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A study of exceptional sets in a finite product of Brelot. spaces '

' . is made. The principal results obtained are a convergence theorem for . ot
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decreasing sequences of n-superharmon{c, functions and an extension

[ theorem for positive n-superharmonic functions. Similar fesul'ts are
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obtained for plurisuperharmonic functions.
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’ RESUME

v

Une étude des ensembles exceptionnels dans un_profuit fini des

i

espaces harmoniques de Brelot est faite. 'Les résultats principaux

obtenus sont un théoréme pour une suite decroissante des fonctioms -

n-syurharmoniques et un théordme de prolonggument pour les fonctions

)

pour les fonctions plurisurharmoniques. . * .
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Introduction ‘ . , \

The convergrgnce theorem of Cartan and Brelot which concerns the

limit of a decreasing sequence of potentials (pn) on a domain in ]Rn,n > 2,

has widespread applications in potential theory. See [0] for a detailed

discussion. The theorem states that the lower envelope of (pn) differs

from its lower semicontinuous regularization at most on a set of outer
capacity zero. Its principal use 1s in connection with the Dirichlet
problem on a rglatively compact open set.~ If the problem is solved by

L]
means of the P.W.B. method then the convergence theorem implies the set

of irregula; boundary _points has outef capacity zero. The sets of outer

capacity zero are precisely the subsets of sets on which superharmonic
. \

functions take the value « , the so called polar sets. These, fdeas can

the;‘;}ore be framed in the axiomatic setup of Brelot and as i1s well known

the results go through with the additional assumption of the Axiom of

4

. Domination. -

v/

It is now-natural to consider the convergence theorem on a finite

. product of n Brelot spaces with a decreasing sequence of n~superharmonic

functions. The problem is to choose ?the appropriate associated exceptional
set, the analogue\ of the polar set. In tlifs thesis we investigateﬂsuch
analogueé and survey the basic areas of potenti/a;/t%@/r/y where tpey arise,
most notably the above mentioned ;:onvergence theor(em.l Until now such a
systematic étudy has not’ been made. There are two obvious types of sets

to consider. Firs,tiy the subsets of sets on which n-superharmonic functions

take the value «(the n-~polar sets) and secondly the sets "most" of

-whose _sections are polar in each of the respective underlying Brelot spages
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(the n-negligible sets). See Chapter 2.2 for a precise definition. ,
We shall see that n—pc;lar implies n-negligible and though at present we
do not have a counterexample we suspect the converse is false. It
appears that the n—negligible;sets are the more useful of the two to

look at in considering degper results since the n-polar condition seems
somewhat restrictive. The n-negligible sets were apparently first intro-
duced with a significant application by K. Gowrisankaran in the special

case of polydiscs in " where he studied the class of good inner functioms [9].

In Chapter 1 a summary of all results needed of a single and a finite
product of Brelot spaces is made, in most cases without proof. One ekxcep~
tion is 'the discussion of the Cartan-Brelot topology Wherté3 we pfov;
Proposition 1.1.23 that a sequence of uniformly locally bounded positive
superharmonic functions has a Cartan-Brelot convergent subsequence with the
assumption of Axiom D instead of the usual assumption of a base of completely
determining regular domains. We use‘ this in 2.3 to solve the Dirichlet
probllem on a product of relatively compact domains., In Chapter 2 the n-

. polar and n-negiigible sets are/defined and a prelimipary study is made.

In Chapter 3 the two main results of the thesis arekidemonstre;ted, namely
Theorem 3.1.7 where we show that the lower envelope of a famiiy of locally
unifermly lower bounded n-superharmonic functions .differs from its lower o

semicontinuous regularization at most on an n-negligible set and

P

Theorem 3.3.1 where we show locally lower bounded n-superharmonic functions

can be extended across closed n-negligible séts to be n-superharmonic,

e ey s gy

In Chapter 4 we prove analogues of these two results in the more concrete

setting of c" -and the plurisuperharmonic functions. We first do this with
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t‘ a type of exceptional set of our own invention; the n~P negligible set.
We then consider the;se results with associated exceptional sets the so-
called sets of zero Ronkin I'-capacity, (See [16]). For this cla%s both

- of ‘these results are already known. The‘extension theorem was proved by

U. Cegrell in [3]). The fix;f;t results concerning the convergence of de- ,

creasing sequences of plurisuperharmonic functions were proved w::Lt_h the

|
additional requirement that the regularized limit function be pluri-

harmonic. In this case the exceptional set is pluripo“lar . Sée [14]. ‘ l
This was gen.eralized by Ronkin in [16] where he showed without additional’
assumption the exc;ptional fset is of zero I'—capacity.. Following ’the work

of Favorov [6] U. Cegrell also ptoved this result . using a general Iéheory 5
of product capacities: See [4]. We present here alternative proofs '

of these theorems to shqw how easily they follow from the axiomatic ]

framework.

I wish to thank Professor K. Gowrisankaran for suggesting the topic
of this thesis to e, fdr his help in m§ p;:eparatién of it,- and for the
years of guidance he has given me in my mathematical development. I would
i also like to thank R, Jesuraj and Bernard Mair for many stimulatir\lg dis-

cussions of this work as well as Hilde ,Schroeder for typing the manuscript. .
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CHAPTER 1

Preliminaries

\

In this chapter we review the topics in axiomatic potential theory

which we shall be using.’ For more details and proofs see [11,[7], and [8].
o Ay

+

o Section 1 Brelot Spaces

Let @ be a locally compact, non-compact, connected, locally connected,

Hausdorff space such that for every open set U of Q there 1s-a real vector

space H(U) of real valuyed continuous fugc;cions on U called harmonic functions..

0

Denpte 'the non-negative harmonic functions on U by H+(U). We impose -the

T ¥
following three axioms on { and the harmonic functions.

Axiom 1:1)If U and 'V are open with U contained in V then the restriction

of any member‘/of H(V) to U is in H(U).

ii) Let U be open and v a real valued function defined.on U. If
for each x in U there is a neighbourhood Ux of x such that v is in H(Ux)

then v is in H(U). J %

.

We say a relatively compact open set 6 is regular if for every real

valued continuous function f on 38 there exists a unique contipuous function

on § such that it is non-negative 1f f is non-negative and its restriction

to § 1s harmonic. This function is denoted by Hg .

Axlom 2: There is a base of open sets consisting of regular domains.

N

Axiom 3: Given a pointwise increasing sequence in H(U) for U any domain, ’

4

the 1limit function is either in H(U) or identically ~ .
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Constantinescu and Cornea have shown that in Axiom 3 no generality

t
1

is lost by replacing the sequence with an increasing directed subset of

H(U). See [5].

. Op " With such a structure we call § a Brelot space. Note that any con*

nected open subset of a Brelot space is a Brelot space as well.

The fundamental example of a Brelot space is Euclidean n-space, n > 1,

where the harmonic functions are the twice.continuously differentiable

n 2
functions satisfying I/.aplace's equation I 3—32 = 0.
& i=1 axi N

We shall be imposing three more restrictions on our Brelot' spaces.

o

. .- B8gentially all natural examples will satisfy these restrietions.
4 o )
The first 1s that we assume each polnt of  has a countable base

-
|

of neighbourhoods. It has been shown by Constantinescu and Cornea that

this implies the existence of a countable base for all open sets. See [5].

£ Y

As 4 consequence every open set can be writteh as a countable union of

relatively compact open sets (wﬂ)nzl with O for every n.

Ne postpone for the moment a description of the other two restrictions.
v For each regular open set ¢ and x in § the mapping CR(86) +R, f > H(fs(x)

\ . ‘
defines a positive linear functional, that is a Radon measure. We denote

1

this Radon measure by pi and 1its value on f in CR(E)cS) by S f dpi . Three ‘

properties of these measures are given in the f:ﬂfs,t"i)roposit’ion.
Proposition 1.1.1: Let 6§ be a regular domain. 7

(a) The sets of outer pi —measure ( are independent of x in S.

$

(b) For any extended real valued function f on 96 the map x- T_‘f clpx

is either identically «, identdically (~~), or in H(S) and 1if f is pi -inte~

grable for one x 1n § it is intégrable with respect to all such measures._

-
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(c) Let Gn be a sequence of regular domains such that for all n,

— ) o . —_—

6n+1 c Gn and I,lr:l 6n = {x}. Then for all f in CR(Gl)

: .
. 6n

lim S £ dpX = f(x).

n-reo
<

Definition 1.1.2: Let U be open. An extended real valued function v on U

is said to be hyperharmonic in U if

i) v(x) > -» for all x in U,
ii) v is lower semi-continuous, .

ii1) for every lregular open set § with 5 ¢ Uand x in §
8 !
S v dpx < v(x). g

If in addition v is finite at least at one point of every connected com-

ponent of U then v is said tm»\s\uperharmonic on U. We demote the set of !
Ot .

all superharmonic and non-negative superharmonic functions on U by S(U) N

and S+(U) respectively.

Notice harmonic functions are superharmonic and a superharmonic function
1s harmonic if and only if its negative is also superharmonic. We summarize

other important properties in the following.

9

&

- gset*of U then v is identically = on U.

Proposition 1.1.3: Let U be a domain,

(a) 1If vl,vzﬂ are in S(U) anda , B are non-—negative real numbers then

[

vy + sz and min(v 2) are in S(U).

1Y

(b) If v is hyperharmonic on U and v(x) = « for al]1 x in fm open sub-

/
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(c) If (Vi)i eT is a pointwise increasing directed family of hyper-

harmonic functions on U then the upper envelope is also hyperharmonic. As

‘ +
a consequence any v in S (U) is either identically 0 or strictly positive.

\ P

(Just consider (n.v)n>l and apply (b)). A

/

(d) If v is in S(Q) and & is a regular open set, define ES on Q by

v(x) x in Q-§
B =
f v 6
fv dpX x in 6\ .
Then Ei minorizes v pointwise, is in S(Q), is harmonic on § ; and every
point of continuity of v is a point of continuity of Ei.

(e) (local property). Let v be an extended real valued lower semi-
continuous function on U such that v(x)> —» for all x. Suppose for each x .
in U and each neighbourhood w of x there exists § a regular neighbourhood

of x contained in w such that fvdpi < v(x). Then v is hyperharmonic on U..

(f) (ninimum principle) Suppose U is also relatively compact and v is in

IS v
7

S(U). If for all x in 3¢ -

1im inf“vkz) >0
Z+ X
ze U "

then v(z) > 0 for all z in U.

Remark 1.1.4: If v is in S(U) for any open set U and § is a regular open

set such that § ¢ U then part (b) above and Proposition 1.1.1(b) implies v

|
is pi —-integrable for all x in §.

o
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Definition1,],5:Let B be a base of regular domains. An extended real valued

function v on @ is said to be an SB functions (and a nearly superharmonic

function if B is the set of all regular domains) if

i) v is locally lower bounded and

ii) for all § in B and x in §, Iy dpi < v(x).
! [

It is easy to see the lower envelope of any uniformly locally lower

bounded family of SB functions is SB and the upper envelope of any in-
creasing directed family of sB functions is SB . In particular if (Vn)nzl

is a poiﬁtwige decreasing sequence in S+(Q) the lower envelope is nearly
\
superharmonic. More generally for any sequence (wn)n>l in S+(Q), lim inf v
. o= n- o
1s nearly superharmonic.

Let v be SB . We denote the lower semi-continuous regularization of v

by v. That is v is pointwise the largest lower semi-continuous function

. |
minorizing v. Explicitly -

v(x) = lim inf v(z)
Z> X

(This of course holds for extended real valued functions\on any Hausdorff
space). The fundamental result for SB functions is the following.
\

Proposition 1.1.6: Let v be S, . Then ; is hyperharmonic. Hence a lower

B

seml—continuous’SB function is hyperharmonic. For every x in 2 and every

sequence (6n)n3; in B with 6n+1 c Gn for all n and nil 6n = {x} , the
sequence (¥ v dpxn)n>1 is increasing and has limit T o).

We consider now an important class of nearly supérharmonic functions.

s

.
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Definition 1.1.7: Let E be any subset of @ and let v be in S+(Q). The
4

reduced function %5 is defined on @ by

Rs(x) = inf {w(x):w ¢ S+(Q),w(y) > v(y) for all y in E} .

Propogition 1.1,8: R& 1s nearly superharmonic, pointwise minorizes v,
7
equals v on E, 1s harmonic on @ —'E, is pointwise monotone non-decreasing

in E and v (subsets of Q are here ordered by inclusion), and is sub@dditive

in v.

N\

N

Remark 1.1.9: If w is a relatively compact open set it follows easily from
the minimum prchiple that for u harmonic in Q, RQ “  is identical to u.
™\ .

Given any v in S (U) where U is a domain there exists a unique function

9 i
u on U which is harmonic and for the pointwise order is the greatest harmonic
minorant of v on U. Explicitly if (Un)11>l

open sets with union U and for all n, Unc U +1 then u is the lower envelope of

U" Un
the pointwise decreasing sequence of functions(R v )U. {Here the subscript U

means the reduced function is-defined with respect to the Brelot‘space U).This

-follows easily from Remark 1.1.9. Thus v can be written uniquely as the sum of

. . + s + . . A . +
a function in H (U)and éme in S (U) which pointwise majorizesno member of H' (U)

other than 0. That is v=ut(v-u). Classically thisis theRiesz decomposition of v.

e

Definition 1.1.10: Let U be open and let y be in S+(U).~Theﬁ P 1s said to

be a potential on U if its greatest harmonic minorant on U is 0. If U=

we call p a potential

!
It is clear that the minimum of a potential and a positive superharmonic
function as‘well as the product of a potential and a non-negative real number
are both potentials, From our explicit construction and the subadditivity’%f

the reduced function it is easy to see the sum of two potentials is a potential.

s e vy o s

is a sequence of relatively compact

b s o
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In a given Brelot space there is no need for positive potentials
to exist. . For exampleiR? has none. However fh such a case it 1s immediate
from the decomposition of positive superharmonic functions that they are all

\
harmonic. Using this and Proposition 1.1.3(a) and (c) we see that of any two

positive superharmonic functions one is everywhere greater than the other.
Now multiplication by a suitable real number gives that any two positive
superharmonic funétions are proportional. In order to avoia the trivialities
resulting from this situation we shall assume from now on the existence of a
positive potential ;;NQ . InIRF for n > 3 these do indeed exist and for n = 2
any open set having a Green function has a positive potential, the potentials

being precisely the convolution of the Green function with positive measures.

(See [10]). ]

As a consequence of the existence of a positive potential the following

can be deduced.

P

Proposition~l.1.11: Given an-open set U there exists a positive potential

which is real valued, continuous, harmonic on Q—ﬁ; and not harmonic on U.
Thus every domain of Q2 is itself a Brelot space with positive potential.

The following continuation theorem can be proved: Let U,U' be open

sets with U < U' and v in S+(U'). Then there exist potentials pl,pé such

that on U; P, =P, + V. We deﬂgnstrate'this as well as a generalization
I

in Chapter 2.4, \ !

L]

Definition 1.1.12: Let U be open in Q and E a subset of U. E is ggid to
be polar in U if there exists v in S+(U) such that E is contained in

{x € Usv(x) = = }.

