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• 1 

- \ A study of exceptional' sets in afinite product or Brelot. spaces 

, 
is made. THe principal,resdlts obtail}ed a'I'e a convergence theorem for 

decreasing sequences of n-superharmonlc.. funçtions and an extension 

theorem for positive n-superharmonic functions. Similar results are 
l ' 

obtained! for plurisùperharmonic functions. 
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.EXCEPTIONAL SETS IN A PRODUCT 9F HARMONIe SPACES 
r \ 

AND APPLICATIONS 

par 

David Singman 

1( 

RESUME 

Une étude des ensembles exceptionnels dan"s un protuit fini des 

espaces harmoniques de Brelot est faite. 'Les résultats princip~ux 
, ~ ,,.L 

obte'nus sont un théorème pour une suite decroissante des fonctions 

n-syrharmoniques et un théorème "de prolong~ent pour les fonctions 
1 

positifs n~surharmoniques. Lea\résultats similaires sont obtenus 

~ pour les fonctions plurisurhannoniques. 
(j 
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Introduction 
\ 

r 
The converg~nce theorem of Cartan and Brelot which c.oncerns the 

, n 
limit of a decreasing sequence of potentiais (p ) on a dama in inE ,n ~ 2, 

n 

has widespread applications in potential theory. See [0] for a detailed 

discussion. The theorem states that the lower enve.lope of (p ) differs 
n 

from its lower semicontinuous regularization at most on a set of outer 

capacity zero. Its principal use is in connection with the Dirichlet 

problem on a r~latively compact open set.- If the problem is solved by 

• means of the P.W.B. method then the convergence theorem implies the set 

of irregular boundary~oints has oute~ capacity zero. The sets of outer 

capacity zero are precisely the sUDsets of sets on which superharmonic 
\ 

functions take the value ~ , the so called polar sets. These\ ideas ean 

the~re be fr~med in the axiomatic setup of Brelot and as ie weIl known 

the results go through with the additionai assumption of the Axiom of 

"Domina tion. 
~ / 

It" is now· naturai to consider the convergence theorem on a finite 

product of n Brelot s~aces with a deéreas~ng sequence of n-superharmonic 
. ~ 

funetions. The problem is to choose the appropriate associated exceptional 

Jet, the analogue of the polar ~et. ln tRis thesis we investigate sueh 

analogues and survey t;he basic areas of potentiaL-t:i1êo-~y where they arise, 
----~ , 

~ 

most notably the above mentioned convergence theor,em. Uneil now such a 

systematic study has not' p~~n made. Ther~ are two obvious types of sets 

to consider. Firs,tly the subsets of sets on which n-superharmonic f';lnc tions 
/ , 

·ta~e the value ""(the n-polar sets) éJnd secondly the sets "most" of 

owhose _sections are polar in each of the respective underlying Brelot spaq,es 

.1 

" -J-.----------
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(the n-negligible sets). See Chaptér 2.2 for a precise definition. 

We shall see that n-polar implies n-negligible and though at present we 

do not have a counterexample we suspect the converse is false. It 

appears that the n-negligible_sets are the more useful of the two to 

,0 
look at in considering deeper res~lts since the n-polar condition seems 

somewhat restrictive. The n-negligible sets were apparently first intro-

duced with a signiflcant application by K. Gowrisankaran in the special 

case of polydiscs in en where he studied the class of good inner functions [9]. 

In Chapter 1 a summa~y of aIl results needed of a single and a finite 

product of Brelot spaces is made, in most cases without proof. One excep-

1 - 'î tian is the discussion of the'Cartan-Brelot topology where we prove 

Proposition 1.1.23 that a sequence of uniformly Iocally bounded positive 

superharmonic functions has a Cartan-Brelot convergent subsequence with the 

assumption ofAxiom D instead of the usuai assumption of a base of compietely 

determining regular domains. We use this in 2.3 to solve' the Dirichlet / 

problem on a product of relatively compact domains. In Chapter 2 the n-

polar and n-neg1igible sets are defined and a preliminary study is made. 
, ~ 

In Chapter 3 the two main results of the thesis are\\ demonstr~ted, namely 

Theorem 3.1. 7 where we show that the lower envelope of à famiiy of locally 

uniformfy lower bounded n-superharmonic functions.differs from its lower 

semicontinuoJls reg\)larization at mos"t on an n-negligible set and 

Theorem 3.3.1 where we show locally lower bounded n-superharmonic functions 

can be extended across closed n-negligible s~ts to be n-superharmonic. 

In Chapter 4 we prove analogues of these two results in th-r more concrete 

setting of Cn ~nd the plurisuperharmonic functions. We first do this with 

, \ 1 , 
~ 

1 
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a type of exceptional set of our own invention 1 the n-P negligible set. 

We then eonsider these resu1ts with associated exceptional sets the so­

eaIIed sets of zero Ronkin r-capacity, (See [16]). For this cl~s both 

of' these results are already known. The extension theorem was proved by 

U. Cegrell in [3]. The first resu1ts concerning the convergence of de-
r' 

ereasing sequences of p1urisuperharmonic funetions were proved with the 
'1 

additional requirement that thè regu1arized limit function be p1uri-

harmonie. In this case the exceptional set is pluripolar • 1 See [14]. 

This was generalized by Ronkin ~[16] where he showed without additional 

assumption the exe~tional ~et is of zero r-eapacity. Fol1owing the work 

of Favorov [6] U: Cegr~ll also ptoved this result using a genera1 theory 

of pro duc t capaci ties: See [4]. We present here alternative proofs 

of these theo~ems to sh9w how easily they follow from the axiomatic 

framework. 

l wish to thank Professor K. Gawrisankaran for suggesting the tapie 

of this thesis to ~e, f~r his help in my preparation of it,- and for the 

years of guidance he has given me in my mathematical development. l would 

\ 
also lik~ to thank R. Jesuraj and Bernard Mair for many stimulating dis-

cussions of this work as weIl as Hilde ,Schroeder for typing the manuseript • 

/ 

i. 
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,r CHAPTER 1 

Preliminaries 

In this chapter we review the topies in axiomatie potential the ory 

which we shaH be using. For more details and' proof's see [1], [71. and [8}. 

Seet:l!on 1 Brelot Spaees 

Let 51 he a locall~ compact, non-compact, connected, locally connected, 

Hausdorff space such that for every open set U of n there is'a real vector 

spaee H(U) of real valqed continuous fUllctions on V called harmonie functions., 

" + 
Denpte 'the non-negative harmonie functions on U by H (U). We impose -the 

--,,- . 
following three axioms on 51 and the harmonie f.unc tions • 

Axiom l:i)If U and 'V are open with V contained in V then the restriction 

of any member of H(V) to U is in H(V). 
,/ , 

ii) Let U be open and v a real valued function defined,pn V. If 

for each x in U there is a neighbourhood U of x such that v is in H(U ) x x 

then v is in H(U). 

We say a relatively compact open set ô is regular if for every real 

valued continuous function f on dô there .exists a unique eontipuous funetion 

on ~ such that it ls non-negative if, f is non-negative and its restriction 

to ~ is harmonie. 
ô 

This function is denoted by Hf 

Axiom 2: The~e is a base of open sets, consisting of regular domains. 

\ 
Axiom 3: Given a pointwise increasing sequence in H(U) for U any domain, 

the Iimie .function is either in H(U) or identieally '" 

- ------._--- ~~ -, 

l, 
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Constantinescu and Cornea have shown that in Axiom 3 no generality 

is lost by replacing the sequence with an increasing directed suhset of 

H(U). See [5]. 

J' 
nected open suhset of a Brelot space :iJ; a Brelot space as weIl. 

With such a structure we calI n a Brelot space. Note that any con~ 

The fundamental example of a Brelot space is Euclidean n-space, n ~ 1, 

where the harmonie functions are the twice, continuously differentiab1e 

n a2u 
1: 2 = o. 

i=l 3x
i 

functions satisfying Laplace' s equation 
/' 

We sha1l be imposing three more restrictions on our Brelot'spaces, , 

o_~=~J:;ssenUally ,aU natural examples will satisfy these restrie-t-ions .--

f 

, ' 

The first is that we assume each point of n has a countable base 

of neighbourhoods. lt has been shown by tonstantinescu and Corne a that 

this implies the existence of 'a countable base for aIl open sets. See [5]. 

As a: consequence every open set can be writtefl as a countable union of 

relatively compact open sets (w~)n>l with wn c wn+l for every n. 

)'le postpone for the moment a description of the other two restrictions. 

Ô F;,or each regular open set ô and x in ô the mapping <k (Cl ô) + E, f, + Hf (x) 
\ ' 

defines a positive linear functional, that is a Radon measure, We denote 

this Radon measure by p! and Hs value on f in ~(aô) by ! f dp! Three 

properties of these measures are given in the fir'sit "'Proposi tion. 

Proposition 1.1.1: Let ô be a regular domain. 

(a) Ô 
The sets of outer Px -measure 0 are independent of x in ê. 

(b) For any extended raal valued function f on aô the map x+ Tf dP! 

ô 
i8 either identically "", identically (7"'), or in H(ô) and if fis Px -inte- 1 "\ 

grable for one x in ô it is Integrable with respect to a11 such measures • .. 

.... ".--<.-.r-_-"-"'~,,_""'''"'''''''''''~_' _____ ~ 
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(c) Let cS be n 

~+1c 
co 

ô and ,n, 
n 

n=1 
1 
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a sequence of regular domains such that 

f} = {xl. Then n 

cS 

Hm ff d n Px 
n+ co 

for a11 f in ~(Ôl) 

f(x) .' 

for a11 n, 

" 

Definition 1.1.2: Let U be open. An extended real valued function y on U 

is said to 'be hyperharmonic in U if 

i) v(x) > -co for aIl x in U, 

ii) v is 10wer semi-continuous, 

iii) for every regular open set cS with cS c U and x in ô 

cS 
f v dp .2. v(x) • x 

If in addition v is finite at least at one point of ever.y connected c9>m­

ponent of U then v is said t~e~perharmonic on U. We denote the set of 
"'-'<---

aIl superharmonic and ~on-negative superharmonie funetions on U by S(U) 

+ and S (U) respeetively. 

Notice harmonie functions are super harmonie an~ a super harmonie function 

is harmonie if and only if its negative is also superharmonic. We summarize 

other important pE,operties in the following. 

~ 
'l 

Proposition 1.1.3: Le~ U be a domain. 

(a) If vI' v 2 are in S (U) and a , Sare non-negati ve real numbers then 

uV1 + ,8v2 and min(vl ,v2) are in S(U). 

(b) If v is hyperharmonic on U and v(x) 

set" of U' then v is identieally 00 on U. 

= 00 for aIl x i~ an open sub­
i 1 

, 
jt 

1 
1 
1 

1 
1 

! 
1 
j 
; 

\ l 
1)' 

l 
1 

1 
{ 
'\ 
l 
~ 

1 
l', 
1 
, 
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Cc) If (vi) i E: l is a pointwise increqsing directed family of hyper­

harmonie functions on U then the upper envelope is a~so hyperharmonie. As 

. + a consequence any v in S (U) is either identieally 0 or strictly positive. 

(Just consider (n.v) land apply Cb». 
n> 

(d) If v is in S(Q) and 6 is a regular open set, define E~ on Q by 

{ 

v(x) 

Iv dp~ 

x in &1-6 

x in 6 

a Then E minorizes v pointwise, is in Sen), is harmonie on a 
v • 

point of eontinuity of v is a point of eontinuity of EO. 
v 

and ever~ 

(e) (local property). Let v be an extended real valued lower semi-

continuous funetion on U such that v(x» _00 for aIL x. Suppose for each x 

in U and eaeh neighbourhood w of x there exists a a regular neighbourhoad 

of x contained in hl sueh that 
é Ivdp < v(x). Then v is hyperharmonie on U., x-

(f) (minimum priîneiple) Suppose U is also relatively compact and v is in 

Seu). If for aIL x in ao 

lim inf'vC~) > 0 
z+ x 
Z E: U 

then vez) > 0 for aIL z in U. 

Remark 1.1.4: If v is in S(U) for any open set,U and 6 is a regular op~n 

set such that a c U then part (h) above and Proposition l.l.l(h) implies v 

a 1 
is Px -integ~able for aIL x in O. 

------------. -----
, 
u 

\ ·.r· . 
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Definit'ion1.1.5:Let B be a base of regular domains. An extended real valued 

function v on Q is said to be an SB functions (and a nearly superharmonic 

function if B is the seç of aIl regular domains) if 

i) v is locally lower bounded and' 

ii) 
o 

for aIl 0 in B and x in 0, ! v dp < v(x). 
i x-
I 

It is easy to see the lower envelope of any uniformly locally lower 

bounded family of SB functions is SB and the upper envelope of any in-

creasing directed family of SB functions is SB In particular if (vn)n>l 

. , + 
is a pointwise decreasing sequence in S (Q) the lower enve10pe is near1y 

superharmonic. More generally for any sequence (wn)n>l in S+(Q), lim inf wn n + co 

is nearly superharmonic. 

Let v be SB We denote the lower semi-continuous regularization of v 

by v. That is v is pointwise the largest lower semi-continuous function 
\ 

minorizing v. Explicitly 

~(x) lim inf vez) 
z+ X 

1 

(This of course holds for extended real valued functions on any Hausdorff 

space). The fundamenta~ result for SB functions is the following. 

Proposition 1.1.6: Let v be SB' Then v is hyperharmonic. Hence a lower 

semi-continuous, SB function is hyperharmonic. For every x in Q and every 

sequence 

sequence 

(0) 1 in B with 6+1 c 0 for aIl n and n ô = {x} , the n n> n n n 
_ - ô n>l 

(1 v dp n) 1 is increasing and has limit - ~(x). 
x n> 

We consider now an important class of nearly superharmonic functions. 

l , 
1 
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+ Let E be any subset of n and let v be in S (n). The 

E reduced function ~ is defined on n by 

+ inf {w(x):w E S (~),w(y) ~ vey) for aIl y in E} • 
,1 

Proposition 1.l}8: is nearly s~perharmonic. pointwise minorizes v, 

equals v on E, is harmonie on n - E, is pointwise monotone non-decreasing 

in E and v (subsets of n are here ordered by inclusion), and is sub~dditive 

in v. 

Remark 1.1.9: If w is a relatively compact open set it follows easily from 

the 
~-w 

minimum priqciple that for u harmonie in ~,Ru is identical to u. 
'\ 

Given any v in S+(U) where'U is a domain there exists a unique function 

~ 
u on U which is harmonie and for the pointwise arder is the greatest ha~onic 

1 

minorant of v on U. Ex91icitly if (Un)n>l is a sequence of relatively compact 

open sets with union U and for aIl n, Unc Un+l then u 18 the lower envelope of 
U-Un 

the pointwi~e decreasing sequence of functions(R ). (Here the subscript U 
vU. 

means the reduced function is,defined with respect ta the Brelot' space U).This 

,fbllows easily from Remark 1.1.9. Thus v can be written uniquely as the sum of 

a function in H + (U)ami «fme in S + (U) which pointwis€ maj orizes no member of H + (U) , 
other than O. That ia v=u+(v-u). Classically this ls the Riesz decomposition of v. 

Definition 1.1.10: 
+ ' 

Let U be open and let r be in S (U)',Then p i8 said ta 

be a potential on U if its greatest hartnonie minorant on V is O. H U = ~ 

we calI p a potential 

It is clear that the-minimum of a potential and a positive superharmonic 

function as\well as the ptoduct of a potential and a non-negative real number 

, ~ 
are both potentials. From our explicit construction and the subadditivity of 

the reduced function it is easy to see the sum of two potentials is a potential. 

l 
• 1 

, , 

, 
'~ 
" 

," 

1 

i 
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In a given Brelot space there is no need ~pr positive potentials 

2 v. 

to exist •. Fôr example ~ has none. However in such a case it is immediate 

from the decomposition of positive superharmonic functions that they are aIl 

harmonie. Using this and Proposition 1.1.3(a) and (c) we see that of any two 

positive superharmonic functions one is everywhere greater than the other. 

Now multiplication by a suitable real numher g~ves that any two positive 

superharmonic functions are proportional. In order to avoid the trivialities 

resulting fram this situation we shall assume from now on the existence of a 

positive potential on n. In Rn for n > 3 these do indeed exist and for n = 2 

any open set having a Green function has a positive potential, the potentials 

being precisely the convolution of the Green function with positive measures. 

(See [10]). 

As a consequence of the existence of a positive potential the fo1lowing 

can he deduced. 

Proposition '1.1.11: Given an-open set U there exists a positive potential 

which is real valued, continuous, harmonie on 51-u" and not harmonie on U. 

Thus every domain of Q ls itself a Brelot space with positive potential. 

The following continuation theorem can be proved: Let U,U' be open , 

sets with Ü ç U' and v in S+(U'). Then there exist potentials Pl'P Z such 

that on U, P'l P + V. We deJonstrate [this as weIl as a generalization 
2 1 

in Chapter 2.4. 
;. 

Definition 1.1.12: Let U be open in n and E a subset of U. E is said ta 
1 

+ be polar in U if there exists v in S (U) such that E is contained in 

{x 8 U:v(x) = M }. 

l' 
" 
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Using tlle continuation theorem the following local property can be 

shown: If for every x in Ethere is an open set U containing x such x 

that E nUis polar in U then E is polar in SI '. In particular E polar 
x x 

in U implies it is polar 'in SI Thus we may refer to r set as being simply 

polar without reference to an open set containing it. ' 

The following proposition is a property of closed polar sets which 

we generalize in Theorem 3 .. 3.1. 

Proposition 1.1.13: Let E be ~ closed polar subset of SI. Then every 

/" 

V in S (SI - E) that is locally lower bounded on SI has an extension to a 

function in S(SI). 

We consider now the Dirichlet problem on a relatively compact domain w . 

Let f be an extended real valued function on dW •• Put 

U(f) {v: v hyperharmonic on w, v lower bounded, 

lim inf 
z -+ x 
z e W 

v(z) ~ f (x) for aIl x 

! 1 

in dW}. 

Th~ upper solution ~ is defined pointwise on W as the lower envelope 

w -w 
of U( f) ~nd the lower solution:JI f is defined to be - H (-f) • It is easy 

to,see if f is defined and superharmonic on n the~ H~ is nothing but R~-w. 

The minimum principle shows the upper solution is always greater than or equal 

to the lower solution. Both can be ~shown to be identically 00 , identically 

(-~), or in H(w) and hence if they are equal at one point they are identical. 

In case they are the same and in H(w) we say f is resolutive and write f6r 

the ,common function H~. It can be shown that real valued cçmtinuous functions 

are resolutive and for eacb x in w the mapping ~(aW) -+ R, 

is a Radon measure. We denote this Radon measure by w 
llx 

, ' 

1 
' . 
. 
" , 

/ 

1 
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a1so cal1ed the harmonie measure. In case w is regular HW
f 

is preeisely 

The integrability of any f with respect 
, 

to P~ is independent of 'x in w and it iB intègrable with respect to any 

(henee aIl) such measures if and on1y if it is resolutive. Note this shows. 

funetions superharmon~c on a neighbourhood of w are resolutive. -The sets, 

'of ~w outer measure 0 can be shown ta be independent of x inlw henee we 
x 

ean deduee polar subsets of dW have 0 harmonie measure . 
.' . 

A point :li: in to be regu1ar if for eaeh f in SR(dW) the 

solution H~(z) nds to f(x) as z tends to x from w Otherwise a point ls 

ular. In arder to eharacterize the set of these ,irregu1ar 

weIl as deduee other deep resu1ts we need to introduce 

th following "axiom of domination". . 
Il 

( Axiom D: Let w be any relatively' compact open s~t and v a local1y bounded 

member of s+(w) which ls harmonie on W • Then any + w in S un which pointwise 

majorizes it on Q-w majorizes it on n That is v Q-w 
- R v 

It can be shown this is equiva1ent to the following: For any positive 

10ca11y boundedsu~erharmonic 'function v on n and 
1 

r 

set w the grel'ltest harmonie minorant of o'Y on W is 

relative1y compact 
S1-w 

R (.) = f vdllw . v • 

open 

It can a1so be shown that Axiom 'D holding on ri implies it holds on any 
~ 

open -Bubset of Q 

Remark 1.1.14: Suppose ln our statement of Axiom D, w only majorizes v on 

(n -w )-P where P ls polar. We c1aim with Axiom D we can still deduce w 
\ 

majorizes'v. 
. + 

Indeed let u be in S (n) with u(x) = 00 if x is in P. For 

1 + every positive integer h the function w + (~)u is Jn S (n) and majorizes v 
. 1 

on Q-w. Thus Axiom D imp1ies w + (-)u majorizes v'on st. SineQ-n is 
• n 1 

arbitrary we de duce w majorizes v on the set {x E 1"2: u(x) < en}, 

.' , 



" 

\ 
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that is everywhere exc~~, ,on the polar Borel set {x E: Q: u (x) = al}. 
(Xl 

(It i8 Borel beeause it i8 just n {x E Q: u(x) > n}).· Since sueh a set 
, 071 

has 0 'measure for any harmonie measure we apply Proposition 1.1.6 to 
'. ' 

deduce w ~joriies v on Q • 

We shall assume in much of the thesis that Axiom D holds. As a 

consequence the following very important results can be demonstrated. 

Theorem 1.1.15: (a) (Convergence Theorem) If (v n') n> ~ is a pointwise 

decreasing sequen:e in S+(Q) with 1imit function v th en v is'nearly 

superharmonic and equàls v everywhere ex~ept on a polar set. 

Cb) The irregu1ar boundary points of a relativel~ compact domain 

are ,polar. 

In Chapter 3 we generalize the convergence theorem to a product of 

Brelot spaces and a sequence of !!n-superharmonic" funct ions. 

Remark 1.1.16: Reeall the topological lemma of\Choquet: Let X b~ a 

topologie al space with a eountab1e base of open sets and (fi)iE l any 

collection of extended real valued functions on X. Then there exists l 
o 

a countable subset of 1, such that 

~ /"-
inf 
aEI 

f 
CL 

inf f 
etE let 

o 

It follows from this and the convergence theorem that for any v in S+(Q) 

and E contained in Q RE 
• v 

and RE differ at most on a polar set. 
v 

We now considér topologies on spaces,of differences of positive 

harmonie and superharmonie {unctions. Both are defined without Axiom D 

though we introduce Axiomp later in order to prove Proposition 1.1.23. 

" 
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" Il 
+ + Consider first the spa ce H - H of differenees of positive harmonie 

functions'on li . 
1 With the topo1ogy of un~form convergence on compact sets 

and the obvious vector space structure H+ -H+ is a metrizable, locally 

convex, topologie al vector ~pace. The following important result is due 

to Mokobodski and Brelot. See [15] and [1]. 

+ Theorem 1.1.17: For any real number M and any x in Q , {u E H (lI):u(x) ~,M} 

is compact. 

Thus e<;ich sequence in H + (n) which is bounded atone point has >1 a subse­

quence which converges loeal1y uniformly to a funetion in H+(Q). 

Define an equivalence relation on the set of pairs of functions in 

S+(Q). We say (u,v) is equivalent to (ul,vl ) if for aIl x, 

The equivalence class containing (u,v) is 
, 

+ + denoted by [(u, v)] and the set of aH equivalence classes we caU S - S 

With the obvious operations S becomes a vector spaee. 

identified with the set {Ju,O]:u c S+(II)}. 

> + 
Notice Scan be 

Now fix a countable base B of regular domains of li and let X be a 
1 

countable dense subset of n. For w in B and x in wo X define the functional 

TI on S by 
W,x 

TI [(u,v)] = If u dpw
x 

- f v dpw
x 

1 . 
w,x 

Clearly TI is weIl defined, is a seminorm, and the countable family of! 
W,x 

aIl such semino~-gefines a metrizable, locally convex, topo1ogical 

vector space structure on S. We calI this topology the Cartan-Brelot 

topology. 

+ Proposition 1.1.8: The Cartan-Brelot topology is Hausdorff and S (n) is closed. 

- -----..---............ ----"~~~I."-~~'~~"k.)~fQI... 
/ 

, 
7 
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Proof: To show the topology is Hausdorff it is enough to show that for 

(u,v) in S+(Q) x' S+(Q) , TI [(u,v)] = 0 for aIl w in B and x in X n w 
w,x 

imp1ies u and v are identical. WeIl fix w in B w' Sinee the maps ! udp. 

w and f vdp, are continuous on w and equal on the dense subset w n X, the y 

are equal on w. This being true for aIl w in B it fo11ows from 
'. 

Proposition 1.1.6 tHat u and v are identica1. 

Suppose now {u} 1 
n n> 

+ is a sequence in S (n) converging in the Cartan-

Brelot topo1ogy to [(v1 ,v
2
)]. For aIl w in B and x in li) 0 n X the non-

~ > 

negative sequence Thus, 

, 
'- '" for ~all y in w. This being true for aIl w we deduce, from Proposition 1.1. 6 

that v1 (y) ~ v
2

(y) for aIl' y in ri . 

