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By the end of his l1life he had been accorded virtually every

international honour in the field of science.
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scientific creativity, included below 1s a 1list of his
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INTRODUCTION

THE PROBLEM OF HENRI POINCARE

This dissertation 1s concerned with the logical
foundations of sclience. The history of science has been
punctuated by a number of crises. These crises have occurred
when the evolution of scientific theory appeared to move in
a new and unsuspected direction. The sclentific novelty
seems, at such times, to signify more than a casual
modification of the established tradition. It is as though

there had been a qualltative change in the nature of

science., Such crises are comparatively rare. The names
of a few great figures 1In the history of sclence tend
naturally to come to mind - Copernicus, Gal ileo, Newton,
Maxwell, Planck, Bohr and Einstein,

The crises brought about by the sclentific
discoveries of these men produced a flurry of activity
among philosophers. At such times, the questions: "What
i1s science?," "what are the logical foundations of a
scientific theory?" and "What is the relationship between
a scientific statement and the world?" are posed.

Henri Poincaré was the philosophical interpreter

of such a crisis in the history of science. In this case
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the crisis was in the field of geometry. Prior to the
development of non-Euclidean geometry in the mid-nineteenth
century, geometry had been regarded as perfect and unchanging.
With the advent of non-Eucllidean geometry, philosophers and
scilentists were compelled to reappraise the status of geometry
and, in particular, its supposed relationship to physical
space.

Let us trace briefly the development of non-
Euclidean geometry during the nineteenth century, which
paved the way for the philosophic theories of Poincare.

The beginning of mathematics in the modern sense
of that word is in the work of BEuclid. His monumental
achlevement was to originate the axiomatic or postulational
method. He discovered that all the known geometrical
relationships, as well as many new ones, could be logically
derived from a few simple assumptions or axioms. This
endowed geometry with a marvelous simplicity and certainty.
More particularly, the problem of verification was vastly
simplified by Euclidts achievement. Prior to the work of
Buclid, every geometrical proposition stood by itself.
Euclid showed, however, that the truth of all geometrical
theorems depended solely on the truth of the few axioms
from which they could be derived. Thus, Euclid could be
said to have reduced geometry to these axioms. Hence, the
verification of geometry ls simply resolved into the problem

of verifying the axioms. In fact, this was no problem at




all for Euclid in that he regarded his initial assumptions,

the axioms, as self-evident or 1lntuitively certain.

Poincaré points out that actually the initial
assumptions of Euclidean geometry are by no means of a
uniform typel. Specifically, some of them are purely
analytic in character and do not properly belong to geometry
as, for example, "Things which are equal to the same thing
are equal to each other." The other group of axioms is
peculiar to geometry, and of those one in particular stands
out. This is Euclid's celebrated "parallels" postulate.

It asserts that through one point only one parallel may be
drawn to a given stralght line.

The postulate of parallels had attracted the
attention of mathematicians for many years. It has perhaps
stood out as somewhat unsatisfactory because it leads to
the notion of 1nfinity.2 Thus, it lacked the complete
intuitive certainty that was expected from a Euclidean
axiom. Hence, the system of Buclidean geometry which
depends on this axiom has the shadow of doubt cast upon it.
Undoubtedly, Euclidean geometry might have been improved in
elegance and simplicity if this postulate could have been
deduced as a theorem of the system. Many mathematicians

attempted to demonstrate this postulate, i.e. to derive it

1Science and Hypothesis, p. 35f. (All references
will be to the Dover edition, New York, 1952).

2H. Reichenbach, Philosophy of Space and Time, p. 3.




from the other axioms, but all such attempts had to be
ranked with the attempts to trisect the angle or to square
the circle.

The birth of so-called "non-Euclidean" geometry
came about when certalin mathematicians, notably Lobatschewsky,
Bolyail and Gauss, discovered that a consistent geometrical
system could be constructed without the inclusion of this
dubious postulate.

Lobatschewsky did not regard his geometry as a
serious rival to the Euclidean system, In fact, it sserved
principally to show the impossibility of demonstrating the
postulate of parallels. He reasoned that if this postulate
could be derived from the other axioms, then were one to
reject it while retaining the other axioms as they are,
self-contradictory theorems should follow as consequences.
Thus, he assumes that through a point an indefinite number
of straight lines may be drawn parallel to a given straight
line. When this was combined with the traditional axioms
of Euclidean geometry, there resulted a system of theorems
which differed in many respects from Euclidean geometry
but which appeared to possess complete internal consistency.
For example, the angle sum of a triangle was found to be
less than two right angles3. Moreover, the amount of the

defect varied with the area of the triangle.

3Cf., A. D'Abro, The Evolution of Scientific

Thought, p. 35.




The next major development along these lines was
X made by Riemann. Lobatschewsky had constructed hls system
analytically by varying one of the fundamental postulates
of Euclidean geometry, Riemann, on the other hand, approached
the problem in a different manner. He realised that the

most fundamental definition of a geometrical system is the

definition of congruence, Once this definition has been
given, the rest of the geometry must follow necessarily
from it.
In ordinary experience, our definition of congruence
is in terms of the behaviour of rigid bodies. A distance
AB is regarded as congruent with a distance CD if a rigid
measuring rod which is just equal to AB is also just equal
to CD after it has been transported through space. We assume
that the measuring rod has not contracted or "squirmed"
during the transportation. However, one may very well ask
how one can be certain that the measuring rod has undergone
no deformation., Again, in everyday experlence an answer is
ready. A rod 1s regarded as rigid provided that it determines
various distances as congruent in such a way that the resulting
geometry of the reglon measured turns out to be Euclidean.
It should be obvious that such a criterion is arbitrary.
Reichenbachu has pointed out some of the difficulties

involved in determining congruence. It is impossible to

%gp, cit. p. léff,



determine whether a rod has been transformed during
transportation if this change were caused by universal
forces5 affecting the rod. If two rods were found to be
equal when placed side by side, and were then transported
to a distant reglon of space, by different routes, and were
again found to be of the same length when placed side by
side, it would not necessarily follow that they had been

of the same length at all times during the transportation.
"An expansion that affects all bodies in the same way is
not observable because a direct comparison of measuring
rods at different places 1s :I_'mpossible."6 It would be
useless to appeal to optical experiments since then a similar
assumption would have to be made about the propagation of
rays of light.

The immediate consequence of the foregoing
considerations is that the determination of congruence 1is
not an empirical problem at all. That is to say, we do not
"cognize" congruence but simply "define" it., Two rods which
are normally regarded as equal might be defined as unequal
such that one could be treated as though it were twice as

long as the other., Doubtless, such a system would greatly

5A universal force, in this case, would be one
which permeated the whole of space; which could not be
stopped or varied by a material barrier; and which would
affect all material substances in precisely the same manner.

6Reichenbach, Op. cit., p. 16.




complicate our measurements, Nevertheless, from the logical
standpoint, the new system would be just as admissible as

the normal one. Thus, it emerges from t he considerations

of Riemann that congruence is determined by definition. It

is a matter of convention. Mathematical space is completely
amorphous. The system of geometry which we employ to describe
space depends on our initlal convention. This doctrine is
referred to as the "relativity of geometry" or "the relativity
of space."

Thus, the mathematician is presented with a number
of different systems of geometry from which to choose the
geometry of physical space. The situation was profoundly
different from anything envisaged by Kant. For Kant, there
was a single geometry which was imposed on phenomena
a priori. The evolution of mathematics in the nineteenth
century revealed that Euclidean geometry is merely one among
many, What then is the relationship between geometry and
the world? Can we attach any meaning to assertions that
"space 1s Euclidean?" Those were the problems faced by
Henri Poincaré. |

In the following chapters we shall consider these
and other related problems in greater detall, and attempt
to clarify Polncaré's solution of them, about which there
have been certain misunderstandings in the current literature

of philosophy.




CHAPTER I

MATHEMATICAL AND PHYSICAL CONTINUA

Geometry may be described as the study of the
spatlial continuum. Thus, Poincaré develops his philosophy
of science by first exhibiting the manner in which the spatial
continuum is formed. This 1s prlor to any considerations of
the metrical properties of space.

The most elementary form of continuum is & series
of numbers., We may begin with the series of rational or
commensurable numbers. Each term in the infinite series is
different from every preceding and succeeding term. Hence,
strictly speaking, this series is not a continuum., That is

to say, we cannot travel imperceptibly from one term to the

next. If every point on a straight line could be represented
by a rational number, it would follow that a straight line
would not be continuous but would be an aggregate of separate,
discrete points. Then it would be conceivable that two

lines could intersect without a point on one line coinciding
with a point on the other. For example, the hypotenuse of

7

an isosceles right-angled triangle’' would not intersect the

71.9., the dilagonal of a square.
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other two sides., If each side of the triangle were
represented as belng of unit length, then the hypotenuse,
according to the celebrated theorem of Pythagoras, would
be represented by vf‘. But\/g is an irrational number.

Such considerations led mathematiclans to regard
the irratlional numbers as real, to admit their existence on
the line. Thus, between each term of an Infinite series,
another infinlite series of irrational numbers is interpolated.
In this way we arrive at the notion of a mathematical
continuum,

Poincaré now8 considers the relationship between
the mathematical continuum and the physical, i.e. sensory,
continuum, One might at first suppose that the notion of
a mathematical continuum were simply drawn from ordinary
experience. Poincaré, however, succeeded in showing that
there is a profound difference between them. Moreover, this
difference is the result of the crudeness of sensory experlence.

It has been established experimentally by Fechner
that we are unable to distingulish the sensation caused by &
welght of 10 gr. from that caused by one of 11 gr., Similarly,
we cannot dlstingulsh the sensation of 11 gr. from that of
12 gr. However, the sensation of 10 gr. is quite distinct
from that of 12 gr. Thus, we find that sensory continua
exhibit & curious relationship between their elements, which

may be expressed as follows: A = B, B =, A<(C. This,

8Science and Hypothesis, p. 22.
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Poincare writes, "may be regarded as the formula of the
physical continuum."9

The above simply stated formula is plainly at
variance with the principle of contradiction, and has
necessitated the invention of the mathematical continuum
which is free from any such contradiction. The mathematiclan
will maintain that the contradiction 1is simply the result of
the crudeness of our senses. Poincarée infers from this that,
while the mathematical continuum is not imposed by our
experience, experience has, nevertheless, suggested it to
us, This, as we shall later see, 1s the germinal idea of
his philosophy of the exact scliences, an ldea which has been
curiously overlooked by many modern writers who have quoted
from his works.

The first stage in the creation of a mathematical
continuum is to intercalate between A and B a discrete

number of terms. However, if we had recourse to a more

refined instrument of observation such as a microscope, the

same difficulty would reappear. Under the microscope A and
B would now appear to be distinct, but a new term D would
appear which could not be distinguished from either A or B.
To escape thé contradiction we would postulate still more
terms separating D from both A and B. But then a more

powerful microscope would reveal new elements which could

Idem.
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not be distinguished from the postulated intermediary terms.
Thus we are led to interpolate more and more terms, ad
infinitum. Sensory experience will always exhibit this
inherent characteristic of the physical continuum with 1its
assoclated contradictoriness.lo
There 1s yet another difficulty connected with the
physical continuum. A given length is indistinguishable from
half of that length doubled by the microscope. Thus, the
whole and the part are, in this sense, homogeneous. To
resolve this contradiction it is postulated that there is
a continuum of an infinite number of terms. Thus, the
aggregate of whole numbers is equal to the aggregate of even
numbers., At the basis of our mathematical reasoning is the
assumption that an operation which has been performed once
may be repeated, in the same way, an indefinite number of
times., This is the principle of mathematical inductlon
which Poincaré regards, curiously enough, as a genuine

synthetic a priori principle.ll

Thus, once we have intercalated
terms between two consecutive terms of a series, we feel that

this operation may be continued without limit. Thus, Poincaré

speaks of mathematical continua of various orders. The
continuum of the first order would be represented by the

aggregate of rational numbers, By lntercalating the series

1O'I'.he Value of Science, p. 42. (All references
will be to the Dover editiIon, New York, 1958).

11

Science and Hypothesis, Chapter I, Passim.




12

of irrational numbers, we arrive at the continuum of the
second order and so on.
We have already anticipated Poincaré concerning
the origin of the mathematical continuum of the second order.
He points out that, strictly speaking, 1t is only the latter
which may be called a mathematical continuum.12
To summarise, we have shown that experiment has
led the mind to construct a particular system of symbols
which 1s called the mathematical continuum, The physical
continuum contains inherent contradictions which suggest
the necessity of a mathematical continuum, Thus, there is
a relationship between the two. However, it should not be
thought that the mathematical continuum is imposed on the
mind. The mind freely constructs the mathematical continuum
as a result of perceiving the contradictions inherent in the
physical continuum. This, it should be noted, is not an
a priori necessity. Furthermore, the physical continuum is
imposed & priorl no more than the mathematical continuum.
The former is simply a contingency which arises from the
crudeness of our sensory perception. Thus, contrary to the
views of Kant, Poincaré would not regard the space-time form
of the manifold as an & priori form of sensibility, but
simply as a convenient and natural method of ordering the

data which come to us from that faculty.

The next aspect of the continuum which we shall

121p14., p. 27.
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consider is of great importance. It is, however, one of

the more difficult aspects of the foundations of qualitative
geometry, namely the problem of dimenslionallty. Poincaré
deals with this subtle subject with masterful simplicity.
However, the subject 1s inherently complicated and 1its
exposition is not made easier by the fact that Poincaré
gradually developed and improved his ideas on the subject
throughout hils works., The basic concepts are provided 1n

Science and Hypothesis. The special problem of the origin

of the three-dimensional character of physical space is

dealt with in The Value of Science. The latter subject 1s
taken up once more and fully developed in his posthumous

Last Thoughts.

Poincaré developed the notion of multi-dimensional
continua from the preceding considerations on the nature of
the physical continuum. More specifically, it is based on
the simple fact that any two aggregates of sensations are
elther distinguishable or indistinguilshable.

We may now mention the technical terms which
Poincaré introduces for the exposition of this subject.l3
A single aggregate of sensations will be called an "element."
A "continuum" will be constituted by a linear series of
elements, provided that 1t is possible to travel from any

element in the series to any other via a series of connected

3Ibid., pp. 31-32.
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elements no one of which can be distinguished from its
predecessors. An aggregate of elements is called a "cut",
provided that the removal of this aggregate would be such

that the remaining elements would no longer constitute a

single continuum. Not every removed aggregate of elements
would constitute a cut., If one of the remaining elements

were indistinguishable from an element of the removed aggregate,
then the latter would not have subdivided the former.

The number of dimensions of any continuum C will
be defined by the necessary number of dimensions of the
corresponding cut. In any continuum of n dimensions, the
cut will be of n-1 dimensions. If the cut 1s composed of
a finlte number of distinguishable elements, the continuum
will be of one dimension. The continuum which is of
particular interest to the geometer, the three-dimensional
continuum, could therefore only be subdivided by & cut which
is itself a two-dimensional continuum,

Poincaré's treatment is highly abstract and it
would facilitate our understanding if we considered a simple,
concrete illustration, Let us imagine a series of musical
notes, Each note is so close to its neighbouring notss as
to be indistinguishable from them. This would satisfy the
definition of a sensory or physical continuum. That is to
say, it would be possible to travel from any note or element
of the series to any other by way of an imperceptible series

of transformations of pitch. Let us now imagine that one note
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of this series is removed. Then obviously it would no
longer be possible to make the trip by imperceptible degrees.
A discernible jump from one note to the next would be
required to bridge the gap left by the missing note., Thus,
the removed note would be a cut. Now this single note 1s
obviously not a continuum. It has zero dimensionality
analogous to that of the geometrical point. Thus, the
original series of notes would be a continuum of one
dimension,

Let us now imagine that in addition to variations
of pitch, there are also variations of intensity or loudness
in the aggregate of musical notes. For any pitch there are
several degrees of intensity such that one could travel from
one degree to any other through a series of imperceptible
changes. We would now have a continuum of two dimensions.
That 1s to say, it would be impossible to subdivide this
continuum by the removal of a single note. Let the series
of pitches be represented by consecutive letters of the
alphabet A B C ... . Now let the series of sound intensities
be represented by consecutive integers 1 2 3 ... . Let us
suppose that the single note K7 were removed., Would it now
be possible to go by imperceptible stages from J7 to L7?
Obviously it would be. There is an indefinite number of
possible routes which would, in fact, satisfy the condition
of a sensory continuum. For example, from J7 the ear could

travel impereeptibly to J6, then to K6, then to L6 and finally
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to L7. We can readily see that to render the transition
from J7 to L7 impossible, it would be necessary to remove
either all of the K!'s of all intensities or all of the 7's
of all pitches. In either case, the cut would itself be a
continuum, either of sound intensities or of pitches. This
cut could be subdivided by the removal of a single note,
and would therefore be one-dimensional., Hence, the original
continuum must have been two-dimensional, One might then
consider the addition of differences of tonality in the
aggregate of notes. Then the cut would have to be a two~
dimensional continuum of the type which has just been described.
The total aggregate of notes would then be a three-dimensional
continuum,

Finally, to justify this mode of defining the
dimensionality of a continuum, we must consider whether it
is compatible with the idea of dimensionality as actually
employed by geometers,

"Usually they begin by defining surfaces as the
boundaries of solids or pleces of space, lines as the
boundaries of surfaces, points as the boundaries of
lines, and they affirm that the same procedure can not
be pushed further.

"This is just the idea given above: to divide
space, cuts that are called surfaces are necessary; to
divide surfaces, cuts that are called lines are necessary;
to divide lines, cuts that are called points are
necessary; we can go no further, the polnt can not be
divided, so the point is not a continuum. Then lines
which can be divided by cuts which are not continua will
be continua of one dimension; surfaces which can be
divided by continuous cuts of one dimension will be
continua of two dimensions; finally space which can be
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divided by continuous cuts of two_dimensions will be
a continuum of three dimensions."l

The point of Poincaré's special language is that
it is adapted to apply not to mathematical continua but to
physical continua, for example to physical space, which, as
the only representational space, 1s of much greater intrinsie,
epistemological interest than mathematical space.

So far, no reference has been made to the notion
of measurement, although the properties of the spatial
continuum depend on this. Poincaré's four works on the
philosophy of science are largely based on separate articles
written at different times. It may sometimes, therefore,
appear that his philosophy is unsystematic. This is not
truly the case. As one instance of this, we may consider
the germinal idea of the relativity of space which is hinted
at, In passing, in his initial discussion of the continuum.
Poincaré states that a criterion must be formulated to
enable us to compare the intervals separating two terms in
the continuum. That 1s to say, & definition of congruence
must be provided. This, he tells us, requires the convention
that the interval separating two terms A and B 1s equal to
the interval separating C and D. By convention, 1t is assumed
that all elements of the continuum are equidistant. "This

definition is very largely, but not altogether, arbitrary."l5

Provided that the commutative and associative laws of addition

1)""I‘he Value of Science, p. Ul

15Science and Hypothesis, p. 28. (The italics are mine).
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are satisfled, the cholce is indifferent. We thus see how

the consideration of the continuum leads naturally to his

views on the relativity of space and geometry.




CHAPTER II

THE GENESIS OF THE VISUAL CONTINUUM

When we speak of space, we should make the
distinction between physical or representational space and
geometrical or mathematical space. This distinction is
merely that which holds between the sensory and the
mathematical continuum,

Poincaré distinguishes the most essential properties
of mathematical space which are that it is continuous,
infinite, three-dimensional, homogeneous and 1sotropic.16
Visual space is found to differ fundamentally in its
essentials from mathematical space. Polncaré considers an
image on the retina of the eye. Admittedly, this image is
continuous, On the other hand, 1t is enclosed within a
limited framework and, moreover, it is not homogeneous.

The last point is very important and we should
pause to consider it in greater detail. The mathematically
naive person who considers the bizarre idea of a non-Buclidean
geometry will probably argue that such geometrical systems

may be of academic interest, but, nevertheless, Euclidean

geometry has a privileged status as the geometry of the space

16Science and Hypothesis, p. 52.
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which we observe - real, physical space. He does not

consider that we must learn to use Eucllidean geometry. We
must learn to adapt ourselves to it.

Primitive visual perception appears to have a
metric of 1ts own which differs from the metric of Euclidean
geometry., This fact is actually quite well known but
profoundly ignored not only by laymen but also by many
philosophers. Kant, himself, would have done well to have
considered it. I refer to the phenomenon of optical
illusions.

A certain class of optical illusions depends on
the fact that the retina of the eye has & non-homogeneous
lattice structure. Hence, visual perceptlon yields results
which differ in a fairly definite manner from those of
BEuclidean measurements, If we observe a round disk such as
a coin, it will appear to be slightly flattened at the top
and bottom. When two straight lines are drawn side by side
of equal length, one horizontal and the other vertical, the
former will appear to be longer than the latter. We take
these direct intuitions to be illusory when we find that
they do not conform to the measurements which we make with
our rigld Euclidean rulers. That 1s to say, we reject the
only "natural" geometry there 1s, the geometry of primitive,
visual perception. In its place, we select the more convenient
geometry with its constant metric (for rigid bodles) which

makes no distinction between the horizontal and the vertical.
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Thus, we see, contrary to the belliefs of the mathematically
naive, that if any geometry qualified as a privileged,
"natural" geometry, one of its characteristics would be its
use of a metric for a heterogeneous space.

To return to_Poincaré, he appears to admit that
representational space, like mathematical space, is three-
dimensional. However, the third dimension or distance
obviously cannot impress itself on the two-dimensional
surface of the retina. We are able to appreciate distance
through the effort of accommodation which we must make to
focus on a distant object and also through the angle of
convergence of the two eyes. That is to say, our awareness
of the third dimension results from a muscular sensation,
so that representational or visual space, unlike mathematical
space, 1s not 1sotropic.

Poincaré finds it striking that the effort of
accommodation and the convergence of the eyes are in complete
agreement or harmony. In mathematlcal language, "the two
variables which measure these two muscular sensations do not

g, ni7

appear to us as independen "Tf two sensations of

convergence A and B are indistinguishable, the two sensations
of accomodation A' and B' which accompany them respectively

n18

will also be indistinguishable. However, Poincard

maintains that we can only know this as an empirical fact.

1pid., p. Sk,

18Idem.
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There is no & priori necessity attaching to it. It is quite
conceivable that convergence and accommodation could be
independent. Then, so to speak, there would be an additional
independent variable. For example, a being with senses like
our own might be placed in a world in which light would have
to pass through complex refracting media before reaching his
eyes., Then convergence and accommodation would yield different
results, Under such circumstances the visual, spatial
continuum would be four-dimensional.

It appears that Poincaré is in error regarding the
last point. Doubtless, he has frequent recourse to popular
physiological considerations as the result of the medical

background in his family.19

However, he seems to reveal
little appreciation of the evolutionary factor of adaptation
which cannot be separated from any physiological question.
An elaborate criticism of Poincare's argument would have to
be undertaken by a skilled physiologist, and is certainly
beyond the scope of the present thesis, However, one or
two extremely elementary remarks would not be out of place.
Firstly, there is no necessary mathematical
relationship holding between the effort of accommodation
and the angle of convergence. Moreover, for practical
purposes, accommodation might be regarded as a purely
qualitative sensation. Thus, it is surely obvious that we

simply learn to associate a certain convergence with a given

19His father was a medlcal doctor.
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accommodation. Thus, in all cases, we should expect the two

to be in complete harmony. The amount of effort which we

must make to focus on & distant object will actually depend

on the curvature of the lens of the eye. This, iIn fact,

differs widely from one individual to another. A myopic or

near-sighted individuvual will have to make & greater effort

than a normael-sighted person. But this does not lead him to

attribute a fourth dimension to representational space. If

we could assign a set of values to the accommodation "variable,"

we should find that they corresponded to one set of angles

of convergence for the myopic person and to another set for

the normal-sighted individual, As the amount of myopia

increases slowly during an individualt's lifetime, he will

gradually make the necessary adjustment in his association

of ideas, It 1s sometimes the case that one eye is quite

myopic while the other is normal. An individual so afflicted

may wear spectacles to correct the discrepancy. If he wears

them all day and then removes them at night, his visual

perception will be confused. Even then the necessary re-

adjustment may be made 1in a matter of seconds without

resorting to a fourth dimension.zo
Finally, if it were the case, as Poincaré seems

to think, that there were a definite relationship between

accommodation and convergence, amounting to more than mere

assoclation, the organism's power to adapt would ensure that

2OA personal experlence of the writer.



the lens of the eye were of the right shape for the two to

be in harmony. An individual in & hypothetlcal world where
all light passed through refractive media would have a
differently shaped eye from our own. On the other hand, if
someone from this world were transported to the hypothetical
world, he would immediately know that his confused perception
of distance was the result of the presence of some such
medium and would register no more surprise than we do when

we perceive that a straight stick becomes bent when a part

of it is placed in water. Fortunately, however, Poincaré's
mistake does not affect the validity of his fundamental
position that our intuition of the three-dimensional continwum

21 In fact, he may have

is empirlcal and not given & priori,
been aware of the difficulties iInvolved since he offers a
brief but more subtle argument for the three-dimensionality
of visual space in The Value of Science.22
It should be noted that Poincaré has not really
shown why the visual continuum 1s of three dimensions. He
has merely argued that it must be less than four. Two of

the three dimensions of space have simply been determined by

the fact that the retina 1s a two-dimensional surface. This

of course is clearly to beg the question, for one might then

2]‘Poincaré's lapse is all the more curious since,
on the following page, he deals with motor space in terms of
the assocliation of ideas along the lines I have suggested.
¢f., Science and Hypothesis, pp. 55-56.

