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Abstract 

The great interest of the main metal and mineral industry stakeholders for understanding the behavior 

of metal prices and their dynamics with the rest of the human activity has resulted in the development 

and application of a wide variety of models. Nevertheless, the most popular methods for price 

modeling and forecasting are not capable of fully capture the empirical evidence about cyclical 

behavior (especially in the long-term), the potential connection with long economic cycles, and 

factors of increasing interest such as mass psychology.  

Given this scenario, two techniques, little explored by the mineral economics, are studied and applied. 

The main objective is to evaluate whether they can address some of the drawbacks of classical 

methods and improve the understanding and modeling of the metallic commodities price behavior.  

The first technique is the Band-Pass Filter, which proved to be useful in extracting cyclical 

components of different frequencies and expanding the means for the study of long-term price, co-

movement, substitution effect, and the dynamic with explanatory variables in different cyclical 

components. The second is the Elliott Wave Principle, a technique vastly used by technical analysts 

and built on the belief that market prices are a reflection of participants’ mass psychology, which did 

not demonstrate to be a strong approach to model metal commodity prices. 
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Résumé 

Le grand intérêt manifesté par les principaux acteurs de l'industrie des métaux et des minéraux pour 

comprendre le comportement des prix des métaux et leur dynamique avec le reste de l'activité 

humaine a conduit à la mise au point et à l'application d'une grande variété de modèles. Néanmoins, 

les méthodes les plus populaires de modélisation et de prévision des prix ne permettent pas de saisir 

pleinement les preuves empiriques concernant le comportement cyclique (en particulier à long terme), 

le lien potentiel avec de longs cycles économiques et les facteurs d'intérêt croissant tels que la 

psychologie de masse. 

Dans ce scénario, deux techniques peu explorées par l’économie des minéraux sont étudiées et 

appliquées. L’objectif principal est d’évaluer s’ils peuvent résoudre certains des inconvénients des 

méthodes classiques et améliorer la compréhension et la modélisation du comportement des prix des 

produits métalliques. 

La première technique est le filtre passe-bande, qui s’est avéré utile pour extraire des composantes 

cycliques de fréquences différentes et pour étendre les moyens d’étude du prix à long terme, du 

mouvement simultané, de l’effet de substitution et de la dynamique avec variables explicatives dans 

différentes composantes cycliques. Le second est le Elliott Wave Principle, une technique largement 

utilisée par les analystes techniques et fondée sur la conviction que les prix du marché reflètent la 

psychologie de masse des participants, ce qui n’a pas démontré une approche solide pour modéliser 

les prix des produits métalliques. 
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1. Introduction 

1.1. Problem Statement 

The understanding of the cyclical behavior of metal commodities prices has historically attracted 

much interest from a wide range of economic agents linked to the mineral and metal industries. The 

reason for this is the important economic implications that price fluctuations have on the mining 

business, local economies and other stakeholders such as governments. 

Given the long-term characteristics of this business, most of the economic agents involved in the 

metal and mineral industries are more interested in long-term price outlooks (years), rather than in 

the near future. However, there are important shortcomings in the current models typically used for 

the study of the behavior of the price of metals and their prediction. These are especially related to a 

lack of recognition of the empirical cyclicality in metal commodity prices. On the other hand, human 

and mass psychology is a factor that is receiving increasing interest as a causal factor, as is considered 

to affect several components of the supply and demand dynamics. 

In this context, two techniques little studied by the mineral economics are known for addressing some 

of the shortcomings identified in the models commonly used, in the sense that they allow for the study 

of cyclical components of longer-term and incorporates human psychology as a fundamental factor 

to explain the fluctuations in prices. These are the Band-Pass Filter (BPF) and the Elliott Wave 

Principle (EWP). 

1.2. Research Objectives 

The main purpose of this research is to study and apply two techniques, scarcely used by the mineral 

economics, to identify those aspects that may help in the modeling and forecasting of metal 

commodity prices, as well as expand the current understanding of their cyclical behavior. These 

techniques are the Band-Pass Filter (BPF) and the Elliott Wave Principle (EWP).  
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The BPF is a tool developed and popularized in recent decades by econometricians interested in 

studying the cyclical components of macroeconomic time series. One of the benefits of the BPF is 

that allows for isolating cyclical components of particular interest, for instance, short-, medium- and 

long-term cycles. However, for its rational implementation, a crucial input is the identification of the 

cyclical components to be studied a priori. Therefore, it is fundamentally a deep understanding of the 

cyclicity in different frequencies observed in the prices of metals and the economy in general. 

The EWP is one of the most popular tools used by technical analysts to define changes in trends, 

description of cycles and predict the prices of all kind of instrument traded under the scheme of a 

competitive market. The method is based on the belief that the fluctuations in markets follow 

recognizable and repetitive patterns caused by changes in mass psychology. 

These techniques are popular for the study of cyclical components observed empirically in the prices 

of financial assets and macroeconomic time series, while EWP is also vastly used as forecasting tool 

by technical analysts. Furthermore, they address shortcomings identified in the method commonly 

used for the modeling of metal and mineral prices. 

1.3. Originality and Success 

The study of these tools for the mineral economy has been very limited, and according to the author's 

knowledge, there is no consensus on whether the mineral economics can benefit from these tools to 

improve its understanding of the cyclicality of real metals prices and forecasts of short-, medium- and 

long-term behaviors. 

Regarding the BPF, its use to investigate the cyclical components of metal prices has recently taken 

more attention in the academic circle. This increasing interest was caused by the greater interest in 

understanding the long-term cyclicality during the recent period of high metal commodity prices so-

called the "super-cycle". Although recent research using BPF are indicative of the benefits of this tool 

for the study of cycles in metal prices, there is still no consensus regarding the cyclical components 
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of interest and their potential link with economic activity cycles. In this research, the cyclical 

components are examined, incorporating the most recent knowledge of the theory of long economic 

cycles, resulting in an unprecedented cyclical decomposition in the literature. 

In the case of EWP, despite its long history and vast implementation by technical analysts in trading, 

including base metals and precious metals, the formal academic study of EWP is very scarce. While 

the mineral economics, as well as other fields, maintains a skeptical view of the Technical Analysis, 

there is no much literature identifying these weaknesses and/or whether it can help in understanding 

the cyclical characteristic of metal prices. Therefore, this research makes an important contribution 

to the formal evaluation of this method.  

Regarding the BPF evaluation, the following findings are highlighted: 

• Using an unpublished cyclical decomposition, it was possible to extract cyclic components 

of short-, medium- and long-term correlated with the recent findings in metal prices cyclicity. 

• A long-term cyclical component of 48-60 years was found, not negligible and highly 

correlated with those of the long economic cycle theory. 

• The tool allowed to corroborate and complement some classical hypothesis of the mineral 

economics with respect to the trend and co-movement of metal prices. 

• The BFP, and particularly the Asymmetrical Christiano-Fitzgerald Band-Pass Filter, is a 

technique that can improve the understanding of the cyclical components. Further research is 

required to incorporate its benefits into forecasting. 

Regarding the EWP evaluation, the following findings are highlighted: 

• The technique has a weak conceptual framework for its applicability in the metal 

commodities markets. 

• The subjectivity of technical analysts cannot be fully removed. 
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• The fluctuations and cycles observed in the prices of metals commodities would not be 

subject to the dynamics suggested by EWP. 

1.4. Social Impact and Economic Benefits 

It is striking that despite the cyclical characteristics of the mining business, backed by a large body 

of empirical support, there is no convincing evidence of a countercyclical behavior of the business 

agents as a whole. A clear example of the above is the fact that the techniques commonly used for 

price modeling and forecasting, whether to be used for mine planning processes, project evaluation 

or something else, do not properly integrate this behavior. 

This research shows that, on one hand, the BPF is a tool that can substantially improve the 

understanding of price cyclicality. Its correct implementation can provide support in investment 

timing, studying the dynamics between metals (co-movement and substitution effect) and dynamics 

with macroeconomic variables. Moreover, there is potential to be used as a complementary input for 

the improvement of price forecasts. On the other hand, there is evidence to suggest that EWP alone 

is a limited tool for metals prices cycles modeling and forecasting. 

1.5. Thesis Organization 

The thesis is divided into six chapters as follows: 

Chapter 1 introduces the problem and the research objectives, and briefly describes the main findings 

and benefits. 

Chapter 2 provides a detailed literature review about the understanding of the cyclical behavior in 

metal commodity prices, the recent findings of their long-term behavior, and the most common 

techniques used for the cycles modeling and forecasting of metals prices. 
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Chapter 3 describes the methodology applied in the research. Given that the two techniques in 

evaluation belong to different conceptual frameworks, the methodologies for the application of these 

tools differ and are carefully explained in Section 4.3 for the BPF and Section 5.3 for the EWP.  

Chapter 4 is devoted to the study and application of the BPF. 

Chapter 5 is devoted to the study and application of the EWP.  

Chapter 6 concludes the thesis by indicating the benefits, or weaknesses, of each tool and how they 

can improve the mineral economics understanding of the metal price cycles. Furthermore, it provides 

guidance for further research in this field. 
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2. Literature Review 

2.1. The Importance of Understanding the Cycles in Metal Commodity Prices 

In mineral economics, the hypothesis of cycles1 in commodity prices has been extensively 

documented, with a large body of empirical evidence suggesting that metal commodity prices behave 

cyclically. This behavior has been commonly linked to demand shocks, global economic activity, and 

the time lag between supply and demand decisions (Heap, 2005; Radetzki, 2006; Roberts, 2009; 

Humphreys, 2011; Rossen, 2015; Tilton et al., 2011; Tilton and Guzmán, 2016; Marañon and Kumral, 

2018). In other words, although there is no one unified hypothesis that explains cycles in metal and 

mineral prices, they can be understood as the reflection of a constant process of disturbance and 

restoration of the equilibrium in the supply and demand.  

The reason why research groups, business analyst and the academia has been long devoted to the 

understanding of this behavior is the large economic impact on the mining business. In this endeavor, 

the long-term behaviors of metals prices are of particular interest, given the distinctive features of the 

mineral and metal industry:  

• It is a business that has very long-term lead times to provide value creation: 12-15 years from 

discoveries to production, 3-7 years from project approval to production, 20-40 years of 

operation, and 15-50 years for total closure (Gandhi and Sarkar, 2016; Haldar, 2018).  

                                                      
1 It is important to mention that for mineral economist and macroeconomist, the concept of cycle is 

far from its precise definition (i.e., a series of events that are repeated regularly in the same order). 

Instead, they are understood as recurrent patterns, which their time and amplitudes could largely 

differ. 
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• It requires massive investments while having a long period of negative cash flows. For 

instance, in the current copper project portfolio, an average copper project (about 150 kt 

Cu/year) requires about MUS$ 2,500 as initial investment (Plusmining, 2018). 

• The timing of the major decisions, such as the approval of a project, can have a major impact 

on the value of the business (Auger and Guzmán, 2010).   

• Its financial performance is closely related to the behavior of prices. 

• In addition to the evident high financial risk, it is also subject to a wide range of operational 

uncertainties: geology (grade distribution, grade continuities, hardness, etc.), geomechanics 

(rock burst, failures, etc.), metallurgy (recovery, processing times, etc.), assets management 

(equipment availability and productivity, infrastructure failures, availability of inputs, etc.), 

organizational (strikes). Therefore, it is a sector keen to quantified the uncertainties and treat 

them. 

The vast economic implications also extend to most of the sector’s stakeholders. One of major 

concern is the impact on governments finance. While some mineral-rich economies have developed 

means to cope with the variation in their income derived from the changes in metal and mineral prices, 

some others have largely struggled in this regard, leading to problems such as social unrest, resources 

nationalism, corruption, and Dutch diseases. Furthermore, and from a local economic point of view, 

the sector generates jobs, develops infrastructure, support the development of the tertiary economic 

sector, promote the technological developments, and so on and so forth (Ayres and van den Bergh, 

2005; Gordon and Tilton, 2008; Darling, 2011). 

2.2. Recent Findings of Long Cycles in Metals Prices  

In the last decade, the unfolding of a quite unusual cycle resulted in a fruitful period for the study of 

long cycles. 
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Among the most recent findings, Cuddington and Jerrett (2008) and Jerrett and Cuddington (2008) 

concluded that there would be evidence in favor of long metal price cycles of 20-70 years. Roberts 

(2009) introduced the idea that cycles are not symmetrical, in the sense that a contraction period is 

typically shorter than the expansions. Subsequently, the work of Jack (2013) delves into this line 

establishing the existence of long-run trends, medium-run cycles, and short-run boom-bust episodes. 

The work of Erten and Ocampo (2012) allowed them to identify long cycles of 30-40 years in the real 

prices of commodities for the period 1865-2009. Finally, Rossen (2015) provided evidence that 

corroborates cycles of approximately 28-30 years between 1910 and 1996. 

Although recent evidence suggests long cycles of up to 70 years, a less addressed aspect is the 

eventual connection of these long cycles with the business cycles. In economics, there are several 

lines of research that study the cyclicity of businesses for different horizons, their dynamics, and 

driving forces. For instance, the classical business cycles (2-8 years), Kitchin cycles (3-5 years), 

Juglar cycles (7-11 years), the Kuznets swings (15-25 years), the “medium-term” cycles lastly 

popularized of 30 to 40 years, and long economic cycles or Kondratiev waves (45-60 years). In 

Chapter 4, it is connected the long cycles observed in metal prices with those of the long economic 

cycle theory. 

2.3. Techniques for the Study of Metals Prices Dynamics 

Section 2.1 summarized the reasons that explain the interest in understanding the price behavior in 

metal and mineral industries. With this hope, an important amount of theories and techniques have 

been used, with different degrees of success and acceptance. Some of them more focus on modeling 

cyclical components and longer-term trends, while others were mostly interested in short-term 

forecasting. 

Section 2.3 introduces a brief review of the techniques that are commonly used in this task, as well 

as some other methods that are slowly gaining more attention. Depending on the theoretical 
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framework, these techniques can be classified in the following categories: fundamental analysis, 

technical analysis, econometric models, time series analysis, stochastic models, and specific 

algorithms. As it is seen from Sections 2.3.1-6, all these techniques are not exempt from criticism, 

being particularly interesting the fact that cyclical components are not commonly incorporated. 

2.3.1. Fundamental Analysis  

This analysis is rooted in the classical economic view that metal and mineral commodities prices are 

generally defined by the supply and demand. It turns out that supply and demand are just the 

reflections of a vast amount of information and variables.  

For instance, demand is not only a function of the economic activities of relevant consumers but also 

considers factors such as the prices of substitutes and complements materials, technological changes, 

government activity, changes in consumption patterns and the activity of investors and speculators.  

On the other hand, supply is a larger function of factors such as production costs, productivity, inputs 

prices, government decision, availability of financial and geological resources, market structure, 

disruptions, as well as the activity of investors (Darling, 2011; Humphreys, 2011; Tilton and Guzmán, 

2016; Kumral, 2018). Note that authors such, as Simon (1959), have long ago alleged that human 

psychology must be a factor of consideration since may have major implications in systems subject 

to equilibrium dynamics through time. 

It is important to mention that while some changes in this factor may perturb the short-term 

equilibrium, e.g. disruptions, others are changes that slowly unfold, e.g. technological improvements. 

Hence, the relevance of these factors varies according to the time horizon of interest. 