'Put E {yErI:v
2

(y) = oo}. Define w on Q by 

y' in Q-E 

w(y) = 

00 y in E . 
-,", , 

As in Remark 1.1.14 E is Borel. Thus w is a Borel function. Now let x 
0 

be in n-E and ~'a neighbourhood of x in B Thereue~ists (wk)k>l in B 
0 

such that for aIl k, wk+1
c wk

c w 
w 

Since' for a11 n and k, ! u dp·k > n x -
o 

= {x "}~;' Suppose x is in X. 
o 0 

the limit as n + 00 gives 

(1) 

f u dpI.\) (Proposition 1.1.6), taking 
n xo 

- -~---~---~---'~---~-~":"~3 '~;~'..t';,F{, .. >&1 ...... ~ ... ~ ~~-­

~------~----------~----------~------------

"., __ "· ......... ~.!:';lw ... ~,\.-<"'~ ..... _~~ .... """~,..,..,,.... .. _ ... u.,...... .. ff>.r_-----, . 

1 
1 
! 

! 
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1 

\\ 

CIlk lI1c 
Slnce the maps y. -Jo Iv 1 dp Y 1 v 2dp y an4 y -Jo Iv1dp; - 1 v2dp; are both 

«", • 

contlnuous on wk and (1) ho1da for see aIl lF ';h the dense set X nid., we o >, -K 
• .T.l' ,,-

(1) must ho~~ even if Xo Is not in X. Lettlng k -Jo œ in (1) and'using 

proPo~ifion 1.1.6 we,get 

) (
CIl '\ CIl 

vI (xo - v2 xo) ~ 1 v1
dpx - 1 v2

dp x 
o 0 

Since polar sets have 0 harmonie measure this says 

(2) w(x) > IwdpCll 
o - )(0 

1 

C1early (2) ho1ds if Xo ia in E. Thus w Is an SB functions. Since for aIl 
1 

,x in 0 

It fo11ows from Proposition 1.1.6 that (3) holds with w'replaced by w. ThU8 W 

is in s+(n) and [(w,O)] = [(v
1

,v2)]. The proof ia complete. 

Proposition 1.1.19: Let (v} l' v be in S+ (0)' and let v converge to v ntt'> n 

in the Cartan-Brelot topology.' If ô is in B then for a11 x in ô the sequence: 

6 ô . 
( 1 v n dp x) tt'> 1 converges to / vdp x • 

Proof: Suppose there ls a y in ô' such that lim Iv dp5 either does not 
n-+- co 

n y 
/ 

exist or i8 not /vdpô This implies tllere exists a positi~e m~ber e:, a y 

subsequence (v )j 1 and an integer N such that 
n j ~ 

(1) 1 1 v dp ô - 1 velp ô 1 > e: 
. n j y y 

for j > N • 

Ô. 
Now ( IVn dp)j>l 

j -

... 
ls a sequence of positive harmonie functions on ô which 

converge pointwise on X n ô to a Hnite limit. Thus there is a subsequence 

( v n
j 

d p .ô ) k~l which converges locally uniformly to a func tion w harmonie on ô. 

lç u 

1· 

; , 
l 
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Ô 
The function w agrees with 1 vdP. on a dense set X 'n ô • By eontinuity 

they agree on aIl of ô, in part~eular at y. This eontradicts (1). The 

proof i8 complete. 

" 

Proposition 1.1.20: Let ( V ) and v be as in the previous propo~ition. n n>l 
~ 

Then v = lim inf v 
n n+ oo 

Proof: Let x be any point in n 
1 

Choose (ô )n 1 contained in B such that 
9- ",>. 

Ô n+1 cÔn for all t and n ô 
'" '" 1.>1 ~ 

{x} Then from the previous propositibn, 

for each 9- the 
ô,R. 

sequence (f v dp) 1 n x n> 

6 
converges to fVdPx2 

,ô
2 

ô
2 f vdp lim Iv dp 

x n x n+ 00 

6
t .:: f lim inf v dp 

n x ,n+ '" 
(Fatou 1enuna) . 

Thus, 

We haveoseen 1im inf v is near1y superharmonic. Letting 9- + 00 and 
. " + 00 n 

applying Proposition 1.1.6 gives 

(1) v(x) ~ 
~ 
lim inf v (x). 

n n -+ w 

Converse1y" sinee for aIl n, 9- and z in ô R-

taÙng the '1ower 

Ô
t J v dp < v (z), 

n z - n ...... 
limit as n+ co and app1ying 

, ô 
R­

I vdp 
z 

< lim inf v '(z) • 
n ' 

n + co 

... ~ 

Proposition 1.1.19 gives 

But the le ft hand side is eontinuous in z. Therefore 

c' Letting 9- + co 

il 

,/' 
gives 

~ 
< lim inf v (x). 

n+ co n 

---.-.... - ... - ........ ~-~-~~~..,I1" ... """~...,-.pI4.1o ..... -'I' ..... ____ _ 

j 

1 
1 

1 

l 
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( 

<~ 
n n ~ 00 

From (1)' and (2) we see we are done. 

Çorollary 1.1.21: The mapping f:S+(rl) x Q + .. R u {oo} , (v,x) -+ v(x) 

is lower semi-continous. 

Proof: Let (v) 1 and v --- n n> 0 

+ 
be in S (n) with (vn)n>l converging in the 

1 

Cartan-Brelot topology to v and let (x) 1 and x be in n with (x) 1 
o il n~, () n n> 

converging to x. Let Œ and E be positive real numbers such that 
o 

Œ < V (:lÇ ) 
o 0 

and E < Cl 
min ( 7; , 

v (x ) - Cl 
o 0 

4 

Let w
1 

be a re1atively compact neighbourhood
o 
of Xo and h a positive 

V' (x) 
n: _0 __ > 

h(x) 
function defined on a neighbourhood of w10 u = {x E P\lt 

Then U is an open set containing x • 
o 

Let 6 , 0
1 

be in B such that 

harmonie 

_Œ_} 

h(x ) 
o 

1 -1 
x E 0 c 0 ,e 0 c 0 c U. We have seen 01 01 

(j v dp) converges ta 1 v dt:> 
n x rh1 0 ... x o ®, 

for al! x in 01• 

1 
on 0 , there 

01 
f v dp 

o x 

is a 

Since this is a sequence of 

. 01 
subsequence ( 1 v dp ). 1 n. x J> 

J -

positive harmonie functions 

converging uniformly on 0 td 

Thus there is an integer N such that 

61 
for j > N and aIl x in 0 

v (x) > 1 v n dp x 
Il- j j 

01 
> Iv dp 

o x 

> ex I_h_ 
-

h(x ) 
0 

ex 
h(x) , 

h(x ) 
0 

dp 

E: 

'2 

E 

2 

01 
x 

E 

2 

0 

! 

1Ioo. ______ "'-______________ ~ ____ . ____ _ 
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h(x) E • 
{x E Q:a h(x) > a - 2"}' Then U

I 
is a,neighbourhood of xo' 

" 0 

If x is in U
I 

n ô and j > N, v (x) > (l. - E. From this we easi1y deduce 
nj -1 

f is lower s~micontinuous and,we are done. 
. , 

We proceed now with the assumption of Axiom D on n 

Lemma 1.1. 22 : Let (v) I 
n n> 

+ be a sequence\ in S (Q) which" is uniformly 

,1ocally bounded on n and let ô be a regular open subset of Q • A Th~n there 

ô 
such that (J v dp). I 

nj , x J2. 
converges for aIl x 

in ô and for any subsequence' (v }k 1 and x in ô 
<:1 nj . > 

1/ k 
& Ô ~ Ô 

lim f v dp f1.im inf V-- dpx 
j + 00 nj x k + 00 n jk 

/ + is contained in H (0) and i5 pointwise '. Proof: . 
bounded. Therefore there is a 

Q 
subsequence (f vn,dp ) '>1 converging loca11y 

J_ J x 
o 

uniformly on 0 to a function 
, + 

in H (0). Take any subsequenee (vu' )k l' 
Jk .:. 

~, 
Put 

From Proposition 1.1.3 (d) we see this i8 in s+cn) , it minorizes v 
n, 

J k and it i8 harmonie on o. Now define 

o v='~ 
k +00 n

jk 

on Q • 

Since a eountable union of polar sets is polar (see 
(JI 

Proposition 2.14) ~t follows from Proposition 1.1.3(c) a~ 
, l ' 

rwtorem 1.1.15 (a) that for aIl x in n -8 exeept a polar set 

v(x) 

(Note on n.,..Q ). Also v is Iocally bounded and harmonie 

on ô 



( 

, 0 

, 

" 

-17-

Define w on 0 by 

w=~ç 
'~ k -+- 00 n j 

k ~ 

and put w E ô: Then w' is in S+(O), it minorizes w hence is 10cally 
w 

bounded on Q, an~ls harmonie on Ô. Since w' = W on 0 - 0 we have w1 

and v.equa1 everywhere on ~-w excépt a polar set. It f0110ws from 

1 
Remark 1.1.14 that w'· and v are identica1 . In particular for x in 0 

--.The proof is complete. 
'-~"; -~ 

:: lim ! v dpô 
x j + co nj 

Proposition.1.l.23: If (v ) is a uniformly locally bounded sequence n n>l 
+ in $ (0) then there is a subsequence converging in the Cartan-Brelot 

topo10gy. 

Proof: Consider first 01 and (vn )n>1 . 
o 

From -the 1emma 

there is a subsequence (vn 1)n>1 such that fo~ any subsequence (v )k>l 
, - ~,l .f-

of this and aIl x in 01 

~" 
! lim inf v 

k +00 ~,1 

Dl 
lim Iv ldp 

n:}'" n, x 

, 1 

Now we proceed inductiv~ly. Suppose the sequence (vn ~)n>l,t ~l, has been , -

constructed. Consider this sequence and O2+1. From the'lemma there is a 

subsequenc~ (vn,~+l)n~l Of,(Vn,~)n~~ such that for any subsequence 

(v~'t+l)k~l of this and x in ôt +1 

--------- 0 ~+l ! 'lim inf V- dp 
1 k + co ~,2+1 x 

= 

,1 

...... ;-;. 
, J 

Q. i 
1 

1 
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w = ~ 
n + 0, n 

Theu + w is in S (n)', 

coqverges in the Cartan-Brelot topplogy to w. Indeed consider 0t in Band 

x in On' Since (w ) is a subsequence of (v.) we have 
N n n>t n, N 

ë,t 
J w dp 

x 

This completes the proof. 

.. 

~ oR, 
= f1.im inf Ti' dp 

n x 

= lim 
n+ 00 

°t lim f w dp 
u x n +00 

1 \ _ -L-".---_____ ~~~-____ ...l__~ ______________ .;.. ..... _ J 

-. --<;> 1M'fi îIi_ 1lr1"~ ... ~'t~ ..... _,... .. .....",,,.,_ .>OL~"""'~-

lJ 
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Section 2 Finite Produets of Brelot Spaees 

Let n be any positive integer and QI' •.• , Qn Broelot spaees eaeh 

1 having a positive potentrl and each having at every point a countable 

base of open sets. We mentioned earlier that this implies each one of 

these spaces has a countable base of aIl open sets. If U is an open sub-

set of Q, then the harmonie,superharmonie,non-negative harmonie, and non-
1 

negative super~armonic funetions on U are'denoted respectively by Ri(U) , 

+ + 
S,(U),H.(U) and Si(U), 

3. 1 

Definition 1.2.1: Let U be an open subset of nI x •.. x n " A real 
n \ 

valued eontinuou,s function on U is said to be n-harmonie on U if for 

any n-l fixed variables it is a harmonie funetion of the remaining variable. 

The set of aIl (respeetively non-negative) n-harmonie functiops on U is 
/ + 

denoted by n-R(U) (respectively by n-H (U». , 
/ 

It ean be shown ~jat: :ontinuity in Definition 1. 2.1 can be omitted 

if u is non-negative. That is continu~ty is a consequence of the,rest 

of the definition. See [7]. 

It is elear from the corresponding property f?r each Hi(U) that n-H(U) 
, 

is a\real veetor space. It is also clear that the n-harmonic funetions 

satisfy the sheaf property. In other words if u is in n-H(U) then it 

is n-H(V) for aIl open sets V contained in U. 
/ 

Conversely if for every x 

in U there is a neighbourhood U\ of x sueh that u is in n-HeU ) then u 
x x 

is in n-H(U). We summarize other properties of n-harmonic functions in 

the next proposition. 

Proposi tion 1. 2.2: (a) If (01" •• ,(01 are regular domains in nI"'" n 
n . ' n 

respeetively and f is a reai valued continuous func,tion defined on the 

'. ? , 

--
! 
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1 

distinguished boundary Clwl 
x ... x Clw o~ w

1 
x . .. x W n n 

exists a function F on f w
1 

x ••• x w
n such that 

i) rf is rea1 valued continuous, ", 
ii) rf = f on a'wl 

x ••• x Clw 
n 

iii) rf(x) 2:. 0 for aIl x in W' 
1 

x ••• x W if f(x) > 0 n 

iv) for eaeh integer j from 1 to n and fixed point in 

is a harmonic function of the remaining variable on W •• 
J , 

is in n-H(w
1 

x ..• xw). 
n 

\ 
then there 

for a11 x in 

nI 
II wij ' r f 

i=l 
i/j 

In partieular r f 

Furthermore rf is uniquely dete~ined by properties i,ii,iii,iv. 

(b) If (ui)iE l ~a pointwise inereasing directed family in n-H(U) 

where U ~s a domain then the upper envelope is either in n-H(U) or iden-

tica11y co.' 

(c) Let w1' ••. , wn be as in (a) and g any extended rea1 valued function on 
W 
n 

x ••• x p 
x 

integrabity of g is independent dW
l 

x .,'. x aw
n

• 

of (xl"" ,xn) 
n ~ 

in w
1 

x ••• x w 
n 

and if integrable with respect to one such 

measure the ~pping 

is in n-H(w
1 

x ... x w ) • . , n 

Remark 1.2.3: (a) We generalize parts (a) and (C) above in the next ehapter 

by considering instead products of relatively compact domains. 

(b) Proposition 1.2.2 Cb) implies a non-ne&ative n-harmonie function u 

defined on a d6main is either strict1y positive or identically O. (Just 

constrler the sequence (~.u)~>l)' 

-- -- - ------~;'j --- - -
;) 

;- - - ~- --

1 
, 1 

j 

~ 
t 

1 
1 
! 
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Definition 1.2.4: Let U be an open subset of nI x ." x nn' An ex­

tended real valued functi~n v on U i8 sàid to be n-hyperharmonie on U if 

i) v(x) > - 00 for aIl x, 

ii) v is lower semi-eontinuous, 

iii) for any n-l fixed variables it is hyperharmonie in the remaining 

variable. 

If in addition v is fini~e at one point of eaeh eonneeted component of U 

then v ls said to be n-superharmonic on U. The set of aIl n-superharmonic 

(respeetively non,negative n-superharmonie) funetions on U f.s denoted by 

n-S(U) (respeetively n-s+(~». 

1 

It is easy to see that if v
l

,v2 are in n-S(U) and a
l
,a2 positive 

real numhers then alv1 + uZv2 and min(vf~v2) are in n-S(U). It is also 

clea~ v is in n-H(U) if and only if v and (-v) are both in n-S(U). In 

addition the n-superharmonic~functions satisfy the foilowing. 

Proposition 1.2.5: Let U be a demain in QI x ••• x nn 

(a) If v is in n-S(U) then it is finite on a dense subset of U. 

(b) If (v 1\ El is a paintwise inereasing direeted suhset of n-S.(U) 

then the upper envelope fg- either in 4n-S C!J) or identlcally ex> 

(c) If w ls a 10cally lower bounded extended reai val~ed funetion 

on U satlsfying (iii) of Definition 1.2.4 then w is Iower semicontinuous. 

Thus it 18 n-hyperharmonic. 

Remark 1. 2.6: (a) Let U be a demain in QI x .•• x nn ' v in n-S(U), 

1 
!w

i 
a regular domain in Qi for eaeh i from 1 ta n such that w

i 
x .•• x .w

n 
C U, 

(From 

1 
.ri 
,~ 

.i 
\~1 

f 
I~. 

~ '. 
,~ 

;% 
'" ~, 

,c{ 
~y 

" 
'c 

\ 

,~~ 
'r: 

C("l 
, 

~ 
,,1.i 
;r 

1: .:} 
" 
" ! ' 
'. 

, 

" 
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PropOsition 1.2.5 (a) we see this point exists). Since v is lower semi-

continuous (hence loèa1ly lower bounded and Borel measurable) we can 

app~y Fubini's theorem and deduce 

1 w1 
f v (z l' ... , z ) (p x ••• x 

n xl 
dz ) 

n 

< 

Thus Proposition 1.2.2 (c) implies v integrab1e with respect to aIl 
w Wu 

measurecp lx ... x P 
YI Yn 

in w1 x '" x w 
n 

and 

w 
+fv(zl""'z)(p x ... 

n YI 

1 

w 
xp )(dzl, .•• ,dz) 

Y n n 

(b) From Proposition 1. 2.5 (a) and (b) we 'see v in n:-S+ CU) where U 

is a domain is everywhere on U positive or else identica11y O. This . -\ 
~ $"'~ 

~', 
fol1ows sinee if for some x in U v(x) > 0 then v(x) > 0 on a neighbour-

.,' 0 0 

hood of Xo and the increasing sequence (Lv) i~l converges to 00 on an open 

set hence everywhere o~ U. Thus v must be positive everywh,ere on U. 

1 

From this last remark we can prov~ a genera1 minimum principle 

for n-sup~rharIDonic functions. \ 

1 

Proposition 1.2.7: (Minimum Princïple) Let U bé a re1atively compact open 
1 

subset of !JI x... x nn and let v he in n-S (U) . Suppose for a11 x in dU 

(1) lim inf vez) ~ 0 
z + x 
z' e: U 

Then v('z.) > 0 on U. 

------------------------

, , , 

" 
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Proof: Without loss of generality we may assume U is connected since 

(1) holds on each conneeted eomponent of U. 

Define w on U by 

v(x) x in U 

w(x) 
<1 

o x in élU 

Inequality (1) implies w is lower semicontinuous on U. Let h be a 

"" positive n-harmonic funetion defined on a neighbourhood of U. Certainly 

this exists sinee U ean be contained in a product /)JI x ••• x ,/)J of rela-, n 

tively compact open sets and if hi is posititlle' harmoni,c on w
i 

then 

h: (xl' •.. ,x
n

) -+ hl (xl) . h
2 

(x
2
)· .. j. : h

n 
(x

n
) is positive n';'harmonic on 

Now w/h is lawer semicontinuous on U. Thus it attains , 

a minimum value at a point:x: in U. If v were negative some~ere on U o ' 

we would have x in U. 
o 

Now the function v - (v(x )/h(x »h 
o 0 

i~ in n-S CU), 

it i8 non-negative, and it equals 0 at x. Remark l.2.6 'Cb) thus implies 
o 

v(X) == Cv(x )/h(x »h(x) for aH x'in U. The eontinuity 'of h gives w 
o 0 

negative at each boundary point of U. This is a contradiction, henee,v 

is non-negative on U. The pro9f is complete. 

Let k be an integer strictly, between l and n, let v be in 

k-S( nI x ... x n
k
), and w in (n-k}r-S(n

k
+

l 
x ... x~n)' Put u == v·w. That 

ls for (xl' ..• ,xn) in ~\ x ••• x nn .~put U(XI'···,X
n

) == v(xI""'~)" 

• w(~+l, .... xn'). Then u is in n-S(Q1 x ... x nn)' Indeed sinee v and w 

[ 

are loçally Iower bounded so ia u. Cleady u i8 never (-co) and u is Unite 
\'\ , . 

at least at one po'int. It 18 a180 cleat; u i8 hyperharmonic in any ;variable 

if the other variables are flxed. Thus Propsotion 1.2.5(c) implies li is 

in n-S (w
l 

X... x /)J ). In the next proposition we show how ta .g€lnerate other 
n'a 

n-superharmonic functions. 

" 
( 
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Proposition 1.2.8: Let v be a locally lower bounded Borel measurable 

function on rll x... x n n' such that for every, (xl;' .. ,~) in n~ x ••• x ~ 

(k a fixed integer between land n-l) the mapping y + v(xl •••• '~.y) is 

(n-k)-hyperharm~nic (respectively (n-k)-harmonic), on Qk+l' x ••• xnn. Let 

<5 1 " .. , <5 k be regular domains in QI"'" nk respectively. Then for each 

0
1 

g: (~+l'" ., xn) + !v(zl'" . ,zk'~-Hl' ... , xn ) (p
xl 

\0 

is (n~k)-hyperha~onic (respectively (n-k)-harmonic) on nk+ 1 x ••• x ri n 

Proof: Since v is locally lower bounded anet the product of harmonie 

mèasures is totally finite, g never takes the value _(X), Furthermore 

we may apply Fubini's Theore~ to g. 
J 

~ ~ ~ 
Let (x ) ~>l = «~+1"" ,Xn» ~>l 

be a sequence converging to (~+l"" .xn) in nk+1 x ... x nn 

> 

(Fatou lemma) 

> 

(since v is lower semicontinuous in its last n-k variables) 

= 

Thus g i8 low~r semicontinuous. Finally let 0 be a regular domain 

in Qk+l' For any (~+l'''' ,xn) in I1k+l x ... x I1n with ~+l in 0 we have 

• 

~ 
" ", '( 

d 

r 
!, 
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x ••• x 

°1 
2!V(Zl,\",Zk,Xk+l" .• ,"xn )(PX

l 
x ... 

\ 
g(~+1 ~ •. "Xn ) • 

" 

By :;;ynnnetry we see g ls separately (n-k)-hyperharmèlnic. ThU8 g i8 (n-k)-

hyperharmonie on ~k+l x ••• x ~n' By applying the same result to -v we see 

that if y + v(xl '.·· ,~,y) is (n-k~-hamonic on 51t+1 x ••. x ~n then g is 

(n-k) -harmonie. 

We now eonsider the analogue of the SB funetion8. 

Definition 1. 2.9: Let for each integer i from 1 to. n B. be a base of open 
1. 

sets of rl
i 

consisting of ref~lar domains. An extended real va1ued funetion f 

on nI x. ',' x Qn is said to be an n-S(B
1

, .•• , Bn) function (and nearly n­

superharmonie if B. i9 the set of a11 regular domains for each i) if 
1. 

i) f i9 locally lower bounded and, 

ii) for aIl 0i in Bi',i = l, •. :,n, and for aIl (XI ••• :,x
n

) in <\ x ••• x on 

Ô ° ' 
-; fCzl •••. ,fJy(p ~ ••. x p n)r(dzl', ... ,dz) < f(x

1
, ... ,x) 

n xl xn n - n 

Clearly ,any n-hyperharmonic function i8 nearly n-superharmonic. lt i8 

also simple' to show the upper envelope of an inerea9ing' directed fallli1y of 

n-S(8
l

, •.• , Bn) funetions and the lowèr eneve10,pe of any uniformly loeally 

lower bounded family 'of n-S(B
l

, ... , Bn> fUJ;lctions ls in n-S(B
1
,···, Bn)' 

. \ 
~ ---_._~ ---~- --

" , 
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Thus fn particular if Cv t) 9.>1 is a uniformly locally lower bounded 

sequence in n-S (QI x ••• xlG
n
), lim inf v 2 is nearly rt-superharmonic. 

t -+ ,"" 

The fundamental resultconcerning these functions and one we use re-

peatedly is the following. 

Proposition 1.2.10: Let v bè an n-S{B
l

, ..• , Bn) function which i5 not 

identically 00. Then the lower semicontinuous regularization v of v is 

x.~. xQ). 
n 

Furthermore for every (xI' ... ,x ) in nI' x ••• x (1 
n "." n 

As a consequence a lower semicontinuous n-S(B
1

, ... ,B
n

) function i5 n-

superharmonic. 

In the course of the proof of Proposition 1.2.10 (see [8] page 81) 

Gowrisankaran actually deduces more if v is lower semicontinuous. Indeed 

he shows the following. 

Proposition 1.2.11: (local property) Let v be an extended real valued 

lower semicontinuous functian on a domain U in nI x ••• x (1 s~ch that v 
~ n 

is not identically co, jind never (-co). If for every x = (xl'" .,x ) in U 
tir 

and neighbourhood V of x there exists 81"", 8n in BI"'" B
n
're5pectively 

such that 

15 1 
J ••• J v dp x ••• 

"1 

then v i8 in n-S (U) • 

8 
n 

dp • < 
x 
n 

v(x), 

Finally we consider the analogue of the' reduced function. 

.. 