220p._cit., p. B2ff.
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ask: "why do we represent the retina to ourselves as a two-
dimensional surface?"

The complete solution to the problem of the three-
dimensional character of the spatial continuum is not
given through a consideration of pure visual space. Poincaré
regards visual space as an abstraction, an "artifice."23
Nevertheless, we shall see what he has to say about it.

Poincaré begins by considering the abstraction
from the visual manifold of all those sensations which are
red. These sensations will differ only as regards the point
of the retina which they affect. Let us now imagine a line
drawn across the retina so that it divides these sensations
into two groups. Now all the red sensations which are on
this line or which are so close to it as to be 1ndistinguishable
from them will obviously form a cut which divides the manifold
of red sensations, That is to say, one could not pass
continuously from a red sensation on one side of the line to
one on the other side without choosing a route which would
include one of the sensations in the cut. Let us call this
cut C. Now, the aggregate of sensations affecting a single
point on this cut would constitute a second cut ¢', since it
would divide the aforementioned line. Poincaré argues that
if C' has n dimensions, then C will have n + 1, and visual
space will have n + 2.

If all the sensations affecting a single point could

23Cf., The Value of Science, pp. 53&5l.




26

be regarded as identical, this aggregate would not constitute
a continuum., It would be of zero dimensions, in which case
complete, visual space would be of two dimenslions. Thus we
see that a key question to be answered is whether or not it
is possible to distinguish two sensations which are
qualitatively indistinguishable and which, furthermore,
affect the same point on the retina. The answer, of course,
is that it is possible, provided that their perception
involves differing sensations of convergence or of accommodation.
Thus, it follows that C' is a continuum. The reader may note
that in this later argument, Poincars refers to convergence
and the effort of accommodation but does not require their
hermony.

We may now consider the cut C'' which would be
the aggregate of sensations of C!' accompanied by a glven
effort of accommodation or sense of convergence. This element
would not be a continuum since i1ts constituent sensations
would be indistinguishable.lt

One last point should now be considered. Poincaré
does point out that 1f convergence and accommodation were
not equivalent, it would follow that visuval space were four-

dimensional., His treatment of this matter in The Value 2£

2u0f course, they could in fact be distinguished
by their temporal succession. Then a single sensation would
be a cut Ct1, is would give rise to a four-dimensional
space-time continuum. The Value of Science, of course,
predated the great work of Minkowski,
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Science is, however, in line with the criticisms vwhich I

levelled against Science and Hypothesis., He asks the reader

to consider whether his arguments show that experience has
taught us that space has three dimensions. Poincaré answers
this question in the negative. He admits that an opticlan
could give us spectacles to create & fourth-dimension if this
were true. Experience has simply taught us that it ls
convenient to attribute three dimensions to space. Now, of
course, everyone knows that very well, It would seem, at
first, that Poincarét's entire discussion of the dimensionsality
of space has been superrogatory, since the nature of space

is purely conventional, Has this long discussion revealed
nothing more than that we assume that space has three dimensions?
This interpretation would naturally be unthinkable. Careful
reading25 will reveal that Poincaré simply meant that the
harmony of convergence and accommodation is not experimentally
given but is a useful convention. In short, it is the simplest

convention which i1s suggested by the nature of experience.

25Vide, The Value of Sclence, p. 5. Last paragraph

but one.



CHAPTER III

THE GENESIS OF MOTOR AND TACTILE SPACE

According to Poincarg, complete representational
space is more complex than visual space which is merely a
part of it. More fundamental than visual space is what he
chooses to call "motor" space. All of our movements are
accompanied by muscular sensations. The framework to which
we refer these sensations is motor space. Now, to each
muscle there corresponds a speclfic sensation. Thus, it
would appear that there would be as many variables connected
with thls space as there are muscles in the body. That is
to say, 1f, for example, there were n muscles in the body,
then space would be n-dimensional. The Kantian would argue
that 1f the notion of space were dependent on movement, it
is because a definite sense of direction is inherent in all
our movements; that this sense of direction is imposed,
a priori, on our muscular sensations as much as on our
visual ones. Poincare explicitly denies this viewgé. He
argues that the sense of direction is not imposed a priori

but arises through the assoclation of ideas. Such an assoclation

is very complicated since the contraction of & muscle in my

26Science and Hypothesis, pp. 55-56.
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fore-arm, for example, may correspond to any direction
depending on the general disposition of my body. It is,
Poincaré meintains, the result of habit based on a large
number of experiments. No single sensation could give rise
to the concept of space. It is only through studylng "the

laws by which these sensations succeed one another," that we

arrive at this notion.
The most pervasive feature of sensory experience
is change. In general, we distinguish two fundamental types
of change = change of state and change of position or
displacement. Both types of change are conveyed to the mind
in the same way, as changes in an aggregate of sensations.
There is nothing in the nature of the sensory evidence ltself
to suggest what sort of change has actually taken place.
Thus, 1f I perceive a circle which becomes a triangle, I may
attribute the change of impressions to forces which have
compressed the circle into a triangle or I may equally well
attribute the change to the rotation of a cone. How, then,
do we in fact distinguish a change of state from a displacement?
Let us first answer this question simply and directly.
In the case of any dlsplacement, the original aggregate of
sensations may be restored through the appropriaste voluntary
motion. The motion will be such as to restore the object to
its original position relative to oneself. The modification
in the sensations is balanced by an inverse modification

which will restore the original aggregate.
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It follows that we may pass from the aggregate
of sensations A to the aggregate of sensations B in two
different ways. The modification will be either voluntary
or involuntary. .The voluntary modification corresponds to
a displacement of the observer, whereas the involuntary
modification, unaccompanied by muscular sensation, corresponds
to a displacement of the object.

We are now in the position to understand the
incomplete character of any account of space which limits
itself to the visual continuum., On the basis of visual
sensation, it would be impossible to dilstinguish between
changes of state and changes of position. Let us imagine
an observer who is incapable of any motion. He would be
presented with a two-dlmensional visual manifold. In this
manifold, he would note that some sensations are more or
less permanent while others undergo frequent modification.
Let us now imagine that one day our hypothetical observer
became aware of certaln muscular sensations which accompanied
changes in the form of the hitherto permanent, visual
sensations, while, on the other hand, the changing sensations
became relatively permanent. Our observer would have changed
his original position and would eventually recognize this
and interpret the novel phenomena in terms of objectat
varying theilr distance from him in a third dimension.

So far we have made the distinction between changes

of state and changes of position. We have noted that changes
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of state cannot be reversed by a voluntary movement whereas
changes of position or displacements can be. This distinction
is not altogether satisfactory. Poincaré draws a further
fundamental distinction between what he calls "intermal®
changes which are voluntary and accompanied by muscular
sensations and "external changes which have the opposite

27

characteristics, Among externmal changes, some are capable
of being corrected by an appropriate, voluntary motion of
the body whereas others are not., It is in this way,
specifically, that we distinguish between changes of state
and changes of position.

Poincaré considers the following illustration.
A sphere has one red hemisphere and the other blue., We are
first presented with the blue hemisphere, and then the sphere
rotates so that we are now presented with the red hemisphere.
Let us now compare this situation with that of a spherical
vase containing a blue liquid which becomes red as the result
of a chemical reaction. We have received similar visual
sensations, yet we interpret one as a displacement and the
other as a change of state., In the first case, I am able,
by walking around the sphere, to reestablish the original
blue sensation, whereas in the second case I cannot.

Let us now conslider a second sphere having a

hemisphere of yellow and one of green. Originally a blue

sensatlion was replaced by a red sensation. Now, after the

2Tmme value of Science, p. 48.
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rotation of the second sphere, a yellow sensation is replaced
by & green one. Thus, we are presented with two distinct
series of sensations, yet we regard them as the outcome of
a similar displacement, the rotation of a sphere. Obviously,
we are able so to do not because we have the right to set
up a correspondence between blue and yellow and between red
and green, but because in both cases the original sensation
can be reestablished by a similar movement accompanied by
similar muscular sensations. It is important to note that
the similarity of muscular sensations in the two cases
suffices for the conclusion. It is not necessary to know
anything of geometry or to represent the motion of onets
body in geometrical space.

Poincaré offers a second illustration.28 Let us
Imagine that an object is in motion so that its image was
first formed at the centre of the retina and subsequently
at the border of the retina, The two sensations must be
qualitatively distinect or one could not distinguish between
them. How, then, is one led to postulate that the two
distinct sensations are really one and the same image which
has undergone a displacement? Simply because the object may
be followed by the eye., It is possible to bring back the

image to the centre of the retina, to reestablish the primitive

sensation by a voluntary motion accompanied by a muscular

sensation.

281bid., p. L9.
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If the image of a red object moves from the centre
A of the retina to the border B, and then the image of a
blue object passes from A to B, one concludes that the two
objects have undergone a similar displacement because
precisely similar muscular sensations will accompany the
two eye motions which are necessary to reestablish the
original sensations. If the eye were incapable of being
moved, I should not be in the position to state that the
relation between red at the centre and red at the border
was equivalent to that holding between blue at the centre
and blue at the border.

"I should only have four sensations qualitatively
different, and if I were asked 1f they are connected
by the proportion I have just stated, the question
would seem to me ridiculous, just as if I were asked
if there is an analogous proportion between an auditorg
sensation, a tactile sensation and an olfactory one."

So far we have been considering external changes

or those which arise without any voluntary motion of the

body. Now we must consider Poincaré's treatment of "intermal"
changes. Firstly, Poincaré distinguishes between a simple
displacement of the body in which the various parts of the
body retain their initial positions relative to each other
and those changes in which the parts of the body undergo a
modification in thelr relative positions, The latter may be

called a change of "attitude."Bo The two may be distinguished

291p1d., p. 50,
3OIdem.
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by virtue of the fact that the former can correct an external
change whereas the latter may bring about, at best, a partial
correction. Poincaré stresses once again that this may be
ascertained as an item of direct experlence without any
prior knowledge of geometry being presupposed,

It has sometimes been suggested that Poincaré has
supplied the contemporary philosophy of science with its
formal element while such thinkers as Ernst Mach supplied
the empirical baslis. It should by now be clear to the
reader of this exposition that Poincaré believes that the
fundamental notion of the spatial continuum has an experimental
basis. It is much more than a formalistic convention. We
shall later see how this is connected with the formalistic
aspect of his philosophy which has been called
"Gonventionallsm, "3t

To repeat, Poincar§ denies that geometry is
presupposed by these elementary, experimental facts. However,
an elementary geometrlcal explanation could be provided if
it were desired. An external object undergoes a displacement.
If we desire the various parts of the body to resume their
initial positions relative to this object, it would be
necessary that they retain their original positions relative
to each other. If the position of the eye changes relative
to a finger, the eye can still be displaced in such a way

that the original visual aggregate of sensations 1s restored.

31Cf. Infra, p. 79.
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However, the relative positions of the finger and the
external object will then have been modified so that the
original tactile sensations would not have been restored,
Only the internal changes which correspond to the restoring
of the original relative positions of the eye and the finger
could be accompanied by the restoration of the original
aggregate in all its aspects, This is, of course, an
explanation which presupposes a good deal of geometry.
Poincaré!'s point is that the awareness of the facts themselves
requires no geometry.

A second pertinent consideration which Poincard
raises 1s that the same external change may be corrected by
more than one internal change and therefore be accompanied
by different sets of muscular sensations. This again is a
primitive experimental fact. However, the following is a
geometrical explanation of the fact. To move from position
A to position B, one may take different routes. To one of
these routes there will correspond a set of muscular sensations
S whlle to another there will correspond & set St'' which may
be completely different from S. Now, how is it that I am
able to know that both correspond to the one displacement
AB? The two series S and S't' will have but one common
feature; both are capable of correcting the same external
changse. Thus, I may walk in a straight line from A to B,

I then return by a straight path to A, so restoring the

original aggregate of sensations. I then execute a series
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of pirouettes around the room until such time as I become
aware, once again, of the second aggregate of sensations.

I then know that I have once more displaced my body from A
to B.

A more complicated situation is now considered.32
Consider two different external changes as, for example, the
rotation of the half blue, half red sphere and the rotation

of the half yellow, half green sphere., Let us call the two
displacements & and b, They will be represented to us by

two quite different changes of sensation, the passing of

blue into red and yellow into green, Now we consider two
series of internal changes S and 3'!' accompanied by sets of
muscular sensations having nothing in common. Now, I happen

to be in the position to assert that a and b correspond to

the same displacement and that S and St'' also correspond

to the same displacement. How 18 this possible? It is because
I discover that S can correct both displacements a and b,

and that a can be corrected by both S and St*'. Now we may
consider the following question: "If I have ascertained that
Sttt likewise corrects g?"33 In answering this question,

Poincaré states his position with greater force. He

maintalns that experiment alone can teach us whether or not

the law is verifled. If it were not at least approximately

32The Value of Sclence, p. 51.

331dem.
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verified there would be no geometry.Bu In fact, we would
have no interest in making the distinction between a change
of state and a change of position, and we would have no
concept of space.

We may note with interest the difference between
the somewhat contrived Kantian position and that proposed
by Poincaré. The Kantian would argue that the law is verifled
by virtue of an a priori condition of sensibility which
makes 1t so. According to Polncaré, on the other hand, it
is an empirical fact that the law is true. What, then, for
Poincaré is the relationship between experience and geometry?
Poincar® refrains from adopting the radical empiricist
position that geometry is learned from experience. The
student of Kant will be fully aware of the untenable nature
of this position which has been proposed by some empiricists
such as Hume and John Stuart Mill. Geometry, as a formal
system, requires the truth of this law. This entails neither
that the law is a priorl nor that geometry is emplirical. It
simply means that geometry can be applied in practice without
fear of contradiction., In fine, experience does not teach
us geometry but it does teach us that geometry is useful.
Thus, once again, we see Poincaré's general position in the
process of emerging. Geometry is a convention. But 1t is

not an arbitrary one. It 1s a convention which has been

3uIt is not however universally valid. If 1t were,
there could be no geometry. Cf. Science and Method, pp. 110ff.
(A1l references will be to the Dover edlition, New York, no date.)
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suggested by experiencel

So far, in tracing the genesis of physical space,
we have considered the visual continuum which was found to
be a continuum of three dimensions. However, it has been
pointed out that the consideration of a purely visual
continuum is artificial and, to some extent, even arbitrary.
We have just now analysed what Poincaré describes as the
continuum of displacements. An element of this continuum
was an internal change capable of correcting an external
change. It has the property of a ﬁhysical continuum since
two internal changes may be so close as to be indistingulshable.
The continuum or group of displacements is related to space
but it cannot serve as an analogue of space since it is not
three-dimensional, Poincar636 states that this contlinuum in
fact, has six dimensions, although, unfortunately, he does
not undertake the rather tedious task of demonstrating this.
Thus, the genesis of the familiar notion of space is still
not completely accounted for, To do so, we must first make
a detour to consider certain questions regarding the notion
of a point.

The spatial continuum is a manifold of points in
three-dimensions. Each point is an element of the continuum.
Adhering to what has already been said about continua in

general, it follows that points in space must be normally

35Science and Hypothesis, p. 50.

36The Vglue of Science, p. 57.
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distinguishable but sometimes indistinguishable. But what
do we mean by the ldentity of two points? How can we
distinguish two points? What, in fact, is a point?

In the first place, it is not possible to represent
a point to oneself, at least not in the simple manner that
some people might think possible. When these people think
that they are representing a point, they are, in fact,
visualizing a very small object such as a tiny chalk spot
on a blackboard, However, while there is indeed a difficulty
here, 1t 1s not the most fundamental one, The crux of the
problem concerns the representation of a specific point.37
FPor example, if we agree that a point in space may be
deslgnated by a chalk spot on a blackboard, in what sense
can one be in the position to say that the mark occupies
the same position or is located at the same point after a
period of time has elapsed?

Poincaré is of course making a simple reference
to the relativity of position. The chalk mark will have

travelled 30 kilometres from its original position after a

period of one second as a result of the earth's motion. It
is impossible to determine whether an object has retained
its position in space during any period of time. 1In fact,
the question is meaningless, Thus, we may only consider
the relative position of the point. The most primitive

consideration would be whether the point has retained its

371p1d., p. L6.
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relative position to oneself. If the sensations produced
by the object differ from the original aggregate, as we
have seen, the object has undergone a displacement or a
change of state, If we can voluntarily restore the original
aggregate, we conclude that the object did in fact undergo

a displacement. Furthermore, if two objJects have retained
their relative position to onets own body, one may conclude
that they have retained their position relative to each
other. The latter consideration, as we have already stated,
presupposes & knowledge of geometry, so that fundamentally
we are only able to speak of the position of points relative
to our own body.

Thus, 1t eppears that a point may only be defined
with reference to a coordinate system attached to one!'s own
body. The localization of a point in this way does not,
however, presuppose the notion of space. All that is
required is that one represent to oneself the movements which
are necessary to reach it. More precisely, one would
represent the muscular sensations which would accompany such
a motion. The muscular sensations, as such, would certainly
not presuppose space, Hence, 1f two different objects
successlively occupied the same polnt in space, the impressions
associated with them might be totally different. One feature,
however, which they would share is that similar muscular
sensations would accompany the movements necessary to reach

them.
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At this point, however, a possible difficulty
appears to arise. As we have already noted, there are
several different series of movements which could transport
the body from A to B. The muscular sensations of the
various serles might have nothing in common with each other.
How, then, can one know that the several representations
are of a single, self-ldentical point? To have recourse
to visual sensation 1s extremely tempting but, as Poincars

38 this would sctually multiply our

rightly points out,
difficulties. That is to say, we should then have to show
how our visual apprehension of a given point corresponded
to our motor apprehenslion of the same point. The problem
of the identity of two points is obviously more difficult
than 1t would first appear.

Let us suppose that during the interval between
two instants of time, & and b, the relative position of the
various parts of my body have remained the same. At the
instant a a point 1n space had been occupled by object A;
at instant b that same point 1s occupled by object B. Now,
what are the conditions which make such knowledge possible?
Poincar® must necessarily introduce visual sensation into his
considerations, since it 1s normally only through that medium
that we can distingulish between two distinct objects.

At time a I recelve visual sensations which are

transmitted through a fibre of the optic nerve., I attribute

3B1bida., p. 47.
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these sensations to object A. At the same time, I also

recelve tactile impressions of that object via a tactile

nerve in one of my fingers. Similar considerations would

apply at time b to object B. That is to say, impressions

of B would be transmitted by the same optic nerve fibre and

the same tactile nerve. The two sets of sensations
corresponding to the two objects, A and B, may be qualitatively
quite different. By what right then, do we suppose that

they have been transmitted by the same nerves?

We shall shortly be in a position to see that
tactile space is more important than visual space, so that
& solution to this problem is not mandatory. However,
Poincaré does offer a simple hypothesis which could suffice
to explain the above point., He supposes that the object A
produces two simultaneous sensatlons, & which is purely
luminous, and &' which 1s coloured. Similarly B will produce
the luminous sensation b and the coloured sensation bt'. If
& and b affect the same point on the retina they will be
identical sensations. If a and b affected different polnts
on the retina, we would say that objects A and B were in
different regions of space, provided, of course, that the
attitude of the eye was the same in both cases. However,
a' and b' possess qualitative differences, so we would
distinguish them in either case, therefore knowing that we
were dealing with two distinct objects. However, the

fundamental point is that even if this hypothesis were
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faulty, and neither Poincars nor the present wrlter has
any great desire to defend it, there must be something in
common between a and a!', on the one hand, and b and b' on
the other. It is an experimental fact that some objects
may be regarded as though they have successively occupied
the same polnt of space while others may not be so regarded.

In order that we may judge two points to be
identical, there are certain conditions, both visual and
tactile, that must be fulfilled. However, the visual
condition while necessary is not sufficient. The tactile
condition is both necessary and sufficient. That 1s to say,
the visual condition might be met without the two points
being coincidental. The tactile condition could not, in this
case, be fulfilled. The explanation in this case while
8till elementary 1s of a geometrical nature. Hence, it
should only be regarded as a footnote to Poincaréts doubts
about the aforementioned hypothesis. Lest the reader forget,
it should be emphasized that the notion of physical space is
not yet complete. It is not until 1t has been accounted for
that one can even begin to discuss mathematical, i.e.
geometrical, space.

0 is a point on the retina where an image of object
A is formed at time a., At instant a, the object 1s at a
point M in space. Similarly, objJect B occuples & position
Mt in space at time b, The problem is to determine the visual
and tactile conditions which must hold for M and M!' to be




identical. Now, vision 1s capable of acting at a distance.
Consequently, the points M and M' could be identical provided
that 0, M, and M' were on & single straight line. However,
M might be five feet from the eye while M' were flve yards
from 1t. Thus, while this condition 1s indispensable for
the identity of M and M', as we stated above, it is obviously
by itself insufficient. However, let us suppose that the
finger is at point P in space at time a. It is discovered
that P and M coincide. Then, at time b, it is found that
the finger which has remained at P now coincides with M!',
Since touch does not operate at a distance, it is concluded
that M and M' must be identical. Hence, tactile space is
more fundamental than visual space, at least for the
determination of the identity of two polnts. However, at
the primitive, experimental level, we may only determine
that when the visual condition is fulfilled, the tactile
condition may or may not be. But whenever the tactile
condition is fulfilled, the visual condition invariably is,

Since these conditions are only experimental, it
is possible to concelve that the positions of sight and
touch might have been reversed. We would then conclude that
touch can operate at a distance whereas sight cannot.

Our knowledge of the spatial continuum is enhanced
by the fact that, in practice, we normally make use of more
than one finger. At instant &, my first finger recelives an

impression which is attributed to object A. My body is then
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displaced with the corresponding series of muscular
sensations S. After this displacement, my second finger
receives a tactile impression which is also attributed to
A. Later at instant b, after no physical displacement, my
second finger receives an impression which is attributed
to'object B. Now my body undergoes a displacement
corresponding to a serles of muscular sensations S' which
is completed at the time b!'. Experimental evidence has
assured me that S and S' are mutually compensating. That

is to say, following S, the original aggregate of sensations

will be re-established after a series of movements corresponding

to St, and vice-versa. Now, the question which Poincaré§
considers 1s whether, at instant b!', my first finger would
receive impressions which could be attributed to object B.
A 1ittle elementary reflection will reveal that
the answer to this question will be affirmative, provided
that the objects A and B have not moved, I will not burden
the reader with the details of the considerations which
Poinecarsd provides at this point.39 The important point to

note, however, is that these considerations are of a geometrical

nature. From the experimental standpoint, we recognize the
truth of the conclusion but, at the same time, realize that
a different conclusion 1s conceivable. The latter would
merely modify our opinions concerning the use of sight and

touch.

391bido’ ppo 60-610
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Before leaving this point, to anticipate Poincarég,
for one moment, it should be noted that the condition
attached to the geometrical reasoning is of the nature of
a convention, We refer to the proviso that the objects
under consideration should not have moved. In other words,
if any experiment suggested that physical space were not a
three-dimensional continuum with the familiar metrical
properties of Euclidean space, we would counter with the
assumption that the objects must have been displaced in the
course of the experiment. This is an important point of

which more will be said later.




CHAPTER IV

TACTILE SPACE AND THE AXIOM OF TRI-DIMENSIONALITY

In the Introduction, it was pointed out that non-
Buclidean geometry originated from considerations concerning
Euclid's postulate of "parallels," (onsequently, this
postulate receives a great deal of attention from philosophers
of science, including Poincar§é. However, there is &nother
postulate of Buclidean geometry which is as fundamental and
as deserving of attention for its philosophic implications.
This 1s the postulate (or axiom) that space has three-
dimensions., This is certalnly at least as well embedded in
our convictions about the nature of space as the "parallels"
postulate. Poincaré is, therefore, obliged to show how this
postulate is suggested experimentally in the genesis of
tactile space.

So far, we have learned, in the flrst place, that
it is possible to recognize the identity of two points at
successive moments, provided that the body does not move. In
the second place, even 1f the body does move during the
interval between the two sets of impressions, provided these
movements are accompanied by two sets of muscular sensatlions

(S and S*), it would still be possible to recognize the
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identity of the two points, treating the body as though it
had remained motionless.

