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Abstract

Automatic repeat request (ARQ) is a widespread technique for error control in data
communication systems. This research examines the performance of conventional
ARQ schemes over fading channels. The basic Gilbert-Elliott two-state Markov model
is used to represent these channels. This basic model is recursively extended to a
2"-state Markov chain suitable for n-bit block codes. Using this ‘Extended Gilbert-
Elliott’ model, an approximation of the throughput efficiency of the conventional
ARQ schemes is derived. This approximation is particularly valid for slow fading
channels. Furthermore, performance plots are obtained, showing the effects of channel
fading on throughput efficiency: ARQ performance deteriorates with slower fading,
or alternatively, higher channel memory. Consequently, frequency-hopped codeword
transmission is explored, a technique by which channel memory can be reduced.
Throughput performance of frequency-hopped ARQ systems is derived, which shows
significant potential improvements over systems with no frequency hopping.
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Précis

La retransmission a requéte automatique (ARQ) est 'une des techniques les plus
répandues pour le controle d’erreurs dans les systémes de communications. Cette
recherche traite de la performance des techniques ARQ conventionnelles sur des
canaux a mémoire. Ces canaux sont représentés par une chaine de Markov a deux
états, mieux connue sous le nom de ‘modele Gilbert-Elliott’. Ce modele de base
est ensuite augmenté, a 1’aide d’une méthode récursive, a une chaine de Markov a 2"
états. En utilisant cette extension au modele Gilbert-Elliott, on peut alors représenter
les changements d’état entre des mots de code de n bits de long, et ainsi dériver une
approximation de la performance, en terme de débit, des systéemes ARQ convention-
nels. Cette approximation est valide surtout lorsque 1'on opere sur des canaux a haute
mémoire. Cette recherche montre également, a I'aide de plusieurs graphes, les effets
de la mémoire du canal sur le débit des systemes ARQ. Selon ces graphes, la perfor-
mance des systémes ARQ) est affectée négativement par une croissance de la mémotre
du canal. Conséquemment, nous examinons des systemes ARQ avec changement au-
tomatique de fréquence, car cette derniere technique constitue un moyen de reduire la
mémoire du canal. Des expressions montrant le débit de tels systemes sont derivées.
Ces expressions montrent qu’une ammeélioration substantielle peut étre obtenue par
I'utilisation de systéemes ARQ a changement automatique de fréquence.
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Chapter 1
Introduction

In this chapter, some background material pertaining to the subject matter of this
thesis is presented A general introduction to digital communication systems and
communication- theory 1s the subject of the first section Particular attention is
given to channel coding techniques. such as forward error correction and automatic
repeat request. The latter scheme 1s described at length in Section 1.3, as automatic
repeat request schemes constitute the main object of our study In Section 1 1, fading
channels, which are the transmission media of interest in this rescarch, are briefly

described. Finally, a summary of the issues discussed in this thesis 15 given at the

end of this introductory chapter.

1.1 Communication Systems

The study of communication systems is primarily concerned with the reliable trans-
mission of information from one point to another across a given medium. This trans-
mission medium is commonly referred to as a communications channel, or simply
channel. Typical channels include telephone lines, satellite communication links,
wireless radio links, data storage media, etc. The information to be transmitted over
such channels could be, for example, speech, music, video images, weather data, etc.
According to the information theory work developed by Shannon in the 1940’. in-
formation can always be reliably represented as a sequence of binary digits [1]. The
problem of information representation is referred to as source coding. In this research,

we assume information is already available in binary format and focus instead on ways
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Figure 1.1: Digital communications system

of reliably sending the binary data over the transmission medium or channel.

Information transmission is almost always subject to some kind of disturbance,
commonly referred to as notse. This disturbance could be in the form of thermal
noise, interference from other users of the same channel, physical obstacles to the
propagation of electromagnetic waves, and so on. The presence of noise over a channel
causes errors 1o occur in the data stream In this research, we are interested in the
problem of channel coding, that is the study of various techniques aimed at 1educing
errors in the information delivered at the receiving end of the communication system.

A block diagram of a typical digital communication system is shown in Figure 1 1.

The diagram of Figure 1.} shows the information flow and processing in the com-
munication system. Informaiion is generated by the source, where it is represented
by the time waveform z(t¢). This waveform is then processed by a source encoder,
which is responsible for transforming the information into a time-discrete sequence
of binary digits z,. This binary sequence is then encoded into another binary se-
quence a;. Encoding source data is done so that any errors corrupting the data as
a result of channel noise can be detected and corrected at the receiving end of the
communication system. The correction for errors is done in conjunction with the
channel decoder at the receiving site. The data stream a, resulting from the channel
encoder is subsequently modulated into a time signal s(t) suitabie for transmission
over a given real channel. At the receiving end of the channel, the resulting signal
r(t) is demodulated back into a binary sequence b, which is then fed to the channel
decoder for error detection and correction. The resulting error-corrected sequence y,
is then delivered to the destination user, via the source decoder which returns the

data sequence to its original form. Since the aim of a communication system is to
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transmit information from one point to another as rehably as possible, the role of
channel coding 1> to 1eturn to the source decoder a sequence yy that 1 as close 1o
the original sequence 1 as possible  Note that for the problem of clannel coding.
i.e. the design of the channel encoder and decoder pair, the modulator, demodulator

and physical channel are considered as one and referred 1o collectively as the coding

channel.

The performance of a communication system is measured via a number of parame-
ters. For analog communication systems, performance is measured in terms of oul put
signal to noise ratio (SNR), frequency spectrum occupancy (or bandwidth) and power
consumption In digital communication systems. the parameters measuring perfor-
mance are, instead, output bit error rate, information delivery delay, bandwidth, and
power. The frequency spectrum is usually a scarce resource in most ground-based
communication systems. Thus, in the design of such systems, power consumption is
assumed constant, and one looks at minimizing output bit error rate while keeping
bandwidth low In satellite communications, on the other hand, frequency bandwidth
is usually plentiful, and one looks at keeping power consumption low while having
an acceptably low error rate. Thus, the designer of digital communication systems
is usually faced with a tradeoff between bandwidth, bit error rate, mformation de
livery delay, and power consumption After this general overview of communication
systems, we now examine the specific problem of channel coding For a more exhaus-

tive treatment of communication systems, the reader is referred to various books on

classical communications theory [2] - [4].

1.2 Channel Coding

In a few words, channel coding is the design of encoding and decoding schemes so that
source data can be purged of errors resulting from channel noise. Channel encoders /
decoders can be either of the block code type or of the convolutional code type. In this
research we focus only on block coding techniques. Now, block encoders / decoders
can be readily classified in one of two distinct categories. These are the forward error
correcting (FEC) schemes and the automatic repeat request (abbreviated as ARQ)
schemes. In both schemes, data is segmented in blocks of k bits. These data packets
are then transformed or encoded into blocks of n bits, also referred to as codewords,
with n > k. In so doing, additional information is added to the & bits in a predictable
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fashion These n — k bits of additional information. also referred to as parity bits,
are uced at the recerver to detect and possiblv correct for possible errors in the data.
One can also picture the parity bits as ‘backup’ information. which is used at the
receiver 1o double-check the validity of the data and to correct for any errors that
may have occurred over the transmission channel. Since data is partitioned in packets
of k bits. each codeword at the output of the channel encoder can take on one of 2*
possible sequences The mapping of the 2* k-bit data packets into n-bit codewords
is referred to as a (n, k) block code. For convenience, we denote the k-bit data at the
input of the channel encoder as vector z, and the n-bit codewords at the output of
the channel encoder as vector a. Again, the set of all vectors a which are mappings
of all possible input vectors z is referred to as a code, which we denote by C. Since
there are 2* possible input vectors z to the channel encoder, the set C has a total of
2* elements. Now, since one can form 2" possible sequences with a n-bit vector a,
there are 2" — 2* n-bit sequences which do not belong to the code C. This property is
used at the channel decoder to detect errors induced by channel noise. Indeed, when

a codeword a € C is transmitted over the channel, one of three situations may occur:

1. A codeword b = a is received at the output of the channel. No error has occurred

2. Due to channel noise, & # a and b € C. Vector } received at the output of the
channel is incorrect. However, since b ¢ C, the channel decoder can declare with

certainty that b contains one or more errors

3. Due to channel noise, b # a. However, this time b € C. Channel noise is such
that it has transformed codeword a into another codeword b. Since b € C, the

channel decoder cannot detect the error(s).

Case 2 above shows how channel decoders can detect that the received vector b con-
tains one or more esrors. However, as shown by case 3, error detection is not foolproof.
It is likely that channel noise is such that a codeword a is transformed into another
codeword & which also belongs to the code C. In such a case, the channel decoder
cannot determine that an error has occurred. The probability of case 3 occurring,
or probahility of undetected error can be reduced by making n large compared to &
(so that 2" > 2*) and by careful design of the encoding scheme. The probability of
undetected error P, is a figure of merit of any (n, k) block code C; the smaller P,, the

better the code C.
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In forward error correcting codes. the size of the n-bit codeword g 15 larger than
the information vector £ 'he number v =k of panty bitsas typically larger for error
correcting schemes than it 15 for error detection In other words. for FEC codes, the
total number of sequences that can be represented with i bits is much larger than the
code size (i.c. 2" > 2*). In so doing, if a received vector b has only a small number of
bit errors. the decoder may still be able to recogmze the onginal codeword a, provided
the code is appropriately designed Usually, the larger the number of parity bits per
information bit, the larger the error detecting or correcting capability of the channel
coding scheme. This is only a general rule, however The exact error-detecting and
error-correcting capability of a channel coding scheme depends on the particular code
used. For a complete treatment of error control codes, the reader is referred to [5]
and [6). For the purpose of the present discussion, it suffices to note that for a fixed
information rate, the channel bit rate must be increased by a factor n/k to obtain
an error-correcting capability. This increase in channel bit rate requires a parallel
increase in channel bandwidth, however, and bandwidth is often a scarce resource
in communication systems. For a given modulation scheme, bandwidth is inversely

proportional to the k/n ratio, also known as the code rate.

From the above discussion, one can see a clear tradeoff between bandwidth and
probability of error in the receiver, in FEC channel coding schemes. This tradeoff
assumes the information is delivered to the user at a fixed rate and the transmission
power level is fixed. Automatic repeat request schemes (ARQ) are different in this
respect; in ARQ schemes, the probability of bit error at the receiver is fixed, and
ckannel bandwidth is traded off with information delivery rate. In ARQ systems,
codewords are transmitted over the channel and checked for errors at the receiver or
ckannel decoder. If a codeword is detected in error, a retransmission of that same
codeword is requested by the receiver. Automatic repeat request schemes are thus
considered as feedback error control techniques. The probability of undetected error
is dependent on the particular block code used. From the above arguments, it can
be seen that ARQ schemes provide a fixed bit error rate to the end user, no matter
how bad the transmission channel is. On the other hand, for bad channels, many
retransmissions may be necessary, and thus a large delay may be needed before the
data is delivered to its destination. Hence, the performance of a particular ARQ
scheme over a given channel is not measured in terms of its probability of codeword
error, as it is the case for FEC scheines, but rather in terms of its so called throughput.
ARQ error-control schemes are treated in more detail in the next section.
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Figure 1.2: ARQ error control system
1.3 Automatic Repeat Request

In this section, the various feedback error-control schemes are examined. Various
protocols exist for feedback communications, the best known or conventional ARQ
protocols being Stop-and-Wait (SW), Go-Back-N (GBN) and Selective Repeat (SR).
In all ARQ systems, data is first encoded using a (n, k) error detecting code and sent as
n-bit codewords a over the channel. At the receiver, the channel decoder checks each
received data vector for errors. If an error is detected, a negative acknowledgement
(NAK) message is sent back to the transmitter, thus requesting a retransmission. The
block diagram of an ARQ error control system is shown in Figure 1.2.

The simplest ARQ scheme is the so called Stop-and-Wait (SW) protocol. In
the SW protocol, the transmitter must wait for either a positive (ACK) or a negative
(NAK) acknowledgement signal before sending any subsequent codeword. Thus, after
each data packet is sent, the transmitter must wait idle until it receives an ACK /
NAK signal from the receiver. The exact idle time depends on such factors as channel
propagation delay and data processing delay. In communication networks, this time
delay can also depend on the time needed to service a queue of data packets arriving
at a network node 7], [8]. Because of this delay, the Stop-and-Wait scheme can

become rather inefficient.

The performance of feedback error-control systems was briefly discussed in the
previous section. Since many retransmissions of the same codeword may be required,
an adequate measure of performance in ARQ systems is data throughput efficiency.
Throughput, denoted by 0, is defined as the ratio of information bits delivered to the
destination user to the total number of bits transmitted. The latter quantity includes
the number of bits that could have been sent during the time: the transmitter was
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idle. For the SW ARQ protocol, throughput can thus be written as
k 1

qsw:;——;—]_f—;ﬁﬁ‘—]’ (1

where I2 is the data bit rate (in bits/s), 7 is the channel round trip delay or idle time
(in seconds), and E[T’] is the average number of transmissions of the same codeword.
The parameters k and n are the number of bits at the input and output of the
(n, k) channel encoder, respectively. Note that the product Rr gives the idle time in
bits. Also, as expected, throughput is inversely proportional to the average number of
codeword transmissions E[T). Indeed, the larger the number of transmissions required
to get a data codeword correctly across the channel, the poorer the performance of
the ARQ scheme, and thus, the lower its throughput efficiency. Also worth noting is
that throughput is normalized to unity, with n = 1 being the maximum attainable

throughput.

Due to the Rr term in the denominator of Equation 1.1, the throughput effi-
ciency of the Stop-and-Wait ARQ protocol can become very small for large channel
idle time. In order to circumvent such shortcoming, other so called continuous ARQ
protocols have been devised. In these protocols, the transmitter no longer waits for
an acknowledgement before sending the next codeword. The simplest such continuous
scheme is the Go-Back-N (GBN) protocol, whose name some ~hat indicates its oper-
ating principle. In GBN ARQ), the transmitter sends data codewords continuously,
until a negative acknowledgement is received, at which time the transmitter backs
up by a sufficient number of codewords NV to retransmit the codeword in error and
all subsequent codewords. The number of codewords N by which the transmitter
backs up is equivalent to the channel idle time. The transmitter also needs to keep
in memory the last N codewords transmitted, in case a retransmission is requested.
Thus, a buffer of size N x n bits is required at the transmitter. A diagram illustrating
the operation of a typical Go-Back-N ARQ system is given in Figure 1.3. As for the
throughput performance of the GBN protocol, it can be written as

k 1
TGBN = U1+ N(E[T] - 1)
k 1

- . 1.2
nNE[T]- (N —1) (1:2)
The above expression can be easily justified. The denominator on the first line of
Equation 1.2 indicates that if only one transmission is required, only one codeword
is sent over the channel; this is the case of E[T] = 1. If more than one codeword
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Figure 1.3: Illustration of the Go-Back-N protocol (with N = 4)

transmission is required, the excess number of codewords (i.e. E[T] — 1) is trans-
mitted along with N — 1 subsequent codewords since the transmitter backs up by N
codewords; this gives the N(E[T] — 1) term in the above equation.