, 
') 

1 
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+ Let v be in n-S (QI x ••• x n ) and E any subset 
n 

The reduced function RE ls defined on n as follows: 
v 

o 

RE(x) = 
v 

+ inf {w(x):w,€ n-S (511 :.: ... x n ),w(y) 2 vey) for aH y in E}. 
n 

As in the case n = 1 it is easy to show this is a monotone non-decreasing 

funetion of v and of E (if subsets of 511 

For E and F two subsets of rll x"', x nn 

x ••• x n 
n 

are ordered by inclusion). 

on nI x ••• x 51 
n 

and for À a non-negative real number 

x n 
n 

Sincé the finite infimum of n-superharmo~ic functions is again n-super-

, harmon~c we see RE = v on E. 
v 

E 
Moreover R is the Iower envelope of a 

v 
+ family of functions in n-S (nI x ••• x 51 ). 

n 
Thus RE is nearly n-superharmonic 

v 
AE + 

and hence ~v is in n-S (nI x ••• x Qn)' Since v is lower semicontinu04S , 

RE = RE on the interior of E.' Thus in case 'E i8 open RE 'equais v on aIl 
v v v 

of E hence it'majorizes RE on 
v 

AE 
Rand 

v 
RE are identicai. 
v 

x 51 , and therefore in this case 
n 

We remark that ~n1ike in the case of n = 1 the.reduced function is not 

neces$arily n-harmonie on 51
1 

x ... x nn- E. It is this faet that produces the 

greatest difficulties in the theory. 

~- ----, 
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CHAPTER 2 

n-Polar and n-Negligible Sets 

In this ~hapter we introduce and begin a preliminary study of the 

tio principle types of exceptional sets which'we shall be considering 
, \ 

in this thesis; the n-polar and n-negligible sets. In Section 3 we 

solve the Dirichlet problem on a product of relatively, compact domains 

and show the "irregular boundary points" gorm an n-polar set. In 

Section 4 we generalize the Continuation Theorem to functions n-super-

harmonie on an open set and bounded on the boundary of an open subset. 

Before beginning we state once and for aIl that nI"'" (l ,n >, l, n -

are Brelo~ spaèes having a positive potentia1, a countable base of open 
o~ 

sets for each point, and each satisfying Axiom D. We remark, however, 

Axiom D is actually used only in consideration af the Dinch1et problem, 
1 

the Convergence Theorem, and thin sets. 

Section 1 n-Polar Sets 

Definition 2.1. r: Let U be an open subset of li x ••• x li . A subset 
1 "n 

. + E of U is said to be n-polar in U if there exists a v ~n n-S (U) such 

that E is contained in {x E U:v(x) = oo}. If U = n
l 

X, •• x Qn we simply 

caU E an n-polar set. We shall say that any such v is associated ta E in U. 

lt i8 obvious a subset of a set n-polar in U is n-polar in U. We 

a1so notice that a set En-polar in U is contained in a G (hence a Borel o 
mel!s,urable) set n-polar in U. Indeed if v i5 associated ta E in U, 

E c {x E U: v(x) = m} 

n {x E 

Q,=l 

'( 
,:.f, 
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, . 

which is ~ô sinee semicontinuous on U. 

One way to generate n-polar sets is given in the following. 

Proposition 2.1.2: Let P be k-polar in QI x ••• x Qk' I < k < n. Then 

P x R x ••• x n 
k+l n is n-polar in nI x ••• x Qn' 

Proof: Ok and let w be any mamber 

- \ 
Let v be aS80ciated to P in ni x ••• x 

+ 
of (n-k)-S (Qk+l 

Cl 1 

x ••• x n ). Then the mapping 
n (xl"" ,xn) -)- V(Xl '··· ,~). 

w(~+l"" ,xn) 
+ is in n-S ( 11

1 
x ... x nn) and i5 a,s50eiated to PXQ

k+l x ••• xnn' 

We sho~ now the extremely useful fact that a countable union of 

n-polar sets is n-polar. 

Lemma 2.1.3: ,Let {Uk}k>l be the connected components of the open set 

U in III x ••• x Qn' Then E i9 n-polar in U if and only if E n Uk i8 polar 

in U
k 

for each k. 

Proof: Suppose E n U
k 

i8 polar in Uk for each k. Let v
k 

be associated 

to E n Uk in U~., We extend v
k 

ta U' by making it 0 on the other connected 
00 

components. Then clearly E v
k 

is in n-S+(U) and is a880ciated to E in 
k==l 

Conversely if E i8 n-polar in U and v i8 aS50ciated Ito E in U then 
o 

U. 

+ the restricti'On' of v ta ,any connected component U
k 

of U i8 in n-S (U
k

) and 

associated to U
k 

n E in U
k

• Thus E n U
k 

is n-polar in U
k

. 

Proposition 2.1. 4: A countable union of sets n-polar in U i<8 n-polar in U. 

Proof: By the lenuna we may' aS8ume with~ut 108s ~f generality that U is 

connected. Let (E
k

) k > 1 be a sequence of sets n-polar in U and let v
k 

be 

associated to~. Choose ô{, ... , on regular domains in,r!I, ... ,Rn 

respectively with ôl x ••• x on é U. Let (xl"" ,xu) be any ,point in 

01 x ... x on' Put for each k 
o 

, 1 

"'-----------~ -----..~.,~~~---- ........ ..." 

. 
" 

'. 
" 
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" °1 
!vk(zl' •.. ,Z ) CP x 

n Xl 

These ex:r:Ct and are finite since each V
k 

is integrabJ.e w~th respect to 

any such product of harmonie measures. (Remark 1. 2.6(a». Put; 

VeZ) 
00 

E (V
k

(Z)/À
k

2k ) 
k=l 

for each z in U. 

• + 
Then v is the limit of an increasing sequence of funetiQns ,in n-S (U) 

henee is in n-S + (U) if it is" finite at ,1east at one PWt of U 

\ 
(Proposition 1.2.5(b». But this follows sinee 

00 

=ï l: 
k=l 

(Monotone Convergence Tqeorem) 

E 
k=l 

< 00 

-k 
2 

00 

Sin<re clearly E = ~ Ek i8 contained in {z E: U:v(z) '" oo}, v is ass~ciatéd 
k=l 

ta E and we are done. 

Remark 2.1.5: For n = 1 of course l-polar means p9lar. In this case a ~et f: 
\ \ 

which is polar in an 9pen subset U of fil is polar' in QI' Indeed choose a 

" sequence (Ut) R,>l of relatively compact open sets such that ~or each R, , 

UR, e UR,:f"l and U Ut Let v be associated to E in U. 
:::... . 

= U. The Continuation 
R,>l 
fO"r + The,orem im~liés every Q, there exist Pl,P2 in SI (Q~) such th~t Pl - P2+v 

on U JI,. Therefore 

/ , ' 

---_, ___ lMoq.lt9llllWl .... 
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<Xl} 

~nd E n U
i 

is polar. The previous proposition now gives E 

is polar thus proving the claim. We wish ta note here that we do not know 

if this is true for n greater than 1. However for a special case of this 
\, 

see [13). 

J 

Definition 2.1.6: Let E be a subset of ri x ... x ri , n > 2, i an integer 

from 1 ta n-l, and kl,·o.,k
i 

integers satis ying 1 2 kl < k
2 

< ... 1 <:k
i 

2 n,. f 1 
n·-

Let x = (xi t, o. o,xR, ) be a point in Q~ x ••• x ~ where ~ 
1 j 1 l j 1 

{~l, .. o,ki}' C Ul, ... ,i
j

} c U; ... ,n} The' (kl, ... ,ki)-section of E 

through x is defined to be 

n 
{z E: II 

r=l 
ri 

r 

r 1. {kl ,· ·1·, k i } 

It is denoted by E. ' .••• 'k (x). -k1 i 

y r = zr for r i {kl ,···, k i } } . 

The set of aIl (k
1

, •.. ,k
i
)-sections of 

"" E as k
l

, •. 0 ,k
i 

vary over aIl possible val~es are called the i-sections of E. 

ta be 

The (.k
l

, ... ;ki)-projection of E'I denoted by llk' k CE), is defined 
1"'" i 

Ek k (z) :f (J }. 
1'"'' i 

Notice if E is open, c1osed, or compact any i-section or projection 
c 

TI
k 

k (E) ha~ the correaponding property. 
l"'" i 

For & polar set P in nI it is true that for an~ poi~t x of 14
1

- P 

there ls a functio~ aSBociated 1ô P in QI that ia finite at' x. Indeed 

be a sequence of regular neighb~urho'ods of x such that for 
1 

every, R, ,6,11,+1 c ô,l1, and R.~I Ô R,' = {x} 0 
Then if v ia associated to E in QI' 

. 4i. • 

, 1 

,~ 
'l~ 1 
,.1 

." 

, , 

--:---------;-----, ... ,4 __ 1IIP---'-f'~ '.,J, 
':"( 
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\ 

w = E 
2.>1 

i8 in S;<Ql)' w(x) < ~ , and w(z) = 00 for z in Pf. In case n > I this 

is too much to hope for since (as we shaii prove) i~ is neces8ary for 

aIl i-sections of P though x to be (n-i)-polar. We prove be10w in 

Theorem 2.1.9 that this condition is a1'so sufficient. 

We first prove two results both of which we return to in later sections. 

Lemma 2.1. 7 : Let v be in n-S(Q1 x •.. x Qn) and 01 a regular domain in QI' 

Define w on nI x, •• x \ln by 

1 
\ 
v(x1'···,x ) 

{v(z,x2", '~xn) 
Then w is in n-~ (QI x '" x nn) and w minorizes v. 

Proof: C1early ~ minorizes v hence it i8 n6t~ldentically ~ Further 

since v is locally lower bounded and harmonie mea8ure is uniformly totally 

bounàed as xl /Varie8 over 01 we see w is also locally lower bounded. Thus 

to complete the proof it suffices to show w is separately hyperharmonic, the 

joint lower semieontinuity fol10wing from Proposition 1.2.5(c).~ 

First fix (x2', •• ,x
n

) in 11
2 

x ." x 

Xl + w(x1 ,x2'····,xn) is Just 

15
1 

Q , 
n 

Xl + E (x 1) 
v(· ,x2 ' ••• ,xnJ 

Then the mapping 

which ia hyperharmonic by Proposition 1.1.3(d). 

i 
\ 
\ 

1 - \ 
1 
1 
i 
~ 
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Next fix (Xl ,x3' ••. ,x
n

) in nI x n
3 

x n4 'x 

there is nothing to prove. If Xl is in 01' x2 + 

x ~n' If Xl is not in 01 

w(xl' ... ,xn) is 

which by Proposition 1.2.8 is hyperharmonic. We see by symmetry w is separately 
. 1 

hyperharmonic and we are done. 

Lemma 2.1.8: Let v be in n-S(nl x x n ) and 0
1

, ... ,0 regular domains 
n n 

in nI"'" nn respectively. Then there exists a function in n-sCnlx 

which is p6sitive if v is positive, minorizes v, equals v on 

(nl-ol)X ... x(n -0 ), and is in n-H(ol' x ... x Ô ). n n • ' n 

\ 

... X n ) 
n 

Proof: Define uI"",un inductively as follows. Put ui 

Assuming ui is defined, 1 < i ~ n-l, define ui +1 as 

w,was in Lemma 2.1.7. 

l 1 
/' 

u. (Xl' ... ,X ) 
1 n· 

It is clear u satisfies aIl of the requirements but the 1ast. There 
n 

exists a point (Xl"" ,xn) such that (Xl"" ,xn) is in 01 x ••• x on and 

(Proposition 1.2.5(a». At this point 

U (xl' ••• ,x ) n n 

< 

< 00 

----~---,-'_. __ -r~~-

-------~-----------~----~-~--~~ 

\ 

,; 
-~; 
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Thus Proposition 1.1.3(d) implies un is in n-Hecl x ••• x -ôn)·The proof 

is complete. 

Theorem 2.1.9: Let E be an n-polar subset of ~l x ••• x Q ,n > 1, and 
n -

x = (xl' .•. ,xn) a point in QI x ••• x Qn-E. Then there exists u in 

+ n-S (~l x. •• x nn) with u(x) < 00 and u(z) = 00 for a11 z in E if and only if 

for each integer i from 1 to n-l every i-s,ection of E through x is (n-i)-

polar. (Of course for n 1 there are no i-sections hence the condition 

trvially holds.) 

Proof: Suppose first such a u exists. Let Ek ""'k (x) be any i-section 
1 i 

of E through x. Then the mapping 

n 
II 

j=l 

! 

Qj + lR, Z + v(Yl'" "Yn)' 

i i. {k
1

, ••• , k
i

} 

l, 

where Yj = xj for j,in {kl , ... ,k{} ~ Zj for j not ~n {kl , ••• ,kil is 

clearly (n-i)-hyperharmonic. lt is .hus (n-i)-superharmonic since it i8 

finite at the point z where Zj = x
j 

for j not in {kl, ..• ,ki } lt is also CD 

on Ek k (x) • This proves the proposition one way. 
1",'" i 

The converse is proved by induction on n. For n = 1 we have already 

remarked that the re8ult holds. Assume then n > 1 and the implication 

holds for smaller integer~. Cho08e for each integer j from 1 to n a sequence 

(ôj ,k\::.l of regular 
\....----

each containing x. suéh that for every k, domains in !'le 
J J 

0j ,k and n 0 {x
j 

}. + x n ) with °j',k+1 c Let v be in n-S <nI x .•• 
k>l j,k n 

vez) = <Xl for aIl z in E. By Lemma 2.1.8 there exists for each k a function 

in n-S + (nI x ... x nn) such that vk minorizes v, v
k 

equals v on 

+ i8 in .n-H (01 kX •• ;x' 0 k) hence i8 finite 
!, n, 

---"', ""'HIlII,IiI •• IIIi"~--

'.' 
c 
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00 

+ Then w is in n-S (~1 x ••• x ~ ) sinee 'w(x)< 00 and w{z) = 00 for z in 
n 

n 

F = E - U {(zl""'z ) e: E:z. = x.J 
j=l n J J 

For if z = (z1, .•. ,zn) is in F tnen z is in E and Zj f x
j 

for j from 1 ta n 

henee thère is a positiv~ integer k sueh that z is in (QI - ô1 ,k)x .•. x (Qn-Ôn,k)' 

This imp1ies wez) ~ Àkvk(z) = Àkv(z) = 00 

Consider now El (x) •. It is a l-section of E through x henee it is (n-1)­

" polar and every i-section of it through (x2, ... ,xn),1 ~ i ~ n-2, is an 

(i+1)-~eetion of E thro~gh x. Furthermore (x2 ' .•• ,xn) is not in.E1(x). 

+ Renee by the inductive 1lypothesis there exists w1 in (n-1)-8 (Q2 x •• ,x rln) 

1 
such that w

l
(x2, ... ,x

n
? < 00 and w1(z) = 00 for Z in El (x). Let w1 be any 

+ real valued member of SI (nI) . Define ul on nI x ••• x nn by 

+ Then u
1 

is in n-S (QI x ••• x nn)' u1 (x) < 00 , and u
i 

(z) = 00 on 

{(zl"",zn) c E:z1 = xl} • Similar1y for j = 2, ... , n there exists u
j 

1 + 1 
in n-S (fl

l 
x... x fl

n
) such that u. (x) < ex> and u (z) = co on 

J j 

E E:z
j 

= Xj} • Finally, define u on QI x •.• x Qn by 

+ Then u is in n-S (nI 

n 
u(z) = wez) + L u.(z) . 

j=l J 

x ••• x Q ), u(x) 
n 

< co , and u(z) = ex> 

The proof' is complete. 

for Z in E. 

We prove now' some eharacteriztions of n-p~lar sets. .... \ 

" 

" 
/. 

, .' 

l ' 
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Proposition 2.1.10: Let E he a subset of Q x ••• x n . 
1 n 

Then the 

foilowing are equiva1ent. 

(a) E is n-polar 

(h) For + x n ) RE 0 RE i8 sorne v in n-S (nI x ... is at one point or 
n v v 

identically O. l 
(c) + Q ) RE 0 everywhere For every v in n-S ([,lI x ... x is except on an 

n v 
1 

n-polar "E is identically O. set or R v 

RE(x) 
.' 

Proof: (b) => (a): Suppose first for sorne v and point x we have O. v ' 
+ For every positive integer k there exists w

k 
in n-S (QI x ••• x Qn) such 

that w
k 

majorizes 

+ n-S (QI x ••• x Qn) 

, -k 
v on E and w

k 
(x) .::. 2 . 

co 
Then w = E wk is in 

k 1 
(since the series converges at x) and wez) = 00 forz 1 

in E." Hence E is n-polar. 

Next suppose on~y RE 
v 

+ is identically 0 for sorne v in n-S (QI x. •• X Qn)' 

Choose ,(Uk)k> l \ a sequence of relatively compact open\ sets in nI x ••• x Qn /,r 

00 

such that U U
k 

= QI x • •• x ri. Fix any k. 
k>1 n 

, "E n U 
We have R k 

v 
identically 0 

;-Qn" Since E n Uk is re1atively compact there
4
exist 0l, ... ,on.regular 

domainsin Q1, ••. ,nn respectively such that 
\ \-

n 

-;SI x ••• x ô c 
n II nJ~ - IIj (E n Uk ) • 

j=l 
It follows from Lemma 2.1.8 and Proppsition 1.2.2(b) that is 

+ in n-H (°1 x ... x ° ). - , n 

p 

In particular it: is continuous on °1 x ••• x on a.nd 

... E nU 
hence equa1s R k 

v 

E n Uk there. Thus Rv (z) = 0 for 2; in °1 x ••. x .on 

from the first part of the proof we see E n Uk is n-polar. Proposition 

2.1.4 now implies E = U (E n U
k

) is ~-polar and the assertion is proved. 
k>l 

1 

and 

----,---------.'--- ._---_._---._--------- ..,-.....--,.--I"~~~'"' ... I1 ... (p."'l'O~)t~~ . , 

,,~ 
,'j, 

th~ 
,'li 

, :~~ 
,k: , 
" '" ~(" 

.~~ 

tl 
'è1 

,:t 
'~ 
fi}' 

;~ 

", 
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Ca) '* Cc): Suppose E is n-polar in nI x ••• x nn' Let w he associated 

to E, v in n-s+(Q1 x ••• x nn)' and x any point where w _~s finite. For # 

-1 every positive integer k, k w 

on nI x ••• 

• 
x n • 

n 
since w(x) < 00 

, E 
majorizes v ?n E hence it majorizes Rv 

and k is arhitrary this implies RE (x) 
v 

It follows RE(z) 
v 

( 1 

= 0 for aIl z except in the n-polar set {z e: nI x ... x ri 
n 

o. 

wez) = o>} 
~E ~E 

Finally R (x) must he 0 thus R is identically 0 (Remark 1.2.6 (b». 
v v' 

The last ass'ertion (c) '* (b) being obvious, the proof ls comp'lete. 
1 

Corollary 2.1.11: Let E be n-polar in nI x 

+ v in n-S (QI x ... x nn) . 

everywhere except on ~n n-polar 'set. 

-Proof: Let x be any point such that RECx) 
v 

F = R (x). 
v 

••. x n , F any subset of 
n 

Then RE u F and RF are ~qual 
v v 

O" Then 
1 

EuF F ~ 'EuF F 
Sinee R always majorizes R we see R (x) = R ,(x). Proposition 

v v V; V 
1 

2.l.l0(c) implies this holds everywhere except on an n-polar set. 

Section 2 n-Neg1igible Sets 

We define the n-~egligiblesets inductively (to include the earlier 

defin~tion of polar) as follows. 

Definition 2.2.1: Let U be an open~ubset of QI x ..• x rI
n

. A suhset E 

of U ls said to he n-negligihle in U in case n = 1 if E' is polar and 'in 
" 

\ 

" , 
, 

'1 
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\~ 

such that for each integer i from 1 to n, if xi ls in ITi(U)-Pi,Ei(xi ) 

is (n-~)-negligible in Ui(xi ). 

For n = 2, E 2-negligible in ~l x Q2 means that for aIl Xl except 

in a polar subset of nI th~ section of E through Xl is polar and for aIl 

x2 except in a polar set in Q2 the section of E through x2 is polar. 

Notation: For eaeh integer i from 1 to n we put 

Qi = rr{n,:j e: {l, ... ,n} - {i}}. 
J 

Remark 2.2.2: Since subsets'of polar sets are polar, E n-negligifle in 

QI x ••• x lin says precisely that for i any integer from 1. to Il: the set 

is polar~ 

We observe now that in working with n-neg1igible sets, unlike with 
, 

n-polar sets, we will not 'have to keep track of the open set U fn 

De,fin:Ltion 2.2.2. This is shown in the following proposition. 

Proposition 2.2.3: E Is n-negligible in U if and only if It Is n-negligible 

in nI x ••• x n • 
, n 

Proof: Suppose firsr E is n-negligib1e in U. We proceed by induction on n. 
. 

If n = 1 this is Just Remark 2.1.5. Next suppose n > 1 and the implication 

ho1ds for integers 1 through n-1. There exist sets P i,j = 1,:-'" ,n, each 

polar in Qi Bueh that if Xi is in TIi(U) - P
i

,E
i

(x1) i8 (n-l)-negligible in 
. i 

Ui(x
i

) hence by the inductive hypothesis (n-l)-negligible in n . If Xi i8 

in (lli - Pi) n (ni - IIi(U», 8ince E is contained in U, Ei(xi ) i8 empty and 

hence (n-1) -negligible. This proves E 18 (n-l) -negligibie in QI x ••• x nn' 

" 

", 

.' 
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The converse i,s proved by a simple induc tion and by noting that 

if a set P is polar in ni,p n V is polat in V for any open subset V 

of ni' (Observe,from Proposition 1.2.5(a) the restriction of an n­

superharmonic function to V is in n-S(V». 

As a consequence we can unambiguously refer ta sueh an exceptional 

set as being n-negligible without referring ta any particular open set 

that contains it once ft ls clear which ~roduct of Brelot spaces it is in. 

The next prop~sition gives a useful equivalent formulation of the 

definition of n-negligible set. 

Proposition 2.2.4: Let E be a suhset of QI X' ••• x Q ,n > 2. The follow­
n -

ing condition is equivalent to E being n-negligible For each integer 

i from 1 to n 

not polar} 

is (n-l)-negligible. 

Proof: The proof in bath directions is by induction on n. Note the 

proposition trivially holds for n = 2 sinee l-negligible means polar. 

Now suppose E is n-negligible~n > 2, and the co~dition holds for 

subsets of a product of any k of these Brelot spaces, k between 2 and n-l. 

By symmetry in the definition of Nl, ••• ,N it is enough to show N i8 (n-l)-
~ n n 

negligible. Sinqe E is n-negligible there exist Pl" •. ,Pn polar subsetS-,of 

Ql~ ... ,!"l~ respectively such that if Xi is in Qi-Pi' Ei(xi ) is (n-l)-

i 
neg1igible in Q. In partieular consider any point Xl in nI - Pl and the 

set E1 (x
l
). _By the inductive hypothesisl 

, \. 
'., 

", 

~, , 

l 
j \ 

4 
: 
" -
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is (n-2)-~egligible. '. But this set is precisely 

Similarly by considering Pi' i = 2, ... ,n-l, we can show 

is (n-2)-negligible. By the definition this shows N is (n-1)-negligible. 
,n 

The assertion is proved. 

Conversely suppose n > 2, the ,condition ho Ids for E, and if it holds 

for a subset of a product of k such Brelot space~, 2 .:. k .:. n-l, ,the subset 

is k-negligible. We will show ~ is ù-negligible. Again by symmetry it is 

enough to construct Pl in Definition 2.2.1. For each integer, i from 2 to n, 

sinee Ni is (n-l)-negligible, there exists a polar set Qi in nI such that 

if xl 'is in nI - Qi 

Ri,x
I 

{(x2, ... ,xi _1 ,xi+l'''''xn) E n {nj : j E {2, ... ,n} - {il}: 

. ' 

·r 
(xl"" ,xi -.1 ,xi+1' ••• ,xn) ENi} 

is (n-2)-neg1igible. 

2.1.4) and 'J xl is 

negligible Since 

n 
Put Pi = U Qi' Then Pl i p polar in Q1 (Proposition 

\ i=2 
in n

l
- Pl each set R R is (n-Z)-

2,xl ,···, n,Xl 

{(xZ, ... ,xi l'xi+l"",x )En {n.:jdz, ... ,n}- {i}}:{x, En,: - n J ,. 1 1 

(xz, ••• ,Xn) E EI (x1 )}not polar} 

we have by the inductive hypothesis that,~ (Xl) is (n-l)-negligible for 

such Xl' Thus Pl satisfies th~ requirements of Definition 2.2.1 and we are done. 

, 
! 

" t 

1 

l 

":-'_\-' -_._--_.-. l ---__ .'Ij __ -_R ....... _ .. __ I4I_~ ... fIIIi' ... Ii:~,.."... A; 
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\ 
In future we will often have occasion ta use both of these formu-

lations of n-negligible sets and we will do so freely without referring 

back to Proposition 2.2.4. 

We proceed now to demonstrate sorne of the 'most basic properties 

of n-negligible sets. / 

Propo'sition 2.2.5: A subset of an n-negligible set is n-negligible. 

Proc>t: Let E be n-negligible and F any subset of E. We proceed by in-

duction. The case n = 1 is trivial sinee clearly a subset of a polar set!, 

is polar. Now suppose n > 1 and the assertion holds for positive integers 

smaller than n. !ince Fis eontained in E, Fi(xi ) is eontained in Ei(xi ) 

for ,each i from 1 to n and Xi in ni' It follows by the inductive 

hypothesis that 

" ' 

The lat~er set is polar since E is n-negligible hence the former set is 

also polar (Remark 2.2.2). This says precisely that F is n-negligible and' 

we are done. 