Poincaré now proceeds to show that, given the
aforementioned experimental conditions, it would follow
that tactile space 1s a continuum of an indefinitely large
number of dimensions. He then demonstrates the factors
which permlt us to reduce it to a three-dimensionsal continuum,

I distinguish two points in space occupled by the
objects A and B by virtue of my fingerts touching A at time
8, and B at time b. The method by which I compare the two
points 1s to consider the muscular sensations Z which have
accompanied the movements of my body during the interval
ab. From what we have noted in Chapter I about physical
continua in general, 1t follows that the totallty of
different series Z would form a physical continuum with as
many dimensions as there are Z's, On the basis of earlier
considerations, we need not distinguish between the two
serles Z and Z+S+S', since S and S' cancel each other,
However, the number of Z's will still be very great. To
each of the serles Z, there corresponds a point in space.
That is to say, after a given movement, the tip of my finger
will be at a definite point in space. Among these many
points, some will be distinct, others identical.

Apart from the special case where Z = Z!'+S+S!',
the cases where the points would be identical, there are

those where the finger itself does not move. Thus, Poincaré
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distinguishes a sub-group of the Z's which he calls z. 2z
represents the series of muscular sensations accompanying a
bodily movement in which the finger remains motlionless.
Poincaré maintains that tactile space will have but three
dimensions provided that we do not regard as distinct the
series Z and Z+z. In ordinary language, this means that a
series of movements corresponding to the displacement of
my finger from A to B will be regarded as indistingulshable
from an identical serlies of movements plus a further set of
movements in which the finger is motionless.

Once agein, Poincaré begins by offefing a geometrical
explanation which should, in any case, be obvious to the
reader. Consider a surface A in space. On the surface A
let there be a line B, and on the line B let there be a
point M. Let Co represent the aggregate or totallty of Z's.

C1 represents the totality of Zt's in which the finger~tip
remains on surface A, Cy is the aggregate of Z's in which

the finger-tip remains on line B, while C., represents the

aggregate of Z's in which the finger-tip iemains at the
point M.,
It 1s apparent that C1 is a cut which divides Co'
That is to say, if we removed Cl’ it would not be possible
to move from any point in space to any other point. Similarly,

C, 1s a cut which divides the surface A so that one could not

2
move from any point on the surface to any other point. 1In

like manner, 03 will be a cut which divides Cse Again,
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following what was determined in the preceding chapter, if

03 is a cut of n dimensions, Cor which is the aggregate of
possible motions in space during the interval ab, will have
n+3 dimensions. Obviously, our task is to show that C3 is
of zero dimensions,

Now the reader will recall that C., will only

3
fulfill this condition provided that it does not consist of
a series of elements such that the difference between two
adjacent elements would be imperceptible. That 1is to say,
03 must not be analogous to a series of musical notes of the
same intensity and tonality but of varying pitch. In short,
C3 must not be a continuum of elements., Now, this condition
is fulfilled by C3 provided that we agree to treat Z and
Z+z as indistinguishable. Then all of the several seriles

of sensations in which the tip of the finger remained at M
would be indistinguishable. 03 would not be & continuum,
and Co or tactile space would have three dimenslonsl!

This ingenious derivation of the number of dimensions
of space is obviously geometrical. From the primitive,
experimental standpoint, why should we have singled out the
series z? The answer 1s of the utmost simplicity. The series
Zz stands out by virtue of the experimental fact that the
tactile sensation received at the beginnling of such a seriles
of muscular sensations will usually be identical with the

tactlile sensation at the end of such & series. Thus, if I

touch & piece of silk, I receive a characteristic tactile
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impression. I then execute & series of movements at the

end of which the same characteristic feeling of silk remains.
I touch a piece of glass. I then execute an identical

series of movements and the characteristic impresslion of
glass is found to persist., After much experiment, I conclude
that the serles of muscular sensations z, corresponding to
these movements 1s such that it does not alter the tactile
impressions which are received by a glven finger.

There are, of course, those cases where the
original impression does not persist. We should explain
this geometrically by saying that the pilece of silk or
plece of glass was displaced. We are not, however, entitled
to offer this explanation prior to any knowledge of geometry.
Poincard is content to point out that so long as the
experimental condition usually holds, it is sufficient to
induce us to regard z as corresponding to a special type of
displacement.

In the final paragraphuo of this section, Poincaré
inserts a comment to the effect that while muscular sensations
inform us of the movements of the body, the final position
of the body depends not only on these movements but also on
the position from which it began. However, there is no
sensation to inform us of the initial position., This, in
itself, suffices to make the relativity of spatlial position

apparent. We shall have more to say of this in the following

uoThe Value of Science, p. 65.
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chapters.

It would be appropriate at this point in our
exposition to consider how one might characterize the
position held by Poincard. Poincaré has discussed the
genegsis of the notion of space 1n a manner which would seem
to place him directly in the tradition of the empiricists.
He has, in effect, shown that the notion of space arises
through a complex association of ldeas. More precisely,
he has shown that we assoclate various muscular sensatlons
with external impressions. The correlation of these two
sets of data is readily accomplished through the medium of
a three-dimensional continuum. Are we then to classify
Poincarét's position with that of Hume, Mill and Spencer? We
should defer any definite conclusion until we have learned
more of his philosophy. Thls, however, should be carefully
considered. Neither Hume nor Kant made the expliclt distinction
between representational and mathematical space. Poincar$§
has so far been discussing purely representational space and,
thus far, his position has indeed been empirical. However,
this space has no definite metric. We cannot call it
BEuclidean or Lobatschewskian. It is a continuum formed by
the correlation of tactile, visual and motor impressions.
Thus, before passing any final judgement, we must consider
the conditions and manner of endowing space with a metric.
We shall see that it 1s here that Poincaré reveals features

of his philosophy which set him apart, albeit subtly, from
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the classical emplricists.

To resume our exposition of Poincard's views, we
must now consider the manner in which the various aspects
of representational space are correlated. That 1s to say,
we must learn how Poincaré treats the relationship between
visual and tactile space. Actually, Poincaréd does not deal
with this question explicitly. He merely shows how one
should set about it. From what he has said of tactile
space, 1t follows that each of our fingers generates a
three-dimensional, spatial continuum. Poincarée shows how
we arrive at the identity of two tactile continua in a
manner which 1s consistent with his other views. This, at
least, gives us the clue to understanding how tactile space
could be correlated with visual space.

Poincaré considers two three-dimensional, physical
continua C and C' which are generated by two fingers D and
D', An element of such continua is & point in tactile space.
To each of these elements there corresponds a series of
muscular sensations Z. There wlll also be series of sensations
of the type Z+z corresponding to the same point or element.
Similarly, in the continuum C', there wlill be a series Z¢
corresponding to each element, and also a series Z'+z!'. We
distinguish z from z' because z preserves the tactile
impressions of D while 2' preserves the tactile impressions
of D'. Finally, as before, S and S' are inverse or mutually

correcting series of sensatlons.
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Let us now consider the following experimental
data, The finger D' receives a tactile impression A'. I
execute movements corresponding to the series S, Then
finger D feels the impression A, I then execute movements
corresponding to z. I continue to receive the impression
A through my finger D, I now make the motions corresponding
to S. Hence, once again, finger D! feels the impression
A'., In other words, the serlies of movements corresponding

to S+z+3' (in that order) preserves the impressions of

finger D'. By deflinition, we note that S+z+St belongs to

the series z'., Mutatls mutandlis, St+z'+S wlll be a series

of type z. Provided that S is sultably chosen in the series
S+z+S', by varying z in every possible way, we may obtain
every possible series of the type z!'.

As an aid to the reader, it would be appropriate
to consider a concrete example of such an experiment. Before
me is & narrow strip of silk, By stretching my right arm
straight out, the tip of the index finger (D!') of my right
hand comes in contact with the strip of silk, receiving the
impression of it (At). I then move my arm slightly to the
left, experiencing a serles of muscular sensations (S) in
so doing. My middle finger (D) is then in contact with the
strip of silk which transmits a second tactile impression
(A)s I bend my knees slightly and, at the same time, tilt
my right arm upwards so that my middle finger remains ummoved,
in contact with the silk. The bending of the knees together
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with the upward tilting of my arm is accompanied by a serles
of muscular sensations (g). Then I move my arm slightly to
the right, experiencing more muscular sensations (3'). My
index finger (D') 1s once more in contact with the silk
strip, which again causes its characteristic, tactile
sensation (A').

Poincaré offers the usual, geometric explanation.
It is not necessary for us to repeat it, since it is implicit
in the concrete illustration. The essentlal point to note
is that, on condition that the strip of silk has not moved,
we would naturally suppose that the tip of the index finger
has occupied the same point in space as the tip of the middle

finger. In other words, for any point in & given spatial

continuum, there will be a corresponding point in a second

spatial continuum.

To resume the exposition in Poincaré's own language,
there 1s a series of muscular sensations Z whiéh corresponds
with & point M in the first tactile space. To the series
S+Z+481, there corresponds & point N of the second space.
Poincaré now must show that M and N are corresponding points,
Since these are arbitrarily selected polints, this would
amount to demonstrating that every point in the continuum
C has a corresponding point in the continuum C'. In other
words, C' would be a transformation of C.

The notion of a geometrical or co-ordinate

transformation is readily understood. Let the continuum
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C be represented by the surface of a flexible rubber ball.
Let us now squeeze the ball, without stretching it, so that
its shape is deformed. The new surface wlill represent C'.
The reader will immediately perceive that for every point

on the first surface there 1s & corresponding point on the
second surface. The second surface 1s then a transformation
of the first. Had we drawn a triangle on the surface of the
ball, then the geometrical form on the ball, after being
squeezed, would be a transformation of that triangle.

Poincaré's intention is now more readily understood.
He wishes to show that the space engendered by one finger
is identical with that engendered by a second finger. Firstly,
however, he must show that one is a point transformation of
the other.

To esteblish that M and N are corresponding points
in the sense we have considered above, the following condition
must be satisfied. It must be shown that whenever two points
M and M! are identical in the first space, the two polnts N
and N!' will be identical 1n the second space. Since S and
St are mutually correcting series, it follows that S+S' = 0.
Hence, S+St'+4Z = Z4S+S!" = Z seeecesososccose I
AlSo, Z4SHS'HZY = Z4Z' ceeseecescssssesosaall

These relationships are obviously not of the
cormutative variety. The order of the corresponding movements
is significant. Hence, we are not entitled to assert the

following:
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S+Z+3t = 2

It is necessary to show that Z and Z' correspond to the same
point M = Mt in the first space. To do so, it 1s sufficient
to show that Z' = Z+E.u1 We should then be able to write:
S+Z'+S' = S+Z+2+S? = S+Z+SV+S+Z+S! seeeeecisecvecoasa 11T
The reader may verify the above relationships by choosing

a simple movement of the finger for e ach symbol. He will
find that after each of the three serles of movements, his
finger will be in the same place.

It was shown aLboveL"2 that S+z+S' was a series of
the type z'. Substituting z' for S+z+S' in III, we obtain
S+ZV431 = SHZ+ST+2! ceveeeersrscsaeaesdIV

That is to say that S+Z'+4St' and S+Z+S' correspond to the
identical point in the second space.

| The conclusion of this deduction 1is a crucial one.
It is therefore, necessary to review the reasoning with care.
Poincaré wishes to show that two spatial continua are
isomorphic. If they are, whenever two points in the first
space are ldentical, two corresponding points in the second
will also be identical. We have agreed, by hypothesis, to
regard S and S' as two serles of sensations which are

inversely related or mutually correcting. Thus, the

relationships I and II are self-evident.

ulThe reader will recall that 2z 1s a series of the
type which preserves the aggregate of sensations.

uZSu ra, p. 5l.
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We recall that Z corresponds to a point M in the
first space, and Z' corresponds to a point M!' in the first
space., S+Z+S' is an arbitrarily chosen series of impresslons
corresponding to & point N in the second space, while S+Zt+S!
corresponds to a point N'., Hence, Poincaré must show that
whenever Z and Z' lead to an identical tactlile impression,
the series S+Z+S' and S+Z'+S' will also result in the i1dentical
tactile impression.

If Z and 2' correspond to the same point (M=Mt!)
in the first space, then Z' = Z+z. This, again, 1s true
by definition. Let us then assume that Z and Z' are such
series., On the baslis of this assumption, the set of
relationships III 1s a necessary consequence through the
simple algebraic substitution of Z+z for Zt.

It has already been established that S+z+3t' 1is
one of the series of the type z'. Moreover, it was noted
that by varying z in every possible way, one could obtain
every possible series of the type z'. Hence, the substitution
of z' for S+z+S!' 1s leglitimate. By making this substitution
in III, we obtain the relationship of IV.

S+Z1+S' = S+Z2+3'+2!
But z' 1s, by definition, a series of sensations which
preserves the initial impression., Hence, it may be disregarded.
We conclude that S+Z'+3' and S+Z+3' correspond to the same
impression or the same polnt in space N = Nt.

This demonstration proves that whenever M and M!




59

are identical points in space C, N and N' wlll be identical
points in space C'. In other words, these two tactile spaces
are isomorphic.

For the benefit of the sceptical reader, let us
resort once more to an intuitive illustration. Let us begin,
as before, with my right arm outstretched and my index finger
extended to touch a strip of silk., To attain this position
I have undergone motions corresponding to the sensations Z.
Then, as before, I bend my knees and tilt my arm slightly
upwards. These movements are accompanied by the sensations
2. It should be noted that z could have been a movement of
my index finger. For exesmple, I could have moved it in such
a way that its tip would have described a full circle whose
plane is normal to the plane of the plece of silk. 1In any
case, the reader can see that both the movement corresponding
to Z and that corresponding to Z+z will result in my index
finger's touching the piece of silk. We give Z+z the name
Z'. Experience teaches us that Z and Z!' are equivalent.

I now perform a similar experiment with my middle
finger. The second experiment is slightly more complicated
by virtue of the presence of S and S', but these are any
suitable motions which are self-cancelling as, for example,
one step backward and one step forward., I ascertain that
whenever Z and Z' correspond to the same point for my index
finger, S+Z'+S' and S+Z+S' will correspond to the same point

for my middle finger. Suppose that to the left of the strip
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of silk there were a strlp of glass. If Z corresponded to
the tactile sensation of silk in my index finger, while 2!
corresponded to the tactile sensation of glass, then I should
also find that whenever S+Z+3' corresponded to the feel of
silk in my middle finger, S+Z'+3' would correspond to the
feel of glass in that finger. Such experiments would lead
me to belleve that & point correspondence existed between the
space of my index finger and that of my middle finger.

The foregoing intuitive considerations have actually
anticipated Poincarét's final conclusion. Not only do I
regard the spaces as corresponding but also as ldentical. I
have learned experimentally that a serlies of movements which
preserves an impression at polnt M for my index finger will
also preserve an impression at point N for my middle finger.
Sometimes, however, the impression will not be preserved.

In these exceptional cases I assume that the object has moved.
Moreover, I find that whenever the series of movements fails

to preserve a tactile sensation for my index finger at M, it
likewise fails to preserve a tactile sensation for my middle
finger at N. I assume that the two sets of tactile impressions
are caused by one and the same object which must occupy both

M and N. In other words, M and N are one and the samel




CHAPTER V

CONVENTIONALISM AND THE GEOMETRY OF SPACE

We have so far learned how Poincaré accounts for
the origin of space in terms of primitive, experimental data.
All we know of it 1s that it 1s a physical continuum of
three dimensions in which we. represent physical objects and
their movements. This primitive space is, so far, devoid
of all metrical properties. Poincaré has not told us how
to measure distance or, for that matter, how to determine
direction. However, t he most fundamental and cruclal question
for the philosophy of sclience 1s whether space is relative
or absolute.

This problem is partly concerned with the locating
of objects in space. We say that an object is here or there.
What do we mean? If the position of an object is determined
by its relationship to space itself, then space is absolute.
If all material objJects were removed from it, absolute space
would continue to exist unchanged. If, on the other hand,
we are only able to assign positions to objects relative to
other objects or to ourselves, then space is relative, If
there were no material objects, the concept of space would

be devoid of significance.

- 61 -
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It would perhaps be in order at this point to
interpolate a cormment about the term "relativity." This
word has a number of distinct meanings, philosophical,
mathematical and physical. In traditional philosophy, the
distinction was made between the relative and the absolute.
A relative quality would be one whose existence depends on a
relationship with something else, Absolute existence or
reality exlsts in and through itself. In traditional
metaphysics, the absolute was often called "substance."

The philosophical distinction between the relative
and the absolute will not, however, enter into our
considerations. More important for us is the distinetlon
between mathematical and physical relativity. In the
following chapters, we shall have occasion to refer to both,
and it would be advisable to be certain of which type of
relativity we are speaking. Mathematical relativity 1s
primarily, although not wholly, relativity of position.

The position of an object or point is said to be relative
to a system of coordinates, It should be noted that this
type of relativity is not discoverable. In a very real
sense, it 1s given & priori. This distinguishes it from
physical relativity which is empirical. Wwhether a given
physical magnitude is relative or absolute depends on
experimental investigation. We cannot, as Einstein has

clearly shown, treat a physical magnitude as absolute on

& priori grounds.
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Let us consider a simple illustration. Welght
is regarded as a relative magnitude since it varies with
the distribution of matter in its immediate vielnlty, For
example, an object which has a given weight at the equator
will have a slightly different weight at the poles. 1Its
welght would be considerably less if it were transported to
the moon., In more technical language, the welght of an
object will depend on the gravitational potential in the
region of space which it occupies. Hence, the reader will
see that one cannot make an absolute assertion about the
welght of an object. One can only make a statement about
the welght of the objJject relative to the potential of the
gravitational field where the object 1s located.

On the other hand, classical physics regarded mass
as an absolute quantity, an inherent feature of matter.
There were excellent grounds for this bellief at the time,
since no variation in the mass of an object had been detected.
Then, in the late nineteenth century, it was found that
electrons moving with high velocities did undergo an increase
in mass., This was one of the many experimental facts which
eventually led to the abandonment of classical physics. The
classical physicists were not wrong to have supposed mass
to be absolute. Thelr error was to suppose that the principle
of the conservation of mass was & necessary truth., It was in
fact only an experimental truth which was eventually falsified.

This, then, is the crux of the distinction between mathematical
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and physical relativity.

Unfortunately, Poincard does not seem to have made
so explicit a distinction. However, he did speak of both
types of relativity. 1In fact, 1t 1s even possible that to
some extent he confused them., In any case, in our exposition
of Poincaré's philosophy, we shall try to separate the two
as clearly as possible. However, in line with the general
nature of this thesis, which is concerned with epistemological
problems and not with pure mathematics, we shall be particularly
interested in the problem of the relatlvity of physical space.

In fact, the relativity of physical space follows

directly from the observations of the preceding chapter. We

saw that the physical continuum 1s generated by the laws of
succession of our sensations, Since it 1s obviously conceivable
that the concatenation of sensations be quite different from
what it actually is, it follows that the nature of the physical
continuum which we call representational space might differ

from what it actually is.

"There is nothing, therefore, to prevent us from
imagining a series of representations, similar in every
way to our ordinary representations, but succeeding one
enother according to laws which differ from those to
which we are accustomed. We may thus concelve that
beings whose education has taken place in a medium in
which those laws would be so different, might have a

very different geometry from ours,"43

Poincaré gives an elaborate illustration of a

hypothetical world in which there are such differences.

MBScience and Hypothesis, pp. 6l-65.
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This world l1s enclosed in & sphere in which there
is a continuous variation of temperature. It 1s greatest
at the centre and decreases to absolute zero at the surface.
The law by which the temperature varles is a simple one 1n
which, if R is the radius of the sphere and r the distance
from the centre, the temperature will be proportional to
R2-r2. Purthermore, it is assumed that all bodies have the
same coefficient of thermal expansion. Thus, the linear
dilation of any body in this universe would be proportional
to its absolute temperature. Finally, it is assumed that a
body in motion is in instantaneous thermal equilibrium with
its surroundings. Obviously, as a material object moves
towards the surface of the sphere, it will grow smaller,

The inhabitants of such a world would suppose 1t
to be infinite since, as they approached its boundary, their
limbs would contract and they would take successively smaller
steps. We have already seen that a visual continuum of
three dimensions is arrived at when it is apprehended that
certain primitive sensations can be restored by an appropriate
movement. It is thus that we distinguish between changes
of state and changes of position. Now, in Poincard's
hypothetical universe, the inhabitants would similarly be
presented with changing aggregates of sensations., Would
these beings be able to restore thelr sensations as we do?
Not in quite the same way. The objects which we regard as

undergoing simple displacements are called solid or rigid
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objects. The displacements which they undergo are Euclidean
displacements. That is to say, the shape of an object after
such a displacement would be congruent to its shape before
the displacement, according to the Euclidean definition of
congruence., Thus, vwhen we regard our physical continuum as
similar to a Euclidean mathematical continuum, our conclusion
is closely geared to the way in vhich certain objects are
displaced. To restore a primitive aggregate of sensations,
our bodies must undergo Euclidean displacements. In the
hypothetlical world, an aggregate of sensations could only
be restored by a non-Euclidean displacement of the body.
That i1is, 1t would be a dlsplacement in which the observer
actually dilates in accordance with the law given above., In
short, such people would develop & non=Euclidean geometry as
the most natural or simplest gecmetry.hu

At first, it would appear that Poincaré has argued
for the non-relativity of space, in a certain sense. From
what he has sald, it would seem that only one geometry,
namely Euclidean, is possible to describe the physical
continuum of representational space. But thls is merely the
error of the naive. We must, in fact, ask ourselves what
would happen ifa person from our unlverse were transported
to the hypothetical universe. Would he decide that Euclide&n
geometry is no longer true? If he wished, he could so

conclude, but it is highly unlikely. He would find it

uuScience and Hypothesis, p. 68.
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difficult to adjust to another system of geometry.

It is
more likely that he would retain his accustomed system of

geometry but note that the new univarse has the curious

characteristic of lacking rigid objects,

That is to say,
he would note that objects which undergo a displacement
actually "squirm."

But he would be able to describe such
"squirms" in the language of Eueclid,

Hence, we see that
the geometry of physical space 1s not experimentally decidable

but depends on a choice based on convenieance.LLS

P i
P Q

Figl
The principle of the relativity of physical space
has been discussed more cogently by Hans Reidhenbach.u

Reichenbach considers a great glass hemisphere which gradually
merges into a glass plane.

A cross-section would present
the aspect G in figure I.

Parallel to the plane of G and
underneath it is an opaque plane E.

Vertical light rays will
pass through the glass, casting shadows onto E of all objects
situated on G.

If human beilngs lived on the surface of G,
they would soon discover by simple geodetic measurements that

G is a plane with a hemispherical hump in the middle.

Their
uSIbid., p. 71

uéThe Philosophy of Space and Time, p. 1l1ff,




68

measuring rods would cast shadows on the surface E which
would be deformed in the central area of E. Let us now
suppose that thsre are also inhabitants on E. An invisible
force affects the measuring rods of the E-men such that, as
they are moved, their length is always equal to the corresponding
shadows of measuring rods on G. Obviously, the E-people would
obtain precisely the same results from geodetic surveys as
those of the G-people. Would they conclude, therefore, that
they were living on a world with a hump or would they prefer
to postulate an invisible force?

Actually, such a question is, strictly speaking,
meaningless, As Reichenbach puts it, "We may just as well
say that G is the surface with the 'illusiont' of the hump
and E the surface with the 'real! hump. Or perhaps both
surfaces have a hum.p.")+7

Poincaré argues at some length in Sclence and

Hypothesis to establish the point that there are alternative

descriptions of physical space which are theoretically
equivalent, If geometry were an experlimental subject, it
would be inexact and provisional. In fact, we should have
to say that Euclidean geometry is false, since there 1s no
rigorously rigid object. Thus, we are back to the dilemma
of the Introduction., The statements of geometry cannot be
synthetic & priori truths, nor can they be empirical
generalizations. What, then, are they? It 1s to this

WTop, cit., p. 13.
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question that Poincaré gives his famous reply: "They are
conventions."hs We adopt Euclidean geometry because it 1is
the most convenient description of the world. However, it
is not, in any sense, "truer" than a system of non-Euclidean
geometry.

Poincaré's exposition admittedly seems confused.
We have examined, at length, his elaborate account of the
experimental origin of representational space. We have
noted that our belief in the Euclidean character of that
space stems from our experlience of the displacements of
rigid bodies., Such accounts would surely have proved
pleasing to a Hume or a Mill., Yet they must be contrasted
with such statements as: "whichever way we look at it, it
1s impossible to discover in geometric empiricism a rational
mezsming."""9

So it would appear that Poincaré believes that
the Euclidean metric is of experimental origin and, at the
same time, that it is of a merely definitional character.
Actually, this does represent Poincaré's position quite
accurately. But as we shall see, there is no real contradiction
involved in this. He considers, for example, the phenomenon

of stellar parallax, If the geometry of Rlemann were true,

this parallax would be negative, If the geometry of

Lobatschewsky were true, the parallax of a distant star

uBScience and Hypothesis, p. 50.

