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Abstract 

Automatic repeat request (ARQ) is a widespread technique for error control in data 

communication systems. This research examines the performance of conventional 

ARQ schemes over fading channels. The basic Gilbert-Elliott two-state Markov mode! 

is used to represent these channels. This basic model is recursively extended to a 

2"-state Markov chain suitable for n-bit block codes. Using this 'Extended Gilbert­

EllioU' model, an approximation of the throughput efficiency of the conventional 

ARQ schemes is derived. This approximation is particularly valid for slow fading 

channels. Furthermore, performance plots are obtained, showing the effects of channel 

fading on throughput efficiency: ARQ performance deteriorates with slower fading, 

or alternatively, higher channel memory. Consequently, frequency-hopped codeword 

transmission is explored, a technique by which channel memory can be reduced. 

Throughput performance of frequency-hopped ARQ systems is derived, which shows 

significant potential improvements over systems with no frequency hopping. 
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Précis 

La retransmission à requête automatique (ARQ) est l'une des techniques les plus 

répandues pour le controle d'erreurs dans les systèmes de communicatiol1&. Cette 

recherche traite de la performance des techniques ARQ conventionnelle.s sur des 

canaux à mémoire. Ces canaux sont représentés par une chaine de Markov à df'uX 

états, mieux connue sous le nom de 'modèle Gilbert-Elliou'. Cc modèl(' df' base 

est ensuite augmenté, à l'aide d'une méthode récursivc, à une chaine de Markov à 2n 

états. En utilisant cette extension au modèle Gilbert-Elliott, on peut alors représenter 

les changements d'état entre des mots de code de n bits de long, et ainsi dériver une 

approximation de la performance, en t.erme d(' débit, des systèmes ARQ convent.ioll­

nels. Cette approximation est valide surtout lorsque l'on opère sur des canaux à haut(· 

mémoire. Cette recherche montre également, à l'aide de plusieurs graphes, le!> effets 

de la mémoire du canal sur le débit des systèmes ARQ. Selon ces graphes, la perfor­

mance des systèmes ARQ est affect.ée négativement par une croissance de la mémoire 

du canal. Conséquemment, nous examinons des systèmes ARQ avec changement au­

tomatique de fréquence, car cette dernière technique constitue un moyen de reduire la 

mémoire du canal. Des expressions montrant le débit de tels systèmes sont derivécs. 

Ces expressions montrent qu'une ammélioration substantielle peut être obtenue par 

l'utilisation de systèmes ARQ à changement automatique de fréquenœ. 
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Chapter 1 

Introduction 

In this chapter, sorne background matcrial pertaming ta tht' suhjert matter of thi~ 

thesis is presented A general introduction to digital comrnulllcallOIl systt'rns all<1 

communication'- theory IS t he su h ject of the first sect iOIl Parll<lJ!<tr é.t tl'Ilt iOIl i:-. 

given to channel codine techniques, such ac; forward ('rror (()rf(>ct Ion allcl aut.Ol1latl< 

repeat requt'st. The latter scheme IS dt'scflbed at ]ength in Sedum 1.:1. a<, automatl( 

repeat request sche!lw!' constltutl' t11(' mam object of ollr study III S(·ctiorl 1 ·1, fadlJlg 

channels, whlch are the transrni~!>lon media of intere!'>t IrI tI})!'> n':'('itrch, arf' hr)('f1y 

described. Fmally, a surnrnary of the issues discussed ill thl!'> t}wf,i:-, IS giwn al th .. 

end of this introductory chapter. 

1.1 Communication Systems 

The study of communication systems is primarily concerned with the reliable trans­

mission of information from one point to another across a given medium. This trans­

mission medium is commonly referred to as a communications channel, or simply 

channel. Typical channels indude telephone lines, satellite communication links, 

wireless radio links, data storage media, etc. The information to be transmitted over 

such channels could be, for example, speech, music, video images, weather data, etc. 

According to the information theory work developcd by Shannon in the 1910'&. in­

formation can always be reliably represented as a sequence of binary digits [1]. The 

problem of information representation is referred to as source codrng. In this rescarch, 

we assume information is already available in binary format and focus instead on ways 

1 
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Figure 1.1: Digital communications system 

of reljably sending the binary datd over tht' transmission medium or channel. 

.. 

Information transmission is almost always subject to sorne kind of disturbance, 

commollly referred to as norse. This disturbance could be in the (orm of thermal 

noise, interfcrence from other users of the same channel, physical obstacles to the 

propagation of c1ectromagnetic waves, and so on. The presence of noise over a channel 

causes errors to OCClU III the data stream In this research, we are interested in the 

problem of channel codzn9, that is the study of various techniques aimed at leducing 

errors in the information dehvered at the recelving end of the communication system. 

A block dlagram of a typical digital communication system is shown in Figure 1 1. 

The diagram of Figure 1.! shows the information flow and plocessing in the com­

munication system. Informal1on is generated by the sour<..e, where it is represented 

by the time waveform x(t). This waveform is then processed by a source encoder, 

which is responsible for t.ransforming the information into a time-discrete sequence 

of binary digits Xe. This binary sequence is then encoded into another binary se­

quence ae. Encoding source data is done so that any errors corrupting the data as 

a result of channel noise can be detected and corrected at the receiving end of the 

communication system. The correction for errors is done in conjunction with the 

channel decoder at the receiving site. The data stream a, resulting {rom the channel 

encoder is subsequently modulated into a time signal s( t) suitabie for transmission 

over a given real channel. At the receiving end of the channel, the resulting signal 

r(t) is demodulated back into a binary sequence he, which is then fed to the channel 

dt'coder for t'rror detect ion and correction. The resulting error-corrected sequence Yt 

is then delivered to the destination user, via the source decoder which returns the 

data sequence to its original form. Since the aim of a communication system is to 
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transmit informaI JOli from 0111' point ta anoth('r a~ r('I!dbly a.:- pO~"'lble, tilt' role 1)1' 

channd codlng I~ to lC'turn to the source d('Cl,dt'r él :,('<111('111 (' !lt tb,1I 1" ,1.'" clo..,(· Il, 

the' original st>qucnc(' dt a-" po<,sibl<' Note that for lIw pwhl('1lI of ci.allllt'i (lldlllp,. 

i.e. the de~lglI of the charlllei encoder al/d d<,codt'r paIL tilt' /Il11dulatur, dt'lJlodlll,tIlH 

and physical channel af(' cOlIsld('r~'d ciS Ol\(' and r('ferr('d tu colkctlv('ly d:- tlH' ('odwll 

channel. 

The performance of a communication system is mea."'lIied via a numb('f of p,uallll'­

ters. For analog communication systems, performanc{' is rneaslIr{'d in term!> of out put 

signal to noise ratio (SNR), frequency spectrum occupancy (or h,lIldwidth) and POWi'f 

consumptioll In digItal communicatwn "ystern:-. the pdrarnet<'r<, mea."iurllIg p('rfor­

mance are, instead, output bit error rate, information èeliv('ry delay, balldwidth, and 

power. The frequency spectrum IS usually a stare<> resourn' in most ground-ba."i{'d 

communication systems. ThuG, in the design of such system~, power cOIISllmptiofl i:­

assumed constant, and one looks at minimizing output bit error rate while k('f'ping 

bandwidth lo\\' In satellite communications, on the otlwr hctno, ff('quen,y bandwidth 

is usually pientJful, and one loob at keeping power con~lIll1pt,lOl1 \ow whde hciving 

an acceptably Iow error rate. Thus, the desIgner of dIgital communi,atlOn ~y~tel1ls 

is usually faced with a tradeoff between bandwidth, bit error rate, lIIfOrmatloll de' 

li very delay, and power consumpt.ion After thll> general overview of ('ommunIc;ttion 

systems, wc now examine the specifie problem of channel codmg For a more exhdu.~, 

tive treatment of communication systems, the reader is referred ta various books on 

classical communications theory [2] - [4]. 

1.2 Channel Coding 

In a few words, channel coding is the design of encoding and decoding schemes so that 

source data can be purged of errors resulting from channel noise. Channel encoders / 

decoders can be either of the b10ck code type or of the convo/uiional code type. In this 

research we focus onlyon block coding techniques. Now, block encoders / decoùers 

can Le readily classified in one of two distinct categories. These are the forward error 

correcting (FEe) schemes and the automatic repeat request (abbreviated as ARQ) 

schemes. In both schemes, data is segmented in blocks of k bits. These data packets 

are then transformed or encoded into blocks of n bits, also referred to as code wo rds, 

with n > k. In so doing, additional information is added to the k bits in a predictable 
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fa.."hioll Thes(' 11 - k hlt~ of ad(btional mformatioll. abo rcferred to as panty brts, 

an' [N·d at the' f('( ('1 wr t (} det('(·: and f!0b • .,1 b] \' corn'('t for pOSSI bIc efrOfS in the data. 

O'H' can dl"o pl ct Uf(' tbe parity bIts as 'bdCkup' mformation. wlllch is used at the 

rccc'iver t 0 dOIJ hlf'-check the validity of the data and ta correct for any errors that 

may have O( curred over the transmission channel. Since data is partitioned in packets 

of A· bIts. each codeword at the output of the channel encoder can take on one of 2ft 

pOf>slblc r-.cquences The- mapping of the 2- k-bit data packets into n-bit codt:words 

is rcf .. rred t 0 as a (n, k) block code. For convenience, we denote the k-bit data at the 

input of the channel encoder as vector~, and the n-bit codewords at the output of 

the channel encoder as vector g. Again, the set of ail vectors g which are mappings 

of ail possible input vectors ~ is referred to as a code, which we den ote by C. Since 

there are 2" possible input vectors ~ to the channel encoder, the set C has a total of 

2' elements. Now, since one can fonn 2" possible sequences with a tl-bit vector g, 

there are 2" - 21c n-bit sequences which do not belong to the code C. This property is 

used at the channel decoder to detect errors induced by channel noise. Indeed, when 

a codeword g E C is transmitted over the channel, one of three situations may occur: 

1. A codeword Q = Q is received at the output of the channel. No error has occurred 

2. Due to channel noise, !! f Q and!! fi. C. Vector!! received at the output of the 

channel is incorrect. However, since h f/. C, the channel decoder can declare with 

certainty that Q contains one or more errors 

3. Due to channel noise, !! -:f Q. However, this time Q E C. Channel noise is such 

that it has transformed codeword g into another codeword Q. Since hE C, the 

channel decoder cannot detect the error(s). 

Case 2 above shows how channel decoders cao detect that the received vector Il COD­

tains one or more el'rors. However, as shown by case 3, error detection is Dot foolproof. 

It is likely that channel noise is such that a codeword g is transformed into another 

codeword Q which also belongs to the code C. In such a case, the channel decoder 

cannot determine that an error has occurred. The probability of case 30ccurring, 

or probabalaty of undetected error can be reduced by making n large compared to k 

(50 that 2" ~ 21c ) and by careful design of the encoding scheme. The probability of 

undetected error Pu is a figure of merit of any (n, k) block code Cj the smaller p .. , the 

better the code C. 
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In forwarù error corr('(tlIIg codes, Hl/' ~l/(, of tht' Tl-I))t ~'od('\\'ord!! IS l(lI~('r than 

the informatIOn vector;I l'he Iluml)('r 71 - k of p.mty bit:- IS typlCc\lly larg('1' fOI t'rrOI 

correding schemes t han Il 1'- fOI ('['ror dt'tectloll ln nt hcr wordh. for FE<' cod(·:-, t II<' 

total number of sequeIlCt':-- that can b(' repJt'seuted wlth fI bIts is lIIuch Idrg('r titan tilt' 

code size (i.e. 2" » 2-). ln so doing, if a rt'(('lved \'edor Q Il,\..,, olll~ a sllhtlllllllllht'r of 

bit errors. the decoder ma)' still be able to recogfllze tilt' original cod{'word Q, provided 

the code is appropnately design('d U sually, the larg{'r the number of parity bits pt'r 

information bit, the larger the t'rror detecting or correcting capability of tht' challlH'1 

coding scheme. This is only a general rule, howe\'er The exact {'rror-dctecting and 

error-correcting capability of a channel coding schenw depends on the partlcular codt' 

used. For a complete treatment of error control code::., the reader is ref(~rred to [5J 
and [6]. For the purpose of the present discussion. it suffices to note that for a fixed 

information rate, the channd bit rate must be increased by a factor 71! k to obtain 

an error-correcting capability. This increase in channel bit rate reqUires a parallel 

increase in channel handwidth, however, and bandwidth is often a scarce resourcc 

in communication systems. For a given modulation scheme, bandwidth is illversely 

proportion al to the kjn ratio, also known as the code ralr. 

From the above discussion, one can see a clear tradeoff bet.wC(>(\ bandwidth and 

probability of error in the receiver, in FEe channel codlllg scherncs. ThIs tradeoff 

assumes the information is delivered to the user at a fixed rate and th .. transmission 

power level is fixed. Automatic repeat request schemes (ARQ) are different in this 

respect; in ARQ schemes, the probability of bit error at the receiver is fixed, and 

cbannel bandwidth is traded off with information delivery rate. In ARQ sy3tems, 

codewords are transmitted over the channel and checked for errors at the receiver or 

c1:annel decoder. If a codeword is detected in error, a retransmission of that same 

codeword is requested by the receivt>r. Automatic repeat request schemes are th us 

considered as feedback error control techniques. The probability of undetccted error 

is dependent on the particular block code used. From the above arguments, it can 

be seen that ARQ schemes provide a fixed bit error rate to the end user, no matter 

how had the transmission channel is. On the other hand, fOI bad channds, many 

retransmissions may be necessary, and thus a large delay may be needed bcforc the 

data is delivered to its destination. Hence, the performance of a particular ARQ 
scheme over a given channel is not measured in terms of its probability of codcword 

error, as it is the case for FEe schemes, but rather in terms of its so called throughpul. 

ARQ error-control schemes are treated in more detail in the next section. 
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Figure 1.2: ARQ mor control system 

1.3 Automatic Repeat Request 

In this section, the various feedback error-control schemes are examined. Various 

protocols exist for feedback communications, the best known or c071ventional ARQ 

protocols being Stop-and-Wait (SW), Go-Back-N (GBN) and Selective Repeat (SR). 

In all ARQ systems, data is first encoded using a (n, k) error detecting code and sent as 

n-bit codewords Q over the channel. At the receiver, the channel decoder checks each 

rcceived data vect.or for errors. If an error is detected, a negative acknowledgement 

(NAK) message is sent back to the transmitter, thus requesting a retransmission. The 

block diagram of an ARQ error control system is shown in Figure 1.2. 

The simplest ARQ scheme is the so called Stop-and- Wait (SW) protocol. In 

the SW protocol, the transmitter must wait for either a positive (ACK) or a negative 

(NAK) acknowledgement signal before sending any subsequent codeword. Thus, after 

each data. packet is sent, the transmit ter must wait idle until it receives an ACK / 

NAK signal from U.e receiver. The exact idle time depends on such factors as channel 

propagation delay and data processing dela.y. In communication networks, this time 

delay can also depend on the time needed to service a queue of data packets arriving 

at a network node [7), [8]. Because of this delay, the Stop-and-Wait scheme can 

hecome rather ineflicient. 

The performance of feedback error-control systems was brie8y discussed in the 

previous section. Since many retransmissions of the same codeword ma. y be required, 

an Adequate measure of performance in ARQ systems is data throughput efficiency. 

Throughput, de'loted by 'l, is defined as the ratio of information bits delivered to the 

destination user to t,he total number of bits transmitted. The latter quantity includes 

the number of bits that could have been sent during the timf! the transmitter was 
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idl(', For th(' S\\' ARQ protocol, throughput can thus b(' wriUc'll as 

1.. 1 
7]sw = ;; + RT E[T] , (1 1) 

wherc R is th!' data bIt ratl' (in bits/s). T is tl\(' channel round trip d(')ay or id)l' tinlt' 

(in seconds), and E[r] is thl' average number of transmissions of the samc codcword. 

The parameter~ k and n are the number of bits at the input. and output of ttlC' 

(n, k) channel encoder, respectively. Note that the product liT gIV('s the idJe tlllW in 

bits. Also, as expected, throughput is inversely proportionaJ to th(' averagt' number of 

codeword transmissions E[T]. Indeed, the larger the number of transmissions required 

to get a data codeword correctly across the channel, the poorcr the performance of 

the ARQ scheme, and thus, the lower its throughput efficiency. Also worth noting is 

that throughput is normalized to unit y, with ." = 1 being the maximum atlainable 

throughput. 

Due to the Rr term in the denominator of Equation 1.], the throughput em­

ciency of the Stop-and-Wait ARQ protoco1 can become very small for large channel 

idle time. In order to circumvent such shortcoming, other so called contmuous ARQ 

protocols have been devised. In these protocols, the transmiUer no longer waits for 

an acknowledgement before sending the next codeword. The simplest such cOlltinuous 

scheme is the Go-Back-N (GBN) protocol, whose name sorne --hat indicates its oper­

ating principle. In GBN ARQ, the transmitter sends data codewords continuously, 

until a negatlve acknowledgement is received, at which time the transmitter backs 

up by a sufficient number of codewords N to retransmit the codeword in error and 

all subsequent codewords. The number of codewords N by which the transmitter 

backs up is equivalent to the channel idle time. The transmitter a]so needs to keep 

in memory the last N codewords transmitted, in case a retransmission is requested. 

