transfers and instruction overhead.

• Good scaling behaviour of the PMS format with the matrix size. The

percentage of padded zeros tends to reduce as the matrix size grows.

• The SMVM Cell-SPE accelerated kernel was on average 3.5X faster than

the Intel SMVM-CSR, 2.6X over Intel SMVM-PMS, and nearly 14X faster

than the SMVM-CSR implementation in the Cell-PPE for the largest test

matrix.

The PMS format exhibits excellent scaling behaviour for the Cell BE platform

(streaming type processors) where the multi-buffering technique was applied. On

the other hand, even though the performance of the PMS-SMVM kernel in the

cache based architecture (Intel CPU) always outperformed that of the SMVM-

 71

CSR, the scalability suffered for bigger matrices because of the increased cache

misses. All of the optimizations presented in this chapter and the forthcoming

ones have been included in a sparse matrix library described in Appendix B. The

next chapter presents a solution to the scaling difficulties that PMS presents for

cache based architectures.

 72

Chapter 4
Blocked PMS Format

The scaling behaviour of sparse matrix formats is an important concern for

parallel processing. The previous chapter introduced a new sparse matrix format

called pipeline-matched sparse (PMS) representation that enabled efficient

vector processing for SMVM while demonstrating good performance scalability

for the memory controlled Cell-SPEs, but that did not scale well for the cache

based Intel processor. This chapter introduces a new sparse matrix format better

suited for cache based architectures and shows the performance benefits of the

new sparse formats for the conjugate gradient method.

4.1 Blocking PMS for the SMVM Kernel

In this section, first the new blocked sparse matrix format is introduced and

then the corresponding blocked algorithm is presented.

4.1.1 The Blocked-Pipeline-Matched (BPMS) Sparse Matrix Format

The new format called blocked-pipeline-matched sparse (BPMS or BPS)

representation is the third main contribution if this work. As in PMS [81], BPMS

defines clear data boundaries for partitions, nonetheless it also offers better

opportunities to exploit fine grained parallelism and it does not require the vector-

spreading operation. In BPMS the matrix is stored in small dense matrix-blocks,

which are enforced to be a multiple of the vector-registers size on the target

 73

architecture (e.g. 128-bit register that can store 4 single precision floating point

values or 2 double precision in modern Intel Core2 CPUs) as in PMS; thus

allowing to easily exploit short-vector (SIMD) units in multicore processors.

Furthermore, when the block size is a multiple greater than one of the vector

registers, other loop transformations can be implemented to enhance

performance (not possible on PMS). BPMS stores the matrix data in four linear

arrays in the following way:

(i) A_VAL: stores the nonzero elements of the matrix in dense

square/rectangular blocks (elements in blocks are stored row-wise), with

zero padding to match the pipeline width of the target processor per row

(as in PMS).

(ii) AJ: contains the column indices of the first element in each block (as in

BCSR).

(iii) AI: has the index of the first matrix element that starts a new row-block (as

in BCSR).

(iv) Blocks per row-block: the number of dense blocks preceding the block

pointed to by each of the row indices.

Because of the increased data locality gained by creating the blocks within

the matrix format there is no longer the need to include the x-vector in the BPMS

format; instead, BPMS can now rely on an efficient access of the x-vector data

 74

from the underlying cache hierarchy in cache-based processors, while avoiding

the time required to spread the x-vector into the format. However, the drawback

is that the SMVM-BPMS kernel depends on the matrix structure to be efficient.

Even though BPMS format does not include the x-vector it can easily be

included in the format using a fifth vector. The memory impact of such addition

would be minimal relative to PMS since each block would use the same x-vector

segment for all of its rows, increasing not only spatial but also temporal locality

for the access to this vector. Moreover, the cost of the vector spreading operation

would also be minimized since each block only requires to map the x-vector for

the first row and all other nonzero elements (in the other rows inside the block)

would reuse the vector-segment as mentioned above. The negative side is that

depending on the structure of the sparse matrix there might still be a lot of x-

vector data repeated in the BPMS format; therefore in this work it will not be

included in the BPMS format. The converse would also apply to the PMS format,

so PMS could be represented without embedding the x-vector into it, which

would yield similar benefits to the ones presented for BPMS.

 75

Figure 16: Representation of a sparse matrix in BCSR format and the new block
pipeline-matched sparse (BPMS) representation

Recalling the example matrix presented in section 3.3.1, Figure 16 shows this

same matrix in the blocked pipeline-matched sparse (BPMS) representation and

the block CSR (BCSR) representation for comparison. Both BPMS and BCSR

formats have been configured with the same block sizes for this example for

simplicity. In reality the block size for BCSR is determined based on the desired

cache blocking or register blocking techniques, which does not consider the size

of the vector-register in the SIMD units in the target processor. Common benefits

of BPMS with respect to other blocked formats for the SMVM operation include:

 76

• Increased spatial data locality for the vector access.

• Enabling efficient loop transformation techniques that decrease the loop

iteration count and thus reduce the instruction overhead from the constant

evaluation of the conditional statements (less branching).

• Compressing the row and column index information.

The blocked pipeline-matched sparse format has similar advantages to those

of the PMS format except for the direct access to the x-vector that is not included

in BPMS. The main advantage of BPMS over other blocked formats such as

BCSR is that it exploits the vector units in modern processors. The pipeline-

matching in BPMS blocks creates vector-data sets aligned to natural vector

boundaries in memory, which ease implementing vector operations. Traditional

blocked formats only exploit data-locality by creating small blocks that match the

size of the register file or the cache lines (also achieved by BPMS), but do not

align data to vector boundaries nor do they assure data sizes to fit within vector-

registers as mentioned earlier. The row index vector (AI) can be used to

determine high-level boundaries for data-partitions to spread across processing

cores, whereas the newly introduced fourth vector (Blocks per row-block) aids in

load balancing by providing information on the amount of data to compute on for

each coarse data-partition defined by AI. The information provided by the fourth

vector also provides useful information for low level loop optimizations.

 77

4.1.2 Enhancing Block Structure in BPMS

Block structures occur naturally in finite element matrices [82, 83] as the

effect of adding the element stiffness matrices to the global coefficient matrix.

However, the overall matrix structure may require many zero fill-ins when

creating the blocked formats. The non-desired effect of such zero fill-ins may be

considerably reduced by grouping the nonzero entries in the matrix. One way of

achieving this is by using a bandwidth reduction algorithm. This work implements

one such algorithm called the reverse Cuthill-Mckee [84] (RCMK) algorithm, a

well known and time efficient [85] bandwidth reduction algorithm, before creating

the block formats. The RCMK algorithm compresses the nonzero elements along

the main diagonal, increasing spatial locality and normally incurring less zero fill-

ins. Also, access to the x-vector will now be almost sequential for matrices that

allow for a good compression.

The enhanced locality property in the access of the x-vector when reordering

will also be available for the non-blocked formats, effectively reducing cache

misses and hiding better memory latencies, thus the test results in this section

will be for the reordered matrices in all formats. Figure 17.a shows how the

bandwidth of the “can___24” matrix is reduced from 24 to 13, and reduces its

average bandwidth from 8.3 to 3.8 when applying the RCMK algorithm. A similar

reduction is experienced for “fidapm37” where the bandwidth reduces from 1364

 78

to 903, and the average bandwidth goes from 442 to 290 (see Figure 17.b). On

the other hand, the ordering from the matrices 2, 3, and 5 results in an increase

of the bandwidth since they were already diagonal matrices (even though the

average BW remains almost the same as the unordered one), thus for such

matrices there is no gain in reordering.

Finally, the insight provided by the reordering process can also be used to

define coarse data-partition boundaries within the matrix. When a matrix is

reordered using RCMK two auxiliary vectors are generated, a vector called level-

set (which aids in the decision on how to reorder the matrix) and a permutation

vector that determines reordering to do on the matrix. The level-set vector can be

used to define partitions in the reordered/permuted matrix as shown in Figure 18.

The main drawback of this approach is that the partitions defined in this fashion

are too coarse and thus difficult to balance, which may lead to large zero fill-ins in

the blocks generated.

4.1.3 Vectorized SMVM and Multicore Parallelization for the BPMS Format

The vectorization of the SMVM kernel for the blocked formats is similar as the

one done in Chapter 3, where the inner loop is unrolled by the vector-register

size (4-SPFP or 128-bit vector registers) as shown in Figure 19.

 79

(a) can___24 matrix.

(b) fidapm37 matrix.

Figure 17: Bandwidth reduction examples when applying the reverse Cuthill-
Mckee algorithm.

 80

1 2 3 4 5 6

32

60

112

75

36

4

1

2

3

4

5

6

RCMK Level-Sets vector: S = [1 5 9 16 21 24]
RCMK permutation vector: P = [15 5 15 9 16 8 10 2 4 19 18 14

 11 21 23 20 1 6 22 3 7 13 12 24]
Figure 18: Partitioning example for the "can___24" matrix after reordering using
the level-set vector generated in RCMK. The number along the brackets to the
right of the matrix identifies the worst case scenario for the size of the blocks that
could be generated by such partitioning.

1:for(i=0; i<rows/blockRank; ++i){

2: start = stop;

3: stop = start+(A->blocks[i+1]-A->blocks[i]);

4: res_acc = _mm_setzero_ps();

5: for(j=start;j<stop;++j){

6: mat_data = _mm_load_ps(mat_ptr);
7: vector_data = _mm_set_ps(x_ptr[col_idx+j+1],x_ptr[col_idx+j],

x_ptr[col_idx+j+1],x_ptr[col_idx+j]);
8: temp_mul = _mm_mul_ps(mat_data, vector_data);
9: res_acc = _mm_add_ps(res_acc, temp_mul);
10: mat_ptr += 4;

11: }

12: res_acc2 = _mm_hadd_ps(res_acc, res_acc);
13: _mm_storel_pi(res_ptr,res_acc2);

14: res_ptr += 2;

15:}
Figure 19: Blocked sparse matrix-vector kernel using the BPMS format.

 81

However, in this case the four partial results obtained for each inner-iteration

correspond to two13 consecutive rows of the inner loop, so a simple 1-level tree

reduction can be applied at the end of each row-of-blocks14 (see line 12 in Figure

19). The other difference in this kernel is the trip count (number of iterations) in

the outer-loop, which is reduced by the rank of the blocks defined in the sparse

format as shown in line 1 of Figure 19. This also means that there is less

instruction overhead in the outer loop. The SMVM computation is done in lines 6

to 9 (highlighted in Figure 19) as follows.

• Line 6: load a matrix block into a vector-register.

• Line 7: load the corresponding x-vector elements into a vector-register.

• Line 8: multiply the matrix & vector elements (blocked dot-product).

• Line 9: accumulate the partial results for the row-of-blocks.