491p1a., p. 79.
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would be infinite. Surely, then, in principle, the truth
of a geometry should be determinable by the appropriate
astronomical measurements.so But, in astronomy, the straight
line is actually the path traversed by a light ray. Therefore,
in either of the above cases, we could retain our system of
Euclidean geometry and modify the laws of optics so that
Xflight would be considered to be propagated along curvilinear
paths, "Euclidean Geometry, therefore, has nothing to fear
from fresh experiments." Poincaré's general point is that
geometrical experiments only provide information about the
mutual relationships between bodies or between bodies and
light rays. We cannot design an experiment to convey information
concerning the relationship between a physical object and

space ltself,

501p1d., p. 72.




CHAPTER VI

RECENT GRITICISMS OF POINCARE'S INTERPRETATION

OF GEOMETRY

In the present century, since the development of
the general theory of relativity, it has become the custom
to regard geometry as a branch of physics. That is to say,
the position of geometric empiricism has found a powerful
evidential basis. Thus, many thinkers, not including
Einstein himself, have been critical of Poincaré's so-

celled conventionalism. The most consistent critic has been

Hans Relchenbach. 1In The Rise of Scientific Philosophy, he

wrltes that:

"Space is not subjective, but real - that 1s the
outcome of the development of modern mathematics and
physics, Strangely enough, this long historicel line
leads ultimately back to the position held at its
beginning: geometry began as an empirical science with
the Egyptians, was made a deductive science by the
Greeks, asnd finally was turned back into an emplrical
science after logical analysis of highest perfection
had uncovered a plurality of geometries, one and onlg
one of which is the geometry of the physical world.">1l

Reichenbach accepted Poincaréts conventionalism up

to a point but appeared to feel that i1t was an overstatement.

5lop. eit., p. 139.
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He admits that there are alternative geometrical accounts
of a single emplirical state of affailrs, He calls them
"Equivalent descriptions." However, he argues that there
are sets of equivalent descriptions which could not refer
to a single observable world.

The following would be regarded as equlivalent

descriptions:
a) The geometry i1s Euclidean, but there are universal
forces distorting light rays and measuring rods.
b) The geometry 1s non-Euclidean and there are no
universal forces.

But Reichenbach argues that the foregoing must be

distinguished from the following:
a) The geometry 1s Fuclidean, and there are no
universal forces.
b) The geometry is non-Euclidean, but there are
universal forces distorting light rays and measuring
rods.

"Conventionalism sees only the equivalence of the
descriptions within one class, but stops short of
recognizing the differences between the classes. The
theory of equivalent descriptions, however, enables us
to describe the world objectively by assigning empirical

truth to only one class of descriptions, although with%n
each class all descriptions are of equal truth value."52

Reichenbach then goes on to point out that we do
not normally employ classes of descriptions to refer to the

geometry of the world. It 1s customary to select a single

521p1d., pp. 136-137.
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description which is taken to be the normal system. This
normal system 1s the system of natural geometry. The

criterion for choosing the natural geometry is that it is

the one in which universal forces vanish. However, there

is no a priori necessity for a class of equlivalent descriptions
to contain any such normal system. There would be no such
system if, for exemple, the geometry of light rays differed
from the geometry of rigid bodies. "That the natural

geometry of the world of our enviromment is Euclidean must

be regarded as a fortunate empirical fact."53

Such opposition to Poincaréts position from one
of the greatest philosophical exponents of the theory of
relativity deserves careful attention.

The reader will recall Reichenbach's illustration
of the two surfaces G and E. Thls was apparently in support
of Poincaré!s general contention anent the relativity of
physical geometry. But Relchenbach has more to say about
it, It was postulated that the measuring rods, etc. on the
surface E were subject to a deformation by invisible forces.
If these forces were in all respects unobservable, then it
would not be possible to determine the geometry of surface
E.

Now we must consider the question, under what
conditions would such forces be absolutely unobservable?

It is easy to imagine a physical force which would deform

531p1d., p. 137.
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the measuring rods in accordance with the conditions of
Reichenbach's illustration but which would, nevertheless,
be observable, Heat, for example, concentrated in the
central area of E would cause the measuring rods to expand
in that area. The presence of this "force'" could be
determined by virtue of its being what Relchenbach calls
a "differential force."su That is to say, a variation in
temperature affects various materials differently. 1In
Reichenbach's illustration, however, the hypothetical
invisible force was of the type he calls "universal.,"
Universal forces have two principal properties:

a) They affect all materials in the same way.

b) There are no insulating walls.
It is obvious that the presence of such forces would under
no circumstances be directly observable. If it is also the
case that universal forces are inaccessible to indirect
verification of any kind, it follows that we can make no
categorical assertion about the metrical properties of
physical space, and Poincaré's thesis would be established.
Referring to Fig. I, we may reduce the question to its
most elementary form, are the distances AB and BC "really"
equal? In other words, 1s 1t possible to give an objective

definition of congruence?

Reichenbach poilnts out that metrical relationships,

such as congruence, can only be determined after a "co-

ordinative" definition has been made. For example, before

S)‘"Philos.ophl of Space and Time, p. 13.
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making measurements, we must define our unit of measurement.

We may take it to represent a certain fraction of the earth's
circumference or even the wave length of krypton gas. The
co-ordinative definition serves, then, to relate a concept,

in this case metrical, to a physical object or state of
affairs, It is simply what Bridgman has called an "operatimal
definition."55

Once the unit of length has been established, we
have the problem of defining congruence. To determine the
equality or congruence of spatlial distances we are bound to
transport one or more measuring rods. Thus, if two measuring
rods, Rl and RZ’ are placed side by slde, let us suppose
that they are found to be of equal length. Ry is transported
to a distant region of space where it 1s found to correspond
to the distance AB. R, is transported to another region of
space where it 1s found to correspond to CD. Then AB and
CD would be regarded as congruent.

However, an assumption has been introduced to the
effect that the rods have not been deformed during their
respective translations. The most that could be done would
be to bring the two rods together again to determine whether,
when placed side by side, they are still of equal length.
Thus, the only cognitive knowledge we have is to the effect
that Ry and R, are always of equal length when in the same

region of space. If the rods have been affected by universal

55The Logic of Modern Physics, passim.
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forces, there is no means of discovering the effect.
Therefore, to determine congruence, we must base
our decision on the physical fact that the rods are locally

of equivalent length and on the definition that when in

different regions of space they are still equal. Thils distant
equality is not cognitive. It is purely definitional. If

the factual relationship of local equality did not hold, it
would still be possible to define congruence, but a separate
definition would be required for every region of space.
Conversely, ln the actual world it would be possible to

formulate a more complicated definition of congruence such

that, for example, two rods whose respective lengths

coincided would be defined as of unequal length. With such

a definition of congruence, all of our metrical determinations
would be greatly complicated. But, strictly speaking, all
definitions are conventional and, hence, eplstemologically
equivalent.

"It is again a matter offact that our world admits
of a simple definition of congruence because of the
factual relations holding for the behaviour of rigid
rods; but this fact does not deprive the simple definition
of its definitional character."56

Thus, 1t 1s clear that the question as to whether

the surface E 1s & plane or has a hump in the middle depends
on its inhabitants' choice of a coordinating definition of

congruence. However, we still need to determine whether

there is any reasonable basis for our decision. But beforehand

56Philosophy of Space and Time, p. 17.
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we must investigate more closely the notion of the rigid
body which is employed in the usual definition of congruence.

In everyday life we make frequent use of the
concept of rigid body. When we say that the ceiling of our
room is a plene, that the floor is rectangular or that a
taught string 1s stralght, we are presupposing the idea of
rigidity. However, it 1s almost a commonplace that none of
these objects is perfectly rigid. They are all subject to
various kinds of forces which cause slight deformations.
Scientific physlcs endeavours to avoid the imprecision of
the physics of everyday life.

It would, of course, be circular to define the
rigid body as one which undergoes no change of shape., But
such circular reasoning is not necessary. The rigid body
may be defined as follows:

"Rigid bodies are solid bodies which are not
affected by differential forces, or concerming which
the influence of differentlal forces has been eliminated
by corrections; universal forces are disregarded."57

That is to say that the universal forces are set
at zero by definition. Without such a stipulation no rigorous
definition of the rigid body would be possible, since any
object which was called rigld might actually be deformed by
such a force., Of course, in physics all of the forces that

are dealt with are of the differential kind.

So0lid objects actually possess various internal

5T1pid., p. 22.
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forces or tensions which resist the change of shape of the
body. A rigid body is realized when the external forces
are vanishingly small relative to the internal forces.

We are now in a position to return to our original
fundamental question: what criteria do we employ as a basis
for a decision concerning the geometry of the physical world?
Mathematically, we know that a point transformation is
possible for all congruence geometries. 1In the language of
physics thlis means that:

"Given a geometry G! to which the measuring

instruments conform, we can imagine a universal force

F which affects the instruments in such a way that the
actual geometry is an arbitrary geometry G, while the
observed deviation from G is due to a universal deformation
of the measuring instruments."58

This states clearly the principle of the relativity
of physical space. In the first place, we are assured by it
that a Euclidean geometry is always possible. In the second
place, however, it asserts that any other geometry will be
equally acceptable. Reichenbach would agree with Poincaré
that on the above principle the question of the absolute
truth of any geometry is meaningless.

Reichenbach, however, now suggests preclsely why
he disagrees with Poincardé in the final analysis.

"We obtain a statement about physical reality only

if in addition to the geometry G of the smce its

unlversal field of force F is specified. Only the
combination G+F is a testable statement,"59

581bid., p. 33.
597 dem.
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But we have already agreed to accept the
coordinative definition of a rigid body in accordance with
which F = 0. That 1s to say, the physiclst adopts that
geometry which enables him to assume that measuring rods
are not transformed. Poincaré, on the other hand, has
supposed that, all geometries being equal, we shall always
prefer the Euclidean geometry (G = Go). Einsteinian geometry
is said to be the geometry of physical space because it does
not require the assumption of unobservable universal forces.

Poincaré is then supposed to be in error because
he failed to see that, in spite of the principle of
geometrical relativity, objective statements about space
are still possible.

"This is a misunderstanding. Although the
statement about the geometry is based upon certain
arbitrary definitions, the statement itself does not
become arbitrary: once the definitions have been
formulated, it 1s determined through objective reality
alone which is the actual geometry."00

"The objective character of the physical statement
is thus shifted to & statement about relations, A
statement about The bolling point of water 1s no longer
regarded as an absolute statement, but as a statement
about a relation between the boiling water and the length
of the column of mercury. There exists a similar
objective statement about the geometry of real space:
1t 1s a statement about a relation between the universe
and rigid rods. The geometry chosen to characterize
this relation 1s only a mode of speech; however, our
awareness of the relativity of geometry enables us to
formulate the objective character of a statement about
the geometry of the physical world as a statement about
relations. In this sense we are permitted to speak of
physical geometry, "ol

601p14., p. 37.
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Essentially I am in agreement with Reichenbach!'s
position. However, that does not place me In disagreement
with Poincaré. Reichenbach is plainly mistaken when he
attributes to Poincaré the view that the conventions of
geometry are arbitrary. In fact, 1t has become commonplace
to regard Poincar® as the proponent of the view that the
geometry of physical space consists of "arbitrary conventions."
Poincaré, however, is absolutely explicit in his denunciation
of such a notion.

It has already been noted that Poincaré seriously
maintained that the geometry of physical space arises from
the study of rigid bodies. Consequently, "Our cholce among
all possible conventions is guided by experimental facts."62
"Experiment guides us in this choice which it does not impose
on us, It tells us not what is the truest, but what is the

most convenient geometry."63

Again, "We have chosen the
most convenient space, but experience guided our choice."éu
Reichenbach has maintained that once the co-
ordinative definitions have been clearly stated, it is
possible to formulate objective statements about physical
space. Let the reader compare thils with Poincaré's assertion

that:

"A statement of fact is always verifiable, and for
the verification we have recourse either to the witness

62Science and Hypothesis, p. 50.

631bido ?» ppo 70"’710
6LLScience and Method, p. 115.
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of our senses, or to the memory of this witness. This
is properly what characterizes a fact. If you put the
question to me: 1is such a fact true? I shall begiln

by asking you, if there is occasion, to state precisely
the conventions, by asking you, in other words, what
language you have spoken; then once settled on this
point, I shall interrogate my senses and shall answer

yes or no,"o5

Furth e rmore, Reichenbach asserts that geometrical

statements can be objective when it is kept in mind that they

are merely statements about the relationships holding between

measuring rods and the world. Let the reader compare this

with

Also

Poincaré's own position that:

"Therefore, when we ask what 1s the objective
value of sclence, that does not mean: Does science
teach us the true nature of things? But 1t means:
Does it teach us the true relation of things?"66

compare:

"It is only the relation of the magnitude to the
instrument that we measure, and if this relation is
altered, we have no means of knowing whether igis the
magnitude or the instrument that has changed."07

The preceding profusion of quotations must be

excused as necessary. The reader may draw his own conclusions

from

them., The fact, however, appears inescapable that all

of the fundamental ideas which Reichenbach ventures in

refutation of Poincaré were actually insights first developed

by Polncaré himselfl

Although the position of Poincaré is in essential

65The Value of Science, p. 118. Italics are mine.

66Ibid., p. 138.
67

Science and Method., p. 97.
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agreement with that of Reichenbach, there are, of course,
accidental differences. Poincaré was arguing from the state
of pre-relativity mechanics. The non-Euclidean space of
Einstein is a product of the general theory of relativity
of 1915. Reichenbach pointed out that the non-Euclidean
space follows as a consequence of relativity theory when
P = Fo. It would be possible to retain Euclidean geometry
in principle, but the ensuing complexities would baffle even
the greatest of mathematicians,

It does not therefore follow, however, that the
value F = Fgo is divinely ordained; that it must be granted,
& priori. Relchenbach seems to treat 1t as though it had
a privileged status. The reader will recall that Reichenbach
refers to the geometry corresponding to F = F, as the "natural"
geometry. What does this really mean? Actually, it means
precisely what Foincaré intended when he held Euclideen
geometry to be the most "convenient." If Poincaré were
alive today, we are convinced that he would accept Reichenbach's
stipulation. He would regard it as the best convention for
relativistic mechanics as he had believed it to be for
classical mechanics. Poincaré believed that Euclidean
geometry was not only the simplest geometry in itself but
also the simplest account of experience.68 Were he alive
today, he would probably continﬁe to maintain that Euclidean

geometry could still be applied if anyone desired to take

680f., Science and Hypothesis, p. 50.
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the trouble. The theory of relativity could not refute this
general contention., It is for this reason that Einstein

himself remarked, "Sub specie aeterni Poincaré, in my opinion,

69

is right."
Now, with regard to Reichenbach's example of two
sets of equivalent descriptions which are not equivalent to
each other, it is implied that the stipulations GO + F1 and
G1 + Fo are equivalent. Also, Go + Fo and Gl + Fl are
equivalent. However, Reichenbach would argue that the two
sets of descriptions could not be applied to the same
physical world. In this regard, Reichenbach is correct,
but he forgets that any system of geometry G could be
employed to describe any world provided that sultable
adjustments are made to the system of physical laws F.
It is this undeniable truth and nothing else which is the
central principle of Poincaré's opposition to geometric
empiricismi
To return to the 1llustration of Fig. I, Reichenbach
would argue that if the measuring rods of the G-people were
deformed, while those of the E-people behaved like Ruclidean
solids, there would be an emplrical difference between the
two worlds G and E. Would this then mean that the people

of G could not possibly employ the language of FEuclidean

geometry? Not at all, It would simply mean that they would

69"Geametry and Experience" in Readings in the
Philosophy of Science, (ed. H. Felgl and I, BrogbeEE), p. 192.
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not be able to retain Euclidean geometry and stlll choose

between Fo and F But they could still describe their

l.

world by the stipulation G0 + F where F, 1s any system

2° 2
of physical laws which would be necessary to retain Go. of

course there would be an empirical difference between the
two worlds, but it would be the same order of empirical fact
which teaches us that Euclidean geometry is the most convenient
description of our own world. This much, Poincaré naturally
admits, |

A. d'Abro is one of the few writers who seems to
have understood Poincar®'s position:

"If we consider the problem in its present state,
we see that i1t 1s the physical behaviour of material
bodies and light rays which is in the final analysis
responsible for our natural belief in absolute shape.
But this realisation brings with it the assurance that
space itself has eluded us entirely in our discussions.
Such was indeed Poincar@'s stand. He maintained that
though Tor purposes ol convenlence it was only natural
for us to measure space as we do, yet 1f needs be we
could disregard the behaviour of material bodies entirely,
adopt non-Euclidean standards and proceed as before."70

We may conclude that Reichenbach's criticism of
Poincaré on behalf of geometric empiricism is based to a
very great extent on a misunderstanding of Poincaréts
position., Reichenbach attributed to Poincare a doctrine

of radical conventionalism which the latter, in fact, never

held. Poincaré's position is in agreement with that of
Reichenbach to the effect that we can only make objective

statements about the conjunction G + F. However, the almost

"One Evolution of Scientific Thought, 52¢.
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trivial difference in principle between them is that whereas
Reichenbach would adopt the convention F = Fo, Poincaré, on
the basis of existing physics, adopted the convention G = Go,
i.e. that geometry is Euclidean. In either case, the fact
remains that no cognitive statement can be made until a
convention of one sort or the other has been stipulsated.

A far more bitter polemic, in the name of geometric
empiricism, has recently been made by H. P. Robertson.71
While we may forgive Reichenbach for having misunderstood
Poincaré, we can find no justification for either the nature
or the tone of Robertsont's attack.

Robertson points out72 that in spherical geometry
the sum of the interior angles of a triangle exceeds two
right-angles. The amount of this spherical "excess" is
given by the formula ¢ -1r = K&, where & is the area
of the triangle, ¢ 1s the angle-sum, and K is the constant
of curvature, given by l/R2 where R is the radius of a sphere
on the surface of which the triangle could be placed without

distortion.73

It is obvious from the above formula that the

curvature of space (K) could be determined by an angular

71"Geometry as a Branch of Physics" in Albert Einstein,
Philosopher-Scientist. (ed. P, Schilpp), pp. 315-332,

"21p14., p. 318.

73'I'he last part of this sentence is an addition of
the present writer to ald the reader in understanding intuitively
what is meant by the "curvature" of space.
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measurement of & sultable triangle., If K is very small,
i.e. R 1s very great, the experiment attempted by Gauss

on the triangulation of mountain peaks would be of no value.
However, Robertson refers to the work of Gauss'! successor
at Gottingen, K. Schwarzschild who proposed a more refined
experiment in which:

"A triangle determined by three points will be
defined as the paths of light-rays from one point to
another, the lengths of its sides a, b, c, by the times
it takes light to traverse these paths, and the angles
8, b, ¢ will be measured with the usual astronomical
Instruments. "7

Robertson suggests that such a procedure could be
applied to a triangle ABC, in which A is the position of a
star while B and C are successive positions of the earth
which are, for example, six months apart., Robertson goes on
to point out that:

v, ..the value for us of the work of Schwarzschild
lies in its sound operational approach to the problem
of physical geometry - in refreshing contrast to the
pontifical pronouncement of H. Poincare, who after
reviewing the subject stated:

1If therefore negative parallaxes were found, or
if 1t were demonstrated that all parallaxes are superior
to a certain limit, two courses would be open to us; we
mght either renounce Euclidean geometry, or else modify
laws of optics and suppose that light does not travel
rigorously in a straight line.

'It 1s needless to add that all the world would
regard the latter solution as the more advantageous.

'The Euclidean geometry has, therefore, nothing to
fear from fresh experiments(} '"75

7uﬁber das zuldssige Krimmungsmaass des Raumes, Viertel-
jehrsschrift der astronomischen GeselIsChaft, vol., 35, pp. 337-
347. Quoted by H. P. Robertson, Op. Cit., p. 323.

50p. cit., pp. 32l-325.
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It seems to the present writer that it is not
Poincaré but Robertson himself who is gullty of the
"pontifical pronouncement." Poincaré's position was clearly
stated when he wrote that, "to ask what geometry it is
proper to adopt is to ask, to what line is it proper to
give the name straight? It is evident that experiment can

not settle such a ques‘cion."76

In short, Poincare is simply reiterating the
polnt made by Riemann that we cannot assign a particular
metric to space until we have given a definition of congruence
or, what is almost the same thing, until we have settled on
a definltion of a straight line or geodesic,

Robertson claims that Schwarzschild proposed an
operational method for determining the metric of space.
However, the metric would not be revealed by any internal
evidence regarding the nature of space itself. The proposed
experiment could only be performed after a suitable definition
of the spatlial metric had been given. Obviously, Schwarzschild
chose a definition of the geodeslic which is based on the time
taken by a light ray to go from one point to another., This
is undoubtedly the most convenlent definition in view of the
fact that astronomy is perforce based on optical experiments.
However, there is no a priorl necessity in choosing such a
definition. We would repeat that it is not Poincaré but

Robertson who has made a "pontifical pronouncement. "

76The Value of Science, p. 37.
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The most illustrious of Poincaréts critics is

undoubtedly Bertrand Russell. In An Essay on the Foundations

of Geometry, Russell offered a brief criticism of the
conventionallist interpretation of geometry in which he
clearly allied himself with the proponents of geometrical
empiricism.77 His remarks led Poincaré to make a formal
criticism of Russell's book.78

Poincaré begins by reiterating several of his well
known views concerning the basis of the geometrical axioms,

but with greater force than hitherto.

"I believe that Mr. Russell is wrong in attributing
an empirical character. . . to Euclld's postulats.

"Moreover, the word 'empirical', in _such a context
as this, seems to be devoid of meaning."79

"If one were to discover a star whose parallax
was negative, would one thereby conclude that our
goeometry is false? No; it would surely be more natural
to conclude tha&t the light rays emanating from this
star were not rigorously propagated in a straight
line. I have stated this before, but I do not hesitate
to repeat it, in view of the fact that people_ gtill
contest this truth which is to me so obvious"80

Poincaré also reiterates the point that,

"Our knowledge of the movements of solld objects
cannot supply the basls of geometry; they are merely

"T¢e,, Op. cit., pp. 30-31 and p. 113.

78h6s Fondements de la Géométrie, Revue de M&ta-
physique et de Morale, v. 7, 1899, pp. 251-279.

791p1d., p. 265. All quotations from this article
have been trenslated by the present writer.

80

Idem.
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suggestive of such a baslis., They play an importang
psychological role but no logical role whatsoever. 1

"If anyone remains unconvinced by these
considerations, let him produce an a ctual experiment
which could be interpreted in the Euclidean system but
which could not be interpreted in the system of
Lobatschewsky.

"As I know that this challenge will never be taken
up, I may conclude:

"No experience can ever be in contradiction with
Fuclid's postulate; by the same token, no experignce
will ever contradict Lobatschewsky'!s postulate,"82

With regard to Poincaré's view of the conventional

character of distance, Russell wrote,

"It is open to us, of course, if we choose, to
continue to exclude distance in the ordinary sense, as
the quantity of a finite straight line, and to define
the word distance in any way we please. But the
conception, for which the word has hitherto stood, will
then require a new name, and the only result will be a
confusion between the apparent meaning of our propositions,
to those who retaln the association belonging to the
old sense of the word, and the real meaning, resulting
from the new sense in which the word is used,'"03

Poincaré replies:

"To illustrate the pure folly of this criticism,
I shall take & rather extreme example. Suppose I said
that, 'I am entitled to say that a triangle has four
sides, for no one can prevent me from giving the name
triangle to the shape that you would call a quadrilateral.t
You would reply: 'But you are wrong in giving the name
of triangle to something which everyone else would call
a quadrilateral.!' This advice is certainly sound, but
‘does it imply that the statement 'the triangle has three
sides' is an axiom or theorem rather than a mere definition?"su

81

Idem.

821114., p. 267.

830 . CitO’ D. 33’
8 pes rondements de la Géométrie, p. 273.
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Poincaré's simple but penetrating criticism of
Russell's theory of metageometry eliclted a charming reply
from the 1atter85 in which he pays particular attention to
the notion of congruence:

"Poincareét!'s thesis led him to the view that a
distance implies an equality, i.e. an equallty of two
distances. This point 1s fundamental, since it implies
that the determination of a distance depends on a
measurement, But what is it that one measures? If
it 1s distance that one measures, it must have existed
before the measurement., This point brings out the
essence of the confusion. It seems to be believed
that since a measurement 1s necessary to discover
equality and inequality, there can be no equality or
inequality without measurement. However, the proper
conclusion is precisely the contrary. That which one
can discover by any operation must exist independently
of that operation. America existed before Christopher
Columbus, and two portions of space must be equal or
unequal before being measured. Any method of measurement
is good or bad depending on whether its result is true
or false. Poincar§, on the other hand, believes that
measurement creates equallty and inequality. It follows
that all methods of measurement must be equally good.
But there is still another implication that he does
not appear to have realised, that (on his theory) there
is nothing left to measure and that equality and 86
inequality become words which are devoid of meaning."

