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ABSTRACT 

Multicore processors have become the dominant industry trend to increase 

computer systems performance, driving electromagnetics (EM) practitioners to 

redesign their applications using parallel programming paradigms. This is 

especially true for computations involving complex data structures such as 

sparse matrix computations that often arise in EM simulations with the finite 

element method (FEM). These computations require pointer manipulation that 

render useless many compiler optimizations and parallel shared memory 

frameworks (e.g. OpenMP). This work presents new sparse data structures and 

techniques to efficiently exploit multicore parallelism and short-vector units (the 

last of which has not been exploited by state of the art sparse matrix libraries) for 

recurrent computationally intensive kernels in EM simulations, such as the 

sparse matrix-vector multiplication (SMVM) and the conjugate gradient (CG) 

algorithms. Up to 14 times performance speedups are demonstrated for the 

accelerated SMVM kernel and 5.8x for the CG kernel using the proposed 

methods over conventional approaches for two different multicore architectures.  

Finally, a new method to solve the FEM for parallel processing is presented 

and an optimized implementation is realized on two different generations of 

NVIDIA GPUs (manycore) accelerators with performance increases of up to 

27.53 times compared to compiler optimized CPU results. 
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ABRÉGÉ 

Les processeurs multicœurs sont devenus la tendance dominante de 

l'industrie pour accroître la performance des systèmes informatiques, forçant les 

concepteurs de systèmes électromagnétiques (EM) à reconcevoir leurs 

applications en utilisant des paradigmes de programmation parallèle. Cela est 

particulièrement vrai pour les calculs impliquant des structures de données 

complexes comme les calculs de matrices creuses qui surviennent souvent dans 

des simulations électromagnétiques (EM) avec la méthode d'analyse par 

éléments finis (FÉM).  Ces calculs nécessitent de manipulation de pointeurs qui 

rendent inutiles de nombreuses optimisations du compilateur et les bibliothèques 

de mémoire partagée parallèle (OpenMP, par exemple). Ce travail présente de 

nouvelles structures de données rares et de nouvelles techniques afin d’exploiter 

efficacement le parallélisme multicœur et les unités de vecteur court (dont le 

dernier n'a pas été exploité par des bibliothèques de matrices creuses à la fine 

pointe de la technologie) pour les noyaux de calcul intensif récurrents dans les 

simulations EM, tels que les multiplications matrice-vecteur rares (SMVM) et des 

algorithmes à gradient conjugué (CG). Des performances d’accélérations jusqu'à 

14 fois supérieures sont démontrées pour le noyau accéléré par SMVM et 

jusqu'à 5,8 fois supérieures pour le noyau CG en utilisant les méthodes 
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proposées par rapport aux approches conventionnelles pour deux architectures 

multicœurs différentes. 

Enfin, une nouvelle méthode pour résoudre la FÉM pour le traitement 

parallèle est présentée et une implantation optimisée est réalisée sur deux 

générations d’accélérateurs de GPU NVIDIA (multicœur) avec des 

augmentations de performances allant jusqu'à 27,53 fois par rapport aux 

résultats du CPU optimisé par compilateur. 
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Chapter 1 
Introduction 

 
1.1 Motivation 

Computational electromagnetics (CE) is increasingly an area of active 

research whose applications are not only important in electrical engineering 

areas (e.g. communications, circuit design, optics, electromagnetic compatibility, 

etc.) but also influence importantly other areas of knowledge such as medicine 

[1], biology [2], and geophysics [3] to mention a few. Regardless of the particular 

electromagnetic (EM) application, there is a continuous demand for more 

detailed simulations obtained in reasonable times, using evermore complex 

models, both to better understand the particular problem and to create more 

efficient solutions without confronting the high costs associated with design 

prototyping, testing and refinement. 

The solution of such increasingly complex computational electromagnetic 

(and generally challenging scientific) problems has relied, in part, on the 

continual advances in microprocessor technology, namely increasing clock 

speeds and instruction level parallelism, during the past three decades which 

came to be known as the free ride [4]. However, technological limitations 

(frequency, power, radiation, cross-talk and other) have dictated the need to 

explore new alternatives. The partial solution to some of these problems has 
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been sought with some degree of success by integrating multiple central 

processing units (CPUs) cores in a single die, namely multicore1 processors. The 

independent computing cores in multicore processor are clocked at lower 

frequencies than their single core predecessors, which make imperative the use 

of parallel programming to benefit from such newer architectures. Even though 

multicore processors increase system performance by providing modest parallel 

resources, they also require greater programming effort which might not 

compensate for the gain in performance as argued in a recent study from a group 

at Berkley [5]. Moreover, this group points out that the strategy followed by 

manycore2 processors can provide a longer-term solution to current technological 

limitations capable of higher performance. Although manycore processors offer 

higher performance through increased number of simpler processing cores with 

similar programming effort as that required by multicore ones, they are only 

efficient on compute intensive data-parallel applications and have yet to 

overcome several other limitations to become a viable solution for these specific 

                                            
1 The term multicore processors refers to the new technology trend that integrates several 
general purpose processor cores into a single die, sharing part of the cache hierarchy usually at 
level 2 or 3 depending on the actual implementation.  
2 The term manycore processors refers to chips with hundreds of simple processing cores inside 
a single die. These cores are often grouped into small cluster that may share a local memory 
hierarchy and are all connected though the global memory system and specialized interconnects 
fabrics. 
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applications [6]. Modern graphic processing units (GPUs) are examples of these 

manycore processors. 

The trend towards multicore/manycore microprocessors clearly established 

the need to address parallel programming paradigms early in application 

development to benefit from the computing potential of emerging mainstream 

architectures, creating new programming opportunities and challenges. In 

particular for the EM community it portrays the need to redefine numerical 

methods, specifically their dominant computing kernels, in parallel terms. 

Consequently, the constant demand for more detailed simulation can only be 

satisfied with new clever numerical methods implementations that efficiently use 

modern computational resources. The main objective of this work is to present 

new techniques to efficiently exploit the different hardware architectural features 

found in modern multicore/manycore processor to accelerate EM computations.   

Three numerical methods stand out in EM simulations, the finite difference 

time domain (FDTD) method, the method of moments (MOM, also known as 

boundary integral equation method BIE), and the finite element method (FEM). 

Among these, the FEM has enjoyed great popularity mainly due to its ability to 

provide continuous solutions throughout the modeled space, model irregular 

geometries (a limiting factor for FDTD), and generate sparse linear systems (as 
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opposed to the dense systems of MOM) that can be efficiently exploited 

computationally. 

The solution of the sparse linear systems obtained from the FEM is frequently 

the most time consuming operation in these simulations. The sparse matrix-

vector multiplication (SMVM) Ax b= , where a sparse matrix A  usually multiplies 

a dense vector x  to yield a dense vectorb , is one of the dominant computing 

kernels in popular iterative solvers such as the conjugate gradient (CG) method 

that often dominates computational time. In fact it has been recently classified as 

the second of the “Seven Dwarfs” (most frequently found kernels in scientific 

computations) in [5], and it represents a central topic of this work, as shown in 

Figure 1, among other contributions. Emphasis is made on accelerating the 

conjugate gradient method with the accelerated sparse matrix vector 

multiplication kernels on homogeneous and heterogeneous multicore processors; 

although a specific contribution for manycore processors is also presented to 

accelerate FEM. 
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Figure 1: Dominant computational kernels in electromagnetic simulations. 

 
1.2 Literature Review 

A wealth of knowledge has been developed in sparse computations for over 

five decades starting from the 1960’s. Most of the work done up to recent years 

had been concerned with deploying sparse algorithms on single core processors, 

symmetric multi-processors (SMP), mainframes and more recently on clustered 

processors. The new trend towards multiple core processors and heterogeneous 

systems has radically redefined hardware platform for these algorithms, thus 

requiring similar changes in sparse algorithms and data structures. This 

subsection presents a brief overview of the modern technological trends that 

have motivated the changes in modern sparse computations, followed by 

relevant contributions in the context of the sparse matrix vector multiplication and 

the conjugate gradient algorithm to accelerate these operations mainly related to 

multicore processors. Although this section provides an overview of the previous 
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work done related to this work and identifies the caveats in knowledge, a set of 

comprehensive references are provided in the following chapters as required to 

support the design decisions taken. In particular, Chapter 2 studies in detail the 

concepts related to sparse matrices, SMVM and CG providing also citing 

landmark references. 

1.2.1 Modern Technological Trends 

For over four decades since 1965 the evolution of computer systems 

advancements was marked by Moore’s Law. Computer architects chose to 

favour increasing single thread performance of general purpose processors over 

more expensive vector and symmetric multiprocessor alternatives. Greater 

advancements were then evidenced in these general purpose single core CPUs 

with increasing transistor counts that enabled larger and more complex cache 

designs, superscalar pipelines, and increased clock frequency. The appearance 

of cluster computing contributed to the trend of relegating parallel computing to 

clusters or grids of computers which constitute today’s supercomputing 

environments.  

These advancements in turn created several technology challenges among 

which three are of particular importance: increased power leakage and 

dissipation constraints represents an important concern in modern processors, 

mainly referred to as the power wall; frequency increases also lead to more 
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power demands and transmission problems such as jitter, crosstalk interference 

and others, which are referred to as the frequency wall; and the third called 

memory wall refers to the gap in performance between the main system memory 

and the computing speeds. As this gap continues to grow, feeding sufficient data 

to the processor so that it is always kept busy becomes unattainable. Integrating 

multiple cores into modern processors has become an alternative to provide the 

increasing processing power that users have come to expect. 

Multicore processors originally appeared in 2001 with the introduction of the 

Power4 processor by IBM and in 2004 with Sun’s UltraSPARK IV. They were 

soon followed by the first x86 compatible multicore processor (dual core Opteron, 

April 21st) by AMD in 2005, followed in 2006 with the Pentium Dual-Core 

processor from Intel and the Niagara processor from SUN Microsystems, all 

which established the most important landmark of the decade in computer 

architecture advances. On the other hand, general purpose computing on 

manycore processors (GPGPU) started to become popular approximately since 

2003 [7] (although earlier references exist), however this was restricted to a 

reduced community familiar with the specialized graphic development 

environments available. 

Programming general purpose applications using graphic application 

programming interfaces (APIs) required great effort since the applications had to 
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be written with specialized graphic instructions not related to the actual 

operations being done. After the introduction of the Compute Unified Device 

Architecture (CUDA) [8] software/hardware architecture in 2006 for general 

purpose computing using standard high level programming languages (e.g. 

C/C++ and Fortran), manycore processors became an important parallel 

computing resource to accelerate applications for the broader scientific 

community. This trend has continued to strengthen with other important initiatives 

such as AMD’s accelerated parallel processing (APP) software development kit 

(SDK), formerly ATI Stream [9, 10] used to program ATI GPUs and the OpenCL 

[11] standard for programming parallel of heterogeneous systems. In spite of the 

high integer and floating point performance offered by manycore processors 

compared to multicore processors, it is important to note that manycore 

processors are not a standalone solution by themselves. They are designed for 

compute intensive data-parallel applications, performing very poorly for 

sequential applications, applications that require more input/output (from here on 

I/O-I/O bounded3) operations, and for applications with many low computational 

load parallel tasks. 

Hybrid multicore processors have also emerged as possible alternatives to 

the technological limitations mentioned before. For example the Cell broadband 

                                            
3 I/O bounded applications are also termed bandwidth bound or limited applications. 
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engine [12] is a multicore chip with nine processors, one IBM Power cores called 

power processor elements (PPEs) and eight vector processors called synergetic 

processing elements (SSEs) that deliver high computing power with considerably 

lower performance/power ratio than conventional homogeneous multicore 

systems. Other types of hybrid chips will appear in the near future which combine 

multicore with manycore processors. An example of one such system is the 

emerging AMD family of accelerated processing units (APUs) called AMD fusion, 

which combines in a single die a general purpose multicore CPU, a discrete 

GPU, and  memory/IO controller hub (also referred to as Northbridge), 

substantially reducing the power consumption of the system [13]. Multicore and 

manycore technologies, as well as their future hybrid combinations, constitute the 

current trend that is expected to dominate modern microprocessor advances in 

the foreseeable future, being implemented in almost all modern processors 

offered by the most important industry leaders (e.g., Intel, AMD, IBM, and 

NVIDIA). 

1.2.2 Previous Work in SMVM and CG for Multicore  

An in-depth study to characterize the limiting performance factors for the 

sparse matrix-vector multiplication kernel for multicore systems is carried out in 

[14] by Goumas et al., using a large set of matrices from different problem 

domains. The main contribution of this work is to report its findings as a set of 
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guidelines to efficiently implement optimizations on the SMVM kernel in modern 

processors, but does not introduce new techniques to enhance its performance 

nor to leverage vector processing in these new processors. Goumas et al. 

identify the inner product as one of the main limiting factors in the SMVM 

operations for row schemes, and the saxpy operations for column schemes. 

The work by Eun-Jin Im and Katherin Yelick in [15] presents one of the first 

attempts to create an optimized toolbox called Sparsity [16, 17] to accelerate the 

sparse matrix vector operation. Im et al. use techniques such as register and 

cache blocking, loop transformations, multiple vectors, exploiting symmetry, 

special diagonal data structures and matrix reordering mainly aimed at 

superscalar single core processors. This optimized framework [17] was shown to 

obtain up to 4X performance enhancements over conventional sparse 

implementations on single core and symmetric multi processor systems. The 

most beneficial optimization performance-wise in this work was the register 

blocking technique. The same group from Berkley led by Richard Vuduc, James 

Demmel, and Kathy Yelick have expanded the work to provide support for 

general sparse matrix operations in an autotuning toolbox called Optimized 

Sparse Kernel Interface (OSKI) [18], but have yet to offer support for 

shared/distributed memory and vector processing.  
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Similar performance enhancements of up to 2.5x speedup (from 40MFlops/s 

to  100MFlops/s) where demonstrated by Toledo [19] by employing similar 

techniques (that improve instruction level parallelism and increase locality) to 

those in [17] on a RISC POWER2 processor.  Pinar and Heath [20] expand on 

Toledo’s work by defining variable blocks with a new ordering algorithm to reduce 

cache misses due to memory indirections, showing performance increases of up 

to 33%. 

A later paper by Rajesh Nishtala et al. [21] studies in detail the effect of cache 

blocking on modern processors, demonstrating performance of up to 2.93x for 

single core processors. Nevertheless, this technique is shown to provide 

performance gains under very strict matrix and vector circumstances. 

Performance gains are shown only when the input vector is large and the output 

vector is small compared to the cache size, and the non-zero pattern of the 

sparse matrix exhibit a nearly random distribution. This is commonly not the case 

for matrix systems derived from FEM and FDTD methods thus little performance 

gain can be expected from cache blocking in these applications. 

In [22, 23] Samuels et al. optimize the SMVM kernel using the techniques in 

OSKI in addition to vectorization for multicore systems. They show that the most 

important gain when computing the SMVM kernel on multicore systems comes 

from the parallelization across different processing cores instead of the single 
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core optimizations of [17, 18]. In particular, this work states that vector 

processing using single-instruction multiple-data (SIMD) processing units of 

modern homogeneous multicore processors resulted in little or no performance 

gain compared to straight C code when compiler optimization flags are used. The 

limited performance gains obtained for the SIMD processing in the 

aforementioned work can be attributed to the fact that it only uses standard 

sparse matrix formats (namely CSR, BCSR and BCOO) that help to implement 

blocking techniques, but are not the best suited for vector operations.  

Specialized sparse matrix formats for vector computing have been devised in 

the past and shown to exploit efficiently vector processors as shown in [24] and 

the references therein, even though they require certain structure in the matrix to 

be efficient (e.g. non-zeros distributed across diagonals, or similar number of 

non-zeros per row). Some specialized sparse formats for vector processing are 

ELLPACK-ITPACK [25-28], diagonal format (DIA) [26, 28, 29], and jagged 

diagonal storage (JDS or JAD) [30]. Another important approach to exploit vector 

processors, less sensitive to the matrix structure, is the segmented scan 

operations proposed in [31]; however it was mainly designed for older vector 

computers. 

Considering that SIMD vector processing has the potential to accelerate 

floating point performance from two to four times (for double and single precision 
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respectively in current processors), the question of enhancing the performance of 

the sparse matrix-vector multiplication and that of sparse iterative solvers on 

modern multicore/manycore processors while exploiting SIMD vector processing 

still remains an open problem.  

Relative modern compilations of state-of-the-art knowledge for iterative 

solvers have also been presented. Among the most important are the work 

presented by Saad in [26, 30] that treats different iterative methods and 

eigenproblems with special considerations for parallel processing, as well as the 

work of Barrett et al. [32]. Demmel et al. also present a modern compilation of 

current state of the art knowledge for eigenproblems, direct methods and iterative 

methods in [33] specific to parallel environments. Across these works, three main 

bottlenecks for parallelizing iterative solvers are identified: inner products, the 

matrix-vector products, and the preconditioning operations. However, most of the 

work for iterative solvers has been developed in the context of distributed 

memory systems (e.g. clustered systems) with very few references to shared 

memory environments. In particular, research in multicore systems for iterative  

linear systems is quite an active area considering that these systems have been 

available for less than a decade. 

One of the earliest works done to accelerate CG for multicore processors is 

presented by Wiggers et al. [34]. The acceleration is done on the SMVM 
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operation using the compressed sparse row (CSR) matrix format, OpenMP to 

exploit the parallel cores, and the Intel MKL library for the linear algebra 

optimizations.  It was determined that the overhead from OpenMP increases with 

the number of cores used, which limited the performance of this implementation. 

Furthermore, the use of the CSR format also limits the attainable performance of 

the optimizations done with the Intel MKL library which accounts for the relative 

low performance presented. GPU results are also presented for the 8800 GTX 

NVIDIA graphics card that outperformed the multicore results by 2.56X, which 

are low performance results for this GPU. 

In [35] an approximate inverse preconditioner is used with the BiCG-Stab 

method and parallelized using a pool of threads to avoid thread creation and 

deletion on a multicore system to overcome standard thread library overheads.  

