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PREFACE 

, 
Jules-Henri Poincare (1854-1912) is universally 

acknowledged to have been one of the greatest scientific 

minds of the nineteenth century. The development of his 

genius from childhood precociousness was unusually smooth. 

By the end of his life he bad been accorded virtually every 

international honour in the field of science. 

A list of his philosophical writings is contained 

in the bibliography at the end of this thesis. However, 

to give the reader some idea of the vast range of his 

scientific creativity, included below is a list of his 

principal scientific works exclusive of severa! scores of 

articles and communications. 
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Calcul des Probabilit6s, Georges Carre, Paris, 1896. 

Capillarite, Georges Carr6, Paris, 1895. 

Cin€mati~ue et Mécanismes, Cours publiés par l'Association 
amicale es ~eves et anciens Eleves de la Faculte des 
Sciences de l'Université de Paris (CPA), 1886. 

Électricité et Optique (2 vols), Georges Carre, Paris, 
1890, 1891. --

Figures d'Équilibre d'une M§sse Fluide, c. Naud, Paris, 1902. 

La Theorie de Maxwell et les Oscillations Hertziennes, 
Georges Carrë, Paris, IE9~ 

Lecons de Mecanique Celèste Professees à la Sorbonne 
(3 vols}; Gauthbr-Villars, Paris, 1905,-1907, 1909. 

/ , ~ ~ 

Lecons sur la Theorie de l'Elasticite, Georges Carre, 
Paris, ~2:- --
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Les M~thodes Nouvelles de la Mécanique Célèste (3 vols), 
Gauthier-Villars, Paris, 1~2, 1894, 1899. 

~ , 
Les Oscillations Electriques, Georges Carre, Paris, 1894. 

Potentiel et Mécanique des Fluides, CPA, Paris, 1886. 

Theorie Ana~tique.de la Propagation de la Chaleur, 
Georges Car e, Par1s, IE95. 
Th~orie des Tourbillons, Georges Carré, Paris, 1893. 
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INTRODUCTION 

/ 
THE PROBLEM OF HENRI POINCARE 

This dissertation is concerned with the logical 

foundations of science. The history of science has been 

punctuated by a number of crises. These crises have occurred 

When the evolution of scientific theory appeared to move in 

a new and unsuspected direction. The scientific novelty 

seems, at such times, to signify more than a casual 

modification of the established tradition. It is as though 

there bad been a qualitative change in the nature of 

science. Such crises are comparatively rare. The names 

of a few great figures in the history of science tend 

na turally to come to mind - Copernicus, Gal ileo, Newton, 

Maxwell, Planck, Bohr and Einstein. 

The crises brought about by the scienti~ic 

discoveries of these men produced a flurry of activity 

among philosophera. At such times, the questions: "What 

is science?," "What are the logical ~oundations of a 

scientific theory?" and "What is the relationship between 

a scientific statement and the world?" are posed. 

" Henri Poincare was the philosophical interpreter 

of such a crisis in the history of science. In this case 
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the criais was in the field of geometry. Prior to the 

development of non-Euclidean geometry in the mid-nineteenth 

century, geometry had been regarded as perfect and unchanging. 

With the advent of non-Euclidean geometry, philosophera and 

scientiste were campelled to reappraise the statua of geametry 

and, in particular, its supposed relationship to physical 

spa ce. 

Let us trace briefly the development of non­

Euclidean geometry during the nineteenth century, wbich 
~ 

paved the way for the philosophie theories of Poincare. 

The beginning of mathematics in the modern sense 

of that word is in the work of Euclid. His monumental 

achievement was to originate the axiamatic or postulational 

method. He discovered that all the known geometrical 

relationships, as well as many new ones, could be logically 

derived from a few simple assumptions or axiams. This 

endowed geametry with a marvelous simplicity and certainty. 

More particularly, the problam of verification was vastly 

simplified by Euclidts achievement. Prior to the work of 

Euclid, every geometrical proposition stood by itself. 

Euclid showed, however, that the truth of all geametrical 

theorems depended solely on the truth of the few axioms 

from which they could be derived. Thus, Euclid could be 

said to have reduced geometry to these axiams. Hence, the 

verification of geometry is simply resolved into the problem 

of verifyi ng the axioms. In fact, this wa s no problem at 
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all for Euclid in that he regarded his initial assumptions, 

the axiams, as self-evident or intuitively certain. 

Poincaré points out that actually the initial 

assumptions of Euclidean geometry are by no means of a 

unifor.m type1• Specifically, some of them are purely 

analytic in Character and do not properly belong to geometry 

as, for example, "Things which are equal to the same thing 

are equal to each other." The other group of axioms is 

peculiar to geometry, and of those one in particular stands 

out. This is Euclid•s celebrated "parallels" postulate. 

It asserts that through one point only one parallel may be 

drawn to a given straight line. 

The postulate of parallels had attracted the 

attention of mathematicians for many years. It has per.haps 

stood out as somewhat unsatisfactory because it leads to 

the notion of infinity. 2 Thus, it lacked the complete 

intuitive certainty that was expected from a Euclidean 

axiom. Hence, the system of Euclidean geometry Which 

depends on this axiom has the shadow of doubt cast upon it. 

Undoubtedly, Euclidean geometry might have been improved in 

elegance and simplicity if this postulate could have been 

deduced as a theorem of the system. Many mathematicians 

attempted to demonstrate this postulate, i.e. to derive it 

1science and Hypothesis, p. 35f. (All references 
will be to tlie Dover edition, New York, 1952). 

2H. Reichenbach, Philosophy of Space and Time, p. 3. 
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from the other axioms, but all such attempts had to be 

ranked with the attempts to trisect the angle or to square 

the circle. 

The birth of so-called "non-Euclidean" geometry 

came about when certain mathematicians, notably Lobatschewsky, 

Bolyai and Gauss, discovered that a consistent geometrical 

system could be constructed without the inclusion of this 

dubious postulate. 

Lobatschewsky did not regard his geometry as a 

serious rival to the Euclidean system. In fact, it served 

principally to show the impossibility of demonstrating the 

postulate of parallels. He reasoned that if this postulate 

could be derived from the other axiams, then were one to 

reject it While retaining the other axioms as they are, 

self-contradictory theorems should follow as consequences. 

Thus, he assumes that througb a point an indefinite number 

of straight lines may be drawn parallel to a given straight 

line. When this was combined with the traditional axioms 

of Euclidean geometry, there resulted a system of theorems 

WhiCh differed in many respects from Euclidean geometry 

but Which appeared to possess complete interna! consistency. 

For example, the angle sum of a triangle was found to be 

less than two right angles3. Moreover, the amount of the 

defect varied with the area of the triangle. 

3cf., A. D'Abro, The Evolution of Scientific 
Thoug!lt, p. 35. -
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The next major development along these linas was 

X made by Riemann. Lobatschewsky had constructed his system 

analytically by varying one of the fundamental postulates 

of Euclidean geometry. Riemann, on the other hand, approached 

the problem in a different mannar. He realised that the 

most fundamental definition of a geometrical system is the 

definition of congruence. Once this definition has been 

given, the rest of the geometry must follow necessarily 

from i t. 

In ordinary experience, our definition of congruence 

is in ter.ms of the behaviour of rigid bodies. A distance 

AB is regarded as congruent with a distance CD if a rigid 

measuring rod Which is just equal to AB is also just equal 

to CD after it has been transported through space. We assume 

that the measuring rod has not contracted or "squirmed" 

during the transportation. However, one may very wall ask 

how one can be certain that the measuring rod has undergone 

no deformation. Again, in everyday experience an answer is 

ready. A rod is regarded as rigid provided that it determines 

various distances as congruent in auch a way that the resulting 

geometry of the region measured turns out to be Euclidean. 

It should be obvious that auCh a criterion is arbitrary. 

Reichenbach4 has pointed out some of the difficulties 

involved in determining congruence. It is impossible to 

4 ..Q.E_. cit. p. 16ff. 
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determine Whether a rod has been transfor.med during 

transportation if this change were caused by universal 

forces5 affecting the rod. If two rods were found to be 

equal when placed side by side, and were then transported 

to a distant region of space, by different routes, and were 

again found to be of the same length when placed side by 

side, it would not necessarily follow that they had been 

of the same length at all times during the transportation. 

"An expansion tha t affects all bodies in the same way is 

not observable because a direct comparison of measuring 

rods at different places is impossible."6 It would be 

useless to appeal to optical experimenta since then a similar 

assumption would have to be made about the propagation of 

rays of light. 

The immediate consequence of the foregoing 

considerations is that the determination of congruence is 

not an empirical problem at all. That is to say, we do not 

"cognize" congruence but simply "define" i t. Two rods which 

are nor.mally regarded as equal might be defined as unequal 

such that one could be treated as though it were twice as 

long as the other. Doubtless, suCh a system would greatly 

5A universal force, in this case, would be one 
which per.meated the Whole of space; Which could not be 
stopped or varied by a material barrier; and which would 
affect all material substances in precisely the same manner. 

6ReiChenbach, Op. cit., p. 16. 
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complicate our measurements. Nevertheless, from the logical 

standpoint, the new system would be just as admissible as 

the normal one. Thus, it emerges from the considerations 

of Riemann that congruence is deter.mined by definition. It 

is a matter of convention. Mathematical space is completely 

amorphous. The system of geometry which we employ to describe 

space depends on our initial convention. This doctrine is 

referred to as the 11 relativity of geometry" or "the relativity 

of space." 

Thus, the mathematician is presented with a number 

of different systems of geametry from which to choose the 

geometry of physical space. The situation was profoundly 

different from anything envisaged by Kant. For Kant, there 

was a single geometry which was imposed on phenamena 

! priori. The evolution of mathematics in the nineteenth 

century revealed that Euclidean geometry is merely one among 

many. What then is the relationship between geametry and 

the world? Can we attach any meaning to assertions that 

"space is Euclidean?" Those were the problems faced by 
, 

Henri Poincare. 

In the following chapters we shall consider these 

and other related problems in greater detail, and attempt 

to clarify Poincaré•s solution of them, about Which there 

have been certain misunderstandings in the current literature 

of philosophy. 



CHAPTER I 

MATHEMATICAL AND PHYSICAL CONTINUA 

Geometry may be described as the study of the 

spatial continuum. Thus, Poincaré develops his philosophy 

of science by first exhibiting the manner in which the spatial 

continuum is formed. This is prior to any considerations of 

the metrical properties of space. 

The most elementary form of continuum is a series 

of numbers. We may begin with the series of rational or 

commensurable numbers. Each term in the infinite series is 

different from every preceding and succeeding ter.m. Hence, 

strictly speaking, this series is not a continuum. That is 

to say, we cannot travel imperceptibly from one ter.m to the 

next. If every point on a straight line could be represented 

by a rational number, it would follow that a straight line 

would not be continuous but would be an aggregate of separate, 

discrete points. Then it would be conceivable that two 

lines could intersect without a point on one line coinciding 

with a point on the other. For example, the hypotenuse of 

an isosceles right-angled triangle7 would not intersect the 

7i.e., the diagonal of a square. 
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other two aides. If each aide of the triangle were 

represented as being of unit length, then the hypotenuse, 

according to the celebrated theorem of Pythagoras, would 

be represented by .[2. But fi is an irrational number. 

9 

Such considerations led mathematicians to regard 

the irrational numbers as real, to admit their existence on 

the line. Thus, between each ter.m of an infinite series, 

another infinite series of irrational numbers is interpolated. 

In this way we arrive at the notion of a mathematical 

continuum. 

Poincar6 now8 considera the relationship between 

the mathematical continuum and the physical, i.e. sensory, 

continuum. One might at first suppose that the notion of 

a mathematical continuum were simply drawn from ordinary 

experience. "' Poincare, however, succeeded in showing that 

there is a profound difference between them. Moreover, this 

difference is the result of the crudeness of sensory experience. 

It has been established experimentally by Fechner 

that we are unable to distinguish the sensation caused by a 

weight of 10 gr. from that caused by one of 11 gr. Similarly, 

we cannot distinguish the sensation of 11 gr. from that of 

12 gr. However, the sensation of 10 gr. is quite distinct 

fram that of 12 gr. Thus, we find that sensory continua 

exhibit a curious relationship between their elements, whiCh 

may be expressed as follows: A = B, B = c, A<:c. This, 

8science and Hypothesis, p. 22. 



., 
Poincare writes, "may be regarded as the formula of the 

physical continu1.m1."9 

The above simply stated formula is plainly at 

variance with the principle of contradiction, and has 

necessitated the invention of the mathematical continuum 

10 

which is free from any such contradiction. The mathematician 

will maintain that the contradiction is simply the result of 

the crudeness of our senses. 
., 

Poincare infera from this that, 

while the mathematical continuum is not imposed by our 

experience, experience has, nevertheless, suggested it to 

us. This, as we shall later see, is the germinal idea of 

his philosophy of the exact sciences, an idea which has been 

curiously overlooked by many modern writers who have quoted 

from his works. 

The first stage in the creation of a mathematical 

continuum is to intercalate between A and B a discrete 

number of ter.ms. However, if we had recourse to a more 

refined instrument of observation such as a microscope, the 

same difficulty would reappear. Under the microscope A and 

B would now appear to be distinct, but a new ter.m D would 

appear Which could not be distinguished from either A or B. 

To escape the contradiction we would postulate still more 

terms separating D from both A and B. But then a more 

powerful microscope would reveal new elements which could 

9 
Idem. -
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not be distinguished from the postulated inter.mediary ter.ms. 

Thus we are led to interpolate more and more ter.ms, ad 

infinitum. Sensory experience will always exhibit this 

inherent characteristic of the physical continuum with its 

associated contradictoriness. 10 

There is yet another difficulty connected with the 

physical continuum. A given length is indistinguishable from 

half of that length doubled by the microscope. Thus, the 

whole and the part are, in this sense, homogeneous. To 

resolve this contradiction it is postulated that there is 

a continuum of an infinite number of ter.ms. Thus, the 

aggregate of Whole numbers is equal to the aggregate of even 

numbers. At the basis of our mathematical reasoning is the 

assumption that an operation Which has been perfor.med once 

may be repeated, in the same way, an indefinite number of 

times. This is the principle of mathematical induction 
/ Which Poincare regards, curiously enough, as a genuine 

synthetic! priori principle. 11 Thus, once we have intercalated 

terms between two consecutive ter.ms of a series, we feel that 

this operation may be continued without limit. / 
Thus, Poincare 

speaks of mathematical continua of various orders. The 

continuum of the first order would be represented by the 

aggregate of rational numbers. By intercalating the series 

10The Value of Science, p. 42. (All references 
will be to ~Dover eaition, New York, 1958). 

11science and Hypothesis, Chapter I, Passim. 
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o~ irrational numbers, we arrive at the continuum of the 

second order and so on. 
~ We have already anticipated Poincare concerning 

the origin of the mathematical continuum o~ the second order. 

He points out that, strictly speaking, it is only the latter 

which may be called a mathematical continuum. 12 

To summarise, we have shown that experiment has 

led the mind to construct a particular system of symbols 

which is called the mathe.matical continuum. The physical 

continuum contains inherent contradictions Which suggest 

the necessity o~ a mathe.matical continuum. Thus, there is 

a relationship between the two. However, it should not be 

thought that the mathematical continuum is imposed on the 

mind. The mind freely constructs the mathematical continuum 

as a result o~ perceiving the contradictions inherent in the 

physical continuum. This, it should be noted, is not an 

! priori necessity. Furthermore, the physical continuum is 

imposed ! priori no more than the mathematical continuum. 

The former is simply a contingency which arises fromthe 

crudeness of our sensory perception. Thus, contrary to the 
/ views of Kant, Poincare would not regard the space-time ~orm 

o~ the mani~old as an ! priori for.m o~ sensibility, but 

simply as a convenient and natural method of ordering the 

data which come to us from that faculty. 

The next aspect o~ the continuum which we shall 
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consider is of great importance. It is 1 however, one of 

the more difficult aspects of the foundations of qualitative 

geometry, namely the problem of dimensionality. "" Poincare 

deals with this subtle subject with masterful simplicity. 

However, the subject is inherently complicated and its 

exposition is not made easier by the fact that Poincaré 

gradually developed and improved his ideas on the subject 

throughout his works. The basic concepts are provided in 

Science and Hypothesis. The special problem of the origin 

of the three-dimensional character of physical space is 

dealt with in The Value of Science. The latter subject is 

taken up once more and tully developed in his posthumous 

Last Thougl'lts. 

Poincaré developed the notion of multi-dimensional 

continua from the preceding considerations on the nature of 

the physical continuum. More specifically, it is based on 

the simple tact that any two aggregates of sensations are 

either distinguishable or indistinguishable. 

We may now mention the technical ter.ms which 

Poincar~ introduces for the exposition of this subject. 13 

A single aggregate of sensations will be called an "element." 

A "continuum" will be cons ti tuted by a linear series of 

elements, provided that it is possible to travel from any 

element in the series to any other via a series of connected 

13 Ibid., pp. 31-32. 
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elements no one of Which can be distinguished from its 

predecessors. An aggregate of elements is called a "eut", 

provided that the removal of this aggregate would be such 

that the remaining elements would no longer constitute a 

single continuum. Not every removed aggregate of elements 

would constitute a eut. If one of the remaining elements 

were indistinguishable from an element of the removed aggregate, 

then the latter would not have subdivided the former. 

The number of dimensions of any continuum C will 

be defined by the necessary number of dimensions of the 

corresponding eut. In any continuum of n dimensions, the 

eut will be of n-1 dimensions. If the eut is composed of 

a finite number of distinguishable elements, the continuum 

will be of one dimension. The continuum which is of 

particular interest to the geometer, the three-dimensional 

continuum, could therefore only be subdivided by a eut which 

is itself a two-dimensional continuum. 

Poincar6ts treatment is highly abstract and it 

would facilitate our understanding if we considered a simple, 

concrete illustration. Let us imagine a series of musical 

notes. Each note is so close to its neighbouring notes as 

to be indistinguishable from them. This would satisfy the 

definition of a sensory or physical continuum. That is to 

say, it would be possible to travel from any note or element 

of the series to any other by way of an imperceptible series 

of transformations of pitch. Let us now imagine that one note 
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of this series is removed. Then obviously it would no 

longer be possible to make the trip by imperceptible degrees. 

A discernible jump from one note to the next would be 

required to bridge the gap left by the missing note. Thus, 

the removed note would be a eut. Now this single note is 

obviously not a continuum. It has zero dimensionality 

analogous to that of the geometrical point. Thus, the 

original series of notes would be a continuum of one 

dimension. 

Let us now imagine that in addition to variations 

of pitch, there are also variations of intensity or loudness 

in the aggregate of musical notes. For any pitch there are 

several degrees of intensity such that one could travel from 

one degree to any other through a series of imperceptible 

changes. We would now have a continuum of two dimensions. 

That is to say, it would be impossible to subdivide this 

continuum by the removal of a single note. Let the series 

of pitches be represented by consecutive letters of the 

alphabet ABC •••• Now let the series of sound intensities 

be represented by consecutive integers 1 2 3 ••• • Let us 

suppose that the single note K7 were removed. Would it now 

be possible to go by imperceptible stages from J7 to L7? 

Obviously it would be. There is an indefinite number of 

possible routes w.hich would, in fact, satisfy the condition 

of a sensory continuum. For example, from J7 the ear could 

travel imperceptibly to J6, then to K6, then to L6 and finally 



to L7. We can readily see that to render the transition 

rrom J7 to L7 impossible, it would be necessary to remove 

16 

either all or the K's or all intensities or all of the 7's 

of all pitches. In either case, the eut would itself be a 

continuum, either of sound intensities or of pitches. This 

eut could be subdivided by the removal of a single note, 

and would therefore be one-dimensional. Hence, the original 

continuum must have been two-dimensional. One might then 

consider the addition of differences of tonality in the 

aggregate of notes. T.hen the eut would have to be a two­

dimensional continuum of the type which has just been described. 

The total aggregate of notes would then be a three-dimensional 

continuum. 

Finally, to justify this mode of defining the 

dimensionality of a continuum, we must consider whether it 

is compatible with the idea of dimensionality as actually 

employed by geameters. 

"Usually they begin by defining surfaces as the 
boundaries of solids or pieces of space, lines as the 
boundaries of surfaces, points as the boundaries of 
lines, and they affirm that the same procedure can not 
be pushed further. 

"This is just the idea given above: to divide 
space, cuts that are called surfaces are necessary; to 
divide surfaces, cuts that are called lines are necessary; 
to divide lines, cuts that are called points are 
necessary; we can go no further, the point can not be 
divided, so the point is not a continuum. Then lines 
which can be divided by cuts which are not continua will 
be continua of one dimension; surfaces which can be 
divided by continuous cuts of one dimension will be 
continua of two dimensions; finally space which can be 



divided by continuous cuts of two dimensions will be 
a continuum of three dimensions. n14 
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The point of Poincar~•s special language is that 

it is adapted to apply not to mathematical continua but to 

physical continua, for example to physical space, Which, as 

the only representational space, is of mudh greater intrinsic, 

epistemological interest than mathematical space. 

So far, no reference has been made to the notion 

of measurement, although the properties of the spatial 

continuum depend on this. Poincar~•s four works on the 

philosophy of science are largely based on separate articles 

written at different times. It may sometimes, therefore, 

appear that his philosophy is unsystematic. This is not 

truly the case. As one instance of this, we may consider 

the germinal idea of the relativity of space whiCh is hinted 

at, in passing, in his initial discussion of the continuum. 

Poincaré states that a criterion must be formulated to 

enable us to compare the intervals separating two terms in 

the continuum. That is to say, a definition of congruence 

must be provided. This, he tells us, requires the convention 

that the interval separating two ter.ms A and B is equal to 

the interval separating C and D. By convention, it is assumed 

that all elements of the continuum are equidistant. "This 

definition is very largely, but not altogether, arbitrary.n15 

Provided that the commutative and associative laws of addition 

14r.he Value of Science, p. 44· 
l5Science and Hypothesis, p. 28. (The italics are mine). 
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are satisried, the choice is indirferent. We thus see how 

the consideration of the continuum leads naturally to his 

views on the relativity of space and geometry. 



CHAPTER II 

THE GENESIS OF THE VISUAL CONTINUUM 

When we speak of space, we should make the 

distinction between physical or representational space and 

geometrical or mathematical space. This distinction is 

merely that which holds between the sensory and the 

mathematical continuum. 

Poincar6 distinguishes the most essential properties 

of mathematical space Which are that it is continuous, 

infinite, three-dimensional, homogeneous and isotropic. 16 

Visual space is found to differ fundamentally in its 

essentials fram mathematical space. Poincaré considera an 

image on the retina of the eye. Admittedly, this image is 

continuous. On the other hand, it is enclosed within a 

limited framework and, moreover, it is not homogeneous. 

The last point is very important and we should 

pause to consider it in greater detail. The mathematically 

naive person who considera the bizarre idea of a non-Euclidean 

geometry will probably argue that such geometrical systems 

may be of academie interest, but, nevertheless, Euclidean 

geometry has a privileged statua as the geometry of the space 

16science and Hypothesis, p. 52. 
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Which we observe - real, physical space. He does not 

consider that we must learn to use Euclidean geometry. We 

must learn to adapt ourselves to it. 

Primitive visual perception appears to have a 

metric of its own Which differs from the metric of Euclidean 

geametry. This fact is actually quite well known but 

profoundly ignored not only by laymen but also by many 

philosophera. Kant, himself, would have done well to have 

considered it. I refer to the phenomenon of optical 

illusions. 

A certain class of optical illusions depends on 

the fact that the retina of the eye has a non-homogeneous 

lattice structure. Hence, visual perception yields resulta 

which differ in a fairly defini te mann er from tho se of 

Euclidean measurements. If we observe a round disk such as 

a coin, it will appear to be slightly flattened at the top 

and bottom. When two straight lines are draw.n side by side 

of equal length, one horizontal and the other vertical, the 

former will appear to be longer than the latter. We take 

these direct intuitions to be illusory when we find that 

they do not confonn to the measurements which we make wi th 

our rigid Euclidean rulers. That is to say, we reject the 

only "natural" geometry there is, the geametry of primitive, 

visual perception. In its place, we select the more convenient 

geametry with its constant metric (for rigid bodies) Which 

makes no distinction between the horizontal and the vertical. 
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Thus, we see, contrary to the beliefs of the mathematically 

naive, that if any geometry qualified as a privileged, 

"natural" geometry, one of its characteristics would be its 

use of a metric for a heterogeneous space. 
/ To return to Poincare, he appears to admit that 

representational space, like mathematical space, is three-

dimensional. However, the third dimension or distance 

obviously cannot impress itself on the two-dimensional 

surface of the retina. We are able to appreciate distance 

through the effort of acoommo.da11on which we must make to 

focus on a distant object and also through the angle of 

convergence of the two eyes. That is to say, our awareness 

of the third dimension resulta from a muscular sensation, 

so that representational or visual space, unlike mathematical 

space, is not isotropie. 
/ Poincare finds it striking that the effort of 

accommodation and the convergence of the eyes are in complete 

agreement or harmony. In mathematical language, "the two 

variables which measure these two muscular sensations do not 

appear tous as independe.nt.n17 "If two sensations of 

convergence A and B are indistinguishable, the two sensations 

of accomodation A' and B' which accompany them respectively 

will also be indistinguishable.n18 However, Poincaré" 

maintains that we can only know this as an empirical fact. 

17Ibid., p. 54. 
18rdem. 
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There is no~ priori necessity attaching to it. It is quite 

conceivable that convergence and accommodation could be 

independant. Then, so to spaak, there would be an addi tional 

independant variable. For example, a being with senses like 

our own might be placed in a world in which light would have 

to pass through complex refracting media before reaching his 

eyes. Then convergence and accommodation would yield different 

resulta. Under auch circumstances the visual, spatial 

continuum would be four-dimensional. 

It appears that Poincar~ is in error regarding the 

last point. Doubtless, he has frequent recourse to popular 

physiological considerations as the result of the medical 

background in his family. 19 However, he seems to reveal 

little appreciation of the evolutionary factor of adaptation 

Which cannot be separated from any physiological question. 
/ An elaborate criticism of Poincare's argument would have to 

be undertaken by a skilled physiologist, and is certainly 

beyond the scope of the present thesis. However, one or 

two extremely elementary remarks would not be out of place. 

