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Preface and a few historical notes

This thesis is the result of an interest aroused, especially in
the relatively old paper of E. Schr8der [1], by Prof. H. Schwerdtfeger
whose brilliant lectures on numerical analysis I attended at McGill
University during the year 1960 - 61. After some further reading,
the temptation was great to approach the subject from a functional
analytical point of view as did L. V. Kantorovich in his "Functional
analysis and applied mathematics" (Translated from the Russian
(1948). Originally printed in Russian in Uspekhi matematicheskikh
Nauk, Vol. III, No. 6, 89 - 185, 1948.); L. Collatz (N#herungsverfahren
h8herer Ordnung flr Gleichungen in Banach - RHumen; Archive for
Rational Mechanics and Analysis 2, (1958 - 59), 66 - 75); J. Schrlder
(ﬁber das Newtonsche Verfahren; Arch Rat. Mech. and An. 1, (1957 -
58), 154 - 180.) and others. However, after having read H. Ehrmann's
much neglected and relatively unknown paper [2], I decided to deal
with the matter in the conventional functional theoretical way Schr8der,

Bodewig and others did.

The problem of solving equations by means of iterative methods
is not a very new one (i.e. in a mathematical sense of speech). Newton
was probably the first (1674) who applied this type of method to the
equations

X - e Sin x- =N
and e Sinhx - x =N (N constant)

(Bee: "Principia' (1687) Prop. 31. Book 1). These two equations
arose from Kepler's problem to find the position of a planet at a
given time in an elliptic or hyperbolic orbit of eccentricity e. Sub-
stantially the same method is also mentioned by Newton in his '"'De

analysi per aequationes numero terminarum infinitas'. The earliest
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printed account of this appeared in Wallis' "Algebra'" (1685)
Chap. 94.

In 1690, Joseph Raphson (1648 - 1715), a fellow of the Royal
Society of London, published a tract '"Analysis aequationum univer-
salis", in which he expressed Newton's method in the now well-

known algorithmic form. Raphson's version of the process repre-

sents what J. Lagrange (Resolution des equat. num. (1798), Note V,

p. 138) recognized as an advance on the scheme of Newton. Accord-

ing to him the method is 'plus simple que celle de Newton'". We

may add here, that the solution of numerical equations was considered

geometrically by Thomas Baker (1684) and Edmund Halley (1687),
but in 1694 Halley "had a very great desire of doing the same in
numbers™. The only difference 'betWe'en'Halley' s and Newton' s
methods is that Halley solves a quadratic equation at each step,
Newton a linear equation. Halley also modified certain algebraic
expressions, yielding approximate cube and fifth roots, given in

1692 by Thomas Fantet de Lagny (1660 - 1734).

In the work following, special attention is given to the second
and third order algorithms which are variations of the Newton -
Raphson method. This attention is especially directed ét the con-
vergence of the different modifications and the error estimate of
each. In chapter V the construction of two types of higher order
algorithms is discussed. These constructions are very often
quite laborious, and in practice it was found that in most c'a ses
not mﬁ.ch is gained in the use of algorithms of order higher than
three. However, there does exist a need for a means of choosing
the most expedient algorithm for a specific function. In chapter VII
as attempt was made to comply with this demand. Chapter IX

consists of a short résumé& of well-known, and some lesser-known
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theorems and methods which might be of some assistance in deter-
mining the approximate location of the roots of an equation. The
knowledge of such locations are of grave importance to the some-
times arduous task of choosing an initial approximation to the

desired root.

The major claims to origina-lity (if any) are the follewing:

(1) The corollaries to T. 5

(2) The construction and discussions of modifications II{a),
IV(a), IV(b), V(a), V(b) of the N - R method. These involve the
corollary to T. 3, theorem 8 and proposition 9.

(3) Theorems 10 and 114

(4) Applicatibns foil’owin'g theorem 13

(5) Table for constructing higher order algorithms, Fig. 4

(6) Theorems 47, 20, 22, 25
For many of the other theorems, already known, revised forms of the

proofs appear.

To comply with the regulations of this university, I herewith
wish to declare that no help from persons outside was received in
the preparation of this thesis in general. I am very much indebted
though, to my director of studiés, Prof. H. Schwerdtfeger, whose
inspirational lectures, already mentioned, formed the keystones
to this humble work. I furthérﬁaore wish to express my sincere
gratitude towards the Canadian Mathematical Congress and the H. B.
Webb - Stipend Trustees (Cape Town, South Africa) for the monetary

assistance received during the past year.

McGill University, Aug. 1961.

Montreal (Canada).



Index of Notations and Symbols used.

Theorem
Proposition

z tends to a as n tends to infinity
n

a is an element of D
supremum, least upper bound (l.u.b.)
infimum, greatest lower bound (g.Il.b.)

if and only if
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Introduction

In the following pages we are going to consider the iterative
solution of any analytic function (regular in the neighbourhood of
the reots) of the complex variable z. In other words we are going
to construct and investigate numerical methods for finding any
root £ of f(z) = 0, where we only consider those cases for which
f(z) is continuous in the vicinity of £, and £(z) becomes zero

of finite order at £ (i.e. the order of the root £ is finite).

From the fundamental theorem of algebra, we have that in
case of the n-th degree polynomial, the equation
n-1

n
f(z) = =0
(=z) az +az + ta,

where n>1 and the a, are constants with ao # 0, has at least

one root.

The well-known theorem by Rouché says however:

Let g(z) and h(z) be two functions, analytic in a simply
connected open region D. Let C be a rectifiable Jordan curve
lying in D. Suppose that along C, g(z) is nowhere zero, and
Ih(z)l < Ig(z)l. Then the function g(z) + h(z) has the same num-

ber of zeros within C as g(z) has.

Now let f(z) = a Zz° + ... +a with n>1 and a # 0.
o) n -~ o
If G is a circle of large radius, with centre at the origin, we
have all along C
n
Z +...+al<|az|
n o n
Hence, f(z) has the same number of zeros within C as a z
o)
does. That number is n. Thus f(z) has n roots, and it is the

process of finding these roots by means of numerical iteration

that we are interested in. We will however, not confine curselves



to polynomials alone. Indeed, any analytic function regular within
a simply connected open region circumscribing £ will be con-

sidered.

At this stage it may not be entirely redundant to reiterate
the following well-known fact:

Given f(z) analytic within a simply connected open region D.
Then the roots of £f(z) lying in D will not have a limit point in D;
since if that were the case, we know by a well-known theorem on
the zeros of an analytic function, that f(z) will vanish identically
throughout D - a trivial case which will obviously be excluded in

our following discussions.
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A few basic theorems and the concept of the order of an algorithm

The problem at hand is thus to find an iteration formula
= ' Ce . S)
) = Glz__,» fz__ ), (=) .., f8)z )
s>1, n=0,4,"2, ... (2.1)

= F
Zn (Zn-i

which gives an approximation z for a root £ of the analytic
function f(z) = 0 after n applicatic}ns. This implies that the
distance of z from £ will be smaller than the distance of

nt+1
any of the previous zj (=1, ..., n-1) from §.

Further we want F to he such that

sim e, = ¢
i e. lzn.‘- £ < lzn_i - ¢ for all n
and IZN -t <e , N large enough

[t

Thus we can denote £ = x%-l—{noo F(n)(z).

The initial value =z = z, must be an arbitrary point within

the so-called domain of convergence of the algorithm.

T. 1: If ﬁif?ozn = ¢, then F(§) = E.

Proof: Trivial:

)

§=1i_£n°°z

= lim F(z
n n—-

n n-1

- F(I:'&El&) Zn-i) = F(¢)

This equality shows that F must be continuous in the vicinity
of £. Incidentally, from £ there can of course extend a line of
discontinuity of F in the complex plane, i.e. a cut which extends
F into maore laminae. We will confine ourselves however, to those
functions F which are single valued and differentiable (i.e. analytic)

at least within a part of the domain of convergence containing §£.



T. 2: Given F(z) analytic. Thehanecessary and sufficient

condition for lim z to exist and be equal to £, is that |F'(z)| <
n=® n . -

g <1 within the vicinity of § (a circle centre £.)
Proof:
Necessity: Since 'F(z) 1is analytic, we can expand F(z ) or
o

F(€ + ¢) in a Taylor series within a circle, centre £, as follows:

. 2.
F(z ) = F(E + ¢) = F(§) + ¢ F'(£) + %F(Z)(g) + ...

i}

2
i e. zy =& + e F'(£) +'82—,-F(2)(g) Fooe.

From this we see, for | z, - gl to be smaller than lzo - &l =]e ],
(¢ small) it is necessary for IF' (g)l to be smaller than 1. o

Sufficiency: | We have F(€) = £ and z = F(Zn-i)' Then
2z -&=Fz )-FE)=F ('z'n_i) (z__, - &). (Mean Value
Theorem. See [16] ). Therefore
2 - &l<ale, -tl<a’ls_, - El<... <a|z, - £l
As " 30, [z -¢| o

Definition: The order of convergence of an algorithm .

An algorithm of the type (2.1) is said to converge towards
a root § of f(z) = 0 for all initial values z = z, in a vicinity of
£ of order k> 0, when

F(z)-§=0(|z—§lk), z = §.
[The synbols O and o to be used in this work, are the well-known
order symbols, i.e.:
We write ¢ = O() ; ¢, ¢ functions of z in R if there exists a
constant (i.e. a number independent of z) A so that
Icl),f AILPI forall z in R;
é = O(y) as z — z if there exists a constant A and a

neighbourhood U of z so that
o :



] < Ayl for all z common to U and R;
and we write ¢ = o(y) as z - z if for any given ¢ > 0 there
exists a neighbourhood Uc of z so that |6| <« [¢] for all
o . R - -

z commonto U and R.]
€

As can be easily seen from the Taylor expansion used above,
this condition is satisfied if F(z) has derivatives up to the k-th
order in a vicinity of §, and the equations

F(§) =6, F'(5) = FOUg) = ... = BT
and F(k)(g) # 0 hold.
(k)

() =0, k>0

(Note further, the smaller F' "(§), the quicker is the k-th

order convergence.)
The following propositions follow immediately:

P. 1: Given an algorithm of order k > 0, then the algorithm
z =Fr(z ), n=0,1,2,...

n n-1
[where F (z) is the '"r-fold iterated" function,
r
i.e. Fi(z) = F(z), FZ(Z) = F(F(z)), ..., Fr(z) = F(Fr-i(z))]

has the order k.
Proof: Trivial - Since the errer made at the j-th approx-
imation (i.e. the deviation of zj from §£) is proportional to the

k~th power of the error made at the (j-1)-th approximation.

Thus, if the first approximation (i.e. lzo - ¢]) is correct
to the s-th decimal position, the 2nd. approximation will be
correct to the ks-th decimal position ... and the r-th approximation

-1
will be correct to the k' s-th decimal position.

P. 2: If we have the two algorithms F(z) and G(z) with
F(Z) - g )’ z »g

and G(z) - ¢ z + £, k'l’ k2> 0

Ii fl
o0 O
—_ -~
N N
| 1
un U
B
[\
S



then the algorithms
z = F(G(z )) and 2z = G(F(z })
n n-4 n . n-1

converge in a vicinity of £ at least with order k kZ.
1

P. 3: If we have F(z) = Sk(z) as an algorithm of the type
(2.1) of order k> 0 for finding & ( £f(£) = 0) then the most
general algorithm of the k-th order for this purpose will be of
the form

F*(z) = Sk(z) + G(z)
where G(z) is a ( in a vicinity of § singularly defined) function
which only has to satisfy the condition
Glz) = O]z - £1), 2 —~ ¢ (2. 2)
P. 4: If F(z) = Sk (z) is an algorithm which converges

1
towards £ with order k'1 > k>0, then

2 =S (z__ )+ |fa_ E for £1(£) # 0

n k -1
1
gz )|F
z =8 (z )+ n-1'|  for £'(¢) = 0
n k' n-1 —1
1 f'(z )
n-1

is an algorithm of order k.

Proof: Both f(z) in the case f'(£) # 0, and gz()z) have
£ as a simple root. Thus we have
k k
|€(z)|" = o]z - ¢]), = >
k
f(z) _ _ k
£ (z) —O(lz gl ), z + §
but not equal to of|z - g]k), z = ‘£. Together with the fact

k k
5 (2) - £=0(]z - ¢]™") =o(lz - £]7), z~¢
1
the proposition follows immediately.

It follows from P. 3, that if one already has an algorithm

of k-th order e.g. F(z) = Sk(z), infinitely many algorithms of



the same order can be obtained by adding a function " G(z) satisfy-
k

ing condition (2.2), e.g. G{(z) = (z - §) . Since s is not known

in general, G(z) must be expressed by the function £(z) and its

derivatives, e.g.

Glz) = [£(2) X for £1(£) # 0
k
G(z) = [ff'(_(zz)_)] for £'(§) = 0

or more general

Glz) = [£(z) No(z),  £(E) # 0

£(z)
£' (z}

. where ¢(z) stays finite if z - §.

k
Loz, o8 = o0

Thus:

P. 5: Given an analytic function f(z) with z = £ as root,

- f'(€) # 0. Given further an algorithm
F(z) = Sk(z), k>0
of the type (2.1) (i.e. an algorithm converging to § with k-th
order). The most general algorithm of k-th order can then be
obtained by putting
F'(2) = 5 (2) + [€=)]6(2) (2. 3)
where ¢(z) is an arbitrary function, finite for z -» £, and which
can still be a function of f(z) and its derivatives. (Note: The un-
known quantity £ does not appear explicitly in this general algor-
ithm. cf. Chap. V later).
Proof: (a) According to the Mean Value Theorem
f(z) = (z - £)f'(%) (2. 4)
where f'(%) is finite and # 0 in a vicinity of £ (given)
From this follows:

*
: F(z) - ¢

5,(2) - & + [£(=)]"6(2)
oz - gl:) s 0z - ¢]5), a-t
oflz - ¢

, z =&



i.e. the algorithm F*(z) converges with order k> 0.
(b} On the othe‘r“‘hand, according to P. 3 the function
F*(z) must be of the type
F(2) = 8,(2) + Glz)

k ,
~ where G(z) = O]z - £]"), =z ~>¢
IG!ZH .
i. e. the quotient IZ §|k must be finite

for z - §. Thus we can write
k
G(z) = (z - §) Y(=) (2.5)
where Y(z) is fintte for z — £, but otherwise arbitrary.

Bince {'(%) # 0 we can put

olz) = Sl (2. 6)

- without any loss of arbitrarity. Again ¢(z) finite for =z — §.
From (2.4), {2.5) and (2.6) we now obfain G(z) in the form
Glz) = [£(=2)] s(2).

Q. E. D.

Note: If f'(£) = 0, i.e. if f(z) has £ as a p-fold root

(e(e) = £2g) = ... =P Vg =0, Py v o) P 5 sin
holds (and the proof is the samé) if f(z) is replaced throughout
by ii(izz)) or by f(P-“(z).

Thus P. 4 and 5 show that all (i.e. infinitely many) algor-
ithms of the k-th order for solving the analytic equation f(z) =0

can be obtained if only one such an algorithm is known.

Furthermore by P. 5 an algorithm of the (kt+i)-th order
can always be found from the general algorithm of the k-th
order, by placing restrictions on the arbitrary ¢(z) of equation
(2.3). Repeated use will be made of this principle in the following

~ chapters where the construction of such algorithms is discussed.
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I1I.

The Newton-Raphson Method and other algorithms of the

second order,

The Newton-Raphson algorithm was derived after the following
 observations in the real case. (The econsiderations for the com-—-
plex case are identical).
If an arbitrary point X is chosen "sufflciently near”
to the unknown root‘x of f(x) = o, a better approximation x,
cﬁ“g can be found by drawlng the ordinate at X, fo cut the
curve y=f(x) at f(xo), and then extend the tangent at

(x ,f(xo) ) to cut the x-axis in Xq - Repeat the process.

o}
In this way we find a series of successive approximations

X 1 XqsXgs e to the rootircﬁ‘f(x) = 0.

A
b " 4=

| Fig.T.
\k::‘ﬁiﬂ

Analytically, it is obvious that X1=XO - '
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1 r'(x)

Thus we have here an algorithm x"=x - Tor finding
1
£7(x)

a root of f(x) = 0. _
Note: In looking for a simple algorithm of type (2.1) 1t is

by the result of T.1l Jjust natural to choose F(z) as something

like
F(z) = z — cf(z). By imposing the lurther condition of

quadratic convergence on this algorithm we have to put
1

t1(z)

The similar result is also obtained by answering the question:

Find a linear interpolation polynamial in zl which will be

equal to f(z) for z' = 2z and its Tirst derivative equal to

fl(z) for z1 = Z, This polynomial is preciselybtbe.Taylor's

linear polynomial in zl -z , 1l.e.

¢ = , 1.e. the Newton-Raphson algorithm.

f(z) + (zl—z) fl(z).

Equate to zero and sclve for zl :
Zl -z - fgzz
f~(z)

This idea was originally due to Newton (1674). In his "Principia",
(1687) Prop. 31, Book 1; Newton applied this method first to the
equation x—e sin x=N , and next to esinh x-x=N. The equations

arose out of Kepler's problem to find the position of a planet

at a given time in an elliptic or hyperbolic orbit of eccentricity e.

Raphson however, was the first to express the algorithm in the

form f{z)
F( ) = 2 - -1
g (z)
or z = F(zn_l) =2, 4 - fizn—l) (S.i):
: (zn—l)
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(See Cajori's "History of Mathematics" p.203).

If xis a p-the root of f(z) and 1f we denote z- § = €, 80

that f= ep W

floePt W+ e\\(l)

and thus F(z) =z - ._JESX___I
p \W+ely
and Fl(z) =1 - \y T - ¢ E%— \Q
P\ + & \y p\?+€\5}l
Then for z“:’I or € ® o,

1.e. |FY'] < 1
and F(‘g ) =%

Thus by T.1 and 2 , (3.1) gives an algorithm of the type (2.1).

It psl, F(X )40, i.e.
F(z) —%= o (|z—%]) , z->F%

Therefore, the algorithm convergences linearly only if f(z) has
a multiple root, and the more multiple the root, the larger is
Fl(} ) and subsequently, the slower is the convergence.

Irp=1, F(%) =0, 1.e. F(z)-% =0 (|z-¥]2), z—>¥

F(e) (! ) # 0 ( in general).

Thus, Newton's algorithm is then of guadratic convergence.
Hence, we can always obtain quadratic convergence in the case

of the Newton-Raphson method by simply applying it to f{2
£~(z)

instead of f(z).
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(Since the roots of i&&l = 0 are the same as those of
f~(z)

f(z) = 0 , with the exception that they are all simple).
Then we obtain
Modification I:- of Newton's algorithm, namely:

F(z) = 2 — r(z) fl(z) . (332)
£1(2)% - £(z) £ (z)

Note: This is a special case of the most general algorithm

of the first order,namely

Z2,=2, 1 ~ f(ZI’I—-].) W (Zn—l)
i
‘P (Zn—l) f1(21'1--1) - f(zn—l) w (Zn—l)
or F(z) =z - . (3.3)
T~ 1ol
T

This equation (3.3) is obtained by applying the Newton algorithm

to f(=z = 0 1instead of f(z) = 0, where W(z) does not vanish
(z) ,

together with f(z), or at least vanishes with lower order than
f(z). Equation (3.2) is obtained from (3.3) by putting
\?(z) = fl(z). Incidentally, according to P.5 an equivalent
form of (3.3) would be F(z) = z - %[, + f\e (3.4)
wherel?(z) remains finite for z —>E

In future the Newton-Raphson method will consequently always
be referred to as an algorithm of second order convegence.
Mdd.II: On the ofher hand, if the degree p of multiplicity of

a root is known, then the N-R algorithm can be replaced by

P(z) =z -p L&) (5.5)
£7(z)
since then Fl(X)=l-—p. 1 _o.