Thus, a buffer of size N x n bits is required at the transmitter. A diagram iIlustrating 

the operation of a typical Go-Back-N ARQ system is given in Figure 1.3. As for the 

throughput performance of the GBN protocol, it can be written as 

k 1 
'lGBN = nl+N(E[T]-l) 

k 1 
- ;;NEIT]-(N-l)' 

(1.2) 

The above expression can be easily justified. The denominator on the first line of 

Equation 1.2 indicates that if only one transmission is requircd, only one codeword 

is sent over the channel; this is the case of E[T] = 1. If more than one codeword 
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Figure 1.3: DlustratioD of the G~Back-N protocol (with N = 4) 

transmission is required, the ex cess number of codewords (i.e. E[T] - 1) is trans­

mitted along with N - 1 subsequent codewords since the transmitter backs up by N 

codewordsj this gives the N (E[T]- 1) term in the ab ove equation. 

From the discussion in the previous paragraph, it can be seen that, in the GBN 

protocol, every time a codeword is detected in error, that codeword is retransmitted 

along with the N - 1 codewords that follow. The N - 1 codewords following the 

codeword in error are retransmitted regardless of whether these data packets are 

correct or not. If these codewords were transmitted correctly in the first place, then 

re~ending them along wit~ the codeword in error is obviously wasteful. In order to 

circumvent this shortfall, a so called Selective Repeat scheme cP.n be used. In Selective 

Repeat (SR) ARQ, only the codeword in error is retransmitted. This scheme is 

more efficient in terms of throughput performance than the GBN protocol. lndeed, 

throughput efficiency for the SR proto col is 

k 1 
flSR = ;; E[T]' (1.3) 

However, buffers (as in Figure 1.2) are needed both at the transmitter and receiver 

to implement the SR scheme. If a codeword is received in error at the output of 

the channel, ail subsequent codewords must be kept in memory until that erroneous 

codeword is replaced by a correct copy. This is necessary 80 as to keep the correct 

order in the data delivered to the destination user. Now, the size of the buffer required 

at the receiver depends on the channel idle time and on how many retransmissions 

are necessary to get a codeword correct.ly across the channel. However, the number 

T of transmissions of the same codeword across the channel is a random variable 

with a nonzero probability distribution ove~ the entire range [1,00). Thus, there 

is a nOllzero probability that the number of transmissions T is very large. Hence, 
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ideally, the buffer required at the receiver must be infinitely large. Of course, this 

cannot be achleved in practlce, and one must C'ontend with a finite size buffer. The 

use of receiver buffers of finit.e size causes a degradation in the throughput efficiency 

of SR ARQ schemes, as compared to the infinite buffer case [5J. The expression in 

Equation 1.3 gives throughput efficiency for the ::.elective repeat protocol when an 

infini te receiver buffer is assumed. 

The three ARQ protocols discussed here differ significantly in complexity. The 

SW protocol is the simplest of the three. II. requires only a (n, k) block encoder, a 

small buffer to store the last codeword transmitted and a decoder for its implementa­

tion. In the GBN protocol, a buffer of size N x n bits is required at the transmitter so 

as to keep in memory the N codewords that may have to be transmitted. Finally, the 

implementation of the SR protocol requires in addition to a transmitter buffer, an ide­

ally infinite buffer at the receiver. Although complex to implement, the latter scheme 

oft'ers a throughput performance superior to that of its two simpler counterparts, as 

shown in Equations 1.1 - 1.3. Clearly, the three ARQ protocols trade throughput per­

formance for hardware complexity. Depending on the application, one scheme may 

be more advantageous than the others. For instance, the Go-Back-N protocol is used 

in the Synchronous Data Link Control (SDLC) computer communicat.ions protocol 

[8], as it offers higher throughput performance than the Stop-and-Wail ARQ, yet it 

is not too demanding in its hardware requirements. 

The expressions in Equations 1.1 - 1.3 and all subsequent work in this thesis 

assumes error free transmission of ACK / NAK signaIs. Sorne investigation of the 

case in which errors can occur in the acknowledgernent signal has been underta.keu 

[9], [10]. However, most research in ARQ systems assumes acknowiedgement signaIs 

are error free. This assumption is quite safe since only one bit is needed to convey the 

acknowledgement information, and this bit can be encoded, for instance, with a (m, 1) 

majority logic coding scheme where m is fairly large. The resulting large number of 

parity bits (m = 6 or 7, for example) make the probability of error in the ACK / 

NAK signal negligibly small. Such large number of parity bits can be easily aft'orded 

in praetice sinee acknowledgement information is typically a very amall fraction of 

the data to be transmitted. 

In the preVlflUS two sections, the three most common ARQ schemes were discussed 

and compared to t'Ee error control techniques. Each of the two types of error control 

techniques has its own advantages and drawbacks. In FEe schemes, errora resulting 
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from channel noise art> corrected at the receiver using the' backup' parity bits intro­

c1uced in cath codeword. However. in particularl~ nois)' or fluctuating channels, the 

probabdity (Jf crror al the output of the FEe decoder can become unacceptably high. 

ln ARQ sy~tems, on the other hand, the probability of error in the data delivered to 

tllC U1>er is fixed, rcgardless of the stale of the channel; however, throughput can be 

sigr,ificantly reduced in very noisy channels. Now. the advantages of both techniques 

Cdn be cornbined by using hybrid ARQ schemes. For instance, in the so called Type - II 

hybnd ARQ scheme [Il], an error correcting code is used in conjunction with a regular 

A RQ protocol. When a data word is received at the channel decoder, error detection 

is first attempted. If the codeword is found in error, a NAK signal is returned to 

the transmitter, requesting the transmission of parity bits for error correction. Upon 

receipt of the parity bits, the decoder attempts to correct the errors in the preceding 

data packet. If error correction fails, the cycle is repeated. Although hybrid ARQ 

schemes can give higher throughput than regular ARQ techniques, especially for very 

noisy channels, they are more complex to implement. Thus, in this research, only the 

three conventional ARQ protocols are considered. For a more thorough treatment of 

hybrid ARQ techniques, the reader Îs referred to [12], [13], [14]. 

1.4 Fading Channels 

Much of communications theory is based on the assumption that the transmission 

medium or channel is stationary and memoryless; that is, the quality of the channel 

is constant in time. Although it is widespread, this assumption is qui te unrealistic 

in a large number of communication systems. For instance, fluctuations in weather 

conditions can temporarilyaffect the quality of wireless and satellite communication 

links. Such temporary deterioration of the transmission medium is commonly referred 

to as channel fading. 

The fluctuating quality of transmission channels is most obvious in mobile wire­

less communications. Examples of mobile communication systems include cellular 

telephones, satellite-to-mobile links, personal communication systems, etc. In such 

systems the state of the channel changes constantly as the mobile transmitter and/or 

receiver moves about. For instance, in cellular telephony, the qua.lity of the channel 

can substantially deteriorate when the mobile unit enters a zone with many buildings, 

or when the transmitter a.nd receiver grow further apart or become separated by, say, 
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a hill or a mountain range Such hindrancl' to the transnllSSlO1l by a large obstadt, 

is referred to as shadoU'l1lg. Othel fdctors cd\lsing ch illll lt'J fading art' the weil knOWll 

problern~ of mu/tl-paih ~lultl-path fadlIlg IS caus('d by tilt' destructlvt' Illterfert'!lCt' of 

two or more e]cctromagnetic wav{'~ Oflgllldtlllg from the ~aIllC traIl!>l1litter. but dda~t.·d 

with respect to each other. These Jdays are cél.u!>cd by th(' ref1ectlOIl of e1ectromag­

netic waves on physlcal obstacl(~s Ruch as build\1lg~, wall!>, etc. ThuR, multi-path 

interference is highly dependf'Ilt on the tl ,illSflllssion wavelcngth and the posItion of 

the mobile uni t. ~111lti-path mtcrferencc can cause severe fading in avplications sllcb 

as indoor communication~ and rellular telephony in urban areas. 

Due to fading, the state of the channel changes with time. The extent with which 

channel conditions change with time determines the memory of a channel. lndeed, 

when a vehicle equipped with a cellular telephone is moving, say, straight across the 

countryside, the state of the channel at any particular time t is very likely to be the 

same a short time Dat thereafter. In such a case, the channel is said to have high 

memory. On the other hand, for a vehicle moving rapidly through a large urban area, 

fading is mu ch faster, due to the quick appearance and disappearance of buildings 

in the transmission path. In the latter case, the channel is thclI said to exhibit low 

memory. r..hre on fading channels and on ways to mode! them mathematically cali 

be found in Chapter 2. 

105 In This Thesiso o. 

This section gives a quick overview of the topies to be discussed in this thesis. 

As discussed in the abstract, this resealch is mainly concerned with the analysis 

of ARQ schemes over non-sta.tionary or fading channels. Thus, in Chapter 2, various 

ways of modelling fading channels are presented. The Gilbert-EllioU model a.nd 

its ability to model fading processes is particularly discussed. This model i5 then 

extended in a recursive fashion to represent the effects of channel memoryon words 

of data rather than on single data bits. This approach is needed since ARQ systems 

transmit data in packets or codewords of n bits. Finally, a short review of previolls 

work in the field is also presented. 

As discussed in the introduction, an adequate measure of performance in feedback 

communication systems is throughput efficiency, Chapter 3 presents new techniques 
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for cornpllting tbr011ghput fH'rfoffllance for conventlOllal ARQ systern~ used over the 

Gdbert-Elliott fadln~~ challnel. extended to account for word oriented data transmls­

~Ion. For slow fading' I!alllw! .... a:) approximate transltlOn rnatnx is developed w}l1ch 

giv('~ probabdl! J('~ of tram,itloIl~ hetween channel state vectors. Using the proper­

tics of dm tramltIC)[J waLnx. au approxImation on throughput efficiency is derived. 

This chapter also dis(Us~es throughput for fast fadmg channels. Upper and lower 

bounds OII throughput effîcicucy are denved, whicb are useful to bound throughput 

performance for the case of fast fading. The~e bounds are useful in confirrnmg the 

approximations on ARQ throughput obtained for the slow channel fading case. Sorne 

representative plots showing throughput performance for the three cornmon ARQ 

protocols are also presented in thls chapter. These performance plots are obtained 

using the throughput evaluation techniques developed in this research. Finally, the 

effect of channel fading on the performance uf ARQ systems Îs exarnined, and ways 

of improving this performance are discussed. 

In Chapter 4, frequency-hopped codeword modulatlOn is introduced as a means of 

improving ARQ peIformance on fading channels. In frequency hopping ARQ, code­

words are transmitted alternatively on m independent frequencies. Expressions for 

the throughput efficiency of frequency-hopped ARQ systems over slow fading chan­

nel!> are derived. It is shown that, depending on the fading channel characteristics, 

throughput efficlency cali be significantly increased by the use of such frequency hop­

ping scheme. 

FinallYl Chapter 5 draws sorne concluding remarks on this research and discusses 

sorne areas for further research. 



1 

Chapter 2 

Fading Channel Modelling 

As outlined in the previous sections, this research is concerned mainly in the analysis 

of ARQ error control systems over fading channels. In this section, we present the 

various models that can be used to mathematically represent a fading or memory 

channel. We focus our discussion on the Gilbert-Elliott model which w(> will use 

throughout this t hesis to describe fading channels. 

Smce we are mterested here In the problcm of error control coding, we cOllsiJ('r 

only the so called codtng channd (see Figure 1.1) which includes the modulator and 

demodulator (with hard decislOns) in addition to the transmission channel. Hence, 

the input and output to our codiIlg channel, subsequently referred to as the channel, 

are sequences of binary digits Of bits. The input digit ae enters the channel where it 

is corrupt.ed by noise nt, glving an output ht 

where at, be, nt E {O,I} and the above '+' sign is modulo-2 addition. Errors hence 

occur when the noise digit is n, = et = 1. Et is the error digit occurring al time 

t in the error sequence ,-. Note that the noise and error sequences are equivalent 

stochastic processes. 

Since errors are binary digits corrupting the input data stream, the coding channel 

can be seen as a binary symmetric channel (BSe) wÎth a given bit error rate (BER) 

p. The BSC bit error rate, also referred to as crossover probabllity, is the probability 

p = P(b, = lia, = 0) = P(b, = 0la, = 1) 

13 
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Figure 2.1: Gilbert'. mode! for memory chuDela 

2.1 The Gilbert-Elliott Model 

14 

As diseussed in Section 1.4, errors in real communications channels tend to occur 

in bursts. This burstiness of the error process, or equivalently of the noise process, 

implies that the channel has memory. This property was observed by Gilbert on 

telephone channels. In a paper on the subject [15], Gilbert introduces a two-state 

Markov chain to model the behaviour of such memory channels. The model proposed 

by Gilbert assumes the channel is binary symmetric and is in either of two states, a 

'bad' state in which the probability of a bit error is large, and a 'good' state in which 

no errors can occur The transi tians between the 'good' and' bad' state are governed 

by the Markov cham shown in Figure 2.1. 

When in the 'good' state, the channel is error free, whereas in the 'bad' state, 

errors can occur with probability p. By making the transition probabilities band 9 

in Figure 2.2 small, the errars generated by the model tend to be c1ustered in bursts, 

with error free periods in between the bUIstS. 

While Gilbert's model adequately represents the burst patterns the noise process, 

it suffers from the fact that when in the 'burst' state, the probability of making 

an error does not decrease after the channel has been in this state for a significant 

period of time. Henee, Gilbert's model gives rise to a renewal error process which 

does not accurately represent real cbannels. In order to circumvent this problem, 

Elliott proposes a modification [16] to Gilbert's channel model. In Elliott's proposai, 

the 'good' state is no longer errOl free; bit errors can occur in the 'good' state with 

probability Po. The 'bad' state still gives ri se to errors, with a much higher probability 

Pl. In other words, Elliott proposes a binary symmetric channel (BSC) with crossover 

probability Po in the 'good' state and Pl in the 'bad' state. Transitions bet.ween the 
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Figure 2.2: Two-.tate Gilbert-EllioU Markov mode! for fading channel. 
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two states are still Markov as described in the Gilbert mudel. The resulting two­

state Markov model, which we will rder to as the Gllbert-ElllOtt model, is shown in 

Figure 2.2. This mode} ha..<; the advantage of providmg for some background noise 

wh en the channel IS 1Tl the 'good' state, while still giving errors in bursts whcn the 

channel is In the 'bad' state In order to illustrate this pOlIlt, the 'good' and 'bad' 

state~ art> also referred to III the literature as the 'random-error' aIId 'bur!>t-en-or' 

st ates, respectl vely 

The provision for errors in the 'good' state makes the GIIbert-ElIiott model the 

generat('r of a non-renewal error process which Wa!> shown to approximate wilh fair 

accuracy the behavJOur of many communication channels. While other channel mod­

els have been proposed over the years (Section 2 4), the Gilbert-Elliott model remains 

a very popular one for modelling channels wilh memory, as shown by the numerous 

analyses carried on this model [18]- [22]. Tht: popularity of the Gilbert-EllioU mode} 

is due in large part to its relative simplicity, as compared to other models. 

Finally, it must be nvted that, in the G;lbert-Elliott model, the Markov chain 

does not represent the error process per se, but rather the channel state process, 

which itself gives rise to errors with probability Po in the 'good' state and Pl in the 

'bad' state. Given an error sequence ~, one cannot reconstitute the history of the 

channel state Markov process, since there i8 no way of distinguishing if a 'l' digit in 

the error sequence originated in the 'good' or 'bad' state. Such a model i5 refcrred to 

as a 'unifilar' source of errors [17J. This property of the Gilbert-Elliott model has no 

consequence on our ensuing analysis, however. 
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2.2 Paranletrization of the Gilbert-Elliott Model 

St'Clion 2.1 dl~cus~ed the b~lc two-state GIIbert-Elliott model and its applicability 

for modelling fading channels. Figure 2.2 shows that the Gilbert-Elliott model is 

(ornpletrly defined by the parameters b, g, Po, and Pl. In this section, we investigate 

the relallonship of these parameters to physical fading channel characteristics. Such 

investigatlOII I~ \iduable in determining the range of mode! parameters values over 

whlch wc should focus in an)' subsequent analysis. Indeed, in Sections 3.2 and 3.3, 

ARQ system performance for the specia.l cases of both slow and fast fading are an­

alyzed. The following questions arise: For what ranges of the parameters band 9 is 

the channel considered to be a slow fading channel? For what ranges is the channel 

considcred to be a fast fading channel? What model parameters values should be 

used to describe a typical/and-to-mobile channel? What are typical model parame­

ter~ values for satellite-to-mobile channels? Such issues are addressed in the present 

~cction. 

