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(ii) 

Preface and a few historical notes 

This thesis is the result of an interest aroused, especially in 

the relatively old paper of E. Schrl:Jder [1], by Prof. H. Schwerdtfeger 

whose brilliant lectures on numerical analysis I attended at McGill 

University during the year 1960- 61. After sorne further reading, 

the temptation was great to approach the subject from a functional 

analytical point of view as did L. V. Kantorovich in his "Functional 

analysis and applied mathematics 11 (Translated from the Russian 

{1948). Originally printed in Russian in Uspe.khi matematicheskikh 

Nauk, Vol. III, No. 6, 89 - 185, 1948.); L. Collatz (NMherungsverfahren 

hl:Jherer Ordnung fUr Gleichungen in Banach- Rllumen; Archive for 

Rational Mechanics and Analysis 2, (1958- 59), 66- 75); J. Schrl:Jder 

(tiber das Newtonsche Verfahren; Arch Rat. Mech. and An. 1, (1957 -

58), 154- 180.) and others. However, after having read H. Ehrmann' s 

much neglected and relatively unknown paper [2], I decided to deal 

with the matter in the conventional functional theoretical way Schrl:Jder, 

Bodewig and others did. 

The problem of solving equations by means of iterative methods 

is not a very new one (i.e. in a mathematical sense of speech). Newton 

was probably the first (1674) who applied this type of method to the 

equations 

and 
x - e Sin x = N 
e Sinh x - x = N (N constant) 

{See: "Principia11 (1687) Prop. 31 , Book 1). These two equations 

arose from Kepler' s problem to find the position of a planet at a 

given time in an elliptic or hyperbolic orbit of eccentricity e. Sub­

stantially the same method i s also mentioned by N e wton in his "De 

analysi per aequationes numero termiriarum infinitas". The earliest 
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printed account of this appeared in Wallis' "Algebra" (.1685) 

Chap. 94. 

In 1690, Joseph Raphson (1648- 1715), a fellow of the Royal 

Society of London, published a tract "Analysis aequationwn wliver­

salis .. , in which he expre·ssed Newton' s method in the now well­

known algorithmic form. Raphson' s version of the process repre­

senta what J. Lagrange (Resolution des equat. nwn. {1798), Note V, 

p. 138) recognized as an advance on the scheme of Newton. Accord­

ing to him the n:1ethod is "plus simple que celle de Newton''· We 

may add here, that the solution of nwnerical equations was considered 

geometrically by Thomas Baker {1684) and Edmund Halley {1687), 

but in 1694 H~qey Jthad a very great desire of doing the same in 
~ . . 

numbersn. The only difference between ·Halley' sand Newton' s 

methods is that Halley salves a quadratic equation at each step, 

Newton a linear eq~ation. Halley alèo modified certain algebraic 

expressions, yielding approximate cube and fifth roots, given in 

1692 by Thomas Fantet de Lagny {1660 - 1734). 

In the work following, special attention is given to the second 

and third order algorithme which are variations of the Newton -

Raphson method. This attention is e specially directed at the con­

vergence of the different modifications and the e rror e stimate of 

each. In chapter V the construction of two types of higher order 

algorithme is discussed. These constructions are very often 

quite laborious, and in practic.e it was found that in most cases 

not much is gained in the use of ~lgorithms of order higher than 

three. However, there does exist a need for a means of choosing 

the most expedient algorithm for a specifie function. In chapter VII 

as attempt was made to comply with this demand. Chapter IX 

conslsts of a short réswn~ of well-known, and sorne lesser-known 
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theorems and methods which might be of aome assistance in deter­

mining the approximate location of the roots of an equation. The 

knowledge of such locations are of grave importance to the sorne­

times arduous task of choosing an initial approximation to the 

de sired root. 

The major claims to originality (if any) are the follewing: 

(1) The corollaries toT. 5 

(2) The construction and discussions of modifications II(a), 

IY(a}, IY(b), V( a), V(b) of the N - R method. The se involve the 

corollary toT. 3, theorem 8 and proposition 9. 

(3) Theorems 10 and 11 

(4) Applications followin"g theorem 13 

{5) Table for constructing higher order algorithms, Fig. 4 

(6) Theo rems i 7, 20, 22, ·25 

For many of the other theorems, already known, revised forms of the 

proofs appear. 

To comply with the regulations of this university, I herewith 

wish to declare that no help from persons outside was received in 

the preparation of this thesis in general. I am very much indebted 

though, to my director of studies, Prof. H. Schwerdtfeger, whose 

inspirationallectures, already mentioned, formed the keystones 

to this humble work. I furthermore wish to express my sincere 

gratitude towards the Canadian Mathematical Congress and th~ H. B. 

Webb - Stipend Trustees {Cape Town, South Africa) for the monetary 

assistance received during the paat year. 

McGill University, 

Montreal (Canada). 

f 

Aug. 1961. 
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I 

Introduction 

In the following pages we are going to consider the iterative 

solution of any analytic function ( regU.lar in the neighbourhood of 

the rGots) of the complex variable z . . In ether words we are going 

tQ construct a:nd inve stigate nu.r;nerical methods for finding ariy 

root ·~· of f{z) = 0, where we only consider those cases for which 

f(z) is continuous in the vicinity of ~, and f(z) be come s zero 

of finite order at ~ (i.e . the order of the root ~ is finite). 

From the fundamental theorem of algebra, we have that in 

case of the n-th degree polynomial, 
n n-1 

f(z) = a 
0 

z + a 
1 

z + 

the equation 

+ a = 0 
n 

where n > 1 and the a. are constants with a :f. 0, has at least 
J 0 

one root. 

. . , 
The well-known theorem by Rouche says however: 

Let g{z) and h{z) be two functions, analytic in a simply 

connected open region D. Let C be a rectifiable Jordan curve 

lying in D. Suppose that along G, g(z) is nowhere zero, and 

1 h( z) 1 < 1 g(z) 1· Then the function g( z) + h( z) ha s the same num­

ber of zeros within C as g(z) ha s. 

n 
Now let f(z) = a z + . . . + a with n > 1 and a :f. O. 

o n o 
If C · is a circle of large radius, with centre at the origin, we 

have ali along C 

l n-1 J J n a
1

z + ... +a < a z j 
n o 

n 
Hence, f{z) has the same number of zeros within C as a z 

0 

does. That number is n. Thus f(z) has n roots, and it is the 

process of finding these roots by means of numerical iteration 

that we are interested in. We will however, not confine ourselves 
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' to polynomials alone. Indeed, any analytic function regular within 

a simply connected open region circumscribing ; will be con­

sidered. 

At this stage it may not be entirely redundant to reiterate 

the following well- known fa ct: 

Given f(z) analytic within a simply connected open region D. 

Then the roots of f(z) lying in D will not have a limit point in D; 

since if that were the case, we know by a well-known theorem on 

the zeros of an analytic function, that f(z) will vanish identically 

throughout D - a trivial case which will obviously be excluded in 

our following discussions. 



3 . . 
II 

A few basic theorems and the concept of the order of an algorithm 

The problem at hand is thus to find an iteration formula 

z = F(z 
1

) = G{z 
1

, f(z 
1

), fi(z 
1

), 
n n- n- n- n-

... ' f(s)(z )) 
n-1 

s>1, n=O,i,'2, ... (2. 1 ) 

which gives an approximation z for a root ~ of the analytic 
n; 

function f(z) = 0 after n applications. This implies that the 

distance of z 
1 

from ~ will be smaller than the distance of 
n+ 

any of the previous z {j = 1, ... , n-1) from ~. 
j . ' 

i.e. 

and 

,. 

Further we want F to be such that 

lim~ =~ n-+oo n 

1 zn-.- ~ 1 < 1 z n-1 ~ 1 

lz ..; ~ 1 < E ' N . 

Thus we can denote ~ = lim F(n)(z). 
n-oo 

for all n 

N large enough 

The initial value z = z must·be an arbitrary point within 
0 

the so- called domain of convergence of the algorithm. 

T. 1 : If lim z = ~ , th en F( ~) = ~ . 
n-+-oo n 

Proofl Trivial: 

~ = lim z 
n-+oo n 

= lim F{z 
1

) 
n-+oo n-

= Fllim z 
1

) = F{~) 
n-+-oo n-

This equality shows that F must be continuous in the vicinity 

of ~· Incidentally, from s there can of course extend aline of 

discontinuity of F in the complex plane, i.e. a eut which extends 

F into mo.re laminae. We will confine ourselves however, to those 

functions F which are single valued and differentiable {i.e. analytic) 

at !east within a part of the domain of convergence containing ;. 
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T. 2: Given F(z) analytic. Then a necessary and sufficient 

condition for lim z to èxist and be equal to ~, is that 1 F 1 (z) 1 < 
n-+«> n . 

q < 1 within the vicinity of ,~ (a. circle centre ~.) 

Pro of: 

Necessity: Since 'F{z) _is analytic, we can e:xpand F(z ) or 
0 

F{~ + !: ) in a Taylor series within a circle, centre ~, as follows: 

. 2 
F(z

0
) = F{~ + e:) = F(~) + e: F' (~) + ~! F(2~(~) + ... 

2 
i. e . z t = ~ + e: Fr ( ~ ) + ~ ! F( 2) ( ~ ) + 

From this we see, for 1 z
1 

- ~~ to be smaller than 1 z 
0 

- ~ 1 = 1 E 1, 

(e: small) it is necessary for 1 F' (~) 1 to be smaller than i. 

Sufficiency: We have F(~) = ~ and zn = F{zn_
1

). Then 

z - ~ = F(z ) - F(~) = F' (~ ) (z · - ~ ). (Mean Value 
n n-1 n-1 · n-1 

Theorem. See [16] ). Therefore 

lz -~l<qlz -~l<q2 1z -~l< ... <qnlz -·~1· 
n - n-1 - n-2 - - o 

As qn ~ 0, 1 z - ~ 1 - O. 
oo n 

Definition: The order of convergence of an algorithm . 

An algorithm of the type (2. 1) is said to converge towards 

a root ; of f( z) = 0 for all initial values 

; of order k > 0, when 

z = z in a vicinity of 
0 

[The synbols 0 and o to be used in this work, are the well-known 

order symbols, i.e.: 

We write q, = O(lj;) ; q,, lj; functions of z in R if there exists a 

constant (i.e. a number independent of z) A so that 

cp = O(lj;) as z 

neighbourhood U of z 
0 

for all z in R; 

- z if there exists a constant A and a 
0 

so that 
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I<PI < AI4JI for al! z common to U an<;l R; 

and we write <1> = o(4J) as z -+ · z 
0 

if for any given E > 0 there 

exists a neighbourhood UE of z
0 

so that 1~1 < E I4JI for ail 

z common to U and R.] 
E 

As can be ea sily seen from the Taylor expansion used above, 

this condition is satisfied if F(z) has derivatives up to the k-th 

order in a vicinity of ;, and the equations 

F(;) = ;, F' (Ç) = F(
2

){;) ;.; ... = F(k-i)(;) = 0, k > 0 

and F(k) (;) f. 0 hold. 

(Note further, the smaller F(k)(Ç), the quicker is the k-th 

order convergence . ) 

The following propositions follow immediately: 

P. 1: Given an algorithm of order k > 0, then the algorithm 

z = F (z ), 
n r n-1 

n = 0, 1, 2, ... 

[where F (z) is the "r-fold iterated" function, 
r 

i.e. F
1

(z) = F(z), F
2

(z) = F(F(z)), ... , Fr(z) = F(Fr_
1

(z))] 

has the order kr. 

Proof: Trivial - Since the error made at the j-th approx­

imation {i.e. the deviation of zj from ~) is proportional to the 

k-th power of the error made at the (j-1)-th approximation. 

Thus, if the first approximation (i.e. 1 z - Ç 1) is correct 
0 

to the s-th decimal position, the 2nd. approximation will be 

correct to the ks-th decimal position ... and the r-th approximation 
r-1 

will be correct to the k s-th decimal position. 

P. 2: If we have the two algorithme F{z) and G(z) with 

F(z) - ç = 0( 1 z ; 1 kf), z- s 
and G(z) - s = O(lz s lk2), z- s' ki, k > 0 

2 



then the al go rithm s 

z = F{G{z }} 
n n-1 

and z = G(F(z )) 
n . n-1 

converge in a vicinity of g at !east with order k k . 
1 2 

6. 

P. 3: If we have F(z} = S (z) as an algorithm of the type 
k 

{2. 1} of order k > 0 for finding s ( f{Ç) = 0) then the most 

general algorithm of the k-th order for this purpose will be of 

the form 

* F {z) = Sk(z) + G(z) 

where G(z) is a { in a vicinity of s singularly defined} function 

which only has to satisfy the condition 

G(z) = O(lz- slk), z- s· (2. 2) 

P. 4: If F(z) = Sk (z) is an algorithm which converges 
1 

towards s with order k > k > 0, then 
1 k 

z = S (z ) + 1 f(z ) 1 for 
n k n-1 n-1 f' <s > -:~ o 

1 

z = S {z ) + 
n k n-1 

1 

is an algorithm of order k. 

f(z ) k 
n-1 . 

f'(z ) 
n-1 

for f' (Ç) = 0 

Proof: Both f(z) in the case f' (Ç) -:1 0, and f(z) have 
f' {z) 

s as a simple root. Thus we have 

1 f( z) 1 k = o(j z - s 1 k) , z - s 

I.ihl.lk- (:lk), 
f' {z) - 0( 1 z - ~ z - s 

k 
but not equal to o( 1 z - s 1 ), z - 's· Togethe r with the fa ct 

k 
S ( z} - s = 0{ 1 z - Ç 1 ' ) = o{ 1 z 

k1 
- slk), z -ç 

the proposition follows immediately. 

It follows from P. 3, that if one already hasan algorithm 

of k-th order e. g. F(z} = S (z), infinitely many algorithms of 
k 
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jhe sa.me arder can be obtc;~.ined by adding a function G(z) satisfy­

ing condition (2. 2), e. g. G(z} = (z - ~t. Since l is not known 

in general, G(z) m ·ust be expres~?ed by the function f(z) and its 

derivatives, e. g. 

or mo~ gene ra! 

G(z) = [ f(z) ] 
k 

for 

G(z) [ f(z) r = · f' (z) 
for 

k 
G{z) = [f(z)] c!>(z), 

~]k 
G( z) = tf' (ztl t?(z)' 

whe re q,(z) stays fini te if z -+ ~ • 

Thus: 

f' (~) :/:. 0 

f' (~) = 0 

f' ( s) f. 0 

f'(~) = 0 

P. 5: Given an analytic function f{z) with z = g as root, 

f' ( ~) :/:. O. Given further an algorithm 

F(z) = S (z), 
k 

k>O 

of the type {2. f) (i.e . an algorithm converging to ~ with k-th 

arder). The most general algorithm of k-th arder can then be 

obtained by putting 

* k F {z) = Sk(z) + [f(z)] c!>(z) {2. 3) 

where cp(z) is an arbitrary function, finite for z - s, and which 

can still be a function of f(z) and its derivatives. (Note: The un­

kn,Q:wn quantity ~ does not appear explicitly in this general algor-. .. .. 

ithm. cL Cha p. V la ter). 

Proof: (a) According to the Mean Value Theorem 

f(z) = (z - ~)f' (~) 

where f' (~) is finite and f. 0 in a vicinity of ~ (given) 

From this follows: 

* k 
F (z) - ~ = Sk(z) - ~ + [f(z)] cp(z) 

= 0( 1 z s 1 k) + 0( 1 z s 1 k) ' 

= 0( 1 z ~ 1 k) 
1 

(2. 4) 

z -~ 

z -s 
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i.e. * . the algoritlun F (z) ~onverges wlth order k > O. 

(b) On the other hand, according to P. 3 the function 

* F (z) 

where 

must be of the type 

* F (z} = S (z) + 
k k 

· G(z} = O( 1 z - ~ 1 ) , 

G(z) 

z - ~ 

i. e. the quotient 
1 G(z) 1 
lz- ~~k 

must be finite 

for z - ~· Thus we can write 

G(z) = (z - ~)k~(z) 
where ~(z) is fintte for z - e. but otherwise arbitrary. 

Since f' (~) ~ 0 we can put 

{2. 5) 

- . ~(z) 
<j>(z} - [f' \z)]k (2. 6) 

. without any losa of arbitrarity. Again <j>(z) finite for z - ~· 

From (2. 4), (2. 5) and (2. 6) we now obtain G(z) in the form 

G(z) = [f(z)]kq>(z). 

Q.E.D. 

Note: If f' (~) = 0, i.e. if f(z) has ~ as a p-fold root 

( f' (~) = f(
2

) (~) = . . . = f(p-i) (~) = 0, iP) (~) \ O) P. 5 still 

holds (and the proof is the same) if f(z) is replaced throughout 

f(z) f(p-1)(z). 
by f' (z) or by 

Thus P. 4 and 5 show that all (i.e. infinitely many) algor­

ithme of the k-th order for solving the analytic equation f{z) = 0 

can be obtained if only one such an algoritlun is known. 

Furthermore by P. 5 an algorithm of the (k+i)-th order 

can always be found from the general algorithm of the k-th 

order, by placing restrictions on the arbitrary <j>(z) of equation 

{2. 3). Repeated use will be made of this principle in the following 

chapters where the construction of such algorithms is discussed. 
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III. 

The Newton-Raphson rJiethod and other alc;ortthrr:s of the 

second ord.er. 

The Newton-Raphson algorithm was derived aft er the following 

observations in the real case. (The considerations for the corn-

plex case are identical). 

If an arbitrary point x
0 

j_s chosen "suPficiently near" 

to the unknown root ~ of f(x) = o , a better approximation x, 

of l can be found by drawing the or d ina te at x 
0 

t o eut the 

curve Y=f(x) at f(x
0

), and then extend the tangent at 

(x
0

, f(x
0

) ) to eut the x-axis in x
1

. Repea t the process. 

In this way we find a series of successive approxin~ti ons 

xo,xl ,x2' .... t o the root r of f(x) = 0. 

y 

Fig .I. 

it is obvious that X =X -J. 0 
f(xQ) 
-r­
f (x

0
) 

f (x
1

) 

x 2 =X 1 - --=--­
fl(xl) 
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Thus we have here an algorithm 
1 f(x) 

X =X--- for finding 
f1(x) 

a root of f(x) = o. 

Note: In looking for a simple algorithm of type (2.1) it is 

by the result of T.l just natura~ to choose F(z) as something 

like 

F(z) = z- cf(z). By imposing the further condition of 

quadratic convergence on this algorithm we have to put 
1 

c = fl ( z) , i.e. the Newton-Raphson algori thm. 

The similar result is also obtained by answering the question: 

Find a linear interpolation polynamial in z1 which will be 

equal to f(z) for z 1 = z and its f irst derivative equal to 

l for z = z. Th1s polynomial is pt'ecisely tbe.Taylor's 

linear polynomial in 1 z - z 

Equate to zero and s olve for 

1 z = z -

, i.e. 

This i dea was originally due to Newton (1674). In his "Principia 11
, 

(1687) Prop. 31, Book 1; Newton applied this method f irst to the 

equation x-e sin x =N, a nd next t o e s i nh x - x =N. The equations 

arose out o f Kepler's problem to find the position of a planet 

at a g iven time in an elliptic or hyperbolic orbit of e ccentric ity e. 

Raphson however, wa s the first t a express the a lgorithm i n the 

form 

or 

F(z) = z- f(z) 
?(;) 

f(zn-1) 

f l( zn- 1) 
(3.1). 
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(See Cajori's "History of Mathematics" p.203). 

If \is a p-the root of f( z) and if we den ote z- S = E. , so 

that f= EP~ 

fl= t p-1 (p~+ ft~l) 

and th us F(z) :c z - t~ 
p \li + 'è.\)/1 

and F1 (z) :z: 1 - \li d ~ - t dZ 
p~+E\.)1 1 

p~ f.: ~ l + 

Then for z '; 'I or ~ = o, 

Fl - l - 1 
-= p 

i.e. jFlj < ;1 

and F( ~ ) =l . 

Thus by T.l and 2 , (3.1) gives an algorithm of the type (2.1). 

If p )1 , F
1 

( 'S ) f 0 , i . e . 

F(z) -J = o (jz - lj) z -> l 
Therefore, the algorithm convergenc~ linearly only if f(z) has 

a multiple root, and the more multiple the r oot, the larger is 

F1(~) and subsequently, the slower is the convergence. 

If p = l 

F( 2 ) ( 1) ~ o ( in general ). 

Thus, Newton 's algorithm is then of quadratic convergence. 

Renee , we can always obtain quadratic convergence in the case 

of the Newton-Raphson method by simply applying it to ~ 
f ( z) 

instead of .f(z). 
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r ·~ 

(Since the roots of 

12 

f1.ù 
r 1 ( z) 

'"" 0 are the same as those of 

f(z) = o , with the exception that they are all simple). 