[ In the specifie case where f(z) = (z—'x )p ,il.e. \ﬂ(z) =1 ,
this modifie :d algorithm gives for every initial value z,

immediately the correct root since SO T e
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Z,=Z, =P % (zo—x)zx . ]

Mod.II (a): Another modification which might be used in case

of a p-fold root is

£-1) (2 (p)
F(z) = 2 - since f (X ) # O.
pr) (z)

F’l (K) ) f(p—l) (}) f(p+l) (E) -0
[ eP)(¥) 1P

We will see later however, that Mod.II 1s by flar the superior of

Here again

Mod.II (a). As a matter of fact, the oohvergence speed of Mod.IT
is % p (p+l) times that of Mod.II (a).

Before proceeding to the further modifications:and improve-
ments of the Newton-Raphson method, we will discuss a few funda-—
mental theorems concerning the convergence of this method as
given by (3.1).

T.3: Let f(z) be an analytic function regular within and on a
closed contour(rectifiable Jordan curve) C. If fl('g ) £ 0
where ]{ is a root within ¢ of f(z) = 0 to be obtained by
application of the Newton-Raphson algorithm, we have after n

applications:

M

' 2

, nz‘l,z’.'..
where 'f”(z) ’ SM,

lfl(z) [ > m>o0 in the vicinity of"x , Or more
precisely, in the domain of convergence of the algorithm.

[ In the case where fl(s ) = o,we simply replace f(z) by

f(z) . Hence, this theorem also holds for Mod.I. See analogous -
1
£7(z)
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T.5 for Mod.II.]

lemma: ILet f(z) and g(z) be regular within and on a closed
contour C ., (Iﬁ the real case we need f(x) and g(x) to be
n-times differentiable within C.). Assume there exist n
common roots of f(z) and g(z) within C . (If a root is counted
witﬁ multiplicity p, it must at least have the multiplicity

p for both f(z) and g(z).) Assume further that g(n)(z) £ 0.
within C . Then for any zof’-zJ in C, there exlsts a‘g within

o suon than  fz) )Y chzy s

g(z ) g (Y )

Proof of Lemma: Filrstly, Z, is not a root of g(z), as if it

were the case g(z) would have n+l roots in C, a case which is

excluded by the assumption that g(n) (z) 40 in C.

et ) = T(2,)
A g(zz)

Consider F(z) = ©(z) - \ g(2)
Evidently F(z) has the n+l roots zo,zJ (J =1 ....n)

« o There exists a \S in C , such that

)% ) - e % ) “Xe™(Y) -o.

S A0T0 DI T
. e an)(K ) 5(z_)

The Remainder term 1n general interpolation:

let f(z) , g(z) be regular within and on C (a closed
contour). ILet Pn(z) be an interpolation polynomial of degrae

n-1 for £(z) with n interpolation points Zy «... 2z, within C.
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i.e. f(zj) ='Pn(zj) (j= 1 ....n.)
let g(zj) = 0 (J=1 .... n)

and g(n)(z) ) for all z 1in C
Replace f(z) by ©(z) - Pn(z) in the lemma above.

Then for all z # Z (J=1 .... n) , 2z in C , there exists

a ‘g in C depending on z such that f(z) - Pn(z) - f(n)g ; )
- g(z) X )

g
n
Put g(z) = T (z—zj) and then we have
J=
(n) T
r(z) - P (z) = £2/(F) 3“1 (22 ) (3.6)
. n! =

When z,=z, = oveee = z =a , (3.6) 1s the remainder term of the

Taylor series. When the interpolation points are all distinct
(3.6) becomes the remainder term of the n-point Lagrangian and
also Newton interpolation formula.

Proof of T.3: We have the Newton algorithm (interpolation poly-

namial for f(z) , which will be equal to f(zo) for z=2 and

see intro-

its first derivative equal to fl(zo) for 2=z

ductory remarks to this chapter:)

Pz(z) = f(zo) + (zezo). fl(zo)

Substitute in (3.6) : f(z) - Py(z) = fu(g ) (Z—zo)2
2

( 1 an intermediate point lying within C).

Let Z be the initial approximation to the root g of f(z) = 0,

and put z==§ . Then we obtain:
R
(1)

...P2 (§)= f__a_j_ (X—ZO)2

......



is

£(z) + (X -2,) £i(z,) + fllég ) (€ -2%=0

f(ZO) "ZO+\§—— fll(t ) (I‘ZO)2

ti(z,) 2rl(z)
11 2
'K -2z = - 7 (q) ( s -z)
2fl(zo)

From this we see, that generally speaking, the approximation
will be improved quadratically at each application of the Newton
algorithm ——— a fact already knbwn since the Newton algorithm

1s of order 2 for the type of f(z) under consideration.

From the mean value theorem we have:

et (X -z = o(¥) - £(z)

From this we can immedlately obtain an upper bound for the digt—
ance of z; to X (1.e. an error estimate\ if we have an upper

bound for | fll(z) | and a lower bound for | fl(z).[ , 83y

=) <M, | ie) | 2w

Y
(o]

Then "
M 2
B2y s zp o 15 -k

and for further approximations

¥ 1< 5 | £z ) &
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From this inequality it is evident that the Newton algorithm

can be applied with great benefit to functions for which m is
relatively large, and M relatively small in the vicinity of the
roots.

(T.3 was proved by Ostrowski [15] in the real case by congidering

the inverse of y=f(x) ).

Corollary: If f(z) is an analytic function, regular within

and on a closed contour C, and if K is a p—-fold root within
C of £(z) = 0, which is to be obtained by application of Mod.II{a)

of the N-R method, we have after n applications

X2, [ <2 _Dfr%ﬁ 1§ -2, ¥° (3.7)
where M,y = SuD f(p+§)(z)
X -2l < §-2,_,|
+ m_ = int r(P)(g)

p .
1§ -z] < |¥ -z ;|
Proof: Follows immediately. In this case we have

py(z) = PV )4 ez ) 0Pz )

as Interpolation polynomial for f(p_l)(z) which wlll be equal
to f(p_l)(

Zpy_q) for z =2z _1 and its first derivative equal.

n

to (p) =
f (Zn—l) for z = Zn-1
Substitute in (3.6):

)2

f(p"l)(z) - P2(z)= f(p+i)(Wr) (Z_Zn—l

q an intermedfate point lying within cirble
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radius [z-z_ _,| within C. i —>¥ as

z
Zhel - § .
Then -P, (§) = f(pt)(i) (¥ - Zn—1)2
i. ’
JRFCE NI E P TR RIS
n-1/ 7 n—1 n-1/ 7 il *
2f(p)(zn_l) ’
(X _Zn--l)2 o
(p-1) “
r <Zn—~l) - Zna t K = f(p+l)(&) (§ _2711—1)2
f(pj (zn—l) Qf(p)(zn—l)
1)
SRR LI S R S

gf‘(p)(zn—l)

Xy s _ L gy,
(X ~z,_{)° = Py

In the discussion above we have assumed that a root ‘g exlsts
in the neighbourhood of Z - In practice it very often happens
that we must proceed with our computation before this is known.:
However, we can usually tell after the first steps, whether
there is a root in the consldered neighbourhood., We wiil now
deal with this in more detail; We have from T.2 that a necessary

and sufficient condition for convergence in the case of the N-R

algorithm would be that

Flz)] = |4 (z - 22) |- £z @) | o<

dz t(z) Pz

for z in the vicinity of the root X .
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1.e. | f(z) fll(z) | < | fl(z)

........

We have geen that this condition is always satisfied for
functions of the type f(z) = (z—'g)p\\l (z). It is however
quite another question whether the algorithm will converge for
the arbltrary initial value Zg- We will thus try to obtain a
condition for convergence in terms of Z,-

"T.4: Given f(z) analytic, regular within anéd on circle C

| 2=z | < | b,

where h_ = - 1'(Zo)
~1 : i 1
i(z,) ., flz,) Hz,) £ o,
_ Mz ;)
Zp = Znq - n-1 n=1
r (zn_l)
i.e Zl =z, + ho
and Max | £(z) | = m,
C
. 1
2 [ hy [ Mg [ 17(z,) | (5.8)

. . . n
Then all z_  1ie in C , and z_ °—°>“§

where‘g is the only root in C, and § is a gimple root unless

1t lies on C.

Further: Z —Z
e Do (-1, ... )
22y |° 1
n “n-1 2|t7(zy,) |
Y _ 2
l§' Zner | £ M 2z | (n=1,2 .... )

Effl(zn) i
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[Note: 1In this theorem no assumptions are made as to the
existence of a root ],

Proof: Since

Z
1 lﬁll(

rl(z)) - tl(z) = z) dz

1)
(according to Cauchy Cor all curves of integration lying
in C, connecting z éhd Zl) .

i.e. | fl(zl) - fl(zo) | < | zy—=2, [ M= |o | ML 1£7(z,) |

(3.9)

al
2z 2 | |- | ey - )] slttey)] - 10 (E)]
2

1
Itz )] > T (3] (3.10)
2
Integration by parts gives
21
Sz (z,-2) t1l(z) qaz - ~(z;-2,) fl(zo) + £(zg) = £(z,)

O

dz = h_ dt.
Then f(z.,) = h 2 . (1-t) 13z + t n )dt
17~ o o) o)
0]

This will at least hold for all paths of integration lying within
the circle |t| < 2. ‘
[Since the transformed domain of C (described by [z-z,| ho)

in the t-plane will lie within [t] < 2,
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as tho =2 =2,
= 7 — Zl — f(zo)
tH(z,)
too e hy| < fzmzg | o+ f(z,)
' )
. For z to be within C
e a1 s Il + | 2
iy (zo)
N ]
1 :
Thus  |£(z{) < |n |° S (1-t) etz + t h )| at
QO
1 2
<M || S (1-t) at "= BT M
0 2 (3.11)
Since Max [fll (zO + t ho) ) = M
IK1é
If we put hy =__fizl) o, Z, = 2z, + 0y
P (zl)
we have by (3.10) and (3.11)
| = IFED1 o m P
EC e (z,) | (5.12)
Min, | 2 M < h | M
|7 (zy) | ez g) | 1£7(zy) | Pz [ 5 ] (z,) |

i.e.

|
e
=
o]
s
=
n

2 M |n, | 2fn | MY °
lfl(zl)l (,fi(zo)l)
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2ln | M < Ifl(Zl) | (3'13)
Apply (3.12) ‘_h_ll < 1 (2 ‘hol M < 4
b 2 1 2
| [£7(z,) |

-1
LIS S

and from this we see that the point 2, will not get beyond

the distance L1 |h | from =z , and will remain in C.
2

From (3.13) it is evident that this will remain true if we re-—

place z, and ho by z, and hl respectively, and thus

| < .%. ln, 41 » n=1

where hn—l = Z -2

and hence all zn lie in C.

We therefore have a sequence {Dn} of rested domains (circles)
in the cowmplex plane, with the. radius of Dn at most equal to

one-half the radius of Dn This monotonic sequence is

._l *
bounded from below, and thus has a limit § .

le. z {—2>}’ -

1{ is a root of f{(z) , since

anzn_l - fJ(.Zn—l)

£ (Zn—l)
i.e z fl(z ) = 2z fl(z ) — f(z )
et n' n—1 n—-1- n-1 n-1

letn —sed. 3 O PR S SIEEIR. 3
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£(% ) = o.
This root § is simple within C:
We have for all 2z in (and on C) - see (3.9)
1 1 )
|t7(z) = F (zo)f < lz—zol M
For z within C the distance between z and z, is smarier than

the diameter of C :.1.s. 2 |h ]

1 | 1
|t7(z) - (2 )| <2 |h M [£7(z))]
and this implies that fl(z) # 0 within C .,% § is a simple root

unless i1t lies on C. By (3.12) and the validity of(3.13) we have

.
n | < M [Pyl nel,2 ...
A1
2[1 (zn)l

and this is equal to:

l2n+,l.— Zn l < M » n=1,2

’Zn_zn—1|2 2|fl(z )
n
Further, since‘glﬂkﬁ in a circle centre 2l and radius
[ = Jzpg=20 | s 2 n |1
e
v 2

2(rt(z )|

M 2
= : Zn"zn—ll

2(rM(z,) |

n=1,2....
We therefore know that a root exists if we begin conmputing by

the Newton-Raphs:.n method, and if at the (n+l) - th step, the
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inequality 2 Ihnl M < ]fl(zn)] holds.

It is essential that fl(zo) is not zero. It may also be
quite hazardous if fl(ig ) = 0,'for if we are sufficiently
close to}f s ]fl(zo) | will be very small. In thls case it

will again be advisable to replace f(z) by ZI{(Z)

1(z)
Mod.II : z,=2, 4 — P f:(LG_l) n=1,2
f (zn_l)

T.5: (Analog to T.3 for Mod.II )

Let f(z) be an analytic function regular within and on a
closed contour (rectifiable Jordan curve) C. Iet‘g be a
root within C of exact multiplicity p to be obtained by

Mod.II of the Newton algorithm. Then we have after n

applications: M
I -z . —pxl - 2
| al < p(p+1)mp R Zp-1 |
where - s f(p+l)(z) | = Mp+l

I‘g— z| < l‘g‘i-“:zn—l |
$ 40 IL(p)(Z) ' - m

1S -2l < 1¥-2,, |

p

Note: For p = 1 we have the result of T.3.

[ The proof of T.3 does not hold for Mod.II , sinée in this case
the Pg(z) cannot be congidered as an interpolation polynemial
for f(z) , which will be equal to f(z,) for z=z  and its first
derivative equal to fl(zn) for z:-’zn . Incidentally, T.3 can also v

be proved in a similar way as below. ]
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Proof: Thus we have

i
g—zn=3—zn_l+p (

Zn—l)
fl(zn--l)

te. (¥ -2tz ) =p £z )+ (§ -z, ) 1z, )

= G(Zn—l) (3.14)
We define n (z) as:
c(z) =p £(z) - (z=% ) £1(2)

Then evidently G (*)(z) = (p-n) £{™(z) = (z=¥ ) p(n+l) ()

and ¢ MY ) =0 (n=0,1, ... p) (3.15)
If we apply Taylor's expansion to fl(z) we obtain:

2
lz) = 5 (-¥)" D) (¥ 4 r - R
nl

Nn=0 P p—-1

(since‘g is a root of p-th order.)

where R, = (Z—K)p—l% £1(t) é’c
2ni i (t _K)p

(where ct is a circle centre‘x inside C such that f(z) is

regular in and on Cl.)

-1
e L S o T
2xl ol (t_X)p T (p-1)t

{
A , (Cauchy) (3.18)

From (3.15) it follows further that

0 (2) = g (z-¥§)" G(n)(x) + R = R

n=0 nt p+1 p+i
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®(z) = (z -¥)P*! G (t) dt
2nl (¢t ~¥)P*2
Cl
p+1
- (2 =%) ¢ (p+1)(X) (Cauchy)
(p+1)!
alz) = (z =)FP* [ - elprll(g
2p+1)!
From (3.14) and (3.16) we obtain
z"zn+1 = Gizn) . ~X)? p(P+1) T
f (Zn)

p(p+1) £P)(Y)

In general f(p+l) (z,) and f(p)(zl) is not expliéitiy»
known. Thus if we denote the 1l.u.b of | f(p+l)(z) | 1ia the
vicinity of ?g’with Mp1+1 and the g.l.,b. of | f(p)( z) | in the
vicinity of‘g with mpl , We have | |

1
I - zol £ Mo | — 2z, ]2 (3.17)
p(p+1)m1p

As in T.3 we can write for

¥ -z, - IE)-f(z,,)

£ (W\) \wam.intermediate point
= - flz, q)
fl(w\)
1
IE—ZH < Mo, | £ (z,-1) |°

1 1,2
p(p+l)m ) (m™))
Nobe : The more multiple the root, the quicker the convergence-
a fact quite contrary to what we have observed in the applieation‘

of the ordinary N-R algorithm. .(See.remark in the beginning of

this chapter.)
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In many cases it may be difficult to obtain mlp

A good estimate of this quantity can be obtained however,

1
p+1

known. Then an estimate for mlp is derived from

if M and the p-th derivative at one point, say z, are

1

ERUCI I LI N I SN

Corollary:

(a) From T.3:

If in the equation

£(z) = (z_x’.) (z=§,) vovn (2=§,) = 0
we have

18,2, 1 < 18,2, | < 18,2, [ <... <13, =,
1{1 #‘xj , Jj=2 ceee. B

then the Newton-Raphson algorithm starting with Z is convergent

to the value ‘gl ( i-e~?§1 is a so—called attractlve fixed point of

£(z )
F=Zn=Zn_l— _______1n—l > n=1.... )
f (Zn—l)
21 . 1
if l‘sl'—zo,<mﬂ i m = inf | £7(z) |
1%, | < |¥,-7, |
M = sup | fll(z) ]
% -2 | < %12, |
Proof: We denpte
1 2 8
rl_zn=an ’ ‘52—Zn=an ’ ""’Es_zn=an
1 2 3 S
l1.e. we have Ja_~ | < |a " [f<|a” |x s |ag
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and from T.3 it follows that

1 M 1 2 M 3 1 4
'an ’Sgn' ’an—lf,s('?ﬁ\ ]an_zj
M 7 1 8
S -——2—]1—1) ,an_sf
< eenens
n
2 -1 1 2
_g(_M_) | ag |
2m
Then ¢bviously |a 1, _ . n
n”| = IE:LZH | = °
1 1M
ir M ojat = (¥, S <2
Sm 0 1 "0 om
- - 2nm
i.e. llfl -z, | < 5

( It is interesting to note here that in the case where m is

relatively large, and M relatively small, 1.

a high convergence speed — see remark T.3 — we have the extra

. where we have

benefit of a lecsemrregtriction of the choice of the initial zo.)

() From T.S:
If in the eguation

£(z) = (z ~§)° (2 -§,) .... (z -%,) =0

we have

B0 -2 1< ¥p-2, <1852, 15 ..

‘Sl,é\sj , J=2 ...k

then Mocd.II of the Newton algorithm will have \g 1 2as an

attractive fixed point 1f

' 1
llfl -z, | < p(p+ )mE
Mp+l

mpzinf. | f<p>(z) |)

,‘g 172 | < "E 17 %4 ’

. < 'E:k -z,
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- (p+1) |
Mp+1f§ug ! f (z)

lx 1"Zl < lgl"z

O

(Again a lesser restrictlon in case of high convergence speed.)