)

e kb
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{ : Using the continuation theorem the following local property can be

shown: If for every x in E there is an open set Ux containing x such

e A A e S

that E n Ux is polar in Ux then E is polar in Q@ . In particular E polar ;

in U implies it is polar in @ . Thus we may refer to A set as being simply

I

polar without reference to an open set containing it.'

“1"h ebabh

R

The following proposition is a propei‘ty of closed polar sets which

Y we generalize in Theorem 3.3.1.

] Proposition 1.1.13: Let E be a closed polar subset of @ . Then every .

v in S(Q- E) that is locally lower bounded on has an extension to a i

[
function in S(Q). .

We consider now the Dirichlet problem on a relatively compact domain w . :

Let f be an extended real valued function on 3w . ~ Put

: ‘ U(f) = {v: v hyperharmonic on w, v lower bounded, /

1im inf v(z) > £(x) /for all x in 3wl. , N
z > X 3
Z € W |

The upper solution 'I-_{? is defined poinfwise on w as the lower envelope , ’
of U(f) a\nd the lower solution ,H? is defined to be - f_{_(‘:)f)' 1t is easy !

to.see if f is defined and superharmonic on 2 then ﬁ? is nothing but Rg'“’. :

The minimum principle shows the upper solution is always greater than or equal

to the lower solution. Both can be .shown to be identically « , identically

!
[

(-®), or in H(w) and hence 1f they are equal at one point they are identical.

In case they are the same and in H(w) we say f is resolutive and write for

the common function Hcfo. It can be shown that real valued continuous functions

’

r* are resolutive and for each x in u the mapping CR(Qw) +R, > H?(;{) s
i ({,\
)

K ' , 1s a Radon measure. We denote this Radon measure by uz . It is :

’
2
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also called the harmonic meésure. In case w is regular wa is precisely

[

He

ar}d henc; ui‘ is just p‘: . The inteérability of any f with respect

to p:: is inﬁependent of x in w and it 1is integrable with respect to any

(hence all) such measures if and only if it :Ls resolutive. Note this shows.
functions superharmonic on a neighbourhood of w are resolutive. “The sets,

of u(;: outer measure 0 can be shown to be independent of x in;w hence we

can deduce polar subsets of 3w have 0 harmonic measure.

¢

A point x in dw Sald to be regular if for each f in CR(aw) the

solution H?(z) nds to f(x) as z tends to x from w . Otherwise a point is

ular. In order to characterize the set of these irregular

the¢” following "axiom of domination"‘.l

/ Axiom D: Let  be any relatively compact open set and v a locally bounded

member of S+(w) which is harmonic on w . Then any w in S+(Q) which pointwise

R &
v

majorizes it on Q-w majorizes it on Q@ . That is v
It can be shown this is equivalent to the following: For any positive
locally bounded ‘sgperharmonic ‘function v on  and relatively compact open

4 . -0
set o the greatest harmonic minorant of v on w 1s Rv )= 17 vdulf) .

It can also be shown that Axiom D holding on Q implies it‘holds on any
Gp B

open subset of Q .

Remark 1.1.14: Suppose in our statement of Axiom D, w oniy majorizes v on
(Q -w )-P whgre P is polar. We claim with Axiom D we can still deduce w
majorizes‘v. Indeed let u be in S+(Q) with u(x) = = 1if x is in P. For
every positive dinteger n the function w + (%)u is in S+(Q) and majorizes v
on fi-w . Thus Ax%om D implies w+ (%)u majorizes von & . Si{nce...n is

arbitrary we deduce w majorizes v on the set {xe R: u(x) < =},

TR BRI NP U e
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that is everywhere excépt on the polar Borel set {x & Q:u(x) = =}.

0
(It is Borel because it is just ﬂl {x ¢ @: u(x) > n}).  Since such a set
. n=

’lhas 0 measure for any harmonic measure we apply Proposition 1.1.6 to

deduce w majorizes v on § .

N

We shall assume in much of the thesis that Axiom D holds. As a

t

consequence the following very impbrtant results can be demonstrated.

Theorem 1.1.15: (a) (Convergence Theorem) If (vnf n>ll is a pointwise

decreasing sequence in S+(ﬂ) with 1imit function v then v is: nearly

superharmonic and equals v everywhere except on 4 polar set.

(b) The irregular boundary points of a re]\.atively‘ compact domain

;
~

are polar. 7

1

In Chapter 3 we generalize the convergence theorem to a product of

Brelot spaces and a sequencé of ‘'n-superharmonic" functionms.

Remark 1.1.16: Recall the topological lemma of Choquet: Let X be a

topological space with a countable base of open sets and (fi)is 1 any

collection of extended real valued functions on X. Then there exists Io s

M 3

a countable subset of I, such that

N

inf fu =  inf fu .
oel o€ Io

% . ! o ‘
It follows from this and the convergence theorem that for any v in S+(Q)

and E contained in Q, ﬁg and R‘E,: differ at most on a polar set.

We now consideér topologies on spaces of differences of positive
harmonic and superharmonic functions. Both are defined without Axiom D

though we introduce Axiom D later in order to prove Proposition 1.1.23.
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Cou(x) + vl(x) = ul(x) + v(x). The equivalence class containing (u,v) is

~11-

\
4
7

Consider first the'space H+ - H+ of differences of positive harmonic
functions-on & . With the topology of uniform convergence on compact sets

and the obvious vector space structure H+--H+ is a metrizable, locally

¥

convex, topological vector -space. The following important result is due

to Mokobodski and Brelot. See [15] and [1].

Theorem 1.1.17: For any real number M and any x in @ , {u ¢ H+(Q):u(x) < M}

is compact.

Thus each sequence in H+(Q) which is bounded at one point hasua subse~

+
quence which converges locally uniformly to a function in H ().

Define an equivalence relation on the set of pairs of functions in

S+(Q). We say (u,v) is equivalent to (ul,vl) if for all x,

denoted by [(u,v)] and the set of all equivalence classes we call S+-—S+'= S.|

>

With the obvious operations S becomes a vector space. Notice S+ can be

identified with the set {[u,0]:u ¢ S+(9)}.

Now fix a countable base B of regular domains of § and let X be a
: ' |

countable dense subset of . For w in B and x in wpn X define the functional

Hw x on S by

b

- w w
Hm,x [(w, W] =1 dpx I dpx | .

v

~

Clearly Hm is well defined, is a seminorm, and the countable family of '
. .
all such seminormé»@efines a metrizable, locally convex, topological

vector space structure on S. We call this topology the Cartan-Brelot
N (<> 1

topology.

'

Proposition 1.1.8: The Cartan-Brelot topology is Hausdorff and S+(Q) is closed.
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gj_:g_ooi; To show the topolog‘y.is Hausdorff it is enough to show that for

(u,v) in S+($2) X' é+(9), Hw’x[(u,v)] = 0 for all w in B and x in X n w
implies u and v are identical., Well iix' w in B . Since the maps fudp’m .
and fvdpfu are continuous on w \and equal on the dense subset o n X, they
are equal on w . This being true for all w in ﬁ it follows from

Proposition 1.1.6 that u and v are identical.

; Suppose now {un}n>1 is a sequence in S+(Q) converging in the Cartan-

Brelot topology to [(vl,vz)]. For all w in “By and x in w n X the non-

5l - ‘w w w
negative sequence (fun dpx)nzl converges to fvldpx - fvzdpx . Thl‘lS,
~ since fv dpw and S v dpw are continuous on w , we have /v dpw > [fv dpw
1. 7 2. 17y — 27y
.. ° for all yin w . This being true for all w we deduce.fromv Proposition 1.1.6

that vl(y) > vz(y) for all'y in @ . to

‘Put E = '{yes’l:vz(y) = w} . Define w on Q by 7

v (9 = v, (§) Yy in Q-E

w(y) = ‘

LI Yy in E .

%

|

As in Remark 1.1.14 E is Borel. Thus w is a Borel function. Now let X

be in Q-E and w-a neighbourhood of X in B . There.exists (wk)k>l in B
w. al = T 5 a
such that for all k, w,,.< w< w and AN {XO}J Suppose x_ 1s in X.
' )
Since for all n and k, [ undp};k > J undp;’(’ (Proposition 1.1.6), taking
o
()
the 1imit as n + » gives :
0 ‘ w e
k k , W " w
¢h) fvldpx - fvzdox > fvldpx - vzdpx .
° o ) o
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™,

a
8

- w
k W w w
Since the maps ¥ + j‘vldpy fvzdpy aniy -+ J'vldpy f vzdpy are both

continuous on W and (1) holds for all :;o’;‘fn the dense set X p w > We see

£ e -

(1) must hold even if x is not in X. Letting k + « in (1) and using
\ .
Proposiktion 1.1.6 we get

- w w
vl(x ) ’Vz(x ) > f Vldp : fvzdp . \}

Since polar sets have 0 harmonic measure this says

(2) w(xo) > Ide,‘;‘o .
i

Clearly (2) holds if X is in E. Thus w is an SB functions. Since for all

/
x in @ .

3) vl(X) = vz(X) + w(x)

it follows from Proposition 1.1.6 that \(3) holds with w replaced by ¥. Thus w

I

is in st(Q) and [(w,0)] = [(vl,vz)]. The proof is complete.

Proposition 1.1.19: lLet (Vn):n>l ,V be in S+(Q)‘and let v, converge to v

in the Cartan-Brelot topology. ' If § is in B then for all x in § the sequence

8 g
¢l vndpx)m_l converges to depx .

Proof: Suppose there 1s a y in § such that lim j'vndp‘; either does not
n--o v

exist or is not [ vdp‘; . This implies there exists a positive m%ber €, 8

subsequence (vn ) 1 and an integer N such that ,

6 §
(1) lfvnjdpy—fvdpy!>e for j > N .

N ) 5
Now ( [/ va dp?)j>1 is a sequence of positive harmonic functions on § which

converge pointwise on X n § to a finite limit. Thus there is a subsequence"

( Vo dp"s)pl which converges locally uniformly to a function w harmonic on §.
k 4 - JRp— - {
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( ' The function w agrees with fvdp(_s on a dense set X'n § . By continuity

they agree on all of 6, in particular at y. This contradicts (1). The

proof is complete,

4

Proposition 1,1.20: Let (vn)n>l and v be as in the previous proposition.

/,——\
Then v = 1lim inf v
n->ow n

|
Proof: Let x be any point in Q . Choose (5!&)2>1 contained in B such that

8§ .. S8 forall £ and N § = {x} . Then from the previous proposition,
2+l g i>1 2
— 8
£ 2
for each 2 th'e sequence (fvndpx)ng_l converges to depX . Thus-
) 8
Sy 2 ‘
J vdpx = lim fvn dpx ) °
n-> o
62,
> 1lim inf v, dpx (Fatou lemma).
I o ) _

We have _seen l;‘m+igf vy is nearly superharmonic, Letting 2 -+ « and

applying Propositic;n 1.1.6 gives

1

‘ . (1) v(x) > lim inf v_(x).
n - n
Conversely, since for all n,2 and z in 62 .
. 61 -
o f Vndpz _i Vn(Z) > i .
j e,
t taléing the 'lower limit as n - « and applying Propositipn 1.1.19 gives

: S8, )
: [ vdp < 1lim inf v _(2). .

z n > w n ) )

' But the left hand side is continuous in z. Therefore .
., S,
vt S vdp < 1im inf v (x).
x - n
N . n> o

)

p
- Letting & + o gives

o
N
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}
(2) v(x) < m .

n > -

From (1) 'and (2) we see we are done.

Corollary 1.1.21: The mai)ping f:S+(Q) X Q-+ RU{o} , (v,x) » v(x)

is lower semi-continous.

' ' +
Proof: Let (vn)nzl and v, be in S (Q) with (vn)rlzl conve;rging ?.n the
1
Cartan-Brelot topology to v, and let (xn)n_>_1 .‘and X be in Q with (Xn)n_>_1

converging to X Let o and ¢ be positive real numbers such that

\ N vo(x)—cx
a<vo(xo) and € < min(z,,———%————)

o -

Let Wy be a relatively compact neighbourhood of X, and h a positive harmonic

] v _(x)
function defined on a neighbourhood of w;. Put U= {x e 0: == > 2

h(x) h(xo)
Then U is an open set containing xo. Let §, 61 be in B such that

1
X € §c §.c &cé i\U' We have seen Cl'vndpx )n}_l converges to‘fvodpx
for all x in 61. Since this 1s a sequence of positive harmonic functions
. 1
on 61, there is a subsequence ( Sv dp(S ).
1 nx >l
/ vodpi . Thus there is an integer N such that for j > N and all x in B
ol a
v”(x) 2 Jv de
3 : —
sl €
fvodpx T2

converging uniformly on § to

IR
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h(x)

Put U, = {x¢e :a h(xo)

1

>a - g— }. Then U, is a neighbourhood of x_.

7

If x is in Uln & and j > N, v, (x) » .- . From this we easily deduce
J .
f is lower semicontinuous and, we are done.

v o

We procéed now with the assumption of Axiom D on & .

Lemma 1.1.22: Let (vn)n>l be a sequence, in S+(Q) which’ is uniformly

Bl

Jlocally bounded on @ and let 6 be a regular open subset of @ .  Then there
\ é
is a subsequence (vnﬁ)jzl such that (.fvnj (,lpx)j_>_l

in § andqfor an?' subsequence (vn.)k>l and x in &

K
lim fv dpi - [Tim taf v~ dpf{

jre M ko Py

converges for all x ‘

.. Proof: The sequence (.fvndp‘S

)

is contained in H+(6) and is pointwise
x ‘n>1 .

bounded. Therefore there is a subsequence (/ vnj dpf{ ). converging locally

j>1
uniformly on & to a function in H+(6). Take any subsequence (v, )k>l'

R N Jk 2
Put

1

From Proposition 1.1.3 (d) we see this is in S+(Q), it minorizes ‘;n .

. J
and it is harmonic on 8. Now define k

a v = m on @ .
+ n
\ e ‘
vMim S+(Q) . Since a countable union of polar sets is polar (see

Proposition 2.14) it follows from Proposition 1.1.3(c) and
f ¥ /

Théorem 1.1.15 (a) that for all x in Q -§ except a polar set

vi(x) = lim nf v (x).
> o 3

k
(Note v, =V, on -6 ). Also v is locally bounded and harmonic

h| J
on § . k k
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Define w on 9 by

w = liminf A

~o ' &
k > jk .
C . .
and put w = q: . Then w' is in S+(Q), it minorizes w hence is locally

bounded on §, anq§}s harmonic on § . Since w' =w on § -8 we have w' .
and v_equal everywhere on Q-w excépt a polar set. It follows from

. | '
Remark 1.1.14 that w' and v are identical . In particular for x in §

s

Im dp(S = lim fv dp6
. X n X

n
I jorw i
-.The proof is complete. . . T

~ 1

Proposition.1.1.23: 1f (V'n)n>l is a uniformly locally bounded sequence

F
in S (9) then there is a subsequence converging in the Cartan-Brelot

" topology.
Proof: Let (61)&2’l = B, Cogsider first 51 and (Vn)nz} . From the lemma
there is a subsequence (Vn,l)qzl such that for any subsequence (v 11&3;
s

of this and all x in Gl

. .8 5
;i ey do 1= 1im fvnldpl.
. k+o M1 ¥ n%oe X

Now we proceed inductively. Suppose the sequence (vn E)n>1’2 >1, Bas been
; 207 1>

constructed. Consider this sequence and 62+1. From the 'lemma there is a

——

subsequence (vn,2+l)q21 Of,(vn,z)qzl such that for any subsequence

(v ,g¥i)kzl of this and x in &, .