From the discussion in the previous paragraph, it can be seen that, in the GBN
protocol, every time a codeword is detected in error, that codeword is retransmitted
along with the N — 1 codewords that follow. The N — 1 codewords following the
codeword in error are retransmitted regardless of whether these data packets are
correct or not. If these codewords were transmitted correctly in the first place, then
resending them along with the codeword in error is obviously wasteful. In order to
circumvent this shortfall, a so called Selective Repeat scheme c».n be used. In Selective
Repeat (SR) ARQ, only the codeword in error is retransmitted. This scheme is
more efficient in terms of throughput performance than the GBN protocol. Indeed,
throughput efficiency for the SR protocol is

k1

NSR = -T:_ETT—-'] (1.3)

However, buffers (as in Figure 1.2) are needed both at the transmitter and receiver
to implement the SR scheme. If a codeword is received in error at the output of
the channel, all subsequent codewords must be kept in memory until that erroneous
codeword is replaced by a correct copy. This is necessary so as to keep the correct
order in the data delivered to the destination user. Now, the size of the buffer required
at the receiver depends on the channel idle time and on how many retransmissions
are necessary to get a codeword correctly across the channel. However, the number
T of transmissions of the same codeword across the channel is a random variable
with a nonzero probability distribution over the entire range [1,00). Thus, there
is a nonzero probability that the number of transmissions T is very large. Hence,
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ideally, the buffer required at the receiver must be infinitely large. Of course, this
cannot be achieved in practice, and one ust contend with a finite size buffer. The
use of receiver buffers of finite size causes a degradation in the throughput efficiency
of SR ARQ schemes, as compared to the infinite buffer case [5]. The expression in
Equation 1.3 gives throughput efficiency for the selective repeat protocol when an
infinite receiver buffer is assumed.

The three ARQ protocols discussed here differ significantly in complexity. The
SW protocol is the simplest of the three. It requires only a (n, k) block encoder, a
small buffer to store the last codeword transmitted and a decoder for its implementa-
tion. In the GBN protocol, a buffer of size N x n bits is required at the transmitter so
as to keep in memory the N codewords that may have to be transmitted. Finally, the
implementation of the SR protocol requires in addition to a transmitter buffer, an ide-
ally infinite buffer at the receiver. Although complex to implement, the latter scheme
offers a throughput performance superior to that of its two simpler counterparts, as
shown in Equations 1.1 - 1.3. Clearly, the three ARQ protocols trade throughput per-
formance for hardware complexity. Depending on the application, one scheme may
be more advantageous than the others. For instance, the Go-Back-N protocol is used
in the Synchronous Data Link Control (SDLC) computer communications protocol
8], as it offers higher throughput performance than the Stop-and-Wait ARQ, yet it

is not too demanding in its hardware requirements.

The expressions in Equations 1.1 - 1.3 and all subsequent work in this thesis
assumes error free transmission of ACK / NAK signals. Some investigation of the
case in which errors can occur in the acknowledgement signal has been undertaken
[9], [10]. However, most research in ARQ systems assumes acknowledgement signals
are error free. This assumption is quite safe since only one bit is needed to convey the
acknowledgement information, and this bit can be encoded, for instance, with a (m, 1)
majority logic coding scheme where m is fairly large. The resulting large number of
parity bits (m = 6 or 7, for example) make the probability of error in the ACK /
NAK signal negligibly small. Such large number of parity bits can be easily afforded
in practice since acknowledgement information is typically a very small fraction of
the data to be transmitted.

In the previnus two sections, the three most common ARQ schemes were discussed
and compared to FEC error control techniques. Each of the two types of error control
techniques has its own advantages and drawbacks. In FEC schemes, errors resulting
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from channel noise are corrected at the receiver using the "backup’ parity bits intro-
duced in each codeword. However. in particularly noisy or fluctuating channels, the
probability of error at the output of the FEC decoder can become unacceptably high.
In ARQ systems, on the other hand, the probability of error in the data delivered to
the user is fixed, regardless of the state of the channel; however, throughput can be
sigrificantly reduced in very noisy channels. Now. the advantages of both techniques
can be combined by using hybrid ARQ schemes. For instance, in the so called Type - 1]
hybrid ARQ scheme [11], an error correcting code is used in conjunction with a regular
ARQ protocol. When a data word is received at the channel decoder, error detection
is first attempted. If the codeword is found in error, a NAK signal is returned to
the transmitter, requesting the transmission of parity bits for error correction. Upon
receipt of the parity bits, the decoder attempts to correct the errors in the preceding
data packet. If error correction fails, the cycle is repeated. Although hybrid ARQ
schemes can give higher throughput than regular ARQ techniques, especially for very
noisy channels, they are more complex to implement. Thus, in this research, only the
three conventional ARQ protocols are considered. For a more thorough treatment of
hybrid ARQ techniques, the reader is referred to [12], [13], [14].

1.4 Fading Channels

Much of communications theory is based on the assumption that the transmission
medium or channel is stationary and memoryless; that is, the quality of the channel
is constant in time. Although it is widespread, this assumption is quite unrealistic
in a large number of communication systems. For instance, fluctuations in weather
conditions can temporarily affect the quality of wireless and satellite communication
links. Such temporary deterioration of the transmission medium is commonly referred

to as channel fading.

The fluctuating quality of transmission channels is most obvious in mobile wire-
less communications. Examples of mobile communication systems include cellular
telephones, satellite-to-mobile links, personal communication systems, etc. In such
systeras the state of the channel changes constantly as the mobile transmitter and/or
receiver moves about. For instance, in cellular telephony, the quality of the channel
can substantially deteriorate when the mobile unit enters a zone with many buildings,
or when the transmitter and receiver grow further apart or become separated by, say,
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a hill or a mountain range Such hindrance to the transnussion by a large obstacle
is referred to as shadowing. Other factors causing channel fading are the well known
problems of mnulti-path  Multi-path fading 1s caused by the destructive interference of
two or more electromagnetic waves originating from the same transmitter. but delay ed
with respect to each other. These delays are caused by the reflection of electromag-
netic waves on physical obstacles such as buildings, walls, etc. Thus, multi-path
interference is highly dependent on the transnussion wavelength and the position of
the mobile unit. Multi-path interference can cause severe fading in applications such
as indoor communications and cellular telephony in urban areas.

Due to fading, the state of the channel changes with time. The extent with which
channel conditions change with time determines the memory of a channel. Indeed,
when a vehicle equipped with a cellular telephone is moving, say, straight across the
countryside, the state of the channel at any particular time ¢ is very likely to be the
same a short time At thereafter. In such a case, the channel is said to have high
memory. On the other hand, for a vehicle moving rapidly through a large urban area,
fading is much faster, due to the quick appearance and disappearance of buildings
in the transmission path. In the latter case, the channel is then said to exhibit low
memory. More on fading channels and on ways to model them mathematically can

be found in Chapter 2.

1.5 In This Thesis...

This section gives a quick overview of the topics to be discussed in this thesis.

As discussed in the abstract, this research is mainly concerned with the analysis
of ARQ schemes over non-stationary or fading channels. Thus, in Chapter 2, various
ways of modelling fading channels are presented. The Gilbert-Elliott model and
its ability to model fading processes is particularly discussed. This model is then
extended in a recursive fashion to represent the effects of channel memory on words
of data rather than on single data bits. This approach is needed since ARQ systems
transmit data in packets or codewords of n bits. Finally, 2 short review of previous
work in the field is also presented.

As discussed in the introduction, an adequate measure of performance in feedback
communication systems is throughput efficiency. Chapter 3 presents new techniques
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for computing thronghput performance for conventional ARQ systems used over the
Gilbert-Elliott fading channel. extended to account for word oriented data transmis-
sion. For slow fading «hannels. an approximate transition matrix is developed which
gives probabihties of transition< between channel state vectors. Using the proper-
ties of this transition matrix. an approximation on throughput efficiency is derived.
This chapter also discusses throughput for fast fading channels. Upper and lower
bounds on throughput efficiency are derived, which are useful to bound throughput
performance for the case of fast fading. These bounds are useful in confirming the
approximations on ARQ throughput obtained for the slow channel fading case. Some
representative plots showing throughput performance for the three common ARQ
protocols are also presented in this chapter. These performance plots are obtained
using the throughput evaluation techniques developed in this research. Finally, the
effect of channel fading on the performance of ARQ systems is examined, and ways

of improving this performance are discussed.

In Chapter 4, frequency-hopped codeword modulation is introduced as a means of
improving ARQ petformance on fading channels. In frequency hopping ARQ, code-
words are transmitted alternatively on m independent frequencies. Expressions for
the throughput efficiency of frequency-hopped ARQ systems over slow fading chan-
nels are derived. It is shown that, depending on the fading channel characteristics,

throughput efficiency can be significantly increased by the use of such frequency hop-

ping scheme.

Finally, Chapter 5 draws some concluding remarks on this research and discusses

some areas for further research.




Chapter 2

Fading Channel Modelling

As outlined in the previous sections, this research is concerned mainly in the analysis
of ARQ error control systems over fading channels. In this section, we present the
various models that can be used to mathematically represent a fading or memory
channel. We focus our discussion on the Gilbert-Elliott model which we will use
throughout this thesis to describe fading channels.

Since we are nterested here in the problem of error control coding, we consider
only the so called coding channel (see Figure 1.1) which includes the modulator and
demodulator (with hard decisions) in addition to the transmission channel. Hence,
the input and output to our coding channel, subsequently referred to as the channel,
are sequences of binary digits or bits. The input digit a, enters the channel where it
is corrupted by noise ny, giving an output b,

by = a¢ + ne

where aq, by, ny € {0,1} and the above ‘4’ sign is modulo-2 addition. Errors hence
occur when the noise digit is n, = ¢, = 1. & is the error digit occurring at time
t in the error sequence £¢. Note that the noise and error sequences are equivalent
stochastic processes.

Since errors are binary digits corrupting the input data stream, the coding channel
can be seen as a binary symmetric channel (BSC) with a given bit error rate (BER)
p. The BSC bit error rate, also referred to as crossover probability, is the probability

p:P(b¢=llag=0)=P(b¢=0'Gg=l)

13
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state state

Figure 2.1: Gilbert’s model for memory channels

2.1 The Gilbert-Elliott Model

As discussed in Section 1.4, errors in real communications channels tend to occur
in bursts. This burstiness of the error process, or equivalently of the noise process,
implies that the channel has memory. This property was observed by Gilbert on
telephone channels. In a paper on the subject [15], Gilbert introduces a two-state
Markov chain to model the behaviour of such memory channels. The mode] proposed
by Gilbert assumnes the channel is binary symmetric and is in either of two states, a
‘bad’ state in which the probability of a bit error is large, and a ‘good’ state in which
no errors can occur The transitions between the ‘good’ and ‘bad’ state are governed

by the Markov chain shown in Figure 2.1.

When in the ‘good’ state, the channel is error free, whereas in the ‘bad’ state,
errors can occur with probability p. By making the transition probabilities b and ¢
in Figure 2.2 small, the errors generated by the model tend to be clustered in bursts,
with error free periods in between the bursts.

While Gilbert’s model adequately represents the burst patterns the noise process,
it suffers from the fact that when in the ‘burst’ state, the probability of making
an error does not decrease after the channel has been in this state for a significant
period of time. Hence, Gilbert's model gives rise to a renewal error process which
does not accurately represent real channels. In order to circumvent this problem,
Elliott proposes a modification [16] to Gilbert’s channel model. In Elliott’s proposal,
the ‘good’ state is no longer error free; bit errors can occur in the ‘good’ state with
probability po. The ‘bad’ state still gives rise to errors, with a much higher probability
p1. In other words, Elliott proposes a binary symmetric channel (BSC) with crossover
probability po in the ‘good’ state and p, in the ‘bad’ state. Transitions between the
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Figure 2.2: Two-state Gilbert-Elliott Markov model! for fading channels

two states are still Markov as described in the Gilbert moudel. The resulting two-
state Markov model, which we will refer to as the Gilbert-FElliott model, is shown in
Figure 2.2. This model has the advantage of providing for somne background noise
when the channel 1s 1n the ‘good’ state. while still giving errors in bursts when the
channel is 1n the 'bad’ state In order to illustrate this pont, the ‘good’ and ‘bad"
states are also referred to m the literature as the ‘random-crror’ and ‘burst-error’

states, respectively

The provision for errors in the ‘good’ state makes the Gilbert-Elliott model] the
generater of a non-renewal error process which was shown to approximate with fair
accuracy the behaviour of many communication channels. While other channel mod-
els have been proposed over the years (Section 2 4), the Gilbert-Elliott model remains
a very popular one for modelling channels with memory, as shown by the numerous
analyses carried on this model [18] - [22]. The popularity of the Gilbert-Elliott model
is due in large part to its relative simplicity, as compared to other models.

Finally, it must be nuted that, in the Gilbert-Elliott model, the Markov chain
does not represent the error process per se, but rather the channel state process,
which itself gives rise to errors with probability pg in the ‘good’ state and p, in the
‘bad’ state. Given an error sequence g, one cannot reconstitute the history of the
channel state Markov process, since there is no way of distinguishing if a ‘1’ digit in
the error sequence originated in the ‘good’ or ‘bad’ state. Such a model is referred to
as a ‘unifilar’ source of errors [17]. This property of the Gilbert-Elliott model has no

consequence on our ensuing analysis, however.



CHAPTER 2. FADING CHANNEL MODELLING 16

2.2 Parametrization of the Gilbert-Elliott Model

Section 2.1 discussed the basic two-state Gilbert-Elliott model and its applicability
for modelling fading channels. Figure 2.2 shows that the Gilbert-Elliott model is
completely defined by the parameters &, g, po, and py. In this section, we investigate
the relationship of these parameters to physical fading channel characteristics. Such
investigation 1s valuable in determining the range of model parameters values over
which we should focus in any subsequent analysis. Indeed, in Sections 3.2 and 3.3,
ARQ system performance for the special cases of both slow and fast fading are an-
alyzed. The following questions arise: For what ranges of the parameters b and g is
the channel considered to be a slow fading channel? For what ranges is the channel
considered to be a fast fading channel? What model parameters values should be
used to describe a typical land-to-mobile channel? What are typical model parame-
ters values for satellite-to-mobile channels? Such issues are addressed in the present

section.