Lee I. [36] presents an adaptation of the general parallel PCG scheme used in 

distributed memory systems and adapts it for multicore processing. Lee proposes 

a classic threaded barrier scheme to synchronize the execution of threads for the 

different operations in the PCG algorithm, and presents performance models for 

both the SMVM and preconditioner solve operations that include the effect of 

cache hierarchy in multicore processors. However, this work only presents the 

theoretical analysis lacking practical result to compare with the performance 

models presented. 
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It also apparent that most of the work done related to the conjugate gradient 

solver (linear solvers in general) is mainly concerned with parallelizing the 

applications using a shared memory approach, disregarding other possible 

optimizations such as vector processing using specialized matrix formats, that 

have the potential to enhance the general parallel performance of these solvers. 

1.3 Main Objective of this Work 

This work aims at accelerating the sparse matrix vector multiplication 

operation and the conjugate gradient algorithm exploiting the parallel cores and 

vector units of modern multicore processors in the context of finite element 

electromagnetics, which are the main voids identified in the literature. To achieve 

this goal new sparse matrix formats and algorithms must be devised. The 

implementation of such matrix formats and algorithms requires advance data 

structures and other basic functionality that can be assembled into a new sparse 

matrix library, which is presented as an additional contribution of this work. An 

alternate approach to exploiting parallelism in the finite element method is also 

proposed as an alternative to accelerating its dominant computing kernels.  

1.4 Thesis Organization 

The remainder of this dissertation is organized as follows; Chapter 2 reviews 

basic concepts, formats and algorithms for sparse matrices. This chapter also 

analyses the main bottlenecks of the sparse matrix-vector multiplication and 
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conjugate gradient algorithms. Next, Chapter 3 presents a new technique to 

accelerate the sparse matrix-vector multiplication for multicore processors with 

user controlled local memories, showing results to demonstrate its benefits. 

Based on this new technique, an alternative approach is proposed for cache 

based multicore processors in Chapter 4.  

Chapter 5 presents an alternative approach to solving the finite element 

method for multicore and manycore environments that does not use traditional 

direct or iterative solver approaches. Finally, Chapter 6 presents the conclusions 

and future directions of this work. 
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Chapter 2 
Review of Sparse Matrix Concepts, the Sparse Matrix-Vector 

Multiplication and Conjugate Gradient Algorithm 
 

Sparse matrices5 where initially used in the 1960s by Electrical Engineers to 

solve linear systems derived from electric networks according to Saad [30], 

although the term “sparse matrix” is attributed in [37, 38] to Harry M. Markowitz 

for his work in economics in 1957. The motivation then was to alleviate the 

memory (counted in Kilobytes at the time) and computational demands of the 

ever-growing linear systems in spite of using more complex data structures and 

algorithms; moreover, in those days some problems where simply not feasible to 

solve using dense representations. These more complex sparse representations 

resulted in substantial memory savings in the orders of 2( )O n  locations, and 

computational savings of order of  3( )O n  operations [14] for compute intensive 

kernels such as the GEneral Matrix Multiply, also known as GEMM following the 

LAPACK [39] notation. Since then sparse matrix computations have gained much 

popularity and are now the standard approach to solve increasingly complex 

systems whenever sparse matrices are available. Deciding when to represent a 

matrix as sparse or dense is somewhat of an art and it commonly depends on 

the definition used of sparse matrix. This chapter presents the basic definitions 

                                            
5 The term “system” will be used interchangeably with that of “matrix” or “matrices” throughout this 
work. 
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related to sparse matrices that will be used throughout this dissertation and 

analyses the bottlenecks in the sparse matrix-vector multiplication and conjugate 

gradient algorithm. 

2.1 What are Sparse Matrices? 

Sparse matrices are usually defined in terms of the relationship among the 

zeros and non-zeros entries in the system. In [40] Duff defines sparse matrices in 

terms of “the ratio of the zero to non-zero entries in the matrix”, implying that the 

matrix is mainly populated with zero entries (i.e. making the matrix aspect ratio 

zero/nonzero greater than one). An example of a sparse matrix is presented in 

Figure 2, showing only the distribution pattern of the matrix nonzeros. The sparse 

matrix illustrated in this figure is a square matrix of rank 24 with 160 nonzeros, 

which results in a zero/nonzero ratio of 2.6. This is actually a small value that 

often occurs in small matrices, whereas bigger matrices usually have a much 

greater aspect ratio.  

A more practical definition (that will be used throughout this work) based on 

those provided by Duff [40] and more recently Stathis [41] defines a sparse as: 

A system where the number of non-zeros and/or their distribution provides 

advantage in performance or resource wise when the matrix is represented 

and operated in compressed form (only using its non-zero entries). 
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Figure 2: Sparse matrix non-zero pattern representation (can___24 from Matrix 
Market [42]) 
 
2.2 Structure in Sparse Matrices 

The non-zero entries distribution in sparse matrices will vary significantly 

depending on several factors such as the numerical method used, the problem 

dimensionality and its geometry, and the meshing method among others. 

Depending on the combinations of these factors, a matrix may be classified as 

structured or unstructured (or irregularly structured) [30]. Structured matrices 

refer to those where the non-zeros are distributed in a regular pattern inside the 

matrix usually along diagonals. The non-zero distribution may also be composed 

of small dense blocks laid out in a block diagonal pattern. On the other hand, 

unstructured matrices are those that do not exhibit a regular pattern in their non-

zero entry distribution. The matrix structure is important when defining efficient 

ways of representing sparse matrices both for storage and computations. 
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(a) Structured 

 
(b) Unstructured 

Figure 3: Example of structured and unstructured sparse matrices. 

For example a totally random sparse matrix will have no regularity in its 

nonzero distribution so it can be classified as irregularly structured or 

unstructured. Matrices derived from rectangular grids using the Finite Difference 

Method (FDM) will normally give rise to regularly-structured matrices, whereas 

matrices derived from complex mesh geometries using the Finite Element (FEM) 

or Finite Volume Methods (FVM or method of moments-MoM) may lead to 

unstructured matrices. An example of structured and unstructured matrices is 

presented in Figure 3, where the x-axis and y-axis represents the column and 

row indices respectively. The next section presents some important sparse 

matrix formats identifying those that exploit structure in sparse matrices. 
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2.3 Sparse Matrix Formats 

A sparse matrix may be represented in several different ways using 

specialized formats. Different formats have been created to exploit special 

characteristics of the matrix structure, algorithm or machine-architecture 

targeted, but all share the common goal of storing and operating on the non-zero 

entries of the sparse matrix. This subsection presents some of the most 

important sparse matrix formats. 

2.3.1 General Sparse Formats 

Amongst the many different formats that exist, there are four commonly used 

to represent sparse matrices that make no assumption on the matrix nonzeros 

structure, the COO, CSR, CSC and MSR. The simplest format is called the 

coordinate format (COO) or triplet format, since it stores each entry of the sparse 

matrix in a triplet structure containing the matrix value, its row index and column 

index. If the nonzero values of the matrix are stored in a specific order (e.g. by 

rows or columns) then a more efficient representations of the matrix indices may 

be done, which is the approach used in the other three general formats.  

The second format is called compressed sparse row (CSR) format, also 

referred to as compressed row storage (CRS), AJI (from A, JA-column indices, 

IA-row indices), or YALE format. In CSR three vectors represent the sparse 

matrix; the first vector usually called A stores the matrix nonzero (nz) values in 
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row order; the second called JA (or AJ), stores the column indices of the nonzero 

values; and the third vector, IA (or AI), contains the index to the first element of 

each row, including an additional index with the total number of nonzeros. Many 

efficient libraries used to solve linear systems implement this format or some 

variation of it, as is the case with PETSc [43]. The third format is the column 

counterpart of CSR termed compressed sparse column (CSC) format, where the 

nonzeros are stored by columns, while the second vector stores the row indices 

of each nonzero element, and the third contains the indices of the elements that 

begin a new column in the data and row index vectors.  

The fourth of the general formats is the modified compressed sparse row 

(MSR) that contains only two vectors. The first vector stores the nonzero 

elements of the main diagonal first, then skips the n+1 position and then stores 

the remainder nonzero elements of the sparse matrix. The second vector stores 

the index values that point to the beginning of each row for the off-diagonal 

elements in the first vector, then skips the n+1 position and stores the column 

index of the corresponding nonzero elements in the first vector. Figure 4 shows a 

general sparse matrix and its representations in each of the four general formats 

described. It is obvious from this figure that the COO format is the most inefficient 

as far as storage is concerned which has relegated its use to mainly storing 

sparse matrices, especially since the other formats can be readily derived from it. 
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Figure 4: Representation of a general sparse matrix in the COO, CSR, CSR and 
MCSR formats. 
 
2.3.2 Sparse Matrix Formats that Exploit Matrix Structure 

Other formats take advantage of the regularity in the nonzero distribution; 

these formats and many others are described in [30, 44], but only the most 

popular ones are described here. For structured matrices with nonzero diagonal 

patterns the compressed diagonal storage (CDS) format or diagonal (DIAG or 

DIA) format can be efficiently used. This format stores the matrix by diagonals in 

a nd*n array where nd is the number of the matrix diagonals and n is the number 

of matrix columns. An auxiliary vector of size nd containing the offsets of each 

diagonal stored from the main diagonal. This format is also well suited for vector 

processing due to its long diagonal vector structures. 
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If the matrix nonzeros are grouped into small dense clusters regularly across 

the matrix (not all in diagonal patterns) then a more efficient pattern may be used 

called the blocked compressed sparse row (BCSR or BSR) format. The BSR 

format is also useful to implement cache and register blocking techniques to 

exploit specific architectural features in a target processor. BSR is a blocked 

version of the CSR format that stores the matrix row-wise in three arrays. The 

first vector stores the matrix values row-wise in small dense matrices of the same 

size; the vector size is bdim*num_blocks, where bdim is the non-zeros per block 

and num_blocks is the number of blocks in the matrix. Next, the column index of 

the first element in each block is stored in a column index vector; finally, the 

indices to the elements of each block starting a new row-block are stored in a 

row index vector. This format compresses the row and column index information 

providing important memory savings. 

2.3.3 Sparse Matrix Formats for Vector Processing 

The two most popular formats for vector processors documented in [30, 44] 

are the ELLPACK-ITPACK (ELL) format and the jagged diagonal sparse (JDS) 

format, which provide long vectors of the same size (for ELLPACK-ITPACK) or 

mostly the same size (JDS) well suited for vector processing and loop 

transformation techniques (e.g. loop unrolling). Both formats assume that the 

number of nonzeros per row is nearly the same, otherwise they are not efficient. 
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Sparse matrices in ELL are stored in two dense matrices. The first, stores the 

matrix values by rows padding with zeros each row to match the size of the 

largest row. The second matrix stores the index column of each element in the 

first matrix. If most of the matrix rows contain the same number of nonzeros, 

regardless of their distribution, then this format will provide an efficient way to 

store and process the matrix. If the matrix has several groups of rows of the 

same size then the JDS format is more efficient. JDS requires the matrix rows to 

be ordered from the largest to the shortest one. Once the rows are ordered the 

matrix values are stored column-wise in a vector as follows: first, the first element 

in each row is stored in the first column; next, the second element of each row is 

stored in the second columns, and this procedure continues until all matrix values 

are stored. A second vector is used to store the column indices of the nonzeros 

in the same order as they were stored; and finally, a third vector is used store the 

pointers to the matrix values that begin a new column, with an extra index to 

determine the size of the last column. 

Many other special purpose sparse matrix formats exist, a summary of such 

formats can be found in the work by Saad [28, 30], Barret et al. [32], Stathis [41], 

Vuduc [16] and the references therein. This dissertation adopts the three 

characters naming scheme proposed in [28] for its compact referencing of 

different sparse matrix formats.  
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2.4 Sparse Matrix Repositories 

The matrices used in this work were obtained from the Matrix Market 

repository [42]. These matrices can also be obtained from the University of 

Florida Sparse Matrix Collection [45]. These repositories contain the entire 

Harwell-Boeing Sparse Matrix Collection (Release I), Yousef Saad's SPARSKIT 

collection, the Nonsymmetric Eigenvalue Problem (NEP) collection of Bai, Day, 

Demmel and Dongarra, and matrices generated from other sources.  

2.5 Overview of Sparse Matrix History and Software 

Direct methods were the first to be implemented for solving sparse systems; 

this was the main topic of the first “Sparse Matrix” symposium [46] held in 1968. 

These classic methods, namely Gauss elimination, LU and Cholesky 

decompositions including matrix pivoting, reordering and partitioning techniques, 

have been documented in a comprehensive survey by Duff [40] in 1977 and 

latter in a book by Duff, Erisman and Reid [47] in 1986. A more updated 

reference on sparse direct methods can be found in the book by Timothy Davis 

[48] from 2006, which revisits LU and Cholesky decomposition and introduces 

QR decompositions with state of the art algorithms most of which are currently 

being used in MatLab with some variations. 

Early work on iterative solvers for sparse systems has been compiled in the 

book by Richard Varga [49], and the work by Young and Hageman [50, 51]. 
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Fixed-points methods where used to solve sparse systems in the 1960’s, a little 

after direct solvers for sparse systems and then projection methods came to 

dominate the solution of sparse systems to date. A modern treatment on iterative 

methods for sparse linear systems can be found in the book by Saad [30]. Both 

direct and iterative methods are also studied in the classic reference book by 

Golub and Van Loan [52]. 

The works referenced here and in Chapter 1 have given rise to numerous 

sparse matrix libraries mainly targeted at shared or distributed memory systems. 

Table 1 shows some of the most important sparse matrix libraries known today 

(refer to Appendix A for a more extensive reference of other important dense and 

sparse matrix libraries) characterized by the concurrent model they implement. 

The libraries shown here are concerned either with exploiting local memory 

hierarchies or optimizing distributed memory executions, but none exploits SIMD 

processing which is a central theme in this work. 

2.6 A Closer Look at the Sparse Matrix-Vector Multiplication (SMVM) Operation 

The sparse matrix-vector multiplication operation (also called SpMV or 

SpMxV) is one of the most recurrent and time consuming kernels in scientific 

computing, where a sparse matrix A multiplies a dense vector x to generate a 

dense vector b as shown in (1).  

 Ax b=  (1) 
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Table 1: Classification of important sparse matrix libraries based on the 
concurrent model implemented. 

 
The main objective of the SMVM kernel is to limit the number of computations 

and storage to the matrix non-zero entries only, taking advantage of the sparsity 

nature in the matrix. This apparently simple operation has been and continues to 

be the subject of much research to optimize its performance as presented in 

section 1.2.2. A classic SMVM algorithm using the CSR format is presented in 

Figure 5, where the matrix nonzeros are stored in A_VAL, AJ stores column 

indices and the AI contains the row pointers. 

 

Concurrent model Library 

Sequential 

Sparselib++ [53]: iterative solvers. 
C(X)sparse [48]: direct solvers. 
ITSOL(SparseKit) [44]: iterative solvers. 
Sparsity [17]: sparse matrix vector multiply. 
Oski [18]: sparse BLAS. 

Distributed memory 
(MPI) 

PSBLAS [54]: sparse BLAS and direct and iterative 
solvers. 
pARMS [55]: sparse iterative solvers. 
PETSc [43]: PDE sparse iterative solvers. 
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Figure 5: Sparse matrix-vector multiply kernel using the CSR format. The 
algorithm to the left uses an inner (dot) product approach with stride-1 access to 
matrix data; whereas, the algorithm to the right uses a saxpy approach with non-
sequential access to matrix data. 
 

There are three main performance bottlenecks in the sparse matrix-vector 

multiplication kernel as follows: 

• The matrix entries have no data (temporal) reuse and little spatial locality6.  

• Depending on the sparse matrix format used, access to the multiplying x-

vector or the results b-vector is indirect and irregular; i.e. the vector 

elements are fetched using the matrix index information thus usually little 

spatial and temporal locality is available. 

• There is a great deal of instruction overhead in the SMVM kernel required 

to identify the proper range of non-zeros to compute on (e.g. per row, 

column, diagonal etc.) and fetch the vector data using the indirect indexing 

mentioned before.  

                                            
6 Temporal locality for data refers to the reuse of the same memory location in at least two distinct 
instructions at different times. Spatial locality refers to the use of nearby memory locations [51]. 
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Depending on the choice of sparse format and algorithmic implementation 

(e.g. how the matrix is traversed, by rows, columns, diagonals, etc.) the effect of 

these three limiting factors may be minimized or maximized. Nevertheless, these 

choices are often influenced by other subtle factors such as the architecture of 

the target processor and the programming language used. In general, one aims 

at selecting a sparse format that exploits the matrix structure and an algorithm 

that accesses matrix data sequentially (i.e. in a streaming fashion) with a stride-1 

access pattern, also referred to as sequential locality [56]. An example of this is 

provided by Petersen and Arbenz in [57] page 148, where they show results for 

different implementations of the sparse matrix-vector multiplication kernel where 

the algorithm is formulated in terms of dot-products or saxpy operations for a 

shared memory system. These results show that on any of the two approaches 

the outer loop is the most beneficial to parallelize. Even though the performance 

scalability of the two approaches is similar as stated by the authors, their results 

also consistently show that as the processor number grows the dot-product 

approach is better than the saxpy version, which can be mainly attributed to less 

synchronization points in the former approach.  

Now considering the efficiency of the SMVM kernel with respect to 

computations and data transfers, one immediately observes that it is bandwidth 
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bound7 (or I/O bound). In SMVM, each nonzero (nz) matrix entry will be multiplied 

by an entry of the x vector and accumulated per row to generate a single entry of 

the results vector b, which amounts to computing 2*nz floating point operations 

(flops8) per SMVM execution. 

On the other hand, each multiplication will require loading 2 floating point 

operands (a matrix value and a value from the x vector) and an extra floating 

point operand is required for the accumulation, finally the results must be stored 

requiring an additional data transfer. This means that theoretically, for each 

nonzero entry in the sparse matrix, SMVM requires a total of 4 floating point data 

transfers. Now relating the useful work done per amount of data transfer, one 

obtains a ratio of 2/4 or one half of flops/nz which explains the low percentage of 

processor peak performance ~10% that is usually attained when computing the 

SMVM kernel [18].  