Multicore processing is achieved in the same manner as for PMS using

PThreads. Matrix data is partitioned in run-time using the 2-level partitioning

scheme described in Chapter 3, and then row-blocks (1st level partitions) are

assigned to each of the processing cores. Each core computes the SMVM kernel

on their partition and results are synchronized and gathered. The number of rows

13 In general, the number of partial results obtained for different rows will correspond to the
number of rows in the blocks defined while constructing the blocked format.
14 The term row-of-blocks refers to a set of consecutive blocks in the same set of consecutive
rows that are formed in the blocked formats. Note that this concept differs from that of row-block
which refers to the coarse (Level 1) data partition proposed in Chapter 3.

 82

grouped into such row-block sets may vary to statically balance the non-zeros

before being assigned to each core, this depends on the input matrix and the

number of core. Figure 20 shows the steps followed to partition and load balance

the BPMS matrix.

Partitioning and load balancing BPMS matrix data with the 2-level partitioning

scheme is a fast operation of (/)O n blockRank complexity (where n is the number

of matrix rows and blockRank is the number of rows in each small dense block

defined in the matrix). An even cheaper approach is to obtain a similar row-block

partitioning using the set-vector generated in the RCMK reordering. This vector

contains row indices which define bounds for the matrix data. Such bounds can

be directly used as the partition indices. Nonetheless, the success of such an

approach depends on the compression of the matrix bandwidth (BW). If the BW

is not evenly compressed the load will be unbalanced and a more sophisticated

load balancing approach must be used. In this work we only use the 2-level

partitioning scheme explained in Chapter 3. The next section presents the results

for the SMVM kernel with the new sparse format, focussing on its scalability for

the cache based architecture used.

 83

1. Compute the ideal nonzeros per
processor:

4. Use 4th vector in BPMS (blocks per
row-block) to identify the number of
row-of-blocks to select for processor i:

2. Set i, j and accum to 0.

for(j=i;j<rowBlocks;j++) {
 accum+=BPMS_A.blocksPerRowblock[j] *
 BlockSize;
 if(accum>=average_nz) break;
}

average_nz=matrix_nonzeros/
num_processors;

3. Set current row-block pointer i to j
and reset accum.

Start

End

5. If (j < rowBlocks)

Figure 20: Steps to compute the 1st-level partitions of the 2-level partitioning
scheme and to statically load balance a matrix in BPMS format across several
processors.

 84

4.2 Experimental Results for SMVM

The experimental setup for the results presented in this section is the same

as the one used in section 3.4, thus comments will only be made for the

variations in the setup or new considerations. Both of the blocked formats

presented in this section (the BCSR and the new BPMS formats) have been

configured in the same way so that a fair comparison can be assessed. The two

formats were configured with 2x2 blocks (which minimizes the memory footprint

of zero fill-ins). The BCSR format was also unrolled and optimized using the

compiler optimizations. Non-square block configurations can also be tested, but

were not considered for the results in this dissertation.

In addition to the matrices used in Chapter 3, two new matrices where added

from Matrix Market repository [42] (bcsstk32 and s3dkt3m2) and a set of

artificially generated matrices (with nonzeros ranging from 6 million to 10 million)

to better study the performance scaling behaviour of the new sparse format and

algorithm (see Table 6). The artificial matrices generated have a band structure,

increasing very little the amount of zero padding done for the PMS and BPMS

formats. Table 6 shows the information for all the matrices, but results for this

chapter will focus on the bigger matrices (4-8).

 85

Table 6: Finite element (FE) test matrices from the Matrix Market repository [42].

Name Rank NZ Sparsity
% PMS NZ

PMS %
added
zeros

BPMS NZ

BPMS
%

added
zeros

Sparsity
pattern

1 can___24 24 160 27.78% 208 30.00% 256 60%

2 cavity26 4562 138187 0.66% 144148 4.31% 185428 34.18%

3 e40r5000 17281 553956 0.19% 578312 4.40% 736336 32.92%

4 fidapm37 9152 765944 0.91% 781100 1.98% 931648 21.63%

5 bcsstk32 44609 2014701 0.10% 2082628 3.37% 2626404 30.36%

6 s3dkt3m2 90449 3453461 0.05% 3931224 4.74% 4467300 19.02%

7 s3dkq4m2 90449 4820891 0.06% 5001068 3.74% 5366604 11.32%

8 SP10 10000 10006318 10.01% 10016832 0.11% 10034776 0.28%

The first results evaluate the performance of the new BPMS format compared

to PMS and BCSR (the reference block format). The executions Speedup15 (SU)

results for the SMVM kernel using the PMS, BCSR, and the new BPMS formats

with respect to the CSR format are shown in Figure 21 for increasing matrix sizes

15 Absolute time ratio of CSR with respect to PMS, BCSR and BPMS execution times.

 86

on a single Intel core. The CSR format is used as a reference providing the base

computing time for comparison (since it contains no zero padding), whereas the

other formats have extra computational overhead. The PMS results are shown

mainly for comparison with the BPMS, since its performance was already studied

in Chapter 3. The SU curves increase as the matrices grow and stabilize around

2.5x for BCSR, 2.9x for PMS, and 4.4x for BPMS using the optimized kernels as

described in section 4.1.2. These SU results clearly show that BPMS

outperforms the other formats, a trend that stabilizes for the bigger matrices as

the cache misses become regular. It is also interesting to observe that even for

the worst case in Figure 21 (corresponding to the bcsstk32 matrix with 2 million

nonzeros, when the matrix does not fit in the cache) BPMS is 3.4x faster than

CSR. These results are even more impressive considering the high zero fill-in

percentage (30.36%) in this matrix.

BPMS also demonstrates good scaling for increasing matrix sizes, requiring

less padded-zeros (see Table 6). This is true in general, but zero padding may

slightly increase for very irregularly-structured matrices or regularly-structured

matrices with numerous cavities between its entries, e.g., the three matrices in

the valley of Figure 21. Compared to the PMS format the newly introduced format

requires more zero fill-in, which can be observed from the percentage of zero fill-

ins for each of these formats in Table 6.

 87

Figure 21: Speedup results for the SMVM kernel with the PMS, BPMS and BCSR
with respect to the CSR format for one Intel-core.

The next set of results describes the effect of the SIMD vectorization running

on several processing cores for all matrix formats with and without optimizations.

The first section of Table 7 shows SU16 results obtained for the optimized

(vectorized) SMVM kernels (BCSR, PMS, and BPMS) with respect to the non-

optimized (non-vectorized) versions respectively for 1 and 4 cores. These results

demonstrate that the vectorization of the SMVM kernel increases considerably

the performance for all specialized formats, achieving up to 17x speedups for

matrix (4) using the new BPMS format. The high SU obtained for this matrix is

mainly due to the fact that it fits in the Intel-CPU cache. Overall, the amount of

16 The speedup results obtained in this section were computed as the time ratio of non-optimized
to optimized kernels for a given number of computing cores.

 88

performance gains with the vectorization of the SMVM kernel is reduced when

more cores are used. On the other hand, for the larger matrices that do not fit in

the cache the performance increased with the optimizations and the number of

cores but was limited by the achievable memory bandwidth (BW) for each test

matrix.

The second part of Table 7 presents performance results for the vectorized

kernels in GFlops/s using 4 Intel-cores and 6 Cell-SPE cores. Overall, a

sustained performance of up to 8.24 GFlops/s for the SMVM-BPMS was

observed with an average of 3.4 GFlops/s, the fastest SMVM kernel. Overall time

results show that BPMS is 3.6x faster than CSR, 2.2x faster than the PMS format

and 2.5x faster than BCSR for the matrices in Table 7 using four Intel cores. For

the Cell BE the PMS format performs better than the BPMS format. The reason

this happens is that PMS allows to efficiently stream both matrix and x-vector

data to the SPE’s local memory using the double-buffering technique; whereas

BPMS fetches the x-vector segment required to SPE local memory upon a miss

in the x-vector segment already contained in SPE local memory.

 89

Table 7: SMVM performance comparison results for the BPMS, PMS and BCSR
SMVM kernels for the Intel Core 2 Quad and Cell BE processors.

Intel SMVM optimized/non-optimized performance speedup

Matrix (#) (4) (5) (6) (7) (8)

1C-PMS 3.33 2.71 2.68 2.7 2.78

4C-PMS 2.87 2.19 2.03 1.04 1.73

1C-BCSR 2.53 2.42 2.42 2.44 2.62

4C-BCSR 3.28 2.11 1.88 1.86 1.81

1C-BMPS 5.49 4.42 4.35 4.45 4.8

4C-BMPS 17.14 4.58 3.55 1.84 2.85

4-Intel cores and 6-SPE cores SMVM performance results in GFlops/s

Intel-PMS 1.53 1.2 1.26 1.3 1.38

Intel-BCSR 1.57 1.14 1.12 1.27 1.48

Intel-BPMS 8.24 2.47 2.13 2.11 2.21

SPE-PMS 0.54 0.65 0.67 0.69 0.66

SPE-BPMS 0.3 0.22 0.29 0.29 0.31

Multicore performance scaling results for the cache-based architecture (Intel

processor) deserves special attention since they motivated the creation of a

second sparse matrix format. Figure 22 shows performance scaling results of

four matrices varying the number of compute cores from 1 to 4. Again the almost

linear scalability for SMVM-BPMS in Figure 22.a is achieved because the matrix

fits in cache. The other matrices exhibit a reduced scalability for BPMS, but that

is still much better compared to CSR, PMS and BCSR which was the original

objective.

 90

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 3 4

G
Fl

op
s/

s

Number of cores

CSR
BCSR
PMS
BPMS

(a) fidapm37

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4

G
Fl

op
s/

s

Number of cores

CSR
BCSR
PMS
BPMS

(b) bcsstk32

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4

G
Fl

op
s/

s

Number of cores

CSR
BCSR
PMS
BPMS

(c) s3dkt3m2

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4

G
Fl

op
s/

s

Number of cores

CSR
BCSR
PMS
BPMS

(d) s3dkq4m2

Figure 22: Multicore performance scaling in GFlops/s for the SMVM kernel using
the CSR, BCSR, PMS and BPMS formats on the Intel Core 2 Quad processor.

The next section presents results for the conjugate gradient method

accelerated method accelerated with vectorized SMVM algorithms.

4.3 Conjugate Gradient Results

In many modern EM simulations the solution of the linear system derived from

the discretization of the problem domain (or operators) consumes a great deal of

computational resources, often being the most time consuming operation.

 91

Thereof, this section discusses the acceleration of the conjugate gradient (CG,

discussed in Chapter 2) method using the newly introduced sparse formats and

vectorized SMVM kernels. Since the parallel SMVM kernel is called in every

iteration of the CG algorithm there will be considerable time invested in creating

and destroying PThreads. To avoid this, a set of persistent threads (also called

thread-pool) was created. These threads are set to sleep until an SMVM

operation is required; at this point they are started. When the SMVM operation is

completed the threads are synchronized and set to sleep again. Threads are only

terminated when the CG algorithm ends.

The non-vectorized parallel SMVM kernel is used in a parallel CG algorithm

for the new BPMS format as proof-of-concept. The scaling performance with

respect to 1-core BPMS-CG is shown in Figure 23 using four of the biggest test

matrices. Near 3-times increase in performance (measured in GFlops/s) is

observed when running the non-vectorized BPMS-CG from 1 to 4-cores

confirming good scaling performance expected from the BPMS accelerated CG.