Therefore, although the objective of the fundamental analysis is to understand how the said factors 

weight in the future supply-demand balance dynamic, this turns out to be a quite complex task 

considering the massive amount of information that it is needed to be incorporated. Moreover, it 

requires a wide range of expertise and professionals. This approach, which pays more attention to 
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long-term perspectives, in practice is performed by entities who have the economic means such as 

mineral economics research groups, banks’ departments, as well as government institutions. 

2.3.2. Technical Analysis  

As metals and minerals are becoming more used as financial instruments by investors and speculators, 

some of the techniques intensively used for them have expanded the means for the study of the metal 

prices. The Technical analysis is one of them. This field groups a wide variety of techniques derived 

from different theories and with different purposes. EWP, Fibonacci analysis (FA), Arc analysis, 

oscillators, Aroon indicator, and on-balance volume are some of the most popular. In spite of a large 

number of techniques and tools in this field, most of them are based on the belief that prices follow 

identifiable patterns. Thus, an extremely rigorous analysis of the charts allows analysists to make a 

prediction on future prices, cycles, and trend. 

Despite their wide used, especially in trading activities, several academic fields have shown strong 

skepticism regarding their usefulness, alleging that they are based on the subjectivity of the analysts 

and does not integrate factors that have proven to have causality power (Mandelbrot and Hudson, 

2004; Humphreys, 2011). On top of that, the assumed short-term power of these tools (days, weeks 

and few months) make them of less importance for the mineral economics (Humphreys, 2011). 

2.3.3. Econometric Models 

Given the tight relationship between metal prices and global economic dynamics, econometric models 

have been vastly used for the understanding of prices (Watkins, 2010; Erten and Ocampo, 2012; 

Gargano and Timmermann, 2014; Tapia-Cortez et al., 2018). These are model aiming to mathematical 

capture past dynamics (correlation, co-integration, causality, etc.) in a large number of variables. Co-

integration tests, Causality test, Structural Vector Auto Regression (SVAR), Vector Auto Regression 

(VAR) and Vector Error Correction (VEC) are typical econometric techniques used to understand the 

dynamics of complex systems.  
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However, a typical critic of these techniques emerges from the idea that past information (or part of 

it) is not useful since reality never repeats with the same characteristics. Nevertheless, much research 

using these techniques have demonstrated empirical close cyclical and temporal relationships 

between metal prices and some economic variables, such as the exchange rate of metal producers 

(Ciudad, 2005; Wu, 2013; Chipili, 2015; Haque et al., 2015). Other lines of critics relate to the deep 

technical knowledge needed, the large database required, their condition of static (Tapia-Cortez, 

2018), and their little power in estimating long-term trends. 

2.3.4. Time Series Analysis 

Time series techniques can be understood as a convenient means to study prices behaviors in the 

sense that is substantially based only on the information of the time series and does not require larger 

models. Nevertheless, their simplicity is partially explained by the scope of interest, which is mainly 

forecasting, rather than the study of the dynamics or causalities.  Models such as Autoregressive (AR), 

Moving Average (MA), Autoregressive Moving Average (ARMA), Autoregressive Integrated 

Moving Average (ARIMA), Autoregressive Conditional Heteroscedastic (ARCH) and its generalized 

version (GARCH) are typically used in metals prices forecasting, especially in the financial sector.  

One of the critics against this model is the lack of representativeness of the empirical behavior of 

metal commodity prices. Lastly, wavelet-ARIMA model has been introduced to represent better the 

true behavior of some variables that present cyclical components, such as the metal prices or others 

(Kriechbaumer et al., 2014; Hasan et al., 2015).  

As these models are mostly based on the intertemporal relationship of a sequence of data, it also faces 

similar shortcomings than econometric models, i.e., the past may not be useful for understanding the 

future. Furthermore, as their interest is on the forecast with the more “parsimonious” model possible, 

they may lack real world representativity as they do not capture dynamics empirically proven (Dooley 

and Lenihan, 2005). 
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2.3.5. Stochastic Models 

As a consequence of the efficient markets hypothesis (EMH), the price of financial instruments, such 

as the stocks, should have a memoryless condition, thus expected to have random behavior (random 

walk hypothesis or RWH). This was the root for the development of stochastic models for the 

representation of such behavior, based on Monte Carlo simulations (Lee et al.; 2006). In practice, 

discrete models are typically addressed by Geometric Brownian Motion (GBM) and Stochastic 

Brownian Motion (SBM) models. The Mean Reversion (MR) model is an alternative which has been 

introduced to capture the empirical evidence of metal prices reverting to a long-term price. However, 

this is not more than the continuous-time version of the discrete autoregressive model of order one or 

AR(1).  

From the mineral economics point of view, the introduction of this perception has changed how it is 

understood the dynamic in metals commodity prices, and led to a long debate on whether metal prices 

have or not unit root (i.e., whether they are random or not). This debate is far from its end and there 

is an important body of literature supporting the RWH. It turns out that the tests developed, mostly 

be econometricians, for the study of the RWH often results in favor of this behavior in metal 

commodity prices traded in metal exchanges, feeding the debate (Wang and William, 2007; 

Andersson, 2007; Oglend and Asche, 2016). 

The most important critics to these methods relate to the belief that these models result in a lack of 

rationality since they depict behavior that is contradicting with the empirical evidence in favor of the 

supply-demand equilibrium dynamics.   

2.3.6. Algorithm Specifics 

As data science and artificial intelligence develop, there more and more methods that are catching the 

attention as means for the study of the dynamics of metal prices. As shown by Tapia-Cortez et al. 

(2018), two of them are the Chaos theory (CT) and machine learning (ML) techniques. These models 
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have demonstrated some advances in representing the temporal relationships of variables in the metal 

markets.  For instance, while CT could be applied in determining a system dynamic, ML tools have 

been implemented with forecasting purposes thanks to its capacity to find hidden patterns in a large 

database. 

Nevertheless, although they have been implemented with relative success, it turns out that these 

techniques can provide little clues regarding the dynamics behind. Indeed, Tapia-Cortez et al. (2018) 

concluded that at the current level of development and assessment of these techniques, neither of 

them are capable of properly represent the real metal commodity markets and identify the main 

drivers of these systems, becoming a major problem for the study of longer-term prices. 
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3. Methodology 

Two additional methods will be assessed as techniques for the study and modeling of metal prices 

and cycles. One could be categorized as a time series technique, while the other comes from the 

technical analysis. These are the BPF, evaluated in Chapter 4, and the EWP, evaluated in Chapter 

5. 

The reasons for their evaluation lay on what was shown in Section 2.3, which can be summarized as 

follows: 

• The assessment of metal commodity prices is highly important for metal industry 

stakeholders and no mean has proved to be fully satisfactory. 

• This assessment is especially important for the long-term, rather than the near future and the 

methods under evaluation may help in this regard. 

• There are recent improvements in the comprehension of long cycles in metal prices, but there 

is a lack of understanding of their connection with long business activity dynamics and other 

variables such as psychology. 

• There is a lack of incorporation of more realistic cyclical components into forecasting. 

Therefore, both methods under evaluation may, in principle, help to address some of the shortcomings 

of the classical methods, especially with respect to cyclicality, long-term behaviors and dynamics 

with related variables, as well as take into account human psychology.  

The overall methodology follows a straightforward process illustrated in Figure 3.1.  



28 

 

 
Figure 3.1: Overall Methodology for the Assessment of the BPF and EWP 

 

Given that the two techniques in evaluation belong to different conceptual frameworks, the 

methodologies for the application of these tools differ and are described in detail in their respective 

chapters. 
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4. Evaluation of the Band-Pass Filters  

4.1. Introduction 

The study of cycles in macroeconomic data has been a task that has gathered economist and 

econometrician several decades ago, aiming to characterized primarily the business cycles. As stated 

by Baxter and King (1999), this must start with the business cycle measurement. In this endeavor, a 

problem that researchers have faced is how to decompose the time series into the cyclical components 

and the trend. The techniques developed and widely used during most of the twentieth century has 

been largely discredited using two main arguments: i) they are arbitrary methods with the sole purpose 

of obtaining stationary cyclical component; ii) they do not allow researchers to take into account the 

empirical features of these cycles (such as the length). These drawbacks led business-cycle 

researchers to developed the band-pass filter within the time series analysis domain. 

In time series analysis, the spectral analysis theoretically establishes that a covariance-stationary time 

series can be approximated by a finite linear combination of trigonometric functions evaluated in 

increasing frequency components (Cramér and Leadbetter, 1967). This is known as the Fourier 

representation of a sequence. For this research, these frequency components can be understood as 

cycles of different frequencies and they will be called cyclical components. 

Using this theoretical framework, one could extract the desired frequency components through the 

ideal band-pass filter. For instance, if a macroeconomist is studying the Kuznets swings of extensions 

between 15 to 25 years, then the ideal band-pass filter would allow the researcher to decompose the 

time series under analysis in the “Kuznets cycle” components (cyclical component with periodicity 

of 15 to 25 years), the slow secular trend (trend component with, if any, periodicity of 25 or more 

years) and the irregular component (those with periodicity lower than 15 years) (see Equation 4.1). 

This is the reason for its name: it allows the research to pass through the time series fluctuations 

within a band of desired periodicities/frequencies.  
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𝑌𝑡 = 𝐼𝐶2−15 + 𝐶𝐶15−25 + 𝑇𝐶25 𝑜𝑟 𝑚𝑜𝑟𝑒 Eq. 4.1 

 

Nevertheless, the implementation of the ideal band pass-filter faces a major problem. For the ideal 

band-pass filter to be computed, it is required either infinite data, or the process under analysis to be 

a covariance-stationary process; hence, limiting its usefulness in empirical research. As a result of the 

above, in the last decades, econometricians have developed approximations to the ideal band-pass 

filter.  

4.2. Literature Review: The Band-Pass Filters and Long Cycles 

4.2.1. The Band-Pass Filter Problem  

4.2.1.1. Mathematical Review  

For the understanding of the band-pass filter, it is better to start by its basic units, the low-pass filter 

(LPF), since a band-pass filter is technically obtained as a combination of LPFs. Their application on 

a time series can be interpreted as the extraction of its trend component in the context of this research. 

Frequency filters are typically designed in the frequency-domain for simplicity, and the following 

review will be made using both time- and frequency-domains2. The Fourier transform and the inverse 

Fourier transform operators allow for mapping time-domain functions into their frequency-domain 

equivalent, and vice versa.  

The previous point can be summarized by Equation 4.2, which shows the trend (Tt) component of a 

time series yt, and Equation 4.3, which shows that yt is the sum of its trend and not trend (NTt) 

components. Note that F(L) in these equations denote the time-domain ideal low-pass filter. 

𝑇𝑡 = 𝐹(𝐿) ∗ 𝑦𝑡 Eq. 4.2 

 

𝑦𝑡 = 𝑇𝑡 + 𝑁𝑇𝑡 Eq. 4.3 

 

                                                      
2 For more details, see Chapter 6 of Hamilton, 1994 
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In the frequency domain, the ideal LPF, i.e., a filter that passes only frequencies lower than wL, has a 

frequency-domain function (the frequency-domain equivalent to F(L)) given by Equation 4.4. This 

filter only captures frequencies lower than wL, while leaving unaffected the components with 

frequencies equal or higher than wL. Note that the lowercase f refers to the filter in the frequency-

domain, while the uppercase F refers to the time-domain filter. This notation will be used through the 

mathematical review. 

𝑓(𝑤) = {
0 𝑖𝑓 𝑤𝐿 < |𝑤| ≤ 𝜋

1 𝑖𝑓 |𝑤| ≤ 𝑤𝐿
 

 

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝐹 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 (𝑤) = {
0 𝑖𝑓 𝑤𝐿 < |𝑤| ≤ 𝜋
1            𝑖𝑓 |𝑤| ≤ 𝑤

 

Eq. 4.4 

 

It turns out that the time-domain ideal LPF could be computed by Equation 4.5. 

𝐹(𝐿) = ∑ 𝐹ℎ ∗ 𝐿ℎ

∞

ℎ=−∞

 

 

𝑤𝑖𝑡ℎ ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑎𝑔/𝑙𝑒𝑎𝑑  

𝑎𝑛𝑑 𝐿 𝑡ℎ𝑒 𝑙𝑎𝑔/𝑙𝑒𝑎𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝐿ℎ = 𝑒𝑖𝑤ℎ, 𝑖 = √−1) 

Eq. 4.5 

 

Using the Fourier transform theorem, the weights (Fh) are obtained by the Fourier integral of the 

frequency-domain function as shown in Equation 4.6. 

𝐹ℎ =
1

2𝜋
 ∫ 𝑓(𝑤) ∗ 𝑒(𝑖𝑒ℎ)𝑑𝑤

𝜋

−𝜋

 
Eq. 4.6 

 

It follows that as f(w)=1 when |w|≤wL and 0 when |w|>wL, the solution to Equation 4.6 are the 

weights Fh, shown in Equations 4.7-8. 

𝐹0 =
𝑤𝐿

𝜋
 Eq. 4.7 

 

𝐹ℎ =
sin(ℎ𝑤)

ℎ𝜋
 𝑓𝑜𝑟 ℎ = 1, 2, … , ∞ 

Eq. 4.8 
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Note that F(L) requires an infinite time series to be solved. This set a major limitation since the interest 

in the research is to obtain a decomposition of the time series in the time-domain, a task that becomes 

impossible unless an infinite sequence of data is had. Nevertheless, there is a straightforward path for 

estimating Tt directly. For this, it is required to obtain the Fourier transform of yt, i.e., y*t, and calculate 

the inverse Fourier transform of the product f(w) y*t. The major drawback of this path is that yt is 

required to be covariance-stationary, assumption normally violated in macroeconomic and financial 

variables (Christiano and Fitzgerald, 2003). 

Therefore, econometric researchers have come up with optimal approximations to solve the problem 

of obtaining time-domain filters that allow for extracting the cyclical components within a range of 

frequencies and are not subject to the constraint of an infinitive sequence. Furthermore, the alternative 

proposed for an optimal approximation to the band-pass filter must achieve certain desired conditions 

for the proper study of cyclical components. In other words, the band-pass filter must: 

• Extract the specific range of frequencies without affecting the properties of the extracted 

components (for instance, not modifying the amplitude). 

• Not introduce or minimize phase shifts (i.e., the filter does not induce phase shift among the 

underlying periodic series). 

• Obtain a stationary time series even when applied to trending data. In other words, the 

cyclical component extracted must be stationary, otherwise, the filter is not removing trend 

components. This is particularly important considering the large body of literature suggesting 

the presence of stochastic trends (commonly, integrated of order one or two) in several 

macroeconomic and financial series. 

• Obtain cyclical components which are unrelated to the extension of the known time series. 

To put it simply, this means that cyclical components must be intrinsic to the time series 

observed and not be dependent on the extension. 
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Hodrick and Prescott (1980) developed a time-domain high-pass filter (HP filter) that, as pointed out 

by Baxter and King (1999), provides a reasonable approximation to the ideal high-pass filter, but in 

quarterly data. On the other hand, one of the major critics is that the cyclical components obtained 

depends on the extension of the data. Moreover, by construction, this filter is limited only for the 

extraction of a cyclical component over certain frequency and not a band of frequencies. 