Firstly, there is no necessary mathematical 

relationship holding between the effort of accommodation 

and the angle of convergence. Moreover, for practical 

purposes, accommodation might be regarded as a purely 

qualitative sensation. Thus, it is surely obvious that we 

simply learn to associate a certain convergence with a given 

l9His father was a medical doctor. 
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accommodation. Thus, in all cases, we Should expect the two 

to be in complete har.mony. The amount of effort whiCh we 

must make to focus on a distant object will actually depend 

on the curvature of the lens of the eye. This, in fact, 

differa widely from one individual to another. A myopie or 

near-sighted individual will have to make a greater effort 

than a normal-sigbted person. But this does not lead him to 

attribute a fourth dimension to representational space. If 

we could assigna set of values to the accommodation "variable," 

we should find that they corresponded to one set of angles 

of convergence for the myopie person and to another set for 

the nor.mal-sighted individual. As the amount of myopia 

increases slowly during an individual•s lifetime, he will 

gradually make the necessary adjustment in his association 

of ideas. It is sometimes the case that one eye is quite 

myopie Wbile the other is nor.mal. An individual so afflicted 

may wear spectacles to correct the discrepancy. If he wears 

them all day and then removes them at night, his visual 

perception will be confused. Even then the necessary re­

adjustment may be made in a matter of seconds without 

resorting to a fourth dimension. 20 

Finally, if it were the case, as Poincar6 seems 

to think, that there were a definite relationship between 

accommodation and convergence, amounting to more than mere 

association, the organismts power to adapt would ensure that 

20 A persona! experience of the writer. 



the lens or the eye were or the right shape ror the two to 

be in har.mony. An individual in a hypothetical world where 

all light passed through rerractive media would have a 

dirrerently shaped eye rram our own. On the other hand, if 

someone from this world were transported to the hypothetical 

world, he would immediately know that his conrused perception 

or distance was the result or the presence or some such 

medium and would register no more surprise than we do when 

we perceive that a straight stick becames bent when a part 

or it is placed in water. Fortunately, however, Poincarets 

mistake does not arrect the validity of his fundamental 

position that our intuition of the three-dimensional contingum 

is empirical and not given ~ priori. 21 In fact, he may have 

been aware of the difficulties involved since he orfers a 

brief but more subtle argument for the three-dimensionality 

of visual space in The Value or Science. 22 

It should be noted that Poincar~ has not really 

shown why the visual continuum is or three dimensions. He 

has merely argued that it must be less than four. Two of 

the three dimensions of space have simply been deter.mined by 

the ract that the ratina is a two-dimensional surface. This 

of course is clearly to beg the question, for one might then 

21 , Poincare's lapse is all the more curious since, 
on the following page, he deals with motor space in ter.ms of 
the association of ideas along the lines I have suggested. 
Cf., Science and Hypothesis, pp. 55-56. 

22QE. cit., p. 52ff. 
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ask: "Why do we represent the ratina to ourselves as a two­

dimensional surface?" 

The complete solution to the problem of the three­

dimensional Character of the spatial continuum is not 

given through a consideration of pure visual space. Poincaré 

regards visual space as an abstraction, an 11artifice. 1123 

Nevertheless, we shall see what he has to say about it. 

Poincaré begins by considering the abstraction 

from the visual manifold of all those sensations which are 

red. These sensations will differ only as regards the point 

of the ratina which they affect. Let us now imagine a line 

drawn across the retina so that it divides these sensations 

into two groups. Now all the red sensations which are on 

this line or which are so close to it as to be indistinguishable 

from them will obviously form a eut which divides the manifold 

of red sensations. That is to say, one could not pass 

continuously from a red sensation on one side of the line to 

one on the other side without choosing a route which would 

include one of the sensations in the eut. Let us call this 

eut c. Now, the aggregate of sensations affecting a single 

point on this eut would constitute a second eut C', since it 

would divide the aforementioned line. Poincar~ argues that 

if C' has n dimensions, then C will have n + 1 1 and visual 

spa ce will have n + 2. 

If all the sensations affecting a single point could 

23cr., The Value of Science, pp. 53&54. 
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be regarded as identical, this aggregate would not constitute 

a continuum. It would be of zero dimensions, in whiCh case 

complete, visual space would be of two dimensions. Thus we 

see that a key question to be answered is Whether or not it 

is possible to distinguish two sensations Which are 

qualitatively indistinguishable and which, furthermore, 

affect the same point on the retina. The answer, of course, 

is that it is possible, provided that their perception 

involves differing sensations of convergence or of accommodation. 

Thus, it follows that C' is a continuum. The reader may note 

that in this later argument, Poincaré refera to convergence 

and the effort of accommodation but does not require their 

hannony. 

We may now consider the eut C'' Which would be 

the aggregate of sensations of C' accompanied by a given 

effort of accormnodation or sense of convergence. This elema1 t 

would not be a continuum since its constituent sensations 

would be indistinguishable. 24 
One last point should now be considered. Poincaré 

does point out that if convergence and accommodation were 

not equivalent, it would follow that visual space were four-

dimensional. His treatment of this matter in The Value of 

24of course, they could in fact be distinguished 
by their temporal succession. Then a single sensation would 
be a eut C'''· This would give rise to a four-dimensional 
space-time continuum. The Value of Science, of course, 
predated the great work-o? MinkowSKi. 
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Science is 1 however1 in line with the criticisms Which I 

levelled against Science and Hypothesis. He asks the reader 

to consider Whether his arguments show that experience has 

taught us that space has three dimensions. 
~ Poincare answers 

this question in the negative. He admits that an optician 

could give us spectacles to create a ~ourth-dimension i~ this 

were true. Experience has simply taught us that it is 

convenient to attribute three dimensions to space. Now, o~ 

course, everyone knows that very well. It would seem, at 

~irst, that Poincaré•s entire discussion of the dimensionality 

of space has been superrogatory, since the nature o~ space 

is purely conventional. Has this long discussion revealed 

nothing more than that we assume that space has three dimensions? 

This interpretation would naturally be unthinkable. care~l 

reading25 will reveal that Poincaré simply meant that the 

harmony of convergence and accommodation is not experimentally 

given but is a use~ul convention. In short, it is the simplest 

convention which is suggested by the nature of experience. 

but one. 
25Vide, The Value of Science, p. 54. Last paragraph 



CHAPTER III 

THE GENESIS OF MOTOR AND TACTILE SPACE 

, 
According to Poincare, complete representational 

space is more complex than visual space Which is merely a 

part of it. More fundamental than visual space is what he 

chooses to call 11motor 11 space. All of our movements are 

accompanied by muscular sensations. The framework to which 

we refer these sensations is motor space. Now, to each 

muscle there corresponds a specifie sensation. Thus, it 

would appear that there would be as many variables connected 

with this space as there are muscles in the body. That is 

to say, if, for example, there were ~muscles in the body, 

then space would be n-dimensional. The Kantian would argue 

that if the notion of space were dependent on movement, it 

is because a definite sense of direction is inherent in all 

our movements; that this sense of direction is imposed, 

~ priori, on our muscular sensations as rouch as on our 

visual ones. , 26 Poincare explicitly denies this view • He 

argues that the sense of direction is not imposed ~ priori 

but arises through the association of ideas. Such an association 

is very complicated since the contraction of a muscle in my 

26science and Hypothesis, pp. 55-56. 

- 28 -
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fore-arm, for example, may correspond to any direction 

depending on the general disposition of my body. It is, 

Poincaré maintains, the result of habit based on a large 

number of experimenta. No single sensation could give rise 

to the concept of space. It is only through studying "the 

laws ~ which these sensations succeed one another, 11 that we 

arrive at this notion. 

The most pervasive feature of sensory experience 

is change. In general, we distinguish two fundamental types 

of change - change of state and change of position or 

displacement. Both types of change are conveyed to the mind 

in the same way, as changes in an aggregate of sensations. 

There is nothing in the nature of the sensory evidence itself 

to suggest what sort of change has actually taken place. 

Thus, if I perceive a circle which beco.mes a triangle, I may 

attribute the change of impressions to forces Whidh have 

compressed the circle into a triangle or I may equally well 

attribute the change to the rotation of a cone. How, then, 

do we in fact distinguish a change of state fram a displacement? 

Let us first answer this question simply and directly. 

In the case of any displacement, the original aggregate of 

sensations may be restored through the appropriate voluntary 

motion. The motion will be suCb as to restore the object to 

its original position relative to oneself. The modification 

in the sensations is balanced by an inverse modification 

which will restore the original aggregate. 
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It follows that we may pass from the aggregate 

of sensations A to the aggregate of sensations B in two 

different ways. The modification will be either voluntary 

or involuntary •. The voluntary modification corresponds to 

a displacement of the observer, whereas the involuntary 

modification, unaccompanied by muscular sensation, corresponds 

to a displacement of the object. 

We are now in the position to understand the 

incomplete character of any account of space whiCh limits 

itself to the visual continuum. On the basis of visual 

sensation, it would be impossible to distinguish between 

Changes of state and changes of position. Let us imagine 

an observer who is incapable of any motion. He would be 

presented with a two-dimensional visual manifold. In this 

manifold, he would note that sorne sensations are more or 

less permanent while others undergo frequent modification. 

Let us now imagine that one day our hypothetical observer 

became aware of certain muscular sensations Which accompanied 

changes in the for.m of the hitherto permanent, visual 

sensations, While, on the other hand, the changing sensations 

became relatively permanent. Our observer would have changed 

his original position and would eventually recognize this 

and interpret the novel phenomena in ter.ms of objectst 

varying their distance from him in a third dimension. 

So far we have made the distinction between changes 

of state and changes of position. We have noted that changes 
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or state cannot be reversed by a voluntary movement whereas 

changes of position or displacements can be. This distinction 

is not altogether satisractory. 
~ 

Poincare draws a further 

fundamental distinction between what he calls "inter.nal" 

Changes whiCh are voluntary and accompanied by muscular 

sensations and "external" changes which have the opposite 

characteristics. 27 Among external changes, some are capable 

or being corrected by an appropriate, voluntary motion of 

the body Whereas others are not. It is in this way, 

specirically, tbat we distinguish between changes or state 

and changes of position. 
~ Poincare considera the following illustration. 

A sphere has one red hemisphere and the other blue. We are 

first presented with the blue hemisphere, and then the sphere 

rotates so that we are now presented with the red hemisphere. 

Let us now compare this situation with that of a spherical 

vase containing a blue liquid which becomes red as the result 

of a chemical reaction. We have received similar visual 

sensations, yet we interpret one as a displacement and the 

other as a change of state. In the first case, I am able, 

by walking around the sphere, to reestablish the original 

blue sensation, whereas in the second case I cannot. 

Let us now consider a second sphere having a 

hemisphere of yellow and one of green. Originally a blue 

sensation was replaced by a red sensation. Now, after the 

27The Value of Science, p. 48. 
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rotation of the second sphere, a yellow sensation is replaced 

by a green one. Thus, we are presented with two distinct 

series of sensations, yet we regard them as the outcome of 

a similar displacement, the rotation of a sphere. Obviously, 

we are able so to do not because we have the right to set 

up a correspondance between blue and yellow and between red 

~d green, but because in both cases the original sensation 

can be reestablished by a similar movement accompanied by 

similar muscular sensations. It is important to note that 

the similarity of muscular sensations in the two cases 

suffices for the conclusion. It is not necessary to know 

anything of geametry orto represent the motion of one 1 s 

body in geometrical space. 

Poincar~ offers a second illustration. 28 Let us 

imagine that an object is in motion so that its image was 

first formed at the centre of the ratina and subsequently 

at the border of the retina. The two sensations must be 

qualitatively distinct or one could not distinguish between 

them. How, then, is one led to postulate that the two 

distinct sensations a re really one and the same image which 

has undergone a displacement? Simply because the object may 

be followed by the eye. It is possible to bring back the 

image to the centre of the ratina, to reestablish the primitive 

sensation by a voluntary motion accompanied by a muscular 

sensation. 

28Ibid. 1 p. 49. 
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If the image of a red abject maves from the centre 

A of the retina to the border B, and then the image of a 

blue abject passes from A to B 1 one concludes that the two 

abjects have undergone a similar displacement because 

precisely similar muscular sensations will accompany the 

two eye motions which are necessary to reestablish the 

original sensations. If the eye were incapable of being 

moved, I should not be in the position to state that the 

relation between red at the centre and red at the border 

was equivalent to that holding between blue at the centre 

and blue at the border. 

"I should only have four sensations qualitatively 
different, and if I were asked if they are connected 
by the proportion I have just stated, the question 
would seem to me ridiculous, just as if I were asked 
if there is an analogous proportion between an auditory 
sensation, a tactile sensation and an olfactory one.n29 

So far we have been considering exter.nal changes 

or those which arise without any voluntary motion of the 

body. Now we must consider Poincaré• s treatment of "inter.nal" 

changes. Firstly, Poincaré distinguishes between a simple 

displacement of the body in which the various parts of the 

body retain their initial positions relative to each other 

and those changes in which the parts of the body undergo a 

modification in their relative positions. The latter may be 

cal led a change of "attitude. u30 The two may be distinguished 

29Ibid., p. 50. 
30idem. 
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by virtue of the fact that the for.mer can correct an external 

change whereas the latter may bring about, at best, a partial 

correction. "' Poincare stresses once again that this may be 

ascertained as an item of direct experience without any 

prier knowledge of geometry being presupposed. 

It has sometimes been suggested that Poincaré has 

supplied the contemporary philosophy of science with its 

for.mal element while such thinkers as Ernst Mach supplied 

the empirical basis. It should by now be clear to the 

reader of this exposition that Poincaré believes that the 

fundamental notion of the spatial continuum has an experimental 

basis. It is much more than a for.malistic convention. We 

shall later see how this is connected with the formalistic 

aspect of his pbilosophy which has been called 

"Conventionalism. n3l 

To repeat, Poincaré denies that geometry is 

presupposed by these elementary, experimental facts. However, 

an elementary geometrical explanation could be provided if 

it were desired. An external object undergoes a displacement. 

If we desire the various parts of the body to resume their 

initial positions relative to this object, it would be 

necessary that they retain tbeir original positions relative 

to each other. If the position of the eye changes relative 

to a finger, the eye can still be displaced in such a way 

that the original visual aggregate of sensations is restored. 

3lcf. Infra, p. 79. 



However, the relative positions of the finger ~nd the 

external abject will then have been modified so that the 

original tactile sensations would not have been restored. 

35 

Only the internai changes which correspond to the restoring 

of the original relative positions of the eye and the finger 

could be accompanied by the restoration of the original 

aggregate in all its aspects. This is, of course, an 

explanation which presupposes a good deal of geometry. 

Poincare•s pointis that the awareness of the facts themselves 

requires no geametry. 

A second pertinent consideration Which Poincaré 

raises is that the same external change may be corrected by 

more than one internai change and therefore be accompanied 

by different sets of muscular sensations. This again is a 

primitive experimental fact. However, the following is a 

geometrical explanation of the fact. To move from position 

A to position B, one may take different routes. To one of 

these routes there will correspond a set of muscular sensations 

S While to another there will correspond a set s•• Which may 

be completely different from s. Now, how is it that I am 

able to know that both correspond to the one displacement 

AB? The two series Sand S'' will have but one common 

feature; both are capable of correcting the same external 

change. Thus, I may walk in a straight line fram A to B. 

I then return by a straight path to A, so restoring the 

original aggregate of sensations. I then execute a series 



of pirouettes around the room until such time as I become 

aware, once again, of the second aggregate of sensations. 

I then know that I have once more displaced my body from A 

to B. 

A more complicated situation is now considered.32 

Consider two different external changes as, for example, the 

rotation of the half blue, half red sphere and the rotation 

of the half yellow, half green sphere. Let us call the two 

displacements ! and b. They will be represented to us by 

two quite different changes of sensation, the passing of 

blue into red and yellow into green. Now we consider two 

series of internal changes Sand S'' accompanied by sets of 

muscular sensations having nothing in common. Now, I happen 

to be in the position to assert that ! and b correspond to 

the same displacement and that Sand S'' also correspond 

to the same displacement. How is this possible? It is because 

I discover that S can correct both displacements ! and b, 

and that! can be corrected by both Sand S''• Now we may 

consider the following question: "If I have ascertained that 

S'' likewise corrects b?u33 In answering this question, 

" Poincare states his position with greater force. He 

maintains that experiment alone can teach us whether or not 

the law is verified. If it were not at least approximately 

32The Value 2f Science, p. 51. 
33Idem. 
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veTified there would be no geometry.34 In fact, we would 

have no interest in making the distinction between a change 

of state and a change or position, and we would have no 

concept or space. 

We may note with interest the difference between 

the somewhat contrived Kantian position and that proposed 
l' by Poincare. The Kantian would argue that the law is veri~d 

by virtue or an a priori condition of sensibility which 

makes it so. According to Poincar~, on the other band, it 

is an empirical fact that the law is true. What, then, ror 

Poincaré is the relationship between experience and geometry? 

Poincaré refrains from adopting the radical empiricist 

position that geometry is learned from experience. The 

student of Kant will be fully aware of the untenable nature 

of this position which has been proposed by sorne empiricists 

such as Hume and John Stuart Mill. Geometry, as a formal 

system, requires the truth of this law. This entails neither 

that the law is a priori nor that geometry is empirical. It 

simply means that geometry can be applied in practice without 

fear or contradiction. In fine, experience does not teach 

us geometry but it does teach us that geometry is useful. 
l' Thus, once again, we see Poincare•s general position in the 

process of amerging. Geametry is a convention. But it is 

not an arbitrary one. It is a convention Which has been 

34It is not however universal ly valid. If it were, 
there could be no geometry. Cf. Science and Method, pp. llOff. 
(All references will be to the Dover edition, New York, no date.) 
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auggested by experience135 

So far, in tracing the geneais of phyaical space, 

we have considered the visual continuum whiCh was found to 

be a continuum of three dimensions. However, i t has been 

pointed out that the consideration of a purely visual 

continuum is artificial and, to sorne extent, even arbitrary. 
,. 

We have just now analysed what Poincare describes as the 

continuum of displacements. An element of this continuum 

was an interna! change capable of correcting an external 

change. It has the property of a physical continuum since 

two internal changes may be so close as to be indistinguishable. 

The continuum or group of displacements is related to space 

but it cannot serve as an analogue of space since it is not 

three-dimensional. Poincare36 states that this continuum in 

fact, has six dimensions, although, unfortunately, he does 

not undertake the rather tedious task of demonstrating this. 

Thus, the genesis of the familiar notion of space is still 

not campletely accounted for. To do so, we must first make 

a detour to consider certain questions regarding the notion 

of a point. 

The spatial continuum is a manifold of points in 

three-dimensions. EaCh point is an element of the continuum. 

Adhering to what has already been said about continua in 

general, it follows that points in space must be normally 

35science and Hypothesis, p. 50. 

36The Value of Science, p. 57. 
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distinguishable but sometimes indistinguishable. But what 

do we mean by the identity of two points? How can we 

distinguish two points? What, in fact, is a point? 

In the first place, it is not possible to represent 

a point to oneself, at least not in the simple mannar that 

soma people might think possible. When these people think 

that they are representing a point, they are, in fact, 

visualizing a very small object such as a tiny chalk spot 

on a blackboard. However, while there is indeed a difficulty 

here, it is not the most fundamental one. The crux of the 

problem concerna the representation of a specifie point.37 

For example, if we agree that a point in space may be 

designated by a chalk spot on a blackboard, in what sense 

can one be in the position to say that the mark occupies 

the same position or is located at the same point after a 

period of time has elapsed? 

Poincar~ is of course making a simple reference 

to the relativity of position. The chalk mark will have 

travelled 30 kilometres from its original position after a 

period of one second as a result of the earthts motion. It 

is impossible to determine whether an object has retained 

its position in space during any period of time. In fact, 

the question is meaningless. Thus, we may only consider 

the relative position of the point. The most primitive 

consideration would be Whether the point has retained its 

37 ~., p. 46. 
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relative position to oneself. If the sensations produced 

by the object differ from the original aggregate, as we 

have seen, the object has undergone a displacement or a 

change of state. If we can voluntarily restore the original 

aggregate, we conclude that the object did in fact undergo 

a displacement. Furthermore, if two objecta have retained 

their relative position to one's own body, one may conclude 

that they have retained their position relative to each 

other. The latter consideration, as we have already stated, 

presupposes a knowledge of geometry, so that fundamentally 

we are only able to speak of the position of points relative 

to our own body. 

Thus, it appears that a point may only be defined 

with reference to a coordinate system attached to one's own 

body. The localization of a point in this way does not, 

however, presuppose the notion of space. All that is 

required is that one represent to oneself the movements Which 

are necessary to reach it. More precisely, one would 

represent the muscular sensations Which would accompany such 

a motion. The muscular sensations, as suCh, would certainly 

not presuppose space. Hence, if two different objecta 

successively occupied the same point in space, the impressions 

associated with them might be totally different. One feature, 

however, Which they would share is that similar muscular 

sensations would accompany the movements necessary to reach 

them. 
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At this point, however, a possible difficulty 

appears to arise. As we have already noted, there are 

several different series of movements Which could transport 

the body from A to B. The muscular sensations of the 

various series might have nothing in common with each other. 

How, then, can one know that the several representations 

are of a single, self-identical point? To have recourse 
, 

to viaual sensation ia extremely tempting but, as Poincare 

rightly points out,38 this would actually multiply our 

difficulties. That is to say, we should then have to show 

how our visual apprehension of a given point corresponded 

to our motor apprehension of the same point. The problem 

of the identity of two pointa is obviously more difficnlt 

than it would first appear. 

Let us suppose that during the interval between 

two instants of time, ! and b, the relative position of the 

various parts of my body have remained the same. At the 

instant ! a point in space had been occupied by object A; 

at instant b that same point is occupied by object B. Now, 

What are the conditions Which make auch knowledge possible? 

Poincaré must neceasarily introduce visual sensation into his 

considerations, since it is nor.mally only through that medium 

that we can distinguish between two distinct objecta. 

At time a I receive visual sensations Which are 

transmitted through a fibre of the optic nerve. I attribute 
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these sensations to object A. At the same time, I also 

receive tactile impressions of that object via a tactile 

nerve in one of my fingers. Similar considerations would 

apply at time b to object B. That is to say, impressions 

of B would be transmitted by the same optic nerve fibre and 

the same tactile nerve. The two sets of sensations 

corresponding to the two objecta, A and B, may be qualitatively 

quite different. By Wbat rigbt then, do we suppose that 

they have been transmitted by the same nerves? 

We shall shortly be in a position to see that 

tactile space is more important than visual space, so that 

a solution to this problem is not mandatory. However, 

Poincaré does offer a simple hypothesis which could suffice 

to explain the above point. He supposes that the object A 

produces two simultaneous sensations, ! WhiCb is purely 

luminous, and!' WhiCb is coloured. Similarly B will produce 

the luminous sensation band the coloured sensation b•. If 

! and b affect the same point on the retina they will be 

identical sensations. If a and b affected different points 

on the ratina, we would say that objecta A and B were in 

different regions of space, provided, of course, that the 

attitude of the eye was the same in both cases. However, 

!' and b• possess qualitative differences, so we would 

distinguiSh them in either case, therefore knowing that we 

were dealing wi th two distinct objecta. However, the 

fundamental point is that even if this hypothesis were 
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raulty, and neither Poincare nor the present writer has 

any great desire to de~end it, there must be something in 

common between a and ! ', on the one hand, and b and bt on 

the other. It is an experimental ~act that some objecta 

may be regarded as though they have successively occupied 

the same point o~ space While others may not be so regarded. 

In order that we may judge two points to be 

identical, there are certain conditions, both visual and 

tactile, that must be ~ulfilled. However, the visual 

condition while necessary is not suf~icient. The tactile 

condition is both necessary and sufficient. That is to say, 

the visual condition might be met without the two points 

being coincidental. The tactile condition could not, in this 

case, be ~ul~illed. The explanation in this case While 

still elementary is o~ a geametrical nature. Renee, it 

should only be regarded as a footnote to Poincare•s doubts 

about the aforementioned hypothesis. Lest the reader ~orget, 

it should be emphasized that the notion of physical space is 

not yet complete. It is not until it has been accounted for 

that one can even begin to discuss mathematical, i.e. 

geometrical, space. 

0 is a point on the retina Where an image of object 

A is ~ormed at time a. At instant !' the object is at a 

point M in space. Similarly, object B occupies a position 

M• in space at time b. The problem is to determine the visual 

and tactile conditions whicb must bold for M and M• to be 
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identical. Now, vision is capable of acting at a distance. 

Consequently, the points M and M' could be identical provided 

that o, M, and M' were on a single straight line. However, 

M might be five reet from the eye while M' were five yards 

from it. Thus, While this condition is indispensable for 

the identity of M and M', as we stated above, it is obviously 

by itself insufficient. However, let us suppose that the 

finger is at point P in space at time a. It is discovered 

that P and M coincide. Then, at time b, it is found that 

the finger which has remained at P now coincides with M•. 

Since touch does not operate at a distance, it is concluded 

that M and M• must be identical. Renee, tactile space is 

more fundamental than visual space, at least for the 

determination of the identity of two points. However, at 

the primitive, experimental level, we may only determine 

that when the visual condition is fulfilled, the tactile 

condition may or may not be. But whenever the tactile 

condition is fulfilled, the visual condition invariably is. 

Since these conditions are only experimental, it 

is possible to conceive that the positions of sigbt and 

touch might have been reversed. We would tben conclude that 

touch can operate at a distance whereas sight cannot. 

Our knowledge of the spatial continuum is enhanced 

by the fact that, in practice, we nor.mally make use of more 

than one finger. At instant !• my first finger receives an 

impression Which is attributed to object A. My body is tben 



displaced with the corresponding series of muscular 

sensations s. After this displacement, my second finger 
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receives a tactile impression Which is also attributed to 

A. Later at instant b, after no physical displacement, my 

second finger receives an impression Which is attributed 

to object B. Now my body undergoes a displacement 

corresponding to a series of muscular sensations s• which 

is completed at the time b'. Experimental evidence has 

assured me that S and s• are mutually compensating. That 

is to say, following S, the original aggregate of sensations 

will be re-established after a series of movements corresponding 

to s•, and vice-versa. Now, the question Which Poincaré 

considerais Whether, at instant b•, my first finger would 

receive impressions which could be attributed to object B. 

A little elementary reflection will reveal that 

the answer to this question will be affirmative, provided 

that the objecta A and B have not moved. I will not burden 

the reader with the details of the considerations which 

Poincaré provides at this point.39 The important point to 

note, however, is that these considerations are of a geometrical 

nature. From the experimental standpoint, we recognize the 

truth of the conclusion but, at the same time, realize that 

a different conclusion is conceivable. The latter would 

merely modify our opinions concerning the use of sight and 

touch. 

39 Ibid., pp. 60-61. 
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Berore leaving this point1 to anticipate Poincar~ 1 

ror one moment1 it should be noted that the condition 

attaChed to the geometrical reasoning is of the nature of 

a convention. We refer to the proviso that the objecta 

under consideration Should not have moved. In other words 1 

if any experiment suggested that physical space were not a 

three-dimensional continuum with the familiar metrical 

properties of Euclidean space 1 we would counter with the 

assumption that the objecta must have been displaced in the 

course of the experiment. This is an important point or 

Which more will be said later. 