Proposition 2.2.6: A countable union of n-negligible sets is n-negligible. 

Proof: The proof is by induction on n. If n = 1 this is just Proposition 

2.1. 4. Suppose the~ n > 1 and the result halds for smaller' integers. Let 

(Ek)k>t be a se~uence of n-negligible sets and denote their union by E. For 

each k and integer i from 1 to n there exists a polar set Qk i in ni such , 
that if Xi i8 in n

i
- Qk,i ,(E

k
) i (Xi) i8 (n-l)-negligible in ni. Put 

> Q :::: U Qk,i 
i k>l 

rJ 

,i 

1 

1 
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Then Qi is polar (Propo'sition 2.1.4) and if xi, is in ~i - Qi,xi is in ni-Qk,i 

for every k hence (Ek)i(x~) is (n-l)-negligible and 

~ is (n-l)-rtegligible by the induction hypothesis. The proves the propositiàn. 

Proposition 2.2.7: Let E be (n-l) -negligible in rl
2 

x ••• x Q ,n>2. 
n -

rli x E ·is n-negligible. 

If> -

Then 

Proof: The proof as before ,is by induction on n. If n = 2 then E is 

polar 1. If xl is any point in QI' (~l x E) 1 (xl) = E whiclQ.is polar. If x2 is 

any point of rl2 outside the p'olar set E, (nI x E) 2 (x2) i8 void, and hence .. 

polar. This proves the result for n = 2. 

Now suppose n > 2 and the result holds for integers smaller than n. 

Clearly E =,NI where 

s,;ince {xl S ~\: (~l'" ,~xn) E &:lI x E} is QI ~r r/J depending 9n whether or 

not (X2""'~ is in E. Thus NI is (n-l)-negligible. For i = 2, •.• ,n 

the set 

is (n-2)-ne~ligible by P~opos1tion 2.2.4. Thus 

.' 

-----.---.- ---- ----.--- --·------~·----1.,..--::---... - .. ,----~ ... ·-................. r""'----

i 

1 

1 

J 
1 

1 
J 

1 
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is (n-l)-negligible by the induction hypothesis. Propos ition 2.2.4 thus 

shows QI x E i8 n-negligible and we are done. 

Proposition 2.2.8: The complement of an n-negligible set is dense. 
'\ 

Proof: Let E be'n-negligible. We show by induct~on that E contains no 

non-~oid open set. lf n = l, E is polar hence by Proposition 1.2.5 it 
J 

con tains no no~-void open set. Suppose now n > l and U x V is contained 
\) 

where U is open in nI and V is open .in n
2 

x ••• x Q •• 
n 

Since E is n-
. \ 

negligible there exists'a polar set P in QI such that if'x 
l i~ in, QI - P, 

,El (x) is (n-l)-negligible. Since P does not contain U there exists Xl ,in 

in E 

U - P. For this pdint El (Xl) is (n-l)-negligi~'le a~d it con tains , (Ü x V)l (Xl) = v. 

By the induction hypothesis V must be void. Therefore so Is U)( V and we 
/ 

are done. / 

Proposition 2.2.9: (local pr"aperty) Let E be any subset of ni x ••• x Qn 

such that for every x in Ethere is an open set LI! containing x wioth E n w 
x x 

n-negligible in w. Then E is negligible • 
x 

Proof: Note first that E n w n-negligible in w implies it Is n-negligible x x 

in nI x ••• 

Sinee QI x 

x ri 
n 

(Proposition 2.2.3). Now' {w :x E E} is an open cover of E. 
~ X 

has a countable base of open sets there exist~ a countable 
Q 

property) Since for each kEn w is n-negligible 
~ 

E= U Enw' 
k>l' -~ 

covering E (Lindelof 

_ i8 also n-negligible (Proposition 2.2.6). The p~oof is 

We wish DOW to show a set n-polar in an open set is 

-. \ ' This will follow from the next proposition. 

(! .. __ .... _-, ..... ,. ,.--' ___ ---

Q 

1 
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l 

\1 
1 
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1 
l 
1 
1 
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j 
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Proposition 2.2.10: Let U be open lin QI x •• '. x Qn • v in' n-S(U), and k 

an integer bet~een 1 and n-1. Then there is a k-negligib1e s~t] in 

nI x ... x ~k such that if x ls lin TIl":"k (U)-N, the mapping y~";;; v(x,y) 

i~ in (n-k)-s(UI, .•.• k(x». 

Remark 2.2.11: 
\ 

If v is non-negative and U = QI x ••• x nn it is ea8y to 

see w~ can choose N to be k-po~ar in QI x ••• x Q • 
n 

Simply chooge 

y = (Yl, .•• ,Yn) any point at which v is finite and ~ut 

N {x E n1
x ••• x ~k:v(x,z) = "" for a11 ~ in D Qk+l x ••• x nn }. 

and equals 00 on N. 

~~ The problem in general i8 that.even if, U 18 connected the (l •... ,k)-

" sections of U are not necessarily connected and so for sorne x in 

~ TIl, ••• ,k(U),y ~ v(x,y) might be (n-k)-superharmonic on one, connected 

component of Ul , •..• k (x) and identically 00 on another. _ 

'" 

f 
i 
1 
! 

1 
,1 

Prdof of the-proposition: 

first k = 1. Put 

We prove this by induction on k. 1 Suppuse '~ 

~~' 
---=-- ' 

E {x E 'nl~U): y ~ v(x.y) is not in (n-l)-S(Ul(x»} 

{x E TIl(U): v(x,y) = 00 for aIl y in a connected component of U1{x)Y. 

'R,- R, t 
By Proposition 1.2.5 there i8 a sequence (x )2>1 =«x1 , ••• ,xn»R,?1 which 

2 
ia dense in U such that for each R"v{x ) < "" • 

t 
hé the connected component of U2 •..• ,k{x2' ••. , 

Nt 

N 

o 

= U NR, 
1>1 

Define GR, for each t'to 

X R,) i 9-n contain ng Xl Put 

l' 

'. 

, 

j 

! " 

\ ' 
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, 
Since v(x~, ... ,x~) < (Xl , w:x'-+ v(X,X~" ••• ,X~) is in Sl(G

t
) and as we 

+ " 
"'observed in Proposition 2.2.3 H: is also in SI (G R. h {x IS 11 m~(x) > O}) • 

Thus N R. is polar in GR; n' {X; è: TIl U :w.cx) > O} hence a180 in ~. 

Proposition 2.1.4 now implies. N is also polar. We will be done if we 

show E is contained ~n N. Let x be in E. Let y be any point in the 
o 0 

connected component of U
1

(x ) in which v(x ,.) i8 identically 00 
o 0 

Ch008e 

WI ,W2 connected neighbourhoods of xo'Yo respectively Bueh that Wl x W2 
R. t 

is conta1ned in U. There exists an integer t such that (Xl' ••. ,X ) is 
n" 

in Wl x W2• Since Wl and W2 are connected it i8 easy to see xoi is in GR. 

-R. RA () and (x2, ..• ,Xn) is in the same, connected component of Dl X
o 

as Yo' 

R- t 
Therefore v(Xo,x2 ' ••.• xn) = 00 and hence Xo is in Nt' This proves E is 

contained in-N and the proof for k = 1 is complete. 

Now suppo~e 1 < k < n-l and the proposition ho Ids for smaller integers. 

Define 

.; , 
F = {x E TIl, ••. ,k(U): y -+ v(x,y) not in (n-k)-S(U1, .•• ,k(X»} 

o 

To show F i8 k-negligible in Q 2 x ..... x fl
k

, by symmetry, it is enough to ' 
// 

show there exists P polar in nI such that for Xl in TI
l

(F)-P,Fl (x
1

) is (k~l)-

negligible in 112 x ... x n
k

• WeIl from the first part of the proof there 

't 

.J 

f 
1 
'" , 1 

is, a polar set P such that if Xl i8 in ITl(U) - P, Z -+ v(xl,z) i8 in (n-l)-S(Ul(xl ». ~ 

By the induction hypothesis, for such an Xl there 18 a (k-l)-negligible set 

dependi~g on Xl such that if (X2""~) 18 in 
~. 

IT 2, .... k(Ul (xl » - N, Y -+ v(xl""'~'Y) is in (n-k)-S(Dl,.' •• ,k(xl' .... ~». 

mus for Xl 1~ IT l (U) - ~ 

(n-k)-stul , ••. , k (Xl '1'" ,~) ~} 
• Q 

c N. 
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Therefore by Proposition 2.2.5 Flx
l

) is (k-l)-negligible in Q2 x ••• X 1\ 
and we are done. 

Proposition 2.2.12: Let U be an open subset of 

n-polar subset of V. Then- E is n-negligible. 

x Q 
n 

and E an 

Proof: Again the proof is by induction on n. If n = l there is nothing 

to show. Suppose then n > 1 and the é1;o/',erti~n holds for smaller integers. 
+ . ; 

Let v in n-S (V) be associated to E in U. From the p~evious proposition. 

there i~ a polar set P in QI such that if x is in IT1(V) - P,w: y + v(x,y) 

+ is in (n-l)-S JUl(x1». Now for any such x, 

( ) ( 1" , Thus El x is (n-l)-polar in U1 x) nence by the induction hypothesis is 
1 1 
(n-l)-l\egligible It f,ollows by symmetry E is n-negligible in U hence 

by Proposition 2.2.3 it i8 n-neglfgib1e. The proof is complete. 

Remark 2.2.13: It is not known at this time whether or not the converse . 
of Proposition J.2.l2 is t~ue. 

Remark 2.2.14: We saw in the beginning of Chapter 2.1 that every n-polar 
, 

set is contained in a Borel n~polar set. Unfortunately we do not have a 
\ 

o corresponding result for n-negligible sets. However the only use we now 

have for such a result i8 for përforming Integrations outside of n-negligible 

sets without changing the value of the integrals. We demonstrate how 

to sidestep this particular difficulty in Theorem 2.2.17. 

Before we do this consider a Borel n-negligible set E. Let 0l, ••• ,on 

be regular domains i~ nl' •••• ·nn respectively and (x1 •.•.• x
n

) any point 

of 01 x ••. x o . n 

, 
Recall while discussing the Dirichlet problem in Chapter 1.'1 

l 
1 
l 
l , 
, .. 

,~ . 

J 
j 

1 
1 

a 
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Il 

we remarked that polar sets have 0 harmonie measure It follows from 

this fact~ Fubini's Theorem, and a simple inductipn 
15 1 on 

that(p x •. xp )(E)=O. 
xl xn 

Combining this with Proposition 1.2.10 we get the following result. 

Proposition 2.2.15: If two ~-S(Bl"'" Bn) funetions are equal everywhere 

except on a Borel n-neg~igible set, their lower semieontinuoœ 

zations are~equal.everywhere. 

regulari-

Corollary 2.2.16: Le t E be n-polar ~n ~l x ••• x nn' F any subset of 

+ "E u F "F 
RI x ••• x ~n' and v in n-S (nI x •• , x Qn) . Then R v and Rv are identical. 

, . 
EuF F , L 

Proof: We saw in Corollary 2.1.1 that R and Rare equal everywhere 
v v 

exeept on an n-po1ar set, henee except on a Borel n-polar set, hence by 

Proposition 2.2.12 except on a Borel n-negligible set.- But ~hese two 

functions are nearly n-superharmonic. The result therefore follows from 

the Proposition. 

Theorem 2.2.17: Let E be n-negligibIe, U open in il
l 

x ••• xiln,x 

a fixed point of U, and v in n-SeU). Then 

(1) . v(x) lim inf vez) . 
Z + x 

z e: U-E 

Proof: Since E Is n-negligible there exists a polar-set P in ~+ sueh that 

for zl in nI - P, El (zl) is (n-I)-negl\igible in Q2 x ••• x nn' We have see~ 

that .there is a B9re1 polar ~et QI containing P. Let zl be anl point in nI - QI' 

Then a priori zi is in nI - P hf.mce El (zl) is (n-l)-negligible. It follows 

similarly that there is a Borel set Q2 depending on zl such that for any z2 
J ,zl 

in 112 - Q2,zl' E1 ,2{zl'Z2) 

any point z2 in !l2 - Q2 z . 
, 1 

is (n-2)-negligj.ble in fl3 x ••• x Q. Now choose 
n 

We can form similarly the Borel polar set Q 
3,zl,z2 

. . 

1 
i· 
1 

1 
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, 
, 

in 113 depending on zl and z2 such chat for z3 in n - Q , 
3 3,zl,z2" 

E1,2,3(Zl,z2'Z3) 18 (n-3)-negligible. Continuing in this way we get 

the sets Ql,Q2 Q e~ch polar in QI"'" Qu respectively, , 
, ,zl'"'' n,zl'''' ,zn_l 

each ~ô' each depending on the indieated points and the 1ast containing 

El _l(zl""'z -1)' , ... ,u n 

Now 8uPPosï if possible (1) fails. Sinee v is lower semicontinuous 

this says v(x) < 00 and 

lim inf vez) > v(x) • 
z + X 

Z E: U-E 

Thu,s there exists a neighbourhood W of x and a positive real number C' 

sueh that 

(2) vez) .::. v(x) + e • z in W n U-E 

\ i 1 

For each integer i frOID l to n choose a' sequence (ôk)k>l of regular 

domains in IIi 

n oi = {x } 
k>l k i 

such that for every k, 

Now sinee v is Integrable with respect to ,any produet 
, , 

of harmonie measures we ean apply Fubini's Theorem to o~tain 

01 on 
! v(!l""'zo)(p k x". 'xp k)(dz1, ..• ,dZ ) 

1 n Xl xn n 

ôn 
k 

J v(zl""'z )dp (z) n x n 
n 

= j 

" 

(: , 

,i 
1 
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(from (2) and the fact contains El -l(zl"" ,z » , ... ,n n 

(v(x) +E) 

Letting k ~ 00 and applying Propositibn 1.1.1 (c) gives 

v(x) ~ v(x) + E: • 

This ls impossible since v(x) < 00 Thus (1) does indeed hold and the 

the proof is complete. 

The following is an immediate consequence of Theorem 2.2.17. 

Corollary 2.2.18: If two func'tions n-superhàrmonic on ab ,open set are 

equal everywhere except on an n-negligible set th en they are identical. 

{> 

Section 3 The Dirichlet Problem 

\ 

\ 
In th~s section, for convenience we state and prove ~\S~lts only 

for the special case n = 2. However, the obvious generalifations to n > 2 

do hold and can be proved easily by induction. \ 

...~- , 

Let w
l

,w
2 

be relatively compact domains in nl ,Il
2 

resAI~ctively. Using 
. \ 

methods similar to Gowrisankaran in [7] we solve the Dirichlet problem on 
1 

boundary, ô w
l 

x a w
2

• 

"1 x "2 wbere the boundary values are specified on1y on t1e distinguiBred 

Then, by ~roving.a minimum prinCiPlr special to 

same solution by pteans of a P.W.BJ:y~e method. w
1 

x w2 we qrrive at the 
, 1 
1 

, \ 
, 1 

Denote the irregular boundary points of wl by Pl and the': irregular 

boundary points of w2 by P2 • Put 

'!F' 

\ ! 

l 
1 
1 
l, 

1 
\ 
1 
1 , 

~ 1 

\ ~ 
--~----__ --__ ~~_df~'~.~P~ •• u~,~ ____ ~\-----
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Then P is a subset of Cl (w
l 

x ( 2) whicp is 2-polar in QI x Q2 

(Proposition 21.1.2) and we shaH see, in some sense, the irregular boundary 

points for the Dirichlet problem on w
l 

x w
2

• 

Proposition 2.3.1: Let w1,w2 and P be as above and f a real valued 

continuous function on 3w1 
x 3w2 • Define ep f on w

l 
x' w2 by 

\ 

t(x,y) (x,y) in 3w
l 

x dW Z 

1 w.. 1 r f(x,z )dl1 (z) (x,y) in 3w
1 

x w
2 y . 

w r f(z,y)dlJ 'ez) 
x 

(x,y) in w1 x dW2• 

Then ~f is non-negative if f is non-negative, it is in 2-H(w
1 

x (
2
), it 

is continuous on w
i 

x w
2 

- P, it equals f on 300
1 

in 3w
I 

x dW
2 

the mappings z -+ ,epf(z,y) and zl-+ 

and H
2

(w2) respectively. 

x dW
2

, and fo:r every (x,y) 

1 
epf(x,z ) are in Hl (w

l
) 

Proof: We first prove the continuity assertion, Suppose first f splits. 

as g -. 
1 g2' That is for (x,y) in dW

l 
x dW

Q
, f(x,y) = gl(x),g2(y) where 

gl and g2 are in ~(dwI) and '1R (3w
2

) respec ÙveÎy , Then cp f splits as 

G
I 

• G
2

, where G
I 

solves the Dirichle~ problem on w
l 

with boundary,values 

gl and GZ solves the Dirichlet problem on ~ with boundary values g2' It 

is easy to see cp f ia c~ntinuous on W
1 

x U1
2 

- P. Clearly if f is a ffnite 

linear combinatlon of continuous functions that split, the same conclusions 

holds. By the Stone-Weierstrass Theorem such functions are uniformly dense 

in ~(dWl x ClwZr. Thus it suffices to show that if (fk)k>l ls a sequence 
1 

r 

\_.a • 

--------------------------~-------._=----------------

,. 

1) , 
1 

" ." 
Ir 

'. <i 
if'; 
~ 

1 
1 4 

'\i 1 

J 1 

" 
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and .(s for eaeh k f
k

, 

, 
in ~ (3w

1 
x 3w

Z
) converg'ing uniformly to f, 

continuous on W2 - P, then (cp fk\~l' converges uniformly on Ul
1 

x w
2 

W
1 

x 

to CPf' For if so, ~f will be continuous at each point of continuity of 

every cp f ' that is on w
1 

x Wz 
- E, 

k , "-
wl Wz 

Let M be a bound f~r 3). on w
l 

and JS. 'on w
2

, Certainly this 

exists sinee there are functions harmonie on a neighbourhood of say w1 ' 
w1 

greater th an l and'by defin~tion these majorize ~ on w
1 

and are 

themse1ves bounded on w
1

. Now given any positive real number € there 

exists an integer K such that for k > K, 

,>' 
t.» 

lt fo1lows that for k > K, 

2 
< g/M , 

/CPf (x,y) - CPf(x,y)1 < 
k . 

2 
€/M < € 

€/M < e: , 

and .., <Pf (x,y) -'CPf(x,y)l< e:..,(x,y) in w
1 

x w
2 

' 
k 1 

~ 

Thus.,(CPf \>1 'converges to CPf uniformly,on w1 x w2 k -
and tre eontinuity 

asséhion is proved. 
Î 

From the soluti the Dirichlet problem for n = Il it is elear that 

for each (x,y) in aW
l 

1 . l 
3w

Z
' Z + epf(z,y) and z + CPf(x,z) are harmonie 

The on1y ndn-trivial assertion that remains to be proved is fo~ fixed 

y in wz,z + CPf(z,y) is in RI (w
1
), By $ymmetry this will ~how CPf ls i~ 

2-H(w
1 

x wZ)' We show first z + <Pf(z,y) ia ''continuoos on 300
1

, Let (zk) k~l 

1 

1 

\ 
l 
~l 
~ 
j{ 

1 , t 
Jo .. 
~ 
~ 
" 

l' 
~ 

.~ 
; , , 

, J 

1 

1 

---:-:---:-~----",,-iGjMiIl!1lll1_lIIIa _1_ ..... _. _-_.1 

, 
\ 
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be a sequence in dWl co~verging to z in dW
1

, Since f is uniformly 

continuous on dOOl x dW2' the sequence (f(zk"»k>l converges uniformly 

to fez,.); It follows from the Dominated Convergence Theorem that 

, 002 
,= Hm f f(zk'z )dJl (z') 

k+ co y 

Thus the mapping is indeed continuous, Now let x be a point of w
i 

and ô 

a r.egular neighbourhood of x wi th"'" C w
1

' 

ô "w;I. w2 f dp (z) ff f(z'z )dl1 (z')d).l (z") x z y 

\ 
1 1 

(by the conti~uity of z' + ql f (z' ,y) on dW
l 

estabHshed at the beginn1.ng -, 

of this paz:agraph) 

\ r '. 

= 

00
2 

cd
l

, 
= ! f f(z,z')dl1 (z')dl1 (z) 

y x 

This prpves the harmonicity and l:'1~ arè done, 

" 
.' , '. , ;a 

.. 

..... 

, 1 

1 

1 
! 
! ' 

1 

1 

1 

1 
1 

o , 

1 
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re ~1l demO,nstrate the uniqueness of this solution below in 

Corollary 2.3.4. 

We now consider the prob1em in a different way. We begin by deducing 

a minimum princip1e that is special ta rectangles. 

Theorem 2.3.2: Let w1'W2 be relative1y compact dfmains in n
1
,n2 

respectively and v in 2-S(001 x (0
2
), v bounded below. Then, if for aIl 

(x,y) in aOO
1 

x aOO
2 

(1) liminf v(z,z').=:O, 
(z,z') + (x,y) 

(z, z ') E: ùl
1 

x ùl
2 

v is non-negative on 00
1 

x 00
2 

• 

Proof: From Proposition 1. 2.7 it suffices to show that (1) ho1ds 

for a11 (x,y) in a(w
1 

x (0
2

) = (aw
1 

x lOW
2

) u ( dW
1 

x w'2) U (oo
1

x doo
2
). We 

will show it for a fixed poirit (x jy ) in 00
1 

x 000
2

, By symmetry this is 
0' 0 

enough. 

~et us suppose first that v is 'also bounded above. If (1) fai1s at 

(xo~Y 0)' there exists a positive rea1 number E and a sequence «Zk,Z'I.k »k > 1 

converging to (x ,Yo) with 
o 

(2) v(zk,z'k) < - E: for a11 k. 

Consider for each 
\ 

This is a pos~tive 

such k the mappings vk:z + v(z,z ~) defined on w
1

. 
1 

uniformly bounded' s~quence in S'l (00
1
), Since 00

1 
is 

relative1y compact there exists u, positive h~;-monic on a neighbourhood 

- of wr' such that' v k (z) + u(z) ~ 0 for aIl k and z in w
1 

and vk + u is pointwise 

unifo,rmly bounded above,on 00
1

, Proposition 1.1.23 implies there ia a 

• 1 t '1I~1l. 

\ 

\ 
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'ô 

subsequence convergi~g id' the Cartan-Brelot topology to a 

function w
l 

lt follows (vk )j>l converges in the Cartan-
j -

Brelot topology ~o W =: w
l 

- u. 

We c1aim W is non-negative on w
l

• Inde~d let xl be any point in 3w
l 

and y a positive real number. Then (x1,Yo) is in aW
1 

x awZ and. from (1) 

we de duce there exist relatively compact neighbourhoods U, V of xl' y 0 

respectively such that 1; 

v(z,z') 2:. - y for al! (z,z') in (U x V) n (w
l 

x (
2
). 

Without loss of generality we may assume zk is in V for a11 j. Thus 
j 

, 
v(z,zk ) > - y for every z in Ù n w

l 
and ever;r j. 

j 

Now let Xz be in U n w
l 

and let (0 t) t>l be a sequence of regular neighbourhoods 

of x2 such that for each R-, ÔHl C 0t C Oz C U n w l aI;1d R-~l 02 

Then for every such R-, 

Taking the limit as 

Proposition 1.1.6). 

°t lim J v
k 

(z)dpx (z) 
j-+oo j 2 

\ ô R-
lim Jv(z,zic)dp (z) 

j-+oo. j x2 

ô 9, , 
(-y) J dp (z)'­

Xz 

i +100 gives w(x2)2 -y (Proposition l.l.l(c) and 

This being true for aIl x
2 

in U n w
l 

and y being 

arbitrarily positive we get 

lim inf wez) > o. 
z -+ x 
Z E w

l 

i 
1~ ·---f 

J 1 
1 
! 
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This holds for all xl i~ a wl therefore it follows from the Minimum 

Principle on QI (Proposition 1.1.3(f» that w is indeed non-negative 

+ -
NO"\>f the mapping f:Sy(w

1
) x nI -+ R, (s,x) -+ sCx) is lower semi-

+ continuous if Sl(w
1

) is provided'with the Cartan-Brelot.topology. 

CCorOllary\ 1.1. 21). Thus 

lim inf vk . (zk.) + u(xo) 
j-+oo J J 

Hm inf [vk (zk ) + u(zk.)] 
j-+ 00 j j J 

lim inf f(vk + u,zk ) 
j-+oo j j 

> 

\ 

_w(X) +u(x). 
o 0 

Therefore 

But this contradicts (2). Therefore the theorem holds in case v is 

bounde;d above. 