8 $
/\ 2+1 2’+1(7
J lim inf v dp lim fvn’2+1 dpx . -

/ k + nk,,H-l x n—+ o

1}

o

% -
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Choose the diagonﬁl sequence (wn)n>l = (vn‘,n)nzl .+ oPut - .
w o= mnf\vn . S

n-> o _

Then w is in S+(Q) . We claim (wn)n>l /(which is a subsequence of (vn) )

. n>1

converges in the Cartan-Brelot topplogy to w. Indeed consider § . in B and

x in 62 . Sinf:e (wn)nzz 1s a subsequence of (vn,f,) we have

4

8
fwdpxg" f’lﬁnf\wndpl

n -+ «

lim [fv_ d
n—> « ‘ n’g’p

N =
=

62
= 1lim [f w_dp
n X

n >

This completes the proof.
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{. Section 2 Finite Products of Brelot Spaces

Let n be any positive integer and 0 vy Qn Brelot spaces each

1

‘having a positive potentﬁal and each having at every point a countable
base of open sets. We mentioned earlier that this implies each one of
these spaces has a co;ntable base of all open sets. If U is an open sub-
set of Qi then the harmonic, superharmonic,non~negative harmonic, and non-

negative superharmonic functions on U are’denoted respectively by Hi(U),

5, () ,H;,':(U) and SI(U) )

Definition 1.2.1: Let U be an open subset of Ql X ... X Qn\. A real
AN

valued continuous function on U is said to be n-harmonic on U if for

any n~1 fixed variables it is a harmonic function of the remaining variable.
The set of all (respectively non-negative) n-harmonic functiops on U is

+
denoted by n-H(U) (respect%vely by n-H (U)).
/ /

: It can be shown gJaf continuity in Definition 1.2.1 can be omitted
if u is non-negative. That is continuity is a consequence of the .rest

N " of the definition. See {7].

It is clear from the corresponding property for each Hi(U) that n-H(U)
is a,real vector space. It is also clear that the n-harmonic functions
satisfy the sheaf property. 1In other words if u is in n~H(U) then it
is n-H(V) for all open sets V contained in U. Conversely if for ég;ry x
in U there is a neighbourhood U; of x such that u is in n-H(UX) then u
is in n~H(U). We summarize other properties of n-harmonic functions in

the next proposition. ' .

Proposgition 1.2.2:(a) Ifml,...,uL are regular domains in Ql,..., ﬂn

‘j} respectively and f is a real valued continuous function defined on the

W owt W
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\

l \
X ... X W, then there

distinguished boundary Bwl X eus X Bwn of Wy
exists a function Ff on Jl Xo o oX -u;n such that .
AN
i) r £ is real valued continuous, N
. — |
ii) I‘f f on Bwl X...xlawn

-

111)  Tg(x) > 0 for all xin wy X... x w_ if £(x) > 0 for all x in

dw, X ..X dw_ ,

1 n ] Vd

n

iv) for each integer j from 1 to n and fixed point in I wij’ r £
’ i=1

. ) 1#]

1s a harmonic function of the remaining variable on wj . In particular I‘f

<

is in n—H(wlx eeaX wn) .

Furthermore I’f is uniquely determined by properties i,dii,iii,iv.

(b) 1f (ui) fe I ,15/3 pointwise increasing directed family in n-H(U)

where U :is a domain then the upper envelope is either in n-H(U) or iden-

/

tically . ’

!
L

(c) Let Wyseoes 0 be as in (a) and g any e}'{tet‘]ded real valued function on
w w

. X ... X Pu_. Then the p L A ° integrabity of g is independent
1 n % X “
of (xl,. .. ,xn) in wy X ooa X w and if integrable with respect to one such
measure the mapping . —
{ !’z 61 * sn
(xl, - .xn) > f g(zl, .o ,,zn) (pxl X o 4aX pXn ) (dzl, cen ,dzn)

\
¥

is in n—H(wl XoooX wn). !

N

Remark 1.2.3: (a) We generalize parts (a) and (¢) above in the next chapter

by‘considering instead products of relatively compact domains.
(b) Proposition 1.2.2 (b) implies a non-negative n-harmonic function u

defined on a domain is either strictly positive or identically 0. (Just
*

consider the sequence (%£.u)

/
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Definition 1.2.4: Let U be an open subset of Q, % ... X Q

1 . n An ex-

tended real valued function v on U is said to be n-hyperharmonic on U if

1) v(x) > - = for all x,

i

ii) v 1is lower semi-continuous,

iii) for any n-1 fixed variables it is hyperharmonic in the remaining

~

variable.

If in addition v is finitee at one point of each connected component of U

then v is said to be n-superharmonic on U. The set of all n-superharmonic

(respectively non-negative n-superharmonic) functions on U is denoted by
n-S(U) (respectively n—S+(U)).

f
It is easy to see that if vl,v2 are in n-S(U) and ul,az positive

4
'

real numbers then a vy + a,v, and min(vigvz) are in n-S(U). It is also °

clear v is in n~H(U) if and only if v and (-v) are both in n-S(U). In

addition the n—superharmonic”f\métions satisfy the following.

Let U be a domain in Q. %X ... X Q

Proposition 1.2.5: 1 n

(a) If v is in n-S(U) then it is finite on a dense subset of U.

(b) If (Vi)i 1 is a peintwise increasing directed subset of n~5(U)
then the upper envelope is either 1in n—-S(U) or identically =

(¢) If w is a locally lower bounded extenried real vah’J‘ed function

on U satisfying (iii) of Definition 1.2.4 then w is lower semicontinuous.

Thus it is n-hyperharmonic,

Remark 1.2.6: (a) Llet U be a domain in @ X Qn , v in n-S(U),

X
1

|
‘w, a regular domain in R

for each i from 1 to n such that ;l X‘...X En < u,

..,xn)< e

i

and (x

i

..,xn) a point inw, X ...

1 X w with v(xl,‘.

1" N (Erom

5
%
]
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=
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Proposition 1.2.5 (a) we see this point exists). Since v is lower semi-

continuous (hence locally lower bounded and Borel measurable) we can

apply Fubini's theorem and deduce

le wn ‘ i wl w
fv(zl,...,zn)(pxlX...x Py )(c}zl... dzn)=f.».fvdpx dpx
n 1 n

< v(xl, .. .,xn)

G v,
Thus Proposition 1.2.2 (¢) implies v integrable with respect to all

W
measurecplx e X P for (y,5++,y.) in w, x ... x w_ and
1 Yo 1 n 1 n

W w
(yl,...,yn) -+ fv(zl,...,zn) (pyl X v Xpyﬂ) (dzl,.. .,dzn)
/
| R

is in n—H(uu1 Xevs X mn).

¢ - R : ) [ .

(b) From Proposition 1.2.5 (a) and (b) we see v in n73+(U) where U

is a domain is everywhere on U positive or else identically 0. This
C

follows since if for some ;E(; inU v(xo) > 0 then v(x) > 0 on a mneighbout-

hood of X, and the increasing sequence (L.v) converges to0« On an open

2>1

set hence everywhere on U. Thus v must be positive everywhere on U.

From this last remark we can prove a general minimum principle

|

for n-superharmonic functions. . 1

l
Proposition 1.2.7: (Minimum Principle) Let U bé a relatively compact open
{ “

subset of Ql X4, X Qn and let v be in n-S(U). Suppose for all x in 23U

(1) 1lim inf v(z) 30 . -
zZ > X '
ze U !

’

Then v(2) > 0 on U.

N
. ~
i
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Proof : Without loss of generality we may assume U is connected since

(1) holds on each connected component of U.
Define w on U by
v(x) x in U °

w(x) =

LI et SRS o e

0 x in 93U . '

‘

f
Inequ\ality (1) implies w is lower semicontinuous on U. Let hbe a

positive n~harmonic function defined on a neighbourhood of U, Certainly

hamnd b
this exists since U can be contained in a product Wy Xaas X wy of rela- g 0

)
<

tively compact open sets and if hi is positiyer harmonic on wy

h: (xl, - .,xn) > hl(xl)-hz(xz) IR *'hn(xn) is positive n-harmonic on

then

d)l Xeoas X W, - Now w/h is lower semicontinuous on U. Thus it attains

, a minimum value at a point X, in _ﬁ., If v were negative somewhere on U

we would have X in U. Now the function v - (v(xo)/h(xo))h is in n-S(U),
it is non-negative, and it equals 0 at X . Remark 1.2.6 (b) thus implies &
v(x) = (v(xo)/h(xo))h(x) for all x in U. The continuity 'of h gives w

negative at each boundary point of U. This is a contradiction, hence.v
is non-negative on U. The proof is complete.
Let k be an integer strictly between 1 and n, let ¥ be in

) i
k~5( Ql Xeos X Qk), and.w in (n-—k)"rS({lk_*_l Xaos XQn). Put u = v.w. That

N g e

is for (xl,...,xn) in Ql X vaa X Qn ‘mput u(xl,...,xn) = v(xl,...,xk)-~

. w(xk+l,...,xn‘). Then u 1s in n—?(Ql Xov. X Qn). Indeed since v and w

T e T

are locally lower bounded so is u. Clearly u is never (-«) and u 1s finite
- L‘\y
at least at one point. It is also clear u is hyperharmonic in any variable
(,,.‘ if the other variables are fixed. Thus Propsotion 1.2.5(c) implies u is
H . >

in n-S§ (wl Xeow X wn) . In the next proposition we show how to.generate other
t )

Exl
n-superharmonic functions. {

e
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Proposition 1.2.8: Let v be a locally lower bounded Borel measurable

: 2 x... % 0 su . x...
function on 1 % X Qn such that for every (xl, ,xk) in Ql X X O.k
(k a fixed integer between 1 and n-1) the mapping y + v(xl,...,xk,y) is
(n—k)—hyperharménie (respectively (n-k)-harmonic) on szk +- X ... xnn. Let

8 ,..., 8 be regular domains in Ql, vens Qk respectively. Then for each

1’ k
X = (xl,...,xn) in Sl Xouo X <Sk the mapping , R
5 K
g:(xk+1,...,xn) -+ fv(zl,...,zk,xk_h&,...,xn)(pXl pxk) (dzl’?"'"dzk)

v

is (nhk)—hypel.:harn;onic (respectively (n-k)-harmonic) on Qk+l X, .X Qn

l
o

Proof: Since v is locally lower bounded and, the product ©f harmonic
measures is totally finite, g never takes the value -® . Furthermore
’ L L 2
\] =
we may apply Fubini's Theorer?l to g. Let (x \23—1 ((xk+1, . "’xn))lzl
be a sequence converging to (x1g+l"' . ,xn) in Qk+i X ... XQn .

- 5. 8

o
lim inf g(x ) =\§_im inf JSv(z.,...,z ,xz)(p 1><...><pk Ydz,,...,dz )
L > o g > o 1 NA 4 X xk 1 k
[ 61 Gk :

> flgi,m+i:f v(zl,...,zk,x )(pXl X"'x,pxk) (dzl,...,dzk)

{Fatou lemma) : S
51 S
> fv(zi,...zk,xk+l,...,xn)(pxlx...prk)(dzl,...,dzk)

(since v is lower semicontinuous in its last n~k variables)

|
SR

Thus g is lower semicontinuous. Finally let § be a regular domain

Q LI 2N x LI ) x
in For any (xk+l’ ,xn) in Qk+l Qn with X4 in § we have

k+1°

i,

VA eneat et o vy .- -
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|
é
S g(zk+1,xk+2, iee ,xn)dpxk+l(zk+l)

«

s $

8 s
/ i f(p"l
5

iA

\

v

\

B0y e omy)-

k+1

that if y + v(xl,. .. ,xk,y) is (n—k?-—harnfonic on Q +

(n-k)-harmonic.

_Jp T) Sv(Zy e esZ s yeeesx )(p
= xk+1(dzk+l 1 k+1°Epq n X

. .
XeaoX p )(dz,yeee,dz ) Sv(z 4.,
xk 1 k 1

1

%

1

§

k
Xooox p )(dz ,...,dz
X 1

LI AVTTEY

. 1 k
Jvlzg,s.. -,zk,xkﬂ,...,xn)(g{l X aun xoxk)(dzl, reesdzy)

Y

We now consider the analogue of the SB functions.

sets of

i

1

i) f is locally lower bounded and

superharmonic if Bi is the set of all regular domains for each 1) if

K

8
,xn)p (d

z
e+ Tkl

By symmetry we see g is separately (n-k)-hyperharménic. Thus g is (n-k)-
~
hyperharmonic on @ X 0, X% Qn. By applying the same result to -v we see

X...x @ then g is
n

Definition 1.2.9: Let for each integer i from 1 to.n Bi be a base of open
consisting of regdlar domains. An extended real valued function £

on 2, X... X Qn is said to be an n—S(Bl,. .es Bn) function (and nearly n-

ii) for all 61 in Bi’,i =1,...,n, and for all (xl,..,,xn) in 61 Ko oX 6n

$

T f(zl, ..
n

§ .
.,zi;s(pxlk...x pxn);(dzi,...,dzn) < f(xl,...,xn) .

Clearly any n-hyperharmonic function is nearly n-superharmonic. It is

also simple’ to show the upper envelope of an increasing directed fapily of
n—S(Bl,..., Bn) functions and the lower enevelope of any uniformly locally

lower bounded family of n-$ (Bl,. ves Bn) functions is in n—S(Bl, cee, Bn) .

)

%
2
E:
k|
i
24
i
;
o
E;
2
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Thus in particular if (vl) is a uniformly locally lower bounded
°

L>1

sequence in n—S(Ql Xyao xnn), lim inf v, is nearly t-superharmonic.
N L > K

The fundamental resultconcerning these functions and one we use re—
1 v

peatedly is the following.

Proposition 1.2.10: Let v be an‘ n—S(Bl,... s Bn) function which is not

identically = , Then the lower semicontinuous regularization v of v is

in n—S(Q1 Xow. X Qn). Furthermore for every (}il,...,xn) in Q«l x "r x Qn
. 61 6ﬁ
v(xl, ...,xn) = gup {fv(zl,...,zn) (px1 XooaX pxn) (dzl,...,dzn):
(xl,...,:gn) € 61 X wen xsn, Gi € Bi’ i=1,...,n} .

As a consequence a lower semicontinuous n-S (Bl"' . ,Bn) function is n~

superharmonic.

In the course of the proof of Proposition 1.2.10 (see [8] page 81)
Gowrisankaran actually deduces more if v is lower semicontinuous. Indeed

he shows the following.