Then we obtain 

Modification I:- of Newton's algorithm, namely: 

F( z) "" z - f( z) f 1 ( z) 

Note: This is a special case of the most general algorithm 

of the first order,namely 

Z =Z l n n-

or F(z) • z -

f(zn-1) ' (zn-1) 

1 ( 3. 3) 
fl ~ ~ 
f 'P 

This equation (3.3) is obtained by applying the Newton algorithm 

to ~z '"' o instead of f( z) - 0, where ln ( z) does not vanish 
( z) , 

·toge her with f(z), or at least vanishes with lower arder than 

f(z). Equation (3.2) is obtained from (3.3) by putting 

~(z) - r 1(z). Incidentally, according to P.5 an equivalent 

form of (3.3) would be F( z) = z -
f 

fT ( 3. 4) 

where ~ ( z) _ remains fini te for z -> 'S 
In future the Newton-Raphson method will consequently always 

be referred to as an algorithm of second order convegence. 

Mod.II: On the other hand, if the degree p of multiplicity of 

a root is known, then the N-R algorithm can be replaced by 

F(z) = z -p 
f( z) 

f
1 (z) 

since then F1 ( ~ ) :c 1 - p . 

( In the specifie case where 

l = o. 
p 

f(z) ""(z-1 )p 

( 3. 5) 

,i.e. ~(z) 

this modifie _-·d algori thm gi ve-s for every initial value z 
0 

· -

= 1 J 

immediately the correc t r oot since ·. v . . ' ..... 
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z 1 z:Z 0 - p • ~ ( z 0- ! ) ,.. J 
Mod.II (a): Another modification which might be used in case 

of a p-fold root is 

F(z) ,. z - :tW-1) ( z) sin ce f(p) ( l ) ~ 0 . 
f(p) (z) 

Here again Fl ( l ) f(p-l) (l) f(p+l) (f) :.: 0 z: 

f(p)<l> ]2 

We will see later however, that Mod.II is by far the superior of 

Mod.II (a). As a matter of fact, the convergence speed of Mod.II 

is ~ p (p+l) times that of Mod.II (a). 
2 

Be fore proceeding to the further modifica tions-.' and improve-

ments of the Newton-Raphson method, we will discuss a few funda-

mental theorems concerning the convergence of this method as 

given by (3.1). 

T.3: Let f(z) be an analytic function regular within and on a 

closed contour( rectifiable Jordan curve) C. If f 1 ( S ) ~ o 

where ;{ is a root within c of f(z) = o to be obtained by 

application of the Newton-Raphson algorithm, we have after n 

applications: 

' TI::%1, 2, •••• 

where 1 1 
jf (z) 1 ~ M, 

l f
1 

( z ) 1 2. rn > o in the vicini ty of l , or more 

precisely, in the domain of convergence of the algorithm. 

In the case where r 1(!) ""o.)we simply replace f(z) by 

Hence, this theorem a'lso holds for Mod. I. See analogous 
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T.5 for Mod.II.] 

Lemma: Let f(z) and g(z) be regular within and on a closed 

contour C . (In the real case we need f(x) and g(x) to be 

n-times dif'ferentiable within C.). Assume there exist n 

common roots of f(z) and g(z) v.fithin C . (If a r oot is counted 

with multiplicity p, it must at least have the multiplicity 

p for both f(z) and g(z).) Assume further that g(n)(z) 1 o . 

within C . 

C such that 

Then for any 

f ( z ) 
0 

g(z ) 
0 

Proof of Lemma: Firstly, z is not a root of g(z), as if it 
0 

were the case g(z) would have n+l roots in C, a case which is 

excluded by the assumption that g (n) (z) ~ o in C. 

Let ~ >:: 
f( z ) 

0 

g(z ) 
0 

Consider F(z) = f (z) - ~ g (z) 

Evidently F(z) has the n+l r oots z
0

, zj (j = 1 .... n) 

• . .. There exists a ~ in C , such that 

• . .. 

F(n)(~) = f(n)( l) -~ g (n)(S) =o. 

f(n)(l) 

g(n)(l') 
= f ( z ) 

0 

g ( z ) 
0 

The Rema i nder te r m in general i n t e r pola tion: 

Let f( z ) , g (z) be r egular within and on C (a c losed 

contour). Let Pn (z) be an interpolat i on polynomi a l of degree 

n-1 for f(z) with n interpolation points z1 •... zn within . C. 
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(j: 1 ...• n.) 

Let g(zj) = o (jcl n) 

and g(n) (z) ~ 0 for all z in c . 
Replace f( z) by f( z) - pn(z) in the lemma a bove . 

Then for all z f zJ (j=l n) , z in C , there exists 

a S in C depending on z such that f(z) - Pn(z) 
g(z) 

Put 
n 

g(z)"' lf 
j .. l 

(z-z . ) 
J 

and then we have 

n! 

(3.6) 

~ z =a , (3.6) is the remainder term of the n 

Taylor series. When the interpolation points are all distinct 

(3.6) becomes the remainder term of the n-point Lagrangian and 

also Newton interpolation formula. 

Proof of T.3: We have the Newton algorithm (interpolation poly­

namial for f(z) , which will be equal t o f(z ) for z~z and 
0 0 

its first derivative equal to r 1 (z
0

) for Z=Zo ____ see intro-

ductory remarks t o this chapter:) 

Substitute in (3.6) ( ) ( - f ll( n ) f z - P2 z) - .:.t 
2 

(\an intermediate point lying within C). 

Let z
0 

be the initial approximation to the root S of f(z) • o, 

and put Z.:: l . Then we obtain: 

·., . 



1 6 

l - zl = - f ll( 'l) 

2f1 (z
0

) 

From this we s ee , that generally speaking, the approximation 

will be improved quadratically at each application of the Newton 

algorithm --- a fact already known since the Newton algorithm 

is of arder 2 for the type of f(z) under consideration. 

From the mean value theorem we have: 

• !- z "" - f(z
0

) 
0 

fl ( '\ 1) 

1 .. 3- 2 1 = - rll ( '\ ) f ( z )2 
0 

2f1 (z ) 
0 

f l( l )2 
'\ 

From this we can immediately obtain an upper bound for the dist-

ance of z
1 

t o ! (t .e. an error es t imate) i f we have an upper 

bound f or 1 rll(z) 1 and a lower bound f or r 1 (z) ' s&y 

jfll(z) ~ M 1 f l ( z) 1 2 m ) 0 

Then 
IS -zl 

M 12 '~ ~ f (z
0

) = K • 

and f or f urther approxi mat i ons 
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From this inequality it is evident that the Newton algorithm 

can be applied with great benefit to functions for which rn is 

relatively large, and M relatively small in the vicinity of the 

roots. 

(T.3 was proved by Ostrowski.[l5] in the real case by considering 

the inverse of Y=f(x) ). 

Corollary: If f(z) is an analytic function, regular within 

and qn a closed contour C, and if J is a p-fold root within 

C of f (z) = o, which is to be obtained by applicat i on of Mod.II{a) 

of the N-R method, we have after n applications 

II -zn 1 / 1 Mp+l 1! - z Jt,2 ( 3 • 7) .:::.- n-1 2 rn p 

where M p+l = sup f(p+l)(z) 

I'S - z 1 < Il- 2 n-11 

m p = inf f (p)(z) 

1! - z 1 < Il' zn-11 

Proof : Follows immediately. In this case we have 

P (z) = f(p-l) (z ) + ( z - z ) f(p) (z ) 
2 n-1 n-1 n-1 

as interpolation polynomial for f(p-l)(z) which will be equ&l 

to f (p-l)(z ) for z = z and its first deritative equal . n-1 n-1 

to f(p)(zn-l) for z = zn-l 

Substitute in ( 3 . E): 

f (p-l)(z) - f( p+l)(n ) 
P2( z ):. 2 :_\ 

' an intermedï.a te point lying wi thin ciro le 

, · ·' ,, 
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radius lz-zn-ll wi thin C. '\ ->! as 

Then -P 2 ('g ) = 

i.e. 
r< p-l) ( z ) + 

n-1 

f(p-l)(z ) 
n-1 - z 

f(p) 
n-1 

( 2 n-l) 

! - z n 

• y- z 
' .• ' n 

('X 

+ l' 

~n-1 -> 3 · 

- z ) n-1 

·= -

1 
-
2 

f(p)(z ) + 
n-1 

f(p+l ) ( ~ ) 

2f ( p )( z ) 
n-1 

f(p+l)(~) 

r (p)<'f) 

f(p+ l)('\.) 
lC 

2f(p)(z ) 
n-1 

(~ 2 -z ) =o· n-1 

<s - 2 n-1) 
2 

In the discus s ion above we have assumed that a r oot ~ exiats 

in the nej_ghbourhood of z
0

. In practice it very often happens 

that we must proceed with our computation before this 1S known. · 

However, we can usually tell after the f irst steps, whether 

there i s a root tn the considered neighbourhood. We w+l1 now 

deal with this in morA detail. We have f rom T.2 that a necessary 

and sufficient c ondition for convergence in t he case of the N-R 

algorithm would be that 

f' (z) ) 1 = 
r 1 ( z ) 

f( z) r 11 (z) 

f l ( z )2 

f or z in t he vicinity of the r oot l 

< 1 

' · t . 
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i.e. 

We have seen that this condition is always satisfied r or 

functions of the type f (z) = (z-l )P ~ (z). It is however 

qüite another question whether the algorithm will converge for 

the arbi trary initial value z . \ve will thus try to ob tain a 
0 

condition for convergence in terms of z . 
0 

' T.4: Given f(z) analytic, regular within and on circle C 

where 

and Max 
c 

2 

1 z -z 1 1 .S. 1 ho 1 

h 
0 

= - f ( z ) 
0 

h 1 M .S. 0 

' 

f( zn-1) 

f1(zn-1) 

Then all zn lie in C , and zn 

n = 1 .... 

(3.8) 

where ~ is the only root in C, and S is a s imp1e r oot unless 

it lies on C. 

Further: z -z 1 n+l n 

lz z 12 n- n-1 

M 

M (n=l,2 .... ) 

(n=l , 2 .... ) 

· .... 
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[Note: In this theorern. no assumptions are made as to the 

existence of a root ], 

Proof: Since 

r 1
(z1 ) - r 1

(z 0 ) z ~ r11(z) dz 

(according to Cauchy l'or all curves of inter;ration lying 

in C, connecting z
0 

and z 1 ) 

i.e. 1 r1 (z1 ) "T r1 (z
0

) 1 .S. 1 

Integration by parts gives 

z -z 
1 0 

Substitute in this z = z + t h 

i.e. z -z 
1 = z -z - t h

0 1 0 

dz ""'h
0 

dt. 

0 0 

= ho2 ~0
1 

11 Then f(z 1 ) (1-t) f (z + t h )dt 
0 0 

2 
( 3. 9) 

(3.10) 

This will at le&s t hold for all paths of integration lying within 

the circ le ltl .S. 2 . 

[Since the trans fo r :ned domain of C .(described by lz-z 1 1 .S. h
0

) 

in the t-plane wi ll li.e within !tl s 2, 
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: • 1 t ho 1 ~ 1 z -z l 1 + 1 

:. For z to be within C 

:. lt 1 ~ 2 

Th us (1-t) jf11 (z + t h ) 1 dt 
0 0 

(1-t) dt '= 

Since Max 1r11 (z + t h ) ) = M 
\t'' ;l. 0 0 

If we put h1 =-f(zl) 

fl(zl) 

we have by (3.10) and (3.11) 

1 .e. 

lf(zl) 1 

lfl(zl) 1 

= 

2 (3.11) 

(3.12) 

by (3.9) 
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1 
2 

.s. 1 
2 

(3.13) 

and from this we see that the point z 2 will not get beyond 

the distance l jh
0

j f rom z 1 , and will remain in C. 
2 

From (3.13) it is evident that this will remain true if we re-

place z
0 

and h
0 

by z
1 

and h1 respectively, and thus 

where 

l 
2 

h 1 = z n- n - z 
n-1 ' 

, n =l .... 

and hence a l l zn lie in C. 

We therefore have a sequence {nnl of rested domains (circles) 

in the complex p1~ne, with the . radius of Dn at most equa1 to 

one-ha.lf the radius of Dn- l . This mon ot on i e sequence is 

bounded from be1ow, and thus has a limit l . 

i.e. 

l is a r oot of f ( z ) , s i nce 

Z =Z -n n-1 
f(zn-1) 

fl(zn-1) 

i . e . z n • fl ( z n-1) = z n-1" f1( zn-1 ) - f ( zn-1) 
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f(! ) ::o. 

This roo t l is simple wi thin C: 

We have for all z in (and on C) - see (3.9) 

For z within C the distance between z and z is smaYl er t han 
0 

the diameter of C :. i . . e. 2 jh 1 
. 0 

: . 1 r 1 
( z ). - r 1 ( z 

0
) 1 < 2 1 h

0 
jM s: 1 r 1 ( z 

0
) 1 

and this i mplies that f 1 (z) ~ 0 within C • :~ l is a simpl e root 

unles s i t lies on C. By { 3 . 12) and t he validl ty of( 3 .13) we have 

jhn 1 s: M jhn-112 , nz::l,2 ••.• 

2jf'l(zn) 1 

and this is equal t o: 

jz - z n+l n 1 ..s: M , n :c:l , 2 .... 
. 2 

lzn-2 n-ll 2jf
1

(zn) 

Further , since l1~e~ i n a circ le centre zn+l and rad i us 

lhn 1 ' 
[ lh 1 = lz - z 1 .$.. 1 lh 1 n n+l n -

2n 0 

.. ls -z n+l l .s. 1 hn 1 ..s: M jhn-112 

2 1 f l( zn ) 1 

M 2 
lz - z 1 n n-1 = 

n =l ,2 .... 

We there f ore know t hat a root ex ists i f we begin computing by 

the Newton-Raphs .,n me thod , and i f at t he (n+l ) - t h step, the 
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inequality 

It is essential that r 1 (z ) is not zero. It may also be 
0 

quite hazardous if f 1 (1r ) = o, for if we are sufficiently 

close to 3' , J f 1 ( z 
0

) 1 will be very small. In this case i t 

will again be advisable to replace f(z) 

Mod.II Z :::Z l - p n n-
f(zn-1) 

f1(zn-l) 

(Analog to T.3 for Mod.II ) 

by f(z) 

f 1 (z) 

n=l,2 .... 

Let f(z) be an analytic function regular within and on a 

closed contour (r~ctifiable Jordan curve) C. Let 1 be a 

root within C of exact multiplicity p to be obtained by 

Mod.II of the Newt on algorithm. Then we have after n 

applications: 

where 

-·· ' . 
Il - z 1 <. Il - 2 n-l 1 

M 
P+l. 

:c M 1 P+ 

1 ~ - z 12 
.l n-1 

Note: For p = 1 we have the result of T.3. 

[ The proof of T.3 does not hold for Mod.II , since in this case 

the P2 (z) cannot be considered as an interpolation polynomial 

for f(z) , which will be equal to f(zn) f or Z:Zn and its first 

derivative equal t o f 1 (zn) for z~zn . Incidentally, T.3 can also 

be proved in a similar way as below. ] 
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-=l-z 1+p n-
f(zn-1) 

f1(zn-1) 

i.e. ( r -zn) f1(zn-1) = p f(zn-1) + ( l - zn-1) fl(zn-1) 

(3.14) 

We de fine "· (z) as: 

(! (z) = p f(z) - (z- S ) r 1 (z) 

Then evident1y G (n)(z) = (p-n) f( n)(z) - (z-l f(n+l)(z) 

and G ( n) ( Y ) _ = 0 ( n .. o, l, . . . . p) ( 3 .15) 

If we app1y Taylor's expansion to f 1 (z) we obtain: 

f 1 ( z) 
p-2 

(z- l' )n f(n+l) (l ) + Rp-1 "" .L: = R 
n=o p-l 

n! 

(since! is a root of p-th order.) 

where R l "" (z-l )p-l) r 1 (t) dt p-
2rci 

( t - J )p 
cl 

(where c 1 is a circ le centre l inside C such that f( z ) is 

regular in and on cl.) ,, 

dt :c: 
~ p-1 

<zn-~> r<P )(s) 
(p-l)! . 

/ 1 

\ (Cauchy) (3.16) 

From ( 3 .15 ) it fol l ows further that 

p 
· G (z) = .L: 

D :cO n! 
a (n)("t') 

~ + Rp+l = 
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G( z) = (z -l )p+l~ G { t) 
2rci ( t - ~ )p+2 

c1 

= (z -~)p+1 
( p+ 1) ! . 

G( z) = ( z - ~ )p+1 

( p+~) ! 

( 3 .14) and (3.16) 

' = -

G(p+l)(~) 

[ - f(p+l)('() 

we obtain 

(zn - ~ )2 f(p+l)(Ç) 

p(p+1) f(P)(() 

dt 

(Cauchy) 

In general f(p+l) (() and f(p)('() is n ot explicitly 

known. Thus if we denote the 1.u.b of 1 f (P+1 )(z) 1 in the 

vicinity of~· ·with Mp 1+1 and the g.1.b. of 1 f(p)( z) 1 in the 

vicinity of ~ with mp 1 , we have 

1 '\ - zn 1 ~ Ml p+l 

p(p+1)m
1

p 

As in T.3 we can write for 

f(~ ) - f(z ) n-1 

(3.17) 

f
1

( \) \an intermediate point 

1\ 

No:be: 

- z n 

The more multiple the r oot, the quicker the convergence-

a fact quite contrary to what we have observed in the application · 

of the ordinary N-R a1gori thm. . (See remark in the beginning of. 

this chapter.) 
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In many cases it may be difficult to obtain 

A good estimate of this quantity can be obtained however, 

if M1p+l and the p-th derivative at one point, say z
0 

are 

known. Then an estimate for m1 is derived p 

Corollary: 

(a) From T. 3: 

If in the equation 

f(z):::: (z-l) (z-!2 ) •••• (z-l',) = o • s 

we have 

Il' -z 1 0 

' 
j = 2 • • • . . s 

from 

then the Newton-Raphs on algorithm starting with z is c onvergent 
0 

to the value l 1 ( i.e. "f 1 is a s o-called a t tractive fixed point of 

F = z = n z 

if lll l < 
2m - z 
M 0 

Proof : We dennte 

S 1-zn = a
1

n 

i.e. we have 

- f(zn-1) 
n-1 

f l(zn-1) ' 
n :::: 1 ) 

rn = i nf l f 1 (z ) l 

M • sup J r 11 ( z ) 1 

'r! -z = a 2 
~ 2 n n 

l s 1 
a 3 

0 

' • • • • J 
V -z = as 
3 s n n 

.s. • . . . .s. 1 a s 
0 
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and from T.3 it follows that 

a l 
'~ 

M al 12 ~ (~rn) 3 
al 14 

n 2m n-1 n-2 

~ \ ~m) 7 al 
n-3 

~ ...... 
2n-l 

\ ~m) al 
~ 0 

Tben (>bviol).sly, ja li Il n n = -z ) 
l n ~ 

0 

if M 

2m 

i.e. 

la 0

1 1"' lll-zol 2~ 
2m 
~1 

< l 

18 

2n 
2m ( !:'___ 1 a~ 1 J 1 = 
M 2m 

( It is interesting to note here that in the case where rn is 

relatively large, and M relatively small, i.e. where we have 

a high convergence speed - see remark T.3 -- we have the extra 

benefit of a Jo~~~~restriction of the choie~ of the initial z
0

.) 

i hl. From T. 5 : 

If in the equation 

f (z) = (z -'g1 )P ( z - l 2 ) •••• ( z -lk) "' o 

we have 

IS l - 2 o 1 < IS 2 

ll ~ lj 

- z 
0 

j = 2 ••• k 

then Mod .II of the Newton algori thm will have S 1 as an 

attractive fixed point if 

rn =inf. 1 f ( P) ( z) 1) 
p 

2n 
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M : s up 1 f ( p+ 1 ) ( z ) 1 
p+l .· . ' 

(Again a lesser restriction in case of high convergence speed.) 

Proof: We have . ja
0 

1
1 < la

0 

2 
1 .s; la

0 

3 
1 .s. .... .S: ja

0
kl and-

MQ+l l 2 
p(p+~)mp lan-11 

p(p+l)m
2 ( MQ+l 

Mp+l p(p+l)mp 

Therefore, f or convergence we must have 

p(p+l)m
0 

M p+l 

( from T. 5 .) 

l lyn a 
0 

~ Comparing equation (3.17) to(3.7) we observe thàt Mod.II 

is by far superior t o Mod.II (a), since the speed of c onvergence 

in the first case is ~ p(p+l) times that of Mod.II (a). It 
2 

is thus doubtful whether Mod.II (a) will be of any notable 

practical significance. 