Heunstically speaking, a slow fading channel is one which changes state (from 

'good' Lo 'bad' or from 'bad' to 'good') at a very slow rate. In such channels, the 

chan lIel st dte sequenc.(' is typlcally a long string of consecutive zeroes or ones [17]. 
SUlh channcls drc also said to exhibit high memory. lndeed, when long strings of 

zeroe:- or one~ prevail, the state of the channel at a given time instant t = to is highly 

correlatcd wlth the state of the channel at the previous time instant t = to -1. A slow 

fading process translates into small probabilities of 'good-to-bad' and 'bad-to-good' 

transitions in the Gilbert-Elliott model. In other words, for slow fadîng channels 

or high memory channels, the parameters band gare typically small. Indeed, one 

definition of channel memory is given in [20] in terms of the parameters band g: 

p=l-b-g (2.1) 

The memory p of the channel increases with decreasing b and g, which is in accordance 

with the heuristic argument above. The smaller band g, Le. the slower the fading 

process, or equivalently, the burstier the noise process, the larger the memory p of 

the channel. Conversely, for fast fading, or equivalently, low mernory channels, the 

parameters band 9 are typically large. For such channels, the state of the channel at 

any given time instant is less dependent on the channel state at another time instant, 

as compared to slow fading channels. Typical channel state sequences are shown in 

Figure 2.:1 to illustrate slow and fast fading. 
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(a) 

000000000111000000011111110000000000000000111110000 

(b) 

001001110000110101000110100010100100011001000110010 

Figure 2.3: Typical channel state sequences for (a) a slow fading channel. and (b) a fut fa.ding 
channel 

;(t) 
'good' state 'bad' state 'good' 51ale 

4 • ~.~--~------__ ~. 

rneanSNR 

• thn:sboId SNR 

Figure 2.4: SNR as a funetion of time, threshold SNR and mean SNR 
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One way of determining the set b, g, Po, Pl of Gilbert-Elliott model parameters IS 

proposcd by Krishnamurt hi and Gupta [21J. The latter show that the BSC crossover 

probabilitic~ po and Pl are a function of the me an signal t.o noise ratio (SNR) ')'0 

prevailmg over a given fading channel, and of a threshold SNR ')'T. The threshold 

SNR Îs the SNR below which the channel is considered to be in the 'bad' state, and 

vice versa, ru, shown in Fig 1re 2.4 which illustrates SNR variations with time in a 

fading channel. Again from tbe figure, it can be seen that ')'0 is the time average SNR 
prevailing over the channel. Now, summarizing the results in [21J, we have 

po -

Pl :: 

exp( -"f) 
(-yo + 2) 

1 - exp[-1TH +:; )] 
('Yo + 2)[1 - exp( -'YT/10)}' 

(2.2) 

The probabilities Po and Pl can he seen as the average bit error probabilities when 

the channel is in the 'good' and 'bad' state respectively. The derivation of Po and Pl 

wa.<, achieved assuming a nOllcoherent Frequency Shift Keying (FSK) modulation and 

demodulation scheme is used for channel signalling. Results for coherent FSK, regular 

Binary Phase Shift Keying (BPSK) and differentially encoded BPSK modulation / 

demodulation can also be found in [21J. The case of non coherent FSK is retained 

here as it constitutes the worse case communications scheme. 

Kflshnamurthi and Gupta have al 50 derived the 'good-to-bad' and 'bad-to-good' 

transition probahilities (i.e. band 9 respectively) from the physical mobile channel 

characteri"tics. Their result5 are summarized as 

b = 

9 = 

TvJe. t 
--V 27rjT / 10 

c 

Tv Je J27r7T/'YO 
-c-exp(-yr/"Yo) - l' 

(2.3) 

where T is the data bit period (in seconds), v is the velocity of the mobile radio (in 

mis), Je is the carrier frequency (in Hz), and c is the speed of Iight. Note here that 

the faster the vehicle, the larger band g, and thus, the faster the fading. Similarly, 

the larger the data rate, Le. the smaller T, the sm aller band g, and thus, the slower 

the fading. This is intuitively correct, since the faster data transmission is, the slower 

will channel fading appear for a given codeword. 

Plots of Po and Pl versus mean SNR and threshold SNR are shown in Figures 2.5 

and 2.6, respectively. The curves shown are obtained from Equation 2.2 and are 
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25 30 35 

thtrshold SNR (dB) 

Figure 2.5: Contour plots of crossover probability Po as a function of mean SNR and threshold 
SNR 

contour lines of Po and Pl. For instance, given a mean SNR 1'0 =: 20 dB and threshold 

SNR "'fT = 12 dB, the average bit error rate in the 'good' state is Po = 1 X 10-5 , 

Also, contour plots of the state transition probabilities band 9 as a function of 

mean SNR and threshold SNR are shown in Figures 2.7 and 2.8. Thcse plots are 

obtained directly Crom Equation 2.3 for a mobile radio transrnitting data at a rate of 

40.6 kb/s, at carrier frequency Je = 1.0 GHz. The mobile radio is moving at a speed 

v = 20 rn/s. 

Using the above results, it is possible to obtain a set of Gilbert-Elliott model 

parameters for a typical mobile radio channel. We again take the exarnple of the 

above vehicle moving at 20 mis and transrnitting data at a rate of 40.6 kb/s at a 

ca.rrier frequency le = 1.0 GHz. We assume a mean SNR ')'0 = 25 dB, which is 

reasonable in a cellular telephony environment. We take an arbitrary threshold SNR 

"'fT = 13 dB. The resulting Gilbert-Elliott channel model parameters are 

Po '" 5 X 10-7 

Pl '" 0.06 

b - 0.001 
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Figure 2.6: Contour plots of croSlover probability Pl as a function of mean SNR and thresbold 
SNR 

31 

duabold SNR (dB) 

30 35 

Figure 2.7: Contour plot of ',ood-to-bBd' transition probability b as & function of mean SNR and 
threahold SNR 
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IbralKlld SNi (dB) 

Figure 2.8: Contour plot of 'bad-to-good' transition probability 9 as a function of mean SNR and 
threshold SNR 

po Pl b 9 
Downtown MUnich, V = 40 km/h 2.1 X 10-4 0.317 3.95 X 10-4 1.05 X 10-4 

Suburban Hamburg, 11 = 40 km/h 3.4 X 10-4 0.298 2.1 X 10-4 1.54 X 10-4 

Highway driving, V = 90 km/h 1.1 X 10-4 0.194 2.96 X lü-ri 1.29 X 10-4 

Table 2.1: Gilbert-EllioU model parametetl for satellite-to-mobile links 

9 = 0.015 

Other investigations in physical channel modelling and parametrization can be 

round in the literature. Cygan et al. [22] analyze satellite-to-mobile links in cities 

and on highways in Germany. Their findings in ter ms of the Gilbert-EllioU model 

parameters are gathered in Table 2.2. The mobile radio used in the experiment 

transmits at a rate of 1.2 kbfs, at a frequency f = 1.546 GHz. 

From the observations in this section, one can get a rough idea of the magnitude 

of the parameters in the Gilbert-Elliott mode!. For instance, given the power levels 

and channels used in mobile radio applications, the Cfossover probabilities Po and Pl 
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are in gellcral of the order 

The Igood-to-bad' and 'bad-to-good' transition probabilities band 9 are more difficult 

to quantify; they depend highly on such factors as the data bit rate, the speed of the 

vehicle, the carrier frequency, the type of channel, etc. 

2.3 Extended Gilbert-Elliott Fading Channel Model 

The Gilbert-Elliott channel model presented in Section 2.1 describes channel state 

transitions affecting consecutive bits in a data stream. In ARQ and many other 

systems, however, data is transmitted, not one bit at a time, but, rather, in blocks of 

71 bits. Thus, in order to perform an analysis of ARQ performance, it is necessary to 

look at transitIOn probabilities between channel states over n-bit codewords. In order 

tü do this, we ext.end the one-bit binary symmetric channel (BSC) to an n-bit vector 

channel made up of n BSC's [23J. This n-bit channel corresponds in a natural way 

to the tl-bit transmitted codewords. An n-bit vector channel is needed since, in the 

analysis of ARQ systems, we are interested not in the probability of one bit error, but 

in the probabiIity of detecting an error in one entire codeword. Now, since each BSC 

in the vedor channel can be in either of two states, this vector channel can take on 

2n possible states; hence, in order to describe transitions between these 2n states, a 

Markov chain with 2n possible states is necessary. In this section, an Eztended Gilbert­
Elliolt channel model is derived using the basic two-state Gilbert-Elliott model as a 

starting point. This extended channel model describes the transition probabilities 

between n-bit codewords ~i' The extended channel model is a 2"-state Markov chain 

described by a 2n x 2" transition matrix denoted by p(n) in what follows. The 

transition matrix pC") provides the probabilities of transition between two given n­

bit vector channel states S.1 and S.2' as illustrated in Figure 2.9. 

The 2n x 2n transition matrix pCn) is recursively developed from the following 2 x 2 

transition matrix P of the Gilbert-Elliott model: 

(
l-b b ) p= 

9 1-9 
(2.4) 



1 

t 

CHAPTER 2. FADING CHANNEL MODELLING 

1 1 1 1 
l , 

~(l) .!\(2) 

1 1 1 
~(n) 

1 1 
~(1) 

1 1 
~(n) 

Figure 2.9: TransUiou be&ween two chunel.tate vectorl 
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In order to show this, we first derive the transition matrix p(2) for a two-bit vector 

channel. Denoting two consecutive two-bit channel state vectors (CSV's) by S.1 = 

(81 (1),81(2)) and S2 = (82(1),82(2)), and using the Markov property, we can write 

the transition probabilities between fil and fi.2 as 

P(S.21S.d - P(S2IS1(2)) 

= P(S2(2)IS2(1»P(S2(1)ISl(2»). 

The transition probabilities for aIl possible vector channel states s..1 and s..2 are givcn 

below: 
P(xO -+ 00) = (1- b)2 

P(xO -401) = (1- b)b 

P(xO -+ 10) = bg 

P(xO -+ 11) = b(l- g) 

P( x 1 -+ 00) = 9(1 - b) 
P(x1 -+ 01) = 9b 

P(x1 -+ 10) = 9(1 - 9) 

P(x1 -+ 11) = (1 _ g)2 

where X can take on either 0 or 1 without. The corresponding transition matrix is 

then 

p(2) = 

(1 - b)2 

9(1 - b) 
(1 - b)2 

g(1 - b) 

(1 - b)b 

gb 

(1 - b)b 
gb 

bg 

(1 - g)g 

bg 

(1 - g)g 

b(l - 9) 
(1 _ g)2 

b(l - g) 

(1 - gr' 
From the above, it can be seen that the two-bit channelstate vector (CSV) transition 

matrix p(2) has ooly two distinct rows, which we deDote by 

m2) - «I-b)2,(I-b)6, 6g ,b(1-g) 

R{2) _ (9(1 - b) , gb , (1 - g)g , (1 _ g)2 ) 

This is because the transition probabHity P(~2ISd does Dot depend on the entire 

previous chann ... ·l state vector s..1)' but only on the last bit Sl(n), which can ooly be 

o or 1. 
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r\ow, followmg the same reasoning, one can show in general that the (k + l )-bit 

('SV transition matrix p(Hl) can be obtained from the k-bit transition matrix p(le) 

iI.~ follow!o: 
bR~Ic) 

p("+l) = (1 - g)R~Ic) 
(2.5) 

gI4,") (1 - g)R1") 

where m") and R~") are the first and second rows of p(") , respectively. Continuing 

in this manner, we see that it is possible to recursively obtain the 2n x 2n transition 

matrix pen), starting from the 2 x 2 basic Gilbert-Elliott transition matrix P: 

(1 - b)mn
-

1
) bR~"-l) 

pen) :::: 
9~n-l) (1 - 9)R~n-l) 

(2.6) 

9~"-1) (1 _ 9 )R~n-l) 

Note that the size of th.~ transition matrix doubles at each step of the recursive 

procedure. Starting with the 2 x 2 matrix P, we obtain the 2" x 2" matrix pen) in 

11 - 1 steps. 

Now, faulty codeword retransmissions are separated by â bits of idle time, due 

to the channel round-trip delay required for the negative acknowledgement (NAK) 
signal to reach the transmitter (see Section 1.3). It is, therefore, necessary to modify 

the above transition matrix pen) to account for this idle time of â = RT = M - 1 

bits. In order to obtain this modified transition matrix, which we denote by p(n), we 

write the transition probabilities between the two n-bit channel CSV's S.1 and S.2 as 
follows: 

P(S2\S:1) = P(S2(n)IS2(n - 1))P(S2(n - l)\S,(n - 2)··· 

... P(S2(2)IS,(I))P(M)(S,(1)!S:(n)). (2.7) 

Here, p(M)( S2( 1 )\SI (n» is an M'la order transition probability described by the Mt" 
order transition matrix pM of the two-state Gilbert-Elliott channel mode}: 

M (pJoM) PJ:'») 
p = p~~) pi:') . (2.8) 

The expression for the probability of transition P('~,\S.l) between states s..1 and 9." 
taking into account channel idle time, is identical to that for P(S2\~1)' except that 
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the first order probability P(8,(1 )ISdn)) is replaced by the ArCh order probability 

p(M}(S2( 1 )ISd n)). In matrix fonu, thi~ transldtes into changillg the fOrln of 2.ti to 

pJoMlmn-l) p,(AI) R(n-l) 
01 1 

pftt)mn- l ) p(AI) R(n-l) 
p(n) = 11 1 

(2.9) 

p1~)mn-l) p(AI) R(n-l) 
11 1 

where ~n-l) and R~n-l) are still the first and second rows of p(n-I), respectively. 

The rnatrix p(n-l) is the unmodified transition matrix for the n - I-bit CSV. This 

matrix is recursively obtained starting from P as shown in (2.5). 

A surnrnary of the procedure described above for obtaining rnatrix pen) is given 

below: 

Step 1: Initialization 

We start with the basic Gilbert-Elliott model transition matrix: 

p= ( 
1 - b b ) = p(o>, 

9 1 - 9 

Step 2: For k = 1,2,'" , n - l, 

Apply the recursion: 

mlt+l) (1 - b)mlc
) bR(") 

1 

p(,,+1) = 
R~lt+l) gm") (1 - g)R~") 

= 

R~"+1) g~lc) (1 - g)!tt") 

Step 3: Mtla order one-bit transition probabilities 

Compute: 

( 
R(M) R(M») pM 00 01 

= p1:') p1~) 

This is necessary since gaps of 6 = AI - 1 bits separate consecutive codewords. 

Step 4: Transition matrix for the n-bit codeword 
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pJ:f)mn - l ) R(M) R(n-l) 
01 '1 

pen) = 
PI(:') mn-I) p(M) R(n-l) 

11 1 

PI(:') 14n- 1) p(M) R(n-l) 
11 1 

Note that pen) is the transition matrix for the n-bit CSV, modified to aecount for 

idle lime between retransmissions. 

Again, extending the 2-state Gilbert-ElHott channel model to a 2ft-state Markov 

chain with transition matrix pen) is neeessary in order to represent the effects of 

channel memory on each codeword, and the memory induced hetween consecutive 

codewords . 

. 
2.4 Memory Channels: Other Models 

Gilbert's and Elliott's models were among the first attempts at representing physical 

fading channel behaviour. A number of other models were developed sinee. Chan­

nel models can be readily classified in one of two distinct categories. These are the 

genEra/H'E mode/s, which include the Gilbert and Gilbert-Elliott model, and the de­

scnptive models [17]. Generative models are oCten Markov chains, with a finite or 

infinite number of states. These states usually map into error bits, and thus state 

transition progressions generate error sequences. A physical channel can hence he 
modelled hy appropriately selecting the model's Markov chain parameters. Having 

obtained a generative mode!, one can then analyse various error control schernes and 

obtain statistics on their performance. On the other hand, descriptive models base 

themselves on various statistics obtained from the examination of a real channel. 

From a descriptive model, statistics cao be derived that indicate the performance of 

error control schemes. 

The Gilbert and Gilbert-Elliott models were shown in Section 2.1 to he unifilar 

sources of errors; channel state sequences cannot he inferred from an ohserved error 

sequence. This property makes these unifilar models difficult to parametrize, i.e. 

it is difficult to obtain parameters for the Markov models given sequences of errars 

observed in a physical channel. In order to bypass this difficulty, Berkovits and Cohen 

[24] propose a modification to the Gilbert model. A third error producing state is 
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I-Q 

(I·h)(l-q) 

Figure 2.10: The Berkovib &t Cohen 3·state model 

includec in the Markov chain, as shown in Figure 2.10 As in the Gilbert model, no 

errors can oecur in the 'good' state G. However, the 'bad' state is split in two, Bo 
and B l , with errors allowed to oceur only III state Bl' The advantage of the 8erkovits 

& Cohen generative model over Gilbert's mode} lies ill the fact that the pararneters 

q, Q and h in Figure 2.10 can be easily derived from a ~ample error sequence. 