Heunstically speaking, a slow fading channel is one which changes state (from
‘good’ to ‘bad’ or from ‘bad’ to ‘good’) at a very slow rate. In such channels, the
channel state sequence is typically a long string of consecutive zeroes or ones [17].
Such channels are also said to exhibit high memory. Indeed, when long strings of
zeroes or ones prevail, the state of the channel at a given time instant ¢ = ¢ is highly
correlated with the state of the channel at the previous time instant t = tg —1. A slow
fading process translates into small probabilities of ‘good-to-bad’ and ‘bad-to-good’
transitions in the Gilbert-Elliott model. In other words, for slow fading channels
or high memory channels, the parameters b and g are typically small. Indeed, one
definition of channel memory is given in [20] in terms of the parameters b and g:

p=1-b-g (2.1)

The memory u of the channel increases with decreasing b and g, which is in accordance
with the heuristic argument above. The smaller b and g, i.e. the slower the fading
process, or equivalently, the burstier the noise process, the larger the memory y of
the channel. Conversely, for fast fading, or equivalently, low memory channels, the
parameters b and g are typically large. For such channels, the state of the channel at
any given time instant is less dependent on the channel state at another time instant,
as compared to slow fading channels. Typical channel state sequences are shown in
Figure 2.3 to illustrate slow and fast fading,
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(a)
000000000111000000011111110000000000000000111110000

®)
001601110000110101000110100010100100011001000110010

Figure 2.3: Typical channel state sequences for (a) a slow fading channel, and (b) a fast fading
channel

o

t

Figure 2.4: SNR as a function of time, threshold SNR and mean SNR
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One way of determining the set b, g, po, pr of Gilbert-Elliott model parameters s
proposed by Krishnamurthi and Gupta {21]. The latter show that the BSC crossover
probabilities py and p; are a function of the mean signal to noise ratio (SNR} 4o
prevailing over a given fading channel, and of a threshold SNR 4r. The threshold
SNR is the SNR below which the channel is considered to be in the ‘bad’ state, and
vice versa, as shown in Fig ire 2.4 which illustrates SNR variations with time in a
fading channel. Again from the figure, it can be seen that 1o is the time average SNR
prevailing over the channel. Now, summarizing the results in {21}, we have

o = exp(—%&)
’ (70 +2)
= 1 —exp[-1r(3 + ) 22)

(70 + 2)[1 = exp(=7r /)]

The probabilities po and p, can be seen as the average bit error probabilities when
the channel is in the ‘good’ and 'bad’ state respectively. The derivation of py and p,
was achieved assuining a noncoherent Frequency Shift Keying (FSK) modulation and
demodulation scheme is used for channel signalling. Results for coherent FSK, regular
Binary Phase Shift Keying (BPSK) and differentially encoded BPSK modulation /
demodulation can also be found in [21]. The case of non coherent FSK is retained
here as it constitutes the worse case communications scheme.

Krishnamurthi and Gupta have also derived the ‘good-to-bad’ and ‘bad-to-good’
transition probabilities (i.e. b and g respectively) from the physical mobile channel
characteristics. Their results are summarized as

b T:):fc Y 2xvr /70
Tvfe 2ryr /%0 (2.3)

¢ exp(yr/y0) -1’

g=

where T is the data bit period (in seconds), v is the velocity of the mobile radio (in
m/s), f. is the carrier frequency (in Hz), and c is the speed of light. Note here that
the faster the vehicle, the larger b and g, and thus, the faster the fading. Similarly,
the larger the data rate, i.e. the smaller T, the smaller b and g, and thus, the slower
the fading. This is intuitively correct, since the faster data transmission is, the slower
will channel fading appear for a given codeword.

Plots of po and p; versus mean SNR and threshold SNR are shown in Figures 2.5
and 2.6, respectively. The curves shown are obtained from Equation 2.2 and are
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Figure 2.5: Contour plots of crossover probability po as a function of mean SNR and threshold
SNR

contour lines of pp and p;. For instance, given a mean SNR 7o = 20 dB and threshold
SNR 47 = 12 dB, the average bit error rate in the ‘good’ state is pp = 1 x 1075,

Also, contour plots of the state transition probabilities b and ¢ as a function of
mean SNR and threshold SNR are shown in Figures 2.7 and 2.8. These plots are
obtained directly from Equation 2.3 for a mobile radio transmitting data at a rate of
40.6 kb/s, at carrier frequency f. = 1.0 GHz. The mobile radio is moving at a speed
v =20 m/s.

Using the above results, it is possible to obtain a set of Gilbert-Elliott model
parameters for a typical mobile radio channel. We again take the example of the
above vehicle moving at 20 m/s and transmitting data at a rate of 40.6 kb/s at a
carrier frequency f. = 1.0 GHz. We assume a mean SNR v0 = 25 dB, which is
reasonable in a cellular telephony environment. We take an arbitrary threshold SNR
7r = 13 dB. The resulting Gilbert-Elliott channel model parameters are

po =~ 5x1077
=~ 006
b = 0.001
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Figure 2.6: Contour plots of crossover probability p, as a function of mean SNR and threshold
SNR
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Figure 2.7: Contour plot of ‘good-to-bad’ transition probability b as a function of mean SNR and
threshold SNR
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Figure 2.8: Contour plot of ‘bad-to-good” transition probability g as a function of mean SNR and

threshold SNR

Po P1 b 9
Downtown Munich, v =40 km/h | 2.1 x 107* 0.317 3.95 x 10~* 1.05 x 10~¢
Suburban Hamburg, v =40 km/h | 3.4 x 107* 0.298 2.1 x 107* 1.54 x 10~*
Highway driving, v = 90 km/h 1.1 x107* 0.194 296 x 10=> 1.29 x 10-¢

Table 2.1: Gilbert-Elliott model parameters for satellite-to-mobile links

9

= 0.015

Other investigations in physical channel modelling and parametrization can be
found in the literature. Cygan et al. [22] analyze satellite-to-mobile links in cities
and on highways in Germany. Their findings in terms of the Gilbert-Elliott model
parameters are gathered in Table 2.2. The mobile radio used in the experiment

transmits at a rate of 1.2 kb/s, at a frequency f = 1.546 GHz.

From the observations in this section, one can get a rough idea of the magnitude
of the parameters in the Gilbert-Elliott model. For instance, given the power levels
and channels used in mobile radio applications, the crossover probabilities py and p;




CHAPTER 2. FADING CHANNEL MODELLING 22

are in general of the order

po ~ 107f
o~ 10"

The ‘good-to-bad’ and ‘bad-to-good’ transition probabilities b and g are more difficult
to quantify; they depend highly on such factors as the data bit rate, the speed of the

vehicle, the carrier frequency. the type of channel, etc.

2.3 Extended Gilbert-Elliott Fading Channel Model

The Gilbert-Elliott charnel model presented in Section 2.1 describes channel state
transitions affecting consecutive bits in a data stream. In ARQ and many other
systems, however, data is transmitted, not one bit at a time, but, rather, in blocks of
n bits. Thus, in order to perform an analysis of ARQ performance, it is necessary to
look at transition probabilities between channel states over n-bit codewords. In order
to do this, we extend the one-bit binary symmetric channel (BSC) to an n-bit vector
channel made up of n BSC’s [23]. This n-bit channel corresponds in a natural way
to the n-bit transmitted codewords. An n-bit vector channel is needed since, in the
analysis of ARQ systems, we are interested not in the probability of one bit error, but
in the probability of detecting an error in one entire codeword. Now, since each BSC
in the vector channel can be in either of two states, this vector channel can take on
2" possible states; hence, in order to describe transitions between these 2" states, a
Markov chain with 2" possible states is necessary. In this section, an Eztended Gilbert-
Elliott channel model is derived using the basic two-state Gilbert-Elliott model as a
starting point. This extended channel model describes the transition probabilities
between n-bit codewords S;. The extended channel model is a 2"-state Markov chain
described by a 2" x 2" transition matrix denoted by P in what follows. The
transition matrix P(™) provides the probabilities of transition between two given n-
bit vector channel states S; and S;, as illustrated in Figure 2.9.

The 2" x 2" transition matrix P is recursively developed from the following 2 x 2
transition matrix P of the Gilbert-Elliott model:

P=(1'b b ) (2.4)

g l-g
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Figure 2.9: Transitions between two channel state vectors

In order to show this, we first derive the transition matrix P for a two-bit vector
channel. Denoting two consecutive two-bit channel state vectors (CSV’s) by S, =
(51(1),51(2)) and S, = (52(1),52(2)), and using the Markov property, we can write

the transition probabilities between §, and S, as

P(5,]8,) = P(&,|5(2))
P(52(2)52(1)) P(52(1)}5:(2)).

i

The transition probabilities for all possible vector channel states S, and S, are given

below:

P(x0—00) =(1-8)2 P(x1—00)=g(l—0b)
P(x0—=01)=(1-bb P(x1—0l)=gb
P(x0 — 10) = bg P(x1—-10)=g(1 —g)
P(x0—11) =b(1-g) P(x1—11)=(1-g)?
where X can take on either 0 or 1 without. The corresponding transition matrix is

then
(1-8)% (1—-bb bg b(l-g)

poy | 91=8) gb (1-g)g (1-g)
(1-5) (1-10b)b bg b(1 -g)
g1-b) gb (1-g)g (1-g)
From the above, it can be seen that the two-bit channel state vector (CSV) transition
matrix P(®) has only two distinct rows, which we denote by

RP = ((1-b2, (1—0bb, by ,bl-g))
R® = (g(1-b), gb ,(1-g)g,(1-g)?)

This is because the transition probability P(S,|S,) does not depend on the entire
previous channel state vector S,), but only on the last bit Sy(n), which can only be

Oorl.
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Now, following the same reasoning, one can show in general that the (k+ 1)-bit
('SV transition matrix P**1) can be obtained from the k-bit transition matrix P®

as follows:

(1-5R® bR

() - (k)
plh+1) gﬁ.'o (1 .‘.])Rx ’ (2.5)

gR  (1-9)R"
where R{(,") and RE”) are the first and second rows of P®), respectively. Continuing

in this manner, we see that it is possible to recursively obtain the 2" x 2™ transition
matrix P, starting from the 2 x 2 basic Gilbert-Elliott transition raatrix P:

(1 -byrRS bR

RSV (1- )R

pn) — (2.6)

g™ (1-g)RIMY

Note that the size of th: transition matrix doubles at each step of the recursive
procedure. Starting with the 2 x 2 matrix P, we obtain the 2" x 2" matrix P("™) in

n — 1 steps.

Now, faulty codeword retransmissions are separated by é bits of idle time, due
to the channel round-trip delay required for the negative acknowledgement (NAK)
signal to reach the transmitter (see Section 1.3). It is, therefore, necessary to modify
the above transition matrix P™ to account for this idle time of § = Rr = M — 1
bits. In order to obtain this modified transition matrix, which we denote by P™) we
write the transition probabilities between the two n-bit channel CSV’s S, and S, as

follows:

P(S:1S1) = P(Sa2(n)|Sa(n = 1))P(Sz(n — 1)|Sx{(n - 2))---
- P(S:ISHD) PU(S(1)1S:(n). 21

Here, PM)(S,(1)|S1(n)) is an M* order transition probability described by the Mtk
order transition matrix P¥ of the two-state Gilbert-Elliott channel model:

P(M ) pM )
M 00 0

The expression for the probability of transition P(S,|S;) between states S, and S,,
taking into account channel idle time, is identical to that for P(S,|S,), except that
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the first order probability P(S3(1)]Sy(n)) is replaced by the M** order probability
PMY(S2(1)]S;(n)). In matrix form, this translates into changing the form of 2.6 to

PRy ™Y PR R
PRURCTY PRORMTY

P = (2.9)

PR PIORCY
where R\ and R\ are still the first and second rows of P("~1)| respectively.

The matrix P(™=1) is the unmodified transition matrix for the n — 1-bit CSV. This

matrix is recursively obtained starting from P as shown in (2.5).

A summary of the procedure described above for obtaining matrix P™ s given

below:
Step 1: Initialization

We start with the basic Gilbert-Elliott model transition matrix:

g 11—y

Step 2: Fork =1,2,---,n -1,

Apply the recursion:

4o (0o e
pay_ | BV gR? (- gRY
R gR?  (1-g)RY

Step 3: M* order one-bit transition probabilities

Compute:

o Pp"

This is necessary since gaps of § = M — 1 bits separate consecutive codewords.

Step 4: Transition matrix for the n-bit codeword
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P&M)R((,"-U P,,(,:)Rg"‘”
M) p(n-1 n-1
oy _ | PRV PIORYT
PRURSTY PORYTY

Note that ™ is the transition matrix for the n-bit CSV, modified to account for

idle time between retransmissions.

Again, extending the 2-state Gilbert-Elliott channel model to a 2"-state Markov
chain with transition matrix P is necessary in order to represent the effects of
channel memory on each codeword, and the memory induced between consecutive

codewords.

2.4 Memory Channels: Other Models

Gilbert's and Elliott’s models were among the first attempts at representing physical
fading channel behaviour. A number of other models were developed since. Chan-
nel models can be readily classified in one of two distinct categories. These are the
generative models, which include the Gilbert and Gilbert-Elliott model, and the de-
scriptive models [17]. Generative models are often Markov chains, with a finite or
infinite number of states. These states usually map into error bits, and thus state
transition progressions generate error sequences. A physical channel can hence be
modelled by appropriately selecting the model’s Markov chain parameters. Having
obtained a generative mode!l, one can then analyse various error control schemes and
obtain statistics on their performance. On the other hand, descriptive models base
themselves on various statistics obtained from the examination of a real channel.
From a descriptive model, statistics can be derived that indicate the performance of

error control schemes.

The Gilbert and Gilbert-Elliott models were shown in Section 2.1 to be unifilar
sources of errors; channel state sequences cannot be inferred from an observed error
sequence. This property makes these unifilar models difficult to parametrize, i.e.
it is difficult to obtain parameters for the Markov models given sequences of errors
observed in a physical channel. In order to bypass this difficulty, Berkovits and Cohen
[24] propose a modification to the Gilbert model. A third error producing state is
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h(l-q)

(-h) (19

Figure 2.10: The Berkovits & Cohen 3-state model

includec in the Markov chain, as shown in Figure 2.10 As in the Gilbert model, no
errors can occur in the ‘good’ state G. However, the *bad’ state is split in two, By
and B, with errors allowed to occur only in state B;. The advantage of the Berkovits
& Cohen generative model over Gilbert's model lies in the fact that the parameters

g, @ and h in Figure 2.10 can be easily derived from a sample error sequence.

Another Markov model whose parameters are easily obtained from observed error
sequences is proposed by McCullough [25]. The McCullough channel model, shown
in Figure 2.11, admits errors in both the ‘good’ and ‘bad’ states. In Figure 2.11, the
variable L, represents the state of the channel at time :: ¥; = 0, with probability
1 — P, for the ‘good’ state and ¥ = 1, with probability P, for the ‘bad’ state. Z is
the noise bit generated by the model; for Z = 0, no error occurs, and for Z = 1, an
error bit is produced. The model parameters p;;, ¢i; and P, are easily deduced from
sample error sequences, where

pbij = P(En = jlzn—l =1,lp-1 = 0)
Gij = P(Eq=jl8a-1 =1,Zp1 =1)
P = P(2Z,=1%, =1)
From the above definitions, P, is the bit error rate in the ‘good’ state and P, is the

BER in the ‘bad’ state. Also note that the McCullough model, also known as the bit
regenerative model, reduces to the Gilbert-Elliott model for p,; = ¢,;.