In gerreral ehoose h positive 2,-harmonie / on a neighbourhood of W
l 

x Wz 
and define fo~ eaeh positive integer k the functior wk by 

Then for each k, wk~is in 2-S(w
l 

x w
2
), it is bounded, and it converges 

pointwise to v. In addition, for every (x,y) in 

lim inf wk(z.z') > 0 
(z,z') -+ (x,y) 

(z, z ' ). e; w1,x w
2 

aw x 
1 ' 

---- .- .. -

'1 ,-
; , 
.( 

" .. 
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'By the special case this implies vk i8 non-negative 'on w
l

' Letting k ~ ro 

1 -. 

gives that v is a180 non-negative ~d the proof i8 complete. 

, 
Corollary 2.3.3: Let P be a subse t of 3w

l 
eX 3w

2
' which is 2 -polar 

in nI x n2 and suppose in ~heorem 2.3.2,(1) i8 satisfied only for (x,y) 

in 8w
l 

x dW
2
-P. Then we can still de duce v is non-negative. 

Proof: Let (x ,y ) 
o 0 

P2 Cyo) := ~ 

Since P is contained in 3w
l 

x dW
2

, ~ 

hence from Theorem 2.1.9 there exists w in 

'" x 1l
2

) such that w(xo 'Yo) < 00 and w(z,z')= 00 for aIl (z,z') in P. 

-1 
Therefore for every positive i~teger k, v + k . w is in 2-S(wl x w2) 

is lower bounded,and 

lim inf (v(z,z') + k-l • wCz,zr» > 0 

(z,zI') ~ (x,y) 
(z,z') E: w

l 
x w2 

for aU (x,y) in 3w
l 

x 3w
2 

• 
-1 

From the theorem we get v + k w i8 

-1 
nçn-negative on wl x w2 ' in particular v(x ,y ) + k . w(x ,y ) > O. 

" 0 0 0 0 -

Letting k ~ CIO gives vCx ,y ) > O. 
o 0 -

The point (xo'yo) being arbitrary 

we have indeed v is non-negative on wi x w2 • 

Corollary 2.3.4: The function ~f in Proposition 2.3.1 18 the only function 

in 2-H(w
l 

x w2) bounded on w
l 

x w2 and tending ta the same value as f at 

aIl points of dW
l 

x 3w
2 

except asubset 2-polar in nI x 912 • 

Proof: If u is anather such function just apply Corailary 2.3.3 to ~f-u 

and u - CPf' 

Let w1 and w
2 

be as above and f any extended real valued function on 

dW
l 

x 3w
2

, Consider now the following families of functions. 



, 
',' 

-':f 
ç 
'1' ~ 

Il 

/ 

U(f) = {v:v is lower bounded, 2-hyperharmonic on 1.1)1 x w
2

' and 0 ,. 

f.or aIl (x,y) in élwl x élw2 except a set 2-po1ar in nI x Q2 

lim inf v(z,z') ~ f(x,y) } 
(z, z ' ) + (x, y) 

(z,z') EWIx w
2 

L(f) = {W:)-:-W) is lower bounded, 2- hyperharmonic on w
1

,x 1.1)2' and 

for aIl (x,y) in dW l x dW
2 

except a set 2-po1ar nI x rol
2 1 

lim 5Up w(z,z') 2. f(x,y?} • 
(z,z')+{x,y) , 

(z,z') E w
1 

x w
2 

Define the upper and lower solution respectively by 

for a11 (x,y) in 
1.1)1 x 

maj orizes ~ \ 

( 

inf {v(x,Y):v E U(f)} 

sup {w(x,Y):w E Hf)} 

2-hypernarmonic on 1.1)1 x, w2 ' lower b01:1nded, and (sinee the union of two sets 'i 

2-polar in nI x U2 is 2-po.lar in QI x QZ) we have for aH (x,y) in 

dWl x élw2 except in a set 2-polar in nI x fl
2 

(1) lim inf (v(z,z') 

(z,z"') -+ (x,y) 
(z,z') E w

1 
x w

2 

w(z,z'»> lim inf v(z,z') 
-(z,z') ~(x,y) 

(z, z ') E w
1 

x w
2

, 

> '0 • 

- lim sup w(z,z') 
(z,z') -+ (x,y) 
(z,z') E 1.1)1 x w

2 

"5 

" 

j 

)\ 

.------_ ... !i\!.\Qi ....... "' ..... , .............. _ .. \\ ... ' ___ L 
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(Clearly (1) holds if f(x,y) ls finite. If f(x;y) = ClO the first 

member of the right hand side of (1) is 00 and since w is bounded above 
li 

the se,conli member is strictly small~r than co thus (~) still holds. 

Similarly it ho1ds if f(x,y) = - (0). Therefore Co:rollary 2.3.3 implies v 

maj orizes w hence 
w x w Jë l' 2 
f 

ùJ
1 

x w
2 

does indeed majorizes 

Proposition 2.3.5: Ji: f ls either identil!l311y 00 , identically -ClO" 

Proof: Suppose the first case does not oceur. Then U(f) n (2-S(w
l

x w
2
» 

ls non-empty-. Now let (xo'Yo) be in wl x w2 and 01'02 regular domains 

in nI' 'nz respeetively with (xo,y 0) in 01 x 02 and 51 x 02 contained in 

ùJ
l 

x "W
2

. From Lemma 2.1.8 , every member of ~(f) n (Z-S(w
1 

x w
2
» cau be 

\ replaced with a smaller member a1s'o in 2-H(01 x 15 2 ) with values unchanged. 

on w1 ~ ~ - «01 x n2 ) u (nI x oz», Clearly then such a function is still 

in U(f) and sinee 11(f) is deereasiug\ diree~ed, it follows from Proposition 
• ~x~' ~ 

1.2.2 (b) that X
f 

is in 2-':-H(01 x 6
2

) or ls identically -00 'on Ô
1 

x 02 . 
w

l 
x li) 

- "L. 
Thls shows {(x, y) E wI::Jz :" Je (x,y) 2-harmonic on a neithbourhood of 

_w1 x w2 1 

(x,y)} and-Ux,y) e: w
1 

x w
2

: Je
f 

(x,y).== - co} are two 'disjoint open 

subsets of w
l 

x w
2 

hence, sinee W
I 

x W
2 

is connected, one is empty'and the 

This completes the proof. 

every extended rea1 valued function f on dW
I 

x dW
2 

'and 

w
1 

x w2 _ \ 0 wl 
w2 

(1) '3lf (x,y) = ! f(z,z') (ll x lly ) (dzdz') 
x 

wl w
2 

" 
- integrable for point (xl'YI) in wl 

is and if f iB Il x U one x w
2 

it 
xl YI . w1x w2 ;lI x w2 

integra~le, w1th respect to aIl sueh measures, JÇ and 
~ 

ar-e 

j , 
1 , 

i 
1 , 

, 

1 1 
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identieal, and are in 2-H(w x 00,2)' 
, 1 

(We denote the common function'by 

4 
Broof: For any such f we --,.--

'a W
1 (x,y) -+1 f(z~'z') ()1 X 

X 

let A (f) denote the mapping 00
1 

x 00 2 -+ :RI 

002 ' 
)1y )(dzdz ') • 

Su~pose first f is ,continuous and real va1ued. J'Then Proposition 2.3.1 
_ 00

1 
x w

2 says A(f) is in U(f), hence it majorizes Xf Conversely, if v is 

in U(f), v - A(f) is (again from Propo~ition 2.3.1) lowèr bounded 2-hyper-Ç 

. harmonie 'on wl x 002 with lower limit greater than or equal ,to 0 at aIl 

points of pWl x ~w2 except on a set 2-polar in nI x n2' Coro11ary 2.3.3 
_ <Ill x w2 then imp1ies'v majorizes A(f) and hence so does Xf Thus the theorem 

ho1ds for real ~alued continuous funetions. 

Next, 'if f is ïo~ bo~ed lower semicontinuous, sinee x 

is compact, there exists a sequence (fk)k>l in SR(3wl ~ 3(
2

) increasing 

pointwise to f. From the Honotone Convergence Theorem, ( A (f
k

) \;:'1 i,ncreases 

pointwise to ACf), therefore we have A(f) is either idepti~a11y 00 or in 

2-H(w1 x ( 2 ) (Propositiort 1.2.2(b». For any (x,y) in aW
1 

x 3w2 - P, 
(j}l w2 Proposition 2.3.1 says)1 x )1 , converges weak1y to the point mass at (x,y)' 
z z 1; 

as (z,z') -+ (x,y),(z,z') in w
1 

x w
2

• For such (x,y) since f is lower semi~ 

continuous, we have 

lim inf 1 
(z, z '1) -+ (x,y) 
(z,z')e: 00

1 
x w

2 
_Wl x 002 

Thu~ ACf) ~s irt U(f) and it therefore majorizes X
f 

',. 

On the other 

-W x 00
2 

;1('f 
1 

(x,y) 
w xw 

~ ~up{ Xg l 2(x,y):g rea! va!ued continuous on 

aW1 ,x dW
2
,g minorizing f} • 

/ 

---.~-~~ -.--0 --- Il 

'" , 
, 

'. 

..r' 
,t 
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" 

on dWl x dWZ' g minorizing f } 

== I\(f)(x,y). 

Therefore (1) ho1ds for 10wer bounded 10wer semicontinuous functions. 

= inf { l\(g)(x
1

'Y1): g ~ower bounded lower semicontinuous 
"-\ , 

on dWl x <a00
2
" g majorizing f} . 

(This is precisely the definition of I\(f)(x,y).) 
~~--­

'''';, 

= 
_ 001 l'(f1lùZ ., 

iuf{ 'J( g U (xl' YI): g lower bounded lower semicontinuous 

on aW
l 

x 3w2 , g majOriZin~ f} • 

Call the last membe~ of t,his equa1ity M. 

If v is in U(f) we cau extend v to a(ool x w
2

) by 

v(x,y) = liminf v(z,z'L' (x,y) in a(ool x w
2
). 

(z,z') + (x,y) 

It i8 easy ta prove v is 10wer bounded lower ~~miepntinuous on w
1 

x w
2 

and sinee it is in U(f) it majorizes f on dool x dW2 - Q, where Q is a 

subset of dWl. x aW 2 which is 2-polar in QI x OZ' Clearly Ql(x1) = Q2(Y1) = ,(J. 

rherefore Proposition 2.1.9 imp1ies there is a w in ?-S+(OI x ~2) such that 

f;\1_-. 

___ IU'_~"""""'''~'''lf ~.tc",~_~"t'" " ...... : ..... :IIIIi' .. IIiI __ IIIlüM"" ... J .... a .......... _.-:'----_-___ .4 ......... ' IIIJM_..,,_t .. , .i'l'li_li!ll:iif!lll __ ~ __ !IIIIillJIi!IillJIi!I'IfIi ..... i'$>,. ... iP· .... --
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< '" and w(z,z') = <X> for aIl (z,z') in Q. Now for every 
- " 

-1 
positive integer k the function v + k 'W mjjOriZes f on aw1,x -aw2. 

Therefore v(xl'Yl) + k-
l 

:w(x1.y1) > M. L~tting k + 00 gives v(xl'Yl~ > M. 
_ - / _w

l 
x w

2 
This bein,g €rue for every v in U(f) we have Jef (xl 'YI) ~ M. The 

opposite inequality beipg obvious we have equa1ity and (1) holds in general. / 
1 w

l Finally, if f is Integrable with respect to~, x 
xl 

for some 

is finite and hence 
w1 x 

We also have ~ 

by Proposition 
w2 

(xl'Yl) = 

is in 2-H(w
1 

x wZ). 

From Proposition 2.3.5 and 

Remark 1.2.3(b) we deduce 

- w x w
2 'Je 1 (X, y) 

W
1 

x w
2 

?ff (x,y) = A(f) (x,y) 
f 

for every (x,y) in w
l 

x w2 

completes the proof. 

Wl w2 
and hence f is 11 x 11 - integrable. x y ~ 

This 

1 

Remark 2.3.7: Let v be an n-S (~l' ... , Bn) function on QI x ... x Qn and 

for each integer' i from 1 to n let 0i and wi be regular domains in Bi 

with 0i c fui' We elaim we can nowl deduce that for any x = (Xl'" .,xn) in 

01 x ••• "!- on 

51 
j: v(z!, ... , z ) (p x ... 

n Xl 

o w
i 

. li) 
n - n 

p )(dzl, ... ,dz» Iv(z'l'''''z)(p x .. :J(P )(dzl,···,dz). 
X n- n Xl X \ n 
n 1 n ' 

1 

-1 

lndeed if v were identically <X> on 0Ix .•. X on there would be nothing to 

prove sinee then v wou1d be in n-S (QI x ... x Q ) (Proposition 1. 2.10) and 
n 1 

identica11y <Xl on 0
1 

x ••• x 0 hence identfcally <Xl on Î!lx .•. x Q (Proposition 
n , , n 

1. 2.5). If v is fini'te at some point of 01 x ••• x on we conclude from 

e-

f 
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Wlx ••• x W 
Proposition 2.3.5 and',)Theorem 2.3.6 that J7:

v 
n is iri n-H(w

l 
x 

(Recall v i8 lo~ally ~pwer bounded). For aIl y = (yl' •..• yn) in 
Il 

"\ w
l 

x ••• x W 

lim il Je ,n(z) r, V 
Z'"7" Y 

WlX ... x W 
X n( ) v y 

ZEO{/ ... x o
n 

WI W 
f v(zl' ... ,z)(p x ... x pn )(dz

l
, ••• ,dz ) 

n YI Yn n ' 

< vey). 

WIX, ... x W 

Thus J7:
v 

\ n i8 in Lev) for the Dirichlet problem on 01 x ••• x on' 

It follows 

_WI x , •• x W 01 x .. ,xo 
n,{-x) Je n(x) < Je 

VI - V • 
1 
1 

< _ °Ix ô , .. x 
n 

< Je 
(x) -

v 

}, 

An application of Theorem 2.3.6 now establishe~ the claim'. 

Seètion 4 n-Potentials and the Continuation Theorem 

+ Let v be in n-S (~1 x... x n ) and for each integer i from I to n .let n ., 

(W
k 

i)1<:>l be a sequence of relatively compact ®mains in ni Buch that , -
Wk,i C wk+l • i for every k and k~l wk,i,= ni' For such k define vk on 

wk,l x •• -.X wk •n by 

Wk•1 ' wk 
d d ·n 

li .... llx 
' Xl n \ 

1 
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It follows from Theorem 2'13.6, as in Remark 1.2.6, that an n-superharmonic 

function is integrable with respect to the product of any n harmonie measures. 

+ Proposition 2.3.5 then implies vk i~ in n-H (wk,l X ••• X wk,n) and clearly vk 

minorizes V on wk 1 x ••• x wk • 
" ,n 

Furthermore for each k we have from Remark 
1 

2.3.7 that (vR.)R..:::k i8 decre,asing pointwise on wk,l x ... x wk,n' Thus for 

" any x in wk,1 x, ••• x wk,n we can define w(x) \to be the limit of the sequence 

1 (v R. (x» R,' > k : Since k is arbitrary here we see w 18 weIl defined on aIl of ---.... 
1 

nI x ... x nn' From the Sheaf property and Proposition 1.2.2(b) we have that w 

'ls + in n-H (nI x ••• x nn) 'and it minorizes v at every point of ~lx • •• X 

We claim it is pQintwise the greatest n-harmonie minorant of v. Indeed, if h 

is in n-H(n1 x ••• x nn) and minorizes v, then for every k,x = (xl' .•• ,xn) i~ 

/ 

d
Wk ',1 wdk' ,n 

J ~. .• Jo v Il •• • I1x 
Xl n 

> f 

= 'h(x) 

W 
f h d k'1 

llx 
1 

Thking the limit as k ~ ~ gives w(x) .::: h(x) thus proving the c1~im. 

Definition' 2.4.1: We say 'the function p on n
1

x ••• x nn ls an n-potential 

+ if it is in n-S (nI x .•• x nn) and its greatest n-harmonie minorant ls iden-

tically O. 

Denote the set of aIl n-potentfals by n-P. 

./ 

, 
1 ,< 

, 
" 

" ;;0 

:.: 
i 
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We note first that n-P has positive members. Indeed if Pl is a 

. + 
positive ?,otential on QI and v is any positive meniber of (n-l)-S (Q2 x ••• x Qn) 

... 
we can show the mapping w: (x , •••• x ) + 'P (x

1
)v(x

2
, ••• ,x } j,s- -in n-P. WeIl 

. ,1 n 1 n 
"\ " + certainly it is in n-~ (QI x ••• x Qn) (pag~ 23 ). Call Hs greate~f n-

harmonie minorant h. Since 0 is an n-harmonic minorant of w, h is non-

negative. \ If x is any point in 11
2 

x ••• x Q su ch that v(x) < 00 the 
\ . n 

pofential ~,(x) 'Pl (.) majorizes the non-negative harmonie function h(' ,x) 

on QI' Thus h(',x) is identically O. Remark' 1.2.3(b) then implies h is 

identically 0 and w is in n-P. 

From our exp1icit construction of ,greatest n-harmonic minorants of n-

superha\oriic fun,ct\Ï.ons it 

multiplication by "p~itiVe 
\ 

is clear that n-P is closed for finite sums, 

The 

be·used 

constants, and finite pointwise infi~um. 

foli~wing prop sition generalizes 

to p~ove the Cont nu~tion Theorem. 

a result of R.M. Hervé and ~ll 

Theorem 2.4.2: Let K be a mpact subset of 111 x ••• x 11 , e: any positive 
" n 

real number, and f a real valu d continuous function on K. ~en there 

exist Q and Q' real valued conti uous members of n-P such that for aIl x in K 

IQ(x) - Q' (x) f(x) 1 < e: 

If f is non-negative Q and Q' so that Q(x) ~ Q'(X) for aIl x 

in QI x ••• x Il n 

Proof: Fix 
~ 

Q1,·.·,Qn finite continuous positive pqtentials on QI"'" I1n 

respectively. Put, 

v {(P~P')/Ql""'Qn: P,P' real va1ued continuous members of n-P}, 

. , 

, / 

) 
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wnere QI' 

-+ QI (xl)' .... Qn (Xn)· From our previous disucssion it is ~lear V i8 a 

vector space of continuous functions containing thè constants. We wish 

to apply the vecto~ space version of the Stone-Weierstrass Theorem. If 

(P-P')!Ql· .. • 'Qn ls ln'V, 

1 (P-p')!Q . 
l 

which'is also in V'. It remaina only to show V separates points of , ' 

\ 

nl~ .. ·xfln· Let x = (x1' ... ,xn) and y =(Y1""'Yn) be diStinct points 

of QI x ..• x "n' Without 108S of generali ty we may assume xl and YI are not 

the same. We' show first there exist continuous potentials Pl and P; on nI 

\ 

Let w be a regular domain of nI containing xl and not containing YI' 

There e~ists a continuous psoitive 
1 

potential Plon nI such that Pl is not 

harmonie on w(Propositlon 1.1.11). Put Pl' = E
W 

Then Pl (Y'l) = P~ (YI) • 
Pl 

Since Pl is superharmonie, Pl (z) - p'i (z) ~ 0 for aH' z in w. Since Pl' 
, 

i8 harmonie on w we have from Remark 1.2.6(b),that Pl-Pl i8 either iden-

tica1ly 0 or strictly positive on w. It is not identical1y 0 because Pl 

is not in Hi(W). In part~eu1ar P1(xI ) > P~(Xl) 

required functions. 

are continuous members of n-P. Furthermore 

, 
hence Pl and Pl are the 

(p(y)-p'(y»!Ql(XI )·· .. 'Qp(xn ) = (PI(Y1)-P~(Yl»/Q1(YI) 
" 1 

_ ....... __ J__ pZ ".,1'I'IIJ',....l .. '. 
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PIus V does indeed separa te the poiJ;lts of nI x •.. x nn' We may now apply 

thè Stone-Weierstrass Theorem. Put 

M .. sup {Ql(x1 ), ""'Q (x ): (Xl"" ,x ) E: K} . n n n 

" Then there exist Q and Q' real valued continuous functions in n-P such that 

for aIl X = (Xl' .- .• ,xn) in K, 

, , 
1 «Q(x) - Q (x» /Ql (Xl)' 'Q (x »-(f(x)/Ql(xl)· ... ·Q (x »1 < E/M. n n ,n n 

Therefore 

< E 

and this proves the first part of the proposition. 

Finally, ff f is non-negative, put Q = Q t QI and Q' = 2·min(Q,Q'). 

Then Q majorizes QI on nI x ••• x nn and for any x in K, 

IQ(x) - Q' (x) - f(x)! = "Q(x) - QI (x) 1 - ! f(x) Il " 

< !Q(x) - Q'(x) - f(x)! 

< E 

The proof is complete. 

Following closely the method of R.M. Hervé we can prove the following 

result. (See [12J Lemma 13.1~ 

Theorem 2.4.r (Continuation Theorem). Let Ut'~2,U3 be relatively compact 

domains in nI x •• , x nn such that Ul C 

+ n-S (U3) with v bounded on au2 , 

ïS. c U2 c U2 c U3 and let v be in 
1 + 

Then there ,exist p,p' in n-S (nI x", x'nn) 

1 .... , ... ~ .... ,-". __ ._--_.. .. ---"-_ .... --,....';;....---- --------.---------------,--------~~---------------

q 

1 
1 
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such that,p' is a continuaus member of n-P and p(x) = p'(x) + v(x) 

for a11 x in ~l' 

Proof: Cn U' mi d i hU' -, U oose 2 open a connecte w t U2 c 2 c U 2 c 3' Let M 

be an upper bound for v on aU
2 

and m a positive lower bound for v on aU'2 • 

(Note m exists sinee v is'positive lower semicontin~ous ~nd aUi is compact). 

Let E be any positive real number smaller than m. Define ~ o~ the compact 

set K = au u au' by 2 ~ 1 1 
'1 M +e x in au

Z 

f(x) 

m-E x in au' z 

Then f is clearly continuous, Renee from the previous prqposition there 

" exist Q'and p' real valued continuous members of n-P such that for aIl x 
1 

in J(. 

IQ(x) - p'(x) - f(x)'! <: E: 

Thus for x ,in aU'2 we have Q (x) - p' (x) <: f (x) + e m ~ v(x) , That ia 

(1) Q(x) < v(x) + p'(x) for x ,in aU'2 

, -' , 
For x in a02 we have Q(x) - p'(x) > f(x) -E M ~ v(x). That' is 

(2) Q(x) > v(x) + p'(x) for x in au
2

, 

Define p on nI x , ,. x nn by 

p' (x) + v(x) 

p(x) inf (p' +v(x) .Q(x) ) x in U'2 -U
2 

, 
Q(x) x in nI ~. ,. x "n - U 2 ' 

\ 

\ 
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It is clear from inequality (1) that p is lower semicontinuous. Thus 

we may use the local property (Proposition 1.2.11) to show p is in 
\ 

+ n-S (rIl x ••• x nn)' For this it is c1early enough to consider only points 

in K. If x = (xl' •.• ,xn ) is in au2, choose ô
1

' .•• , ôn regu1ar domains in 

nI'" ., [ln iespectively su ch that x e: ô1 x ••• x ~n C ôl x •• ', x ôn C U'2 

Then 
Ô

1 
ô 

! ... ! p dp , •• dp n < 
xl xn 

Ô
1 ! ,.. ! (p' + v) dp 

lt
l 

< p' (x) + v' (x) 

p(x) (from (2», 

Fina1ly, if x =' (xl' ••• , xn) is in au '2' choose w
l

, •.• , wn regular domains 

respectively such that x e: w
l 

X ••• 

C Then 

< Q(x) 

Xw C 
n 

1Il
1 

x ••• x III 
. n 

= p(x) (from (1». 

+ Thus the local property holds and p ia in n-S (QI x •.• x nn)' C1early 

p and p' are thé required functions and we are done. 

Remark 2.4.4: The similar continuation theorem p'roved by R.M. Hervé for 

functions of one variable does not impose the boundedness restriction ~n v. A 

\ continuation theorem without any boundedness restriction in several variables 
\ 

wou1d enable us to prove that a set which is 10cal1y n-polar ls also global1y 

n-polar. However, at present we are unable to remove this restriction and the 
li 

validity of the local property remains a conjecture. 

: " 

Î 

, 
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\ 
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CHAPTER 3 

Principal Results 

In this chaptir we prove results in which the associated exceptional 

sets are,n-negligible. 

Theorem :3 .1.1. lt Is a 

In section 1 we prove the major result of the thesis, 

generalisation of the weIl' known cartan-Brel~t co~-, \ 

vergence theorem for a sequence of potentials (cf. Theorem 1.1.15(~).). 

We hope that since the Dirichlet problem cannot be solved on a general 

open set in QI x ••• x " this theorem can serve as a useful substitute. ,n 

In section 2 we present an application of this result to the study of thin 
, 

sets. In the last section we present a generalization'of Proposition 1.1.13. 

Section 1 T~e Convergence TheoTem 

We will demonstrate the' follow{ng result which we henceforth refer 

to as the Convergence Theorem. 
ri' 

Recall that it i8 necessary to assume Axiom D 

which gives the rrsult in one variable. 

Theorem 3.1.1: Let U be an open subset of QI x ••• x 'hn and (vk)k>l a de-

creasing sequence of uniformly locally lower bounded functions in n-S(U) 

with limit function v. Then v is in n-S(U) and equals v everywhere"except on an 

an n-negiigible set. 