Bearing this drawback in mind, Baxter and King (1999) develop a band-pass filter (BK), 

demonstrating that it was superior to the HP filter under certain circumstance (such as annual data). 

This solution was obtained as a symmetrical moving average with lags and leads defined by the 

researcher3. The weights used are obtained as the solution of the minimization problem shown in 

Equation 4.94 subject to Equations 4.10-11. The first restriction deals with their objective to obtain 

a symmetrical filter in the time-domain, while the second with obtaining a stationary filtered series5.  

𝑀𝑖𝑛 ∫ |𝑓(𝑤) − 𝑏𝑘(𝑤)|2𝑑𝑤
𝜋

−𝜋

 
Eq. 4.9 

 

𝐵𝐾(𝐿) = 𝐵𝐾0 + ∑ 𝐵𝐾ℎ(𝐿ℎ + 𝐿−ℎ)

𝐾

ℎ=1

 

Eq. 4.10 

 

𝐵𝐾(1) = 𝐵𝐾0 + 2 ∑ 𝐵𝐾ℎ

𝐾

ℎ=1

 

Eq. 4.11 

 

It turns out that Christiano and Fitzgerald (2003), demonstrated that their filter (the asymmetric band-

pass filter or ACF) dominates the BK, especially when interested in extracting low-frequency 

components. In other words, the optimal approximation to the ideal band-pass filter obtained by 

                                                      
3 In their paper, they also demonstrate that the extension of number of lags and leads (i.e. K value) affects the 

performance of the filter and reduce the data available. Therefore, a tradeoff must be considered when defining 

the K value. The authors conclude their work by suggesting to take K=3 in annual data for standard 

macroeconomic data. 
4 Minimization of the equal-weighted average square modulus of the difference between the ideal and the 

approximation, both in their frequency-domain representations. 
5 Exploiting the fact that when a filter using symmetric moving averages which sum to zero, the filter has trend 

elimination properties. For more details see Appendix A in Baxter and King, 1999. 
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Christiano and Fitzgerald it is more efficient (reduces leakage, exacerbation and compression 

problems), especially when extracting very low cyclical components (see Figure 4.1 for a 

representation of the above). On the other hand, this filter asymptotically approaches the ideal filter 

as the sample size growth (Estrella, 2007). 

 
Figure 4.1: Leakage, exacerbation and compression problems in BK in frequency-domain. 

Source: Modification from Baxter and King, 1999. 

 

Christiano and Fitzgerald derived their band-pass filters as follow. Consider the orthogonal 

decomposition of Equation 4.12 of the stochastic process yt. Here Ct captures the cyclical 

components with a certain periodicity, let say 2 ≤ pL < pU < ∞6. NCt captures the non-cyclical time 

series components, usually interpreted as the trend and short-term irregularities. 

𝑦𝑡 = 𝐶𝑡 + 𝑁𝐶𝑡 Eq. 4.12 

 

                                                      
6 Note that periodicity (p) and frequency (w) are related as w=2п/p. 
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Here, the band-pass problem aims to obtain a filter capable of obtaining the cyclical component as a 

result of applying this filter on the time series under study (i.e., yt), as shown in Equation 4.13. 

𝐶𝑡 = 𝐵(𝐿) ∗ 𝑦𝑡 Eq. 4.13 

 

Note that B(L) represents the ideal band-pass filter, previously shown in Equation 4.14. 

𝐵(𝐿) = ∑ 𝐵ℎ ∗ 𝐿𝑗

∞

ℎ=−∞

 
Eq. 4.14 

 

Its Fourier transform is shown in Equation 4.15, which shows the frequency-domain filter. 

𝑏(𝑤) = {
1 𝑖𝑓 |𝑤| ∈ [𝑎, 𝑏]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑤
 

𝑤𝑖𝑡ℎ − 𝜋 ≤ 𝑤 ≤ 𝜋 

Eq. 4.15 

 

Note that, in the frequency domain, this filter takes values of 1 when within a=2л/pU and b=2л/pL, 

and 0 otherwise. As shown before, the calculation of this filter is infeasible. Thus, let assume a 

hypothetical optimal approximation in Equation 4.16. 

�̂�𝑡 = �̂�(𝐿)𝑦𝑡 = �̃�𝑡−1𝑦1 + 𝐵𝑡−2𝑦2 + ⋯ + 𝐵1𝑦𝑡−1 + 𝐵0𝑦𝑡 + 𝐵1𝑦𝑡+1+ ⋯ + 𝐵𝑇−1−𝑡𝑦𝑇−1

+ �̃�𝑇−𝑡𝑦𝑇 

𝑓𝑜𝑟 𝑡 = 2, … , 𝑇 − 1 

Eq. 4.16 

 

Christiano and Fitzgerald treated the problem of estimating the Bh as a projection one. Indeed, the 

estimation of C = [C1, …, CT] is �̂�, the projection of C onto the data available. Equation 4.17 

indicates the set of respective projection problems. 

𝐶�̂� = 𝑃[𝐶𝑡|𝑦] , 𝑡 = 1, … , 𝑇 Eq. 4.18 

 

Therefore, the general solution to each projection problem is the linear function in Equation 4.19.  
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𝐶�̂� = ∑ �̂�ℎ
𝑘,𝑗

𝑘

ℎ=−𝑗

∗ 𝑦𝑡−ℎ 

𝑗 = 𝑇 − 𝑡 𝑎𝑛𝑑 𝑘 = 𝑡 − 1 

Eq. 4.19 

 

Christiano and Fitzgerald defined the �̂�ℎ
𝑘,𝑗

 as the weights that solve the minimization problem in the 

time-domain in Equation 4.20. Note that the solution of this problem depends on t, and therefore the 

solution is one filter for each date. Moreover, for each Ct, its filter weights past and future values of 

yt asymmetrically. This explains why this filter is known as Christiano-Fitzgerald asymmetrical band-

pass filter.  

𝑀𝑖𝑛
�̂�ℎ

𝑘,𝑗
,ℎ=−𝑗,…,𝑘

 𝐸 [(𝐶𝑡 − 𝐶�̂�)
2

|𝑦] Eq. 4.20 

 

For simplicity, this problem is solved in the frequency domain, which representation is shown in 

Equation 4.21. 

𝑀𝑖𝑛
�̂�ℎ

𝑘,𝑗
,ℎ=−𝑗,…,𝑘

 ∫ |𝑏(𝑤) − �̂�𝑘,𝑗(𝑤)|
2

𝑠𝑦(𝑤) 𝑑𝑤
𝜋

−𝜋

 
Eq. 4.21 

 

Note that this minimization problem is slightly different to the one solved by Baxter and King since 

here the squared deviations between the approximate filter �̂�𝑘,𝑗(𝑤) and the ideal filter b(w) are 

weighted by the spectral density function of yt. 

Thus, in order to solve Equation 4.21, it is required to know the spectral density function7. Christiano 

and Fitzgerald provide a simple solution for processes with representations as shown in Equation 

4.22. 

𝑦𝑡 = 𝑦𝑡−1 + 𝜃(𝐿)𝜀𝑡 , 𝜃(𝐿) 𝑎 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑦 𝑜𝑓 𝑚 𝑙𝑎𝑔𝑠 Eq. 4.22 

 

                                                      
7 The spectral density (sy(w)) and autocovariance-generating (gy(h)) functions are related by                                

𝑠𝑦(𝑤) =
1

2𝜋
∑ 𝛾ℎ

∞
ℎ=−∞ 𝑒−𝑖𝑤ℎ, with 𝑔𝑦(ℎ) = ∑ 𝛾ℎ𝑧ℎ ∞

ℎ=−∞ (z a complex number). 
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The interest in this thesis is on random walk processes, i.e., when m=0, since there is a great body of 

literature indicating that prices of commodities are not covariance-stationary. For the purpose of 

confirming the latter, Section 4.3 will test the random walk hypothesis for the series of prices under 

evaluation. In addition, the method requires the elimination of drift8.  

It turns out that if yt follows a random walk process, then the weights that solve Equation 4.22 are 

presented in Equation 4.23-26. 

𝐵ℎ =
sin (

2𝜋ℎ
𝑝𝐿

) − sin (
2𝜋ℎ
𝑝𝑈

)

𝜋ℎ
 , ℎ > 1 

Eq. 4.23 

 

𝐵0 = 2(1/𝑝𝐿 − 1/𝑝𝑈) Eq. 4.24 

 

�̃�𝑇−𝑡 = −
1

2
𝐵0 − ∑ 𝐵ℎ

𝑇−𝑡−1

ℎ=1

 

Eq. 4.25 

 

�̃�𝑡−1 = −𝐵0 − 𝐵1 − ⋯ − 𝐵𝑇−1−𝑡 − �̃�𝑇−𝑡 − 𝐵1 − ⋯ − 𝐵𝑡−2 Eq. 4.26 

  

Since the introduction of the BPF, the main focus has been associated with the study of business 

cycles with a certain periodicity. Nevertheless, its use has slowly expanded to the study of the 

dynamic among macroeconomic variables in different cyclical components. For instance, in the 

relationship between money growth and inflation.  

The authors Cuddington and Jerret incorporated, in 2008, the use of the ACF in the mineral economics 

field. However, they deeply studied only two cyclical components (2 to 20 years and 20 to 70 years). 

These tools can continue to be exploited for a deeper study of the cyclical dynamics of the metal 

commodity prices. Indeed, Cuddington and Jerret (2008) demonstrated the existence of cycles of up 

                                                      
8 The drift adjust in this thesis was performed following the guideline of Christiano and Fitzgerald (2003), for 

more details see footnote 13. 
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to 70 years; it would be hard to argue that cycles of 20 or 70 years are consequences of the same 

phenomenon.  

Although the long cycles have caught the attention in the last decade (in the context of the “super-

cycle”), there is still much to understand about them, for instance, its connection with long economic 

cycle theories. Therefore, Section 4.2.2 reviews the literature focuses on the long economic cycle 

theory in order to enhance the cyclical decomposition to be applied in Section 4.3. Furthermore, it 

has been identified other areas of interest that could also be explored by this tool. Specifically, testing 

some of the classical hypothesis regarding the long-term behavior in metals prices, as well as the co-

movement in different cyclical components. To the author knowledge, these aspects have been 

vaguely explored through the band-pass filter and are addressed in the application of the ACF in 

Section 4.3. 

4.2.1.3. Main Critics  

The main critic to this method is the underlying assumption that a time series is the result of a finite 

summation of cyclical components of increasing frequencies. Nevertheless, there is a wide consensus 

that being applied with the required discipline, they can be quite successful in extracting cyclical 

components of time series (Pollock, 2014).  

On the other hand, the specialized literature attempting to answer which band-pass filter is better has 

concluded that there is no filter as a unique best solution (Baxter and King, 1999; Christiano and 

Fitzgerald, 1999, 2003; Estrella, 2007, Pollock, 2014). Instead, depending on whether the interest is 

on lower or higher frequency components, as well as assumptions on the data-generating process, 

there are guidelines about which ideal band-pass filter approximation the researcher should use. In 

this context, filters, such as the Hodrick-Prescott (HP), Trigonometric Regression Filters (Hamilton, 

1994), the Frequency Domain Method (FD), Baxter-King (BK) and Christiano-Fitzgerald (CF), are 

commonly used depending on the research’s purposes. 
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4.2.2. Long Economic Cycle Theory 

Regarding the long economic cycles, it was the Russian economist N. Kondratiev who formally 

proposed9 in the 1920s that it is very likely that the economic dynamic10 is subject to cycles of a 

duration of 48 to 55 years (Kondratiev, 1984). This theory was the result of Kondratiev’s extensive 

empirical study on several macroeconomic indicators11 over 1780-1925, including the commodity 

price indices (as shown in Figure 4.2), for the major economies at that time (i.e. United States, 

England, and France).  

 
Figure 4.2: Long cycles identified by Kondratiev in the England’s commodity price index 1780-

1924. The time series is shown as the deviations from the linear trend and long cyclical component 

was calculated as the 9-years centered moving average. 

Source: Modified from Kondratiev, 1984. 

 

After Kondratiev, the theory was consolidated in the academic circles through the contributions of 

economists such as Schumpeter (1939), Mandel (1980), Dickson (1983), Goldstein (1988), Ayres 

                                                      
9 Before Kondratiev, the long cycles were a topic first discussed by several economists such as Gelderen (1914), 

Moore (1914), Layton (1922), Trotsky (1923) and S. de Wolff (1924). However, none of them systematized 

their research and findings. 
10 Back then, Kondratiev was referring specifically to the capitalist economic system.  
11 Commodity prices, production and consumption, interest rate, labor wages, foreign trade and savings in 

banks. 
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(2006), Dator (2006), Korotayev and Tsirel, 2010, Korotayev et. al. (2011), Grinin et al. (2012) and 

Grinin et al. (2016). Thus, Kondratiev's work has been extended to the twentieth and twenty-first 

centuries, proposing cycles of about 45-60 years identified in Table 4.1.  

 
Upward Downward Length  

Start End Start End [years] 

1st Long Wave 1790 1810/17 1810/17 1844/51 54-61 

2nd Long Wave 1844/51 1870/75 1870/75 1890/96 46-52 

3rd Long Wave 1890/96 1914/20 1914/20 1939/50 60 

4th Long Wave 1939/50 1968/74 1968/74 1984/91 52 

5th Long Wave 1984/91 2008/10 2008/10 - - 

Table 4.1: Kondratiev long cycles proposed for the twentieth and twenty-first centuries. 

 

Regarding the economic dynamics behind these cycles, Kondratiev reflected on the idea that during 

the inflection between the bearish and bullish trend, there was an important technological 

transformation in production techniques. However, he focused on the investment and capital 

dynamics as the main explanation; indirectly linked to innovation. Nevertheless, later contributions 

have placed in the technological innovation at the center of the explanation (Schumpeter, 1939; 

Mensch, 1979; Haustein and Neuwirth, 1982; Singer, 1998; Korotayev et al., 2011), the reason why 

the Kondratiev waves are associated with a set of disruptive technologies. To put it simply, the 

economic long cyclicality is currently explained by the life stages of a new set of technologies capable 

of redefining the global productive capacity. These stages are: i) disruptive innovation; ii) 

assimilation; iii) standardization; iv) obsolescence and conditions for a new technology revolution.  

Once the technological revolution is placed as the main driver, an interesting discussion is on whether 

these cycles should be shorter with the technological progress. The perception that innovation and 

technological advance is accelerated has been actually demonstrated by several researchers 

(Kurzweil, 2000; Buchanan, 2008). Nevertheless, this faster advance does not necessarily mean 

shorter economic cycles. Indeed, the vast majority of Kondratiev followers, and for whom technology 

is the main driver of the long cycles, the waves are likely to remain in the range observed (i.e. 45-60 

years). Indeed, Devezas and Corredine (2002) postulated that the length of the long cycles (about 60 
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years) is also linked to the social diffusion of new revolutionary innovations, which in turns is 

dominated by two “biological control parameters”, i.e. human cognition and transfer of knowledge 

between generations. In contrast, Šmihula (2009) has proposed an alternative interpretation for the 

long waves, which indeed reflects an acceleration of these cycles; however, it is quite decoupled of 

Kondratiev long cycle mainstream.  