Another Markov model whose parameters are easily obtained from observed error 

sequences is proposed by McCullough (25). The MeCullough channel model, shown 

in Figure 2.11, admits errors in both the 'good' and 'bdd' states. In Figure 2.11, the 

variable E, represents the state of the chd.nnel at time z: Ei = 0, with probability 

1 - ~, for the 'good' state and E = 1, with probability P, for the 'bad' state. Z ;s 

the noise bit generated by the model; for Z = 0, no error oceurs, a.nd for Z = 1, an 

error bit is produeed. The model parameters Pij, q'j and Pi are easHy deduced from 

sample error sequences, where 

Pij - P(En = jlEn-l = i, Zn-l = 0) 

qij - P(En = jlEn-l = i, Zn-l = 1) 

P. - P(Zn = lIEn = i) 

From the above definitions, Po is the bit error rate in the 'good' state and Pl is the 

BER in the 'bad' state. Aiso note that the McCullough model, also known as the bit 
regenerative model, reduces to the Gilbert-Elliott model for Pli = q'j' 

A fundamentally different generative channel model is proposed by Fritchman [26], 



( 

CII.\PTt'H:2 FADING CliA..'/.\EL MODELL/l'·;C 28 

Figure 2.11: MeCullough '. bit regenerative channel model 

This mode!, shown in Figure 2.12, is a Markov chain with N states. The state space 

of the mode! is partitioned iota two sets, the set A composed of k error-Cree states, 

and the set B with N - k error states. A function <1> mapping the state space into an 

error sequence is defined Ly 

~(z) = {o for ~ E A 
1 for t E B 

Using the above definition and the N·state Markov chain, Fritchman derives the error 

gap dzslnbutzon (EGD) from which performance measures of error-control schemes can 

be derived. The EGD is a statistic frequently used to describe burst-noise channels. 

The EGD is the probability distribution of gaps between consecutive bursts of error 

bits. From the EGO, the P(m,n) distribution, which is the probability of having m 

errors in an n-bit codeword, can be derived. The P(m, n) distribution is an important 

statistic for the performance evaluation of FEe codes. 

One of the early descriptive cha.nnel models was introduced by Berger and Man­

delbrot [27] to fit experimentaJ data in telephone circuits. Berger and Mandelbrot 

suggest that the so called Pareto function is adequate in modelling the error gap 

distribution in the telephone circuits error data.: 

p(oill) = Ifj' 
P(<Vll) is the EGO, ie. the probability of having j error-free bits aIter an error has 

occurred. (J is a parame ter obtained from the error sequence data to be modelled. 
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A B --- --------
88 

-----------------------
errar· free: stales cnor ,tales 

Figure 2.12: Fritchman '5 partitioned stale space 

r::\ 
\.J 

Note that the Pareto function abO\{' models a renewal error proœss; the probability 

of having j zeroes is independent of how long the preceding error burst wa.<.; Other 

models also exist which try to represent error gap distributions in cxperimental data 

(28) [29] [30]. From the EGD, the probability distribution P( m, n) is again easily 

derived. 

As shown in this section, a number of models have be('1J dcveloped to represent. 

fadmg or burst-error channels. Som,> of the models, su cl! a..., th<, one put forth by 

Fritchman, are fairly complex but reproduee fading channel behaviour accuratcJy; 

whereas other models, such as Berger and Mandelbrot '5 arc qUlte simple, but do not 

faithfully represent real channels. There is eertainly a tradf'off at play here betwccn 

model complexity and accuracy. A good comparison of the various channel models 

is difficult and has not been attempted to this day. In this research, we adopt the 

Gilbert-Elliott model as it represents a good compromise between complexity and 

accuracy in channel representation. AIso, as outlined in Section 2.1, the Gilbert­

Elliott model is widely used in the literature to represent burst-error channels. 

2.5 Previous Work in Feedback Communications 

on Fading Channels 

In tbis section, a review of sorne of the previous work in A RQ error-control over fading 

channels is presented and contrasted to the study conducted in this thesis. 

One of the firsts attempts at designing ARQ schcmes for high crror rate and 

bursty channels was undertaken by Sastry. In his paper (33], Sastry suggests the 

transmission of M identical codewords each time a retransmission is requested. This 

technique is weIl suited for Stop-and-Wait schemes, sinee the channel idle time is then 
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explOltf'd t () trilllf>TTl i 1 <opicf, ·,f the origlllai coocword. This tech nique is shown to yidd 

il ~lIb'itantlill illlprov('ment tri throughput cffiClcncy over the r('gular SW protocoJ for 

dlillllwl<; with V/'ry 1llgh bit error rate& ( Pe > 10-2 
). 

III 1 !H(i. Arazi proposes a Stop-and-Walt ARQ scheme with partial codeword 

r('transmisslOn [:H J. Arazi suggests the interJeavmg of parity bits evenly within each 

cod('worci ln doing so, one can locate single bursts of prrors that may occur within a 

codeworo Consequently, only that part of the codeword which is found in error need 

to be retransmitted. 

In the same vein as Arazi's work, Turney proposes a new ft_RQ scheme which is 

roughlya hybrid between the St,op-and-Wait and the Selective Repeat protocols l35J. 
h' -bit long packets of data arc: sent in a Stop-and-Wait fashion. These K bits are 

partitioned into n'parts'. Each part is checked for errors, and only those part(s) 

found in error are retransmitted. Turney shows that su ch a scheme can provide up to 

40% throughput improvement over regular Stop-and-Wait systems for mobile radio 

channels with BER Pe = 10-3
. However, in his analysis, Turney assumes that, for 

sufficiently long codewords, errors in consecutive codewords are uncorrelated. This 

ass~lmption is somewhat questionable, especially for slow fading channels. 

In an effort to improve ARQ throughput in channels with varying BER, Martins 

and De Carvalho Alves propose an ARQ scheme with adaptive codeword length [36]. 

for instance, (or the Stop-and-Wait protocol, there exists an optimum codeword 

length for maximum throughput efficiency. This optimum length depends mainly on 

the BER of the transmission channel. Renee, Martins and De CarvaIho Alves show 

that significant throughput improvement cao he achieved by making the codeword 

length V'ciXiable in the SW and GBN ARQ protocols. Although this technique seems to 

be weil suited for slow fading channels, it cao he very complex to implement. Indeed, 

the codeword length to he used at any given time depends on the detected bit error 

rate; a potential for conBict exists, for instance, if the transmitter and reœiver detect 

different error rates. 

Another analysis of the performance of ARQ systems over memory channels was 

undertaken by Fujiwara et al. [19]. The analysis describes the performance of con­

ventional and hybrid Go-8ack-N ARQ schemes over both memoryless and memory 

channels, with channel memory modelled using the two-state Gilbert Markov chain. 

In their paper [19], Fujiwara et al. exhibit performance curves of Plie, the 'bit error 
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rate after dccoding'. as a fUllc! Ion of cod ... word It'ngth 7/. Th ... s(' curv('s show f Il,1.1 (;0-

Back-N ARQ error control sch('m('s are su penol' tü t hel r Forw,lrd En 01 ('011 cri 11111 

(FEe) countf'rparts. espeClally for nwmory chaIlIlels. 

In a paper pubbsh('d in 198·~ r:17J, Comroe and C'ostello ('Xéi.I1lIIlC t IIC Iwrfonlliull l' of 

various ARQ protocols over land mohile radio channcl~ The Stop-a nd- Wait. Select ]\'(' 

Repeat and Type - II hybrid Selective l\('[){'at ARQ tcchIliqlH'~ art' ('xéLlllllled ill tlll~ 

work, and the expected Dumber of transrnissJOII<' is us('d tü Ill<'a.sur(' tll(, perfornl<ul(,(, 

of these ARQ schemes. As expected, the Type - II hybrid sch(,Ill(,i> are round to h(' the 

most efficient, especially in high error rate channels. Comroe and Costt'llo use a non 

standard channel model which assumes that a particular codeword IS in ('rror wh('1J 

the received signal strength falls below a given threshold during the transmission of 

the cod('word, The analysis developed in this work gives valuable first insight on 

the performance of ARQ schemes over mobil(' radio channels corrupted by multipath 

fading. 

Other non-standard fading channels have been used in the lîteralurc to analyse 

feedback communication techniques. For instance, Leung, Kikumoto and Sorenscn 

[38] as we1l as Towsley [39J assume the error process (not the channel statc process) is 

Markov in their analysis of the Go-Back-N ARQ protocol over channds wit.h memory. 

More recently, the performance of hybrid ARQ techniques over Gilbert-Elliott 

channels was analysed [18], [40]. Deng and Costello analyse a scheme based on Type 

- II hybrid ARQ [18]. The analysis is achieved assuming a non-stationary channel, 

modelled using the Gilbert-Elliott Markov chain. In this work, the authors assume 

the channel changes state only at the boundary ~etween codewords. In other words, 

codewords arf; assumed to be either entire]y in the 'good' state or entire]y in the 

'bad' state. In Lugand's work [40], convolutional codes and Viterbi decoding are used 

(instead of block codes) in combination with ARQ error control, in a Type - II hybrid 

fashion. This work also assumes the channel does not change state throughout any 

given data packet. 
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Chapter 3 

ARQ Throughput for Fading 

Channels 

This chapter discusses ways of obtaining ARQ throughput performance for data trans­

mission over a Cading channel. The first section describes a procedure for computing 

ARQ throughput from the Extended Gilbert-Elliott model transition probabilities 

and the crossover error probabilities Po and Pl. Although this procedure yields ex­

act rL'Sults, it is computationally intensive and impractical for large codewords. This 

problem can be circumvented, however, by considering the cases of slow fading in 

Section 3.2 and fast fading in Section 3.3. 

3.1 Exact Throughput Computation 

As discussed in Chapter 1, three principal ARQ protocols are employed for data 

transmission. These are the 'Stop-and-Wait' (SW) protocol, the 'Go-Back-N' (GBN) 

protocol and the 'Selective Repeat' (SR) protocol [5]. It was also shown in Chapter 1 

that throughput is used as a measure of performance in feedback communication 

systems. The throughput expressions for the three ARQ protocols are repeated here 

(or couvenience. k ] 
'Isw = n + RT E[T] (3.1) 

k 1 
flaSH = ;; NE[T] - (N - 1) (3.2) 

32 
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k l 
T}SR = - 1'[1' 

11: J 

Again, Ris the transmission n .. te, T tht' roulld trip chail Ile) dt'),1\ 1111)(',1.:/1/ 111(' cod .. 

rate, and T is a randolTl variable represrntmg the Il U 1I1ht'r of tt "nsllli~ ... ions of t 1)(' 

same codeword required to get the codeword correctly al ros~ tilt' chttllnd N i~ t h(' 

idle time due to round-trip channel deI a)', cxpressed in llllmher of codewords. lt i~ 

important to note here that ail three throughput expre~"lOl\s an' fUIlCt.IOIlS of tilt' 

average numbcr of transmissions E[T]. Thus, the problem of (omputing throughput 

performance for any ARQ scheme reduces to that of computing tlw averdgc numbcr 

of transmissions E[T]. Now, in order to compute E[T]. we definc éUl IIIdicator random 

variable Ai as follows: 

, if an error is detected in the i th transmission 

,otherwise 

Using this definition, the number of transmissions T can be written as: 

T 1 + Al + AIA2 + AIA2A3 + .. , 
00 , 

= 1 + EllA" 
1=1 i=l 

and the average number of transmissions is then: 

00 1 

E[T] = 1 + E E[II Ail 
1=1 1=1 
00 

= 1 + E P( Al == l, A, == l, ... ,A, = 1) 
1=1 
00 

= 1 + EP(A' = J'), 
'=1 

(3.4) 

(3.5) 

(3.6) 

where A' = (A1,A" ... ,A,) and JI = (1,1, .... ,1). Bence P(A' = JI) is the joint 

probability of detecting an error in 1 consecutive codeword transmissions. The ex­

pression in 3.6 is clearly an infinite series expansion. The series converges, however, 

since P(A
'
+1 = [Hl) < P(A' == J'), ie. the probability of det,ecting an error in 

1 + 1 consecutive codewords is strictly smaller than that of detecting errors in only 1 

consecutive codewords. 

From the above series expansion, it can be seen that computing ARQ throughput 

reduces to computing the joint probabilities P( A' = J'), 1 = 1,2, .. '. Since the series 

in Equation 3.6 converges, the joint prohabilities P(A' = l') become negligibly small 
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for sufficicntly larg(' 1. The infimU' ~('rw<., can thus be t runcated at sorne value of 1 for 

cornputatiorl<il purpo~e~ 

The next step 1Tl obtaining an exprc~&ion for ARQ throughput IS to write the joint 

probabjlitic~ P(A' = l') as conditioned on the channel state s.'. Using Bayes' law of 

probability, P(A' = l') can be rewritten as 

p(A' = l') = L P(A' = l'IS')P(S'), 
§.' 

(3.ï) 

where s.' = (fÙ,S2''''''s) is a 'compound' channel state vector (CSV) made up of 

the concatenations of 1 consecutive n-bit CSV's~. The events of detecting an error in 

the i eA transmission of a codeword (i = l, 2, ... ,1) are independent of each other when 

conditioned on the CSV. This stems from the Gilbert-Elliott model which stipulates 

that the channel, in any given state, is discrete, binary symmetric and memoryless 

(the channel memory is represented by the transition probabilities between states. 

Henee, the conditional probabilities in Equation 3.7 can be rewritten as 

, 
P(A' = l'IS' ) = TI P(Ai = ll~)· 

i=l 

Also, using the Markov property, P(s..') can be written as: 

Grouping the above two expressions, one gets 

P(A' = JI) = ~ L'" E P(A1 = 11~1)P(Sl)P(A2 = 11~2)P(~21~1)'" 
§.. §..a §., 

... P(A, = lLSl)P(S,I~-l) 
- E P(A1 = l~l)P(S.l) Ep(Az = 11S.2)P(~IS.l)"· 

§.. ~ 

... L P(A, = 11~)P(S,ISJ-d 
~ 

Introdudng the varia.bles {JII, k = 1,2, ... , l, one cao calculate P(A' = l') by using a 

backward recursioo as follows: 

P,(SJ-d - E P(A, = 1IS,)P(~ISJ_l) 
~ 

P,-l(SJ-2) - E {J,(SJ-l)P(A,-l = 11~-1)P(~-11s.,-2) 
~-. 
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f3,,(&-d .- L:,B/r+lL'Î/r)P(A/r = 1IS/r)Pl~I.s:/r_l) 
§.à 

P(A1 = l') - L Pl(S'O(n»P(S'o(n» 
So(n) 

:m 

- Pl(SO(n) = O)P(S'o(n) ::.:: 0) + f31(So(n) = I)P(So(n) = ) (3.8) 

This type of recursive procedure for computing the probability of a joint event is 

also used in Hidden Markov models theory [42]. A new state So(n) is introduced 

h€'re to represent the initial state of the Markov chai.l. Assuming the Markov chain 

is stationary - which is a safe assumption given the characteristics of the physicaJ 

channel - the probabilities P( So{ n) = 0) and P( So{ n) = 1) are then the stationary 

probabilities of the channel being in the 'good' and 'bad' state respectively. From the 

basic Gilbert-Elliott model, these stationary probabilities are [41]: 

9 P(So(n) = 0) = -b -, 
+9 

b 
P(So(n) = 1) =-. 

b+9 
(3.9) 

Using the ahove stationary probabilities, the joint prohability P(A' = 1') can he 

rewritten as 
P(A' = l') = ~-g- + fJl_b_. 

Ib+g Ib+9 

We have introduced here the notation 

PM.-t(n)) = { ~ , for S'_I(n) = 0 

, for S'_I(n) = 1 

(3.10) 

(3.11) 

Note that, in the above recursion, P,,(SJ.-l) is a function of SJ.-l only sinee 

(J,(fu-l) = LP"+1(~)P(A" = IIS.)P(fulfu-d 
§.,. 

is an averaging operation over ail possible states SJ. conditioned on s.-t. Further­

more, since P(~IS.-d depe'lds on S"_l(n) only, due to the Markov property, one 

can rewrite P"(~-I) as follows. 

fl,,{S"-l(n» = L Plr+l{S",)P(A" = 11~)P(s"'IS"-l(n». 
§.,. 

(3.12) 
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Writing 8,. lTl tilis fashioll. one cm sec that 131r(&- d can only take on two possible 

valu('s f:JZ and rJZ. (1.<; defint:'d in 3.11. 

No\\', ('ael! of tht:' !31r'S is a function of (1/c+l. P(A lo = 11~) and P(~ISIr-l(n)), as 

can bt:> flC('1l frorn Equation 3 12 above. The probabilities P(~ISIr-l(n)) are obtained 

from tll(' tran~itlOn matflx jJ(n) for the Extended Gilbert-Elliott channel model, as 

showfI in Section ~.3. /'( Ale = 11.&) IS the probability of detectmg an error while the 

t:hannel is in statc S.1c' For a memoryless binary symmetric channel (BSC) with error 

ra.t.e p, the probability of having one or more bit errors in an n-bit codeword is 

P( error) = Pt! = 1 - P( no errors) 

= 1 - (1 _ p)". (3.13) 

For the Gilbert-Elliott model, the channel is al50 binary symmetric with error rate 

Po when in the 'good' state, and Pl when in the 'bad' state. When conditioned on a 

specifie CSV, the probabHity of codeword error is then f;imply 

(3.14) 

where N~n)(k) and N~")(k) are the number of bits in the 'bad' and 'good' states 

respectively, in an n-blt codeword. Now, assuming we use a good error detecting 

code, the probability of undetected error is very small compared to that of detecting 

an error [5J, ie. P" ct:: P~. AIso, since Pt! = Pu + P~, we have that Pd ~ Pt! for a 

good code, and hence the probability of detecting an error given that the channel is 

in state s.. is 

(3.15) 

In summary, in order to compute P(A' = l'), one must first obtain the quantities 

If, Pl, If-t, Pl-t, ... , pf, Pl in that order, using the recursion of Equation 3.8. Once 
Pf and .81 are obtained, the joint probability P( A' = l') is then simply as given in 

Equation 3.10. 