' 1 . 2 3 , k
Proof: We have [a | < |a_"| < T G L | and
1, M
a p+l 1 2
la," | < p(p+1)mp la,— | ( from T.5.)
. ' ’ 2n
< _Plorbim, Mo | at |
M1 p(p+l)mp

Therefore, for convergence we must have

1 +1)m
2t |- 18, -z | < PlEFIm,
Mp+l

(6) Comparing equation (3.17) to(3.7) we observe that Mod.II
is by far superior to Mod.II (a), since the speed of convergence
in the firét case 1is %-p(p+l) times that of Mod.II (a). It

is thus doubbful whether Mod.II (a) will be of any notable
practical significance.

T.6: If in the quadratic equation

£(z) =(z -§) (= o U
we have |[¥ - z, | < {|\—- z | then the N-R algorithm starting
with z = 1s convergent to the valueg s i.e.g is an attractive
fixed point of F(z) = z -.f(zt/{rfl(z) (and qLis a repulsive
fixed point:) The same is true ifz =|\. On the other hand, if
we have [3 -z | = ,'l— z | T ¢/ \ the N-R algorithm
starting with z, igs divergent. (i.e, both\g and w‘are repulsive

fixed points of F.)
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Proof: We have by definition of F

Z =2, — (Zn "g) (Zn—'\)

similarly b

Claim: For "g;‘ l\ :oa =

and for Enyl,i.e.'é=b:

2z —-!F- \

We will first consider the.caselx £ n

(3.18)

(3.19)

(3.20)

Obviously (3.19)

is frue for n = o . Suppose (3.19) is true for n

have from (3.18):

n+l =

. Then we
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Claim (3.19) now follows immediately by induction

For X = 11 s an"bn we have from (3.18)

a
= = n
an+1 bn+l 5

i.e, claim (3.20).

Now, in the case x -|\ , the assertion of our theorem follows

immediately from (3.20) , since then we have
.
a.n =¥.— Z‘n s -T*-T> 0
For '3 £ tl'wé have under the hypothesis

REEN l<l\~z'A, lal<lbl

: n
and from (3.19) that a g (b-a)H —&)—> 0

On the other hand ; if |a| = [b| , a # b we have from (3.19)
1P

3}
‘b o

Thus, in case of convergence both a, and b, must tend to

zero., It follows from (3.19) however, that

an—-_bnza-—b

l.e. if a  and b  were both convergent to zero,we would have

a = b which is contrary to the hypothesis.
We shall now discuss to what extent , in the case of con-

vergence, the sufficient conditions of T.4 are satisfied.

Keeping the notation above, put p = b , l.e.p =1 or

a
lp | £ 1 -

Then we have from above



32

hn =7 f(zn> = Z -2 = anbn
1 n+1 n a_+b
f (zn) n n
n .n
= a° p° (a-b)
n+1l n+1
(a®  -b )

o
h =ap p ~ 1 (lp | £21)
2n+1
P -1
and h = 2 - (p=1)
n n+l
2
Further
1
f(zn)zzzn —'S—,-lz—ﬁan+bn)
n n
= - (a2 + b2 ) a —b
Il Il
a2 - b2
ot |
=—a (p~-1) _p° +1  (lp]#1)
ol :
p -1
and '
f‘l(z)-—_i__; (p=1)
n 2n—l

In this case the number M of T.4 is 2 , and

n n

2 2
1 n+1l n
£(zy) (0° - 1) (p° + 1)
n
z — 4 p2
n 2
(p° + 1)



33

S By - - ¢ (ol #1)
1 o=t 2l
(z,) (p + P ) (3.21)
s ~ (p=1) (.-
fl(zn)

Therefore, for p = 1 we have for every n the limiting
case
» , 2 Mhn

fl(zn)

i.e. convergence.

For p # 1

From (3.21) it follows that the modulus of the leftehand
expression tends to zero as n —> o . Therefore, the condi-
tion of T.4 are satisfied from a certain n onwards.

On the other hand, choosing p conveniently , we can insure
that the conditions: .of T.4 do not hold for n = 0,1,...., N where

N can be chosen as great as we like. 1Indeed, 1{ we take

P = re we have
n—1 n-1 2 n-—1 n-1
| P2 + p_e { =] ( r + v 2 ) Cos 2n—1°(
n-1 n-1
+ 1 (r2 R r_2 ) sin 2n—l°( ]2
n n

- 4 p @ + 2 Cos zno(

Put o= _*_ then we obtain for n = 0,1, ... N

_21’1—-1 '2 21’1 _en
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Thus from (3.21)

2 Mhn 4

>
« n n

1 2 —2 %
f (zn) r + r + 2 Cos T

2 ,
The right-hand silde of this inequality can be made >1 by -

taking r=]p1 sufficiently near to 1 (but not =1 of . course)

for then the inequality
2" ol % |
r~ +r + 2Cos N <4 ,n= 0,1l,......,N holds
A _

Note: The modulus of (3.21) can certainly noy be equal to 1

for two consecutive values of n:
This follows immediately from the relation

0 + (1/4%) = (a + 1/9)%- 2,

for if both |q+ 1/q°| and |q + 1/q| have the value 2 ,

this is possible iff we have

2 2 2
q + l/q ?23q=l:q=+l'

But in (3.21) |p| # 1. Contadiction.Claim follows.

Thus, if for a value of n the expression | 2Mhn

is equal
Y

~(z_)

. n
to 1 ,this expression becomes <1 for all greaber n , unless
ormr guadratic polynomial has a double root.

Modification IIT: of the Newton algorithm.

It was sugzested that in the N-R algorithm the denominator
1 . :
f (Zn) can be replaced by fl(zk) as soon as z, is sufficiently
near to §  .Obviously in this case we will only have linear

esmvergence, and not quadratic convergence characteristic go

the N-R method.In the table below, the function f(x):xs— 2X — 5=0
is considered.In column I the three values

Xy XysXg obtained by the N-R formula are given ,whilst
2
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in column ITI the six values SR XG obtained by using

Mod .III ( i.e. réplacing fl(xn) by fl(xo) ) are given. Compa-
ring the values obtained with the value of ?g, we see that in
column II at each step the error 1s only about 1/10 — th of the

preceding error.

XS - 2X - 5 = 0 ,\E = 2.094 551 481 542 326 591 5, Xo = 2
\
/
//’l
I \ 11
Xl = 2.1 k)\, = 2.1
X2 = 2.094 568 1 X2 = 2.0839 |
X3'= 2.094 551 481 72 XS = 2.094 827
X4 = 2.094 542 7
X. = 2.094 552 5
5
XG = 2,024 551 323

It is therefore doubtful whether this modificatiocn willl be
of great practical significance.
Mod. IV: It may be of some advantagze however to compute fl(zn)

not ‘at every step, but only at every second .step , 1.e. we have

f
Z = Z_ - —Szn)
n+1 n 1
i (zn)
f'(z |
Zoen = 2.1 ( n+1) (3.22)
r(z,)
’ n
T.7: (Analoz to T.3 )

Iet £(z) be an analytic function , regular within and
on” a closed contour C. If fl(g) £ 0, where E is a root
(within C ) of f(z) = 0 , to be obtained by application of

Mod. IV of the Newton algorithm , we have
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2

II n+2‘—\'-l\—4—@ ls—zn
2m

[ i.e. after n applications of (3.22)

. M2 3
lg— Z2'.Q IL"‘—? IX—Z2I’1—-2 l ]
2m
h o
where  y _ sup ! Lll(Z) ,
|z =% | < |z, %1
m = inf | iz ]
w8 <% ¥
Proof: We have if'rom Taylor's expansion:
2
f(Zp1) = By \S) rt i O>[ (Zn41 “X) I Zni ——>X
(3.23)

From (3.22) and (3.23):

ri(z) (2, - $) = thz) (2, - ‘§)—(zm1 %) 1)

+0 [ (z,., —§)° ],z R

- ) (2, - F) w0 L (2 ~%) 1, oz,
rL ar intermediate point.

fl(zn). Zoo — }{ | 4 -—§ f11(§ )

(Zn+l _\g) (Zn "X)

(since r‘ —-—>\§ as z, ——->\s .)

Therefore, as f‘l(}) £ 0
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%2 ~ § — 1Y)
(2, _x) (z, -¥) %) (3.24)
From T.3 we have E—- Zn+1 s - % fll(x)
2
(¥ - z,) %)
and this together with (3.24) give:
Zneo "IS 1 fll(E) 2
(z, -¥) - 1%
, 4 - 2 3
,Zn+2_~§15% \%) lzn_xl (3.25)

In one application of (3.22) , 1.e. going from z, to Z, 0

_ _ 1
we need to compute the three unknowns f(zn) , T (zn) , f(zn+l).
(The work pertained to the other computations involved are
generally speaking negligable in comparison .) Thus in going

from z to z we have gix such quantities to be computed.

n-2 n+2
Raughly speaking, the same amount of work is done after only two
applications of the original N-R method. Hence we have in the

case of Mod.IV

‘ “nie -¥1 < -'}—6 ‘%JS | 25 —glg

whilst for the N-R method
7

. _ ) 1 8

| Znye ~¥1 < (5 B0 |z -%|
It is evident that Mod.IV is definitely an improvement of the
N-R method in case of the "smooth" f(z) , i.e. where M < m .

Even in the rather "bad" case f(x) = x3 - 2x -5 = 0



38

(considered above) , where i"ll('g ) / fl(g) 1.2,

we have for

X, = 2 Xy = 2.1
X2 = 2.,0939
x3 = 2.094 551 72
X4 = 2.094 551 481 367 28
Here the error in X, 1s of the same order of magnitude as that
of Xz in column I above. On the other hand, it must be noticed

that in using this modification the values of f(zﬁ) s fl(zn)
must be calculated to a much higher degree 6f accuracy. This

is due to the factor | z, —-3[3 in equation (3.25)

Mod.IV (a): We will now investigate the following modification

in case of a root ! of multiplicaty p

nyl = %n —P f(zy)
1
. T (zn)
Zntn T Zny1 TP f(2pq)-
fl(zn) (a) (3.26)

We have from Taylor

- : 1
£z, 1) = (2141 __g)p f(p)(.g) v (Zng o Rh f(p+1)(~§)
p! (p+1)! ‘
ol (Zn+l _~§)p+2j > Znel ”>~§
and
-1
iz, ) - (z,~%)F eP)Y) + (E -¢)F £(P+1) (Y

(p-1)! p:

o[ (z, =P 1,z —>%

This together with Mod.IV (a) give,
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fl(zn) ( 2,5 -%) = fl(zn) ( 2,1 -%) - r(1+ll)§) f(p)(x)
D— 1

p+l
—p Pna -F) sPFY) 4 0 [ (2, ~X)PP1, n—>e4

CISOE n+l
or
fove "8 [ (2,07 R S DA &
zn+1 —E (p"l)' ' p!

+0 [ (z, —E)P"T ]

_¥ b1 -
= (Zn }) f(p)(z) + (zl’l _ g )p f(p+l)(\§) _ n+l E)p 1

(o)t E (p'l)' X
¥ \D
- (Zh41 ‘g) f(p+l)(§) + o[ (2, __~g)p+1 I+0 [(Zn+1—§ P
(p+1)!
n —-——> o
il.e.
1 0 SRR SIS ST SRNFICE N S
Znel T !; (p=1): | P

- 1 f(p)(g) R 4 #(p¥1) (Y) _(zm_l - E)P-—ll
p!

(p-1): 2 - E (p-1)!

f(p) (g)

- R (7,0 —8)°  L(p+1) X)
(p+1)! (2, _‘g)p—l

- — 1
+ 0 [ (Zn+2 ¥) (z), z) ] + o [ (Zn -‘f) 1 +o0 [(Zm»l"'pp+ ]
“nel —X (z __g)p
n
n —> o
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e - § D (-1 I
o1 - X %0 (=1t L)y

By T.5 we have

Zos1 "% (1Y)
.2 )

(%n %) p(e+1) £P) (X))
Zn+2 —I . —_— f(p+l)(Z)
(2, = )  p(p+1) £(PICY)

From this it 1s evident that nothing at all is gained by

introducing the intermediate step (a) in the algorithm Mod.II.

Mod. IV (p3): Also for a p-fold root ‘5'.

Zn+l = %n 5y (Zn)
p
f (z,)
~1)
“nyz = Pnsl : n+1)
(p)
)il (zn)
T.8: Given f(a) au analytic function, regular within a closed

contour -C, and. continous within and on C. If.g is a root of

multiplicity p to be obtained by means of Mod.IV (%), we have
| — 1 2 3
lg Znep | < 2 ( Mp+1) ]E" C |
M
P
o (p+l)
Mp+1 = ' sup . | * (g) ,

|z =¥ <]z, -%|I
| 21X |

inf.

|z -% | <]z, -%¢
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Proof: From Taylor:

£Plz ) = c@IE )+ e PNE) (2, %) + ol 2, %)% 1,
zZ ——>3;
X o) (7osg ~3) -§)° ileel) (g

q(p 1)(Zn+1) n+1

+ 0 [ Zn+1-r 1, “n+l ">§
From Mod.IV (b):
: f(p)(zn) (Zn+2':§) = (Zn+l';§) f(p)(zn) - f(p_l)(zn+l)

or

(z,,, -8) 1 £®X(X )+ (2, -%) £P11(¥) 1 -
(2,1 ~%) [ £PN(X) + (2, -§) cP*HCE) )
(z,,, -%) [ PR + (2,1 -¥) P+ (F

2
v 0 (2, ~¥) (z, ~X)® 1 +0 (2, ~%) (z, -§)° 1

+01[ (2., —E)S 1, 'n——>°0-

Cil.e.

Zn+2 —X - ‘ [ f(p) (1) + (Z —E)f(p-i-l)(g) ]
""g) (Zn+l —\g) "

= f(p+l)(\g) - Znel _\g f(p+1)(\§) + 0 (z, :S) (Zn+2 _'g)
2(%1~§) Z ~¥ }

+0 [ (z, -§) 1 +o[(zn+1"‘§)2] ;>
o 7 X

We had from Mod.II (a)

Zn+1_—\§ BN 1 plp+1) (%) (3.27)




i.e. o Z

n+1 —\g
Z, — E
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= 0ol (z2,-%)1 , n—>0

Zree T X LIRS f(p+l)(§) (3.28)
(z) -¥) (Zpe1 —X) o f(p)(‘g)
(3.27) and (3.28) together give
ez ~8  ny, 1 f e\ °
(2, %) ? 2 \TTO0(Y)

We observe that the order of convergence in this case does
not compare very favourably with that of two successive appli-

cations of Mod.II, which yield:

Zree = § £(P+1) (Y
(z, -X)* £(P)(g)

Therefore, Mod. V (b) (see later) will be the better modification

A_—;> X
p(p+l)

‘by far in the case of a p-fold root.
Mod .V : We can also try to reduce the amount of work done

in the N-R formula, by replacing at every second step thg denoﬁi~
nator fl(Zn) by a convenient combination of f(zn) and f(zn_l) ,

i1.e. we have the modification:

- R
Zn+l - Zn iz )
f (zn)
Zni2 = Znsl f(Zn+l) (Zn+l - Zn) (5.29)
T. 9: ILet f(z) be an analytic function regular within and uh

a closed contour C. If fl(g) # 0 where E is a root within €
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" of . f(z) = 0 to be obtained by application of Mod. V of the

Newton algorithm , we have

j{ - Zn+24 s - %—4 1% ) 3[ 3 ol 3 —2rH(¥) lll(§)]
(X -z, o (X)

Proof: It will be sufficient to show that

R S 11
E 2 N (%) (s o1l ~2 100X

BN (%) °

Put z, —z_=-— £f(z)

oo - S - h (3.30)
f (Zo)
_ _ _ f(z,) h
4p T 21 = 1 , =k (3.31)

2f(zl) - f(zo)'

Then f(z,) + k fl(zl) = f(z) [ 1- hfl(ZL) ]
2f(zl) - f(zo)

= f(zl) ( A/B) (3.32)

oo 1
Jéyhere A = 2f(zl) - f(zo) - hf (zl)

B = 2f(zy) - £(z,) = 2f(z;) + htl(z)

From T.3 we have

z:z)e —> -1 Y
(X 2 Ity

‘i.e. \g -2z =0 [ (\g —zo)2 i » Zg —-———>“§

S‘ince h=zl-z =(§—zo) _(E—Zl)
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he § - Z, (3.33)
we can write
T -7 _ (¥
5 > T
h 2f (3{)
This we can rewrite as
2f(z,)
1 11 2
—;2-—— S £ (X) s f(Zl) = 0 (h7), Z, ——>§
(3.34)

Keeping in mind that

£(z,) & (z; -X) £7(%)

:. .B =h-fl(zo) + 0 (h2) ) 2 _..>§
Beeh £1(X) (3.35)
From (3.31) , (3.34), (3.35)
ko _ ¥
h® T,y
2:1(¥)
i.e. k2 —_ fll(‘g)e
2h* erl(¥ ) 2 (3.38)

Now A =2 £(z)) - £(z) —h rl(z))

- h[fz_ +n) -rfXz) ]

=2f(zo+h) ° (2,
(Since f(z ) = — h fl(z ) )
o/ ~ 0
Develop in terms of h up to h° , i.e.:
. el 2 .11 ho 111
A = 2 f(zo) +2h (zo) + h“ (zo) + — f ('\1)
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3
-1 h2 f’ll(zo) + E_ flll
2

(§) ]
1]_, %2 intermediate points.
Since f(zo) + h fl(zo) = 0 , we finally have
3 111 111
A=h"[ 1 - 1
3 ( !Pl) 5 T (‘12) ]
i oy —> ¥ a0z, —>

° e () (3.37)

therefore A/ ——> —

o |-

Now from (3.32), (3.34) , (3.35), (3.37) we obtain

£(z)) + k fl(zl) - f(zy) (4/B)
s - 1 1 n* 11 M) (5.38)
12 fl(g)

We now develop

f(z = f(z, + k) in terms of powers of k wup to o

2) 1

f(z,) = [ £(z;) + Kk tl(zy) 1+ % K2 fll('\S)

| where § "">E as z, -—-—>§ .
‘and by (3.36) and (3.38) this gives

£ |
__,.(z.i?. - - 1 ALY L) s My
h £1(¥) 8l (¥)®

Since 1z, -‘g ~n F(z5)
Tl

1%

. we finaily}have by (3.33)

2, —% N ) (s Rl S DRIt STEETS SN

(zo_§)4 24 fl(z)s
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In the application of Méd. V we again have a similar
improvement as in the case of Mod.IV. Again however, the values
of f(zn), fl(zn) havé to be calculated to a much higher degree
of accuracy.

Factually, we must use double the number of decimals as in the
case of the N-R method.

In case of a p-fold root‘g the following two modificaﬁions

(V (a) , (b) ) seem to be natural suggestions.

. = - f(z
Mod . ija). Z .1 = %, =D (z,)
p1(z))
f(z Z -2
Zne2 = Zngl T P ( n+1) (%nyg n) (a)

2f(zn+l) - f(zn)
- We will show however, that this is no improvement of Mod.II

at all , since z _, —‘g

—> 1 and
Zne1 T %
thus by T.5 , Zo —-‘g | N 1 -_f(p+l)(‘§)
(2,- %) P o)y

1.e. nothing at all is gained by introducing the intermediate
step (a) in the algorithm Mod.II

Proof of Claim:

We have from Taylor:

£(z) = (%n ~%)° 2y o U P e
p* | (p+1)!