2.7 The Conjugate Gradient (CG) Algorithm 

Among modern sparse iterative solvers the conjugate gradient (CG) algorithm 

is one of the most popular for solving symmetric positive definite (SPD) systems 

                                            
7 Computational kernels can be limited either by the number of operations that can be executed 
concurrently called compute bound, or by the number of data transfers that are required to load 
and store the results called bandwidth bound (or input/output-I/O bound), see Kung [50] page 
198. 
8 In this work the acronym flops will be used to refer the total number of floating point operations 
to compute, while flops/s will be used for the performance metric number of floating point 
operations per second. 
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due to its convergence properties, efficient computations and low storage 

requirements. The conjugate gradient method approximates the solution by 

constructing a Krylov subspace based on orthogonal residuals and the previous 

search directions which are made to be A-conjugate. The use of the orthogonal 

residuals and the A-conjugate search directions simplify importantly the algorithm 

implementation, which only requires storing a few vectors to compute successive 

iterates, reducing the operation count from  2( )O n  to  ( )O nz  where n represents 

the rank of a square matrix. Since the original CG algorithm proposed in the 

seminal paper by Hestenes and Stiefel in 1952 [58] many version of the 

conjugate gradient algorithm have been developed. This work uses an efficient 

version of the CG algorithm presented by Shewchuk in [59] as shown in Figure 6. 

A short explanation of the CG algorithm is presented next. 

The main loop of the conjugate gradient algorithm is organized in three basic 

steps; the first step computes the new iterate using a line search procedure; the 

second step determines the new residual based on the previous residual and the 

projection of the previous search direction; and finally, the third step computes 

the next search direction making it A-conjugate to the previous search directions 

(current Krylov subspace). These are the general steps of the conjugate gradient 

algorithm and while they may be organized in different ways they have been 

presented here following the order of the algorithm in Figure 6. 
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Figure 6: Conjugate gradient algorithm. Where ε  is the tolerance used, α  and 
β are the constants used to update the x vector of unknowns and the new search 

directiond , r  is the residual vector, and ∂  and q  are temporary variables. 
 

The remainder of this section briefly analyses the main computing kernels in 

the conjugate gradient algorithm and its bottlenecks. Only the linear algebra 

operations in the for-loop of CG are analyzed, disregarding all scalar operations, 

since they make up the bulk of the computations. Three types of basic linear 

algebra operations are used in the main loop of the CG algorithm, particularly for 

the algorithm in Figure 6 these operations are: three vector updates or saxpy 

operations (in lines 9, 13, and 17) of ( )O n  complexity, two dot-products (in lines 8 

and 15) also of ( )O n  complexity, and one SMVM operation (in line 7) of ( )O nz  
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complexity. Among these BLAS operations the dominant computing kernel is the 

SMVM as it was pointed out in section 1.2.2 (making CG 3/2( )O n  [59]); thus, the 

main bottleneck in CG are the same ones that were analyzed in the previous 

subsection for SMVM. This also justifies that most of the previous work focused 

on accelerating the SMVM kernel as means to accelerating CG performance. 

Although the SMVM is the dominant computing kernel in CG, the other 

operations that represent a challenge, especially from the parallel processing 

point of view, are the two dot-products. The dot-products require reduction 

summations and become synchronization points in the CG algorithms. On the 

other hand, the vector updates operations can be computed very fast in an 

embarrassingly parallel fashion. A final observation of importance regarding CG 

performance bottlenecks is that CG is an intrinsically sequential algorithm. Most 

of the operations in CG depend on the results of the previous operation, except 

for current solution approximation (i.e. iterate) and residual updates (saxpy 

operations) that can occur concurrently. 

Chronopoulos and Gear present a variant of CG [60] with increased data 

locality since the vectors are loaded only once per iterations, and only one 

synchronization point because the two dot-products are located in the same point 

in the algorithm. Moreover, the two dot-products are independent and can be 

computed concurrently. However, this increased data locality and reduced 
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synchronization point is attained at the expense of 2n extra flops [33]. 

Chronopoulos and Gear further increase locality and parallelism by creating an 

“s” size Krylov subspace per iteration, but increases the operation count requiring 

an additional SMVM operation and incurring in possible instability. This instability 

may lead convergence towards the dominant eigenvector instead of the true 

solution vector as stated in [33]. 

2.8 Summary of Bottlenecks for SMVM and CG 

Table 2 presents a summary of the main bottlenecks identified for the SMVM 

and the CG algorithms that have been identified in this chapter, some of which 

will be solved for general sparse matrices in the following chapters. 

The following two chapters present new ways to accelerating the sparse 

matrix-vector multiplication kernel for different types of modern multicore 

processors using both the multiple cores available and exploiting the vector units 

found in them. 
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Table 2: Main bottlenecks for the sparse matrix-vector multiplication (SMVM) and 
the conjugate gradient (CG) algorithm. 

SMVM 

• The matrix entries have no data (temporal) reuse and little spatial 
locality.  

• Vector access is indirect and irregular. 
• Large instruction overhead compared to useful floating point operations. 
• Low flops/Data-access ratio (less than 1, thus being I/O-bound). 
• Performance dependence on matrix format and algorithm combination. 

CG 

• Intrinsically sequential algorithm. 
• Dot-products become synchronization points and must be parallelized 

carefully since they require reduction sum. 
• Those of SMVM. 
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Chapter 3 
Accelerating the SMVM Algorithm for Multicore Processors 

 
This chapter presents a novel way of accelerating the sparse matrix-vector 

multiplication algorithm on multicore processors using short vector units (SIMD 

units) and multiple cores. 

3.1 A Naïve Approach to Parallelizing the SMVM Kernel on Multicore Processor 

Parallelism for the sparse matrix-vector multiplication operation can be 

implemented in different ways. Starting from the two SMVM algorithms in Figure 

5 (see section 2.5) that show the traditional implementations of the SMVM kernel 

using the dot-product (inner-product) approach and the saxpy approach, we can 

define naïve ways to parallelize them as explained next. Two simple schemes 

can be used to parallelize the dot-product version (see Figure 7.a), either 

parallelizing the outer for-loop (in line 1 of Figure 5.a), which assigns a set of dot-

products to each processing-core/processor-node9; or the inner for-loop (in line 3 

of  Figure 5.a), which would imply computing every dot-product using all 

processors resulting in increased amount of communication among processors 

leading to very poor performance.  

                                            
9 Term “processor” will be used to refer to processing-cores in a multicore system. Without loss of 
generality or ambiguity, this term will also be used to refer to different compute-nodes in a 
distributed memory system. The loose use of this term is appropriate since most of the algorithms 
presented can be implemented for both shared and distributed memory systems. 
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(a) Dot-product approach using row-blocks
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Figure 7: Two parallel approaches to the sparse matrix-vector multiplication. The 
example presented here assumes a multicore processor with 4 cores. The color 
in each block refers to the processor in charge of the computations for that block. 
The white vector in subfigure (a) is broadcasted across all processors. The blue 
vectors in subfigure (b) are summed by the same processor, thus are the same 
color. 

Even though a choice exist, it only makes sense to parallelize the outer for-

loop of the dot-product approach, since it leads to independent computations 

among the coloured row-blocks and yields independent segments of the results 

vector as shown in Figure 7(a). 

An analogous situation occurs when parallelizing the saxpy approach. Also 

here the sensible choice is to parallelize the outer for-loop (in line 2 of Figure 

5.b), assigning different column-blocks and segments of the multiplying vector to 

each processor as shown in Figure 7.b. The main drawback would be the 

amount of processor synchronization required to sum the contributions of each 

column-block product as they become available. Even though this parallel 

approach requires greater amount of synchronization than the dot-product one, it 

was widely used in older vector processor mainly because of the long vector 
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computations in the saxpy operations and the column data layout of matrices in 

the Fortran programming language. 

Up until now the discussion has purposely omitted implementation details in 

order to keep the descriptions general, but it is now time to introduce two 

important considerations required for an efficient parallel implementation. The 

first is the choice of the sparse matrix format; although it was somewhat intuitive 

that the dot-product approach would benefit from row storage (e.g. CSR) while 

the saxpy approach would benefits from column storage (e.g. CSC). It is 

important to stress that the performance of the sparse matrix-vector multiplication 

(and other important linear algebra kernels) is directly dependent on the sparse 

matrix format used as mentioned in section 2.5.1 and commented repeatedly in 

the literature [16, 24, 28, 29, 57, 61-64] and others. Moreover, the amount of 

parallelism that can be efficiently exploited in SMVM varies significantly 

depending on the sparse matrix format used, which has lead to the various 

sparse matrix formats as commented in section 2.3.3. The second relevant 

subject is the hardware architecture used. The hardware architecture imposes 

additional challenges to the parallelization process of the SMVM and the sparse 

matrix format and algorithm used. The limiting factors of the SMVM kernel were 

already identified in section 2.5.1 and will be used in this section to enhance 

SMVM performance; however, the hardware architecture features that impose 
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additional performance constraints have not been reviewed, this is the subject of 

the next section before proposing the new optimized SMVM kernel. 

3.2 Overview of Multicore Architecture and their Programming Challenges 

Modern multicore processors have various architectural features that maybe 

exploited to enhance their performance. This section briefly describes the most 

important architectural features found in multicore processors and the algorithmic 

requirements to exploit them. The discussion will be based on two types of 

multicore processors (see Figure 8): homogeneous (where all processing cores 

have the same architectures) and heterogeneous (where there are different types 

of processing cores embedded in a single chip). 

3.2.1 Architectural Characteristics of the Two Hardware Platforms Used 

The first processor used in this work is the Intel Core 2 Quad (Q6600, code 

name Kentsfield) that is a traditional cache based architecture representative of 

homogeneous multicore processor. This processor contains four cores clocked at 

2.40GHz with 64KB of L1 cache10 (32KB-data/32KB-instructions), 4MB of L2 

cache per core-pair, and 4GB of global DDR2 (double data rate DRAM 2) shown 

in Figure 8.a. The Intel Core 2 Quad processor family supports the Intel 

streaming SIMD extensions SSE, SSE2 and SSE3 [65]. The processor has 128-

bits (16Bytes) wide SIMD units that can compute 4-way single precision floating 

                                            
10 Both L1 and L2 have 64B cache lines. 
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point (SPFP) operations or 2-way double precision floating point (DPFP) 

operations per SIMD instruction.  

The second processor used is a simplified version of the Cell BE processor 

(found in the PS3) representative of heterogeneous multicore processors. This 

simplified Cell BE contains two distinct type of cores [12]: one PowerPC (named 

PPE) general purpose processor (GPP) and six SIMD processors (called SPEs) 

both clocked at 3.2GHz. The PPE has a traditional two level cache hierarchy 

(L1:32KB-data/32KB-instructions and L2:512KB both with 128-bit cache lines) 

whereas the SPEs have a 256KB user controlled memory (scratch-pad type 

memory), and both have access to a 256MB Rambus extreme data rate (XDR) 

DRAM global memory. In the Cell processor the PPE is commonly used for 

administrative and control tasks while the SPE cores are used as the main 

computing resource. SPEs are high performance SIMD cores with software 

controlled memory hierarchy, a 4-way SPFP SIMD and 2-way DPFP SIMD 

pipeline (128-bit wide), and limited hardware support for branch prediction. They 

have a large register file (128-128b registers), and a 256KB on-core software 

managed memory called Local-Store (LS). A distinct characteristic of the SPEs 

from other processors is that transfers to/from LS and main system memory must 

be explicitly programmed by the user, which requires some extra effort but yields 

more efficient memory management for predictable access patterns. 



 42 

 
(a) Intel Core 2 Quad Processor 

 
(b) Cell BE Processor 

Figure 8: Block diagrams of the architectural features of modern multicore 
processors. Subfigure (a)  shows the diagram for the homogeneous multicore 
Intel Core 2 Quad processor family [65], and subfigure (b) shows the diagram for 
the Cell BE heterogeneous multicore processor family [12]. 
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3.2.2 Programming Challenges for Exploiting Architectural Features 

To take advantage of the hardware features described in the previous section 

it is necessary to satisfy certain conditions described next. 

a) Short-Vector Units or SIMD Units 

SIMD units are the first architectural feature of interest. Most of modern day 

multicore processors have SIMD units that enable vector processing, as is the 

case for both of the architectures presented in Figure 8. In order to use these 

vector units one generally requires conforming to certain data layout and size 

constraints, while using specialized SIMD instructions to direct the execution to 

the vector units instead of the scalar units. 

In the case of Intel processors, the data layout and size constraints are very 

relaxed thus allowing the programmer great flexibility to choose the type of data 

and layout that is better suited for their applications purpose while using the 

SIMD units. Although this is possible, the guidelines provided in chapter 4 of 

Optimization Reference Manual [66] for the IA32 architectures require data to be 

aligned in 16-byte (16B) memory boundaries to make efficient use of SIMD units. 

This can be achieved with special data structures and zero-padding techniques. 

For the Cell BE processor all data requires to be aligned to natural memory 

boundaries (1, 2, 4, 8 and 16B boundaries), but 16B memory boundaries are 

suggested (see chapter 19 of [12]) to maximize performance. Moreover, memory 
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transfers strictly require the data to be multiples of 16B (unless smaller data sets 

are required), which implies that all declared data must have a size multiple of 

16B. 

On the other hand, to enable vector execution one requires using special 

vector instructions. There are three ways to use these special instructions [66], 

the first is to explicitly program assembly code for each type of processor with the 

required vector instructions; the second way, is to use special high-level vector 

intrinsic11 [67, 68] for the particular high level language employed; and the third, 

is to rely on the compiler optimizations to auto-vectorize the desired code. This 

last alternative is not viable for sparse matrix operations, since the compiler 

cannot make assumptions on data that is managed by pointers and complex data 

structures, which is the case for sparse matrix operations. Support for vector 

intrinsics is available in all modern C/C++ and Fortran compilers, and it is the one 

used in this work for both architectures. Intrinsics are also a portable abstraction 

                                            
11 High-level vector intrinsics (or just vector intrinsics) refer to a set of high level languages (e.g. 
C, C++, Fortran, etc.) instructions that are inlined to one or more assembly language instructions 
of a given hardware by the compiler to provide access to vector operations. In a more broader 
sense the term “intrinsic” or “built in functions” refers to special high-level language functions 
handled by the compiler in a programming language that provide access optimized code for a 
given operation or low-level hardware functionality that is otherwise not available. Intrinsics are 
commonly used to access vector operations and for parallel directives in some parallel 
frameworks such as OpenMP. 
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used by the compilers, which can select the best set of assembly instructions 

depending on the underlying hardware. 

A final considerations regarding SIMD vectorization is that it should only be 

used in compute intensive sections of the code. These are found in long running 

code-loops that are then manipulated using loop transformation techniques [69] 

to vectorize the code. Common loop transformations used to vectorize scientific 

codes are loop-unrolling, strip-mining and loop-blocking. The first two will be 

explained in some detail when the SMVM vectorized kernel is presented. 

Conclusion 1.a: take the time to properly design data structures considering 

size and alignment for SIMD processing. 

Conclusion 1.b: use intrinsics to exploit vector processing whenever the 

compiler provides support for it. 

Conclusion 1.c: use loop transformations techniques to enable vector 

processing. 

b) Memory hierarchy 

It was already pointed out in the previous section that memory alignment is 

key to efficient execution, but one must also consider enhancing temporal and 

spatial memory locality to make efficient use of data caches in cache based 

architecture and the local store memories in the Cell-SPEs. Little can be done 

with temporal locality for the matrix entries since they are only used once per 
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SMVM, however spatial locality can be enhanced with proper data structures to 

allow stride-1 access to data thus enhancing data locality. Following this line of 

thought, data structures should be designed as structure of arrays (SoA) instead 

of array of structures (AoS) as suggested in section 4.5 in [66] and chapter 22 in 

[12]. 

Conclusion 2: favour data structures that implement SoA instead of AoS to 

increase locality. 

c) Parallel Cores 

The last important hardware feature to cater for is the parallel cores in 

multicore processors. Since multicore processors use a similar shared memory 

model as the one used in older symmetric multi processors (SMPs), a straight 

forward approach would be to launch as many working threads as parallel cores 

in the target processor and to schedule the workload to different threads. The 

main concerns here are: 

• How to partition the data and schedule it across different cores. 

• How to balance the workload. 

• Programming efficient parallel algorithms to manage the parallel work 

keeping to a minimum the parallel book keeping. 

Programmers often rely on parallel shared memory frameworks such as 

OpenMP [70] to take care of these issues. Such approaches usually work well 
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when dealing with dense matrix systems, but for sparse matrix computations 

where complex sparse formats and pointers are required this is not feasible, 

hence one must directly use the threaded libraries available in each system (e.g. 

Posix threads [71], Intel Threading Building Blocks (Intel TBB) library [72], and 

AMD x86 Open64 Compiler Suite [73]).  

Conclusion 3: need to use lower level threaded libraries to reduce parallel 

overhead and deal with complex data structures. 

A summary of the most important challenges for parallelizing scientific kernels 

(e.g. SMVM, CG, etc.) on multicore processors are presented in Table 3. 

3.3 Putting it All Together: A New Sparse Matrix Format and SMVM Kernel for 

Parallel Multicore Computing 

Implementing an efficient sparse matrix-vector multiplication kernel requires 

designing a sparse matrix format and an algorithm that takes into account the 

bottlenecks of the SMVM operation summarized in Table 2, and the 

programming challenges imposed by the hardware summarized in Table 3. This 

section first presents the new sparse matrix format designed for this purpose 

(namely the pipeline-matched sparse matrix format, or PMS, the first contribution 

of this work) and then explains the new algorithm implemented. 
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Table 3: Programming challenges for implementing scientific kernels (e.g. 
SMVM) on modern multicore processors. 

Architectural features Programming challenges 

Vector processing 
(SIMD) 

• Memory alignment and sizes (multiples of 16B). 
• Use of vector intrinsics whenever available. 
• Employ loop transformations. 

Memory hierarchy • Use SoA data structures. 