Now, the number of computations required to obtain P(A' = l') can be very 

large. Each of the fJ%, q = 0,1, is a sum with 2" terms, each term being a product 

of three factors. Thus, computing each /3% requires approximately 2" additions and 

2 x 2" multiplications. Hence, to compute P(A' = 1'),212" additions and 4/2" multi­

plications are needed. Clearly, the number of computations grows exponentially with 

n, and thus, for large n (n ~ 40), the computing time required becomes impractically 

large. Alternate ways of computing P(A' = l') must then be sought. 
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3.2 Throughput for Slow làding Channels 

In the pr.>viom !-.t'ctIOH, It wa.s shown that !-.IIlCt.' the Ext (,lIded t;.ll)('rt -Elliot t model 

Markov chain has 2" distinct states, the Humber of computations f('quin'd 1.0 ohtain 

thr ughput i!> also proportional to 2n
. the probability of havÎng s('veral 'good-to­

bad' or 'bad-to-good' slate transitions over one codeword is very small, and (:all he' 

safely assumed to be zero for mmputational purposes. Thus, t.he state transitioll 

probability matrix for su ch slow fading channel can be approximated by an ('quiva­

lent sparse matrix. In doing so, the number of non-zero elements in the transition 

matrix is drastically reduced, and becomes Jinear with codeword length n, inst.ead of 

exponential. 

In this section, we show how for such slow fading channels, ie. for small values 

of the channel parameters band 9 and small codeword length n, an approximate 

Markov model can be found which has only n + 1 non-zero elements in each row of 

the l.h1nsition matrix pen). Consequently, the number of computations required in 

order to obtain ARQ throughput is reduced. Using this sparse matrix approximation 

allows the derivation of closed form expressions for ARQ throughput performance. 

3.2.1 Channel State Vector Transition Probabilities 

The approximate channel Markov model and its corresponding transition matrix can 

be obtained by closely examining the channel state stochastic process affecting data 

bits in a codeword. We assume data is transmitted in codewords of n bits. We take 

two consecutive codewords transmitted over a vector channel having CSV's s.. and 

~+1' as shown in Figure 3.1. The probability P.j shown in the figure (i,j = 0,1) is 

an element of the two-state Gilbert-Elliott transition matrix 

p=(I-b b ) 
9 1-9 

(3.16) 

Looking at the diagram of Figure 3.1, the transition probability between the two 

consecutive CSV's can be written as 

(3.17) 

where qij is the number of transitions between states i and j within the s..+1 CSV and 

channel state bit S,,( n). It is assumed for the time being that there is no channel idlc 
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Figure 3.1: Transitions between two consecutive CSV's 

time (6 = 0) between transmissions of two consecutive codewords. Channel round 

trip delay will be considered at a later point in this analysis. 

For small channel parameters band 9, that is for small POl and PlO, the probability 

P(~+ll~) in Equation 3.17 becomes negligibly small with increasing Ql0 and qOl' 

Thus, in the transition matrix pen) of the Extended Gilbert-Elliott channel model, 

the elements for which qOl + Q10 ~ 2 are much smaller in value than those for which 

qOl + Ql0 ~ 1. This is true for sm ail band 9, of the order b,g ~ 0.01. Thus, for such 

slow fading channels, one can make a first order approximation of the elements of p(n), 

or in other words, set to zero aIl probabilities of state transitions ~ -+ ~+1 having 

qOl +Ql0 > 1. In doine so, many of the elements of transition matrix pen) become zero, 

making pen) a sparse matrix, which is easier to deal with than the original matrix 

with 2n elements per row. The only non-zero elements in this sparse matrix are 

those corresponding to transition probabilities describing CSV transitions in which 

one or less 'good-to-bad' and 'bad- to-good' state transition occurs. For instance, the 

following are exa.rnp)es of CSV transitions having non-zero probabiJities: 

x x ... x 0 -+ 000111· .. 111 

x x ... x 1 -+ 110000 ... 000 

x x .. ·xO -+ 000000 .. ·000 

AI80, looking at the above bit pattern, one cao see that CSV transition probabil­

ities are non-zero if 

s.." = 
or s.." = 

m = 1,2,"', n 

m = 1,2,···,n (3.18) 

From Equations 3.17 and 3.18, the non-zero transition probabilities are thus of 

the forrn 

(3.19) 
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Figure 3.2: Transitions between two consecutive CSV's with channel round-trip delay " 

where WB is the Hamming weight of a sequence of bits. The Hamming weight i~ by 

definition [5] the nurnber of '1' bits in a given binary sequence. PiJ is the probability 

of the 0 -+ lor 1 -+ 0 transition within the concatenation of CSV St+! with 8.(n). 
As an example, if we have, say, the following state sequence: 

···01011001110 
~ 

L. ~l+l 

The Hamming weights in Equation 3.19 are then WBL1Jr+d = 5 and WH(S.(n») = O. 

Also n = 8 and Pi; = POl' 

Having obtained an expression for the non-zero t::SV transition probabilities (J.:qua. 

tion 3.19), we now integrate these findings in the transition probability matrix p(n). 

The resulting 'approximate' transition matrix for the case of slow channel fading is 

( 

P'.,:')(1 - (n -1)6] P(ooM)/J 0 rtoJl)/J 0 .. 0 0 0 p,:') ) 
p(D) = ~:*) ~ 0 0 ... 0 ~:-'), 0 ~~), ~:-')[1 - (n - 1)1) 

~:*) 0 0 0 0 ~~), 0 r.:-,), ~:-')(1- (n - 1)1) 

(3.20) 

The tilde C) symbol indicates that channel round-trip delay 6 = M - 1 is taken 

into account, i.e. pen) gives transition probabilities between codewords separated by 

a gap of 6 bits, as shown in Figure 3.2. The derivation of pen) from Equation 3.19 is 

shown in Appendix A. 



CIIAPTEIl.1. AflQ TI/ROUGl/PUT FOR FADING CHANNELS 40 

As an examplc, for codcword length n = 3, and for nb and ng smalL the approxi. 

mate transitloll rnatri \ is 

pJ:'>(l - 2b) PJoM>b 0 P~M)b 0 0 0 p'(M) 
01 

P(3) = 
p(M> 

10 0 0 0 p,(M) 
11 9 0 p(M) 

11 9 pl~)(1 - 2g) 

p(M) 0 0 0 p(M) 0 p,(M) (M) 
10 11 9 11 9 Pu (1 - 29) 

(:3.21 ) 

By inspection, the above matrices are sparse. having many zero elements. Each 

row of the pCn) matrix has only n + 1 non-zero elements, Ollt of a total of 2n elements. 

Furthermore, out of the n + 1 non-zero elements, n - 1 elements have the same value. 

These two properties - the sparsity of the transition matrix and the equality of sorne 

of its elements . can be exploited, as will be shown later, to obtain a closed form 

expression for P(A' = l'). From P(A' = l'), computing throughput for the three 

popular ARQ schemes is a trivial matter, as shown in Equations 3.1 through 3.6. 

It is also important to note at this point that pc") is still a stochastic matrix. 

Indeed, the sum of ail elements in any given row of pCn) in Equation 3.20 is equal 

to one. For instance, summing the elements of the first row of p(3) in Equation 3.21 

gives: 
pJoM}(1 - 2b) + PJoM)b + PJoM}b + pJ~) = pJoM) + pJ:') 

Consequently, the approximations applied in this section for slow fading channels con­

serve the Markov properties of the CSV transition process. The approximations used 

here transform the 2"-state Markov chain into one in which many transitions are not 

allowed. These are the less probable transitions in the original process_ The matrix 

jJ(n) of Equation 3.20 can be seen as describing a Markov process that approximates 

the channel state stochastic process for channel parameters nb and ng small. 

3.2.2 Computation of p(A' = l') for small band 9 

ln the previous section, it was shown that, for slow fading channels, many of the CSV 

transition probabilities can be approximated by zero. In doing so, only n + 1 of the 2n 

elements in each row of pCn) are non-zero. In this section, we show that this property 

simplifies the computation of P(A' = l') and thus of ARQ throughput. 
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It was showll in Section 3.1 titat 1)(.11 = Il) cali he \\'nt1f'1I il)o. 

where {if and (if are obtained recurslvely starting with fi? and fil. using the rl'Iat.ioll 

of Equation 3.12 repeated here for convenience: 

(i,,(S"-l(n)) = ~P"+l(.~.)P(AIr = 11&)PL5:.IS,,-l(n)) 
5.,. 

Now, substituting the transition probabilities from matrix P("} and the probabilities 

peAk = ll~) from 3.15 in the above equation give~ the fol1owing expression for the 

joint probability P( A' = l') 

where 

P(A' = JI) = (_9-
b+ 9 

(3.22) 

_ ( PJoM}[l - (n -l)b](l - (1 - Po)"] PJ:'}bo:(n) + pJ~)(I - (l - Pl)"] ) 
Q - p1:'}go:(n) + P1:'}[1 - (1 - Po),,] Pgf)[1- (11 -l)g][l - (1 - Pt)"] , 

and 
1 - r,,-l 

a(n) = n - 1 - (1 - Po)"r 1 ' 
-r 

1 - Pl 
r---
-l-Po' 

A detailed derivation of Equation 3.22 is given in Appendix B. 

The above result is of great importance, since it gives us P(A' = JI), and thus 

ARQ throughput, as a closed form expression. Furthermore, we no longer need a 

recursive relation to compute P(A' = l'); ARQ throughput for slow fading channels 

is now a direct function of the channel parameters b, 9, 6, Po, Pt, and the codeword 

length n. In the next section, sorne illustrative throughput performance plots of ARQ 

systems over slow fading channels are obtained using the expression of Equation 3.22. 

3.2.3 ARQ Performance Plots for Slow Fading Channels 

Sorne typical throughput performance plots for the three popular ARQ protocols 

over slow fading channels are given here. In Figure 3.3, throughput is ploued as 

a function of codeword length n, aIl other channel parameters kept constant, for 

the three popular ARQ protocols. These plots are obtained arter computing the 
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Figure 3.3: Throughput as a {undion of codeword length for the SW 1 GBN 1 and SR ARQ protocols 

joint probabilities P(A' = l') using the closed form relation of Equation 3.22. The 

P( A' = l') 's are computed for 1 = 1,2,'" up to the point where they become 

negligibly small (P(A' = J') < 10-4 ). These joint probabilities are then summed as 

shown in Equation 3.6 t.o give the average number of transmissions E[T]. From E[T], 
the throughput '1 for the three ARQ protocols discussed in this thesis is found using 

Equations 3.1, 3.2 and 3.3. 

The throughput performance plots shown in Figure 3.3 are for a typical slow fading 

channel, having small 'good-to-bad' and 'bad-to-good' state transition probabilities 

(b = 0.0001, 9 = 0.0003). The average bit error probabilities in the 'good' and 'bad' 

states are taken to he Po = 1 x 10-1 and Pl = 0.01, respectively. The channel round 

trip delay is assumed to be 6 = 30 bits, and the code rate R = 0.75. 

The plots of throughput efficiency versus codeword length are useful in that they 

show how codeword length should be selected to maximize ARQ throughput. From 

Figure 3.3, it can be seen that throughput decreases with increasing n for both the 

Selective Repeat and the Go-8ack-N protocols. This is due to the {ad that the larger 

a codeword is, the larger the probahility of having an error in that codeword. However, 

one must bear in mind that larger codewords are generally more powerful tbao their 

shorter counterparts. For a fixed code rate R, longer codewords can provide superior 
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error detecting / corre,tin!!: capahility. 

For the Stop·and-Wait ARQ protocol. Figurt' :t3 show~ that md('worcl l('np;th ha. ... 

an optimum at TI == n- = 75. {(,r the glVf'1l channC'1. Throughpllt clIiciency for t.1H' S\\' 

scheme incrca..<;es with n up tu a maxJnlllI1l. and then start~ tu slowl)' decn'(lst' with 

increasing n, in a manner similar to that for the GBl'\ a.nd sn schellles. Thdt '/SW 

increases with increasing n for 11 ~ n- is due to the wa.. ... ted tÎm(' incurred in t!\(' SW 

scheme between consecutive codeword tranSHIISSlons. Smce a fixed overlwad of il bÎb 

is incurred for each codeword transmission, It makes senSt' 1,0 increase the alllOlIlI! 

of information (i.e. the codey,ord size), sent over the channel at cach transmlSliIOIl. 

However, {or very large n, the prohahility of codeword crror becomes significantly 

large and offsets the advantage gained by increasing n. These two factors cause the 

throughput efficiency of the SW ARQ protocol to have a maximum as shown in 

Figure 3.3. This behaviour has also been shown in previotls work on codeword Icugth 

optimization [36], [31], [32]. 

Throughput efficiency is often expressed in the literaturc [.5] as a function of lh(· 

bit error rate prevailing over the channel. In the case of the Gilbert-Elliott fading 

channel, we cannot ta1k of a channel bit error rate, but rather of an average b,t error 

rate Pav, which we define as the weighted average of the crossover probabilities in th<> 

4good' and 4bad' states 
g b 

Pov = -b -Po + -b -Pl· +9 +9 
A plot of throughput versus average bit error rate for the three conventional ARQ 

protocols is shown in Figure 3.4 for the same channel parameters as in Figure 3.3, 

that is b = 0.0001, 9 = 0.0003. The codeword length is fixed at n = 30, and N (the 

number of codewords between sucCflsive retransmissions of the same codeword) is 

taken to be equal ta 2, giving channel idle time S = 30. A code rate R = 0.75 is also 

assumed here. 

From Figure 3.4, one can see that througbput efficiency is fairly constant for 

low average bit error rates. For larger Pa. (Pou> 10-'), throllghput drops rapidly 

with increasing average bit error rate, for the three protocols considered here. This 

behaviour is in tine with typical throughput vs. bit error rate plots given in the 

literature [5]. This exact relationship between throughput efficiency and average bit 

error rate depends of course on such parameters as codeword }('ngth, channel round­

trip delay, fading channel parameters. More on throughput performance and its 

dependence on the above parameters can be found in Section 3.4. 
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Figure 3.4: Throughput versus average bit error rate for tbe SW, GBN, and SR ARQ protocols 

3.3 Throughput for Fast Fading Channels 

In this section, it is shown that upper and lower bounds on P( A' = l') can be 

obtained, th us circurnventing the problem of performing computations of order 2", 

as exposed in Section 3.1. The bounds developed in this section become increasingly 

tight for increasing ng and nb. Thus, for fast fading chaunels, these bounds give a 

good estirnate of ARQ througl1put performance, and also confirrn the approximation 

developed in Section 3.2 for slow fading channels. 

3.3.1 Upper and Lower Bounds on Throughput 

Bounds on ARQ throughput efficiency for fading channels were first derived by 

Beirouti et al [23]. This derivation is reiterated in this section for convenience. In 

order to develop upper and lower bounds 011 throughput, we first define NJn)(i) and 

N1n)(i) to be the nurnber of visits to the 'good' and 'bad' state, respectively, in n 

steps at the i'Ia consecutive codeword transmission. Note that 
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Th(' variables NJn)(z) and Vin)(l) art' also rderrt'd to a:; the stcttt' 0 alld ~t(\lt, 1 

occupation tlm('s random variabks 11~jllg tIH'S(' definitiolls. the PlA. = 11~~k) h'fIll'> 

in (3.8) can be approximatcd b:. 

P(A. = 11S'.) ~ 1 - (1 - pd~·)(·){l - Po)N!·)(·), (~J.2;J) 

as was shown in Equations 3.13, 3.14 and 3.15. Agam, wc assume a good ('rror 

detecting code IS used. This resuit comes from the probability of rcceivmg a COrI t'cl 

codeword conditioned on the channel stat(' vector~. Now, suhstitutmg t.he aboVl' 

expression in variable {3.(s...-1) of Equation 3.8 and making som(~ approximations, it 

can he shown that the joint probability Pl A' = JI) is upper and lower boulld('d as 

follows: 
9 b 1 Il 9 b 1 

(nPo-b - + npl-b - - bp(Pl - Po)] ~ P(A = 1) ~ (nPo-b- + np1'b- + 9p(PI - Po)J, +9 +g +g +9 
where 

(1 - b- g)(6+1) n 

P= (b+g)2 [l-(l-b-g)]. 

These hounds are derived in Appendix C. 