Performance results in GFlops/s are shown in Figure 24 for the CG

accelerated versions using 4 Intel-cores for different sparse matrix formats. The

average performance in GFlops/s for each format is as follows: 1.31 for BCSR,

0.58 for PMS and 2.83 for BPMS. Thus, BPMS is approximately 2.1x faster than

BCSR, almost 4.7x faster than PMS, and 5.8x faster than CSR on average.

 92

Figure 23: Speedup scaling for the conjugate gradient method using BPMS with
1 to 4 Intel CPU cores.

Figure 24: Conjugate gradient performance results in GFlops/s using 4 Intel
cores.

These results demonstrate the performance benefits of BPMS over all other

formats for CG algorithm in the Intel cache-based architecture. A different

situation is found for PMS, which is not the best suited format for CG since there

 93

are insufficient instructions to hide the vector-spreading computation time as

shown by these results. Nevertheless, the PMS format can be used in other

applications where sufficient instructions parallelism exists to hide the cost of the

vector-spreading operations or when multiple vectors exist so that the spreading

time can be overlapped with other instructions.

An alternative to recover the performance lost in PMS by the spreading

operation of the x-vector is to entirely avoid the spreading operation. The

performance of the SMVM-PMS will be reduced compared to that shown in

Chapter 3 due to loss of regular access patterns to the x-vector data; this is

because the SMVM-PMS kernel can no longer be treated as a dense kernel. For

cache based architectures this approach takes advantage of the cache hierarchy

to access x-vector data, but performance will depend on the sparsity pattern of

the matrix. The results for this approach are presented in Figure 24 as CG-

MPMS (CG using the Modified-PMS, with no vector spreading operation),

showing how a great deal of performance is recovered by dynamically accessing

the x-vector in the PMS format, where BPMS is only 2.3x faster than MPMS (a

similar performance difference to the corresponding SMVM results). Even though

the performance is recovered for the MPMS its scalability is still poor as shown

by Figure 25.

 94

Figure 25: Scaling of the CG performance in GFlops/s for the modified PMS
(MPMS) format.

4.4 Concluding Remarks

This Chapter presents the third contribution of this work, a new blocked

format called blocked pipeline-matched sparse (BPMS) representation that

solves the performance scalability problems of the PMS format for cache-based

architectures. The BPMS format compresses the index information, enhances

data locality, and avoids overhead related to the vector-spreading operation

required in PMS. Even though BPMS requires more zero fill-ins than PMS it

demonstrates superior performance for cache-based architectures, while PMS

performs better for the streaming architectures such as the Cell BE. The BPMS

accelerated SMVM kernel on the Intel processor using 4 Intel cores

demonstrated an average performance benefit of 2.5x over BCSR and 2.2x

 95

faster than PMS. On the other hand, BPMS was 2.1x faster than BCSR and

almost 5x faster than PMS on average for the CG algorithm. Figure 26 shows the

complete workflow used to compute the CG algorithm. The vector spreading

operation and the sequential nature of the CG algorithm are the main factors that

reduce the performance of the PMS format for the CG algorithm.

An alternate configuration of PMS is proposed that does not include the x-

vector elements and that offers better performance for cache-based processors.

The blocked format introduced in this chapter was originally presented in [86] and

published in [87]. The next chapter introduces the last major contribution of this

work, an alternate formulation of the FEM solution for massively parallel

computing.

 96

Figure 26: Complete workflow used to compute the CG algorithm with the
vectorized SMVM kernel and the 2-level partitioning scheme.

 97

Chapter 5
A Parallel Approach to Solving the

Finite Element Method

Parallel implementations of the finite element method (FEM) in large clustered

or symmetric multi-processor (SMP) systems has traditionally been done

exploiting coarse-grained parallelism in the dominant computing kernels (the

SMVM and preconditioner operations in iterative solvers), while it has relied in

traditional technological advances (Moore’s Law) to increase performance in

local nodes (single processors). Chapters 2 and 3 have introduced new

techniques to exploit fine-grained parallelism (SIMD-vectorization and parallel

multicore processing) found in modern multicore processors that can be used to

accelerate computations in these traditional approaches to parallel the FEM.

The first two sections of this chapter introduce a new approach to solve the

FEM by exploiting the low level parallelism available in the formulation of the

method itself, thus well suited for parallel computing. The second part of the

chapter develops a technique to implement the proposed approach on graphic

processing units (GPUs) that makes efficient use of the massive parallel

resources found in these processors. The new approach and the technique to

implement it on GPUs constitute the last two major contribution of this work. The

 98

chapter ends with an overview of specific work related to the two contributions

introduced here.

5.1 New FEM Single Element Solution (FEM-SES) Method: Alternate Fine-

Grained Parallelism in the Solution of FEM

The classic FEM formulation can be presented as a seven step procedure

[82] as follows (see Figure 27.a).

(i) Discretization of the problem domain.

(ii) Definition of boundary conditions (BCs).

(iii) Construction of the element stiffness matrices.

(iv) Assembly of the global coefficient matrix imposing corresponding BCs.

(v) Solution of the algebraic system.

(vi) Post-processing of the results. If the results meet the required accuracy

then the method ends, otherwise an additional step is taken.

(vii) Refine the mesh and/or change the basis functions and restart the

process from the first step.

Often the most time consuming and attractive candidate for parallelization in

the finite element method is solving the algebraic system derived from step (v).

The three most common approaches to parallelize the solution of FEM are: a)

partitioning and solving in parallel the derived algebraic system [87-89]; b)

employing domain decomposition techniques [90-93]; and c) using multigrid

 99

techniques [91, 93]. However, a greater amount of parallelism is sought to take

advantage of parallelism in multicore/manycore processors. This work proposes

a new approach called single element solution or FEM-SES, in which the solution

of each finite element is decoupled from that of the whole mesh by computing

element stiffness matrices (subject to boundary conditions) concurrently.

Figure 27.b illustrates the proposed change with a blue arrow (labelled 5) that

connects step (iii) to step (v) directly. The disconnected solutions are then

averaged node-wise using a weighted sum over all concurrent nodes and

iterated until convergence is achieved. By skipping step (iv) of the classic FEM

procedure described before, the proposed approach does not require building a

global coefficient matrix. Thus the new FEM-SES method uses the same steps

(i), (ii), (vi) and (vii) from the classic FEM workflow, skips step (iv), and modifies

steps (iii) and (v). The remainder of this chapter concentrates on explaining the

changes in steps (iv) and (vi) (encircled inside the green dashed line in Figure

27.b), proving the validity of the new method and its benefits for parallel

computing. The mathematical formulation for the proposed decoupled finite

element method-single element solution (FEM-SES) is presented next.

 100

Figure 27: Comparison of classic finite element method (FEM) workflow (top
figure) with respect to the proposed single element solution (FEM-SES) method
(bottom Figure).

(a) Classic finite element method (fem) workflow.

(b) Proposed single element solution (FEM-SES) workflow.

 101

5.1.1 FEM-SES Mathematical Formulation

Equations (4-6) present the classic FEM variational formulation for a simple

2D electrostatic boundary value problem, which will be used throughout this

chapter without loss of generality. In the aforementioned equations ()F ϕ is the

functional to minimize, and the unknowns and boundary conditions are

represented using ϕ and p respectively.

 () 0F ϕ∂ = (4)

 , on the boundary pϕ = Γ (5)

22

()F d
x y
ϕ ϕϕ

Ω

  ∂ ∂ = + Ω     ∂ ∂     
 (6)

The functional is then applied to each element in the discretized domain as

shown in Equations (7-8) where the superscript e refers to the element index.

 1() () en
eF Fϕ ϕ==  (7)

2 2

()
e

e e
e eF d

x y
ϕ ϕϕ

Ω

    ∂ ∂= + Ω     ∂ ∂     
 (8)

Next, the local functionals are minimized and boundary conditions are

enforced on each element independently, see Equation (9).

 { }{ } { } { }
_

e
e e e

e
BC reduced

F K bϕ
ϕ

 ∂ = − = ∅ ∂ 
 (9)

This is where the new method departs from the classic FEM.

 102

5.1.2 The 2-Step Iterative Relaxation Method

To obtain the global solution from Equation (9) a 2-step iterative relaxation

approach is proposed (see Figure 28). The first step applies a relaxation

technique using the previously obtained iterate-ϕ and the local system derived

using a matrix modification process from Equation (9) to compute the local

element solutions concurrently. Figure 28 shows an example for a Jacobi type

update on first order triangular elements with one, two or no boundary conditions

and first order basis functions. In the second step the local solutions from

overlapping nodes are summed using a weighted average to compute the global

solution.

The weights are computed using the main diagonal values of each of the

elements matrices. Finally, a convergence check is performed to either exit or

repeat the process. The next subsections briefly describe the sources of

parallelism, advantages and disadvantage of the proposed 2-step iterative

relaxation method.

a) Sources of Parallelism

Various sources of parallelism exist in the new approach. The most significant

are listed in the following:

 103

Figure 28: The 2-step iterative relaxation method. Step 1 shows examples of how
to compute the solutions for elements with 1, 2, and 0 BCs. The examples here
correspond to triangular elements with first order basis functions.

• Element stiffness matrices can be built in parallel and preserved in

distributed CPU/cores to be computed later.

• The solution of each element can be computed in parallel independently.

• The weighted average can be performed in parallel across different nodes

taking into account the element connectivity.

b) Advantages and Disadvantages

The main disadvantage of the 2-step iterative relaxation is that it will converge

slowly, similar to the Jacobi iterative method; although, the amount of parallelism

per iteration is increased considerably. On the other hand, by exploiting

parallelism in each iteration, the new approach reduces the total execution time

of the finite element method as demonstrated in the results section. Among other

advantages, the proposed FEM-SES method does not require special numbering

 104

(local and global numberings) to build the global coefficient matrix and later

obtain the final results requiring less time and effort in housekeeping procedures.

There is no need to assemble a global coefficient matrix which might also

become a time consuming step. The proposed method uses the same

information as the classic FEM, and good scaling is expected since the element

connectivity (the number of surrounding elements connected to a given element)

of the FEM mesh will be almost constant as the mesh is further refined to better

represent the geometry of the problem.

5.2 Proof of Concept Results

This section presents results to validate the new proposed FEM-SES method

as well as performance results using a classic 2D electrostatic coaxial cable

problem as shown in Figure 29. In this test case the outer square conductor is

connected to ground while the inner square conductor is held at a constant

voltage of 10V, and the two conductors are considered to be separated by air. A

program was developed to generate regular meshing of this particular problem in

MatLab in order to have better control over the number of elements being

generated. The meshing program adds more elements to the mesh by creating

equally spaced partitions between the inner and outer conductors and then

discretizing these partitions using triangular elements. We use first order basis

functions for all the elements in the finite element mesh.

 105

Figure 29: 2D section of electrostatic coaxial cable. The inner conductor is fixed
at 10V and outer conductor at 0V. The space between the conductors is
considered free space. The insert shows a 3D representation of the cable being
model.