Parallel cores • Explicit threading using thread libraries or 
frameworks. 

 
3.3.1 The New Pipeline-Matched Sparse (PMS) Matrix Format 

The main objectives of designing a new sparse matrix format was to exploit 

short vector (SIMD) units found in modern processors, while offering 

opportunities to easily partition and distribute data across the multiple cores. The 

design of the new format was also motivated by the fact that traditional sparse 

matrix formats do not take into account the programming challenges imposed by 

the hardware architecture (e.g. data partitioning on SIMD boundaries, and 

memory alignment requirements). Moreover, traditional vector formats such as 

ELL [30, 64] (Ellpack/Itpack) and JDS [30] are inefficient for a wide variety of 

sparse matrices where the nonzeros per row may vary significantly as mentioned 

in Chapter 2, which usually occurs in the finite element method when doing mesh 

(h) refinement, interpolation function (p) refinement or hybrid refinement (that 

combines both h and p refinements) commonly referred to as hp-refinement. 

Thus an additional objective of designing a new sparse matrix format was to 
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make it tolerant to large variations in non-zeros per row for general sparse 

matrices independent of their structure. The final idea that was kept in mind to 

design the sparse format is that it is easier and more efficient to compute on a 

regular kernel (e.g. dense matrix-vector multiplication) than on a sparse kernel, 

thus it would be desirable to produce a sparse format that can be treated as a 

dense kernel. 

Following these directives a new format called pipeline-matched sparse 

(PMS) format was created. PMS is based on the Compressed Sparse Row 

(CSR) format, and it comprises four vectors (see Figure 9) as follows:  

(i) A_VAL: the first vector stores the nonzero elements of the sparse matrix, 

with zero padding by rows to match the SIMD pipeline-width of the target 

processor (i.e. 16Bytes for both the Intel and the Cell BE processors). 

(ii) AJ: the second vector contains the column indices of the nonzero 

elements. 

(iii) SUB_ROWS: the third vector stores the number of sub-rows of size equal 

to the size of the SIMD pipeline-width per matrix row. 

(iv) X_VAL: the last vector contains the elements of x-vector indexed by 

column indices in AJ.  
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Figure 9: Representation of a sparse matrix in CSR format and the new Pipeline-
Matched Sparse (PMS) representation assuming a vector pipeline with of two 
floating point numbers. 

 
Once this representation is built, only the fourth vector (X_VAL) need be 

modified to solve for different x-vectors. The mapping of the x-vector elements 

into the new format (called vector-spreading operation) involves extra 

processing, but ultimately this work has to be done in the SMVM kernel 

regardless of the sparse format used. By doing this work in advance memory 

access patterns become regular (unit-stride access to the x-vector elements is 

achieved), offering better spatial locality and reduced cache misses on GPPs. 
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The proposed pipeline-matched sparse representation renders three 

important benefits:  

• Enables flexible configuration to exploit SIMD units (low-level parallelism): 

by using zero padding the PMS format can be customized for different 

SIMD pipeline-widths (e.g. 4 single precision floating point values per 

SIMD register, or 4-way pipeline in the Cell processor, or the new 256-bit 

wide AVX extension in the Intel Core i5, i7 family – see section 5.13 in 

[65])) and efficiently exploit available processor parallelism. In the rare 

case where no SIMD units are available, PMS can be configured with a 1-

way SIMD size resulting in no zero padding.  

• Enhances spatial locality and regularity in data access patterns: the 

irregular-indirect access to the x-vector is solved by mapping the x-vector 

into the PMS format apriori regularizing the data access pattern. This 

allows a regular stride-1 access to all data required in the SMVM kernel, 

and thus creating a “dense-type” kernel with a more efficient execution 

even when considering the extra operations required by the zero-padding. 

• Provides natural boundaries for data partitions (high-level parallelism): the 

zero padding used to generate SIMD vectors in each of the matrix rows 

also serves the purpose of defining natural partition boundaries on the 
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vector boundaries defined. These boundaries can be used to exploit 

parallelism across CPU cores, and assure that matrix data is kept aligned. 

Compared to the CSR format, PMS requires the storage of an extra floating 

point vector of size equal to the number of nonzeros, in addition to the zeros 

used to match the pipeline-width of the target architecture. But this extra memory 

usage yields benefits in terms of easier data (matrix and vector) partitioning and 

subsequent data communication to the parallel computing cores, as well as a 

regular computation. Also, because this format already contains the x-vector 

there is no need to transfer it separately; in fact the amount of data transferred to 

the processing cores is similar to the amount required by the CSR format. Only 

three of the four vectors need be transferred to compute the SMVM kernel using 

PMS: A_VAL, SUB_ROWS, and X_VAL; whereas CSR requires an additional 

vector (the column indices).  

PMS can be thought of as a compressed vector storage of the sparse matrix, 

with vectors-sizes of the target architecture pipeline-width. Whilst this format was 

designed within the scope of FE applications, it can be used to represent other 

sparse matrix types regardless of their sparsity pattern, density, symmetry, or 

target application since the amount of zeros added is kept to a minimum by doing 

it row-wise. This new representation could also be used in non-conventional 

multicore architectures or reconfigurable hardware providing similar benefits.  
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A special data structure called c_array_t was defined to represent all the 

sparse matrices and sparse matrix formats used in this work, which is described 

in Appendix B. This data structure was designed to accommodate many different 

sparse (and dense) matrix formats and to facilitate aligning data to natural 

memory boundaries (power of two memory addresses). 

3.3.2 Vectorizing the SMVM Algorithm with PMS 

The dot-product version of the SMVM algorithm for the CSR format 

(presented in section 2.5 and reformatted in Figure 10.a for the PMS format) is 

used here as the basis for vectorization. This version was selected since it 

assumes a row ordered matrix format (as is the PMS format presented in the 

previous section), and because the parallelization of this version will not require 

any synchronization for parallel processing as shown in section 3.1. 

The first step to vectorize the SMVM code is to apply a loop transformation 

technique called strip-mining [63, 66] (also called “loop sectioning”) to the inner 

loop (dot-product loop) of the algorithm (see Figure 10.b). This technique creates 

strips or segments within a loop, where the strip size usually matches the desired 

vector (SIMD) size or smaller so that it can be vectorized. The control variable of 

the loop is then incremented by the size of the strips. This technique also 

enhances data locality and reduces the conditional evaluation (branching) 

overhead. The way strip-mining is applied in this work is effectively the same as 
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another loop transformation technique called loop unrolling12 (or unwinding), as 

referred in [74, 75]; thus, the two terms will be used interchangeably even though 

in other contexts these techniques might differ slightly.  

Next, the instructions in the stripped loop are vectorized using compiler 

intrinsics as shown in Figure 10.c for the Intel processor. The intrinsics for the 

Cell BE processor vary but the implementation procedure is the same. The 

remaining computation is to reduce the four elements accumulated from the 

vectorized dot-product into a single scalar result, which is done in Figure 10.d 

using a tree reduction procedure. The vectorization procedure presented in 

Figure 10 was easily done because the PMS format was configured to generate 

4 SPFP sub-rows for the sparse matrix, thus conforming to the 128-bits SIMD 

units assumed. These optimizations and the forthcoming ones (related to 

multicore parallelism) have been implemented in a new sparse matrix library that 

is briefly described in Appendix B. 

 

                                            
12 Loop unrolling is a loop transformation technique used to reduce the branch overhead in loops, 
increase the locality and instruction level parallelism inside the loop, thereof improving the 
instruction scheduling and overall performance for long running loops (see section 2.2 in [66]). 
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Figure 10: Strip-mining or loop-unrolling of the inner loop in the dot-product 
version of the SMVM algorithm for a strip-size of 4 using the PMS format 
configure for 4-SPFP vector units (128-bit wide SIMD units). 
 

3.3.3 Scheduling Multiple Cores with the Vectorized SMVM 

For homogeneous multicore processors (such as the Intel Core families) 

dividing the workload of SMVM for multicore processing can be done easily by 
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partitioning the matrix into row-blocks and assigning them to different processing 

cores as illustrated in section 3.1. The main concern while doing this is to 

properly load balance the work of each core. The row-block nonzeros can be 

balanced by using the SUB_ROWS vector in the PMS format to compute the 

number on matrix elements in each row-block. Balancing the load in this manner 

requires a simple but efficient algorithm with ( )O n  complexity. Once the row-

blocks partitions are defined, indices for the matrix entries, x-vector entries (in the 

PMS format) and SUB_ROW fields are sent to each processing cores and the 

SMVM computation may begin. 

The multicore parallelism used for the heterogeneous processor such as the 

Cell BE requires a slightly different approach, since the small memories in the 

SPEs (its main processing cores) require explicit memory transfers between 

main memory and SPE’s local-store (LS). A two-level partitioning scheme was 

designed to distribute data in shared memory multicore architectures taking into 

account the limited memory space available in the SPEs. The data partitioning 

scheme was developed to generate coarse-grained (1st level – row-block 

partitions) and fine-grained (2nd level – buffer partitions) partitions on the sparse 

matrix as shown in Figure 11. The objective of the coarse-grained partitions is to 

schedule and load-balance row-blocks across parallel cores. The number of rows 

assigned to these coarse partitions (row-blocks) is set to have a uniform 
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distribution of matrix nonzeros per row-block; whereas, fine-grained partitions are 

used to determine the number of matrix chunks to stream within each processing 

core. 

The fine grained partitioning is used to cope with the limited memory in the 

parallel processing cores (cache for GPP cores or LS in the SPEs) and can be 

viewed as the cache blocking techniques used to reduce the effect of cache 

misses in GPPs. This second partitioning is also key to applying streaming 

techniques that enable overlapping communication with computations on the 

Cell-SPE cores as illustrated in Figure 12. The technique used to stream data to 

the SPUs is called multi-buffering. The multi-buffering implementation done for 

the Cell-SPE uses two input and two output buffers (also called double-

buffering), where the main idea is to transfer data to one of the input buffers while 

useful work is being done on the other one. Similarly, results are written to an 

output buffer, while the previously computed results in the alternate output buffer 

are sent back to global memory. As an added benefit of the PMS format, there is 

no need to partition the x-vector separately since it is already contained in the 

proposed format and thus uses the same partition boundaries as the matrix 

nonzeros. 
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Figure 11: Two-level partitioning scheme of a matrix. Coarse grained partitions 
generate row blocks, and fine grained partitions create smaller data sets to 
transfer in a block fashion. 
 

 

Figure 12: Double-buffering implementation for the Cell-SPEs. The fine grained 
partitions are defined to be the size of a single buffer in the SPEs. 
 

It is worth noting that the 2-level partitioning scheme proposed here is flexible, 

thus different partitioning schemes can be used for the two partition levels. 

Moreover, once the coarse-grained partitions are defined the fine-grained 
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partitions in different row-blocks can be configured independently with different 

schemes if so desired. 

Overall, this partitioning scheme provides good load balancing for shared 

memory architectures. However, when clusters of these multicore processors are 

considered a more sophisticated coarse grained partitioning scheme might 

become necessary to minimize communications between multicore chips. 

Important studies on sparse matrix partitioning based on graph and hypergraph 

methods with precise estimation of communication volume are presented in [76-

79]. The study of these methods will be important when implementing efficient 

SMVM operations on massively parallel multicore clustered systems which will 

be the subject of future work. 

3.4 Experimental Results 

To examine the performance of the new PMS representation and partitioning 

scheme the SMVM kernel was implemented using the two processors described 

in section 3.2.1. The Cell processor heterogeneous multicore processor was 

installed with a 64-bit Fedora Core 6 Linux operating system and was 

programmed using the Cell SDK version 3.1. The Intel homogeneous multicore 

processor was installed with a 64-bit Fedora Core 7 operating system. Both a 

reference CSR SMVM (referred to as SMVM-CSR) and the PMS version (called 

SMVM-PMS) were implemented for validation and comparison purposes. 
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3.4.1 Experimental Setup 

The SMVM algorithms developed for the two architectures where compiled 

using GCC 4.1.2 using “-O2” and “-O3” compiler flag. The Cell-SPE accelerated 

version of the SMVM kernel was implemented using specific vector intrinsics [12] 

for the SPEs. The Intel compiler collection version 11.0 was also used for the 

Intel processor to take advantage of high performance vector intrinsics available 

for this processor. All times were taken using the Linux gettimeofday function, 

and only the best performance results are shown in each case for the different 

combination of optimization flags and compilers used. 

The vectorized algorithm for the PMS format on the Intel processor was 

already shown in Figure 10.d; the implementation for the Cell BE processor 

required a similar process in addition to the memory transfers from global 

memory to the local memory of each SPE. This mainly involved intrinsics to 

control the asynchronous DMA transfers between SPE LS and the Cell main 

memory; and specific intrinsics to perform SIMD multiplications and additions on 

4 SPFP elements simultaneously, thus capitalizing the 4-way SIMD pipeline in 

the SPEs. The PPE was used to create the SPE threads and schedule the work 

to be done. 

For both architectures the PMS format was configured to generate 4-SPFP 

sub-rows (per matrix row) matching the SPE and SSE3 pipeline width. To 
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minimize the overhead effect of the SMVM's control statements in the Cell-SPEs, 

simple conditional instructions were substituted with bit-selection intrinsics, thus 

eliminating the corresponding branch occurrences in the code. Whenever this 

was not possible, branch hint instructions were used to reduce the impact of 

misprediction latency. 

3.4.2 Test Results 

A set of finite element matrices with varying sizes and different sparsity 

patterns taken from the Matrix Market repository [42] are used to study the 

performance and scalability of the new approach (format and algorithm) 

presented. These matrices are shown in Table 4 ordered by increasing number 

of nonzeros. The first set of results (see Figure 13) present the speedup (SU) of 

the SMVM-PMS kernel with respect to a reference SMVM-CSR implementation, 

and serve as proof-of-concept to show the effectiveness of the proposed 

approach. The comparison is done for each hardware platform independently 

using a single computing core with either the CSR format and the classic 

algorithm (presented in Figure 5) with compiler optimizations, or the PMS format 

with the vectorized kernel shown in Figure 10.d. The speedup is computed as the 

wall-clock time ratio of the SMVM-CSR to SMVM-PMS execution times, using 

average times from 1000 runs for each kernel.  
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Table 4: Finite element (FE) test matrices from the Matrix Market repository [42]. 
The matrices are square with number of rows and columns equal to the matrix 
rank (in column 3).  The number of nonzeros (NZ) are shown in column 4, 
column 5 has the percentage fill of the matrix with respect to the dense case, the 
total nonzeros with padding are shown in column 6, and column 7 contains the 
percentage of added nonzeros. 

# Name Rank NZ 
Sparsity 

% 
NZ with 
padding 

% added 
zeros 

Sparsity 
pattern 

1 can___24 24 160 27.78% 208 30.00% 
 

2 cavity26 4562 138187 0.66% 144148 4.31% 
 

3 e40r5000 17281 553956 0.19% 578312 4.40% 
 

4 fidapm37 9152 765944 0.91% 781100 1.98% 
 

5 s3dkq4m2 90449 4820891 0.06% 5001068 3.74% 
 

 
The speedup results shown in Figure 13 demonstrate that the proposed 

vectorization using the PMS format outperforms the automatic vectorization 

possible with compiler options using the classic CSR. It is important to observe 

that these techniques are useful for moderately small to large matrices, whereas 

for smaller matrices little or no performance benefit can be achieved mainly due 
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to the effective caching of the matrices and vectors when using the CSR format, 

as evidenced with matrix (1) for the Intel processor.  
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Figure 13: Speedup results presented as the time ratio of SMVM-CSR/SMVM-
PMS for each hardware platform. 
 

On the other hand, the results for matrix (1) using the SMVM-PMS in the Cell 

BE processor actually slow down computations. This is attributed to the fact that 

the CSR version runs in the PPE and only access the Cell global memory; while 

the PMS version that runs on an SPE, requires to explicitly transfer all matrix and 

vector data from global memory to SPE local-store (LS) using the double-

buffering technique described in the previous subsection. When the data to 

transfer is small (either fits in one or a few buffers) there is not sufficient time to 
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overlap communication with computations and the double-buffering technique is 

rendered useless. 

Performance results in MFlops/s (million of floating point operations per 

second) for single core implementations of the SMVM-CSR and SMVM-PMS 

kernels are shown in Figure 14. In this figure it is also evidenced that the 

vectorized SMVM-PMS kernel has better performance than the SMVM-CSR for a 

single core in each processor, except for matrix (1) for in both processors for the 

reasons mentioned earlier. It is also interesting to observe that as the matrix size 

(nonzeros) grows the performance of the SMVM-PMS for the Cell-SPE grows 

(referred to as CELL-PMS in Figure 14), which is explained by the better 

overlapping of computations and communications with the double-buffering 

technique used. On the contrary, cache based architectures like the Intel 

processor suffer from more cache misses from the bigger data sets, which is 

reflected as a decrease in performance for the SMVM-PMS kernel on the Intel 

processor (referred to as Intel-PMS in Figure 14). Of course, performance will 

also vary depending on the zero padding done, which will be presented next.  
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Figure 14: Performance in MFlops/s of the SMVM kernel for the CSR and PMS 
formats. 
 

The scaling performance results in MFlops/s for the best performing CSR 

kernel and the PMS format for the Intel and Cell BE processors are presented in 

Figure 15. These results are only for the matrices (2-5) since matrix (1) is too 

small to do any efficient parallel work. The performance of matrix (2) does not 

scale for any of the formats and platforms used because of its size. Considering 

that the SMVM kernel is a I/O-bound algorithm (bandwidth-bound kernel as 

mentioned in Chapter 2), the performance scaling from the CSR implementations 

and PMS on the Intel processor are expected to be very poor, see Figure 15.a 

and Figure 15.b. Only marginal performance benefits are obtained for these 

cases up to 2-cores, since the Intel Core 2 Quad processor shared the two L2 

caches per core-pair; thus, after increasing the thread count over 2, more cache 
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misses occur and no further performance gain is possible. Even so, it is also 

clear that the SMVM-PMS outperforms the SMVM-CSR for all cases ranging for 

4.9X speedups for the smallest test matrix to 1.6X for the largest test matrix. 