CHAPTER IV 

TACTILE SPACE AND THE AXIOM OF TRI-DIMENSIONALITY 

In the Introduction, it was pointed out that non­

Euclidean geometry originated from considerations concerning 

Euclid's postulate of "parallels." Consequently, this 

postulate receives a great deal of attention from philosophera 

of science, including Poincar,. However, there is another 

postulate of Euclidean geometry which is as fundamental and 

as deserving of attention for its philosophie implications. 

This is the postulate (or axiom) that space bas three·· 

dimensions. This is certainly at least as well embedded in 

our convictions about the nature of space as the "parallels" 

postulate. Poincaré is, therefore, obliged to Show how this 

postulate is suggested experimentally in the genesis of 

tactile space. 

So far, we have learned, in the first place, that 

it is possible to recognize the identity of two points at 

successive moments, provided that the body does not move. In 

the second place, even if the body does move during the 

interval between the two sets of impressions, provided these 

movements are accompanied by two sets of muscular sensations 

(Sand S'), it would still be possible to recognize the 

- 47 -
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identity of the two points, treating the body as thougn it 

had remained motionless. 

Poincaré now proceeds to show that, given the 

aforementioned experimental conditions, it would follow 

that tactile space is a continuum of an indefinitely large 

number of dimensions. He then demonstrates the factors 

WhiCh per.mit us to reduce it to a three-dimensional continuum. 

I distinguish two points in space occupied by the 

objecta A and B by virtue of my finger's touching A at time 

~~ and B at time b. The method by which I compare the two 

points is to consider the muscular sensations Z WhiCh have 

accampanied the movements of my body during the interval 

ab. From What we have noted in Chapter I about physical 

continua in general, it follows that the totality of 

different series Z would for.m a physical continuum with as 

many dimensions as there are z•s. On the basis of earlier 

considerations, we need not distinguish between the two 

series Z and Z+S+S', since Sand S' cancel each other. 

However, the number of zrs will still be very great. To 

eaCh of the series z, there corresponds a point in space. 

That is to say, after a given movement, the tip of my finger 

will be at a definite point in space. Among these many 

points, some will be distinct, others identical. 

Apart from the special case where Z = Z•+S+S', 

the cases where the points would be identical, there are 

those Where the finger itself does not move. 
,; 

Thus, Poincare 
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z distinguishes a sub-group of the z•s whiCh he calls ~· .... 
representa the series of muscular sensations accampanying a 

bodily movement in Which the finger remains motionless. 
~ Poincare maintains that tactile space will have but three 

dimensions provided that we do not regard as distinct the 

series Z and Z+z. In ordinary language, this means that a 

series of movements eorresponding to the displacement of 

my finger from A to B will be regarded as indistinguishable 

from an identical series of movements plus a further set of 

movements in which the finger is motionless. 

Once again, Poincaré begins by offering a geometrical 

explanation Which should, in any case, be obvious to the 

reader. Consider a surface A in space. On the surface A 

let there be a line B, and on the line B let there be a 

point M. Let c
0 

represent the aggregate or totality of z•s. 

cl representa the totality of z•s in which the finger-tip 

remains on surface A. c2 is the aggregate of z•s in which 

the finger-tip remains on line B, while c3 representa the 

aggregate of z•s in whiCh the finger-tip remains at the 

point M. 

It is apparent that c1 is a eut whiCh divides c
0

• 

That is to say, if we removed c1 , it would not be possible 

to move from any point in space to any other point. Similarly, 

c2 is a eut which divides the surface A so that one could not 

move from any point on the surface to any other point. In 

like mannar, c3 will be a eut Which divides c 2• Again, 
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~ollowing what was determined in the preceding chapter, i~ 

c
3 

is a eut o~ n dimensions, C
0

, Which is the aggregate or 

possible motions in space during the interval ~' will have 

n+3 dimensions. Obviously, our task is to show that c
3 

is 

o~ zero dimensions. 

Now the reader will recall that c3 will only 

~ul~ill this condition provided that it does not consist o~ 

a series o~ elements sucll that the di~~erence between two 

adjacent elements would be imperceptible. That is to say, 

c
3 

must not be analogous to a series o~ musical notes o~ the 

same intensity and tonality but o~ varying pitch. In short, 

c3 must not be a continuum of elements. Now, this condition 

is fUl~illed by c
3 

provided that we agree to treat Z and 

Z+~ as indistinguishable. Then all of the severa! series 

o~ sensations in which the tip o~ the ~inger remained at M 

would be indistinguishable. c
3 

would not be a continuum, 

and C
0 

or tactile space would have three dimensionsl 

This ingenious derivation of the number o~ dimensions 

of space is obviously geometrical. From the primitive, 

experimental standpoint, why should we have singled out the 

series z? The answer is of the utmost simplicity. The series 

~ stands out by virtue of the experimental fact that the 

tactile sensation received at the beginning of such a series 

of muscular sensations will usually be identical with the 

tactile sensation at the end of auch a series. Thus, if I 

touch a piece of silk, I receive a characteristic tactile 



51 

impression. I then execute a series of movements at the 

end of which the same Characteristic feeling of silk remains. 

I touch a piece of glass. I then execute an identical 

series of movements and the characteristic impression of 

glass is found to persist. After rouch experiment, I conclude 

that the series of muscular sensations ~~ corresponding to 

these movements is auch that it does not alter the tactile 

impressions whiCh are received by a given finger. 

There are, of course, those cases where the 

original impression does not persist. We should explain 

this geometrically by saying that the piece of silk or 

piece of glass was displaced. We are not, however, entitled 

to offer this explanation prior to any knowledge of geometr.y. 
~ Poincare is content to point out that so long as the 

experimental condition usually holds, it is sufficient to 

induce us to regard ~ as corresponding to a special type of 

dis placement. 

In the final paragraph4° of this section, Poincaré 

inse»ts a comment to the effect that while muscular sensations 

inform us of the movements of the body, the final position 

of the body depends not only on these movements but also on 

the position from which it began. However, there is no 

sensation to infor.m us of the initial position. This, in 

itself, suffices to make the relativity of spatial position 

apparent. We shall have more to say of this in the following 

4°The Value of Science, p. 65. 
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chapters. 

It would be appropriate at this point in our 

exposition to consider how one might characterize the 

position held by Poincaré. 
~ Poincare has discussed the 

genesis of the notion of space in a manner which would seam 

to place him directly in the tradition of the empiricists. 

He bas, in effect, Shown that the notion of space arises 

through a complex association of ideas. More precisely, 

he bas shown that we associate various muscular sensations 

with external impressions. The correlation of these two 

sets of data is readily aecomplished through the medium of 

a three-dimensional continuum. Are we then to classify 

Poincaré•s position with that of Hume, Mill and Spencer? We 

should defer any definite conclusion until we have learned 

more of his philosophy. This, however, should be carefully 

considered. Neither Hume nor Kant made the explicit distinction 

between representational and mathematical space. Poincaré 

has so far been discussing purely representational space and, 

thus far, his position has indeed been empirical. However, 

this space has no definite metric. We cannot call it 

Euclidean or LobatsChewskian. It is a continuum for.med by 

the correlation of tactile, visual and motor impressions. 

Thus, before passing any final judgement, we must consider 

the conditions and manner of endowing space with a metric. 

We shall see that it is here that Poincaré reveals features 

of his philosophy which set him apart, albeit subtly, from 
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the classical empiricists. 

To resume our exposition of Poincare's views, we 

must now consider the mannar in Which the various aspects 

of representational space are correlated. That is to say, 

we must learn how Poincaré treats the relationship between 

visual and tactile space. Actually, Poincaré does not deal 

with this question explicitly. He merely shows how one 

should set about it. From What he has said of tactile 

space, it follows that each of our fingers generates a 

three-dimensional, spatial continuum. Poincaré shows how 

we arrive at the identity of two tactile continua in a 

mannar WhiCh is consistent with his other views. This, at 

least, gives us the clue to understanding how tactile space 

could be correlated with visual space. 

Poincaré considera two three-dimensional, physical 

continua C and C' Which are generated by two fingers D and 

D'. An element of such continuais a point in tactile space. 

To each of these elements there corresponds a series of 

muscular sensations z. There will also be series of sensations 

of the type Z+~ corresponding to the same point or element. 

Similarly, in the continuum C', there will be a series Z' 

corresponding to each element, and also a series Z'+z•. We 

distinguish ~ from zt because ~ preserves the tactile 

impressions of D while ~· preserves the tactile impressions 

of D•. Finally, as before, Sand S' are inverse or mutually 

correcting series of sensations. 
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Let us now consider the rollowing experimental 

data. The finger D' receives a tactile impression A•. I 

execute movements corresponding to the series s. Then 

finger D feels the impression A. I then execute movements 

corresponding to !· I continue to receive the impression 

A througb my finger D. I now make the motions corresponding 

to s. Hence, once again, finger D' feels the impression 

A•. In other words, the series of movements corresponding 

to S+!+S' (in ~ order) preserves the impressions of 

finger D'. By definition, we note that S+z+S' belongs to 

the series zt. Mutatis mutandis, S'+!'+S will be a series 

of type z. Provided that S is suitably chosen in the series 

S+!+S', by varying! in every possible way, we may obtain 

every possible series of the type!'· 

As an aid to the reader, it would be appropriate 

to consider a concrete example of auch an experiment. Before 

me is a narrow strip of silk. By stretching my right ar.m 

straight out, the tip of the index finger (Dt) of my right 

band comes in contact with the strip of silk, receiving the 

impression of it (At). I then move my arm slightly to the 

left, experiencing a series of muscular sensations (S) in 

so doing. My middle finger (D) is then in contact with the 

strip of silk Which transmits a second tactile impression 

(A). I bend my knees sligbtly and, at the same time, tilt 

my right arm upwards so that my middle finger remains unmoved, 

in contact wi th the silk. The bending of the lmees together 
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with the upward tilting of my ar.m is accompanied by a series 

of muscular sensations (!)• Then I move my arm slightly to 

the right# experiencing more muscular sensations (S•). My 

index finger (D') is once more in contact with the silk 

strip, Which again causes its characteristic# tactile 

sensation (A•). 

Poincaré offers the usual, geometrie explanation. 

It is not necessary for us to repeat it, since it is implicit 

in the concrete illustration. The essential point to note 

is that, on condition that the strip of silk has not moved# 

we would naturally suppose that the tip of the index finger 

has occupied the same point in space as the tip of the middle 

finger. In other words# for any point in! given spatial 

continuum# there will be ~ corresponding point ~ ~ second 

spatial continuum. 

To resume the exposition in Poincaré•s own language, 

there is a series of muscular sensations Z which corresponds 

with a point M in the first tactile space. To the series 

S+Z+S', there corresponds a point N of the second space. 

Poincaré now must Show that M and N are corresponding points. 

Since these are arbitrarily selected points# this would 

amount to demonstrating that every point in the continuum 

Chas a corresponding point in the continuum c•. In other 

words# C' would be a transformation of c. 
The notion of a geometrical or co-ordinate 

transformation is readily understood. Let the continuum 
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c be represented by the surface of a flexible rubber ball. 

Let us now squeeze the ball, without stretching it, so that 

its shape is deformed. The new surface will represent c•. 
The reader will immediately perceive that for every point 

on the first surface there is a corresponding point on the 

second surface. The second surface is then a transformation 

of the first. Had we drawn a triangle on the surface of the 

ball, then the geometrical for.m on the ball, after being 

squeezed, would be a transformation of that triangle. 

Poincar~•s intention is now more readily understood. 

He wishes to show that the space engendered by one finger 

is identical with that engendered by a second finger. Firstly, 

however, he must show that one is a point transformation of 

the other. 

To establish that M and N are corresponding points 

in the sense we have considered above, the following condition 

must be satisfied. It must be shown that whenever two points 

M and M• are identical in the first space, the two points N 

and N• will be identical in the second space. Since S and 

s• are mutually correcting series, it follows that S+S' = o. 

Hence, S+S'+Z = Z+S+S' = Z •••••••••••••••• I 

Also, Z+S+S'+Z' = Z+Z' ••••••••••••••••••••II 

These relationships are obviously not of the 

commutative variety. The order of the corresponding movements 

is signif icant. Hence, we are not entitled to assert the 

following: 
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S+Z+S' = Z 

It is necessary to show that Z and Z' correspond to the same 

point M =M' in the ~irst space. To do so, it is suf~icient 

to show that Z' = Z+z.41 We should then be able to write: 

S+Z'+S' = S+Z+z+S 1 = S+Z+S'+S+Z+S' •••••••.••••••••••• III 

The reader may veri~y the above relationships by Choosing 

a simple movement o~ the ~inger ~or e ach symbol. He will 

~ind that a~ter each o~ the three series of movements, his 

finger will be in the same place. 

It was shown above42 that S+z+S• was a series of 

the typez'. Substituting !' for S+_!+S' in III, we obtain 

S+Z'+S' = S+Z+S'+z' •••••••.••••••••••• IV 

Tbat is to say that S+Z'+S' and S+Z+S' correspond to the 

identical point in the second space. 

The conclusion of this deduction is a crucial one. 

It is therefore, necessary to review the reasoning with care. 

Poincaré wishes to show that two spatial continua are 

isomorphic. If they are, whe n ever two points in the first 

space are identical, two corresponding points in the second 

will also be identical. We have agreed, by hypothesis, to 

regard S and S' as two series of sensations which are 

inversely related or mutually correcting. Thus, the 

relationships I and II are self-evident. 

4lThe reader will recall that z is a series of the 
type which preserves the aggregate of sensations. 

42supra, p. 54. 
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we recall that Z corresponds to a point M in the 

first space, and Z' corresponds to a point M' in the first 

space. S+Z+S' is an arbitrarily chosen series of impressions 

corresponding to a point Nin the second space, while S+Z'+S' 

corresponds to a point N•. 
~ Hence, Poincare must show that 

whenever Z and zt lead to an identical tactile impression, 

the series S+Z+S' and S+Z'+S' will also result in the identical 

tactile impression. 

If Z and Z' correspond to the same point (M=M•) 

in the first space, then Z' = Z+z. This, again, is true 

by definition. Let us then assume that Z and z• are such 

series. On the basis of this assumption, the set of 

relationships III is a necessary consequence through the 

simple algebraic substitution of Z+z for z•. 
It has already been established that S+z+S' is 

one of the series of the type !'• Moreover, it was noted 

that by varying ! in avery possible way, one could obtain 

every possible series of the type !'• Hence, the substitution 

of zt for S+~+S' is legitimate. By making this substitution 

in III, we obtain the relationship of IV. 

S+Z 1 +S 1 = S+Z+S'+z 1 

But !' is, by definition, a series of sensations which 

preserves the initial impression. Hence, it may be disregarded. 

We conclude that S+Z'+S' and S+Z+S' correspond to the same 

impression or the same point in space N = N•. 

This demonstration proves that whenever M and M' 
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are identical points in space c, N and N1 will be identical 

points in space c•. In other words, these two tactile spaces 

are iso.morphic. 

For the benefit of the sceptical reader, let us 

resort once more to an intuitive illustration. Let us begin, 

as before, with my right arm outstretched and my index finger 

extended to touch a strip of silk. To attain this position 

I have undergone motions corresponding to the sensations z. 
Then, as before, I bend my knees and tilt my ar.m slightly 

upwards. These movaments are accompanied by the sensations 

z. It sb.ould be noted that z could have been a movement of 

my index finger. For example, I could have moved it in such 

a way that its tip would have described a full circle whose 

plane is normal to the plane of the piece of silk. In any 

case, the reader can see that both the movement corresponding 

to Z and that corresponding to Z+z will result in my index 

finger•s touching the piace of silk. We give Z+! the name 

z•. Experience teaches us that z and z• are equivalent. 

I now perform a similar experiment with my middle 

finger. The second experiment is slightly more complicated 

by virtue of the presence of Sand s•, but these are any 

suitable motions which are self-cancelling as, for example, 

one step backward and one step forward. I ascertain tbat 

whenever Z and Z1 correspond to the same point for my index 

finger, S+Z'+S' and S+Z+S' will correspond to the same point 

for my middle fing er. Suppose that to the left of the strip 
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of silk there were a strip of glass. If Z corresponded to 

the tactile sensation of silk in my index finger, while Z' 

corresponded to the tactile sensation of glass, then I should 

also find that whenever S+Z+S' corresponded to the feal of 

silk in my middle finger, S+Z'+S' would correspond to the 

feal of glass in that finger. Such experimenta would lead 

me to believe that a point correspondance existed between the 

space of my index finger and that of my middle finger. 

The foregoing intuitive considerations have actually 

anticipated Poincare's final conclusion. Not only do I 

regard the spaces as corresponding but also as identical. I 

have learned experimentally that a series of movements Which 

preserves an impression at point M for my index finger will 

also preserve an impression at point N for my middle finger. 

Sometimes, however, the impression will not be preserved. 

In these exceptional cases I assume that the object has moved. 

Moreover, I find that whenever the series of movements fails 

to preserve a tactile sensation for my index finger at M, it 

likewise fails to preserve a tactile sensation for my middle 

finger at N. I assume that the two sets of tactile impressions 

are caused by one and the same object Which must occupy both 

M and N. In other words, M and N are one and the samel 



CHAPTER V 

CONVENTIONALISM AND THE GEOMETRY OF SPACE 

We have so far learned how Poincar~ accounts for 

the origin of space in ter.ms of primitive~ experimental data. 

All we know of it is that it is a physical continuum of 

three dimensions in Which we . represent physical objecta and 

their movements. This primitive space is~ so far, devoid 

of all metrical properties. Poincaré bas not told us how 

to measure distance or~ for that matter, how to determine 

direction. However~ the most fundamental and crucial question 

for the philosophy of science is whether space is relative 

or absolute. 

This problem is partly concerned with the locating 

of objecta in space. We say that an abject is here or there. 

What do we mean? If the position of an abject is deter.mined 

by its relationship to space itself, then space is absolute. 

If all ma teri al obj ects were removed from i t, absolu te a·pace 

would continue to exist unChanged. If~ on the other hand~ 

we are only able to assign positions to objecta relative to 

other objecta or to ourselves, then space is relative. If 

there were no material objecta~ the concept of space would 

be devoid of significance. 

- 61 -
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It would perhaps be in order at this point to 

interpolate a comment about the ter.m "relativity." This 

word has a number of distinct meanings, philosophical, 

mathematical and physical. In traditional philosophy, the 

distinction was made between the relative and the absolute. 

A relative quality would be one Whose existence depends on a 

relationship with samething else. Absolute existence or 

reality exista in and through itself. In traditional 

metaphysics, the absolute was often called "substance." 

The philosophical distinction between the relative 

and the absolute will not, however, enter into our 

considerations. More important for us is the distinction 

between mathematical and physical relativity. In the 

following chaptera, we shall have occasion to refer to both, 

and it would be advisable to be certain of which type of 

relativity we are speaking. Mathematical relativity is 

primarily, although not wholly, relativity of position. 

The position of an object or point is said to be relative 

to a system of coordinates. It should be noted that this 

type of relativity is not discoverable. In a very real 

sense, it is given ~priori. This distinguishes it from 

physical relativity Which is empirical. Whether a given 

physical magnitude is relative or absolute depends on 

experimental investigation. We cannot, as Einstein bas 

clearly Shown, treat a physical magnitude as absolute on 

! priori grounds. 
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Let us consider a simple illustration. Weight 

is regarded as a relative magnitude since it varies with 

the distribution of matter in its immediate vicinity. For 

example, an object which has a given weigbt at the equator 

will have a slightly different weight at the poles. Its 

weigbt would be considerably lesa if it were transported to 

the moon. In more technical language, the weight of an 

object will depend on the gravitational potential in the 

~egion of space Which it occupies. Hence, the reader will 

see that one cannot make an absolute assertion about the 

weight of an object. One can only make a statement about 

the weight of the object relative to the potential of the 

gravitational field Where the object is located. 

On the other band, classical physics regarded maas 

as an absolute quantity, an inherent feature of matter. 

There were excellent grounds for this belief at the time, 

since no variation in the maas of an object bad been detected. 

Then, in the late nineteenth century, it was round that 

electrons moving with high velocities did undergo an increase 

in maas. This was one of the many experimental facts WhiCb 

eventually led to the abandonment of classical physics. The 

classical physicists were not wrong to have supposed maas 

to be absolute. Their error was to suppose that the principle 

of the conservation of maas was a necessary truth. It was in 

fact only an experimental truth Which was eventually falsified. 

This, then, is the crux of the distinction between mathematical 
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and physical relativity. 

Unfortunately, Poincaré does not seem to have made 

so explicit a distinction. However, he did spaak of both 

types of relativity. In tact, it is even possible that to 

same extent he confused them. In any case, in our exposition 

of Poincaréts philosophy, we shall try to separate the two 

as clearly as possible. However, in line with the general 

nature of this thesis, which is concerned with epistemological 

problems and not with pure mathematics, we shall be particularly 

interested in the problam of the relativity of physical space. 

In tact, the relativity of physical space follows 

directly from the observations of the preceding chapter. We 

saw that the physical continuum is generated by the laws of 

succession of our sensations. Since it is obviously conceivable 

that the concatenation of sensations be quite different from 

What it actually is, it follows that the nature of the physical 

continuum which we call representational space might differ 

from What it actually is. 

"There is nothing, therefore, to prevent us from 
imagining a series of representations, similar in every 
way to our ordinary representations, but succeeding one 
another according to laws which differ tram those to 
Which we are accustomed. We may thus conceive that 
beings Whose education bas taken place in a medium in 
Which those laws would be so different, might have a 
very different geometry from ours."43 

Poincar~ gives an elaborate illustration of a 

hypothetical world in which there are such differences. 

43science and Hypothesis, pp. 64-65. 
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This world is enclosed in a sphere in whiCh there 

is a continuous variation of temperature. It is greatest 

at the centre and decreases to absolute zero at the surface. 

The law by Which the temperature varies is a simple one in 

which, if R is the radius of the sphere and r the distance 

from the centre, the temperature will be proportional to 

R2-r2• Further.more, it is assumed that all bodies have the 

same coefficient of thermal expansion. Thus, the linear 

dilation of any body in this universe would be proportional 

to its absolute temperature. Finally, it is assumed that a 

body in motion is in instantaneous ther.mal equilibrium with 

its surroundings. Obviously, as a material object moves 

towards the surface of the sphere, it will grow smaller. 

The inhabitants of auch a world would suppose it 

to be infinite since, as they approached its boundary, their 

limbs would contract and they would take successively smaller 

steps. We have already seen that a visual continuum of 

three dimensions is arrived at when it is apprehended that 

certain primitive sensations can be restored by an appropriate 

movement. It is thus that we distinguish between changes 

of state and changes of position. ~ Now, in Poincare's 

hypothetical universe, the inhabitants would similarly be 

presented with changing aggregates of sensations. Would 

these beings be able to restore their sensations as we do? 

Not in quite the same way. The objecta Which we regard as 

undergoing simple displacements are called solid or rigid 
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objects. The displacements Which they undergo are Euclidean 

displacements. That is to say, the shape of an object after 

sueh a displacement would be congruent to its shape before 

the displacement, according to the Euclidean definition of 

congruence. Thus, When we regard our physical continuum as 

similar to a Euclidean mathematical continuum, our conclusion 

is closely geared to the way in Which certain objecta are 

displaced. To restore a primitive aggregate of sensations, 

our bodies must undergo Euclidean displacements. In the 

hypothetical world, an aggregate of sensations could only 

be restored by a non-Euclidean displacament of the body. 

That is, it would be a displacement in which the observer 

actually dilates in accordance with the law given above. In 

short, such people would develop a non-Euclidean geometry as 

the most natural or simplest geametry.44 

At first, it would appear that Poincar6 has argued 

for the non-relativity of space, in a certain sense. From 

What he has said, it would seem that only one geometry, 

namely Euclidean, is possible to describe the physical 

continuum of representational space. But this is merely the 

error of the naive. We must, in fact, ask ourselves What 

would happen ifa person fram our universe were transported 

to the hypothetical universe. Would he decide that Euclidean 

geometry is no longer true? If he wished, he could so 

conclude, but it is highly unlikely. He would find it 

44science and Hypothesis, p. 68. 



difficult to adjuat to another system of geometry. It is 

more likely that he would retain his accustomed system of 

geometry but note that the new univèrse has the curious 

eharacteristic of lacking rigid objecta. That is to say, 

he would note that objecta which undergo a displacement 

actually "squir.m." But he would be able to describe suCh 

"squirms" in the language of Euclid. Hence, we see that 
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the geometry of physical space is not experimentally decidable 

but depends on a choice based on convenience.45 

p' Q.' G 

E p Q li \.\t 

f 1 S· I 
The principle of the relativity of physical space 

has been discussed more cogently by Hans ReiChenbach.46 

Reichenbach considera a great glass hemisphere Which gradually 

marges into a glass plane. A cross-section would present 

the aspect G in figure I. Parallel to the plane of G and 

underneath it is an opaque plane E. Vertical light rays will 

pass through the glass, casting shadows onto E of all objecta 

situated on G. If human beings lived on the surface of G, 

they would soon discover by simple geodetio measurements that 

G is a plane with a hemispherical hump in the middle. Their 

45Ibid., p. 71 

46The Philosophy ~ Space ~ Time, p. llff. 



measuring roda would cast shadows on the surface E which 

would be defor.med in the central area of E. Let us now 
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suppose that there are also inhabitants on E. An invisible 

force affects the measuring rods of the E-men auch that, as 

they are moved, their length is always equal to the corresponding 

shadows of measuring roda on G. Obviously, the E-people would 

obtain precis ely the same resulta from g eodetic surveys as 

those of the G-people. Would they conclude, therefore, that 

they were living on a world with a hump or would they prefer 

to postulate an invisible force? 

Actually, such a question is, strictly speaking, 

meaningless. As Reichenbach puts it, "We may just as well 

say that G is the surface with the 'illusion' of the hump 

andE the surface with the 'real' hump. Or perhaps both 

surfaces have a hump."47 
, 

Poincare arguea at some lengtb in Science ~ 

Hypothesis to establish the point that there are alternative 

descriptions of physical space which are theoretically 

equivalent. If geometry were an experimental subject, it 

would be inexact and provisional. In fact, we should have 

to say that Euclidean geometry is false, since there is no 

rigorously rigid object. Thus, we are back to the dilemma 

of the Introduction. The statements of geometry cannot be 

synthetic ! priori truths, nor can they be empirical 

generalizations. Wha~, then, are they? It is to this 

47 .QE• ci t., p. 13. 
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question that Poincaré gi ves his fa.mous reply: 11They are 

conventions.n48 We adopt Euclidean geometry because it is 

the most convenient description of the world. However, it 

is not, in any sense, "truer11 than a system of non-Euclidean 

geometry. 
, 

Poincare•s exposition admittedly seems confused. 

We have examined, at length, his elaborate account of the 

experimental origin of representational space. We have 

noted that our belief in the Euclidean character of that 

space stems from our experience of the displacements of 

rigid bodies. Suah accounts would surely have proved 

pleasing to a Hume or a Mill. Yet they must be contrasted 

with suah statements as: "whichever way we look at i t, i t 

is impossible to discover in geometrie empiricism a rational 

meaning. n49 

So it would appear that Poincaré believes that 

the Euclidean metric is of experimental origin and, at the 

same time, that it is of a merely definitional character. 