All tests are conducted on the Intel processor described in Chapter 3.

Sequential implementations for both the traditional FEM and the new FEM-SES

methods are done to validate the results of the new method. The systems energy

results for the two methods are presented in Figure 30 for increasing number of

unknowns. As shown in Figure 30 there is good agreement between the two

energy results, validating the new method.

To empirically evaluate the convergence scaling of the FEM-SES method the

original mesh is refined to increase the number of unknowns. The method is

evaluated for various mesh discretizations and the resulting iterations are plotted

versus the number of unknowns in a log-log plot in Figure 31. The reference line

(dotted line) in Figure 31 represents a linear scaling with slope 1, while the solid

lines correspond to the actual iteration count for each run.

 106

Figure 30: Energy results for the FEM and FEM-SES.

Figure 31: Iterations scaling of the FEM-SES method for increasing number of
unknowns.

These results show a sub-linear iteration scaling of the proposed FEM-SES

method as the number of unknowns increase, which is a desirable scaling

property for iterative methods. Such sub-linear scaling is obtained even though

the condition number increases considerably from 89.8 to 9672.7 as the mesh

size (or unknowns) grows for the smallest to largest mesh sizes respectively.

 107

5.3 Parallelizing Results for the FEM-SES Method

In this section, techniques to parallelize FEM-SES are presented. A

sequential implementation of the FEM-SES method is profiled first to determine

the amount of time spent in the main sections of the algorithm. The two most

important operations in the algorithm are the actual assembly of the element

matrices and the 2-step iterative relaxation method itself. All other operations in

the algorithm are considered as pre- and post-processing steps. The results for

the profiling are shown in Figure 32. It is clear that as the number of unknowns

grows the FEM-SES solution (i.e. 2-step iterative relaxation method) dominates

all other operations (assembly, pre and post processing). Consequently, we

concentrate on parallelizing the 2-step iterative relaxation method only, that

correspond to the last two sources of parallelism identified in Section 5.1.2.a.

Even though the methods proposed up to now have taken advantage of

multicore processors with a few (2 to 4, or 8 in future generation multicore chips)

cores, the proposed FEM-SES method offers a great amount of parallelism (each

element solution can be computed concurrently) which is better suited for a

processor with hundreds or thousands of cores, such as those found in graphic

processing units (GPUs). Thus, this section will concentrate in implementing the

FEM-SES method to exploit the parallelism found in modern GPUs, while a

reference multicore implementation will also be presented for comparison.

 108

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e p
er

ce
nt

ua
l t

im
e

Number of unknowns

FEM-SES relative assembly, pre and post processing time FEM-SES relative solve time

Figure 32: Profiling results for the sequential FEM-SES method.

5.3.1 Multicore Results for the Intel Platform

A parallel implementation of the FEM-SES method was done for the Intel

multicore processor (vectorizing the element solutions) to asses to potential

performance gains in this type of multicore architecture. The vectorization is done

on the 2-step iterative relaxation method. A graphical representation of the three

steps used to parallelize the proposed methods for the Intel processor is

presented in Figure 33. Here, the idea is to first divide the workload by elements

in order of appearance in the mesh file (to minimize the amount of processor

synchronization) across multiple cores. The second step is to use a thread pool

to compute iteratively the 2-step iterative relaxation method while reducing the

overhead of thread management. Finally, the results from different threads are

summed per iteration, and a convergence check is preformed.

 109

Figure 33: Multicore implementation of the FEM-SES method for the Intel
processor.

Timing results for the parallel version of the proposed FEM-SES method

running in four Intel cores are shown in Figure 34. For the smaller problem cases

no performance benefit is obtained because there is not sufficient parallel work to

do to overcome the overhead of threading and synchronizations. However, with

the increase of the mesh size an average speedup of 3x is obtained with respect

to the sequential FEM-CG implementation. Although, these results are

encouraging the FEM-SES method provides a greater amount of parallelism than

what can be actually exploited with multicore processors.

As was described earlier each element in the FEM can be computed

independently, after which the individual node results are averaged. Thus, it is

expected that manycore processors are a hardware architecture better suited to

exploit the parallelism available in the FEM-SES method. The next section

describes a GPU adaptation of the FEM-SES method and results for two different

generations of NVIDIA graphic processors.

 110

0 50000 100000 150000 200000 250000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

0.5

1

1.5

2

2.5

3

3.5

4

FEM-CG
FEM-SES (4-cores)
SU (FEM-CG/FEM-SES-4Cores)

Number of unknowns

T
im

e
(s

ec
)

S
p

ee
d

u
p

 (
F

E
M

-C
G

 t
im

e
/

F
E

M
-S

E
S

 t
im

e)

Figure 34: Performance comparison of the proposed FEM-SES method running
on four Intel cores compared to a single core vectorized FEM using CG
algorithm. The blue and red lines indicate the time of the two versions of FEM,
and the green dotted line represents the speedup of the parallel FEM-SES
method with respect to the single core optimized FEM-CG.

5.3.2 Manycore Adaptation of the FEM-SES Method

Before presenting the methodology used to implement the FEM-SES method

on GPUs and the results obtained, an overview of the architecture and general

GPU programming approach is presented.

a) Overview of GPU Architecture

In this work two NVIDIA graphic cards are used to accelerate the FEM-SES

method. The first GPU is the GT8800 a first generation CUDA enabled GPU; and

the second, is the GTX485 classified as the third generation CUDA enabled

GPU. An overview of their architecture features is presented next. NVIDIA GPUs

are composed of hundreds of scalar processors called CUDA cores that execute

 111

the device kernels. CUDA cores are arranged into clusters of 8 to 32 cores

(depending on the GPU generation, see Table 8) called streaming-

multiprocessors (SMs). Threads are scheduled to run on the CUDA cores in

groups of 32 called warps.

These clusters of CUDA cores have access to varied memory hierarchy

ranging from registers, local memory, shared memory, constant/texture

memories, and global memory. On the top of the hierarchy we have large

registers files per SM varying from 8KB to 32KB, which along with the shared

memory determine the number of simultaneous threads that an SM can allocate.

Each thread in the SM has a private local memory used for local variables,

register spills and function calls. Shared memory is a small multibank low latency

memory controlled by the programmer (i.e. scratchpad memories, similar to local

store in the Cell SPEs), that allows fast access to commonly accessed data

shared among threads of the same block. Texture and constant memories are

special types of shared memories with different types of memory addressing

modes that are cached. These memories are designed to provide fast access to

immutable data. Finally, global memory is a large long access latency memory

used to store all data required by a kernel execution. This basic architecture was

originally implemented in the NVIDIA G80 series (see Figure 35).

 112

Table 8: Comparison of architectural features for the GeForce 8800 GT and the
GeForce GTX 480 GPUs. In the Fermi GPU, shared memory and L1 Cache
share a common space of 64KB.

GeForce 8800GT (G80) GeForce GTX480 (Fermi)

CUDA Capability: 1.1 CUDA Capability: 2.0

Clock frequency: 1.5GHz Clock frequency: 1.4GHz

Number of SMs: 14 Number of SMs: 15

CUDA cores: 112 (8 per SM) CUDA cores: 480 (32 per SM)

Register file: 8KB Register file: 32KB

Shared memory: 16KB Shared memory: 16KB/48KB

No L1 Cache L1 Cache: 16KB/48KB

No L2 Cache L2 Cache: 768KB

Global memory: 512MB Global memory: 1.5GB

Single warp issue Dual warp issue

Single-precision floating-point (SPFP) Double and single precision FP

Peak SPFP performance: 128 multiply
add ops/clock

Peak SPFP performance: 512 fused
multiply add ops/clock

CC CC

CC CC

CC CC

CC CC

Shared
memory

SM1

Texture
cache

Constant
cache

Global Memory

CC CC

CC CC

CC CC

CC CC

Shared
memory

SM2

Texture
cache

Constant
cache

CC CC

CC CC

CC CC

CC CC

Shared
memory

SM3

Texture
cache

Constant
cache

CC CC

CC CC

CC CC

CC CC

Shared
memory

SM16

Texture
cache

Constant
cache

CC: CUDA cores
Figure 35: Basic architecture of NVIDIA’s first generation G80 CUDA enabled
graphic cards.

 113

The latest generation of CUDA enabled graphic cards called Fermi introduced

several technological advancements [94] compared to the previous generation of

NVIDIA GPUs. Full data cache support for the memory hierarchy, with a

configurable Level 1 (L1) cache and a unified L2 cache and a dual warp

scheduler per SM, which allows issuing two instructions to two separate warps at

the same time. This feature is supported by an increase in the number of CUDA

cores from 8 to 32 cores (divided in two groups of 16-cores, one per warp), and

increasing the shared memory space up to 48KB. Also the different memory

types now have a unified address space which provides full support for C/C++

pointers and full 64-bit addressing. Fermi has faster single and double precision

processing with full IEEE 745-2008 support for both representations (as opposed

to IEEE 754-1985 for previous generations of GT200). Among other architectural

advances, atomic operations are faster, full memory support or error correction

codes for critical applications has been included, as well as the ability to execute

multiple kernels concurrently. Figure 36 shows the block diagram depicting the

architecture of NVIDIA Fermi GPUs, and Table 8 compares some of the most

important architectural features of GTX480 vs. GT800 GPUs from NVIDIA.

 114

64KB Shared Memory /
L1 Cache

SM1

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

Register file

Uniform L2 Cache

SM2

SM15

Global Memory

CC: CUDA cores

Figure 36: Basic architecture of NVIDIA’s third generation FERMI graphic cards.

A CUDA kernel launches thousands of threads which are organized into

groups called blocks that compute the same code on independent data-sets, a

model that is referred to as Single-Instruction, Multiple-Thread (SIMT). Blocks are

independent and can execute in any order, thus having independent data-sets is

important. Threads inside a block communicate using shared memory and can

be synchronized, but threads across blocks can only communicate through

global GPU memory using atomic operations. In both cases, judicious use of

synchronizations and atomic operations should be exercised since they may

become performance bottlenecks.

 115

Programming a CUDA kernel involves identifying the data-parallel compute

intensive sections of the application to be offloaded onto the GPU (also called

device). The programmer must then specify how many threads per blocks and

how many blocks per kernel should be used. Executing a GPU kernel involves

sending the required data to the GPU, launching the actual CUDA kernel, and

transferring results back to the host CPU. Once a CUDA kernel is launched, each

SM is allotted several thread blocks that are executed sequentially in an arbitrary

order. The SMs then schedule warps from a block to be executed. In particular,

warps have been designed to execute the same code in a lock-step manner

(similar to vector processors), but they provide flexibility to allow different

execution paths (also called thread divergence) at the expense of performance

reductions.

b) GPU Parallel Implementation

The CUDA 3.2 SDK [8] was used to implement the 2-step iterative relaxation

algorithm on the GPU. The host function first defines the global device memory

required to store the element matrices eK (including their right hand sides eb), the

global unknown vector ϕ , and the pre-computed weight factors ew 17. These

values are then transferred to the GPU global memory. Next, the host function

loops over the three device kernels (GPU kernels) that parallelize different

17 The subindex “e” is used to refer to the matrix or vector of a particular element. Whenever this
index is not used then it is assumed that the matrix or vector correspond to the whole mesh.