Proposition 1.2.11: (local property) Let v be an extended real valued

lower semicontinuous function on a domain U in Ql S Qn Sl{ch that v
&
is not identically = and never (-=). If for every x = (Xl,...,xn) in U

and neighbourhood V of x there exigts § Gn in Bl" .oy Bn'respectively

IERRRE

such that Xxe8, X ...x § €8, x...x8_ <V and
1 n 1 n

§ §
1 n
Joei S v dp %... dp_ + = v(x),
1 n

then v is in n~-S(U).

Finally we consider the analogue of the reduced function.

»

T xn

¢
&
i
§
%
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b R, F R o N T, e Sty

Definition 1,2.12: lLet v be in n—S-'-(Ql X,.. X Qn) and E any subset

of Ql X es X Qn. The reduced function RE is defined on Q as follows:
<

| R‘}?(x) = inf {w(x):w. e n—S-*‘(Q1 Xueou X Qn),w(y) > v(y) for all y in E}. &

As in the case n = 1 it is easy to show this is a monotone non-decreasing

function of v and of E (if subsets of Ql XeooX Qn are ordered by inclusion).

For E and F two subsets of Ql X,00 X Qn

EUuF E F
RV (x) < Rv(x) + Rv(x) on Ql X vue X Qn s ‘

and for A a non-negative real number - ;

E E .
va(x) = ARV(X) on Ql X ... X SZn . . . !

Since the finite infimum of n-superharmonic functions is again n-super-

. e E E .
harmonic we see Rv = v on E. Moreover Rv is the lower envelope of a

@

family of functions in n—S+(Ql Xooo X Qn). Thus Rg is nearly n-superharmonic

o +
and hence 135 is in n-§ (Ql Xy ooX Qn). Since v is lower semicontinuous, -

Rg = Rf; on the interior of E. Thus in case E is open ﬁs ‘equals v on all

of E hence it'majorizes Rs on Ql S Qn’ and therefore in this case

ﬁE and RE are identical. . iﬁf
v o, v b

We remark that unlike in the case of n = 1 the:reduced functioh is not

necessarily n-harmonic on Q]; XoooX Szn-E. It is this fact that produces the

greatest difficulties in the theory. .

R
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CHAPTER 2 ¥

I o T e

n~-Polar and n-Negligible Sets

A

In this chapter we introduce and begin a preliminzry study of the
tV(O principle types of exceptional sets which’'we shall be cn?nsidering
in this thesis; the n—-polar :and n-negligible sets. In Section 3 we ' }
solve the Dirichlet proplem on a product of relatively compact domains

and show the "irregular boundary points" form an n-polar set. In

Section 4 we generalize the Continuation Theorem to functions n-super-

ot it -

phe

harmonic on an open set and bounded on the boundary of an open subset.

LS &

Before beginning we state once and for all that 2,,..., & ,n > 1,

1 n’
are Brelot spaces having a positive potential, a countable base of open
o .
e
sets for each point, and each satisfying Axiom D. We remark, however,
Axiom D is actually used only in Fonsideration of the Dimchlet problem, ‘

the Convergence Theorem, and thin sets. ) .

Section 1 n-Polar Sets

Definition 2.1.1: 1Let U be an open subset of Ql P § Qn. A subset

+
E of U is said to be n—-polar in U if there exists a v in n—S (U) such

that E is contained in {x ¢ U:v(x) = «}. If U = Ql Xeew X Qn we simply

call E an n-polar set. We shall say that any such v is associated to E in U.
It 1is obvious a subset of a set n-polar in U is n-polar in U. We
also notice that a set E n-polar in U is contained in a G5 (hence a Borel

meQSprable) set n-polar in U, 1Indeed if v is associated to E in U,

E ci{xe U:v(x) = «}

w0

= N {xe Q %.v. xQ:v(x) > 2} nU
=1 1 n

o

\\
\

T T e e MNP v v
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ot R T

{ which is G«S since v lower semicontinuous on U.
&

Y

One way to generate n-polar sets is given in the following.

\
s o iite

AT

e w;:».,r\..ﬁ.ﬁ

Proposition 2,1.2: Let P be k—polar in Ql Xowa X Qk,

P X @ X..x @ 1is n-polar dn @ x...x in ‘

1 <k <n. Then

Proof: Let v be associated to P in ﬂl X... X Qk and let w be any member

XouaX Qn). Then the mapping (xl,...,xn) > v(xl',...,xk)-

T4

L.

+
of (n-k)-S (Q
- ae]

x§

+ .
\ w(x.kﬂ,...,xn) is in n-S ( Ql X,,. X szn) and is associated to PXQkH. Xeoo XQ .

We show now the extremely useful fact that a countable union of

n—-polar sets is n-polar. !

Lemma 2.1.3: Let {Uk} be the connected components of the open set 4

k>1
U in Ql XoewoX Qn. " Then E is n-polar in U if and only if E n Uk is polar @ ;
in U, for each k. ' C

Proof: —Srtxppose E n U, is polar in Uk for each k. Let v, be associated

k k

to En Uk in U‘k. We extend vk to U by making it 0 on the other connected

. components. Then clearly I Vi is in n‘-S+(U) and is associated to E in U.
| k=1

o0

Conversely if E is n-polar in U and v is associated \to E in U then
d g

+
¢ the restriction of v to any connected component Uk of U is in n-S (Uk) and

associated to Ukn E in Uk' Thus E n Uk is n-polar in Uk'

z . J(’
L Proposition 2,1.4: A countable union of sets n-polar in U is n-polar in U.

Ca

]

BARES LT S

g

g
St

Proof: By the lemma we may‘assume with})ut loss of generality that U is

i

.
3
%

connected. Let (Ek) be a sequence of sets n-polar in U and let v, be

k>1 K

associated to Ek Choose §

!

e

respectively with -6-1 Xeoo X En

. s cSn reguiar domains in qu, e ’Qn

¢ U, Let (xl,.. .,xn) be any .point in

0

S, XaeuoX 6n. Put for each k

1

) v
Y
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\ . , 61 ’ Gn . ‘
K = Vk(zl”"’zn)(px X eee Xp Y ( zl,...,dzn) .

1 n
These exﬁ&t and are finite since each vk is integrable w%th regpect to

any such product of harmonic measures. (Remark 1.2.6(a)). Put

v(z) = I (v (2)/) 2k) for each z in U.
k k
k=1 !

. - +
Then v is the limit of an increasing sequence of functions.in n-S (U)

o

hence is in n-—S+(U) if it is” finite at least at one p@xt of U
' \ .
(Proposition 1.2.5(b)). But this follows since

$

. 1 0 - .
0 < fv(zl,...,zn)(px XeeaXp )(dzl,.‘..,dzn)
T 1 n -
8 L R
= I S (= ...z)/Zk)\ )(pl"x.. xgn) (dz.,. .de) a
- k"1’ " %n k7 My . X R
k=1 1 n
(Monotone Convergence Theorem)
=y 27k o
k=1 . .
’ < o0 #
2 .
Since clearly E = U Ek is contained in {z e U:v(z) = ®}, v is associated
k=1 ) R

to E and we are done. , ,

o

Remark 2.1.5:

Form =1 9f course l-polar means polar. In this case a set
! :

which is polar in an open subset U of Ql is polar” in Ql. Indeed choose a

' sequence

u,)

4 4

27851

of relatively compact open sets such that for each 2 ,

U <cu

and U U =1U. Let v be associate‘d to E in U. The Continuation

g 241 %

>1

Theorem impliés for every 2 there exist PysPy inﬂSI(ch) such that 131 = p2+v

onUQ .

Therefore

e

s

S i

i,

A
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Env, c{x eSZl:Pl(x) = o} . 4

and E n U2 is polar. The previous proposition now gives E = L&(E n Uz) : 'g
‘ ‘ 82
is polar thus proving the claim. We wish to note here that we do not know ;
45

if this is true for n greater than 1. However for a special case of this \ %
N 1)

see [13]. ) h

Definition 2.1.6; Let E be a subset of Q

from 1 to n-1, and kl,.
r

Let x = (X,.5,...,%X, ) be a point in Q6 x...x
£ L 2
1 hj | 1

..,ki integers satis{ying 1 < k1< k2 <... ¢k, <n.

1

where
@ t

]
{El""’kiy c {gl,,,,,gj} c {l’q.:,n} - The' (kj,...,k;)-section of E :;
through x is defined to be « ;
7 #
n s . AY
{zeq o (yl,...,yn) e E where y_ =x; for r e{kl,...,ki} and
r=1
r £ {ky,.. 0k} co g
1 i V=2, for r ¢ {kl,...,ki}}.

It is denoted by B seeeng (x). The set of all (kl,...,ki)—sections of
1 i

E as kl,l..,ki vary over all possible values are called the i-sections of E.

(E), is defined

The (k,,...,k,)-projection of E, denoted by I, .
“1 1 of By k .

Lok
to be

. {zeq x...xQ :E (z) # ¢ 1.
kl ki kl,...,ki

Notice if E is open, closed, or compact any i-section or projection

I (E) hag the corresponding property.
kl""’ki

For a polar set P in Q. it is true that for any poifit x of Q.- P

1 1
there is a function asaociated’éé P in Ql that is finite at' x. Indeed

let (5{)2>l be a sequence of regular neighﬁourhdods of x such that for

every % ,3;+1 <§, and r; 625= {x}. Then if v is associlated to E in 2,
- o>

- o
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§, 8
2,.°8, .0
w= I (E_/E_"(x)2%
251 v v .

is in SI(ﬂl), w(x) <o, and w(z) = » for z in P, In case n > 1 this
is too much to hope for since (as we shall prove) it is necessary for

all i-sections of P though x to be (n-i)-polar. We prove below in

Theorem 2.1.9 that this condition is also sufficient.
We first prove two results both of which we return to in later sections.

12 regular domain in Ql.
Define w on Ql Xooe X Qn by ‘ . -

Lemma 2.1.7: Let v be in n-S(Ql X... X Qn) and §

V(xl,...,xn) x, in Q, - 6, ,

W(Xl”- L) ,Xn)' =

\ ’ 8
1 ,
fv(z,xz,...,xn) dpxl (z) , x; in 61.

Then w is in n—S(le celX Qn) and w minorizes v.

Proof: Clearly'%'minorizes v hence it is not”identically « ., Further
since v is locally lower bounded and harmonic measure is uniformly totally

bounded as xI/Varies over, 61 we see w is also locally lower bounded. Thus
to complete the proof it suffices to show w is separately hyperharmonic, the

{
joint lower semicontinuity following from Proposition 1.2.5(c).”

a

First fix (x .,xn) in Q% ... X Qn. Then the mapping

VA 2

% +> w(xl,xz,....,xn) is just

61
Xl + E (Xl).
v(‘,kz,...,xn) } 1\

which is hyperharmonic by Proposition 1.1.3(d).

TTmeT T - b4t MWW* -

1

. e T
T e e s oS ™ g VR i i oA By il RN
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1

;

(‘ Next fix (xl,x3,...,xn) in @, x Q, Q, X voe x Q. If x, is not in 81 \ §
i 3

) there is nothing to prove., If x, is in 61, X, > w(xl,...,xn) is %

. : 5, 5

X, = fv(zl,xz,...,xn)dpx (zl) ‘%

3

#

which by Proposition 1.2.8 is hyperharmonic. We see by symmetry w is separately

hyperharmonic and we are done.

&

EENS

Lemma 2.1.8: Let v be in n—S(Qlx el X Qn) and Gl,...,dn regular domains
in Ql,..., 2 respectively. Then there exists a function in n—S(ﬂlx ceoX Qn) I

which is pdsitive if v is positive, minorizes v, equals v on {

|

~

(Rl—Sl)x . x(ﬂn—ﬁn), an§ is in n—H(Gix ces X Gn).

Proof: Define Upseeestly inductively as follows. Put U = W, as in Lemma 2.1.7.

. . < ne <
Assuming uy 1s{defined, 1 <1 <n-1, define Uil as . ;
{ \

ui(xl,...,xn) x; in Qi—éi

ui+l(xl""’xn) |
61
J ui(xl,...,xi_l,z,xi+l?...,xn)dpxi(z) x; in 61

It is clear u satisfies all of the requirements but the last. There
n .

.,xn) is in 6, x...x §_ and

exists a point (xl,...,xn) such that (xl,.. 1 n

-
N

; v(xl,...,xn) < ® (Proposition 1.2.5(a)). At this point
H

1 [

B 8, 8

§ un(xl,...,xn) =f ... v dpxl Ve dpxn

v(xl,...,xn)




.

:

‘

.

,
é
1
i
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Thus Proposition 1.1.3(d) implies u is in n-H('G1 X 4eoX 5n)-The proof

is complete.

\

Theorem 2.1.9: Let E be an n-polar subset of Ql Xoaa X Qn,n > 1, dnd

X = (xl,...,xn) a point in Ql Xeos X Qn—ﬁ. Then there exists u in

+
n-S “H_x.. Xﬂn) with u(x) < @ and u(z) = © for all z in E if and only if

for each integer i from 1 fo n-1 every i-section of E through x is (n-i)-

(Of course for n = 1 there are no i-sections hence the condition

=

polar.

trvially holds.)

Proof: Suppose first such a u exists. Let Ek sy (x) be any i-section
1 i

of E through x. Then the mapping

n / —
il - Q.+ R, 2z +v(y1,...,yn),
§=1
ié{kl,...,ki}
[

where yj = xj for j }n {kl,...,kiJ an = zﬁ for j not in {kl,...,ki} is

clearly (n-i)-hyperharmonic. It is Spus (n-i)-superharmonic since it is

finite at the point z where Zj = xj for j not in {kl""’ki} It is also o

(x) . This proves the proposition one way.
ki

" The converse is proved by induction on n.

E
on Kyseves

For n = 1 we have already

remarked that the result holds. Assume then n > 1 and the implication

holds for smaller integerﬁ. Choose for each integer j from 1 to n a sequence

.

mains’ in Qj each containing xj such that for every k,

(6, ,) 6f regular do

j,k'k>1

3 +
) n = ¢ - L

Gj,k+1 € 6j,k and k>16j’k {Xj} Let v be in n-§ (@, x x Qn) with

w(z) = © for all z in E. By Lemma 2.1.8 there exists for each k a function

+
in n-S (le ...><Qn) such that v, minorizes ViV equals v on

Yk k
+ \
(Ql—él’k) Keus X(Qn-ﬁn’k), and Vi is in.n—% (5l,kx 4.:¢6n’k) hence is finite
k -1 ‘ !
at x. P}.\t Ak = @ vk(x)) . Define w on le Xﬂn by
A

A

';i'g
)
37
3
‘:'}
3
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o |

’ w(z) = I A v (2).
( o Kk

Then w is in n—S+(Q1 Xees X Qn) since w{(x)< » and w(z) = « for z in

n
F=E - U s oo E:z, = T
E j=l{(zl ,zn) € ZJ xj}

"For if z = (Zl""’zn) is in F then z is in E and zj # xj for j from 1 to n

hence there is a positive integer k such that z is in (Ql -8, )X ...x (Qn-ﬁn ).

1,k

,k
This implies w(z) > Akvk(z) = )\kv(z) = o

Consider now El(x). It is a l-section of E through x hence it is (n-l);
N
polar and every i-section of it through (xz,...,xn),l A i <n-2, is an

. (i+1)-§ection of E through x. TFurthermore (xz, . ..,xn) is not in~El(x) .