In short, Russell is adopting a "factualist"
interpretation of geometry. How he was able to find such
an interpretation epistemologically tenable we do not know.
For example, the definition of congruence 1s not only

fundamental to the measurement of distance but also to the

determination of amount of curvature. Russell puts himselfl

855ur 1es Axiomes de la G8om8trie, Revue de
Métaphysique et de Morale, v. 7, 1899, pp. 684-706.

86Ibid., p. 687f,. Thils quotation is translated
by the present writer.
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in the hopeless position of maintaining that a line is
"really" straight or "really" curved prior to any measurement.
But this is a naive view which clearly misses the undeniable
truth of the principle of spatial relativity. It is true
that there is a difference between a good measurement and

a bad one, but only after the nature of the coordinate

system has been specified. Russell misses the point that

a measurement can be called good or bad even though it is
relativistic.

Russell apparently holds the view that there are
factors internal to space itself which uniquely determine
the metrical properties of that space. Russell would argue
that the word "congruence" has the unique meaning of spatial
equality. This is quite true. "Congruence" does refer to
the equality of spatial intervals. However, the axioms of
geometry are such as to admit an infinitude of different
interpretations of the equality of two intervals., A spatial
interval or distance has no special metrical properties
which permit us to single 1t out as the type of interval
which is specified by the primitive term "congruent." The
criterion on the basis of which we regard two intervals to
be equal must be an external standard. Wwhen we are concerned
with actual measurements the standard will be some sort of
instrument as, for example, a measuring rod. The rigidity
of this standard when it is in motion is clearly a matter

of stipulation as even Reichenbach would admit. We fall to
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see how the consideration of space itself would enable us
to single out any one standard as uniquely determined.
That 1is not to say, however, that experience does not
suggest an appropriate congruence standard., It does. But
the standard depends on the behaviour of material objects

and has nothing to do with the intrinsic nature of space.




CHAPTER VII

CONVENTIONALISM AND MECHANICS

I-ABSOLUTE SPACE AND MOTION

The bearing of Poincaré's philosophy of science
on the doctrines of theoretical mechanics is actually more
interesting than its bearing on geometry. It is more
interesting because it is more critical. Many scientlsts
tend to disapprove of the philosophy of sclience because its
results are either false in the face of real scientifiec
practice or trivial in their implications.

While philosophers of science have sometimes
claimed that their doctrines contain genuine heuristic
principles which scientists would do well to heed, such
claims are often speclous or, at least, dubious., I do not
think that the primary aim of the philosophy of science is
to discover heuristic principles but, undoubtedly, its
validity as an intellectual discipline would be the more
readily accepted if it could.

We may determine to what extent the conventionalist
interpretation of mechanics is a heuristic theory by

considering its application to Einsteinian relativistic
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mechanics, Poincaré's remarks on the conventional character
of mechanics were, of course, addressed to pre-Einsteinlan
science. But 1f they possess genuine heuristic value, they
will be applicable to the theory of relativity. This, we
think, would be an excellent test of the validity of Poincaré!s
thesis,

We must begin this chapter with a digression into
the history of mechanics. This is necessary to provide a
backdrop against which to consider the philosophy of Poincaré.
However, no claim is made to present a scholarly account of
the history of science in the following pages. It would be
the greatest concelt for any man to claim to do this in a
few pages, not to speak of the limitations of the present
writer., The following observations on classical mechanics
are in general common coin, However, the literature on
relativity theory, ranging from the popular to the highly
technical is so lmmense that the writer could not possibly
give any account of it in these pages. Perhaps arbitrarily,
but with sufficlent justification, it has been declded to
rely, for the most part, on a single elementary source for

the theory of relativity, namely, Einstein's "Relativity,

The 3pecial and General Theory."

In his greatest achievement, the "Prinecipla",
Newton enunciated the principle of inertia as the first
law of motion. It was the fundamental axiom of his theoretical

system. It asserts that every body will persevere in a state
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of rest or uniform, rectilinear motion unless acted on by
external unbalanced forces. Now it is apparent that such
a statement could have no determinate meaning unless a
frame of reference be given in the form of spatial co-
ordinates. For example, if a ball is thrown in the air in
a uniformly moving vehicle, it appears to go stralight up
and then straight down to any observer at rest in that
vehicle. However, its path would appear to be a parabola
to any person at rest on the surface of the earth. Again,
with respect to the earth, the motion of the falling stone
appears to be accelerated, If the frame of reference were
falling at the same rate, the stone would appear to be
motionless., 1In short, the phrase "uniform, rectilinear
motion™ is only meaningful with respect to a frame of
reference.

If we grant the fundamentally amorphous character
of space, it would follow that there is no privileged frame
of reference and, therefore, Newton's law of motion would
be quite arbitrary. It will be true provided that the
appropriate frame of reference is selected. But laws of
much greater complexity than the classical laws of motion
could be arbitrarily chosen and shown to be true with respect
to the appropriate system of spatial coordinates.

Notwithstanding the amorphous character of space,
Newton discovered that frames of reference are

distinguishable. In some we find strange forces acting on
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us and on moving objects, while in others we do not. Those
frames of reference in which no disturbances, other than

of the gravitational variety, are found were called Galilean
or inertial frames. With respect to such inertial frames,
not only were the laws of motion found to be true but also
the related Keplerian laws of planetary motion.87 Furthermors,
it was discovered thaet the strange, unsymetrical forces of
the non-Galilean frame could be directly related to the
inertial system. It was found that an "inertial" force
appeared in a frame which is in & state of rectilinear
acceleration. When the non-Galilean frame is rotating with
respect to the Galilean ffame, the resultant forces are of
the centrifugal and Coriolis types.

It should be noted that the earth was not taken
to be an inertial system. According to the principle of
inertia, the stars should describe rectilinear motions,
but due to thelr great distance, their displacements would
be imperceptible. However, to an observer on the earth,
the fixed stars appear to follow curved paths around the
pole-star. Hence, it must be assumed that the earth is a
rotating system, The presence of rotational forces was,
in fact, finally confirmed by the rotation of the plane of
Foucault's pendulum. We see, then, that any Galilean frame

may be defined operationally as a system at rest or in

871n ract, this is only approximately the case, but
the writer wishes to avoid needless complications in such an
elementary account,
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uniform motion with respect to the system of fixed stars.

It has already been noted that the distinction
between inertial and non-inertial systems 1is incompatlble
with the amorphous character of space. Nevertheless, such
a distinction does appear to be necessary. If all frames
were equivalent, the law of inertia would be meaningless.
Newton could have resolved the difficulty by accounting for
inertial forces in terms of external influences or, more
specifically, with reference to the fixed stars. However,
according to his theory of gravitational attraction, the
distance of the fixed stars was considered to be too great
for them to have any perceptible terrestrial effects. Thus,
he maintained that the forces found in non-Galilean systems
would occur even if the system were in isolation from all
the matter in the universe., This being the case, 1t follows
that the accelerations and rotations of non-Galilean frames
are "real" or "absolute." In other words, inertial forces
imply the reification of absolute space} In fact, it also
follows that, 1f bodies accelerate and rotate in absolute
space, then bodies must also undergo uniform translastions
with respect to the same absolute space. In short,
classical mechanics turns out to be wholly incompatible
with the doctrine of the relativity of space.

As it happens, however, the real or absolute
uniform motions or velocities cannot be detected by any

mechanical means., That is to say, we are unable to determine
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mechanically which inertial systems are at rest in space
and which are in uniform motion with respect to them. Thus,
in practice, velocity remains relativistic. In fact, the
relativity of velocity may be deduced as a consequence of
Newton's second law of motion which asserts that the force
acting on a body is equal to the product of the mass of that
body and its acceleration. In classical mechanics, mass was
regarded as an invariant quantity. Similarly, an acceleration
will be invariant in all Galilean frames since any veloecity
must appear in the equations of motion as a constant and
will disappear after differentiation. In other words, the
acceleration is independent of the initial velocity.
Consequently, the product of mass and acceleration must be
invariant. Therefore, the second law f = ma is true for
2ll Galilean frames. If velocity were mechanically discernible,
one would have to conclude elther that f = ma is not invariant .
or that mass is relative., Either alternative would be
disastrous to classical mechanics,

Hence, there is a principle of relativity in
classical mechanics which asserts that it is impossible
for a Galilean observer to ascertain mechanically the state
of rest or uniform, rectilinear motion of the system in
which he is situated. Moreover, the mathemgtical expression
of this principle of relativity is the invariance of the laws
of mechanics throughout all Galilean frames.

The factors which led to the extension of classical
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relativity by Einstein pertain to theoretical difficulties
of nineteenth century electromagnetics and optics. It was
noted in the preceding paragraph that the principle of
relativity requires the invariance of physical laws. One
of the great achlevements of the nineteenth century was the
developme nt by Maxwell of the equations of the electro-
magnetic field. However, while these equations described
a host of physical phenomena, which made their abandonment
virtually unthinkable, they were of such a type that their
form was modified by Galilean transformations. Thils seemed
to suggest a dualism between the space of mechanics and the
luminiferous ether of electrodynamics. Since the hypothetical
ether was stagnant or motionless, scientists bellieved that
it would be possible, after all, to determine the real
velocity of the earth by electro-magnetic means. Stated
crudely, since electro-magnetic laws vary from one Galilean
frame to another, a suitable experiment shéuld reveal the
absolute velocity of the frame in which the earth is at
rest. The nineteenth century was replete with such experiments.
However, the most famous is the experiment of 1887 performed
by Michelson and Morley.

To reduce it to its simplest terms, the foundation
of this experiment is that if two light rays depart from
the centre of a sphere at the same time and are reflected
by the inner surface of that sphere, they should return to

their point of origin at precisely the same time, provided
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that the earth is at rest in the ether. However, since the

earth possesses an orbital velocity, a time difference

between the two journeys should be discerned. This difference
would reveal, therefore, the absolute veloclity of the earth.
As we know, the Michelson-Morley experiment yielded negative
results, as did many similar experiments. The task of
theoretical physics in the latter part of the nineteenth
century was to explain the null effect of these experiments.

The most adequate explanation was provided by
Fitzgerald. He postulated that the effect of the earth's
motion through the motionless ether would be the contraction
of all bodies at rest on the earth in the direction of that
motion. That is to say, a translatory motion would produce
a deformation, so that what is a sphere at rest would become
distorted during a translatory motion into an elipsoid.
Thus, the light rays of the Michelson-Morley experiment
would actually travel at different speeds depending on
thelr direction, but the distances travelled would also vary
in such a way that the one effect precisely compensates for
the other.

Lorentz accounted for the Fitzgerald contraction
by means of an elaborate hypothesis of the electronic
structure of matter. PFurthermore, Lorentz worked out a set
of transformations, differing from Galilean ones, in which
the contractlon of length would occur and, moreover, in which

the invarliance of electro-magnetic laws would be preserved.
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Thus, Lorentz and Fitzgerald showed that while the earth
does have a real velocity, nature, through apparent caprice
or malevolence, has conspired to hide it.

While the theory of Lorentz adequately accounted
for most experimental results in a general way, it was far
from perfect for many reasons. In the first place, it
required a set of complicated ad hoc assumptions about the
electrical constitution of matter, concerning which virtually
nothing was known at the time, Secondly, it deprived classical
theory of its elegant generality by requiring one set of
transformations for electro-magnetic phenomena and another
set for mechanical phenomena. But from the philosophical
standpoint, its greatest limitation is that it postulated
physical effects which were held to be unobservable in
principle.

In 1905, A. Einstein unravelled this tangled skein
with a few simple but daring generalizations. On Lorentz's
theory, real motion, while unobservable, had been preserved
in principle. There was an objective or privileged frame
of reference, namely the stagnant ether. The Fitzgerald-
Lorentz contraction would not occur in this privileged
frame but only in other frames which are in motion with
respect to it. Einstein suggested that since an overwhelming
weight of experimental evidence reveals that No privileged
frame is discoverable, it would be better to dispense with

the notion altogether. In other words, we should assume
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that all Galilean frames are equivalent for both mechanical
and electro-magnetic laws,

In this case, we would no longer have any reason
to differentiate between mechanical and electro-magnetic
phenomena, so that a single set of transformations must be
adopted in which both types of law are invariant. Moreover,
the complete relativization of uniform motion will require
the invariance of the velocity of light. But with respect
to Galilean transformations, the principle of the composition
of velocities requires that the velocity of light will vary
with the velocity of its source. However, although Lorentz
had not attached too much significance to it, the velocity
of light does indeed appear as a constant in the Lorentz
transformation equations., What Elnstein required was a set
of transformations having the above properties plus the
additional feature of preserving the invariance of the
classical laws of motion for low velocities, The Lorentz
transformations filled all of these requirements. Thus, the
special theory of relativity was formulated. We should now
consider very briefly some of its consequences.

Firstly, the apparently self-evident law for the
composition of velocities had to be abandoned. Let us take
a simple example. Suppose a man on & train moving in the
x direction with a velocity v throws a ball with the velocity
w also in the X direction., An observer on the embankment will,

according to classical princlples, find the ball to travel
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with the velocity W = v + w. The invariance of mechanical
laws would be preserved in classical physics by the preceding
formula., In relativistic mechanics, the composition of
velocities does not take place by simple addition or

subtraction. Instead the formula will be§88

vV + w
1 + vw /¢

Even more remarkable 1s the relativization of time,

given by the following formula:

t - v/cz.x
v 1 = ve/ce

tt =

The startling physical significance of the above equation
is that time is no longer an absolute but a function of
relative velocity. In other words, all clocks will slow
down in a frame in uniform, translatory motlion., Lorentz
had distinguished between absolute or real time on the one
hand and relative time on the other., But in the special
theory of relativity there is no privileged frame, so that
one cannot speak of a real time interval or congruence.
Furthermore, the Fitzgerald-Lorentz contraction,
the reader will recall, was explained in terms of a physical
hypothesis concerning the impact of electrically constituted
matter against a motionless ether., Lorentz calculated that

a rod whlch measures one metre at rest will contract when

88All the mathematical formulas in this chapter are
from Einstein, Op. clt., p. 39ff.
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moving with a velocity v to 1- Vv of a metre.
c2

According to Lorentz, the latter is a real contraction.
For Elnstein, however, the mathematical formula for the
contraction is correct but it does not signify a real
contraction. What it actually representsis the relativization
of distance, That 1s to say, Elnsteint's theory requires no
ad hoc postulates concerning the constitution of matter.
The contraction is the result of the relative motion between
the object which is messured and the measuring instrument,
Therefore, if we consider t wo observers in different
Galilean frames, each will consider the measuring rods of
the other to have undergone a contraction.

It has, from time to time, been suggested that
Lorentz, not Einstein, was the original author of the special
theory of relativity. It is hoped that this brief review
has made it quite clear that Lorentz merely modified the
mathematical form of classical mechanics without introducing
the radical reinterpretation which must be credited to
Einstein alone. 1In the theory of Lorentz we find the
absolutism of Newton still lingering on. If we could
define the fundamental difference between Einstein and
Lorentg in a single sentence for the sake of philosophers,
it would be that Lorentz believed real motion to be meaningful
but unobservable whereas Einstein maintained that it is
altogether devoid of physical meaning. The by no means

simple question which is now before us is to determine whether
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Poincaré was a genuine precursor of Einstein.

According to Newton, the laws of mechanics are
precise descriptions of the physical world. According to
Poincaré, they have a definitional or conventional character
akin to the propositions of geometry. The enunciation of
classical laws presupposed the abscluteness of space and
time and the Euclidean character of space. We have already
discussed some of the problems connected with space. Later,
we shall expound Poincaré's treatment of time. But Poincaré
maintained that while the relativity of space and time make
it clear that classical mechanics is conventional, one could
reach this conclusion independently of these considerations.

Let us beglin with a consideration of the principle
of inertia. If this principle is anything more than a
definition, 1t must be either an experimental law or an

89

a priori principle. Poincaré argues that it is obviously
not given a priori, for not only 1s it possible to doubt it
but in the past it actually has been doubted. The Greeks,
notably Aristotle, believed that motion ceases when the
cause of that motion ceases. This is surely as appealing

to reason as the Newtonian law, It 1s unnecessary to labour
the point, since surely no one with an elementary knowledge

of physics could today argue that an alternative to the

first law of motion is inconceivable.

Is this principle, then, an experimental fact? In

89Science and Hypothesis, p. 91.
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the first place, it is obvious that a body on which no
forces are acting has never been experienced. That 1s to
say, no direct confirmation of the principle is possible.
But the scientist would argue that it may be verified

90 poincars points out

indirectly by its consequences.
that this is actually a loosely phrased argument. He
maintains that what 1s really intended 1s that we may
verify a more general law of which the principle of inertia
is a special case. Poincaré proceeds to formulate that law
which he calls the generalized principle of inertia: "The
acceleration of a body depends only on its position and that
of neighbouring bodies, and on their velocities."™ 1In
mathematical language, this means that the laws of motion
will have the form of differential equations of the second
order.

Let us suppose that the true law of nature differs
from the preceding law. For example, we might assume that
when no force is acting, the position of the body is
unchanged. Again, we might suppose that it is the acceleration
of the body which is unchanged. The generalized principle
of inertla corresponding to the first assumption would be
that the velocity of a body depends only on its position and
the position of neighbouring bodies. In the other case, it

would assert that the variation of acceleration depends on

its position and on the positions, velocities and accelerations

P1p14., p. 92.
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of nelghbouring bodies., In mathematical language, the

first assumption would mean that the laws of motion are
differential equations of the first order, while the second
means that they would be differential equations of the third
order.

Now we must consider whether it would be possible
under any circumstances for such foreign principles to be
adopted. Poincard offers a simple hypothetical example of
a physical situation to which the former alternative could
be applied. If by chance the solar system were such that
the orbits of planets had neither eccentricity nor inclination
and, furthermore, that their masses were so small that
perturbations would be indiscernible, then scientists would
conclude that the orbits of planets must be circular and
parallel to a certain plane. The reader will readily
perceive that under such conditions, which are after all
free from self-contradiction and physically conceivable, it
would be possible to determine the orbit of a planet from
its present position alone. In other words, a Newton of
this hypothetical world would conclude that when no force
is acting on a body, its position remalns constant., 1In
fact, of course, the Keplerian orbits led the real Newton
to formulate the law of inertia in its present familiar form.
Poincaré makes the point that it is extremely unlikely that
we have been led into a monstrous error of the same kind as

our hypothetical astronomer. Nevertheless, it must be added
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that such an eventuality is indeed possible.

If we grant the validity of the law of inertia
insofar as we suppose that no chance coincidence of
clrcumstances has led us to adopt it, the next question to
consider is whether this law could be refuted under any
circumstances. In physics we frequently have recourse to
hypothetical entities to explain phenomena., In fact, this
is more obviously true today than it was in Poincaréts own
time. Suppose we were examining a system of n molecules
and found that their 3n spatial coordinates satisfy & set
of 3n differential equations of the fourth order. Would we
then abandon the present law of inertia? Obviously we could
but it would be most inconvenient to do so. A set of 3n
differential equations of the fourth order can be expressed
by én equations of the second order by introducing 3n
auxiliary variables. Then it is a simple matter to postulate
that the 3n auxiliary variables represent the spatial
coordinates of n invisible molecules, and the law of inertisa
is saved. The foregoing reasoning may seem a trifle abstract
but it merely asserts that sclentists prefer to abandon facts

91 Let the reader reflect how he

than to abandon theories.
would react to a situation in which a falling object falled
to obey the law of gravity., He would surely not abandon
that time-honoured principle, He would likely supposse,

short of resorting to miracles, that some force which is so

9le. Plerre Duhem, The Aim and Structure of
Physical Theory, Passim.
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far unknown has acted on the body to produce this apparent

anomaly.

"Po sum up, this law, verified experimentally in
some particular cases, may be extended fearlessly to
the most general cases; for we know that in these
general cases it can neither be confirmed nor contradicted
by experiment,"92

Poincaré now turns to a consideration of the
second law of motion. If this principle is experimental,
it should be possible to measure acceleration, force and
mass. Poincard points out that it 1s possible to measure
an acceleration 1f we assume a measurable order of absolute
time. Granting this, we are still faced with the problem
of measuring mass and force. Before we can measure them,
we must know what we are measuring. We must, therefore,
begin with suitable definitions of force and mass., We may
say that mass is the product of volume and density. But
it 1s equally proper to say that density is the quotient of
mass by volume. Similarly, force may be defined as the
product of mass and acceleration, but we may also say that
mass 1s the quotient of force by acceleration.

Let us begin by determining what 1s meant by the
equality of two forces. The standard definition is that
two forces are equal when they glve the same acceleration
to the same mass, Let us suppose two forces F and F' which

are acting vertically upwards on two bodies C and ¢! respectively.

A body of weight P is attached first to C and then to C'. If

92Science and Hypothesis, p. 97.
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there is equilibrium in both cases, we conclude that F and
F' are equal to P and are, therefore, equal to each other.
But such & definition lacks mathematical rigour, since it
is assumed that the weight P remained constant when transported
from C to ¢'. In fact, of course, there is a minute variation
in weight from place to place. More important, however, is
that we cannot simply assert that the weight of P 1s applied
to C, keeping the force F in equilibrium. The situation is
really more complex than this., It is the action A of P which
is applied to C. Similarly, there is a reaction R of C on P.
F and A are equal because they are in equilibrium., A and
R are equal by Newton's third law of the equality of action
and reaction. R and P are equal because they are in
equilibrium. Hence, we may deduce the equality of P and F.
It is apparent that the equality of two forces depends on
our acceptance of the third law of motion. The latter,
therefore, enters our considerations not as an experimental
law but as a convention. In all, there are three assumptions
on which we base our conclusion: the esquality of action and
reaction, the equality of forces in equilibrium and the
constancy in magnitude and direction of weight, The last of
these assumptions is indeed an experimental law but, as we
have seen, it happens to be inaccurate.

We are forced to return to the definition of force
as the product of mass and acceleration. But we are now

compelled to regard it as a definition and not as an
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experimental law, Furthermore, it follows from the principle
of action and reaction that the motion of the centre of
gravity of an isolated system will be uniform and rectilinear.
The position of the centre of gravity depends on the values
of the various masses, so that it should be possible to
define mass by assigning values which are consistent with
this rule. But, in practice, the only isolated system is

the entire universe. It is absurd to suppose that one could
actually determine the centre of gravity of the universe as

a whole. We are compelled to conclude, therefore, that,

"Masses are co-efficients which it is found convenient to

n93

introduce into calculations.

If the laws of motion are merely definitions, it
might be asked of what use they can be. Surely, it will be
argued that they must be devoid of physical significance.
This is by no means true according to Poincaré. The laws
of motion are in the first place suggested by experiment.
But experimental rules are only approximate. Consequently,
we restate them rigorously, but then they lose their
experimental character, and are no longer experimentally
falsifiable. Of course, the weight of much additional
experimental evidence could lead us to withdraw them for
purposes of convenience, but that is a different matter. "If
a principle ceases to be fecund, experiment without

contradicting it directly will nevertheless have condemned

3Ivid., p. 103.
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it."gu "Thus is explained how experiment may serve as a
basis for the principles of mechanics, and yet will never
invalldate them,"95

Widespread misunderstanding of Poincaré's position

has been engendered by the failure to grasp the last
particular point. Physical geometry is conventional because
there are no absolutely rigid bodies. Nevertheless, there
are bodles which are approximately rigid in the Euclidean
sense, so that our physical geometry is a useful convention,
Precisely the same situation holds in the case of mechanics.
Mechanical laws are indeed conventional but are not arbitrary.
However, so often has the view been attributed to Poincaré
that the laws of mechanics are arbitrary conventions that
he should be permitted to speak for himself.

"Are the laws of acceleration and of the composition
of forces only arbitrary conventions? Conventions, yes;
arbitrary, no - they would be so if we lost sight of the
experiments which led the founders of science to adopt
them, and which, imperfect as they were, were sufficient
to justify their adoption. It is well from time to

time to let our attention dwell on the experimental
origin of these conventions."96

Above all, it should not be supposed that there is
the slightest artificiality in Poincarét!s account of the
precise relationship between conventions and experiment., It

is unfortunate that many philosophers are characterized by

9)'L‘I‘he Value of Science, p. 110.

95Science and Hypothesis, p. 105.
96

Ibid., p. 110.
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by their desire for neatness and system. They all too
often distort science when they apply thelr Procrustean
systems to it. It may well be that Poincaré's position has
been misunderstood because philosophers would like to have
read in his works that scientific laws are experimental or
that scientific laws are conventional. But Poincaré, in
effect, is saying that they are a little of each. This
detracts from the dramatic impact which some philosophers
like so much to convey but it is eminently sound as anyone
who has had direct and practical contact with science will
know., For example, suppose that in engineering thermodynamics
an aspect of the performance of a jet engine could be
represented by plotting its thrust against its internal
temperature. The results will be a series of points which
cannot be joined by any smooth curve. But a smooth curve
is drawn, nevertheless., It 1s the curve which joins as many
of the experimental readings as possible and departs as
little as possible from the rest. We have to admit that the
smoothness of the curve is after all conventional., But is
the curve itself arbitrary? One would hardly go to the
trouble of conducting lengthy and expensive engine tests if
it were.