 116

sections of the method until the convergence criteria are satisfied (see Figure

37). The shaded process boxes in Figure 37 correspond to each of the CUDA

kernels. Once convergence is achieved the host function exits the loop and

transfers the global solution ϕ back to host memory. Large data transfers only

occur outside the loop minimizing the effects of global memory access latencies.

Only single scalar values are transferred inside the loop (illustrated in Figure 37).

Kernel 1 computes the solutions of each element in parallel as described in

step 1 of Figure 28. Each thread in the kernel computes the solution of one

element and stores it in global memory. Each block in this kernel consists of 256

threads and the number of blocks in the grid is computed dynamically at runtime

depending on the problem size which equals the number of elements in the FEM

mesh divided by the block size. Most of the memory accesses are coalesced due

to sequential addressing of the eK , eb and ew data sets but non-uniform and

indirect access will still be required for the unknown ϕ -vector. The indirect

accesses are one of the main performance limiting factors in this kernel. To

minimize the effects of accessing the ϕ -vector (which is used several times in a

thread), it is stored into shared memory. Techniques such as loop unrolling and

variable reuse are also used to enhance performance. The above mentioned

kernel is the most time consuming of the three, Figure 38 presents the kernel

code.

 117

Figure 37: Workflow to parallelize the 2-step iterative relaxation method on
NVIDIA GPUs.

 118

Figure 38: Kernel 1-CUDA kernel used to compute the single element solutions
in FEM-SES.

After the local element solutions are obtained, Kernel 2 is called to compute

the global node solutions using an average sum. Again, the host function

launches a 1 dimensional grid with 256 threads per block. The number of blocks

launched is also computed in runtime and depends on the connectivity among

elements. In this kernel, each thread is assigned the task of gathering results for

one node. Once the new results estimate is computed, the error between the

 119

new estimate and the previous one is determined and stored to device global

memory.

The third kernel partially computes the 2-norm of the error. This is done by

calling the cublasSdot function from NVIDIA the CUBLAS [95] library which

returns the dot-product of this vector to the host function. The host function then

computes the square root to obtain the final value of the 2-norm, and finally

convergence is assessed. Kernels are designed to avoid using synchronizations

primitives to minimize execution bottlenecks.

c) GPU Results

Al results presented in this subsection were obtained for single precision

floating point (SPFP) since the 8800GT graphics card only supports this

precision, and in order to have a common basis for comparisons for all platforms.

Future implementations will evaluate double precision performance. The timing in

the GPU code was done using CUDA events that were found to be more

accurate than the CUTIL timers [8]. Optimizations were used to compile the GPU

codes (as well as the CPU code as described in Chapter 3), while the “–

arch=sm_20” flag was used with the NVCC compiler to enable FERMI advanced

architecture features. The best timing results are shown for each version (CPU

and for each GPU), and the algorithm is made to stop for a precision of 1e-3 with

respect to the error in the unknown vector for two previous iterations. The coaxial

 120

cable mesh was refined several times to increase the problem size. Table 9

shows the data corresponding to the different mesh sizes used as well as

execution times for a vectorized single core Intel implementation and the two

GPUs. Here the number of unknowns is represented by the column labelled

Nodes.

Timing results for the reference sequential implementation of the classic FEM

(with an efficient conjugate gradient iterative solver) used in section 5.2 were

compared to the time results for the best performing GPU implementation. The

speedup results for the FEM-SES Fermi implementation over the classic FEM

implementations are shown in Figure 39, demonstrating that FEM-SES

outperforms the classic FEM implementation with a better scaling behaviour.

Next, the solution to the FEM was parallelized using an efficient parallel matrix-

vector multiplication in the conjugate gradient solver referred, using up to four

processing cores on the Intel CPU with no significant time benefits mainly

because of the test problem size and insufficient amount of parallel resources in

the CPU.

The time ratio results for the solution of the 2-step iterative relaxation method

on the CPU relative to the two GPU times are shown in Figure 40.

 121

Table 9: Finite element mesh dimensions for the 2D coaxial cable test case and
solution times in seconds (last three columns) for the 2-step iterative relaxation
method.

Elements Nodes Iterations CPU 8800GT GTX480

1120 504 327 0.012 0.316 0.793

4640 2204 1227 0.196 0.461 0.878

10560 5104 2626 0.975 0.929 1.137

18880 9204 4475 3.013 2.095 1.475

29600 14504 6755 7.744 4.349 1.864

42720 21004 9433 15.268 8.243 2.322

58240 28704 12503 28.659 14.473 3.067

76160 37604 15938 48.508 23.716 4.028

96480 47704 19739 77.197 36.817 5.501

119200 59004 23877 116.545 54.703 7.201

268800 133504 49486 554.643 250.002 23.273

478400 238004 82632 1663.66 744.573 60.415

As expected, these results show that for smaller problems there is not

sufficient parallel work to benefit from the GPU implementations; this in addition

to the large caches in modern microprocessors allow the CPU version to

outperform the GPU ones for the first two meshes tested (see Table 9). On the

other hand, as the problem size grows, even for relatively small problems, the

GPU speedups over the CPU times become apparent. A speedup of up to 2.23x

times over the CPU solution times is obtained for the 8800GT and up to 27.53x

times for the GTX480. It is important to point out that the times reported in Table

9 include all data transfers from the CPU to the GPUs and vice versa.

 122

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000

Sp
ee

du
p

Number of Unknows

Classic FEM/FEM-SES (FERMI)

Figure 39: Speedup of the Fermi GPU FEM-SES implementation versus the
classic FEM sequential implementation on the Intel CPU using a CG solver.

Figure 40: Speedup of the GPU solution times with respect to the CPU times.

 123

Table 10: Limiting performance factors for the GPU kernels.

Kernel 1 Occupancy Limiting Factor Resources

8800GT 0.666 Registers 7168 out of 8192

GTX480 0.833 Registers 30720 out of 32768

Kernel 2 Occupancy Limiting Factor Resources

8800GT 0.666 Registers 5632 out of 8192

GTX480 1.000 None 32768 out of 32768

Kernel 3 Occupancy Limiting Factor Resources

8800GT 0.666 Registers 7168 out of 8192

GTX480 0.666 Block-size blocks of 128 threads

Table 10 shows the limiting factors for each of the three CUDA kernels

developed for each graphic card. The main limiting factor for the three kernels

that ran on the first generation 8800GT graphic card is the number of registers

available per SM. Only 66.6% of the available computing resources are used due

to the small register file per SM on this graphic card, limiting the performance

which accounts for the plateau of the speedup in Figure 40.

This is not the case for the newer generation GTX480. For the GTX480 kernel

1 was limited by the number of registers but a higher utilization factor of 83.3% of

the resources is attained. Kernel 2 exhibits no limiting performance factors

achieving a 100% use of parallel resources, while for kernel 3 only 66.6% of

resources are used. In this last kernel the limiting factor is no longer the number

of registers available but the actual block size used (128 threads/block) as

reported by the CUDA profiler. Kernel 3 uses the cublasSdot function from

 124

CUBLAS library to compute the dot-product of the error-vector in our

implementation, which provide the best timing results but does not allow us to

control the resources used in this kernel.

The average time consumed by each of the three kernels for the biggest

mesh sizes used is presented in Figure 41. These times show that kernels 1 and

3 dominate overall execution. This behaviour is in agreement with the resource

utilization explained before. Although kernel 1 implements several code

optimization techniques (coalesced memory accesses, shared memory usage

and loop unrolling), it is still limited by the amount of register (hardware

resources) available. Kernel 3 computes a dot-product which requires a reduction

operation (a common bottleneck in scientific kernels); this kernel is implemented

using the built in functions in the CUBLAS [95] library.

Finally, an optimized CPU code using loop unrolling, data alignments to

natural memory boundaries and compiler vectorization (as explained in the

previous two chapters) was compared with the two GPU runs. Table 11 presents

the performance results of the FEM-SES method for the CPU and GPUs using

the biggest mesh. These results clearly show that the code running on GTX480

can be efficiently parallelized outperforming modern CPUs even with aggressive

hand coded optimizations.

 125

Figure 41: Time distribution of the kernels used to implement the 2-step iterative
relaxation method.

Table 11: Performance results for the FEM-SES method of the hand optimized
CPU code versus the GPU implementations.

 CPU 8800GT GTX480

2-step iterative
relaxation

828.255 744.573 60.415

GTX480 Speedup 13.71X 12.32X 1X

5.4 Related Work

To the best of our knowledge the closest effort to implement a finite element

method based on a decoupled solution is presented by Bastos et al. in [96] called

N-scheme. The N-scheme computes the solution of each mesh nodes

independently based on the current value of the neighbour nodes connected to it

without building a global coefficient matrix. FEM-SES is fundamentally different

since it computes the solution based on solving the element stiffness matrices,

and the resulting solutions are coupled to obtain the global solution. In [97], Eyng

et al. implement a parallel version of the N-scheme method using 4 cores (out of

 126

168 cores) of a Mirynet 2G cluster. This second work presents only preliminary

results for a small test case (2362 nodes and 4153 elements) that yielded similar

performance as that of the sequential implementation. The results obtained here

for the parallel FEM-SES (see section 5.4) show that indeed for small problems

there is not enough work for parallel systems to exhibit any performance benefits.

On the other hand, this work demonstrates how the proposed method exhibits

good parallel performance scaling behaviour for bigger test cases.

Other previous efforts have successfully implemented accelerated versions of

the finite element method on graphic processors. Some of the most important

ones are presented next and compared to our proposed method. An early work

by Göddeke et.al [98] uses a mixed precision defect correction algorithm to solve

the linear systems derived from FEM obtaining up to 2.3 times faster

performance than the CPU version alone. The referred work uses single

precision computations on the early graphic processors (with no double precision

support) to obtain the solution of the linear system, and then an outer loop

executed by the CPU in double precision corrects the solution. Modern graphic

cards now support native double precision arithmetic, thus no longer requiring

this type of indirect computations to achieve double precision accuracy.

Nevertheless, further studies could be done to identify the potential performance

gain of using these methods considering the faster single precision operations. A

 127

double precision of the FEM-SES method will be developed on GPU to assess its

performance compared to both double and single precision CPU and GPU code.

In [99] two approaches to accelerate FEM are presented by assembly of the

global coefficient matrix in the GPU, demonstrating up to 15 times gains in

performance. The FEM-SES method does not require building the global

coefficient matrix thus importantly reducing the computation cost associated to it.

Moreover, our approach allows building the elements coefficient matrices in the

parallel compute cores where they will be used which will benefit distributed and

multicore implementations of the FEM-SES method. Another interesting work

that accelerating the assembly process of FEM is presented by Cecka et al.