Actually, this does represent Poincaré•s position quite 

accurately. But as we shall see, there is no real contradiction 

involved in this. He considera, for example, the phenamenon 

of stellar parallax. If the geometry of Riemann were true, 

this parallax would be negative. If the geometry of 

Lobatschewsky were true, the parallax of a distant star 

48science and Hypothesis 1 p. 50. 

49Ibid. 1 p. 79. 
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would be infinite. Surely, then, in principle, the truth 

of a geometry should be deter.minable by the appropriate 

astronamical measurementa.5° But, in astronomy, the straight 

line is actually the path traversed by a light ray. Therefore, 

in either of the above cases, we could retain our system of 

Euclidean geometry and modify the lawa of optica ao that 

Ylight would be considered to be propagated along curvilinear 

paths. "Euclidean Geometry, therefore, has nothing to fear 

from fresh experimenta." Poincar6' s general point is that 

geometrical experimenta only provide information about the 

mutual relationships between bodies or between bodies and 

light rays. We cannot design an experiment to convey information 

concerning the relationship between a physical object and 

space itself. 

50 
~., p. 72. 



CHAPTER VI 

.., 
RECENT CRITICISMS OF POINCARE 1 S INTERPRETATION 

OF GEOMRrRY 

In the present century, since the development of 

the general theory of relativity, it has become the custom 

to regard geometry as a branch of physics. 'l'hat is to say, 

the position of geometrie empiricism has found a powerful 

evidential basis. 'l'hus, many thinkers, not including 

Einstein himself, have been critical of Poincaré•s so­

called conventionalism. The most consistent critic has been 

Hans Reichenbach. In The Rise ~ Scientific Philosophy, he 

writes that: 

"Space is not subjective, but real - that is the 
outcame of the development of modern mathematics and 
physics. Strangely enough, this long historicalline 
leads ultimately back to the position held at its 
beginning: geometry began as an empirical science with 
the Egyptians, was made a deductive science by the 
Greeks, and finally was turned back into an empirical 
science after logical analysis of highest perfection 
had uncovered a plurality of geometries, one and onli 
one of Which is the geometry of the physical world. n~l 

Reichenbach accepted Poincarê•s conventionalism up 

to a point but appeared to feel that it was an overstatement. 

51 QE• cit., p. 139. 
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He adroits that there are alternative geometrical accounts 

of a single empirical state of affaira. He calls them 

"Equivalent descriptions." However, he argues that there 

are sets of equivalent descriptions which could not refer 

to a single observable world. 

The following would be regarded as equivalent 

descriptions: 
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a) The geometry is Euclidean, but there are universal 

forces distorting ligbt rays and measuring rods. 

b) The geometry is non-Euclidean and there are no 

universal forces. 

But Reichenbach argues that the foregoing must be 

distinguiShed from the following: 

a) The geometry is Euclidean, and there are no 

universal forces. 

b) The geometry is non-Euclidean, but there are 

universal forces distorting light rays and measuring 

rods. 

"Conventionalism sees only the equivalence of the 
descriptions within one class, but stops short of 
recognizing the differences between the classes. The 
theory of equivalent descriptions, however, enables us 
to describe the world objectively by assigning empirical 
truth to only one class of descriptions, although withtn 
each class all descriptions are of equal truth value.n52 

Reichenbach then goes on to point out that we do 

not nor.mally employ classes of descriptions to refer to the 

geametry of the world. It is customary to select a single 

52Ibid., PP• 136-137. 



description Which is taken to be the normal system. This 

normal system is the system of natural geometry. The 

criterion for choosing the natural geometry is that it is 

the one in which universal forces vanish. However, there 
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is no! priori necessity for a class of equivalent descriptions 

to contain any auch normal system. There would be no auch 

system if, for example, the geometry of light rays differed 

from the geometry of rigid bodies. "That the natural 

geometry of the world of our environment is Euclidean must 

be regarded as a fortunate empirical fact.n53 

Such opposition to Poincaré•s position from one 

of the greatest philosophical exponents of the theory of 

relativity deserves careful attention. 

The reader will recall Reichenbach's illustration 

of the two surfaces G and E. This was apparently in support 

of Poincaréts general contention anent the relativity of 

physical geometry. But Reichenbach has more to say about 

it. It was postulated that the measuring roda, etc. on the 

surface E were subject to a deformation by invisible forces. 

If these forces were in all respects unobservable, then it 

would not be possible to determine the geometry of surface 

E. 

Now we must consider the question, under what 

conditions would auch forces be absolutely unobservable? 

It is easy to imagine a physical force Which would deform 

53~., p. 137. 
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the measuring rods in accordance with the conditions o~ 

Reichenbach's illustration but Which would, nevertheless, 

be observable. Heat, ~or example, concentrated in the 

central area or E would cause the measuring roda to expand 

in that area. The presence o~ this "force" could be 

deter.mined by virtue o~ its being what ReiChenbaCh calls 

a "differentia! ~orce.n54 That is to say, a variation in 

temperature af~ects various materials differently. In 

Reichenbaeh•s illustration, however, the hypothetical 

invisible t'oree was of' the type he calls "universal." 

Universal t'orees have two principal properties: 

a) They affect all materials in the same way. 

b) There are no insulating walls. 

It is obvious that the presence of' such t'orees would under 

no circumstances be directly observable. If it is also the 

case that universal forces are inaccessible to indirect 

verification of any kind, it ~ollows that we can make no 

categorical assertion about the metrical properties of' 

physical space,: and Poincaré•s thesis would be established. 

Re~erring to Fig. I, we may reduce the question to its 

most elementary i'orm, are the distances AB and BC "really" 

equal? In other words, is it possible to give an objective 

dei'inition of congruence? 

Reichenbach points out that metrical relationships, 

auch as congruence, can only be detennined after a 11 co­

ordinative" definition has been made. For example, before 

54Philosophy of' Space and Time, p. 13. 
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making measurements, we must define our unit of measurement. 

We may take it to represent a certain fraction of the earth•s 

circumference or even the wave length of krypton gas. The 

co-ordinative definition serves, then, to relate a concept, 

in this case metrical, to a physical object or state of 

affaira. It is simply w.hat Bridgman has called an "operaticnal 

definit1on."55 

Once the unit of length has been established, we 

have the problem of defining congruence. To determine the 

equality or congruence of spatial distances we are bound to 

transport one or more measuring roda. T.hus, if two measuring 

roda, R1 and R2, are placed aide by aide, let us suppose 

that they are found to be of equal length. R1 is transported 

to a distant region of space Where it is found to correspond 

to the distance AB. R2 is transported to another region of 

space where it is found to correspond to CD. Then AB and 

CD would be regarded as congruent. 

However, an assumption has been introduced to the 

affect that the roda have not been deformed during their 

respective translations. The most that could be done would 

be to bring the two roda together again to determine Whether, 

when placed sida by sida, they are still of equal length. 

Thus, the only cognitive knowledge we have is to the affect 

that R1 and R2 are always of equal length When in the same 

region of space. If the rods have been affected by universal 

55The Logic of Mo.<iern Physics, passim. 
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forces, there ia no meana of diacovering the affect. 

Therefore, to determine congruence, we must base 

our decision on the physical fact that the roda are locally 

of equivalent length and on the definition that when in 

different regions of apace they are atill equal. This distant 

equality is not cognitive. It ia purely definitional. If 

the factual relationShip of local equality did not hold, it 

would still be possible to define congruence, but a aeparate 

definition would be required for every region of apace. 

Converaely, in the actual world it would be possible to 

formulate a more complicated definition of congruence auCh 

that, for example, two roda whose respective lengths 

coincided would be defined as of unequal length. With auch 

a definition of congruence, all of our rnetrical determinations 

would be greatly complicated. But, strictly apeaking, all 

definitions are conventional and, bence, epistemologically 

equivalent. 

"It is again a matter offact that our world admits 
of a simple definition of congruence becauae of the 
factual relations holding for the behaviour of rigid 
roda; but this fact does not deprive the simple definition 
of its definitional character. 11 56 

Thua, it is clear that the question as to whether 

the surface E is a plane or has a hump in the middle depends 

on its inhabitants' Choice of a coordinating definition of 

congruence. However, we atill need to determine Whether 

there is any reasonable baais for our decision. But beforeband 

56Philosophy of Space and Time, p. 17. 
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we must investigate more closely the notion of the rigid 

body Which is employed in the usual definition of congruence. 

In everyday life we make frequent use of the 

concept of rigid body. When we say that the ceiling of our 

room is a plane, that the floor is rectangular or that a 

taught string is straight, we are presupposing the idea of 

rigidity. However, it is a1most a cammonplace that none of 

these objects is perfectly rigid. They are all subject to 

various kinds of forces which cause slight deformations. 

Scientific physics endeavours to avold the imprecision of 

the physics of everyday life. 

It would, of course, be circular to define the 

rigid body as one Which undergoes no change of shape. But 

such circular reasoning is not necessary. The rigid body 

may be defined as follows: 

"Rigid bodies are solid bodies which are not 
affected by differentia! forces, or concer.ning which 
the influence of differentia! forces has been eliminated 
by corrections; universal forces are disregarded."57 

That is to say that the universal forces are set 

at zero by definition. Without such a stipulation no rigorous 

definition of the rigid body would be possible, since any 

object whiCh was called rigid might actually be defor.med by 

such a force. Of course, in physics all of the forces that 

are dealt with are of the differentia! kind. 

Solid objecta actually possess various internal 

57 ~., p. 22. 
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forces or tensions whiCh resist the change of shape of the 

body. A rigid body is realized when the external forces 

are vaniShingly small relative to the internal forces. 

We are now in a position to return to our original 

fundamental question: what criteria do we employ as a basis 

for a decision concerning the geometry of the physical world? 

Mathematically, we know that a point transformation is 

possible for all congruence geometries. In the language of 

physics this means that: 

"Gi ven a geometry G• to which the measuring 
instruments conform, we can imagine a universal force 
F which affects the instrmnents in such a way that the 
actual geometry is an arbitrary geametry G, while the 
observed deviation fram G is due to a universal deformation 
of the measuring instrwnents. 1158 

This states clearly the principle of the relativity 

of physical space. In the first place, we are assured by it 

that a Euclidean geometry is always possible. In the second 

place, however, it asserts that any other geometry will be 

equally acceptable. 
,. 

Reichenbach would agree with Poincare 

that on the above principle the question of the absolute 

truth of any geometry is meaningless. 

Reichenbach, however1 now suggests precisely why 

" he disagrees with Poincare in the final analysis. 

11We obtain a statement about physical reality only 
if in addition to the geometry G of the sptce its 
universal field of force F is specified. Only the 
combination G+F is a testable statement."59 

5Sibid., p. 33. 

59Idem. 
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But we have already agreed to accept the 

coordinative definition of a rigid body in accordance with 

which F = o. That is to say, the physicist adopts that 

geometry Which enables him to assume that measuring rods 

are not transformed. 
; 

Poincare, on the other band, bas 

supposed that, all geometries being equal, we shall always 

prefer the Euclidean geometry (G = G
0

). Einsteinian geametry 

is said to be the geometry of physical space because it does 

not require the assumption of unobservable universal forces. 

Poincaré is then supposed to be in error because 

he failed to see that, in spite of the principle of 

geometrical relativity, objective statements about space 

are still possible. 

"This is a misunderstanding. Although the 
statement about the geometry is based upon certain 
arbitrary definitions, the statement itself does not 
become arbitrary: once the definitions have been 
formulated, it is determined through objective reality 
alone which is the actual geametry. n60 

11The objective character of ~ phÎsical statement 
is thus shifted to a statement about re ations. A 
Statement about tne-boiling point of water is no longer 
regarded as an absolute statement, but as a statement 
about a relation between the boiling water and the length 
of the column of mercury. There exists a similar 
objective statement about the geometry of real space: 
it is a statement about a relation between the universe 
and-rfgid rods. The geametry chosen to characterlze 
tnis relatron-is only a mode of speech; however, our 
awareness of the relativity of geametry enables us to 
forrnulate the objective character of a statement about 
the geometry of the physical world as a statement about 
relations. In this

6
sense we are per.mitted to speak of 

physical geometry." 1 

60Ibid., p. 37. 
61Idem. 
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Essentially I am in agreement witb Reichenbach's 

position. However, that does not place me in disagreement 
.... with Poincare. Reichenbach is plainly mistaken when he 

attributes to Poincar~ the view that the conventions or 

geometry are arbitrary. In ract, it bas become cammonplace 

to regard Poincaré as the proponent or the view that the 

geometry or physical space consista of "arbitrary conventions." 

Poincaré, however, is absolutely explicit in his denunciation 

of auch a notion. 

It bas already been noted that Poincaré serioualy 

maintained that the geometry of physical apace arises rrom 

the study of rigid bodies. Consequently, "Our choice among 

all possible conventions is guided by experimental facts.n62 

"Experiment guides us in this choice Which it does not impose 

on us. It tells us not What is the truest, but what is the 

most convenient geometry. n63 Again, "We have chosen the 

most convenient space, but experience guided our choice.n64 

Reichenbach bas maintained that once the co-

ordinative definitions have been clearly stated, it is 

possible to for.mulate objective statements about physical 

space. Let the reader compare this with Poincaré•s assertion 

that: 

"A statement or fact is always veririable, and for 
the verification we have recourse either to the witness 

62science and Hypothesis, p. 50. 
63Ibid., pp. 70-71. 
64science and Method, p. 115. 
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or our senses, or to the memory or this witness. This 
is properly what cbaracterizes a ract. If you put the 
question to me: is such a ract true? I shall begin 
by asking you, ir there is occasion, to state precisely 
the conventions, by asking you, in other words, What 
language you have spoken; then once settled on this 
point, I shall interrogate ~ senses and shall answer 
~ ~ no."65 -

Furth e rmore, Reichenbach asserts that geometrical 

statements can be objective when it is kept in mind that they 

are merely statements about the relationships holding between 

measuring rods and the world. Let the reader compare this 

with Poincaré•s own position that: 

"Thererore, when we ask what is the objective 
value of science, that does not mean: Does science 
teach us the true nature of things? But it means: 
Does it teach us the true relation of things? 1166 

Also compare: 

"It is only the re la ti on of the magnitude to the 
instrument that we measure, and if this relation is 
altered, we have no means of knowing whether it :1s the 
magnitude or the instrument tha t bas changed. n67 

The preceding prorusion of quotations must be 

excused as necessary. The reader may draw his ow.n conclusions 

rrom them. The fact, however, appears inescapable that all 

of the fundamental ideas which Reichenbach ventures in 

refutation or Poincaré were actually insignts rirst developed 

by Poincaré himselfl 

Although the position of Poincaré is in essential 

65The Value of Science, p. 118. Italics are mine. 
66 Ibid., p. 138. 
67science and Method., p. 97. 
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agreement with that of Reichenbach, there are, of course, 

accidenta! differences. Poincaré was arguing from the state 

of pre-relativity mechanics. The non-Euclidean space of 

Einstein is a product of the general theory of relativity 

of 1915. Reichenbach pointed out that the non-Euclidean 

space follows as a consequence of relativity theory when 

F = F • It would be possible to retain Euclidean geometry 
0 

in principle, but the ensuing camplexities would baffle even 

the greatest of mathematicians. 

It does not therefore follow, however, that the 

value F = Fo is divinely ordained; that it must be granted, 

a priori. Reichenbach seems to treat it as though it had 

a privileged statua. The reader will recall that Reichenbach 

refera to the geometry corresponding to F = F
0 

as the "natural" 

geometry. What does this really mean? Actually, it means 

precisely what ~oincaré intended when he held Euclidean 

geometry to be the most "convenient. 11 If Poincaré were 

alive today, we are convinced that he would accept Reichenbach•s 

stipulation. He would regard it as the best convention for 

relativistic mechanics as he had believed it to be for 

classical mechanics. Poincaré believed that Euclidean 

geometry was not only the simplest geometry in itself but 

also the simplest account of experience. 68 Were he alive 

today, he would probably continue to maintain that Euclidean 

geometry could still be applied if anyone desired to take 

68 Cf., Science and Hypothesis, p. 50. 
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the trouble. The theory of relativity could not refute this 

general contention. It is for this reason that Einstein 

himself remarked, 11 Sub specie aeterni Poincaré, in my opinion, 

is righ t. n69 

Now, with regard to Reichenbach's example of two 

sets of equivalent descriptions Which are not equivalent to 

each other, it is implied that the stipulations G
0 

+ F1 and 

G1 + F
0 

are equivalent. Also, G
0 

+ F
0 

and G1 + F1 are 

equivalent. However, Reichenbach would argue that the two 

sets of descriptions could not be applied to the same 

physical world. In this regard, Reichenbach is correct, 

but he forgets that any system of geometry G could be 

employed to describe any world provided that suitable 

adjustments are made to the system of physical laws F. 

It is this undeniable truth and nothing else which is the 

central principle of Poincaré•s opposition to geometrie 

empiricismJ 

To return to the illustration of Fig. I, Reichenbach 

would argue that if the measuring rods of the G-people were 

deformed, while those of the E-people behaved like Euclidean 

solids, there would be an empirical difference between the 

two worlds G and E. Would this then mean that the people 

of G could not possibly employ the language of Euclidean 

geometry? Not at all. It would simply mean that they would 

69 11Geometry and Experience" in Readin~s in the 
Philosophy of Science, (ed. H. Feigl and M. Bro beëK);-p. 192. 



not be able to retain Euclidean geometry and still choose 

between F
0 

and F1• But they could still describe their 

world by the stipulation G
0 

+ F2 , Where F2 is any system 
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of physical laws which would be necessary to retain G
0

• Of 

course there would be an empirical difference between the 

two worlds, but it would be the same order of empirical fact 

which teaches us that Euclidean geometry is the most convenient 

description of our own world. 
, 

This rouch, Poincare naturally 

admi ts. 

A. d'Abro is one of the few writers who seems to 

have understood Poincar~'s position: 

"If we consider the problem in its present state, 
we see that it is the physical behaviour of material 
bodies and light rays which is in the final analysis 
responsible for our natural belief in absolute shape. 
But this realisation brings with it the assurance that 
space itself has eluded us entirely in our discussions. 
Sueh was indeed Poincar~'s stand. He maintained that 
t.nOügn-?or purposes of convenience it was only natural 
for us to measure space as we do, yet if needs be we 
could disregard the behaviour of material bodies entirely, 
adopt non-Euclidean standards and proceed as before. "70 

We may conclude that Reichenbach's criticism of 

Poincaré on behalf of geometrie empiricisrn is based to a 

very great extent on a misunderstanding of Poincaré•s 

position. 
, 

Reichenbach attributed to Poincare a doctrine 

of radical conventionalism which the latter, in fact, never 

held. Poincare•s position is in agreement with that of 

Reichenbach to the ef'fect tha t we can only make objective 

statements about the conjunction G + F. However, the almost 

70The Evolution of Scientific Thought, 52f. 
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trivial difference in principle between them is that whereas 
, 

Reichenbach would adopt the convention F = F
0

, Poincare, on 

the basis of existing physics, adopted the convention G = G
0

, 

i.e. that geometry is Euclidean. In either case, the fact 

remains that no cognitive statement can be made until a 

convention of one sort or the other has been stipulated. 

A far more bitter polemic, in the name of geometrie 

empiricism, has recently been made by H. P. Robertson.71 

While we may forgive Reichenbach for having misunderstood 
~ Poincare, we can find no justification for either the nature 

or the tone of Robertson's attack. 

Robertson points out72 that in spherical geometry 

the sum of the interior angles of a triangle exceeds two 

right-angles. The amount of this spherical "excess" is 

gi ven by the formula f! -fr = K o 1 
where 6 is the area 

of the triangle, ~ is the angle-sum, and K is the constant 

of curvature, given by l/R2 where R is the radius of a sphere 

on the surface of Which the triangle could be placed without 

distortion. 73 

It is obvious from the above for.mula that the 

curvature of space (K) could be determined by an angular 

7l"Geometry as a Branch of Physics" in Albert Einstein, 
Philosopher-Scientist. (ed. P. Schilpp), pp. 315-332. 

7 2Ibid., p. 318. 

73The last part of this sentence is an addition of 
the present writer to aid the reader in understanding intuitively 
what is meant by the "curvature" of space. 

. . _ _j 



measurement of a suitable triangle. If K is very small, 

i.e. R is very great, the experiment attempted by Gauss 
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on the triangulation of mountain peaks would be of no value. 

However, Robertson refers to the work of Gauss' successor 

at Gottingen, K. Schwarzschild who proposed a more refined 

experiment in which: 

"A triangle determined by three points will be 
defined as the paths of light-rays from one point to 
another, the lengths of its sides a, b, c, by the times 
it takes light to traverse these paths, and the angles 
a, b, c will be measured with the usual astronomical 
I'nstruiiients. 1174 

Robertson suggests that suCh a procedure could be 

applied to a triangle ABC, in Which A is the position of a 

star While B and C are successive positions of the earth 

Which are, for example, six months apart. Robertson goes on 

to point out that: 

" ••• the value for us of the work of Schwarzschild 
lies in its sound operational approach to the problem 
of physical geometry - in refreshing contrast to the 

"' pontifical pronouncement of H. Poincare, who after 
reviewing the subject stated: 

tif therefore negative parallaxes were found, or 
if it were demonstrated that all parallaxes are superior 
to a certain limit, two courses would be open to us; we 
mght either renounce Euclidean geometry, or else modify 
laws of optics and suppose that light does not travel 
rigorously in a straight line. 

•It is needless to add that all the world would 
regard the latter solution as the more advantageous. 

•The Euclidean geometry has therefore, nothing to 
fear from fresh experiments(1)•"15 

7h .. _ ,, ' 
~er das zulassi~e Krùmmungsmaass 

jahrsschrift-aer astronomisc en Gesellschaft, 
347. Quoted by H. P. Robertson, 22• Cit., p. 

75op. cit., pp. 324-325. 

des Raumes, Viertel­
vol. 35, PP• 337-
323. 
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It seems to the present writer that it is not 
.,. 

Poincare but Robertson himself who is guilty of the 

"pontifical pronouncement. tt PoincarG• s position was clearly 

stated when he wrote that, "to ask what geometry it is 

proper to adopt is to ask, to What line is it proper to 

give the name straight? It is evident that experiment can 

not settle such a question. n76 

In short, Poincar~ is simply reiterating the 

point made by Riemann that we cannot assign a particular 

metric to space until we have given a definition of congruence 

or, what is almost the same thing, until we have settled on 

a definition of a straight line or geodesie. 

Robertson claims that Schwarzschild proposed an 

operational method for deter.mining the metric of space. 

However, the metric would not be revealed by any internal 

evidence regarding the nature of space itself. The proposed 

experiment could only be performed after a suitable definition 

of the spatial metric had been given. Obviously, Schwarzschild 

chose a definition of the geodesie which is based on the time 

taken by a light ray to go from one point to another. This 

is undoubtedly the most convenient definition in view of the 

fact that astronomy is perforee based on optical experimenta. 

However, there is no ! priori necessity in choosing such a 

defini ti on. 
,. 

We would repeat that it is not Poincare but 

Robertson who has made a "ponti fi cal pronouncement. tt 

76The Value of Science, p. 37. 
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The most illustrious of Poincar~'s critics is 

undoubtedly Bertrand Russell. In An Essay ~ the Foundations 

of Geometry, Russell offered a brief criticism of the 

conventionalist interpretation of geometry in Which he 

clearly allied himself with the proponents of geometrical 

empiricism.77 His remarks led Poincar6 to make a formal 

criticism of Russell's book.78 

Poincar~ begins by reiterating several of his well 

known views concerning the basis of the geometrical axioms, 

but with greater force than hitherto. 

"I believe that Mr. Russell is wrong in attributing 
an empirical character ••• to Euclid's postulate. 

"Moreover, the word 'empirical', in such a context 
as this, se ems to be de void of meaning. n79 

"If one were to discover a star whose parallax 
was negative, would one thereby conclude that our 
geometry is false? No; it would surely be more natural 
to conclude thœt the light rays emanating from this 
star were not rigorously propagated in a straight 
line. I have stated this before, but I do not hesitate 
to repeat it, in view of the fact that people

8
still 

contest this truth which is to me so obvious" 0 

" Poincare also reiterates the point that, 

"Our knowledge of the movements of solid objects 
cannot supply the basis of geometry; they are merely 

77cf., QE· cit., pp. 30-31 and p. 113. 
78 ... ... , Des Fondements de la Geometrie, Revue de Meta-

physique et ~Morale, v. 7;-1~9, pp. 251-279. 

79 Ibid. , p. 265. All quotations from this article 
have been translated by the present writer. 

80Idem. 



suggestive of auch a basis. They play an important 
psychological role but no logical role Whatsoever.el 
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nrf anyone remains unconvinced by these 
considerations, let him produce an a ctual experiment 
which could be interpreted in the Euclidean system but 
Which could not be interpreted in the system of 
Lobatschewsky. 

nAs I know that this challenge will never be taken 
up, I may conclude: 

"No experience can ever be in contradiction with 
Euclid•s postulate; by the same token, no experi~nce 
will ever contradict Lobatschewsky• s postula te. ne2 

With regard to Poincaré•s view of the conventional 

character of distance, Russell wrote, 

11It is open to us, of course 1 if we choose 1 to 
continue to exclude distance in the ordinary sense, as 
the quantity of a finite straight line, and to define 
the word dis tance in any way we please. But the 
conception, for Which the word has hitherto stood, will 
then require a new n~e, and the only result will be a 
confusion between the apparent meaning of our propositions, 
to those who retain the association belonging to the 
old sense of the word, and the real meaning, resulting 
from the new sense in which theword is used. 1183 

/ Poincare replies: 

11To illustrate the pure folly of this criticism, 
I shall take a rather extrema example. Suppose I said 
that, •I am entitled to say that a triangle has four 
aides, for no one can prevent me from giving the name 
triangle to the shape that you would call a quadrilateral.t 
You would reply: 'But you are wrong in giving the name 
of triangle to something which everyone else would call 
a quadrilateral.• This advice is certainly sound, but 
·does it imply that the statement •the triangle has three 
aides• is an axiom or theorem rather than a mere definition?"84 

81rdem. 

82Ibid., p. 267. 