I f in the quadratic equation 

f(z)-= ·(z-l) (z-\)=0 

we have 1 :r - z
0 

< 1 tt- z
0 

1 then the N-R algorithm starting 

with z
0 

is convergent t o _the value l , i.e. S is an attractive 

fixed point of F(z) = z- f(z:/"r1(z) (and '\_is a repulsive 

fixed point._) The same is true if'[ :c \. On the other hand , if 

we have 1 ~ - z 0 1 "" 1wt- z 0 1 , S 1= \ the N-R algorithm 

starting wi th z 
0 

fixed points ofF.) 

i s d ivergent . ( i .e. both l a nd '\are repulsive 
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Proof: We have by definition of F 

(zn - S) (zn - \) 

2zn -J' - '\ 

where 

a c a n+l n 

similarly 

- z J b :::: n n 

Claim: For)'~ \ 

b n+l 

and for S • '\ J i.e. a = b: 

= a J 

a 2 
n 

b 2 
n 

(a-b\ 

a 
2n 

( 3 ·.18) 

(3.19) 

(3.20) 

We will first consider the .case 1 f \: Obviously (3.19) 

is true for n "'· o . Suppose ( 3 .19) is t r ue for n . Then we 

have from (3.18): 

2n n 
(a-b) (a + b2 ) 

2n 2n 
a - b 

(a-b) 
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C1aim (3.19) now f o11ows immediate1y by induction . 

For J ... '\ , a ~b we have from (3.18) n n 

a 1 "" b 1 n+ n+ 

i.e. c1aim (3.20). 

Now, in the case l - '\. , the assertion of our theorem fo11 ows 

immediate1y f rom (3.~0) , since then we have 

.l n a = - z , ·-> 
n . ·n : .o6 .. 

0 

For '! ~ ~ we have under the hypothes i s 

IS-zol < 1\-zol' i._e.n la 

and f rom ( 3 .19 ) tha t "n ; (b-a ) ~ ~) 2 

1 < 1 b 1 

n 
~> 0 

On the other hand ; if ·ja 1 = jb 1 , a ~ b we have from (3.19) 

= ~ \b \2n 

Thus, in case of c onvergence both an and bn must t end ·t o 

zer o. I t f o11ows from (3.19 ) however, tha t 

i.e. if a n and bn were both conyergen t t o zero~we wou1d have 

a = b which is con t r a ry t o the hypothesis . 

We s ha11 now d iscus s t o what ex t e.nt , in the ca se of c on-

vergence, the suff icient condi t ions of T. 4 are satisfied . 

Keeping the notation a bove, put p = b , i . e . p "" 1 or -a 

Then we have f r om above 
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and 

f( z ) n 

substituting 

hn • a p 

h a 
= 

32 

b = pa we 

2n 
p - 1 

p 2
n+l 

- 1 

n 
2n+l 

Further 

and 
1 f (z ) .. -n 

a 
n-1 

2 

have 

a b n n 

+ -, 

for 1 p 1 ~ l , 

( jp l~l, ) 

( p 1 ) 

a - b 

a2 

=-a(p-1) 
2n 

+ 1 2 
2n 

- 1 p 

( p = 1 

In this case the number M of T.4 is 2 , and 

= - 4 

2n+l 2n 
(p - 1) (p + 1) 

a - 4 

2n 2 
(p + 1) 

( jp l i 1) 

) 
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• 
•• 

2f-1h 
n = 4 

n-1 -2 

( jp 1 ~ 1 ) 
2 

+ p (3 .21) 

"" - 1 (p ::: 1) 

Therefore, f or p = 1 we have for every n the 1imiting 

case 

i.e. convergence. 

For p ~ 1 

From (3.21) it fo11ows that the modu1us of t he 1eft-hand 

expres sion tends t o zero as n -> o6 Therefore, the condi-

tion of T.4 are satisfied from a certain n onwards. 

On the other hand, choosing p convenient1y , we can insure 

that the conditions·of T. 4 do not ho1d f or n = o ,1 , .... , N where 

N can be 

2n-1 
p 

Put 

chosen as grea t as 

+ p 

p reio( 

-2 n-1 2 
= 

2n-1 
+ 1 (r . 

( 

- r 

we 1ike. Indeed, if we take 

we have 

n-1 n-1 
2n-1o( 2 -2 Cos r + r ) 

n-1 
-2 ) sin 2n-l o( 

1
2 

2N 
then we obtain for n = 0,1, ... N 

p2n- l + p-2n-l 12 ~ r2n + r-2n + 2 .Cos 
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Thus from (3.21) 

\2 f:;:) z 
4 

The right-hand side of this ineqLi.ality can be made :-1 by 

taking r=IPI sufficiently near to 1 (but not =1 of course) 

for then the inequality 
2n -2n ~ 

r + r + 2Cos ~ <4 ,n= 0,1, ...... ,N holds 
2 

Note: The modulus of (3 .21) can certainly no;Y be e·qual to 1 

fob two consecutive values of n: 
This fo llows immediately f rom the relation 

q2 + (1/q2) = (q + l/q)2~ 2, 

for if both lq2+ 1jq2 
1 and lq + 1/qj have the value 2 , 

.. 
this is possible iff we have 

2 
' q = l ' q = ± l. 

But in (3.21) IP 1 f l. Contadiction.Claim follows. 

Thus, if for a value of n the expression is equal 

t o 1 ,this expression becomes ( 1 for all greaber n , unless 

onr quadratic polynomial has a double root. 

Modi ftcation III: of the Newton algorithm. 

It was sug3ested thst in the N-R al~0rithm the denominator 

f
1

(zn) can be replace~ by r 1 (zk) as s oon as zk is sufficiently 

ne ar to l . Obviotlsly in this case we will only have linear 

ee~vergence, and n ot quadratic conve~gence characteristi6 to 

the N-R method .In the table below, the r'unction f(x)=x3- 2x - · 5=0 

is c onsidered.In column I the three v&lues 

x1 ,x2 , x 3 obtained by the N-R formula are given ,whilst 
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in column II the six values x 1 , ... , x 6 obtained by us lng 

Mod .III ( i.e. replacing r 1 (xn) by r 1 (x
0

) ) are given. Campa­

ring the values obtained wi th the value of ·~ , we see tha t in 

column II at each step the error is only about 1/10 - th of the 

precedine; error. 

x 3 - 2x - 5 = o_ , '( = 2 . o 9 4 5 51 4 8·-J. 54 2 3 2 6 5 91 5 , 
\ 

) 
// 

I 

\ 
II 

xl = 2.1 2.1 

x2 = 2.094 568 1 x2 = 2. 0939 

x3 = 2.094 551 481 72 x3 2.094 G27 

x4 = 2.094 542 7 

x 2.094 552 5 
5 

x
6 

= 2.094 551 ~S 3 

x = 2 
0 

I t is therefore doubtful whethe r this modification wi l l be 

of great practical s i gnificance . 

Mod. IV: It may be of s orne advantage howcver to compute r 1(zn) 

n ot'at every s tep, but only at every secon~Lstep , i.e . we have 

z = z -n+2 n+l 
f'(z 1 ) n+ 

T.7: ( Anal og to T .3 ) 

(3.22) 

Let f ( z ) be an analytic function , r~'> sul3r wi t hin and 

on .. a closed contour C. If f 1 ( S ) f. 0, where ~ is a r oot 

(within C ) of f (z) = 0 , to be ob tained by application of 

Mod . IV of the Newt on a lgorithm , we have 
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i.e. after n applications of (3.22) 

where M = s up 

1 z - S l < lz n - S l 
rn = i n f :'1 ( z ) 1 

1---~ -1! <(\ . -S' 1 

Pro of: vie have from 'rayl or 's e xpansion : 

From (3.22) and (3.23): 

(3. 23) 

f l(zn) (zrl+2 - s ) = f l(zn) (z.n+l - s) - ( zn+ l - s) r l (!) 

+ 0 [ ( _"'ft)2 2 n+l ~ 

z - 'E' 
n±2 ~ ], 

z --> 'r' n+l ~ 

\arc inte rmediate point . 

z - y 
n+2 .S 

( since 'l --> '( a s z n -> l . ) 
The re fore) as r1 ( S ) f. o 
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z - \' n+2 ~ -> 

From T.3 we have l- z 1 rll(I > n+l --> 
(~- z ) 2 

2 
f l ( )' ) n 

and this together with (3.24) give: 

z -:r ( fll( s ) r n+2 --> 1 

(zn - S) 3 2 
fl( l) 

.. l zn+2 -l 1 _s.! t~ )~ z -! 13 
2 n 

In one application of (3.22) , i.e. going from zn to 

(3.24) 

( 3. 25) 

z n+2 

we need to c ompute the three unknowns f(zn) , r 1 (zn) , f(zn+l). 

(The work pertained to the other comput·a.tions involved are 

generally speaking negl i gable in c omparison .) Thus in going 

from zn_2 t o zn+2 we have s'ix: · such quanti ti es to be computed. 

Raughly speaking, the same amount of work is done after only two 

applications of the original N-R method . Hence we have in the 

case of Mod .IV 

1 
16 

whils t for the N-R method 

( 1 r11 ) 7 

"2" m 

It i s evident that Mod. I V is definitely an improvement of the 

N-R method in case of the "smooth" f (z) , i.e. where M < rn • 

Even in the rather "bad" case f(x) 3 
=. x 2x - 5 = 0 
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(considerPd above) , v1here r 11 ( "J) J f 1(!)!: 1.2, 

we have for 
x = 2 : 

0 xl 

x2 

x3 

x4 

= 

= 

= 

= 

2.1 

2.0939 

2.094 551 72 

2.094 551 481 367 

Here the error in x 4 is of the sa me order of magnitude 

28 

as that 

of x3 in c olumn I above. On the other hand, it must be noticed 

that in using this modification the values of f(zn) ' fl(zn) 

must be ca1culated to a much higher degree of accnracy. This 

is due to the fact or 1 zn - S 13 in equation (3.25) 

Mod.IV (a): We will now investigate 'the f'o llowine; modification 

in case of a root l of multiplicaty p 

We have from Tayl or 

f(z 
1

) = (zn+l -s )P 
n+ 

p! 

and 

1 (zn- y )p-1 
f (z ) = 3 n 

(p-l) ! 

(a) (3.26) 

( ) . . ~ p+l 
f P (''f) + (zn+l -~) ·. f(p+l)('I) 

(p+l)! . 

f(p)(~) + (zn -1 )p f(p+l)(~) 
p! 

( - 't" )p+l + o [ zn ~ ) , zn --> s . 
This together with Mod.IV (a) give, 



39 

-p 
(p+l) ! 

or 

(zn-!>p-1 r<P><s> + (zn-5>P r<P+l)<s> 

(p-l)! p! 

+ 0 

~ p-l ( ) 
"' (zn - 3 ) f P ( 'f ) + 

(p-l)! 

f(p)( l ) 
-p ( zn+l - S )p r< p+l) ( S ) + o [ (zn - S )p+l ] + o [ ( zn+l-S )p+l 

(p+l)! 

n --> 00 

i.e. 
zn+2 - ~ 
zn+l - S 

l f(p)(~) + (zn-l) f(p+l) (S) ] 
(p-l) ! p! 

- l --(p-1)! 

p 
( P+l) ! 

~ p+l 
] + o [ (zn -1) ] + 0 [ ( zn+l-5) ] 

( z n - S )p 

n -> 0() 
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z n+2 -l ~> ( p-1) ! f(p)(~) "" 1 .. 
2 n+1 -~ ct, ( p-1) ! f(p)(~) 

.By T.5 we have 

zn+l -l ----> 
f(p+l( l ) 

( 2 n -l') 2 
r(P) ( s) · p(p+l) 

->· 

From this it is evident that nothing at all is gained by 

introducing the intermediate step (a) in the a1gorithm Mod.II. 

Mod. IV (b~ Also 

z = z -.n+l n 

z -n+l 

for a p-fold r oot 

f( p-l}( z ) 
n 

f(p) (z ) 
n 

f(p-l)(z ) 
n+l 

T.8: Given f(a) ah ana1yt1c function, regular within a closed 

c ontour C, and cont i nous within and ort C. rr l is a r oot of 

multiplic i ty p t o be obtained by means of Mod.IV (o), we have 

IS - z 

M p+l "" 

m 
p 

~~ 1 ( M y ls- zn 13 n+2 2 p+l 
mp 

SIJ.p • 
jf(p+l)(~) 1 

z -si < 1 zn -~1 

inf . 

1 z - S 1 < 1 zn ·- S 1 
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Proof: From Taylor: 

r<P>czn) z: r<P>cs) + r<P+l)cS) (zn -S) + 0[( zn -:5)2], 

zn->s 
f'(p-l)(z ) ""(z _Y) f(P)(~) 

n+l n+l .: ~ ~ + (zn+l -S) 2 
i(p+J?c'S) 

2 

From Mod . IV ( b ) : 

f(p)(z) ( ~) 
n zn+2 -~ 

='z _'r)f(p)(z )-f(p-l)(z ) 
\ n+l ~ n n+l 

or 

(zn+l -5) [ f(p)('!) +(zn-~) f(p+l)(S)] 

- (zn+l -~) [ f(p)(~) + (zn+l -S) f(p+l)(S) 

2 

n -> o(). 

i.e . 

(zn -s> (zn+l -'g'> 

• f(p+l)(1)- zn+l -~ 
2(zn -'S) 

We had from Mod.II (a) 

1 
2 

r<P+ 1 >(s) 

r<P)<s) 

' n --> ~. 

(3.27) 
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i.e. z -l 0 [ (zn - ~) ] n+l = , n --> 00 
zn -); 

.. z - s n f (p+l)('g) n+2 --> (3.28) 
-~) o6 (zn -"!) (zn+l f(p)(s) 

(3.27) and (3.28) together give 

-r 2 

( 

(z n 

We observe that the arder of convergence in this case does 

not compare very favourably with that of two successive appli­

cations of Mod.II, which yield: 

·--> ( ~(p+l) 

Therefore, Mad. V (b) (see later) will be the better modification 

by far in the case of a p-fold root. 

Mod.V : We can also try to reduce the amount of work done 

in the N-R formula, by replacing at every second step the denomi­

naitor f 1 (zn) by a oonvenieri.t combination of f(z ) and f(z 1 ) , n n-
i.e. we have the modification: 

z n+l 

z = z -n+2 n+l f(zn+l) (zn+l -zn) 

2f(zn+l) f(zn) 
(3.29) 

T. 9: Let f(z) be an analytic function regular within and oh 
a closed contour C. Ir r1 ( S) ~ o where -s is a root within .c 
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of . f(z) = o to be obtained by application of Mod. V of the 

Newton algorithm we have 

1 -> - 24 

Proof: It will be sufficient to ·show that 

Put 

Then 

-> 

zl - z ::::-
0 

z2 - zl = -

1 
24 

f( z ) 
0 

fl(zo) 

f (z1 ) 

2f(z1 ) 

c 

h 

f(z
0

) 

f(z 1 ) + k f l(zl) = f(z 1 ) ( 

h 

:c: k 

1 - hf
1

(zJ.) 
2f(z1 ) - f (z

0
) 

(3.30) 

(3.31) 

(3.32) 

~here A = 2f(z1 ) - f(z
0

) - hf1 ( z1 ) 

-A'' B = 2f(z1 ) - f (z
0

) = 2f(z1 ) + hf1 (z
0

) 

From T.3 we have 

l - z 
rl1('( ) 1 --> 1 

(S.:... zo)2 2 fi ( 's ) 
1 .e. '( - z1 "' 0 [ <'s 2 

-->! - z ) ] 
' 

z 
0 0 
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we can write 

--> 

This we can rewrite as 

Keeping in mind that 
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- z 
0 

B = h · r 1 ( z ) + 0 ( h 2 ) 
0 

B ~ h r1 C~ ) 

From (3.31) , (3.34), (3.35) 

- > -

i.e. -> 

Now .. A ,.. 2 f (z1 ) - f( z ) - h fl(zl) 
() 

= 2 f(z + h) h [ r 1 (z + 
0 0 

h) 

(Since f (z ) 
0 

::: - h f l( z 0 ) ) 

Develop in terms of h up t o h3 
' i.e.: 

A = 

(3.33) 

(3.3 4 ) 

(3.35) 

(3.36) 

- r 1 ( z ) 
. 0 

] 



4 5 

rlll( ~ 
2

) 1 

, 1 , ~ 2 intermedia te points. 

the re fore Ajh
3 ---> - l 

6 

we finally have 

Now from (3.32), (3.34), (3.35), (3.37) we obtain 

-> 

We now develop 

1 
12 

l 

(3.37) 

(3.38) 

f(z 2 ) = f(z 1 + k) in te'rins of powers of k up to k 2 . 

i.e. 

where \ 3 --> S as z 1 --> S . 
and by (3.36) and (3.38) this gives 

r ( 2: ) ..... g. -> 
h 

4' 

Sin ce 

l 
12 

rll(s > rlll(s > 

fl( ~) 

. we finally have by (3.33) 

z -~ 
2 ·. ~ --> 1 

24 

+ 
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In the application of Mod. V we again have a similar 

improvement as in the case of Mod.IV. Again however, the values 

of f(zn)' f 1 (zn) have to be calculated to a much higher degree 

of accuracy. 

Factually, we must use double the number of decimals as in the 

case of the N-R method. 

In case of a p-fold root S the following two modifications 

(V (a) , ~b) ) seem to be natural suggestions. 

Mod. V (a): 

Z = z - P f(zn+l) (zn+l - zn) n+2 n+l 
2f(z 1 ) - f(z ) n+ n 

We will show however, that this is no improvement of Mod.II 

at all , since 

thus by T.5 , z n+2 

--s 
-s 

:-> l 

--> 

and 

l 
p(p+l) 

f(p+l) (~) 

f~P)(S) 

i.e. nothing at all is gained by introducing the intermediate 

step (a) in the algorithm Mod.II 

Proof of Claim: 

We have from Taylor: 

f(zn) "" (zn - S )p 

p! (p+l) ! 

(a) 

(3.39) 
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Then (3.39) together with Mod.V (a) give 

For large n: 

z -~ n+2 S ll/p' 

. -· ~. 

+ (zn -!) (zn+l -~)p-l 'l 
(p-l)~ J 

+ r<P+l)<r>( (2-p) (zn+l ~S>PH ·- (zn-'S>p+l + p(zn-SJ<zn+l-'SJll] 

( p+ l) ! ( p+ l )! ( p+l) ! . . 

. t.. . ' 

= L.H.S. 
: ~-
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(2-p) 
p! 
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l' 
+ --( p-l) ! 

(z - 't )p+1 

1 
p! 

+ f(p+l)('l.") [ (2-p) 
~ ( p+l) ! n+l ~ 

+ p 

(p+1)! 

We have from T.5 : 

Th us 

i.e. 

z n+2 -t 

z -~ n+1 ~ 

--> 1 

] 

m 

-> __,..1 __ 
p(p+l) 

f(p+1) (!) 

f(p) <s> ' 

Mod. V (Q~ Analog to Mod. II (a) we can introduce the following: 

z n+2 = z -n+l 
f(p-l) (z ) 

n+l ( z - z ) n+l n 

2 f(p-l)(z · ) 
n+1 

- f(p-l)(z ) 
n 

R6 Let f ( z) be an analytic functi on, regular within .and 

E)l'l a c1osed contour c. If l is a r oot of multip1icity p :. tq 

be obtained by me.l~ns of Mod. V (b / ' we have 

.. 
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't' - z S n+2 -->- 1 
24 

f(p+l) < ~ ) 

f(P)('()3 

Proof: Exactly the same as for T.9 . (Just replace f 1 throughout 

by f(p) , and make use of the Corollary following T.3 instead 

of T.3 itself.) 

This shows, that in contrast with its analog (Mod.II (a); 

Mod. V (b) is indeed superior ( in most cases) to Mod. V (a) 

(the analog of Mod. II). Factually, two successive applications 

of Mod. II will roughly give the same degree of approximation 

as one application of Mod. V (b). In doing this, two values of 

f(z) and two of r 1 (z) must be calculated in the case of Mod.II, 

whilst in the case of Mod. V (b) we have to calculate (though to 

twice the degree of accuracy) only two values of f(z) and one 

These statements can be v~rified immediately with 

the help of the fo llowing short synopsis. 

Mod.II: \-z 1 f (p+l)(~) n+l ->-
(\-zn )2 p(p+l) r<P) ( ~) 

i.e . ·~- zn+2 t p~p+l) f(p+l) ('~ ) )3 -->- -------
((- 4 f (p)(t) 

zn) 

Mod. II {a~ : 

t- z 
f ( p+l) ( ~ ) n+l ->- 1 

(~- zn)2 2 f(P) ( ~ ) 

Mod. V (a): 

'\- zn+2 - > 1 f (p+l) ( '( ) 

( \- zn)2 p(p+l) f (p)( 'Ç) 
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1 -> - 24 r<P+l)(S) r 3 r<P+l)Cs)2 

f(p)<l' )3 

~- · 

l' ~ ~ · . 

. -·.·· 



IV. 51. 

"Polynomial Algèiîtfuris·t-t ·a.n:<r F'rl:ù:h.èf ·s .. ·Modification. 

Up till now we have only discussed algorithms of the secbnd order. 