[100]. Here several methods to parallelizing the assembly process are presented

and evaluated on two different GPUs. Up to 65 times speedup is shown for the

assembly of unstructured finite element meshes with first order basis functions,

and the performance degrades as the order of the basis functions increase.

Multi-GPU efforts to accelerate the FEM have also been addressed in [101-

103]. The first work implements the discontinuous Garlekin FEM on a GPU

cluster using asynchronous concurrent executions which obtained up to 18 times

the performance of an 8-node cluster of quad core CPUs. In the second work, a

commodity cluster with heterogeneous hardware resources (nodes with CPU and

GPU) is used to enhance the performance of a finite element framework,

 128

showing significant performance increases even when using older generation

graphic cards. The third work proposes a parallelization approach with a dynamic

load balancing that combines task partitioning and stealing method to efficiently

exploit both CPU and GPU processors. Multi-GPU implementations are one of

the main subjects of our future work

5.5 Concluding Remarks

This chapter present two major contributions. The first contribution is a new

element-based solution technique for solving the finite element method called

FEM-SES well suited for parallel processing. This idea was first presented in

[104] as a new approach for computing the finite element method in parallel

processors, but only sequential proof-of-concept results were shown at that time.

The second contribution is a methodology for implementing the proposed

FEM-SES method to exploit the parallel computing power of modern graphic

processors. The goal of designing the FEM-SES method is to expose more

parallelism in the finite element method compared to traditional approaches. The

method was implemented in two different generations of NVIDIA GPUs obtaining

up to 27.53 times speedup on the GTX480 compared to compiler optimized CPU

results. Even for a hand optimized CPU code with optimizations such as loop

unrolling and vectorization, our GPU implementation still achieves 14 times

faster performance when using the GTX480 graphic card.

 129

Although a simple test case is used to validate the FEM-SES method in this

work, we believe that it will converge to correct results for a broader type of

problems where the Jacobi method is applicable. Such statement is made based

on the fact that a Jacobi update scheme is used in the 2-step iterative relaxation

method to obtain the decoupled element solutions.

 130

Chapter 6
Conclusions and Future Work

The constant demand for more detailed models and greater precision in

electromagnetics (EM) simulations has defined a clear trend towards solving

increasingly complex computational EM problems that has relied, in part, on

continual CPU improvements; however, current technological limitations in

hardware construction (in particular power dissipation problems, and frequency

related problems) have dictated the need to explore new alternatives.

Lead hardware architects and manufacturers have defined an irreversible

shift in paradigm towards parallel multicore processors as the means to

overcome many of today’s hardware limitations. This parallel trend has been

accelerated even more with the recent popularity gained by massively parallel-

manycore GPUs for general purpose computing (GPGPU) that also require

parallel programming models. This problem is also patent in clustered systems

that have traditionally relied in the increasing performance of previous single core

processors and communications frameworks to provide an aggregate high

performance clustered system. Moreover, existing frameworks that are useful in

parallelizing dense linear systems usually cannot handle complex data structures

required for sparse linear system that often arise in EM simulations. This means

 131

that EM practitioners must explicitly consider parallel algorithms and techniques

in order to efficiently exploit the full potential of emerging computing processors.

This thesis focuses on accelerating the sparse matrix-vector multiplications (a

dominant compute intense kernel in EM computations) and shows that by

rethinking the way sequential sparse algorithms are implemented and

transforming them into dense-like algorithms, memory access patterns are

enhanced, computations become regular (enabling short-vectorization of the

kernel), also facilitating the partitioning load balancing of the SMVM kernel,

leading to greater performance. Similar ideas are applied to the finite element

method which also leads to exposing the intrinsic parallelism in the algorithm and

the expected performance enhancements.

6.1 Original Contributions

In this work five original contributions are presented, three to accelerate the

SMVM algorithm and two for the finite element method:

• A new sparse matrix format called pipelined-matched sparse (PMS)

representations well suited for streaming architectures (e.g. Cell BE,

FPGAs, etc.) that enables efficient vector processing for the SMVM

algorithm, implementing the SMVM kernel as a dense kernel (opposed to

the traditional sparse implementation), and facilitates matrix partition and

load balancing.

 132

• A second sparse matrix format called blocked pipeline-matched sparse

(BPMS) representation that solves the scalability problems of the PMS

format for cache-based architectures, but retaining similar benefits as

PMS.

• A 2-level partitioning scheme and modified SMVM kernels that vectorize

and exploit parallel cores in the two multicore architectures used. The

optimized PMS kernel on the Cell-SPE processor demonstrated average

performance benefits of 3.5X faster than the Intel SMVM-CSR, 2.6X over

Intel SMVM-PMS, and nearly 14X faster than the SMVM-CSR

implementation in the Cell-PPE for the largest test matrix. Similarly, the

optimized SMVM-BPMS kernel running on the Intel processor

demonstrated 2.5x performance enhancements with respect to BCSR and

2.2x faster than PMS on average.

• A new element-based solution technique for solving the finite element

method called FEM single element solution (FEM-SES) well suited for

parallel processing, that decouples the element solution of the FEM mesh

so that they can be computed in parallel.

• A methodology for implementing the proposed FEM-SES method to

exploit the parallel computing power of modern manycore processors

(GPUs) with performance increases from 27.53 times speedup on the

 133

GTX480 compared to compiler optimized CPU results to 14 times on an

aggressively hand optimized CPU code.

The optimizations techniques presented throughout this work have been

applied to specific hardware architectures to demonstrate their performance

benefits; however, they are general in nature, thus holding greater theoretical

value and broad applicability to different parallel architectures.

All the software developed to implement and test the contributions presented

above has been collected and organized in a modular, flexible and easily

extensible C library that can be viewed as an additional contribution to this work.

Libraries such as the one proposed in this work (among other tools, e.g. parallel

compilers and programming languages) have been identified [105] as one of the

key tools that will be required to take advantage of the current multicore trend

that is expected to dominate computer architectures for the foreseeable future.

This library will be made available freely through a website at McGill.

6.2 Future Work

The first three contributions presented are related to accelerating the SMVM

algorithm on different types of multicore processors. The computations were

mainly done in single precision since the SPE cores in the Cell BE processor

used are not efficient in double precision arithmetic and to keep the comparisons

fair with the Intel architectures all computations were done in single precision. So

 134

a natural extension of this work is to implement double precision versions of the

algorithms proposed, some of which have already been done and included in the

C library produced.

The next extension that is currently being studied is the multicore acceleration

of the preconditioned iterative methods. The effectiveness of the proposed

techniques for multicore processors was demonstrated in this work for the

unpreconditioned conjugate gradient method; however, most iterative methods

are used with a preconditioner to accelerate their convergence rate. Accelerating

the preconditioning step in iterative solvers is crucial, as commented in Chapter

2, since along with the SMVM kernel they represent the two dominant kernels in

iterative solvers. Of particular interest, as an extension to this work, are

polynomial preconditioners that are commonly applied in the iterative method as

successive SMVM operations that can be done efficiently in multicore with the

techniques proposed here. The C library provided contains several CG

implementations as well as some preconditioned CG algorithms and provides

support for sequential application of Jacobi, Choleski and a simple polynomial

preconditioner.

A third direction proposed is related to the last two contributions. The

proposed FEM-SES proved to effectively accelerate the overall execution time of

the finite element method even though the method has slow convergence. Thus,

 135

the next step in this research will be to evaluate different ways to accelerating the

2-step iterative relaxation method by either finding better update scheme or

modifying the method itself.

The final future work direction suggested in this thesis is the continued

development of the matrix library proposed in this work to optimize the functions

that have not yet been optimized and enhance its functionality. The intention is to

provide an in-house software product that will offer current and future developers

a base platform to run sparse algorithms with different optimizations, and test

new research ideas while extending its functionality.

 136

Appendix A:
Compilation of Modern Matrix Libraries

This appendix presents a brief overview of the most widely adopted matrix

libraries classified according to the concurrent model implemented. Table 12

shows the classification of these libraries and Figure 42 and Figure 43 present

summary information for each of these libraries. It is important to note that many

of these libraries do not provide multithreading support for multicore processors

and none exploit short-vector (SIMD) processing. The references made to vector

processing in some of the libraries refer to older vector processing machines as

described in [24], and not for the type of short-vector units found in modern

processors.

Table 12: Classification of sparse matrix libraries according to the concurrent
paradigm implemented.

 Matrix Type

 Sequential
 / Parallel

Dense Sparse

Sequential (Seq.)
Shared memory (SM)

BLAS (Seq.)
LAPACK (Seq.)
GotoBLAS (SM)

Atlas (SM)

Sparsity
Oski

Sparselib++
Csparse

ITSOL(SparseKit)

Distributed memory (MPI)
SCALAPACK (PBLAS,

BLACS)
PSBLAS
pARMS

 137

(a) Sequential and shared memory libraries.

(b) Parallel distributed memory (MPI) libraries.

Figure 42: Dense matrix libraries classification.

 138

(a) Sequential and shared memory libraries.

(b) Parallel distributed memory (MPI) libraries.

Figure 43: Sparse matrix libraries classification.

 139

A compilation of some of the most important iterative and direct solver

libraries for sparse systems is also presented for reference in Figure 44 for

completeness. No classification has been done in this case because of the broad

spectrum of targeted systems and methods implemented.

Figure 44: Sparse direct and iterative solver libraries.

 140

Appendix B:
A Flexible and Portable Multithreaded Library for Sparse Matrix

Computations (FPMSparseLib)

A library was organized with the implementations of all the algorithms

presented in this thesis as well as complementary algorithms and general

functions required for the testing and benchmarking done. All the programming

was done using standard C language (chosen for its efficiency and portability),

and the library organization was done so that it could be used in a modular and

flexible way and easily extensible. A makefile is provided so the library can be

easily recompiled with different compilers, compiler optimizations flags, and for

different software platforms. Currently the makefile provided only supports

cache based machines and NVIDIA GPUs, since the SPEs in the Cell BE

processor require a different software setup not included in this library.

The proposed library is self contained, thus no software dependencies are

required to install it in a new computing system with the exception of the CUDA

SDK, if one desired to test the GPU enabled functions. The only other external

libraries required not developed by the author is a small library (mmio) from the

Matrix Market [42] repository used to read and write Matrix Market files. These

files are included as part of the library built, but are only used for benchmarking

the algorithms with Matrix Market matrices. Matrices that are obtained from a real

 141

application or built by the user need not use this library, instead they should use

the libraries built to read and write matrices to files provided in this library.

Moreover, reading a Matrix Market matrix using the mmio library has been

encapsulated in a function that automatically converts the matrix to CSR

representation, the de facto representation used by almost all sparse matrix

software. Figure 45 presents the organization of the sparse library by

functionality and an overview of the functionality for each of the modules and files

is given in the next subsection.

Figure 45: Library organization by functionality.

 142

A brief overview of the functionality offered by each of the modules in the

libraries is presented next, followed by a description of the sparse matrix data

structure created, which is a central component in the proposed library.

B.1 Description of the Library and the Sparse Matrix Data Structure

The description of the library along with the file dependency relations are

presented in Table 13 by modules, which are defined in the context of this work

as groups of files with a common functionality.