A fundamentally different generative channel model is proposed by Fritchman [26).
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Figure 2.11: McCullough’s bit regenerative channel model

This model, shown in Figure 2.12, is a Markov chain with NV states. The state space
of the model is partitioned into two sets, the set A composed of & error-free states,
and the set B with N — k error states. A function ¢ mapping the state space into an

error sequence is defined by

o) = 0 for:e A
“11 forie B

Using the above definition and the N-state Markov chain, Fritchman derives the error
gap distribution (EGD) from which performance measures of error-control schemes can
be derived. The EGD is a statistic frequently used to describe burst-noise channels.
The EGD is the probability distribution of gaps between consecutive bursts of error
bits. From the EGD, the P(m,n) distribution, which is the probability of having m
errors in an n-bit codeword, can be derived. The P(m,n) distribution is an important
statistic for the performance evaluation of FEC codes.

One of the early descriptive channel models was introduced by Berger and Man-
delbrot {27] to fit experimental data in telephone circuits. Berger and Mandelbrot
suggest that the so called Pareto function is adequate in modelling the error gap
distribution in the telephone circuits error data:

P(¥|1) =1/;°

P(07]1) is the EGD, ie. the probability of having j error-free bits after an error has
occurred. @ is a parameter obtained from the error sequence data to be modelled.
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Figure 2.12: Fritchman's partitioned state space

Note that the Pareto function above models a renewal error process; the probability
of having j zeroes is independent of how long the preceding error burst was Other
models also exist which try to represent error gap distributions in experimental data
(28] [29] [30]. From the EGD, the probability distribution P(m,n) is again easily

derived.

As shown in this section, a number of models have been developed to represent
fading or burst-error channels. Some of the models, such as the one put forth by
Fritchman, are fairly complex but reproduce fading channel behaviour accurately;
whereas other models, such as Berger and Mandelbrot’s are quite simple, but do not
faithfully represent real channels. There is certainly a tradeofl at play here between
model complexity and accuracy. A good comparison of the various channel models
is difficult and has not been attempted to this day. In this research, we adopt the
Gilbert-Elliott model as it represents a good compromise between complexity and
accuracy in channel representation. Also, as outlined in Section 2.1, the Gilbert-

Elliott model is widely used in the literature to represent burst-error channels.

2.5 Previous Work in Feedback Communications

on Fading Channels

In this section, a review of some of the previous work in ARQ error-control over fading
channels is presented and contrasted to the study conducted in this thesis.

One of the firsts attempts at designing ARQ schemes for high error rate and
bursty channels was undertaken by Sastry. In his paper [33], Sastry suggests the
transmission of M identical codewords each time a retransmission is requested. This
technique is well suited for Stop-and-Wait schemes, since the channel idle time is then
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exploited to transmit copies of the original codeword. This technique is shown to yield
a substantial improvement in throughput efficiency over the regular SW protocol for

channels with very ligh bit error rates { P, > 107%).

In 1976, Arazi proposes a Stop-and-Wait ARQ scheme with partial codeword
retransmission [34]. Arazi suggests the interleaving of parity bits evenly within each
codeword In doing so, one can locate single bursts of errors that may occur within a

codeword Consequently, only that part of the codeword which is found in error need

to be retransmitted.

In the same vein as Arazi’s work, Turney proposes a new ARQ scheme which is
roughly a hybrid between the Stop-and-Wait and the Selective Repeat protocols [35].
K -bit long packets of data are sent in a Stop-and-Wait fashion. These K bits are
partitioned into n ‘parts’. Each part is checked for errors, and only those part(s)
found in error are retransmitted. Turney shows that such a scheme can provide up to
40% throughput improvement over regular Stop-and-Wait systems for mobile radio
channels with BER P. = 10~3. However, in his analysis, Turney assumes that, for
sufficiently long codewords, errors in consecutive codewords are uncorrelated. This

assumption is somewhat questionable, especially for slow fading channels.

In an effort to improve ARQ throughput in channels with varying BER, Martins
and De Carvalho Alves propose an ARQ scheme with adaptive codeword length [36].
For instance, for the Stop-and-Wait protocol, there exists an optimum codeword
length for maximum throughput efficiency. This optimum length depends mainly on
the BER of the transmission channel. Hence, Martins and De Carvalho Alves show
that significant throughput improvement can be achieved by making the codeword
length variable in the SW and GBN ARQ protocols. Although this technique seems to
be well suited for slow fading channels, it can be very complex to implement. Indeed,
the codeword length to be used at any given time depends on the detected bit error
rate; a potential for conflict exists, for instance, if the transmitter and receiver detect

different error rates.

Another analysis of the performance of ARQ systems over memory channels was
undertaken by Fujiwara et al. (19]. The analysis describes the performance of con-
ventional and hybrid Go-Back-N ARQ schemes over both memoryless and memory
channels, with channel memory modelled using the two-state Gilbert Markov chain.
In their paper [19], Fujiwara et al. exhibit performance curves of P, the ‘bit error
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rate after decoding’. as a function of codeword length n. These curves show that Go-
Back-N ARQ error control schemes are superior to their Forward Ertor Cotrection

(FEC) counterparts, especially for memory channels.

In a paper published in 1984 [37], Comroe and Costello examme the performance of
various ARQ protocols over land mobile radio channels The Stop-and-Wait, Selective
Repeat and Type - Il hybrid Selective Kepeat ARQ techniques are examined in this
work, and the expected number of transmissions is used to measure the performance
of these ARQ schemes. As expected, the Type - 11 hybrid schemes are found to be the
most efficient, especially in high error rate channels. Comroe and Costello use a non
standard channel model which assumes that a particular codeword 1s in error when
the received signal strength falls below a given threshold during the transmission of
the codeword. The analysis developed in this work gives valuable first insight on
the performance of ARQ schemes over mobile radio channels corrupted by multipath

fading.

Other non-standard fading channels have been used in the literature to analyse
feedback communication techniques. For instance, Leung, Kikumoto and Sorensen
[38] as well as Towsley [39] assume the error process (not the channel state process) is
Markov in their analysis of the Go-Back-N ARQ protocol over channels with memory.

More recently, the performance of hybrid ARQ techniques over Gilbert-Elliott
channels was analysed [18], [40]. Deng and Costello analyse a scheme based on Type
- IT hybrid ARQ [18]. The analysis is achieved assuming a non-stationary channel,
modelled using the Gilbert-Elliott Markov chain. In this work, the authors assume
the channel changes state only at the boundary hetween codewords. In other words,
codewords arc assumed to be either entirely in the ‘good’ state or entirely in the
‘bad’ state. In Lugand’s work [40], convolutional codes and Viterbi decoding are used
(instead of block codes) in combination with ARQ error control, in a Type - II hybrid
fashion. This work also assumes the channel does not change state throughout any

given data packet.




Chapter 3

ARQ Throughput for Fading
Channels

This chapter discusses ways of obtaining ARQ throughput performance for data trans-
mission over a fading channel. The first section describes a procedure for computing
ARQ throughput from the Extended Gilbert-Elliott model transition probabilities
and the crossover error probabilities po and p;. Although this procedure yields ex-
act results, it is computationally intensive and impractical for large codewords. This
problem can be circumvented, however, by considering the cases of slow fading in

Section 3.2 and fast fading in Section 3.3.

3.1 Exact Throughput Computation

As discussed in Chapter 1, three principal ARQ protocols are employed for data
transmission. These are the ‘Stop-and-Wait’ (SW) protocol, the ‘Go-Back-N’ (GBN)
protocol and the ‘Selective Repeat’ (SR) protocol [5]. It was also shown in Chapter 1
that throughput is used as a measure of performance in feedback communication
systems. The throughput expressions for the three ARQ protocols are repeated here

for couvenience. L |
Nsw = —n_mim (3.1)
k 1
(3.2)

TeBN = A NE[T] - (N 1)

32
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NSR = ;T[_]—j (33

Again, R is the transmission rate, 7 the round trip channel delav time, k/n the code
rate, and T is a random variable representing the number of ttansmissions of the
same codeword required to get the codeword correctly across the channel N is the
idle time due to round-trip channel delay, expressed in number of codewords. It is
important to note here that all three throughput expresaions are functions of the
average number of transmissions E[T]. Thus, the problem of computing throughput
performance for any ARQ scheme reduces to that of computing the average number
of transmissions E[T’]. Now, in order to compute E[T}, we define an indicator random

variable A; as follows:

1 ,if an error is detected in the i** transmission
A. = (3-4)

0 ,otherwise

Using this definition, the number of transmissions T can be written as:

T 1+ A + AjA2 + A)A2 A5+ -+

1+iﬁA., (3.5)

I=13=1

I

and the average number of transmissions is then:
oo 1

1+ E[J] Al
=1 s=1

14y P(Ai=1,A2=1,---, A =1)

=1

= 1+ f:P(A‘ =1, (3.6)

I=1

E[T)

i

where A' = (Ay,A2,...,4) and I' = (1,1,...,1). Hence P(A' = I') is the joint
probability of detecting an error in ! consecutive codeword transmissions. The ex-
pression in 3.6 is clearly an infinite series expansion. The series converges, however,
since P(A'*! = J*') < P(A' = I'), ie. the probability of detecting an error in
1 4 1 consecutive codewords is strictly smaller than that of detecting errors in only {

consecutive codewords.

From the above series expansion, it can be seen that computing ARQ throughput
reduces to computing the joint probabilities P(A' = I'),1=1,2,---. Since the series
in Equation 3.6 converges, the joint probabilities P(A! = I') become negligibly small
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for sufficiently large I. The infinite sernies can thus be truncated at some value of [ for
computational purposes

The next step 1n obtaining an expression for ARQ throughput 1s to write the joint
probabilities P{A! = I') as conditioned on the channel state S'. Using Bayes’ law of

probability, P(A' = I') can be rewritten as

P(A' =1 =3 P(A'= I'$)P(S), (3.7)
st

where S = ($,,8,,--.,S;) is a 'compound’ channel state vector (CSV) made up of
the concatenations of / consecutive n-bit CSV’s S;. The events of detecting an error in
the ¢** transmission of a codeword (i = 1,2, - -,l) are independent of each other when
conditioned on the CSV. This stems from the Gilbert-Elliott model which stipulates
that the channel, in any given state, is discrete, binary symmetric and memoryless
(the channel memory is represented by the transition probabilities between states.
Hence, the conditional probabilities in Equation 3.7 can be rewritten as

P(4' = I'lS") = ] P(A: = 1IS)).

Also, using the Markov property, P(S') can be written as:
P(ﬁ’) = P(51S1-1)P(S1-11S1-2) - - - P(8:18:)P(S,)-

Grouping the above two expressions, one gets

PA'=1) = 33 EP(Ax-llﬁx)P(g.l)P(Az—llﬁz)P(ﬁzlﬁx)

A
-~ P(A = II&)P(&Iﬁz-x)
= ZP(AI = llﬁx)P(En)EP(Az = 1|S3)P(55|5,) -

ZP(A: = II&)P(&I&-I)

Introducing the variables B,k = 1,2,...,1, one can calculate P(A' = I') by using a

backward recursion as follows:
Bi(S-,) = ;P(Ax = 151)P(84]8;-1)
ﬁl—x(ﬁt-:) = E ﬂl(SJ—l)P(Al-l = llﬁl-I)P(ﬁl-dﬁJ-z)

St
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Br(Sp) == Zﬁkn(ﬁk)])("‘k = 1SOP(SelSe 1)
Sy

i

B1(So)

PA=T') = 3 By(So(n))P(Sa(m))
So(n)
= ﬂ1(So(n) = O)P(So(n) = O) + ﬂx(So(Tl) = I)P(So(n) = 1) (88)

> Ba(8)P(Ar = 1|S,)P(S;]So(n))
5,

This type of recursive procedure for computing the probability of a joint event is
also used in Hidden Markov models theory [42]. A new state So(n) is introduced
here to represent the initial state of the Markov chain. Assuming the Markov chain
is stationary - which is a safe assumption given the characteristics of the physical
channel - the probabilities P(So(n) = 0) and P(Sp(n) = 1) are then the stationary
probabilities of the channel being in the ‘good’ and ‘bad’ state respectively. From the
basic Gilbert-Elliott model, these stationary probabilities are [41]:

Pmum=oy=F%? PGMM=1)=F%; (3.9)

Using the above stationary probabilities, the joint probability P(A! = I') can be

rewritten as

b
PA' =1 =818 —. .
( ) ﬁb+g+mb+g (3.10)

We have introduced here the notation

By, for Sx_q(n)=0

ﬂ: ) fOI‘ Sk—l(n) =1 (3.11)

Bu(Si-1(n)) = {

Note that, in the above recursion, fi(S;_,) is a function of S;_, only since

Pr(Si-1) = ;ﬁm(ﬁ*)P(A:. = 1Sa) P(Sx]Sx-1)

is an averaging operation over all possible states S, conditioned on S;_,. Further-
more, since P(S;|S-1) depeads on Si-y(n) only, due to the Markov property, one

can rewrite f4(S,_,) as follows.

Br(Sk-1(n)) = ;ﬂm(ﬁa)”(m = 154)P(84|Sk-1(n))- (3.12)

2k
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Writing G 1n this fashion. one can see that 8x(S,_,) can only take on two possible

values ) and gl as defined in 3.11.

Now, cach of the B¢’s is a function of fe41. P(Ar = 1]S,) and P(S;|Sk-1(n)), as
)) are obtained

can be ¢
from the transition matrix P(™ for the Extended Gilbert-Elliott channel model, as

shown in Section 2.3. F’(Ax = 1|S,) 1s the probability of detecting an error while the
channel is in state S;. For a memoryless binary symmetric channel (BSC) with error
rate p, the probability of having one or more bit errors in an n-bit codeword is

P(error) = P.=1— P(no errors)
= 1-(1-p)~. (3.13)

For the Gilbert-Elliott model, the channel is also binary symmetric with error rate
po when in the 'good’ state, and p, when in the 'bad’ state. When conditioned on a

specific CSV, the probability of codeword error is then simply
P(error |S,) =1~ (1 — py)M"8)(1 = po)™" ¥, (3.14)

where N, (")(k) and Né")(k) are the number of bits in the ‘bad’ and ‘good’ states
respectively, in an n-bit codeword. Now, assuming we use a good error detecting
code, the probability of undetected error is very small compared to that of detecting
an error [5], ie. P, € F4. Also, since P. = P, + F4, we have that Py >~ P, for a
good code, and hence the probability of detecting an error given that the channel is
in state S, is
P(Ai = 11S4) = 1= (1 — py)Mi7O)(1 = pg)"®), (3.15)

In summary, in order to compute P(A' = I'), one must first obtain the quantities
B, B, By, Blyy -+ BY, Bl in that order, using the recursion of Equation 3.8. Once
B2 and f} are obtained, the joint probability P(A! = I') is then simply as given in
Equation 3.10.