Before proceeding to the discussion of algorithms of higher orders 

it will not be unjustif ie d to mention he re an othe r important type of 

algorithm of the second orde r which can also be adapted to satisfy 

the conditions for higher order convergence. These are functions 

F(z) , (for finding the roots of polynomials f(z) ),which satisfy apart 

from F(})='t F' {'0=0 also the further · restrictiort , namely that F(z} 

must be a polynomial. This type of algorithm wa s i. a thoroughly 

discussed by C. Domb , A. S. Householder and H. Schwerdtfeger. 

These al·gorithms are constructed in the following way: 

We wiU ·only consider polynorriials f(z} with simple roots . (This 

is no restriction of course. )Tlius .. since the g. c. d. (f(z), f'(z) )=1 

two polynomials h(z) and h 1 (z) can be !ound such that 

h1 (z)f(z)-h{z)f' {z)=1 

Then we can choose as algorithm F(z)=z+ f(z)h(z) 

Obviously F(t)=~, F' (~)=0 and F(z) is a polynomial. 

The general solution of (4. 1) i~: 

H( z)=h(z)+p(z)f(z) ,Hl (z)=h1 (z)+p(z)f' {z) 

(4. 1) 

(4. 2) 

where p(z) is _an arbitrary polyn.omial. Thus h{z) in (4. 2) is not 

wiiquely defined. Special solutions h(z) and h 1 (z) can• alv:ays be found 

by means of the Euclidean algorithm of course. The r,b.,:t;l.~est~.»~:tiea.l 

method to apply here would be .the method of unknown coefficients 

as indicated by H. Schwerdtfeger in his paper [4]. 

T. 10: Given a polynomial f(z) with a simple root ;then we have after 

n applications of 

z =z + f(z )h(z ) 
n n-1 n-1 n -1 

( • • 0 .' 
(4. 3) 

h(z) a polynomial, 
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where M =maximum lh(z} 1 

h 1 z- \ 1 < 1 z n- 1- \1 

Mf1 =maximwn 1 f 1 (z} l 

lz-ll<lz -\1 n-1 

Proof: Trivial. We have from (4. 3} and Taylors tmorem: 
z 

z - l=z -t + [f1 (\}{z -1} +O[(z -\} ] 
. n n-1 n-1 n-1 

zn- l 
z -'" n-1 1t 

+O[(z -\)2
] , 

n-1 

][h(l} + (z -t )h' (\} 
n-1 

z -l. 
n-1- · 

If an algorithm of the third order is reqilired , we can replace (4. 2) 

by F(z)= z + f ( z l H ( z) 
. 2 

=z+f(z}h(z}+p(z}f(z) 

p( z} an a·rbitrary polynomial. 

This is according to fY. 5 the most general algorithm (of the polynomial 

( 4. 4) 

type} of the se·<?ond order. A special algorithm of the third order can now ·. · 

be ac qui red by choosing p(z} such that F 1 1 <\}=O. 

We h a v e by differtm tia t i on: 

F 1 {z)=i + h ( z) fl'( z) + f ( z) [ h 1 
( z ) + 2 p ( z} f 1 

( z) + p 1 ( z) f ( z) 2 
] 

=f ( z ) [ h 1 ( z } + h 1 ( z} + 2 p ( z) f 1 ( z ) + p 1 ( z ) f ( z)] 

Th us, to obtain F' 1 (\)::0 , we must obviously choose p{z) such tha t 

h1 { z }+h 1 ( z }+2 p(z}f 1 {z) =q( z )f(z) 

Accordi n g to (4.1) thiswillbe satisfiedif 

p( z )=+-h(z) [h' {z) + h1 {z}] 

q(z)= h1 (z) [h' ( z } + h1 (z)]. 

From this resulting algorithm of the third order, one of the fourth 

order can be obtained by P . 5 and restrictions on the arbitrary ~ (z) 

of equatii.J.on (2. 3}. Proce ed similarly for higher orde rs. 
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.Mod. VI:(Frame). J:S:Frame [5], [6] and later also H. S. Wall [7] have sug­

gested the foll:owin.g modificatiQn of Newton' s algotithm: 

Z . = Z -
n .n-1. 

2f(z )f' (z ) 
n~f .· n-i 

2f' (z ·) 1 .-f(z . )f' '(z . ) 
n-1 n ... f n-1. 

or ;F.fz)=· z- 2f{z)f1 ~z) . · 
; , j : · . · 2f1 (z) - f(z)f' 1 {z) 

. (,Notice the · stri~ing similario/ in form with Mod. I) 

By ·substituting f(z~= (z-l )p \l{ (z) = E,p\:J/. (z) 

where}~ j~(z)j<oô' 
·. ~o. 

w_e obtain F' (~ )=1.- p} 1 

We will therefore apply (4. 5) only in tho se cases where f' (~)\O . 

· [Mod. VI was arrived at , after the following observations: 

. -The equation of the parabola through the point (z , f(z ) ) 
. n-f n-1 

:having the .same first a~ ·d second derivatives at z=z as y=f(z) , 
n-1 

is 
y=f(z J + (z-z . )f' (z ) ++ (z-z )zf' 1 (z ) 

n-1 n-f n-1 n-1 n-1 
~t z be a solution of the equation which resulta if we put y::JJ. 

n . . 
Then -f(z ) 

n-1 
:a ""i-i' ... = 

n n -1 f-'-:-{-z-~):---1 --r--,1r--:-( z----z-:---)-f'_'_(_z-~) 
n-1 ~ n-1 n-1 

If we take z -z = -f(z )/f' {z ) in this formula, we then 
n- n-1. n-1 n-1 

obtain (4. 5) ] 

In case of multiple roo.:\:s the following may be used: 

Mad. VI(a): 2f{z) ( f' (z)z - f(z)f' 1 ( z ) ] 
F( z)= z - --~3~--__;_...;..____:__;_..::-------

2{f' (z)~ - 3f(z)f1 (z)f' 1 (z) + (f(z))z f' r r {z) 

(Obtained from Mod. VI by replacing f(z) with f(z)/.V' (z). 

(4. 5) 



Remarkable however is the fact that Mod. VI yields an algorithm 

of the third orde r for simple rqpts {.p=1.) , for then 

F 1 1 <'"(> =- fi' <'t> + . 2 _!_fi 1 fs) =0. 
5 f' ([) ! 1 (~) 2 

T. 11: Given f(z) regular w!thin a closed contour C. If f 1 (!> :\() 
where "! is a root of f{z) within C , we have. after n applications 

of Mod . VI: 

Proof: We have from (4. 5) 
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2 2 
(z -"') [2f1 (z ) - f(z )f' 1 (z t] = {z -l)[2f' {z ) - f(z )f1 '(z )] 

n .) n-1 n-1 n-1 n-1 n-1 n-1 n-1 

We also have: 
2 

f{z )={z -l)f1 ('[)+(zn-1 -l) f"('i) 
n-1 n-1 

2 

-2f(z )f 1 (z ) 
n-1 n-1 

3 
(z -l) 

n-1 fi 1 t (~) 
6 

4 
+O[{zn-1-~)] 
2 

(z - ~) 
f 1 (z )=f1 (l)+{z -'!)f 11 (~)+ n-

1 f"'~I) 
n-1 n-1 2 

· +O[(z -'i,fJ 
n-1 ~ 

f 1 1 (z i ) = f 1 1 (S) + (z -'t )f1 t 1 (\) + O[(z -~ ) 
2

] 
n-1 n-1 n-1 ~ 

Th en 

(zn -!)[2{ fi (\))2 + 3(zn-1 -\.)fi(~){' 1 (~) +fizn-1 -~)2(f1 t (~))2 
( 4 

z -"'· n-1 ~ 

(z 1 - ~) 2 2 4 3 + n-3 (f111 (s)) + (z -~) f 1 ({)f111 (é)+I-(z -~) fll(~)f'''(~)] 
n-1 ~ 3 n-1 ~ ~ 

= R:H. S. 
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R. H. s. ={z -s)[2(f' <!))2 
+ 3(z -s>f' <s>f' '<s> +_i_(z -~ >2(f'' <'l >2 

n-i n-i 2 n-i S ~ 

(z -i - '! )4 
· 2 . · · 2 .... 4 3 

+ n f' Il<!> + (z -\) f' (~ )f" '(~)-fe ~z - "l) f" (s)f' Il <'t>l 
3 n-i 3 n-i 

z - '!. n-i 

Thereiore: 

i 2 "r 2 3 
- ~z -~) f' (~)f' 11 <s) + o[(z _-y) (z -"r>J + o[(z _'c) ], 
~ n-i l n-i ~ n n-1 ~ 

Thus: 

z 
n - i 

z 
n 

After comparison with the result of T. 3 , it is evident that this algorithm 

is definitely an improvemènt of the N ewton-Raphson method. 
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Applications to the equation f(z)= zrn - a , m>i : 

We will first considar the application of the' 1polynornial'1 algorithms 

as given by equations (4. 2) and (4. 4) : 
z 1. 

Obviously h(z)=- -- , h1 (z) =- - will be polynornials of lowest 
ma . a 

degree to solve equation (4. 1). Thus by (4. 2) we obtain as algorithm 

for approximating the rn-th root of a: 

F(zf 
rn+i 1 rn+i 

z ---z 
rn ma 

This formula has been given by Hartree and Dornb. 

(4. 6) 

D. R. Hartree: Notes on iterative processes; Pro.ceedings of the Cambridge 

Philosophical Society 45 (1949), 230-236. 

C. Domb: On iterative solutions of algebraic equations ; Ibid. 45 (1.949), 

237-240. 

Using (4. 4) we obtain an improved formula: 

F(z) =X [{2rn+i)(m+1) 
tn 2 

2rn+1. 
2 

rn ~1 
z +2~ 

z2m] 

If Frame' s Mod. VI is applied to f(z)= z rn -a , we obtain: 

m 
F(z)= z {rn-i)z • (m+i)a 

m 
(rn+i) z + {rn-1. )a 

a very handy formula a! rea dy given by V:A. Bailey in 1. 941.. 

[Prodigous Calculation ;Australian Journal of Science 3, No. 4 , (1.941.) 
7&-So.] 

In using the algorithms given by (4. 6) and (4.,) , we have from 

T.iO and ii respectively, $e following error estimates: 

For equation (4. 6): 

equation ()4.1 ): 
=.! [ 3(rn-1)

2
- 2(rn-i)(rn-2)S -

2
] 

2 

(4. 7) 
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The following table give s the approximations to ~ obtained from 

(4. 6) , (4.tg) and the N-R algorithm , starting with z
0 

=x
0 

= 1. 

N-R. (4. 6) (4. 8) 

x· 1" 1. 500000000 1.250000000 1.400000000 

x· 
2" 1. 416666667 1. 386718750 1.41421319797 

x: 
3 

1.414215686 - 1. 413416939 1.41421356237309504879569008 

x· 
4 " 1. 414213562 1. 414212534 

The value of x
3 

found by Newton 1 s formula is correct to four 

decimal places, while the value of x found by formula (4. 8) is 
3 

correct to nineteen decimal place1. Starting with x
0

=10 , we find 

that Newton' s formula gives for x
4 

the value 1. 4442 , which is 

correct to one decimal place, while formula (4. 8) gives the 

approximation x
4

= 1. 414213562 ; which is correct to nine decimal 

places. 

Another application o f (4. 5): The computation of the positive real root 

of the reduced cubic e quation 
3 

x + bx - c = 0 , b, c real, b ~ 0 , c > O. 

Here newton' s formula is 

3 
2x + c 

x = n - 1 
n 2 

3xn_ 1 + b 

and formula (4. ~) is n ow 

5 3 
3x - ~x 

1 
+ 

n-1 n-

2 
6cx +be 

n-1 
xn = 4 

6x + 3bx 
n-1 n-1 

2 2 
+ 3cx + b 

n-1 

(4.9) 

(4. 10) 

If b =2 , c= 20 and w e t a ke x = 2 , formula (4. 10) give s the a pproximations 
0 

x 1 = 2. 4 6 , xz = 2. 4 69 54551 



On the ether hand {4. 9) yields for x
0 

= 2 , the values 

XI = 2 . 6 , Xz = 2. 47 , x
3 

= 2. 469546 

The value of the root to nine decimal places is 2. 469 545649. 

58. 
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Algorithms of order k > 2. 

On discussing P. 5 in chapter U we have observed a general method 

for the practical (though laborious ) construction of an algorithm of 

arbitrary order k<oO if an algorithm of the second (Or even first ) 

order is known. We have already made use of this principle in 

chapter IV in deriving the cubic algorithm given by( 4. 4) fom the 

quadratic one given by (4. 2). Starting with the N-R algorithm , 

E. Scr~der and later E. Bodewig have obtained in this way as the most 

general algorithm of the k~th order for f(z) , f 1 (l'> \ 0 

~-• ( ( ))n . 
F (z) = z + ~ (- 1)n f z [ _1_ _d_1n.-1 1 

k · n.• n l f' {z) dz f' (z) 
k 

- f(z) \fk(z) 

Where 

and 1 
[ ft (z) 

\f k(z) is an arbitrary function , 

~]r dz denotes that the operator 

k>2 

1 d 
f' (z) dz 

be applied r-times, i.e. 

e. g . . _1_ ~ 3 __ 1_ ~ 1 d ( 1 1 l'il 
[ f 1 (z) dz ] g(z) - f' (z) dz """Iï\z) crz tTTZJ g (Z1JJ 

Again , in the case of a multiple root ! we just replace f(z) in 

(5. f) by -~ 

· f' {z) 

must 

Formula (5. 1) was given without proof by Scr~der. The following two 

theorems proving its validity are due to H . Schwerdtfeger and :~- . .... 

D. R. Blaskett. 

T. 12: Let w= f{ z) be an analytic function re gu la r 'within aulon a 

closedcontour C, and 1 a root of f(z) within C, f' (J) Jo. 
Let z be a point within C , "not tao far" from l . Then, denoting 

0 . -1 
the inverse of f{z) by z= f {w) we have 

d f-\ ) 
) = exp. [ - f(z ) d w 

W =f( z) 0 0 w 

(5. 1) 

]w= f(z ) 
0 

{5. 2} 
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where the exponential functix>n operates symbolically on the differentia! 

symbol. 

Proof: This theorem follows irnrnediately from the main theorems on 

the analyticity of the inverse of an analytic fun:tion. The requirement 

ft (J) \ 0 is necessary , since we have for inverse functi ons: 
(e. g. Copson p.12f) 

If f(z) is an analytic fimction , regular in a neighbourhood of the point 

z at which it takes the value w
6 

, then the necessary and sufficient 
0 -

condition that the equation f{z)= w should have a unique solution 

z = [\w) , regular in a neighbourhood of w O , is that f' ( :zO) 

( or f' tY) for z "sufficiently close to 11 ) ) should not vanish. This unique 
\~ . 0 

solution i s then given by 

n 
-1 -1 ~ (z-zo) 

f ( w) = f ( w 0) + 2: --- • 
n=1 n • 

n-1 
d ( d -1 . ' w-w0 ~n [ dwn• 1 { dw ( f (w) ) ~ 1 

z-z 
0 

This is the Lagrange formula {Memoires de 11 Acad,. Roy. des Sei. -Berlin, 

24 (1761) ' 251.) 

for -6he reversion of a power series. We can write this as 

-1 -1 GO 
f (w) = f ( wof + ~ 

n=1 

n . 

1 n ~-w dn -1 
- 1 -(z-z) [ ~(f (w)) 
n. 0 z-z

0 
w 

n -1 
d - 1 d 

+ dw (f (w) )-d-w-.n~.-41 { 
w-w 0 ~n ] 

z -zo w=w - 0 

-1 .. 1 n dn -1 
=f (w) + 2: :r[ f{z)- f(z)] [---1'r" f (w)] o n=1n. 0 dw w=w

0 

and thi s gives formula (5. 2) for w = O. 

To obtain the Scr~der-forrnula we introduce the operators ,1-1 
( ( 1-1 = 0,1 ' 2 ' • • • • ) 

as follows: 



0 1 
& f{z) = f' (z) ' 

1 1 d 1 
' f{z) = f' {z) ~ { f' (z) ) ' 

n 1 d 
~ f(z) = f' (z) dz 

{ S n-1 f(z) ) 

Then it can easily be shown by induction that 

2 -1 
'1 f(z) = [ d f 2(w) 

dw ] w= f(z) 

n+1 -1 

~ nf(z) = [ d dw J1' f {w) ]w= f(z) 

Thus: f(zot 

l = z + ~ (-1)n ( 'n-1 f(z) )z_-z 
0 n=1 n 1 • 0 

61. 

f(z )
3 

f'{z )f111 {z)- 3f11 {z )
2 

0 0 0 0 
+--~------------~--------3! f' {z )5 

+ ............ . 

C • 'd . os1 ermg 

F (z) = ~ 1 ( )n f{z) 
k n=O -

1 
n! 

0 

n 
~ n-1 
0 f(z) 

i.e. a partial swn of {5. 3) which will be- used as iterative algorij:hm., 

we have the following theoremt 

T.13: Rewriting (5. 4) as 

k-1 f{z )j 
j n-1 . 

z =z + !: (-1) 
n n-1 j=i j \ 

[ ~j-1 f{z) ]z=z 
n-1 

we have z ~ l' , and 
y In • ~ (k-1) 

F k (.) )::; ' F k ( .S) =0 ' ....... F k ( l ) = 0 

i.e. F k(z) is an aigorithm of k-th order. 

Proof: For F (z) to have F 1 CS>= F 11 (,!):: ~ ...... = F (k- 1 )(~) = 0 
k k k . k s 

we must obviously have something of the type: 

k-1 
F kt (z) = f(z) g(z) f' (z) 

where the undetèrmined function g{z) is regular at z = J. 

(5. 3) 

( s. 4) 

(5. 5) 
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Now we must choose g(z) auch that F k('J )= l . Then according to T:1 and 2 

we have zxJl . 

From (5. 5) we have : 

5 k-1 
F k{z) = f(z) g(z)f' (z}dz 

= S wk- 1 g(f- 1(w) }dw 

n 
= ~1 (-1) k-1-n 

(k-f)! n~ (k-1-n)! f{z) gn+1 (z) 

For zf l this gives 

't! k-1 . ' F k ( .) ) = { -1 ) ( k -1) , gk ( z) 

Thus, a suitable choice for gk(z) would be 

z 

i.e. 
dk-n -1 

dwk-n [ f (w)] 

from 
Thuaw (5. 6): 

k-1 
F (z) = ~ 

k n:::O 

k-1-n 
(-1) k-1-n 

( k-1-n}\ f(z) 

whi ch is exactly equation (5. 4) . 

Applications: 

• 
'k-n-2 (f{z) ) 

I.) The quadratic equation. i.e. 
2 

f(z} = {z-z1_), {z-z) = z - z{z
1 

+ z
2

) + z
1

z
2 

=O. 

and 
d'z 1 1 ---s:----- --
df 2z-{z

1
+ z

2
) N 

n n - 1 
~ ::{-(i.rn?_i- .. ,2 • 3. s. 7 ..... (2n- 3) 

cifl N 2n-1 

= [ ~] __!_ . . 2 2n- i . nJ 
n 2n-1 

N: 

= . ~ n-1 f( z ). 

(5. 6) 



Put in {5. 2}: 

'S' = z + {z -

1 
z +z _. 

1 2 ) ~ (- 1 )n [ 2] 
2 n=1 n 

{z-z )(z-z ) 
1 2 n 

[ z
1

1 z
2 

t] 
(z -

2 
) w = f(z) 

{we write z instead of the initial z
0 

to avoid confusion. ) 

1 
{z- z ~{z - z ) z +z z1 + z -

1 2 
+ {z- 2) ~(- 1 )n [ 2 ] 

1 2 n 
:::::t 

[ z + z 2 ] 2 2 n n 
(z- 1 2} 

2 

z1 + z2 z1 + z 
(z - 2 ) (1 + t) 112 = + 

2 2 

t= -
2 

i. e. if 

( z -
2 

Under this condition we then have 

+ {z -

= for+ 

for-

z +z 
1 2 ) 

2 

z -z 
1 ·· 2 
2 [----] 

z +z 
1 2 

z -
2 

The condition for convergence cab be translated as 

• i9, ~1 T2~ ~
2 

where J e · 

~~ei9a. 
i9. r e 

= z- z
1 

= z-

63. 

Then we know from an elementary theorem on the median of a triangle 

that 

2 

~ 2 
2 2 

- E 

where 2E denotes the distance between the two rootpoints z and z . 
1 2 

Thus the condition for convergence then changes to 

Or 

Considering for the sake of simplicity the stadard hyperbola 
2 2 2 . 2 2 2 2 

x /a -y /b =1, b = a ( e - 1) in the real case, we have 



(-ae , 0) 

* 2 2 2 ! 
1 

= {x + ae ) + y , 

· Fig~· l: 

., 
' 

. * 2 2 2 
, 

2 
=(x - ae) + y 

•* 2 - t* 
) 2 2 J 1 ~* 

2 
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2 2 ~ 2 .• ~~2--~2~2~2~--~2~2--~2~2~2--4~ 
= 2x + 2y + 2 a e - 2 '\1 (x - a e ) + 2x y +2a e y +y . 