Hence by the inductive hypothesis there exists Wy in (n—l)—S+(QZ>< vesX Qn)

1
..,xn? < o« and wl(z) = o for z in El(x). Let w

such that w 1

1(x?_, . be any

real valued member of SI(Q Define u, on 9, x ... X Qn by

1)' 1 1

. '
ul(zl, .. .,zn)— wl(zl) -wl(zz, .en ’Zn) .

!

+
Then uy is in n-8S (le R Qn), ul(x) < o , and ul(z) = ® on

{(zl,...,zn) € E:z1 = xl} . Similarly for j = 2,...,n there exists u

|
I !
in n—S_I-(Ql Xeuw X Qn) such that uj (x) < = and u,(z) = © on

h| |

{(zl,...,zn) € E:zj = xj} . Finally, define u on Ql X e.. X Qn by
. . : ) n
u(z) =w(z) + & u.(z) .
3= d

Then u is in n--S+(Q1 XyooX Qn), u(x) < o , and u(z) = » for z in E.

|

The proof is complete.

We prove now some characteriztions of n~polar sets.”’

/
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Proposition 2.1.10: Let E be a subset of le ceuX Qn. Then the

2

5

[
following are equivalent. i .

T b e

At

(a) E is n-polar

-

\ + 2
(b) TFor some v in n-S (le eee X Qn) Rs is 0 at one point or Rg is

identically O. : \ 4

R s et A

(¢) For every v in n—S+(ﬂlX e Qn) RE is 0 everywﬁere except on an

n-polar set or ﬁs is identically O.

Proof: (b) = (a): Suppose first for some v and point x we have Rs(x) =

+
For every positive integer k there exists Vi in n=-S (Ql.x"'x Qn) such 3
. = oo :‘
that w, majorizes v on E and v (x) <2 k. Then w = I w, is in N
k K1 k d
n—S (Q X ..uX R ) (since the series converges at x) and w(z) = » for =z .

- .
ey

in E.. Hence E is n-polar.

Next suppose onﬂy ﬁs is identically O for some v in n—S+(Ql'&..X Qn).

Choose (U ) a sequence of relatively compact opeﬂ‘sets in Ql X L.0X Q0

k>l‘
such that U Uk = le ...XS%F Fix any k. We have R n Uy identically 0O

k>1
on QlX... XQ . Since E n Uk is relatively compact there exist 51,...,6 regular

domainsin Q

N

l""’Qn respectively such that

N n

61 X oo X % c gl Qj - Hj(E n U ).

It follows from Lemma 2.1.8 and Proposition 1.2.2(b) that R k is

-
e

.
C et
i
LR

in p—H\(Glx ...X6n). In particular it is continuous on Glx ves XSn ~a__nd -

hence equals ﬁfr‘Uk there. Thus R k(z) =0 for z in 61 X oas X .Gn and
from the first part of the proof we see E n Uk is n-polar. Proposition “Y

2.1.4 now dimplies E= U (E p Uk) is o—polar and the assertion is proved. ‘ LN
k>l

......
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g (a) ® (¢): Suppose E is n~-polar in le veo X Qn' Let w be associated
+ N

to E, v in n-§ (Ql Xoow X Qn), and x any point where w jis finite. For -

every positive integer k, k-lw majorizes v on E hence it majorizes R\Er P

on Ql X ,ee X Qn. Since w(x) < » and k is arbitrary this implies RE (x) = 0.

14

A 4 J
It follows Rg(z) = 0 for all z except in the n-polar set {z ¢ Ql X, X Qn:

w(z) = «} ., Finally ﬁf;(x) must be O thus IAIE is identically 0 (Remark 1.2.6 (b)).

The last assertion (c) = (b) beingobvious, the proof is complete.
|

Corollary 2.1.11: Let E be n-polar in O x,.. X Qn’ F any subset of

1 ;
+

Q. x... xQ, and v in n-8 (2, x... %0 ). Then RE v F and RF are equal :

1 n 1 n’ v o v . -

everywhere except on an n-polar set. . z

\ A

E Fi

‘Proof: Let x be any point such that Rv(x) = Q. Then %

[\ | %

i

EuFT E F Y

< &

Rv (x) < RV(X) + JRV(X) &

i
i fﬂ ’ N o= RF(x). -

. \ , v 2
: A , . :

'

F C
. ) Since RE'J always majorizes RE we see RﬁLJF(x) = Rz(x). Proposition

2.1.10(c) implies this holds everywhere except on an n-polar set.

(R

Section 2 n-Negligible Sets

SRR

'

E We define the n-negligiblesets inductively (to include the earlier :

I
1

defin;tion of polar) as follows.

Ty

i Definition 2.2,1: Let U be an open subset of le eee X Qn. A subset E

of U is said to be n-negligible in U in case n = 1 if E is polar and ‘in

se n > 1 if there exist sets Pl,...,Pn polar in‘ﬂl,...,Qh respectively

I
ca

i N -

Y
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Y
such that for each integer i from 1 to n, if Xy is in Hi(U)_Pi’Ei(xi)

is (n-1)-nefligible in Ui(xi)'

For n = 2, E 2-negligible in Ql X 92 means that for all %, except

in a polar subset of ﬂl the section of E through Xy is polar and for all

X, except in a polar set in 92 the section of E through X, is polar.

3

Notation: For each integer i from 1 to n we put

-~

o

ol = 1 {83 € {1,...,n} - (1.

Remark 2.2.2: Since subsets' of polar sets are polar , E n—negligiPle in

le oo X Qn says precisely that for i any integer from 1. to n the set
l
{x e ap: E;(x;) is mot (?—l)—negligible in ol
is polar. ‘ o

We observe now that in working with n-negligible sets, unlike with
n—-polar sets, we will not ‘have to keep track of the\open set U in

Definition 2.2.2. This is shown in the following proposition.

Proposition 2.2.3: E is n-negligible in U if and only if if is n-negligible

in 01X...‘x Qn.

Proof: Suppose first E is n-negligible in U. We proceed by induction on n.
If n = 1 this is just Remark 2.1.5. Next suppose n > 1 and the implicafion

holds for integers 1 through n-1. There exist sets Pi,i = l,:}.,n, each

ﬁolar in Qi such that if X

Ui(xi) hence by the inductive hypothesis (n-1)-negligible in Qi . If X, is

is in 1 (U) = 2,E (x)) is (n-1)-negligible in

in (Qi - Pi) n (Qi - Hi(U)), since E is contained in U, Ei(xi) is empty and

hence (n-1)-negligible. This proves E is (n—l)—negligibie in le... XQn.
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The converse is proved by a simple induction and by noting that i

if a set P is polar in Qi,P n V is polar in V for any open subset V

of R (Observe from Proposition 1.2.5(a) the restriction of an n-

i
superharmonic function to V is in n-S(V)).

- S AR e 4 B

As a consequence we can unambiguously refer to such an exceptlonal

o2

Py

set as being n-negligible without referring to any particular open set

my Y

that contains it once it is clear which product of Brelot spaces it is in.

The next prbpgsition gives a useful equivalent formulation of the

definition of n-negligible set. ‘ M\\\QS s

Proposition 2.2.4:  Let E be a subset of @ x...x 9,n>2. The follow-

ing condition 1s equivalent to E beingn-negligible For each integer

N R

© e

-

i from 1l ton
ot i <
Ni = {(xl""’xi—l’xi+1’""xn) e Q .{xi € Qi'(xl""fxn) e E} é

) ' i
f not polar}

is (n-1)-negligible.
!
Proof: The proof in both directions is by induction on n. Note the

proposition trivially holds for n = 2 since l-negligible means polar.

s T v e St e, -

Now suppose E is n-negligible,n > 2, and the condition holds for

&

subsets of a product of any k of these Brelot spaces, k between 2 and n-1.

"By symmetry in the definition of Nl’if"Nn it is enough to show N is (n-1)-

negligible. Since E is n-negligible there exist P ...,Pn polar subsets- of "

1’
Ql,..., Qn respectively such that if Xy is in Qi-—Pi, Ei(xi) is (n~-1)-

negligible in Qi. In particular comsider any boint X1 in Ql-—Pl and the

set El(xl)' _By the inductive hypothesisi
. N - 1




;.);E_‘
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%
2 ’ , {(xz,...,xn_l)EQZX... x Qn_lz{xnsﬂn:(xz,...,xn)eE\l(xl)} not polar}
: is (n—2)—fxegligib1e. But this set is p;recisely \
o \
. {(xz, oo ,xn__]:,)e QZX s X Qn—l: (xl, . ,xn_l) £ Nn 1.
Similarly by considering Pi’ i=2,...,n-1, we can show
{(Xl""’xi-l’xi+1""’xn—l) £ g {Qj:J £ {l,...,n—D-{i}}:(xl,...,xn_l) € Nn}
is (n-2)-negligible. By the definition this shows Nﬂ is (n-1)-negligible.
co The assertion is proved. T~ ‘

Conversely suppose n > 2, the.condition holds for E, and if it holds

'

for a subset of a product of k such Brelot spaces, 2 < k < n-1, the subset
is k-negligible. We will show E is n-negligible. Again by symmetry it is
enough to comnstruct Pl in Definition 2.2.1. For each integer i from 2 to n,

“

since Ni is (n-1)-negligible, there exists a polar set Qi in Ql such that

if Xy is in Sll - Qi

\

.,xns e Il {Qj:je{Z,...,n} - {i}}:

R

Ri,xl= {(xz, EEPE SRELINNERE

Vs~

v

(kpseeenmy 1oZpypeees¥de N}

R

i, n
is (n-2)-negligible. Put Pi = U Qi' Then Pl is polar in 91 (Proposition
i=2
2.1.4) and gxl is in Ql—\Pl each set R, R is (n-2)-

sKpseees MhXy
negligible . Since

Ri,xl= {(X2""’xi—1’xi+l" ..,xn)sII {Qj:je{z,. vasD}- \B{i}}:{xieﬂi:

|
(xz,...,xn) € El(xl)}not polar} ,

[

we have by the inductive hypothesis that,El(xl) is (n~1)-negligible for

such X, Thus Pl satisfies thé requirements of Definition 2.2.1 and we are done.

~
[
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In future we will often have occasion to use\both of these formu-
lations of n-negligible sets and we will do so freely without referring

back to Proposition 2.2.4.
¥
We proceed now to demonstrate some of the most basic properties

@

of n-negligible sets. /

Proposition 2.2.5: A subset of an n-negligible set is n-negligible.

Proof: Let E be n-negligible and F any subset of E. We proceed by in-

duction. The case n = 1 is trivial since clearly a subset of a polar set!
is polar. Now suppose n > 1 and the assertion holds for positive integers

smaller than n. Since F is contained in E, Fi(xi) is contained in Ei(xi)
&

\

for .each 1 from 1 to n and Xy in Qi. It follows by the inductive

hypothesis that

l ’ . . i
{xi.é Qi.Fi(xi) not (n-1)-negligible in Q7}

\

c {xi e :Ei(xi) not (n-1)-negligible in Q*}

i

The latter set is polar since E is n-negligible hence the former set is

!

also polar (Remark 2.2,2). This says precisely that F is n-negligible and

we are done.

Proposition 2.2.6: A countable union of n-negligible sets is n-negligible.

Proof: The proqf is by induction on n. If n = 1 this is just Propositiqn
2.1.4, Suppose.;hen n >1 and the result helds for smaller integers. Let

(Ek)k>1 be a sequence of n-negligible sets and denote their union by E. For
each ;.and integer i from 1 t? n there éxists a polar set Qk,i in Qi such

. i
that if X, is in Q{-Qk,i’(Ek)i(xi) is (n-1)-negligible in Q. Put

B S S
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! I P 1 . . . X I3 - 3 > —
Then Qi is polar (Proposition 2.1.4) and if x],‘ is in K‘Z)i Qi’xi is in Sli Qk,i

for every k hence (Ek)i(xl:_) is (p~1)-negligible and

Ei(x )y = (Ek)i(xi)

e

{

- is (n-1)-negligible by the induction hypothesis. The proves the propositidn.

o N

Proposition 2.2.7: Let E be (n-1)-negligible in 822 X eey X Qn,n_>_2. Then
i

Ql X E .is n-negligible.
» - v
Proof: The proof as before .is by induction enn. If n = 2 then E is

polar , If % is any point in Ql,(le E)l(xl) = E whiclgis polar. If Xy is

any point of Q, outside the polar set E,(Ql>< E) ) is void, and hence .

2 2 (%)

polar. This proves the result for n = 2.

Now suppose n > 2 and the result holds for integers smaller than n.

Clearly E = Nl where

x E} not polar}

14

N, = {xz,...,xn)e sz Xﬂn:{xle le(xl,...,xn) ef?

1 1

3

since {xla Ql:(xl"""xn) e, x E} is @, or # depending on whether or

1 1
not (xz, ...,X)is in E. Thus N, is (n-1)-negligible. For i = 2,...,n
the set ’ ‘ .
1 _ {g .4¢ - . .
N/ {(xz,...,xi_l,xi+1,...,xn)e i Qj.J {2,...,n} {i}}.{xia 2,

.o ‘ (xz,...,xn) € E} not polar}

is (n-2)—negligible by Proposition 2.2.4. Thus

[}
¢

. i - 1 . ' ‘ .
= - . H . %
i {"ggl""’xi—l’xiﬂ"'f = Q .{xie Szi.(xl,.. ,xn) £ le E} not polvar}

PR

o




is (n-1)-negligible by the induction hypothesis. Proposition 2.2.4 thus

@

shows Ql X E is n-negligible and we are done.

Proposition 2.2.8: The complemenﬁ of an n-negligible set is dense.
R

Proof: Let E be°n-negligible . We show by induction that E contains no

non-void open set. If n = 1, E is polar hence by Proposition 1.2.5 it
. . J

contains no non-void open set. Suppogde nown > 1 and U x V is contained in E
- - - Lb
where U is open in 91 and V is open .in 92 Xouy X Qn" Since E is n-
: ’ . !
negligible there exists'a polar set P in Ql such that if'x1 is in‘Ql-—P,

'El(x) is (n-1)-negligible. Since P does not contain U there exists xl,in

U - P. For this point El(xl) is (n-l)-negligibie and it contains\(ﬁ><V)1(xl)==V.

By the induction hypothesis V must be void. Therefore so is Ux V and we

are done. 7

—

Proposition 2.2.9:(local pfbperty) Let E be any subset of 91><...x Qn

such that for every x in E there is an open set w containing x with E n wg

n~negligible in W Then E is negligible .

Proof: Note first that E n w n-negligible in W implies it is n-negligible

in Ql Xeoe X Qn (Proposition 2.2.3). Nowuh{mxzx € E} is an open cover of E.

Since Ql X L.uX Qn has a countable base of open sets there existg a countab%g

number of Points {xk}k.21 with X in E and {ka}kzl covering E (L%ndelof
property) . Since for each k Er\ka is n-negligible

E= U En @\
k>1

.1s also n-negligible (Proposition 2.2.6). The proof is complete.

We wish now to show a set n-polar in an open set is n-negligible.