Now, the number of computations required to obtain P(A' = I') can be very
large. Each of the 8§, ¢ = 0,1, is a sum with 2" terms, each term being a product
of three factors. Thus, computing each §§ requires approximately 2" additions and
2 x 2" multiplications. Hence, to compute P(A' = I')}, 212" additions and 412" multi-
plications are needed. Clearly, the number of computations grows exponentially with
n, and thus, for large n (n > 40), the computing time required becomes impractically
large. Alternate ways of computing P(A' = I') must then be sought.
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3.2 Throughput for Slow Fading Channels

In the previous section, 1t was shown that since the Extended Gilbert-Elhott model
Markov chain has 2" distinct states, the number of computations required to obtain
thr ughput is also proportional to 2". the probability of having several 'good-to-
bad’ or 'bad-to-z0ood’ state transitions over one codeword is very small, and can be
safely assumed to be zero for computational purposes. Thus, the state transition
probability matrix for such slow fading channel can be approximated by an equiva-
lent sparse matrix. In doing so, the number of non-zero elements in the transition

matrix is drastically reduced, and becomes linear with codeword length n, instead of

exponential.

In this section, we show how for such slow fading channels, ie. for small values
of the channel parameters b and ¢ and small codeword length n, an approximate
Markov model can be found which has only n + 1 non-zero elements in each row of
the v ansition matrix P(™. Consequently, the number of computations required in
order to obtain ARQ throughput is reduced. Using this sparse matrix approximation
allows the derivation of closed form expressions for ARQ throughput performance.

3.2.1 Channel State Vector Transition Probabilities

The approximate channel Markov model and its corresponding transition matrix can
be obtained by closely examining the channel state stochastic process affecting data
bits in a codeword. We assume data is transmitted in codewords of n bits. We take
two consecutive codewords transmitted over a vector channel having CSV’s S, and
Sas1, 88 shown in Figure 3.1. The probability F;; shown in the figure (i,7 = 0,1) is
an element of the two-state Gilbert-Elliott transition matrix

P=(1"’ b ) (3.16)

g l-—g

Looking at the diagram of Figure 3.1, the transition probability between the two
consecutive CSV’s can be written as

P(SalSi) = Poo' Pt Far' o’ s (3.17)

where ¢;; is the number of transitions between states i and j within the S, ,; CSV and
channel state bit Sx(r). It is assumed for the time being that there is no channel idle
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Figure 3.1: Transitions between two consecutive CSV'’s

time (6 = 0) between transmissions of two consecutive codewords. Channel round
trip delay will be considered at a later point in this analysis.

For small channel parameters b and g, that is for small Py, and Py, the probability
P(S4411Ss) in Equation 3.17 becomes negligibly small with increasing g10 and ¢g;.
Thus, in the transition matrix P(*) of the Extended Gilbert-Elliott channel model,
the elements for which go; + ¢10 2> 2 are much smaller in value than those for which
go1 + q1o < 1. This is true for small b and g, of the order b,¢g < 0.01. Thus, for such
slow fading channels, one can make a first order approximation of the elements of P(™,
or in other words, set to zero all probabilities of state transitions S, — S,,, having
go1+¢10 > 1. In doing so, many of the elements of transition matrix P(®) become zero,
making P(™ a sparse matrix, which is easier to deal with than the original matrix
with 2" elements per row. The only non-zero elements in this sparse matrix are
those corresponding to transition probabilities describing CSV transitions in which
one or less ’good-to-bad’ and ’bad-to-good’ state transition occurs. For instance, the
following are examples of CSV transitions having non-zero probabilities:

X X--+x0 — 000111---111
X X+ x1 —s 110000---000
X X-+x0 — 000000---000

Also, looking at the above bit pattern, one can see that CSV transition probabil-
ities are non-zero if
Sy = 2™ -1, m=12---,n
oo S, = 2"-2™, m=12-.-n (3.18)

From Equations 3.17 and 3.18, the non-zero transition probabilities are thus of

the form

P(Sup11Ss) = Pl s V(o)1 preWarlSoa )W) p (3 19)
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Figure 3.2: Transitions between two consecutive CSV’s with channel round-trip delay &

where Wg is the Hamming weight of a sequence of bits. The Hamming weight is by
definition {5] the number of ‘1’ bits in a given binary sequence. P,, is the probability
of the 0 — 1 or 1 — 0 transition within the concatenation of CSV Sy, with Si(n).
As an example, if we have, say, the following state sequence:

---01011001110
5, Sin
The Hamming weights in Equation 3.19 are then Wg(S,,,) = 5 and Wg(Sk(n)) = 0.
Alson = 8 and P;; = Po,.
Having obtained an expression for the non-zero €SV transition probabilities (Equa-

tion 3.19), we now integrate these findings in the transition probability matrix P,
The resulting ‘approximate’ transition matrix for the case of slow channel fading is

PMu—(n-10 PY% o PO o o o o el
p) " o o o - o AMyo A PM-(n-1)
P2 0 o o . 0 My o Py P (a1
(3.20)

The tilde (") symbol indicates that channel round-trip delay § = M — 1 is taken
into account, i.e. P™ gives transition probabilities between codewords separated by
a gap of & bits, as shown in Figure 3.2. The derivation of P™ from Equation 3.19 is
shown in Appendix A. -
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As an example, for codeword length n = 3, and for nb and ng small, the approxi-

mate transition matriz is

PMa—2) PY% o P o o0 o P
00 _ rin) 0o o o PMgo P,‘,’"’g PR(1 - 29)
P 0 0o o PMgo P““’g P(1 - 29

(3.21)

By inspection, the above matrices are sparse. having many zero elements. Each
row of the P(™ matrix has only n+ 1 non-zero elements, out of a total of 2" elements.
Furthermore, out of the n + 1 non-zero elements, n — 1 elements have the same value.
These two properties - the sparsity of the transition matrix and the equality of some
of its elements - can be exploited, as will be shown later, to obtain a closed form
expression for P(A' = I'). From P(A! = I'), computing throughput for the three
popular ARQ schemes is a trivial matter, as shown in Equations 3.1 through 3.6.

It is also important to note at this point that P(™ js still a stochastic matrix.
Indeed, the sum of all elements in any given row of P in Equation 3.20 is equal
to one. For instance, summing the elements of the first row of P(® in Equation 3.21
gives:
PRO(1 - 2b) + PS% + POb + P = PRO + P
Consequently, the approximations applied in this section for slow fading channels con-
serve the Markov properties of the CSV transition process. The approximations used
here transform the 2™-state Markov chain into one in which many transitions are not
allowed. These are the less probable transitions in the original process. The matrix
P™ of Equation 3.20 can be seen as describing a Markov process that approximates
the channel state stochastic process for channel parameters nb and ng small.

3.2.2 Computation of P(A' = I') for small b and ¢

In the previous section, it was shown that, for slow fading channels, many of the CSV
transition probabilities can be approximated by zero. In doing so, only n+1 of the 2"
elements in each row of P™ are non-zero. In this section, we show that this property
simplifies the computation of P(A! = I') and thus of ARQ throughput.
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It was shown in Section 3.1 that /(A" = I') can be writien as
b
PA =y =0y 0
( ) 1 b + g 1 + g

where ) and ] are obtained recursively starting with 47 and 3}, using the relation

of Equation 3.12 repeated here for convenience:

Bi(Si-a( Zﬂhn (Se)P(Ax = II&)P(ﬁJShl("))

Now, substituting the transition probabilities from matrix P(") and the probabilities
P(Ai = 1|S,) from 3.15 in the above equation gives the following expression for the
joint probability P(A' = I')

oy (9 LI PNY B
P(A—I)-(b+g ; b+g)Q(1)’ (3.22)
where
0= PO - <n-1)b1u—(1— po)"] PLO%ba(n) + PO - (1 - p)
PYa(n) + PROIL — (1= po)"] PRl —(n=N)gll - (1 =) |’
and
1 —rn-1 _1-m

=n-1-(1-po)*r—— .
a(n)=n (1-po)™r P r -

A detailed derivation of Equation 3.22 is given in Appendix B.

The above result is of great importance, since it gives us P(A' = I'), and thus
ARQ throughput, as a closed form expression. Furthermore, we no longer need a
recursive relation to compute P(A' = I'); ARQ throughput for slow fading channels
is now a direct function of the channel parameters b, g, 6, py, p1, and the codeword
length n. In the next section, some illustrative throughput performance plots of ARQ
systems over slow fading channels are obtained using the expression of Equation 3.22.

3.2.3 ARQ Performance Plots for Slow Fading Channels

Some typical throughput performance plots for the three popular ARQ protocols
over slow fading channels are given here. In Figure 3.3, throughput is plotted as
a function of codeword length n, all other channel parameters kept constant, for
the three popular ARQ protocols. These plots are obtained after computing the
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Figure 3.3: Throughput as a function of codeword length for the SW, GBN, and SR ARQ protocols

joint probabilities P(A! = I') using the closed form relation of Equation 3.22. The
P(A' = I')’s are computed for | = 1,2,--- up to the point where they become
negligibly small (P(A' = I') < 107*). These joint probabilities are then summed as
shown in Equation 3.6 to give the average number of transmissions E[T). From E[T),
the throughput 7 for the three ARQ protocols discussed in this thesis is found using

Equations 3.1, 3.2 and 3.3.

The throughput performance plots shown in Figure 3.3 are for a typical slow fading
channel, having small ‘good-to-bad’ and ‘bad-to-good’ state transition probabilities
(b= 0.0001, ¢ = 0.0003). The average bit error probabilities in the ‘good’ and ‘bad’
states are taken to be pg =1 x 10~ and p, = 0.01, respectively. The channel round
trip delay is assumed to be § = 30 bits, and the code rate R = 0.75.

The plots of throughput efficiency versus codeword length are useful in that they
show how codeword length should be selected to maximize ARQ throughput. From
Figure 3.3, it can be seen that throughput decreases with increasing n for both the
Selective Repeat and the Go-Back-N protocols. This is due to the fact that the larger
a codeword is, the larger the probability of having an error in that codeword. However,
one must bear in mind that larger codewords are generally more powerful than their
shorter counterparts. For a fixed code rate R, longer codewords can provide superior
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error detecting / correcting capability.

For the Stop-and-Wait ARQ protocol. Figure 3.3 shows that codeword length has
an optimum at n = n° = 75, for the given channel. Throughput efliciency for the SW
scheme increases with n up to a maximum, and then starts to slowly decrease with
increasing n, in a manner similar to that for the GBN and SR schemes. That ysw
increases with increasing n for n < n* is due to the wasted time incurred in the SW
scheme between consecutive codeword transmissions. Since a fixed overhead of 8 bits
is incurred for each codeword transmission, 1t makes sense to increase the amount
of information (i.e. the codeword size), sent over the channel at each transmussion.
However, for very large n, the probability of codeword error becomes significantly
large and offsets the advantage gained by increasing n. These two factors cause the
throughput efficiency of the SW ARQ protocol to have a maximum as shown in

Figure 3.3. This behaviour has also been shown in previous work on codeword length

optimization [36], [31], [32].

Throughput efficiency is often expressed in the literature [5] as a function of the
bit error rate prevailing over the channel. In the case of the Gilbert-Elliott fading
channel, we cannot ta'k of a channel bit error rate, but rather of an average bt error

rate P,,, which we define as the weighted average of the crossover probabilities in the

‘good’ and ‘bad’ states

g b
Py = + .

A plot of throughput versus average bit error rate for the three conventional ARQ
protocols is shown in Figure 3.4 for the same channel parameters as in Figure 3.3,
that is b = 0.0001, g = 0.0003. The codeword length is fixed at n = 30, and N (the
number of codewords between suc-essive retransmissions of the same codeword) is

taken to be equal to 2, giving channel idle time § = 30. A code rate R = 0.75 is also

assumed here.

From Figure 3.4, one can see that throughput efficiency is fairly constant for
low average bit error rates. For larger Pay (Psw > 107%), throughput drops rapidly
with increasing average bit error rate, for the three protocols considered here. This
behaviour is in line with typical throughput vs. bit error rate plots given in the
literature [5]. This exact relationship between throughput efficiency and average bit
error rate depends of course on such parameters as codeword length, channel round-
trip delay, fading channel parameters. More on throughput performance and its

dependence on the above parameters can be found in Section 3.4.
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Figure 3.4: Throughput versus average bit error rate for the SW, GBN, and SR ARQ protocols
3.3 Throughput for Fast Fading Channels

In this section, it is shown that upper and lower bounds on P(A' = I') can be
obtained, thus circumventing the problem of performing computations of order 2",
as exposed in Section 3.1. The bounds developed in this section become increasingly
tight for increasing ng and nb. Thus, for fast fading channels, these bounds give a
good estimate of ARQ throughput performance, and also confirm the approximation

developed in Section 3.2 for slow fading channels.

3.3.1 Upper and Lower Bounds on Throughput

Bounds on ARQ throughput efficiency for fading channels were first derived by
Beirouti et al [23]. This derivation is reiterated in this section for convenience. In
order to develop upper and lower bounds on throughput, we first define Né”) (#) and
N,(")(i) to be the number of visits to the ‘good’ and ‘bad’ state, respectively, in n

steps at the i** consecutive codeword transmission. Note that
p

NG + NYG) = n.
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The variables Né")(z) and .'Vl(")(z) are also referred to as the state 0 and state |
occupation times random variables Using these definitions. the P( A4, = 1]S,) terms

in (3.8) can be approximated by
. -)
P(Ak=1184) = 1 = (1 = py)M70 (1 — po)W7 8, (3.23)

as was shown in Equations 3.13, 3.14 and 3.15. Again, we assume a good error
detecting code 1s used. This result comes from the probability of receiving a correct
codeword conditioned on the channel state vector S;. Now, substituting the above
expression in variable B¢(S,_;) of Equation 3.8 and making some approximations, it
can be shown that the joint probability P(A! = I') is upper and lower bounded as

follows:

! b — po)}! t=p g b BN
["p°b+g+"p’b+g bp(pr — po)l' < P(A _I)S[npob+g+np,b+g + gp(pr — po)l's
where ( . )(6“)

l1-b-g "
1—(1-b-g)

SR
These bounds are derived in Appendix C.