2 2 * 2 
=2a e = 2E for e= Q. 

The domain of convergence is thus bol.Ulded by an equi- sided 

(i.e. a= +b , e= 42') hyperbola , with the roots z 
1 

and z
2 

of the quadratic 

equation as foci ·- and incidentally it is t~t part of the complex munber 

plane in which the foci itselves are situated (the hyperbola itself included.) 

The inunediate question is now , which one of the two roots is ~eached 

by choosing the initial algorithm.ic approximation z
0 

in different areas 

of the domain of convergence deterrnined above. 

We have from above 1+t = (E/, )2 e 2i( Q0 - Q ) 

w he re z 1 - z 2 = Ee i Q e 
2 

Therefore 

e(1/2)log(1+t) = (E / 'f ) e(i/2)log e
2

i(Qo- Q) 

Considering that for a real niunber y 

log eiy = i( y + 2h'1f) where the integer h mus.t be chosen such that 

y+ 2h1r lies between - '11' (excl. ) and 11' (incl. ) , we find: 



z -z 
1 2 

65. 

ei/2 log (1+t) = (E/,) ei(90 - 9 +h1f) =---2 ___ _ 

z1+z2 

• h11& 
e 

Z r 
2 

where h must be choseh such that \-9+-hw 'ft' 
lies between - 2 ( excl. ) 

and + 1f
2
· (incl. ) . 

z +z · 
The d . • f 1 2 . l d ra lus ) rom z to 

2 
mc u es two stlpplementa ry angles with 

the line connecting z and z
2

. Gall the angle on the side of z
1 

, 
1 z 

w 
1 

and the other w 2. 

Th en 9=9-lr+w 0 2 

Fig. 3. 

11' . '11 - - <. h .. >t'tf -w 4 -2 · , z- 2 and 

" 1t or -- <hlt+w ~-
2 1""" 2 

Obviously for h even it follows from (5. 7) that the positive square- root 
of 1+t is considered , i.e. root z

1 
is obtained if z is chosen such that 

for even h , w and w satisfies (5. 8).. i.e. w ~ 1t 
1 2 1 2 

h11i '1t 
For odd h , e = -1 and then w

2
< 2 in which case root z

2 

is obtained hom (5. 2). 

2.) 
rn 

f( z) = z -a = 0. 

dz 1 ·---· di mzm-1 

(5 . 7) 

(5. i) 



n 
(m-1}(2m-1)(3m-1} .. .. ... [(n-1)m-1] 1 d z = ( _1 )n+1 

dfil mn nm-1 z 

_ { }n+1 - -1 

Th en 

(n-1)! (m-1)(m- 1/2)(m-1/3} ..... (m-1~n-1)} 
mn. znm-1 

l =f5-~ 
~ 

rn n 
(z -a} (m-1)(m-1/2}(m-1/3} ...... (m- 1/(n-1)) 

n mn 

m 
N = z- i 

n=f 
[ z -a ]n 

zm 
1 

z for large m. 
nm 

z 
= z-­

m ! 
n=1 

( -1) 
n 

m 
_![ z -a ] n 
n zm 

m m 

=z-:[log j1+z ;ma 1 +iQ t2nni],for laz~z 1~1 

Th:e refere: 

'!' = z[1-.! logj2- ami 
' m z 

.e 
- 1--

m 
2nJr i ] 

m 

c. 
exept at 

m 
a-z 
zm = -1 

a 
and this holds if 11 - ---m:-1<. 1 , excludmg the case when a=O. 

z = 

3.} The non'- analytic case: 

66. 

1 

Given f(z:.) continuous of non-analyticity r in a sim.ply connected 

region containingthe rectifiable Jordan-curve C, given by 

w(t) = u(t} + iv(t) , o( ~ t ~P· 

Que.: ~ 
Find an approximation for a root & of f(z}. 

Definition of non-analyticity r: 

If f(z) = X(x, y) + iY(x, y) 

is an analytic function of z in a region D , it has at each point of Da unique 

derivative f' (z) = lim.. f{z+h} - f(z} 

h- 0 h 

The derivative will not exist if f(z) is non-analytic. We have however , 

the following theorem. (See [9] ) 
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T. (i): Let X(x,y) and Y(x,y) be continuous and have continmus partial 

derivatives of the first arder near z
0

=x
0 

+ iy
0 

and let 

w( À ) = u( À) + iv( À ) 

À f(zo + h) - f{zo) 
=!Un.. 

h-+0 

where !Un.~ denotes that h-O along aline of slope À . Then the point 
h-O 

w(À) lies on the circle 

1 0 02 1 0 02 2 
[ u - -( x'-1: - y ) ] + [v - -2 ( y + x . ) ] = 'r (zo) 

2 ~ y x y 

where r{z Q =.!. [(X 0 - y 0) 2 + (Y 0 + X 0} 2 ] 1/2 
0 2 x y x y 

0 .... . 
X = [ ----,.:-- X{x, y) ] · · 

x -a x x=xo, y=y o 
and etc. 

(5. 9} 

We define (5. 9) as the derivative circle and its centre the derivative 

. . 1 .. · . 1 
f' (z) =n( X +:Y } + -i (Y - X ) 

~""" x - y 2 x y 
of f(z} at z=z

0
. We write 

It is interesting to note that if r(z)=O , the Cauchy-Riemann 
' 

differentiai equations are sati~fied, and the fnnction f(z) is analytic. 

Thus we may define r{z
0

} al? the_ non~analyticity of f{z) at z= z
0 

, and: 

its !east upper bound in D, the non-analyticity of f{z) in D. 

We now have the fol!owing theorem by Szu-Hoa Min [9]: 

T. (ii): IF f(z) is of non-analyticity r in a simply connected region D 

containing the rectifiable Jordan-curve C , we have for any z inside C: 

f{w)dw 
+kr 

w-z 

k.( 4 _l';' (1 +~) where A is the a rea encloseà by C. = 1('- 21f 



The fo!lowing theorem from the analysis of complex numbers is 

we!l-known: 
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T. (iii): If f(z) = X{x,y) + i Y(x,y) is continuou·s on the smooth bounded 

curve C, 

1fi'hen 

whichl is given by z(t) = x{t) + i y(t) , 

~ f{z )dz = ~ f( z(t) ) . z' (t)dt. 

c <• 
= )et X(x(t), y(t) ). x' (t)dt -

+i ~~(x(t), y(t) ). X' (t)dt + i 

0( 

~t' Y(x(t), y(t) ). y' (t)dt 
G( 

~ X(x(t). y(t) ). y' (t)dt. 

0( 

Apply fr. {ii) and T. (iii) to the f{"z) in question. Then: 

i ~ f{w)dw f{z) = -.- · 
2'ftl C w-z 

+kr 

i \' f(w(t) ) . w 1 {t) = - - dt + kr 
2"fti w(t) - (x+iy) 

~ . 

i \txu• -Yv' + i( Yu' + iev') 
2Wi [ {u-x) - i(v +y) ]dt+ k:r 

G( (u-x}2 + (v+y)
2 

i ~~ 1 .· = 2111· ( )2 ( )2 . [ {Xu1 - Yv' )(u-x) + (Yu' +Xv' )(v+y) 
u-x + v+y 0( . 

+ i { (Yu' +Xv' )(u-x) - (Xu'-Yv1 )(v+y) ~ ]dt ' . 
= Z~i ç ( U(x, y ,_t ) + i V(x , y, t) ]dt+ kr 

0( 

df i ,~ d = -2 - .- . [ U + iV )dt +.kr 
z 1h Cl x x 

r =.!({X - Y )
2 

+(Y +X )
2 f 112

. ((X_.- Y )(X - Y ) +(Y + X )(Y +X ) ] 
x 2 x y x y ~- y xx yx x y xx y x 

These values for f(z), f' (z) can now be substituted in (5. 3} to obtain the value. o:( 

~. 



69. 

For practical purposes the general algorithm of the k-th arder given 

by (5. 1.) becomes very clwnsy. It is therefore of grave importance to 

find iterative algorithme of higher orders {k) 2) oi which the appUcation 

is still worth while. The rest of this chapter will tther.efore be devoted to 

the construction of such algorithms. 

Lemma: Given two functions qk(z,!) , Gk+f {z,'J) analytic with 

refe renee to bath z and l' . 
If z :: G (z .l ) and z :: C (z ,1 ) represent .iteration. 

n+ 1. k n . . . n+ 1 kt f n 
algorithme with l as attracti~• fix~d-point [ ~ a root of f(z~ , analytic] 

and orders k{) 0 integer) an4 k+f re .~:~pectively 

further ~ Gk+f (z,.l ) 1 

d Î z::l 
=0 (5. 1.0) 

th en , n= 0, 1. , 2 , .• . . 

representa an algorithmof {k+f)-.th order~at !east) 

Proof: Put F '(z) = Gk [ z, Gk(z,l ) ]. 
, tf G 

Then f>F(z,l) =· "a Gk-+1. + ~ · k+f 
dz '"1)z ÔGk 

: 

n 
"t)dk:. 

~2G n 
ônF((z,l', ) erG ëtG k+f 'l> Gk . k+~ 

+A A 
k = .... + + . ..... + n n ·· i - . . . 

2 2 ~G "bzn 
~z "'b Z·'· '· "az 'bz . k 

'ë)Gk+i ~ z 
+ ....... + [ ------

~z oG 
k 

T hus 
n 

-, F 
= 0 

n = 1 ,. 2, •. , • . . , k . 
n 

ô z z="f. 
Therefore F(z,] ) is an algorithm of arder k+i (at !east}. 
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We have for the analytic function f{z) (root l' , f' Cl) t 0 ), regular withina 

neighbourhood of l . 
2 

0 = f{~) =f(z) + (~ - z)f' {z) + cr - z) 
2 

f 1 1 (z) + ...... . 

Then we can write for a domain D ~n, which this series converges and 

in which f' (z) \ 0: 

~- ~ 
~ - z - f' {z) 

_f_ [ { :f - z-)2 f' 1 { .. ) + 
f 1 {z) 2 ~ z 

(l - z)
3 

1 ft 1 r ( z) + ..... • ] 
3. 

If we replace ~ on the le ft- hand si de with z , and on the right-
n+i 

hand side z with z , we obtain. 
n 

(5.11) 

f(zn) 
z ::: z -
n+1 n f' (zn1 

'! 2 ~ - 3 
1 [ ( - zn) f' '(z ) + .( - Zn)p· f' 1 r ( ) ]. 

f' { z ) 2 ~ n 3 Î zn · + · · · · 

n _(.5.12~ 

which gives an algorithln producing r~ot lof f(z) = 0 after one 

application. ((Due to the presence of the unknown quantity l on the 

right-hand side , equ~tion (5.12) 1 does ~~t mak~ any sense as an algo:ithm.in 

practice of course. ) We note tha~ à break after the _second term in the. 

series (5. 12) 1gives the Newton-algorithm. A break after the term with 
k ( S - zn) , k~ 2 as a factor gives an algorithm of {k+1)-th order. 

T. 14: Given f(z) regular in a domain D with ~ , a root of f(z)= 0 as 

interior point, and f 1 (z) \ 0 for zE.D. Then 

"t f{z) 1 ( l- z)
2 

( l- z)k {k) 
F{z, ~) = z - fi (z) - f' (z)_ [ 2 ~ f' l {z) + ....... + k~ f {Z') ] 

k ') 2 (5. 12) 
= 

is an algorithm of {k+1 )-th order. 
'C k+1 

Proof: {5. 12) - (5.11): F(z,'P) _ 'l __ 1_ ( ~ - z) /k+1)("') 
~ ) - ft (z) (k+1'\ 1 z 

where ~ is an intermediate point lying within a domain containing z and J . 
From this follows: .., k+1 

F{z, \) -l = 0( 1 z-ll ) 

Q:E:D: 



As we have already remarked, (5. 12) is unsuited\ for practical 

purposes. However, if we have a~ al~orithm of the k-th order, 
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z :cG (z ) in which the quantity ~ does not appear, we can , by 
~1 k n · , ~ . 

the Lem.ma above obtain a (k+i)-th order algo_rithm (void of l ) by 

replacing in (5. 12) l with G (z). In this rècurring way one can obtain 
k 

algorithms of arbitrary order accordil'l.gto the prescription_ 

_ f(z) 
F2(z)-z-f'(z) 2 

::t -~ .. _1_ (F k(z) - z) ' t 

Fk+1_(z} z f'(z) fl(z)[ 21 f (z)+ ...... . 

; _: 

(F, (z)· - z) k 
.•...... + - kkl ik)(z)] ,k)2 . 

• 

For example: . f(z) i(f"-}Z·f' ~~z) 
F ( z"' "" z - - ~---'----J,-,.....-'-

3 1 f' (z) 2f' (z) -

f f2fl 1 f3 2 
= z - f' - 2(f' ) 3 + 6(fl )5 [ fi f' t 1 - 3{f' 1 ) ] 

(5.13} 

f4f'' ff'')2 ff''f''' f'''fz(f'')~ 
+ 4(f' )6 [- 2f1 + 2{f1 )2 + f' 

1 1 
+ 12(f' )4 l . 

etc. 

In comparing (5. 1) with (5. 13) it is obvious that not only the derivation 

of the algorithme is much easier in the latter instance , but also the 

practical application thereof. Incidentally , the algorithm of ~+1)-th 

order as given by (5. 13) will be extremely expedient for computation -

by machine. 



T. 15: Given f(z) regular in a domain D with S as interior point. 

f(J) = 0 , · f 1 (J) +O. Then the following procedure will give an 

algorithm of (k+i)-th order (at !east): 
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If z is an approximation of 
n 

l , then first compute the values of: 

1 djf(zn) = fn(j) 

j'f dzJ j ~ j= 0, 1' ..... 'k. 

and afterwa(rds 

f 
n 

vn,2=-"fl" 
n 

1 2 
v 3= - -f, [f + v 2 n, n n, 

f' ' n 
2T] ' 

• 

v =-
n, k+1 

1 2 
-f, [f +v n n,k 

n 

n 

f' 1 

n 

zr 

Then the new approximation is 
z = z +v 

n+1 n n, k+1 

3 
+v 

n.,k 

f' 1 1 

n 
~+ 

• 

........ . +v 
k 
n,k 

Pro of: Since f' <J) \ 0 , 

will be of order 2. 

z = z +v {i.e. the N-R algorithm) 
n+1 n n, 2 

If z = z +v is an algorithm of order r for 2 ( r (.k , then 
n+1 n n, r = -

it follows from the Lemma !nd T, 14 above thatr 
v v 

_ _ _1_ [ f n, r f' 1 ~ 
z - z f' + 1 + ...... + ' n+1 n · n 2, n r • 

n 
is an algorithm of at !east arder {r+f). (Replace in (5. 12) 'f with 

v + z . )By putting succesively r= 2, 3, ..... , k the claim is proved. 
n, r n 

Note: In the real case the existence of a continuous (k+1}-th derivative . 
of f{z) in the vicinity of ."! is requir.ed. The existence of a continuous 

k-th derivative alone will not necessarily suffice to produce an 

algorithm of (k+1)-th 0rder. For the evàluation of the coefficients 

f (j) 
n 
-.1- in case of polynomials , Horner1 s scheme is prop.osed. 
J 1 

The following scheme might be useful in computing these higher order 

algorithms : (v denotes v ) 
r n, r 



a z:f (k)/k. 
kn 

vk 

x 

., ., ., 

., , , 
~ 

~+ 

a =;f.l 11 /3. 
3 n 

v3 
lv 

a =f /4. 
4 n 

2 
v4 w4 

........ . . . . . . . . 

2 
vk 

i 
vk 

' 

2 
v (j ~ 2) 

j = 
0 

a =f' 1/2. 
2 n 

1 a2 

1 a v +a'l 
3 3 t. 

2 
1 a4 v4 +a{4 

+a2 

. ...... . . . . . . . . 

1 . . . . . . . 

Fig. 4. 

a =f b = -(1 /f1 ) 
0 n n 

1 a 
0 

0 0 

2 
1 a v +a 

2 2 0 

2 
1 (a v+ a )v + a 

3 3 2 3 0 

2 2 
1 (a v +a v +a )v 

44 34 2 4 
+ ao 

. .. ... . . . .......... . . ... 

1 ........... ..... 

1 

1 
! 
1 

! 

v= a b 
2 ~ 

0 

2 
v =(a v + a )b 

3 2 2 0 

v 
4 

vs 

vk+i ....,] 

w 
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( A further column can be irtroduced at the extreme right for tabulating 

the algorithms , i. e. z 
1

= z + v . ) 
n+ n r 

If f{z) is a polynomial , Homer' s scheme for evaluating the aj can 

now be fitted in the blank upper left -half of this scheme , since the a 
j 

appear in Fig. 4 in the exact positions in which they will appear after 

application of the Horner-scheme. It shou ld be noted however, that f' 
2 n 

in the Horner-scheme must be replaced by v. , j= 2, 3, . ... . , k. 
J 



VI 

Acce1erating Iterations with Super1inear Convergence 

'l!l6: Given an a1gorithm of order~ · k) 1 which yie1ds after n app1i-

cations 

t A\o, A~~ -

We then claim that the approximation to )i will be improved 

if z is replaced by n 

·- fz - zn\ k+l 
z n-1 

(z -" ) = z -
zn-1\ k 

sgn n n 
\z -n-2 

a 
vhere sgn a = raT (obvious1y defined only for a '"o) 

where 

Proof: We can obvious1y write 

\zn - ~ \ = A \ zn-1 - !\ k 

\ zn-1 -S \ = A \ zn-2 - S \ k 

~n -14 o 
tn-1 Q() 

(1 + E. ) 
n 

Put An = max ( 'tn\ ' \t.n-1 \' 1 zn-2 - t\k-1) 
We shal1 now prcve that 

and 

\ z- Tl = 

and 
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. (6.1) 

i6.2) 

(6.3) 

(6.4) 

(6.5) 



Putting 1zn_2 -l \ = ~ 

we have by (6.2) and (6.3) 

?6 

1 •n-2; •n-11 = 
1 

+ 0~"~\- i) = 1 + 0 <Sk-1) = 1 + O<à.
11

) , 11 ...,. .. 

1 zn-2 - zn-1\k = & k[l + 0<~)1 (6.6) 

Again by (6.2) and (6.3), as n-+et: 

t•n-1- •n 1 = l•n-1 ~li\ 1 - ::_: \-1 
= A 'k [1 + O<tzn-1 :" ~ \ k-lÙ (1 + t 1) n-

= A ~k[l + O<~k-l)l(l + O<A)] 

From (6.6) and (6.7) we have 

'

z - z 1 k+l 
n n-1 

= ' 

On the other hand, after two applications of (6.2), we obtain 

lzn-!\ = A\ zn-l -l\kll + Q(Ân)] 

and from this (6.4) follows immediately. 

Put sn = sgn (zn - J ) 
Then from (6.8) and (6.9): 

'z -z 1 k+l 2 
sn n-1 n k = sn Ak+l ~ k ll + 0 <An>] 

1 zn-2 - z·n-1 \ 

(6.?) 

(6.8) 

(6.9) 



Subtract these. Then 

\z -li 
2 

Ak+l ~ k 

= 0 (ân) 

which is (6.5) 

In studying the resulta of the theorems dealing with the error 

estimates of the algorithme (e.g. T's 3, 5, 7 etc.) we observe that 

usually 

~ = Q (Cp) n-1 O p~ 1 

[e.g. in T. 3 we had 

, ~an intermediate point. 

Now 
11 

(~ can be developed in terms of ( S - -~, and then we have 

l'S- z-h-112 =1 f,"<l> 1 ll ~O<l!- •P) . 
1 l - zn-21 2 f (zn-2) \ -

= l f~'<l>\ [ 1 .+ cq~- zn-2PJ 

= A.[l + o<,>] = .4.:11 + f.n-1] 

If we put min. (p, k-1) = ' d we have obviously 

A = O<Ad), and (6.5) can b e replaced by n 

] 

We usually have d = 1, and then the use of (6.1) gives an improve-

ment of 25% for k = 2, and 

11.1% for k = 3· .( 'zn -! \ = 0 ( 'k
2

) 1 . 
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(6.10) 



Tl7: Given an algorithm of order k) 2 vhich yields after n -
applications 

we then claim that the approximation to ·~ will be improved if zn 

is replaced by 

z• = z - A J 'k gn (z 'r ) n zn-1 - zn . 8 n - ~ 

• Further, Z vill even be a better approximation that Z (see T. i6). 