The potential links between the fluctuations of these long economic cycles and commodity prices 

could lay in two ideas: i) changes in the intensity of use of inputs are driven by technological 

innovations, where metals have historically played a relevant role; ii) innovations that allow the 

metals and minerals industries to increase their reserves. Indeed, a quick visual inspection12, as shown 

in Figure 4.3, extends the Kondratiev’s findings of a high synchronization degree between a metal 

commodities prices index13 and the Kondratiev waves. Appendix 1 shows the same visual analysis 

for the prices of the six base metals, gold, and iron ore. 

 
Figure 4.3: Extension of Kondratiev analysis for the base metals price index14 using the same 

methodology applied in Kondratiev’s original work (Kondratiev, 1984). 

                                                      
12 Applying the same method than Kondratiev to extract the long cyclical components, i.e., the centered moving 

average on the deviation of the linear trend. 
13 Index built using the copper, nickel, zinc, lead, tin, aluminum and iron ore prices and the weights used by the 

World Bank (2018) in the construction of its Metal and Mineral Prices Index. 
14 Built using the 2018 World Bank's weights (1900=100). 
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Although there is extensive literature supporting the long economic cycles theory, it is considered a 

controversial theory and has received important criticism. Some of the most important relate to the 

ideas that long waves would be the result of outlier events non-related to innovation (Metz, 2006) or 

that long trends observed are the results of stochastic changes (Rosenberg and Frishtak, 1983). It is 

also pointed out that the detrending techniques could derive in misinterpreting the data, leading to the 

emergence of long cycles (Charles and Kang, 1981). Other lines of criticism are those initiated by 

Solomou (1986), who refuse the idea of a connection between cluster-of-innovation and long waves, 

and Freeman et al. (1987), who believes that technological innovation is only a part of a more integral 

explanation for long cycles.  

Regarding mineral economics, the latest findings would validate the presence of long cycles in real 

metals prices. However, there seems to be no consensus on the extensions, and aspects such as their 

linkage to the global economic dynamics or factors behind long-term changes in the industry are even 

less explored. 

4.3. Application of Band-Pass Filters for the Study of Metal Commodity Cycles 

4.3.1. Specific Area of Interest 

The main objective of this section is to apply the ACF to the metal commodity prices, but 

incorporating the long economic cycles provided by Kondratiev’s theory for a novel cyclical 

decomposition. This is made to deepen the understanding of cycles in metals prices, focus especially 

on the long cycles and their possible link with innovation and technology, through the Kondratiev’s 

hypothesis of long economic cycles. This is especially suitable in the current scenario where, on one 

hand, the world is facing technological revolutions (expected to importantly shape the future supply 

and demand for several metals) and high macroeconomic uncertainty derived from a global trade 

conflict (partially linked to technological domination). On the other hand, the mining industry has 

steady suffer from cost inflation in the last decade and portfolios for some base metals are abnormally 

depressed (Mikitchook et al., 2018). Furthermore, the results of the study are expected to contribute 
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to the understanding of higher frequency cycles, the co-movement in different cyclical components 

and price behavior in the very long term (trend). The above in the five points below: 

i. Long cycles and Kondratiev waves: formal study the presence of long cycles in the real 

prices of metals and their connection with Kondratiev waves. For this purpose, it will study 

the cyclical components of the time series ranging from 45-60 years as suggested by the long 

economic cycle theory. 

ii. Higher frequency cycles: identification of short- and medium-term cycles (short and 

medium cycles), and link them to the last findings in macroeconomics and the mineral 

economics. In practice, this translates into business cycles (periods of no more than 10 years) 

and medium-term cycles, documented by the mineral economics and ranging from 10 to 40 

years. 

iii. Co-movement in different cyclical components: the co-movement has received significant 

attention in recent years due to its implications for investors seeking diversification within 

metals markets. However, a less studied aspect is the persistence of this synchronized 

movement in different cyclical frequencies. This study will allow the evaluation of co-

movement for metals short, medium and long cycles components, as well as in their trends. 

iv. Trend Analysis: The dominant view in the mineral economics is that, in the very long term, 

the supply curve is rather flat since it can react to increases in demand through discoveries of 

competitive resources (in the context of the predominant technologies) and/or technological 

improvements that reduce production costs and/or enhance the deposit discovery process. As 

a consequence of the above, the prices of metals in the very long term should be rather 

trendless, being unaffected by changes in demand. The present study adds antecedents in 

favor of this vision and also establish a measure of what it is meant by "very long term". 
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v. Dynamics of the long cycles: Finally, a working hypothesis on the explanatory dynamics for 

long-term cyclicality observed in the real prices of metals is proposed and aspect for further 

research are suggested. 

4.3.2. The ACF  

In order to answer the previous questions, it will be used the Christiano-Fitzgerald’s optimal “linear” 

approximation assuming processes I(1) (drift adjusted). As it was previously acknowledged, the 

debate on whether commodity prices behave under the RWH remains open and there is an important 

body of literature validating this (Wang and William, 2007; Andersson, 2007; and Oglend and Asche, 

2016).  

Although this research does not attempt to deeply study whether the real metal prices are unit root 

process, a quick study is implemented based on two of the most common econometric tests for this 

purpose: The Augmented Dickey-Fuller15 test (ADF) and the variance ratio test (VRT). The results 

are shown in Table 4.2. Considering a joint interpretation of the ADF and VRT, it can be stated that 

there is statistical evidence to consider the series as integrated of order 1, i.e., they are unit root 

processes. 

 

 

 

 

 

                                                      
15 The implementation of an ADF without considering structural breaks leads to a bias towards the non-rejection 

of the null hypothesis (Perron, 1989). Therefore, the analysis of the RWH is be complemented with the variance 

ratio test (VRT). The VRT has gained popularity in recent years as a complement to test the RWH (Charles, 

2009), although it is not without weaknesses as Kim and Kim (2010) point out. 
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Test ADF Test VRT* 
Conclusion 

Null It is a random walk It is a random walk p-value 

Cu 
Observations 216 Max |z| (at period 16) 0.270 

I(1) 
p-value 0.005 Wald (Chi-Square) 0.052 

Ni 
Observations 177 Max |z| (at period 16) 0.396 

I(1) 
p-value 0.345 Wald (Chi-Square) 0.275 

Zn 
Observations 141 Max |z| (at period 16) 0.133 

I(1) 
p-value 0.0001 Wald (Chi-Square) 0.088 

Pb 
Observations 117 Max |z| (at period 16) 0.436 

I(1) 
p-value 0.060 Wald (Chi-Square) 0.184 

Sn 
Observations 136 Max |z| (at period 16) 0.388 

I(1) 
p-value 0.029 Wald (Chi-Square) 0.200 

Al 
Observations 121 Max |z| (at period 16) 0.281 

I(1) 
p-value 0.002 Wald (Chi-Square) 0.107 

Au 
Observations 116 Max |z| (at period 16) 0.044 

I(1) 
p-value 0.212 Wald (Chi-Square) 0.072 

Fe 
Observations 114 Max |z| (at period 16) 0.091 

I(1) 
p-value 0.069 Wald (Chi-Square) 0.152 

* Standard error estimates assume no heteroskedasticity, user-specified lags: 2 4 8 16, 

test probabilities computed using wild bootstrap: dist=twopoint.   

Table 4.2: Augmented-Dickey Fuller and Variance Ratio Tests. 

 

Returning to the ACF, the reasons of its usage are briefly described below: 

• Allows for decomposing the time series in components that fluctuate within a frequency 

range. For this study, high frequencies (short cycles), medium frequencies (medium cycles), 

low frequencies (long cycles) and trend. 

• Allows for considering the full data in the estimation of the filter coefficients, unlike the fixed 

length symmetric options, such as BK filter. 

• Has a greater adjustment to the ideal band-pass filter at low frequencies; the focus of interest 

in this research. 
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• Fulfills the desired requirements in a band-pass filter: minimizes the difference with the ideal 

filter, extracts the desired frequencies without compromising the remnant, minimizes the 

introduction of phase shift16 and eliminates stochastic trends in the filtered series. 

The decomposition of the series of real prices in their cyclical components is as shown in Equation 

4.27:  

𝐴_𝑃𝑟𝑖𝑐𝑒𝑡 = 𝐴_𝑆𝐶𝑡 + 𝐴_𝑀𝐶𝑡 + 𝐴_𝐿𝐶𝑡 + 𝐴_𝑇𝑡 Eq. 4.27 

 

A_Price is the natural logarithm of the price A in t. A_SC is the short-term cyclical (or high frequency) 

component (2-10 years) of A_Price in t. A_MC is the medium-term cyclical (or medium frequency) 

component (10-45 years) of A_Price in t. A_LC is the long-term cyclical (or low frequency) 

component (45-60 years) of A_Price in t. Finally, A_T is the trend of A_Price in t. Figure 4.4 

illustrates how the ACF band-pass filter was applied to extract each component step by step. 

                                                      
16 Although the asymmetric method does not ensure that there is no phase change, under conditions such as 

random walk, its impact is minimal and with significant gains in relation to minimizing the difference with the 

ideal band-pass filter. 
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Figure 4.4: Representation of the band-pass filtering process for the extraction of the short-, 

medium-, and long-term cyclical components, as well as the trend. 

 

For the co-movement analysis, the Pearson correlation coefficient (considering all available data 

pairs) and the principal component analysis (PCA, considering a balanced sample) will be studied17, 

complementing the band-pass filter analysis. 

4.3.3. The Data 

Given the low frequency of the cycles of main interest, the extension of the series of real prices18 is 

fundamental. Unfortunately, this task is not trivial considering the limited availability of reliable data 

                                                      
17 Similar than Cuddington and Jerret (2008). 
18 The US’s CPI is used as the deflator. For further details of this choice, see Appendix III: Choice of Deflators: 

CPI vs. PPI (Cuddington and Jerrett, 2008). 
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with more than 100-150 years. As a consequence, the large body of studies related to cycles in metals 

prices is based on information from the beginning of the twentieth century, or at best since the mid-

nineteenth century. However, this thesis considers data -in real terms- that go as far as the year 1800, 

covering all the long-term cycles identified in Kondratiev’s theory. Table 4.3 describes the series 

used. All the series were transformed to natural logarithm since this allows for evaluating the 

deviations of the cycles with respect to the trend as percentage approximations. 

Variable Code Unit Period Source Obs. 

Copper Price CU Ln(US$2017/t) 1800-2017 
USGS, 

Makridakis et al. (1997) 
218 

Nickel Price NI Ln(US$2017/t) 1840-2017 USGS 178 

Zinc Price ZN Ln(US$2017/t) 1875-2017 USGS 143 

Lead Price PB Ln(US$2017/t) 1880-2017 USGS 118 

Tin Price SN Ln(US$2017/t) 1900-2017 USGS 138 

Aluminum Price AL Ln(US$2017/t) 1895-2017 USGS 123 

Gold Price19 AU Ln(US$2017/t) 1900-2017 USGS 118 

Iron Ore Price FE Ln(US$2017/t) 1900-2017 USGS 118 

Table 4.3: Metal and mineral prices. 

 

 Note that the price of copper begins in 1800, which means a great opportunity in this research 

considering that it has historically proven to be strongly correlated with macroeconomic trends (Heap, 

2005; Tapia-Cortez et al., 2018), as a consequence of its broad global use in key economic sectors for 

economic growth and development, such as infrastructure and energy. 

4.4. Results and Discussions 

4.4.1. Long cycles and Kondratiev waves 

For each of the 8 metals, the short, medium, and long cyclical components, as well as the trend and 

the real price are shown in Figures 4.5-4.12. For most of the figures displayed in Section 4.4, the 

                                                      
19 Given its characteristic as a financial asset, especially safe haven, a negative correlation would be expected 

with the rest of the elements. 
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results for copper are presented for the reasons explained in Section 4.3. Moreover, the abbreviations 

following the commodity name, i.e. SC, MC, LC, and T, refer to the short-, medium-, long cyclical, 

and trend components of the time series. 

 
Figure 4.5: Copper real price and its cyclical components and trend (log scale). 

 

 

 
Figure 4.6: Nickel real price and its cyclical components and trend (log scale). 
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Figure 4.7: Zinc real price and its cyclical components and trend (log scale). 

 

 

 
Figure 4.8: Lead real price and its cyclical components and trend (log scale). 
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Figure 4.9: Tin real price and its cyclical components and trend (log scale). 

 

 

 
Figure 4.10: Aluminum real price and its cyclical components and trend (log scale). 
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Figure 4.11: Gold real price and its cyclical components and trend (log scale). 

 

 

 
Figure 4.12: Iron ore real price and its cyclical components and trend (log scale). 

 

Figure 4.13 and Figure 4.14 show the long cycles for base metals and gold and iron ore, respectively. 

It can be observed that in all cases there are clear cycles of about 45-60 years. Analyzing the results 

as a whole, the long cyclical components have typically a length of 49 to 60 years, with an average 

of 53 years for the raw material (base metals and iron ore) and 50 years for gold. A larger correlation 

is seen in a subset of elements. As shown in Figure 4.15, the long cycles of copper, nickel, zinc, lead, 

and gold have a high correlation, while lower between this subgroup and aluminum, iron ore and tin. 
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Figure 4.13: Long cycles components for base metals (log scale). 

 

 

 
Figure 4.14: Long cycles components for copper, iron ore and gold (log scale). 
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Figure 4.15: Highly correlated long cycles components (log scale). 

 

By contrasting the Kondratiev cycles of Table 4.1 with the cycles of Figure 4.15, Figure 4.16 is 

obtained. This image is very illustrative to clearly confirm the close correlation between Kondratiev 

waves and long cycles in real metals prices. As known, the correlation does not mean causality, but 

the high level of synchronization is clearly a matter of interest. This topic will be further discussed. 

 
Figure 4.16: Contrast between highly correlated long cycles and the Kondratiev waves (log scale).  

(Grey color in the 5th wave means on development) 
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It is worth mentioning that the safe haven characteristic of gold would be validated for the long-term 

through the high negative correlation with most of the base metals (Figure 4.15). On the other hand, 

as shown in Figure 4.17, the decoupling between the price of aluminum and copper is striking. One 

hypothesis is the substitute dynamic between them, which in practice can be more valid for longer 

periods than in short cycles; being reflected in this phase shift in their long cyclical components. 

 
Figure 4.17: Cyclic phase shift between copper and aluminum (log scale). 

 

4.4.2. Higher frequency cycles 

Figure 4.18 and Figure 4.19 show medium cycles components for base metals and gold and iron ore, 

respectively. The results confirm medium-term cycles with periods of approximately no more than 

25 years. Indeed, for the base metals and iron ore, the medium cyclical components have typically a 

length of 11 to 25 years, with an average of 15 years. In contrast, the gold case presents duration 

much larger of typically 23 to 31 years, with an average of 28 years. Figure 4.2020 contrasts the cycles 

identified in the work of Erten and Ocampo (2012) and Rossen (2015) with the medium cyclical 

components. Although the medium cyclical component for gold matches well the cycles identified 

                                                      
20 The Figure 8 presents the results just for copper, nickel, zinc and gold to favor the visualization. However, a 

conclusion from these figures is made taking into account the full sample.  
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by those researchers, the same level of consistency is not observed for the rest. Furthermore, it is 

important to mention that although co-movement is seen, the correlation apparently is less strong than 

in the long cyclical components. 

 
Figure 4.18: Medium cycles components for base metals (log scale). 