83QE. cit., p. 33. 
84nes ..t''ondements de la Gêom~trie, p. 273. 
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,. 
Poincare•s simple but penetrating criticism of 

Russell 1 s theory of metageometry elicited a charming reply 

from the latter85 in which he pays particular attention to 

the notion of congruence: 

"Poincaré t s the sis led him to the view tha t a 
distance implies an equality, i.e. an equality of two 
distances. This pointis fundamental, since it implies 
that the determination of a distance depends on a 
measurement. But what is it that one measures? If 
it is distance that one measures, it must have existed 
before the measurement. This point brings out the 
essence of the confusion. It seems to be believed 
that since a measurement is necessary to discover 
equality and inequality, there can be no equality or 
inequality without measurement. However, the proper 
conclusion is precisely the contrary. That which one 
can discover by any operation must exist independently 
of that operation. America existed before Christopher 
Columbus, and two portions of space must be equal or 
unequal before being measured. Any method of measurement 
is good or bad depending on wbether its result is true 
or false. Poincar6, on the other hand, believes that 
measurement creates equality and inequality. It follows 
that all methods of measurement must be equally good. 
But there is still another implication that he does 
not appear to have realised, that (on his theory) there 
is nothing left to measure and that equality and 
inequali ty become words which are devoid of meaning. n86 

In short, Russell is adopting a "factualist" 

interpretation of geometry. How he was able to find sudh 

an interpretation epistemologically tenable we do not know. 

For example, the definition of congruence is not only 

fundamental to the measurement of distance but also to the 

determination of amount of curvature. Russell puts himself 

85sur les Axiomes de la Géométrie, Revue de 
Métaphysique et de Morale, v-.-7-,-1899 , pp. 684-706. 

86 Ibid., p. 687f. This quotation is translated 
by the present writer. 
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in the hopeless position of maintaining that a line is 

"really" straight or "really" curved prior to any measurement. 

But this is a naive view which clearly misses the undeniable 

truth of the principle of spatial relativity. It is true 

that there is a difference between a good measurement and 

a bad one, but only after the nature of the coordinate 

system has been specified. Russell misses the point that 

a measurement can be called good or bad even though it is 

rela. ti vis tic. 

Russell apparently holds the view that there are 

factors internal to space itself which uniquely determine 

the metrical properties of that space. Russell would argue 

that the word "congruence" has the unique meaning of spatial 

equality. This is quite true. "Congruence" does refer to 

the equality of spatial intervals. However, the axioms of 

geometry are such as to admit an infinitude of different 

interpretations of the equality of two intervals. A spatial 

interval or distance has no special metrical properties 

which permit us to single it out as the type of interval 

which is specified by the primitive term "congruent. n The 

criterion on the basis of which we regard two intervals to 

be equal must be an external standard. When we are concerned 

with actual measurements the standard will be some sort of 

instrument as, for example, a measuring rod. The rigidity 

of this standard when it is in motion is clearly a matter 

of stipulation as even Rei chenbach would admit. We fail to 
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see how the consideration of space itself would enable us 

to single out any one standard as uniquely deter.mined. 

That is not to say, however, that experience does not 

suggest an appropriate congruence standard. It does. But 

the standard depends on the behaviour of material objecta 

and has nothing to do with the intrinsic nature of space. 



CHAPTER VII 

CONVENTIONALISM AND MECHANICS 

I-ABSOLUTE SPACE AND MOTION 

, 
The bearing of Poincare's philosophy of science 

on the doctrines of theoretical mechanics is actually more 

interesting than its bearing on geometry. It is more 

interesting because it is more critical. Many scientists 

tend to disapprove of the philosophy of science because its 

results are either false in the face of real scientific 

practice or trivial in their implications. 

While philosophers of science have sometimes 

claimed that their doctrines contain genuine heuristic 

principles which scientists would do well to heed, such 

claims are often specious or, at least, dubious. I do not 

think that the primary aim of the philosophy of science is 

to discover heuristic principles but, undoubtedly, its 

validity as an intellectual discipline would be the more 

readily accepted if it could. 

We may determine to what extent the conventionalist 

interpretation of mechanics is a heuristic theory by 

considering its appli cation to Einsteinian r elati vistic 

- 93 -
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mechanics. Poincar~•s remarks on the conventional character 

of mechanics were, of course, addressed to pre-Einsteinian 

science. But if they possess genuine heuristic value, they 

will be applicable to the theory of relativity. This, we 

think, would be an excellent test of the validity of Poincar~•s 

the sis. 

We must begin this chapter with a digression into 

the history of mechanics. This is necessary to provide a 

"' backdrop against which to consider the philosophy of Poincare. 

However, no claim is made to present a scholarly account of 

the history of science in the following pages. It would be 

the greatest conceit for any man to claim to do this in a 

few pages, not to speak of the limitations of the present 

writer. The following observations on classical mechanics 

are in general common coin. However, the literature on 

relativity theory, ranging from the popular to the highly 

technical is so immense that the wri ter could not possibly 

give any account of it in these pages. Perhaps arbitrarily, 

but with sufficient justification, it has been decided to 

rely, for the most part, on a single elementary source for 

the theory of relativity, namely, Einstein•s "Relativity, 

The Special and General Theory." 

In his grea test achievement, the "Principia", 

Newton enunciated the principle of inertia as the first 

law of motion. It was the fundamental axiom of his theoretical 

system. It asserts that every body will persevere in a state 
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or rest or unirorm, rectilinear motion unless acted on by 

external unbalanced rorces. Now it is apparent that such 

a statement could have no determinate meaning unless a 

rrame of reference be given in the for.m or spatial co­

ordinates. For example, if a ball is thrown in the air in 

a unirormly moving vehicle, it appears to go straight up 

and then straight down to any observer at rest in that 

vehicle. However, its path would appear to be a parabola 

to any person at rest on the surrace or the earth. Again, 

with respect to the earth, the motion of the falling stone 

appears to be accelerated. Ir the rrame of rererence were 

falling at the same rate, the stone would appear to be 

motionless. In short, the phrase "uniform, rectilinear 

motion" is only meaningful with respect to a frame of 

rererence. 

If we grant the fundamentally amorphous character 

of space, it would follow that there is no privileged rrame 

or reference and, therefore, Newton•s law of motion would 

be quite arbitrary. It will be true provided that the 

appropriate frame of reference is selected. But laws of 

much greater complexity than the classical laws of motion 

could be arbitrarily chosen and shown to be true with respect 

to the appropriate system of spatial coordinates. 

Notwithstanding the amorphous character of space, 

Newton discovered that frames of reference are 

distinguishable. In some we find strange forces acting on 
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us and on moving objects, while in others we do not. Those 

frames of reference in which no disturbances, other than 

of the gravitational variety, are found were called Galilean 

or inertial frames. With respect to such inertial frames, 

not only were the laws of motion found to be true but also 

the related Keplerian laws of planetary motion. 87 Furthermore, 

it was discovered that the strange, unsymetrical forces of 

the non-Galilean frame could be directly related to the 

inertial system. It was found that an 11inertial 11 force 

appeared in a frame Which is in a state of rectilinear 

acceleration. When the non-Galilean frame is rotating with 

respect to the Galilean frame, the resultant forces are of 

the centrifugal and Coriolis types. 

It should be noted that the earth was not taken 

to be an inertial system. According to the principle of 

inertia, the stars should describe rectilinear motions, 

but due to their great distance, their displacements would 

be imperceptible. However, to an observer on the earth, 

the fixed stars appear to follow curved paths around the 

pole-star. Renee, it must be assumed that the earth is a 

rotating system. The presence of rotational forces was, 

in fact, finally confir.med by the rotation of the plane of 

Foucault•s pendulum. We see, then, that any Galilean frame 

may be defined operationally as a system at rest or in 

87rn fact, this is only approximately the case, but 
the writer wishes to avoid needless complications in such an 
elemen tary accoun t. 
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unifor.m motion with respect to the system of fixed stars. 

It has already been noted that the distinction 

between inertial and non-inertial systems is incompatible 

with the amorphous character of space. Nevertheless, such 

a distinction does appear to be necessary. If all frames 

were equivalent, the law of inertia would be meaningless. 

Newton could have resolved the difficulty by accounting for 

inertial forces in ter.ms of external influences or, more 

specifically, with reference to the fixed stars. However, 

according to his theory of gravitational attraction, the 

distance of the fixed stars was considered to be too great 

for them to have any perceptible terrestrial affects. Thus, 

he maintained that the forces found in non-Galilean systems 

would occur even if the system were in isolation from all 

the matter in the universe. This being the case, it follows 

that the accelerations and rotations of non-Galilean frames 

are "real'' or "absolute." In other words, inertial forces 

imply the reification of absolute spacel In fact, it also 

follows that, if bodies accelerate and rotate in absolute 

space, then bodies must also undergo unifor.m translations 

with respect to the same absolute space. In short, 

classical mechanics turns out to be wbolly incompatible 

with the doctrine of the relativity of space. 

As it happens, however, the real or absolute 

unifo~ motions or velocities cannot be detected by any 

mechanical means. That is to say, we are unable to determine 
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mechanically Which inertial systems are at rest in space 

and Which are in uniform motion with respect to them. Thus, 

in practice, velocity remains relativistic. In fact, the 

relativity of velocity may be deduced as a consequence of 

Newtonts second law of motion which asserts that the force 

acting on a body is equal to the product of the mass of that 

body and its acceleration. In classical mechanics, mass was 

regarded as an invariant quantity. Similarly, an acceleration 

will be invariant in all Galilean frames since any velocity 

must appear in the equations of motion as a constant and 

will disappear after differentiation. In other words, the 

acceleration is independant of the initial velocity. 

Consequently, the product of mass and acceleration must be 

invariant. Therefore, the second law f = ma is true for 

all Galilean frames. If velocity were mechanically discernible, 

one would have to conclude either tbat f =mais not invariant 

or that mass is relative. Either alternative would be 

disastrous to classical mechanics. 

Hence, there is a principle of relativity in 

classical mechanics Which asserts that it is impossible 

for a Galilean observer to ascertain mechanically the state 

of rest or uniform, rectilinear motion of the system in 

which he is situated. Moreover, the mathematical expression 

of this principle of relativity is the invariance of the laws 

of mechanics throughout all Galilean frames. 

The factors which led to the extension of classical 
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relativity by Einstein pertain to theoretical difficulties 

of nineteenth century electromagnetics and optics. It was 

noted in the preceding paragraph that the principle of 

relativity requires the invariance of physical laws. One 

of the great achievements of the nineteenth century was the 

developœnt by Maxwell of the equations of the electro­

magnetic field. However, While these equations described 

a host of physical phenomena, Which made their abandonment 

virtually unthinkable, they were of such a type that their 

form was modified by Galilean transforma tions. This seemed 

to suggest a dualism between the space of mechanics and the 

luminiferous ether of electrodynamics. Since the hypothetical 

ether was stagnant or motionless, scientists believed that 

it would be possible, after all, to determine the real 

velocity of the earth by electro-magnetic means. Stated 

crudely, since electro-magnetic laws vary from one Galilean 

frame to another, a suitable experiment should reveal the 

absolute velocity of the frame in which the earth is at 

rest. The nineteenth century wa.s replete wi th such experimenta. 

However, the most famous is the experiment of 1887 performed 

by MiChelson and Morley. 

To reduce it to its simplest terms, the foundation 

of this experiment is that if two light rays depart from 

the centre of a sphere at the same time and are reflected 

by the inner surface of that sphere, they should return to 

their point of origin at precisely the same time, provided 
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that the earth is at rest in the ether. However, since the 

earth possesses an orbital velocity, a time difference 

between the two journeys ahould be discerned. This difference 

would reveal, therefore, the absolute velocity of the earth. 

As we know, the Michelson-Morley experiment yielded negative 

resulta, as did many similar experimenta. The task of 

theoretical physics in the latter part of the nineteenth 

century was to explain the null effect of these experimenta. 

The most adequate explanation was provided by 

Fitzgerald. He postulated that the effect of the earth•s 

motion through the motionless ether would be the contraction 

of all bodies at rest on the earth in the direction of that 

motion. That is to say, a translatory motion would produce 

a deformation, so that what is a sphere at rest would become 

distorted during a translatory motion into an elipsoid. 

Thus, the light rays of the Michelson-Morley experiment 

would actually travel at different speeds depending on 

their direction, but the distances travelled would also vary 

in such a way that the one effect precisely compensates for 

the other. 

Lorentz accounted for the Fitzgerald contraction 

by means of an elaborate hypothesis of the electronic 

structure of matter. Further.more, Lorentz worked out a set 

of transformations, differing from Galilean ones, in which 

the contraction of length would occur and, moreover, in which 

the invariance of electro-magnetic laws would be preserved. 
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Thus, Lorentz and Fitzgerald showed that while the earth 

does have a real velocity, nature, through apparent caprice 

or malevolence, has conspired to hide it. 

While the theory of Lorentz adequately accounted 

for most experimental results in a general way, it was far 

fram perfect for many reasons. In the first place, it 

required a set of complicated ~hoc assumptions about the 

electrical constitution of matter, concerning which virtually 

nothing was known at the time. Secondly, it deprived classical 

theory of its elegant generality by requiring one set of 

transformations for electro-magnetic phenomena and another 

set for mechanical phenomena. But from the philosophical 

standpoint, its greatest limitation is that it postulated 

physical affects which were held to be unobservable in 

principle. 

In 1905, A. Einstein unravelled this tangled skein 

with a few simple but daring generalizations. On Lorentz's 

theory, real motion, while unobservable, had been preserved 

in principle. There was an objective or privileged frame 

of reference, namely the stagnant ether. The Fitzgerald­

Lorentz contraction would not occur in this privileged 

frame but only in other frames which are in motion with 

respect to it. Einstein suggested that since an overwhelming 

weight of experimental evidence reveals that no privileged 

frame is discoverable, it would be better to dispense with 

the notion altogether. In other words, we should assume 
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that all Galilean ~rames are equivalent ~or both mechanical 

and electro-magnetic laws. 

In this case, we would no longer have any reason 

to di~~erentiate between mechanical and electro-magnetic 

phenomena, so that a single set o~ trans~ormations must be 

adopted in which both types o~ law are invariant. Moreover, 

the complete relativization of unifor.m motion will require 

the invariance of the velocity o~ light. But with respect 

to Galilean trans~ormations, the principle of the composition 

of velocities requires that the velocity o~ light will vary 

with the velocity o~ its source. However, although Lorentz 

had not attached too much signi~icance to it, the velocity 

of light does indeed appear as a constant in the Lorentz 

transformation equations. What Einstein required was a set 

o~ transformations having the above properties plus the 

additional feature of preserving the invariance of the 

classical laws o~ motion for low velocities. The Lorentz 

transformations filled all of these requirements. Thus, the 

special theory of relativity was formulated. We should now 

consider very briefly some of its consequences. 

Firstly, the apparently self-evident law for the 

composition o~ velocities had to be abandoned. Let us take 

a simple example. Suppose a man on a train moving in the 

x direction with a velocity ~ throws a ball with the velocity 

w also in the x direction. An observer on the embankment will, 

according to classical principles, ~ind the ball to travel 
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with the velocity W = ~ + w. The invariance of mechanical 

laws would be preserved in classical physics by the preceding 

formula. In relativistic mechanics, the composition of 

velocities does not take place by simple addition or 

subtraction. Instead the formula will be: 88 

w = v + w 
1 + vw /c2 

Even more remarkable is the relativization of time, 

given by the ~ollowing ~ormula: 

tt = t - v/c2.x 
j 1 - v2/c2 

The startling physical signi~icance o~ the above equation 

is that time is no longer an absolute but a ~unction o~ 

relative velocity. In other words, all clocks will slow 

down in a frame in uni~orm, translatory motion. Lorentz 

had distinguished between absolute or real time on the one 

hand and relative time on the other. But in the special 

theory of relativity there is no privileged frame, so that 

one cannot speak o~ a real time interval or congruence. 

Further.more, the Fitzgerald-Lorentz contraction, 

the reader will recall, was explained in terms o~ a physical 

hypothesis concerning the impact of electrically constituted 

matter against a motionless ether. Lorentz calculated that 

a rod whiCh measures one metre at rest will contract when 

88All the mathematical formulas in this chapter are 
from Einstein, Op. cit., p. 39f~. 



moving with a velocity v to 11_ V2 " ~ 
of a metre. 

According to Lorentz, the latter is a real contraction. 

For Einstein, however, the math6Matical formula for the 

contraction is correct but it does not signify a real 
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contraction. What it actually representsis the relativization 

of distance. That is to say, Einstein•s theory requires no 

ad hoc postulates concerning the constitution of matter. 

The contraction is the result of the relative motion between 

the object which is measured and the measuring instrument. 

Therefore, if we consider t wo observers in different 

Galilean frames, eaCh will consider the measuring rods of 

the other to have undergone a contraction. 

It has, from time to time, been suggested that 

Lorentz, not Einstein, was the original author of the special 

theory of relativity. It is hoped that this brief review 

ha,.s made it quite clear that Lorentz merely modified the 

mathematical for.m of classical mechanics without introducing 

the radical reinterpretation Which must be credited to 

Einstein alone. In the theory of Lorentz we find the 

absolutism of Newton still lingering on. If we could 

define the fundamental difference between Einstein and 

Lorent~ in a s i ngle s entence for the sake of phi losophera, 

it would be that Lorentz believed real motion to be meaningful 

but unobservable Whereas Einstein maintained that it is 

altogether devoid of physical meaning. The by no means 

simple question Which is now before us is to determine Whether 
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, 
Poincare was a genuine precursor of Einstein. 

According to Newton, the laws of mechanics are 

precise descriptions of the physical world. According to 

Poincaré, they have a definitional or conventional character 

akin to the propositions of geametry. The enunciation of 

classical laws presupposed the absoluteness of space and 

time and the Euclidean character of space. We have already 

discussed same of the problems connected with space. Later, 

we shall expound Poincar~'s treatment of time. But Poincar~ 

maintained that while the relativity of space and time make 

it clear that classical mechanics is conventional, one could 

reach this conclusion independently of these considerations. 

Let us begin with a consideration of the principle 

of inertia. If this principle is anything more than a 

definition, it must be either an experimental law or an 

! priori principle. 89 Poincar~ argues that it is obviously 

not given ! priori, for not only is it possible to doubt it 

but in the past it actually has been doubted. The Greeks, 

notably Aristotle, believed that motion ceases when the 

cause of that motion ceases. This is surely as appealing 

to reason as the Newtonian law. It is unnecessary to labour 

the point, since surely no one with an elementary knowledge 

of physics could today argue that an alternative to the 

first law of motion is inconceivable. 

Is this principle, then, an experimental fact? In 

89science and Hypothesis, p. 91. 



the first place, it is obvious that a body on which no 

forces are acting has never been experienced. That is to 

say, no direct confirmation of the principle is possible. 

But the scientist would argue that it may be verified 

indirectly by its consequences. 90 Poincaré points out 

that this is actually a loosely phrased argument. He 

maintains that what is really intended is that we may 
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verity a more general law of which the principle of inertia 

is a special case. Poincar~ proceeds to for.mulate that law 

Which he calls the generalized principle of inertia: "The 

acceleration of a body depends only on its position and that 

of neighbouring bodies, and on their velocities.n In 

mathematical language, this means that the laws of motion 

will have the for.m of differentia! equations of the second 

order. 

Let us suppose that the true law of nature differa 

from the preceding law. For example, we might assume that 

when no force is acting, the position of the body is 

unchanged. Again, we might suppose that it is the acceleration 

of the body whiCh is unchanged. The generalized principle 

of inertia corresponding to the first assumption would be 

that the velocity of a body depends only on its position and 

the position of neigbbouring bodies. In the other case, it 

would assert that the variation of acceleration depends on 

its position and on the positions, velocities and accelerations 

90Ibid., p. 92. 
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of neighbouring bodies. In mathematical language, the 

first assumption would mean that the laws of motion are 

differentiai equations of the first order, while the second 

means that they would be differentiai equations of the third 

order. 

Now we must consider whether it would be possible 

under any circumstances for such foreign principles to be 

adopted. Poincar~ offers a simple hypothetical exemple of 

a physical situation to Which the former alternative could 

be applied. If by chance the solar system were such that 

the orbits of planets had neither eccentricity nor inclination 

and, furthermore, that their masses were so amall that 

perturbations would be indiscernible, then scientists would 

conclude that the orbits of planets must be circular and 

parallel to a certain plane. The reader will readily 

perceive that under such conditions, which are after all 

free from self-contradiction and physically conceivable, it 

would be possible to determine the orbit of a planet from 

its present position alone. In other words, a Newton of 

this hypothetical world would conclude that when no force 

is acting on a body, its position remains constant. In 

tact, of course, the Keplerian orbits led the real Newton 

to for.mulate the law of inertia in its present familiar for.m. 

Poincar~ makes the point that it is extremely unlikely that 

we have been led into a monstrous error of the same kind as 

our hypothetical astronomer. Nevertheless, it must be added 
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that such an eventuality is indeed possible. 

If we grant the validity of the law of inertia 

insofar as we suppose that no chance coincidence of 

circumstances has led us to adopt it, the next question to 

consider is Whether this law could be refuted under any 

circumstances. In physics we frequently have recourse to 

hypothetical entities to explain phenomena. In fact, this 

is more obviously true today than it was in Poincar6ts own 

time. Suppose we were examining a system of n molecules 

and found that their 3n spatial coordinates satisfy a set 

of 3n differentiai equations of the fourth arder. Would we 

then abandon the present law of inertia? Obviously we could 

but it would be mast inconvenient to do sa. A set of 3n 

differentiai equations of the fourth arder can be expressed 

by 6n equations of the second arder by introducing 3n 

auxiliary variables. Then it is a simple matter to postulate 

that the 3n auxiliary variables represent the spatial 

coordinates of n invisible molecules, and the law of inertia 

is saved. The foregoing reasoning may seem a trifle abstract 

but it merely asserts that scientists prefer to abandon tacts 

than to abandon theories. 91 Let the reader reflect how he 

would react to a situation in Which a falling abject failed 

to obey the law of gravity. He would surely not abandon 

that time-honoured principle. He would likely suppose, 

short of resorting to miracles, that some force which is so 

91cf. Pierre Duhem, The ~ and Structure of 
Physical Theory 1 Passim. 
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far unknown has acted on the body to produce this apparent 

anomaly. 

"To sum up, this law, verified experi:rnentally in 
sorne particular cases, may be extended fearlessly to 
the most general cases; for we know that in these 
general cases it can neither be confir.med nor contradicted 
by experiment. 11 92 

Poincar~ now turns to a consideration of the 

second law of motion. If this principle is experimental, 

it should be possible to measure acceleration, force and 

mass. Poincar~ points out that it is possible to measure 

an acceleration if we assume a measurable order of absolute 

time. Granting this, we are still faced with the problem 

of measuring mass and force. Before we can measure them, 

we must know what we are measuring. We must, therefore, 

begin with suitable definitions of force and mass. We may 

say that mass is the product of volume and density. But 

it is equally proper to say that density is the quotient of 

mass by volume. Similarly, force may be defined as the 

product of mass and acceleration, but we may also say that 

maas is the quotient of force by acceleration. 

Let us begin by deter.mining what is meant by the 

equality of two forces. The standard definition is that 

two forces are equal when they give the same acceleration 

to the same mass. Let us suppose two forces F and F• which 

are acting vertically upwards on two bodies C and C' respectively. 

A body of weight Pis attached first toc and then to c•. If 

92science and Hypothesis, p. 97. 
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there is equilibrium in both cases, we conclude that F and 

F• are equal to P and are, therefore, equal to each other. 

But auch a definition lacks mathematical rigour, since it 

is assumed that the weight P remained constant when transported 

from C toC'. In fact, of course, there is a minute variation 

in weight from place to place. More important, however, is 

that we cannot simply assert that the weight of P is applied 

to c, keeping the force F in equilibrium. The situation is 

really more complex than this. It is the action A of P Which 

is applied to c. Similarly, there is a reaction R of C on P. 

F and A are equal because they are in equilibrium. A and 

Rare equal by Newton's third law of the equality of action 

and reaction. 

equilibrium. 

R and P are equal because they are in 

Renee, we may deduce the equality of P and F. 

It is apparent that the equality of two forces depends on 

our acceptance of the third law of motion. The latter, 

therefore, enters our considerations not as an experimental 

law but as a convention. In all, there are three assumptions 

on which we base our conclusion: the equality of action and 

reaction, the equality of forces in equilibrium and the 

constancy in magnitude and direction of weight. The last of 

these assumptions is indeed an experimental law but, as we 

have sean, it happens to be inaccurate. 

We are forced to return to the definition of force 

as the product of maas and acceleration. But we are now 

compelled to regard it as a definition and not as an 
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experimental law. Furthermore, it follows from the principle 

of action and reaction that the motion of the centre of 

gravity of an isolated system will be unifor.m and rectilinear. 

The position of the centre of gravity depends on the values 

of the various masses, so that it should be possible to 

define mass by assigning values Which are consistent with 

this rule. But, in practice, the only isolated system is 

the entire universe. It is absurd to suppose that one could 

actually determine the centre of gravity of the universe as 

a whole. We are compelled to conclude, therefore, that, 

"Masses are co-efficients which i t is found convenient to 

introduce into calculations."93 

If the laws of motion are merely definitions, it 

might be asked of what use they can be. Surely, it will be 

argued that they must be devoid of physical significance • 
., 

This is by no means true according to Poincare. The laws 

of motion are in the first place suggested by experiment. 

But experimental rules are only approximate. Consequently, 

we restate them rigorously, but then they lose their 

experimental character, and are no longer experimentally 

falsifiable. Of course, the weight of much additional 

experimental evidence could lead us to withdraw them for 

purposes of convenience, but that is a different matter. "If 

a principle ceases to be fecund, experiment without 

contradicting it directly will nevertheless have condemned 

93 Ibid., p. 103. 



it."94 11Thus is explained how experiment may serve as a 

basis for the principles of mechanics, and yet will never 

invalidate them. u95 
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Widespread misunderstanding of Poincar~ 1 s position 

has been engendered by the failure to grasp the last 

particular point. Physical geometry is conventional because 

there are no absolutely rigid bodies. Nevertheless, there 

are bodies which are approximately rigid in the Euclidean 

sense, so that our physical geometry is a useful convention. 

Precisely the same situation holds in the case of mechanics. 

Mechanical laws are indeed conventional but are not arbitrary. 

However, so often has the view been attributed to Poincaré 

that the laws of mechanics are arbitrary conventions that 

he should be per.mitted to spaak for himself. 

"Are the laws of acceleration and of the composition 
of forces only arbitrary conventions? Conventions, yes; 
arbitrary, no - they would be so if we lost sight of the 
experimenta \~ich led the founders of science to adopt 
them, and which, imperfect as they were, were sufficient 
to justify their adoption. It is well from time to 
time to let our attention dwell on the experimental 
origin of these conventions. "96 

Above all, it should not be supposed that there is 

the slightest artificiality in Poincaréts account of the 

precise relationship between conventions and experiment. It 

is unfortunate that many philosophera are characterized by 

9~e Value of Science, p. llO. 

95Science and Hypothesis, p. 105. 