+0 [ (2, =%,z =Y  (5.39)
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Then (3.39) together with Mod.V (a) give

(2 f(zn+l) f(zn) ) (Z,n+2_._>§) =

n+l 33(2 f(Zn+l) f(z ) )

- P f(Z1'1+l) (Zn+1 ~ %n )

= (Zn+1

-§) [ (2p) f(zy,,)

- f(Zn) ]

+ o (2, -X) flzy,y)

Por large n:

Zl’l+2 “Z S'l/p ' [ 2(z _g)p -
. . 1
Znel T % ‘ o

1/ + 1)t L2 (g, ~§)P -

f(p)(f ) [ (2-p) (Zn+l—'§ )P

p!

+ f(p+l)(§ ( (2-p) (Zn+l *g)p+1

(p+1)!

SRR

(s, %17

= L.H.S.

(2, -%)° ) )X

(Zn _‘g)p+l 1 f(p+1)(§)} .

o (z-¥)P

D! e
(2, -%) (Zn+i _g)p‘—l ]

(p-1)}

(Zn“g_)pﬂ + p(2,~§ ) ,(zn,+l—§)1]
(p+1)! (p+1):

R

X >7§ f<p+1>(‘g- >\}
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=

1
+ f(p+l)('§ [ (-————2;?%). “n+l _3 )p+ (Zn ~-¥)
H (Zn __‘g )p Ip+15!

¥ b (Zn+1 __*g)p ]

(p+1)! _S )p-l

We have from T.5 : —g 1 f(p+1)(§)

——a—

D
(zn —E) plovd) "ol ()

L€ zn+_l_ —§\) = o [ (z, —Z)p b, oz —}Z ‘

Thus 2z, ., —f
el T §

Mod. V (b): Analog to Mod. II (a) we can introduce the following:

-—> 1

nel = %n ” f(p—l)(zn)

f(p) (én)

Z =2 - f(p-l)(Zm—l) (zn+l - Zn)-

n+2  n+l

5 f(p—l)(zn;l) — f(p—l)(zn)

R6 ! Iet f(z) be an analytic function, regular within .and
an a closed contour C. If X is a root of multipliclty p :‘to"

be obtained by me#&ns of Mod.V (b) , we have
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\{.»- “n+2 —_ - 1 f(P+l)(2§) [ 3 f(p+l)(*§)2
(\i—Z )4 24 f(p)(§>3

~2 eIy p(P*2)(T)

Proof: Exactly the same as for T.9 . (Just replace fl throughout

by f(p) , and maké use of the Corollary following Tf3 instead
of T.3 itself.) |

This shows, that in contrast with its analog (Mod.II (a),
Mod. V (b) is indéed superior ( in most cases) to Mod. V (a)
(the analog of Mod. II). Factually, two successive applications
of Mod. IT will roughly glve the same degree of approximation
as one application of Mod. V (b). In doing this, two values of
f(z) and two of fl(z) must be calculated in the case of Mod.II,
whilst in the case of Mod. V (b) we have to calculate (though to
fwice the degree of accuracy) only two values of f(z) and one
of fl(z) . These statements can be verified immediately with

the help of the followlng short synopsis.

Mod.II: X-Zpg o _1 _gerl)(X,

“(",é" '_Zn)2 - p(p+l) f(p)(g)
Lo R-mup { 1 r(P+l) (%) }3

(o) p(p+1) #(P) (%)

n

Mod. II (a):

E = Zppl : _._> - 1 f(p+l)(‘§)

5 1

(X~ z,) ° e(P) (¥

Mod. V (a):
‘{ i 1 p(p+1) (8 )

(Y~ )2 p(p+l) r (p)(‘§>



50.

Mod. V (b ):

I T Znsp

= -—>

1 plp+l) (p+1) ¥ )2
X -zt Sy <§3) R S
n) £ -

- f(P)(S') . f(p+2)(3‘) ]
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"Polynomial Algorithms! ahd Frame’ s "Modification.

Up till now we have only discussed algorithms of the second order.
Before proceeding to the discussion of algorithms of higher orders .
it will not be unjustified to mention here another important type of
algorithm of the second order which can also be adapted to satisfy
the conditions for higher order convergence. These are functions
F(z) ', (for finding the roots of polynomials f(z) ),which satisfy apart
from F(!)=§, F' (Y)=0 also the further“restriction ,namely that F(z)
must be a polynomial. This type of algorithm was i.a. thoroughly
discussed by C. Domb . A.S. Householder and H. Schwerdtfeger.
These algorithms are constructed in the following way:

We will only consider polynomials f{z) with simple roots . (This
is no restriction of course. )Thus since the g.c.d. (§z), £'(z) )=t
two polynomials h{(z) and h; (z) can be found such that

hy (z)f(z)-h(z)f' (z)=t (. . (4. 1)
Then we can choose as algorith;n F(z)=z4 f(z)h(z) { . (4.2)
Obviously F(¥)=X, F!'(¥)=0 and F(z) is a polynomial.
The general solution of (4.1) is: ‘
H(z)=h(z)}+p(z)i(z) yHi(z)=h; (z)+p(z)f' (z)

where p(z) is an arbitrary polynomial. Thus h(z) in (4. 2) is not
uniquely defined. Special éolutioﬁs h(z) and h; (z) cans always be found
by means of the Euclidean algorithm of course. The st.m;?fle‘stz numetrieal
method to apply here would be the method of unknown coefficients

as indicated by H. Schwerdtfeger in his paper [4].

T.10: Given a polynomial f(z) with a simple root ;then we have after

n applications of

zn=zn_1-0 f(zn-i)h(zn ) (.0 - (4.3)

-1
h(z) a polynomial,
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where M =maximum |h(z)|

s ES SSENI {

M =maximum lf'(z)l

f!
|=-l<lz_,-%l
Proof: Trivial. We have from (4. 3) and Taylors thsorem:
a— 2 .
I S S SICIINE YRZ= (CIE YRR (116 SENCIE $13(

+O[(Zn_1-‘)2] ’ N ine §
29 T
Z——'_""“— o 1+ (E)nE)
n-1

If an algorithm of the third order is required ,we can replace (4. 2)
by F(z)=z+f(z{H(z)
zz+f(z)h(z)+p(z)f(z)> . (4. 4)
p{z) an arbitrary polynomial.
This is according to P. 5 the rn‘o-st general algorithm (of the polynomial
type) of the ée'c;_ond order. A special algorithm of the third order can now .
be acquired by choosing p(z) such that F'' (‘)=O.
We have by differentiation: o
F'(z)=t+h(z)Mz)+£(z)[h' (z)+2p(z)f' (z)+p' (2)f(z)"]
=f(z)[h1(2)+h' (z) +2p(z)f' (z)+p' (2)£(z)]
Thus,to obtain F'!? (‘):0 ,§ve must obviously choose p(z) such that
hy(z)+h! (z‘)+ 2p(z)f'(z)=q(z)f(z)
Acco rdi‘lng to (4. 1) this will be satisfied if
p( z Foe-h(z) [B' (2) + by (2)]
a(z)= hi(z) [h'(z) + hi(z)].
From this resulting algorithm of the third order, one of the fourth
order can be obtained by P. 5 and restrictions on the arbitrary !(z)

of equatiion (2. 3). Proceed similarly for higher orders.
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Mod. VI:(Fréme).. J:S:Frame [5],[6] and later also H. S. Wall [7] have sug-
gested the following modification of Newton' s algorithm:

zZ. =z - Zf(zn,-i)f' (,zn-,i) ' (4. 5)

1 Ty 1t
2f (Zn-'l) f(zn_d)f (zn,-i)

.. e o 26(z)0 (z)
or. F£Z? Z - o2f! (z)* - £(z)f' ! {z)

(Notice the ~striking similarity in form with Mod. I)
By substituting £(z)= (z- ¥ \y (2) = £P\y (2)
. where li_r%. ]W(z)ku&’

we ébtain F (‘g )=1-$£'=F—

‘We will therefore apply (4. 5) only in those cases where {' (E)* 0.

‘[Mod. VI was arrived. at , after the following observations:

Al;The equation of the parabola through the point (z .’ f(z 1) ),
n- n-

“having the same first a'-d second derivatives at z=z as y=f(z) ,

n-1
r=f : £1( 2

yHz ¥ +lz-z_ ) )+-z—(z z ) E Nz )

Let z be a solution of the equatlon which results if we put y=0.

Then -f(z )
R = n-1

z W
n et fi(n )+ 3 gz ) (2 )

is

obtain (4. 5) 1

If we take z -z =-f(z )/f'(z ) in this formula, we then
n-1 n~-1 1 '

In case of multiple roofs the following may be used:

Mod. VI{a): F(2)= 2 - 21(z) [ fl(z)z - f(z)f' " (z) ]
| 2(£ (2)° - (2} (2} (2) + (£(z))2 £ 11 (2)

(Obtained from Mod. VI by replacing f(z) with £(z)/f" (z). )
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Remarkable however is the fact that Mod. VI yields an algorithm

of the third order for simple roots (p=1) , for then

1t = £ (I) 2 I =

Fri(X) = ) + (%) 2 £11(X) =0.
T. 11: Given f(z) regular within a closed contour C. If ‘f' (‘f) X0
where \E is a root of f(z) within C , we have after n applications
of Mod. VI:
- X

n n 1
11 _of1 frue

) X) «tzE (g)) [ (80" 21 ¢ X) %]

Proof: We have from (4. 5)

2
(z_-%) [Zf'(zn_i)z -fz )0z Be=(z DAz ) - iz )Nz )]

- Zf(zn_i)f'(z )

n-1

2 z E
fz,_y=(=z _, -D)F'(X) 2y "8 g - = g1 (X)
2

We also have: ( )3

+0O[(z et § )4]

: ‘g)z '
1z )= +(z__, -5 (¥) e S —5—ME ad §
' +O[(zn_1 3]

fr! (zn}'_i) = f! '(E) + (Zn—i ‘E)f' ”(\S) + O[(zn_i 'g )2]

Then .
(z_ X208 &N+ 30z - e @)+, -0 (B
( 4

L 5
L R CNUE Vi CER RS YO R SRR
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R.H.S.Hz__, “X)[2(£* (‘g))‘2 +3(z__, 6 (X (%) +%‘(Zn_1 -‘g)z(fl ' (‘g)2
i
(z_ ., -%) '

n-1

+-——-?;____. ’fl Tt (E)Z + (zn';'l ._‘g )zf‘.("g")fl 11 (E)#_‘;_{zn_i_ \g )3f' 1 (‘g)fl tt (E)]

2z, X000+ e 0P 0 @) eRe, 0 8 (D (Y

(s _§)3 (z -E)S
+2 e (0 (e D (D (DR (8]
+Ol(z 'XP(ZH -X)1+ Oll=__, —2)4] ' “n-1” ¥
Therefore: |

7, =

n , 2 . R 3 B 2, 2
-5 LA )%+ 3z, 0@ (D52, X))

tz -3
n;>1 § £t ,(E)Z + (Zn_i"i)zf' (E)f' vt (E) + i;:(zn_’1 —§)3fl 1 (*g)fr 1 1(‘{)]
4
| (2, -X)
1 2 2+ -1 - 2 1 <.3 . .
vt Bt e e

i %(Zn_i _\S)Zf, (Z)f' e (E) + O[(zn-'i -‘{ )Z(Zn—}’)] + O[(zn_1"§)3], 22—1 - g

Thus:
z - X
(zn- 1 -E)

After comparison with the result of T.3 , it is evident that this algorithm

1, 1!! 2_11 11 (Y
sz 279 2@ @]

is definitely an improvement of the Newton-Raphson method.
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Applications to the equation f(z)= z" - a , m>1

We will first consider the application of i:he“polynomial" algorithms
as given by equations (4. 2) and (4. 4) :
Obviously h(z)= - i— , hi(z) =- % will be polynomials of lowest

degree to solve equation (4.41). Thus by (4. 2) we obtain as algorithm

for approximating the m-th root of a:

m+1 1 m+1
F(z] = o % “ma Z (4. 6)

This formula has been given by Hartree and Domb.

D. R. Hartree: Notes on itera;tiire processes , Proceedings of the Cambridge
Philosophical Society 45 (1949), 230-236.

C. Domb: On iterative solutions of algebraic equations ; Ibid. 45 (1949),

237-240.
Using (4. 4) we obtain an improved formula:
F(z) =;ﬁ[{f2m+;)(m+i) _ 2r;1+1 e +2r;1,21 ZZm 1 (4.7)

If Frame's Mod. VI is applied to f(z)= 2 -a , we obtain:

F(z)= 2 Lm-i)zm + (m+1)a

(4.%)

(m+’1)zrn + (m-1)a
a very handy formula already given by V:A. Bailey in 1941,

[Prodigous Calculation ;Australian Journal of Science 3, No.4 ,(1941)
78-80.]

In using the algorithms given by (4. 6) and (4.8) , we have from
T.410 and 14 respectively, the following error estimates:
For equation (4. 6): z - X

n g _
Zn-i--3 ' In.‘

equation $4.8): 2z - }
P = S 3m-1)” - 2(m-1)(m-2)§ 7]

S St
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The following table gives the approximations to ﬁ obtained from

(4.6) , (4.€) and the N-R algorithm , starting with z =X, = 1.

0
N-R. (4. 6) (4. 8)
x,: 1.500000000 1.250000000 1.400000000
x,: 1.416666667 1.386718750 1.41421319797
x,: 1.414215686 - 1. 413416939 1.41421356237309504879569008
x,: 1414213562 1.414212534

The value of x3.founc.1 by Newton' s formula is correct to four
decimal places, while the value of x, found by formula (4. 8) is
correct to nineteen decimal places. Starting with x0=10 , we find
that Newton' s formula gives for x4 the value 1.4442 , which is
correct to one decimal place, while formula (4. 8) gives the
approximation X,= 1.414213562 ; which is correct to nine decimal

places.

- Another application of (4.5): The computation of the positive real root

of the reduced cubic equation
x> + bx - c=0, b,creal, b0, c>0.

Here newton' s formula is

_2x 1 + c
xn"__L____ (4.9)
2
3x +b
n-1

and formula (4. §) is now

5 3 2
3x - bx + bcx + bc
n-1 n-1 n-1
x = (4.10)
n 4 2 2
6x + 3bx + 3cx +b
n-1 n-1 n-1

If b=2 , c¢=20 and we take x0= 2 , formula (4.10) gives the approximations

x; =2.46 , % =2.46954551



On the other hand (4. 9) yields for Xq = 2 , the values

X1 =2.6, 2=247,X3=2469546

The value of the root to nine decimal places is 2.469545649.

58.
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Algorithms of order k> 2.

On discﬁssing P. 5 in chapter II we have observed a general method
for the practical (though laborious ) construction of an algorithm of
arbitrary order k<o) if an algorithm of the second (Or even first )
order is known. We have already made use of this principle in
chapter IV in deriving the cubié algorithm given by( 4. 4) fom the
quadratic one given by (4. 2). Stafting with the N-R algorithm ,
E.Scr¥der and later E. Bodewig have obtained in this way as the most
general aigorithm of the k-th order for i(z) , £ (K) $0:

=y (f(z)) d mn-1 1 k
= > (- —_— .
Flz)=z+2 ( 0" syl i f' (z) dz ] iz -2 \?k(z) (5.1)
k> 2
Where \? k(z) is an arbitrary function ,
and 1 d .r 1 d
[ T (2) i ]° denotes that the operator £ (z) dz must

be applied r-times, i.e.

_ 1 <4 3 4 dgr 1 d
e & [ f'{z) dz 1" gl2) Tf'(z) dz = f'(z) dz f](z)g (z),]
Again , in the case of a multiple root Xwe just replace f(z) in

(5.1) by £(z)

£ (z)
Formula (5. 1) was given without proof by Scroder. The following two
theorems proving its validity are due to H. Schwerdtfeger and :7. ...
D. R. Blaskett. .
T.12: Let w=£(z) be an analytic function regular within ardon a
closed contour C , and X a root of f(z) within C, f' (.S) *0 .
Let z_be a pomt within C , 'not too far' from } Then, denoting

0
the inverse of f(z) by z= £ (w) we have

3= ( > _'_f(zo)n & (w) aiw)
1 : W
n. ( gwn ) W= f( ZO) = exp. [ - f(zo) dw ]W= f(zo)

(5.2)
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where the exponential function operates symbolically on the differential
symbol.

Proof: This theorem follows immediately from the main theorems on
the analyticity of the inverse of an analytic furction. The requirement

ft (‘{) 3 0 is necessary , since we have for inverse functions:
(e. g. Copson p. 121)

If f(z) is an analytic fiinction , regular in a neighbourhood of the point
z, at which it takes the value We then the necessary and sufficient
condition that the equation f(z)=w should have a unique solution
z = f_i(w) , regular in a neighbourhood of WO , is that {' ("ZO)

(orf (}) fpr zo”sufficiently close to" 3 ) should not vani‘sh. This unique

solution is then given by

) (z-z) n-1 _ _
w2 ) Ty [—‘-in-t bt o) {70 4y
z-2, 0

This is the Lagrange formula (Memoires de 1' Acad,. Roy. des Sci.-Berlin,
24 (1768) , 251.)

for bhe reversion of a power series. We can write this as :

£ w) =€ (w£+z Tzz)[‘ Q) - (£ M) )

n-1 W—W n

d 1 d_ 0
o (W) )5t { = )} ]W=Wo

-1 o0 no_
< w42 —yla -2 0 (a ) [ £ W ]
. 0
-1 o4 4 n. db -1
=1 (wo) +n§1_1-11.-[ f(z) - f(zo) ] [dT”*n— f (w) ]w=w

and this gives formula (5. 2) for w = 0.

To obtain the ScrB8der-formula we introduce the operators Sp'

((p=04,2,....)

as follows:
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1 1 d 1
8 f(z) —Fr) & (=) = f'(z) dz ( ' {z) )

§7Ma) G o (87 fla))

Then it can easily be shown by induction that

d £ (w) n _ gt (w)
8 f( ) = [—‘2—‘_ ] W= f(z) , S f(Z) —[ dwu.'rj. ]W— f(Z)
Thus: f(z )
Y=z, + 2 00" (8" #z) )y,
2 1 3 4 111 it ., 2
. - e 1 ) f((ZO) f_‘Lza?’) . f(zo) f (zo)f (z0)5 3f (zo)
0 0 f'(zo) 23 f‘(zo) 31 f'(zo)
F o ' (5. 3)
Co.sidering 0
F (=) =201 (-1)" —ffTZ,)—— € " iz) ( 5.4)

i.e. a partial sum of (5. 3) which will be used as iterative algorighm,
we have the following theorem!

T.43: Rewriting (5.4) as

k-1 j (z j i-1
z =zn_.1 +j_21 (-1) it [ 8 £(z) ] N
we have zn—‘f , and )
Fk(§)= ) Fk'(‘g)=;o, ....... F =0

i.e. Fk(z) is an algorithm of k-th order.
Proof: For Fk(z) to have Fk‘ ('S): Fk' '(‘S) = = Fk(k-i)(l) =0

we must obviously have something of the type:

k-1
Fk' (z) = f(z) g(z) f (Z) (5 5)

where the undetermined function g(z) is regular at z =X.
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Now we must choose g(z) such that Fk(x )=x . Then according to T:1 and 2

we have Zn%z' .