 

 
Figure 4.19: Medium cycles components for gold and iron ore (log scale). 
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Figure 4.20: Contrast between proposed cycles and medium cycles component (log scale). 

(Black labels refer to cycles proposed in Rossen (2015), while grey by Erten and Ocampo (2012)) 

 

Figure 4.21 and Figure 4.22 show the short-term cyclical components for base metals and gold and 

iron ore, respectively. Analyzing the results as a whole, the short cyclical components have typically 

a length of 2 to 9 years, with a slightly different average between raw material prices (base metals 

and iron ore) and gold of 4 and 5 years, respectively. Note that this cyclical component could be 

aligned with the business cycles of modern occidental and the Chinese economies; the main source 

of raw material consumption in the last 200 years. Although there is still a correlation in specific 

periods, this relationship begins to be much more elusive than the previous cases. Figure 4.23 shows 

the short cycles for the three most-traded metals, along with gold. Although there are several highly 

correlated peaks, the co-movement is apparently weaker than in the low-frequency components. 

Therefore, the lower degree of co-movement could indicate that the particularities of each market 

weigh importantly in the price formation. 
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Figure 4.21: Short cycles components for base metals (log scale). 

 

 
Figure 4.22: Short cycles components for gold and iron ore (log scale). 
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Figure 4.23: Weaker correlation in short cycles component of Cu, Al, Au and Iron Ore (log scale). 

 

The statistical characteristics of the cyclical components are summarized in Table 4.4. 
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Metal Statistic 
Prices Cyclical Components 

LC MC SC 

CU 

No.21 4 13 45 

Ave. Length22 53 16 5 

SD23 1 4 2 

NI 

No. 3 11 33 

Ave. Length 55 16 5 

SD 5 4 2 

ZN 

No. 2 10 34 

Ave. Length 54 13 4 

SD 1 3 2 

AL 

No. 2 7 30 

Ave. Length 49 15 4 

SD 1 5 2 

PB 

No. 2 9 25 

Ave. Length 53 13 4 

SD 1 3 2 

SN 

No. 2 9 30 

Ave. Length 52 14 5 

SD 0 2 2 

AU 

No. 2 9 30 

Ave. Length 50 28 5 

SD 1 3 2 

FE 

No. 2 9 30 

Ave. Length 52 17 4 

SD 0 6 2 

Raw 

Material24 
Ave. Length 53 15 4 

Gold Ave. Length 50 28 5 

Table 4.4: Characterization of the cyclical components. 

To answer the question about how relevant each of these components is in the price variation, it is 

studied the approximated range of variation of each cyclical component with respect to the trend, 

shown in Table 4.5. 

                                                      
21 Number of cycles identified over the sample. 
22 Average cycles length in years. 
23 Standard deviation in years. 
24 Base Metals plus Iron Ore. 
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Commodity 
Deviation 

Sign 
LC MC SC 

CU 
Negative 23% 56% 42% 

Positive 22% 51% 41% 

NI 
Negative 9% 51% 49% 

Positive 9% 69% 60% 

ZN 
Negative 9% 38% 51% 

Positive 9% 47% 59% 

PB 
Negative 11% 32% 32% 

Positive 11% 52% 33% 

SN 
Negative 15% 44% 41% 

Positive 16% 61% 54% 

AL 
Negative 4% 37% 44% 

Positive 4% 33% 56% 

AU 
Negative 13% 57% 33% 

Positive 13% 54% 57% 

FE 
Negative 12% 41% 26% 

Positive 12% 56% 24% 

Table 4.5: Deviations of the Cyclical Components from the Trends. 

The short and medium cycles are the most important in explaining the deviations of the price with 

respect to the trend, with ranges typically of about -40% to +50% in the cycles trough/crest. However, 

the long cycles are far from being negligible, explaining about 5% to 20% (depending on the case) of 

the variation with respect to the trend. Note that the long cycles component is especially important 

for copper, tin, gold, and iron ore, while less relevant in aluminum, nickel, and zinc. Therefore, 

although prices deviations from their trend are considerably affected by their long cycles components, 

the impact of the higher frequency components are of more relevancy as expected. 

4.4.3. Co-movement in different cyclical components 

The Pearson correlation coefficient (considering all available data pairs) and the principal component 

analysis (PCA, considering a balanced sample) results are shown in Tables 4.6-8 and Table 4.9, 

respectively. 
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  Medium to high positive correlation (>0.4) 

  Medium to high negative correlation (<-0.4) 
 

 CU_LC        

CU_LC 1.00 NI_LC       

NI_LC 0.95 1.00 ZN_LC      

ZN_LC 0.99 0.93 1.00 PB_LC     

PB_LC 0.93 0.95 0.88 1.00 SN_LC    

SN_LC 0.70 0.66 0.73 0.39 1.00 AL_LC   

AL_LC -0.18 -0.16 -0.13 -0.47 0.58 1.00 AU_LC  

AU_LC -0.84 -0.85 -0.78 -0.95 -0.21 0.62 1.00 FE_LC 

FE_LC 0.73 0.72 0.76 0.47 0.99 0.53 -0.29 1.00 

Table 4.6: Correlation across the long cyclical components. 

 
 CU_MC        

CU_MC 1.00 NI_MC       

NI_MC 0.57 1.00 ZN_MC      

ZN_MC 0.73 0.41 1.00 PB_MC     

PB_MC 0.64 0.33 0.65 1.00 SN_MC    

SN_MC 0.66 0.52 0.70 0.71 1.00 AL_MC   

AL_MC 0.51 0.68 0.22 0.16 0.39 1.00 AU_MC  

AU_MC 0.60 0.56 0.55 0.41 0.86 0.40 1.00 FE_MC 

FE_MC 0.49 0.52 0.25 0.35 0.70 0.46 0.82 1.00 

Table 4.7: Correlation across the medium cyclical components. 

 
 CU_SC        

CU_SC 1.00 NI_SC       

NI_SC 0.40 1.00 ZN_SC      

ZN_SC 0.59 0.33 1.00 PB_SC     

PB_SC 0.69 0.31 0.49 1.00 SN_SC    

SN_SC 0.42 0.16 0.34 0.45 1.00 AL_SC   

AL_SC 0.59 0.49 0.49 0.57 0.27 1.00 AU_SC  

AU_SC 0.32 0.19 0.18 0.27 0.22 0.35 1.00 FE_SC 

FE_SC 0.24 0.14 0.12 0.11 0.20 0.24 -0.07 1.00 

Table 4.8: Correlation across the short cyclical components. 
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Cycle Group Number Value Difference Proportion 
Cumulative 

Value 

Cumulative 

Proportion 

LC 

8 metals 1 5.58 3.29 0.70 5.58 70% 

Base Metals 1 4.32 2.73 0.72 4.32 72% 

Cu & Au 1 1.84 1.68 0.92 1.84 92% 

MC 

8 metals 1 4.82 3.57 0.60 4.82 60% 

Base Metals 1 3.72 2.54 0.62 3.72 62% 

Cu & Au 1 1.60 1.21 0.80 1.60 80% 

SC 

8 metals 1 3.55 2.48 0.44 3.55 44% 

Base Metals 1 3.33 2.41 0.55 3.33 55% 

Cu & Au 1 1.32 0.65 0.66 1.32 66% 

Principal Components Analysis, extracting 8/6/2 of 8/6/2 possible components, respectively, and  

showing only the first principal component, balanced sample (listwise missing value deletion), 

included observations: 118 after adjustments.         

Table 4.9: Principal Component Analysis for long, medium and short cyclical components. 

 

In the case of long cycles, there is good synchronization observed in the high correlation coefficients. 

In addition, the negative relationship with gold and the shift phase between aluminum and the rest is 

validated. The idea of a long-term substitution effect between copper and aluminum may have more 

empirical support when observing the small and negative correlation between them. Regarding the 

PCA, if the main component is considered as cyclicity factor (as indicated by Cuddington and Jerret, 

2008), this would explain 70% of the joint co-variance for the 8 metals, while 72% only considering 

the base metals. This reaffirms the strong correlation in long-term cyclicality and allows for thinking 

of a common factor behind its causality. Similar results are found in Cuddington and Jerret, 2008, 

and Cuddington et al., 2015; although with a different decomposition for long cycle components. 

In the results for the medium and short cycles, it is seen how correlation begins to decrease as the 

frequency increases. Note that, while gold was negatively correlated with the rest of commodities for 

long cycles components, this relationship turns to be positive for the medium cycles components and 

almost null for the short cycles components. Thus, one could say that for metal commodities investors, 

gold could become relevant hedging mean in the long term (given the opposite movements), while 

its hedging characteristics vanish as frequency increases, but still providing diversification potential. 

The gold different behavior in comparison with the other metals is related to the fact that its price is 
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much more susceptible to macroeconomic and supply conditions. This is even more evident from the 

beginning of the 1970’s; period related with the agony and eventually the end of the Gold standard in 

the US, and the rest of the superpowers. On the other hand, the phase shift between aluminum and 

the rest is no longer observed. 

The latter point suggests that as the frequency of cyclicity increases, the co-movement is less strong. 

This finding is relatively counterintuitive in the sense that one would expect a high correlation in the 

short term (Fernandez, 2015). To illustrate this point, Table 4.10 shows the correlations in the 

extreme case of base metals prices in daily-basis for 2017, corroborating the above for the case of 

copper, nickel, zinc, lead, and aluminum. Hence, the co-movement could be considered as stronger 

in the more extreme cases. 

 CU      

CU 1.00 NI     

NI 0.89 1.00 ZN    

ZN 0.94 0.86 1.00 PB   

PB 0.83 0.74 0.91 1.00 SN  

SN 0.01 -0.03 0.04 -0.08 1.00 AL 

AL 0.87 0.71 0.84 0.71 0.06 1.00 
       

 Medium to high positive correlation (>0.4) 

 Medium to high negative correlation (<-0.4) 

Table 4.10: Correlation of the London Metal Exchange daily prices for Base Metals. 

4.4.4. Trend Analysis 

Once cyclical components are removed from metals prices, one gets the trends. Figure 4.24 and 

Figure 4.25 show the resulting trends for base metals and gold and iron ore, respectively. The 

classical view of the mineral economy suggests that, in the very long term, real prices should follow 

a constant trend, given that supply is capable of adapting. This adaptation is probably through the 

discovery of competitive resources and/or technological advances that compensate the expected cost 

increase caused by the depletion of the "non-renewable" resources. As seen in Figure 4.24 and Figure 

4.25, until the beginning of the twentieth century, the trends had a negative slope (in most of the 
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cases). That is, either by technology or by the startup of new competitive reserves, the industry was 

capable of more than compensate the losses coming from depletion. Nevertheless, the trends stabilize 

from around the 1920/30s for most of the metals evaluated. This observation is quite aligned with 

Cuddington and Jerrett (2008) and Deverell and Turner (2017), who detected the flattering from the 

1920s for several base metals. 

 
Figure 4.24: Trend components for the base metals (log scale). 

 

 
Figure 4.25: Trend components for copper, gold and iron ore (log scale). 
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Figures 4.26-28 show the trends, in real price, for all cases between 1930-201725. As it can be 

observed, in the case of base metals, the hypothesis of trendless prices is more or less fulfilled26, 

except in the case of aluminum, where the trend has been strongly downward; probably due to a 

combination of abundant new resources, the increase in recycling, reduction of electricity cost and/or 

improvements in casting techniques27. 

 
Figure 4.26: Copper, nickel and tin trends in real prices (US$2017/t). 

 

 

                                                      
25 The trends are shown in real prices (US$2017/t) for the six base metals, gold and iron ore. For purpose of 

scale and visualization, the metals prices have been split in 3 figures. 
26 As a note of caution, it is valuable to comment on the discussion about the impact of the deflator in the 

identification of trends in real prices. For more details see Svedberg and Tilton (2006) and Fernandez (2012). 
27 Considering that world’s consumption for aluminum has accelerated in the last 2 decades. 
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Figure 4.27: Zinc, lead and aluminum trends in real prices (US$2017/t). 

 

 
Figure 4.28: Gold and iron ore trends in real prices (US$2017/t). 

 

In the particular case of gold, this follows an increasing trend (and accelerating), indicative of the 

harder conditions to obtain it. This is what partially explains that more than 50% of the world's 

exploration expenditures are on gold campaigns (S&P Global Market Intelligence, 2018); and the 



68 

 

number is even higher if it is measured by the number of prospects. In the case of iron ore28, the 

flattening of the trend occurs rather in the 1960s. 

Therefore, the results suggest that, first, what is understood as a very long-term trend could be defined 

by horizons of over 60-70 years. Second, the presented evidence is in favor of the mineral economics 

classical view, at least for copper, nickel, zinc, lead, and tin, starting in 1930, and for iron ore, from 

1960. Thus, long cycles should be more associated with changes in supply, and therefore, 

understanding the dynamics of these changes is key. Note that in most long cyclical components 

analyzed are highly correlated, suggesting that for metals with trendless prices, the changes in the 

supply might occur rather in a synchronized manner. 

4.4.5. Long Cycles Drivers: Technology, Resources Availability or Both? 

Up to this point, the evaluation allowed to identify highly correlated cyclical components of 48-60 

years for most of the assessed real metals prices. Moreover, these long cycles components 

demonstrated to be well synchronized with the Kondratiev’s long economic cycles theory. Therefore, 

the next step is to make sense of what might be behind these long cycles and whether this economic 

theory can help for a better understanding of the long cycles in metal commodities. 

First, it is necessary to recognize that a slow unfolding global phenomenon is necessary to trigger 

these long, steady and synchronized up-and-down episodes in metals prices. Moreover, if it is 

assumed that real prices are trendless in the very long-term as a consequence of the supply’s 

adaptation to long-term demand, then one should expect that long cyclical components are supply-

side related; reflecting the restoration of the long-term equilibrium.  

In this adaptative long-term process, the penetration of technological innovation in the production 

and commercialization processes is one of the possible answers of how the mining industry could be 

                                                      
28 Highly correlated with the trend of tin. 
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able to bring the depletion-related long-term costs increases down29. This path could be more or less 

in line with the “cluster innovation” hypothesis. A problem with this is that if this is the case, then 

Kondratiev waves and long cycles components in metals should show a shift phase: the rise of a new 

innovative revolution triggers a new long economic cycle, and at the same time the incorporation of 

these innovations in the mining industry drives cost and prices down. This is not what is observed in 

the results of Section 4.4.1 (recall Figure 4.16). Although, in defense of the synchronization seen 

one might argue that this could be related with the well-known fact that the mining business 

(especially the purely extractive activity) has fewer incentives for innovation, and therefore is a late 

adopter when compared to other industries (Andai, 2017).  

Even if the latter is true, it is unlikely that this factor alone may trigger such a long period of 

decreasing costs. Otherwise, how it could be explained, for instance, that industry such as gold and 

copper have such diverging price trends, considering the overall similar extractive technologies. 

Thus, these technological improvements must be complemented with the entry into production of an 

important amount of “highly” competitive projects, which, giving the high correlation of long cyclical 

components in four of the six base metals, may occur in a “synchronized” manner. Nevertheless, for 

this scenario to occur, it is required the existence of such a competitive portfolio of projects30. At this 

point is when the cyclical behavior of the exploration activity can be an important factor. Knowing 

the cyclical behavior of prices, it would be expected countercyclical levels of exploration activity. 