This will folldw‘froﬁ the next proposition. \

s
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Proposition 2.2.10: Let U be open\in le cen X Qn s Vv inn-S(U), and k

o

an integer between 1 and n-1, Then there is a k-negligible set N in

Q. X...x Q_ such that if x is\in Hl,. '."k (U)-N, the mapﬁng yf;v(}i,y)

, 1 k
ig in (m—%c)—S(Ul’.‘.’k(x)). | oo
s §
Remark 2.2.11: If v is non-hegative and U = Ql X,.e. X Qn it is easy to
see we can choose N to be k-polar in Sll X... X Qn. Simply choose
y = (yl,.. . ,yn) any point at which v is finite and But
N={xe le eee X Szk:v(x,z) = o for all g inDQk+l >< Xﬂn }.
+
< ® < - i - X .0 X
i Then since v(y): & x > v(}.,yk_ﬂ, ,yn) is in k-S (Ql Qk)
'S
and equals « on N.
g The problem in general is that.even if U is connected the (1,...,k)-~
“sections of U are not necessarily connected and so for some x in
~ Hl k(U) ,¥ -+ v{x,vy) might be (n-k)-superharmonic on one. connected
seses
component of Ul k(x) and identically « on another.
yasns .
Prdof of the -proposition: We prove this by induction on k. ( Suppose
o first k = 1. pyt ~

T

{x e ’Hl‘(U): y + v(x,y) is not in (n—l)-—S(Ul(x))}

=
i

T

SO N 2
By Proposition 1.2.5 there is a sequenceé (x )231 -((xl, ces ’xn))lzl which

. . . ‘ .
is dense in U such that for each &,v(x ) < @ , Define GZ for each %’ to

) be the connected component of U2 k(xg, ey x::) containing xi . Put

yas ey

=2
|

_ ) ) 2
. {XEGR,'V(X’XQ""’xn) } and
' N = U N, .

1 L

{x ¢ Hl(U): v(x,y) = « for all y in a conmected component of Ul(x)}°.

s e e

N b .l 4
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5 .
."* ' Singe v(x'Q xﬂ') <@, wix o v(x xz xg') is in S. (G ) and as we
. 1"’ n ? *%y? *“n 1'7
- ‘observed in Proposition 2.2.3 it is also in Sl+(G5L n {x e Illlﬁiw(x) > 0.

Thus NQ is polar in G2 n {xe HlU:w(x) > 0} hence also in Sfi

l,, Proposition 2.1.4 now implies. N is also polar. We will be dome if we

show E is contained in N. Let X, be in E. Let Yo be any point in the

iz \
connected component of Ul(xo) in which v(xo,.) is identically «» . Choose
wl’WZ connected neighbotirhoods of XY, respectively such that Wl X W2

~

| is contained in U. There exists an integer % such that (xz,...,xi) is

o T in Wl X WZ: Since Wl and W2 are connected it is easy to see XO/ is‘ in GQ
and'(x;, .. .,x:) is in the same, conpected component of Ul(xo) as y_.

/ ., Therefore v(xo,xg,...,xi) = © and hence X is in N,Q,' This proves E is

‘ contained in“Iwi and the proof for k = 1 is complete.‘

Now suppose 1 < k < n-1 and then proposition holds f‘orl smaller integers.

Define ° )

- i 4 .

k . F={xc¢ Hl, . ”’k(OU): y + v(x,y) n?t in (n~k)_S(U1,.,.,k(X))} .

g’ E9 show F is k-negligible in Qgx ,..‘x Qk, by symmetry, it is enough to

";g /show ‘there exists P polar in le ;uch that for x) in Hl(F)—P,Fl(xl) is (k=1)-

% nggligible in 92 X oo X Qk. Well from the first part of the proof there

%i ‘ is;a polar set P such that 1f X is in IIl(U) -~ P, z > v(xl,z) is in (n-l)—S(Ul(xl)).

/By the induction hybothesis, for such an % there is a (k-1)-negligible set

NinQ,%x... x @ depending on x; such that if (xz,..,xk) is in

2 k
HZ,...,k(Ul(xl)) - N, v~ v(xl,...,xk,y) is in (n-k)-—S(Ul’:..,k(xl,...,xk)).

‘ Thus for % in Hl(U) -P
- -

Fix) = A,k ) € Hz,..f"k(Ul(xl)):y > V(x5 - .5%,y) not in

(“'k)"stul,...,k(xl’;"’xk)?}

[}

ik - -
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Tﬁerefore by Proposition 2.2.5 Fﬁgxl) is (k-1)-negligible in Q

2

f...x Qk

and we are done.

Proposition 2.2.12: Let U be an open subset of @ ve X Qn and E an

17

n~-polar subset of U. Then E is n-negligible.

Proof: Again the proof is by induction on n. If n = 1 there is nothing

to show., Suppose then n > 1 and the qﬁgertign holds for smaller integers.
+ vt

Let v in n-S (U) be associated to E in U. From the previous proposition

there is a poiar set P in ., such that if x is in Hl(U) - Pw: v > v(x,y)

1
+
is in (n-1)-S le(xl)). Now for any such x,

El(x) c {z e Ul(x): w(z) = o},

Thus El(x) is (n-1)-polar in Ul(x) hgnbe by the induction hypothesis is
[ ,

|
{(n-1)-negligible . It follows by symmetry E is n-negligible in U hence

. by Proposition 2.2.3 it is n-negligible. The proof is complete.

Remark 2.2.13: It is not knowq at this time whether or not the converse

of Proposition 2.2.12 is true.

Remark 2.2.14: We saw in the beginning of Chapter 2.1 that every n-polar

set is contained in a Borel n-polar set. Unfortunately we do not have a
|

., corresponding result for n—negligible sets. However the only use we now

have for such a result is for parforming integrations outside of n-negligible
sets without changing the value of the integrals. We demonstrate how

to sidestep this particular difficulty in Theorem 2.2.17.

Before we do this consider a Borel n-negligible set E. Let 61,...,6n

be regular domains in Ql"""gn respectively and (xl,...,xn) any point ;

of 61 X ouu X Gn. Recall while discussing the Dirichlet problem in Chapter 1.1

e a8 e M T g eI i i e h o b ot ik A S0y

4

R e L OO R




I ©

A -

) /

B

' we remarked that polar sets have 0 harmonic measure . It follows from
. s 6

, this fact, Fubini's Theorem, and a simple induction that (px Ly .o xpxn) (E) =0.
o 1 n

Combining this with Proposition 1.2.10 we get the following result.

) |
i !

Proposition 2.2.15: If two ;—S(Bl,. ees Bn) functions are equal everywhere

except on a Borel n-neg;ligible set, their lower semicontinuows regulari-

\

zations are~equal everywhere.

Corollary 2.2.16: Let E be n-polar in le S Qn’ F any subset of | ¢
Q %X ...xQ , and v in n—S+(Q X... X2). Then REUF and RF are identical.
1 n 1 n v v

EuF )

Proof: ye saw in Corollary 2.1.1 that R and Rz are equal evefywhére

v

i

except on an n-polar set, hence except on a Borel n-polar set, hence by
Proposition 2.2.12 except on a Borel n-negligible set.  But these two

functions are nearly n-superharmonic. The result therefore follows from

N

N the Proposition. .

]

Theorem 2.2.17: Let E be n-negligible, U open in ﬂl X...Xﬂn,x = (xl,...,xn)

« a fixed point of U, and v in n-S(U). Then ; -

‘ 1 v(x) = 1lim inf v(z)

: . z * X

&i d z £ U-E .

i

% \ Proof: Since E is n-negligible there exists a polar-set P in Ql such that
: for z, in Ql - P, El(zl) is (n~l)—negl\igible in 522 X ... Qn. We have seen

that .there is a Borel polar det Ql containing P. Let 24 be any“ point in Ql-—Ql.
Then a priori z; is in Ql-P hence El(zl) is (n-1)-negligible. It follows

such that for any z

similarly that there 1s a Borel set Q depending on 2z

A i 2,21 i 1 2
in QZ—QZ,zl’ El’z(zl,zz) is (n-2)-negligible in 93x vee X Qn~' Now choose
any point z2 in Qz— Qz’zl, We can form similarly the Borel polar set Q3’Zl’zz

v .

cﬁ'
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. :
in Q3 depending on zl and z2 such that for z3 in 93—Q3’21’22"“
E (z,,2,.2.) is (n-3)-negligible. Continuing in this way we get

1,2,3*71°%2° 73

the sets Q,,Q each polar in @
1’72 &

Q yeees
,zl,..., n,zl,...,zn__l 1

each G(S’ each depending on the indicated points and the last containing

i

El,...,n—l(zl""’zn-l)' !

Now suppose if possible (1) fails. Since v is lower semicontinuous

N3

this says v(x) <« and ' |

' lim inf v(z) > v(x) . L
z > X
z € U-E

Thus there exists a neighbourhood W of x and a pdsitive real number ¢

such that

!

¢ (2) v(z) > v(x) te , z in Wan U-E .

. / R
For each integer i from 1 to n choose a’ sequence (6;)101 of regular

. <1 Mooy Ll
domains in Qi such that for every k, ékx ves X Gk W, Sk > 6k+1’ and

N di = {xi} Now since v is integrable with respect to any product
k>1 v
of harmonic measures we can apply Fubini's Theorem to obtain
% &% \
J v(zl,.‘..,zh) (pxl oo Xp )(dzl,...,dzn) o
n o
& . <s§ T o
. = [ dp (zl)/ .[dp;c (zz) o J v(zl,...,zn)dpx (zn)
[— 2 n
S b k
= ] é . dp (zl) I dpxz(zz) e T v(zl,...,zn)dpx (zn)
o1 z, £ Q z ¢ Q ,
2 2,zl n Tx,zl,...,zn_l
51 ; o0

> dp K )ee.. S (v(x) 4e)dp M(z)
Tz fQ 1t ? z ¢ Q ho ®
=d 1 N N2 500052
1 n-1

R et

Qn respectively, .

5n

n

Pl
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(from (2) and the fact that Qn,z ez contains El,. B ,n-—l(zl’ .o .,zn))
. 1 n-1
ai 57
= (v(x) +e) srdp. ... Jdp
J(1 *n

Letting k + « and applying Proposition 1.1.1 (c¢) gives

vix) > v(x) + e .

This is impossible since v(x)< e , Thus (1) does indeed hold and the

the proof is complete. -

-

The following is an immediate consequence of Theorem 2.2..17.

Corollary 2.2.18: If two functions n~superharmonic on ai'l\open set are

“

equal everywhere except on an n-negligible set then they are identical.
|

. \

. # :
Section 3 The Dirdichlet Problem \

In this section, for convenience we state and prove results only
, .
for the gpecial case n = 2. However, the obvious generaliﬁ:ations ton > 2

do hold and can be proved easily by induction. \
-

|
12%5 2 —Jresg“ectively. Using

methods similar to Gowrisankaran in [7] we solve the Dirichllet problem on

Let w be relatively compact domains in Ql,Q

w, X W

1 9 where the boundary values are specified only on the distinguisPed

boundary, Bml X 3 mz. Then, \by proving.a minimum principle special to

Wy X W, we arrive at the same solution by means of & P.W.B.type method.
| |
"

Denote the irregular boundary points of Wy by P

4 ’
1 and the irregular

boundary points of wy by P2. Put

P = (Pl x P2) U (mlx P2) U (P1 x mz). .

e At e e g
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Then P 1s a subset of B(ml X mz) which is 2-polar in Ql x 92
( (Proposition 2‘.1.2) and we shall see, in some sense, the irregular boundary

points for the Dirichlet problem on g X Wy

Proposition 2.3.1: Let Wy W, and P be as above and £ a real va}ued )
continuous function o\n Bwl x awz. Define Pp OD By X W, by
.. - N
f(x)Y) (X’Y) in 3(1)1 X alﬂz

JE(x zl)duwl(zl) (x,y) in 3w, x w :
b4 y ‘ . ’ l ‘ 2 M
¢ (x,y) = L qé
S £(z,y)du () (x,y) in w; * du, *}i
) (z,27)du, (2) u(z ) (%,y) in wg X w, ¢
Then o is non-negative if f is non-negative, it is in 2—H(m1 x w2), it ’
is continuous on Elx 52 - P, it equals £ on Bzﬁl X Bmz, and for every (x,y) i
. 1 1
: in aml X amz the mappings z +;pf(z,y) and z~ > qu(x,z ) are in Hl(wl) ]
. -, %
; and Hz(wz) respectively. o
; . . ] 3
g ] _ \ :
L Proof: We first prove the continuity assertion. Suppose first f splits@ ‘ ,2
i | a
] as g, * g Thgt is for (x,y) in Bwl X 'c)wQ, f(‘x,y) = gl(x)-gz(y) where f“

gy and’ g, are in CR(Bwl) and cm(aw?_) respectively. Then s splits as

: . . G1 . GZ’ where G1 solves the Dirichlet problem on g with boundary,K values

A 8; and G2 solves the Dirichlet problem on o, with boundary values 8y It

is easy to see qif is ccgntinuous on El X I;z - P, Clearly if f is a finite
1linear combination of continuous functions that split, the same conclusions

holds. By the Stone-Welerstrass Theorem such functions are uniformly dense |

~in Cm(aml x Bmz). Thus it suffices to show that if (fk)k_>_1 is a sequence

I
‘/ |1
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in (IR(Bm X dw,) converging uniformly to £, and ‘Pd is for each k
1 2 fk,
continuous on W X wy = P, then ((Pfk)kzl’ converges uniformly on Wy X Wy ,

to Pe. For 1f so, . will be continuous at each point of continuity of

every ¢_. , that is on w, x w, - P. A
fk . 1‘ \2 ‘ ]

w w
1 2
Let M be a b‘ound f\or Jfl on w, and Jﬂl on u,. Certainly this
exists since there are functions harmonic on a neighbourhood of say 0y
w
greater than 1 and by definition these majorize Jfll on wy and are ‘
themselves bounded on w,. Now given any positive real number e there

1

exists an integer K such that for k > K,
) | ,
£,065) - £GLy)| < e/, (4y) in B X du, -
'/,ﬁ .

It follows that forﬂk > K,

. ’ 2
o, (x,9) - 9 (x,7)| < /M <e , (xy) in du, X du, ,
fk f 1 2

I¢fk(x,y) -0 Y| < eM<e, (5Y) in (0% duydu (Buy X w,),

. o
. ' \
and | cpfk(x,y) - cpf(x,}])‘ <e,(5y) I w X w, . 3
—_ — /
Thus" (9 fk)kil converges to CPf uniformly.on wlx w, and tpe continuitiy

ass’éi:{:ion is proved. 4

From the solutidn of the Dirichlet problem for n = (1 it is clear that

-

for each (x,y) in awl awz, z »> cPf(z,y) and z1 > (Pf(x,zl) are harmonic

\

on wy and w, respectivel

N

The only non-trivial assertion that remains to be proved is for fixed
y in w,,z + ‘Pf(z,y) 'is in Hl(ml). By gymmetry this will show tPf is in

2-H(uu:L X mz). We show first z > ‘Pf(z’,y) is ‘continudus on Bwl. Let (zk) K>}
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v

( be a sequence in Bwl converging to z in Jdw Since f is uniformly -

1

continuous on Bml X 3wy, the sequence (f(zk,.)) converges uniformly ,

k>1

to £(z,.): It follows from the Dominated Convergence Theorem that

w N

lim ¢_(z, ,y) = lim [ f(z ,z )dp 2(z') !