From (5. 5) we have :
F (2= §2"" gar (24
x k-1 -1
SW g(f (w) )dw

Tt 1 A )

T

where gn+1(z) = S -gn ( f-.i(w) Jdw=........

Fof Zi ‘S this gives
F %) = (0 g (o)

Thus, a suitable choice for gk(z) would be

k-1

g, (2) = (——ﬁ——éj z
i.e. ket ke
(-1) d -1
from
Thus Jee (5. 6):
k-1 k-1-n

)= 3 oo 1§ )

which is exactly equation (5. 4).

Applications:

I.) The quadratic equation. i.e.

f(z) = (Z_Z:,i)" (z—zz) = z2 - Z(Zi + ZZ) + z z_ =0.

172
d ¥
an dz 1 o4
df Zz—(zi_-l-zz) _,_ N
d"z nzi - 2n'1. 3.5.7..... (2n-3)
- L)}’ 2n~-1
ar™ N
-2’: 1 2n-1
= [ _ ] ) 2 n‘

(5. 6)
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Put in (5. 2): 1
z +z — (z-2z )z-2_.)
_ 1" %2 2 1 2! . n
=z+ (z - —-—-—-) ( '1) [ o [/t —]
2 n 1 2
(z - —-—-2———) w = f(z)

(we write z instead of the initial z_ to avoid confusion.)

z +z z +z. o 1 (z-z Yz - z_)
I S (2 2 2 '0( )P 2 1.1 13 2 1™
2 2 n z1+z2 2
(z- ——=—)
z, 1t z z + z
1 2 1 2 /2
> + (z > ) (1 + t)
(z-z ) (z - z_)
t= . e. £
. 5 i.e. if Itl\i
(z - ____1__£)
2
Under this condition we then have
“17 %
+ + ~
§ -2 2 otz 2 ]
2 - 2 ) z +z
5. L 2
2
= z for +
1
z2 for -

The condition for convergence cah be translated as
i@,
e .

2
gi ?2 § g where ?1 0
gzel * =z -z

Then we know from an elementary theorem on the median of a triangle

that Y 2 g 2
+
2
§5- +—2 . g
2
where 2E denotes the distance between the two rootpoints z, and =z

Thus the condition for convergence then changes to

2 2
(gi— ?2)§2E or  +( ’1' sz)z‘?E

Considering for the sake of simplicity the stadard hyperbola
2
- 1) in the real case, we have

2, 2 2, 2 2 2
x/a —Y/b =1) b=a(e



. [ + i
(~-ae,0) S A Zle0)

.---o--“-qNb -

‘Fig. 2.

* 2 2 2 0% 2 2 2
31 =(x+ae) +y , gz—(x-ae)+y

(8*1 i S*2)2= g*iz N g* 2 _, S* s*z

>
)
-~ ]
0
- D -
\V‘
»
—
2 V)
[¢]
e
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2 2 * 2
2a e =2E for e=ﬂ.

The domain of convergence is thus bounded by an equi-sided

(i.e. a= -_l.-b , e=‘J-2‘) hyperbola , with the roots Z'land zzof the quadratic

equation as foci °*~ and incidentally it is th@t part of the complex number

plane in which the foci itselves are situated (the hyperbola itself included.)
The Immediate question is now , which one of the two roots is xeached

by choosing the initial algorithmic approximation Z, in different areas

of the domain of convergence determined above.

2 2i(9,-9)

- We have from above

=(E/§) e

Z - Z )
where 1 2 - Eel 0.

Therefore
e(i [2)log(1+t)

2i(0,- ©)

(E/ g )6(1/2)10ge

Considering that for a real niimber y

log 'Y = i{ y + 2hqe) where the integer h must be chosen such that
"y + 2hW lies between - Yy (excl.) and W (incl.) , we find:

2 2 222 4
=2x + 2y +2a —2\I(x-ae) +ZXY+2aeY+Y-
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(8, - B +nw) _ 2 hT s

172 log (1+1) e (5.7)

=(E/g)e

where h must be choseh such that Q—g+h1l’ lies between - g (excl.)

and +!2'* (incl. ).

z +z
The radius y from z to > includes two sWpplementary angles with
the line connecting z, and Z, Call the angle on the side of Z 0 Yy
z
and the other WZ.
2 2

Fig. 3.

Then §=0, W tw,

w =
and -3 £<hE+T —wzé >
(5. 8)
_“_l' ™
or - > <hT +Wié -é-

Obviously for h even it follows from (5. 7) that the positive square-root
of 1+t is considered ,i.e. root z1 is obtained if z is chosen such that
for even h , W, and W, satisfies (5. 8). i.e. w1(~ %

bwi w , '

For odd h, e = -1 and then wz( -2- in which case root zz

is obtained from (5. 2).

\
!

2.) 1(z) =z -a=0.

dz__ 1
df  mezm-i
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'z Pt (m-1)(2m-1)(3m-1)....... [(n-1)m-1] 1
dfm =(-1) mn Lam-1
nt1  (n-1)) (m-1){m- 1/2)(m-1/3)..... (m-1{n-1)
=(-1) mn, znm-1
Then m n
Y-. _z; (z-a)" (m-1)(m-1/2)(m-1/3)...... (m- 1/(n-1)) 1
2 m
~ z -amn 1
=z - f .
z % [ —m ] ——z or large m
00 L S
Z n zZ =-a ;1N
2T m Z (-1) n[ zIn ]
n=t m m
Z - a . a-z
=z-— [log | 1+ T |+19 +2mmi |, for lzm lé'l
m
excépt at an =-1
Therefore:
1 a . 8 2n¥w .
g-z[i—mloglz-zml-lm— - i]
and this holds if Ii - Zm Ié 1 , excluding the case when a=0.

3.) The non- analytic case:

Given f(z) conmtinuous of non-analyticity r in a simply connected
region containing the rectifiable Jordanecurve C, given by
w(t) = u(t) + iv(t) , 4t _4@

Que.: :
Find an approximation for a root zof f(z).

Definition of non-analyticity r:
If f(z) = X(x,y) + i¥Y(x,y)
is an analytic function of z in a region D, it has at each point of D a unique

derivative £1(2) = lim. f(z-{-hl)1 - f(z)
h- 0
The derivative will not exist if f(z) is non-analytic. We have however,

the following theorem. (See [9] )
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. T.(i): Let X(x,y) and Y(x,y) be continuous and have continwus partial
derivatives of the first order near Z,% + iyo and let
w(\ ) =u(X) + iv(\)

un)\ f(zg + h) - £(zg)
h

=]
h—0

where lirn).\ denote s that h—0 along a line of slope M . Then the point
h—-0
w(\) lies on the circle
4, .0 _ 0 .2 1,0, 0 .2 2
-—( X - -—(Y X = .
[w- A Xy - ¥ ) 4 v -5 (Y X0 T =2z 69

4,0 02 , 0. _0 2 1/2
Wherer(zo)—z[(XX—Yy) +(YX+Xy) ]

0
and Xx = % X(x,v) ] etc.

o> Yo
We define (5.9) as the deﬂvati\}e circle and its centre the derivative
of f(z) at 27z, . We write f'(é) "%2( X +Y )+ 11 ¥ - < )
. : xy 2 x M
It is interesting to note that if r(z)=0 , the Cauchy-Riemann
differential equati ons are sa‘fisfied', and the function f(z) is analytic.
Thus we may define r(zo)» as the non-analyticity of f(z) at z= Zq and.
its least upper bound in D, the non-analyticity of f(z) in D.
We now have the following theorem by Szu-Hoa Min [9]:
T.(ii): IF f(z) is of nom-analyticity r in a simply connected i'egibn D

containing the rectifiable Jordan-curve C , we have for any z inside C:

f(z) = ! - S _fwidw b kr
2Wi C w-z

A
4 —_— .
k4 .[E (1+ 2.“_) where A is the area enclosed by C
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The following theorem from the analysis of complex numbers is

well-known:
T. (iii): If £f(z) = X(x,y) + i Y(x,y) is continuous on the smooth bounded

curve C, whichlis given by =z(t) = x(t) + i y(t) , of£Lt _4_(9 s
tThen S £(z)dz = S‘f( 2(t) ). z' (t)dt.
C

' s
=S X(x(t), y(t) ). x' (t)dt - XY(x(t),v(t) ). y' (t)dt
< o

P
+i SY(x(t), y(t) ). x'(t)dt + 1 \ X(x(t),y(t)).y'(t)dt.
[ 4 ol

Apply T'. (ii) and T. (iii) to the £(z) in question. Then:

£z) = ——— g Hwdw
2ni C W=~z ,

1 g’ £(w(t) ). w! (t)
2ni d\W(t) - (xtiy)

dt + kr

x) - i(v +y) ]dt + kr

1 }Xu‘ Yv' + i Yu' + Xv')
T 2wi g [ (u-

g (u- x)% + (v+y)

= 2,1|1i S?(u_x)zi(v_w)z I (Xu,i - Yv' ) u-x) + (Yu'+Xv' }(v+y)

+ i ( (Yu'+Xv'! J(u~x) - (Xu'-Yv' }(vty) 3 Jar

\
v, 1)+ 1V(x,y,t) Jdt + kr
%i‘= En—g [U + 1Vx]dt+ kr
1
T T UX Y ’ + (Y #X ) T [‘Xz&“—Yy’(Xm‘YYX) F(Y K )Y 4 )]

These values for f(z), f'(z) can now be substituted in (5. 3) to obtain the value of

X.
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For practical purposes the general algorithm of the k-th order given
by (5.1) becomes very clumsy. It is therefore of grave importance to
find iterative algorithms of higher orders (k > 2) of which the application
is still worth while. The rest of this chapter will therefore be devoted to |
the construction of such algorithms.
Lemma: Given two functions Qk(z,x ), Gk+1(z’x) analytic with
reference to both z and x . _
If z_ :G (z ,}) an@ ‘ +1. k+1(z ,E) represen‘t iteration
algonthms w1th ‘S as attractive fixed-point [ K a root of f(z) , amlytic]
and orders k(> 0 integer) and ki1 respectively ;

furth .
urther k+1(z ‘s )

2F 2="%

- 1z | © n=0,1,2,..
then Z 1 Gk-l—‘lizn Gk(zn} M. n

represents an algorithm of (kt1)-th orderfat least) '
Proof: Put F(z) =G [Z, G (Z,! ) I

Then OF(z,¥) _.'ath_,,1 N @G G

=0 By (5.10)

9z Dz 'aGk ® z
A 2
. ‘ s ? |
» F(z.X) =B ki1, PG R T +,aGk+ 25,
2" L T 29,5 PG =
2" [
_ Gk+1+ +[’3Gk+1‘0z +'on1‘a?{]§G
2z 2z °G 2 2a wP
k k
Thus = F o n=1,2,.......k
2z

Therefore F(z,g ) is an algorithm of order k+1 (at least).
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We have for the analytic function f(z) (root Z , £ (}) %0 ), regular within a
neighbourhood of § . SR
0 = £(%) <(a) + (§ - 2)f' (2) + L—— 1) 4.
Then we can write for a domain D i.n-whlch this series conVerges and

in which £'(z) § 0:

nti

NN UG FE Y a o e
K—Z 1 (z) - f'(z)[ 2‘ f ( ) + f (Z) +......:]‘« (511)
If we replace ! on the left-hand side with z , and on the right-

hand side z with z , we obtain .
n

_ £(zn) 1 (% - .2
“mi Tn T i (zm) | P (z )[ i
n

! ——‘——L- froe (z ) +. ]
(5 12)‘

which gives an algoritim producing root x of f(z) =0 after one

application. ((Due to the presence of the 'unk.nown quantify ! on the

rlght ~-hand side , equation (5.412)'does not make any sense as an algorlthxn in

practice of course.) We note that a break after the second term in the

series (5.12) 'gives the Newton-algorithm. A break after the term with

(§ - zn)k , k>= 2 as a factor gives an algorithm of (k+1)-th order.

T.44: Given f(z) regular in a domain D with x ,a root of f(z)=0 as

interior point, and f'(z) ¥ 0 for z¢D. Then

F(z,§) =2 - fff(zi) - f.i(z_)ﬂ [ (}2'!z : )+ e + (l-k—.——f(k( %) ]
K22 (5. 12)
is an algorithm of (k+1)-th order. ) ‘
Proof: (5:12) - (5:41): ¢ w) ¥ _ 4 (3 -2 f(k+1)(g)

f1(z) (k+1H}

where Z is an intermediate point lying within a domain containing z an&' } .

, 2> X

Q:E:D:

From this follows: Y ,k+1)

F(Z’\g) -}:O( IZ—
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As we have already remarked, (5.12) is unsuited: for practical
purposes. However, if we have an algorithzn of the k~th order,
Z 1" Gk(zn) in which the quax}tity E dogs not appear,we can , by
the Lemma above obtain a (kt+4)-th order algorithm (void of % )by
replacing in (5.12) } with Gk(z). In this ré‘cﬁrring way one can obtain

algorithms of arbitrary order according to the prescription. :

_ i(z)
Fz(z)—z— 71 (2) _ ) N ,
(F. (z) - z) (5.13)
f(z) 1 k -
Fk+1(z)= z -4 (2) s ) [ 21 fre{z)+.......
k
AP (z) - =2)
........ " M1 ke

For example: ) £(z) ) f(z)-?‘f”(z)

F3(Z) =z -4 (z) 2 (Z)3'
2
_ f(z) 1 f'(z), £ £ 2
Falzb =z - a0y - f'(z)[ 7 (ot 2033 !
2

flll (_f_+fftl )3]
T 6 £t 2()3

f fzf'- ! f3

2w T2 Yer

f4flt tfll)z . f_fllfllt

taelze - Yom)2

)b[flflrt_:),(fn)z] |
fi1 Ifz(fl 1 )2
12(£1 )%

T AL

etc.’

In comparing (5. 1) with (5.43) it is obvious that not only the derivation
of the algorithms is much easier in the latter instance ,but also the
practical application the reof. Incidentally , the algorithm of Rk+1)-th
order as given by (5. 13) will be extremely expedient for computation - |

by machine.
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T.45: Given f(z) regular in a domain D with 3' as interior point.
f(x) =0, f! (}) $ 0. Then the following procedure will give an
algorithm of (k+1)-th order (at least):

If z is an approximation of } , then first compute the values of:

1 dfz) g o .
j'. a2 = Jg , j=0,1,..... s
and afterwards
f 1 1t
n n
= e m— , = - f 3y
Vn, 20T Vo, 3T T Bt a2 21
n n
frt fl’ Tt
v = - i---[f + v T tv 3 T
n, k+1 f! n ,y k 2! n.k 3! """"
)
+v =]
........ n, k K\

Then the new approximation is

Z =z +v
nti n n, k+1

Proof: Since f' (}) Y0, 2 =z +v (i. e. the N-R algorithm)
—_— ntl n 2

n,
will be of order 2.

Ifz =z +v is an algorithm of order r for 24 r { k , then
nti n n,r = 2

it follows from the Lemma fnd T. 14 above tha.tr

1 v Va, r (x)
n,r )

= - r frro4 ... — 1

Zn+1 Zn fr- I:fn-'- 2! n * * T n ]

n
is an algorithm of at least order (r+1). (Replace in (5.12) } with

v r-I~ z - )By putting succesively r=2,3,..... , k the claim is proved.

Note: In the real case the existence of a continuous (k+1)-th derivative
of f(z) in the vicinity of x is requi.r'ed. The existence of a continuous
k-th derivative alone will not necessarily suffice to produce an
algorithm of (k+1)-th order. For the evaluation of the coefficients

MG | -

——  in case of polynomials , Horner's scheme is proposed.

it
The following scheme might be useful in computing these higher order

algorithms : (v denotes v )
r n,r



(
=f
akn

k)

k-2

/k.

a0=f b=-(1/f")
x n
1 ao v2=a b
0 0
2 2
b
22 T % vy Ha,v,t ag)
(av+a )v2+
v
33 23 " 0 4
(av +av +a )v2
34 2 4, Vs
0
................ v

Fig. 4.

€L



74.
( A further column can be introduced at the extreme right for tabulating

the algorithms ,i.e. =z =z +v .)
nti n T
If f(z) is a polynomial , Horner's scheme for evaluating the a,j can
now be fitted in the blank upper left half of this scheme , since the aj
appear in Fig. 4 in the exact positions in which they will appear after

application of the Horner-scheme. It should be noted however, that f'

2
in the Horner-scheme must be replaced by v, , j=2,3,..... , k.
J
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VI

Accelerating Iterations with Superlinmear Convergence

T16: Given an algorithm of orders k) 1 which yields after n appli-

cations

|zn-‘£‘ n;A- , A%o, A%
k ; ,
l Zp-1 -f‘ 9
We then claim that the approximation to \g will be improved

if z, is replaced by

|2y - 2 Pﬁl |
2=z - L a ' ., sga (zn -§ ) . (6.1)
‘zn-z - zn--l\
where sgn a = '—:‘ (obviously defined only for a %0)
Proof: We can obviously write
‘zn-.g\ = A \zn-l -g\k(l +E.n) and
EN I B 'E\k Q-+, {6.2)
where ¢ n, o°
o1
Put An = max ( ‘E'n\ , ‘tn-l\, lzn_2 -K\k-l) " (6.3)
We shall now prove that
‘zn "? \ Iy 1l
2 A
el ‘Zn-z _.ﬂk o (6.4)
and ; ‘
1z - ¥\ = Qca) y B> (6.5)

-Kk+l \ z _?‘ ke
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Putting ‘Zn-a -E\ =%

we have by (6.2) and (6.3)

‘zn-z N zn—l\ =1 +O(zn¥l B §)= 1+ O(Sk-l) =1+ O(An) y 0O ~»old |
| 8

9
12,2 - zn—l‘k = § k[1 + 0(4\;& (6.6)
Again by (6.2) and (6.3), as n->el: o

lz, ;-2 = |z, 'Z‘ \1 B ::_;:-EK‘ -

g1+ Oy -1 M) v,y
2802 + ocg* bl + oca )] (6.7)

From (6.6) and (6.7) we have

k+1l
‘zn B zn-ll i

lzn—l - zn-Z‘ ‘

, ‘ .
Akt %k [l +O(An)] , D =>g} (6.8)

On the other hand, after two applications of (6.2), we obtain

Iz, - %\ = alz -®¥La.00a))]

2 .
-l ¥ 1. 0ca)] , b > (6.9)

and from this (6.4) follows immediately.