We remark first that since v is the pointwise limit of a sequence of 

Borel measurable functions it too is Borel measurable. Since it is locally 
UJ. wn Iower bounded and bounded above by vI we see v is 11 x' ..• x 11 - Integrable 

" Xl xn 
for any choiee of relatively compact open sets wI '···, wn in QI.···' nn 

respectively and xI' •••• xn in w
I

' ...• 

feorem to v an:d such a measure. 

W • 
n 

Thus we may apply Fubini's 

.; 

',' 

", 
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At this point we introduce the fo110wing usefu1 notation. If f is an .. 
extended rea1 va1ued function on a set G in nI x ••• x !"In' for any integer i 

~ i ~ i 
frbm 1 to n, f and, f - are defined in G by 

Ai 
f. (x

1 
•...• x) 

. n 

Before proving the theorem we consider severa1 pre1iminary resu1ts. 

Lennna 3. 1. 2 : Let U1 •..• ,U be domains in nI"'" n respective1y, n > 2, n n -

and (w
k

)k>l a pointwise decreasing sequence of loca1ly bounded funetions 

+ in n-S (VI x ••• x Un) with limit function w. Suppose that for every positive 

integer k and (x
l 
•... ,x

n
_

1
) in U

1 
x ••• XU

n
_

l 
the mapping x

n 
-+ wk(xl' ... ,x

n
) 

is harmonie on U. Assume further that the Convergence Theorem holds on n. 

• 1 

, . 

+ U
1 

x ••• x U
n

_
1 

for pointwise decreasing sequences (vk)k>1 in (n-1)-8 (U
1 

x ••• x U
n

_
1

) , 

~ith vI loeally bounded. (This will later be an ,induction assumption.) 

Then w equa1s w everywhere except on an n-negligib1e set contai~ed in a set 

) 

N x Un where N is (n-l)-negligib1é in nI x .•. x!"I
n

• 
A ~n 

In addition w = w 

••• x U '" n 

Proof: Let (xl' •••• xn) be any point of U1 x ••• x Un and for 

from 1 
i 

be a sequence of regular domains in to n let (wf,~R.>l 

for each 9., ~+l c-
i n oo

i " 

wR, and = {xi}. Since w is nearly 
.11,>1 t 

on U
1 

x ••• x Un it follows trom Proposition 1.2.10 that 

(1) sup J ••• f 
9.. 

each integer i 

!"Ii such that 

n-superharmoJic 

--~--'~ __ ~ ... ~"rlW.Jb'IOa"",,1rOr ... __ ~------ ~ 
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<1 

Now by assumption we have for each k and t 

n 
wg, 

dp 
x 
n 

, , 

thus the Monotone Convergence Theorem imp1ies it i~ a180 true for w. 
\ 

Rence by (1) \. 

~ 

(2) w(x
1

, ..• ,x ) 
, n 

8Up J 
f, 

n-l 
wf, 

dp (z 1 x n-
n-1 

(1) (P~oposition 1.2.10). 

This ~ves the last assertion. 
" 

From Remark 2.3.7' the sequence 
'l' 

wf, 
(f ... Jw(zl'oo.,z l'x )dp (zl)'" 

n- n xl 
10 non-decreasin •. 1 

/ the mapping x + w(zl""'z l'x) is ,n n- n 

function on U • n 

We show now that the set E defined by 

E = {(Xl'''''~~) e: U1 x ... xUn:~(Xl""'Xn) < w(x1 ,ooo;Xn )} 

\0 
= {(Xl'''' ,xn) e: U1 x ... x Un :W\(X1,· .. ,xn ) < W(X1 ' .. · ,xn )} 

js--cotî'tained in a set of the form N x U where N is (n-l)-negligible in 
n 

a x ... x G 1: For X \ in U de fine 
1 n- . 0 n 

" 
"n 

U l!W (x1' .. ·,x)<w(x1' .. ·,x)}. n- n n 

1 

1 
1 

1 ----
,~ 

1 
1 
l 

l 
l' 
1 

---_r_~w_. __________ ~_-------__ '_\_~,---$-, .. ~~~~~ __ ~~ 
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C1early this set is (n-l)-negliglble by the assumption ëùncerning the 

Convergence Theorem on U{ ... x Un_l . Now fix any Xl in V . We claim E 
n n' 

1 
is eontained in E(x ) x U • For if (x..', ••• ,x ) is in E, sinee 

, n n 1. ,n 

'''n z -+- W (xl"" ,x l'z) and Z -+- w(xI', ••• ,x l'z) are both harmonie 
"n n- n n n- n 

, An 
on Vn and W (xl, .•. ,xn) < w(x1' ..• ,Xn) it follows from Remark 1.2.3(b) that 

(4) 
An 
W (xl' ... ,x ,z) <.w(xI' ... ,x l'z) for aIl 2: in U • n-l n n- n n n 

In particular (4} holds for zn = x~ Thus (xl"" ,xn~l) ls in E\(X~ ) 

and the elaim is proved. It follows from Proposition 2.2.7 that E ls 

n-negligible and we are done. 

Lennna 3 .1. ~ : Let (vk)k>l' v, and V be as in the Convergencé Theorem 

with v assumed ta be non-negative and vI lo~ally bounded. 

Borel measurable on U. 

Proof: Let a be.any real number. We must show that 

An 
Then v is 

\ 
Ani 

E = {(~",,~xn) E U:v (xl' ••• ,xn ) ~ a} ~p a Borel set. Let (w t )1>1 

be a eountable base of open sets of n CU) eons!sting of relatively 
l •...• n-l 

compact open sets. Then it is easy ta see that 

E = 

for aH z in w
1 

}. 

\ , 

Indeed if x= (xl' .•. ,x) ois in E, then for aIl positive Integers m 
,. n 

An / v (x) > a -(1 m) and hence there Is an t with (xl'" .. -,xn_l ) in w1 and 

v(z,xn) ~,a -(l/m) for aIl z in w~ . Conversely if X i8 in the right hand 

side, then for aIl P?sitlve integers m there is an 1 s~eh that (xl, .•. ,Xn_1) 

is in wR, and v(z,xn) ~ lX -(1/2m» a-(l/m) on 1Il1 • 'Thus ~ n (x) > a -,(l/m)., 

'" 

; 

1 
l' 
1 

1 
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Since m is arbitrary we have x ig. in E and the claim i8 proved. Tt 

thus suffices ta show that for rny re1ative1y compact open set 00 in 

II (U) and any real number B, 
1, ••. ,n-1 1 

e: 00, v(z,x ) ~ S fo~ aIl z in w} 
n 

is Borel. But this set· is Just 

00 x {x e: TI (U): v(z~x) > B for aIl z_in w}. 
i \ n n, , n - 1/ 

Thus we need consider on1y the last set-in this product. For that set 

we have 

1 
{x e: TI (U) :v(z,x ) L B for a11 z in oo}=- n {x e: Il (U) :vk(z,x ) > B - -;;-

n n n k,9,=l n n' n '" 

for a11 z in 00 }. 

Therefo~e we will be done once we show that for any k and any real number y, 

'. ' 1 

G = {x e:'n (U):vk(z,x ) > y 
n n n 

for aIl z in w } 
• 1 

\ 

is open. lndeed let x' 
n 

be a point of G. Since vk i8 lower semicontinuous, 

ofor every z in ; there exista ô ' a neighbourhood of z and ô 1 a neighbourhood 
, Z Z 

of x' Buch that 
n 

(1) Vk(z' ,z") '> r,tfor a11 z' 'in Ô
z 

and z" in ô~ 

Now {-6: z e: -;;;} i8 an open cover of 00 thua there exista a finite' subcover . \ z 
,\ " 

Then ô' ià a neighbourhood 
, 

{ô , ••• ,' ô } • Put ô 1 .. B' n. •• n ~ 
zl . zi, z1 Zt 

of x' annl for any x in 15 ' and z in ;. sinee (z,x ) i~ in ô x ô" for 
n in' n :Zi zi 

Thua G fa indeed open and we . 

are done. 

. :.. 

\ 

; 

/ 

l 
l 
i 

1 

1 
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Lemma 3.1. 4 : Let Wl '···, wn beDrelatively compact domains in QI;"" ~n 

respectively and v a non-negative locally bounded n-superharmo~ic function 
" , 

defined on a neighbourhood of wl'x ... x W . 
, ni 

\ 

w:, (xl'''''Xn)~ -+ J .•. f 

Then the mapping 

is the greatest n-harmonic nrlnorant of v on w
l 

x ••• x w
n 

• 

Proof: The proof i8 by induction on n. If n = 1 this is Axiom D. Suppose 

,1 

then n > 1 and the lemrr holds ,.for smaller integer:,,'. We have seen that w is 
+ ~ 

in n-H (wl x ••. x wn) (Theorem 2.3.6) and since v r:~:n-supeFharmonic on a 

neighbourhood of wl x ••• x w
n

' w minorizes V at each 'point of x W • 
n -, . 

No~ let u be an n-harmonie minorant of v, on (Ill x ••• x (Il • For any x in W ' 
n n n 

the induction hypothesis implies that the greatest (n-l)-harmonic minorant: 

x ••• x W is 
n-l 

w
n

_
l 

dl,! (z 1)' ex n-
n-l 

Thus 

Wl (Il n-l 
<f .. .Jv(Zl'···'Z 1,X)d~. (z) ... d~ (z 1) - n- n x 'x n-

I n-1 
1 

,1 
\ 

on W x ... x 
, b 1 

is a sequence of relatively compact subsets of W with 
c n 

Ok' C ok+! for each k and 0 L! ok 
k>l 

w
l 

x ••• xW
n 

and a11 sufficie'ii"tly l~rge k, 

in 

(1) 
} 

Let k -+ QI 

< 

Cl
k 

f u(xl' ••• ,x l'z )d~ (z) n- n x n 
n 01 
~ '~-l k 

f ... f v(zl""'z )dl1 (zl) .•• dll (z l)dll (z). 
n xl xn_

l 
n- x

n 
n 

) 

, 1 



( 

-75-

0" 

W . w 
1 n-l 

g:z + J ••• 1 v(z1""'z )d~ (z1)'" ~~x (zn-1) 
n n xl n-l 

+ i8 loeally bounded and in S (w ) (same p~oof as Proposition 1.2.8), the 
n n .. 

last expression in (1) converges to the greatest harmonie minorant of g on 

Wn evaluated at 

X 
n 

00 

+J g Cl~ x 
n 

X •• Axiom D implies 
n 

tIl
1 

tIl
n I ... J v d~ ••• dll 

. xl xn 

\ 
This completes the proof. 

this is just the mapping 

Thus (1) gives 

Corollary 3.1.5: Let w
I
"'" wn be re1atively compact domains in QI.···' Qn 

. ~ 

respeetively and (vk)k>l'o v, and~U as in the Convergence Theorem witH 

00
1 

x ••• xWn C U, v assumed to be non-negative, and v
1 

assumed to be l~cally 

bounded. Then for aIl (xl" •• ,x
n

) in wl x •.. x wn ' 

, 
(1) 

and hence ~or each integer i 

o wl (2) r ... Iv d~ 
xl 

Proof: 

W 
d n 
~x 

.n 

from i to n, 

w <1 001 d n = J ~x •• .J-v. '~ll 
n 'Xl 

w n ... , d~x 
n 

Letting k + ~ and applying the Monotone Conyerg~nce ~eokem we get ~: 
1 - 1 

similar resu1t for v. Furthermore' Theorem 2~3.6 implies 

, 1 
W
1 

0 00 
n . dl! ••• 1 d).! 

xl . '" xn 
• •• J v 

.' 

, 
1 
j 
1 
i 

1 
1 
j 

j 
1 
i 
: , 
\ 
1 

.\ 

1 

1 

! 

, 
l 
r' ! 

j 
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1 +' is in n-H (w
1 

x ••• x CIl >. 
1 n-

1 

In particular it is continuous and hence g 

'" '" 1 
minorizes v on wl x ••• x w

n
' Now: v is 0 locally bounded and n-superharmonic 

1 
on U (Proposition 1.2.10 and Proposition 1.2.11). Thus g minorizes the ijJ 

greatest n-harmonic minorant of v on CIl
l 

x ••• x W , n Lemma 3.1.4 gives us 

that for aIl (Xl"" ',xn > on w1 x "', x wn ' 

1 .. fi 
.. CIll !lin 

< 1 ... 1 v dp • •• dl1 • 
xl xn 

The reverse inequality being obvious we have equality and equation (1) does 

indeed hold. Finafly (2) follows sinee for each i and x in CIll )( ••• 

A ~1 ~ 

v(x) ~ v (x) ~ v(x). " 

Lemma 3.1. 6: Let (v
k

)k>l' v, and U be as }ll, the Convergence Theorem 

,with v assumed to be non-negative and vI assumed' to be locally ~ounded. 

Let U1, ..• , Un be relatively compact domains in °1"", On respective+y 

sùcb that U
1 

x ••• x U c U. Then 
, n 

is n-negligible. 

, Proof: lhe proof is by induction on n. For n • l the result follows from 

Theorem 1.1.15. Now assume n > 1 and the lem'ma holds for positive integers 

smal1er than n. Let 6 be a regular domain in ° wHh ô cU. ,Define -
n' • n n n 

, - ô 
~n n 

F .. {(x
1
,.· •• x)e: U

1
x ••• xU lxô:/v (xl' ••• ,x l,z)dp (z) 

" n n- on n- n xn n 

<5n 
< r v {x.. , ••• ,x l'z )dp (z)) " 

, J. n-, n x n 
n 

Ve first show F i8 n-negligible. 

/ 

\ 
\ 

l' 

---------------_.U_~~~. __ ll_' ______ ~ __________ __ 
T " . , 
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Then (wk)k>l is s pointwise decre_sing sequence of 10e_11y bOun~ funetion, 
\ 

in ~-s+ (Ul x •.. x Un_l x 'on) (Proposition 1.2.8, Proposition l.1.1~), 

and Proposition 1.2.S(c» with limit function w(Monotone Convergence Thedrem) 

d' such that for every k and (Xl" .. ,x
n

_1) in Ulx •.. x Un_l the mapping 
1 

our induction hy~othesis imp~iés the Convergence Theorem ho1ds on UI xI'" U 
n-l 

for pointwise decreasing + 
~equences in (n-l~-S (Ul 

x •.. x U
n

_
1

) with first \ 
\ " member locally bounded. Thus we may apply Lemma 3.1.2 and deduce w = w ~~~ -~-...... 

/' 
except on an n':"negligible subset of Ulx •.• x U l x 6 .' In order to /show F n- n \ 

\ i8 n-negligib1e it therefore suffices to prov, e that on U1 x ••• >; U l x cS 
n- 'll 

ô-

(1) 
A ~ n 
w(x

1
, ... ,X ) = f v (x

1
' •••• x l'z )dp (z). n n- n x n 

U î ~! \ 
~Q Let (xl •••. ,xn) be any point in U

1 
x ••• x U 1 x ô and for each1integer i n- n 

. i 
fr~m 1 to n-l let (w!)~>l 

\ 

bel a sequence of regular domain~ with 

for every 9, and n i = 
9,>1 wR, 

Again by Lemma 3.1.2 

= 

= 

(Propositon 1.2.1 ) 

1 l'ln 
sup' f ••• ! v dp 

t xn 

l n-1 
w)/, , wR, 

dp (zl) ••• dp (z ) 
- xl xU".1 n-

1 n-l ô wn Wn An n JIv JIv 

sup l' 
R. 

••• Iv (~l""'Z- l'z )dp (z)d (zl) .. dP (z) n- n x n xl x n 
• n n 

(Corollary 3.1.5 
ô 

"n n 
f v (x1 •... ,x l'z )dp (z) n- n x n 

U 

,~ 
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/ 
/ 

(This 1ast equality hôlds tor the following r~ason: from Lemma 3.1.3, 
1 

Proposition 1. 2. 8, and Proposition 1.2.10 ' we see the mapping 
ô 

t 
hn n + 

'(Ul'···,U +fv (u", .•. ,u l'z )dp (z) is in (n-1)-S (U1X. .. xUn_1). ,n- .II n- n x n 
n 

Now by again app1ying Proposition 1.2.10 the result fol1ows). We therefore 

have veriried (1) and have h'ence shown F i8 n-negligib1e. 

Now for each integer i from 1 to n let Bi be a countable'base of 
. /' , 

open sets of Ui cons~sting of regu~ar domains. Define the sets Gi by 

i W 

1 v (X1'···'Xi-l,zi,xif1,···,Xn)dPxi (zi) 
el 

< 

From what we have just, seen and the fact that a countable union of n-
, 

negligible sets ls n-n,eg1igib1e, Gi is'n-negligib1e. 

Define the set K by 

co 

• 1 

We claim K i8 n-negigibie. Indeed by ,the symmetric nature of K it i8 

enough to show t,hat there i8 an (n-I)-neglig:1:ble, set N in ~1 x ..• x Un_1 

8uch that if (xl"" '~_I)is in 'Ul x ••• x Un_1 - N, P(xl ,··· ,xn_1) ',== h n x Un: 

(xI""'Xn~ € K} ia polar. WeIl Just take N ta be the empty set. For 
" 

,if (xl""'Xn~l) ia any point in Ulx •.• x Un_l' P(x1, ... ,xn_l ) i8 polar 

by the Convergence Theorem on U
I

• 
, 1 l' 0 

1 

1 

i 
[ 

1 

l 
i 
t 
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'1 n ' 
Thus E = K u U G i is n-negligible and we will be done if we can 

i=l 
!3how that for (xi ..... xn) in U-E, V(x1,· .. ,xn ) = v(x1 ' ••• ,Xn ). 

Indeed let(x
1

, ••• ,X
n

) be a fixed point in U-E. Without loss of, 

generality we may assume 

(2) 

1 
1 

We can find, for each integer i from 1 to n, 

-i 1· 
such that for each R,i' wR, + 1 c ooR-

i i 

i 
sequences (wJI, ) JI, >1 

i i-
in B. 

1 

{x.} • 
1 

l 
Now for each 

1 n 
wp wi 

'1 n dp .•• dp) n 

xl xn 21 "" ''''n 
positive integer'k the n-time indexed sequence (J ••• J v

k 

increases in each R,{ ,if a11 I{)ther indices 'tj' j 1: i, are fixed 
1 

(Proposition 1.1.6). The Monotone Convergence Theorem then gives the same 

00 JI, ooR, 
result f~r ( J... 1 v dp L.. d n) • Therefore 

xl x
n 

21 , .. ·,2
n 

001 
wn 

(prOPOSlion ~(xl"" .xn) 
R,l R, 

sup J ... Iv dp dp n 1.2.10) 
J/.1" .• , JI, xl x 

n 
, n 

Il) 1 n 
R,1 w,Q, 

f ... 1 d n ) 1 \ ;: sup ( sup v dp ~ •• Px 
JI, Jl,l'''' R, l 

xl n 
n 'n-

,1 n-1 

\ 
\ 

'" sup 
R­
n 

n w
tn 

J dp (z) 
x n 

n 

w~ wR, 

( sup f ... 1 v(zl"" z )dp tz
l

) ... dp n-tz 1») 
n x x n-

\ ..... , R.
n

_1 1 ,n-1 

(from the Monotone Convergence Theorem and Fubini 's Theorem) 
n 

n 
(Binee w! 

n 

> sup 
1, 

n 

OOR, 
An q 

! v (xl' •••• x l' Z ) dp t z ) n- n x n 
n n 

, wJl, 

f v(x
1

' .' •• ,X l'z )dp ~z) n- n x, n n, 

is in B and (xl" •• ,x) is not in G ) n 1 n n 

(Proposition' 1. 2.10) 
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(Proposition 1.1.6) 

= v(xI'···,x) 
1 n 

(equation (2». 

This completes the proof. , 

Proof of the Convergence Theo rem: Deffne E ~o be 

E == {x E: U:v(x) < v(x)} 
\ ' 

We must show E is n-negligible Let us suppose first that VI is locally 

bounded above. Let Ul"",Un be relatively compact'ope~ sets in QI'"'' !".ln 

respectively with Choose u to be a function n-harmonic 

on a neighbourhood of ,Ul x ••• x Un ~ such that v(x) + u(x) i8 positive for 

every x in U x ••• x U . 
l n 

Then wb may1apply Lemma 3.1.6 to t~e sequence 
1 

ta deduce 

.... x U : 
n 

is n-negligible. Now by applying the local property for n-negligible sets 

we seel E is n-negligible. 
1 

Thus the theorem holds if vl.is locally bounded. 

lb general let va be a positive continuous member of n-S+(U). r 1 
each pair of"'positiveintegers k and:R. we define wk,R. on U to be 

For 

1 1 
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( 

() 
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Then for each .t the sequence (w
k 

9) k>l i5 in n-S(U), . it is uniformly 
~I ' -

'locally lower, bqunded, it decreases pointwise ta a function we caU w ~ 

and w
1 

R, i8 locally bounded above. By the special case of the theorem , 
A 

which we have just verified, WQ, == w.t except on an n-negligible subset 

Put E = U E 
R..>l 9, 

Then E is n-negligible (Proposition 2.2.6). 
, 

It is clear that fo.r aIl x in U, wJc ,Hl(x) ~ Wk,R,(X) hence wR,+l(x) ~ W.t(X) , 

that is' (w R..) 2>1 i8 à pointwise increasing sequence of functions. Notice 

Indeed if v:(x) < "" , then also that for each x in U,. v(x) = lim W 9- (x). 
R,-too 

hence v(x) ::: lim w 9, (x) • 
R,-too 

fc;>r a11 R. sufficiently large v(x) ::: W R, (x) If 

v(x) = 00, wk,.t(x) = R,vo(x) for 411 R. and k hence wR,(x) = R, vo(x) . 

Letting R, + 00, gives lim w.t (x) .. 00 = v(x). Denote lim ~R.. by w. 
R,~ 2-too 

Then w is the limit of an increasing sequence in n-S(U), it 15 not i~lentièally ()O 

" on a, eonnected component of U (sinee. it is bounded by' vI) ,therefore it is 

in n-S(V). lt minorizek v on U hence since ft is lower semicontinuous it 

. '" minorizes v on U. It follows that if x i8 in' V-E, 

v(x) = Hm wQ,(x) 
R,~ 

lim ~J,'(x) 
i~ \ 

::: w(x) 

< v(x) 

< v(x) 

This completes the proof. 

Now by using the topol!>gical lemma of Choquet ([IJ page 3), we deduce 

, l' 
easily the more general form of the convergence result, 

<iililiiIIIIIMQllIIlœlllll' ____ IIIIF .lInll' .1 ___ 'lIIiIllIlU .... _______ -:,-,,":"', -:-;--;--~T ....,.....--:.. -, ·"',-,-;;:t~:-;.'"='~7', -,,:,,,, ';;.t-:'f,,"I'J,,:1'#, ~u r, -:--..... _--• ..r-.-_ .... , 
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Theorem 3.1. 7: Let (vi) i e:I be any family of locally uniformly lower 

bounded n-superharmonic functions on an open set and let v be the point-

wise lower envelope 'of this family. Then v = v except on an n-negligible 

set •. 

Corollary 3.1.8: Let v be in n-S+(n
l

X ••• xQ) and let E be any subset of 
. n 

QI x •• : x Qn' Then for a11 x except in an n-negligible set 

iE(x) 
v 

Using the fact that a countable union àf n-negligible sets i8 n­.... 

negligible we also deduce the following result. 

Corol1ary 3.1. 9: Let U be open in 01 x ••• X:'On and (v
k

)k>l a sequence of 

uniformly locall)" lower bounded functions in n-S (U) • Then for aIl x of 

U except an n-negligible subset 

lim inf v
k 

(x) 
k-+ oo , 

Section 2 Thin Sets 

Definition 3.2.1: Let E be contained in U an open SU~sét of QI x r.. x On' 

and let x be any point in U. We will say E i6 thin at x in U if' one of the 

following three .properties holds: 

(1) x is not in E 

+ and there exists w in n-S (U) with lim inf w(y) > w(x). 
y-+x 

(2) x iS
I 
in E - E 

y e: E 

(3) . x is' in E, {x} is ,~-polar, and '(1) or (2) holds for x and E-{x} • 

In (3) ab ove nothing ie }.ost in taking x to be n-polar as opposed ta 

n-negligible. We demonstrate this in the following simple result. 

" 

, 
1 

~ 
1 

1 ., 

1\ 
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Proposition 3.2.2: A point set {x} 

and,only if it is n-neg1igib1e. 
\ 

\ 
\ 
t' 

~s n-polar if 

r , 
'~ 

Proof: Sinee n-polar sets are n-negligible(Propositlon 2.2.12) there Is 

on1y one asslrtion to prove and this we d~~nduetlon on n. ,Lf n = 1 " 

there is nothing to show. Suppose then n > 1 and the proPosition holds 

for integ~r8 smaller than n. Let" {x} {(Xl" •. ,xJ} be noo;negligible. 
, 

Without 105s of. generality we may assume xl is not polar i1 rll for 

if it were, bd = {xl }x{(x
2

, ... ,xn )}wou1d be n-polar. (Pr~position 2. L 2). 