It must be noted here that the above bounds on P(A! = I') are of the form
P(A'=T1) <rl or P(A'=1") >+, ie. P(A' = I'} is upper bounded by a constant
raised to the power I. 0 < r < 1, since P(A' = I') is a probability measure. Now,
from Equation 3.6, it can be seen that the average number of transmissions E[T]
becomes a geometric series expansion since:

E[T] = 1+)_P(A' =1
=1
= 1+PA' =)+ PA =1+ -

= l4r+r? 4844ty

_ 1
B
= ! (3.24)
" 1-P(A*= DY '
Now, from equations C.5 and C.6, the bounds on P(A’ = I') translate into bounds
on E[T] as follows:
5 < E[T) < L .
1 - [npogd; + nPr1gyg + 90(P1 — )] 1 - [npoghs + np1 g5 — be(p1 - po)]
(3.25)

The above bounds on E[T] can then be substituted in (3.1), (3.2) and (3.3), and
thus bounds on throughput can be obtained for the three ARQ schemes discussed in

Section 1.3.
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3.3.2 Utility of the Bounds

Upper and lower bounds on average number of transmissions E[T], and thus on
ARQ throughput were developed in the previous section. The following questions
arise, however: How tight are these bounds? And, do these bounds agree with the

throughput approximation obtained in Section 3.2 for stow fading channels?

Looking at Equation 3.25, the upper and lower bounds on E[T] approach each

other as the terms bp(p1 — po) and gp(p1 — po) decrease in value. The variable p is a
function of the channel parameters b, g, §, and the codeword length n, and is repeated

here for convenience:

_(1-b-g)t¥
(b+g)?

From Equation 3.26 above, p decreases with increasing b, ¢ and é. Thus, the bounds
on throughput become increasingly tight with increasing b+ ¢ and increasing channel
round trip delay é. These conditicns translate into lower channel memory, since the
larger 8, the lower the correlation between consecutive codewords; and the larger b
and g, the faster the fading, and thus the lower the memory of the channel. Also, in
order to have tight bounds, py — pp must be small, and since, typically, p; >> py, this

requirement translates into p; being small.

[1-(1-b-g)". (3.26)

Now, for bp(p, — po) and gp(p1 — po) small, the average number of transmissions

tends to {

E[T] — (3.27)

1 — [npogt= + nplb—:—']'
The term in square brackets can be seen as a weighted average of the crossover
probabilities py and p,, since g/(b+ g) and b/(b+ g) are the two-state Gilbert-Elliott
model stationary probabilities. Increasing channel parameters b, g and § can be
seen as decreasing the memory of the channel. Indeed, the expression in (3.27) is
equivalent to that for a memoryless channel, since from [5], the average number of

codeword transmissions is 1

1-F’
where Py is the probability of detecting an error at the ARQ receiver. Also, from
Equation 3.13,

E[T] =

Pi~1-(1-p)"~np,
for np < 1, where p is the crossover probability of the memoryless BSC. Thus, as b




be
[

CHAPTER 3 ARQ THROUGHPUT FOR FADING CHANNELS 17

and ¢ increase, the bounds converge to the throughput efhcicncy for a memory e

channel

Plots of throughput as a function of codeword length n are shown in Figure 3 5
for the three ARQ protocols discussed n this thesis  Both these bounds and the
curves resulting from the application of the approximations of Section 3.2 are plotted
in Figure 3.5. The upper and lower hounds on throughput are shown as dashed lines
whereas the throughput as computed using the approximations of Section 3.2 1s shown
as a solid line. These plots assume crossover probabilities pp = 1 x 107¢, p; = 0.01.
channel round trip delay é = 49, and code 1ate R = 0.75 As can be seen from the
figure, the bounds on throughput are quite tight for channel parameters b = 0.01 and
g = 0.03. These bounds become looser for smaller b and g as shown in Figure 3.6
which shows throughput performance plots for the case b = 0.008, g = 0.024. From

the two figures, the convergence of the bounds for increasing b and ¢ can hence casily

be seen.

The bounds obtained in this section have no practical significance, however, since
they converge towards the trivial case of a memoryless channel; one might take the
plot of throughput versus n for the memoryless channel to estimate ARQ performance
over fast fading channels. However, the bounds remain useful in order to vahdate
the approximations on throughput efficiency obtained in Section 3.2. Indeed, from
Figure 3.5, one can see that the throughput curves obtained using the approximation
techniques are well within the upper and lower bounds, for a significant range of
values of n. However, for n > 175, the plots using the approximation technique are
no longer between the upper and lower bounds. This is due to the fact that nb and

ng are no longer small for n > 175.

From the plots in Figure 3.5, it can be seen that the approximation technique for
slow fading channels can safely be used, provided nb and ng are small. In the plots
displayed here, the product ng at which the ‘approximate’ throughput starts diverging
from within the bounds is ng = 5.25. Thus, keeping nb,ng < 1 should be sufficient to
ensure the accuracy of the approximation technique. One can hence examine channels
with b, ¢ < 10~* using the approximation technique (for a reasonably large range of
codeword lengths n) and compare this to the trivial memoryless channel case. The
behaviour of channels with ‘intermediate’ and low memory (1 < b,¢ < 107*) can be
extrapolated from the slow fading and memoryless channel case. In so doing, one can

infer the behaviour of ARQ schemes for a wide range of channel memory. Hence, in the
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Figure 3.5: Throughput as a function of codeword length using both the approximation technique
(solid line) and the bounding technique (dashed line), for b = 0.01, g = 0.03

forthcoming sections, we analyse ARQ schemes over channels with b, g < 10~* using
the approximation technique, and compare this with ARQ schemes over memoryless
channels. Throughput for channels with no memory is trivial to compute, since again,

1
1-F'

E[T] =
where P is the probability of detecting an error in a given codeword:
Pg~1-(1-p)

The probability p is the bit error rate of the channel.

3.4 Fading Effects on ARQ Throughput

We have seen in Chapters 1 and 2 that channel memory or fading results in errors
occurring in bursts; the larger the channel memory, the burstier the resulting channel
error sequences. In this section, we examine the effects of channel memory on the

throughput efficiency of ARQ systems.




@
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How channel memory impacts ARQ throughput performance is not directly ob-
vious from the results obtained thus far in this thesis. The relationship between
throughput efficiency and the Gilbert-Elliott model parameters is clouded by the
shear complexity of the expressions for ARQ throughput obtained in Sections 3.2
and 3.3. Hence, one must resort to graphically representing throughput efficiency for
various degrees of channel memory. The graphs in Figure 3.7 show throughput per-
formance for both the Selective Repeat and Go-Back-N ARQ schemes. The dotted
lines give the throughput for the memoryless channel case. The dashed lines give
throughput for a channel with large memory, namely b = 1 x 107%, g = 3 x 1078,
whereas the solid lines show throughput efficiency for an ‘intermediate’ memory case,
namely b=1x10"*and g =3 x 10~*. A codeword length n =30 and agap N =7
between codewords is assumed. From the plots in Figure 3.7, it can be seen that
the larger the memory of the channel, the lower the throughput efficiency of both
ARQ schemes. This relationship is especially apparent for high average bit error
rates (P,, > 10~?). For instance, for P,, = 0.02, the throughput efficiency (of the
SR scheme) for the highly fading channel (b =1 x 1078, g = 3 x 107®) is exactly half
that for the memoryless channel; nsg = 0.55 for the memoryless channel, and only

nsr = 0.275, for the high memory channel.
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From the above observations, it is now clear that improving ARQ throughput
efficiency on a fading channel can be achieved by decreasing the memory of that
channel. One way of decreasing channel memory is to delay retransmission of code-
words detected in error, i.e. increasing the gap N between retransmissions of the
same codeword. Note that performance of the Go-Back-N scheme deteriorates with
increasing N, since ngpn is inversely proportional to N, as shown in Equation 3.2.
Thus, increasing N would be advantageous ouly in the SR protocol. To show the
advantage gained from delaying retransmission of consecutive codewords, throughput
performance of the SR ARQ scheme for several values of N is shown in Figure 3.8.

From the figure, one can see that a significant improvement in throughput effi-
ciency can be obtained by increasing N from. 1 to 20, for the given fading channel
(b=1x10"*, g = 3x107*). Increasing N has the effect of decorrelating the states of
consecutive codewords, thus decreasing channel memory. Furthermore, for N = 60,
the throughput efficiency of the SR ARQ system over the given fading channel ex-
ceeds that of an equivalent system over a memoryless channel. Although surprising
at first, this fact can be explained as follows: The memory intrinsic to the channel
causes successive channel state bits to be highly correlated. Hence, channel state
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F igure 3.8: Throughput efficiency of the SR ARQ protocol for several values of N

vectors (CSV'’s) tend to be either entirely in the ‘good’ state, or entirely in the ‘bad’
state. Now, since in this particular channel example (Figure 3.8), the steady-state
probability of the channel being in the ‘good’ state is fairly high (¢/(b + g) = 0.75),
the probability that an entire codeword is in the ‘good’ state is also very high. In
this way, the throughput performance of the SR ARQ scheme over the given fading
channel can be made better than that over a memoryless channel. Stated in a differ-
ent way, the combined effect of high memory within a CSV and no memory between
consecutive CSV’s can bring about an improvement in throughput efficiency.

The relationship between throughput efficiency and the gap é between consecu-
tive codewords is shown more explicitly in Figure 3.9. Again, increasing the gap é
decorrelates consecutive CSV’s, and thus improves throughput efficiency of the SR
ARQ channel coding scheme. Also, the improvement in ARQ throughput is greater
for larger average bit error rates. Indeed, as can be seen in Figure 3.9, throughput
efficiency can be increased three folds, for p; = 0.1, by introducing a gap of 1000 bits
between consecutive codewords; for p; = 0.05, the gain in throughput is smaller (only
30 % better).

Although increasing N does result in improved throughput performance, such a
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scheme is not desirable in practice. Indeed, increasing the delay between retransmis-
sions of codewords translates into large delays in delivering data to the end user, as
well as increased buffering requirement and thus hardware memory; it is shown in
[5] that for adequate system performance, the buffer size at the ARQ receiver must
increase with N. For this reason, practical ARQ systems and other error-control
schemes have traditionally used code interleaving to suppress channel memory, as
discussed in Section 2.5. However, code interleaving requires extensive buffering,
both at the transmitter and receiver, and hence causes an additional delay in deliv-
ering data to the end user. In this research, we use frequency hopping, i.e. switching
transmission channel at a constant pace, to suppress channel memory, without in-
creasing the data delivery delay. Frequency-hopped ARQ systems are the object of

the next chapter.




Chapter 4

Frequency-Hopped ARQ

In the previous section, it was shown that increasing the time delay N between ccde-
word retransmissions improves the throughput efficiency of Selective Repeat ARQ
systems. This improvement is realized mainly by decreasing the memory of the com-
munication channel. In this chapter, the use of frequency-hopped codeword retrans-
mission is introduced as an alternate means of decreasing channel memory, and thus,
improving ARQ throughput. These improvements in throughput performance are
illustrated and discussed in Section 4.3

4.1 Frequency Hopping

In a few words, frequency-hopped data transmission consists of sending consecutive
data packets alternatively onto one of m different carrier frequencies. A frequency-
hopped data communications system is shown in Figure 4.1. Going through the
system block diagram, it can be seen that data packets or codewords leaving the
channel encoder enter a frequency-hopped modulator which modulates the incoming
codewords onto a number of different carrier frequencies fi, fa, fs, - - -, fm, according
to a pre-determined ‘key’ sequence. The resulting signal is then sent over a phys-
ical channel and demodulated at the receiving end using the same ‘key’ frequency

sequence.

In a frequency-hopped system, the frequencies on which data is transmitted are
‘independent’, i.e. they represent statisticaily independent channels. The frequencies
J1s fa, fs, - -+, fm are chosen in such a way that the channel conditions prevailing at

53
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Figure 4.1: Frequency-hopped modulation / demodulation

frequency f; are independent of those prevailing at frequencies f2, fs, ---, fm, and
similarly for the other frequencies. Thus, in sending consecutive codewords onto these
independent frequencies, channel memory between codewords is reduced. How these
independent frequencies are obtained physically is not important here. We assume
m independent frequencies, i.e. m indeper.dent channels can be obtained on a given
communications link, and base our subsequent analysis on this assumption.

Frequency hopping systems were in‘tially used in the late 1960’s, for military com-
munications applications [43]. By sending data onto various carrier frequencies, one is
able to escape or reduce interference fron: hostile jamming sources. Later, frequency
hopping was considered as a potential modulation scheme for a new standard in digital
cellular telephony to be implemented in the early 1990’s [44]. One of the advantages
of using frequency hopping in such wireless network applications is again to escape
interference on a given channel from adjacent channel users. Avoiding such inter-
ference is achieved by switching (or hopping) carrier frequency at regular intervals.
Due to its use of a number of different carrier frequencies for a single user, frequency-
hopped modulation is considered a spread-spectrum communications scheme. More
on spread-spectrum techniques can be found in (4] and [45).

In this research, we use frequency hopping as a means of escaping deep fades that
may occur in a given channel. If a codeword is found in error at the ARQ receiver,
it is statistically very likely that the particular channel in use at that time is in a
‘bad’ state. Thus, retransmitting the data onto another independent frequency (and
thus onto another independent channel) may be more successful than using the same
channel which is probably undergoing a deep fade. One can hence see heuristically
that frequency-hopped codeword modulation can bring about a possible improvement
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Figure 4.2. Nlustration of frequency hopping for ARQ data transmission

in ARQ throughput efficiency.

An illustration of the use of frequency hopping to escape bad channel conditions
is shown in Figure 4.2 for the case of two independent channels. From the figure,
it can be seen that data codewords are sent over the two independent channels, in
an alternating fashion. When a codeword is detected in error, which is hikely due to
‘bad’ channel conditions, it is retransmitted onto the other channel, which may then
be in a better state. Thus, one can intuitively see a possible improvement in ARQ
throughput. For example, looking at Figure 4.2, the codewords a, through a4 are
sent alternatively on Channels 1 and 2, which are both in the ‘good’ state, at that
time. Later on, the conditions on Channel 1 deteriorate, causing an error to occur in
codeword as. As a consequence, ag is retransmitted, this time on Channel 2, which is
still in a ‘good’ state. Hence, codeword ag is successfully transmitted after a total of
two trials, instead of possibly more trials, if no frequency hopping is used. Figure 4.2
shows the case of hopping over two frequencies only. This scheme can of course be
generalized to the case of m independent frequencies. The frequency hopping scheme
described here is ‘automatic’, i.e. the carrier frequency is changed at each codeword

transmission.

The frequency hopping protocol discussed in the previous paragraph and illus-
trated in Figure 4.2 assumes no channel round trip delay. Now, since consecutive
codeword transmissions are done on different frequencies, it may very well be that,
due to channel round trip delay, retransmission of an erroneous codeword occurs on
the same frequency as the original codeword in error. Such scenario, which may occur
for both GBN and SR protocols used over a channel with non-negligible round trip
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Figure 4.3: Codeword retransmission on the same frequency

delay, is illustrated in Figure 4.3. The ARQ system in Figure 4.3 assumes the Go-
Back-N protocol is used with hopping on three independent frequencies. The channel

round trip delay is assumed to result in N = 6, here.