It should not be supposed that Poincaré's elaborate
demonstration of the definitional character of mechanical
laws was intended as a criticism of classical mechanics.

Poincaré would have argued that the laws of relativistic
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mechanics are equally conventional. Euclid's postulate is
a convention, but that does not suggest its abandonment.
To use the language of Reichenbach, Poincare has shown that
the laws of mechanics require coordinative definitions in
terms of the behaviour of rigid bodies before they can be
employed. Furthermore, Einstein's criticism of Newtonilan
mechanics is not to be construed as a rejection of the
system itself. Einstein rejected Newtonian mechanics
because when we seek to apply it to nature, we find that
no coordinative definition is possible. This is particularly
apparent with regard to the absolute time of classical
mechanics.,

In the general theory of relativity of 1915,
Einstein extended the principle of relativity by showing
that it is not only impossible to detect a real velocity
but equally impossible to detect a real acceleration or a
real rotation. The principle of relativity is then expressed
in 1ts most radical form as advocated by Ernst Mach. It
completely denies the physical significance of space. It
is remerkable that Poincaré should have anticipated Einsteiln
to such an extent as to recognize this. While discussing

the problem of relative and absolute motion in Science and

Hypothesis, Poincaré expresses some surprise that the

principle of relativity applies to velocities but not to
accelerations,

"Wwhy is the principle only true if the motion of
movable axes 1s uniform or in a straight line? It seems
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that it should be imposed upon us with the same force
if the motion is accelerated, or at any rate if it
reduces to a uniform rotetion."97
Poincaré now proceeds to discuss another hypothetical
world., This one is like our own earth but is surrounded by
dense clouds so that its inhabitants would be unaware of
the existence of the stars and planets. Would these people
imagine their world to be motionless? Poincaré suggests
that they would have to wait much longer than we for a
Copernicus, But eventually one would turn up. The sclentists
would be unable to account for Foucault!'s pendulum experiment,
for the flattening of the poles, and for the general lack
of syrmmetry in nature (centrifugal forces). The Copernicus
of this imaginary world would reach the conclusion that all
of these arbitrary and isolated mysteries could be accounted
for on the single assumption that the earth rotates. Just
as our own Copernicus explained to us that the laws of
astronomy can be expressed in far simpler language on such
an assumption, so the hypothetical Copernicus would point
out that in this way the laws of mechanics admit of much
simpler expression.
Poincaré now makes the remarkable point that this
discovery would by no means confer any absoluteness on space.,
"And hence this affirmation: 'the earth turns
round,'! has no meaning, since it cannot be verified by
experiment; since such an experiment not only cannot
be realised or even dreamed of by the most daring Jules

Verne, but cannot even be conceived of without contradiction;
or, in other words, these two propositions, 'the earth

M Ibid., p. 113.
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turns round,! and, 'it is more convenient to suppose
that the earth turns round,' have one and the same
meaning, There is nothing more in one than 1in the
other. "9
The foregoing was precisely the conclusion which
Einstein reached through the most abstract mathematical
reasoning. This should suffice to suggest the heuristic
value of the thesis of conventionalism.
A later proponent of conventionalism, Pierre
Duhem, took this point a little too far. As a Roman
Catholic, he saw it as a possible justification for the
fate of Gglileo at the hands of the Inquisition. Poincaré
was far too sensible to employ his doctrine for the
reintroduction of Ptolemaic astronomy. He stresses the
point that conventions are not the free creation of the
scientist., The scientlist is inevitably constrained by
experience, Thus, our conventions do convey information
about the world. However, this information is only concerned
with relations., "To affirm the immobility of the earth would
be to deny these relations, that would be to fool ourselves."99
"The truth for which Galileo suffered remains,
therefore, the truth, although it has not altogether

the same meaning as for the vulgar, and its true meaning
is much more subtile, more profound and more rich,"100

Brpid., p. 117.

99The Value of Science, p. 141,

lOOIdem.




CHAPTER VIII

CONVENTIONALISM AND MECHANICS

IT1 ABSOLUTE TIME AND CAUSALITY

It has already been noted that Newton, who was
well aware of the difficulties involved in the notion of
absolute space, felt no misgivings about the absoluteness
of time. The first breach in thils concept was made by
Lorentz. However, Lorentz believed the time transformation
appllied only to electro-magnetic phenomena. Moreover, as
we have seen, he distinguished between local, relative time
and real, absolute time. Thus, the doctrine of the
relativity of time may truly be regarded as the creation
of Einstein. Let us proceed to consider the main features
of Einstein's argument,

BEinstein expounded his interpretation of time in

101 Let us suppose that

the following simple illustration.
lightning strikes the rails on a railway at two places A

and B which are far apart. We are told that the two events
v occurred simultaneously. This, at first, would appear to be

a meaningful statement, but if it has any physical

101Relativity: The Special and (General Theory, p. 25ff.
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significance it must be accessible to experimental
verification. But what sort of experiment would verlify a
statement about the simultaneity of two events?

After some reflection, the following definition
of the simultaneity of the two strokes of lightning might
be given. Connect the line AB and carefully determine its
mid-point M. The observer should be placed at M with two
suitably arranged mirrors. If light rays from the two
events reach his mirrors at the same time, then the two
events are simultaneous. This definition would be quite
proper, according to Einstein, provided it be recognized
that 1t 1s based on what he calls the "stipulation"102 that
the light travelling along the path AM has the same velocity
as light travelling along BM. This could not be an empirical
determination, since no method of measuring time may be
presupposed, Slimilarly, physics may define time by placing
clocks at the points A, M and B, whose hands are simultaneously

set., It 1s "stipulated" that the several clocks are going

at the same rate. In other words, it 1s possible to define
physical time, provided that we begin by adopting various

conventions about the behaviour of clocks and light rays.

So far, we have reached a definition of time with
respect to a particular coordinate system, the railway
embankment. In accordance with the methods of physics, we

must now discover whether our definition is invariant, i.e.

1027y34., p. 28.
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whether it transforms into itself with respect to other
coordinate systems.

Let us imagine that a long train is moving along
the track with a constant velocity v in the direction AB.

The train will constitute a second Galilean frame. Accordingly,
we set up an experimental arrangement on the train similar to
the one on the embankment. Let M' be the midpoint of AB on
the moving train. When the flashes occur at A and B as
judged from the embankment, M' will coincide with M. The
second observer at M' will move towards the light ray from

B and away from the light ray from A. Consequently, he will
observe the light from B before he observes the light from

A, In short, with respect to the train, the two events will
be judged to be successive rather than simultaneous. We must
conclude that every Galilean frame has its own temporal
order, That 1s to say, time is a relativistic concept. Let
us see how closely Poincard's pre-relativity analysis of time
accords with Einsteints theory.

Poincaré points out that we must distinguish
between subjective, "psychologie" time which is given to us,
and the objective time order of physical events in which
there is no consciousness.lo3 Poincaré distinguishes two
questions which follow from this distinction:

_"1.. Can we transform psychologic time, which is
qualitative, into a quantitative time? 2. Can we reduce

103The Value of Science, p. 26f.
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to one and the same measure facts which transpire in
different worlds?"1lO

Poincaré begins by considering the problem of
temporal congruence, i.e. the equality of two separate
intervals of time. He points out that there is nb direct
intuition of such an equality. Is there, then, any physical
determination of temporal equality? One might resort to the
use of a pendulum, assuming that all the beats of the pendulum
define equal intervals., But such a definition would lack
precision since the period of the pendulum will vary with
barometric pressure, temperature and so forth. Thus,
scientists must turn to the sidereal day for a definition of
time., Then all our terrestrial clocks will be corrected in
accordance with the time taken by the earth to complete one
full rotation about its axis. But we are then assuming that
the rotational velocity of the earth is absolutely uniform,
and we have no evidence for such an assumption. In fact,
some astronomers believe that the angular velocity of the
earth is gradually decreasing.

Is it at least possible to conceive of a perfect
physical clock? Poincar$ points out that the employment of
any clock, be 1t the rotating earth or a pendulum, as a basis

for the objective measure of time must rest on one initial

postulate, namely, "that the duration of two identical

phenomena is the same," or, "that the same causes take the

LOUtps4,, p. 27.
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same time to produce the same effects."lo5
Let us trace the implications of this postulate.
Suppose that in a certain region of space an event a occurs
which produces, after a certaln interval of time, the effect
at., In another region of space, very distant from the first,
an event b occurs with the effect b'. Let us now suppose
that a and b are simultaneous and that at' and bt are also
simultaneous, Let us suppose that under roughly similar
conditions the event a occurs once more and that simultaneously
b is also reproduced. The two events are followed by a' and
b' respectively, as before. Finally, we shall imagine that
a' occurs perceptibly before b'. If we were witness to such
a state of affairs we would be bound to admit that our
postulate is absurd. Yet there is nothing self-contradictory
about the foregoing suppositions. We must, therefore,
conclude that there is no a priorl basis for our postulate.lo6
Poincaré proceeds to point out that the postulate
faces a further difficulty in that it assumes that a single
discriminable cause produces a certain effect. 1In fact,

however, this is rarely the case. For example, the period of

1051bid., p. 28.

106It is quite obvlious that the postulate is really
a definition. Although Poincaré failed to say so, his general
position would have been strengthened had he pointed out that
we may adopt the postulate as a convention, in which case the
observed discrepancy between aa' and bb' could be attributed
to a difference in the rates of the two clocks which were
employed to measure the two intervals,
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a pendulum is due almost solely to the earth's contraction.
In all rigour, however, even the attraction of Sirius would
have some effect on the pendulum. In the final analysis

we must, therefore, modify our postulate to assert that,
"causes almost identical take almost the same time to produce
almost the same effects."lo7

But these approximate rules are surely not adopted

by astronomers when they suggest that the earth 1s slowing
down. On what basls do they posit such an hypothesis? For
one thing, they would argue that the friction of the tides
will produce heat and so destroy vis viva.1%® Again, they
might argue that the secular acceleration of the moon is
greater than what is predicted by Newton's laws., In practice,
then, astronomers define time in such a way that the laws of
motion are preserved. But 1If we treat the laws of motion as
experimental truths, the definition of time is still only
approximate. Suppose that some other method of measuring
time were adopted. The experimental basis of Newbton's laws
would be unchanged, but the enunclation of those laws would
be greatly complicated.

"So that the definition implicitly adopted by the
astronomers may be summed up thus: Time should be so
defined that the equations of mechanics may be as
simple as possible., In other words, there is not one

way of measuring time more true than another; that
which is generally adopted is only more convenient.

1O7The Value of Science, p. 29.

1081.6. kinetic energy.
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0f two watches, we have no right to say that the one
goes true, the other wrong; we can only say that it 1s
advantageous to conform to the indications of the
first,."109

Poincar® now proceeds to discuss the problem of
simultaneity, although he correctly points out that this is
really another aspect of the precedlng discussion. We
habitually speak of the simultaneity of phenomena as, for
example, when we say that two psychological phenomena occurred
simultaneously in two separate minds. What is meant by this?
Furthermore, what do we mean when we say that a physical
phenomenon which is not a part of any consciousness occurred
before or after a certain psychological phenomenon? For
example, in 1572 Tycho Brahe observed a new star. The light
from this star took at least two hundred years to reach him,
Therefore, the birth of the new star occurred before the
discovery of America., When we say that this great phenomenon,
which occurred unwitnessed, preceded the visual image of
America in the consclousness of Columbus, what do we mean?
Poincarg suggests that such assertions only acquire their
meaning on the basis of a convention.

In the first place, how are we able to represent
so many different worlds in a single frame which we call the
external universe? It seems that we form the conception of

an infinite intelligence which could represent all the events

in the universe in its own time. Surely, some such hypothesis

logThe Value of Science, p. 30.
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is unconsciously adopted whenever we speak of a time in
which all the events in the unlverse take place. However,
the notion of an infinite intelligence is obviously
unsuitable as a basis for sclentific assertions.

Let us consider some examples., I write & letter
to my friend. Subsequently my friend reads that letter.
Two visual images have occurred in two impenetrable
consciousnesses., Yet, under no circumstances, would we
hesitate to assert that one phenomenon is prior to the
other., This is obviously because we regard one event to be
the cause of the other. Again, I infer from the sound of
thunder that an electrical discharge has occurred. I do
not hesitate to assert that the physical phenomenon 1s prior
to the psychological one, because it is 1ts cause.

In other words, it would appear that time 1is
defined in terms of causation. However, when we find that
two phenomena are constantly conjoined, how do we determine
which is the cause and which the effect? Surely, the
anterior phenomenon is regarded as the cause of the other.
That is to say, we define the causal relationship in temrms
of timel Thus it would seem that we are guilty of a

petitio principii. "We say now post hoc, ergo propter hoc;

now propter hoc, ergo post hoc; shall we escape from this
e?,,110

vicious cirel

I must interrupt this exposition to point out that

1101p34., p. 32.
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while I am in generel agreement with the position which
Poincaré upholds anent the problem of time, his argument

does appear to be a trifle weak in the last detail. While
this does not actually harm his thesis, it would seem that
Poincaré might have made his point in a much less complicated
way; moreover, in a way which is fully consistent with the
doctrine of conventionalism,

Specifically, Poincaré has been misled by an
inadequate philosophical conception of the causal relationship.
I refer to that type of treatment of causality which was made
so famous by Hume. Hume defined causality in terms of the
constant conjunction of two phenomena, A and B, He argued
that 1f this conjunction is observed a sufficient number of
times, we will eventually come to attribute a necessary
connection to the two events, A and B, Hume appears to have
been thinking of the common sense notion of causal events
as, for example, when I strike a match and the match ignites.

This description of causality obviously depends on
the significance of the notion of the recurrence of the
phenomenon A. A 1s taken to be repeatable. But how do we
know that a particular situation actually reveals the
recurrence of state A? When we consider the universe as a
whole, we are surely entitled to assert that it never repeats
the same state twice. We would, of course, have to make the
reservation that in defining the recurrence of state A, we

disregard those circumstances in the universe which are
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irrelevant to A, But how do we know whether a particular
circumstance 1s relevant or not? We can only determine
whether a particular fact must be regarded as relevant to

or, what i1s the same thing, a part of state A according to
whether it i1s followed by state B. In short, we are sayling
that A and B are causally related i1f a recurrence of A 1is
invariably followed by & recurrence of B, and that a recurrence
of A is defined as a state which is followed by a recurrence
of B In other words, Hume's definition of the causal
relationship turns out to be tautologous &s soon as we attempt
to define it in.operational terms.

Does this imply that the causal laws of sclence are
really vacuous tautologles which tell us nothing about the
world? Not at all., It simply means that thelfonm of the
causal law is not such that it expresses the constant
conjunction of two phenomena. With the present exception of
thermodynamics, physical, causal laws have the form of
differential equations. These equations express how one or
more variables vary in value with respect to amother variable
which is time., 1In other words, a causal law does not describe
several identical instances of a static configuration but
the evolution or manner of change of a single physical system
in time. We may say that there is a causal relationship
between A and B when we observe that a state A}, which is
very close to A, is accompanied by a state B1, which is very
close to B, and that a state As which is very close to A4 is
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accompanied by a state B, which is very close to Bl'
Therefore our causal law asserts the following relationship.

Al Bloocoooccotaooaccn-olotl

A2 B2Oooolooooooacoo-oooo.tz

An Bn'...OOOOOQO'Oll......'tn

It should be noted that the above serises is linear.
If it were not, the differential equations of mechanics would
be of a much more complicated and difficult type. Hence, we
may conclude that the distinction between cause and effect is
defined in such a way that the laws of mechanics may be
expressed in the form of uncomplicated differential equations.

Not only does the foregoing interpretation fit very
neatly into the framework of conventionalism but, moreover,
is compatible with the Einsteinian conception of time,
According to Einstein, the relativity of time cannot be such
that the order of cause and effect is reversible from one
coordinate system to another, The reason for this is obvious.
The velocity of light, according to the Lorentz transformations,
is the maximum velocity which is physically attainable.
Consequently, a causal influence cannot be transmitted more
rapidly than the velocity of electro-magnetic propagation.

Therefore, 1f two distant events are causally related, theilr
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order of succession will be the same in all coordinate
systems. However, if two events are so far apart in space
but occur so close together in time that a causal connectlion
between them 1s precluded, we may stipulate that they
occurred simultaneously. In that case their order of
succession could be changed from one coordinate system to
snother. It would seem that Poincaré's treatment of the
problem of time could have been improved in this particular
regard. That is not, however, to detract from his overall
position or his brilliance in its exposition.

Poincaré prefers to attack the problem in terms of

111 I perform an action A which is

& psychological analysis,
followed by the sensation D which I regard as its consequence.
Moreover, I suppose that D is not the direct effect of A but
related to it through the external circumstances B and C,

i1.e. B 1s the effect of A, C 1s the effect of B, and D is

the effect of C. But why, Poincaré wonders, do we insist

on the order A, B, C, D? I regard A as the initial cause
because 1t 1s accompanied by the sense of my being active.
Similarly, D is regarded as the final effect because it 1s

a passively receilved sensation. The order of B and C appears
to be more arbltrary. We would tend to justify it by asserting
that in our experience, we invariably perceive B before C.

However, we are faced with s certain difficulty because we have

no direct experience of B and C but only the experience of

11115 0m.
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the corresponding sensations B! and C!'. We know intultively
that B' precedes C!' and suppose, therefore, that B precedes
C. While this is admittedly a natural enough criterion,
there are exceptions. For example, we may perceive a near
flash of lightning before a distant one although the nearer
of the two 1s actually later.

There 1s still another difficulty to be faced in
our attempt to define the temporal serles in terms of
causality. If we grant the causal interdependence of the
various parts of the universe, a glven effect must be the
product of an infinitely complex cause. Let us, however,

consider a case which is somewhat less than infinitely

complex, Take three bodies such as the Sun, Jupiter and
Saturn. Furthermore, let us suppose that they constitute

an isolated system of three mass points., Thelr positions

and velocities at one time will suffice to determine thelr
positions and velocitles at all times, past and future. Their
positions at time t will determine their positions at t +

h and t - h. Moreover, the position of Juplter at time t
and that of Saturn at t + h together suffice to determine
all positions of Jupiter and Saturn at all times. If we
carry this further, we may say that the position of Juplter
at t + e and of Saturn at t + a + e are connected through a
complicated law with the position of Jupiter at time t and

of Saturn at t + a. It should then be possible to call one

of these aggregates the cause of the other, in which case
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t and t + 2 would be regarded as simultaneous., Poincaré

points out that the reasons against the adoption of such a

procedure would merely be "convenience and simplicity.”112
Along the lines of our earlier suggestion, it

should be noted that a differential equation does not refer

to discrete causes and effects. We may arbitrarily select

two states A and B which are as close in time as we choose.

We could then say that A is the cause of B, However, it will

be possible to choose a state which is temporally situated

between A and B which we may regard as the effect of A or

the cause of B. The polnt is that there is no physical

state which carries the label, "I am a cause," or "I am an

effect." However, when Poincaré states that the criteria

of "convenience" and "simplicity" determine the selection

of causes and effects such that the laws of mechanics will

be as simple as possible, 1l.e. of Newtonian form, it would

seem that his position is, after all, not very far from

what we have suggested to be the proper application of

conventlonalism to this particular matter.

"The simultaneity of two events, or the order of
thelr succession, the equality of two durations, are to
be so defined that the enunciation of the natural laws
may be as simple as possible. In other words, all these
rules, all these definitions are only the fruit of an
unconscious opportunism, "113

Poincaré clearly maintains the position, later

1121014, , pe 3.

1131914, , p. 36.
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adopted by Einstein, that two distant events are not observed
to be simultaneous but that it is fruitful in the description
of the physical world to stipulate their simultaneity. The
ascription of simultaneity is conventional. However, the
convention 1s not arbitrary. The precise conditions under
which such a stipulation is made are determined by experience.
This is precisely the conclusion which was reached
by Einstein. The fact that the veloclty of electro-magnetic
propagation 1s finite compells us to abandon the attempt to
observe simulteneity, i.e. to define it in operational terms.
Moreover, the actual magnitude of this velocity determines
the circumstances in which such a stipulation may be made.
To put the matter as simply as possible, i1f the space-time
coordinates of two events are such that the events must be
causally independent, then we may stipulate that they occurred
simultaneously. However, this convention is suggested by
the finitude of electro-magnetic propagation. The latter,
in the theory of relativity, 1s not a convention but an
empirical fact which could be experimentally falsified.
Furthermore, as the nature of the Lorentz
transformations clearly reveals, such considerations are
only physically significant when we deal with distances and
velocities which are so great that they are significant
compared with the velocity of light. Otherwise, relativistic
effects are too minute to be taken account of, and we may

fruitfully revert to the classical mechanics.
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It is striking that from what was largely a
philosophical theory, Poincaré reached precisely the same

conclusion as Einstein.

"perhaps, too, we shall have to construct an
entirely new mechanics that we only succeed in catching
a glimpse of, where, inertia increasing with the
velocity, the velocity of 1light would become an impassable
limit. The ordinary mechanics, more simple, would remain
a first approximation, since it would be true for
velocitlies not too great, so that the old dynamies would
still be found under the new. We should not have to
regret having belleved in the principles, and even, since
velocities too great for the old formulas would always
be only exceptional, the surest way in practise would
be still to act as if we continued to believe in them.
They are so useful, it would be necessary to keep a
place for them, "11[}

We know of no greater philosophically based prophecy

than what is embraced in the last quotationi

hryi4,, p. 111,



CHAPTER IX

CONVENTIONALISM AND MECHANICS

III RELATIVITY THEORY

Superficially, it would seem that the thesis of
conventionalism as it applies to mechanics 1s not precisely
the doctrine which Poincaré enunciated regarding the nature
of the axioms of geometry. The reader will recall that
Poincaré maintained that under no circumstances would
experience impose the necessity of abandoning our Euclidean
conventions. But now Poincaré tells us that it may be that
we shall have to abandon our Newtonian conventions for others
which are more precise., Surely, if the classical laws of
motion were conventional, there would be no question of
their abandonment.

Poincaré was fully aware of this potential objection
to his position, He himself expressed it as follows:

"Have you not written, you might say if you wished
to seek a quarrel with me -~ have you not written that
the principles, though of experimental origin, are now
unassailable by experiment because they have became
conventions? And now you have just told us that the

most recent conquests of experiment put these principles
in danger."115

l15The Value of Science, p. 109.

- 133 -



134

We shall quote his reply at length,

"Well, formerly I was right and to-day I am not
wrong. Formerly I was right, and what is now happening
is a new proof of it, Take, for example, the calorimetric
experiment of Curie on radium, Is 1t possible to
reconcile it with the principle of the conservation of
energy? This has been attempted in many ways; but there
is among them one I should like you to notice; this is
not the explanation which tends to-day to prevail, but
it is one of those which have been proposed. It has
been conjectured that radium was only an intermediary,
that 1t only stored radlations of unknown nature which
flashed through space in every directlon, traversing
all bodies, save radium, without being altered by this
passage and without exercising any action upon them.
Radium alone took from them a little of their energy
and afterward gave it out to us in various forms.

"what an advantageous explanation, and how convenienti
First, it is unverifiasble and thus irrefutable. Then
again 1t will serve to account for any derogation
whatever to Mayerts principle; it answers in advance
not only the objection of Curle, but all the objections
that future experimenters might accumulate., This new
and unknown energy would serve for everything.

"This is just what I sald, and therewlth we are
shown that our principle is unassailable by experiment.

"But then, what have we gained by this stroke?
The principle is intact, but thenceforth of what use
is it? It enabled us to foresee that in such or such
clrcumstance we could count on such a total of energy;
it limited us; but now that this indefinite provision
of new energy 1s placed at our disposal, we are no
longer limited by anything; and as I have written in
'Scilence and Hypothesis,! if a principle ceases to be
fecund, experiment without contradicting it directly
will nevertheless have condemned it."1l

We see, then, that by some method, albeit devious,

it is always possible to retain our convention., However,

the criterlia of convenience and simplicity may persuaede us

to adopt an alternative., It should be noted that we are

persuaded but not compelled. We feel falrly confident that

1161114, p. 109f.
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if this feature of conventionalism were more widely understood,
there would be far less criticism of the doctrine. Some of
this criticism would appear to treat conventionalism as
though it were the attempt to reduce sclence to some sort
of word geme. Plainly, this was not Poincaré's position.
One of the great advantages of Poincaré's philosophy of
science is that it is quite consistent with the varlous
advances which have been made in both theoretical and
experimental science. Here lles one of the superlorities
of Poincarb's philosophy over, for example, the Kantian
philosophy of science which obviously would have tended to
inhibit the development of science had it been taken very
seriously by practicing scientists,

If Poincaré is correct, we are bound to conclude
that the special theory of relativity is not imposed on us
by empirical data but is merely the most convenient way of
representing them. To show this would be to complete the
defense of this most important aspect of Poincaré's thesis.