Nevertheless, exploration expenditure has proven to be quite correlated with the metals prices (S&P 

Global Market Intelligence, 2018), reflecting an investors’ risk aversion approach toward this activity.  

Hence, when the industry faces a long period of increasing prices, exploration activity is not only 

boosted (Jacks, 2013), but it would be successful in identifying new resources given the previous 

                                                      
29 It also applies to other productive value chain cost increases, such as transport costs. 
30 This aspect is often missed when reviewing the literature on long cycles in metals prices, but it may be a quite 

differentiating factor among metals and minerals markets. 
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results. However, from discovery to production is a long process that can typically take up to 12-15 

years (Gandhi and Sarkar, 2016), and therefore it is likely that in an extended upward trend in prices, 

this “cluster discoveries” are building up the future project portfolio. Eventually, the economic 

conditions are given for these competitive deposits become operations (favored for a portfolio in good 

shape and technological innovations) more than correcting the deviation from the long term. While 

this situation could be the long-term dynamic in most of the base metals, it may not be the case for 

gold, were the price follows a clear upward trend, or for aluminum, which presents the opposite 

situation. 

Of course, this explanation is very simplistic and has only focused on long-term cycles. However, the 

purpose is to strengthen the hypothesis that very long cyclical components are defined by changes in 

supply, rather than in the demand. Following this logic, medium cycles are expected to be more 

responsive to changes in both supply and demand, and short cycles to changes mostly in demand. 

An interrogative that is still unsolved is what could explain the high level of synchronization between 

most of the base metals and gold with the theoretical Kondratiev wave. Note that although Kondratiev 

waves are more associated with innovation cycles, this, in turn, could be related to major and 

sequential macroeconomic changes: the industrial revolutions in England and Western Europe (1760-

1840), the post-civil war reconstruction and industrialization in the United States (1860-1900), 

Progressive Era in the United States and World Wars (1900-1945), the post Second World War “re-

urbanization and re-industrialization” of Europe and Japan and the Cold War (1945-1990), and the 

take-off of the Asian economic development, led by China (1985-present). 

The episodes mentioned took decades to unfold and are typically characterized by sequential stages 

of urbanization and industrialization31, trade and logistics expansion, and continuous innovation and 

technological development. All these stages are intensive in raw material consumption, especially of 

                                                      
31 In some cases, the most accurate description is one of re-urbanization and re-industrialization. 
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metals and minerals widely used in the modern economy, which might explain the high level of 

synchronization across most of the base metals long cycles and with the Kondratiev waves. On the 

other hand, over this period of analysis, technological innovation has been a key factor in the "battles" 

between an emerging and dominant economy32. 

As it has been shown, there is a likely tight relationship between the long economic cycle and the 

long cyclical component observed in the metal prices. Using the same logic, one may establish a 

connection between metal prices short and medium cyclical components and economic cycles that 

must be further study. Table 4.11 summarized the potential link between the cyclical components of 

the metal prices and the economic cycles, their drivers, and how they could shape the metal 

commodity markets. Note that the table does not imply that these economic cycles are the only reason 

behind the fluctuation in metal prices, but rather the potential connection and impact to the metal 

price formation process. 

Cyclical 

Component 

Economic Cycle 

Potentially Influencer 
Economic Cycles Drivers Influence on the Metal Markets 

SC 

Business cycles (2-8 

years), Kitchin cycles 

(3-5 years), Juglar 

cycles (7-11 years) 

Changes in fiscal and monetary 

policies, as well as fixed 

investment in major economies 

Mostly changes in demand, 

with a limited response from 

the supply side. 

MC 
Kuznets swings (15-25 

years) 

Urbanization, infrastructure, 

and demographic 

transformation in large 

economies 

Changes in the demand cause 

by major economic 

transformation and adaptation 

of the supply  

LC 
Kondratiev waves (45-

60 years) 

Innovation and disruptive 

technology cycles 

Changes in the supply, 

potentially linked to changes 

on technology changes and/or 

mineral resources endowment 

Table 4.11: Potential link between metal prices cyclical components and economic cycles. 

 

                                                      
32 Such as England vs. US (industrialization of US), the US vs. Eastern Europe/Japan (post Second World War), 

and US vs. China (currently). For more details, revise Allison (2017). 



72 

 

4.5. Conclusions 

Applying the ACF on the real metals prices (base metals, iron ore, and gold) and using a novel cyclical 

decomposition (which considers the main findings of one of the most documented theories of long 

economic cycles), it was identified long cycles of 45-60 years, highly correlated in most cases. 

Although both the short- and medium-term cyclical components are more relevant in explaining the 

deviations of real prices from trends, the long-term cyclical component is not negligible. 

Furthermore, long cycles in the prices of metals present a high level of coincidence with Kondratiev's 

theoretical waves; which are typically explained by the theory of innovation. However, the link 

between both cycles is still not evident. Considering that slow and steady changes in the supply side, 

perhaps connected to technological improvements, are more likely to explain the long cycles observed 

in metals prices, it is suggested to study how innovations flow into the metal industries and reshape 

the supply curve. 

Through the study of the correlation and the PCA for the short, medium and long cyclical components, 

it was identified that the degree of co-movement varies with the cycles frequencies. Particularly, it 

can be highlighted a high degree of co-movement for most of the metals analyzed in long cycles, 

while as the frequency increases, the co-movement is less intense; although still high. One possible 

explanation is that short and medium cycles can be more susceptible to particularities of their 

industries and markets, while long cycles due to a more generalized phenomenon. At least two 

particular cases are important to highlight. First, the view of gold as a strong safe haven would be 

validated only for the long cycles. Second, the substitution dynamic between copper and aluminum 

it is supported for long cycles, but not for cyclical components of short and medium term. 

The evaluation of the trend allows for validating the classic view of the mineral economics about 

trendless prices in the very long term. This result would be valid for copper, nickel, zinc, lead and tin 

from about the 1920/30s, and iron ore from the 1960s. The confirmation of this behavior in the very 
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long term would suggest that long-term cyclicity are likely to be connected to changes in supply. 

Therefore, future efforts in long cycles in metals prices should focus on understanding the potential 

cyclical dynamic of the changes in the supply-side factors, such as cyclical behavior in exploration 

activity, the evolution of the project portfolios and how technological innovation reshape the long-

term supply curve. 
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5. Evaluation of the Elliott Wave Principle  

5.1. Introduction  

The Wave Principle, known as the Elliott Wave Principle (EWP), is a theory widely used in technical 

analysis. It was developed by Ralph Nelson Elliott in the 1930s and reached great popularity during 

the 1930s and 1940s thanks to successful predictions of the United States (US) market. However, 

with Elliott’s death in 1948, the theory remained unknown for several decades, until the 1980s, when 

regained great popularity again. 

The theory claims that fluctuations in markets follow recognizable and repetitive patterns (called 

waves), caused by changes in mass psychology of market participants. Hence, one of the most 

important principles in Elliott’s theory is that markets behave like waves that repeatedly unfold as a 

result of recurrent changes in the mass psychology of the markets’ participants.  

On the other hand, the effect of mass physiology has been pointed out long ago as an important factor 

to consider in any system exhibiting dynamic equilibrium through time (Smith, 1776; Skar, 2004). 

For the specific case of metal commodity markets, authors such as Simon (1959) and Tapia-Cortez 

et al. (2018) have clearly indicated that mass psychology is a factor that must be considered in metal 

prices modeling. Empirically, the business mood has shaped the decision-making process for 

investments in mining, either in projects or exploration. A clear example of the latter is the high 

correlation observed between the exploration budget, which should be driven by long-term drivers, 

and the metal prices (Figure 5.1). Moreover, given the increasing participation of investors and 

speculators in the last decades on the metal commodity markets, mass psychology could be even more 

important for the current metal commodity markets. 
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Figure 5.1: Cyclicality of prices and exploration budget. 

Source: S&P Global Market Intelligence, 2018. 

 

Therefore, the main objective of Chapter 5 is to explore the EWP to evaluate whether it is a suitable 

approach for price modeling and there are aspects of the theory that could complement the 

understanding of the cyclical behavior of metal commodity markets. 

5.2. Literature Review: The Elliott Wave Principles and Mass Psychology 

Affecting Metal Commodity Prices 

In 1939 Elliott published “The Wave Principle”, where he introduced the principles33 that govern the 

markets, the patterns in which the market unfold, and the mass psychology associated with the market 

fluctuation phenomenon (Bolton, 1994). In 1946, Elliott added his wave principles to a more 

extensive work called “Nature's Law: The Secret of the Universe”. In this work, he connected his 

wave theory with the use of the numbers and ratios of the Fibonacci series (FS) for the prediction of 

market trends (Prechter and Frost, 2017), related to what is known today as Fibonacci Analysis (FA). 

Although Elliott successfully used his theory to predict the bullish trend of the Dow Jones Industrial 

Average (DJIA) in the 1940s, his theory gained real interest from the financial sector at the end of the 

                                                      
33 Note that some of the EWP where vaguely introduced by Charles H. Dow in his Dow Theory.  
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1970s, thanks to very accurate predictions made by the most renowned modern EWP practitioner, 

Robert Prechter34. This was followed by his publication, along with A.J. Frost, of the “Elliott Wave 

Principle”. This book, which is considered today the definitive guide of the theory, is a compilation 

of the work of Elliott, where the authors also introduced some adjustments to the original theory. Part 

of the popularity gained faded in the 1990s, due to poorly estimations of the bull trend in 1995 for the 

United States financial market. According to Blackman and Green (2017), these estimations turned 

out to be quite wrong for both the index value and the timing.  

Today, this theory is still very popular and widely used by practitioners of technical analysis, and 

three are the main principles behind the theory: the impulsive-corrective cycle, mass psychology as 

explanatory variable and the Fibonacci series ruling the Elliott’s waves. 

5.2.1. Impulsive-Corrective Cycle 

The foundation of Elliott theory is on the belief that markets are governed by the mass psychology, 

which is expressed repetitively in the form of waves. The way in which markets reflect the social 

psyche, therefore, is through cycles made up of the union of two patterns identified by Elliott as 

impulsive and corrective waves (or patterns).  

The impulse wave reflects an advance (increase) in the price, as shown in Figure 5.1, and is composed 

of 5 waves called waves 1, 2, 3, 4 and 5. The waves 1, 3 and 5 are responsible for defining the wave 

trend. Waves 2 and 4 are corrective movements to the trend. In contrast, the corrective wave or pattern 

introduces partial retracement35 to the impulse wave and is composed of three waves named A, B, 

and C; as shown in Figure 5.1. From the union of an impulse wave (1, 2, 3, 4, 5) with a corrective 

                                                      
34 Robert Prechter is considered one of the most important practitioners of the EWP. He has a bachelor in 

psychology from Yale University, worked in Merrill-Lynch as a market technician, and founded the Elliott 

Wave International (an investment adviser firm). Today he is also known for his Socionomics theory.  
35 The theory also introduced other corrective patterns that do not follow exactly this behavior (i.e. triangular 

waves). 
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wave (A, B, C) an 8-waves cycle is obtained. From the union of several of this minimum unit, cycles 

of higher degree are built.  

 
Figure 5.1: Impulsive and Corrective patterns forming one impulsive-corrective cycle. 

Source: Modified from Prechter and Frost (2017). 

 

 

Elliott affirmed that he could observe these patterns regardless of the time scale considered. This 

allowed him to extrapolate the impulsive-corrective cycle to all time scales, providing the fractal36 

characteristic of his theory (idea illustrated in Figure 5.2). This was also supported by his belief that 

human nature does not change, is repetitive, and its activity is highly predictive. Consequently, 

fractals allow the theory to be valid regardless of the time scale used to analyze the market37. 

                                                      
36 Considering that the pattern is the same but it differs in its price and time amplitudes, the fractal obtained is 

called a statistical self-similarity fractal. 
37 Note that the idea that markets and business cycles could be modeled by fractals have been also study by B. 

Mandelbrot et al. (1997) through his Multifractal Model of Asset Returns (MMAR). The use of fractal allowed 

him to capture two of the empirically erroneous assumptions of the EMH: non-normality of the logarithm of 

returns and their autocorrelation. 
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Figure 5.2: Elliott’s fractal market cycle. 

Source: Modified from Prechter and Frost (2017). 

 

Elliott provided a system that classifies the waves according to the degree of the cycle (Table 5.1), 

giving a notation system to avoid interpretation problems with nested waves and indicating time 

references. For instance, a Grand Supercycle can typically comprise 100 years or more, and each sub-

cycle considers progressively shorter periods of time, up to the Subminuette Cycle, which represents 

a few minutes (Droke, 2000). This is also illustrated in Figure 5.2. 

Wave Degree/Cycle Impulsive Pattern (5 waves) Corrective Pattern (3 waves) 

Supermillennium [1] [2] [3] [4] [5] [A] [B] [C] 

Millennium (1) (2) (3) (4) (5) (A) (B) (C) 

Submillennium 1 2 3 4 5  A B C 

Grand Supercycle [I] [II] [III] [IV] [V] [a] [b] [c] 

Supercycle (I) (II) (III) (IV) (V) (a) (b) (c) 

Cycle I II III IV V a b c 

Primary [1] [2] [3] [4] [5] [A] [B] [C] 

Intermediate (1) (2) (3) (4) (5) (A) (B) (C) 

Minor 1 2 3 4 5  A B C 

Minute [i] [ii] [iii] [iv] [v] [a] [b] [c] 

Minuette (i) (ii) (iii) (iv) (v) (a) (b) (c) 

Subminuette i ii iii iv v a b c 

Table 5.1: Elliott wave degrees and the counting nomenclature. 

Source: Droke (2000), Prechter and Frost (2017). 
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5.2.2. Mass Psychology as Explanatory Variable 

For EWP, mass psychology is the main driver of the market’s behaviors. Thus, each of the 8 waves 

of a cycle (whether it is a Grand Supercycle of 100 years or Subminuette of a few minutes) reflects 

the different status of the market agent mood. Nevertheless, he and his follower are keen to stress the 

idea that mass psychology is more trackable through markets average indices, such as the DJIA or 

S&P500. This because it is in averages where independent views cancel out, allowing the emergence 

of the overall participants’ mood. 

Elliott defined the waves psychology as follow:  

• Wave 1: These are hard to identify due to the rationality behind their formation since they 

are generated in an environment of conflicting expectations. This trade-off occurs mainly 

between a predominantly negative view, due to the important momentum of the previous 

decline and the non-encouraging news and indicators of the economy, versus a growing 

questioning of this pessimism and its foundations. 

• Wave 2: Initially generated by the massive realization of the gains obtained during Wave 1. 

However, this selling process recalls the negative expectations of the near past, which tend 

to be temperamental due to a feeling of confirming previous pessimism. Due to this, a 

significant retracement of the market is observed. 

• Wave 3: The so-called powerful wave starts shyly with a moderate pessimism because of the 

previous correction. However, increasing good news and recovery of the fundamentals 

strengthen a generalized optimism, which leads to better earnings estimates. The 

consolidation of the recovery encourages investors to enter the market massively, causing a 

large volume of acquisition, even in assets that were previously unquoted (Calvo and 

Jiménez, 2001). Although most EWP practitioners agree that the wave 3 of a stock market 

tends to be the most intense, some indicate that in commodities this occurs in wave 5 

(Kotyrba, 2013). 
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• Wave 4: After a period of optimism -perhaps irrational- the questions about the foundations 

of this recovery begin. It is a period where there is a discrepancy between market participants; 

some of them wanting to benefit and others still betting on a greater recovery. However, a 

lack of a market worsening confirmation creates the basis for the next rise (Prechter and Frost, 

2017). As a consequence, this corrective wave tends to be extensive in time, complex in 

structure and with a discrete price retrace due to divergent views. 