A better behaviour is observed for the Cell-SPEs, where the performance 

increases with the matrix size obtaining up to 3.2 GFlops/s for the largest test 

matrix outperforming that of the Intel CPU. This is mainly attributed to the multi-

buffering technique used, which effectively overlaps computations with 

communications as shown in Figure 15.c. For the largest test case (~4.8 million 

nonzeros) the Cell-SPE SMVM kernel is 3.5X faster than the Intel SMVM-CSR, 

2.6X over Intel SMVM-PMS, and nearly 14X faster than the SMVM-CSR 

implementation in the Cell-PPE (see speedup results for the biggest test matrix in 

Table 5), exhibiting a superlinear speedup compared to the Cell-PPE version. 

Although this type of performance is in agreement with the results presented in 

[23], the main benefit from the results presented in this dissertation come from 

the vector processing and not from the cache-blocking or register-blocking 

techniques used in [23]. 
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(a) CSR 
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(b) PMS-Intel 

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

cavity26
e40r5000
fidapm37
s3dkq4m2

Number of cores (threads)

M
Fl

op
s/

s

 

(c) PMS-SPE 

Figure 15: Performance scaling results of the SMVM kernel for the Cell BE and 
the Intel processor using the CSR and PMS sparse formats. 
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Table 5: SMVM speedup scaling using different formats for the "s3dkq4m2" 
matrix (5). 

Cores 
(threads) 

PMS-Intel / 
CSR-Intel 

PMS-SPE / 
CSR-Intel 

PMS-SPE /
PMS-Intel 

PMS-SPE / 
CSR-PPE 

1 1.66 0.89 0.54 2.87 

2 1.44 1.54 1.07 5.72 

3 1.40 1.92 1.37 7.32 

4 1.38 2.42 1.76 9.34 

5 1.37 3.11 2.28 12.01 

6 1.33 3.45 2.58 13.53 

 
The last analysis done is related to the scalability of the PMS format itself. 

The question here is how the zero padding scales with the matrix size? The 

answer to this question depends on two factors: the size of the vector-pipeline 

being matched, which affects the amount of zero-padding performed per row; 

and the distribution on nonzeros in the matrix that determines the number of 

nonzeros per row and thus the padding required.  

For example, in the test cases presented in this chapter the PMS format was 

configured to match a 4-SPFP pipeline found in both the Cell BE and Intel CPU 

was shown to scale gracefully with the matrix size. This is evidenced in Table 4 

where the effect of the zero-padded is less significant for bigger matrices (that 

was always less than 5% of the real nonzeros in the matrix) than for small 

matrices where it can be significantly higher. Another way to estimate the impact 

of the zero-padding for a specific matrix would be given by the following formula: 
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 % ( *( ( mod )))*100 /pad rows vectorSize avgRowSize vectorSize NZ= −  (2) 

Here the %pad refers to the percentage of padded zeros, the vectorSize is 

the size of the vector-pipeline to match, avgRowSize is the average row size of 

the matrix, and NZ represents the real nonzeros in the matrix. If the avgRowSize 

of the matrix is not known, an upper-bound for the added nonzeros can also be 

estimated as follows: 

 *( 1)MaxPad numRows vectorSize= −  (3) 

It is worth noting that for modern multicore processors and even parallel 

manycore GPUs the vectorSize will always be small (usually 4 for SPFP, 2 for 

DPFP, or 8 for SPFP and DPFP in GPUs), thus matrices with average nonzeros 

per row equal-to or bigger-than these values will not suffer from large zero 

padding. Nonetheless, the results presented in this section show that the zero 

padding done for the PMS format will render better performance for large 

matrices than traditional CSR formats. 

3.5 Concluding Remarks 

This chapter presents the first two contributions of this work, a new sparse 

matrix format called pipelined-matched sparse representations or PMS (using the 

three character convention discussed in chapter 2) and a 2-level partitioning 

scheme with a modified SMVM algorithm (first presented in CEFC 2008 [80] and 
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published in 2009 [81]) that render the following benefits for SIMD processing of 

the SMVM kernel in multicore environments: 

• Enable exploiting short-vector (SIMD) processing units regardless of the 

sparse matrix nonzero pattern, and adaptable to different vector (SIMD) 

pipeline sizes depending on the target architecture. 

• Enhance spatial locality in the matrix entries. 

• Alleviate the indirect and irregular vector access of the SMVM kernel by 

creating a “dense-type” approach to solving a dense problem. 

• Facilitate data partitioning, distribution, and load balancing. 

• Limits the amount of data transfers and instruction overhead. 

• Good scaling behaviour of the PMS format with the matrix size. The 

percentage of padded zeros tends to reduce as the matrix size grows. 

• The SMVM Cell-SPE accelerated kernel was on average 3.5X faster than 

the Intel SMVM-CSR, 2.6X over Intel SMVM-PMS, and nearly 14X faster 

than the SMVM-CSR implementation in the Cell-PPE for the largest test 

matrix. 

The PMS format exhibits excellent scaling behaviour for the Cell BE platform 

(streaming type processors) where the multi-buffering technique was applied. On 

the other hand, even though the performance of the PMS-SMVM kernel in the 

cache based architecture (Intel CPU) always outperformed that of the SMVM-
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CSR, the scalability suffered for bigger matrices because of the increased cache 

misses. All of the optimizations presented in this chapter and the forthcoming 

ones have been included in a sparse matrix library described in Appendix B. The 

next chapter presents a solution to the scaling difficulties that PMS presents for 

cache based architectures. 
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Chapter 4 
Blocked PMS Format 

 
The scaling behaviour of sparse matrix formats is an important concern for 

parallel processing. The previous chapter introduced a new sparse matrix format 

called pipeline-matched sparse (PMS) representation that enabled efficient 

vector processing for SMVM while demonstrating good performance scalability 

for the memory controlled Cell-SPEs, but that did not scale well for the cache 

based Intel processor. This chapter introduces a new sparse matrix format better 

suited for cache based architectures and shows the performance benefits of the 

new sparse formats for the conjugate gradient method. 

4.1 Blocking PMS for the SMVM Kernel 

In this section, first the new blocked sparse matrix format is introduced and 

then the corresponding blocked algorithm is presented. 

4.1.1 The Blocked-Pipeline-Matched (BPMS) Sparse Matrix Format 

The new format called blocked-pipeline-matched sparse (BPMS or BPS) 

representation is the third main contribution if this work. As in PMS [81], BPMS 

defines clear data boundaries for partitions, nonetheless it also offers better 

opportunities to exploit fine grained parallelism and it does not require the vector-

spreading operation. In BPMS the matrix is stored in small dense matrix-blocks, 

which are enforced to be a multiple of the vector-registers size on the target 
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architecture (e.g. 128-bit register that can store 4 single precision floating point 

values or 2 double precision in modern Intel Core2 CPUs) as in PMS; thus 

allowing to easily exploit short-vector (SIMD) units in multicore processors. 

Furthermore, when the block size is a multiple greater than one of the vector 

registers, other loop transformations can be implemented to enhance 

performance (not possible on PMS). BPMS stores the matrix data in four linear 

arrays in the following way:  

(i) A_VAL: stores the nonzero elements of the matrix in dense 

square/rectangular blocks (elements in blocks are stored row-wise), with 

zero padding to match the pipeline width of the target processor per row 

(as in PMS). 

(ii) AJ: contains the column indices of the first element in each block (as in 

BCSR). 

(iii) AI: has the index of the first matrix element that starts a new row-block (as 

in BCSR). 

(iv) Blocks per row-block: the number of dense blocks preceding the block 

pointed to by each of the row indices.  

Because of the increased data locality gained by creating the blocks within 

the matrix format there is no longer the need to include the x-vector in the BPMS 

format; instead, BPMS can now rely on an efficient access of the x-vector data 
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from the underlying cache hierarchy in cache-based processors, while avoiding 

the time required to spread the x-vector into the format. However, the drawback 

is that the SMVM-BPMS kernel depends on the matrix structure to be efficient. 

Even though BPMS format does not include the x-vector it can easily be 

included in the format using a fifth vector. The memory impact of such addition 

would be minimal relative to PMS since each block would use the same x-vector 

segment for all of its rows, increasing not only spatial but also temporal locality 

for the access to this vector. Moreover, the cost of the vector spreading operation 

would also be minimized since each block only requires to map the x-vector for 

the first row and all other nonzero elements (in the other rows inside the block) 

would reuse the vector-segment as mentioned above. The negative side is that 

depending on the structure of the sparse matrix there might still be a lot of x-

vector data repeated in the BPMS format; therefore in this work it will not be 

included in the BPMS format. The converse would also apply to the PMS format, 

so PMS could be represented without embedding the x-vector into it, which 

would yield similar benefits to the ones presented for BPMS. 
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Figure 16: Representation of a sparse matrix in BCSR format and the new block 
pipeline-matched sparse (BPMS) representation 
 

Recalling the example matrix presented in section 3.3.1, Figure 16 shows this 

same matrix in the blocked pipeline-matched sparse (BPMS) representation and 

the block CSR (BCSR) representation for comparison. Both BPMS and BCSR 

formats have been configured with the same block sizes for this example for 

simplicity. In reality the block size for BCSR is determined based on the desired 

cache blocking or register blocking techniques, which does not consider the size 

of the vector-register in the SIMD units in the target processor. Common benefits 

of BPMS with respect to other blocked formats for the SMVM operation include: 
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• Increased spatial data locality for the vector access. 

• Enabling efficient loop transformation techniques that decrease the loop 

iteration count and thus reduce the instruction overhead from the constant 

evaluation of the conditional statements (less branching). 

• Compressing the row and column index information. 

The blocked pipeline-matched sparse format has similar advantages to those 

of the PMS format except for the direct access to the x-vector that is not included 

in BPMS. The main advantage of BPMS over other blocked formats such as 

BCSR is that it exploits the vector units in modern processors. The pipeline-

matching in BPMS blocks creates vector-data sets aligned to natural vector 

boundaries in memory, which ease implementing vector operations. Traditional 

blocked formats only exploit data-locality by creating small blocks that match the 

size of the register file or the cache lines (also achieved by BPMS), but do not 

align data to vector boundaries nor do they assure data sizes to fit within vector-

registers as mentioned earlier. The row index vector (AI) can be used to 

determine high-level boundaries for data-partitions to spread across processing 

cores, whereas the newly introduced fourth vector (Blocks per row-block) aids in 

load balancing by providing information on the amount of data to compute on for 

each coarse data-partition defined by AI. The information provided by the fourth 

vector also provides useful information for low level loop optimizations. 
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4.1.2 Enhancing Block Structure in BPMS 

Block structures occur naturally in finite element matrices [82, 83] as the 

effect of adding the element stiffness matrices to the global coefficient matrix. 

However, the overall matrix structure may require many zero fill-ins when 

creating the blocked formats. The non-desired effect of such zero fill-ins may be 

considerably reduced by grouping the nonzero entries in the matrix. One way of 

achieving this is by using a bandwidth reduction algorithm. This work implements 

one such algorithm called the reverse Cuthill-Mckee [84] (RCMK) algorithm, a 

well known and time efficient [85] bandwidth reduction algorithm, before creating 

the block formats. The RCMK algorithm compresses the nonzero elements along 

the main diagonal, increasing spatial locality and normally incurring less zero fill-

ins. Also, access to the x-vector will now be almost sequential for matrices that 

allow for a good compression.  

The enhanced locality property in the access of the x-vector when reordering 

will also be available for the non-blocked formats, effectively reducing cache 

misses and hiding better memory latencies, thus the test results in this section 

will be for the reordered matrices in all formats. Figure 17.a shows how the 

bandwidth of the “can___24” matrix is reduced from 24 to 13, and reduces its 

average bandwidth from 8.3 to 3.8 when applying the RCMK algorithm. A similar 

reduction is experienced for “fidapm37” where the bandwidth reduces from 1364 
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to 903, and the average bandwidth goes from 442 to 290 (see Figure 17.b). On 

the other hand, the ordering from the matrices 2, 3, and 5 results in an increase 

of the bandwidth since they were already diagonal matrices (even though the 

average BW remains almost the same as the unordered one), thus for such 

matrices there is no gain in reordering.  

Finally, the insight provided by the reordering process can also be used to 

define coarse data-partition boundaries within the matrix. When a matrix is 

reordered using RCMK two auxiliary vectors are generated, a vector called level-

set (which aids in the decision on how to reorder the matrix) and a permutation 

vector that determines reordering to do on the matrix. The level-set vector can be 

used to define partitions in the reordered/permuted matrix as shown in Figure 18. 

The main drawback of this approach is that the partitions defined in this fashion 

are too coarse and thus difficult to balance, which may lead to large zero fill-ins in 

the blocks generated. 

4.1.3 Vectorized SMVM and Multicore Parallelization for the BPMS Format 

The vectorization of the SMVM kernel for the blocked formats is similar as the 

one done in Chapter 3, where the inner loop is unrolled by the vector-register 

size (4-SPFP or 128-bit vector registers) as shown in Figure 19. 
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(a) can___24 matrix. 

 

 

(b) fidapm37 matrix. 

Figure 17: Bandwidth reduction examples when applying the reverse Cuthill-
Mckee algorithm. 
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Figure 18: Partitioning example for the "can___24" matrix after reordering using 
the level-set vector generated in RCMK. The number along the brackets to the 
right of the matrix identifies the worst case scenario for the size of the blocks that 
could be generated by such partitioning. 
 

1:for(i=0; i<rows/blockRank; ++i){

2:  start = stop;

3:  stop = start+(A->blocks[i+1]-A->blocks[i]);

4:  res_acc = _mm_setzero_ps();

5:  for(j=start;j<stop;++j){

6:   mat_data = _mm_load_ps(mat_ptr);
7:   vector_data = _mm_set_ps(x_ptr[col_idx+j+1],x_ptr[col_idx+j],

x_ptr[col_idx+j+1],x_ptr[col_idx+j]);
8:   temp_mul = _mm_mul_ps(mat_data, vector_data);
9:   res_acc = _mm_add_ps(res_acc, temp_mul);
10:  mat_ptr += 4;

11: }

12: res_acc2 = _mm_hadd_ps(res_acc, res_acc);
13: _mm_storel_pi(res_ptr,res_acc2);

14: res_ptr += 2;

15:}  
Figure 19: Blocked sparse matrix-vector kernel using the BPMS format. 
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However, in this case the four partial results obtained for each inner-iteration 

correspond to two13 consecutive rows of the inner loop, so a simple 1-level tree 

reduction can be applied at the end of each row-of-blocks14 (see line 12 in Figure 

19). The other difference in this kernel is the trip count (number of iterations) in 

the outer-loop, which is reduced by the rank of the blocks defined in the sparse 

format as shown in line 1 of Figure 19. This also means that there is less 

instruction overhead in the outer loop. The SMVM computation is done in lines 6 

to 9 (highlighted in Figure 19) as follows. 

• Line 6: load a matrix block into a vector-register. 

• Line 7: load the corresponding x-vector elements into a vector-register. 

• Line 8: multiply the matrix & vector elements (blocked dot-product). 

• Line 9: accumulate the partial results for the row-of-blocks. 

Multicore processing is achieved in the same manner as for PMS using 

PThreads. Matrix data is partitioned in run-time using the 2-level partitioning 

scheme described in Chapter 3, and then row-blocks (1st level partitions) are 

assigned to each of the processing cores. Each core computes the SMVM kernel 

on their partition and results are synchronized and gathered. The number of rows 

                                            
13 In general, the number of partial results obtained for different rows will correspond to the 
number of rows in the blocks defined while constructing the blocked format. 
14 The term row-of-blocks refers to a set of consecutive blocks in the same set of consecutive 
rows that are formed in the blocked formats. Note that this concept differs from that of row-block 
which refers to the coarse (Level 1) data partition proposed in Chapter 3. 
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grouped into such row-block sets may vary to statically balance the non-zeros 

before being assigned to each core, this depends on the input matrix and the 

number of core. Figure 20 shows the steps followed to partition and load balance 

the BPMS matrix. 

Partitioning and load balancing BPMS matrix data with the 2-level partitioning 

scheme is a fast operation of ( / )O n blockRank  complexity (where n is the number 

of matrix rows and blockRank is the number of rows in each small dense block 

defined in the matrix). An even cheaper approach is to obtain a similar row-block 

partitioning using the set-vector generated in the RCMK reordering. This vector 

contains row indices which define bounds for the matrix data. Such bounds can 

be directly used as the partition indices. Nonetheless, the success of such an 

approach depends on the compression of the matrix bandwidth (BW). If the BW 

is not evenly compressed the load will be unbalanced and a more sophisticated 

load balancing approach must be used. In this work we only use the 2-level 

partitioning scheme explained in Chapter 3. The next section presents the results 

for the SMVM kernel with the new sparse format, focussing on its scalability for 

the cache based architecture used. 
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1. Compute the ideal nonzeros per 
processor:

4. Use 4th vector in BPMS (blocks per 
row-block)  to identify the number of 
row-of-blocks to select for processor i:

2. Set i, j and accum to 0. 

for(j=i;j<rowBlocks;j++) {
  accum+=BPMS_A.blocksPerRowblock[j] * 
         BlockSize;
  if(accum>=average_nz) break;
}

average_nz=matrix_nonzeros/
num_processors;

3. Set current row-block pointer i to j 
and reset accum. 

Start

End

5. If (j < rowBlocks)

 

Figure 20: Steps to compute the 1st-level partitions of the 2-level partitioning 
scheme and to statically load balance a matrix in BPMS format across several 
processors. 
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4.2 Experimental Results for SMVM 

The experimental setup for the results presented in this section is the same 

as the one used in section 3.4, thus comments will only be made for the 

variations in the setup or new considerations. Both of the blocked formats 

presented in this section (the BCSR and the new BPMS formats) have been 

configured in the same way so that a fair comparison can be assessed. The two 

formats were configured with 2x2 blocks (which minimizes the memory footprint 

of zero fill-ins). The BCSR format was also unrolled and optimized using the 

compiler optimizations. Non-square block configurations can also be tested, but 

were not considered for the results in this dissertation. 