As a theory of mechanies, relativity theory makes
assertions about the behaviour of clocks and measuring rods.
It maintains that clocks which are in motion slow down and
that measuring rods which are in motion contract in the
direction of that motion. While Lorentz did not believe
that clocks are "really" affected by motion, he did believe
the contractlion of measuring rods to be a "real" contraction.

Einstein, on the other hand, maintained that both
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of these effects were apparent. For example, a moving clock
does not slow down for an observer who 1s at rest with respect
to it. Consequently, if we consider two observers O and 0l
at rest respectively in the systems S and Sl which are in
rectilinear motion with respect to each other, 0 will hold

that the clocks in S, are running slow, while 01 will heold

1
that the clocks in S are running slow. To those of us who
are more familiar with metaphysics than with physiecs, it
would be tempting to say that 0 and O1 cannot both be right.
However, the physicist who, for very good reasons, does not
concern himself with the "ultimate" nature of things would
say that each observer has performed & correct measurement.
It is merely that every measurement is restricted to some
particular coordinate system. O and 01 are not in real
disagreement. They have merely selected different coordinate
systems. The reader will recall that Poincaré suggests that
in the genesis of the notion of space one tends to regard
oneself as the fixed axlis of the system to which we refer

our sensations. O has chosen the coordinate system S while
Ol has chosen Sl. The essence of relativistic physies,
Einsteinian and pre-Einsteinian, is that there is no means

of selecting one system rather than another; all systems are
equivalent. In other words, we may choose the system which
we happen to prefer. 1In general, the most convenient choice

will be that system with respect to which we are at rest.

In everyday matters this will be the surface of the earth.
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For the physicist, who is concerned with inertial and
centrifugal forces, it will pe the fixed stars. But in
all cases, the choice is a matter of conventionl

Similar considerations pertain to the contraction
of measuring rods., As we have already noted, Lorentz believed
that there were real contractions with respect to the ether.
It 1s for this precise reason that Lorentz cannot properly
be said to have anticipated Elnstein. The latter discarded
the idea of the ether but showed that the contraction can
only be defined with respect to a system of coordinates.,
Again, the choice of & coordinate system is a matter of
convention,

The relativistic increase of mass is even more
clearly a conventional postulate. Experiment reveals that a
constant force does not produce a constant acceleration at
veloclties which are significant fractions of the velocity
of light. In other words, the relationship f = ma appears
to break down. But Newton's "quantity of matter" must be
defined as the ratio of accelerations. Hence, we are faced
with a difficult alsernative. On the one hand we may abandon

Newtonian mass and adopt the Lorentz formula, m' =m -

v
c2
or we may abandon the principle of the conservation of

momentum. Experiment tells us that we must make a choice,

but does not tell us what it should be.

Philipp Frank has stated the position with the

utmost clarity.
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"Actually, the question of which is the tlegitimate
successor! of the Newtonian ‘'quantity of matter! cannot
be declded. The 'rest-masst'! has inherited the property
of 'constancy' while the 'relativistic mass! that 1is
defined by f/a has inherited the property of being the
ratio of force to acceleration. Hence, the question
of which of them should be declared the 'legitimate
heir' of the Newtonian mass can only be decided upon
the grounds of convenlence, simpliclty and similar types
of consideration, "117

"All these considerations show us that if we
introduce 'mass' as the object which has as many as
possible of the properties of the old Newtonlan mass,
this is the only possible justification for the introduction
of statements like 'mass 1s not constant,' or 'mass can
disappear,t"ll

In short, the principle of conservation of momentum
is so fundamental to physics that it would be most inconvenient
to abandon it. We prefer to adopt the convention of
postulating a relativistic increase of mass.l19

Perhaps the most striking defense of the
conventionalist interpretation of relativistic mechanics was

120

made by L. Rougler. Rouglier's argument is to the effect

that if Poincaré's interpretation of geometry 1s correct,
l.e, 1f we are justified in holding that Euclidean axioms
are suggested by experience, then one should expect that

under the right circumstances some other set of axioms might

ll?Philosqphy.gf Science, p. 147. The italies are mine,
1181p14., p. 148.

119This incidentally suggests the clearly conventional
character of the conservation laws,

12929 1tutilisation des Géométries non-Euclidiennes
dans la physique de l& relativits, L'bEnselgnement Mathematique,

Jan, 15, » PP. 5-18.
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be suggested.

This in fact is precisely the outcome of
relativistic mechanlcs., We have seen that bodies contract
in the direction of their motion in accordance with the
Lorentz formula., In short, the material objects which
constitute the basis for a Euclidean physical geometry no
longer exist.

Rougier shows that such a contraction may be
assigned to solid objects in translatory motion in a space
of negative curvature of the Lobatschewskian type. Moreover,
just as there can be no parallelogram of velocities in
relativistic mechanics, so in Lobatschewskian geometry there
are no parallelograms,

Thus, 1t can be shown that by selecting the
appropriate constant of curvature for space, the Elnsteinian
equations are transformed into classical equationsi It
should be noted that Einsteiln expressed his theory in terms
of Euclidean geometry while postulating a deformation of
material objects. This presents us with an elegant illustration
of the applicability of the thesls of conventlonalism. We
may treat natural solids as rigid bodies of the Lobatschewskian
type or as deformable bodies of the Euclidean type. The two
alternatives are equivalent. The implication of the theory
of relativity is, surprisingly, that the Lobatschewskian
geometry would be the simpler., This, of course, Poincars

failed to anticipate. But his failure was not the outcome
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of a defect in his theory but merely of an inability to

foresee some rather startling experimental results.

Pinally, let us consider the general significance
of the Lorentz equations in the theory of relativity. For
Lorentz himself, as we have seen, these equations were
supposed to represent genuine physical hypotheses about the
behaviour of clocks and measuring rods, But this is not
the role which they play in the special theory of relativity.

We may understand their significance for Einstein
if we consider why he retained them., If they do not assert
that rods are contracted or clocks slowed down in any absolute
sense, what was Elnstein's reason for retaining them? It is
quite clear that they are only retained as transformation
rules, i.e. to express the relationship between the various
inertlial systems., But 1f they are merely transformations
without genuine physical significance, why did not Einstein
retain the much simpler Galilean transformations? The point
is that while they are merely transformations they are
nevertheless not devoid of physical significance. They are
the only transformations for which the laws of mechanics
and electro-magnetism are invariant. If we apply the Galllean
transformation rules to Maxwell's electro-magnetic field
equations, the latter will undergo a fundamental change of
form. We would not be entitled to say that therefore the
Gallilean transformations are false; it 1s merely that they

would make the enunciation of physical laws too unwieldy and
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complicated.

In short, we retain the Lorentz equations because
of thelr systematic simplicity. That is to say, they are
the most convenient rules for the description of physical
data. Once again, we are led to Poincar®'s central theme
which I beg the reader's indulgence to repeat. The laws
of mechanics are conventional, but they are conventions
which have been suggested by experience.

Probably one of the most celebrated of the

consistent critics of the conventionalistic interpretation

of mechanics was Moritz Schllick. Like Reichenbach, Schlick
seems to be labouring under certain misapprehsnsions about
the meaning of conventionalism, Certainly he understands the
doctrine in a way which is foreign to the ideas of Poincars.

I believe that Schlick would accept the

conventionalist's interpretation of geometry. Euclidean
geometry, considered as an axiomatic system, is merely the
grammar or syntax which we adopt to describe certain features
of the world.

"The language in which we speak of physical
relations must after all also have its own grammar and
there is no doubt that this is determined by convention.
Are natural laws these conventions perhaps? Do the
natural laws represent nothing else but the grammar of

the natural sciences, i.e,, in the last analysis, of
physical language in general?"l2l

Again,

"The difference between & stipulation and a
genuine proposition obviously lies in the fact that the

121Schlick, M., "Are Natural Laws Conventions?" in
Readings in the Philosophy of Science. (H. Feigl & M. Brodbeck, Ed)
pp. 181-182,
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validity of a convention is of our own making. After

a stipulstion has been made, we can maintain it under
any circumstances. Experience might well suggest but
can never compel its abandonment, for the validity of

a convention remains in our power, It is well known
that facts of nature can be described by means of 122
Euclidean geometry, if we stubbornly insist upon it."

Schlick holds that 1f natural laws could be

interpreted in the same manner as geometrical axloms, the
conventionalist position would be established. However,
he argues that the belief in the conventional character of
natural laws rests on a grave, logical error.

Specifically, Schlick argues that the conventionalists
have failed to understand the distinction between a sentence
and a proposition. He defines a sentence as, "a sequence
of ligulistic signs with the help of which something can be
asserted,"23 proposition™s to be viewed simply as the
set of rules which are stipulated for the actual application
of the sentence, that is, for the practical use of the sentence
in the representation of facts."lzu

In short, a proposition is what a sentence "means.,"
Now, we may stipulate a sentence to mean anything that we
choose it to mean. Moreover, it is true that natural laws
are expressed in sentences. However, Schlick suggests that
if a natural law were no more than a sentence, then we could

draw the absurd conclusion that it is legitimate to write

1221p14., p. 182

1231p14., p. 185.
lzuIdem.
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down any sentence and call i1t a natural law. In fact,
natural laws are sentences which express propositions. We
may vary the sentence but we cannot alter the proposition
which it contains. The latter is determined by the essential
character of the physical world.

"Once the rules are fixed, i.e,, once agreement
is reached concerning the grammar of the scientifilc
language, then there is no longer any choice about how
to formulate any facts of nature. After this there is
only one possibllity, only one way of formulating the
sentence which will fulfill the purpose. A natural
law can then be represented in only one quite definite
form and not in any other."125

But Poincaré never intended his doctrine to mean
any more than what Schlick asserts in the last quotation.
The extreme form of conventionalism, which Schlick may have
had in mind, what Poincaré calls ™"nominalism," is the subject

126

of vigourous attack by Poincaré himself. For example, he

writes that, "I can not admit that the scientist creates

without restraint the scientific fact since i1t is the crude

n 127

fact which imposes it upon him. ", ..when I have laid

down the definitions, and the postulates which are conventions,
"128

a theorem henceforth can only be true or false. Poincaré

would regard as fantastlc the claim, "that the facts of dally

1251pid., p. 187.

The Value of Science, p. 1l12ff.

1271p1d., p. 116.
128

126

Tbid., p. 118,




life are the work of the grammarians.“129

In short, Poincaré 1is obviously exempt from the
criticisms which Schlick levels against the doctrine of
conventionalism., In fact, he would undoubtedly have joined
with Schlick in making them. Poincaré was attempting to
show that the language in which we express the laws of
nature cannot be taken to convey anything about the real
constitution of nature itself. This is the real significance
of what Reichenbach called Poincaré's theory of "equivalent
descriptions," It 1s also what Schlick meant in his

distinction between sentences and propositions.

1297p14., p. 119.

——




CHAPTER X

CONCLUDING REMARKS:

CONVENTIONALISM AND RECENT DEVELOPMENTS

IN THE PHILOSOPHICAL FOUNDATIONS OF SCIENCE

We hope that 1t is by now abundantly clear to the
reader that Poincaré's philosophy of science 1s not one more
museum plece in the history of nineteenth century thought.
We have shown not only its applicability to the classical
mechanics but also the way in which it could serve to
interpret the twentieth century conceptions of relativistic
130

mechanics. However, we propose now to show that Poincaré's
views are directly in the mainstream of contemporary
philosophic opinion,

The most active and vocal movement in recent
philosophy of sclence has been logical positivism. While

the writer admits to some sympathy for both the alims and

1301n the preceding chapter we limited our discussion
to a consideration of the theory of relativity. We would like
to see someone in the future do the same sort of analysis
with regard to quantum mechanics. For example, Schroedingerts
wave mechanics and Helsenberg'!s matrix mechanics are two
completely diverse mathematical theories which, nevertheless,
yield identical empirical results about the mechanical behaviour
of atomic objects.

- 145 -
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achievements of this movement, 1t is not our purpose to
defend the doctrines of logical positivism in this
dissertation. We wish simply to show that Poincaré must
be counted among the principal precursors of the movement.
In fact, he may be said to have been more than 1its precursor.
In his treatment of the structure of science he seems, with
Ernst Mach, to have been among its flrst members. In short,
then, we wish to show the striking similarity between the
philosophy of Poincaré and what is possibly the most important
philosophical interpretation of science in the present century.
In fact, Poincaré's relationship to logical
positivism has not gone unrecognized. It is difficult to
state preclisely when this movement began. Those who point
to Schlick as its founder base their opinion on somewhat
arbitrary criteria, The movement was first known as "the
Vienna Circle" due to the fact that its members held their
weekly discussions in a Viennese coffee house, These meetings
began in 1907. At this time the leading light of the Vienna
Circle was the theoretical physicist Philipp Frank., If one
man 1s to be regarded as the founder of the movement, Frank,
it seems to us, has a greater clalm than Schlick. However,
it is unlikely that any member of the movement would press
such a clalm, as the cooperative spirit of its members has
always been unusually high. In any event, Frank has pointed
out that the three thinkers who were most widely discussed

at the early meetings in the coffee house were Kant, Mach
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and Poincard.13t

The Kantian epistemology was, of course, rejected
by the Vienna circle. However, Ernst Mach was the darling
of these thinkers who eagerly embraced the latter's radlcal
empiricism. But it was felt that the "sensationalism" of
Mach was inadequate as a basis for scientific theories of
broad generality. In describing the historical development
of logical positivism Frank writes,

"We felt very strongly that there was & certain
gap between the description of observations, necessarily
consisting, in physics particularly, of & small number
of concepts (like force, mass, etc.) linked by statements
of great simplicity. We admitted that the gap between
the description of facts and the general principles of
sclence was not fully bridged by Mach, but we could not
agree with Kant, who built this bridge by forms or
patterns of experience that could not change with the
advance of science.

"In our opinion, the man who bridged the gap
sucessfully was the French mathematician and philosopher
Henre Poincaré. For us, he was & kind of Kant freed
of the remnants of medieval scholasticism and anointed
with the oil of modern science.,"132

Frank proceeds to specify the nature of Poincaré's
contribution to the germinal ideas of the Vienna Circle:

"The traditional presentation of physical theories
frequently consists of a system of statements in which
descriptions of observations are mixed with mathematical
considerations in such a way that sometimes one cannot
distinguish which is which., It is Poincaré's great
merit to have stressed that one part of every physical
theory is a set of arbitrary axioms and logical conclusions
drawn from these axioms, These axioms are relations

131
pp. 1=-52.

lBerid., p. 8.

P.Prank, Modern Science and its Philosophy,
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between signs, which may be words or algebraic symbols;
the important point is that the conclusions that we
draw from these axioms are not dependent upon the
meanings of these symbols. Hence this part of the
theory 1s purely conventional in the sense of Poincaré.
It does not say anything about observable facts, but
only leads to hypothetical statements of the following
type: 'If the axioms of this system are true, then the
following propositions are also true,! or still more
exactly speaking: 'If there is a group of relations
between these symbols, there are also some other
relations between the same symbols.! This state of
affairs is often described by saylng that the system
of principles and conclusions describes not a content
but a structure. Hence, this system is occasionally
referred to as the structural system."

In the subsequent development of the philosophy of
the Vienna Circle, the external influences were many and
various. Not the least of these was the philosophical
writings of Bertrand Russell. Russell developed a system
of symbolic logic with the ald of which he showed that the
statements of pure mathematics are reducible to formal logiec.
Although not strictly a logical positivist himself, his work
came to have considerable bearing on the future of the movement.

Russell pald considerable attention to the study
of logical paradoxes, as a result of which he developed his
theory of logical types. According to this theory, every
class is of a higher logical type than any of its members.
Similarly, any statement about another statement is of a
higher type than the statement which it 1s about. Russell
pointed out that the confusion of logical types will lead to

the meaningless grouping of symbols, While meaningless, the

1331p14., p. 12.
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structure of such groupings would be considered correct from
the point of view of rules of traditional grammar. Thus,
Russell pointed out that sentences may be divided into three
groups: the true, the false and the meaningless. It was
fundamental to the logical positivists! hostility to and
eventual elimination of metaphysics that grammatically correct
sentences could be regarded as loglcally meaningless.

The new logical techniques of Russell were applied
to the problems of epistemology as early as 191&.13u Oécam's
Razor, the principle of parsinomy, was of major importance:

Entia non sunt multiplicanda praeter necessitatem. Russell

restated this principle as follows: "Whenever possible,

substitute constructions out of known entities for inferences

135

to unknown entities." Russell also pointed out that,

"In so far as physics or common sense is verifiable,
it must be capable of interpretation in terms of actual
sense~data alone. The reason for this is simple.
Verification consists always 1n the occurrence of an
expected sense-datum, ...Now if an expected sense-
datum constitutes a verification, what was asserted
must have been about sense-data, or, at any rate, if
part of what was ssserted was not about sense-data,
then only the other part has been verified,"136

The foregoing amounts to & careful restatement of
the empirical doctrines of Ernst Mach.

However, of all the external influences, the

lBqu., Qur Knowledge of the External World, p. 12.

1358. Russell,. "Logical Atomism," in Contemporary
British Philosophy: Personal Statements, First Series, p. 363.

136

OQur Knowledge of the External World, p. 89.
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greatest and most profound was the Tractatus Logico-Philosophicus

of Ludwlg Wittgenstein. Virtually all of the matters of concern
to logical positivism are to be found, although sometimes
obscurely, in the pages of this one book,

"Wittgenstein claimed bluntly that the problems of
traditional philosophy are merely verbal problems. Our
ordinary language, which has grown up to describe the
facts of everyday life, is not adapted to the task of
expressing and answering problems put to traditional
philosophy. If we try to use our ordinary language in
this way, we get into trouble. The real problem is to
find out what one can actually say clearly. The world
of facts can be described in our ordinary language;
therefore, says Wittgenstein, 'to understand a Eroposition
means to know what is the case if it is true.t"l37

In short, Wittgensteln was primarily concerned

with the relationship between language and the world. As
Russell puts it, Wittgenstein's problem is the following:
"what relation must one fact (such as a sentence) have to
another in order to be capable of being a symbol for that
other?"l38

According to Wittgenstein, the objectives of
propositions are "facts". Such facts, being the fundamental
elements of the world, cannot be defined without circularity.
However, "objects" which these facts compose may be defined
in terms of the set of facts in which they occur. The totality
of atomic facts is the world., All compound facts are therefore
reducible to atomic facts., The atomic facts are various

groupings of objects. The nature of the grouping is the

137

, 138B. Russell, Introduction to the Tractatus Logico-
Philosophicus, p. 8.

P. Frank, Op. cit., p. 32.
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"structure" of the fact.

With regard to the relationship between facts and
propositions, Wittgenstein adopts & correspondence theory of
truth., That is to say, he holds that a true proposition
"agrees" with a fact, while a false proposition is one which
is in disagreement with a fact. The notion of agreement and
disagreement in this context is perhaps vague., However,
Wittgensteln is unequivocal in his usage. A true proposition,
he holds, is a "picture" of a fact. Now, in what sense did
Wittgenstein intend the term "picture"?

For Wittgenstein, a proposition is a fact in its
own right, In other words, it is a physical phenomenon such
as a nolse, a neural event or a set of physical symbols. The
relationship which Wittgenstein postulates to hold between
propositions and the world is thus somewhat easier to
understand. It is a matter of the relationship between two
facts, The proposition will "picture" the fact by virtue
of its common logical form with that fact,

The point that we wish to bring out in this unduly
cursory exposition of Wittgensteint's philosophy is that he
held that the significance of a statement about the world is
in its logical structure and nothing more. Wittgensteln
brings out the point clearly when speaking of the propositions
of mechanics. The physical world, he writes, may be regarded
as a picture in black and white, We may superimpose on this

picture a network of squares, Then we could describe the
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picture by asserting which squares are black and which are
white. The form of the network is arbitrary. It might,

for example, have been easlier to work with a mesh of triangles

or hexagons.

"To the different networks correspond different
systems of describing the world. Mechanics determine
a form of description by saying: All propositions in
the description of the world must be obtained in a
given way from a number of given propositions -~ the
mechanical axioms, It thus provides the bricks for
building the edifice of sclence, and says: Whatever
bullding thou wouldst erect, thou shalt construct in
some manner with these bricks and these alone.

"(As with the system of numbers one must be able
to write down any arbitrary number, so with the system
of mechanics one must be able to write down any arbitrary
physical propositionj"139
We would particularly like to draw the readert's
attention to Wittgenstein's conclusion from the preceding
considerations., The following quotation from the Tractatus

Logico-Philosophicus might very well have been taken from

the works of Poincaré.

"So too the fact that it can be described by
Newtonian mechanics asserts nothing about the world;
but this asserts something, namely that it can be
descrIbed in that particular way in which as a matter
of fact it is described. The fact, too, that it can be
described more simply by one system of mechanics than

by another says something about the world."140
Wittgenstein's general position is identical with
that of Poincaré, The latter, the reader will recall, had

maintained that the objective knowledge which we have of the

139Wittgenstein, L.,0p. eit., p. 175,

WOrps4., p. 177.



153

world is about relations., Moreover, these relations may be
expressed in a variety of ways, The particular mode of
expression which we adopt is a matter of convention. However,
it is natural to select that mode which affords the simplest
account of the world., All of these ideas are to be found in
the preceding quotations from Wittgenstein!

Wittgenstein's Tractatus was by no means the

definitive work for the Vienna Circle. It might be sald

that Wittgenstein's application of empiriclism was too

rigorous (or possibly too obtuse) even for the logical
positivists., Very briefly, Wittgenstein held that all
propositions are truth-functions of elementary propositions,
and that elementary propositions have an exclusively

empirical reference., In short, all meaningful statements

are empirical statements, But the statements in Wittgenstein's
book, especlally his statements about the use of language,

are not empirical. Thus, his philosophy turns out to be
self-gtultifying. Wittgenstein, grasping the bull by the
horns, recognizes this and concludes hils Tractatus with what

is surely one of the most remarkable passages in the literature
of philosophy.

"My propositions are elucidatory in this way: he
who understands me finally recognizes them as senseless,
when he has climbed out through them, on them, over
them. (he must so to speak throw away the ladder,

after he has climbed up on it.)

"He must surmount these propositions; then he sees
the world rightly.

"Wwhereof one cannot speak, thereof one must be
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silent.“lul

Obviously, if logical positivism was to be a viable
movement, it could not rest content with the final outcome
of Wittgenstein's analysis of language. One of the most
significant events in the history of the Vienna Circle was
the arrival in Vienna of Rudolph Carnep. It was he who gave
the required solution to the foregoing difficulty. Moreover,
to Carnap more than any other man, we owe the classical,
definitive expression of the philosophy of logical positivism.

However, before dealing with his linguistic
theories, there is another matter which concerned him in his
early period, which should be mentioned for its bearing on
the views of Poincare.

An important task for logical positivism was to
clear up an ambiguity in the notion of ]zmowledge.l)‘L2 In
German there are two words which signify knowledge, "Erkenntnis"
and "Erlebnis," 1In English we may express the distinction by.
the phrases: "knowledge by description" and "knowledge by
acquaintance." "Erkenntnis" is communicable knowledge. The
logical positivists hold that communicable knowledge expresses

nothing but the formal structure of experience. The content

of experience is essentlally private and, therefore,

incommunicable. Its presence may be indicated by various

lulIbid., p. 189.

1h20f., M. Schlick, Erleben, Erkennen, Metaphysik,
Kant-Studien, 31, 1926, pp. 1,6-158.
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demonstrative words such as "I", "here", "now", "this",
"that", but this is as far as one can go. However, there
are formal relations holding between gualia which may be
communicated. For example, consider the possiblility that
in the experience of two people, the qualities red and green
were systematically interchanged so that whenever the one
experienced red the other experienced green, and vice-versa.
The two individuals would encounter no speclal difficulties
in communicating with each other. 1In fact, all colours
throughout the entire compass of experience might be
interchanged without our communicable, scientific knowledge
being affected in the least way. Such considerations are,
of course, applicable not only to colours but to all of the
traditional "secondary qualities.”" Hence, so far as we are

concerned with communicable knowledge (Erkenntnls), the

essence of a quality is of no significance. What is of
importance, however, is the unique set of relations which
holds between it and other qualities. The most systematic
treatment of this matter was underteken by Carnap in an early

work, The Logical Structure of the World. Very briefly,

Carnap attempted to outline a system whereby all the concepts
of empirical science may be "constituted" or constructed
from purely formal operations on a single primitive concept

which is an indefinable. formal relationship. 3

1llr3R. Carnap, Der Logische Aufbau der Welt, The
detalls of this phase of Carnap's work are not pertinent to
this dissertation.
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We have drawn attention to the logical positivistst
conception of the nature of scientific knowledge since it
once more reveals the remarkable extent to which a
contemporary positivistic doctrine was anticipated by Poincaré.
Like the logical positivists, Poincaré held that objective,
i.e. scilentific, knowledge is essentially communicable,
However, he points out that sensations cannot in themselves
be communicated, but only the relationships between them.

"The sensations of others will be for us a world
eternally closed. We have no means of verifying that
the sensation I call red is the same as that which my
neighbour calls red.