It must he noted here that the ahove hounds on P(AI = Il) are of the fonn 

p(A' = l') ~ ri, or P(A' = l') 2 r', ie. P(A' = l') is upper bounded by a con::.tant 

raised to the power 1. 0 ~ r ~ 1, since P(A' = l') is a probability mca.':mrc, Now, 

from Equation 3,6, it can he seen that the average number of transmissions E[T] 
hecomes a geometric series expansion since: 

00 

E[T] - 1 + L P(A' = l') 
1=1 

_ 1 + P(AI = Il) + P(A2 = 12) + ... 
_ 1 + r + r 2 + r3 + ... + r' + ... 

1 

l-r 
1 

(3.24) - 1 - P( A 1 = Il) . 

Now, Crom equations C.5 and C.6, the bounds on P(A' = l') translate into bounds 

on E[T] as follows: 

1 < E[T] < 1 . 
1- (nPo~ + nPt.!g + gp(Pl - Po)] - - 1- (nPo~ + np1,*, - bp(Pl- Po)] 

(3.25) 

The above bounds on E[T] can then he substituted in (3.1), (3.2) and (3.3), and 

thus hounds on throughput can he obtained for the tluee ARQ schemes discussed in 

Section 1.3. 
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3.3.2 Utility of the Bounds 

(J J>J>('r and lo\\,('r bounds on average 'number of transmissions E[T], and thus on 

ARQ throllghput wcre devcloped in the previous section. The following questions 

arise, howcvcr' How tight are these bounds? And, do these bounds agree with the 

throughput approximation obtained in Section 3.2 for BJOW fading channels? 

Looking at Equation 3.25, the upper and lower bounds on EIT] approach each 

other as the terms bp(Pl - Po) and gp(Pl - Po) decrease in value. The variable p is a 

function of the channel parameters h, g, 6, and the codeword length n, and is repeated 

here for convenience: 

_ (1- b_g)<6+1) ft 
p- (b+g)2 [1-(1-b-g)]. (3.26) 

From Equation 3.26 above, p decreases with increasing b, 9 and 6. Thus, the bounds 

on throughput become increasingly tight with increasing b + 9 and increasing channel 

round trip delay 6. These conditions translate into lower channel memory, sinee the 

larger 6, the lower the correlation between consecutive codewordsj and the larger b 

and g, the faster the fading, and thus the lower the memory of the channel. Also, in 

order to have tight bounds, Pl - Po must he smaU, and sinee, typically, Pl ~ Po, this 

requiremeot translates ioto Pl being small. 

Now, for hp(Pl - Po) and gp(Pl - Po) small, the average number of transmissions 

tends to 
1 

E[T] --+ 1 - [nPo~ + nPl.!,] . (3.27) 

The term in square brackets cao be secn as a weighted average of the crossover 

probabilities Po and Pl, sinee g/(6+ g) and 6/{6+ g) are the tw<>-state Gilhert-Elliott 

model stationary probabilitics. Increasing channel parameters 6, 9 and 6 can he 

seen as decreasing the memory of the channel. Indeed, the expression in (3.27) is 

equivalent to that for a memoryless channel, sinee from [5J, the average number of 

codeword transmissions is 
1 

E[T] = 1- P/ 

where Ptl is the probability of detecting an error at the ARQ recei·~er. Also, from 

Equation 3.13, 

Ptl ~ 1 - {I - p)ft ~ np, 

for np ct:: 1, where pis the crossover probability of the memoryless BSC. Thus, as 6 
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and 9 increa<;e, the hounds cOIl\'crgt' to th(' thrnuglIJl1lt (·fflcielley fur a f1l('III1)r~ je'''' 

channel 

Plots of throughput as a functlOn of (11(]('word kru~th 1/ cin' shoWII III Figurt' J,.) 

for the threc ARQ protocob discusscd ln thi~ thcsl~ Both t!tf'S(' hound .... and tl,,' 

curves resulting from the application of th(' approximatloll~ of Section :1.:2 are plot t ('d 

in Figure 3.5. The upper and lower bound~ on throughput art· showlI a'l da<>hed lill(,~ 

whereas the throughput as computed using tll(' approximation~ of SectlOlI :1.2 IS showII 

as a soliè line. These plots assume croSSOV<'1 probabilitws Po = 1 X 10- 6 , IJI == 0.01. 

channel round trip delay 6 = 49, dnd code 1 dte R = 0.75 A:- can be SCCII from HU' 

figure, the bounds on throughput are quite tlght for channel param~ters b = 0.01 and 

9 = 0.03. These bounds become looser for smaller band 9 as shown in Figure 3.6 

which shows throughput performance plots for the case b = 0.008, 9 = 0.024. From 

the two figures, the convergence of the bounds for increasing band 9 can hencc casil) 

be seen. 

The bounds obtained in this section have no practlcal significance, however, sinn' 

they converge towards the trivial case of a memoryless channel; one might take the 

plot of throughput versus n for the memoryless channel to estimate ARQ performance 

over fast fading channels. However, th~ bounds remain useful in order to vahdatt' 

the approximations on throughput efficiency obtained in Section 3.2. Indeed, from 

Figure 3.5, one can see that the throughput curves obtaillf'J using the approximation 

techniques are weIl within the upper and lower bounds, for a significant range of 

values of n. However, for n > 175, the plots using the approximation technique arc 

no longer between the upper and lower bounds. This is duc to the fact that nb and 

ng are no longer small for n > 175. 

From the plots in Figure 3.5, it cao be seen that the approximation technique for 

slow fading channels cao safely be used, provided nb and n9 are small. In the plots 

displayed here, the product ng at which the 'approximate' throughput starts diverging 

from within the bounds is ng = 5.25. Thus, keeping nh, ng < 1 should be sufficient to 

ensure the accuracy of the approximation technique. One can hence examine channels 

with b,g $ 10-4 using the approximation technique (for a reasonably large range of 

codeword lengths n) and compare this to the trivial memoryless channel case. The 

behaviour of channels wi th 'intermediate' and low memory (1 < h, g $ 10-4 ) can be 

extrapolated from the slow fading and memoryless channel case. In 50 doing, one can 

infer the behaviour of ARQ schemes for a wide range of channel memory. Hence, in the 
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Figure 3.5: Throughput u & function of codeword length ung both the approximation technique 
(lOlid line) and the bounding technique (dashed line), for" = 0.01, 9 = 0.03 

forthcorning sections, we analyse ARQ schemes over channels with h, 9 ~ 10-4 using 

the approximation technique, and compare this with ARQ schemes over memoryless 

channels. Throughput for channels with no memory is trivial to compute, since again, 

1 
EfTJ = 1 _ P,/ 

where Pd is the probability of detecting an error in a given codeword: 

Ptl ~ 1 - (1 - p)". 

The probability p is the bit error rate of the channel. 

3.4 Fading Effects on ARQ Throughput 

We have seen in Chapters 1 and 2 that channel memory or fading results in errors 

occurring in bursts; the larger the channel memory, the burstier the resulting channel 

error sequences. In this section, we examine the effects of channel memory on the 

throughput efficiency of ARQ systems. 
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How channel memory impacts ARQ throughput performance is not directly ob· 

vious from the results obtained thus far in this thesis. The relationship between 

througbput efficiency and the Gilbert-EllioU model parameters Îs clouded by the 

shear complexity of the expressions for ARQ throughput obtained in Sections 3.2 

and 3.3. Hence, one must resort to graphically representing throughput efficiency for 

various degrees of channel memory. The graphs in Figure 3.7 show througbput per­

formance for both the Selective Repeat and Go-8ack-N ARQ scbemes. The dotted 

lines give the throughput for the memoryless channel case. The dashed lines give 

throughput for a channel with large memory, namely b = 1 x 10-8 , 9 = 3 x 10-8 , 

whereas the solid lines show throughput efficiency for an 'intermediate' memory case, 

namely b = 1 X 10-4 and 9 = 3 X 10-4• A codeword length n = 30 and a gap N = 7 

between codewords is assumed. From the plots in Figure 3.7, it can be seen that 

the larger the memory of the channel, the lower the throughput efficiency of both 

ARQ schemes. This relationship is especially apparent for high average bit error 

rates (Pov > 10-2 ). For instance, for Pov = 0.02, the throughput efficiency (of the 

SR scheme) for the highly fading channel (b = 1 x 10-8
, 9 = 3 x 10-8

) is exa.ctly half 

that for the memoryless channel; '1SR = 0.55 for the memoryless channel, and only 

'1SR = 0.275, for the high memory channel. 
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From the above observations, it is now clear that improving ARQ throughput 

efficiency on a fading channel can be achieved by decreasing the memory of that 

channel. One way of decreasing channel memory is to delay retransmission of code­

words detected in error, i.e. increasing the gap N between retransmissions of the 

same eodeword. Note that performance of the Go-Back-N scheme deteciorates with 

increasing N, since flCSH is inversely proportional to N, as shown in Equation 3.2. 

Thus, increasing N would be advantageous only in the SR protocol. To show the 

advantage gained from delaying retransmission of consecut;ve codewords, throughput 

performance of the SR ARQ scheme for several values of N is shown in Figure 3.8. 

From the figure, one cao see that a significant improvement in throughput efti­

ciency cao be obtained by increasing N froll'. 1 to 20, for the given fading channel 

(6 = 1 x 10-4 , 9 = 3 x 10-4 ). Increasing N has the efFect of decorrelating the states of 

consecutive codewords, thus decreasing channel memory. Furthermore, for N = 60, 

the throughput efficiency of the SR ARQ system over the given fading channel ex­

ceeds that oC an equivalent system over a memoryless channel. Although surprising 

at first, this (ad can be explained as (ollows: The memory intrinsic to the channel 

causes successive channel state bits to be highly correlated. Renee, channel state 
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Figure 3.8: Throughput efficiency of the SR ARQ protocol for several values of N 

vectors (CSV's) tend to he either entirely in the 'good' state, or entirely in the 'had' 

state. Now, since in this particular channel ex ample (Figure 3.8), the steady-stat.c 

probability of the <::hannel being ID the 'good' state is fairly high (g/(6 + g) = 0.75), 

the prohability that an entire codeword is in the 'good' state is also very high. In 

this way, the throughput performance of the SR ARQ scheme over the given fading 

channel can be made hetter than that over a memoryless channel. Stated in a differ­

ent way, the combined effect of high memory within a CSV and no memory between 

consecutive CSV's can bring about an improvement in throughput efficiency. 

The relationship between throughput efficiency and the gap fJ between consecu­

tive codewords is shown more explicitly in Figure 3.9. Again, increasing the gap fJ 
decorrelates consecutive CSV's, and thus improves throughput efficiency of the SR 

ARQ channel coding scheme. Also, the improvement in ARQ throughput is greater 

for larger average bit error rates. Indeed, as can be seen in Figure 3.9, throughput 

efficiency can be increased three folds, for Pt = 0.1, by introducing a gap of JOOO bits 

between consecutive codewordsj for Pl = 0.05, the gain in throughput is smalJer (only 

30 % better). 

Although increasing N does result in improved throughput performance, such a 
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scheme is not desirable in practice. Indeed, increasing the delay between retransmis­

sions of codewords translates into large delays in delivering data to the end user, as 

weil as increased buffering requirement and thus hardware memoryj it is shown in 

(5) that for adequate system performance, the buffer size at the ARQ receiver must 

increase with N. For this reason, practical ARQ systems and other error-control 

schemes have traditionally used code interleaving to suppress channel memory, as 

discussed in Section 2.5. However, code interleaving requires extensive buffering, 

both at the transmitter and receiver, and hence causes an additional delay in deliv­

ering data to the end user. In this research, we use frequency hopping, Le. switching 

transmission channel at a constant pace, ta suppress channel memory, without in­

creasing the data delivery delay. Frequency-hopped ARQ systems are the object of 

the next chapter. 



1 

Chapter 4 

Frequency-Hopped ARQ 

In the previous section, it was shown that lDcreasing the time delay N between cc,d('­

word retransmissions improves the throughput efficiency of Selective Repcat ARQ 

systems. This improvement is realized mainly by decreasing the memory of the fom­

munication channel. In this chapter, the use of frequency-hoppt'd codcword retrans­

mission is introduced as an alternate means of decreasing channel memory, and thus, 

improving ARQ throughput. These improvements in throughput performan("e art' 

illustrated and discussed in Section 4.3 

4.1 Frequency Hopping 

In a few words, frequency-hopped data transmission consists of sending consecutive' 

data packets alternatively onto one of m different carrier frequencies. A frequency­

hopped data communications system is shown in Figure 4.1. Going through the 

system block di agram , it can be seen that data packets or codewords leaving the 

chanoel encoder enter a frequeocy-hopped modulator which modulates the incoming 

codewords ooto a number of different carrier frequencies Il, 12, Is, . ", lm, according 

to a pre-determined 'key' sequence. The resulting signal is then sent over a phys­

ka! channel and demodulated at the receiving end using the same 'key' frequency 

sequence. 

In a frequency-hopped system, the frequcucies on which data is transmitted are 

'independent', i.e. they represent statisticaily independent channels. The frequencies 

/1, /Z, Is, . ", lm are chosen in su ch a way that the channel conditions prevailing at 

.53 
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frequency ft are independent of those prevailing at frequencies 12, fs, "', lm, and 

similarly for the other frequencies. Thus, in sending consecutive codewords onto these 

indepe!ldent frequencies, channel memory between codewords is reduced. How these 

îndependent {requencies are ohtained physically is Dot important here. We assume 

m independent frequencies, i.e. m indeper.dent channels (".-an be obtained on a given 

communications link, and base our subsequent analysis on this assumption. 

Frequency hopping systems were in: tially used in the late 1960's, for military com­

munications applications (43]. By send;'lg data onto various carrier frequencies, one is 

able to escape or reduce interference Cron: hostile jamming sources. Later, frequency 

hopping was considered as a potential modulation scheme for a new standard in digital 

cellular telephony to be implemented in the early 1990's (44). One of the advantages 

of using frequency hopping in sud wireless network applications is again to escape 

interference on a given channel from adjacent channel users. A voiding such inter­

ference is achieved by switching (or hopping) carrier frequency at regular intervals. 

Due to its use of a number of different carrier frequencies for a single user, frequt:ncy­

hopped modulation is considered a spread-spectrum communications scheme. More 

on spread-spectrum techniques cao he found in (4) and [45]. 

In this research, we use frequency hopping as a means of escaping deep fades that 

may occur in a given channel. If a codeword is round in error at the ARQ receiver, 

it is statistically very likely that the particular channel in use at that time is in a 

'bad' state. Thus, retransmitting the data onto another independent frequency (and 

thus onto another independent channel) may be more successful than using the same 

channel which is probably undergoing a deep fade. One cao hence sec heuristically 

that frequency-hopped codeword modulation can bring about a possible improvement 
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An illustration of the use of frequency hopping t.o escap<' bad channel fOndit.ions 

is shown in Figure 4.2 for the case of two independent ehdnncls. From the figtm" 

it can be seen that data eodewords are sent over the t,wo indepcnd<,nt ehann("ls, in 

an alternating fashion. When a eodeword is detected in crror, which is hkcly due to 

'bad' channel conditions, it is retransmitted onto the other chann('1, which may thcn 

be in a better state. Thus, one ean intuitively see a possible improvcnwnt in AHQ 

throughput. For example, looking at Figure 4.2, tht> codcwords al through a4 an' 

sent alternatively on Channels 1 and 2, which are both in the 'good' state, at that. 

time. Later on, the conditions on Channel 1 deteriorate, causing an error to oecur in 

codeword as. As a consequence, as is retransmitted, this time on Channel 2, which is 

still in a 'good' state. Henee, codeword as is suecessfully transrnitted after a total of 

two trials, instead of possibly more trials, if no frequency hopping is used. Figure 4.2 

shows the case of hopping over two frequencies only. This scheme can of course be 

generalized to the case of m independent frequencies. The frequency hopping scheme 

described here is 'automatic', i.e. the carrier frequency is changed at each codeword 

transmission. 

The frequency hopping protocol discussed in the previous paragraph and iIIus· 

trated in Figure 4.2 assumes no channel round trip delay. Now, since consecutive 

codeword transmissions are done on different frequencies, it may very weil be that, 

due to channel round trip delay, retransmission of an erroneous codeword oceurs on 

the same frequency as the original codeword in error. Such scenario, which may occur 

for both GBN and SR protocols used over a channel with non-negligible round trip 
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deJay, is illustrated in Figure 4.3. The ARQ system in Figure 4.3 assumes the Go-
8ack-N protocol is used with hopping on three independent frequencies. The channel 

round trip delay is assumed to result in N = 6, here. 

As shown in the figure, codeword a, is received in error, and, consequently, a 

retransmission is requested. However, due to channel round trip delay, codeword 

a, is retransmitted at frequency h, which is the same frequency as the one used 

in the initial transmission of a2' Such occurrence is a worse case scenario, however, 

since it defeats the purpose of frequency hopping. It corresponds to the case where the 

parameter N is a multiple of the number of independent frequencies used for hopping. 

Also note that this worse case scenario applies only for the GBN and SR protocols. 