96 Ibid., p. llO. 
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by their desire ror neatness and system. They all too 

often distort science when they apply their Procrustean 

systems to it. It may well be that Poincar~'s position has 

been misunderstood because philosophers would like to have 

read in his works that scientiric laws are experimental ~ 

that scientiric laws are conventional. But Poincar~, in 

affect, is saying that they are a little or each. This 

detracts rrom the dramatic impact whiCh some philosophers 

like so much to con vey but i t is eminently sound as anyone 

who has had direct and practical contact with science will 

know. For example, suppose that in engineering ther.modynamics 

an aspect or the perrormance or a jet angine could be 

represented by plotting its thrust against its internal 

temperature. The results will be a series of points which 

cannot be joined by any smooth curve. But a smooth curve 

is draw.n, nevertheless. It is the curve which joins as many 

of the experimental readings as possible and departs as 

little as possible rrom the rest. We have to admit that the 

smoothness of the curve is after all conventional. But is 

the curve itselr arbitrary? One would hardly go to the 

trouble of conducting lengthy and expensi ve engine tests if 

it were. 

It should not be supposed that Poincare's elaborate 

demonstration of the definitional character of mechanical 

laws was intended as a criticism of classical mechanics. 
; 

Poincare would have argued that the laws of relativistic 



114 

mechanics are equally conventional. Euclid 1 s postulate is 

a convention, but that does not suggest its abandonment. 

To use the language of Reichenbach, Poincare has show.n that 

the laws of mechanics require coordinative definitions in 

terms of the behaviour of rigid bodies before they can be 

employed. Further.more, Einstein•s criticism of Newtonian 

mechanics is not to be construed as a rejection of the 

system itself. Einstein rejected Newtonian mechanics 

because when we seek to apply it to nature, we find that 

no coordinative definition is possible. This is particularly 

apparent with regard to the absolute time of classical 

mechanics. 

In the general theory of relativity of 1915, 

Einstein extended the principle of relativity by showing 

that it is not only impossible to detect a real velocity 

but equally impossible to detect a real acceleration or a 

real rotation. The principle of relativity is then expressed 

in its most radical form as advocated by Ernst Mach. It 

completely denies the physical significance of space. It 
; 

is remarkable that Poincare should have anticipated Einstein 

to such an extent as to recognize this. While discussing 

the problem of relative and absolute motion in Science and 

Hypothesis, Poincar~ expresses some surprise that the 

principle of relativity applies to velocities but not to 

accelera ti ons. 

"Why is the principle only true if the motion of 
movable axes is uniform or in a straight line? It seems 
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that it should be imposed upon us with the s~e force 
if the motion is accelerated, or at any rate if it 
reduces to a uniform rotation."97 

Poincar~ now proceeds to discuss another hypothetical 

world. This one is like our own earth but is surrounded by 

dense clouds so that its inhabitants would be unaware of 

the existence of the stars and planets. Would these people 

imagine their world to be motionless? Poincar~ suggests 

that they would have to wait much longer than we for a 

Copernicus. But eventually one would tur.n up. The scientists 

would be unable to account for Foucault•s pendulum experiment, 

for the flattening of the poles, and for the general lack 

of symmetry in nature (centrifuga! forces). The Copernicus 

of this imaginary world would reach the conclusion that all 

of these arbitrary and isolated mysteries could be accounted 

for on the single assumption that the earth rotates. Just 

as our ow.n Copernicus explained to us that the laws of 

astronomy can be expressed in far simpler language on such 

an assumption, so the hypothetical Copernicus would point 

out that in this way the laws of mechanics admit of much 

simpler expression. 

"' Poincare now makes the remarkable point that this 

discovery would by no means confer any absoluteness on space. 

"And hence this affirmation: 'the earth turns 
round,' has no meaning, since it cannot be verified by 
experiment; since such an experiment not only cannot 
be realised or even dreamed of by the most daring Jules 
Verne, but cannot even be conceived of without contradiction; 
or, in other words, these two propositions, 'the earth 

97 Ibid., p. 113. 



turns round,' and, 'it is more convenient to suppose 
that the earth turns round,' have one and the same 
meaning. There is nothing more in one than in the 
other. 11 98 
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The foregoing was precisely the conclusion which 

Einstein reached through the most abstract mathematical 

reasoning. This should suffice to suggest the heuristic 

value of the thesis of conventionalism. 

A later proponent of conventionalism, Pierre 

Duhem, took this point a little too far. As a Roman 

Catholic, he saw it as a possible justification for the 

fate of Galileo at the hands of the Inquisition. Poincar~ 

was far too sensible to employ his doctrine for the 

reintroduction of Ptolemaic astronomy. He stresses the 

point that conventions are not the free creation of the 

scientist. The scientist is inevitably constrained by 

experience. Thus, our conventions do convey information 

about the world. However, this information is only concerned 

wi th re la ti ons. "To affirm the immobili ty of the earth would 

be to deny these relations, that would be to fool ourselves.n99 

"The truth for which Galileo suffered remains, 
therefore, the truth, although it has not altogether 
the same meaning as for the vulgar, and its true meaning 
is much more subtile, more profound and more rich. 1tlOO 

98Ibid. 1 P• 117. 

99The Value of Science, p. 141. 
lOOid em. 



CHAPTER VIII 

CONVENTIONALISM AND MECHANICS 

II ABSOLUTE TIME AND CAUSALITY 

It has already been noted that Newton, who was 

well aware of the difficulties involved in the notion of 

absolute space, felt no misgivings about the absoluteness 

of time. The first breach in this concept was made by 

Lorentz. However, Lorentz believed the time transformation 

applied only to electro-magnetic phenomena. Moreover, as 

we have seen, he distinguished between local, relative time 

and real, absolute time. Thus, the doctrine of the 

relativity of time may truly be regarded as the creation 

of Einstein. Let us proceed to consider the main features 

of Einstein•s argument. 

Einstein expounded his interpretation of time in 

the following simple illustration. 101 Let us suppose that 

lightning strikes the rails on a railway at two places A 

and B which are far apart. We are told that the two events 

\ occurred simultaneously. This, at first, would appear to be 

a meaningful statement, but if it has any physical 

101Relativity: The Special and General Theory, p. 25ff. 
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significance it must be accessible to experimental 

verification. But what sort of experiment would verify a 

statement about the simultaneity of two events? 
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After some reflection, the following definition 

of the simultaneity of the two strokes of lightning might 

be given. Connect the line AB and carefully determine its 

mid-point M. The observer should be placed atM with two 

suitably arranged mirrors. If light rays from the two 

events reach his mirrors at the same time, then the two 

events are simultaneous. This definition would be quite 

proper, according to Einstein, provided it be recognized 

that it is based on what he calls the 11 stipulation11102 that 

the light travelling along the path AM has the same velocity 

as light travelling along BM. This could not be an empirical 

determination, since no method of measuring time may be 

presupposed. Similarly, physics may define time by placing 

clocks at the points A, M and B, Whose hands are simultaneously 

set. It is "stipulated" that the several clocks are going 

at the same rate. In other words, it is possible to define 

physical time, provided that we begin by adopting various 

conventions about the behaviour of clocks and light rays. 

So far, we have reached a definition of time with 

respect to a particular coordinate system, the railway 

embankment. In accordance with the methods of physics 1 we 

must now discover whether our definition is invariant. i.e. 

102Ibid., p. 28. 
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whether it transforma into itself with respect to ether 

coordinats systems. 

Let us imagine that a long train is moving along 

the track with a constant velocity ~ in the direction AB. 

The train will constitute a second Galilean frame. Accordingly, 

we set up an experimental arrangement on the train similar to 

the one on the embankment. Let M• be the midpoint of AB on 

the moving train. When the flashes occur at A and B as 

judged from the embankment, M' will coincide with M. The 

second observer at M• will move towards the light ray from 

B and away from the light ray from A. Consequently, he will 

observe the light from B before he observes the light from 

A. In short, with respect to the train, the two events will 

be judged to be successive rather than simultaneous. We must 

conclude that every Galilean frame has its own temporal 

order. That is to say, time is a relativistic concept. Let 

" us see how closely Poincare's pre-relativity analysis of time 

accords with Einstein•s theory. 

Poincaré points out that we must distinguish 

between subjective, "psychologie" time which is given to us, 

and the objective time order of physical events in which 

there is no consciousness. 103 Poincaré distinguishes two 

questions which follow from this distinction: 

"1. Can we transform psychologie time, which is 
quali tative, into a quantitative time? 2. Can we reduce 

l03The Value of Science, p. 26f. 



to one and the same measure facts which transpire in 
different worlds?ttl04 

Poincaré begins by conaidering the problem of 
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temporal congruence, i.e. the equality of two separate 

intervals of time. He points out that there is no direct 

intuition of such an equality. Is there, then, any physical 

determination of temporal equality? One might resort to the 

use of a pendulum, assuming tha t all the beata of the pendulum 

define equal intervals. But such a definition would lack 

precision since the period of the pendulum will vary with 

barometric pressure, temperature and so forth. Thus, 

scientists must turn to the sidereal day for a definition of 

time. Then all our terrestrial clocks will be corrected in 

accordance with the time taken by the earth to complete one 

full rotation about its axis. But we are then assuming that 

the rotational velocity of the earth is absolutely uniform, 

and we have no evidence for such an assumption. In fact, 

sorne astronomers believe that the angular velocity of the 

earth is gradually decreasing. 

Is it at least possible to conceive of a perfect 

physical clock? Poincar6 points out that the employment of 

any clock, be it the rotating earth or a pendulum, as a basis 

for the objective measure of time must rest on one initial 

postulate, namely, 11 that the duration of two identical 

phenomena is the ~," or, "that the same causes take the 
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sa.me time to produce the same effects.n105 

Let us trace the implications of this postulate. 

Suppose that in a certain region of space an event ! occurs 

Which produces, after a certain interval of time, the effect 

a•. In another region of space, very distant from the first, 

an event b occurs with the effect b•. Let us now suppose 

that a and b are simultaneous and that at and b' are also 

simultaneous. Let us suppose that under roughly similar 

conditions the event a occurs once more and that simultaneously 

~is also reproduced. The two events are followed by !' and 

b' respectively, as before. Finally, we shall imagine that 

at occurs perceptibly before b•. If we were witness to such 

a state of affairs we would be bound to admit that our 

postulate is absurd. Yet there is nothing self-contradictory 

about the foregoing suppositions. We must, therefore, 

conclude that there is no a priori basis for our postulate. 106 

Poincaré proceeds to point out that the postulate 

faces a further difficulty in that it assumes that a single 

discriminable cause produces a certain affect. In fact, 

however, this is rarely the case. For example, the period of 

l05Ibid., p. 28. 

106rt is quite obvious that the postulate is really 
a definition. Although Poincar~ failed to say so, his general 
position would have been strengthened had he pointed out that 
we may adopt the postulate as a convention, in which case the 
observed discrepancy between aa• and bb' could be attributed 
to a difference in the rates or the two clocks which were 
employed to measure the two intervals. 
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a pendulum is due almost solely to the earth•s contraction. 

In all rigour, however, even the attraction of Sirius would 

have some effect on the pendulum. In the final analysis 

we must, therefore, modify our postulate to assert that, 

"Causes almost identical take almost the same time to produce 

almost the same effects.n107 

But these approximate rules are surely not adopted 

by astronomers When they suggest that the earth is slowing 

down. On W'lat basis do they posit such an hypothesis? For 

one thing, they would argue that the friction of the tides 

will produce heat and so destroy vis viva. 108 Again, they 

might argue that the secular acceleration of the moon is 

greater than what is predicted by Newton•s laws. In practice, 

th en, as tronomers define time in su ch a way tha t the laws of 

motion are preserved. But if we treat the laws of motion as 

experimental truths, the definition of time is still only 

approximate. Suppose that some other method of measuring 

time were adopted. The experimental basis of Newton•s laws 

would be unchanged, but the enunciation of those laws would 

be greatly complicated. 

"So that the definition implicitly adopted by the 
astronomers may be summed up thus: Time should be so 
defined that the equations of mechanics may be as 
simple as possible. In other words, there is not one 
way of measuring time more true than another; that 
which is generally adopted is only more convenient. 

107The Value of Science, p. 29. 

108i.e. kinetic energy. 
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Of two watches, we have no right to say that the one 
goes true, the other wrong; we can only say that it is 
advantageous to conform to the indications of the 
first."l09 

Poincaré now proceeds to discuss the problem of 

simultaneity, althougn he correctly points out that this is 

really another aspect of the preceding discussion. We 

habitually speak of the simultaneity of phenomena as, for 

example, When we say that two psychological phenamena occurred 

simultaneously in two separate minds. What is meant by this? 

Furthermore, What do we mean When we say that a physical 

phenomenon WhiCh is not a part of any consciousness occurred 

before or after a certain psychological phenomenon? For 

example, in 1572 Tycho Brahe observed a new star. The light 

from this star took at least two hundred years to reach him. 

Therefore, the birth of the new star occurred before the 

discovery of America. When we say that this great phenomenon, 

Which occurred unwitnessed, preceded the visual image of 

America in the consciousness of Columbus, what do we mean? 
/ Poincare suggests that auch assertions only acquire their 

meaning on the basis of a convention. 

In the first place, how are we able to represent 

so many different worlds in a single frame which we call the 

external universe? It seems that we form the conception of 

an infinite intelligence which could represent all the events 

in the universe in its own time. Surely, some such hypothesis 

l09The Value of Science, p. 30. 
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is unconsciously adopted whenever we spaak of a time in 

Which all the events in the universe take place. However, 

the notion of an infinite intelligence is obviously 

unsuitable as a basis for scientific assertions. 

Let us consider sorne examples. I write a latter 

to my friand. Subsequently my friand reads that latter. 

Two visual images have occurred in two impenetrable 

consciousnesses. Yet, under no circumstances, would we 

hesitate to assert that one phenomenon is prior to the 

other. This is obviously because we regard one event to be 

the cause of the other. Again, I infer from the sound of 

thunder that an electrical discharge has occurred. I do 

not hesitate to assert that the physical phenomenon is prior 

to the psyChological one, because it is its cause. 

In other words, it would appear that time is 

defined in terms of causation. However, When we find that 

two phenamena are constantly conjoined, how do we determine 

which is the cause and which the affect? Surely, the 

anterior phenamenon is regarded as the cause of the other. 

That is to say, we define the causal relationship in ter.ms 

of timeJ Thus it would seem that we are guilty of a 

petitio principii. "We say now post hoc, ergo propter ~; 

now propter hoc, ergo post hoc; shall we escape from this 

vicious circle?"110 

I must interrupt this exposition to point out that 



while I am in general agreement with the position Which 

Poincar~ upholds anent the problem of time, his argument 
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does appear to be a trifle weak in the last detail. While 

this does not actually har.m his thesis, it would seem that 

Poincaré might have made his point in a mudh less complicated 

way; moreover, in a way wniCh is fully consistent with the 

doctrine of conventionalism. 

Specifically, Poincaré has been misled by an 

inadequate philosophical conception of the causal relationship. 

I refer to that type of treatment of causality Which was made 

so famous by Hume. Hume defined causality in ter.ms of the 

constant conjunction of two phenamena, A and B. He argued 

that if this conjunction is observed a sufficient number of 

times, we will eventually come to attribute a necessary 

connection to the two events, A and B. Hume appears to have 

been thinking of the cammon sense notion of causal events 

as, for example, When I strike a matCh and the match ignites. 

This description of causality obviously depends on 

the significance of the notion of the recurrence of the 

phenamenon A. A is taken to be repeatable. But how do we 

know that a particular situation actually reveals the 

recurrence of state A? When we consider the universe as a 

whole, we are surely entitled to assert that it never repeats 

the same state twice. We would, of course, have to make the 

reservation that in defining the recurrence of state A, we 

disregard those circumstances in the universe whiCh are 



irrelevant to A. But how do we know whether a particular 

circumstance is relevant or not? We can only determine 

Whether a particular fact must be regarded as relevant to 
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or, what is the same thing, a part of state A according to 

Whether it is followed by state B. In Short, we are saying 

that A and B are causally related if a recurrence of A is 

invariably followed by a recurrence of B, and that a recurrence 

of A is defined as a state which is followed by a recurrence 

of B. In other words, Hume•s definition of the causal 

relationship turns out to be tautologous as soon as we attempt 

to define it in operational ter.ms. 

Does this imply that the causal laws of science are 

really vacuous tautologies WhiCh tell us nothing about the 

world? Not at all. It simply means that the for.m of the 

causal law is not such that it expresses the constant 

conjunction of two phenomena. With the present exception of 

ther.modynamics, physical, causal laws have the form of 

differentia! equations. These equations express how one or 

more variables vary in value with respect to another variable 

which is time. In other words, a causal law does not describe 

several identical instances of a static configuration but 

the evolution or mannar of change of a single physical system 

in time. We may say that there is a causal relationship 

between A and B When we observe that a state A1, whiCh is 

very close to A, is acoampanied by a state Bl, Which is very 

close to B, and that a state A2 WhiCh is very close to A1 is 
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accampanied by a state B2 Which is very close to B1• 

Therefore our causal law asserts the following relationship. 

Al Bl. • . • • • • . • • • • . • ..... • • • tl 

A2 B2·····················t2 

• • 

• • 

• • • 

• • 

An Bn • .. • • • • • • •...... • • • • . • tn 

It should be noted that the above series is linear. 

If it were not, the differential equations of mechanics would 

be of a much more complicated and difficult type. Hence, we 

may conclude that the distinction between cause and effect is 

defined in auCh a way that the laws of mechanics may be 

expressed in the form of uncomplicated differential equations. 

Not only does the foregoing interpretation fit very 

neatly into the framework of conventionalimn but, moreover, 

is compatible with the Einsteinian conception of time. 

According to Einstein, the relativity of time cannot be auCh 

that the order of cause and effect is reversible from one 

coordinate system to another. The reason for this is obvious. 

The velocity of light, according to the Lorentz transformations, 

is the maximum velocity Which is physically attainable. 

Consequently, a causal influence cannot be tranmnitted more 

rapidly than the velocity of electro-magnetic propagation. 

Therefore, if two distant events are causally related, their 
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order of succession will be the same in all coordinate 

systems. However, if two events are so far apart in space 

but occur so close together in time that a causal connection 

between them is precluded, we may stipulate that they 

occurred simultaneously. In that case their order of 

succession could be changed tram one coordinate system to 

another. It would seem that Poincaré•s treatment of the 

problam of time could have been improved in this particular 

regard. That is not, however, to detract from his overall 

position or his brilliance in its exposition. 

Poincaré prefera to attack the problem in ter.ms of 

a psyChological analysis. 111 I perfor.m an action A which is 

followed by the sensation D Which I regard as its consequence. 

Moreover, I suppose that D is not the direct affect of A but 

related to it through the external circumstances B and c, 
i.e. B is the errect of A, c is the errect of B, and D is 

the effect of c. ~ 

But Why, Poincare wonders, do we insist 

on the order A, B, c, D? I regard A as the initial cause 

because it is accampanied by the sense or my being active. 

Similarly, D is regarded as the final affect because it is 

a passively received sensation. The order of B and C appears 

to be more arbitrary. We would tend to justify it by asserting 

that in our experience, we invariably perceive B before c. 

However, we are faced with a certain difficulty because we have 

no direct experience of B and C but only the experience of 
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the corresponding sensations B' and c•. we know intuitively 

that B' precedes C' and suppose, therefore, that B precedes 

c. While this is admittedly a natural enougn criterion, 

there are exceptions. For example, we may perceive a near 

flash of lightning before a distant one although the nearer 

of the two is actually later. 

There is still another difficulty to be faced in 

our attempt to define the temporal series in te:nns of 

causality. If we grant the causal interdependance of the 

various parts of the universe 1 a given effect must be the 

product of an infinitely complex cause. Let us, however, 

consider a case WhiCh is samewbat less than infinitely 

complex. Take three bodies auch as the Sun, Jupiter and 

Saturn. Furthermore, let us suppose that they constitute 

an isolated system of three mass points. Their positions 

and velocities at one time will suffice to determine their 

positions and velocitles at all times, past and future. Their 

positions at time 1 will determine their positions at t + 

h and t - h. Moreover, the position of Jupiter at time t 

and that of Saturn at t + h together suffice to determine 

all positions of Jupiter and Satur.n at all times. If we 

carry this further, we may say that the position of Jupiter 

at t + e and of Saturn at t + a + e are conneeted through a 

complicated law with the position of Jupiter at time 1 and 

of Saturn at t + a. It should then be possible to call one 

of these aggregates the cause of the other, in Which case 



t and t + ~ would be regarded as simultaneous. 
, 

Poincare 
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points out that the reasons against the adoption of auCh a 

procedure would me rely be "convenience and simplici ty. n112 

Along the lines of our earlier suggestion, it 

Should be noted that a differentia! equation does not refer 

to discrete causes and affects. We may arbitrarily select 

two states A and B Which are as close in time as we Choose. 

We could then say that A is the cause of B. However, it will 

be possible to choose a state which is temporally situated 

between A and B whiCh we may regard as the effect of A or 

the cause of B. The point is that there is no physical 

state which carries the label, "I am a cause," or "I am an 

effect." However, when Poincar~ states that the criteria 

of "eonvenience" and "simplicity" determine 'the selection 

of causes and affects auCh that the laws of mechanics will 

be as simple as possible, i.e. of Newtonian for.m, it would 

seem that his position is, after all, not very far from 

what we have suggested to be the proper application of 

conventionalism to this particular matter. 

"The simultanei ty of two events, or the order of 
their succession, the equality of two durations, are to 
be so defined tbat the enunciation of the natural laws 
may be as simple as possible. In other words, all these 
rules, all these definitions are only the fruit of an 
unconscious opportunism."ll3 

" Poincare clearly maintains the position, later 

112Ibid., p. 34. 

ll3Ibid., p. 36. 
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adopted by Einstein, that two distant events are not observed 

to be simultaneous but that it is fruitful in the description 

of the physical world to stipulate their simultaneity. The 

ascription of simultaneity is conventional. However, the 

convention is not arbitrary. The precise conditions under 

whiCh suCh a stipulation is made are determined by experience. 

This is precisely the conclusion whiCh was reached 

by Einstein. The fact that the velocity of electro-magnetic 

propagation is finite compells us to abandon the attempt to 

observe simultaneity, i.e. to define it in operational ter.ms. 

Moreover, the actual magnitude of this velocity determines 

the circumstances in which such a stipulation may be made. 

To put the matter as simply as possible, if the space-time 

coordinates of two events are such that the events must be 

causally independent, then we may stipulate that they occurred 

simultaneously. However, this convention is suggested by 

the finitude of electro-magnetic propagation. The latter, 

in the theory of relativity, is not a convention but an 

empirical fact whiCh could be experimentally falsified. 

Further.more, as the nature of the Lorentz 

transformations clearly reveals, auch considerations are 

only physically significant when we deal with distances and 

velocities whiCh are so great that they are significant 

compared with the velocity of light. Otherwise, relativistic 

affects are too minute to be taken account of, and we may 

fruitfully revert to the classical mechanics. 



It is striking that from What was largely a 

philosophical theory, Poincaré reached precisely the same 

conclusion as Einstein. 
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"Perhaps, too, we shall have to construct an 
entirely new mechanics that we only succeed in cat:ching 
a glimpse of, where, inertia increasing with the 
velocity, the velocity of light would become an impassable 
limit. The ordinary mechanics, more simple, would remain 
a first approximation, since it would be true for 
velocities not too great, so that the old dynamics would 
still be found under the new. We should not have to 
regret having believed in the principles, and even, since 
velocities too great for the old formulas would always 
be only exceptional, the surest way in practise would 
be still to act as if we continued to believe in them. 
They are so useful~ it would be necessary to keep a 
place for them."ll~ 

We know of no greater philosophically based prophecy 

than What is embraced in the last quotationl 

ll4Ibid., p. 111. 



CHAPTER IX 

CONVENTIONALISM AND MECHANICS 

III RELATIVITY THEORY 

Superficially, it would seem that the thesis of 

conventionalism as it applies to mechanics is not precisely 

the doctrine Which Poincar~ enunciated regarding the nature 

of the axiams of geometry. The reader will recall that 

Poincar~ maintained that under no circumstances would 

experience impose the necessity of abandoning our Euclidean 

conventions. But now Poincar6 tells us that it may be that 

we shall have to abandon our Newtonian conventions for others 

Which are more precise. Surely, if the classical laws of 

motion were conventional, there would be no question of 

their abandonment. 

""' Poincare was fully aware of this potential objection 

to his position. He himself expressed it as follows: 

"Have you not written, you might say if you wished 
to seek a quarrel with me -have you not written that 
the principles, though of experimental origin, are now 
unassailable by experiment because they have became 
conventions? And now you have just told us that the 
most recent conquests of experiment put these principles 
in danger. ttll5 

ll5The Value of Science, p. 109. 
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We shall quote his reply at length. 

"Well, formerly I was right and to-day I am not 
wrong. For.merly I was right, and what is now happening 
is a new proof of it. Take, for example, the calorimetrie 
experiment of Curie on radium. Is it possible to 
reconcile it with the principle of the conservation of 
energy? This has been attempted in many ways; but there 
is among them one I should like you to notice; this is 
not the explanation which tends to-day to prevail, but 
it is one of those ~ich have been proposed. It has 
been conjectured that radium was only an inter.mediary, 
that it only stored radiations of unknow.n nature Whiah 
flashed through space in every direction, traversing 
all bodies, save radium, without being altered by this 
passage and without exercising any action upon them. 
Radium alone took from them a little of their energy 
and afterward gave it out to us in various forma. 

"What an advantageous explanation, and how convenientl 
First, it is unverifiable and thus irrefutable. Then 
again it will serve to account for any derogation 
whatever to Mayer•s principle; it answers in advance 
not only the objection of Curie, but all the objections 
that future experimentera might accumulate. This new 
and unknown energy would serve for everything. 

"This is just what I said, and therewith we are 
shown that our principle is unassailable by experiment. 

"But then, what have we gained by this stroke? 
The principle is intact, but thenceforth of what use 
is it? It enabled us to foresee that in auch or such 
circumstance we could count on such a total of energy; 
it limited us; but now that this indefinite provision 
of new anergy is placed at our disposal, we are no 
longer limited by anything; and as I have written in 
•Science and Hypothesis,• if a principle ceases to be 
fecund, experiment without contradicting it directly 
will nevertheless have condemned it.nll6 

We see, then, that by some method, albeit devious, 

it is always possible to retain our convention. However, 

the criteria of convenience and simplicity may persuade us 

to adopt an alternative. It should be noted that we are 

persuaded but not compelled. We feal fairly confident that 

116Ibid., p. 109f. 
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if this feature of conventionalism were more widely understood, 

there would be far lesa criticism of the doctrine. So.me of 

this criticism would appear to treat conventionalism as 

though it were the attempt to reduce science to soma sort 

of word game. Plainly, this was not Poincar~ 1 s position. 

One of the great advantages of Poincaréts philoaophy of 

science is that it ia quite consistent with the various 

advances which have been made in both theoretical and 

experimental science. Here lies one of the superiorities 
~ of Poincare's philosophy over, for example, the Kantian 

philosophy of science which obviously would have tended to 

inhibit the development of science had it been taken very 

seriously by practicing scientists. 