"Suppose that a cherry and a red poppy produce on
me the sensation A and on him the sensation B and that,
on the contrary, a leaf produces on me the sensation B
and on him the sensation A, It is clear we shall never
know anything about it; since I shall call red the
sensation A and green the sensation B, while he will
call the first green and the second red., In compensation,
what we shall be able to ascertain is that, for him as
for me, the cherry and the red poppy produce the same
sensation, since he gives the same name to the sensations
he feels and I do the same.

"Sensations are therefore intransmissible, or
rather all that is pure quality in them is intransmissible
and forever impenetrable. But 1t is not the same with
relations between these sensations.

"From this point of view, all that is objective is
devoid of all quality and is only pure relation. Certes,
I shall not go so far as to say that objectivity is
only pure quantity (this would be to particularize too
far the nature of the relations in question), but we
understand how some one could have been carried away
into saying that the world is only a differential
equation,

"With due reserve regarding this paradoxical
proposition, we must nevertheless admit that nothin is
objective which 1s not transmissible, and consequen%ly
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that the relations between the sensations can alone
have an objective value.

The most mature phase of Carnap's work, and what
is most typical of logical positivism in its fully developed
state, may be described as the logical analyéis of language.
Actually, there are two distinect aspects to the logical
analysis of language, formal syntax and formal semantiecs,

The formal or logical syntax of language was
investigated by Carnap for the purpose of showing that it is
possible, contrary to the belief of Wittgenstein, to discuss
language in a meaningful way. The logical syntax of a
language is the formal structure of that language apart from
2ll considerations of meaning. For example, "The house is
large," may be described as a sentence which contains an
article, a noun, a copula and an adjective in that order.
If, however, it is said that the sentence is about a house
and that the last word designates a degree of magnltude, the
description is no longer formal, since it concerns the
meaning or sense of the words in the sentence. By language,
in this context, Carnap means the formal rules whereby
meaningful sentences may be constructed. There are two
types of rules: formation rules and transformation rules.

A formation rule of the English language is that four words
in the order of article, substantive, verb and adverb

constitute a sentence in that language. The formation rules

1”The Value of Science, p. 136. (The italics are mine).
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of a natural language such as English are too numerous and
complicated to be coampletely laid down. However, artificial
languages, in which symbols replace words, may be constructed
where all the formation rules are given. For example, an
expression consisting of a predicate and a variable constitute
a sentence such as @ (x). Two such expressions joined by a
connecting sign together constitute & sentence such as g (x)
v Y (x).

The transformation rules of a language are those
which are cormonly known as the rules of inference. By
these i1s determined the number of sentences which can be
inferred from a collection of sentences. In any language S,
a sentence of S is defined by the totality of formation rules
of S, and a direct consequence in S as the totality of
transformation rules of S. Normally, "true" and "false"
cannot be defined syntactically since the truth or falsity
of a sentence will depend on the meaning of the symbols
contained in it, However, it sometimes happens that sentences
are true or false by virtue of thelr syntactical form. Such

sentences would be called valid and contravalid respectively.

These terms are syntactically definable.

The language so far described is noticeably barren
and could hardly be described as a tool for the advancement
of physical knowledge., This is due to the fact that all of
its transformation rules and primitive sentences are of a

purely logical or mathematical character. None of its terms
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have any extra-logical significance. They are what Carnap
calls "L-terms."™ Similarly, all of its transformation
rules are called "L-rules."lus However, it is possible to
incorporate into the language as primitive sentences what
Carnap calls "P-rules™ or physical rules of transformation.
For example, we might include Newton's laws of motion or
Maxwell!'s equations of the electro-magnetic field, Then a
sentence C which is a consequence of a class P of premises
on logical grounds alone is called an "L-consequence" of P.
If it 1s necessary to apply P-rules also, the sentence is
a "P-consequence" of P.

Even with the inclusion of P-rules, our language
1s still a purely formal structure and therefore not a
complete sclentific system. A scientiflec theory or system
is an abstract calculus such as the one described above plus
a further set of rules for its use. For example, we may
deduce various consequences from Newton's laws of motion,
but these consequences are not sclentific predictions unless
we know what they mean, That is to say, we require rules
to relate our abstract calculus to the world. These rules
would determine the conditions for the truth or falsity of
a statement, But to know whether a statement is true or
false 1s to know its meaning. Hence, the scope of our

146

discussion must be broadened to lnclude semantics. The

luscarnap, R., Philosophy and Logical Syntax, p. 50f.

1h6R.Carnap, "Loglical Foundations of the Unity of
Science" in International Encyclopedia of Unified Science, Vol. 1,

pp. L2=62,
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semantical rules of a language are simply what Reichenbach
called "coordinative definitions" and what Bridgman called
"operational definitions."

", ..we shall say that we understand a language system,
or a slgn, or an expression, or a sentence 1n a language
system, if we know the semantical rules of the system.
We shall also say that the semantical rules give an
interpretation of the language system,"147

Carnap stresses the point that there is a degree
of freedom aveilable in the formulation of semantlc rules.
That is to say, semantic rules are not unambiguously
determined by a set of linguistic facts.

"Suppose we have found that the word 'mond! of B
was used in 98 per cent of the cases for the moon and
in 2 per cent for a certain lantern. Now it is a matter
of our decision whether we construct the rules in such
a way that both the moon and the lantern are designata
of 'mond! or only the moon. If we choose the first,
the use of 'mond! in those 2 per cent of cases was
right - with respect to our rules; if we choose the
second, it was wrong. The facts do not determine whether
the use of a certain expression is right or wrong but
only how often it occurs and how often it leads to the
effect intended, and the like. A question of right or
wrong must always refer to a system of rules."ll

"We found earlier that the pragmatical description
" of a language gives some suggestions for the construction
of a corresponding semantical system without, however,
determining it. Therefore, there is a certain amount
of freedom for the selection and formulation of the
semantical rules. Again, if a semantical system S is
given and a calculus ¢ 1s to be constructed in accordance

with S, we are bound in some respects and free in
others.,"149

1u7R. Carnap, "Foundations of Logie and Mathematics"
in International Encyclopedia ... Vol. 1, p. 152f,

118

Ibid., p. 148f.

WOrp14,, p. 166.
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According to Carnap, the construction of a
scientific system may proceed in two ways. In the first
way, we would begin with the semantical system S. That is
to say, we would classify the kinds of signs which we want
and the rules determining the forms of the sentences which
we wish to employ. Then we would lay down the rules of
semantical designation., Thils would involve selecting the
objects and properties which we wish to speak about, and
then choosing the signs we wish to employ to designate these
objects and properties.lso

The other method is to begin with the construction
of a formal calculus C, and then to lay down the set of
semantical rules S which interpret C., This method is the
more important since, according to Carnap, it is the procedure
which sclience does in fact follow. We shall, therefore,

quote Carnap's account of it at length.

"We begin again with a classification of signs and
a system F of syntacticasl rules of formation, defining
'sentence in C' in & formal way. Then we set up the
system C of syntactical rules of transfomation, in
other words, a formal definition of 'C-true! and
'C~implicate.! Since so far nothing has been determined
concerning the single signs, we may choose these
definitions, i.e. the rules of formation and of
transformation in any way we wish, With respect to
a calculus to be constructed there 1s only a question
of expedience or fitness to purposes chosen, but not
of correctness,

"Then we add to the uninterpreted calculus C an
interpretation S. Its function is to determine truth
conditions for the sentences of C and thereby to change
them from formulas to propositions., ...

1501414, , p. 167.
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"Finally we establish the rules SD for the
descriptive signs. We have to tske into account the
classification of signs, We choose the deslgnata for
each kind of signs and then for each sign of that kind.
We may begin with individual names, First we choose
a fleld of objects with which we wish to deal in the
language to be constructed, e.g., the persons of a
certain group, the towns of & certain country, the
colours, geometrical structures, or whatever else. Then
we determine for each individual name, as its designatum,
one object of the class chosen. Then, for each predicate,
we choose a possible property of these objects, ete. 1In
this way, & designatum for every descriptive sign is
chosen, "151

Carnap's account of the structure of a sclentific

system is in perfect accord with the views of Poincaré.
Poincaré, for example, held that we begin with a system of
geometrical axioms., We are completely free to choose any
set of axioms we desire., It 1s true that he held the Euclidean
axioms to be preferable on pragmatic grounds but this is
merely accidental, and in any case 1s covered by Carnap's
reference to "experience or fitness." However, we cannot
say of our set of axioms that it is true or false. The
axioms do not describe the world. The question of truth
only becomes relevant once we have defined the signs of

our axiomatic system. For example, we may have the sign
"straight-line" designate the path traversed by a light-ray.
But here again, of course, our choice is free., In short,
Poincaré held the view, which has since come to be regarded
as the distinctive property of the logical positivists, that

& sclientific system is an abstract, logical calculus which

1511pi4., p. 167.
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is interpreted by semantical rules. Furthermore, it should
be noted that Carnap did not falil to see the conventionalistic
implications of his account of the structure of a scientifiec

system.

"Are the rules on which logical deduction is based
to be chosen at will and, hence, to be judged only with
respect to convenience but not to correctness? Or is
there a distinction betwsen objectlvely right and
objectively wrong systems so that in constructing a
system of rules we are free only in relatively minor
respects (as, e.g. the way of formulation) but bound
in all essential respects? Obviously, the question
discussed refers to the rules of an interpreted language;
nobody doubts that the rules of & pure calculus, without
regard to any interpretation, can be chosen arbltrarily.
On the basis of our former discussions we are in the
position to answer the question. We found the possibility
- which we called the second method -~ of constructing a
language system in such a way that first a calculus C
is established and then an interpretation is given by
adding a semantical system S. Here we are free in
choosing the rules of ¢, To be sure, the cholce is not
Irrelevant; it depends upon C whether the interpretation
can yleld a rich Ianguage or only a poor one.

"We may find that a calculus we have chosen yields
a language which is too poor or which in some other
respect seems unsuitable for the purpose we have in
mind. But there 1is no guestion of a calculus bein
right or wro%g, true or false. E-true InEerpretaEéon
Ts possible for any consIstent calculus, "152

Carnap concludes that the rules of a scientific
system "can be chosen arbitrarily and hence are conventional."153
Now it may be objected that Poincard made no explicit
distinction between a formal calculus and an interpreted
system, in which case the comparison with Carnap 1s specious.

In all rigour, this objection is partly warranted. As we

lSzIbid., p. 169. (The italics are mine)

1531p14., p. 170.
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remarked in an earlier chapter, Poincaré failed to make
explicit the distinction between mathematlical relativity
and physical relativity. We might now rephrase this
criticism in a new context by saying that Poincaré failed
to make explicit the distinction between our freedom in the
cholce of syntactical rules and our freedom in the choice
of semantical rules. It is, in fact, due to his obscurity
in this regard that his doctrine of conventionalism has been
widely misinterpreted. However, this obscurity is really
quite natural. For example, if we followed Carnap to the
letter, our mode of formulating the axloms of pure geometry
would be quite different from our mode of formulating the
axioms of physical geometry. Take the following axiom:

For any two points there is a stralght line on which they

lie. In a pure geometry the foregoing might be expressed
as:
For every x, y [If (x is a P, andy is a P ) then,
for some z(z is a P, and 1(x,z) and 1(y,z)if
Carnap, however, points out that a scientific system
is actually & "nonlogical calculus"lsu which consists of two
parts. There 1s the basic logical calculus and in addition
a specific partial calculus which will vary from one science
to another. Since the basic calculus is virtually the same
for all systems, we tend not to mention it. "What usually

is called an axiom system is thus the second part of a

oh1pia., p. 179.
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4, w155

calculus whose character as a part is usually not notice
Normally, a mathematical calculus 1is purely logical.

In the case of geometry, however, it may be an interpreted

calculus, which is intended to be descriptive., When we

employ such terms as "point", "straight line", etc., we treat

them as interpreted signs, i.e. as descriptive. Thus, the

axioms of geometry become factual propositions about the

world. Carnap points out that it happens to be the custom

to employ the same symbols in mathematical as in physical

or interpreted geometry.

"The distinction between mathematical geometry,
i.e., the calculus, and physical geometry is often
overlooked because both are usually called geometry and
both usually employ the same terminology. Instead of
artificial symbols like 'P', etc., the words 'point!',
'line', etc., are used in mathematical geometry as
well, ... and hence there is no longer any difference
in formulation Bgtween mathematical and physical
geometry. . "1

It is the custom of employlng the one language

for mathematical geometry and physical geometry which has
led to the dispute concerning the status of geometry in
relation to the world, especlally following the development
of non-~Fuclidean geometries.

"Mathematiclians regarded all these systems on a
par, investigating any one indifferently. Physiclsts,
on the other hand, could not accept this plurality of
geometries; they asked: 'Which one is true? Has the

space of nature the Euclidean or one of the non-Euclidean
structures?t It became clear by an analysis of the

1551p14., p. 180.

1561p14d., p. 195.
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discussions that the mathematician and the physicist
were not aware of this in the beginning., Mathematicians
have to do with the geometrical calculus, and with
respect to a calculus there is no question of truth

or falsity. Physicists, however, are concerned with

a theory of space, l.e., of the system of possible
configurations and movements of bodles, egce with the
Interpretation of a geometrical calculus."157

Although it is obvious that Poincaré did not make
the distinction clear, he did reach the correct conclusions
which are implied by such a distinction. Moreover, it was
obviously implicit in his philosophy as he did distinguish
between mathematical and representational space.

Finally, a brief reference should be made to the
fact that, as we saw in the preceding chapter, Poincaré
treated mechanics in precisely the saﬁe way as geometry.

This ggain is perfectly consistent with the views of Carnap.

"The method described with respect to geometry can

be applied likewise to any other part of physics: we
can first construct a calculus and then lay down the
interpretation intended in the form of semantical rules,
yielding & physical theory as an interpreted system
with factual content."1l5

We may conclude that on all major points Poincaré's
interpretation of science is essentlally similar to that of
the logical positivists. In the first place, Poincaré is a
thoroughgoing empiricist, in the tradition of Ernst Mach, as
is plainly revealed by his treatment of the spatial contlinuum.
Secondly, like the positivists, he regarded objective,

sclentific knowledge to be concerned with relations rather

1571pid., p. 196.

1581p14., p. 199.
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than with qualities. Finaily, while not stating the matter
as explicitly as he might have, he anticipated Carnap's
interpretation of a sclentific system as a formal calculus
which 1is interpreted by semantical rules,

Some readers may find the close analogy between
Poincaré's conventionalism and the rigorous empiricism of
the logical positivists very difficult to accept. It may,
for example, be said that by no means all of the logical
positivists have been as generous as Philipp Frank in
acknowledging their indebtedness to Poincares. We have already
seen that such positivists as Reichenbach and Schlick were
openly critical of his position., In the aforementioned
cases 1t has been shown that the differences are largely
apparent and due to a misunderstanding, albelt a natural
one, of Poincarée's actual doctrine.

However, let us pursue the matter a llttle further,
Victor Kraft, an eminent logical positivist, has criticized
the thesis of conventionalism on the ground that it lays open
the possibility for the retention of any scientific theory
in the face of conflicting facts through the introduction of

159 As an example, he cites

appropriate auxiliary hypotheses.
the Lorentz~Fitzgerald contraction as an auxilliary hypothesils
introduced to meke the Michelson-Morley experiment compatible
with existing theory. In Kraftts opinion, we must choose

between conventionalism and empiricism, the two being clearly

159Victor Kraft, The Vienna Circlse, p. 140.
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incompatible.

"But i1f we do not wish to give up empiricism in
favour of conventlionalism, we must allow this way of
solving contradictions between a consequence of the
hypothesis being tested and an accepted basis sentence
only under definite conditions. We must not allow the
introduction of arbitrary auxiliary hypotheses or
modifications of our presuppositions which serve no
other purpose than to remove these contradictions and
are otherwise unfounded. Such remedial assumptions are
arbitrary if they are not either capable of independent
verification, in terms of new observations, or deducible
from propositions already established, "160

In the first place, it should be noted that Poinecaré

was attempting to describe the nature of scientific theory.
It would be wrong to suppose that he regarded conventionalism
as prescriptive, He distinguished certain conventional
aspects of sclentific theories and drew attention to them.

At no time and in no way did he advocate the extension of
these conventional aspects, He was not arguing for an
unrestricted conventionalism., He made it abundantly clear
that he did not recommend that scientists abandon their
experiments in favour of ingenious lingulstic exercises.

What Poincaré did say, however, and on this point

Kraft would agree, is that there will always remain the
logical possibility of retalining a theory through the
appropriate modification of its parts. However, when he
cites examples of such attempts, it is quite clear from the
context that 1t is only to show how absurd they are. He

argued that while experience could not falsify such theories

léoIdem.
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it will clearly lead to their abandonment by showing them
to be fruitless. Kraft, himself, agreed, as 1s obvious from
the above quotation, that auxiliary hypotheses are admissible
provided that they are not arbltrary. But, as the reader
knows, this is precisely the point taken by Poincaré.

A similar criticism has been levelled at Poincars
by Karl Popper. While Popper is not a logical positivist,
he 1s decidedly an empiricist, and has been closely associated
with the Vienna Circle. He maintalned that a scientifiec

161 Stated as

theory is characterized by its falsifiability.
simply as possible, Popper's position 1s to the effect that

an experimental investigation 1s carried out as an attenmpt

to refute a scientific theory. It is not the object of the
sclientist to find ways and means of preserving his theory

but rather to assure himself that the theory is not wvulnerable
to attack on experimental grounds.

"According to my proposal, what characterizes the
empirical method is its manner of exposing to falsification,
in every conceivable way, the system to be tested. 1Its
aim is not to save the lives of untenable systems but,
on the contrary, to select the one which is by comparison

the fittest, by exposin§ them all to the filercest
struggle for survival,"162

It would certainly appear that Popper's brand of
empiricism is incompatible with the conventionalistic

interpretation of scientific theories, For example, he

161Karl Popper, The Logic of Scientific Uiscovery,

p. L Off,

16392. cit., p. L42.
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writes that, "the empirical method shall be characterized

as a method that excludes precisely those ways of evading

falsification which are logically admissible,"103

It is beyond the scope of this thesis to make a
direct refutation of Poppert's elaborate treatment of the
logic of sclience. Popper, however, admits that conventionalism
is logically defensible but accuses it of certain "stratagems."léu

"In order to formulate methodological rules which
prevent the adoption of conventionalist stratagems, we
should have to acquaint ourselves with the various forms
these stratagems may take, so as to meet each with the
appropriate anti-conventionalist counter-move., Moreover
we should decide that, whenever we find that a system
has been rescued by a conventlonalist stratagem, we
shall test it_afresh, and reject it, as circumstances
may require."l!

Popper goes so far as to admit that conventionalism

cannot be rejected on theoretical grounds.

"attempts to detect inconsistencies in it are not
likely to succeed. Yet in spite of all this I find it
quite unacceptable, Underlying it 1s an idea of science,

of its aims agd purposes, which is entirely different
from mine. "10

It would seem that Popper treats conventlonalism
with some injustice 1f he means by this that the conventlonalist

regards sclence as the art of linguistic and logical

manipulation. Polncaré has clearly stated that the object

1631dem.

Yhon, cit., p. 80.

150p. cit., p. 82.

lééIbid., p. 80.
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of scilence is to discover objective relationships in the
structure of the world. Surely, Popper does not concelve
of any other role for sclence.

In all, Popper distinguishes four conventionalist
stratagems to be guarded against.l67 In the first place,
the conventionallist will introduce ad hoc hypotheses to
preserve & theory. Secondly, he may modify the "ostensive
definitions™ of the theory. Thirdly, he will be sceptical
in his attitude to the reliability of an experimenter whose
results threaten the theory. Fourthly, he will question the
theoretical acumen of the scientist.

The third and fourth reasons may justly be ignored
as trivial, It is noteworthy that Popper frequently refers

n168 This turn

to the views of an "imaginary conventionalist.
of phrase is well advised, since we know of no conventionallst
who has suggested either of these as grounds for the retention
of a theory. Certainly, there is not the barest suggestion
of any such idea to be found in the works of Poincaré.
Therefore, we shall limit our considerations to "stratagems"
one and two.

Popper would allow the introduction of ad hoc or

auxiliary hypotheses insofar as they do not dimlnish the degree

of testability of the theory, in which case they are even to

1671pid., p. 81.

16SIdem, Popper does cite the names of H. Poincars,
P. Duhem and A.E. Eddington but falls to examine their actual
writings in even the barest detail.
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be encouraged.169

However, when an ad hoc hypothesis is
imported for the specific purpose of retaining a theory in
the face of conflicting facts, it has diminished the degree
of testablility of that theory and is to be rejected as a
mere stratagem.,

All this, of course, is simply a matter of stating
the obvious. Let us imagine any actually existing theory.
Let us now suppose that a novel fact has been observed, which
is incompatible with that theory. The o0ld theory is then
enlarged for the speciflc purpose of taking that fact into
account., The new theory will then possess a higher degree
of testability than the old one because at least one more
testable statement will be deducible as a consequence of it,
Poincaré would argue that it would be logically possible to
import a type of assumption which merely explains the fact
away, for example the postulation of an unobservable force.
Popper is correct in suggesting that this would diminish the
testability of the theory and is therefore to be avoided. The
crucial point, however, is that Poincaré would clearly have
agreed with Popper in this regard, "If a principle ceases
to be fecund, experiment without contradicting it directly
will nevertheless have condemned 1t.":70

Popper was probably misled into attacking Poilncaréts

thesls by placing undue stress on the latterts analysis of the

169%r¢, 1bid., p. 83.

170The Value of Science, p. 110.
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foundations of geometry. Physical geometry is a special
case of physics in that no novel facts are discoverable.
The "given" of geometry 1s the amorphous spatial continuun,
In demonstrating the conventional character of geometry,

Poincaré stressed the point that the several systems of

metrical geometry are formally equlivalent. That is to say,
in Poppert's language, all such systems of geometry possess
precisely the same degree of testability. Hence, experience
cannot compell the adoption of one system of geometry rather
than another, In the case of mechanics, however, new facts
are discoverable which render one theory more acceptable
than another. Popper seems to believe that Poincaré held
the view that any system of mechanics, like any system of
metrical geometry, is as good as any other, Popper rightly
finds such a view of science to be unacceptable., But clearly
this view is far from Poincaré's conception of the nature of
mechanical description,

The foregoing considerations apply equally to the
second stratagem of conventionalism, namely the modiflication
of ostensive definitions. An ostensive definition in this
context is what Reichenbach called the "coordinating definition"
and what Carnap calls the "semantical rule." Popper appears
to be of the opinion that there is something in the nature
of an artful subterfuge involved in the modification of an
ostensive definition in the light of fresh experimental

evidence. This is attributable to the fact that Popper treats
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a8 sclentific theory from the artificlal standpoint of the
professional logician of science. That is to say, for
Popper, a scientific theory is a finished product. Popper's
legitimate task as a logician is to determine the degree of
empirical justification pertaining to that finished product.
However, such an approach to sclence, while fruitful in
itself, has certain shortcomings. In particular, it overlooks
the fact that scientific theories develop gradually from the
collective experience of generations of scientists. Popper
appears to suggest that once a primitive sign has been
semantically defined in a theory it is dishonourable to
change the definition. If this is so, then the history of
science is replete with dishonourable intentions. For example,
the word "atom" played a specific role in nineteenth century
physics, But in the present century Niels Bohr profoundly
modified the meaning of "atom" to take account of fresh
experimental evidence. Surely, Popper would not suggest

that Bohr was gullty of cheating, of employing a stratagem

to retaln the atomic theory of matter., The polint, once
again, is that in some instances such changes are fruitful
while in others they are not. As a conventionalist, Poincaréd
would merely argue to the effect that there 1is nothing to
prevent a scientist from modifying a definition in either
case, However, he would certainly agree that, in the second
case, nothing fruitful will have been gained by it.

The foregoing considerations lead directly into my
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final point. Once more, the reader may object to the stress
that has been placed on the similarities between logical
positivism and conventionalism on the ground that the sharp
distinction between an abstract calculus and an interpreted
scientific system made by Carnap is not to be found in the
philosophy of Poincaré.

The difference between the formal presentations
of the two thinkers is to be attributed to a difference of
perspective. In the case of Carnap, we find the perspective
of the logician, concerned with the finished product, its
formal structure and the grounds for its justification.
Carnap, in short, was not concerned with the psychology of
scientific discovery. He would certainly not suggest that
the scientlist actually begins by working out a logical
calculus and then proceeds to interpret that calculus by the
conscious formulation and introduction of semantical rules,

For Poincaré, on the other hand, scientific
theorizing was a personal matter. He was aware of the gradual
and intermingled growth of the syntactical and semantical
agspects of a scientific theory. Consequently, he was lead to
present the two as being of a piece, as an admixture, which
they are in the mind of the working scientist. Something is
to be said for each approach. They differ but are by no
means Incompatible., On the contrary, they complement each

other.,
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