In the Stop-and-Wait protocol, one can make sure that erroneous codewords are 

retransmitted onto a different frequency, since the transmitter must wait fOT an ACK 

/ NAK signal before proceeding. 

Now, in the worse case scenario where erroneous codewords are rJways retrans­

mitted on the same frequency, the performance of the frequency-hopped ARQ system 

is then comparable to tbat of a regular ARQ system without frequency hopping. In 

order to avoid such event, other possihly more complex frequency hopping protocols 

must be used for GBN and SR ARQ. For instance, bopping may he achieved according 

to a pseudo random frequency sequence with very long period. The pseudo random 

sequence wouJd be known to both transmitter and receiver. Or alternatively, one 

could hold in memory the last frequency on which a codeword was transmitted. In 

this fashion, one could ensure that an er:-oneous codeword is not retransmitted on the 
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5anH' frequc[Jc}' Ail ('\ell bt'tl<-r illItomatlc fr('qllcncy hOPPlIIg prll(\lcol would k('('p in 

rnt'mor: the m prn IOUS freq 11el1< I('~ 011 whl( il dll ertrlIlt'OU:- \ \)dt'\\\lid ha." bt'«'11 sent 

50 a~ to CIl<;lIre that the rod('\\ md h r<'tritIl~IIlit tt'd ,dtt'rI\atin'" 011 ail fil aVdilahle 

frequcncj('<; The rt'5ultlng hopplIlg al~~)rJthlll may bt' complt'x dIld IInprdCtlc<\1 to 

Implement. howe .'cr. So far, we ha\(' dl!>ctl~~t'd only 'i\lItomatlC' frt'qllenry hoppill~ 

schemes One can 0150 conslder hopping 'on dcmand', lI1 wlllch t.hC' transmlS~lon fr('­

quene)' changes onl) when il l\:r\i\ signal is reœlved. Wlth littlt, thought, tilt' reader 

can see that such a protocol is lIkely to yield beUer throughput performance thall 

automatic frequ/'ncy hopping. Frequenc) hoppmg may aJso be slIbject to vanous 

standards on bandwidth allocation. The design of an 'optimal' or 'quasi optimal' 

automatic hopping scheme is in itself an IIItelestmg art'd. for furtl}(~r research. In this 

thesis, we assume an optimum cl.utomatic frequeney hopping prot.ocol ean be found. 

In the nf>xt section, we derive t'X pressions for the through put of sueh optimum auto­

matic frequency-hopped ARQ system. Of cour ... e, non-opt 1 ma.I hopping protoeols will 

result in lowe: throughput efficiency. 

4.2 Throughput of Frequency-Hopped ARQ Sys­

tems 

This section presents a derivation of expressions for the throughput performance of 

optimal frequency-hopped ARQ systems. The genera.l case of m independent frequen­

des (i.e. m independent ehannels) is considered here. 

It was shown in Section 3.1 that the average number of codeword transmissions 
is given by: 

E[T] = 1 + P(AI = JI) + P(A2 = P) + P(A3 = J3) + ... + P(A' = 1') + ... 
= 1 + P(AI = 1) + P(AI = I,A2 = 1) + ... + P(A1 = l, A:a = 1,· .. , A, = 1) + .. , 

Reeall that Ai is the event of detecting an error in the i tA transmission of the same 

codeword. If an m-frequency hopping scheme is used with frequencies Il, 12, la, . ", 
lm, the events Al, Az, As, "', Am are independent of each other, whereas the events 

Ait Am+h AZm+1, ... are dependent on each other. In general, the events Ai, Am+i' 

AZm+i, ... (j = 1,2,3,···,m) are dependent on each other. Thus, the proba.bility 

P(A' = l') can be rewritten as 

P(A' = l') = P(A I = l,Am+! == I,A2m+1 == 1,···,A(ra- t )m+1 = 1) 
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;< J}( A 2 = 1, Am+2 = l, A2m+2 = l,·", A("~-1)m+2 = 1) x ... 

.. x P(A) ::=; 1, ,.1m+1 = 1. A2m +.J = 1," . , A(r)-l)m+J = 1) x '" 

., x P(Am = 1.A2m = 1,A3m = 1,···,A"",m = 1). 

Or, altcrnatlvely, to shortcn our notation, we define 

and hence, tbe joint probabllity P( Al = l') becomeb 

P(A' = l') = Un x U/2 x 11'3 x· . X 11,; x ... X Ulm. 

58 

Tbe constant rJ is the number of events A. to be considered in the joint probability 

Ulj and can be easily round to be: 

{ 
1 div m if (l rem m) < j 

rj= (ldivm)+l if(lremm)~j 

The operation '1 div m' gives the integer part of the ratio llm, whereas the '1 rem m' 

operation gives the remainder (rom the division Iim. 

We now need to find each of the UI'S in terms of th Gilbert-Elliott model parame­

ters. Once that is done, the joint probabilities P(AI = l') can be obtained, and hence 

the throughput performance of the three ARQ protocols can be derived. 

Now, it was shown in Section 3.1 that P( A' = l') can be written as: 

P(A' = l') = E P(A' = l'I~)P(S') 
§..' 

= EP(A1 = 11~1)P(~dEP(A2 = 11~2)P(~1~1)'" 
§... ~ 

... Ep(AI = II~)P(~I~-l) 
~ 

This development can also be applied to each of the probabilities P(Aj = 1, Am+i = 
l, A2m+i = l,"', ACrJ-l)m+i = 1) as follows: 

uri = EP(Aj = 11~j)P(~i) L P(Am+i = 1ISm+j)P(Sm+il~j) 
8., 6...., 
E P(A2m+j = 11~2m+i)P(S2m+il~+j)'" 
~ ..... , 

L P(ACri-1)m+i = 1ISC,.,-1)m+j)P(~Crj-l}m+iI~r,-2)m+i) 
~ .. ,-I)".J 
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Figure 4 4: Gap between consecutive codewords at the same frequency (m = 3, N = 2) 

Thus, the results of Sections 3.1 and 3.2 also applv here, l'xcept that we should use 
transition probabilities P(~1r11)m+jI~+J) instead of P(~HlISIr)' Thus, for a slow 
fading channel, we have: 

P(A, = 1,A.n+J = I,A2m+J = l,···,A.-Jm+J = 1) = (_9-
b+g 

._ ~TQr,! 

where the matrix Q is given by 

1[ is the steady-state probabilit.y vector of the two-state Gilbert- Elliott Markov model, 

1fT = (_9 
- b+9 b!9) 

and lis a uuity vector with two components. Here, the gap M hetween consecutive 

codewords is no longer equal to the round trip delay Rr plus one, but rather 

M - [(N - l)m + (m - l)]n + 1 

- (Nm - l)n + l, 

as can be seen from Figure 4.4. 

It is interesting at this point to analyse the case m --. 00, that is the case where 

infinitely many independent frequencies are available for hopping. In the limit as 

m --. 00, one will al ways he able to retransmit data al a frequency that has not 

been used before (we design the frequency hopping protocol that way). Hcnce, ail 

transmission channels can be made independent, and the joint probability P(A' = l') 



1 
CHA l'TEH 4. FHEQUENCY-HOPPED AIlQ 60 

(ail al way~ 1)(' written a.'.> 

P(A' = l') 

Consequcntly, the average number of transmissions of the same codeword is a geo­

metric series expansion 

E[T] = 1 + q + q2 + q3 + ... + q' + ... 
1 

= l-q 

sinee q = P(A1 = 1) < 1. Here q = 1[TQ1, and the gap M between retransmissions of 

a codeword at the same frequency tends to infinity as m -+ 00. Thus, the probabihties 
pJoII), pJ:'), pf:'), and pl:') are the steady-state probabilities of the two-state Gilbert­

Elliott Markov chain: 

pJ:) = pf:') = g/(b + 9) 

pJ~) = P1~)=b/(b+g) 

Although the case m -+ 00 is not ohtainable in practice, it is still a useful case 

as it gives us the maximum throughput gain tbat can be achieved using frequency­

hopped modulation on a given fading channel. In the next section, we look at the 

improvement in tbroughput efficiency tbat can be obtained using a frequency-bopped 

ARQ system with two and three independent frequencies, as compared to the case of 

infinitely many independent frequencies (m ~ (0) and the trivial case of no frequency 

hopping. 

4.3 Performance of Frequency-Hopped ARQ Sys­

tems 

The manner in which throughput efficiency of ARQ schemes can be improved by 

the use of frequency-hopped modulation was briefly discussed in Section 4.1. In this 

section, we present performance plots of frequency-hopped ARQ schemes in light of 

the expressions for throughput performance derived in Section 4.2. Throughout this 

presentation, we consider the cases of no frequency bopping, hopping on two frequen­

des, hopping on three frequencies, and hopping on an infinite number of independent 

frequencies. 



J 

... 

CHAPl'EIl·1 FUEQLT:\'CT-1I01'1'ED AUQ hl 

Performance plOh sl!owlIlg AHQ thmughput dliClPIlCY for hol li tilt' SH .tIlt! (:u!'\ 
protoeols art' gi\'('!1 III FIP;l1r<'~ 4.5 and 4.6, for fadltlg Ch.lllll(,J:., wllh iI:-:. 1 • III .,1/ _0 

3 x 10-4 and b -= 1 )c lO-6,!! = 3 x 10- 6
• rCSpt'ctlvel~ III IJI)l11 fll'.lJr(· .... 011(' (,Ill ,,('t. 

a substantial Impro\'emt'nt 111 throughput cfficiency wlwIl Il:-llIg 1 II(' 11/ = :! (d.I. ... II<'<I 

Hne) and m = 3 ('dd.,l.-dotted' Ijne) frequ('ney hopplllg Scll<'IIH':-. O\"r tlll' 110 fr('(Jtwlll") 

hopping scheme (:'Iolld hne). The case of frequelley hOPPlllg U\ ('f ,U) IIlfillik 1Illllllwr 

of independent fnqueneies is also shoWIl (dotted \irJ(') lB tllf' ligure:, For 7T/ -+ OC-, 

one achieves the ma\.lmum possihle improvemeut III througllpllt for thls partlcular 

channel. The plots show throughput efficiency versus av('rtlgl' hlt error rat('. TIlt' 
range in average bit error rate is obtaint'd by keeping Po con~t.alll (,10 = 1 x 10-5 ), 

and varying Pl. By using frequeney hoppmg, an additional gap b(>tween codewords 

at the same frequeney is introduced. For m -+ 00, one obtams the maximum possible 

improvement in throughput for this particular channel. 

The improvernent in throughput efficieney shown in Figures 4.5 and 4.6 cornes 

partly from the introdu.:-tion of an additional gap betwf'Cn con -ecutive codewords 

transmitted at the same frequency. By transmitting a data str(>am alternativcly on, 

say, three independent channels, the gar between codewords at the samt> frequelle) 

becomes (3N - l)n bits, instead of (.V - l)n bits, if 110 frc(plellcy hopplng w('re u!>('d 

(see Figure 4.4). However, this increased gap between codewOlds does not translalf' 

in a delay in the transmission of data, as would be the ca.'ie if N wcn' inereased 

(see Section 3.4). 'ro the transmitter and receiver, the dt~lay betwL'Cn consecutive 

codewords is the same with or without frequency-hopped modulation. However, by 

dividing up transrnitted codewords onto severa) independent channels, the gap be­

tween codewords on a particular channel is increased, and thus, the memory betwecn 

CSV's on that pa.rticular channel is decreased. Such decrea.'ie in channel rnemory 

results in an improvement in ARQ performance, as discussed in Section 3.4. 

For the case of hopping on an infini te nurnber of frequencies, Figures 4.5 and 4.6 

show that the throughput curves approach an asymptotic value as the average bit error 

rate is increased towards unity. For the SR protocol, "SR -+ 0.75 as Pl -+ 1 for the 

given channel parameters. This behaviour can be explained as follows: As rm~ntioned 

in Section 3.4, the memory between channel state bits is quite large for highly bursty 

channels. Hence, a given codeword tends to be either entirely in the 'good' state, 

or entirely in the 'bad' state. Now, since for the channels in Figure 4.5 and 4.6, the 

probability of being in the 'good' state is P, = g/(b + g) = 0.7.5, and the BER in the 

'good' state is very low (Po = 1 x 10-5 ), the probability of succe~sfully transmitting 
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a codeword tends to 0.75 as weIl. Also, as m -+ 00, consecutive codewords become 

totally uncorrelated, and thus ARQ throughput for the SR scheme also tends to 0.75, 

no matter how large Pt is made, as shown in both Figure 4.5 and 4.6. 

From the above argument, the extent to which ARQ throughput can be improved 

by the use of frequency hopping depends highly on the steady-state probability of 

being in a 'good' channel state. Indeed, Figure 4.7 and 4.8 show the improvement 

in throughput efficiency obtainable for p. = 0.5 and p. = 0.25, respectively. As 

can be seen {rom these figures, the smaller the steady-state probability of being in 

the 'good' state, the smaJler the improvement that can be achieved with frequency 

hopping. However, one must bear in mind that the channel parameters h, g, Po, and 

Pt are related to each other, as shown in Section 2.2; one cannot vary b and 9 without 

effect on Po and Pl. Thus, one must use parameters from real channels in order to 

Cairly analyse the improvement in throughput brought about by the use of frequency 

hopping. In this research, we analyse the performance improvement that can he 
brought about by the use of frequency hopping for a given Gilbert-EllioU channel, 

regardless of how it applies to physical channels. 

We assumed in this section that m independent channels are readily obtained. 
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However, ;n real communication scenarios, totall)' independent channels can be dif­

ficult or eveo impossible to obtain. For instance, communication links aft'ected by 

the 50 calJed shadowing phenomenon (i.e. when the transmitter and receiver are 

separated by a large obstacle, say a hill or a large building) ail channels are equally 

degraded. In such event, the real performance of the frequency-hopped ARQ system 

should be close to the m = 1 case shown in the figures. In other words, communica­

tion links hampered by shadowing are not expected to benefit much from frequency 

hopping. 00 the other hand, communications suffering from multi-path interference 

are expected to benefit 8ubstantially from frequency hopping. Indeed, multi-path fad­

ing is highly frequency dependent, as discussed in Chapter l, and thus independent 

channels can he easily obtained. 

ln light of the above discussion, and taking into account the fad that a non­

optimal frequency hopping protocol may have to be used, the results displayed in 

this section should be interpreted with sorne caution. These results represent the 

througbput efficiency of ideal automatic frequency-hopped ARQ schemes. In other 

words, the plots of frequency-hopped ARQ system performance shown in Figures 4.5 

- 4.8 should be viewed as upper bounds on throughput efficiency. The extent to which 
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Chapter 5 

Conclusions 

This research examines the throughput performance of ARQ systems over fading 

channe)s modellf'd by the two-state Gilbert-Elliott Markov chain. Chapter 2 shows 

the necessity of extending the Gilbert-Elliott to represent channel states over an entire 

n-bit codeword In Chapter 3, we show that the average number of transmissions 

T of the same codeword can be written as a series expansion of joint probabilities 

P(A' = J'). From these joint probabilities, the througbput efficiency for the three 

convention al ARQ schemes is derived for Gilbert·Elliott fading channels. Although 

the expressions thus obtained are only approximations of the throughput performance 

of ARQ systems, these approximations are accurate for slow fading or high memory 

channels. Due to the complexity of the throughput expressions, only graphical results 

are useful in giving an insight into the effects of varying channel parameters and 

codeword length on throughput performance. Curves of throughput efficiency versus 

codeword length n are given. These curves confirm that there exists an optimal 

codeword length for data transmission using the Stop-aud-Wait protocol, as is the 

case for memoryless chaunels. This optimum value of n depends highly on the average 

bit error rate and on the fading channel parameters. 

Performance curves showing throughput versus average bit error rate are also 

given in Chapter 3. These plots show that throughput efficiency decreases with 

slower channel fading, or alternatively, with higher channel memory. From this, 

one can imply that superior ARQ performance can be achieved by reducing channel 

memory. One way of doing this is to delay the retransmission of erroneous code­

words. A beUer way of reducing channel memory between consecutive data packets 

is to use frequency-hopped codeword modulation, i.e. transmitting consecutive data 
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p,tckf'ts illt('rnatl\'('ly un HI Ind"!H'lldent channels Exprt'sSlons for tilt' throughput 

p.'rforrnclnce of fre<jll('ll(y-hOppt, 1 A BQ system., an' oht alllt'd (or ail a"sull)('d opt IIllal 

[n'quI'lIcy hopplllg protoc<)1 Tlws(' expre~SIOIlS art' dt'ri \'t'cl fOI é\ ~t'Il('rai IIl1lllh('r 711 

of indcpendent frequ('n t I(,~ The resu)tlIlg throughput pt'r(ormanu· is p)ott<·d a..., d 

functlOn of average bit t'mlr rat<· for m = 1,2,3 and the Ideal ca..<;(' ni -+ 00. From t.11t' 

plots, one can deduce that a slgl1lficant Improvemeut ill throughput dliriency can hl' 

achieved by using (requency hopping for slow fading chanr.ds with high average bit 

error rates. The improvement in throughput performance is a functioll of tlU' lIumht'r 

of independent channels available; the larger the number of channels, the beUer the 

performance. The improvement brought about by frequency hopping is also highly 

dependent on the steady state probabihties in the Gilbert-Elliott mode!. The tllgher 

the probability of being in the 'good' state, the larger the implOvement in through­

put efficiency brought about by frequency hopping. One must keep in mind that the 

results obtained for frequency-hopped ARQ schemes are only upper bounds on their 

performance. The ext.ent to which the performance of real frequency-hopped ARQ 

systems approaches the upper bounds is contingent on the availability of m truly 

independent. channels and on the optimality of the frequency hopping prot.ocol used. 