Now sinee {x} i8 n-negligiblethere 18 a polar set P in QI such that if YI 

(xl,.' .. ,x)} 18 
; n 
, 

(n-l)-negligible. Since {Xl} i6 not polar xl can not be ln P. Renee 
, 

{(Y2""'Yn)} e!l2 x ... x Q:ri(Y1 ""'Yn) ""{(x1 , ... ,xn)}" {(?c2'''''xn )}. 

Thus (x
2

, ... ,x
n

) 18 (n-l)-negligible and hence by the inductive hypoth'esi5 

18 n-polar. ' l t follows {(x)} :; {Xl"~"":&~:)} 1s n-polar. , 

We wish now to apply the Continuation, Theorem and deduee a local 

property of thinness. 
\ 

Lennna 3.2.3: Let f and g be positive extended real valued funetions 
l '. 

defined on a Hausdorff spaee X,E'a subset of X, and x a point in E -E., 

Then if h is defined in X as 11(y) = min(f(y) ,g(y». we have'" 

(1) lim inf h(y) = min( lim inf f(y), lim inf g(y)') 
y -+ x 
y e: E 

y+x 
y E E 

y+X 
y €: E 

\ 

Proof: Clear1y the 1eft band side of (1) 18 smal1er than or equa1 to'the 
, 

right band side. If À1J À2,À3 are rea! numbers with 1.
1 

> ,1.2 > "3 and the ' 

right hand side of (1) is bigger than À1J then there eRist open sets W
1

,W
2 

such that f(y) ..?: À1 f~r y in W1 n E and g(y) ..?: "1 for y in W2 n E. Thus 

bey) > À2 on Wl n W2 a E and hence 

_________ ... _i\W ... rijjlMio_ ............ " ........... -' ... 1Ii1 ..... -.. ---------r----'~-. --.-r--------

\ 

--Y-' 
,j 

1 i 
\ 

: 
1 

! 
; 
1 

l 



( 

\ ' 

() 

-84-

Um inf h(y) ~ À2 > À3 
Y + x 
y f: E 

This proves the result. 

1 Lennna 3.2.4': Let E be thin at the point 

+ 
Th~n there exists w in n-S (U) sueh that ,w , 

lim inf w(y) > w(x) 
y + x" 

y f: E-{x} 

x 1 the open set U with x in E 

1 if loeally bounded and 

) \ 

Proof: + By definition there exists v in n-S (U) sueh that 
, 

lim i'nf v'(y) > v(x). 
y + x 

y f: E-{x} 

Let u'be a eontinuou~ member of n-S+(U) with u(x) lying strictly between 

theae two numbers. \ Define w on U, by w(y) = min(u(y),v(y». Then w ia in 

+ n-S (U), lt ls loeally bounded, and from Lemma 3.2.3 

lim inf'w(y) 
y + x \ 

y f: E-{x} 

eompleting the proof. 

1 
1 

= mir ( lim inf 
\ 

\ y-

= u(~) 
\ 

\ 
\ 

> v(x~ 

\ 
= w(x) \ 

y+x 
E E-{x} 

,,' 

vey), lim inf u(y» 
y+x 

y E E-{x} 

Proposition 3.2.5 (local pr9perty of thinness) Let E be a subset of 

"1 ." •• X"n and x in ~ for some .. :ghbourhood " of x we have • n E 

thin at x in 00, then E i8 thin at x in Ul x .... x Un' 

.. 
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, 
Proof: Let U

l
,U2 be relatlvely compact neighbourhoods, of x with 

U
I 

c U2 c U2 C w. From the previous leJIDlla there exists w in n-S + (~) such 

that w ls bounded on Ü2 and 

Op 

lim inf w(y) > w(x). 
y 0+ X 

Y E: E-{x} 

+ ' From Theorem 2.4.3 there exist PI,P2 in n-S (nI X ... xQn' such that Pz 

ls continuous and Pl (y)= P2'{y)+w(y) for a11 y in U
l

• Thereforfi} 

..l-

lim inf Pl (y) ::: lim inf (P2 (y) + w(y» 
y + x" y + x 

y E: E-{x} y e: E-{x} . 

This. completes the proof. 

= P2 (x) + lim .inf w(y) 
y + x 

y e: E-{x} 

From now on we will Just refer to a set as being thin at a point 

wlthoùt reference tOI 80y open set. 
i 

Uslng tools as in [11 and the Convergence Theorem we show below in 
. 

,Proposition, 3.2.7 that the set of points in a given set at 'which the set 

ia thin 1s n-negligible. 

" ,\ 

1 0 

'" 

" c, 

.J.; ( t..', 

. '~." 
1 ~ 

( 

/ 

!' , , 

1 

1 
, 

\ 1 
1 
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;~~~proPosition 3.2.6: 
'. 1 

Let E be a subset of f1. x •• : x % and x a point in 

/ ., 

1 

" 

i 

o 

-----------nI ,x ••• X-~E.-.._TheIl~E_~~~~vXif and only if for each positive 
. + 

continuous v in n-S (1\ x ••• 
p. nw '. 

x n ) there exists a neighbourhood w of x such 
n 

\ 
that R' (x) < v(x). 

v 

-
Proof; Suppose first E ls thln at:l. If x lB not ln E we cao find III a 

Enw 
neighbourhood of x such that w n E = ~'~ Hence R 'l«) = 0 < v(x). Thus we 

, \ V • 

may assume x ia in E. There exists w in~-s+(~ x ... xon
) 8uch that 

lim inf w(x) ~ w(x) '\\ 
y -+ x 

y e: E 

Choose a real number À 80 that ÀV(X} lies strict! between both members of , 

this inequality. Since v la continuous 

\" 

Hm inf (w(y) - À ~(y» = (lim inf (y» - Àv(x) 
y-+x y+x 
y E E Y e:'E 

There~~ exists 

- w(y} - ÀV(Y) > oP hence 

a neighbourhood III of 
\ \ 

for all y in nI 

x such t at for y in w 

E" w 
w(y) ~ l).v(~) .,.' It 

o· E, 

follows { 

)' , 

) 

Since À Is positive the resu1t follows 

" + 
Conversely let 'i' be a positive continuous me,mber of n-;-S (01 )( x '1 ) 

1\ , E Ow 

and suppose' there eXista a neighbourhood w of x ,such that, R (x) " v • 
< 'v(x}. 

. . 

, , , , 
1" 
1· 

1 
J , 
l 
: 
1 

,1 
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We .y assume x Is in E for othervise there Is nothing to show. There, 
, + 1 

exista w in n-S (01 x ••• x On)' such that w ma'jorizes v on E 0. II) and w(t> < v(x): 

It follows 

l1m inf w(y) ~ lim inf vey) 
y ... x y+x 
yEE YEE 

"> v(x) 

> v(x) • 

Thus E is thin at x and we are done. 

, 
Proposition 3.2.7: Let E be a subset of 01 x ••• x nn. Then T .. {x & E: 

E ia thin at x} is n-negligib le:' 
, . 

Proof: Let (lI)i)l~l be a,countable ~~se of open sets of 01 x ••• x nn' 

+ v a continuons member of n-S (01 x ••• x nn) and x 11n T. From Proposition 
~ , 

3.2.6 there exists an, integer 1 suchvthat w1 1~ a neighbourhood of x and 
(Ê-x) n w1 ~v ex) < v(x). Sinee {x} is n-po1ar It follows 

1'" / 

/ 

< En lI)i-{x} 
- R· (x) 
• v 

< v(x) 

.-

(Corollary 2.2.16) 

(sinee x Is in E n w1) . 

1 , 
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This shows that 

This set i8 n-negligible by Corallary 3.1. 8 and Propos ition 2.2.6. 

The proof i9 complete. 

Section 3 The Extension Theorem 

1 
Theorem 3.3.1: .Let N pe a closed n-negligible subset of an open set U 

in nI x ••• x nn and v an n-superharmonic ffunètion on U-N that is locally 
1 

lower bounded on U. (By this we mean for every compa~t set K, v is lower, 
/ -

bounded dn "'(U-N) n IC.) Then there exists a unique member of n-S(U) which 

equals v on U-N. 

Notice that no generality i9 lost in hav{ng v in n-S(U-N) as opposed 

to n-hyperharmonic on U-N. For if v were identical1y m on a'connected component 
. 

of U-N we could just extend it to be IX) on the whole component. 

Remark 3.3.2: Define h on U by 
~ 

h{x) = 

v(x) 

lim inf vez) 
z-+x 

z e: U-N 

x in U-N 

x in N 

Notice h is Borel measurable. Theorem 2.2.17 implies that if the 

Extension Theorem holds then the extension must be h. (This gives the 

uniqueness assertion immediately). However, we cannot show directly t~at h ' 

is the required extension. The idea of the proof ls ta extend u(x,·) 

n-hyperha~anlcal1y for "most" x by an inductive procedure. (This procedure 

\1 
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, 

" 

, , 

is of course extending by means pf limit infimum in the 1ast n~l variables. 
, 
" 

Notice this' gives a funetion which majorizes h(x.·». 
.' " 

Then it is easy 
, : 

te extend it to aIl of N. We> then show we get a nearly n-superharmonic 

function on U and the lewer semicontinuous regul~rizati6r of it gi~es the 

required solution. 

Proof of the theorem: , The proof is by induction on n. If n = 1 'it is just 
. 
Proposition 1.1.13. Now assume n > 1 and the theorem ho1ds for positive 

1 

integers smailer than n. Since N is n-neglig~ble.there exists 

, ". set P 'such that if zl ia ~n TIl (lJ)-P, NI (zl) is (n-1)ïnegÙg;f.ble 

a G
ô 

polar 
\ 

in 

nZ x.,. x nn and closed. By the indu~tion hypothesis, for each such zI' 

the mapping (zZ' .... zn) -1- v(zl .... 'zn) can be extènde~ to on7"that i6 (n-1)­

hype~harmonic on .ul~zl)' Thus, by a slight abuse of notation, we may assume v 
1 

is defined everywhere on U excep~ on M. where 

M = N () {( zl' .... i ). E: U: zi e: P}, . n • 

and,for each zl,in'. TIl (U)-p, 'the mapping (z2'· .. ,zn) + v(zl P" ,zn) ia (n-l)­

hYgerharmonic on-U1(zl)' As we observed in Remark'3I.1.Z this mapping. 
l , 
~jorizes h(z l' . )for su ch zl' 

Observe that M is n-polar in QI X ••• x Qn ainee it is contained in 

P x Q2 x ••• x ~ (Propositi~n 2.1.12). Therefore there exists u.in 

+ n-S (01 x ••• x nn) such that u(z) = <Xl for aIl z in M. nèfine for each 

positive integer k the :uuction ~ on U by 

v,(z) + k -Iu(z) z in U-M 

~(z) = 

00 z in M • 

/ 

• 1( 

, . 

. , 



; 

1 c; 
t 1 

l 
J 

, , 

1 

t 
i 
~ 

! 
i , 
l 
i 

,0 

, 
1 

. ' ' 

We c1aim ~ 'i~ a n(~ar1y n-superharmonie fun tion on u~ C1early ~ is 

loeally lower bounded. Let 15 'J~I be regular domains in QI" •• , ~ 
l"'" ni, n 

./ 
respective1y with 01 x •• , x on' eo~tai a in U and (x1I ' •• ,xn) a point 

in 61 x ... x ôn ' We,must sh~w 

1 _ 01 on 
r ~(z1-""'z)(p x ... x p )(dz 
, n xl ,xn 

(1) 

" 1 

.• ~ x ) . 
n 

Since N is a Borel measurab1e set with 0 product measur~ (Remark 2.2.14), 

\ ' -1 
~ equa1s the 10cally lower baunded Borel measurab1e func..tion h + k _ u 

-1 °1 on 
on U-N (here they are both just v + k u), and p ~ ••• x p ia totally 

1 xl xn 
finite we may apply Fuhini's Theorem aQd deduee 

. ° il. ° n" 
-1 u. (zl'" .,z)(p : x ... xp )(d2i ... 

K n xl xn 

1 

dz ) 
n 

"'1, ° 1 on 
= f (h + k u)(zl' ... 'z )(p x~ •• xp )(dzl ... ,dzn) 

• . n xl x
n 

61 
(ainee P has 0 p~ ~asure) 

/ 
/ 

/ 

~l 
f ~(zl'X2"",xn)dpx (Zl) 

zlE01-P 1 
< 

(This.1aat inequality followa fro~ the fact that if zl i8 in ITl(U)-P, the 

mâpping (z~"",zn)"" ~(zl"""Z~) ia (n-l)-hyperharmonic on Ul(~l»' Thus 

(:1) will be pro:ved if we ean show 

l' 

'l' 

/ 
! 

i 
I-
I 



f 
l' 

o 

\ 

. 
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l' 

(2) 
cS
l J ~(zl,x2" .. ;Xn)dP

xI 
(zl) < 

• 

Suppose ftrst (xI""'x~) ts in U-N. Sinee N is rl-negligible there 

exists an (n-l)-negligib:èe set Q in 02 x •.• x On such that if (z2"'" zn) 
..Jo , 

is in °
2
')( .•• XQ -Q, N

2
, (Z.2""'z) is po;I.ar. If (x

2
' .•• ,x) 'is in 

-ln , ••• , n n . n 

n~ x .... x nn -Q _ then (2) holds since by Proposition 1.1.13 tpere exists a 

function hyperharmon1c on U2 (x
2

' .' •• ,x ) whieh equals "., ~ , ... ,n n 

everywhere ex~ept OQ N
2 

(x
2

, •.. ,x,), a Borel (closed) set' of 
.. "11' .... ,nil, n 

measure,O. ~Now use the fact that xl is not in N
Z 

'(x
2

, .•• ,x). 
, .. . ,n n 

() • 1 \ 

(x
2 

t ••• ,x ) 1s in Q, sinee ~ is n-hyperharmon1c ~Pi U-N,N is closed, and Q 
ni." _ . - "II -

is' (n-Ij-negligible,' it foll~ws from Theorem 2.2.17 thJt ther'e is a sequence 
, 1 

Cl) R.>1 in fl2 x •• "x nn çonverging ta (x2 ' .•• '~n) such that for every t,yR. , 
{ - ~ 1 

( t-
i8 not in 9, x1,y ) is, not in N, 'and 

~:..f* 

Thus from the previous case we'have for each t,' 

-(3) 

" , 

TaUng lower limits' as' t -+ 00 givés 

(4) 

(5) 

(6) 

1" 

. , 

• 



/, 
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l ' 

/ 

> 

, ' 

Thus (2) holds if ,(x , ••• ,x ) 18 in U-N" 
l n 

If (xl"'" xn) 18 in M, (2) elearly holds sinee in this case' 

~(Xl""'Xn) = m 

1 

, Finally suppose (xl"" ,lÇn) . ls in N-M; Then xl ls not in P and 
" .' t 
,ther~fore NI,(xl ) is (n-l)-negligible.\ Slnce the mapping (z2"" ,zn) 4-

.~(zl,~ .. ,zn) ls ,(n-l)-superharmonic in U
l 

(Xl) we qm find a sequence 

g, 
(y ) R.>1 in 02 x ••• x nn such that for every 

, R. R. 
t, Y is not in NI (Xl)' (y ) R.~l' 

, 
converges to (x2 '·· .,xn), and 

R. 
~ (x!" ••• , xn) "" lim inf '\ (xI,Y ) 

R.-+<x> • 
. ~ \,\\ 
R.) • 1 

q:'heorem 2.2.17). Since (xI'y )1 18\ not in N we may appl)t a previous 

and proeeed exac tly as 1 in inequali ties (3)' - (7) to deduce (2) holds. 

case 

Thus (2) holds for a11 (Xl"'" x~) if!. U and therefore ~ ,~s indeèd nearly 

n-superharmQnle. 
, 1 

Define w on U by 
\ 

Il 

,w(X) = Hm inf 
k-+<» 

r 

~(x). 

.J 
,,"1 

Then w ls nearly n-superharmonic and {ience w is n-superharmonic on U. .. ...) , ... 
, We cla:Lm w = v on U-N. WeIl e1early W ... v on the subset of' U-N where u - 18 

. \ . 
Hnite, that ls evetyWhere on U-N except an'n-polar set 

~ , • Since n-polar sets 

are n-negligible lt follow8 W .,. v on U""N (Coro11ary 2.2.18). Thus w 
1 

1s the required extension and we are done. / . 

" 

1 
, , 
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,1 

Remark 3.3.2: Let h be n-harmonlc on U-N where ,U 18 open ;l.n nI x •.. x nn 

and N i8 n-negli.glbie. If h 18 locb~ly bounded on U\hen we may appIy'tue 
,', 0 • . 

Extensio~ "Theorem to h and (-h) and deduce there ls a unique ri-harmonie 

extension of h ta U • 
, \, 

r 1\ 

\ 1 

,. 

'. 

/ 

., 

./ 

/ 

; \ 
\ 

'. 
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CHAPTER 4/ 

1\ .. 1 ~... J , .. 

Applications to ~lurisuperharmon~ Functions , 

(. 
" 

1 

"'In th s chapter we app1y the results obtained so far to the, study 
1 r 

of plurisuperharmonic functions. In particular we ~nsider tWOt typfl!s of 

r "eJS.cep.tional. set"s", th~ n-P œgl'l.gible 3ets and the sets- of Ronkih) r-capac;ty 

zero, and prove the0ïrms ~nalago~s to Theorem 3.1.1 and Thelfem 3.3.1 in .. j • 

" '-\ J " .. 
whieh the exceptional sets are either of these .types. ~ 

" / -= 

• 

Section 1 Introduction 

2 ' 
RecaU that C( = :R ) is a Brelot ,space if the ~a onic functiops are 

o • \, J, 
twice eontlnuously differentiable fun ct ions satis ing Laplace "s equation . . 

the 
o 

~d the set of dises ls th~ bas:e of regula.r domains. However only tht; open ' 

sets ,having a Green' futtetion (for exa~ple the re1ative1y compact open sets) .. 
have a positive potential. 

.,.. 
Thu; to apply results obtained so far to Cn we 

• .5 
.} 

must first of aIl make some -additional. def:i,nitions and che'Çk that certain 
1 \ 

fUJdamental p.roperties go through. For more Aetails see [10]. 

lirst of aIl the hyperharmonic, superharmonic'~ n-hyperhat;monic, and n-

s~pet'harmonic functions are defined exact1y as before. 
\ They a11 satisfy 

a local pr0l'~rty ~ and therefo~e they} have' the Mme basic properUes as the ,. 

correspbn~ing fonctions we have been studying. It is a1so ~~that the 
; . 

composition of a su~erharmonic and a holomorphie mapping i~("superharmonic. 
/ .~ 

We next consider the pplarsets._ 

Definition 4. Hl: A su1>eet E of C is said to be polar if there exists a v 

superharmoniè'on a neighboùrhood of É such that 1J'(z) .. co for a11 z in E • 
1 

1 1 

., 

~ 
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'" 

,0 
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In this definition wè can ass~e v is non-negative sinee clearly, 
" 

beeause of the lower' semieont'inuity of '\'1:, v la non-negative on a neighbourhood, 

of E. lt thus fol1ows from the local property thl!t our two no'tions of polar 
, 

'set agree if E ia con~ained in an open ~et having a Green function. lt can 
". , 

, , 

be shown, a countab1e union of pol.ar sets i8' pQ,lar. Polar sets a1ao have the 

following global pro~erty: a set E is polar if aad only if there exista a 

superharmonic function v on C such that v~,z} = co for aIl z in E. Furtherm,?re 

it can be shawn that the polar sets are precisely the. sets of outer l.ogari thmic 
" 

capacity O. T,hus point sets are polar and Hne segments, ,are not (--Since the 

logarithmic capacity of a ·!ine segment i9 1/4 its length). 
a, 1 

With this definition of polçllê we,define the n-negligible sets ~ust as 

before. 
\ /~ . 

lt. ia immediate that if 11
1
"", n are oplan subsets of C p.aving 

, n 

a Green function, then a subset E of 01 x .. ,.X ~ is n-negli~il?le in this 

new sense'. ff aI}d only' if i t ,is n-negligib1e in QI x... x'nn i'Il the s~nse 

of Definition 2.2.1. We can also show (exactly as in the proof of Prop~sitton 
, 1 

2.2.6) a eoun~able union df 'n-negligible- sets 'is n-negligible. lUth this 

, ' 
fact w~. cal). deduce, a11 basic properties. In particùlar we have that a set 

, , 

E i~-negligible if and only if for a11 .=~tegers i fr0l!! 1 t'b n, 

,ig (n-l)-negligib1e tsee Proposition 2.2.4), (for v in n-S(U) where, U i9 an·· .. \.. 

n • 
open subset of C', n ~ 2, and k an integer between 1 and. n-1 there exists a 

. 'k 
k-negligible set N in C such that if x i9 in III, ••• ,k (U)-N ,the mapping 

, 
y -+ v(x,y) is in (~-k)-S(Ul, •.• ,k(x) (see Proposition 2.2.10), and for w in 

n-S (U) Când Nan. n-negl1gible set, 

/~' 

Il' III . 
w(x) .. lim inf wez) 

~ 
z -+ 'X 

Z e: U-N 

t" 

---

\ 
, 

, 1 
1 

1 

Î 
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, 
for aIl x in U. (See Theorem 2.2.17). 

1 

, Finally we deduce that the Convergence Theorem and Extension Theorem 
, 

n 
both hold on any open subset U of C. First suppose (vk)k>l is a pointwlse 

. 
decreasing and loca11y uniformly lower bounded sequence in n-Sup(U) with 

limit function v. Choose (UR.)R.~l a 'sequence of re;ative1t compact open sets 

in Cn such that U u. = y. Théorem 3.1.1 imp1ies {x e: U~ :~~x) < v(x)} ls 
R.>1 1" , 1" 
-, 

n-negligible for each'i,. It follows 

{x E 'U: ~(x) < v(x)} = U {x E UR.: ~(x) < v(x)} 
1',>1 

18 n-negligible and hence the Conve.rgence Theorem does indeed ho Id • > Suppose 1 

\ , 

,~\ _ now w ls n-superharmonic on U-E where E ia n-n~gligible and w/is locally 

lower bounded on U. Define w' on U by 

w(x.) 

w' (x) = 

lim j,nf wez) .... ~. 
z + x 

Z E U-E 

"X in U-E 

\ 
\ 
\ 

'\ 
x\in E 

\ 

\ 
\ 
1 

\ 

i;j 

Theorem 3.3.1 and Theorem 2.2.17 imp1y that w' is n-superharmonic in any 

relatively comPact open subset of U. Thu~ from t~e local ?roperty w' ~s 
in n-S(U) and we see the Extension Theorem too 1s Iva1id. 

, Section 2. n-P Negligib1e Sets 

Definition 4.2.1: 
n 

Let U be an open sub~et of'C ,n > 1. An extended real 

valued- funct.ion v deflned, o~ l! is said to be plurisuperharmoriic on U if 

vez) > -co for aU z in U, 

,,..,.~ 

I~ l , 



-97-

'CH) 
\ 

V is nat identically 00 on a conneeted component of U, 
, . 

Ciii) V is iower semieorttinuous, • r 

(iv) n 
~r every z and w in C the mapping À -+ v{ Àz + w) ls hyper-

harmonie on {À e:C: ÀZ + w e: U} •. 

We denote the set of a11 plurisuperharmonic functions on ,U by P Sup (U). 

n 
, Let v be in P SuP.(U). If {el' ... ,en} i8 the canonieal ba:~8 ,of 1 C , 

by choosing in (iV)" z:= e i fQr anYr 1 between l.and-n and w =' : e j -ei , 
, j \~I, 

we see that v is separat'ely11yperhartnonic on U. Since v in addition 

satisfies (i),(ii), and (Hi) we seev'is inn-Sup(U}. Thus P Sup(U) 

18 a subset of n-Sup(U). It kS now almost lnunediate that a convergence ,'( 
'-, 

thearem analagous ta Theorem 3.1.1 holds for P Sup(U) in which the exceptional 

\ 
set is n-negliglble. However, as we shall see shortly, we can say much 

. more about this set. 'With thls in mind we defi~e the fo:Uowing class of sets. 
/ 

1 

Definition 4.2.2: A subset E of Cn Is sard ta be n-P negligible if for every 

z in en 

{w E Cn : Ü e: C; À .... + w E E } not polar } 
o 

- Is n-negligible .• 

Proposition 4.2.3: "An n-P negligible ~et is.n-negligible. 

". 

,Prao!. Let E be n-P neghgible • ,By ~ymmetry it i6, enough to show t;,hat there 

~ n-1 " 
exists an (n-l)-negl:Lgible set N sU,ch that if (w2 , ... ,wn ) . ia in C - N,: 

{~ e:C: (À,w
2

, ••• ,w
n

> E E} i~ polar. 1 Choose z in Definition "4.2.2 ta be ~ 

.. (1,0, .•• ,0). Then 

( 

\ 

\ 

6 

, ,. 

, ' ;, 
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, 1 

1 

\ 
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is n-negligible. Note now that :f for any (w
l
'" ,w

n
) the set 

1\\ 
ID e: c:o.+w

1
,w2""''''n) e:~'}i~ pola~ so is {;l, e: c:(;\,W2 ,.:.,wn ) e: E}. 