If Poincar~ is correct, we are bound to conclude 

that the special theory of relativity is not imposed on us 

by empirical data but is merely the most convenient way of 

representing them. To show this would be to complete the 

def.ense of this most important aspect of Poincaré' s thesis. 

As a theory of mechanics, relativity theory makes 

assertions about the behaviour of clocks and measuring rods. 

It maintains that clocks which are 1n motion slow down and 

that measuring roda which are in motion contract in the 

direction of that motion. While Lorentz did not believe 

that clocks are "really" affected by motion, he did believe 

the contraction of measuring roda to be a "real" contraction. 

Einstein, on the other hand, maintained that both 
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of these affects were apparent. For example, a moving clock 

does not slow down for an observer who is at rest with respect 

to it. Consequently, if we consider two observera 0 and o1 
at rest respectively in the systems S and s1 whiCh are in 

rectilinear motion with respect to each other, 0 will hold 

that the clocks in s1 are running slow, while o1 will hold 

that the clocks in S are running slow. To those of us who 

are more familiar with metaphysics than with physics, it 

would be tempting to say that 0 and o1 cannot both be right. 

However, the physicist who, for very good reasons, does not 

concern himself wi th the 11ultimate 11 nature of things would 

say that each observer bas performed a correct measurement. 

It is merely that every measurement is restricted to sorne 

particular coordinate system. 0 and o1 are not in real 

disagreement. They have merely selected different coordinate 

systems. The reader will recall that Poincar~ suggests that 

in the genesis of the notion of space one tends to regard 

oneself as the fixed axis of the system to which we refer 

our sensations. 0 bas chosen the coordinats system S wbile 

o1 bas chosen s1• The essence of relativistic physics, 

Einsteinian and pre-Einsteinian, is that there is no means 

of selecting one system rather than another; all systems are 

equivalent. In other words, we may Choose the system which 

we happen to prefer. In general, the most convenient Choice 

will be that system with respect to which to~e are at rest. 

In everyday matters this will be the surface of the earth. 



For the physicist, who is concerned with inertial and 

centrifugai forces, it will oe the fixed stars. But in 

all cases, the choice is a matter of convention! 
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Similar considerations pertain to the contraction 

of measuring rods. As we have already noted, Lorentz believed 

tha t the re were real contractions wi th respect to the ether. 

It is for this precise reason that Lorentz cannot properly 

be said to have anticipated Einstein. The latter discarded 

the idea of the ether but showed that the contraction can 

only be defined with respect to a system of coordinates. 

Again, the choice of a coordinate system is a matter of 

convention. 

The relativistic increase of mass is even more 

clearly a conventional postulate. Experiment reveals that a 

constant force does not produce a constant acceleration at 

velocities whiCh are significant fractions of the velocity 

of ligbt. In other words, the relationship f = ma appears 

to break down. But Newton•s "qusntity of matter" must be 

defined as the ratio of accelerations. Bence, we are faced 

with a difficult alternative. On the one band we may abandon 

Newtonian mass and adopt the Lorentz .formula, mt = m/1 - v2 
v ë2 

or we may abandon the principle o.t' the conservation o.t' 

momentum. Experiment tells !!!!. ~ ~ must make ! choice, 

but does not tell us What it should be. 

Philipp Frank has stated the position with the 

utmost clari ty. 
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"Actually, the question of whiCh is the •legitimate 
successor• of the Newtonian •quantity of matter' cannot 
be decided. The •rest-mass• has inherited the property 
of 'constancy' while the 'relativistic mass' that is 
defined by f/a has inherited the property of being the 
ratio of force to acceleration. Hence, the question 
of which of them ahould be declared the •legitimate 
heir' of the Newtonian maas can only be decided upot 
the grounds of convenience, simplicity and similar ypes 
"'rconsideratron."l17 -

"All these considerations show us that if we 
introduce •maast as the object Which has as many as 
possible of the properties of the old Newtonien mass, 
this is the only possible justification for the introduction 
of statements like •mass is not constant,• or •mass can 
disappear.' 11118 

In short, the principle of conservation of mamentum 

is so fundamental to physics that it would be most inconvenient 

to abandon it. We prefer to adopt the convention of 

postulating a relativistic increase of mass. 119 

Perhaps the most striking defense of the 

conventionalist interpretation of relativistic mechanics was 

made by L. Rougier. 120 Rougier•s argument is to the effect 

that if Poincaré•s interpretation of geometry is correct, 

i.e. if we are justified in holding that Euclidean axioms 

are suggested by experience, then one should expect that 

under the right circumstances some other set of axioms might 

ll7Philosophy ~Science, p. 147. The italics are mine. 

llSibid., p. 148. 

ll9This incidentally suggeats the clearly conventional 
character of the conservation laws. 

120ne l'utilisation des Géométries non-Euclidiennes 
dans la ph~siqüe de la relat!v~, L'Enseignement Mathêmatique, 
J'iii:" IS', 1 ï4, pp:-ÇI8. 
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be suggested. 

This in fact is precisely the outcome of 

relativistic mechanics. We have seen that bodies contract 

in the direction of their motion in accordance with the 

Lorentz formula. In short, the material objecta which 

constitute the basis for a Euclidean physical geometry no 

longer exist. 

Rougier shows that auch a contraction may be 

assigned to solid objecta in translatory motion in a space 

of negative curvature of the Lobatschewskian type. Moreover, 

just as there can be no parallelogram of velocities in 

relativistic mechanics, so in Lobatschewakian geometry there 

are no parallelograms. 

Thus, it can be shown that by selecting the 

appropriate constant of curvature for space, the Einsteinian 

equations are transfor.med into classical equations! It 

should be noted that Einstein expreased his theory in ter.ms 

of Euclidean geometry while postulating a defor.mâtion of 

material objecta. This presents us with an elegant illustration 

of the applicability of the thesis of conventionalism. We 

may treat natural solids as rigid bodies of the Lobatschewskian 

type or as defor.mable bodies of the Euclidean type. The two 

alternatives are equivalent. The implication of the theory 

of relativity is, surprisingly, that the Lobatschewskian 

geometry would be the simpler. 
, 

This, of course, Poincare 

failed to anticipate. But his failure was not the outcome 



of a defect in bis theory but merely of an inability to 

foresee some rather startling experimental resulta. 

~0 

Finally, let us consider the general significance 

of the Lorentz equations in the theory of relativity. For 

Lorentz himself, as we have seen, these equations were 

supposed to represent genuine physical hypotheses about the 

behaviour of clocks and measuring rods. But this is not 

the role which they play in the special theory of relativity. 

We may understand their significance for Einstein 

if we consider why he retained them. If they do not assert 

that rods are contracted or clocks slowed dow.n in any absolute 

sense, What was Einstein•s reason for retaining them? It is 

quite clear tbat they are only retained as transformation 

rules, i.e. to express the relationship between the various 

inertial systems. But if they are merely transformations 

without genuine physical significance, Why did not Einstein 

retain the much simpler Galilean transformations? The point 

is that while they are merely transformations they are 

nevertheless not devoid of physical significance. They are 

the only transformations for which the laws of mechanics 

and electro-magnetism are invariant. If we apply the Galilean 

transformation rules to Maxwell•s electro-magnetic field 

equations, the latter will undergo a fundamental change of 

form. We would not be entitled to say that therefore the 

Galilean transformations are false; it is merely that they 

would make the enunciation of physical laws too unwieldy and 



coroplicated. 

In short, we retain the Lorentz equations because 

of their systematic simplicity. That is to say, they are 

the most convenient rules for the description of physical 

data. Once again, we are led to Poincar~'s central theme 

Which I beg the reader•s indulgence to repeat. The laws 

of mechanics are conventional, but they are conventions 

Which have been suggested by experience. 

Probably one of the most celebrated of the 

consistent critics of the conventionalistic interpretation 

of mechanics was Moritz Schlick. Like Reichenbach, Schlick 

seems to be labouring under certain misapprehansions about 

the meaning of conventionalism. Certainly he understands the 
, 

doctrine in a way which is foreign to the ideas of Poincare. 

I believe that Schlick would accept the 

conventionalistts interpretation of gaametry. Euclidean 

geometry, considered as an axiomatic system, is merely the 

grammar or syntax Which we adopt to describe certain features 

of the world. 

11The language in which we spaak of physical 
relations must after all also have its own grammar and 
there is no doubt that this is dater.mined by convention. 
Are natural laws these conventions perhaps? Do the 
natural laws represent nothing else but the grammar of 
the natural sciences, i.e,, in the last analysis, of 
physical language in general? 11121 

Again, 

"The difference between a stipulation and a 
genuine proposition obviously lies in the fact that the 

121schlick, M., "Are Natural Laws Conventions? 11 in 
Readings in the Philosophy of Science. (H. Feigl & M. Brodbeck, Ed) 
PP• lBl-182. 



validity of a convention is of our own making. After 
a stipulation has been made, we can maintain it under 
any circumstances. Experience might well suggest but 
can never compel its abandonment, for the validity of 
a convention remains in our power. It is well known 
that facts of nature can be described by means of 122 Euclidean geometry, if we stubbomly insist upon i t." 

SChlick holds that if natural laws could be 

interpreted in the same manner as geometrical axioms, the 

conventionalist position would be established. However, 

he argues that the belief in the conventional character of 

natural laws resta on a grave, logical error. 

Specifically, Schlick argues that the conventionalists 

have failed to understand the distinction between a sentence 

and a proposition. He defines a sentence as, "a sequence 

of liguistic signa with the help of which something can be 

asserted."123 A proposition'~s to be viewed simply as the 

set of rules whicb are stipulated for the actual application 

of the sentence, that is, for the practical use of the sentence 

in the representation of facts. n124 

In short, a proposition is what a sentence "means." 

Now, we may stipulate a sentence to mean anything that we 

choose it to mean. Moreover, it is true that natural laws 

are expressed in sentences. However, Schlick suggests that 

if a natural law were no more than a sentence, then we could 

draw the absurd conclusion that it is legitimate to write 

122Ibid., p. 182 
123Ibid., p. 185. 

124-:r dem. 
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down any sentence and call it a natural law. In fact, 

natural laws are sentences WhiCh express propositions. We 

may vary the sentence but we cannot alter the proposition 

Which it contains. The latter is deter.mined by the essential 

character of the physical world. 

"Once the rules are fixed, i.e., once agreement 
is reached concerning the grammar of the scientific 
language, then there is no longer any choice about how 
to formulate any facts of nature. After this there is 
only one possibility, only one way of for.mulating the 
sentence which will fUlfill the purpose. A natural 
law can then be represented in only one quite definite 
form and not in any other. ttl25 

But Poincaré never intended his doctrine to mean 

any more than What Schlick asserts in the last quotation. 

The extreme form of conventionalism, which Schlick may have 

had in mind, What Poincaré calls "nominaliam," is the subject 

of vigourous attack by Poincaré himself. 126 For example, he 

writes that, "I can not admit that the scientist creates 

without restraint the scientific tact since it is the crude 

fact which imposes it upon him."127 " ••• when I have laid 

down the definitions, and the postulates Whieh ~ conventions, 

a theorem henceforth ean only be true or false. 11128 Poincaré 

would regard as fantastic the claim, "that the facts of daily 

125 Ibid., p. 187. 
126The Value of Science, P• 112ft. 

127Ibid., p. 116. 

128Ibid., p. 118. 



life are the work of the grammarians. n129 
, 

In short, Poincare is obviously exempt from the 

criticisme Which SChlick levels against the doctrine of 

conventionalimm. In fact, he would undoubtedly have joined 

with Schlick in making them. 
, 

Poincare was attempting to 

show that the language in Which we express the laws of 

nature cannot be taken to convey anything about the real 

constitution of nature itself. This is the real significance 
~ of what Reichenbach called Poincare• s theory of "equivalent 

descriptions." It is also what Schlick meant in his 

distinction between sentences and propositions. 

129Ibid., p. 119. 



CHAPTER X 

CONCLUDING REMARKS: 

CONVENTIONALISM AND RECENT DEVELOPMENTS 

IN THE PHILOSOPHICAL FOUNDATIONS OF SCIENCE 

We hope that it is by now abundantly clear to the 

reader that Poincaréts philosophy of science is not one more 

museum piece in the history of nineteenth century tbought. 

We have shown not only its applicability to the classical 

meChanics but also the way in WhiCh it could serve to 

interpret the twentieth century conceptions of relativistic 

meChanics. 130 However, we propose now to show that Poincaréts 

views are directly in the mainstream of contemporary 

philosophie opinion. 

The most active and vocal movement in recent 

philosophy of science has been logical positivism. While 

the writer adroits to some sympathy for both the aims and 

13°In the preceding chapter we limited our discussion 
to a consideration of the theory of relativity. We would like 
to see someone in the future do the same sort of analysis 
with regard to quantum mechanics. For example, Schroedinger's 
wave mechanics and Heisenberg's matrix mechanics are two 
completely diverse mathematical theories which, nevertheless, 
yield identical empirical resulta about the mechanical behaviour 
of atomic objecta. 



achievements of this movement, it is not our purpose to 

defend the doctrines of logical positivism in this 

dissertation. 
,. 

We wish simply to show that Poincare must 

be counted among the principal precursors of the movement. 

In tact, he may be said to have been more than its precursor. 

In his treatment of the structure of science he seems, with 

Ernst Mach, to have been among its first members. In short, 

then, we wish to show the striking similarity between the 

philosophy of Poincaré and What is possibly the most important 

philosophical interpretation of science in the present century. 

In fact, Poincaré•s relationship to logical 

positivism has not gone unrecognized. It is difficult to 

state precisely When this movement began. T.hose Who point 

to Schlick as its founder base their opinion on samewhat 

arbi trary cri teri a. The movement was .first known as "the 

Vienna Circle" due to the fact that its members held their 

weekly discussions in a Viennese cof.fee house. These meetings 

began in 1907. At this time the leading light o.f the Vienna 

Circle was the theoretical physicist Philipp Frank. If one 

man is to be regarded as the founder of the movement. Frank, 

it seems to us, has a greater claim than SChlick. However, 

it is unlikely that any member of the movement would press 

auch a claim, as the cooperative spirit of its members has 

always been unusually high. In any event, Frank has pointed 

out tbat the three thinkers who were most widely discussed 

at the early meetings in the co.f.fee bouse were Kant, MaCh 
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The Kantian epistemo1ogy was, of course, rejected 

by the Vienna circle. However, Ernst Mach was the darling 

of these thinkers Who eagerly embraced the latter1 s radical 

empiricism. But it was felt that the "sensationalism" of 

Mach was inadequate as a basis for scientific theories of 

broad generality. In describing the historical development 

of logical positivi~ Frank writes, 

"We felt very strongly that there was a certain 
gap between the description of observations, necessarily 
consisting, in physics particularly, of a small number 
of concepts (like force, mass, etc.) linked by statements 
of great simplicity. We admitted that the gap between 
the description of facts and the general principles of 
science was not fully bridged by Mach, but we could not 
agree w1 th Kant, Who built this bridge by forma or 
patterns of experience that could not change with the 
advance of science. 

"In our opinion, the man who bridged the gap 
sucessfUlly was the French mathematician and philosopher 
Henre Poincar~. For us, he was a kind of Kant freed 
of the remnants of medieval scholasticiam and anointed 
w1 th the oil of modern science. nl32 

, 
Frank proceeds to specify the nature of Poincare's 

contribution to the germinal ideas of the Vienna Circle: 

11The traditional presentation of physical theories 
frequently consista of a system of statements in which 
descriptions of observations are mixed with mathematical 
considerations in such a way that sometimes one cannot 
distinguish which is which. It is Poincaréts great 
merit to have stressed that one part of every physical 
theory is a set of arbitrary axioms and logical conclusions 
drawn from these axiams. These axioms are relations 

l3lP.Frank, Modern Science and its Philosophy, 
pp. 1-52. 

132Ibid., p. 8. 



between signs, which may be words or algebraic symbols; 
the important point is that the conclusions that we 
draw from these axioms are not dependent upon the 
meanings of these symbols. Renee this part of the , 
theory is purely conventional in the sense of Poincare. 
It does not say anything about observable facts, but 
only leads to hypothetical statements of the following 
type: •If the axioms of this system are true, then the 
following propositions are also true,' or still more 
exactly speaking: •If there is a group of relations 
between these symbols, there are also sorne other 
relations between the same symbols.• This state of 
affaira is often described by saying that the system 
of principles and conclusions describes not a content 
but a structure. Renee, this system is occasionally 
referred to as the structural system."l33 

In the subsequent development of the philosophy of 

the Vienna Circle, the external influences were many and 

various. Not the least of these was the philosophical 

writings of Bertrand Russell. Russell developed a system 

of symbolic logic with the aid of which he showed that the 

statements of pure mathematics are reducible to for.mal logic. 

Although not strictly a logical positivist himself, his work 

came to have considerable bearing on the future of the movement. 

Russell paid considerable attention to the study 

of logical paradoxes, as a result of Which he developed his 

theory of logical types. According to this theory, every 

class is of a higher logical type than any of its members. 

Similarly, any statement about another statement is of a 

higher type than the statement which it is about. Russell 

pointed out that the confusion of logical types will lead to 

the meaningless grouping of symbols. While meaningless, the 

133 Ibid., p. 12. 



structure of auch groupings would be considered correct from 

the point of view of rules of traditional grammar. Thus, 

Russell pointed out that sentences may be divided into three 

groups: the true, the false and the meaningless. It was 

fundamental to the logical positivistst hostility to and 

eventual elimination of metaphysics that grammatically correct 

sentences could be regarded as logically meaningless. 

The new logical techniques of Russell were applied 

to the problems of epistemology as early as 1914. 134 Occam's 

Razor, the principle of parsinomy, was of major importance: 

Entia ~ sunt multiplicanda praeter necessitatem. Russell 

restated this principle as follows: 11Whenever possible, 

substitute constructions out of known entities for inferences 

to unknown entities."l35 Russell also pointed out that, 

"In so far as physics or common sense is verifiable, 
it mus~be-capable of interpretation in ter.ms of actual 
sense-data alone. The reason for this is simple. 
Verification consista always in the occurrence of an 
expected sense-datum •••• Now if an expected sense­
datum constitutes a verification, what was asserted 
must have been about sense-data, or, at any rate, if 
part of what was asserted was not about sense-data, 
then only the ether part has been verified. "136 

The foregoing amounts to a careful restatement of 

the empirical doctrines of Ernst Mach. 

British 

However, of all the external influences, the 

l34cr., Our Knowledge of the External World, p. 12. 

l35B. Russ,ell,. "Logical Atomism," in Contempora~ 
Philosophy: Personal Statements, First Series, p. ~3. 

136our Knowledge of the External World, p. 89. 
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greatest and most profound was the Tractatus Logic~Philosophicus 

of Ludwig Wittgenstein. Virtually all of the matters of concern 

to logical positivism are to be found, although sometimes 

obscurely, in the pages of this one book. 

"Wittgenstein claimed bluntly that the problems of 
traditional philosophy are merely verbal problems. Our 
ordinary language, Which has grown up to describe the 
facts of everyday life, is not adapted to the task of 
expressing and answering problems put to traditional 
philosophy. If we try to use our ordinary language in 
this way, we get into trouble. The real problem is to 
find out What one can actually say clearly. The world 
of facts can be described in our ordinary language; 
therefore, says Wittgenstein, •to understand a proposition 
means to know what is the case if it is true. t 11137 

In short, Wittgenstein was primarily concerned 

with the relationship between language and the world. As 

Russell puts it, Wittgenstein•s problem is the following: 

"What relation must one fact (such as a sentence) have to 

another in order to be capable of being a symbol for that 

other? 11138 

According to Wittgenstein, the objectives of 

propositions are "facts ". Su ch facts, being the fundamental 

elements of the world, cannot be defined without circularity. 

However, 11 objects 11 wb.ich these facts compose may be defined 

in terms of the set of facts in Which they occur. The totality 

of atomic facts is the world. All compound facts are therefore 

reducible to atomic facts. The atomic facts are various 

groupings of objecta. The nature of the grouping is the 

l37P. Frank, 22·~·, p. 32. 

l3BB. Russell, Introduction to the Tractatus Logico­
Philosophicus, p. S. 



"structure" of the fact. 

With regard to the relationship between facts and 

propositions, Wittgenstein adopta a corresponden ce the ory of 

truth. That is to say, he holds that a true proposition 

"agrees" with a fact, while a false proposition is one which 

is in disagreement with a fact. The notion of agreement and 

disagreement in this context is perhaps vague. However, 

Wittgenstein is unequivocal in his usage. A true proposition, 

he holds, is a "picture" of a fact. Now, in what sense did 

Wittgenstein intend the term "picture"? 

For Wittgenstein, a proposition is a fact in its 

own right. In other words, it is a physical phenomenon auCh 

as a noise, a neural event or a set of physical symbols. The 

relationship which Wittgenstein postulates to hold between 

propositions and the world is thus somewhat easier to 

understand. It is a matter of the relationship between two 

facts. The proposition will "picture" the fact by virtue 

of its common logical for.m with that fact. 

The point that we wiSh to bring out in this unduly 

cursory exposition of Wittgenstein•s philosophy is that he 

held that the significance of a statement about the world is 

in its logical structure and nothing more. Wittgenstein 

brings out the point clearly when speaking of the propositions 

of mechanics. The physical world, he writes, may be regarded 

as a picture in black and white. We may superimpose on this 

picture a network of squares. Then we could describe the 
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picture by asserting Which squares are black and which are 

white. The form of the network is arbitrary. It might, 

for example, have been easier to work with a mesh of triangles 

or hexagons. 

"To the different networks correspond different 
systems of describing the world. Mechanics determine 
a for.m of description by saying: All propositions in 
the description of the world must be obtained in a 
given way from a number of given propositions - the 
mechanical axioms. It thus provides the bricks for 
building the edifice of science, and says: Whatever 
building thou wouldst erect, thou shalt construct in 
some manner w1. th these bricks and these alone. 

"(As wi th the system of numbers one must be able 
to write down any arbitrary number, so with the system 
of meChanics one must be able to write down any arbitrary 
physical proposition§ "139 

We would particularly like to draw the reader•s 

attention to Wittgenstein's conclusion from the preceding 

considerations. The following quotation from the Tractatus 

Logico-Philosophicus might very well have been taken from 

the works of Poincarè. 

"So too the tact that it can be described by 
Newtonian mechanics asserts nothing about the world; 
but this asserts something, namely that it can be 
descrroëd in that particular way in which as a matter 
of tact it is described. The fact, too, that it can be 
described more simply by one system of mechanics than 
by another says something about the world."l40 

Wittgenstein•s general position is identical with 

that of Poincaré. The latter, the reader will recall, had 

maintained that the objective knowledge Which we have of the 

139 5 Wittgenstein, L.,QE. cit., p. 17 • 
140 Ibid., p. 177. 
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world is about relations. Moreover, these relations may be 

expressed in a variety or ways. The particular mode or 

expression WhiCh we adopt is a matter or convention. However, 

it is natural to select that mode which arrords the simplest 

account or the world. All or these ideas are to be round in 

the preceding quotations rrom Wi ttgensteinl 

Wittgenstein•s Tractatus was by no means the 

derinitive work ror the Vienna Circle. It might be said 

that Wittgenstein•s application or empiricism was too 

rigorous (or possibly too obtuse) even ror the logical 

positiviste. Very brierly, Wittgenstein held that all 

propositions are truth-functions of elementary propositions, 

and that elementary propositions have an exclusively 

empirical reference. In short, all meaningful statements 

are empirical statements. But the statements in Wittgenstein•s 

book, especially his statements about the use of language, 

are not empirical. Thus, his philosophy turns out to be 

self-stultifying. Wittgenstein, grasping the bull by the 

homs, recognizes this and concludes his Tractatus with What 

is surely one of the most remarkable passages in the literature 

or philosophy. 

"My propositions are elucidatory in this way: he 
Who understands me finally recognizes them as senseless, 
When he has climbed out through them, on them, over 
them. (he must so to speak throw away the ladder, 
after he bas climbed up on it.) 

"He must sur.mount these propositions; then he sees 
the world rightly. 

"Whereof one cannot speak, thereof one must be 
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Obviously, if logical positivism was to be a viable 

movement, it could not rest content with the final outcome 

of Wittgenstein's analysis of language. One of the most 

significant events in the history of the Vienna Circle was 

the arrival in Vienna of Rudolph Carnap. It was he Who gave 

the required solution to the foregoing difficulty. Moreover, 

to Carnap more than any other man, we owe the classical, 

definitive expression of the philosophy of logical positivism. 

However, before dealing with his linguistic 

theories, there is another matter whiCh concerned him in his 

early period, Which should be mentioned for its bearing on 

the views of Poincaré. 

An important task for logical positivism was to 

clear up an ambiguity in the notion of knowledge.142 In 

German there are two words which aignify knowledge, "Erkenntnis" 

and "Erlebnis." In Engliah we may express the distinction by 

the phrases: "knowledge by description" and "knowledge by 

acquaintance." "Erkenntnis" is communicable knowledge. The 

logical positivists hold that communicable knowledge expresses 

nothing but the formal structure of experience. The content 

of experi ence is essentially private and, therefore, 

incommunicable. Its presence may be indicated by various 

l4libid., p. 189. 

142 Cf., M. Schlick, Erleben, Erkennen, Metaphysik, 
Kant - Studien, 31, 1926, pp. 146-158. 



demonstrative words such as "I", ''here", "now", "this", 

11 that", but this is as far as one can go. However, there 

are formal relations holding between qualia Which may be 

communicated. For example, consider the possibility that 

1.5.5 

in the experience of two people, the qualities red and green 

were systematically interchanged so that whenever the one 

experienced red the other experienced green, and vice-versa. 

The two individuals would encounter no special difficulties 

in communicating with each other. In fact, all colours 

throughout the entire compass of experience might be 

interchanged wi th out our communicable, scientific knowledge 

being affected in the least way. Such considerations are, 

of course, applicable not only to colours but to all of the 

traditional 11 secondary qualities." Renee, so far as we are 

concerned with communicable knowledge (Erkenntnis), the 

essence of a quality is of no significance. What is of 

importance, however, is the unique set of relations which 

holds between it and other qualities. The most systematic 

treatment of this matter was undertaken by Carnap in an early 

work, The Logical Structure of the World. Very briefly, 

Carnap attempted to outline a system whereby all the concepts 

of empirical science may be "constituted 11 or constructed 

fram purely for.mal operations on a single primitive concept 

which is an indefinable. formal relationship. 143 

143R. Carnap, Der Logische Aufbau der Welt, The 
details of this phase of carnap's work are not pertinent to 
this dissertation. 
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We have drawn attention to the logical positivists• 

conception of the nature of scientific knowledge since it 

once more reveals the remarkable extent to which a 
., 

contemporary positivistic doctrine was anticipated by Poincare. 