As shown in the figure, codeword a; is received in error, and, consequently, a
retransmission is requested. However, due to channel round trip delay, codeword
as is retransmitted at frequency f,, which is the same frequency as the one used
in the initial transmission of a;. Such occurrence is a worse case scenario, however,
since it defeats the purpose of frequency hopping. It corresponds to the case where the
parameter /V is a multiple of the number of independent frequencies used for hopping.
Also note that this worse case scenario applies only for the GBN and SR protocols.
In the Stop-and-Wait protocol, one can make sure that erroneous codewords are
retransmitted onto a different frequency, since the transmitter must wait for an ACK
/ NAK signal before proceeding.

Now, in the worse case scenario where erroneous codewords are ziways retrans-
mitted on the same frequency, the performance of the frequency-hopped ARQ system
is then comparable to that of a regular ARQ system without frequency hopping. In
order to avoid such event, other possibly more complex frequency hopping protocols
must be used for GBN and SR ARQ. For instance, hopping may be achieved according
to a pseudo random frequency sequence with very long period. The pseudo random
sequence would be known to both transmitter and receiver. Or alternatively, one
could hold in memory the last frequency on which a codeword was transmitted. In
this fashion, one could ensure that an er-oneous codeword is not retransmitted on the
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same frequency  An even better automatic frequency hoppiug protocol would keep in
memory the 1n previous frequenaes on which an ertoncous codeward has been sent
so as to ensure that the codeword 1s retransmitted alternativels on all m available
frequencies  The resulting hopping algorithm may be complex and impractical to
implement. howe rer. So far, we have discussed only “automatic’ frequency hopping
schemes One can also consider hopping ‘on demand’, in which the transmission fre-
quency changes only when a NAK signal is received. With little thought, the reader
can see that such a protocol is likely to vield better throughput performance than
automatic frequency hopping. Frequency hopping may also be subject to various
standards on bandwidth allocation. The design of an ‘optimal’ or ‘quasi optimal’
automatic hopping scheme is in itself an iuteresting arca for further research. In this
thesis, we assume an optimum automatic frequency hopping protocol can be found.
In the next section, we derive expressions for the throughput of such optimum auto-
matic frequency-hopped ARQ system. Of cour-e, non-optimal hopping protocols will

result in lowe: throughput efficiency.

4.2 Throughput of Frequency-Hopped ARQ Sys-

tems

This section presents a derivation of expressions for the throughput performance of
optimal frequency-hopped ARQ systems. The general case of m independent frequen-
cies (i.e. m independent channels) is considered here.

It was shown in Section 3.1 that the average number of codeword transmissions

is given by:
E[T) 1+ P(A=1")+P(A?=P)+ P(A*=1P)+...+ PA'=T)+...

1+P(Ax=1)+P(A;=1,A3‘—'1)+-'-+P(.41== 1, A= l,---,A;:l)-}--.-

Recall that A; is the event of detecting an error in the #** transmission of the same
codeword. If an m-frequency hopping scheme is used with frequencies f,, f2, f3, - - -,
[m, the events Ay, Az, As, ---, A are independent of each other, whereas the events
A1, Am41, Azm+1, -+ - are dependent on each other. In general, the events Aj, Amyj,
Azmsj, -+ (3 = 1,2,3,---,m) are dependent on each other. Thus, the probability

P(A! = I') can be rewritten as

PA'=1) = P(Ai=1,Amu1=1LAomp1 =1, Apy-t)mer = 1)
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XI)(AZ' =1, Am+2 =1, A2m+2 =1, "i(rp—l)m+2 = 1) X
. XP(A —l ﬂl+J— 1. 42m+_1 ——-] A(r)_x)m+1:1)><"'
o X P(Am = 1. A = 13A3m = 13"'7Ar,..m = 1)
Or, alternatively, to shorten our notation, we define
U, = P(AJ = I,AM+J = 1,A2m+J = 1, ',A(r,—l)m+: = 1)
and hence, the joint probability P( A’ = I') becomes
P(Al‘-:]l):ul; X Ul XUz X+ - XUy X oo XUy
The constant r, is the number of events A, to be considered in the joint probability
w; and can be easily found to be:
ldivm if lremm) <3
r: =
’ (Idivm)+1 if (Iremm)> j
The operation ‘I div m’ gives the integer part of the ratio {/m, whereas the ‘! rem m’
operation gives the remainder from the division {/m.

We now need to find each of the y;’s in terms of th Gilbert-Elliott model parame-
ters. Once that is done, the joint probabilities P(4' = I') can be obtained, and hence
the throughput performance of the three ARQ protocols can be derived.

Now, it was shown in Section 3.1 that P(A' = I') can be written as:
pA=1') = ZP(A' = I'|$)P(S")
= ZP(Ax = 15,)P(%) )_:p(A, 1|53)P(8a153) -
ZP (e = US)P(S.ISi-0)

This development can also be applied to each of the probabilities P(A; =1, Am4j =
1, Agmyj = 1,---, A(,J_l),“.j = 1) as follows:

ZP(A = 118;)P(3;) Z P(Am+; = 1|Sm4;)P(Sm44155)

—nﬂ
Z P A2m+J' - 1'§2m+j)P(§2m+j"-—m+j) T
§an+:

2" P(Ai-imes =1S(,-1ymt5) P(S(r;~1ym4i1S(r,~2pme )

S(r, —1)mts
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Thus, the results of Sections 3.1 and 3.2 also applv here, except that we should use
transition probabilities P(S(xs1)m4jlSkms,) instead of P(8,41]|S4) Thus, for a slow

fading channel, we have:
g b nf 1
(m , m) Q ( ) )(4.1)

xTQm1

P(A; =1, Anyy = L, Aame; = 1,00, Arymy; = 1)

where the matrix @ is given by

Q- ( PO — (n - 1)b)[1 = (1 — o)) PMba(n) + PO = (1 - py)7]
“\ PMga(n) + PROI - (1 —po)] PRI~ (n=1)gl1 -1 —p)"] )’

7 is the steady-state probability vector of the two-state Gilbert-Elliott Markov model,

r_(_9_ b
= (b+g ’ b+g)

and 1 is a unity vector with two components. Here, the gap M between consecutive
codewords is no longer equal to the round trip delay Rr plus one, but rather

M = [(N-1)jm+(m-1)jn+1
(Nm—-1n +1,

as can be seen from Figure 4.4.

It is interesting at this point to analyse the case m — oo, that is the case where
infinitely many independent frequencies are available for hopping. In the limit as
m — oo, one will always be able to retransmit data at a frequency that has not
been used before (we design the frequency hopping protocol that way). Hence, all
transmission channels can be made independent, and the joint probability P(A' = I')
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can always be written as

PA =1') = [P(A, =1))
= ¢
Consequently, the average number of transmissions of the same codeword is a geo-

metric series expansion

E[T)

149+ +¢*+---+¢ +--
1
g —1-—-——;
since ¢ = P(A; = 1) < 1. Here ¢ = z7Q1, and the gap M between retransmissions of
a codeword at the same frequency tends to infinity as m — oo. Thus, the probabilities

P&,‘” , él" ), Pl(:' ) and P,(,” ) are the steady-state probabilities of the two-state Gilbert-

Elliott Markov chain:
PO = PRV =g/(b+9)
P = PO =b/(b+g)

Although the case m — oo is not obtainable in practice, it is still a useful case
as it gives us the maximum throughput gain that can be achieved using frequency-
hopped modulation on a given fading channel. In the next section, we look at the
improvement in throughput efficiency that can be obtained using a frequency-hopped
ARQ system with two and three independent frequencies, as compared to the case of
infinitely many independent frequencies (m — oo) and the trivial case of no frequency

hopping.

4.3 Performance of Frequency-Hopped ARQ Sys-

tems

The manner in which throughput efficiency of ARQ schemes can be improved by
the use of frequency-hopped modulation was briefly discussed in Section 4.1. In this
section, we present performance plots of frequency-hopped ARQ schemes in light of
the expressions for throughput performance derived in Section 4.2. Throughout this
presentation, we consider the cases of no frequency hopping, hopping on two frequen-
cies, hopping on three frequencies, and hopping on an infinite number of independent

frequencies.
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Performance plots showimg ARQ throughput efliciency for both the SR and GBN
protocols are given in Figures 4.5 and 4.6, for fading channels with b= 1 < 10 ‘¢ =
I3x107and b=1x 107% ¢ = 3 x 107%. respectively  1n both figures, one an see
a substantial improvement in throughput efficiency when usmg the m = 2 (dashed
line) and m = 3 (‘da-l.-dotted’ line) frequency hopping schemes, over the no frequency
hopping scheme (sohid line). The case of frequency hopping over an wfinite number
of independent frequencies is also shown (dotted line) a1 the figures For m — oc,
one achieves the maximum possible improvement in throughput for this particular
channel. The plots show throughput efliciency versus average bit error rate. The
range in average bit error rate is obtained by keeping pp constant (pp = 1 x 107%),
and varying p;. By using frequency hopping, an additional gap between codewords
at the same frequency is introduced. For m — 0o, one obtains the maximum possible

improvement in throughput for this particular channel.

The improvement in throughput efficiency shown in Figures 4.5 and 4.6 comes
partly from the introduction of an additional gap between con-ecutive codewords
transmitted at the same frequency. By transmitting a data streamn alternatively on,
say, three independent channels, the gap between codewords at the same frequency
becomes (3N — 1)n bits, instead of (N — 1)n bits, if no frequency hopping were used
(see Figure 4.4). However, this increased gap between codewoids does not translate
in a delay in the transmission of data, as would be the case if N were increased
(see Section 3.4). To the transmitter and receiver, the delay between consecutive
codewords is the same with or without frequency-hopped modulation. However, by
dividing up transmitted codewords onto several independent channels, the gap be-
tween codewords on a particular channel is increased, and thus, the memory between
CSV’s on that particular channel is decreased. Such decrease in channel memory
results in an improvement in ARQ performance, as discussed in Section 3.4.

For the case of hopping on an infinite number of frequencies, Figures 4.5 and 4.6
show that the throughput curves approach an asymptotic value as the average bit error
rate is increased towards unity. For the SR protocol, nsg — 0.75 as p — 1 for the
given channel parameters. This behaviour can be explained as follows: As mentioned
in Section 3.4, the memory between channel state bits is quite large for highly bursty
channels. Hence, a given codeword tends to be either entirely in the ‘good’ state,
or entirely in the ‘bad’ state. Now, since for the channels in Figure 4.5 and 4.6, the
probability of being in the ‘good’ state is P, = g/(b+ ¢) = 0.75, and the BER in the
‘good’ state is very low (pp =1 x 107%), the probability of successfully transmitting
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Figure4.5: Throughput efficiency for several frequency-hopped ARQ schemes over a fading channel
withb=1x10"%g=3x10"¢

a codeword tends to 0.75 as well. Also, as m — oo, consecutive codewords become
totally uncorrelated, and thus ARQ throughput for the SR scheme also tends to 0.75,
no matter how large p, is made, as shown in both Figure 4.5 and 4.6.

From the above argument, the extent to which ARQ throughput can be improved
by the use of frequency hopping depends highly on the steady-state probability of
being in a ‘good’ channel state. Indeed, Figure 4.7 and 4.8 show the improvement
in throughput efficiency obtainable for £, = 0.5 and P, = 0.25, respectively. As
can be seen from these figures, the smaller the steady-state probability of being in
the ‘good’ state, the smaller the improvement that can be achieved with frequency
hopping. However, one must bear in mind that the channel parameters b, g, py, and
p1 are related to each other, as shown in Section 2.2; one cannot vary b and g without
effect on pp and p;. Thus, one must use parameters from real channels in order to
fairly analyse the improvement in throughput brought about by the use of frequency
hopping. In this research, we analyse the performance improvement that can be
brought about by the use of frequency hopping for a given Gilbert-Elliott channel,

regardless of how it applies to physical channels.

We assumed in this section that m independent channels are readily obtained.
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Figure 4.6: Throughput efficiency for several frequency-hopped ARQ schemes over a fading channel
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However, in real communication scenarios, totally independent channels can be dif-
ficult or even impossible to obtain. For instance, communication links affected by
the so called shadowing phenomenon (i.e. when the transmitter and receiver are
separated by a large obstacle, say a hill or a large building) all channels are equally
degraded. In such event, the real performance of the frequency-hopped ARQ systern
should be close to the m = 1 case shown in the figures. In other words, communica-
tion links hampered by shadowing are not expected to benefit much from frequency
hopping. On the other hand, communications suffering from multi-path interference
are expected to benefit substantially from frequency hopping. Indeed, multi-path fad-
ing is highly frequency dependent, as discussed in Chapter 1, and thus independent

channels can be easily obtained.

In light of the above discussion, and taking into account the fact that a non-
optimal frequency hopping protocol may have to be used, the results displayed in
this section should be interpreted with some caution. These results represent the
throughput efficiency of ideal automatic frequency-hopped ARQ schemes. In other
words, the plots of frequency-hopped ARQ system performance shown in Figures 4.5
- 4.8 should be viewed as upper bounds on throughput efficiency. The extent to which
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real system performance approaches the upper bounds n the figures depends on the

availabilitv of 7n truly independent channels and on the optimality of the automatic

hopping protocol used




Chapter 5
Conclusions

This research examines the throughput performance of ARQ systems over fading
channels modelled by the two-state Gilbert-Elliott Markov chain. Chapter 2 shows
the necessity of extending the Gilbert-Elliott to represent channel states over an entire
n-bit codeword In Chapter 3, we show that the average number of transmissions
T of the same codeword can be written as a series expansion of joint probabilities
P(A" = I'). From these joint probabilities, the throughput efficiency for the three
conventional ARQ schemes is derived for Gilbert-Elliott fading channels. Although
the expressions thus obtained are only approximations of the throughput performance
of ARQ systems, these approximations are accurate for slow fading or high memory
channels. Due to the complexity of the throughput expressions, only graphical results
are useful in giving an insight into the effects of varying channel parameters and
codeword length on throughput performance. Curves of throughput efficiency versus
codeword length n are given. These curves confirm that there exists an optimal
codeword length for data transmission using the Stop-and-Wait protocol, as is the
case for memoryless channels. This optimum value of n depends highly on the average
bit error rate and on the fading channel parameters.

Performance curves showing throughput versus average bit error rate are also
given in Chapter 3. These plots show that throughput efficiency decreases with
slower channel fading, or alternatively, with higher channel memory. From this,
one can imply that superior ARQ performance can be achieved by reducing channel
memory. One way of doing this is to delay the retransmission of erroneous code-
words. A better way of reducing channel memory between consecutive data packets
is to use frequency-hopped codeword modulation, i.e. transmitting consecutive data

66
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packets alternatively on m independent channels  Expressions for the throughput
performance of frequency-hoppcd ARQ systems are obtamed for an assumed optimnal
freyueney hopping protocol  These expressions are derived for a general number m
of independent frequencies  The resulting throughput performance is plotted as a
function of average bit error rate for m = 1,2, 3 and the ideal case m — co. From the
plots, one can deduce that a significant improvement in throughput efliciency can be
achieved by using frequency hopping for slow fading chanrecls with high average bit
error rates. The improvement in throughput performance is a function of the number
of independent channels available; the larger the number of channels, the better the
performance. The improvement brought about by frequency hopping is also highly
dependent on the steady state probabilties in the Gilbert-Elliott model. The higher
the probability of being in the ‘good’ state, the larger the improvement in through-
put efficiency brought about by frequency hopping. One must keep in mind that the
results obtained for frequency-hopped ARQ schemes are only upper bounds on their
performance. The extent to which the performance of real frequency-hopped ARQ
systems approaches the upper bounds is contingent on the availability of m truly

independent channels and on the optimality of the frequency hopping protocol used.