• • • 

Proof: Since 

z - s n-1 

z - z n-1 n 
z - ~ n-1 ~ 

zn_ -l = 1-...;;;;..-"""""!""~ 
zn-1 ·:§' 

= 1 - O<\zn~l -l'\ k-1) 

' 

Together with (6.11) this gives 

• • • 

0<\z _oz:,k+l) 
n-1 ~ 

2 
()(\z -~\k -k) 

n-1 ~ 

+ 0 ( }zn-1 -l\k+lj 

= .·~ 1 zn-1 - zn \k + 0<\zn-1 - !\k+l) ' k> 2 

zn- l = A\ zn-1- zn\k sgn (zn -l) + Q(\zn-1-S\ k+l) 

• Therefore, if we choose Z as in (6.12) we have 
2 

\z* - ~ \ = 0 (\zn-1 -s\ k+1) = 0 ( ~ k +k) 

78 

Thus 1• is a better approximation to S than zn since k2 + k) k2• (k) 0) 

(6.ii) 

(6.12) 

(6.i3) 

It i s a1so a better approximation than Z s ince k2 + d ~ k2 + k - l<k2 + k 
1 



Note: In the case of k = 2 , nothing is gained by replacing z 
n 

• with Z • It is obvious from (6.13) that for k = 2 , 

\ z* - ~ 1 = 0 (~ 4) 

On the other hand \z - ~ 1 = 0 (' 4) n 

and \z- \ l • 0 ( ~5) 
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VII. 

The Choice of a suitable order. 

It ha·s often been pointed out that for practical purposes 'the iteral:.ive 

use of one of the lower order algorithms (discussed in chapters III; IV) 

is usually rouch more expeditious than the application of algorithme of 

higher order. 

[The following problem was solved , first by means of Newton' s method 

and afterwards by application of the 4th .. order algorithm of the 

Schrd'der-type (see equations (5. 3) and (5. 4) 

Problem: Find the real root of the equations 
5 3 

x + x =A with A= 1, 2, 3, ....... 100. correct to 3 decimal places. 

An IBM 650 digital computer was used. In the first instance about 

5 minutes of computer time was sufficient, whilst in the application 

of the 4th. order algoritlun , the machine required 9 minutes. 

(In both instances the same initial approximation for A=i namely 

x = . 8 was used.) 
0 

A: 

We will first devote our attention to the higher order algorithms 

as established by T.15 and will also try to develop a criterium for 

deciding which order would be the best suited for special cases. 

After a glanee at Fig. 4 it will be evident that the number of 

multiplications and divisions together involved in obtaining an 

a lgorithm (of the type (5. 13) ) of order k ~ 2 , is equal to 

k{k+
1

) - 2 (i.e. without consideration of the ca lculation of the 
2 

a.). Thus , the 11calculation energy 11 (i.e. the sum of the number 
J 

of multiplications and divisions ) increases in direct proportion with 
2 

k for increasing k. On the other hand , according to P. 1 this l!nergy11 

increases in proportion with log kif an a lgorithm of lower order k* 
a . 

is used iteratively to obtain an algoritlun of order k. 

*r 
[ k = k, Hence 

log k 
r= 

log k* 
Therefore Energy=Const. x r =Const. • 

log k 
log k* 

] 
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(Note. Natural •iogarithrns will be used throughout this chapter.) 

1 (k-1) ' Further, the number of coefficients f , f , ...... , f /(k-1). 
n n n 

to be calculated in the first instance is equal to k. In case of the 

* iterative use of an algorithrn arder k , we have this nwnber as 

* equal to k log k 

log k* 

[In case of the algorithrn of arder k) 2 as given by (5. 4) , the 
:::1 

nwnber of calculations is in any case of an arder rouch higher than 

k. Here computations of derivatives are involved. This usually takes 

more time than ordinary multiplication or division. Here the number 

of ucoefficients" f(r) to be calculated is also k. ] 

From these remarks it is evident. that there is in the general 

case no sense at al! in arbitrarily .increas!ng the arder of an algorith.m, 

since the increase of convergence speed is usually obliterated by 

the increase in "calculation energyu. 

. . 
T.18: If the nwnber of multipliçations and cfvisions involved in the 

computation of each of the values f(z1, f' (zJ , f 1 1 (zJ/2~ , .... f(k(i~)/(k-1)~ 

is approximately equal (let this number be a) , then 

log 
16 

* 3 
for a(a = ~14. 213 the ord~r r=2 , and 

log 
9 
8 

* for a) a 
' 

r=3 

are the best lower o:r:der algorithms for iterative use to produce an 

algorithrn of arder k. (i. e. considering the algorithme established by 

T. 15 ) 

Pro of: In the iterative use of an r-th. arder algorithm of the type 

under consideration , r such "coefficients" are to be calculated. 

Thus, after n applications of this algorithm s ::: anr multiplications 

and divisions were carried through in the calculation of the 
., ., 
\ .· 
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, ( r-1) 1 f(z.) , f (z.)/1 , ....... , f (z.)/(r-1). 
J J J 

, j=~,1, ..... ,n--1. 

Thus, by the remarks above, the total amount of multiplications and 

divisions will be 
r(r+1) 

E = anr + n [ ___._2-~ 

where according to P. 1 
n 

k=r . 

i : e . 
log k 2 

E = 
2 

l . [ r + {2a + 1)r - 4 ] 
og r 

- 2 ] 

Keeping k constant , and conside:ring . Eas a continuous function of th• 

real variable r, we have: 

dr 
log k 2 -- 2 

Zr(log r)Z [ (Zr + 2a+1 . r ) ( log r '- 1) + r + 4 ] 
dE 

hence dE ) 0 for r) 3 (Since log r) 1 for r ?_ 3 ) 
dr = 

i.e. E{3) ( E(r') for r'= 4, 5 , ... : .. 

Thus the'\::omputation energy" required for the iterative use of 

algorithms of order higher than 3 is greater than that required 

for an algorithm of order 3. The cases r--2. and r =3 remain to be 

compared. But from {7. 1): 

2a+1 
E(2) =log k log 2 

Therefore 

E(2) ~ E(3) for 

3a+4 
E(3) =log k -­

log 3 

<. 4log 2 - log 3 
a = 

) 2log 3 - 3log 2 

16 
log-

3 
= = a 

log 
9 
8 

Q.E.D. 

In the theorem above we have studied the iterative use of an 

* 

algorithm of order r) 2 which will produce , after n applications, 

. n 
an algorlthm of order k = r . In the p r oof above we have , however 

. n 
also allowed non- mtegral k , i.e. not of the form k= r . If this 

might be a cause for anxiety we propose the following theorem: 

(7. 1) 

(7. 2) 
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T. i9: We have the "computation energy" E , (of multiplications and 

divisions involved)in the construction of an algorithm of arder k = rn 

by the n-fold use of an iteration formula arder r) 2 , as given by 

E = Q(r)log k. 

Q(r) is defined for integral value.s of r ~ 2 , for which Q(r) asswne s 

positiive value s. If it is further given that for a ri ~ 2 , and ali 

r)2, rlr, 
j = j i 

then it follow s from 

that E ( E . 
i j 

Further, there exists for every j # i integers ni and nj such that 

ni n· 
k = r ) r J = k and Ef < Ej . 

f i . j 
J .• 

Pro of: From Qi ( Qj and ki ~ kj we have 

E i =Qi log ki ( Q/og kj- =Ej 

To prove the second part of T. f 9 , we choose a rational nwnber 

n O.log r . n Qi+ Qj log r. 
i 

such that J J > f ) J 
n. Q log r nj 2Qi "log ri 

J i i 

(This is possible since O.> Qi> 0 , and r , r . ) 2 . ) 

From this follows 

ni log ri 

n/og rj 

and also 

far 

J i J = 

log ki 0
1 

+ Qj 

= 1 k ) 2Q ) i 
og j 1 

i.e. 

> 1 Q.E.D. 

Thus fne have only considered cases where the "computation 

energy" required for every successive derivative f(j)( z ) is . 

approxima t ely the same. In the case of polynomiale however , this 

energy decreses for increasing j - a fact which is immediately 

evident from Homer' s scheme. In this case we have: 
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T. 20: For the iterative solution, according to (5. 13), of an algebraic . 

equation of the n-th degree, we have in consideration of the 

computation energy, the Newton-algorithrn for n= 1, ...... , 10 

and the 3rd. order algorithm for n) 10 as the beat choices. 

Proof1 According to Horner' s schème and the scherne in Fig. 4 ·, 

the number of multiplications and divisions to be p:erfortned in 

applying an algorithrn order r of type (5. 13) to an algebraic equation 

of the n-th degree , will be: 

* E = G
1 

+ G
2 

+ G
3 

= [ r{r+1) 
2 

r 
- 2 ] + [ E (n+i - j - 1 ) ] + [ r - 2 ] 

j=1 

= r(n+3) - 4. 

[ G 
1 

is due to the work done in Fig. 4 

G " 2 
Il Il Il 11 11 " Horner' s scherne for obtain: i.ng f{J)(.z ) 

n 

G " 3 
Il Il Il divisions +equired for obtaining iJ) (z . )/ j! ] 

n 

Thus, after rn iterative applications of this r-th order algorithm, we 

have as total energy for producing a k-th order algorithrn: 

* E =mE =rn[ r(n + 3) - ,.4] , where , according to P:1 
rn 

k = r . Hence: 

E = ~og k [ r(n+3) - 4] = Q(r) log k . 
og r . . 

According to T. 19 , the best choice for r will be that integer r ~· 2 

for which Q(r) has its srnallest value . Then, if ki~ kept constant and 

Q(r) assumed as being a continuous function of r , we have: 

dE _ log k ] 
dr- r (log r )2 [ r(n+3)(log r ~ 1) + 4 

= 
d E ) 
dr p. Therefore , for r ) 3 , 
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Thus , as in T. 18 the only cases left for cons~deration are r = 2 and 

r = 3. 

2n+2 
E{2) =log k log 2 

<. 
E(2) E(3) 

) 
for n 

E(3) =log k 
3n+5 
log 3 

< 
c 

. 5log 2 - 2log 3 
) 2log 3 - 3log 2 

. Therefore 

32 
log --

. 9 
= ~10. 78 

log 
9 
8 

There still remaim sorne possibilities of f(z) which are not coverèd 

by T. 1 s 18 and 20. The se are the cases where the energy required fol r; . .. · .. c 

(.) 
the calculation of the f J {znVJ! dilfers greatly for different j. 

·- ·· -· ... . ____ _ 
The following theorem might be of sorne help in deciding on the best order r. 

T. 21: Let the 'computation energy" (i.e. the number of multiplications 

) ( ) { ) f t J. ( )/ (r-i.) /{ ) t and divisions together for f z , f' z , z 2 . , ..... , f (z) r-i r 

respectively be given by e , e , .e , ••.•..• e , 
o 1 2 · r-1 

Then the "energy'' required for the production of a k-th order 

algorithrn of type {5. 13) by iterative use of one of order r ~ 2 , 

will be given by: 
E 

log k 
2 

L ) _{e +e + ..... +e ~ 
~~r+1 + iqc.":Q\ 1 r-1 - 4 

log r 

The best choice for r will then be that r ) 2 (integral) for which 

Q 
r(r+1) + 2(e +e + ...... +e ) - 4 = o 1 r-1 

log r 

assumes its smallest value. 

Proof: For one application of the algorithrn order r, we have 

* r{r+1) 
E = 

2 
- 2 + e + e + .... , . + e , and for n applications 

0 1 r-1 · 

E =nE*= log k 
2 

r{r+1) + 2( e +e + ..•... +e ) - 4 
0 1 r-1 

log r 

The rest follows from T. 19. 
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B: Considering algoritluns of the type (5. 4) we have the following: 

T. ZZ: Let the "computation energy" for f(z), \ O f(z), ~ 1 
f(z), .... , ~ r-:-.Z ,i{z) 

respectively be given by e, e , e , ...... , e . 
o 1 r-Z 

Then the "energy" required for the production of a k-th order 

algori tlun of type (5. 4) by iterative use of one of order r ) Z , 
= 

will be given by: 

E log k [ Zr _ ] 3 + e + e + e + ........ + e , 
log r 0 1 r-2 

and the best choice for r will then be that r ) Z (integral) Îorwhich 
= 

1 
Q = --- (Zr- 3 + e + e · + e + ..... + e ] 

log r 0 1 r-2 

assumes its smallest value. 

[Simllarly as before , e. denotes the nurnber of multiplications and 
J .· 

divisions necessary to obtain 1; jf{z) from 'J-if(z).] ·_ 

Proof: We have from {5. 4) 

j . 

F (z) = z + r (-1)j . fj(zr { ~- j-1f(z) } 
r j=1 

Bence for one application we have 

* E = e + r - 2 + r - i + e KI+ e + •.... +. e Z 
·.LJ 1 r-

and for n applications! 
* log k _ · 

E = nE = 
1 

[ Zr - 3 + e + e + e + ...•. + e 
2 

] 
og r o 1 r-

n 
since k = r . The rest follows from T. 19. 

. . : 



VIII. 

Error Estimates of the higher order algorithms ( k ~3 ). 

From the definition of the order of an algprithm (see capter II ) 

we have , that for an algorithm of order k , there exists a constant 

ck such that 

1 F(z) - r 1 

1 z- s lk 
holds in the vicinity of the solutionS of z = F{z) or f(z) =O. 

This Ck will obviously be dependent pn the derivatives· ?f F(z) • 

i.e. dependent on the derivatives of f{z). If an explicit form for 

Ck can be found , it may be very nseful as an error estimate for 

the k-th order algorithm under consideration. 

In capters III and IV we have already fully discussed the error 

estimates of the second (and one 3rd) order algorithms which were 

mentioned .. Our objec·t is now to find error estimates for algorithms 

with k ::> 3 
~ 
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A: We will first consider the higher order algorithms as established 

by T. 15 and Fig. 4 : 

From (5. 11) we have for k ~ 3 

f 

l n 
=z 

n fi 
n 

where R = 
k,n 

= 

<l- z )r 
.!__ [ kt; 1 n 

r ~ f' 
n r--2 

Ct k 

\ - z ) 
f{t) n 

2"ft i 
(t- t 

{ 3 - z t 
--k"T"~_n_ ik)('!) 

t<r) ] + R 
n k,n 

)k+1 
dt 

( C ia any circle , centre l such that f(z) is analytic within and 

on C.) 

{8. 1} 

{8. 2) 

\~ 



On the ether hand we have from (5. 13): 

f 
n i k-1 

fi[ :E 

(~ - z )r 
nt1 n 

z = z -
n+1 n f' 

n n r=2. 
r . 

where ~ = F (z ) , F being a similar algorithm of order 
n+1 k-1 n ·k-1 

k-1. i.e. k 
~ - S = g (z ) (z - '! ) -1 

n+1 k-1 n n 

where g {z) is firr ite in a vicinity of l . 
k-1 . 

If we write g = g {z ) , we have for k> 3 
k-1 k-1 n = 

{ ~ - z ) r ·= [ ( ~ - "'t ) + { 'f - z ) ] r 
n+1 n n+1 ~ n 

( ~ r [ "'t )k-2 ]r = 1 - z ) 1 - g . (z - ~ 
n k-1 n 

88. 

(8. 3) 

= ( 'J - z )r [ 1 + ~ {-i)j [ rj ] gjk-1 (zn -l )j. {k-2)1 (8. 4) 
n j=1 

Then from (8. 1) , (8. 3) and (8. 4) we obtain for~ 3 : 

z - l' 
n+1 

=-
1 

f' 
n 

k-1 
:E 

r=2 

[ 

f(r) 
n 

-;T 
r 
~ 

j=1 

(- 1 )r-j [ ~ ] j (z -1 )j{k-2)+r ] 
J fk-1 n 

Since j > 1 , k > 3 , r > 2 = =-
j{k-2) + r ~k. 

Thus (8. 2) and (8. 5) together give: 

z -l =O(jz -l' jk) 
n+1 n 

+ 
R 

k, ·n 

f' 
n 

Thus equat'ion (8. 5) can serve as basis for an errer esti~ate. Let 

{8. 5) 

us first consider the most important (according to the prev1ous chapter) 

case k = 3: 

·. 
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From (8. 2) and (8 . 5) we have then 

fi 1 

zn+1 - l' =-
1 
fi 
n 

. ~ 3 2 4 
~ [ - 2g ( z - ~ ) + g (z - l ) ] 

2 2 n 2 n 

+ 
R 

3,n 
fi 

{ 'g - z )3 1' n 

2f1 n [-2f~' g2+fn g~(zn-l)+T f"'fl)J = 
n 

We have from T. 3 N 

fi ' 
g2 = - "21"' 

n 
N 

where ft r implies that the function f 1 t(z) must be taken at an 

intermediate value. Then 

z 
n+1 

-l = 

3 { l - z ) 
n [ 

2f1 

n 

,.. 
f 1

' i 1 1 

n 
fi 
n 

f' 1 {t '2 

+ n ( z - ~ ) + .!. f 1 ' <I) ] 
4 f 1 2 n ~ 3 

n 

T. 23 : Given f(z) regular in a domain D which includes lz - z
0
1 ~2c 

where z
0 

is the initial approximation to th:e root S of f{z) = 0, 

1 f{zo) 1 
c> 

= rn 

cc 
2 

<11, 

1 2 
C= 2m3 

[ mM
2 

+ 

M . = sup. 1 f(j)(z) 1 

J z-.D 

rn= inf. 1 f 1 (z) 1 > 0 
zaD 

1 3 
.!.m

2
M] 4M2 c + 3 3 

j = 2, 3. 

Then ail z , n = 1, 2 , . .... obtained by the iterative use of the afgorithm 
n 

(established by T. 15 ) for k = 3 lie within the sub- domain 

j z - z
0 

1 ~ 2c of D and zn ;; '{ 

whe re l i s the only root of f( z) = 0 in D. 

(8·. 6) 



Further we have as errer estimate: 

1 n 

1 z 
n - J 1 < 

- { 3 - 1} 
3

n 

c 2 
. c , n=0,1,2, ....•. 

(It is interesting to note that here , in contrast with T. 4 we have 

to assume the existence of }' within D.) 

Pro of: 
We have 1 f' (z) 1 ~rn > 0 and <c 

rn 

Since l and z
0 

are both in D, we also have for an intermediate ~ 

1 f' (!) 1 ~m. 

Therefore 
1 f(zo) 1 

1 f' (~) 1 ; c 

i.e. 
1~-zl <c .s 0 = 

From (8. 6) we have: 

or 
1 f{z

0
) 1 Il' - z 0 1 

1 f{z
0

) 1 
< c 
= 

1 z 1 - l 1 < 1 zo - \' 1
3 ··1 

2m [ 

M3 
c +-] 

3 

Then obviously 

1 z - l 1 < c for n = 0, 1 , ..... . 
n 

and since 1 z - z 1 < 1 z - Y 1 + 1 z - 'i. 1 < 2c 
n 0 = 0 .S n ~ 

we conclude that all z lie in D, and 
n 

1 zn+ 1 - l 1 ~ C 1 zn - l 1
3 

, n = 0 , 1, 2, ..... 

< C c2 1 zn- li < 1 zn - S 1 

The refo re z !! V 
ntat& 

i. e. the algorithm converge s. 

n n 
< c(1/2){3 -i) 1 zo -l' 13 

{1/2}{3n- 1) 3n 
< c .c n = 0 , 1,2, ..... . . 

Q.E.D. 
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To obtain Ck for k > 3 is a little more tedious. 

Since j ;- 1 , r ;- 2 , k ;- 3 , j ~ r we have 

j(k- 2) + r ~ k-1+j. 
. -

Thus, if we know that already 1 zn- 'l 1 ; 1 , we obtain from 

(8. 2) and (8. 5) for k ~ 3 : 

1 z - li k-1 k-1 

= 1 ~~ [ ~ 
ni r--2 

1 f(r) 1 
n 

. k-1 
The sum. S = ~ 

k-1 
r=2 

scheme in Fig. 4. 

Thu s we have: 

is irnmediately obtainable from the 
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···. ' 

~· . ·. 
· .· ·:. 

.... 
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. ('' 1 g 1 = 
k 

k>3 
= 

If m = inf. jf' (z)j > 0 
D 

, Mj ::; frup. 1 ij) {z) 1 
D 

j = 2, 3, ...... , k. 

we obte.:ln Ck in a recursive way from the formula 

* 1 . 
C =nr[ 

k 
S k-1 C l 'Y l k-1 ) Mk 
1 z -)' 1 { (1+ Ck-1 zn- ~ ) - 1 ) + ~] 

n 

where 
M 

r 

r ~ 

M2 
c = 

2 2m 
( See T. 3) 

Now we can state in general for k ~ 3 : 

T. 24: Given f{z) regu.lar in the domain D which include s 

jz-z0 1~2c , where lf(z
0

)j 
1>c>--­

:: m 

and 
M 

2 c = --
2 2m 

1 c = ­
j m 

* s. 
~ J-1 

c 

m = inf. 1 f' ( z ) 1 > 0 
D 

k-1 
Ckc < 1 

M 
[ ( 1 + c . c )j ... 

1 
- 1 ] + ~.· 

J-1 j . 

3; j ~ k . 

M = su p. 1 tJ ) ( z) 1 
j z~D 

j = 2, 3, ..... , k . 