This research dealt with the estimation of throughput performance of variou~ 

ARQ schemes over the Gilbert-Elliott channel. Further areas for research would b(· 

to explore ARQ system performance on other Markov channel models such as Mc­

Cullough's bit regenerative model or Fritchman's partitioned Markov chain model, 

for instance. One may also be interested in analysing the performance of ARQ sys­

tems using real error detecting codes. In this research a perfect error detect.ing code 

was assumed; real codes would give more realistic performance estimates for a given 

channel. Another area for further study is the performance evaluation of hybrid feed­

back communication schemes on fading channels. Only conventional ARQ schemes 

were examined in this research, whereas hybrid schemes are frequently encountered 

in applications. For instance, Type - II hybrid schemes are often weIl suited for high 

bit error rate non-stationary channels. 



L 

Appendix A 

Transition Matrix for Slow Fading 
Channels 

This appendix shows the derivation of the transition matrix p(n) for slow fading 

channels, i.e. for small band 9 parameters in the Gilbert-Elliott model. The matrix 

pt,,) provides the transition probabilities between n-bit CSV's, taking into account a 

gap b = M - 1 due to channel round-trip delay between consecutive codewords. 

First of all, we recognize that P(S.Hll~) = P{:l.+lIS.(n)) from the Markov prop­

erty. P(~.+lIS.(n) = 0) are the elements occupying the even rows of the transition 

matrix (rows 0,2,4,'" ,2" - 2), and P(B.+lIS.(n) = 1) occupy the odd rows of this 

same transition matrix p(n). Here, for the sake of clarity, we analyze the elements of 

the even and odd rows separately . 

• Even rows: 

The non-zero CSV transitions can he depicted as follows: 

x x x··· x xO --+ 00011 .. ·1111 " ..... ., 
mones 

S.+1 = 2'" - 1, m = 1,2,· .. , n 

Now, in order to descrihe a given CSV, we give it a value in decimal notation which 

is equivalent to the binary sequence it represents. For instance, the binary sequence 

~ = (01001) is denoted here by its decimal equivalent, ~ = 9. Now, f·om the above 
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hlt pattern, the non-zero CSV trélll~itl()n probahillt) 1" 

ç { (1 - g)m-l( 1 - b)n-mf,. ~HI 1- 0 
P(.5..1tt1 = :?m - 11~.(Tl) = 0) = 

(1 - b)n, 2..+ 1 = 0 
(:\ 1) 

• Odd rows: 

Again, wc deplct the non-zero prohahility CSV trdn1>lt JOliS, tllls t lUJ(' for odd roW1> 

of the transitioll matrix p(n), as follows' 

x x x .. , x x 1 ---+ 1; i 1 00 ... 0000 ----........-.. 
m zerOt'S 

5;.+1 = 2" - 2m
• 7n = 1,2,· .. ,ft 

For the above CSV transitions, the transition probability is easily secn to he 

P(S = 2" _ 2mIS,,(TI) == 1) = { (1 - b)m-1(1 - y)"-m y , fiJr+! =12" - 1 (A.2) 
~+1 (1 - y)n, ~+! = 2" - 1 

So far, the above tnlllsition probabilities P(S..+1I~.) a.'\surned no channel idlc­

time (cS = 0 or .hl = 1). In order to accoullt for channel round-trip dday, !>hght. 

modifications have to be made to the probabilities expresst~d :n Equation!> A.l and 

A.2. The resulting transition matrix is denoted by p(n), wlth the tild(> ( - ) 8Y1Obol 

emphasizing the fact that channel idle time is taken mto account. 

The modifications needed to the transition probabilities P('~JI+!I5;.) lo account for 

channel idle time can be easily deduced by considering the CSV transition diagram 

of Figure 3.2. In this figure, the {) = M - 1 bils of idJe lime belween two consecutive 

CSV's areshown. Instead of the transition probabiltty Pa] between 8.(n) and 8'+1(1), 

one must use an M'ho order transition probability p,~M) to take into account the fad. 

that the transition between state i and state) is done in M steps. 

Now, the Mt" order 2 x 2 transition matrix pli can be shown (41J to he 

( 

R(M) R(M») (-L + I{l-,_,)II ..L _ ~l-,_,)II ) 
pM _ 00 01 _~, H, ~, ~, 

- p(M) peN) - -L _ ,{I-'-flll ..L + f(l-.-,)II . 
10 11 .+. », ~+, ~, 

(A.3) 

Substituting the elements of pM in Equations A.l and A. 2 gives the fol1owing prob­

abilities: 

~Hl =0 

~+l = 2m -1, 

~Hl = 2" - 1 
o&henrise 

m = 1,2, ,n- 1 

(A.4) 
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~+1 = 0 

~+l = 2" - 2m
, 

~+l := 2" - l 
otberwist' 

m = 1,2, ,n - 1 

(A.5) 

The above probabilitles can be further approximated by ul>ing a binomial expdn­

sion and retaining only the first order terms of this expression. A binomial of the 

form (1 - x)n can be written as a series expansion as follows: 

n n(n-l) 2 n(n-l)(n-2) 3 
(I-x) =1-n:r+--

2
--x - 3! x + .... 

For nx small (7tX ~ 1), the above series expansion can be safely truncated to 

(1 - x)" ~ 1 - nx. 

Thus, for small nb and ng, the above first order approximation can be used in Equa­

tions A.4 and A.5, giving the following transition probabilities: 

PJoM)[1 - (n - l)b], ~+1 =0 

P(~+lIS.(n) = 0) = 
P'(M)b 

00 , s..+1 = 2m -1, m = 1,2,· .. , n - 1 
R(M) 

01 , &+1 = 2" - 1 
0, otherwise 

(A.6) 
p(M) 

10 , ~+1 =0 
p(M) ~+1 = 2" - 2m

, m = l, 2, ... , n - 1 
P(.fu+lIS.(n) = 1) = 

11 g, 
(M>[ ~+1 = 2"-1 Pu 1 - (n - l)g], 

0, otherwise 
(A.7) 

ln Equation A.6, pJ:'>(1 - b)"-1 is approximated by PJoM}[l - (n - l)b], PJ:'}(l -

b)"-m-l(l - g)m-1b by PJoJl)b, and pJt')(1- 9),,-1 by pJ:'). These particular approx­

imations are done in such a way as to preserve the stochastic nature of the ensuing 

transition matrix, as will be shown later. 

From the above transition probabilities, the resulting transition matrix pen) is of 

the Corm: 

( 

"c."III.- (n - 1)6) P'oolll. 0 P'oollll. 0 0 0 0 
-' loi) .../101) .../111) 

- ( > '10 0 0 0 0 rù , 0 "Il , 
PD = 

11:') 0 0 0 0 11~), 0 ~:'), 

P!II) ) Il 

11:')(1 - (n - 1),] 

~:')[1 - (n - 1},1 
(A.8) 
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Appendix B 

Deriving P(A1 

Channels 

JI) for Slow Fading 

A derivation of the joint probabilities P(A' = ]1) for th<> slow fading channel case is 

given here. 

It is shown in Section 3.1 that P(A
' 

= l') can be written as: 

P(AI = JI) = 13°_9_ + f31_b_ 
Ib+g Ib+g' 

with the variables PIr recursively computed according to the following 

f3.(SIr-l(n)) = Lf3lr+l(~)P(AIr = 11~)P(S.ISIr-dn)). 
§.. 

Now, the variable PIr is a function of channel state bit S._I(n) only, and can thus 

take one of two possible values: 

P(~ISIr-l(n) = 0) and P(~ISIr-l(n) = 1) are elements of the transition matrix pen) 
given in Equation 3.20. Replacing these elements in P2 and Pl above gives: 

P2 = P2+1 PJ:')[1 - (n - l)b]P(A. = 11~ = 0) 

+P~+1PJoM)b L peAk = 11~) (11.1) 
L=2"-1 
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aud 

fi~ = fi~tl pte:,) P( A. = ll~ = 0) 

+fi~+tPg')9 L P(A. = 115:.) (B.2) 
~.=2"-2" 

+f.:J~+lP}~)[l- (71 -1)g]P(A. = 11~ = 2" -1), m = 1,2,''',n-1 

The expressions ab ove show that P(A' = 1') can he written in terms of the channel 

parameter~ h, 9, 6, and the conditional prohabilities P(A. = 11~). The latter are 

obtained from Equation 3.15, rf>peated here with NJ")(k) and N1n )(k) rewritten as 

Hamming weights WH(~): 

P(A" = 11~) '" 1 - (1 - pdWH(lt)(1 - Po)"-wHC!.) 

= 1 - (1- Po)" - Pl . (
1 ) WH(~) 

1- Po 

Hence, w(> cao write the P(A" = 11~) terms in Equation B.I and 8.2 as follows: 

P(AI; = 11.& = 0) ~ 1 - (1- Po)" 

P(A" = 1,~ = 2" - 1) ~ 1- (1 - pd" 

(
1 )WH(.!Io) 

==: n - 1 - (1 - Po)" E 1 = Pl , 
S =2--1 Po -. 

= n - 1- (1- Po)"[r + r 2 + r3 + ... + r"-ll, 

m = 1,2,"', n-l 

where r = (1 - pd/(l - Po). The ab ove sum can he seen as a geometric series 

expansion: 

Thus, 

Similarly, 

1 - r" 
1 + r + r 2 + r' + ... + r"-l = --

1-r 

E P(A~ = 11~) '" n - 1 - (1 - Po)n E rWH(L), m = 1,2,"', n-1 

n - 1 - (1 - J1o)n[r + r2 + r' + ... + rn-Il 
1 - r"-l 

= n - 1 - (1 - J1o)"r---
l-r 

= E P(A" = ll~) 

_ a(n). 
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~·e are now in a positlon to sUlIlmarize t!te proœduTe fOl obtaining l'(A' =_ l') 

for a slow fadlI1g ,hannel· 

\Ve compute the variables ;32, pl, rccursively for k = 1,1 - 1.1- 2,···,2, 1 as follows: 

where 

and 

/32 ~ ,82+1PJoM}[1 - (n - l)bHl - (1 - Po)n} 

+ f3~+I PJ:'> ba( n ) 

+,8~+IpJ~)[1 - (1 - pd"] 

,8Z '" ,82+1 P1:')[1 - (1 - Po)"] 

+,82+1P~f1)ga(n) 
+f3Z+1P~~)[1- (n - 1)9111 - (1 - pt}n] 

1 - r n - 1 

a(n) = n - 1 - (1 - Potr , 
1 - r 

1 - Pl r---
-1-110' 

Then, P( A' = l') is simply 

P(A' = l') = ,80_9- + {p_b_. 
Ib+9 Ib+9 

The above procedure can be further simplified hy writing the expressions for /32 
and /3l in matrix form. Letting, 

( /32 ) ft. = /3l 

and 

_ ( PJ:'>[1 - (n - l)bJ[l - (1 - Po)"1 pJ:'>bo(n) + pJ~>[l - (1 - pd"] ) 
Q - Pl(~)9a(n) + P~:r)[1 - (1 - Po)"] P;:,")[1 - (n -1)9][1 - (1 _ pd"] , 

we can rewrite the a.bove recursion as 
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(J:-'IrI.f?; t tH' 'alJW JjotrltlOn. W(' have' 

IImcc, 

8 = Q (: ) 

8-1 = Q~ = QQ ( ; ) = Q' ( ; ) 

&-, _ Q~-I = Q' (: ) 

P(A' = l') o 9 1 b 
= {il b + 9 + {il b + 9 

= (_9 _b )(i 
b+ 9 b + 9 -1' 

H.cplacing the vector !!..1 given by Equation B.3 in the above gives 

P(A' == l') = (_9-
b+ 9 

_b ) Q' (1). 
b+9 1 

(8.3) 



Appendix C 

Deriving P(Al 

Channels 
Ji) for Fast Fading 

It was shown in Section 3.1 that the conditlOIlal probalJI!Jty P( A" = 11.5:,,) can he 
written as 

(C.! ) 

Now, the two factors in Equation C.I can be approxunated with onl)' th(> first or­

der tenm of the binomial series expansion, as shown in Appendix A. Thus, for 

N~n)(k)pl, N~n)(k)Po « 1, (C.l) can be rewritten as: 

P(A. == 11.5:.) "-J 1 -Il - PIN~n)(k)JII - PoN~n)(k)) 

'" PlN}">(k) + PoNJn>(k), (C.2) 

provided npl is small. 

Substituting (C.2) in variable 13,(5.,-1) of Equation 3.8, we have 

P,(5.,-I) '" E(plN~n)(I) + PoN~")(I)lP(SJI~_l) 
~ 

- E~~_I {PIN~n)(l) + PoNJn)(I)}. 

This is an averaging operation over s., conditioned on fiJ-
1 

and givcs 

where, fin) - E {(n)(1 } j~-l - ~I~_I Ni ), j == 0, 1 
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(C.3) 
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:--Jow. th(' mf'an oLcupatlon tUlles for the two-st.tte Marho\" chain art' derl\p.d in [11]. 

and ttH' rcsults are summariz('d her('. 

pt;;) 
Trl.tJ + b( 1 - b - 9 )[ 1 - (1 - b - g)m] 

b+g (b+g)2 

Il~';' ) 
1I1b b(I - b - g)[1 - (1 - b - g)m] 

= ---
b+g (b + g)2 

(m) mq g(l- b-g)[l-(I -b-grJ 
#10 - ---

b+ 9 (b+g)2 

(m) mb g(1 - b - g)[1 - (1 - b - g)m] 
#11 -+ --

b+g (b+g)2 . 

The variable #~;") is the medll number of times the Markov chain visits state j, in m 

stcps, given that it was imtJally in state i. The mean occupation times ï\ilL_l can 

then be written in terrns of the above mean occupation times Il~;"} as follows: 

r;/n) = N'n} = (nH) _ (6) 
• )~_I ,15'_I(n) Ils,_dn}) IlS'_I(n),' 

where fj = Rr is + he channel round-trip dclay time which must be included to account 

for the idlc time between consecutive codeword transmissions. 

Replacing the appropriate fl~;"} in the above equation, one finds that 

(nH) (6) 
Iloo - #00 

9 n-
b

- +bp, 
+9 

where 
_ (1 - b - 9)(1+1) n 

p - (b + 9 )2 [1 - (1 - b - 9) ]. 

Similarly, 

-rnn) 9 
N 015,_l (n )=1 - n-- -gp 

b+9 
-rnn) b 
N 115,-l (n)=O - n-- - bp 

b+9 
Nn) b 

115'_l(n)=1 - nb+ 9 + gp 

Replacing the above expressions in Equation C.3 gives 

(CA) 
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A.PPE.\·J)L\ (' DEHlV/;\'(; J'(A L = fL) FOUI· \ST F\1)}\(,' ('JlA.\'.\'EUi 

Note that Hl!' \<l.IIIP:' of d, for .",'I-d71) == 1 I~ la[~n th.1I1 Ih.t! for .... ·1-)(71) -" Il 1'\~)w. 

lookmg at tlJ(' [P(lHSI\P rclatl"!1 ()f (:U,) III S(·tllull;~ 1. Olle' C;tll ~('(' tltdt .. II UPI'('I 

bound orl ';/C Cdll Iw obtdl()('d b) repldCllIg :~1r+1Ui/c} . .Jlrnl2:Jr+tl. , Ijd~- 1) h.\ 

11nuu == ;J,U·i,-li 12) == 1) as follows 

and hence, 

§.'-l 

< flt-l.rrt4Z 

< L (Jt.'mGZP(At-l = 1ISI-dJ)(,~_dSJ_2) 
§.,-l 

~-l 

f.l f3 [9 b ( )JI-Ic+l ~Ic ~ 1c,m4Z = TlPo b + 9 + npl b + 9 + 9P Pl - po ' 

Similarly the lower bound is obtained by replacing PHI (~/c), PIc+'ZCSlctl), ... , (J,(SJ-l) 
by f3min = P,(S'_I(n) = 0). This gives 

Pic 2:: Pic mm = (nPo -
b 

9 + npl-
b 

b - bp(,Jl - Po)J/-1et1 . +g +g 

Carrying the argument further, one gets upper and Iower boullds on P(A' == l') 

P(A' = l') ~ Pl.moz == [nPob! 9 + npl b: 9 + 9P(PI - Po)]' (C.5) 

P(A' == 1') 2:: PI.min = [nPo b! 9 + npl b ! 9 - bp(Pl - Po)]' (C.6) 
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