B.2 Description of the Sparse Matrix Data Structure Used in the Library

Figure 46 shows the compressed sparse matrix data structure created for this

work, which is a central component in the library. All of the functions in the library

use this general data structure regardless of the sparse matrix format used,

keeping a standard interface. The first three fields (lines 2-3) are used for all

matrix formats, whereas the fields in lines 6 and 7 are used for blocked formats,

and the field in line 5 is used to store the vector elements in the PMS format

along with field in line 8 (that stores the number of vectors per matrix row). All of

the fields described (from line 2 to 8) are pointers where any kind of primitive

data type can be stored, and that are accompanied by corresponding pointer

fields (ending in the word “free”) which are used by the memory allocation

functions provided to align all data to the specified memory boundary (memory

boundaries must be a power of two value) .

 143

Fields in lines 26 and 27, store the matrix name and properties if some are

desired. Future enhancements to the library may standardize the content of such

pointers to use matrix properties in the code itself and not just as matrix

information. The remainder of the fields in the data structure are self explanatory,

and basically provide information on the matrix dimensions, total number of

nonzeros with and without padding, block size used, total number of blocks, the

type of data stored in the matrix (integer, float, double, complex) and the sparse

format used (compressed_format).

Figure 46: Sparse matrix data structure.

 144

Table 13: Library description and file dependency.

 145

Bibliography

[1] J. Yuanwei, J. Yi, and J. M. F. Moura, “Time Reversal Beamforming for
Microwave Breast Cancer Detection,” in Image Processing, 2007. ICIP
2007. IEEE International Conference on, pp. V - 13-V - 16, 2007.

[2] H. Berg, B. Gunther, I. Hilger et al., “Bioelectromagnetic field effects on
cancer cells and mice tumors,” Electromagn Biol Med, vol. 29, no. 4, pp.
132-43, Dec, 2010.

[3] R. Mittet, “High-order finite-difference simulations of marine CSEM
surveys using a correspondence principle for wave and diffusion fields,”
Geophysics, vol. 75, no. 1, pp. F33-F50, Jan-Feb, 2010.

[4] G. K. Konstadinidis, “Challenges in microprocessor physical and power
management design,” in VLSI Design, Automation and Test, 2009. VLSI-
DAT '09. International Symposium on, pp. 9-12, 2009.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro et al., The Landscape of Parallel
Computing Research: A View from Berkeley, UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, December 18, 2006.

[6] D. A. Patterson, "The Top 10 Innovations in the New NVIDIA Fermi
Architecture, and the Top 3 Next Challenges," Parallel Computing
Research Laboratory (Par Lab), U.C. Berkeley, 2009,
http://www.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top1
0InnovationsInNVIDIAFermi.pdf, [January, 2010].

[7] N. Goodnight, C. Woolley, G. Lewin et al., “A multigrid solver for boundary
value problems using programmable graphics hardware,” in HWWS'03.
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, (San Diego, California), pp. 102-111, 2003.

[8] CUDA Programming Guide for CUDA Toolkit 3.2: NVIDIA Corporation,
2010,
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs
/CUDA_C_Programming_Guide.pdf, [April, 2011].

 146

[9] "ATI Stream Software Development Kit," [January, 2011].
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx.

[10] "AMD Accelerated Parallel Processing (APP) SDK (formerly ATI Stream),"
[January, 2011].
http://developer.amd.com/gpu/AMDAPPSDK/Pages/default.aspx.

[11] "OpenCL," [January, 2011]. http://www.khronos.org/opencl.
[12] Cell Broadband Engine Programming Handbook, version 1.1, New York:

IBM, 2007,
http://www.ibm.com/developerworks/power/cell/documents.html, [April,
2008].

[13] N. Brookwood, "AMD Fusion Family of APUs: Enabling a Superior,
Immersive PC Experience," 2010,
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf,
[March, 2011].

[14] G. Goumas, K. Kourtis, N. Anastopoulos et al., “Performance evaluation of
the sparse matrix-vector multiplication on modern architectures,” Journal
of Supercomputing, vol. 50, no. 1, pp. 36-77, Oct, 2009.

[15] E. J. Im, and K. A. Yelick, “Optimizing sparse matrix vector multiplication
on SMPs,” in Proceedings of the SIAM Conference on Parallel Processing
for Scientic Computing, (San Antonio, TX, USA), 1999.

[16] R. W. Vuduc, “Automatic Performance Tuning of Sparse Matrix Kernels,”
PhD Thesis, University of California, Berkeley, 2003.

[17] E. J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework for
sparse matrix kernels,” International Journal of High Performance
Computing Applications, vol. 18, no. 1, pp. 135-158, Spr, 2004.

[18] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” in SciDAC 2005. Scientific
Discovery Through Advanced Computing, (San Francisco, CA), pp. 521-
530, 2005.

 147

[19] S. Toledo, “Improving the memory-system performance of sparse-matrix
vector multiplication,” IBM Journal of Research and Development, vol. 41,
no. 6, pp. 711-725, Nov, 1997.

[20] A. Pinar, and M. T. Heath, “Improving performance of sparse matrix-vector
multiplication,” in Supercomputing'99. Proceedings of the 1999 ACM/IEEE
conference on Supercomputing (CDROM), (Portland, Oregon, United
States), pp. 30, 1999.

[21] R. Nishtala, R. W. Vuduc, J. W. Demmel et al., “When cache blocking of
sparse matrix vector multiply works and why,” Applicable Algebra in
Engineering Communication and Computing, vol. 18, no. 3, pp. 297-311,
May, 2007.

[22] S. W. Williams, J. Shalf, L. Oliker et al., “The potential of the cell processor
for scientific computing,” in Proceedings of the 3rd conference on
Computing frontiers, (Ischia, Italy), pp. 9-20, 2006.

[23] S. Williams, L. Oliker, R. Vuduc et al., “Optimization of sparse matrix-
vector multiplication on emerging multicore platforms,” in SC '07.
Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
(Reno, Nevada), pp. 38:1--38:12, 2007.

[24] J. J. Dongarra, I. S. Duff, D. C. Sorensen et al., Solving Linear Systems on
Vector and Shared Memory Computers, Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics (SIAM), 1991.

[25] D. R. Kincaid, T. C. Oppe, and D. M. Young, Adapting ITPACK routines
for use on a vector computer, CNA-177, Center for Numerical Analysis,
Univ. Texas, Austin, TX, 1982.

[26] Y. Saad, “Krylov subspace methods on supercomputers,” SIAM J. Sci.
Stat. Comput., vol. 10, no. 6, pp. 1200-1232, November, 1989.

[27] T. C. Oppe, and D. R. Kincaid, “The performance of ITPACK on vector
computers for solving large sparse linear systems arising in sample oil
reseervoir simulation problems,” Communications in Applied Numerical
Methods, vol. 3, no. 1, pp. 23-29, 1987.

 148

[28] Y. Saad, SPARSKIT : A basic tool kit for sparse matrix computations,
RIACS-90-20, Research Institute for Advanced Computer Science, NASA
Ames Research Center, Moffett Field, CA, 1990.

[29] N. K. Madsen, G. H. Rodrigue, and J. I. Karush, “Matrix Multiplication by
Diagonals on a Vector/Parallel Processor,” Information Processing Letters,
vol. 5, no. 2, pp. 41-45, June, 1976.

[30] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.,
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics
(SIAM), 2003.

[31] G. E. Blelloch, Vector Models for Data-Parallel Computing, Cambridge,
Mass., USA: MIT Press, 1990.

[32] R. Barrett, M. Berry, T. F. Chan et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition, Philadelphia,
PA: SIAM, 1994.

[33] J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel Numerical
Linear Algebra, CSD-92-703, UC Berkeley, EECS technical reports,
October 6, 1992.

[34] W. A. Wiggers, V. Bakker, A. B. J. Kokkeler et al., “Implementing the
conjugate gradient algorithm on multi-core systems,” 2007 International
Symposium on System-on-Chip Proceedings, pp. 11-14, 2007.

[35] G. A. Gravvanis, P. I. Matskanidis, K. M. Giannoutakis et al., “Finite
element approximate inverse preconditioning using POSIX threads on
multicore systems,” in IMCSIT'10. Proceedings of the International
Multiconference on Computer Science and Information Technology, pp.
297-302, 2010.

[36] I. Lee, “Analyzing Multithreaded Preconditioned Conjugate Gradient
(mtPCG) Algorithm on Multicore Architecture,” in Proceedings of the Ieee
Southeastcon 2009, Technical Proceedings, pp. 317-322, 2009.

 149

[37] H. M. Markowitz, “The Elimination Form of the Inverse and Its Application
to Linear-Programming,” Management Science, vol. 3, no. 3, pp. 255-269,
April, 1957.

[38] J. R. Yost. "Harry M. Markowitz, OH 333. Oral history interview by Jeffrey
R. Yost," Charles Babbage Institute, University of Minnesota, Minneapolis,
[Dicember, 2010]. http://www.cbi.umn.edu/oh/display.phtml?id=322.

[39] "LAPACK — Linear Algebra PACKage, Version 3.3.0 ", [November 14,
2010]. http://www.netlib.org/lapack/index.html.

[40] I. S. Duff, “Survey of Sparse-Matrix Research,” Proceedings of the IEEE,
vol. 65, no. 4, pp. 500-535, April, 1977.

[41] P. T. Stathis, “Sparse Matrix Vector Processing Formats,” PhD Thesis,
Delft University of Technology, 2004.

[42] R. Boisvert, R. Pozo, K. Remington et al. "Matrix market," National
Institute of Standards and Technology (NIST), Gaithersburg (Maryland),
[January, 2011]. http://math.nist.gov/MatrixMarket/.

[43] S. Balay, J. Brown, K. Buschelman et al., PETSc Users Manual, ANL-
95/11 - Revision 3.1, Argonne National Laboratory, 2010.

[44] Y. Saad. "ITSOL," University of Minnesota, [January, 2011]. http://www-
users.cs.umn.edu/~saad/software/ITSOL/index.html.

[45] T. A. Davis, and Y. Hu, "The University of Florida Sparse Matrix
Collection," ACM Transactions on Mathematical Software (to appear),
http://www.cise.ufl.edu/research/sparse/matrices, [January, 2009].

[46] "Symposium on Sparse Matrices and Their Applications," IBM T.J. Watson
Research Center, September 9-10, 1968.

[47] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse
matrices, Oxford Oxfordshire: Oxford University Press Inc., 1986.

[48] T. A. Davis, Direct methods for sparse linear systems, Philadelphia:
Society for Industrial and Applied Mathematics, 2006.

[49] R. S. Varga, Matrix iterative analysis, 2nd rev. and expanded ed., Berlin ;
New York: Springer Verlag, 2000.

 150

[50] L. A. Hageman, and D. M. Young, Applied iterative methods, New York:
Academic Press, 1981.

[51] D. M. Young, “Convergence Properties of the Symmetric and
Unsymmetric Over-Relaxation Methods,” Math. Comp., vol. 24, pp. 793-
807, 1970.