In addition to the matrices used in Chapter 3, two new matrices where added 

from Matrix Market repository [42] (bcsstk32 and s3dkt3m2) and a set of 

artificially generated matrices (with nonzeros ranging from 6 million to 10 million) 

to better study the performance scaling behaviour of the new sparse format and 

algorithm (see Table 6). The artificial matrices generated have a band structure, 

increasing very little the amount of zero padding done for the PMS and BPMS 

formats. Table 6 shows the information for all the matrices, but results for this 

chapter will focus on the bigger matrices (4-8). 
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Table 6: Finite element (FE) test matrices from the Matrix Market repository [42]. 

# Name Rank NZ Sparsity 
% PMS NZ 

PMS % 
added 
zeros 

BPMS NZ 

BPMS 
% 

added 
zeros 

Sparsity 
pattern 

1 can___24 24 160 27.78% 208 30.00% 256 60% 
 

2 cavity26 4562 138187 0.66% 144148 4.31% 185428 34.18% 
 

3 e40r5000 17281 553956 0.19% 578312 4.40% 736336 32.92% 
 

4 fidapm37 9152 765944 0.91% 781100 1.98% 931648 21.63% 
 

5 bcsstk32 44609 2014701 0.10% 2082628 3.37% 2626404 30.36% 
 

6 s3dkt3m2 90449 3453461 0.05% 3931224 4.74% 4467300 19.02% 
 

7 s3dkq4m2 90449 4820891 0.06% 5001068 3.74% 5366604 11.32% 
 

8 SP10 10000 10006318 10.01% 10016832 0.11% 10034776 0.28% 
 

 
The first results evaluate the performance of the new BPMS format compared 

to PMS and BCSR (the reference block format). The executions Speedup15 (SU) 

results for the SMVM kernel using the PMS, BCSR, and the new BPMS formats 

with respect to the CSR format are shown in Figure 21 for increasing matrix sizes 

                                            
15 Absolute time ratio of CSR with respect to PMS, BCSR and BPMS execution times. 
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on a single Intel core. The CSR format is used as a reference providing the base 

computing time for comparison (since it contains no zero padding), whereas the 

other formats have extra computational overhead. The PMS results are shown 

mainly for comparison with the BPMS, since its performance was already studied 

in Chapter 3. The SU curves increase as the matrices grow and stabilize around 

2.5x for BCSR, 2.9x for PMS, and 4.4x for BPMS using the optimized kernels as 

described in section 4.1.2. These SU results clearly show that BPMS 

outperforms the other formats, a trend that stabilizes for the bigger matrices as 

the cache misses become regular. It is also interesting to observe that even for 

the worst case in Figure 21 (corresponding to the bcsstk32 matrix with 2 million 

nonzeros, when the matrix does not fit in the cache) BPMS is 3.4x faster than 

CSR. These results are even more impressive considering the high zero fill-in 

percentage (30.36%) in this matrix. 

BPMS also demonstrates good scaling for increasing matrix sizes, requiring 

less padded-zeros (see Table 6). This is true in general, but zero padding may 

slightly increase for very irregularly-structured matrices or regularly-structured 

matrices with numerous cavities between its entries, e.g., the three matrices in 

the valley of Figure 21. Compared to the PMS format the newly introduced format 

requires more zero fill-in, which can be observed from the percentage of zero fill-

ins for each of these formats in Table 6. 
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Figure 21: Speedup results for the SMVM kernel with the PMS, BPMS and BCSR 
with respect to the CSR format for one Intel-core. 

 
The next set of results describes the effect of the SIMD vectorization running 

on several processing cores for all matrix formats with and without optimizations. 

The first section of Table 7 shows SU16 results obtained for the optimized 

(vectorized) SMVM kernels (BCSR, PMS, and BPMS) with respect to the non-

optimized (non-vectorized) versions respectively for 1 and 4 cores. These results 

demonstrate that the vectorization of the SMVM kernel increases considerably 

the performance for all specialized formats, achieving up to 17x speedups for 

matrix (4) using the new BPMS format.  The high SU obtained for this matrix is 

mainly due to the fact that it fits in the Intel-CPU cache. Overall, the amount of 

                                            
16 The speedup results obtained in this section were computed as the time ratio of non-optimized 
to optimized kernels for a given number of computing cores. 
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performance gains with the vectorization of the SMVM kernel is reduced when 

more cores are used. On the other hand, for the larger matrices that do not fit in 

the cache the performance increased with the optimizations and the number of 

cores but was limited by the achievable memory bandwidth (BW) for each test 

matrix. 

The second part of Table 7 presents performance results for the vectorized 

kernels in GFlops/s using 4 Intel-cores and 6 Cell-SPE cores. Overall, a 

sustained performance of up to 8.24 GFlops/s for the SMVM-BPMS was 

observed with an average of 3.4 GFlops/s, the fastest SMVM kernel. Overall time 

results show that BPMS is 3.6x faster than CSR, 2.2x faster than the PMS format 

and 2.5x faster than BCSR for the matrices in Table 7 using four Intel cores. For 

the Cell BE the PMS format performs better than the BPMS format. The reason 

this happens is that PMS allows to efficiently stream both matrix and x-vector 

data to the SPE’s local memory using the double-buffering technique; whereas 

BPMS fetches the x-vector segment required to SPE local memory upon a miss 

in the x-vector segment already contained in SPE local memory. 
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Table 7: SMVM performance comparison results for the BPMS, PMS and BCSR 
SMVM kernels for the Intel Core 2 Quad and Cell BE processors. 

Intel SMVM optimized/non-optimized performance speedup 

Matrix (#) (4) (5) (6) (7) (8) 

1C-PMS 3.33 2.71 2.68 2.7 2.78 

4C-PMS 2.87 2.19 2.03 1.04 1.73 

1C-BCSR 2.53 2.42 2.42 2.44 2.62 

4C-BCSR 3.28 2.11 1.88 1.86 1.81 

1C-BMPS 5.49 4.42 4.35 4.45 4.8 

4C-BMPS 17.14 4.58 3.55 1.84 2.85 

4-Intel cores and 6-SPE cores SMVM performance results in GFlops/s 

Intel-PMS 1.53 1.2 1.26 1.3 1.38 

Intel-BCSR 1.57 1.14 1.12 1.27 1.48 

Intel-BPMS 8.24 2.47 2.13 2.11 2.21 

SPE-PMS 0.54 0.65 0.67 0.69 0.66 

SPE-BPMS 0.3 0.22 0.29 0.29 0.31 

 
Multicore performance scaling results for the cache-based architecture (Intel 

processor) deserves special attention since they motivated the creation of a 

second sparse matrix format. Figure 22 shows performance scaling results of 

four matrices varying the number of compute cores from 1 to 4. Again the almost 

linear scalability for SMVM-BPMS in Figure 22.a is achieved because the matrix 

fits in cache. The other matrices exhibit a reduced scalability for BPMS, but that 

is still much better compared to CSR, PMS and BCSR which was the original 

objective.  
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(d) s3dkq4m2 

Figure 22: Multicore performance scaling in GFlops/s for the SMVM kernel using 
the CSR, BCSR, PMS and BPMS formats on the Intel Core 2 Quad processor. 
 

The next section presents results for the conjugate gradient method 

accelerated method accelerated with vectorized SMVM algorithms. 

4.3 Conjugate Gradient Results 

In many modern EM simulations the solution of the linear system derived from 

the discretization of the problem domain (or operators) consumes a great deal of 

computational resources, often being the most time consuming operation. 
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Thereof, this section discusses the acceleration of the conjugate gradient (CG, 

discussed in Chapter 2) method using the newly introduced sparse formats and 

vectorized SMVM kernels. Since the parallel SMVM kernel is called in every 

iteration of the CG algorithm there will be considerable time invested in creating 

and destroying PThreads. To avoid this, a set of persistent threads (also called 

thread-pool) was created. These threads are set to sleep until an SMVM 

operation is required; at this point they are started. When the SMVM operation is 

completed the threads are synchronized and set to sleep again. Threads are only 

terminated when the CG algorithm ends.  

The non-vectorized parallel SMVM kernel is used in a parallel CG algorithm 

for the new BPMS format as proof-of-concept. The scaling performance with 

respect to 1-core BPMS-CG is shown in Figure 23 using four of the biggest test 

matrices. Near 3-times increase in performance (measured in GFlops/s) is 

observed when running the non-vectorized BPMS-CG from 1 to 4-cores 

confirming good scaling performance expected from the BPMS accelerated CG. 

Performance results in GFlops/s are shown in Figure 24 for the CG 

accelerated versions using 4 Intel-cores for different sparse matrix formats. The 

average performance in GFlops/s for each format is as follows: 1.31 for BCSR, 

0.58 for PMS and 2.83 for BPMS. Thus, BPMS is approximately 2.1x faster than 

BCSR, almost 4.7x faster than PMS, and 5.8x faster than CSR on average. 



 92 

 
Figure 23: Speedup scaling for the conjugate gradient method using BPMS with 
1 to 4 Intel CPU cores. 
 

 
Figure 24: Conjugate gradient performance results in GFlops/s using 4 Intel 
cores. 
 

These results demonstrate the performance benefits of BPMS over all other 

formats for CG algorithm in the Intel cache-based architecture. A different 

situation is found for PMS, which is not the best suited format for CG since there 



 93 

are insufficient instructions to hide the vector-spreading computation time as 

shown by these results. Nevertheless, the PMS format can be used in other 

applications where sufficient instructions parallelism exists to hide the cost of the 

vector-spreading operations or when multiple vectors exist so that the spreading 

time can be overlapped with other instructions. 

An alternative to recover the performance lost in PMS by the spreading 

operation of the x-vector is to entirely avoid the spreading operation. The 

performance of the SMVM-PMS will be reduced compared to that shown in 

Chapter 3 due to loss of regular access patterns to the x-vector data; this is 

because the SMVM-PMS kernel can no longer be treated as a dense kernel. For 

cache based architectures this approach takes advantage of the cache hierarchy 

to access x-vector data, but performance will depend on the sparsity pattern of 

the matrix. The results for this approach are presented in Figure 24 as CG-

MPMS (CG using the Modified-PMS, with no vector spreading operation), 

showing how a great deal of performance is recovered by dynamically accessing 

the x-vector in the PMS format, where BPMS is only 2.3x faster than MPMS (a 

similar performance difference to the corresponding SMVM results). Even though 

the performance is recovered for the MPMS its scalability is still poor as shown 

by Figure 25. 

 



 94 

 
Figure 25: Scaling of the CG performance in GFlops/s for the modified PMS 
(MPMS) format. 
 
4.4 Concluding Remarks 

This Chapter presents the third contribution of this work, a new blocked 

format called blocked pipeline-matched sparse (BPMS) representation that 

solves the performance scalability problems of the PMS format for cache-based 

architectures. The BPMS format compresses the index information, enhances 

data locality, and avoids overhead related to the vector-spreading operation 

required in PMS. Even though BPMS requires more zero fill-ins than PMS it 

demonstrates superior performance for cache-based architectures, while PMS 

performs better for the streaming architectures such as the Cell BE. The BPMS 

accelerated SMVM kernel on the Intel processor using 4 Intel cores 

demonstrated an average performance benefit of 2.5x over BCSR and 2.2x 
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faster than PMS. On the other hand, BPMS was 2.1x faster than BCSR and 

almost 5x faster than PMS on average for the CG algorithm. Figure 26 shows the 

complete workflow used to compute the CG algorithm. The vector spreading 

operation and the sequential nature of the CG algorithm are the main factors that 

reduce the performance of the PMS format for the CG algorithm.  

An alternate configuration of PMS is proposed that does not include the x-

vector elements and that offers better performance for cache-based processors. 

The blocked format introduced in this chapter was originally presented in [86] and 

published in [87]. The next chapter introduces the last major contribution of this 

work, an alternate formulation of the FEM solution for massively parallel 

computing. 
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Figure 26: Complete workflow used to compute the CG algorithm with the 
vectorized SMVM kernel and the 2-level partitioning scheme. 
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Chapter 5 
A Parallel Approach to Solving the 

Finite Element Method 
 

Parallel implementations of the finite element method (FEM) in large clustered 

or symmetric multi-processor (SMP) systems has traditionally been done 

exploiting coarse-grained parallelism in the dominant computing kernels (the 

SMVM and preconditioner operations in iterative solvers), while it has relied in 

traditional technological advances (Moore’s Law) to increase performance in 

local nodes (single processors). Chapters 2 and 3 have introduced new 

techniques to exploit fine-grained parallelism (SIMD-vectorization and parallel 

multicore processing) found in modern multicore processors that can be used to 

accelerate computations in these traditional approaches to parallel the FEM. 

The first two sections of this chapter introduce a new approach to solve the 

FEM by exploiting the low level parallelism available in the formulation of the 

method itself, thus well suited for parallel computing. The second part of the 

chapter develops a technique to implement the proposed approach on graphic 

processing units (GPUs) that makes efficient use of the massive parallel 

resources found in these processors. The new approach and the technique to 

implement it on GPUs constitute the last two major contribution of this work. The 
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chapter ends with an overview of specific work related to the two contributions 

introduced here. 

5.1 New FEM Single Element Solution (FEM-SES) Method: Alternate Fine-

Grained Parallelism in the Solution of FEM 

The classic FEM formulation can be presented as a seven step procedure 

[82] as follows (see Figure 27.a). 

(i) Discretization of the problem domain. 

(ii) Definition of boundary conditions (BCs). 

(iii) Construction of the element stiffness matrices. 

(iv) Assembly of the global coefficient matrix imposing corresponding BCs. 

(v) Solution of the algebraic system. 

(vi) Post-processing of the results. If the results meet the required accuracy 

then the method ends, otherwise an additional step is taken. 

(vii) Refine the mesh and/or change the basis functions and restart the 

process from the first step. 

Often the most time consuming and attractive candidate for parallelization in 

the finite element method is solving the algebraic system derived from step (v). 

The three most common approaches to parallelize the solution of FEM are: a) 

partitioning and solving in parallel the derived algebraic system [87-89]; b) 

employing domain decomposition techniques [90-93]; and c) using multigrid 
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techniques [91, 93]. However, a greater amount of parallelism is sought to take 

advantage of parallelism in multicore/manycore processors. This work proposes 

a new approach called single element solution or FEM-SES, in which the solution 

of each finite element is decoupled from that of the whole mesh by computing 

element stiffness matrices (subject to boundary conditions) concurrently.  

Figure 27.b illustrates the proposed change with a blue arrow (labelled 5) that 

connects step (iii) to step (v) directly. The disconnected solutions are then 

averaged node-wise using a weighted sum over all concurrent nodes and 

iterated until convergence is achieved. By skipping step (iv) of the classic FEM 

procedure described before, the proposed approach does not require building a 

global coefficient matrix. Thus the new FEM-SES method uses the same steps 

(i), (ii), (vi) and (vii) from the classic FEM workflow, skips step (iv), and modifies 

steps (iii) and (v). The remainder of this chapter concentrates on explaining the 

changes in steps (iv) and (vi) (encircled inside the green dashed line in Figure 

27.b), proving the validity of the new method and its benefits for parallel 

computing. The mathematical formulation for the proposed decoupled finite 

element method-single element solution (FEM-SES) is presented next. 
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Figure 27: Comparison of classic finite element method (FEM) workflow (top 
figure) with respect to the proposed single element solution (FEM-SES) method 
(bottom Figure). 
 

 

 

(a) Classic finite element method (fem) workflow. 

 

 

(b) Proposed single element solution (FEM-SES) workflow. 
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5.1.1 FEM-SES Mathematical Formulation 

Equations (4-6) present the classic FEM variational formulation for a simple 

2D electrostatic boundary value problem, which will be used throughout this 

chapter without loss of generality. In the aforementioned equations ( )F ϕ  is the 

functional to minimize, and the unknowns and boundary conditions are 

represented using ϕ  and p  respectively. 

 ( ) 0F ϕ∂ =  (4) 

 , on the boundary pϕ = Γ  (5) 

 
22

( )F d
x y
ϕ ϕϕ

Ω

  ∂ ∂ = + Ω     ∂ ∂     
 (6) 

The functional is then applied to each element in the discretized domain as 

shown in Equations (7-8) where the superscript e  refers to the element index. 

 1( ) ( ) en
eF Fϕ ϕ==   (7) 

 
2 2

( )
e

e e
e eF d

x y
ϕ ϕϕ

Ω

    ∂ ∂= + Ω     ∂ ∂     
 (8) 

Next, the local functionals are minimized and boundary conditions are 

enforced on each element independently, see Equation (9).  

 { }{ } { } { }
_

e
e e e

e
BC reduced

F K bϕ
ϕ

 ∂ = − = ∅ ∂ 
 (9) 

This is where the new method departs from the classic FEM. 
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5.1.2 The 2-Step Iterative Relaxation Method 

To obtain the global solution from Equation (9) a 2-step iterative relaxation 

approach is proposed (see Figure 28). The first step applies a relaxation 

technique using the previously obtained iterate-ϕ  and the local system derived 

using a matrix modification process from Equation (9) to compute the local 

element solutions concurrently. Figure 28 shows an example for a Jacobi type 

update on first order triangular elements with one, two or no boundary conditions 

and first order basis functions. In the second step the local solutions from 

overlapping nodes are summed using a weighted average to compute the global 

solution. 

The weights are computed using the main diagonal values of each of the 

elements matrices. Finally, a convergence check is performed to either exit or 

repeat the process. The next subsections briefly describe the sources of 

parallelism, advantages and disadvantage of the proposed 2-step iterative 

relaxation method. 

a) Sources of Parallelism 

Various sources of parallelism exist in the new approach. The most significant 

are listed in the following: 
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Figure 28: The 2-step iterative relaxation method. Step 1 shows examples of how 
to compute the solutions for elements with 1, 2, and 0 BCs. The examples here 
correspond to triangular elements with first order basis functions. 
 

• Element stiffness matrices can be built in parallel and preserved in 

distributed CPU/cores to be computed later. 

• The solution of each element can be computed in parallel independently. 