, (Indeed if v is 'superharmonic on C and equal to ",' on the former set then 
1 

~he mapping À +v(À -"'1) is àlao superharmoni~ on C and e?uaf to 00 on the 

latter.) Since M i9 n-neg~lgible, there is an (n-l)-negligible set N 

n-l 
5uch that ~f (wZ','--oo,wn ) is in C -N, {w1 e: C:(w1,.,'.,w

n
) s~} ia polar 

, n-l 
Thus for each (w2 ' •• o,W ) in C -N there i5 at least 0!le wl sueh that 

tir "" n! , 
Ü e: C: (À + w1 '"w2 ' o •• ,wn>' e: E} iSJolar. , By our previous remark then, 

, 1 

for such' (w
2
', 0 .. ,W H À: (>-, w2 ' ••• , W ) e: E} is also polar and we are done. n _ ".n 

1 4'T. 

De~inition 4.2.4: 'A subset.&=o-f a~n ~in' Cn i said ta he pluri-

polar in U if there' ls a function v in P Sup (U) such, that E is contained 

in {z s U: ,v(z)= "" }o 

Propositidn 4; 2.5: A p1uripolar subset of U is n-P negligible. 

Proof. Let E be a pluripo1ar subset of U. There exists v in P Sup(IJ) 
1 

such that vez) =;= "" for a11 z in E. Now fix z in Cn 
0 \1, wf must show there 

n' 
is an n-negligible set N slJ,ch that for W in C -N, {;\ e: C: Àz + W s E} is 

. polar. 
/ 

n+1 
Put W = {(À.,;w) e: C : Àz + w s U}. 

. 
On this open set the mapping 

, " 
(À,W) + v(Àz + w) iB (n+1)-Buperharmonic and hence there i8 an n-ne'gligible , 

set N such that if'w is in {w s C
n

: t,nere exist~ À 'in C w:('th (À,w) in W} ..J.N, 

the 1I!8-pping À + vO.z + w) i9 superharmonic on {À t C: (À,w) 'E W}, It follows 

that for such a w, V, e:C:Àz + w e: U and .v(Àz + w) ... oo} is a polar se,t con-
l , 

taining ~ À e: C: ÀZ + w E E} 0 This 'implies the latter --set ia polar" and 'lie àre done. 

The converse of ,Propo,sition 4.2.5 i8 false, as, 18 ill~strated in the 

following counterexample. ", 

\ 

" 

> " 



1 

. ;) . 
/ 

" 
18 

.~ 
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Example (Kiselman.S'ee also' [4].), Put H = {(zl,z2) E: C
2

: Im z{ ,= Re(zl:'+zZ) = O}. 

For every zl in C with lm Z =0 (that ia for every zl on a line s~gment "in C, 
,1 

a non-polar set) 

1 - '1 

{z2 E C: (zl'Z2)} EH} = {Z2 E C: Z.z.; -zl +ib,? f::~}. 

which ia a line in C. It follows H ia. not 2-negligible and therefore not 

pluripola,r. Let g be the biholomor;liic mapping (zl,z2) ~(~I-Z;'~2). Then 

-2 2 . 2.' 
g(H) =, {~zl'zZ). E C : 'Im(zl,:f-:lZ) .='Re(z! +zz +z2) =··o} . 

This set is 2-P negligible sinee for every ""Z"'=1,WfiF='=!FiI;=L"'1C~2"","""fa~""'E-"'1cor-;:~XfijtF."i"WoPwir E: g'H).} 

contains at most 14 points. It is not however pJ.uripolar since if it were there , , 
1 - 2, ' •. 

would be a v in P Sup(C ) with vez) = 'f 'for a11 z in g(H). But v 0 g 1s also 
, 1 

. 2 0 

in P Sup (e ) and equals 00 on H. This is impossible. Thus g(H) is not 

plùripolar. .' 
" 

The following convergence theorem is_ a simple cons~quence of Theorem 3.1.1 

? ' n Theo:tem 4.2.6: ~t U be an open subset of C and v tp.e lower limit of a 

POi~wise 'decrease uniformly 10'cal!Y ,10wer bounde~, sequén~~ (Vk\~.~ in P Sup (U) • 

A 

Then v and v 'are equal everywhere except on an n-P neg11gible subset of U. 
. - ' 

Proof: Fix z in en. 
tl+l 

Put W • ~(À,w) E e ': ÀZ +w €: U}. Define the 

sequence ,?f functions (~\.>l on W by gk (À,w) '= v k (Àz +w). ~en (glt)k>l ls 
- l, r 

.: a. pointwise decreas~~g sequence of uniformly -locally.."lower bàûnded functioqs 
, .'~. (-),N 

(c._ in (n+1)-Sup(U) with li~~t runeUon g,: where g(À,w) .. vO.z +~). Therefore 

J by Theorem. 
A. , 

3'.1.1, g and g differ - at- 1nOat on an (n+l)-neg1:lgible subset of'W,: 
,..'"-',' - 1 • 

.. .. ~ A \ _Jo. 

to see that,for ?al1'(À,w~ i1\ W g(À,w) ... v(Àz +w).' Thus tirere 
, . 

lt is easy 

. exists an n-negUgible se~ N in en Bueh that if 'w i8 in Ch_N, 

'. 
\ . 

~' , 
" 

JlliC __ .. -....,r--......::.-- .... 
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. , 
A 

{À e: C: .v(>.z +W) < v(ÀZ +W)} ={À e: C: g~À,W) < g(À,w)} 

i5 polar. This completes the proGf. 
" 

'We now prove an analogue of Theorem 3.3.1. 

, . 
Theorem 4.2.7: 

n 
Let U be an open subset of C , E a closed'n-P neg1igible 

, 
subset of U, and v,plurisuperharmonic on U-E. If v is loca11y low~r j,j)unded 

on u' there exis ts a unique v 1 in P Sup (U) 'such that v 1 = v on U-W. 0 

We first prove a 1emma. 

Lennna 4.2.8: Let E be a c10sed n-P neg1igib1e set. Then for every 

"n n 
u '" (ul ' ... , un) in C " {w e: C : u +w e: E} is n-:negligible. 

Proàf: The proof is by induction on n. If n = l, since E is polar, there 

exists a function v superha;mon~h that v(w) = 00 for aIl w in ;. 

Consider now thè mapping W + v(w-u) on C. 

equals ~ on {w e C: ,'+? ~~ref~~e 
,," 

Suppose now n > 1 and it ho1ds for sma11er 

This is superharmonic on C and 
J 

the lemma holds for n ::: 1. 

integers. ~By symmetry it i8 

enough to show there is a polar' set P such that if w
1 

is in C-P, 

{(w2 ,···,w) , n 
n-l 

E: C : (u
1 

+w
1

' ... ,un +w
n

) E: E} is (n-l)-neg1igible. Well 

certain1y it ia true that 

. , 

ia polar. Therefore by the ~nduction hypothesis. 

l, 

-, n-l 

• 

P = (w1E: C:~(w2"" ,w~ e: C :(w1 +u
1

",w2 ,w3 , ... ,wn ) , e: E}not (n-l)- ' 

... negli~ible} 
/ 

ia polar. , If w
1 

is in C-P the set N defined by 

1 
, . 
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l' 
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Thus by the induction hypothesis 

n-1 . 
e: C dU2 +w

2
, ••• ,un +w

n
) E N} is a1so (n-1)-negligib1e. 

/ 

This 1J .... ,,,l;J.t:;ély what we wished to sho~. 

The uniq?eness follows immediately 8~nee any such 

'extension is in partieulkr in n-Sup(U) and functions in' this set are 

determined if spèeified up ta only an n-negligible set. 

Now sinee v is in n-Sup(U-É) and laca11y lower bounded ?n U, by 

\/ the Ex~ension Th~orem thete exists VI in n-Sup(U) such that v = vIon 
, 

U-E. We c1aim VI is the required extension. 

To prove thi~ it i8 ~lear we need on1y prove that for each z and w 
, . 

n 
in C ,the mapping À -+- vI (Àz + w) is hyperharmonic on {À e: C: ÀZ + w e: U}. 

WeIl since' VI is lower semicontinuous sa Is thls mapping. It remains 

1 

to show that for À a fixed complex number and' ~ a regalar domain eon-
o 1 

tained with its closure in { À e:' C: z + w 'e: U}, 

(1) f' VI (Àz, 4- w ) dp ,ô 0,) <: v10. z + W ) 
o 0 ~o - 0 0 0 

{ 

We know, sinee E i~ h-P negligible, there exists an n-negligible 

set N (dependlt;tg on z ) such that if w is in en -N, 0. e: e:} z + W E E} 
o 0 

is polar. Put 

We show 

mapping À ~ v(Àz +w) i8 defined everywhere 
, 0 0 

except{À e: C: Àz + w e: E } and by our choice 
o 0 

1':. 

Ind~ed in this case the ' 

qn {À e: C:Àz +w e U} 
, 0 0 

of k the latter set is 
o 

poli3r and of course èlosed. Thus this màpping has an extension ta a 

functioll nyperharmonic on{À e: C:Àz +w e: U}. 1 Call this extension u. \ o 0 1 

/ 1 

( 



/ 
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Sincè closed polar sets have zero harmonic measure, 

. 6 
!vl(Àz +w )dp, (À) 

o 0 110 

< 

= 
Il 

uO, ) 
o 

V(À Z +w) 
o 0 0 

= vI O. z +w) 
, 0 0 0 

(since w. is in Cn-M) 
o 

This proves that (1) holds if w is in en_M. Now by the lemma and 
o 

Proposition f.2.6 we see M is n-neg1igible., It follows that for w ln 
o 

general, since vI is in n-Sup(U), we ~an find a sequence (wk)k>l in en 

. n 
eonverging to Wo such that for each k, wk i8 in C -M and 

III 
VI(À Z +w') 

, 0 0 0 lim inf vI (Àozo +wk) 
k + '" 

(This too uses the 1emma). For every positive integer k we have from the 

special'case we have just proven that 

Taking lower limita gi~es 

VI(À Z +w')' = o 0 0 

/ 

> Hm inf f vl(ÀZ +Wk)dPÀ6(À ) 
k+oo 0 '0 

l " 

> ! lim inf 
/ k + a> 

vl (Àzo +Wk)dP À
6 

(t\) (Fatou lemma) 
o 

> J vI (ho +wo)dP
À

Ô 
0,) 

o 

sinee vl 18 Iower semicontinuous. Th~s (1) holds and the theorem ls proved • 

1. 
,j 

1 
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Section 3 Sets of Rankin r-Capacity Zero 

Let c denote the interior logarithmic capacity on C.\ For E a 
, n 1 

sub,~et of C ,n..:: l, we define the quantity Yn(E) inductively as follows: 

Ronkin's r-capacity is defined on any subset E of Cn ta be 

r (E) = sup{y (aE): a a comp1ex unitary transformation of Cn} • n n 

We shall need the following result of Cegrell, See ,(4] 

Propositiun 4.3.1: If E i8 universa1ly capacitable then 
~ 

where caP2 is the outer logarithmic capaclty o~ C. 
1 

We now investigate the relatiouship b~ween n-negligible' sets and sets 

of_~?ero Ronkin r-capacity. 

Lemma 4.3.2: Let E be a Borel subset of Cn such that for every permutation cr 

~ 

of {1,2, ••. ,n} ,Y (z l'z 2""'z ):(zl' ••.• Z) 8 E} = O. Then E is n-n cr cr crn n 

negli'gible. 

Proof: The proof is by induction on n. If n == 1 then c(E) = O. Since 

E is Borel it ls universally capacitable and hence its outer logarithmiccapacity 

equals O. Thus E is polar and \ the result holds ~ for n = 1. Now supppse 

k' n > l and the lemma holds for Borel subsets of C .k < n. We claim there 

1 n-1 
exists a polar set P such that if zl ls in C - p. {(z2'" '. ,zn) e: C : , 

(zl' •••• zn) e: E} is (n-l)~negligible. For each permutation cr of {l,2, ••• ,n} 

which fixes l define 

-

i 
\, 
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Since y '(M ) = 0 and M is Borel Proposition 4.3.1 imp1ie~ there i8 a n (J cr 
, 

Polar set ,P such that for al11 zl in C-P o (J' 

,Define P by 

F = U{P: cr a permutation of {1,2, ••• ,n} ,fixing l} • 
cr 

/' 

1 

\ 
This i8 a finite union hence P is -polar. Now if ,zl is any point' in C~~ 

n.,.l 1 

the' set F = {(zZ' •••• zn) E C : (zl •••.• zn) E E}-is Borel and for any, _ 
1 • "-

permutation L of {2, ••. ,n} . we have shown 

> By the induction ~ypothesis F must be (n-1)-neg1igib1e,thus proving the c1aim. 

\ . 
In general, for any integer i from 1 ~o n. by cônfidering permutations 

1 

mapping 1 to' i rather than· those ~ixing 1, we c~n find 'la polar set Q such 

• n-1 ' 
that if zi is in C-Q, { (Zl,.~ •• zi_1,zi+1"",zn) e C : (~l"",zn) e E} 

is (n-l) -negJ.igible. Thus E is n-negl:f,gible, and we are done. 

Theorem 4.3.3: Let E b~ a Borel subset of C~ with r (E) ='0. Then for 
n ' 

en, 
every eomplex unitary transformation a of C , aCE) i8 n-negligib~e. 

Proof: 

r 
! 
j 

• 1 
1 
l' 
1 
i 

1 

__ L-_ 



-~ 
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l' 

comp1ex unitary transformation of en. 
" 

{2,3, ••• ,n}~ There exists g unique complex un 

, 
) 

any permutation of 

transformation a on G 
\.. 

such that S(zl""'z ) = (zl'z z, ... ,z ). ·n o. an 
i8 comp1ex unitary 

-1 
YnCS • aCE» = O~ Therefore, there exists a set P such that if a 

~1 is in e-Jo 

ti-l 
= y {(z2"",zn') e: C : n-l 

o n-l = y 1{(z2'.'.'z) E C :" l'z 2' ... 'z ) e Cl (E)} n- n C1 on ,... 

(1) " 0 Yn_l{(z -1 , ... ,z -1 ). 
n":'l 

:(jl,·:.,zn) a (E)} . . e: e: 
q 2 . cr n' 

1 

Define QI to be 1 
/ 
, 

1 / 

. 

Since thisis a finite union, QI i~ polar. If zl is in Ç-Q, (1) holds for 

1 aIl permutation~ of {2, •.• ,n} and by the lemma we conclude 

n-l 
((z2, ... ,zn) e: C .: (zl"",zn) ~ ex (E)~ is(n-l)-negligible. Note that 

such a polar set exists for every complex unitary transforma~ion a • 

'" 
Now ChOOS(-' complex unitar;;tran.f~rmatiOn al 

'el(zl,·!·~zn) = (z2,zl,z3,z4,···,zn)· Sirice el~ a 

we have jusf sèen,there exists a polar set Q2 sdch 

n of C such that / 
, ~, . 

n~1 
{(Z2""'z) e: C :Cz1 , ••• ,z) n _ n 

this set is just {(Z2"'" Zn) E: 

is uni~ary,fr~ what 

that if zl Is, in C-Q2' 

e: (el~ a) CE)} is (n-l)-negliglble. 

n-l 
~ :(z~,zl'Z3,z4~""Zn) e: a CE)}. 

But 

By 

just relabe~ling we therefore have that if z2 is in C-~2' 

n-l • 
{(zl,z3,z4, ... ,zn) e: C :(zl, .. ~,zn) E: aCE}} cis (n-l)-negligible. Again 

l' note that Q2 exists for ,any complex unitary transformation b. • 

l, 

" 

.. 

i 
f 

1 , 
1 

1 

i 

( " 
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If n = 2 we are done. If n > 2 we ehoose .13 2 ~o be the complex unitary 

1 Since 132
0 Cl i8 

unltary there exists Q3 polar such that if z2 Is in C-Q3' 

n-l 
{(zl' ~3' z4,·.·,zn) e: C . (zl,,,,,zn) e: 132

0 aCE)} ls (n-l)-negl1gible. 

This is just {(z~,z3'''''z ) e: cn
-
1

: (zl,z3',zZ,z4'''''z ) e: aCE)} and by 
J \' n ~\\ n n-1 

re1abel11~g. we see that if z3 i8 in C-Q3' {(zl,z2,z4"",zn) e: C : 

(z~,' .•• ,z ) e: aCE)} i8 (n-l)-negligible. Continuing in thi8 way it i8 
l' \ n , 

now ~ai aCE) is 

/ The converse 

to be Borel. 

. , 
n-negliglble. The proof is complete. \ . 

r' 1 

of Theorem 4.3.3 is mueh ea8ier and does not require.E 

-
.... 

.... n 
Prbpo8ition 4.3.4: Let,E be an arbitrary subset of C . If E 18 n~eg~gible 
th en y (E) = O. Con~equent~y,if for every complex unitary·transformation a, 

fi 

- 1 aCE) i8 n-neg1igible~then r' (E) = O. 
\.. n 

Proof: 1 The proof irby induction on n. !f n = 1 then E is polar and 

henee it has zero outer logarithme capacity. It follows y 1 CE) ,= O. Suppose 

now n > 1 and the proposition holds for smal1er integers. Sinee E is n-

neg1igible there exists a polar set! P such that if zl is in C-P 

is (n-l)-negligibl~~ By the in~uction hypothesis yn_1{M) = O. Thus by 

definition y (E) = 0 and we are done. 
n 

At thisstage. we.dq not know how the n-P negligible sets and the set~ 

of zero Ronkin r-capacit~ compare. However we do stilt have analogues of 

Theorem 3.1.1 and Theor~m 3.3.1. We.lemarked in the introduction that ~otll 
1 

of these. results are 1cnonw. We wish to inelud~ the p'r~ofs as an appli,\ation 

of our methods. 
III 1 

t 

t 
j , 

if" 
~! 

1 
J , 
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Theroe1l1.4.3.5: Let U be an open subset of C
n 

and (v
k

)k>l a pointwise 

decreasing sequence of plurisuperharmonic functions on U that are uni-

l " 

formly f~cally lower bounded. Then the limit function v dirfers from v on a 

set of zero Ronkin r-capacity. 

Proof: Let E = {z E U: vez) < v(z)} 'and let CI. be arly complex unitary 

n ' -1 transformation of C. We will show a CE) i8 n-neg1igible 'and appea1 to 

Proposition 4.3.4. 

1 \ 

Consider first the 
-1 

~quence ,(vk 0 a)k>l defi~d on' the open set a (U). 

. ~ -1 
By the linearity of a 'it is easy to prove this sequence fS in P Sup(a (U». 

it 1s decreasing pointwise to v 0 a, and it is un1formly locally lower 

-1 ~. 
CL (tl): v 0 ('1. (z) < v <> CL (z)} i8 n-

~ ,/ . 
< 

bounded. Theorem 3.1.1 proves thate{z E 
./ < , 

\ ~, A 

neg1igible. We claim that v 0('1. = v °Cl. 
A 

Inde~d since v 1s 1pwer semi-

" \ continuous and Cl is continuous. v o CL is lower semicontinuous and minorizes v 0 Cl • 
'~ , ~ 

It follows/ v, 0 Cl minorizes v 0 ('1.. Conversely if À is a real number such that 
l''~ .......... / '" • 
~ ~ 1 -1 . 
v 0 a (z ) > À' for z in a (U). there is a neighbourhood W of z such that 

o 0 Î 0 

v 0 CL(Z) > À for a11 z in W. It fo1lows v ~jorizes ~ on the o,pen set Cl-l(W) 
1 1 

" and hence so do es v. Thi!; just says v 0 CL (z) ~ À on W and this itnplie~ 

/'-.. 
VOCL(Z) > voa(z). 

o - 0 

• 1-1 
The c1aim is proved. We thus have that {z e Cl· (U): 

" v 0 CL (z) < v 0 cl (z)} is n-negligib1e. 
-1 

But this set is nothing but Cl (E). 

'1 
The, proof is complete. 

1 

Theorem'4.3.6: Let U be ~n open subset of C
n

, E a closed subset of U w1th 

,rn (E) '= ,0. and v a member of P Sup (U-E) that 18 Iocally lower bounded on U. 

Then there exists a unique vI in P Sup(U) 8uch that v
l 

= v on U-E. 
, 

Proof: From Theorem 4.3.3 E is n-negligible and hence the.Extension 

Theorem 3.3.1 implies xhere exists a unique vI in n-Sup(U) with vI = v on 
" 1 

U-E. This immedlately gives the uniqueness in the 'theorem. We will prove VI 

is the required extension. 

P l 

1 
l' 
l 
l 

1 
~ 
1 

l ' 

, 1 
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1 

We first show that for every, comp1ex unitary transformation IX of 

n -1 ç , v 1 0' Ct i8 in n-Sup (a (U» • Since it is lower semicontinuous we can 
\ 

prove thls by usiug Proposition 1.2.11. That fs it ls enough to show 

fO\eVery u = 

of l""'~n 

(1) 

. ' -'1 
(u1 ,··.,un ) i~ a (~) and 61"", 6n regu1ar geighbourhoods 

respectively with cl x ••• x 6
0 

ca-leU} that 

r 

Suppose first u is in a-1(u)_ a-1 (E). Since a-1(E) ls n-negliglb1e 

-1 - ~l' -1 1 

(Theorem4.3.3Àa c10sed subset of a (U), voa is inn-Sup(a (U),- IX (E)), 

-1 \ ~ 
and v ° a is loca117 lower bounded on Ct CU), there exists (by Theorem 3.3.1) 

, '" 
a function w in n-Sup(a-1(U}) which equals v 0a on a-~(U)- a-1 (E). Now 

1 c\ 60 a - (E) is c10sed and hence it has 0 px ••• x p measure (Rematk ~.'2.14). 
u1 un 

It follows , 

6 6 °1 d n J ... fw dp dp n 
Pu u

1 u 
J ••• J v 0 

1 n n 

< - w(u) 

.. (v 0 a)(u) ~. 

, 1 := (vIoa)(u). 

Now in general, ainee ~l 18 in n-~up(U), th~re exista 

k ' 
••• , x

n
)i>l fnoU converging to a(u) such that 

in U-E and 
1 
1 

k l 

= lim inf v1(x ) 
k-+-oo 

) 

/ 

/ 

k 
a sequence (x )k>l = 
, k-
for every k x i8 

.. 

f . 

T­
f 
r 
; 

t 
i 
J 
f 
! • 



, . 
\. .~ 
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f 
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r 
! 
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il 

il .. 
i 
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f 
1 
f 

.. 

. 0 

w 
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k -1 k 
Put u = a (x) . k('~l -1 -1 k 

Then u ia 'in a (U)-a (E) and the sequence (u )d' 
r-l 

converges ta u. By the case we just proved we have for each k 

°1 

u
1 

1 .. 

cS 
dp n< 

k 
u 
n ~

fi)' f v1
0

a dp k ... 

Taking lo~er.limits ~ ___ th_-s-id-e-s-g-i-v-es------

.-----~) lt 
. / v1° a(u) = lim inf vI (a(u » 

LI k + (x). ,-

> lim inf 
k+ oo 

f •.. 
cS 
n 

dp k 
u 
n 

"-----

cS 
dp n 

u n 
(Rema~k 1.2.6(a». 

-J 

Thus (,1) holds. 
'. -i 

This completes the proof that vlo a is in n-Sup(a (U». 

, 1 

It remains to show vI is in P Sup(U) and of this only (iv) of 
r. 

... '""5 

1 

, 
---1,---

1 
1 
t , 
Il -

l,' 
i , 
) , . 
i 

Definition 4.2.1 needs ta be verified. . Fix a nonzero' z in cn . We must show ' 1 

\ 

~ 
t \' n '. , 

for every w.in C that ~the mapping À -+ vIO,z+w) i8 hyperhamonic on 

{:\ e: C: AZ + w e: Ul. Suppose f iist z and w are orthogonal and w i8 nonzero. 
, " J 

In thi8 case there exists a complex unitary transformation Il such that , 

a(l,O, ••• ,O) ~ z/Izl 

"- -1 fs in n-Sup(a (U». 

'and a(O,I,Q, ••. ,0) = w/lwl We have shown v
i

o a , "l 

It fol10ws the mapping À + v i
o a(À,I~r, 0, .•. ,0) 

v1(Àz/lzl +~) fe hyperharmonic and hence 80 f~ À -+ v
1

(ÀZ +w).· If 

w = (0: ... ,0), 

again À +v
I 

0 'a 

o • 

instead choose Il sa:isfying ohly ï(~'O'" .,0) = z/I~I 

(1.,0', •• ",0) = vIO,z/lzl) is hyperharmoffc. 

Then 

In general w can be wr1tten as w = w' + 13 ~ .where w' ie orthogona~ to Z 

and B ie some complex nlÙllber. Sinçe À -+ v(Àz + w') fs hyperh~rmon~c so 

18 À + v.«(À+j3)z-f;w') .. v(Àz+w». The proof is complete • 

, , 

1 
1 ,., 

r 1 

" 
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