£k k y
ko k= e

s U)z ' ) §
o = [ f(z,z%)du “(z) i
y ¥ i

0.(z,y) . .

Thus the mapping is indeed continuous. Now let x be a point of w, and §

1

a regular neighbourhood of x with‘&; c w . -

w W
s dpi(z) % f(z'z")duz"l(z')duyz(z")

1

! fpf(z,y)dpi(z)

s w
fdo (2)f o (z',y)du_"(z")

) .
= S1t 2 al@
‘ Pglopy) N

f"”—’“
|

established at the beginn}ng

(by the continuity of z' + (pf(z',y) on 'c)ml :

of this paragraph)
w

| : = % '
% . (Pf(',Y)

wy o : ‘ |
= Jo(z,7)du_"(2) ‘ -

o o

®a 1
v s f(z,z')duy (Z')dux (2)

Il

P_(x .o
f(,y)l

This proves the harmonicity and we are done.
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We will demonstrate the uniqueness of this solution below in
Corollary 2.3.4. ) |

@

We now consider the problem in a different way. We begin by deducing

a minimum principle that is special to rectangles.
|

Theorem 2.3.2: Let mi,mz be relatively compact dfnnains in 91,92

respectively and v in 2—S(ml x wz), v bounded below. Then, if for all

(x,y) in ?0)1 X 8w2

¢h) 1im inf v(z,z"') > 0,
(z,2') + (x,¥)

(z,z") €Wy X W,

v is non-negative on wy X Wy .
Proof: From‘Proposition 1.2.7 it suffi;:es to show that (1) holds
for all (x,y) in B(wl x wz) = (E)mlX L3m2) U ( Buy w‘2) U (wlx E)wz). We o
will show it for a fixed point (xol\yo) in wy X amz. By symmetry this is ‘
enough.

Let us suppose first that v is'also bounded above. If (1) fails at

v
(Xo?yo)’ there exists a positive real number ¢ and a sequence ((zk,z »k))k s 1

in wy X o, converging to (xo,yo) with

' -
(2) v(zk,zk) < - ¢ for all k.

Consider for each such k the mappings vy iz v(z,z'k) defined on Wy
!

This is a positive uniformly bounded sequence in S‘l(ml). Since wy is

relatively compact there exists u, positive harmonic on a neighbourhood

—of Wy such that vk(z) + u(z) > 0 for all k and z in u}l and vk+u is pointwise

utiformly bounded above on Wy Proposition 1.1.23 implies there is a
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subsequence (vk +u)j>1 converging in\‘ the Cartan-Brelot topology to a
j e’ .
.ot .
function v in Sl(wl). It follows (vkj>j_>;l conver‘:ges in the Cartan-
Brelot topology to W = w. —u.

1

We claim w is non-negative on w Indeed let x., be any point in 3w

1° 1 1

and Y a positive real number. Then (xl,yo) is in Bml x sz“ and. from (1)

we deduce there exist relatively compact neighbourhoods U,V of X4,

respectively such that

v(z,z') > - v for all (z,z') in (U x V) n (ml X mz).

1
Without loss of generality we may assume zy is in V for all j. Thus

’ ' j |
v(z,zl'( ) > -y for every z in U n Wy and every j.
h| x *
Now let Xy be inU n oy and let (Gk)bl be a sequence of regular neighbourhoods
of X, such that for each £, 62_’_1 < 62 c 62 cUn Wy and 2,(:]_ 62 = {xz}.
_Then for every such £, -
632, 6JL
S w(z)dpx (z) = 1lim f v (z)dpX (z)
2 jore j 2
| Sy
= lim f v(z,zl‘c )dpx (z)
jr e h| 2
§

v

V) Sdo FCa)
2

Taking the limit as & +'= gives w(xz)_z ~y (Proposition 1.1.1(c) and

H

- |

| R
|

Proposition 1.1.6), This being true for all Xy in U n w, andy being

1

arbitrarily positive we get

lim inf w(z) > O.
z+x

.z e
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j f This holds for all X in Bwl therefore it follows from the Minimum
~
Principle on SZl (Proposition 1.1.3(f)) that w is indeed non-negative ‘ ;
. }:v;
on wl. \W_g‘
: . b
| Noy the mapping f:ST(wl) X Q> R, (s,x) *s(x) is lower semi- )
+ ﬂ 4
continuous 1if Sl(wl) is provided with the Cartan-Brelot.topology. ;
(Corollary\l.l.Zl). Thus 3
, lim inf vk.(zk.) +oulx)) = Lim inf v, (2 ) + U(Zk‘)] P !
jre i 3 jr e i h| | . . i
\ . \ kY
= 1im inf f(v, + u,z, ) :
T ‘ y
o T b
- 2 lyx) ‘?f
= AN
wl(xo) :
= 4w(x0) + u(xo).
Therefore
» : ] .
; 1lim inf V(Zk,’zk.) > w(xo) > 0. )
g jre ]
; But this contradicts (2). Therefore the theorem holds in case v is % *
E bounded above. ) *
f ‘ .
?»z ‘ . In general choose h positive 2.-harmonic on a neighbourhood of El X —(52 ;r
E" : | f
§ ) and define for each positive integer k the function L by %
B wk(z’,z') = min (v(z',z'), k+-h(z,z")); (z,z!) in Wy X wye g
Then for each k, wlg is in 2-S(ml x mz), it is bounded, and it converges %
|

pointwise to v. In addition, for evéry (x,y) in duy X Ay

o~ 1im inf w (2,2') 20 .
(z,2") + (x,¥)

i Cz (z,2") E‘:"":Lﬂx w2
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"By the special case this implies vy is non-negative on Wy Letting k »

! ’
gives that v is also non-negative md the proof is complete. \

Corollary 2.3.3: TLet P be a subset of duy X 30.\20" which is 2-polar

\

Proof:

in Ql X Q2 and suppose in Theorem 2,3.2,(1l) is satisfied only for (x,y)

in Bwl X awz-—P. Then we can still deduce v is non—negative.

Let (xo,yo) be in Wy X W, . Since P is contained in Bwl X awz, -

Pl(xo) = Pz(yo) = ¢ hence from Theorem 2.1.9 there exists w in

+ N
2-8 (Ql x Qz) such thatlw(xo ’yo) <« and w(z,2')= » for all (z,z') in P.
Therefore for every positive integer k, v + k—l . w is in 2—S(ml X mz) ’

is lower bounded,and j

lim inf (v(z,z') + k—l- w(z,z")) >0
(z,2') > (x,y)

(z,z") e wy X W,
for all (x,y) in aml x 3(»2 . From the theorem we get v + k_l- w is

. ‘ . -1
non-negative on Wy X Wy s in part:,Lg:ular v(xo,yo) + k - w(xo,yo) > 0.
Letting k +~ = gives v(xo,yo) > 0. The point (xo,yo) being arbitrary

we have indeed v 1s non-negative on wy oWy -

]

Corollary 2.3.4: The function ¢, in Proposition 2.3.1 is the only function
f ) ‘

in 2--H(uu1 X mz) bounded on wl X wz and tending to the same value as f at

all points of dw; X duw, exceptasubset 2-polar in Q, x BQZ .

Proof: If u is another such function just apply Corollary 2.3.3 to qlf—u

and u - (pé.

1
v

Let Wy and w, be as above and £ any extended real valued function on

aml X Bmz. Consider now the following families of functions.
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{viv is lower bounded, 2-hyperharmonic on wy X Wy s and . ,

ut) =

t

for all (x,y) in awl X aw2 except a set 2-polar in Ql X 92

lim inf  v(z,z') > f(x,y) }
(Z,Z')+(X,Y) )

(z,z") Ew; X W,

L(£) = {wzﬁ-—w) "is lower bounded, 2— hyperharmonic on w, X w,, and

for all (x,y) in aml X 8m2 except a set 2-polar le 92

|

lim sup w(z,2z') < f(x,y)} .
(z,?')+(x,y) '
(z,z )Ewl X W,

Define the upper and lower solution respectively by -
u.\l X mz ’ .
:R‘f : (x,y) = inf {v(x,y):v € U(f)} i
w ><u)2 o
H™  "(xy) = sup {w(x,y)w e L(E)]
f
X wz x w2

W, X o w W
Notice Jffl 2 —ﬂ_i Also Jffl

For if v is8 in U(f) and w is in L(f), v-vu is

for all (x,¥y) in Wy %X Wy
W) X @)
majorizes J_ff \ .

2~hyperharmonic on W X Wy, lower bounded, and (since the union of two sets |

2-polar in Q. x Q, is 2-polar in Ql x 92) we have for all (x,y) in

1
?ml x awz except in a set 2-polar in Ql X 92
(1) 1lim inf (v(z,z'") - w(z,z2"))> lim inf v(z,z') - lim sup w(z,z')
(z,2') ~(x,y) (z,2") + (x,y)
(z,27) + (x,¥) " ’ " ’
(z,z‘)swlx w, (z,z )eml >< @y (z,2 )Emlxwz
> 0.
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(Clearl; (1) holds if f£(x,y) is finite. If f(x,y) == the first
member of tth‘e right ha}nd side of (1) is » and since w is b;)unded ab«;ve
the second member is strictly s'mallgr‘ than « ;hus (1) still holds.
Similarly it holds if f(x,y) = - «). Therefore Corollary 2.3.3 implies v

X X,
majorizes w hence Jffl 2 does indeed majorizes g!fl

W, X w
_Xey
Proposition 2.3.5: & ¢ is either identisally = , identically -« .,
or it is in Z—H(wl % wz). ™

~

Proof: Suppose the first case does not occur. Then U(f) n (2—-S(mlx mz))

is non-—.empty*. Now let (xo,yo) be in wy X w, and 61,62 regular domains

in nl, 522 respectively with (xo,yo) in 61 x 62 and 61 x 62 contained in

wrl x 'mz. From Lemma 2.1.8 , every member of U(f) n (2-S(m1 X wz)) can be

replaced wit\h a smaller member also in 2—H(61 X 62) with values unchanged

on wy Xw = ((61 x 92) U (521 x 62)). Clearly then such a functiomn is still

AN

_in U(f) and since U(f) is decreasing directed, it follows from Proposition

Wy x W
1.2,2 (b) that Wf is in 2+H(61
W, XWw

This shows {(%,¥) & w, Xuw,: k74 1 A(x,y) 2-harmonic on a neighbourhood of
l:JZ - [

A R
x 62) or is identically - on Slx 62 .

&

W, X W Y
(x,7)} and {(x,y) ¢ “ml X Wyt J{'fl z(x,y) = - o} are two disjoint open
subsets of wy X W, hence, since Wy X W, is connected, one is empty and the
other is W X 0y . This completes the proi‘:f. , o

For every extended real valued function £ on Bwl x 3w2 ‘and

N

Theorem 2,.3.6)

every (x,y) x
Wy X _ ., Wy
O Tt ey = T A0 % w) (dzdzn)
w W | .
and if £ is My Xy - integrable for one point (xl,yl) in wy X w, it is

y
1 1 - Wa X W »
integrable with respect to all such measures, ng 2 and ﬂl w2 are

.

J
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{ identical, and are in 2-H(wlx m?.) . (We denote the common function 'by
W, X W > '
1 2 ' ' |
J('f ) . -
Broof: For any such f we let A (£f) de:note the mapping Wy X wy > i,

)
(x,y) >~/ £(z,z") C(u

w

L uyz)(dzdz') .

Suppose first f is continuous and real valued. -Then Proposition 2.3.1
Wy X
1

says A(f) is in U(f), hence it majorizes Jff .

in U(E), v - A(f) is (again from Proposition 2.3.1) 1lower bounded 2-hyper—

Conversely, if v is

- harmonic &n Wy X m'z with lower limit§greater than or equal to 0 at all

points of awl X Bmz except on a set 2-polar in Q; x Q9. Corollary 2.3.3

=01 " ¥
then implies v majorizes A(f) and hence so does &

£ Thus the theorem

holds for real valued continuous functions.

o

Next, ‘1f £ is iower bounded lower semicontinuous, since awl X am2

is compact, there exists a sequence (fk)kil in cR(aml >< amz) increasing

pointwise to £, From the Monotone Convergence Theorem, ( A(fk)) increases

k>1

'

pointwise to A(f), therefore we have A(f) is either identiecally = or in

- P, -

e 2—H(oo1 X mz) (Proposition 1.2.2(b)). For any (x,y) in awl X sz
- w

Proposition 2.3.1 says uzlx uz% converges weakly to the point mass at (x,y):
8

°

continuous, we ‘have ) : s
» . wl wz .
S ‘ lim inf J f(z,,z,)0(u x u_y)(dz.dz,)) > f(x,y)
. 1 1 2 2 zZ 1 2 -
- (z,2') > (x,y)
° ‘ (z,z")e mlxwz _
Wy X o, R
Thus A(f) 4s in U{f) and it therefore majorizes Jff . On the other !

hand for (x,y) in (wl X wz),

— X W

. W xXuw
‘tp 7 J('fl 2(x,y) iéup{ 5@81 2(x,y):g real valued continuous on
' Bml x am’z,g minorizing f} . ’
) / ”
~ - §
D - ¢ - e

as (z,z') + (x,y),(z,2") in Wy X wy For such (x,y) since f is lower semi-
2 . N

.
2
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\

w w |
1 2 f
sup{ fg(zl,zz) (ux x uy )(d‘zldzz). g real valued continuous

[

on aml X Bmé, g minofizing £}

Ldl (Dz !
. = JE(zy,2)) (u X uy )(dzldzz) ‘

1

l

A(E) (x,) . |

-

Therefore (1) holds for lower bounded lower semicontinuous functions.

/
In general, if (}g,x) is in Wy X W,

°

<

ME) (x ) = inf { A(g) (x ): g lower bounded lower semicontinuous

1°71 !

N on awl X o3w2‘, g majorizing £}

(This is precisely the definition of A(f)(x,y).)

- w\\‘A‘X ® a
= dnf{ J('g 1 2(xl,yl): g lower bounded lower semicontinuous

on Juw; X dwys 8 majorizing £} .

s

w, X /
Call the last member of this equality M. We show M = JCf 1 2(:rcl,yl) .

If v is in U(f) we can extend v to B(wl X wz) by

[

v(x,y) = lim inf v(z,z'), (x,5) in B(ml % mz).
) (Z,Z')')' (xs}’) .

(z,2") ew) * w, °

It is easy to prove v is lower bounded lower semicontinuous on El X W,

AN

and since it is in U(f) it majorizes f on awl X awz - Q, where Q is a

which is 2-polar in {zl x 92. Clearly Ql(xl) = Qz(yl)

subset of Jw, X% 9w

1 2
Therefore Proposition 2.1.9 implies there is a w in 2-S+(£2l X 92) such that

8

= jé.