• The weighted average can be performed in parallel across different nodes 

taking into account the element connectivity.  

b) Advantages and Disadvantages 

The main disadvantage of the 2-step iterative relaxation is that it will converge 

slowly, similar to the Jacobi iterative method; although, the amount of parallelism 

per iteration is increased considerably. On the other hand, by exploiting 

parallelism in each iteration, the new approach reduces the total execution time 

of the finite element method as demonstrated in the results section. Among other 

advantages, the proposed FEM-SES method does not require special numbering 
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(local and global numberings) to build the global coefficient matrix and later 

obtain the final results requiring less time and effort in housekeeping procedures. 

There is no need to assemble a global coefficient matrix which might also 

become a time consuming step. The proposed method uses the same 

information as the classic FEM, and good scaling is expected since the element 

connectivity (the number of surrounding elements connected to a given element) 

of the FEM mesh will be almost constant as the mesh is further refined to better 

represent the geometry of the problem. 

5.2 Proof of Concept Results 

This section presents results to validate the new proposed FEM-SES method 

as well as performance results using a classic 2D electrostatic coaxial cable 

problem as shown in Figure 29. In this test case the outer square conductor is 

connected to ground while the inner square conductor is held at a constant 

voltage of 10V, and the two conductors are considered to be separated by air. A 

program was developed to generate regular meshing of this particular problem in 

MatLab in order to have better control over the number of elements being 

generated. The meshing program adds more elements to the mesh by creating 

equally spaced partitions between the inner and outer conductors and then 

discretizing these partitions using triangular elements. We use first order basis 

functions for all the elements in the finite element mesh. 
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Figure 29: 2D section of electrostatic coaxial cable. The inner conductor is fixed 
at 10V and outer conductor at 0V. The space between the conductors is 
considered free space. The insert shows a 3D representation of the cable being 
model. 

All tests are conducted on the Intel processor described in Chapter 3. 

Sequential implementations for both the traditional FEM and the new FEM-SES 

methods are done to validate the results of the new method. The systems energy 

results for the two methods are presented in Figure 30 for increasing number of 

unknowns. As shown in Figure 30 there is good agreement between the two 

energy results, validating the new method.  

To empirically evaluate the convergence scaling of the FEM-SES method the 

original mesh is refined to increase the number of unknowns. The method is 

evaluated for various mesh discretizations and the resulting iterations are plotted 

versus the number of unknowns in a log-log plot in Figure 31. The reference line 

(dotted line) in Figure 31 represents a linear scaling with slope 1, while the solid 

lines correspond to the actual iteration count for each run. 
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Figure 30: Energy results for the FEM and FEM-SES. 

 
Figure 31: Iterations scaling of the FEM-SES method for increasing number of 
unknowns. 

These results show a sub-linear iteration scaling of the proposed FEM-SES 

method as the number of unknowns increase, which is a desirable scaling 

property for iterative methods. Such sub-linear scaling is obtained even though 

the condition number increases considerably from 89.8 to 9672.7 as the mesh 

size (or unknowns) grows for the smallest to largest mesh sizes respectively. 
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5.3 Parallelizing Results for the FEM-SES Method 

In this section, techniques to parallelize FEM-SES are presented. A 

sequential implementation of the FEM-SES method is profiled first to determine 

the amount of time spent in the main sections of the algorithm. The two most 

important operations in the algorithm are the actual assembly of the element 

matrices and the 2-step iterative relaxation method itself. All other operations in 

the algorithm are considered as pre- and post-processing steps. The results for 

the profiling are shown in Figure 32. It is clear that as the number of unknowns 

grows the FEM-SES solution (i.e. 2-step iterative relaxation method) dominates 

all other operations (assembly, pre and post processing). Consequently, we 

concentrate on parallelizing the 2-step iterative relaxation method only, that 

correspond to the last two sources of parallelism identified in Section 5.1.2.a.  

Even though the methods proposed up to now have taken advantage of 

multicore processors with a few (2 to 4, or 8 in future generation multicore chips) 

cores, the proposed FEM-SES method offers a great amount of parallelism (each 

element solution can be computed concurrently) which is better suited for a 

processor with hundreds or thousands of cores, such as those found in graphic 

processing units (GPUs). Thus, this section will concentrate in implementing the 

FEM-SES method to exploit the parallelism found in modern GPUs, while a 

reference multicore implementation will also be presented for comparison. 
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Figure 32: Profiling results for the sequential FEM-SES method. 

5.3.1 Multicore Results for the Intel Platform 

A parallel implementation of the FEM-SES method was done for the Intel 

multicore processor (vectorizing the element solutions) to asses to potential 

performance gains in this type of multicore architecture. The vectorization is done 

on the 2-step iterative relaxation method. A graphical representation of the three 

steps used to parallelize the proposed methods for the Intel processor is 

presented in Figure 33. Here, the idea is to first divide the workload by elements 

in order of appearance in the mesh file (to minimize the amount of processor 

synchronization) across multiple cores. The second step is to use a thread pool 

to compute iteratively the 2-step iterative relaxation method while reducing the 

overhead of thread management. Finally, the results from different threads are 

summed per iteration, and a convergence check is preformed. 
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Figure 33: Multicore implementation of the FEM-SES method for the Intel 
processor. 
 

Timing results for the parallel version of the proposed FEM-SES method 

running in four Intel cores are shown in Figure 34. For the smaller problem cases 

no performance benefit is obtained because there is not sufficient parallel work to 

do to overcome the overhead of threading and synchronizations. However, with 

the increase of the mesh size an average speedup of 3x is obtained with respect 

to the sequential FEM-CG implementation. Although, these results are 

encouraging the FEM-SES method provides a greater amount of parallelism than 

what can be actually exploited with multicore processors.  

As was described earlier each element in the FEM can be computed 

independently, after which the individual node results are averaged. Thus, it is 

expected that manycore processors are a hardware architecture better suited to 

exploit the parallelism available in the FEM-SES method. The next section 

describes a GPU adaptation of the FEM-SES method and results for two different 

generations of NVIDIA graphic processors. 
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Figure 34: Performance comparison of the proposed FEM-SES method running 
on four Intel cores compared to a single core vectorized FEM using CG 
algorithm. The blue and red lines indicate the time of the two versions of FEM, 
and the green dotted line represents the speedup of the parallel FEM-SES 
method with respect to the single core optimized FEM-CG. 
 
5.3.2 Manycore Adaptation of the FEM-SES Method 

Before presenting the methodology used to implement the FEM-SES method 

on GPUs and the results obtained, an overview of the architecture and general 

GPU programming approach is presented. 

a) Overview of GPU Architecture 

In this work two NVIDIA graphic cards are used to accelerate the FEM-SES 

method. The first GPU is the GT8800 a first generation CUDA enabled GPU; and 

the second, is the GTX485 classified as the third generation CUDA enabled 

GPU. An overview of their architecture features is presented next. NVIDIA GPUs 

are composed of hundreds of scalar processors called CUDA cores that execute 
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the device kernels. CUDA cores are arranged into clusters of 8 to 32 cores 

(depending on the GPU generation, see Table 8) called streaming-

multiprocessors (SMs). Threads are scheduled to run on the CUDA cores in 

groups of 32 called warps. 

These clusters of CUDA cores have access to varied memory hierarchy 

ranging from registers, local memory, shared memory, constant/texture 

memories, and global memory. On the top of the hierarchy we have large 

registers files per SM varying from 8KB to 32KB, which along with the shared 

memory determine the number of simultaneous threads that an SM can allocate. 

Each thread in the SM has a private local memory used for local variables, 

register spills and function calls. Shared memory is a small multibank low latency 

memory controlled by the programmer (i.e. scratchpad memories, similar to local 

store in the Cell SPEs), that allows fast access to commonly accessed data 

shared among threads of the same block. Texture and constant memories are 

special types of shared memories with different types of memory addressing 

modes that are cached. These memories are designed to provide fast access to 

immutable data. Finally, global memory is a large long access latency memory 

used to store all data required by a kernel execution. This basic architecture was 

originally implemented in the NVIDIA G80 series (see Figure 35). 
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Table 8: Comparison of architectural features for the GeForce 8800 GT and the 
GeForce GTX 480 GPUs. In the Fermi GPU, shared memory and L1 Cache 
share a common space of 64KB. 

GeForce 8800GT (G80) GeForce GTX480 (Fermi) 

CUDA Capability: 1.1 CUDA Capability: 2.0 

Clock frequency: 1.5GHz Clock frequency: 1.4GHz 

Number of SMs: 14  Number of SMs: 15 

CUDA cores: 112 (8 per SM) CUDA cores: 480 (32 per SM) 

Register file: 8KB Register file: 32KB 

Shared memory: 16KB  Shared memory: 16KB/48KB  

No L1 Cache L1 Cache: 16KB/48KB 

No L2 Cache L2 Cache: 768KB  

Global memory: 512MB Global memory: 1.5GB 

Single warp issue Dual warp issue 

Single-precision floating-point (SPFP) Double and single precision FP 

Peak SPFP performance: 128 multiply 
add ops/clock 

Peak SPFP performance: 512 fused 
multiply add ops/clock 
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Figure 35: Basic architecture of NVIDIA’s first generation G80 CUDA enabled 
graphic cards. 
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The latest generation of CUDA enabled graphic cards called Fermi introduced 

several technological advancements [94] compared to the previous generation of 

NVIDIA GPUs. Full data cache support for the memory hierarchy, with a 

configurable Level 1 (L1) cache and a unified L2 cache and a dual warp 

scheduler per SM, which allows issuing two instructions to two separate warps at 

the same time. This feature is supported by an increase in the number of CUDA 

cores from 8 to 32 cores (divided in two groups of 16-cores, one per warp), and 

increasing the shared memory space up to 48KB. Also the different memory 

types now have a unified address space which provides full support for C/C++ 

pointers and full 64-bit addressing. Fermi has faster single and double precision 

processing with full IEEE 745-2008 support for both representations (as opposed 

to IEEE 754-1985 for previous generations of GT200). Among other architectural 

advances, atomic operations are faster, full memory support or error correction 

codes for critical applications has been included, as well as the ability to execute 

multiple kernels concurrently. Figure 36 shows the block diagram depicting the 

architecture of NVIDIA Fermi GPUs, and Table 8 compares some of the most 

important architectural features of GTX480 vs. GT800 GPUs from NVIDIA. 

 



 114 

64KB Shared Memory /
L1 Cache

SM1

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

CC CC

Register file

Uniform L2 Cache

SM2

SM15

Global Memory

CC: CUDA cores

 
Figure 36: Basic architecture of NVIDIA’s third generation FERMI graphic cards. 

 
A CUDA kernel launches thousands of threads which are organized into 

groups called blocks that compute the same code on independent data-sets, a 

model that is referred to as Single-Instruction, Multiple-Thread (SIMT). Blocks are 

independent and can execute in any order, thus having independent data-sets is 

important. Threads inside a block communicate using shared memory and can 

be synchronized, but threads across blocks can only communicate through 

global GPU memory using atomic operations. In both cases, judicious use of 

synchronizations and atomic operations should be exercised since they may 

become performance bottlenecks. 
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Programming a CUDA kernel involves identifying the data-parallel compute 

intensive sections of the application to be offloaded onto the GPU (also called 

device). The programmer must then specify how many threads per blocks and 

how many blocks per kernel should be used. Executing a GPU kernel involves 

sending the required data to the GPU, launching the actual CUDA kernel, and 

transferring results back to the host CPU. Once a CUDA kernel is launched, each 

SM is allotted several thread blocks that are executed sequentially in an arbitrary 

order. The SMs then schedule warps from a block to be executed. In particular, 

warps have been designed to execute the same code in a lock-step manner 

(similar to vector processors), but they provide flexibility to allow different 

execution paths (also called thread divergence) at the expense of performance 

reductions. 

b) GPU Parallel Implementation 

The CUDA 3.2 SDK [8] was used to implement the 2-step iterative relaxation 

algorithm on the GPU. The host function first defines the global device memory 

required to store the element matrices eK (including their right hand sides eb ), the 

global unknown vector ϕ , and the pre-computed weight factors ew 17. These 

values are then transferred to the GPU global memory. Next, the host function 

loops over the three device kernels (GPU kernels) that parallelize different 

                                            
17 The subindex “e” is used to refer to the matrix or vector of a particular element. Whenever this 
index is not used then it is assumed that the matrix or vector correspond to the whole mesh. 
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sections of the method until the convergence criteria are satisfied (see Figure 

37). The shaded process boxes in Figure 37 correspond to each of the CUDA 

kernels. Once convergence is achieved the host function exits the loop and 

transfers the global solution ϕ  back to host memory. Large data transfers only 

occur outside the loop minimizing the effects of global memory access latencies. 

Only single scalar values are transferred inside the loop (illustrated in Figure 37). 

Kernel 1 computes the solutions of each element in parallel as described in 

step 1 of Figure 28. Each thread in the kernel computes the solution of one 

element and stores it in global memory. Each block in this kernel consists of 256 

threads and the number of blocks in the grid is computed dynamically at runtime 

depending on the problem size which equals the number of elements in the FEM 

mesh divided by the block size. Most of the memory accesses are coalesced due 

to sequential addressing of the eK , eb  and ew  data sets but non-uniform and 

indirect access will still be required for the unknown ϕ -vector. The indirect 

accesses are one of the main performance limiting factors in this kernel. To 

minimize the effects of accessing the ϕ -vector (which is used several times in a 

thread), it is stored into shared memory.  Techniques such as loop unrolling and 

variable reuse are also used to enhance performance. The above mentioned 

kernel is the most time consuming of the three, Figure 38 presents the kernel 

code. 
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Figure 37: Workflow to parallelize the 2-step iterative relaxation method on 
NVIDIA GPUs. 



 118 

 

Figure 38: Kernel 1-CUDA kernel used to compute the single element solutions 
in FEM-SES. 
 

After the local element solutions are obtained, Kernel 2 is called to compute 

the global node solutions using an average sum. Again, the host function 

launches a 1 dimensional grid with 256 threads per block. The number of blocks 

launched is also computed in runtime and depends on the connectivity among 

elements. In this kernel, each thread is assigned the task of gathering results for 

one node. Once the new results estimate is computed, the error between the 
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new estimate and the previous one is determined and stored to device global 

memory. 

The third kernel partially computes the 2-norm of the error. This is done by 

calling the cublasSdot function from NVIDIA the CUBLAS [95] library which 

returns the dot-product of this vector to the host function. The host function then 

computes the square root to obtain the final value of the 2-norm, and finally 

convergence is assessed. Kernels are designed to avoid using synchronizations 

primitives to minimize execution bottlenecks. 

c) GPU Results 

Al results presented in this subsection were obtained for single precision 

floating point (SPFP) since the 8800GT graphics card only supports this 

precision, and in order to have a common basis for comparisons for all platforms. 

Future implementations will evaluate double precision performance. The timing in 

the GPU code was done using CUDA events that were found to be more 

accurate than the CUTIL timers [8]. Optimizations were used to compile the GPU 

codes (as well as the CPU code as described in Chapter 3), while the “–

arch=sm_20” flag was used with the NVCC compiler to enable FERMI advanced 

architecture features. The best timing results are shown for each version (CPU 

and for each GPU), and the algorithm is made to stop for a precision of 1e-3 with 

respect to the error in the unknown vector for two previous iterations. The coaxial 
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cable mesh was refined several times to increase the problem size. Table 9 

shows the data corresponding to the different mesh sizes used as well as 

execution times for a vectorized single core Intel implementation and the two 

GPUs. Here the number of unknowns is represented by the column labelled 

Nodes. 

Timing results for the reference sequential implementation of the classic FEM 

(with an efficient conjugate gradient iterative solver) used in section 5.2 were 

compared to the time results for the best performing GPU implementation. The 

speedup results for the FEM-SES Fermi implementation over the classic FEM 

implementations are shown in Figure 39, demonstrating that FEM-SES 

outperforms the classic FEM implementation with a better scaling behaviour. 

Next, the solution to the FEM was parallelized using an efficient parallel matrix-

vector multiplication in the conjugate gradient solver referred, using up to four 

processing cores on the Intel CPU with no significant time benefits mainly 

because of the test problem size and insufficient amount of parallel resources in 

the CPU. 

The time ratio results for the solution of the 2-step iterative relaxation method 

on the CPU relative to the two GPU times are shown in Figure 40. 
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Table 9: Finite element mesh dimensions for the 2D coaxial cable test case and 
solution times in seconds (last three columns) for the 2-step iterative relaxation 
method. 

Elements Nodes Iterations CPU 8800GT GTX480 

1120 504 327 0.012 0.316 0.793 

4640 2204 1227 0.196 0.461 0.878 

10560 5104 2626 0.975 0.929 1.137 

18880 9204 4475 3.013 2.095 1.475 

29600 14504 6755 7.744 4.349 1.864 

42720 21004 9433 15.268 8.243 2.322 

58240 28704 12503 28.659 14.473 3.067 

76160 37604 15938 48.508 23.716 4.028 

96480 47704 19739 77.197 36.817 5.501 

119200 59004 23877 116.545 54.703 7.201 

268800 133504 49486 554.643 250.002 23.273 

478400 238004 82632 1663.66 744.573 60.415 

 
As expected, these results show that for smaller problems there is not 

sufficient parallel work to benefit from the GPU implementations; this in addition 

to the large caches in modern microprocessors allow the CPU version to 

outperform the GPU ones for the first two meshes tested (see Table 9). On the 

other hand, as the problem size grows, even for relatively small problems, the 

GPU speedups over the CPU times become apparent. A speedup of up to 2.23x 

times over the CPU solution times is obtained for the 8800GT and up to 27.53x 

times for the GTX480. It is important to point out that the times reported in Table 

9 include all data transfers from the CPU to the GPUs and vice versa. 
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Figure 39: Speedup of the Fermi GPU FEM-SES implementation versus the 
classic FEM sequential implementation on the Intel CPU using a CG solver. 
 

 

Figure 40: Speedup of the GPU solution times with respect to the CPU times. 
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Table 10: Limiting performance factors for the GPU kernels. 