• Wave 5: After the observed deterioration, many fears are dissipated, and a rising pressure 

begins again, but of less dynamism than the wave 3. Partially because the optimism shown 

during the complete uptrend begins to show signs of weakening, which is expressed in a 

slowdown toward the new peak. Additionally, this period is influenced by an important 

irrationality derived from the late entry into the market of a significant number of participants, 

wanting to take advantage of what they could not in the previous trends. 

• Wave A: This wave begins the change of trend. There is a remnant optimism of the extensive 

upward trend experienced, so the fall is associated with a profit taking. However, the first 

signs of a more fundamental deterioration emerge. 

• Wave B: As the authors Prechter and Frost describe, B waves are: “false, silly games, bull 

traps, speculators' paradise, and/or expressions of silly institutional complacency.”. The 

above is expresses through a strong and unsupported dynamism in the market derived from 

a mistaken perception that the market still remains in an uptrend. 

• Wave C: After a strange period of expectations outside the fundamentals, there is a total 

decline, where panic spreads and an unsuccessful race begins for haven assets. Ultimately, 

the market collapses when accepting that a bear market has been consolidated. 

5.2.3. Fibonacci Series Ruling Elliott Waves 

In Elliott's first work, he did not introduce a rational system that allowed to make estimations of the 

waves time and price amplitudes (recall Figure 5.1 for the illustration of the wave’s time and price 
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amplitude). However, as the author Bolton (1994) indicated, Elliott developed the fundamentals for 

the impulse-correction shape through the use of the FS in his second work: “Nature's Law: The Secret 

of the Universe”. With this, Elliott established the basis for what is known today as FA. 

The FS is attributed38 to the work of the Italian mathematician Leonardo Fibonacci da Pisa, who 

derived such a series -in the thirteenth century- as a result of the study of the growth of rabbit 

population. The first two terms of the series are 1 and 1, and afterward, the series is described by 

Equation 5.1, obtaining: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ..., ∞. Some of the most relevant 

properties of the FS are the values obtained asymptotically from the division between consecutive 

numbers of the series, i.e., 0.618 and 1.61839; the latter being the golden number represented by the 

Greek letter phi (φ).  

𝑠𝑛=1 = 1; 𝑠𝑛=2 = 1; 𝑠𝑛 = 𝑠𝑛−1 + 𝑠𝑛−2, ∀𝑛 ∈ 𝑁+ 𝑤𝑖𝑡ℎ 𝑛 > 2  Eq. 5.1 

 

Elliott began to study the FS and its ratios (Fibonacci Ratios or FR), theorizing that there is a universal 

structural force that governs natural phenomena and being the humankind -and everything derived 

from it- the result of nature, then it is subject to the same forces. 

Initially, Elliott noticed that the counting of his waves fitted to the series numbers, and therefore he 

declared that the FS governs the number of waves observed in the markets (see the waves counting 

in Figure 5.2). Then, Elliott applied the Fibonacci series to the duration of bull and bearish markets 

(e.g. observing the DJIA, the cycle between the lows of 1921 and 1942 lasted 21 years, between the 

high of 1928 and the low of 1949 lasted 21 years, the bull cycles of 8 years between 1921 and 1929 

and 1949 and 1957, etc.). However, Bolton (1994) said that Elliott's findings did not provide useful 

foundations for the prediction of cycles extensions.  

                                                      
38 There is evidence that the series was formalized by Indian mathematicians called Pingala and Virahanka 

between 200 and 700 DC. 
39 Note that these ratios (0.618 and 1.618), as well as other ratios obtained from the division of more distant 

values in the FS, called Fibonacci ratios (FR), are not exclusive to the FS, and are obtained from any series 

where the next term is the sum of the two previous terms. 
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Finally, Elliott introduced the notion that waves’ time and price amplitude were connected to each 

other by the golden number, as well as others FR. In his work, Elliott found several cases where these 

ratios fitted to time and price amplitudes, becoming a pioneer in what is known today in technical 

analysis as FA. These findings led Elliott and its followers to establish that Elliott’s waves are 

governed by the FS and FR. 

The FA results are crucial for Elliott’s theory since the results provide a base to model cycles and 

perform forecasts. More specifically, consecutive waves are related through the FR. Therefore, once 

the correct wave has been identified (typically the wave 1), the forecasting of next Elliott’s waves is 

based on the concatenation of waves through the FR40. At this point, it is very important to highlight 

that the FA relies on the correct counting of waves, which in practice has been proven to be open to 

the interpretation of the technical analysts (Droke, 2000; Aronson, 2007). Furthermore, modern 

technical analyst state that to obtain reliable predictions with EWP, it is crucial to empirically define 

the probabilities associated with the advance and retracement of a wave toward the FR (Teseo, 2001).  

There is some consensus among EWP practitioners about the most useful FR, which are listed in 

Table 5.2 (Teseo, 2001; Rinehart, 2004; Brown, 2012; Prechter and Frost, 2017). Moreover, there 

are three ratios widely used by technical analysts in spite of the fact that they do not belong -at least 

directly- to the FR (Balan, 1989; Rinehart, 2004). These are 0.5000, 0.7862, 1.7862. The reason for 

the first (0.5000) is that is the result of the division between the third and second term of the Fibonacci 

ratios. The second (0.7862) is the result of the square root of the inverse of the golden number41. The 

third (1.7862) is the second plus 1. 

 

 

                                                      
40 The forecast requires the correct identification of time and price amplitudes associated with wave 1, since 

next waves will be related to wave 1 through the Fibonacci ratios. 
41 (1/φ)0.5 = 0.7862, where φ=sn /sn+1, with sn and sn+1 elements of the FS. 
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Series Element Involved Ratio Value when n→+∞ 

sn, sn+3 sn /sn+3 0.2361 

sn, sn+2 sn /s n+2 0.3820 

s2, s3 s2/s3 0.5000 

sn, sn+1 sn /s n+1 0.6180 

sn, sn+1 (sn /s n+1)0.5 0.7862 

sn sn / sn 1.0000 

sn, sn+1 sn+1/ sn 1.6180 

sn, sn+1 1+(sn /s n+1)0.5 1.7862 

sn, sn+2 sn+2/ sn 2.6180 

sn, s sn+3 sn+3/sn 4.2361 

Table 5.2: FR commonly used by EWP and FA practitioners. 

Source: Teseo (2001), Rinehart (2004). 

For instance, Figure 5.4 shows the formation of three different impulsive-corrective cycles using 

different combinations of Fibonacci ratios for the time and price amplitude for the internal waves 2 

to 5 in the impulsive pattern and the full corrective pattern42.  

 
Figure 5.4: Examples of the impulsive-corrective wave (one cycle) using EWP and FA. 

 

 

5.2.4. Main Criticism  

Despite the popularity among technical analysts, EWP and its applicability have been subject to 

criticism by the academic circles, indicating at least three core weaknesses: i) mass psychology as the 

                                                      
42 Note that all of them start from the same wave 1, which is the starting point for modeling the rest of the cycle. 
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sole explanatory variable; ii) use of FA for the pattern formation; and iii) Subjectivity and high 

flexibility. 

5.3.1 Mass psychology as unique explanatory variable 

EWP considered that the only explanatory variable behind markets cycles is mass psychology, an 

assumption that does not have scientific support so far. Although mass psychology might influence 

markets and business cycles (field currently study by the behavioral economics), there are several 

variables and phenomenon that have been empirically assessed as explicative of these economic 

cycles. Some of them are related to the theory of the countries’ economic development in stages, 

changes in countries’ factor endowment, international trading context, and technological shift.  

In response to this line of criticism, Prechter -one of the most famous EWP practitioner- developed 

the Socionomics Theory (Table 5.3 summarizes the contrast between the traditional economic model 

and the Socionomics). In this theory, Prechter posits that mass psychology is not the result of world 

events, but in the other way around. In other words, the social mood, which happens to be measurable 

by the markets’ behavior, is endogenous, patterned and responsible for all phenomena in the world 

(Szala and Holder, 2004).  

Economic Model Socionomic Model 

1. Objective, conscious, rational decisions to 

maximize utility determine financial values 

1. Subjective, unconscious, pre-rational 

impulses to herd determine financial values 

2. Financial markets are random 2. Financial markets are patterned 

3. Financial markets are unpredictable 3. Financial markets are probabilistically 

predictable 

4. Financial markets "trend toward 

equilibrium" and "revert to the mean" 

4. Financial markets are dynamic and do no 

revert to anything 

5. Investors' decisions are based on knowledge 

and certainty 

5. Investors' decisions are fraught with 

ignorance and uncertainty and they use the 

information to rationalize emotional imperatives 

6. Changing occasions prognostic changes in 

the values of related financial instruments 

6. Changing values of financial instruments 

presage changes in associated events 

7. Economic principles govern finance 7. Socionomics principles govern finance 

Table 5.3: Contrast of the market behavior assumptions for classic economic & socionomic. 

Source: Szala and Holter, 2004. 
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5.3.2. Use of FA for the pattern formation 

The second critic largely discussed relates to the claims that the FS and FR govern the geometry of 

the impulsive-corrective pattern. Once again, these assumptions have not been scientifically proven, 

beyond some researchers who have found rather low correlations between FR and market movements 

(Bhattacharya and Kumar; 2006). Furthermore, opponents stated that considering the inability of 

Elliott’s original theory to predict, the usage of FA was included. 

5.3.3. Subjectivity and high flexibility 

Regarding the high flexibility, the critics point out that the large set of rules, the fractal nature, and 

the FA provide to the method with a high level of flexibility. As a consequence, contrarians to the 

theory argue that practitioners are capable of interpreting any market moves on the basis of EWP. 

Mandelbrot and Hudson (2004) stated that the judgment of wave analysts is more important than the 

objectivity of numbers, reflecting that the flexibility is vast enough so that subjectivity becomes 

crucial in its application. In addition, Aronson (2007) remarked that EWP capability to fit any market 

history segment was based on the method’s large degree of freedom. However, the capacity to fit past 

history has nothing to deal with the capacity to forecast43. 

5.3. Application of EWP for the Study of Metal Commodity Cycles through a 

Monte Carlo Simulation  

The next step is to apply the EWP for the modeling of metal commodity cycles. It is very important 

to mention that as the method does not establish clear rules, but rather principles, it is virtually 

impossible to fully remove the subjectivity. Nevertheless, capturing the empirical knowledge from 

EWP practitioners allows for narrowing down the principles to a set of rules that can be simulated.  

                                                      
43 Aronson used the analogy of a large-order polynomial, which is capable of fitting well to any historical data 

chart, however it is likely useless in forecasting. 



86 

 

Therefore, a Monte Carlo simulation was implemented for the modeling of cycles based on EWP 

practitioners’ knowledge. The methodology is summarized in Figure 5.5 and is described in the next 

paragraphs. 

 
Figure 5.5: Methodology for the forecasting of Elliott waves. 

 

5.3.1. Collection of valid impulsive-corrective wave 

Given that the forecasting of Elliott waves is based on the concatenation of waves through FR, starting 

from a correctively identified wave 144, the objective of this step is to select valid impulsive-corrective 

cycles observed in the metal commodity prices. In practice, these were the results of an investigation 

that gathered Elliott patterns from well-known practitioners. The wave 1 of the selected impulsive-

corrective waves will be the initial value upon which the impulsive-corrective cycle is modeled. 

Moreover, the modeled cycles will be contrasted with the actual values of the impulsive-corrective 

cycle.  

The valid impulsive-corrective waves and their sources are presented in Figure 5.6 (the charts with 

the original wave are shown in Appendix 2) and Table 5.4, respectively. The objective was to select 

a group of metals historically used as investment means (since investors’ mass psychology could be 

                                                      
44 The correct identification of a wave 1 is subject to the judgment of practitioners.  
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more presented in their price formation process) and representative of the economic status, as well as 

a metal price index, which summarized the overall behavior of base metals.  

 
Figure 5.6: Elliott wave detected by practitioners in the gold, silver and copper prices and the base 

metal and iron ore index. 
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Metal/Index Period Frequency Source of Elliot Wave Source of Data 

Gold 
01/1972-

09/1976 
Monthly Prechter and Frost (2017) Cochilco 

Silver 
01/2016-

12/2016 
Daily elliottwave5.com (2017) Cochilco 

Copper 
01/2016-

05/2017 
Daily 

Ramki Ramakrishnan (2017), 

wavetimes.com 
Cochilco 

Base Metals 

& Iron ore 

Index (BMII) 

03/1999-

01/2016 
Monthly 

Isaac (2017), 

www.elliottwave.com 
World Bank 

Table 5.4: Details of the valid impulsive-corrective waves. 

 

Regarding the Elliott wave observed in the metal price index, no publicly available detection of an 

Elliott wave over a well-known metal price index was found. However, the work of Elliott Wave 

International (2017) provides the detection of an impulsive-corrective cycle over the discontinued 

Continuous Commodity Index (CCI)45 between 1998-201746. Over this period, the CCI shows a 

similar pattern than the World Bank’s base metal and iron ore prices index, which is corroborated by 

a Pearson correlation coefficient of 92%. Thus, the “equivalent” Elliot wave observed on the base 

metal and iron ore prices index (BMII) was used (Appendix 2 shows the comparison between the 

CCI and the base metal and iron ore prices index). 

5.3.2. Definition of the functional relationship among waves 

The goal of the second stage is to define the functional relationship among the internal waves47 of the 

impulsive-corrective cycle. This is done in a two-step process. The first is the definition of the FR 

towards which a wave trend in time and price amplitude (called the “sections”) and their probabilities. 

Once defined the section towards which a wave is trending, the next step is to select a random number 

                                                      
45 The Continuous Commodity Index, today known as Thomson Reuters Equal Weight Commodity Index, is 

an index currently provided by Thomson Reuters about the futures prices of 17 commodities evenly weighted: 

crude oil, heating oil, natural gas, gold, silver, platinum, copper, cocoa, coffee, corn, soybeans, sugar, orange 

juice, wheat, cotton, live cattle and live hogs. 
46 Interesting period of analysis as it contains the super cycle of commodities. 
47 Precisely, waves 2, 2, 3 ,4, 5 and II. 
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from a probability distribution function (PDF) able to model the wave behavior of “trending” towards 

certain FR.  

For instance, let say that one wants to simulate the wave 2 (W2). Let assume that W2 is bonded to 

wave 1 (W1). Its price amplitude trends towards sections defined by the Fibonacci ratios FR1, with 

60% of probability, and FR2, with 40%. Moreover, its time amplitude trends towards sections defined 

by the Fibonacci ratios FR3, with 70% of probability, and FR4, with 30%. The selection of the sections 

of trending in price and time amplitude is simulated by the respective discrete PDFs. Once the sections 

have been selected (let assumed sections defined by FR2 and FR4), the definitive price and time values 

for W2 are selected from PDFs defined over these sections. The method explained is shown in Figure 

5.7. This modeling is able not only to capture the empirical knowledge observe in the literature but 

also the essence of the principle which is the idea of prices trending “towards” Fibonacci ratios. 