Put S = sgn (zn -})
Then from (6.8) and (6.9):

k+1
I Zn-l - zn'

nlz

2
k+l o k .
5= 2 l‘k = SnA % ‘.1+O(An)]
n- n-

2
zn-‘g = SnAk+1 g" ‘_1+0(An)] y 0 -
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Bubtract these. Then

lz -%I = O(An) ' n ->ed

2 A
Ak+l Sk - -

WhiCh is (6.5)
In studying the results of the theorems dealing with the error

estimates of the algorithms (e.g. T's 3, 5, 7 etc.) we observe that

usually
E‘,n_l = O (Sp? P21
[e.g. in T« 3 we had
I - n-l‘ - \ i‘"( ) A . y\an intermediate point.
| ¥ - zn_z‘ta 2 f ’(Zn-Z)
Now "(t\‘) can be developed in terms of (f - _y\?, and then we have
IS -zl ‘ £ " &) ‘[ | | } |
= — 1¥0U¥ -«
1X -2, ,1° l2fc ) i '\’ ‘

l———fa:;‘(r)‘ [1‘+ O(\‘E- zn-Z\)]
aivo0@] = sl e ] | ]

If we put min., (p, k=1) ='d we have obviously

An = O(ﬁd), and (6.5) can be replaced by

2
Iz -} = 00§ ™ (6.10)
We usually have d = 1, and then the use of (6.1) gives an improve-

ment of 25% for k

2, and

5 Lo =¥} -0 ] .

11.1% for k
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I17: Given an algorithm of order k) 2 which yields after n

applications

|z, - 31
'Zn-l -X‘k

we then claim that the approximation to 3‘ will be improved if z,

= A+ ogzn_l -‘S|) , A¥O , Agn , 27 (6.11)

is replaced by
ko .
7* = z, - A ;zn-l - zn‘ sgn (Zn - ‘s ) (6.12)

Further, Z  will even be a better approximation that Z (see T. 16).

Proof: Since z. 1 - z, o1 zn‘-}
zn-l - s . zn—l - }:

1-0z,, -F1H ., noa

e Z,1 -'S
z -z

= 1+ O, -¥\"D 2 —>oa
n-1

Together with (6.11) this gives
I, X1 = ahzy - ¥1F+ Oz, -§1*D
= alz -z |+ OQz_, -% \ka'k)
+O(z,, - ] ! (6.13)

= A | 2.1 - zn|k + 0(\zn-l —g‘k+l) y kD2

k k+l
< e zn-f = A\zn-l-zn‘ sgn (2, -3 +0(\zn-l -1
Therefore, if we choose Z as in (6.12) we have

2
Iz -§1= Oz, -}V = 0 (g ™

2+ kY K%, (kY 0)

It is also a better approximation than Z since k2 + d é kE + k - 1< k2 +k

L
Thus 8 1is a better approximation tos than z, since k



Note: 1In the case of k = 2 , nothing is gained by replacing z,
]
with Z . It is obvious from (6.13) that for k = 2 ,
* L
\z" -¥| Q3

On the other hand lzn - X‘ O (84)

‘and \Z-I‘ = 0(85)

79
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VII.

The Choice of a suitable order.

It ha's often been pointed out that for practical purposes the iterakive
use of one of the lower order algorithms (discussed in chapters III ; IV )
is usually much more expeditious than the application of algorithms of
higher order.

[The following problem was solved , first by means of Newton' s method
and afterwards by application of the 4th.. order algorithm of the
Schrd'der-type (see equations (5.3) and (5.4) )

Problem: Find the real root of the equations
x5 + x3 =A with A=1,2,3,....... 100. correct to 3 decimal places.
An IBM 650 digital computor was used. In the first instance about
5 minutes of computor time was sufficient, whilst in the application
of the 4th. order algorithm , the machine required 9 minutes.
(In both instances the same initial épproxi:’nation for A=1 namely

x0= .8 was used.)

A
" We will first devote our attention to the higher order algorithms
as established by T.415 and will also try to develop a criterium for
deciding which order would be the best suited for special cases.

After a glance at Fig. 4 it will be evident that the number of
multiplications and divisions toget.-he.r involved in obtaining an
algorithm (of the type (5.43) ) of order k) 2 , is equal to

k(k+1) _
2 .
a ). Thus , the "calculation energy " (i.e. the sum of the number

2 (i. e. without consideration of the calculation of the

of multiplications and divisions ) increases in direct proportion with |
kz for increasing k. On the other hand , according to P. 1 this #nergy"
increases in proportion with log k,if an algorithm of lower order k*
is used iteratively to obtain an algorithm of order k. |
* log k.
[ k =k, Hence r=

log k*

Therefore. Energy=Const, x r =Const. ——g—izg 11:* ]
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(Note. Natural dogarithms will be used throughout this chapter.)

Further, the number of coefficients f , f' ,...... s f(k—i)/(k—i)‘.
n n n
to be calculated in the first instance is equal to k. In case of the

%
iterative use of an algorithm order k , we have this number as

*
equal to k Jog k
log k*

[In case of the algorithm of order k)= 2 as given by (5.4) , the
number of calculations is in any case of an order much higher than
k.Here com putations of derivatives are involved. This usually takes
more time than ordinary multiplication or division. Here the number
of "coefficients" f(r) to be calculated is also k. ]

From these remarks it is evident. that there is in the general
case no sense at all in arbitrarii;/' increasing the order of an algorithm,
since the increase of convergence speed is usually obliterated by

the increase in 'calculation energy™.

T. 48: If the number of multipliqat_ions and dvisions involved in the

computation of each of the values f(zg:L , f' (Zr)1 , 11 (Z1)1/2.' e f(k(—ziri)/(k-i)'.

is approximately equal (let this number be a) , then

16
x« Log Y
for adfa = ——-9— ¥14.243 the order r=2 , and
log 3
s
for aP a , r=3

are the best lower order'algOrithms‘,fc;’r iterative use to produce an
algorithm of order k. (i. e. considering the algorithms established by
T.45)

Proof: In the iterative use of an r-th. order algorithm of the type
under consideration , r such "coefficients' are to be calculated.
Thus, after n applications of this algorithm s =anr multiplications
and divisions were carried through in the calculation of the

¥ Voo !
{ T e \
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f(zj), f'(zj)/i e , f(r'“(zj)/(r-n! L j=@,1,.. ... ,n-1.

Thus, by the remarks above, the total amount of multiplications and

E=anr+n[£$2r+—i)—-2]

where according to P. 1 k=r .

divisions will be

105 k 2
i:e. E = y + + -
1:e 1 [ I (Za 1)1’ 4 ]

Keeping k constant , and considering;.Eaé a continuous function of the

real variable r, we have:

dE log k 2 o 2
dr‘?(lig_r)'f[(zr +2atd.r)(logr-1)+r +4]

dE
hence -a) 0 for r? 3 (Since logrd1 forr23)

i. e. E(3)<€ E(r') forr'=4,5,......

Thus the'tomputation energy' required for the iterative use of
algorithms of order higher than 3 is greater than that required
for an algorithm of order 3. The cases r=2 and r =3 remain to be

compared. But from (7. 1):

2a+1 3at+4
E(2) = log k ; E(3) =
(2) =log log 2 (3) =log k Tog 3
Therefore 16
< < 4log 2 - log 3 tog 3~ *
E(2) S E(3) for a ; 2log 3 - 3log 2 = g = a
log —
8
Q.E.D.

In the theorem above we have studied the iterative use of an
algorithm of order r)_ 2 which will produce , after n applications,
an algorithm of order—k = rn. In the proof above we have ,however
also allowed non-integral k ,i.e. not of the form k= r. If this

might be a cause for anxiety we propose the following theorem:

(7. 1)

(7.2)
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T.19: We have the "computation energy' E ,\of multiplications and
divigions involved)i.n the construction of an algorithm of order k = r
by the n-fold use of an iteration formula order r) 2 ,as given by

E = Q(r)log k.
Q(r) is defined for integral values of r)_ 2 , for which Q(r) assumes

positdve values. If it is further given that for a r, 2 2, and all
2 2 2 = = b
r ) T Fro. Q Q(ri) < Q(rj) Qj

J
then it follows from k =r + €& rJ =k
1 1 = 7j j.

that E < E_.

1
. Further, there exists for every j # 1 integers n, and nj such that

- n1 nj - E
k1 T, > :c'j ,kj | and 1( Ej

Proof: From Q1< Qj and k.1 < kj we have

E1 = Qilog k1 £ leog kj~=Ej

To prove the second part of T.49 ,we choose a rational number

n Q.log r, n Q+Q logr,
;1-1- such that a]—lo—_f'_ > —1-1-1— > ;Q L'lo rl
; 1798 %y 3 1 g7y

(This is possible since Q. > Qi) 0, and T, T 22.)
J J =

From this follows
n log r, log k Q1+Q

1 1 ] .
= . 21 , i.e. k yk
n, log r, log k. 20Q 1
58 7] &% ‘ :
and also E. Q. n.log .
o _J ] J 1 |
1 Qinilog T Q.E.D
far
Thus kve have only considered cases where the ''computation
energy' required for every successive derivative f(j)(z) is

approximately the same. In the case of polynomials however, this
energy decreses for increasing j - a fact which is immediately

evident from Horner's scheme. In this case we have:




84.

T.20: For the iterative solution , according to {(5.413), of an algebraic

equation of the n-th degree, we have in consideration of the
computation energ.y, the Newton-algorithm for n=1,...... ,10

and the 3rd. order algorithm for‘ n) 10 as the best choices.

Prooft According to Horner' s scheme and the scheme in Fig. 4 ,
the number of multiplications and divisions to be performed in
applying an algorithm order‘r of type (5.13) to an algebraic equation
of the n-th degree , will be: v

%
E = + G, +G
Gi 2 3

r R
HZL o) (P ot - T ]+ [r-2]
§=
= r(n+3) - 4.

[ Cr.1 is due to the work done in Fig. 4

Gg. " nmmn n " " " Horner's scheme for obtaim ing f(j)(z )
n

(J)

G, " "™ " " divisions tequired for obtaining f~'(z ' )/ 3 ]
n
Thus, after m iterative applications of this r-th order algorithm, we
have as total energy for producing a k-th order algorithm:
%
E=mE =m[ r{n+ 3)-4], where ,according to P:1
k= rm. Hence:

log k
E =—%——{ r(nt+3) - 4] = Q(r) log k.
log r , ‘
According to T.19 , the best choice for r will be that integer r ?: 2
for which Q(r) has its smallest value. Then, if k ig kept constant and

Q(r) assumed as being a continuous function of r , we have:

dE _logk . |
dr r (log T )2 [ l'(n+?)(1og r -1)+ 4 ]

.s

. dE j
‘Therefore , for r 2 3, Er—> 0.
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'Thus , as in T.418 the only cases left for consideration are r =2 and

r=3.
2n+2 3nt5 -
2) = k ; E = .
E(2) =log Tog 2 (3) log k Tog 3 Therefore
) 32
< < 5log 2 - 2log 3 °8 g
E(2 = KE(3 f = = ®40.
(2) 5 BO) fox 3 Zlog 3 - 3log 2 g - 10.78
log 3

There still remaim some possibilities of f(z) which are not covered

W

by T.'s 18 and 20. These are the cases where the energy required foxl -
the calculation of the f(J)(znys! differs greatly for different j.

. v

The following theorem mlgh.t be of some help in deciding on the best order r.

T.21: Let the '*omputation energy' (i.e. the number of multiplications
r-1.
AT (20

and divisions together ) for £(z), f'(z) , f'*(z)/2 . ,.....

respectively be given by e & € e e .

Then the "energy'" required for the production of a k-th order

algorithm of type (5.413) by iterative use of one of order r)_ 2,

1 . : . e te 4.,
will be g1ve§ by g ologk wrti)+ Z{S‘ﬂiei"— +e1"1} - 4
-2 log r

The best choice for r will then be that r » 2 (integral) for which

_r(r+d) 4 2(eo+e o te ) - 4

Q 1 r-1

log r
assumes its smallest value.

Proof: For one application of the algorithm order r,we have

#
E:M—2+e +e+......te , and for n applications
2 0 1 r-1 '
. _nE* log k r(r+l) + 2( e0+ei+ ...... +er_1) -4
- T2 log r

The rest follows from T.19.
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B: Considering algorithms of the type (5.4) , we have the following:

T.22: Let the ""computation energy' for f£(z), S 0f(z), S 1f(z), P , Sr?zf(z)
ti i e, e, ... , . "
respectively be given by e €.’ € € 5

Then the "energy' required for the production of a k-th order

algorithm of type (5.4) by iterative use of one of order r ) 2,

will be given by:

E=—1°i5[2r-3+e+e+e+ ........ +e ],
log r 0o 1 : r-2

and the best choice for r will then be that r Z 2 (integral) for which
1

= —— | 2r - 3 ‘ L TP
Q Tog * [ 2r +e+eofe1+ + e ]

assumes its smallest value.

[Similarly as before , ej denotes the number of multiplications and
divisions necessary to obtain § jf(z) from Sj‘_if(z).]

Proof: We have from (5. 4).'

j j -1
Fla=z+ § () g My

J=t
Hence for one application we have
#* : .
E=e+r-2+r-1+eﬂ+§1+ ..... +er_2
and for n applications! ’
* logk '
E=nE=‘—0-g——-[2r—3+e+e+e+ ..... +e ]
log r o 1 r-2

n
since k=r . The rest follows from T.19.
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Error Estimates of the higher order algorithms ( k >3 ).

From the definition of the order of an algorithm (see capter II )
we have , that for an algorithm of order k, there exists a constant

C. such that
ku.c a

<
= Ck

holds in the vicinity of the solution'g of z = F(z) or f(z) = 0. |
This Ck will obviously be dependent on ;che derivatives f)f F(z) ,
i. e. dependent on the derivatives of f(z). If an explicit form for
Ck can be found , it may be very iiseful as an error estimate for
the k-th order algorithm under consideration.
In capters IIl and IV we have already fully discussed the error
estimates of the second (and one 3rd) order algorithms which were
mentioned. Our objec't is now to find error estimates for algorithms

with k33 .

A:  We will first consider the higher order algorithms as established
by T. 15 and Fig. 4 :
From (5.11) we have for k>3
r
f (X-2)
n 1 -1 n (r)
¥=2 -2 - 518 —/% 7 +Rr__] (8. 1)

n TS n k,n
n n r=2 ’

k
(¥ - =) S £(t)

where R = - dt
k,n 2w i C (t- X )k+1
k
( } -z ) :
- = Y | (8. 2)

( C is any circle ,centre x such that f(z) is analytic within and

on C .)
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On the other hand we have from (5.13):

£ k-1 (% -z )"
_ n i ' n+1 n (1')
Zn+1 B Zn f! o [ = rt fn ] (8. 3)
, n n r=2
where %'n+1= Fk-i(zn) , Ek—-1 being a sjmilar alg.Orithm‘ of order
k-1. i.e.
k-1
g - = -
nt+1 ~§ gk_1(zn) (Zn f )
where g1 1(z) is fimr ite in a vicinity of '§ .
If we write gk_1= gk—1(zn) , we have for kz 3
o~ _ g _ ~ _ _ T
(zn+1 Zn) A_[(Zn+'1 3)+(¥ Zn)]
T k-2 ,r
=(¥-z) [1-g ,(= -8 "
r
r j r j. (k-2
AR PR S S PR CRES 5 ks B CWS
n §=4 ] k-1 "' n
Then from (8.1) , (8. 3) and (8. 4) we obtain for k>3 :
() |
k-1 f T
1 n r-j, r j Hk-2)+r
- = - zZ (- -
= ., -8 =" T [ 2070 Tg, (5 -%) ]
n r=2 =1
Rk_
,h
T (8. 5)
n

Sincejz'l , k2‘3 s rZZ s

j(k-2) + r > k.
Thus (8. 2) and (8. 5) together give:
' k
Zn+'1 _\5 _O(Izn- } l )
Thus equation (8.5) can serve as basis for an error estimgte. Let

us first consider the most important (according to the prevdous chapter)

case k= 3:
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From (8. 2) and (8. 5) we have then

fll
_ 1 n ’ 3 2 4
zn+'1_§—- £ 5 L-28, (2 K)+gz(zn'g)]
: R3,n
3 ' £
n
(K -z ) 1t
I - S PP 2 _ 1 o
287 [-26) g+ gy (= - ¥ )+ £1(Y)]
We have from T. 3 : ‘;”
82T

n

~
where f'' implies that the function f'*(z) must be taken at an

intermediate value. Then
2

3 ~ ~
(I_Z) f11 11 frofue
_ n_ [ _n__ n “X)43er®) ] (86)

Zn+1-x 26! [ =& 2oz 7
n n n

T.23: Given f(z) regular in a domain D which includes lz - ZO' <Z2c

where z_ is the initial approximation to the root K of f(z) =0,

£z |
c > — , m =inf. lf‘(z)l>0
= m
zeD
Cc2<ﬂ s

Then all z ,n= 1,2,..... obtained by the iterative use of the ajgorithm
(established by T.415 ) for k =3 lie within the sub-domain

|z-z0|§2cofDand zn%Y

where ‘s is the only root of f(z) =0 in D.
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Further we have as error estimate:

%(3n~1) 30
4 —‘s I < C . - C ,n=0,4,2,......
n =

(It is interesting to note that here , in contrast with T.4 we have
to assume the existence of § within D.)

Proof:

=) |

m

C

A

We have | f'(z) | >m >0 and

Since 3‘ and z0 are both in D, we also have for an intermediate 2

[ £(2) | >m.
| fz) | N Hz) Y -2
Therefore < c or : <c
@] = [ 4(z,) | S
i.e.
- < ¢
¥ -2 <c
From (8. 6) we have: MZ M3 M
|2, -% Islzg- X1 5= =4 oo 45> 1
1 =70 2m " m 4m* 3
=C|z0-§]3 §Cc3<c
Then obviously
]zn—x |<cf01r n=0,4,......
and since '
Izn-zO|§ Izo-‘gl+|zn—~§| < 2c
we conclude that all zZ lie in D, and
3
lan-’g | < Clzn- ¥, n=04,2,.....
2
< cc®lz -%l<ls - ¥
Therefore zni‘g . i. e+ the algorithm converges.

3 4 9 13 27
Further |z -¥|<Clz_ - ¥ 1%<c*z -¥1"<c®| ¥

n n
< c(1/2)(37-1) IZO _X l3

c{t/2)(3n-1) 3 n=0,1,2,

-------
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To obtain Ck for k> 3 is a little more tedious.

Since j>1, r>2, k>3, j<r we have

j(k-2) + r >k-1+j.

Thus, if we know that already Iz. - g I <1, we obtain from (8.7)
n =
(8.2) and (8.5) for k>3 :

) e e T 7 I TR
(K, ¥
f k
+ k.' 1 lzn"zl

k-1 T (x)
lng ¥ e 167

. n v r
£ [ = [ +]g, Iz -8 D™-11.1]
(k), ¥
f k
+1oy lf’) = -3 | (8. 8)
n
N dhn oy ket (8T
5—@—[(“'%41”%'\5“ -Hi —
(k) ¥
£ k
el 17 ¥
n
k-1 |£7)
The sum Sk-1= pX _r:' is immediately obtainable from the

scheme in Fig. 4.

Thus we have:
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S .
< f@'[ﬁ{(1+ lgk_illzn-f et

k =
= - X | |
(k) |
If m=inf. |£(z)] >0 , M, = sup. [f(j)(z)l i=2,3,...... , k.

D j D

we obtein C 1-n’ a recursive way from the formula
S* ' M
_ 1 k-4 , k-1 k
Ck_m[lz—'g |£(1+Ck-1lzn_‘sl) —1)+k‘. ] , k>3.
n

k-1 M M

here Sm°< = Z L C-——Z—(SeeT3)
v k-4 T, r! 72 2m )

Now we can state in general for k>3 :

T.24: Given f(z) regular in the domain D which includes

|z - ZOI gzc , where If(Zo)l
1> c>

m = inf. |f'(z)] > 0

D
k-1
Ckc < 1
MZ
and C2=E-r-n——
S* M
1 -1 =1 -
cJ_m f . [(1+Cj_1c) -1 ]+ i1 )
(8.9)
3<j<k
Mj:sup. IfU)(z)l , J=2,3; .....  k



Thenallz , n=14,2,...... obtained by the iterative use of the
n

k-th order algorithm as established by T.15 (k> 3) , lie within
. n )
the sub-dgmaln lz-zol g 2c of D, and Z 3 .g vhere K is

the only root of-f(z) =0 in D.