Kernel 1 Occupancy Limiting Factor Resources 

8800GT 0.666 Registers 7168 out of 8192 

GTX480 0.833 Registers 30720 out of 32768 

Kernel 2 Occupancy Limiting Factor Resources 

8800GT 0.666 Registers 5632 out of 8192 

GTX480 1.000 None 32768 out of 32768 

Kernel 3 Occupancy Limiting Factor Resources 

8800GT 0.666 Registers 7168 out of 8192 

GTX480 0.666 Block-size blocks of 128 threads 

 
Table 10 shows the limiting factors for each of the three CUDA kernels 

developed for each graphic card. The main limiting factor for the three kernels 

that ran on the first generation 8800GT graphic card is the number of registers 

available per SM. Only 66.6% of the available computing resources are used due 

to the small register file per SM on this graphic card, limiting the performance 

which accounts for the plateau of the speedup in Figure 40. 

This is not the case for the newer generation GTX480. For the GTX480 kernel 

1 was limited by the number of registers but a higher utilization factor of 83.3% of 

the resources is attained. Kernel 2 exhibits no limiting performance factors 

achieving a 100% use of parallel resources, while for kernel 3 only 66.6% of 

resources are used. In this last kernel the limiting factor is no longer the number 

of registers available but the actual block size used (128 threads/block) as 

reported by the CUDA profiler. Kernel 3 uses the cublasSdot function from 
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CUBLAS library to compute the dot-product of the error-vector in our 

implementation, which provide the best timing results but does not allow us to 

control the resources used in this kernel.  

The average time consumed by each of the three kernels for the biggest 

mesh sizes used is presented in Figure 41. These times show that kernels 1 and 

3 dominate overall execution. This behaviour is in agreement with the resource 

utilization explained before. Although kernel 1 implements several code 

optimization techniques (coalesced memory accesses, shared memory usage 

and loop unrolling), it is still limited by the amount of register (hardware 

resources) available. Kernel 3 computes a dot-product which requires a reduction 

operation (a common bottleneck in scientific kernels); this kernel is implemented 

using the built in functions in the CUBLAS [95] library. 

Finally, an optimized CPU code using loop unrolling, data alignments to 

natural memory boundaries and compiler vectorization (as explained in the 

previous two chapters) was compared with the two GPU runs. Table 11 presents 

the performance results of the FEM-SES method for the CPU and GPUs using 

the biggest mesh. These results clearly show that the code running on GTX480 

can be efficiently parallelized outperforming modern CPUs even with aggressive 

hand coded optimizations. 
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Figure 41: Time distribution of the kernels used to implement the 2-step iterative 
relaxation method. 
 
Table 11: Performance results for the FEM-SES method of the hand optimized 
CPU code versus the GPU implementations. 

 CPU 8800GT GTX480 

2-step iterative 
relaxation 

828.255 744.573 60.415 

GTX480 Speedup 13.71X 12.32X 1X 

 
5.4 Related Work 

To the best of our knowledge the closest effort to implement a finite element 

method based on a decoupled solution is presented by Bastos et al. in [96] called 

N-scheme. The N-scheme computes the solution of each mesh nodes 

independently based on the current value of the neighbour nodes connected to it 

without building a global coefficient matrix. FEM-SES is fundamentally different 

since it computes the solution based on solving the element stiffness matrices, 

and the resulting solutions are coupled to obtain the global solution. In [97], Eyng 

et al. implement a parallel version of the N-scheme method using 4 cores (out of 
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168 cores) of a Mirynet 2G cluster. This second work presents only preliminary 

results for a small test case (2362 nodes and 4153 elements) that yielded similar 

performance as that of the sequential implementation. The results obtained here 

for the parallel FEM-SES (see section 5.4) show that indeed for small problems 

there is not enough work for parallel systems to exhibit any performance benefits. 

On the other hand, this work demonstrates how the proposed method exhibits 

good parallel performance scaling behaviour for bigger test cases. 

Other previous efforts have successfully implemented accelerated versions of 

the finite element method on graphic processors. Some of the most important 

ones are presented next and compared to our proposed method.  An early work 

by Göddeke et.al [98] uses a mixed precision defect correction algorithm to solve 

the linear systems derived from FEM obtaining up to 2.3 times faster 

performance than the CPU version alone. The referred work uses single 

precision computations on the early graphic processors (with no double precision 

support) to obtain the solution of the linear system, and then an outer loop 

executed by the CPU in double precision corrects the solution. Modern graphic 

cards now support native double precision arithmetic, thus no longer requiring 

this type of indirect computations to achieve double precision accuracy. 

Nevertheless, further studies could be done to identify the potential performance 

gain of using these methods considering the faster single precision operations. A 
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double precision of the FEM-SES method will be developed on GPU to assess its 

performance compared to both double and single precision CPU and GPU code.  

In [99] two approaches to accelerate FEM are presented by assembly of the 

global coefficient matrix in the GPU, demonstrating up to 15 times gains in 

performance. The FEM-SES method does not require building the global 

coefficient matrix thus importantly reducing the computation cost associated to it. 

Moreover, our approach allows building the elements coefficient matrices in the 

parallel compute cores where they will be used which will benefit distributed and 

multicore implementations of the FEM-SES method. Another interesting work 

that accelerating the assembly process of FEM is presented by Cecka et al. 

[100]. Here several methods to parallelizing the assembly process are presented 

and evaluated on two different GPUs. Up to 65 times speedup is shown for the 

assembly of unstructured finite element meshes with first order basis functions, 

and the performance degrades as the order of the basis functions increase. 

Multi-GPU efforts to accelerate the FEM have also been addressed in [101-

103]. The first work implements the discontinuous Garlekin FEM on a GPU 

cluster using asynchronous concurrent executions which obtained up to 18 times 

the performance of an 8-node cluster of quad core CPUs. In the second work, a 

commodity cluster with heterogeneous hardware resources (nodes with CPU and 

GPU) is used to enhance the performance of a finite element framework, 
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showing significant performance increases even when using older generation 

graphic cards. The third work proposes a parallelization approach with a dynamic 

load balancing that combines task partitioning and stealing method to efficiently 

exploit both CPU and GPU processors. Multi-GPU implementations are one of 

the main subjects of our future work 

5.5 Concluding Remarks 

This chapter present two major contributions. The first contribution is a new 

element-based solution technique for solving the finite element method called 

FEM-SES well suited for parallel processing. This idea was first presented in 

[104] as a new approach for computing the finite element method in parallel 

processors, but only sequential proof-of-concept results were shown at that time.  

The second contribution is a methodology for implementing the proposed 

FEM-SES method to exploit the parallel computing power of modern graphic 

processors. The goal of designing the FEM-SES method is to expose more 

parallelism in the finite element method compared to traditional approaches. The 

method was implemented in two different generations of NVIDIA GPUs obtaining 

up to 27.53 times speedup on the GTX480 compared to compiler optimized CPU 

results. Even for a hand optimized CPU code with optimizations such as loop 

unrolling and  vectorization, our GPU implementation still achieves 14 times 

faster performance when using the GTX480 graphic card. 
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Although a simple test case is used to validate the FEM-SES method in this 

work, we believe that it will converge to correct results for a broader type of 

problems where the Jacobi method is applicable. Such statement is made based 

on the fact that a Jacobi update scheme is used in the 2-step iterative relaxation 

method to obtain the decoupled element solutions. 
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Chapter 6 
Conclusions and Future Work 

 
The constant demand for more detailed models and greater precision in 

electromagnetics (EM) simulations has defined a clear trend towards solving 

increasingly complex computational EM problems that has relied, in part, on 

continual CPU improvements; however, current technological limitations in 

hardware construction (in particular power dissipation problems, and frequency 

related problems) have dictated the need to explore new alternatives.  

Lead hardware architects and manufacturers have defined an irreversible 

shift in paradigm towards parallel multicore processors as the means to 

overcome many of today’s hardware limitations. This parallel trend has been 

accelerated even more with the recent popularity gained by massively parallel-

manycore GPUs for general purpose computing (GPGPU) that also require 

parallel programming models. This problem is also patent in clustered systems 

that have traditionally relied in the increasing performance of previous single core 

processors and communications frameworks to provide an aggregate high 

performance clustered system. Moreover, existing frameworks that are useful in 

parallelizing dense linear systems usually cannot handle complex data structures 

required for sparse linear system that often arise in EM simulations. This means 
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that EM practitioners must explicitly consider parallel algorithms and techniques 

in order to efficiently exploit the full potential of emerging computing processors. 

This thesis focuses on accelerating the sparse matrix-vector multiplications (a 

dominant compute intense kernel in EM computations) and shows that by 

rethinking the way sequential sparse algorithms are implemented and 

transforming them into dense-like algorithms, memory access patterns are 

enhanced, computations become regular (enabling short-vectorization of the 

kernel), also facilitating the partitioning load balancing of the SMVM kernel, 

leading to greater performance. Similar ideas are applied to the finite element 

method which also leads to exposing the intrinsic parallelism in the algorithm and 

the expected performance enhancements. 

6.1 Original Contributions 

In this work five original contributions are presented, three to accelerate the 

SMVM algorithm and two for the finite element method: 

• A new sparse matrix format called pipelined-matched sparse (PMS) 

representations well suited for streaming architectures (e.g. Cell BE, 

FPGAs, etc.) that enables efficient vector processing for the SMVM 

algorithm, implementing the SMVM kernel as a dense kernel (opposed to 

the traditional sparse implementation), and facilitates matrix partition and 

load balancing.  
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• A second sparse matrix format called blocked pipeline-matched sparse 

(BPMS) representation that solves the scalability problems of the PMS 

format for cache-based architectures, but retaining similar benefits as 

PMS. 

• A 2-level partitioning scheme and modified SMVM kernels that vectorize 

and exploit parallel cores in the two multicore architectures used. The 

optimized PMS kernel on the Cell-SPE processor demonstrated average 

performance benefits of 3.5X faster than the Intel SMVM-CSR, 2.6X over 

Intel SMVM-PMS, and nearly 14X faster than the SMVM-CSR 

implementation in the Cell-PPE for the largest test matrix. Similarly, the 

optimized SMVM-BPMS kernel running on the Intel processor 

demonstrated 2.5x performance enhancements with respect to BCSR and 

2.2x faster than PMS on average. 

• A new element-based solution technique for solving the finite element 

method called FEM single element solution (FEM-SES) well suited for 

parallel processing, that decouples the element solution of the FEM mesh 

so that they can be computed in parallel. 

• A methodology for implementing the proposed FEM-SES method to 

exploit the parallel computing power of modern manycore processors 

(GPUs) with performance increases from 27.53 times speedup on the 
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GTX480 compared to compiler optimized CPU results to 14 times on an 

aggressively hand optimized CPU code.  

The optimizations techniques presented throughout this work have been 

applied to specific hardware architectures to demonstrate their performance 

benefits; however, they are general in nature, thus holding greater theoretical 

value and broad applicability to different parallel architectures. 

All the software developed to implement and test the contributions presented 

above has been collected and organized in a modular, flexible and easily 

extensible C library that can be viewed as an additional contribution to this work. 

Libraries such as the one proposed in this work (among other tools, e.g. parallel 

compilers and programming languages) have been identified [105] as one of the 

key tools that will be required to take advantage of the current multicore trend 

that is expected to dominate computer architectures for the foreseeable future. 

This library will be made available freely through a website at McGill. 

6.2 Future Work 

The first three contributions presented are related to accelerating the SMVM 

algorithm on different types of multicore processors. The computations were 

mainly done in single precision since the SPE cores in the Cell BE processor 

used are not efficient in double precision arithmetic and to keep the comparisons 

fair with the Intel architectures all computations were done in single precision. So 
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a natural extension of this work is to implement double precision versions of the 

algorithms proposed, some of which have already been done and included in the 

C library produced.  

The next extension that is currently being studied is the multicore acceleration 

of the preconditioned iterative methods. The effectiveness of the proposed 

techniques for multicore processors was demonstrated in this work for the 

unpreconditioned conjugate gradient method; however, most iterative methods 

are used with a preconditioner to accelerate their convergence rate. Accelerating 

the preconditioning step in iterative solvers is crucial, as commented in Chapter 

2, since along with the SMVM kernel they represent the two dominant kernels in 

iterative solvers. Of particular interest, as an extension to this work, are 

polynomial preconditioners that are commonly applied in the iterative method as 

successive SMVM operations that can be done efficiently in multicore with the 

techniques proposed here. The C library provided contains several CG 

implementations as well as some preconditioned CG algorithms and provides 

support for sequential application of Jacobi, Choleski and a simple polynomial 

preconditioner. 

A third direction proposed is related to the last two contributions. The 

proposed FEM-SES proved to effectively accelerate the overall execution time of 

the finite element method even though the method has slow convergence. Thus, 
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the next step in this research will be to evaluate different ways to accelerating the 

2-step iterative relaxation method by either finding better update scheme or 

modifying the method itself. 

The final future work direction suggested in this thesis is the continued 

development of the matrix library proposed in this work to optimize the functions 

that have not yet been optimized and enhance its functionality. The intention is to 

provide an in-house software product that will offer current and future developers 

a base platform to run sparse algorithms with different optimizations, and test 

new research ideas while extending its functionality. 
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Appendix A: 
Compilation of Modern Matrix Libraries 

 
This appendix presents a brief overview of the most widely adopted matrix 

libraries classified according to the concurrent model implemented. Table 12 

shows the classification of these libraries and Figure 42 and Figure 43 present 

summary information for each of these libraries. It is important to note that many 

of these libraries do not provide multithreading support for multicore processors 

and none exploit short-vector (SIMD) processing. The references made to vector 

processing in some of the libraries refer to older vector processing machines as 

described in [24], and not for the type of short-vector units found in modern 

processors. 

Table 12: Classification of sparse matrix libraries according to the concurrent 
paradigm implemented. 

                  Matrix Type 
 
  Sequential  
  / Parallel 

Dense Sparse 

Sequential (Seq.) 
Shared memory (SM) 

BLAS (Seq.) 
LAPACK (Seq.) 
GotoBLAS (SM) 

Atlas (SM) 

Sparsity 
Oski 

Sparselib++ 
Csparse 

ITSOL(SparseKit) 

Distributed memory (MPI) 
SCALAPACK (PBLAS, 

BLACS) 
PSBLAS 
pARMS 
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(a) Sequential and shared memory libraries. 

 
(b) Parallel distributed memory (MPI) libraries. 

Figure 42: Dense matrix libraries classification. 
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(a) Sequential and shared memory libraries. 

 

 
(b) Parallel distributed memory (MPI) libraries. 

Figure 43: Sparse matrix libraries classification. 
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A compilation of some of the most important iterative and direct solver 

libraries for sparse systems is also presented for reference in Figure 44 for 

completeness. No classification has been done in this case because of the broad 

spectrum of targeted systems and methods implemented. 

 

Figure 44: Sparse direct and iterative solver libraries. 
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Appendix B: 
A Flexible and Portable Multithreaded Library for Sparse Matrix 

Computations (FPMSparseLib) 
 

A library was organized with the implementations of all the algorithms 

presented in this thesis as well as complementary algorithms and general 

functions required for the testing and benchmarking done. All the programming 

was done using standard C language (chosen for its efficiency and portability), 

and the library organization was done so that it could be used in a modular and 

flexible way and easily extensible. A makefile is provided so the library can be 

easily recompiled with different compilers, compiler optimizations flags, and for 

different software platforms. Currently the makefile provided only supports 

cache based machines and NVIDIA GPUs, since the SPEs in the Cell BE 

processor require a different software setup not included in this library. 

The proposed library is self contained, thus no software dependencies are 

required to install it in a new computing system with the exception of the CUDA 

SDK, if one desired to test the GPU enabled functions. The only other external 

libraries required not developed by the author is a small library (mmio) from the 

Matrix Market [42] repository used to read and write Matrix Market files. These 

files are included as part of the library built, but are only used for benchmarking 

the algorithms with Matrix Market matrices. Matrices that are obtained from a real 
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application or built by the user need not use this library, instead they should use 

the libraries built to read and write matrices to files provided in this library. 

Moreover, reading a Matrix Market matrix using the mmio library has been 

encapsulated in a function that automatically converts the matrix to CSR 

representation, the de facto representation used by almost all sparse matrix 

software. Figure 45 presents the organization of the sparse library by 

functionality and an overview of the functionality for each of the modules and files 

is given in the next subsection.  

 
Figure 45: Library organization by functionality. 
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A brief overview of the functionality offered by each of the modules in the 

libraries is presented next, followed by a description of the sparse matrix data 

structure created, which is a central component in the proposed library. 

B.1 Description of the Library and the Sparse Matrix Data Structure 

The description of the library along with the file dependency relations are 

presented in Table 13 by modules, which are defined in the context of this work 

as groups of files with a common functionality.  

B.2 Description of the Sparse Matrix Data Structure Used in the Library 

Figure 46 shows the compressed sparse matrix data structure created for this 

work, which is a central component in the library. All of the functions in the library 

use this general data structure regardless of the sparse matrix format used, 

keeping a standard interface. The first three fields (lines 2-3) are used for all 

matrix formats, whereas the fields in lines 6 and 7 are used for blocked formats, 

and the field in line 5 is used to store the vector elements in the PMS format 

along with field in line 8 (that stores the number of vectors per matrix row). All of 

the fields described (from line 2 to 8) are pointers where any kind of primitive 

data type can be stored, and that are accompanied by corresponding pointer 

fields (ending in the word “free”) which are used by the memory allocation 

functions provided to align all data to the specified memory boundary (memory 

boundaries must be a power of two value) .  
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Fields in lines 26 and 27, store the matrix name and properties if some are 

desired. Future enhancements to the library may standardize the content of such 

pointers to use matrix properties in the code itself and not just as matrix 

information. The remainder of the fields in the data structure are self explanatory, 

and basically provide information on the matrix dimensions, total number of 

nonzeros with and without padding, block size used, total number of blocks, the 

type of data stored in the matrix (integer, float, double, complex) and the sparse 

format used (compressed_format). 

 

 

Figure 46: Sparse matrix data structure. 
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Table 13: Library description and file dependency. 
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