Like the logical positivists, Poincar~ held that objective, 

i.e. scientific, knowledge is essentially communicable. 

However, he points out that sensations cannot in themselves 

be communicated, but only the relationships between them. 

"The sensations of others will be for us a world 
eternally closed. We have no means of verifying that 
the sensation I call red is the same as that which my 
neighbour calls red. 

·nsuppose that a cherry and a red poppy produce on 
me the sensation A and on him the sensation B and that, 
on the contrary, a leaf produces on me the sensation B 
and on him the sensation A. It is clear we shall never 
know anything about it; since I shall call red the 
sensation A and green the sensation B, While he will 
call the first green and the second red. In compensation, 
What we shall be able to ascertain is that, for him as 
for me, the cherry and the red poppy produce the same 
sensation, since he gives the same name to the sensations 
he feels and I do the same. 

"Sensations are therefore intransmissible, or 
rather all that is pure quality in them is intransmissible 
and forever impenetrable. But it is not the same with 
relations between these sensations. 

"From this point of view, all that is objective is 
devoid of all quality and is only pure relation. Certes, 
I shall not go so far as to say that objectivity is 
only pure quantity (this would be to particularize too 
far t h e nature of the relations in question), but we 
understand how some one could have been carried away 
into saying that the world is only a differentia! 
equation. 

"With due reserve regardi ng this paradoxical 
proposition, we must nevertheless admit that nothin~ is 
objective 'Which ~not transmi ssible, ~ consequen ly 
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that the relations between the sensations can alone 
have an objective v~ --

The most mature phase of carnap•s work, and what 

is most typical of logical positivism in its fully developed 

state, may be described as the logical analysis of language. 

Actually, there are two distinct aspects to the logical 

analysis of language, formal syntax and formal semantics. 

The formal or logical syntax of language was 

investigated by carnap for the purpose of showing thatit is 

possible, contrary to the belief of Wittgenstein, to discuss 

language in a meaningful way. The logical syntax of a 

language is the formal structure of that language apart from 

all considerations of meaning. For example, "The house is 

large," may be described as a sentence which contains an 

article, a noun, a copula and an adjective in that order. 

If, however, it is said that the sentence is about a house 

and that the last word designates a degree of magnitude, the 

description is no longer for.mal, since it concerna the 

meaning or sense of the words in the sentence. By language, 

in this context, carnap means the formal rules whereby 

meaningful sentences may be constructed. There are two 

types of rules: formation rules and transformation rules. 

A formation rule of the English language is that four words 

in the order of article, substantive, verb and adverb 

constitute a sentence in that language. The formation rules 

~he Value of Science, p. 136. (The italics are mine). 
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of a natural language such as English are too numerous and 

complicated to be campletely laid down. However, artificial 

languages, in which symbols replace words, may be constructed 

Where all the formation rules are given. For example, an 

expression consisting of a predicate and a variable constitute 

a sentence auch as ~ (x). Two such expressions joined by a 

connecting sign together constitute a sentence suCh as ~ (x) 

V VJ (x). 

The transformation rules of a language are those 

WhiCh are coromonly known as the rules of inference. By 

these is determined the number of sentences which can be 

inferred from a collection of sentences. In any language s, 

a sentence of S is defined by the totality of formation rules 

of S, and a direct consequence in S as the totality of 

transformation ru les of s. Normally, "true" and 11 false 11 

cannot be defined syntactically since the truth or falsity 

of a sentence will depend on the meaning of the symbols 

contained in it. However, it sometimes happens that sentences 

are true or false by virtue of their syntactical for.m. Such 

sentences would be called valid and contravalid respectively. 

These terms are syntactically definable. 

The language so far described is noticeably barren 

and eould hardly be described as a tool for the advancement 

of physieal knowledge. This is due to the fact that all of 

its transformation rules and primitive sentences are of a 

purely logical or mathematical character. None of its ter-ms 
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have any extra-logical significance. They are what Carnap 

calls "L-terms." Similarly, all of its transformation 

rules are called "L-rules.n145 However, it is possible to 

incorporate into the language as primitive sentences what 

Carnap calls "P-rules" or physical rules of transformation. 

For example, we might include Newton's laws of motion or 

Maxwell's equations of the electro-magnetic field. Then a 

sentence C Which is a consequence of a class P of premises 

on logical grounds alone is called an "L-consequence" of P. 

If it is necessary to apply P-rules also, the sentence is 

a "P-consequence" of P. 

Even with the inclusion of P-rules, our language 

is still a purely formal structure and therefore not a 

complete scientific system. A scientific theory or system 

is an abstract calculus such as the one described above plus 

a further set of rules for its use. For example, we may 

deduce various consequences from Newton•s laws of motion, 

but these consequences are not scientific predictions unless 

we know what they ~ean. That is to say, we require rules 

to relate our abstract calculus to the world. These rules 

would determine the conditions for the truth or falsity of 

a statement. But to know whether a statement is true or 

false is to know its meaning. Hence, the scope of our 

discussion must be broadened to include semantics. 146 The 

145carnap, R., Philosophy and Logical Syntax, p. 50f. 

146R.Çarnap, "Logical Foundations of the Unity of 
Science" in International Encyclopedia of Unified Science, Vol. 1, 
pp. 42-62. --
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semantical rules of a language are simply what ReiChenbach 

called "coordinative definitions" and what Bridgman called 

"operational definitions." 

" ••• we shall say that we understand a language system, 
or a sign, or an expression, or a sentence in a language 
system, if we know the semantical rules of the system. 
We shall also say that the semantical rules give an 
interpretation of the language system."l47 

Carnap stresses the point that there is a degree 

of freedom available in the formulation of semantic rules. 

That is to say, semantic rules are not unambiguously 

determined by a set of llnguistic facts. 

"Suppose we have found t'hat the word •mond' of B 
was used in 98 per cent of the cases for the moon and 
in 2 per cent for a certain lantern. Now it is a matter 
of our decision whether we construct the rules in such 
a way that both the moon and the lantern are designata 
of •mond• or only the moon. If we choose the first, 
the use of •mond• in those 2 per cent of cases was 
right - with respect to our rules; if we choose the 
second, it was wrong. The facts do not determine Whether 
the use of a certain expression is right or wrong but 
only how often it occurs and how often it leads to the 
affect intended, and the like. A question of right or 
wrong must always refer to a system of rules."l48 

11We found earlier that the pragmatical description 
of a language gives soma suggestions for the construction 
of a corresponding semantical system without, however, 
determining it. Therefore, there is a certain amount 
of freedom for the selection and formulation of the 
semantical rules. Again, if a semantical system S is 
given and a calculus C is to be constructed in accordance 
with S, we are bound in some respects and free in 
others. "149 

147R. Carnap, "Foundations of Logio and Mathematics 11 

in International Encyclopedia ••• Vol. 1, p. 152f. 

l4Bibid., p. 148f. 

149Ibid., p. 166. 



According to Carnap, the construction of a 

scientific system may proceed in two ways. In the first 

way, we would begin with the semantical system s. That is 
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to say, we would classify the kinds of signa Which we want 

and the rules determining the forma of the sentences which 

we wish to employ. Then we would lay down the rules of 

semantical designation. This would involve selecting the 

objecta and properties which we wish to speak about, and 

then choosing the signa we wish to employ to designate these 

objecta and properties. 15° 

The other method is to begin with the construction 

of a formal calculus c, and then to lay down the set of 

semantical rules S which interpret c. This method is the 

more important since, according to carnap, it is the procedure 

which science does in fact follow. We shall, therefore, 

quote carnap's account of it at length. 

"We begin again with a classification of signs and 
a system F of syntactical rules of formation, defining 
'sentence in C' in a formal way. Then we set up the 
system C of syntactical rules of transformation, in 
other words, a formal definition of 'C-true' and 
'C-implicate.' Since so far nothing has been determined 
concerning the single signa, we may choose these 
definitions, i.e. the rules of formation and of 
transformation in any way we wish. With respect to 
a calculus to be constructed there is only a question 
of expedience or fitness to purposes Chosen, but not 
of correctness. 

"Then we add to the uninterpreted calculus C an 
interpretation s. Its function is to determine truth 
conditions for the sentences of C and thereby to change 
them from formulas to propositions •••• 
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"Finally we establish the rules SD for the 
descriptive signs. We have to take into account the 
classification of signs. We choose the designata for 
each kind of signa and then for each sign of that kind. 
We may begin with individual names. First we choose 
a field of objects wi th which we wish to deal in the 
language to be constructed, e.g., the persons of a 
certain group, the towns of a certain country, the 
colours, geometrical structures, or whatever elsa. Then 
we determine for each individual name, as its designatum, 
one object of the class chosen. Then, for each predicate, 
we choose a possible property of these objects, etc. In 
this wayi a designatum for avery descriptive sign is 
chosen." 51 

carnap'a account of the structure of a scientific 

system is in perfect accord with the views of Poincaré. 

Poincar,, for example, held that we begin with a system of 

geometrical axioms. We are completely free to choose any 

set of axioms we desire. It is true that he held the Euclidean 

axioms to be preferable on pragmatic grounds but this is 

merely accidentai, and in any case is covered by Carnapts 

reference to "experience or fitness." However, we cannot 

say of our set of axioms that it is true or false. The 

axioms do not describe the world. The question of truth 

only becomes relevant once we have defined the signa of 

our axiomatic system. For example, we may have the aign 

"straight-line" designate the path traversed by a light-ray. 

But here again, of course, our choice is free. In short, 

Poincaré held the view, Which has since come to be regarded 

as the distinctive property of the logica1 positivists, that 

a scientific system is an abstract, 1ogica1 ca1cu1us which 

151 Ibid., p. 167. 
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is interpreted by semantical rules. Furthermore, it Should 

be noted that Carnap did not fail to see the conventionalistic 

implications of his account of the structure of a scientific 

system. 

"Are the rules on which logical deduction is based 
to be chosen at will and, hence, to be judged only with 
respect to convenience but not to correctness? Or is 
there a distinction betw•en objectively right and 
objectively wrong systems so that in constructing a 
system of rules we are free only in relatively minor 
respects (as, e.g. the way of formulation) but bound 
in all essential respects? Obviously, the question 
discussed refera to the rules of an interpreted language; 
nobod~ doubts that the rules of a pure calculus, without 
regar to ~Y Intërprëtation,~an be chosen arbitrarily. 
On the bas s of our former discussiOns we are in the 
position to answer the question. We found the possibility 
- Which we called the second method - of constructing a 
language system in auch a way that first a calculus C 
is established and then an interpretation is given by 
adding a semantical system S. Here we are free in 
choosing the rules of c. To be-süre:-tne-cEOiëe-rs not 
irrelevant; it de!ena:s-upon c"Wnëtnër tEë interprëtat!On 
~ yield a rich anguage or-only ! poor one. 

"We may find tha t a calculus we have chosen yields 
a language which is too poor or which in some other 
respect seems unsuitable for the purpose we have in 
mind. But there is no question of a calculus bein~ 
right o~rong, true-or false. x-true inte~retat on 
T'SDO_ p sSible for any consistent caiëüius. 1115 

Carnap concludes that the rules of a scientific 

system "can be chosen arbitrarily and hence are conventional.nl53 

Now it may be objected that Poincar~ made no explicit 

distinction between a formai calculus and an interpreted 

system, in Which case the comparison with Carnap is specious. 

In all rigour, this objection is partly warranted. As we 

152Ibid., p. 169. (The italics are mine) 

l53Ibid., p. 170. 
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remarked in an earlier chapter, Poincar~ failed to make 

explicit the distinction between mathematical relativity 

and physical relativity. We might now rephrase this 

criticism in a new context by saying that Poincar~ failed 

to make explicit the distinction between our freedom in the 

choice of syntactical rules and our freedom in the choice 

of semantical rules. It is, in fact, due to his obscurity 

in this regard tbat his doctrine of conventionalism has been 

widely misinterpreted. However, this obscurity is really 

quite natural. For example, if we followed Carnap to the 

letter, our mode of formulating the axioms of pure geometry 

would be quite different from our mode of for.mulating the 

axioms of physical geometry. Take the following axiom: 

For any two points there is a straight line ~ which they 

lie. In a pure geometry the foregoing might be expressed 

as: 

For every x, y (rf (x is a P1 and y is a P ) then, 

for some z(z is a P2 and l(x,z) and l(y,zdT 

Carnap, however, points out that a scientific system 

is actually a "nonlogical calculusn154 which consists of two 

parts. There is the basic logical calculus and in addition 

a specifie partial calculus which will vary from one science 

to another. Since the basic calculus is virtually the same 

for all systems, we tend not to mention i t. "What usually 

is called an axiom system is thus the second part of a 

l54rbid., p. 179. 
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calculus whose character as a. partis usually not noticed.nl.55 

Normally, a mathematica.l calculus is purely logical. 

In the case of geometry, however, it may be an interpreted 

calculus, which is intended to be descriptive. When we 

employ su ch terms as "point", "straight line", etc., we treat 

them as interpreted signs, i.e. as descriptive. Thus, the 

axioms of geometry become factual propositions about the 

world. Carnap points out that it happens to be the custom 

to employ the same symbols in mathematical as in physical 

or interpreted geometry. 

"The distinction between mathematical geometry, 
i.e., the calculus, and physical geometry is often 
overlooked because both are usually called geometry and 
both usually employ the same terminology. Instead of 
artificial symbols like 'P', etc., the words tpointr, 
tline', etc., are used in mathematical geometry as 
well, ••• and hence there is no longer any difference 
in for.mulatio?,1~gtween mathematical and physical 
geometry. • • 

It is the custom of employing the one language 

for mathematica.l geometry and physical geometry whiCh has 

led to the dispute concerning the status of geometry in 

relation to the world, especially following the development 

of non-Euclidean geometries. 

"Mathematicians regarded all these systems on a. 
par, investigating any one indifferently. Physicists, 
on the other hand, could not accept this plurality of 
geometries; they asked: 'Which one is true? Has the 
space of nature the Euclidean or one of the non-Euclidean 
structures?' It became clear by an analysis of the 

l55Ibid., p. 180. 

l56Ibid., p. 195. 
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discussions that the mathematician and the physicist 
were not aware of this in the beginning. Matheroaticians 
have to do with the geometrical calculus, and with 
respect to a calculus there is no question of truth 
or falsity. Physicists, however, are concerned with 
a theory of space, i.e. of the s~stem of sossible 
configurations and movemë:Dts-Qfodies-,- e~~e with the 
Interpretation ëira geometric'il calculus. n1;>1 

Although it is obvious that Poincaré did not make 

the distinction clear, he did reach the correct conclusions 

Which are implied by auch a distinction. Moreover, it was 

obviously implicit in his philosophy as he did distinguish 

between mathematical and representational space. 

Finally, a brief reference should be made to the 

fact that, as we saw in the preceding chapter, Poincaré 

treated mechanics in precisely the same way as geometry. 

This again is perfectly consistent with the views of Carnap. 

"The method described with respect to geometry can 
be applied likewise to any other part of physics: we 
can first construct a calculus and then lay down the 
interpretation intended in the form of semantical rules, 
yielding a physical theofY as an interpreted system 
with factual content. n158 

We may conclude that on all major points Poincare's 

interpretation of science is essentially similar to that of 

the logical positivists. In the first place, Poincaré is a 

thoroughgoing empiricist, in the tradition of Ernst Mach, as 

is plainly revealed by his treatment of the spatial continuum. 

Secondly, like the positivists, he regarded objective, 

scientific knowledge to be concerned with relations rather 

l5?Ibid., p. 196. 

158~., p. 199. 
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than with qualities. Finally, while not stating the matter 

as explicitly as he might have, he anticipated Carnap•s 

interpretation of a scientific system as a formal calculus 

which is interpreted by semantical rules. 

Some readers may .find the close analogy between 

Poincarérs conventionalism and the rigorous empiricism of 

the logical positiviste very difficult to accept. It may, 

for example, be said that by no means all of the logical 

positivists have been as generous as Philipp Frank in 

acknowledging their indebtedness to Poincaré. We have already 

seen that sudh positiviste as Reichenbach and Schlick were 

openly critical of his position. In the aforementioned 

cases it has been shown that the differences are largely 

apparent and due to a misunderstanding, albeit a natural 
, 

one, of Poincare' s actual doctrine. 

However, let us pursue the matter a little further. 

Victor Kraft, an eminent logical positivist, has criticized 

the thesis of conventionalism on the ground that it lays open 

the possibility for the retention of any scientific theory 

in the face of conflicting facts through the introduction of 

appropriate auxiliary hypotheses. 159 As an example, he cites 

the Lorentz-Fitzgerald contraction as an auxiliary hypothesis 

introduced to make the Michelson-Morley experiment compatible 

with existing theory. In Kraftts opinion, we must choose 

between conventionalism and empiricism, the two being clearly 

l59Victor Kraft, The Vienna Circle, p. 140. 
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incompatible. 

"But if we do not wish to gi ve up empiricism in 
favour of conventionalism, we must allow this way of 
solving contradictions between a consequence of the 
hypothesis being tested and an accepted basis sentence 
only under definite conditions. We must not allow the 
introduction of arbitrary auxiliary hypotheses or 
modifications of our presuppositions which serve no 
other purpose than to remove these contradictions and 
are otherwise unfounded. Such remedial assumptions are 
arbitrary if they are not either capable of independant 
verification, in ter.ms of new observations, or deducible 
from propositions already established.nl60 

~ In the first place, it should be noted that Poincare 

was attempting to describe the nature of scientific theory. 

It would be wrong to suppose that he regarded conventionalism 

as prescriptive. He distinguished certain conventional 

aspects of scientific theories and drew attention to them. 

At no time and in no way did he advocate the extension of 

these conventional aspects. He was not arguing for an 

unrestricted conventionalism. He made it abundantly clear 

that he did not recommend that scientists abandon their 

experimenta in favour of ingenious linguistic exercises. 

What Poincar~ did say, however, and on this point 

Kraft would agree, is that there will always remain the 

logical possibility of retaining a theory through the 

appropriate modification of its parts. However, when he 

cites examples of such attempts, it is quite clear from the 

context that it is only to show how absurd they are. He 

argued that While experience could not falsify such theories 

160rdem. 
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it will clearly lead to their abandonment by showing them 

to be ~ruitless. Kra~t, himself, agreed, as is obvious from 

the above quotation, that auxiliary hypotheses are admissible 

provided that they are not arbitrary. But, as the reader 

knows, this is precisely the point taken by Poincaré. 
., 

A similar criticism has been levelled at Poincare 

by Karl Popper. While Popper is not a logical positivist, 

he is decidedly an empiricist, and has been closely associated 

with the Vienna Circle. He maintained that a scientific 

theory is characterized by its falsifiability. 161 Stated as 

simply as possible, Popper•s position is to the affect that 

an experimental investigation is carried out as an attempt 

to refute a scientific theory. It is not the object of the 

scientist to find ways and means of preserving his theory 

but rather to assure himself that the theory is not vulnerable 

to attack on experimental grounds. 

"According to my proposai, what characterizes the 
empirical method is its manner of exposing to falsification, 
in every conceivable way, the system to be tested. Its 
aim is not to save the lives of untenable systems but, 
on the contrary, to select the one whiCh is by comparison 
the fittest, by exposing them all to the ~iercest 
struggle for survi val. 11162 

It would certainly appear that Popper•s brando~ 

empiricism is incompatible with the conventionalistic 

interpretation of scientific theories. For example, he 

p. 40ff. 

161Karl Popper, The Logic of Scientific Discovery, 

1620 it 42 ~· ~., p. • 



writes that, "the empirical method shall be characterized 

as a method that excludes precisely those ways of evading 

falsification Which are logically admissible.n163 

It is beyond the scope of this thesis to make a 

direct refutation of Popper•s elaborate treatment of the 
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logic of science. Popper, however, adroits that conventionaligm 

is logically defènsible but accuses it of certain "stratagems. 11164 

"In order to formulate methodological rules which 
prevent the adoption of conventionalist stratagems, we 
should have to acquaint ourselves with the various forms 
these stratagems may take, so as to meet each with the 
appropriate anti-conventionalist counter-move. Moreover 
we should decide that, whenever we find that a system 
has been rescued by a conventionalist stratagem, we 
shall test it afreah, and reject it, as circumstances 
may require.nl65 

Popper goes so far as to admit that conventionalis.m 

cannot be rejected on theoretical grounds. 

11attempts to detect inconsistencies in it are not 
likely to succeed. Yet in spite of all this I find it 
quite unacceptable. Underlying it is an idea of science, 
of its aims ~6 d purpose~, Which is entirely different 
from mine. nl66 

It would seem that Popper treats conventionalism 

with sorne injustice if he means by this that the conventionalist 

regards science as the art of linguistic and logical 

manipulation. 
, 

Poincare has clearly stated that the object 

163Id em. 

164o 
~· cit., p. 80. 

1650 
~· cit., p. 82. 

166Ibid., p. 80. 
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of science is to discover objective relationships in the 

structure of the world. Surely 1 Popper does not conceive 

of any other role for science. 

In all 1 Popper distinguishes four conventionalist 

stratagems to be guarded against. 167 In the first place, 

the conventionalist will introduce ad hoc hypotheses to 

preserve a theory. Secondly, he may modify the "ostensi ve 

definitions" of the theory. Thirdly, he will be sceptical 

in his attitude to the reliability of an experimenter whose 

resulta threaten the theory. Fourthly1 he will question the 

theoretical acumen of the scientist. 

The third and fourth reasons may justly be ignored 

as trivial. It is noteworthy that Popper frequently refera 

to the views of an "imaginary conventionalist. n168 This turn 

of phrase is well advised1 since we know of no conventionalist 

who has suggested either of these as grounds for the retention 

of a theory. Certainly, there is not the barest suggestion 

of any such idea to be found in the works of Poincaré. 

Therefore, we shall limit our considerations to "strata.gems" 

one and two. 

Popper would allow the introduction of ad hoc or 

auxiliary hypotheses insofar as they do not diminish the degree 

of testability of the theory 1 in which case they are even to 

167Ibid. 1 p. 81. 

168Idem, Popper does cite the names of H. Poincaré, 
P. Duhem and A.E. Eddington but fails to examine their actual 
writings in even the barest detail. 
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be encouraged. 169 However, When an ad hoc hypothesis is 

imported for the specifie purpose of retaining a theory in 

the face of conflicting facts, it has diminished the degree 

of testability of that theory and is to be rejected as a 

mere stratagem. 

All this, of course, is simply a matter of stating 

the obvious. Let us imagine any actually existing theory. 

Let us now suppose that a novel fact has been observed, which 

is incompatible with that theory. The old theory is then 

enlarged for the specifie purpose of taking that fact into 

account. The new theory will then possess a higher degree 

of testability than the old one because at least one more 

testable statement will be deducible as a consequence of it. 

Poincaré would argue that it would be logically possible to 

importa type of assumption which merely explainsthe fact 

away, for example the postulation of an unobservable force. 

Popper is correct in suggesting that this would diminish the 

testability of the theory and is therefore to be avoided. The 

crucial point, however, is that Poincaré would clearly have 

agreed with Popper in this regard. "If a principle ceases 

to be fecund, experiment without contradicting it directly 

will nevertheless have condemned it."17° 

Popper was probably misled into attacking Poincaré•s 

thesis by placing undue stress on the latter•s ana1ysis of the 

169er. Ibid., p. 83. 

l70The Value of Science, p. 110. 



173 

~oundations o~ geometry. Physical geometry is a special 

case of physics in that no novel facts are discoverable. 

The "given" of geometry is the amorphous spatial continuum. 

In demonstrating the conventional character of geometry, 

Poincar~ stressed the point that the several systems of 

metrical geometry are ~or.mally equivalent. That is to say, 

in Popper•s language, all suCh systems of geometry possess 

precisely the same degree of testability. Renee, experience 

cannot compell the adoption of one system of geometry rather 

than another. In the case o~ mechanics, however, new facts 

are discoverable whiCh render one theory more acceptable 

than another. Popper seems to believe that Poincaré held 

the view that an.y system o~ meChanics, like any system of 

metrical geometry, is as good as any other, Popper rightly 

finds suCh a view o~ science to be unacceptable. But clearly 

this view is far ~rom Poincarets conception of the nature of 

mechanical description. 

The foregoing considerations apply equally to the 

second stratagem of conventionalism., namely the modification 

of ostensive definitions. An ostensive definition in this 

context is what Reichenbach called the "coordinating definition" 

and what Carnap calls the "semantical rule." Popper appears 

to be of the opinion that there is something in the nature 

of an artful subterfuge involved in the modification of an 

ostensive definition in the light of fresh experimental 

evidence. This is attributable to the fact that Popper treats 



a scientiric theory from the artiricial standpoint of the 

proressional logician of science. That is to say, for 

174 

Popper, a scientific theory is a rinished product. Popper's 

legitimate task as a logician is to determine the degree of 

empirical justification pertaining to that rinished product. 

However, suCh an approach to science, while fruitrul in 

itselr, has certain shortcomings. In particular, it overlooks 

the fact that scientific theories develop gradually from the 

collective experience of generations or scientists. Popper 

appears to suggest that once a primitive sign has been 

semantically defined in a theory it is dishonourable to 

Change the definition. If this is so, then the history of 

science is replete with dishonourable intentions. For example, 

the word "atom" played a specifie role in nineteenth century 

physics. But in the present century Niels Bohr profoundly 

modified the meaning of "atom" to take account of fresh 

experimental evidence. Surely, Popper would not suggest 

that Bohr was guilty of cheating, of employing a stratagem 

to retain the atomic theory of matter. The point, once 

again, is that in sorne instances such changes are fruitful 

while in others they are not. As a conventionalist, Poincar~ 

would merely argue to the affect that there is nothing to 

prevent a scientist from modifying a definition in either 

case. However, he would certainly agree that, in the second 

case, nothing fruitful will have been gained by it. 

The foregoing considerations lead directly into my 
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final point. Once more, the reader may object to the stress 

that has been placed on the similarities between logical 

positivism and conventionalism on the ground that the sharp 

distinction between an abstract calculus and an interpreted 

scientific system made by Carnap is not to be found in the 

philosophy of Poincaré. 

The difference between the formal presentations 

of the two thinkers is to be attributed to a difference of 

perspective. In the case of Carnap, we find the perspective 

of the logician, concerned with the finished product, its 

formal structure and the grounds for its justification. 

Carnap, in short, was not concerned with the psychology of 

scientific discovery. He would certainly not suggest that 

the scientist actually begins by working out a logical 

calculus and then proceeds to interpret that calculus by the 

conscious formulation and introduction of semantical rules. 

For Poincar~, on the other hand, scientific 

theorizing was a persona! matter. He was aware of the gradual 

and inter.mingled growth of the syntactical and semantical 

aspects of a scientific theory. Consequently, he was lead to 

present the two as being of a piece, as an admixture, which 

they are in the mind of the working scientist. Something is 

to be said for each approach. They differ but are by no 

means incompatible. On the contrary, they complement each 

other. 
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