This research dealt with the estimation of throughput performance of various
ARQ schemes over the Gilbert-Elliott channel. Further areas for research would be
to explore ARQ system performance on other Markov channel models such as Mc-
Cullough’s bit regenerative model or Fritchman’s partitioned Markov chain model,
for instance. One may also be interested in analysing the performance of ARQ sys-
tems using real error detecting codes. In this research a perfect error detecting code
was assumed; real codes would give more realistic performance estimates for a given
channel. Another area for further study is the perforrnance evaluation of hybrid feed-
back communication schemes on fading channels. Only conventional ARQ schemes
were examined in this research, whereas hybrid schemes are frequently encountered
in applications. For instance, Type - II hybrid schemes are often well suited for high

bit error rate non-stationary channels.




Appendix A

Transition Matrix for Slow Fading

Channels

" This appendix shows the derivation of the transition matrix P(" for slow fading
channels, i.e. for small b and g parameters in the Gilbert-Elliott model. The matrix
P™ provides the transition probabilities between n-bit CSV’s, taking into account a
gap 6 = M — 1 due to channel round-trip delay between consecutive codewords.

First of all, we recognize that P(S;,,]5;) = P(S41/S5&(n)) from the Markov prop-
erty. P(S4;11Sx(n) = 0) are the elements occupying the even rows of the transition

matrix (rows 0,2,4,---,2" ~ 2), and P(Sy,;|Sk(n) = 1) occupy the odd rows of this
same transition matrix P(™. Here, for the sake of clarity, we analyze the elements of

the even and odd rows separately.
¢ Even rows:

The non-zero CSV transitions can be depicted as follows:

XXX+ xx0 — 00011---1111
m ones
Se(n) =0 Sip1=2"—-1, m=12-,n

Now, in order to describe a given CSV, we give it a value in decimal notation which
is equivalent to the binary sequence it represents. For instance, the binary sequence
S, = (01001) is denoted here by its decimal equivalent, S, = 9. Now, {-om the above
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hit pattern, the non-zero CSV transition probabibity is

(1= {1 =6 Sy #0

" _ (A1)
(1 -b)". Si =0

P(Spy = 2" = 18(n) =0) = {

o Odd rows:

Again, we depict the non-zero probability CSV transitions, this tume for odd rows
of the transition matrix P, as follows-
X X XXXl — 111100---0000
e e

m zeroes
Sh(n):'-l -‘Sb‘fl ——:2"_2"!‘ r’l:‘,‘z‘...”l

For the above CSV transitions, the transition probability is easily seen to be

(="M —g)" ™™g, Spn #2° - (A.2)

P(Spp =2 = 2"|Siu(n) = 1) =
(San * {(1—g>", Sy =2 -1

So far, the above traunsition probabilities P(S;,,]5:) assumed no channel idle
time (6 = 6 or M = 1). In order to account for channel round-trip delay, shght
modifications have to be made to the probabilities expressed in Equations A.1 and
A.2. The resulting transition matrix is denoted by P™), with the tilde () symbol
emphasizing the fact that channel idle time is taken into account.

The modifications needed to the transition probabilities P(S,,,|S4) to account for
channel idle time can be easily deduced by considering the CSV transition diagram

of Figure 3.2. In this figure, the § = M — 1 bits of idle time between two consecutive

CSV’s are shown. Instead of the transition probability F,, between Si(n) and Si4a(1),
one must use an M** order transition probability P( ) to take into account the fact

that the transition between state t and state j is done in M steps.

Now, the M** order 2 x 2 transition matrix P" can be shown [41] to be

" P(M) P(M) “ —b- N—!' 51—5-—![
p ( P P(u) ,g Mg 4 _._ ) (A-3)
b+a big o+g

Substituting the elements of PM in Equations A.1 and A.2 gives the following prob-
abilities:
Péo::(l—b)“h S141=0
PG —ppr-m-t1 —gmW, S, =2™ -1, m=12, ,n-1
P(S341|Sk(n) = 0) = P‘(’oll) 1-g)*-! ) o
o1 ( g) '

0, otherwise

Sipr1=2" -1

(A4)
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M n-~
Pl(u,(l ) ]‘ §*+l:0
PO —gr 1= b)™ Yy, Sy =2"-2" m=12 ,n-1
PSiplsimy = 1) = § =9 ot = 2"
o (1-g)""%, Sy =2" -1
0, otherwise

(A.5)

The above probabilities can be further approximated by using a binomial expan-
sion and retaining only the first order terms of this expression. A binomial of the
form (1 — z)" can be written as a series expansion as follows:

. n(n—-1) n(n —1)(n —2)
(1-r)"=1-nr+ 5 z? - 3 z3

For nz small (nz < 1), the above series expansion can be safely truncated to
(1-2z)"~1-nz.

Thus, for small nb and ng, the above first order approximation can be used in Equa-

tions A.4 and A.5, giving the following transition probabilities:
PRI = (n=1)8], Sipy =0

P(M)b S =2"-1, m=12,---,n-1
P S S — 0 = ’ +1 ) Y &y b)
(Si411Su(n) = 0) P S =20 -1
0, otherwise
N (A.6)
P S =
Pyy, Sy =2"-2" m=12,-..,n-1
PEealSi) =1 =0 ploy (0 1)) S =21
’ +1 — -
0, otherwise
(A.7)

In Equation A.6, PQ(1 — b)*! is approximated by P(M)[l - (n - 1)b), PO -
b)*~™-1(1 ~g)™~1b by PQp, and PM(1 — g)*! by P{™). These particular approx-
imations are done in such a way as to preserve the stochastic nature of the ensuing

transition matrix, as will be shown later.

From the above transition probabilities, the resulting transition matrix P is of

the form:
PRUN-(n-1) P o PO% o ... o o P}
ple) — o o o o .. o Fl o P.‘ o PO -(n-1)g
P 0 o o . o FMG o PN, R (a-ng

(A-8)




Appendix B

Deriving P(4! = I!) for Slow Fading

Channels

A derivation of the joint probabilities P(A! = I') for the slow fading channel case is
given here.

It is shown in Section 3.1 that P(A! = I') can be written as:

b

with the variables f recursively computed according to the following

Pi(Seaar(n)) = ;ﬂm(ﬁa)P(Aa = 1|54) P(84]Sk-1(n)).

Now, the variable f; is a function of channel state bit Si_;(n) only, and can thus
take one of two possible values:

A = SEﬂm(ﬁx)P(Ak=1|§:.)P(§:.IS:--1(")=0)

Be = ;ﬂm(ﬁk)P(A,.=l|§,.)P(_S,.|S»_x(n)=1).

P(S84|Sk-1(n) = 0) and P(S,|Sk-1(n) = 1) are elements of the transition matrix P
given in Equation 3.20. Replacing these elements in 8 and S} above gives:
B = BinPu[1 - (n = DBP(AL=1]S,=0)
+BaP3 Y P(AL=1IS,) (B.1)

S,=2™-1

+ﬂi+1P§f"P(A,. =S, =2"-1), m=12--,n-1
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and
B = BLPIOPA =118, = 0)
+88, Py 3T P(A=1]S,) (B.2)

S,=27-2m

o PEL = (n = 1)glP(Ae= 1|8, =2" 1), m=1,2-,n—1

The expressions above show that P(A' = I') can be written in terms of the channel
parameters b, g, 6, and the conditional probabilities P(Ay = 1|S,). The latter are
obtained from Equation 3.15, repeated here with N{™(k) and N{™(k) rewritten as

Hamming weights Wg(S,):
P(Av=1|S,) ~ 1—(1-py)"rE)(1 - py)n-PWul&)
L~ (1= po)" (%—E—Z-;-)WH(&)_
Hence, we can write the P(A, = 1|S,) terms in Equation B.1 and B.2 as follows:
P(A =115 =0)~1-(1~-pp)"
P(Ar=1S, =2" - 1) >~ 1- (1 - p)"

—_ wﬂ(ih)
n—1-(1-py)" Z (———i_:;) , m=12...n-1

It

R

Y Pa=1s,)

S,=1m-1 S,=3™-1
n—1-(1—po)*lr+r+rd4.. 41,

where r = (1 — p1)/(1 — po). The above sum can be seen as a geometric series

expansion:

2 s k-1 1—rt
l4r4+r'+ri 4. 4 r ':l—r.
Thus,
wl—rt
z P(Ag=l|§;,)zn-l—-(l—po) r s m=1,2’--.,n_1
$,=1™-1 l1-r
~h
Similarly,
> PA=18) ¥ n-l-(1-p)* Y 8 m=12...,n-1
&:2'_2’ §‘=2‘_2"
TS B A
a 1—r"1
= n-1-(1-py)"r
l1-r
= Y PA=18)

Sy=2m-1
a(n).
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We are now in a position to sunmmarize the procedure for obtaining P(A' = %)

for a slow fading channel:

We compute the variables 3§, 3}, recursively for k = 1,1 —=1,1<9.... , 2,1 as follows:

B PO = (n = D)BL - (1 - po)”]
+83 11 P ba(n)
+Bn PEO - (1 = p)

Bi =~ BaPR 1 —(1—po)”]
+ﬂ5+1pn ga( n)
B POI = (n = 1)g][l — (1 = p)7]

where -
a(n)=n—-l—(l—po)"r—~——-—r-——, 1‘:1-:——&,
l—-r I —po
and

ﬂlo-}-l = '811+l = 1.

Then, P(A' = I') is simply

b
P(4' =1 = g o + Bl

The above procedure can be further simplified by writing the expressions for B2
and B} in matrix form. Letting,

214 B
éh:(ﬂz) ’ _ﬂ.h-f-l:(ﬂ:;::)a
and

0= PO — (n = 1)B)[1 — (1 - po)"]  P&%%ba(n) + P21 — (1 = p1)]
POga(n) + PRON ~ (1~ po)™) POl = (n~1)g)1 = (1 —py)] )

we can rewrite the above recursion as

B, = QB l‘




APPENDIX B DERIVING P(A* = I%) FOR SLOW FADING CHANNELS 74

Using the <ame notation, we have:

; ) (B.3)

Hence,

b
PUA=1) = By + Bl

g b
(b+g ’ b+g)é"

Replacing the vector B, given by Equation B.3 in the above gives

TN PR
P(A"”'(Hg ’ b+g)Q(1)'




Appendix C

Deriving P(4! = I') for Fast Fading

Channels

It was shown in Section 3.1 that the conditional probability P(A, = 1|S,) can be

written as
P(Ak = 1]S,) = 1= (1 = p)M™ () po )™k (C.1)

Now, the two factors in Equation C.1 can be approximated with only the first or-
der terms of the binomial series expansion, as shown in Appendix A. Thus, for

N}")(k)PlaNén)(k)po < 1, (C.1) can be rewritten as:

P(Av=1]5,) =~ 1-[1 = pNM (k)1 — N (K))
~ BNk + poNSUk), (C.2)

provided np, is small.

Substituting (C.2) in variable §i(S,_,) of Equation 3.8, we have

BiSiy) =~ ;Louv}"’m+po~é"’(l>1P<§J|§,-,>

= Esus, {pN"(1) + paN (1))

This is an averaging operation over S; conditioned on Si-; and gives

Bi(Sis,y) ~ px_/\'f(l&_l + poN . (C.3)

where, NG) = Egs, . (NP}, j=0n
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Now. the mean occupation times for the two-state Marhov chain are derived in [11).

and the results are summarized here.

) ™Y +b(l—b—g){l ~(1-b-—g)"
oo b+ g (b+g)?
my _ mb  bl-b- g)[l-u-b 9"
I‘Ol - b+g g)z
m _ mg _g(l—b- 9[1 (1-b-g)"
Fro btg (b+9)
m _ mb g(l=b-g)[1 —(1-b-—g)"
M= gt (b+g) |

The variable y( ™) is the mean number of times the Markov chain visits state ], inm

steps, given that it was initially in state 2. The mean occupation times !\,-EH can
(m)

then be written in terms of the above mean occupation times u,,’ as follows:
+7(m) ~(n) _ ,(n+6) (%)
NJL&_, NJlsl 1(n) T Bsisy(n)s T BFSi(n)p

where § = Rr is the channel round-trip delay time which must be included to account

for the tdle time between consecutive codeword transmissions.

Replacing the appropriate ﬂ( ™) in the above equation, one finds that

Ngrg‘_|(n)=0 = #g;+6) - #((:J)
= n g
b+ g
where (1= b )(6“)
l-b—g "
Similarly,
(") g
Nﬂls._l(n)=l = nb + g - gr
+3(n) b
N 0 = -
1/S;-1(n)=0 n b+ g be
-A—Ig'l‘;‘_l (u):l + gp
3 gives

Replacing the above expressions in Equation

5 = { pogts + nPust; = bolp = po), Siea(n) =0 )

npogl; + nPrgy; +90(Pr — po)y Siea(n) =1
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Note that the values of 3 for Si_1(r) = 1 1s larger than that for Siop(n) = 0 Now,
looking at the recursive relation of (3.8) 1 Section 3 1. one can see that an uppet
bound on e can be obtained by replacing Sy (S4). Fat 2 Sapr ). (S g by
Bmaz = Ji(Si-1(n) = 1) as follows

Pr-1(812) = Zﬂl DP{ALy = S5 ) P(S 48 9)

3,

S ﬂl—l,mz

<Y Brmae PlAILy = 1|S120) PS4 1S) )
S

< Bimaz }: P(Ai-y = USi. ) P(S)-4]S02,)

S

< B

= J/naz

< [npobi +n P +gp(m - po))?

and hence,

b
b+yg

)]l-H-l.

ﬂh < ,Bk.mcz = [nPO +np—— + gﬂ(l’x — Po

b+ g

Similarly the lower bound is obtained by replacing Bus1(S4), Bet2(Sap1)s -+, Bi(Si_y)
by Bmin = Bi(St-1(n) = 0). This gives

)ll—h#»l

g
> = ¢ - & -
Br 2 Brmin = [npo e +npr 3 np p(P — po

Carrying the argument further, one gets upper and lower bounds on P(A! = 1"

+ 9p(p1 - po))' (C.5)

b
P(A‘-I‘)<ﬂ1m_[npo Rl b

~ bp(ps — po)]' (C-6)

b
P(A' = 1') > By ymin = [npo s +npy—— e
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