, k >3. 

(8.9) 



~ ' 1 

· : c 

Then all z , n = 1, 2, . ..... obtained by the iterative use of the 
n 

k-th order algoritlun as established by T.15 (k ~ 3) , lie within 

th~ sub-domain 1 z- zol ~ 2c of D, and 

the only :root of f(z) = 0 in D . 

.Fùrther we have as errer estimate 

lz - ~ 1 
n 

n 
k -1 
k-1 

; ck , n=0,1,2, ....... . 

(again; the existence of one root in D is assurned.) 

Proof: Completely analog to that of T. 23. 

~ere l is 

Note:Since c < 1 (from (8. 7) ) , (8. 9) can be replaced by the 

coarser recursion formula 

1 {* ji M) 
cJ = - c s. 

1 
[ ( 1 + cj 1 ) - - 1 ] + d > 

rn J- - J . 
3 < j <k. 

= = 

On the ether hand, the 11:finest u formula would be 

1 c 1 k-.i 
c z: -{ - ~ 

j rn c r--2 

M M 
-f-[ (1 + C c )r -1] + ~~ 
r . j-1 J • 

as is evident from (8. 8). 

,!.t Considering the higher arder algorithms as established by T.12 

and 13 , we obtain the following analogous resulta. (The se are of 

course of much less practical importance than those considered 

above.) 

We have from T.12: 
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,. 

f k-1 f(z ) r r -1 
94. 

J =zn- f'n + :z r n [ d f.. (w) ] 
(- i) 

r ! + R 
r k n r---2 dw w= f{z ) 

n 

where k ~ f(z ) · 
R =(-1)k n 

k 2"ft i c 
dt 

( t - f{z ) )k+ 1 
n 

( C is any circle , centre f(z ) , such that [\w) is analytic within and 
n 

on C.) 

or 
k 

R = (-i) 
k 

f(z )k k 
n d 

--z-- [---
k ·1. k 

dw 

On the other hand , from (5. 4)~ 

f 
z =z _ _E_ + 

k-1 f(z )r r -1 
:z ( _1) r n [ d f {w) l 

n+1 n f' 
n 

r! r 
r = 2 dw w = f( z ) 

n 

. Equations {8. 10) and (.8. 11) then givèr 

f{z )k dk 
l- z = {-1)k n [ -- f-

1
(w) ] 

· .. n+1 k! d*·k 
w w = f(z ) · 

n 

If we put f(z) = ( l - z) \J/ (z) where 

·we get 

w = f(z ) 
n 

Since f' (l ) = -~ ('( ) 

wher.e M = sup. jf' (z) 1 

ztD 

{8. 10) 

(8.11) 

(8. 12} 



'l''· 

'·. 

and L = sup. 
k 

dk l --k- f-1(w) 

dw 
w~ D' =f(D) 

T. 25: Given f(z) regular in the domain D which includes 

1 z - z 1 < 2c , where 
0 = 

If (zo) 1 
c> 

rn 
m = inf. If' (z)l > 0 

zeD 

M = sup. If' (z) 1 
z~D 

l 
dk 

Lk= sup. k 
dw 

w~D1 = f(D) 

Then all z , n= 1, 2, ..... obtaine:d by the iterative use of the k-th 
n 

arder a~orithm as established by (5. 4) lie within the sub-domain 

lz- z
0

1 ;zc of D and zn~ ·"g' · .where Sis the assumed single 

root of f(z)=O in D. Further we have as errer estirnate : 
n 

k -1 
k-1 

< ck 

Proof: (âs before ) 

From jf' (z) 1 ~rn> 0 

, n=0,1,2, ..... . 

< c .• 
m = 

we conclude as be!ore : 1! - z
0 
1 ~ c 

Thenfrom(8.12): lz -~1 <jz- ~ lk C 
1~ = 0 s . k 

< C ck < c 
= k 
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. . : 

We conclude that ali z lie in D since 
n 

1 z - z 0 1 < 1 z 0 - l 1 + 1 z - li < 2c. n : n 

Furthe r we have 1 z ... 't' 1 < c c k-
1 

1 z - ~ 1 < 1 z - ~ 1 
n+1 J = k n ~ n ~ 

Hence nl z -
n~ 

96. 

2 2 3 
1 zn - 4 1 <__ c 1 z - li k < ck+11 z -11 k < ck+1+k 1 z - ~ 1 k and 

k n- 1 = k n- 2 = k n- 3 ~ 

n 
k -1 
k-1 ~ 

< c . c 
::t k 

, n=0.1,2, .....•. 

·~ . . Q.E.D . 



IX 

The Determination of the Approximate Location of the Koots of 

f(z) = o. 

It is evident that in the iterative application of the algor-

ithms considered aboYe, the choice of the initial approximation z 
. - 0 

to the root ); of f(z) = 0 is a problem in itself. It would there-

fore be extremely useful if a means can be found of determining the 

approximate location of the roots of the analytic function under 

consideration. 

( The prOblem ~f finding ~he location of the real roots of the 

function f(x) = 0 of the real variable x is not explicitly dis-

cussed in this chapter, and as a result no mention is made of such 

well-known criteria as the so-called Harriot-Descarte• Rule of Signa, 

Sturm's Theorem etc. For these we wish to refer to most textvooks 

dealing with the subject, e.g. H. W. Turnbull (20). 1 
As was already remarked in Chapter I, the zeros of an analytic 

function are isolated points, i.e. 

If a function f(z) ia not identically zero, and is ~alytic 

in a region includ.ing z = a, then there is a circle \z - a \ = m 

(m) o) inside which f(z) has no zeros except possibly z = a itself. 

!l, The problem of determining the number N of zeros of an 

analytic function which lie in a given region was already solved by 

Cauchy by means of his theorem: 

9? 



T (i): If f(z) is analytic within and on a closed contour (rectifiable 

Jordan curve) C, and f(z) % 0 on C, then 

1 { f' fz~ dz 
N = A11 i ) f z 

c 

where N is the number of zeros .,inside the contour (a zero of order 

P being counted P times.) 

This result can also be expressed in another way. Since 

' f (z) 
= f (z) 

ve have ' f (z) dz 
f'Ti) = 

vhere ~C denotes the variation of log (!(z~ round the contour c. 

The value of the logaritbm with which we start is clearly indifferent. 

Also log [f(z)] = log \ f(z)\ + i arg (f(z)1 

and LJ log 1 f\ is one-val.ued. Hence the formula may be written as 

N = 2~ Ac arg lf(z~ 
âitt9 or better still; if we write f(z) = r e · , r ">0 on C 

i.e. if f(z) = u(z) + i r(z) where u(z) and v(z) are real on C, 

then e = 2;.. arc tan( v(z)/ u(z)] 

and N = 6-c arg (f(z)] : Ç de. 
c 

Hence N is the amount that Q increases as the point z traverses the 

curve C in the positive sense. 

Keeping Rauch~'s theorem (see chapter I) in mind might also be 

of some help for determining N in special cases. The following is an 

example of the type of problem which can be solved by means of 

Cauchy's method: 



Que.: In which quadrants do the roots of the equation 

f(z) = z 4 + z3 '+z2 + 2z + 3 0 lie? + = 

(a) The equation has no real roots:. 

Obviously it has no positive root. 

Put z = -x : x 4 - x3 + 4x2 - 2x + 3 = _O. For 0 <x <.1 the first 

three terms together are positive, and so are the last two. For 

x> 1 the first two terms together are positive, and so are the last 

tbree. 

Therefore it has no negative roots. 

(b) The equation has no purely imaginary roots: 

Put z = iy y
4

- iy3 - 4y
2 

+ 2iy + 3 = 0 aad t~e real and imaginary 

parts of this do not vanish together. 

Now consider ~arg (z
4 

+ ••• + 3) taten round the part of the 

first quadrant bounded by 1 z \ = R. The variation along the real 

ie axis is zero. On the arc of the circle z = Re • Then for suffi-

ciently large R: 

A. arg (z 
4 

+ ••• + 3) = Aarg (R4 e 4i 9) +A arg[l + ()(R-1Ü 
-1 = 21t + 0 (R ) 

On the imaginary axis we have 

4 - + 2y .( 3 ) 
arg (z + ••• ) =arc tan y{_ 4y2 + 

3 

As y varies from + ~ to 0, the expression in brackets varies accord:i.J:ig 

to: y=~ 0' œ 1 0 

0 -Cib 0 +al;) 0 

4 ... ) Therefore arg (z + decreases by 2'n if y decreases from 

+ ~ to o. 

99 



Thus the total variation of arg Cz4 
+ ••• ) round the first 

quadrant is zero, if R is large enough. 

Hence there are no zeros in the first quadrant. Since the 

zeros must occur in conjugate pairs (f(~) has real coefficients), it 

follows that there are no zeros in the fourth quadrant, and two in 

each of the second and third quadrants. 

Any algebraic equation may be treated in the same way. 

The calculations involved in determining this N might be 

ext~ea•lr. tedious though. Then the following methods might be of some 

hel p. 

B: The following theorem sometimes gives useful information about 

the zeros of a function. 

T (ii): Let C be a simple closed contour, inside and on which f(z) is 

analytic. Then if R~f(z)] vanishes at 2k distinct points on C, f(z) 

has at most k zeros inside c. 

Proof: We have from above that if f(z) = u + iJ the number N 

of zeros of f(z) inside C is given by 

1 
N = 211" Âc (arc tan v tu) 

Starting at 

·- (. / ~> 
this range, 

i 2~ ~ d (arc tan v / u) 
c 

a point where u ~ Ô, we may take 

to lie ' 1 1 
between - ~-,_and 2""'• 

say to (~lt, ~lt) if u vanishes; 

the initial value of 

We can only pass out 

and only pass on to 

(~'11, ~11) if u vanishes again. Thus, if u vanishes twice on c, 

arc 

of 

A. C (arc t~ v / u) is at most equal to 21r , and N is at most equ.al. 

to 1. The general result obviously follows from the same argument. 

100 
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(This theorem was for instance used with great expediency by 

•• R. J. Backlund in his "Uber die Nullst~len der Riemannschen Zeta-

fUllktion" ; Aeta Mathematica 41, (1918), 345 - 75). 

C: The following theoreœ is actually a consequence of the 

maximum-modulus theorem. 

T (iii): Let f(z) be regular, and lf(z)\ ~ M in the circle \z - a\~R, 

and suppose that f(a)~ o. Then the number of zeros of f(z) in the 

circle \z - a\* ? does not exceed A log [ M / \ f(a)\1 

where 1 
A = log î/h O(h (1 

Proof: For the sake of simplicity, suppose a = o. Let 

't 1 , 1" 2 , Sn be the zeros of f(z) in \z\ ~ ? and let 

" g(z) = f(z) /"J\ l 1 - I ) 

101 

C\ l=' \ ~ 

= -:g. \~- sy ~~"L~ .1,. \~ ... ~" ~\: ')" ~ t~') 1\ ~. 
\\ l-z- ~,) . ~-\)1\ ~~· ~ 

~::., }. 

where lim.~ (z) < ~ 
Z-+ S• 

l 

j = 1 ... n. 

Therefore, g(z) is regular for 1 z\ ~ R and on \ z \ = R we have since 

rt 1' ~ ~ ' \ Ï; \ ~ 3 for j = 1' 2' • • • n 

Thus \ g(z) \ ~ M / lT (3 - 1) = 2-n M (9.1) 
• 
-~=· 

for \ z \ = R, and by the maximuin-modulus theorem also for 1 zl (. R. 

Since g(o) = f(o) it follows that 

\ f ( o) \ ~ 2 -n M 

Th us 
1 

n ~ log 2 



1 from (9.1) it is obvious that 3 can be replaced by any number lees 

than ~ • A more complete resdlt can be obtained from Jensen's theorem 

which says :; 

Let f(z) be analytic for \z\< R. Suppose that f(O) is not zero, 

and let r 1, r 2, •.• , rn' ••• be the moduli of the zeros of f(z) in 

the circle lzl< R, arranged as a non-decreasing sequence. Then if 

r~r~r 
1

, 
n n+ 

Now, if the zeros in \z\~ R have moduli r 1 t r 2 , ••• , r* then, 

applying Jensen: 

RN 
log 

·-r 1' r 2 • • • r JI 

~'ft' 

= ~ \ log\ f(Rei
8

) \ d& - log\t(O) \ 
0 

~ log M - loglf(O)\ 

Let the zeros in the circle \z\~ hR, O<h(l have moduli 

... 

Th us 

' r • n 

••• r n 

Then the left·hand aide is not less than 

~ log (1/h)n = n log(l/h) 

log M 
\f(O)\ 

't• E. D. 

f(z) a Polynomial 

For the res~ of this chapter we will discuss auxiliary measures 

wbich were proposed for finding the approximate location of the roots 

of a polynomial. 

D: Let us begin with a problem of the first category&to find an 

upper bound for the moduli of all the zeros of a polynomial. A 
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classic solution of auch a problem is the result due to Cauchy 

~xercises de mathématiques; Oeuvres(2) Vol. 9, (1829) p. 122; J~. 

Ecole Poly. Vol. 25 (1837) p. 176J namely: 

T (iv): n All the zeros of the polynomial !(z) = a
0 

+ a1z + ••• + ~z , 

a\ 0 lie in the circle \z\~ r, where ris the positive root of the n 

equation 

Also 

T (v): All the zeros of f(z) = a
0 

+ ~z + 

in the circle \z\ <.. 1 + max \a. 1 a \ , 
. J n 

n 
• • • + anz , an"\ 0 lie 

j = 0, 1, ••• , n- 1 

These two theoreme formed the basis of the result due to 

Birkh.-ff \_An elementary double inequality for the roots of an 

algebraic equation having greatest absolute value; Bull. Amer. Math. 

Soc. 21 ( 1914) P,P• 494 - 49~, Cohn L tTher die Anzahl der W1JI2iàla einar 

algebraischen Gleichung in einem Kreise; Math. Zeit. 14 (1922) 

PP• llO - 1481 and Berwald lElementare Së.tze Über die Ab~nzung der 

W~ einer algebraische Gleidung; Aota Univ. Szeged 6 (1934) 

PP• 209 - 2211 namely: 

T (vi): The zero z1 of l argest modulus of f(z) 

an' o satisfies the inequality 

r ~ \z1\ ~ (2l/n - l)r 

where r is the positive root of the equati on (9.2). 

This again led to the important result of Kuniyeda \._Note on 

the roots of algebraic equations; Têhaku Math. J. 9 (1916) pp. 167 - 173; 

Ibid. 10 (1916) PP• 185- 188~, Montel ~Sur la limite supérieure du 



module des racines d'une équation algébri~ue; C. R. de la Société des 

Sciences de Varsovie 24, (1932) pp. 317 - 326; c. R. Acad. Sei. Paris 

193, (1931) PP• 974- 976) and T&ta{_some remarks on Montel's paper 

concerning upper limit of absolute values of roots of algebraic 

lü; 

equations; Science Reports Tekyo Bunrika Daigaku 1, (1933) pp. 275 - 282 

which w~ can state as: 

T (vii): For any p and q auch that 

p)l ' q) 1 ' 
l 1 
- · +- = 1 p q 

the polynomial f(z) = a
0 

+ a1z + 

has all its zeros in the circle. 

n ••• +a z 
n 

n-1 ! 
1 z 1 < [ 1 + ( ~ 1 a .1 p 1 1 a 1 p ) q/ p ] q 

j=O J n 
1 

< ( 1 + n q/p. Mq ) q 

where M = max 1 aj/an l , j = 0, 1, • • • , n - 1 • 

a '\ 0 n 

An important generalization of Cauchy's T (iv) was published by 

M. A. Pellet in 1881: 

T (viii) : If for a polynomial 

f(z) ~ a + a_z + ••• +a zP + 
0 ~ p 

the equation 

n ••• +a z 
n 

.. 

F ( 1) = 1 a 1 + 1 a
1
l z + • • • + ) a 

1 
\ zp-l - 1 a \ zP + \ a 1\ zp+l 

p 0 p- p p+ 

+ • • • + \a \an • n 

bas two positive zeros r and R, r < R, then f(z) has exactly p zeros 

in or on the circle l~l ~ r and no zeros in the "annular" ring 

r<lzi<.R. 

Let us divide the plane into 2p equal sectors Sk having their 



common vertex at the origin and having the rays 

@=(~ +j'1t)/p 
0 

j • 1, 2, ••• ' 2p 
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as their bisectors. Let us denote by G (r
0

, r; p, c(
0

) the boundar,r 

of the region formed by adding ~o the circular region lz\ <r those 
0 

points of the "annulus" r ~ lzl"' r which lie in the odd nwnbered 
0 

sectors sl, s3, ••• (eee Fig. 5). 

Fig. 5 

Then the following refinement of Pellet's Theorem can be pro­

posed. (see for proof M. Marden (23)). 

T (ix): If the polynomial 

... n 
+ a z 

n 

with a a1a a,\.. o and o( = arg (a· / a ) be auch that the equation 
o p n1 o o p 

:rp(z) =la
0

\ +\~\ z + ••• + lap_1 \zp-l_,ap\zP +\ap+1\zp+l 

" 



has two poeitive zeros r and R, r< R; then the equation 

+ • • • + 1 ani zn-t • .0 

has two positive zeros r and R with r 1 r( R ( R • Furthermore, o o o' o 

the polynomial f(z) has precisely p zeros in or on the curve 

G Cr , r; p, a( ) and no zaros in the "annular" region between the 
0 0 

curves G (r , r; p, o( ) and G(R, R ; p, c( +lt) 
0 0 0 0 

A generalization of~ (v) was established by P. Montel[Sur 

quelques limites pour les modules des zéros des polynimes; Comm. 

Math. Helv.7(1934- 35) PP• 178- 200; c. R. Acad. Sei. Paris 199 

(1934) PP• 651 - 653, 760 - 762J 

T (x): At least p zeros of the polynomial 

f(z) =a + a_z + ••• +a zn lie in the circle o .L · n 
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\z\ ( 1 +max. 1 a./ a ll/(n-p+l) 
J n 

j = o, 1, ••• ' p • 

E: By means of a potential - and function - theoretical approach 

P.c. Rosenbloom [22]arrived at the following theorem which might be 

of sorne help. 

T (xi): 

where 

k n 
Let P(z) = ~ a z 

n=O n 
be a polynomial of degree k, and let 

~ = k-l log (M(l, P) 2 / l a
0
\} ~\) 

M(r, P) = max \ P(z)\ 
\z\= r 

Let N(E) be the number of zeros of P in E, divided by k. Then, 

if E is the set 

1 
- < z < 2, 
2 = 

1 arg z -o(j< ~ = 2 
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where o( = min (arg z) 
z•E . 1 

then l N(E) - 't'/ 2-lf \ ~ 36 ~ 1; log (2 + 1 /A ) 

!E H. s. Wall [10] and others have drawn attention to the signifi-

eance the expansion of polynomials in continued fractions can have in 

determining the location of the roots . of the polynomial. 

n R-1 n-2 Let P(z) = z + ~z + a2z + ••• 

degree n) 0 with complex coefficients aj • 

Put Re ~aj) = Pj and Im (aj) = qj 

Then the polynomial 

n-1 . n-2 n-3 n-4 
Q (z) = p1• + ~q2z + p~ + i~z + 

+ a be a polynomial of 
n 

so that aJ. =p.+ iq . 
. J J 

••• 

is called the alternant of P(z). The quotient Q(z) / P(i) has, in 

general, a so-called J-fraction expansion of the form 

• 
• + 1 

c z + k 
n n 

called the test-fraction of P(z). Here the cj are real and different 

!rom zero; and the kj are pure imaginary or zero. 

toD P(z) existe iff the determinants 

ThiB test-traction 



Fj = 

are 

loB 

pl p3 p5 .... p2j-l -q -q4 -q6 • ••• -q2. 2 J-
1 p2 p4 ..... p2j-2 -ql -q 

3 
-q 

5 
. ... -q2j-3 

0 pl p3 •••• p2j-3 0 -q 2 -q4 • ••• -q2j-4 

. . • • . . 
0 0 0 •••• pj 0 0 0 . ... -qj-1 

0 q2 q4 .... q2j-2 pl p3 p5 . ... p2j-3 

0 ql q3 •••• q2j-3 1 p2 p4 • ••• ;--p2j-4 

0 0 q2 •••• q2j-4 0 pl p3 • ••• ;)p2j-5 

. • • • • • 

0 0 . . • • • qj 0 0 • . . . . • p. 1 J-

j = 2, 3, 4, .... 
' 

n, pj = qj = 0 for j) n 

different from zero. (See E. Frank [11]) 

The following table is suggested for obtaining expansion (9.3): 

all 

aOl = ity 

al2 = iq2' 

.... 