[52] G. H. Golub, and C. F. Van Loan, Matrix computations, 3rd ed., Baltimore:
Johns Hopkins University Press, 1996.

[53] R. Pozo, K. Remington, and A. Lumsdaine, SparseLib++ Sparse Matrix
Class Library, User's Guide: National Institute of Standards and
Technology, 1996, http://math.nist.gov/sparselib++/sparselib-
userguide.pdf,

[54] S. Filippone, and M. Colajanni, “PSBLAS: a library for parallel linear
algebra computation on sparse matrices,” ACM Trans. Math. Softw., vol.
26, no. 4, pp. 527-550, December, 2000.

[55] Z. Li, M. S. Masha, D. O. Kuffuor et al. "pARMS," University of Minnesota,
[January, 2011]. http://www-users.cs.umn.edu/~saad/software/pARMS/.

[56] S. Y. Kung, VLSI array processors, Englewood Cliffs, N.J.: Prentice Hall,
1988.

[57] W. P. Petersen, and P. Arbenz, Introduction to parallel computing A
Practical Guide with Examples in C, Oxford: Oxford University Press,
2004.

[58] M. R. Hestenes, and E. Stiefel, “Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409-436, December, 1952.

[59] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain, Carnegie Mellon University, Pittsburgh, PA,
USA, 1994.

[60] A. T. Chronopoulos, and C. W. Gear, “S-Step Iterative Methods for
Symmetric Linear-Systems,” Journal of Computational and Applied
Mathematics, vol. 25, no. 2, pp. 153-168, Feb, 1989.

 151

[61] R. C. Agarwal, F. G. Gustavson, and M. Zubair, “A high performance
algorithm using pre-processing for the sparse matrix-vector multiplication,”
in Supercomputing '92, Proceedings of the 1992 ACM/IEEE conference on
Supercomputing, (Minneapolis, Minnesota, United States), pp. 32-41,
1992.

[62] J. J. Dongarra, F. G. Gustavson, and A. Karp, “Implementing Linear
Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine,”
SIAM Review, vol. 26, no. 1, pp. 91-112, January, 1984.

[63] V. Eijkhout, LAPACK Working Note 50: Distributed Sparse Data
Structures for Linear Algebra Operations, University of Tennessee,
Knoxville, TN, USA, 1992.

[64] P. Fernandes, and P. Girdinio, “A New Storage Scheme for an Efficient
Implementation of the Sparse Matrix-Vector Product,” Parallel Computing,
vol. 12, no. 3, pp. 327-333, Dec, 1989.

[65] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1:
Basic Architecture, Order Number: 253665-037US, 2011, [January, 2011].

[66] Intel® 64 and IA-32 Architectures Optimization Reference Manual
Number: 248966-023a: Intel Corporation, 2011,
http://www.intel.com/products/processor/manuals/index.htm, [January,
2011].

[67] "Compiler Intrinsics-Visual Studio 2010," [January, 2011].
http://msdn.microsoft.com/en-us/library/26td21ds.aspx?ppud=4.

[68] Intrinsics Reference” in Intel® C++ Compiler for Linux* - 9.x manuals: Intel
Corporation, 2008, http://software.intel.com/en-us/articles/intel-c-compiler-
for-linux-9x-manuals/, [December, 2008].

[69] M. J. Wolfe, High performance compilers for parallel computing, Redwood
City, Calif.: Addison-Wesley, 1996.

[70] OpenMP Application Program Interface, version 3.0, 2008,
http://www.openmp.org/mp-documents/spec30.pdf,

 152

[71] D. Buttlar, J. Farrell, and B. Nichols, PThreads Programming A POSIX
Standard for Better Multiprocessing: O'Reilly & Associates, 1996.

[72] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism, first ed.: O'Reilly Media, 2007.

[73] Using the x86 Open64 Compiler Suite: Advanced Micro Devices Inc.,
2010,
http://developer.amd.com/cpu/open64/onlinehelp/pages/x86_open64_help
.htm, [January, 2011].

[74] J. L. Hennessy, and D. A. Patterson, Computer Architecture A Quantative
Approach, fourth ed., San Francisco, USA: Morgan Kaufmann, 2007.

[75] W. P. Cockshott, and K. Renfrew, SIMD programming manual for Linux
and Windows, London New York: Springer, 2004.

[76] U. V. Catalyurek, and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,” Ieee
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp. 673-
693, Jul, 1999.

[77] K. D. Devine, E. G. Boman, R. T. Heaphy et al., “Parallel hypergraph
partitioning for scientific computing,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, pp. 10 pp., 2006.

[78] B. Hendrickson, R. Leland, and S. Plimpton, “An Efficient Parallel
Algorithm for Matrix-Vector Multiplication,” International Journal of High
Speed Computing, vol. 7, no. 1, pp. 73-88, Mar, 1995.

[79] B. Hendrickson, Tamara, and G. Kolda, “Partitioning Rectangular And
Structurally Nonsymmetric Sparse Matrices For Parallel Processing,”
SIAM J. Sci. Comput, vol. 21, no. 6, pp. 2048-2072, 1998.

[80] D. M. Fernández, D. Giannacopoulos, and W. J. Gross, “Efficient
Multicore Sparse Matrix-Vector Multiplication for Finite-Element
Electromagnetics,” in CEFC'08. Proceedings of the 13th Biennial IEEE
Conference of Electromagnetic Field Computation, (Athens, Greece), pp.
469, 2008.

 153

[81] D. M. Fernández, D. Giannacopoulos, and W. J. Gross, “Efficient
Multicore Sparse Matrix-Vector Multiplication for FE Electromagnetics,”
Magnetics, IEEE Transactions on, vol. 45, no. 3, pp. 1392-1395, 2009.

[82] J.-M. Jin, The finite element method in electromagnetics, 2nd ed., New
York: John Wiley & Sons, 2002.

[83] P. P. Silvester, and R. L. Ferrari, Finite elements for electrical engineers,
3rd ed., New York: Cambridge University Press, 1996.

[84] E. Cuthill, and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in ACM'69. Proceedings of the 1969 24th national conference,
pp. 157-172, 1969.

[85] "MATLAB - Sparse Matrices Demo," MathWorks, [January, 2011].
http://www.mathworks.com/products/matlab/demos.html?file=/products/de
mos/shipping/matlab/sparsity.html.

[86] D. M. Fernández, D. Giannacopoulos, and W. J. Gross, “Multicore
Acceleration of CG Algorithms Using Blocked-Pipeline-Matching
Techniques,” in Proceedings of the Seventeenth Conference on the
Computation of Electromagnetic Fields, (Florianópolis, Brazil), pp. 827-
828, 2009.

[87] D. M. Fernández, D. Giannacopoulos, and W. J. Gross, “Multicore
Acceleration of CG Algorithms Using Blocked-Pipeline-Matching
Techniques,” IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3057-
3060, Aug, 2010.

[88] M. M. Dehnavi, D. M. Fernández, and D. Giannacopoulos, “Finite-Element
Sparse Matrix Vector Multiplication on Graphic Processing Units,”
Magnetics, IEEE Transactions on, vol. 46, no. 8, pp. 2982-2985, August,
2010.

[89] M. Mehri Dehnavi, D. M. Fernández, and D. Giannacopoulos, “Enhancing
the performance of conjugate gradient solvers on graphic processing
units,” To appear in IEEE Transactions on Magnetics, 2011.

 154

[90] A. Toselli, and O. B. Widlund, Domain decomposition methods--algorithms
and theory, Berlin: Springer, 2005.

[91] Y. Q. Liu, and J. S. Yuan, “A finite element domain decomposition
combined with algebraic multigrid method for large-scale electromagnetic
field computation,” IEEE Transactions on Magnetics, vol. 42, no. 4, pp.
655-658, Apr, 2006.

[92] T. Itoh, G. Pelosi, and P. P. Silvester, Finite element software for
microwave engineering, New York: Wiley, 1996.

[93] A. Takei, S. I. Sugimoto, M. Ogino et al., “Full Wave Analyses of
Electromagnetic Fields With an Iterative Domain Decomposition Method,”
IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 2860-2863, Aug,
2010.

[94] "NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,"
Whitepaper, NVIDIA Corporation,
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIAFermiCom
puteArchitectureWhitepaper.pdf, [January, 2011].

[95] CUDA CUBLAS Library, version PG-05326-032_V02: NVIDIA
Corporation, 2010,
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs
/CUBLAS_Library.pdf, [January, 2011].

[96] J. P. A. Bastos, and N. Sadowski, “A New Method to Solve 3-D
Magnetodynamic Problems Without Assembling an Ax=b System,”
Magnetics, IEEE Transactions on, vol. 46, no. 8, pp. 3365-3368, 2010.

[97] J. Eyng, J. P. A. Bastos, N. Sadowski et al., “Parallel programming applied
to the N Scheme for solving FE cases without assembling an A x = b
system,” in Electromagnetic Field Computation (CEFC'10), 2010 14th
Biennial IEEE Conference on, pp. 1-1, 2010.

[98] D. Göddeke, R. Strzodka, and S. Turek, “Accelerating Double Precision
FEM Simulations with GPUs,” in ASIM'05. 18th Symposium Simulations
technique, Frontiers in Simulation, pp. 139–144, 2005.

 155

[99] J. Filipovic, I. Peterlik, and J. Fousek, “GPU Acceleration of Equations
Assembly in Finite Elements Method - Preliminary Results,” in
SAAHPC’09. Symposium on Application Accelerators in HPC, 2009.

[100] C. Cristopher, A. Lew, and E. Darve, “Introduction to assembly of finite
element methods on graphics processors,” IOP Conference Series:
Materials Science and Engineering, vol. 10, no. 1, pp. 012009, 2010.

[101] D. Goddeke, R. Strzodka, J. Mohd-Yusof et al., “Exploring weak scalability
for FEM calculations on a GPU-enhanced cluster,” Parallel Computing,
vol. 33, no. 10-11, pp. 685-699, Nov, 2007.

[102] E. Hermann, B. Raffin, F. Faure et al., “Multi-GPU and Multi-CPU
Parallelization for Interactive Physics Simulations,” Euro-Par 2010 -
Parallel Processing, Part II, vol. 6272, pp. 235-246, 2010.

[103] N. Godel, N. Nunn, T. Warburton et al., “Scalability of Higher-Order
Discontinuous Galerkin FEM Computations for Solving Electromagnetic
Wave Propagation Problems on GPU Clusters,” IEEE Transactions on
Magnetics, vol. 46, no. 8, pp. 3469-3472, Aug, 2010.

[104] D. M. Fernández, D. Giannacopoulos, and W. J. Gross. (2010). Alternate
approach to FEM for parallel processing. The 10th International Workshop
on Finite Elements for Microwave Engineering, p. 52, Meredith, New
Hampshire, USA.

[105] S. H. Fuller, and L. I. Millett, “Computing Performance: Game Over or
Next Level?,” Computer, vol. 44, no. 1, pp. 31-38, January, 2011.