 
Figure 5.7: Hypotheticals modelling of wave 2. 
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The concatenation of waves through FR, the definition of the discrete PDFs for the sections of 

trending, and the PDFs for the selection of the ratios over the section are based intensively on the 

work of Teseo (2001), Rinehart (2004) and Prechter and Frost (2017).  

Particularly, for the linkage among waves through FR and the probability of advance or retracement 

towards these FR, the work of Teseo (2001) and Rinehart (2004) was used. They defined the FR 

typically observed in markets and their probabilities48. No literature was found on the probability of 

the time amplitude realization, hence it was assumed they are equiprobable.  

For the shape of the PDF within sections, no extensive bibliography was found. Nevertheless, the 

contribution of Swannell (2003A, 2003B) is one to be highlighted; although no enough for the 

purpose of the simulation of a complete impulsive-corrective cycle. Therefore, the triangular 

distribution was assumed for the moves within a section, since its parameters (i.e., a=min, b=max, 

and c=mode) are easily defined considering the limits of the sections. For example, possible price 

retracement of Wave 4, which are subject to the price amplitude of Wave 3, are simulated drawing 

random numbers from a triangular distribution with parameters (0.23, 0.38, 0.38) with 15% of 

chances, a triangular distribution with parameters (0.38, 0.50, 0.50) with 60% of chances, and so on. 

The same applied for the time amplitude. The information used for the stochastic model is 

summarized in Tables 5.5-6. 

 

 

 

 

                                                      
48 For the estimation of time amplitude, the work of Teseo (2001) provides the FR that relate waves. However, 

he did not provide the probability of this FR, and therefore, unlike the case of the price amplitude, it was 

assumed that FR for time amplitud were equiprobable 
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Wave 
Connected to Price 

of… 
Move 

Price Amplitude 

Section 

Section 

Probability 
PDF Within Section 

W1 
Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable 

W2 

W1 Retracement 0.23-0.38 12% Triangle(0.23,0.38,0.38) 

W1 Retracement 0.50-0.61 73% Triangle(0.50,0.61,0.61) 

W1 Retracement 0.61-0.78 15% Triangle(0.61,0.78,0.78) 

W3 

W1 Advance 0.78-1.00 2% Triangle(0.78,1.00,1.00) 

W1 Advance 1.00-1.61 15% Triangle(1.00,1.61,1.61) 

W1 Advance 1.61-1.78 45% 
Triangle(1.61,1.78, 

1.78) 

W1 Advance 1.78-2.61 30% Triangle(1.78,2.61,2.61) 

W1 Advance 2.61-4.23 8% Triangle(2.61,4.23,4.23) 

W4 

W3 Retracement 0.23-0.38 15% Triangle(0.23,0.38,0.38) 

W3 Retracement 0.38-0.50 60% 
Triangle(0.38,0.50, 

0.50) 

W3 Retracement 0.50-0.61 15% Triangle(0.50,0.61,0.61) 

W3 Retracement 0.61-0.78 10% Triangle(0.61,0.78,0.78) 

W5, if 

W3>1.61W1 

W1 Advance 0.78-1.00 2% Triangle(0.78,1.00,1.00) 

W1 Advance 1.00-1.61 16% Triangle(1.00,1.61,1.61) 

W1 Advance 1.61-2.61 82% Triangle(1.61,2.61,2.61) 

W5, if 

W3<1.61W1 

W1-W2+W3 Advance 0.50-0.61 2% Triangle(0.50,0.61,0.61) 

W1-W2+W3 Advance 0.61-1.00 16% Triangle(0.61,1.00,1.00) 

W1-W2+W3 Advance 1.00-1.61 82% Triangle(1.00,1.61,1.61) 

Table 5.5: Price amplitude waves link through FR and probability of scenarios. 
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Wave 
Connected to Time 

of… 
Move 

Time Amplitude 

Section 

Section 

Probability 
PDF Within Section 

W1 
Not Applicable Not Aplicable Not Applicable Not Applicable Not Applicable 

W2 

W1 Advance 0.00-0.50 33.3% Triangle(0.00,0.50, 0.50) 

W1 Advance 0.50-0.61 33.3% Triangle(0.50,0.61,0.61) 

W1 Advance 0.61-0.78 33.3% Triangle(0.61,0.78,0.78) 

W3 
W1 Advance 0.00-1.61 50% Triangle(0.00,1.61,1.61) 

W2 Advance 0.00-2.61 50% Triangle(0.00,2.61,2.61) 

W4 

W3 Advance 0.00-0.50 16.7% Triangle(0.00,0.50, 0.50) 

W3 Advance 0.50-0.61 16.7% Triangle(0.50,0.61,0.61) 

W2 Advance 0.00-0.61 16.7% Triangle(0.00,0.61,0.61) 

W2 Advance 0.61-1.00 16.7% Triangle(0.61,1.00,1.00) 

W1-W2+W3 Advance 0.00-0.38 16.7% Triangle(0.00,0.38, 0.38) 

W1-W2+W3 Advance 0.38-0.61 16.7% Triangle(0.38,0.61,0.61) 

W5 

W2 Advance 0.00-0.61 12.5% Triangle(0.00,0.61,0.61) 

W2 Advance 0.61-1.00 12.5% Triangle(0.61,1.00,1.00) 

W3 Advance 0.00-0.61 12.5% Triangle(0.00,0.61,0.61) 

W3 Advance 0.61-1.00 12.5% Triangle(0.61,1.00,1.00) 

W4 Advance 0.00-0.61 12.5% Triangle(0.00,0.61,0.61) 

W4 Advance 0.61-1.00 12.5% Triangle(0.61,1.00,1.00) 

W1-W2+W3 Advance 0.00-0.61 12.5% Triangle(0.00,0.61,0.61) 

W1-W2+W3 Advance 0.61-1.00 12.5% Triangle(0.61,1.00,1.00) 

Table 5.6: Time amplitude waves link through FR and probability of scenarios. 
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Figure 5.8 illustrates graphically the modeling, showing an example of the potential materialization 

of wave 3 based on the information of Tables 5.5-6. 

 
Figure 5.8: Idealization of the linkage between the wave 3 and 1 based on the work of Prechter and 

Frost (2017), Teseo (2001) and Rinehart (2004). 

 

5.3.3. Monte Carlo Simulation 

Once the empirical knowledge is assembled into a model to forecast Elliott waves, the Monte Carlo 

simulation is performed with 10.000 iterations. Due to the low complexity of the model, random-

number generation processes and the simulation were programmed in VBA Excel 2016. It is 

important to mention that the random number generator of Microsoft Excel 2007 and previous 

versions (based on the Wichmann–Hill 1982 RNG method) have been vastly discredited 

(McCullough and Heiser, 2008). Nevertheless, from 2010 versions, Microsoft has improved the 

random number generator and today this version generates random numbers that pass standard tests 

of randomness (Mélard,  2014). 
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Figure 5.9 shows one simulation for the gold case presented in Figure 5.6 where: i) the original price 

series is the orange line; ii) the actual Elliott pattern is the black line; iii) the simulated Elliott wave 

is the blue line.  

 
Figure 5.9: Impulsive-corrective cycle as result of one simulation. 

 

5.4. Results and Discussion 

Figures 5.10-13 show the simulated results49 of wave I (composed by waves 1, 2, 3, 4, 5) and wave 

II obtained for the gold, silver, copper and BMII cases, respectively. The actual values of the waves 

are identified with the black circle tag, while the simulated value for each wave is identified with 

different colors.  

The results of the simulation are conclusive in indicating that this methodology systematically fails 

in representing the cyclical behavior observed in the metal prices under evaluation through the 

impulsive-corrective cycles suggested by the EWP practitioners. Indeed, when visually comparing 

                                                      
49 Just 1,000 sample were displayed to favor the visualization of the results. 
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the actual value of each internal wave whit their corresponding simulated values (called the simulated 

domain), generally they are not contained or, at the very best, they are at the edge of the respective 

domain. For instance, when observing the actual wave 2 of the gold case (Figure 5.10), this is not 

contained in the simulated domain observed in the grey dots. Although waves 3 and 4 are within their 

domain (yellow and brown dots), they are at the edge. Wave 5 is also out of the domain (green dots). 

Finally, wave II is also at the edge of the simulated domain (blue dots). The pattern previously 

described becomes even more dramatic for the cases evaluated in silver and BMII. 

 
Figure 5.10: Price-time simulations for internal waves of the impulsive-corrective cycle in the gold 

price. 
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Figure 5.11: Price-time simulations for internal waves of the impulsive-corrective cycle in the 

silver price. 

 

 
Figure 5.12: Price-time simulations for internal waves of the impulsive-corrective cycle in the 

copper price. 
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Figure 5.13: Price-time simulations for internal waves of the impulsive-corrective cycle in the BMII. 

 

To corroborate the previous perception, Figures 5.14-18 display the simulated domain for each of 

the simulated waves in the silver case, with their respective percentiles 5 and 95 in both price and 

time, and the actual waves values. The results for the gold, copper, and BMII are presented in 

Appendix 3. As can be observed, the actual values of the waves are consistently out of the most likely 

price-time region (i.e., the region defined within the limits of the percentiles 5 and 95). 
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Figure 5.14: Simulated values of W2 in the silver price. 

 

 
Figure 5.15: Simulated values of W3 in the silver price. 
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Figure 5.16: Simulated values of W4 in the silver price. 

 

 
Figure 5.17: Simulated values of W5 in the silver price. 
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Figure 5.18: Simulated values of WII in the silver price. 

 

Furthermore, it is important to highlight the large dispersion of the price-time bivariate distribution, 

being importantly volatile in time. Thus, the method provides high uncertainty on the length of the 

cycle. For instance, the impulsive-corrective cycle in the copper case could have last between 210 to 

720 days with 90% confidence. This is quite aligned with one of the main critics about high flexibility. 

5.5. Conclusions 

The fact that the method is based on principles rather than on a set of scientifically verifiable rules 

makes it impossible to completely eliminate a subjective component. Although a thorough 

bibliographic review of several of the most important EWP practitioners allowed for generating 

stochastically modellable rules, the subjectivity in the model remains present, at least through the 

assumption of the correct identification of wave 1. Thus, the applicability is bounded to the expertise 

of EWP experts. 
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Over the three cases analyzed, only the copper case was partially well modeled. However, the wide 

dispersion in the price-time domain validates the critic that the EWP provides enough flexibility to 

fit Elliott waves to a wide range of results50.  

Although it has been indicating by EWP practitioners that the wave principle is not suitable for 

individual assets. Nevertheless, EWP is suggested for the study of metal commodity markets where 

investor involvement is substantial, such as gold and silver51. The results provide evidence to suggest 

that the trends observed in metal commodity prices, including gold and silver, do not target FR, which 

is in line with the literature review. 

Assuming that the EWP practitioners provided accurate waves counting, the results of the simulations 

suggest that the method is weak in properly model cycle in the metal commodity analyzed. This 

conclusion is independent of whether the evaluation is over days, months, and years.  

Finally, to the question of whether investigating mining companies’ stocks instead of the metal 

commodity prices, one could recall the idea that is in averages where independent views cancel out, 

allowing the emergence of the overall mass psychology. Using this argument, one could say that this 

idea could bring little benefit. Indeed, knowing the high correlation between the mining companies’ 

stocks prices and the metal commodity prices and given the results of the simulation, one could also 

argue that this may not bring benefit. 

                                                      
50 Note that this flexibility could be further extended by adding more FR into the model. 
51 Indeed, investors’ consumption explain 36% (World Gold Council, 2017) and 20% (The Silver Institute, 

2017) of current world consumption for gold and silver, respectively. 
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6. Conclusions and Recommendations 

An exhaustive bibliographic review allowed a successful formal evaluation of the BPF and EWP for 

the study of the cyclicity in commodity prices. The evaluations have allowed expanding the 

knowledge of the use of these tools in mineral economics, in addition to complementing the current 

understanding of the behavior of metal prices. In particular, the BFP was applied under an 

unpublished decomposition, supported by empirical evidence. On the other hand, the vast empirical 

knowledge gathered from important EWP practitioners allowed to reduce the subjectivity of the 

method through a simulation of Monte Carlos, permitting a formal evaluation. 

Regarding the BPF technique, it can be said that using a novel cyclical decomposition, it was possible 

to extract cyclic components of short-, medium- and long-term correlated with the recent findings in 

metal prices cyclicity. Moreover, a long-term cyclical component of 45-60 years was found, not 

negligible and highly correlated with those of the long economic cycle theory. Furthermore, the tool 

allowed to corroborate and complement some classical hypothesis of the mineral economics with 

respect to the trend and co-movement of metal prices. Finally, The BFP, and particularly the 

Asymmetrical Christiano-Fitzgerald Band-Pass Filter, is a technique that can improve the 

understanding of the cyclical components. Further research is required to incorporate its benefits in 

cycles modeling into forecasting. 

Regarding the EWP evaluation, the technique has a weak conceptual framework for its applicability 

in the metal commodities markets. Indeed, the subjectivity of technical analyst cannot be fully 

removed. The fluctuations and cycles observed in the prices of metals commodities would not be 

subject to the dynamics suggested by EWP. 
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Appendices 

Appendix 1: Visual Inspection of Kondratiev Waves in Metal Commodity 

Prices  

The method for extracting the long cyclical component is the same applied by Kondratiev in its 

original work and has the sole purpose to provide a first approach to the observation of long cycles 

in metal prices highly synchronized with the long economic cycles of Kondratiev theory. Prior 

application of the centered 9-years moving average to the deviations from the trend, the prices were 

inflation-adjusted and indexed to 1900=100. 
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Appendix 2: Original Elliott wave pattern in gold, silver, and copper prices and 

the CCI and base metal and iron ore index 

Gold Case: Elliott impulsive-corrective cycle detected in the gold price by Prechter and Frost (2017). 

between 1972 and 1974 on monthly basis. This Elliott wave was used as the base for the simulation 

on Section 5.4. 
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Silver Case: Elliott impulsive-corrective cycle detected in the silver price by ElliottWave5.0. 

between January 2015 and March 2017 on a daily basis. This Elliott wave was used as the base for 

the simulation on Section 5.4. 

 

Copper Case: Elliott impulsive-corrective cycle detected in the copper price by Ramki 

Ramakrishnan (WaveTimes.com) between August 2015 and July 2017 on a daily basis. This Elliott 

wave was used as the base for the simulation on Section 5.4. 
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CCI & Base metal and iron ore index: Elliott impulsive-corrective cycle detected in the Continuous 

Commodity Index (CCI) by J. Kennedy and N. Isaac (ElliottWaveInternational.com) between 1980 

and 2017 on an annual basis. This Elliott wave was used as the base for the simulation on Section 

5.4. 
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Appendix 3: Simulated values of W2 to W5, and WII for gold, copper and BMII 

cases 

Gold Case: Simulated values of W2, W3, W4, W5, and WII, along with their percentiles 5 and 95 

for price and time amplitudes, for the gold case. 
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Copper Case: Simulated values of W2, W3, W4, W5, and WII, along with their percentiles 5 and 95 

for price and time amplitudes, for the copper case. 
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BMII Case: Simulated values of W2, W3, W4, W5, and WII, along with their percentiles 5 and 95 

for price and time amplitudes, for the BMII case. 
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