.... 

c2 = a22 ' b22 = ~2 - c2a23' b23 = ~3 - c2a24' b24 = ~4 - c2a25' · · · · · · 

. . ~· . . . . . (9.4) 
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H. s. Wall succeeded in eatablishing polygonal bounds for the 

roots of a polynomial by means of the following theorem:: 

T (xii):: Let P(z) be a polynomial of degree n having a test-fraction 

written in the roma 

§~:~ = -____ .... c ___ ~~2~ 
bl + z - __ ..;;;;. ___ _ 

b2 + z - • 

• 

and let Y(S) be any number such that 

d 2 
n-1 

b + z 
n 

~/6) + Y(e)~ o , j = 1, 2, 3, •••• , n • 

2S12(e)~ [~1 (e) + Y(&)] [~2(e) + Y(e~ 

' 
j = 2, 3, • • • • , n - 1 . 

Then all roots of P(z) are contained in the rectangle 

y ~ Y(~) ' 

y~ -Y('"II') ' 

s~Y( ; ) 

x)-Y(31t) 
- 2 

In 1945 (see {JQ]) Wall proved the following theorem for a 

polynomial with real coefficients. 

T ( ... ) Let P( ) n n-1 n-2 
Ja.l.l. : z = z + ~ z + a2z + 

vith real coefficients, and let 

••• + a n 
be a polynomial 

n-1 n-3 n-5 Q(z) = ~z + a
3

z + a
5

z + • • • be the alternant 

of P(z). Then all the zeros of P(z) have negative real parts iff 



~ = __ ..;;;1;.._ __ _ 

1 c
1

z + 1 + -__,;~--
1 

• • 1 +-c z 
n 

where the coeffieients c1 , c2, •••• , en are all positive. 

Also 
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T (xiv): In the expansion (9.6) let k of the coefficients cj be 

negative and the remaining n - k . be positive. Then k of the zeros of 

P(z) have positive real parts, and n - k have negative real parts. 

~ple: Let P(z) = z5 - 3z
4

- 9z3 - 27z2 - 32z - 30 

Then Q(z) = -3z
4 

- 27z2 - 30. 

The expansion (9.6) may be obtained by dividing P(z) by Q(z) until a 

remainder is obtained which is of lower degree than Q(z); then ~(z) is 

divided by this remainder, and so on. (Scheme (9.4) may also be used 

of course.) If we write .only the coefficients, we have: 

-3 +0 -27 +0 -30 
-•1-a 

1 -3 -9 ~27 -32 -30 
1 +0 +9 + 0 +10 

-3-18 -27 -42 -30 
-3 +0 -27 • 0 -30 . 

-18 + 0 -42 + 0 

9/10 
Cont. -20 +0 -39 f -18 +0 -42 +0 

-18 +0 -27 

1/6 

-3 +0 -27 +0 -30 

-3 +0 - 7 +0 

-20 +0 -30 

4/3 

-15 +0 -2o +0 -30 

- 20 +0 1/2 
-30 -15 

-15 
0 

(9.6) 
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Renee c1 = -l/3 , c2 = l/6 , c
3 

= 9/10 , c4 = 4/3 , c
5 

= ~2 • 

Thus, there is one zero in the right half-plane and four in the left-

half plane. 

In 1946 E. Frank (11] proved the following two analogous theoreme 

for the polynomial with complex coefficients: 

( ) ( n n-1 T xv :: Let P z) = z + a1z + ••• + an be a polynomial of degree 

n) 0 with complex coefficients aj = p j 

n-1 n-2 n-3 Let Q(z) = p1z + iq2z + q
3
z + 

+ iq . , j = 1, 2, • • • , n • 
J 

n-4 iq4z + ••• be the alternant 

of P(z). All roots of P(z) have.negative real parts iff P(z) has a 

tes~fraction of the form 

z + b2 + ----­
z + b3 + • • • • 

dn-1 

+ z + b 
n 

j) 
in which d0 , ~ , ••• , dn-l are real and positive, and b1 , b2, ••• , Dn 

are pure imaginary or zero. 

T (xvi): If P(z) has a test-fraction (9.3) in which _k of the cj are 

negative and. n - k are positive, then k of the roots of P(z) have 

positive real parts, and n ~ k have negative real parts. 

Approximate computation of the roots of a polynomial 

We ehall now give a method, based upon this last theorem, for 

determining the approximate location of the roots of a polynomial. Let 

P(z) =zn+ (pl +iql) zn-1 + (p2 + iq2) zn-2 + ••• + pn +Ï~ 

be the given polynomial. Put Ph(z) = P(z + h) • 



Let ~ (z) be the alternant of Eb (z) , and let 

cj(h) = a. 1 , . 1 (h) / a. j (h) , j = 1, 2, 3, •••• , n • 
J- J- Jt 

(cfi (9.4) ) be the coefficiente of z in the test-fraction (9.3) for 

Ph(z). By the theorem above, if k = k(h) of the coefficients cj(h) 

are positive for a given real value of h, then Ph(z) has just k(h) 

roots in the half-plane R (;z) < o, so that P(z) has just k(h) roots 
e 

in the half-plane R (z)< h • 
. e 

In general, the method for determining the roots of P(z) con-

sista in varying h in such a way that a (h)_..,.o and k(h) changes by n, n 

one unit. This means that the last remainder in the division process 

used in forming the test-fraction Ph(z), which is simply the ~olidean 

algorithm for the greatest common divisor of Ph(z) - Qh(z) and ~(z), 

approaches zero. If z0(h) is the root of the next to the last remain­

der, an-l, n-l(h) z + an-l, n(h), then h + z0(h) approaches a root of 

P(z) as a (h) approaches zero. If two or more roots ofP(z) have a n, n 
common real part, the process must be suitably modified. (cf. Example 

2, following.) 

We shall now show how the computation can be so arranged that 

the roots of P(z) can be effectiTely determined by this method. H~te 

method will be applied for the formation of the polynomiale Ph(z). 

The Euclidean algorithm can be reduced to the computation in table (9.4). 

Example 1: Computation of the roots ,of 

P(z) = z3 + (1 + iji)z2 - (1~- 5i)z - (7 + lOi). Firat compute 

the test-fraction for P(z) by meana of (9.4): 



-c1 = -1, -~ = -i, ~l = 1 ~ = .5i t ~3 = - 7' 

bll = i , · b12 = -6, b13 = -lOi, 

-c2 = 1, -k2 = 2i, a22 = -1, a23 = -3i, 

b22 = 2i, b23 = -7, 

-c3 = -1, -k
3 

=-3i, a33 = -1, 

b33 = -3i • 
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R (z)) 0 Cf.(xvi) ). By T (xii) we find the roots of P(z) are con­e 

tained in the rectangle 

Yi-1, x~2, Y! -3, x~-2, (z = x + iy) 

Now compute the polynomial P1(z) = P(z + 1) by means of Horner's 

scheme:. 

Hence, P1(z) 

Now from the 

1 
cl = 4' 

1 1+6i -13+.5i -7-lOi 

1 1 2+6i -ll+lli 

1 l+6i -ll+lli -18+ i 

1 3+6i 

1 3+6i - 8+17i 

1 

1 4+6i 

= z3 + (4 + 6i)z2 + (-8 + 17i)z + (-18 + i) 

table (9.4) for P1(z): 

aoo = 1 a01 = 6i a02 = -8 

all = 4 

bll = 1.75i 

a22 = 3·9375 

b22 = 7.98413i 

al2 = 

bl2 = 

17i a13 = -18 

-3 • .5 bl3 = 

a23 =.8.87.501 

b23 = -18.00 

i 

k = 1 

a03 = i 



- - 3·937~ c3 - .0039 5 

Thus, P(z) has one root in the half-plane R (z)) 1, and e 

~3(1) = -.003985. 

We nov form 

P2(z) = z3 + (7 + 6i)z2 
+ (3 + 29i)z + (-21 + 24i) 
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and find that c1(2), c2(2) and c
3

(2) are all positive, so that all 

the roots of P(z) are in the half-plane R (z)<2. There is one root e 

in the strip 1< Re(z)< 2. We find that a
33

(2) = 8.98. Since we had 

~3(1) = -.003985, it vould appear that this root has real part very 

nearly equal to 1. If we assume that a
33

(h) varies linearly with h, 

ve find, by interpolation, that ve should have a
33

(1.0004) = o. In 

the light of this information, we nov form 

P(z + 1.001) = z3 + (4.003 + 6i)z2 
+ (-7.991997 + 17.012i)z 

+ (-18.00700.5009 + l.017006i) 

and construct table (9.4) for this polynomial. We find 

~3(J..001) = -.000076233 and that 

a22(1.001)z + a23(1.001) = 3.944596397z + 8.89o4426667i 

On setting the latter equal to zero we find for the imaginary 

part of the root the approximate value -2.254i. We thus have as an 

approximate value of the root 1.001 -2.254i. Nov we can apply one 

of the iterative algorithme discussed above, or:: 

P(d + 1.001 - 2.254i) .= d3 + (4.003 - .7621i)d2 
+ (3.814455- 1.033524i)d 

- < .000253547 + .ooo645698i) 

If ve neglect the terms in d3 and d2, and set the 1inear part 

equal to zero, we obtain the correction 
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d = .0000192 + .00017451 

Then d + 1.001 - 2.254i = 1.0010192 - 2.2538255i is the value of the 

root. This is actually correct to the number of places given, since · 

it was round by application of the Newton-Raphson algorithm that the 

root is 1.0010192259 - 2.25382551671. (the last digits 9 and 7 are 

in doubt.) For the other two roots of P(z) we find the values 

- 1.520324 - 1.39987916i and 

.480695 - 2.34629531 correct to the number of placee 

given. As a check, we find the sum and the product of these values 

of the roots are -l-6i and 7+10i respectively, correct to six 

decimal places. 

Example 2: P(z) = z3 + 2z + 20. 

This polynomial has a pair of conjugate imaginary roots. Since 

the coefficient of z2 is zero, the test-fraction does not exist. .This 

is of little concern, since the test-fraction exists for Ph(z) = P(z + h) 

when his near the real parts of the roots. We have by~ (xvi) 

applied to P1 (z) and P2(z), that the imaginary roots are in the strip 

1< R (z)< 2 • 
e 

In the following table, the numbers m. are the next to the last 
J 

remainders obtained in applying the Euclidean algorithm to the polynomiale 
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1 0 2 20 
1 1 3 h til 1, m1 =5-~ 

1 1 3 23 
1 2 = 2.7 

1 2 5 
1 

1 3 
1 4 9 1 

h = 2 m2 = 14- ~ 1 4 9 32 
1 5 = 8.7 

1 5 14 
1 

1 6 
-.8 -4.16 -:-7.872 -.8 m1.2 = -.38 

h = 1.2 
1 s.a 9.84 24.128 

-.8 -}.~52 

1 4.4 6.32 
-.8 

1 3.6 
.1 .37 .669 .1 

h = 1.3 
1 3·7 6.69 24.797 

m1.3 = .71 

.1 .38 
1 3.8 7.07 

.1 
1 3·9 

-.w -.2681 -.476133 -.07 
h = 1.23 

1 3.83 6.8019 24.320867 m1.23 = -.041 

-.07 -.2632 
1 3.76 6.5387 

-·07 
1 3.69 

.01 .037 .065757 .01 
h = 1.24 

1 3·7 6.5757 24.386624 m1.24 c ·073 

.01 .0371 



1 3.71 

.01 

1 3.72 

-.oo6 
1 3.714 

-.006 
1 3.7o8 . 

-.oo6 
1 3.702 

.001 

1 3·703 

.001 

1 3.704 

.001 

1 3.705 

6.6128 

-.022284 

6.590516 

-.022248 

6.568268 

.003703 

6.571971 

.003704 

6.575675 

·.039543096 

24.347080904 

.oo657!1l971 

24.353652875 
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-.006 
h = 1.234 m1•234 = -.oo84 

.001 
h = 1.235 m1•235 = -.0024 

3o705k
2 

+ 24.354 = O, 

k = .:!:,2.5641 

P(d + 1.235 + 2.564 i) = d3 + (3.705 + 7.692 i)d2 - (13.146613 

- 18.99924 i)d- (.0035~805- .004048556i). 

The real part of the imaginary roots has the value h = 1.235 correct 

to three decimal places. The imaginary parts are .:!:,2.564i, as indicated 

above. On equating to zero the linear part of P(d + 1.235 + 2.564 i) 

we obtain the correction d = -.000237 + .000247i. Thus, the imaginary 

roots are approximately equal to 1.234773 .:!:. 2.564247i. Since the sum 

of the roots is equal to zero, the real root must be -2.469546. One 

aay readily verify (by Newton'~ method or otherwis~J that this is 

correct to six decimal places. 

Note: (1) If. this method fdr determining the roots of a polynomial 

is to serve only as a means for finding an initial approximation z0 

for the iterative use of an algorithm of the types discussed in 
~ . . 

previous chapters, this method is terminated as soon as poss ible. Its 

application i s usually qui te l aborious in comparison with the applica-
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tion of the Newton algorithm or one of its modifications - especially 

if a computing machine is used. 

(2) This method of computation of the roots is closely related 

to the method proposed by F. L. Hitchcockl:21• 

The considerations discussed in A and also D, led Cauchy 

LA• L. Cauchy: Calcul des indices des fonctions; Journal de l'Jicole 

Polyteqhnique, Vol. 15, 1837, pp. 176 - 229 (OEvres (2), Vol. 1, 

PP• 416 - 466)} to introduce the notion of the ''index" of a rational 

fraction. He also developed formulas for the computation of the index, 

and introduced the method to compute the index by means of Sturm's 

series. (Kronecker extended the notion of index to systems of functions). 

We may ACte here the important Cauchy Index Theorem as presented 

by Hurwitz LÛber die Be~ter welèhen eine Gleichung nur Wurzeln 

mit negativen reelen Theilen besitz; Math. Ann. 46 (1895), 273- 284; · 

Math. Werke 2, 533 - 545.] 

T (xvii): Let f(z) = a
0 

+ a1z + ••• + an-lzn-l +zn= P
0
(x) + P1(x) 

where P
0

(x) and P1 (x) are real polynomiale with P1(x)~O. As the 

point x moves on the real axis ,. from - ol to + o4 , let m be the number 

of real zeros of P0 (x) at which g(x) = P0(x)J'P1(x) changes from- to 

+, and k the number of real zeros of P0(x) at which g(x) changes from 

+ to -. If f(z) has no real zeros, p zeros in the upper half-plane 

and q zeros in the lower half-plane, then 

p = (1/2) Ln + (k - m)1 , q = (1/2) t n - (k - m) \ 

(For further information on geometrie methode to determine demains 

containing no zeros or at least one zero, or sometimes all zeros of a 
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giv:en polynomial, we refer to Walsh l 24~ and Nt\rden \._231) . 

On the basis of Cauchy's work E. J. Routh ~13\ derived the 

following rule for testing a polynomial 

( ) n n-1 
p z = aoz + ~z + ••• +a ' n 

Consider the array 

ao a2 a4 

~ a3 a5 

~a2 - a0a2 ~a4- a0a!2 

~ ~ 

. .. 

.. . 

where the third row is obtained from the first two by cross-multipli-

cation. The next row is obtained from the second and third by the 

same prodess. Thus the first element in the fourth row is 

a3 ~ "1a2 ~ ao"z y ("J.a4 - a0a5) 

a.la2 - a0a3 
i 

Each row has one fewer elements than the preceding row. Then the 

number of variations in signa in the sequence making up the first 

column of the arra.y is equal to the number of zeros of P(z) having 

positive real parts. This was shown by Wall to be essentially T (xiv). 

(The method of Reuth fails liowever ill case division by zero is involveà 

in his algorithm.) 



1 5 3 

- 0. 75 - 3. 1875 

1 4.25 - o. 1875 

- o. 75 - 2. 625 
- ·· ··- · -- - --- - · ··-- - .... ... ... .. - . . 

1 3.50 - 2. 8125 

- 0.75 - 2. 0625 

1 2.75 - 4. 8750 

- o. 75 - 1. 5 

1 2 - 6. 375 

- 0.75 - o. 9375 

1 i. 25 - 7. 3125 

-0 . 75 - o. 375 
. - ·- · · ·- . 1 0.5 - 7 . 6875 

- o. 75 0.0003286 .. . ... ·-- - ·· ··· - · 

1 - o. 25 

0.0000227 0.0003291 
1 

0.0000016 0. 0000227 0.0003291 

0.0000016 0.0000227 0.0003291 

Fic:\.~ 

2 

0.140625 

2.140625 

2.109375 

4.250000 

3.656250 

7.90625 

4.78125 

12.68750 

5.484375 

18.1718750 

0.0048014 

0.0047619 

0.0047667 

0.0047662 

0.0047662 

4 2 6 4 

1. 6054688 -1.7958985 - o. 1530761 - 4. 3851929 
- ·- -.... - · - ---

2.3945312 0.2041015 5.8469239 - 0~ 3851929 

- 3 . 1875000 o. 5947266 -o. 5991211 1 

- o. 7929688 0.7988281 -(-5 : 2478028) 

- 5. 9296875 5.0419922 0 0 

- 6.7226563 5.8408203 

- 9.515625 1 5.8408203 1 . . ······-··· - ·--
- 16. 2382813 

0.0674043 1 4.7459903 1 

o. 0692919 1 4.8028952 1 

0.0690065 1 4 . 8071584 1 . 

0 . 0690414 1 4.8038741 1 

0.0690374 1 4.803876 5 1 

0.0690374 1 4 .. 8038765 1 

Sche me for findin g a root of the equat i on 

7 6 5 4 3 2 
x + 5 x + 3 x + 2 x .- 4x + 2x + 6x + 4 = 0 

- 0.1905556 

- o. 3851929 

0 

- o. 3537244 

- o. 3636303 

- o. 3621325 

- o. 3623154 

- 0.3622946 

- o. 36229 70 

- o. 3622970 

v2= 
0.0734008 

v ~ 
o. d674043 

v = 
o.'b 69 2919 

1 

v = 
iü. o%90065 

0.~%~0414 
v = 

o. d690374 

v = 
o.B69 0378 

v = 
o. 6690378 

=v 
8 

by means of an it erative algorit lÙn of the k- th o rder : x
1 

= x
0 

+ v k . x
6 

= - O. 75 · 

r·J 
(} 



' Example. 

'' 

Que'. : Find the real root of 

7 6 5 4 3 2 
f(x) =x + 5x + 3x + 2x + 4x + 2x + 6x + 4 =O. 

lying between x=- 1 and x=- O. 5 

[ f( -1) = -1 ' f( -o. 5) = + 1. 1016 ] 

Choose x =- 0 ; 75 . 
0 

121. 

According to T. 20 the Newton algorithm will be the most 

expedient in this case. Fot the sake of a perceptible representation 

however, we will apply the scheme given in Fig. 4. Then we obtain 

Fig. 6 and: 

2nd. arder algorithm (Newton): x~ 2 )=- O. 6765992 

, 3rd. Il Il {3) o. 6825957 x =-
1 

4th. Il Il x 
{4) 

0.6107081 =-
1 

5th. Il Il x {S)=- o. 6809935 
1 

6th. Il Il 
{6) 

' x =- o. 6809586 
1 

7th. Il Il 
(7) 

x
1 

=- O. 6809626 

8th. Il Il 
{8) 

0.6809622 x =-
1 

After j=8 no further changes in the values of the v appear 
j 

up to seven decimal places. After two applications of the Newton 
. {2) {2) 

algonthm the value x
2 

=- O. 6809622 ( x
0 

=- O. 75 , 

x (
2
)=- O. 6765992 ) was found. This is exactly the same as that 

1 
found after one application of the 8th. order algorithm. 



We have . -8 
f( - o. 6809622} = 4. 4 . 10 

Bence, in the domain D: - O. 681 < x < - O. 680 
= = 

1 f' (x} 1 > 5. 8 =m. 

Therefore 

5 -8 -8 
10 < 1 . 10 % c < 5.8 m = 

Bence '\ = - 0. 68096220 + 10-
8 

In the domain D we have the following upper bounds : 

M2 
= 3 

M3 M4 
= 16 

Ms 
=8 -- =12 

2 '· 3 ! 4! 5 ! 

[ij)(x} < M x E: D. ] 
= j 

-8 
From this we obtain after T. 24 (with c = 10 ). 

n 
c = 2. 61 lx - 'r < o. 62 [ 1. 62 . 10-8 ]3 

3 n = 

c 4 = 23. i lx 's o. 36 [2. 85 
8 4n 

.10 ] - < 
n = 

n 
c = 493.9 lx - ~ '~ o. 22 [4. 72 . 10-8 ]5 

5 n 

and afte r T. 3 : 

c =0.5173 
2 

l·x- \ 1 < 1.93[0.52 .10-
8

]
2 

n 

n = 

where x = - o. 68096220. 
0 ' . 

122. 
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Summary. 

It is the hope of the author that the preceding pages rnight be 

of sorne help to the engineer and the physicist who are interested 

in the practical application of iterative algorithrns for the solution 

of analytic equations. However , since he would like to . think of 

hirnself more as a "pure analyst" than a practical· "nurnerical 

analyst" , the author hope s above ali that this paper rnight prove 

to be of sorne pure theoretical interest as weil. 
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