Further we have as error estimate :

K*a1

n
lz-gl < Cl]:—1 . ck , n=0,1,2,........
n =X

(again; the existence of one root in D is assumed.)

. Proof: Completely analog to that of T. 23,
Note:Since c< 1 (from (8.7) ), (8.9) can be replaced by the

coarser recursion formula

M
)j-i-i]-i-ﬁi'i 3<j<k.

41 3k
C =——¢(8S C
sy, [+

j m j-1

On the other hand, the '"“finest" formula would be

((4 1 M i} M,
C='—(— T ——[(t+C _ c) -1]+,—H—} 3<j<k
j m C 1':2 r. j"1 J. = =

as is evident from (8. 8).

B: Considering the higher order algorithms as established by T.12
and 13 ,we obtain the following analbgous results. (These are of
course of much less practical importance than those considered
above.)

We have from T.412 :

93.
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f k-1 f(z ) r -
Y_zn--f—fl—+ z (-1) 3 [df (W)] +Rk
n r=2 dw w= f(Zn)
where k
flz ) - -1
R =(_1)k2 2 S £ (1) =T & (8.10)
K " C (t-f(z))

( C is any circle , centre f(zn) , such that f-i(w) is analytic within and
onC.)

k
or - f{ zn) dk

Kk -1
R =(-1) . [ £ (w) ]
k k* dw™ w =£(z )

On the other hand , from (5. 4):

r
f k-1 £(z ) r -1
d .

z =z --2% + T (-0 ? [ £_(w) 1 (8.11)
n+1i n f r® r

n r=2 dw w=1(z ) '

n
. Equations (8.10) and (8. 11) then givef
k
f k
: ’ dw T w=f(z )
n

If we put £(z) = ( § - z)\,((z) where lirnx. I\ (2)] < o8

;>we' 5 IZn-l-i B \g I ’ l\)I(Zn) lk . dk -1
g | = o -% | S Tk I ok tw |
“n T R W =f(zn)
since (%) =-\Y (%)
e |
lg, | < L, | (8. 12)

where M = sup. If‘ (z)|
z€D
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k
d -
and L = sup. — f 1(w)
k dw

w € D' =f(D)

T.25: Given f(z) regular in the domain D which includes

lz-z 'SZC,where

|£ (=)
¢c> —— , m=inf. [f'(2)| >0
= m o
z@D
Ckck_i< 1
k
C =-ld%- L »  M=sup. |f'(z)]
k k. k
zeD
k '1 .
Lk= sup. ' = f (w)l
dw
weD! = f(D) ' .
Thenall z_, n=1,2,... .. obtained by the iterative use of the k-th

order akgorithm as established by (5. 4) lie within the sub-domain
: N % .
lz - ZO' ~=<2c of D and Z @ g where ¥ is the assumed single

root of f(z)=0 in D. Further we have as error estimate :

K -1 )
|z -% | < C:—i ,.‘ck Tn=04,2,.. ...
Proof: (#s before ) lf(zv )|
From |f'(z)]>m>0 , —2 < c.
z m <
we conclude as before : I‘g - zol < c

k
.Thenfrom (8.12): lzi—XI g]zo- XI .Ck
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and also lznf-s | <c

We conclude that all zn lie in D since

lzn-zol § le—XI-i"zn—‘gl < 2c.
k-1
Further we have Izn_i_i-‘S, < Ckc ]zn—S'l <|zn— KI

Hence z —I'l-.s ,
n «4

: 2 2 3
k ki1 k kti+k k
and lzn—x|< Cklzn_i-xl § Ck ,zn_z-.sl gck lzn_3—¥'
n
k -1 Y
< gkt K , 0=0.4,2,.00....



IX

The Determination of the Approximate Location of the Roots of
f(Z) = Oo

It is evident that in thé iterative appliéation of the algor-
ithms considered abOje, the chqice of the initial approximation R
to the root ?; of £(z) = O is a problem in itself. It would there-
fore be extremely useful if a means can be found of determining the
approximate location of the roots of the amalytic function under
consideration.

: { The preblem of finding the location of the real roots of the
function f£(x) = O of the real variable x is not explicitly dis-
cussed in this chapter, and as a result no mention is made of such
well-known criteria as the so-called Harriot-Descartes Rule of Signs,
Sturm's Theorem etc. For these we wish to refer to most textbooks
dealing with the subject, e.g. He W. Turnbull [20}.]

As was already remarked in Chapter I, the zeros of an analytic
function are isolated points, i.e.

If a function £(z) is not identically zero, and is analytic
in a region including z = a, then there is a circle |z = a\ =m
(m) o) inside which f(z) has no zeros except possibly z = a itself,
As The problem of determining the number N of zeros of an
analytic function which lie in a given region was already solved by

Cauchy by means of his theorems:



T (i): If £(z) is analytic within and on a closed contour (rectifiable

Jordan curve) C, and f(z) % O on C, then

f'z)
N = —= Sfé*zf dz
(o

dn i

where N is the number of zeros.:inéide the contour (a zero of order
P being counted P times.)
This result can also be expressed in another way. Since

& 10e[2a)] - %—%

]
we have g f (z) - A ]
! r O] dz = o log ‘_f(z)
where AC denotes the variation of log ‘:f(zi round the contour C,

The value of the logarithm with which we start is clearly indifferent.

Also log [f(z)] = log |f(z)\ + 1 arg[f(z)-_\

and 7 log lf ‘ is one-valued. Hence the formula may be written as

N = E]'if—. AC ars[f(z)}

or better still; if we write f(z) = r e 3.1'.1?9’ r?0 onC
i.e. if £(z) = u(z) + i y(z) where u(z) and v(z) are real on C,
1
then 8 = s arc tan[v(z)/ u(z)]
and N =8c¢ arg[f(z)) = g ae.
C

Hence N is the amount that ® increases as the point z traverses the
curve C in the positive sense.

Keeping Rauché's theorem (see chapter I) in mind might also be
of some help for determining N in specisl cases. The following is an
example of the type of problem which can be solved by means of

Cauchy's method:



uee: In which quadrants do the roots of the equation

£f(z) = z’+ + z3 + 422 +22 +3=0 lie?
(a) The equation has no real roots:.

Obviously it has no positive root.

Put z = =x : xﬁ-x3+4x2-2x+3=_0. For 0<x<1l the first
three terms together are positive, and so are the last two. For
x> 1 the first two terms together are positive, and so are the last
three.

Therefore it has no negative roots.

(b) The equation has no purely imaginary roots:
Put z = iy : yl+ - iy3 - 4y2 + 2iy + 3 = 0 and the real and imaginary
parts of this do not vanish together,

Now consider Aarg (z‘+ + «.s + 3) takem round the part of the
first quadrant bounded by |z| = R. The variation along the real
axis is zero., On the arc of the circle z = Reie « Then for suffi-
ciently large R:

Aarg (Rl" el+i6) + Aarg[l +O®™H]

A arg (z4 + eee + 3)

2w+ OR™Y) \ R —>oy

On the imaginary axis we have

4 ‘ -{3 + 2y
arg (z' + ...) = arc tan v - 4y2 .3

As y varies from + of to O, the expression in brackets varies according
to:. ¥y =% {E? ‘¥ 1l 0
0 - oD 0 +o O
Therefore arg (z’+ + ves) decréases by 2w if y decreases from

+ sy to Q.
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Thus the total variation of arg (zlt + «es) round the first
quadrant is zero, if R is large enough.

Hence there are no zeros in the first quadrant. Since the
zeros must occur in conjugate pairs (£f(2) has real coefficients), it
follows that there are no zeros in the fgurth quadrant, and two in
each of the second and third guadrants.

Any algebraic equation may be treated in the same way.

The calculations involved in determining this N might be
extremély tedious though. Then the following methods might be of some
help;

B: The following theorem sometimes gives useful information about
the zeros of a function.

T (ii): Let C be a simple closed contour, inside and on which f£(z) is
analytic. Then if Re[f(z)] vanishes at 2k distinct points on C, f(z)
has at most k zeros inside C.

Proof: We have from above that if £(z) = u + iy the number N
of zeros of f(z) inside C is given by

1

N=-2-_'—r— C(arctanvlu)

& El_— d (arc tan v / u)
* %

Starting at a point where u § O, we may take the initial value of arc tan (v/u)

Som—tfy—rf—a} to lie between = %———T\and'%1v. We can only pass out of

this range, say to (%1‘, glt) if u vanishes; and only pass on to

(511, g11) if u vanishes again. Thus; if u vanishes twice on C,

AC (arc tan v / u) is at most equal to 2w, and N is at most equal

to 1. The general result obviously follows from the same argument,
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(This theorem was for instance used with great expediency by

R. J. Backlund in his "ﬁber die Nullstelllen der Riemannschen Zeta-
funktion" ; Aeta Mathematica 41, (1918), 345 - 75).

C: The following theorem is actually a consequence of the
maximum-modulus theorem.

T (1ii): Let f£(z) be regular, and |£(z)] ¢ M in the circle |z - al¢R,
and suppose that f(a)$ O. Then the number of zeros of f(z) in the

circle |z - al¢ %‘R does not exceed A log[M / \f(a)\]

where 1
A =m ’ 0<h <1

Proof: For the sake of simplicity, suppose a = 0. Let

El’t

PURED § be the zeros of £(z) in {2z} %R and let

g(z) = f‘\(z)/“ ( ‘%;‘)
R T e T NI
Tkz E\ - &
where 1im.W(z) <& , j=1l...n

z-yx:\
Therefore, g(z) is regular for |z\€ R and on \z\ = R we have since
K.‘\s-%a, \I\>3 for § =1, 2, eee n
Thus | g(2)) ¢ M/ T\'(3-1)=2 (9.1)
for Vz| = R, and by the maxmum-modulus theorem also for |zl ¢ R.
Since g(o) = f(o) it follows that
lt)l & 2%

Thus n £

———]—'.—- lo M
N log 2 & |on$\



From (9.1) it is obvious that X can be replaced by any number less

3

than% « A more complete result can be obtained from Jensen's theorem
which says::

Let £(z) be analytic for {z|< R. Suppose that £(0) is not zero,
and let Ty Tpy eeey Ty see be the moduli of the zeros of f(z) in

the circle |z|<€ R, arranged as a non-decreasing sequence. Then if

<
rn$ r&r

n+l *?
a1} R
log rn| £(0)} = 1 g log' f(rele)\ de
rlr2 PN rn 2% A
i\low, if the zeros in |zl< R have moduli 19 Thy ees y Ty then,
applying Jensen:
N axr
R A ier
log N TR o~ c’log\f(Re )\ ae log\f(O)\
Llog M - 1ogl£(o)\
Let the zeros in the circle \z\ﬁ hR, Ofh{1l have moduli
Tis Toy see g T o Then the left-hand side is not less than
P R n
log , 2 log (1/h)” = n log(l/n)
r.e I tsee T
1’ "2 n
Thus n € 1 log i
S Teg 1/n VEON
QO Eo D.

£(z) a Polynomial

For the rest of this chapter we will discuss auxilié.ry measures
which were proposed for finding the approximate location of the roots
of a polynomial.

D: Let us begin with a problem of the first categoryito find an

upper bound for the moduli of all the zeros of a polynomial. A

102
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classic solution of such a problem is the result due to Cauchy
Eﬂxercises de mathématiques; Oeuvres(2) Vol. 9, (1829) p. 122; Jomra.
Ecole Poly. Val. 25 (1837) p. 176] namely:
T (iv): All the zeros of the polynomial f(z) = Bt 817 + eer + a{izn ’
an'k O lie in the circle \Z\ & r, where r is the positive root of the
equation

n=-1 n
‘ao\ +\a1\ Z 4+ eee + ‘an-l\ Z - \an\ z =0 (9.2)
Also

: n .

T (v): All the zeros of f(z) = 8+ 82+ cos BT, an«*o lie

in the circle \z\< 1 + max layZa,\ v =01 e ym-2

These two theorems formed the basis of the result due to
Birkheff (An elementary double inequality for the roots of an
algebraic equation having greatest absolute value; Bull, Amer, Math,
Soc. 21 (1914) Pp. Lok - 495}, Cohn Eﬁber die Anzahl der Wurasdlm einer
algebraischen Gleichung in einem Kreise; Math. Zeit. 14 (1922)
pps 110 - 148._\ and Berwald Y_Elementare SAtze uber die Abé:gnzung der
Wurzelm einer algebraische Gleidung; Aéta Univ. Szeged 6 (1934)
Pp. 209 - 2211 namely:
T (vi): The zero 2 of ‘largest modulus of f£(z) = 8, + BiZ F eee anzn,
ani‘ o satisfies the inequality

rzizl ¥ (¥ - 1)r

where r is the positive root of the equation (9.2).

This again led to the important result of KuniyedalNote on
the roots of algebraic equations; T@haku Mathe J. 9 (1916) pp. 167 - 1733

Ibid. 10 (1916) pp. 185 =~ 1881, Montel Y_Sur la limite supérieure du
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module des racines d'une équation algébrigque; C. R. de la Société des
Sciences de Varsovie 24, (1932) pp. 317 - 326; C. R. Acad. Sci. Paris
193, (1931) pp. 974 - 976) and Té%a LSome remarks on Montel's paper
concerning upper limit of absolute values of roots of algebraic
equations; Science Reports Tekyo Bunrika Dai;gaku 1, (1933) pp. 275 - 282
which we can state as:
T (vii): For any p and q such that

p>1, adl1, %‘-‘+%=1
the polynomial f£(z) = a +az+ cer + anzn , an# 0
has all its zeros in the circle. |

n~1 / 1
2l <[4+ 2 [a]% |2 |")¥ P11
30
1
<(1+nq/P.Mq)q

where M = maxl,ajlan‘ s =0, 1, ¢e0o yn=1.

An important generalization of Cauchy's T (iv) was published by
M. A. Pellet in 1881:

T (viii): If for a polynomial

= P
£f(z) &, + 82+ oue + apz

. _
e ra ap*.o_ ‘
the equation
= p=1 _ P p+l
FP(B) —lao‘ + 'allz + eee +lap_l‘z lap‘z +‘ap+1\z
n .
+ [ X ) + ‘ an| ! L] .
has two positive zeros r and R, r¢R, then f(z) has exactly p zeros
in or on the circle lz\ﬁr and no zeros in the "annular!" ring
r <|z|( R .

Let us divide the plane into 2p equal sectors Sk having their
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common vertex at the origin and having the rays

@= (o +3W)/p J= 1, 2y ees 4 2p
as théir basectors. Let us denote by @G (ro, r; p, do) the bou.ndary ,
of the region formed by adding to the circular region |z|’(ro those '
points of the "annulus" ros |z} € r which lie in the odd numbered

sectors S,, 53, ees S (see Fig. 5).

2p-1.°

Fig. 5‘1'

Then the following refinement of Pellet's Theorem can be pro-
posed. (see for proof M. Marden [23]).
T (ix): If the polynomial

- P . n
f(z)_ao+a1z+...+apz +ees + a2

with aoalapan* 0 and O(o = arg (a-° / ap) be such that the equation

l‘P(z) = | ao\ tlaglz+ .o s lap_l‘ L - |ap\zp + \ap_‘_l\zp+l

+ eee + |an\zn = 0,
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has two positive zeros r and R, r< R; then the equation
- p=2 _ p-1l p
Hp(z) =\ a| +‘a2‘z + oeee +|ap_l|z 'ap\z + \ap-c-l z
+oeee + lalzn-i' ©.0
n
has two positive zeros r, and Ro with r < r(R(Ro + Furthermore,
the polynomial f(£) has precisely p zeros in ar on the curve

G (ro, r; p, ™ o) and no zeros in the "annular" region between the
curves G (ro, r; p, o o) and G(R, R i Ps qo +T)

A generalization of T (v) was established by P. Montel [Sur
quelques limites pour les modules des _zéros des polyndmes; Comm.
Math., Helv.7 (1934 - 35) pp. 178 - 200; C. R. Acad. Sci. Paris 199
(1934) pp. 651 - 653, 760 - 762,]

T (x): At least p zeros of the polynomial
, no.. . .
£(z) = a + 8,2 % oo +az lie in the circle

‘z\(l+max.|aj/an‘l/(n-p+l) , 3 =0, 1, vee y P o

E: By means of a potential - and function - theoretical approach
P. C. Rosenbloom [22] arrived at the following theorem which might be
of some help.

k
T (xi): Let P(z) = z_:o anzn be a polynomial of degree k, and let
n=

A=t 108 @1, 7 /lal)a )

where M(r, P) = max | P(2)|
lz\=r

Let N(E) be the number of zeros of P in E, divided by k. Then,

if E is the set

:]2-§ z§ 2, Iarg z -o(lg'g
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where o = min (arg z)

ze¢E R |
then INGE) -4/ 2w ,(3‘6XE log (2 +1/A)

Fu He S. ¥Wall [10] and others have drawn attention to the signifi-
cance the expansion of polynomials in continued fractions can have in

determining the location of the roots. of the polynomial.

Let P(z) = z° + alz“l + a?_zn-2 + «ee + & be a polynomial of

degree nd» O with complex coefficients a

j.
Put B va.) =P, and I ) = o that . = p. + 1iq,
eQJ) B, m(a:j) q; 80 that a; = p, a;

Then the polynomial
Q (2) = P;8 + ig,2Z + Pzg +liq4z + see
is called the alternant of P(z). The quotient Q(z) / P(#) has, in
general, a so-called J-fraction expansion of the form
Q(z) _ 1
P(z 1 _

c,2 + 1+ k1 + N (9.3)

c,2 + k2 +
C52 + k3 + ’.
o« + 1
cz+Kk

called the test-fraction of P(z). Here the cj are real and different

from zero; and the kj are pure imaginary or zero. This best-fraction

for P(z) exists iff the determinants



are different from zero.
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Py Pz Pg eeee Poyy TH T g e "9
1 p2 pl.'. X R pzj_a "ql "‘q3 -q5 X EX] -qu-3
0 pl p3 sene p2j"3 0 -q2 ‘qll_ seee -q2j-’+
O O 0 sece . 0 O O s0 e -

P; : 3.1
0 PR TR q2j-2 Py p3 p5 ceee p2j-3
0 ql q3 seece qu-3 1 p2 pL.. seee _'pej_1+
0 0 q2 XXX q‘2j-l+ . 0 Pl P3 XXX )ij-S
O O L] L] * L ] * M qj O o L] L] L] * L L] pj‘l

j -'—'2, 3, L"' ceeees ¢ N pj =qj =0 forj)n

(See E. Frank [11])

The following table is suggested for obtaining expansion (9.3):

aoo = l, a.Ol = iq“ 8.02 = pa, R

81 = Py 31, = 105 81z = Py seee
a
-99 b = a -C b = a - C b a c
a; ' 117 %o 12120 P12 T 8gp T C1%130 P13 T 8pz < C1%qu
Py
a, ' 2" bio = K815y 8Byz = Byg = Kby gy 3, = Dy = Kyagy
211
8o 1 Doy =8y, = Colgy Bog = 8y5 = Colyy Doy = 8y - Coang,
bos
;;; ’ a33 = b23 - k2a23, a34 = b24 - k2a24’ a35 b25 - k2a25,
)
a5 P33 = 853 = O3fz Dy = Ay 7 OzBzg by = 855 = C3Ag.

--------

......
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He. S. Wall succeeded in egtablishing polygonal bounds for the
roots of a polynomial by means of the following theorem::
T (xii):: Let P(z) be a polynomial of degree n having a test-fraction

written in the foom

Q(zg c
P(z) © - 2 (9.5)

b, + 2 = dl
1 b, +z =

2 ‘. 2

* . n"'l
) b + 2z
n
ie
Let Sj(e) = Im(dje‘ ) , @ (@) =1 (bje 8,

and let Y(®) be any number such that

SHOR T@)20 , §=1,2, 3, eeee g0
25,%(0)¢ [B,(&) + v@)] [Bo) + 1(0)]
1§ 2] B@ + ¥ @By @ +16@) . 5223 e yn-,

Then all roots of P(z) are contaimed in the rectangle

yEU®) ,  xe¥( )

y2 -Y(w) , x? =¥( 1211 )

In 1945 (see [10]) Wall proved the following theorem for a
polynomial with real coefficients.

T (xiii): Let P(z) = z" + alzn-l + aazn"2 + «ee + @ be a polynomial

with real coefficients, and let

- n-l n-3 n=-5
Q(z) = 8,2 + agz + agz + eeo be the alternant

of P(z). Then all the zeros of P(z) have negative real parts iff
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(2) = L (9.6)

where the coeffieients C19 Coy eeee 4 C are all positive.
Also

T (xiv): In the expansion (9.6) let k of the coefficients cj be

negative and the remaining n - k be positive. Then k of the zeros of

P(z) have positive real parts, and n - k have negative real parts.

> 3

A 3z1+ - 927 = 2’7z2 - 32z = 30

Example: Let P(z)

Then Q(z) -3z4 - 2‘7z2 - 30,

The expansion (9.6) may be obtained by dividing P(z) by Q(z) until a
remainder is obtained which is of lower degree tham Q(z); then §(z) is
divided by this remainder, and so on. (Scheme (9.4) may also be used

of course.) If we write only the coéfficients, we have:
-1/3
-3 +0 =27 +0 =30 1l -3 <9 =27 =32 =30

1l +0 +9 + 0 +10
=318 =27 =42 =30

=3 +0 =27 ¥ 0 =30 1/6
18+0-h2+0 | -3 +0 =27 +0 =30
-3 +0 - 7 +0
9/10 | -20 +0 =30
Cont. =20 +0 =30 [ =18 +0 -0Z +0
=18 +0 =27 L/3
=15 +0 ~20 +0 =30
=20 40 1/2
-0 =15

-15
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Hence cl=-1/3’ c2=1/69 c3=9/10, cL'_=L|'/39 °5=l/2.

Thus, there is one zero in the right half-plane and four in the left-

half plane.
In 1946 E. Frank [11] proved the following two analogous theorems

for the polynomial with complex coefficients:

T (xv):: Let P(z) = z° + alzn-l

n) O with complex coefficients aj = pj + iqj s J =1y 2y ees y 0.

+ see + an be a polynomial of degree

-1 2 n-3

+ iqazn- + 52 + iq#zn-q + eees be the alternant

of P(z). All roots of P(2) have negative real parts iff P(z) has a

Let Q(z) = plzn

testefraction of the form
Q(z) - dO
P(z d1

zZ + qo + b1 + 3

z + b, + ..
. dn"'l

+
z + b
n

in which dO ’ d1 g oo dn- are real and positive, and b1 ’ b2, vee o B

1 n
are pure imaginary or zero.

T (xvi)

J

negative and n - k are positive, then k of the roots of P(z) have

If P(z) has a test-fraction (9.3) in which K of the ¢ are

positive real parts, and n = k have negative real parts.

Approximate computation of the roots of a polynomial

We shall now give a method, based upén this last theorem, for
- determining the approximate location of the roots of a polynomial. Let

_.n v n-1 ' n-2 .
P(z) = 2= + (py +iqy) 2~ + (p, +dq,) 27~ + eus +p +iq

be the given polynomial. Put Ph(z) = P(z + h) .
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Let Qh(z) be the alternant of Eh(z) , and let

cj(h) = a (n) / aj’ j (h) y 3 =1, 2y 3y sese o 0 &

§=1" j=1
(cfé (9.4) ) be the coefficients of z in the test-fraction (9.3) for
Ph(z). By the theorem above, if k = k(h) of the coefficients cj(h)
are positive for a given real value of h, then Ph(z) has just k(h)
roots in the half-plane ReQz)<<3, so that P(z) has just k(h) roots

in the halffplane Re(z)< h .

In general, the method for determining the roots of P(z) con-
sists in varying h in such a way that 2, n(h)-vO and k(h) changes by
one unit. This means that the last remainder in the division process
used in forming the test-fraction Ph(z), which is simply the Efolidean
algorithm for the greatest common divisor of Ph(z) - Qh(z) and Qh(z),
approaches zero. If zo(h) is the root of the next to the last remain-
der, a1, n_l(h) z + -1, n(h), then h + zo(h) approaches a root of
P(z) as a, n(h) approéches zero., If tw? or more roots ofP(z) have a
common real part, the process must be suitably modified. (cf. Example
2, following.)

We shall now show how the computation can be so arranged that
the roots of P(z) can be effectively determined by this method. Hqikcfsa
method will be applied for the formation of the polynomials Ph(z).

The Euclidean algorithm can be reduced to the computation in table (9.k4).
Example 1: Computation of the roots of | |
P(z) = z3 + (1 + ‘6i)z2 - (13- 5i)z - (7 + 10i). First compute

the test-fraction for P(z) by means of (9.4):
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8 =1y 8y = 6i, 89, = -13, 293 = -10i
“ep = b kp=cliay sl 8y =5 a7
511 =i, b, =6 by, = -10i,
o, = 1, -k, =21, ay, = -1, &, = -3,
by, = 28y by = =7,
-c3 = -1, -k3 ==3i, a33 = -1,
b33 = =31 ,
Since cl) 0, c2< o, c3) 0, there are two roots in Re(z)< O and one in

Re(z)> 0 (T.(xvi) )¢ By T (xii) we find the roots of P(z) are con-
tained in the rectangle
y¢-1, x%2, y2-3 x2-2, (z = x + iy)

Now compute the polynomial Pl(z) = P(z + 1) by means of Horner's

scheme:.

1 1+6i =13+51 ~7=101 k=1
1 2+61i -11+11i J

1 2+6i -11+11i =18+ i
1 2461

1 3461 - 8+17i
1

1 L+6i

Hence, P, (z) = 20+ (b + 61)z° + (=8 + 17i)z + (=18 + &)

Now from the table (9.4) for Pl(z):

8ng = 1 8y = 6i a5, = -8 893 = 1
1
¢y = F : 8q9 = b a), = 174 a5 = -18
bll = 1l.751 b12 = =35 bl3 = i
. . 4 8y, = 349375 853 = 8.8750i
2 3.9375 _ . _
. b22 = 7-984131 . b23 - -l8ooo
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€3 = = %635353 233 = =+003985

Thus, P(z) has one root in the half-plane Re(z)> 1, and

333(1) = -00039850

We now form

Po(z) = 27 + (7 + 61)2° + (5 + 291)z + (=21 + 2hi)
and find that cl(a), °2(2) and c3(2) are all positive, so that all
the roots of P(z) are in the half-plane Re(z)<,2. There is one root
in the strip 1< R (2)< 2. We find that a,5(2) = 8.98. Since we had
a33(1) s =,003985, it would appear that this root has real part very

nearly equal to 1, If we assume that a 3(h)- varies linearly with h,

3
we find, by interpolation, that we should have a33(1.000#) =0, In
the light of this information, we now form
P(z + 1.001) = z° + (4,003 + 6i)2° + (=7.991997 + 17.012i)z

4 (-18.00799599§ + 1.0170061)
and construct table (9.4) for this polynomial, We find
a33(1.001) = -.000076233 and that

a22(1.001)z + a23(1.001) = 3.944596397z + 8.8904426667i

On setting the latter equal to zero we find for the imaginary
part of the root the approximate value -2.254i. We thus have as an
approximate value of the root 1.001 =2.254i., Now we can apply one
of the iterative algorithms discussed above, or::

P(d + 1,001 - 2.2541) = d&° + (4,003 - .76211)d° + (3.814455- 1,0335241)d
- (.,000253547 + 0006456981)
If we neglect the terms in d3 and da, and set the linear part

equal to zero, we obtain the correction
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d = .0000192 + 00017451

Then d + 1.001 - 2.254i = 1.,0010192 - 2.2538255i is the value of the
root. This is actually correct to the number of places given, since -
it was found by application of the Newton-Raphson algorithm that the
root is 1.0010192259 - 2.2538255167i. (the last digits 9 and 7 are
in doubt.) For the other two roots of P(z) we find the values

- 1.520324 - 1.39987916i and

- 480695 - 2.3462953i correct to the number of places
given. As a check, we find the sum and the product of these values
of the roots are -1-6i and 7+10i respectively, correct to six
decimal places.
Example 2: P(z) = 2”0 + 2z + 20,

This polynomial has a pair of conjugate imaginary roots. Since
the coefficient of z2 is zero, the test-fraction does not exist. This
is of little concern, since the test-ffaction exists for Ph(z) = P(z + h)
when h is near the real parts of the roots. We have by ¥ (xvi)
applied to Pl(z) and PZ(Z)' that the imaginary roots are ‘in the strip
1<R (z)< 2.

In the following table, the numbers m:j are the next to the last

remainders obtained in applying the Euclidean algorithm to the polynomials

Ph(z) - Qh(z) and Qh(z).



0 2 20
1 1 3
1 3 23
1 2
2 5
1
3
1 L 9 J
4 9 32
1 5
5 14
1
6
-.8 4,16 -7.872
5.8 9.84| 2k, 128
-.8 =352
[ 6.32
-.8
3.6
2 .37 669
3.7 6.69 24,797
.1 .38
3.8 - 7.07
.1
3.9 :
.07 -.2681  -.k76133|
3.83 6.8019 | 24.320867
-.07 -.2632
3.76 6.5387
_.07
3.69
.01 .037 065757
3.7 6.5757 2k, 386624
.01 .0371

h =1,

=

.01
h = 1,25

1.2

1.3

1.23

l.24

116

= 071

= -0041
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1 3 6.6128
.01
1 3,72
-.006 -.022284  -.039543096 | & =-.og6 m - -.0084
1 3,714 6.590516 | 2k.347080904 ) 123k =t
-.006 -.022248
1 3,708 | 6.568268
-.006
1 3,702
001 .003703  .00657R971 E‘:‘%%%B? . - ook
1 3.705  6.571971 | ok.353652875 1.235
001 00370k 3.705k° + 2k.354 = 0,
1 3,704 64575675 _ k = +2.5641
.001
1 34705

P(d + 1,235 + 2,564 i) = d° + (3.705 + 7.692 1)d® - (13.146613
- 18.99924 i)d - (.003574805 - .00LOLB5561).

The real part of the imaginary roots has the value h = 1.235 correct

to three decimal places. The imaginary parts are :2.5641, as indicated
above. On equating to zero the linear part of P(d + 1.235 + 2.56k4 i)
we obtain the correction 4 = -.,000237 + .000247i. Thus, the imaginary
roots are approximately equal to 1.234773 + 2.564247i. Since the sum
of the roots is equal to zero, the real root must be =2.469546, One
may readily verify (by Newton's method or otherwise; that this is
correct to six decimal places.

Note: (1) If this method for determiping the roots of a polynomial

is to serve only as a means for finding an initial approximation Z,
for the itera}iVe use of an algorithm of the types discussed in

previous chapters, this method is terminated as soon as possible. Its

application is usually quite laborious in comparison with the applica-
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tion of the Newton algorithm or one of its modifications - especially
if a computing machine is used.

(2) This method of computafion of the roots is closely related
to the method proposed by F. L. Hitchcock[}zl.

The considerations discussed in A and also D, led Cauchy
[}. L. Cauchy: Calcul des indices des fonctions; Journal de l'Bcole
Polytecghnique, Vol. 15, 1837, pp. 176 - 229 (OEvres (2), Vol. 1,
ppe 416 - #662} to introduce the notion of the "index" of a rational
fraction. He also developed formulas for the computation of the index,
and introduced the method to compute the index by means of Sturm's
series. (Kronecher extended the notion of index to systems of functioms).

We may mote here the important Cauchy Index Theorem as presented
by Hurwitz lﬁber die Bedingungm@nter weléhen eine Gleichung nur Wurzeln
mit negativen reelen Theilen besitz; Math. Amn. 46 (1895), 273 - 284; -
Math, Werke 2, 533 = 545;1

n-1

T (xvii): Let f(2) = a. + 8.2 + eee + 8 .2 + z° = Po(x) + Pl(x)

0 1 n-1
where Po(x) and Pl(x) are real polynomials with Pl(x)e*o. As the
point x moves on the real axis from -of to + o4 4, let m be the number
of real zeros of Po(x) at which g(x) = Po(x)//Pl(x) changes from - to
+, and k the number of real zeros of Po(x) at which g(x) changes from
+ to -. If f(z) has no real zeros, p zeros in the upper half-plane
and q zeros in the lower half-piané,>then

p=/2ar-ml, a-@2aln-x-w\
(For furtﬁer information on geometric methods to determine domains

containing no zeros or at least one zero, or sometimes all zeros of a
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given polynomial, we refer to Walsh {?4& and Marden &?3!;)
On the basis of Cauchy's work E. J. Reuth ‘}3& derived the

following rule for testing a polynomial

n n-1 .
P(z) = agz + &z * e+ , 8,70 with a, real.
Consider the afray
a, a, a,
a a

8182 - aoaé , a1a4 - a0&5
1 "1

where the third row is obtained from the first two by cross-multipli-

cation. The next row is obtained from the second and third by the

~ same prodess. Thus the first element in the fourth row is

as klalaé = & 2\>- (a1a4 - aoa5)
!
8.18.2 - aoa}

!

Each row has one fewer elements than the preceding row. Then the

number of variations in signs in the sequence making up the first
column of the array is equal to the number of zeros of P(z) having(
positive real pérts. This was shown by Wall to be essentially T (xiv).
(The method of ﬁahfh fails however in case division by zero is involved

in his algorithm.)



1

0.0000016

0.0000016

5 3
- 0. 75 - 3. 1875
4.25 - 0.1875
-0.75 - 2.625
3.50 | L 2.8125
- 0.75 - 2.0625
2:75 - 4.8750
- 0.75 - 1.5
2 - 6.375
- 0.75 - 0.9375
1.25 - 7.3125
-0 .75 - 0.375
0.5 - 7.6875
-0.75 0.0003286
- 0.25
0.0000227 0.0003291
0.0000227 0.0003291
0.0000227 0.0003291
33 L

2 4 2 6 4
0.140625 - 1.6054688 -1.7958985 - 0.1530761 :_4138512521
2.140625 2.3945312  0.2044015 5.8469239 - 0.3851929| - 0.1905556 vy=
2.409375 - 3.4875000  0.5947266 - 0.5991211 t - 0.3851929 | 0. 0734008
4.250000 - 0.7929688 0.7988281 ('5.2478028)
3.656250 - 5.9296875  5.0419922 0 0 0 —
7.90625 - 6.7226563  5.8408203 v =
4.78125 ~ 9.515625 1 d 5.8408203 1 - 0.3537244 ||0, (674043
12.68750 - 16. 2382813 | v =
5.484375 0.0674043 1 4. 7459903 1 - 0.3636303 0. 5692919
18.1718750 v =
0.0048014 0.0692919 1 4. 8028952 1 - 0.3624325 || e
V=
0.0047619 0.0690065 1 4-8071584 t - 0.3623154 0. 0690414
v =
0. 0047667 0 . 0690414 . k 4.8038744 1 - 0.3622946 ||0. 0690374
| -
0. 0047662 0.0690374 1 | 4 8038765 | 1 - 0.3622970 | 0. 8690378
. Vo©
0.0047662 0. 0690374 { 4.8038765 1 - 0. 3622970 0.823:378
Scheme for finding a root of the equation
x4 5 x6+ 3% 42 X‘.LT4X3+ 23" téx+4=0
by means of an iterative algorithm of the k-th order : X, =%+ Vie - ¥g=- 0.75 .
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Que.: Find the real root of

f(x)=x7+ 5x6+ 3x5+ 2x4+4x3+ 2x2+ 6x+ 4 =0.
lying between x=~ 1 and x=- 0.5
[f(-1)=-1 , £{ -0.5) =+ 1.1016 ]
Choose Xy =" 0.75. |

According to T. 20 the Newton algorithm will be the most
expedient in this case. Fot the sake of a perceptible representation

however, we will apply the scheme given in Fig.4. Then we obtain

Fig. 6 and:
2nd. order algorithm (Newton): xiz)z - 0.6765992
- 3rd. " " : x'1(3)= - 0.6825957
4th. n oo : x1(4)= - 0. 6807081
Sth. non | : xi(s)z - 0. 6809935
6th. ™ " : -x1(6)= - 0. 6809586
Tth, " | " : xf7)= - 0.6809626
8th. 4 | : .x'1(8)= - 0. 6809622

After j=8 no further changes in the values of the v appear

J
up to seven decimal places. After two applications of the Newton

2
algorithm the value xé )

()
1

)

2
= - 0.6809622 (xé ) 0.15
==~ 0.6765992 ) was found. This is exactly the same as that

found after one application of the 8th. order algorithm.



We have ¢ .6809622)=4.4 .10°°
8 -
lf(xi( ))] < 5.1078
Hence, in the domain D: - 0.681 < x < - 0. 680
| f1(x) | > 5.8 =m.
Therefore
8
| f(xi( ) | 5 -8 -8
—_— < . 10 < 1. =
m = 58 1 10 ¢
Hence Y = -0. 68096220 + 1078

In the domain D we have the following upper bounds :

M
M =3 s =12 2 16, M
2. o3y * 4! =16, 5 =8
(% < M , xeD ]

J
-8
From this we obtain after T.24 (with ¢ =10 ).

C,=2.61 ]xn - X | < 0.62[1.62 .10'8’]3

-8 4

C,=23.1 = - ¥ | <o0.36[2.85 .10 ]

C_=493.9 [x - ‘g | < o.éz [4.72 L1078 ]5
5 n =

and after T.3:

: -8 .2

C, =0.5473 lx ~ T | < 1.93[0.52 .10 "]
n =

where x, =- 0.68096220.

122.
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Summary.

It is the hope of the author that the preceding pages might be
of some help to the engineer and the physicist who are interested
in the practical application of iterative algorithms for the solution
of analytic equations. However , since he would like to. think: of
himself more as a ""pure analyst' than a practical: "numerical |
analyst' ,the author hopes above all that this paper might prove

to be of some pure theoretical interest as well.
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