\
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! f N

w(xl,yl) <o and w(z,z') = » for all /(g,z') in Q. Now for every
positive integer k the function v + khl-w m?jorizes f on Bml X -8w2. .

Therefore v(xl,yl) + k-1 OW(Xl'yl‘) > M. Létting k + o gives v(xl,yl) > M.
. W, X w
2

This being true for every v in U(f) we have J('f (xl,yl) > M. The

opposite inequality being obvious we have equality and (1) holds in general. /
2

| a

w W
Finally,' if f 1s integrable with respect to uo X uy for some
| P,
(xl,yl) in W X 0y, the first part of the theorimwsays ¢ (xl,yl)
2

W
is finite and hence by Proposition 2.3.5 ?Jffl is in 2—H(wl x wz).

W, x W

wy X w
We also have Jfgl ¢ 1 z(xl’yl)' From Proposition 2.3.5 and

2 -
(xl!yl) - E
Remark 1.2.3(b) we deduce

ko Llll X (.U2 w xw2 \ v
ch (X,}’) = .J_Cf (x,Y)=A(f)(X’Y)
i
for every (x,y) in wl X wz and hence f is ux X uy - integrable, This

/

completes the proof.

Remark 2.3.7: Let v be an n-S(Bl,..., Bn) function on le s X szn and

2

for each integer i from 1 to n let Gi and wy be regular domains in Bi
with -6—1 c (ni. We claim we can now! deduce that for any x = (xl,.. .,xn) in

17777 Tn

8 . ) w

~ 1 n - 1 n
L v(zl,...,zn)(px Xeeo b )(dzl,...,dzn)g_ fv(zl,...,zn)(px XeoiXpo )(dzl,...,dzn).

1 n 1, n > ’
o 1

\

N
I
Indeed if v were identically « on Glx ceeX Gn there would be nothing to

prove since then v would be in n-—S(SZ:L X s X Qn) (Proposition 1.2.10) and
identically = on §q X eeX 8 hence identically = on le cee X R (Proposition

1.2.5). If v is finite at some point of 61x vee X Bn we conclude from

@

o
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WX asoX @

Proposition 2.3.5 andKTheorem 2.3.6 that j?v

(Recall v is locally prer bounded). For all y = (yl,...,yn) in 861 X 1ea X
[ X\ ;

“ jf S WX X0
lim iwf X © M) =

z >y
ZE Sf,...xﬁn

| A
BN

»

N

T ys 1in By X .oe X0

/ - wl wn
= i v(zl,. .,zn)(Py Xoeen xpy )(dzl,...,dzn) ‘
1 n
o ‘ . o
< v(y).
\
_wgX X0
Thus JCV ™ is in L(v) for the Dirichlet problem on GI_X... x5 .
It follows
W, X veu X0 S, X...x8 >
Mﬁ ") < va1 n . (x)

An application of Theorem 2.3.6 now establishes the claim. i

Section 4 n-Potentials and the Continuation Theorem

Let v be in n—S+($z1 Xyoo X Qn) and for each integer i from 1 to n let

!

(v, ,) be a sequence of relatively compact demalns in Q' such that
k,1’K>1 d i
wk,i c mk+1,i for every k and kt& wk,i~= Qi. For such k define v, on
wk,lx";x wk’u by |
w - W,
-~ k)l k,n N
~/"%&P””%%'L”fv @ﬁ uuwﬁ .
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It follows from Theorem 2.,3.6, as in Remark 1.2.6, that an n-superharmonic

A

function is integrable with respect to the product of any n harmonic measures. -
]

+ 9 ~p
Proposition 2.3.5 then implies Vi i’s in n-H (wk,l X, 0% wk,n) and clearly vy :

. minorizes v on o 4 X L .uX Wy o Furthermore for each k we have from Remark ;
' s s

N i
2.3.7 that (V.Q,)Rz_k is decreuasing pointwise on wk,l X ia. X mk,n' Thus for
A .

any x in wk 1 Xeos X wk n we can define w(x) \to be the limit of the sequence
3 ?

(VZ(K))QT >k ° Since k is arbitrary here we see w is well defined on all of
’ Ql Xoua ;‘S;: From the Sheaf prope/rty anci Propositibn 1.2.2(b) we have that w
is in n—H+(s'2l X, .. % ﬂn) ‘and it minorizes v at every point of plx el X Qn

We claim it is pointwise the greatest n-harmonic minorant of v. Indeed, if h 4

is in n—H(le eee X Qn) and minorizes v, then for every k,x = (xl,.. .,xn) in

' : wk,lx x'wk,n’ and k' > k, «3
w w g
. _ : k%1 K,n -
vk,(x)- J ... vdux...dpx i /
1 v l n
/ i t
w W
> fooe S nanl. L alon
- X X
1 n
;
= "h(x) . o , *

Thking the 1imit as k + = gives w(x) > h(x) thus proving the claim.

Definition: 2.1;.1: We say 'the function p on le ces X Qn is an n~-potential

if it is in n—S+(Ql X.,.0 X Qn) and its greatest n-harmonic minorant is iden-

tically Q.

Denote thé set of all n-potentials by n-P.
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We note first that n-P has positive members. Indeed if Py is a

positive potential on Ql and v is any positive member of (n—lf—S+(92X... X Qn)

L

we can‘show the mapping w: ( Kpsees ,xn) + pl(xl)v(xz,. - ,xn) is 4h n-P. Well

\ .
et o oS,
R

\ +
certainly it is in n-S (Ql.x"' x Qn) (page 23 ). Call its greatest n-
. : . ]

harmonic minorant h. Since 0 is an n-harmonic minorant of w, h is non-

SRR

Py 2
9 5
5k o

negative.\ If x is any point in 92 X oo X Qn such that v(x) < = the
\ .

R
et

,
SRR AR
gy 2

R \
potential V(x)-pl(-) majorizes the non-negative harmonic function h(-,x)

on Ql. Thus h(-,x) is identically 0. Remark 1.2.3(b) then implies h is

identically 0 and w is in n-P. .
‘ ! ' 1

#
! %
. a5
From our explicit construction of greatest n-harmonic minorants of n- "
, v k!
superhapsoﬁic functions it is clear that n-P is closed for finite sums, z
| Y
multiplication by positive constants, and finite pointwise infimum, $
\ ’ : 1
The foligwing ﬁrop sition generalizes a result of R.M., Hervé and q%ll -
be.used to plove the Continuation Theoretn.
Theorem 2.4.2: Let K be a compact subset of ﬂlx ...¥ Qn,e any positive ‘é
B ° H
real number, and £ a real valued continuous function on K. ‘%hen there ' T
’f.;
exist Q and Q' real valued continuous members of n-P such that for all x in K ?
. ‘ b
o) - Q') ¢ £®] < . o
If £ 1is non-negative Q and Q' can be\:hosen so that Q(x) > Q'(x) for all x ° %
s ampe= 3
in Q. x ...xQ ., Y . T
1 n \\ . §

. ¢
Proof: Fix Ql,...,Qn finite continuous positive pqtentials on Ql,..., Qn

t

respectively. Put,

- IR, .

WET

Vv = {(PTP')/Ql‘...°Qn; P,P' real valued continuous members of n-P},

[ -
7
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’ where Q.- -Qn denotes the function on Q) %...xQ, (xl,...,xn)

st e S P N

o

o
e
AR

-+ Ql(xl)- -Qn(xn). From our previous disucssion it is clear V is a

vector space of continuous functions containing the constants. We wish

to apply the vector space version of the Stone-Weierstrass Theorem. If

S K Ty

(B-P')/Q;" ... *Q_ 1is in V,

N

\

l(P—P')/Ql- ee. Q

e

= (@' - 2 min(P,P'))/Q ... Q

3

“

N

s E

W8

which™is also in V. It remains only to show V separates points of

7.

~a et

Qlj xﬂn. Let x = (xl,...,xn) and y =(yl,...,yn) be distinct points

of Q. x .., x Qn. Without loss of generality we may assume X, and y, are not

1

the same. We show first there exist continuous potentials Py and pl' on Ql
! \

o i e
2 s P M

R

e e

i such that p (x;) > py' (x;) and p;(y) =, (v))

- Let w be a regular domain of Ql containing xl and not containing yl.

There exists a continuous psoitive potential p, on Ql such that Py is not

0 N o
’ Since Py is superharmonic, pl(z) - p\]'*(z) >0 for all'z in w. Since pl' H

harmonic on w(Proposition 1.1.11). Put pl' = f

is harmonic on w we have from Remark 1.2.6(b),that pl-pl' is either iden— N

P
Fa e

tically 0 or strictly positive on w . It is not identically 0 because Py

7’ is not in Hi(w) . In particular ;;l(xl) > pi(xl) hence p, and pi are the

WA el

: required functions. |
!

Now put p =,;pl-Q2-a"..r. ‘% and p' = p:'Lon- -Qn. Then p and p'

LR

are continuous members of n~P. Furthermore R

e g A ey

(P(x) =p"(0))/Q (%) -0 .0Q (x ) = (pl(xl)-pi(xl))/Ql(xl) >0, and

16:16) -p'(y))/Ql(xl)‘ -Qp(xn) = (pl(yl) —pi(yl))/Ql(yl) = 0.
“ §

v
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. Thus V does indeed separate the points of ‘Q.l Xeou X Qn. We may now apply

< the Stone-Weierstrass Theorem. Put 3
3;:x e v . : vae . - '

N M = sup {Ql(xl)l Qn(xn) (K)500esx ) € K}' g

2% Then there exist Q and Q' real valued continuous functions in n-P such that ~ %

for all x = (xl, . ..,xn) in K, j

&%

1 4 ¢ ;‘fgé

[ ((Q(x) -~ Q (x))/Qq (x))e .. -Qn(xh))—(f(X)/Ql(xl)j.---Qn(xn))| < e/M. 3

Therefore - ' %

- - R . 0

QG - Q" (x) - £¢x) <& Q Gx)en..Q (x)/M 5

N - ,'{,J,l‘u( B 1”:

‘ =€, , G

:f and this proves the first part of the proposition. fj

Finally, if f is non-negative, put Q= Q+Q' and Q' = 2:min(Q,Q").

Then -Q— majorizes -Q-' on le ess X Qn and for any x in K,

[

Q) - Q' - )] = [Jax - '] - [E@] «

lax) - Q' (x) - £(x)|

A

The proof is complete.
Following closely the method of R.M. Hervé we can prove the following

_ result. (See [12] Lemma 13.1¥% 4

Theorem 2.4.3 (Continuation Theorem). Let Ui’UZ’UB be relatively compact '

domains in le eee Xﬂn such that U1C< U1 c U2 < U2 c U3 \and iet v be in ’

[ ‘ n—S+(U3) with v l;ounded on 3U2. Then there exist p,p' in n—-S+(Ql><.. . X‘Qn)




L L R W L et T

' such that.p' is a continuous member of n-P and p(x) = p'(x) + v(x)

-

for all x in Ul'

|
Proof: Choose U'Z open amd connected with ﬁ_z = Ué c 5'2 c U3. Let M
be an upper bound for v on BUZ and m @ positive lower bound for v on 3U’2 .

(Note m exists since v is'positive lower semicontinyous arid 3Ué is compact).

Let € be any positive real number smaller than m. Define g\on the compact

o5

= ]
set K BUZ u BU% by

|
t M +e % in BUZ“

f(x)

hoppis) SRR

m-g x in 3U'2

by ) :

;

Then f is clearly continuous. Hence from the previous proposition there

exist Q’and p' real valued continuous members of n-P such that for all x
[ Ty

i

in K _ |
Q) - p'(®) - £(®]| <e .

Thus for x in 3U', we have Q(x) - p'(x) < f(x) + ¢ = m < v(x). That is

\l

(1) Q) <v(x) +p'(x) for x in U,

‘

For x in U, we have Q(x) - p'(x) > f(x) ~e = M > v(x). That is

(2) Qx) > v(x) +p'(x) for x in 3U,.

Define p on ﬂlx... x Qn by

p'(x) + v(x) x in U, E
p(x) = ] inf (p'+v(x),Q(x)) x in U'2 —U2
-1 ' .
Q(x) x in 913...xnn—U2
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]

It is clear from inequality (1) that p is lower semicontinuous. Thus
we may use the local property (Proposition 1.2.11) to show p is in

+
n-S (le...x§ﬁ3. For this it is clearly enough to consider only points

Gn regular domains in

in K., If x = (xl,...,xn) is in BUZ, choose 61,...,
. — i — Y
Ql,..., Qn éespecfively such that x ¢ Glx e X Gn c dl'x... x Gn c U2 .
Then 3 5 5, 5 :
\ S ... pdp ... dp < So.. J(p"+v)dp ve. dp .
Xl X - X X
n 1 n

p'(x) + v'(x)

Ia

p(x) (from (2)). .

Finally, if x ='(x1,...,xn) is in BUE , choose Wysenes W regular domains

n
.., respectively such that x e Wy Xyaw XWw_ < Elx ces XU

in Ql',. n i h
c thx,,, X Qn - ﬁé. Then
0 0 ® W
S o.ofp dp 1 ... dp n </J...f Qdp 1 . dpn
X X X X
1 n 1 n
2 Qx)
= p(x) (from (1)).

+
Thus the local property holds and p is in n-§ (le vea X Qn). Clearly
p and p' are the required functions and we are done.

Remark 2.4.4: The similar continuation theorem proved by R.M. Herve for

functions of one variable does not impose the boundedness restric;ion on V. A
continuation theorem without any boundedness restriction in severgl variables
would enable us to prove that a set which ié locally n-polar is also globall{
n-polar., However, at present we are unable to remove this restr%ction and the

validity of the local property remains a conjecture.

|
|

e o e e i i
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¢ CHAPTER 3

Principal Results

*

s
L P o el k&,a&mm M§§§: é,,é',

!

4

In this chapte} we prove results in which the associated exceptional o
hes

L

sets are n-negligible. In section 1 we prove the major result of the thesis, ;
\ Theorem 3.1.1. I; is a generalisation of the Well’known Cartan—Brel¥t coﬁ- .
vergence theorem for a sequence of potentials (cf. Theorem 1.1.15(a).). (
We hope that since the Dirichlet problem cannot be solved on a general
open set in Ql Xyyo X Qn this theorem can serve as a useful substitute.
In section 2 we present an application of this result to the study of thin

sets. In the last section we present a generalization of Proposifion 1.1.13.

\
¥

Section 1 The Convergence Theorem

We will demonstrate the following result which we henceforth refer

@
to as the Convergence Theorem. Recall that it is necessary to assume Axiom D

which gives the r§sult in one variable.

Theorem 3.1.1: Let U be an open subset of Ql.x"' X ﬁn and (Vk)kgl a de~

TR

creasing sequence of uniformly locally lower bounded functions in n-S(U)

with 1imit function v. Then v is in n-8(U) and equals v everywhere-except on an

A Rl B g 4

an n-negligible set.

We remark first that since v is the pointwise limit of a sequence of

Borel measurable functions it too is Borel measurable. Since it is locally
® )

lower bounded and bounded above by v, we see Vv is By Xiaee Xux? ~ integrable ; y

’ . 1 n ;
for any choice of relatively compact open sets Wypeoes O in 91,..., Qn i

respectively and XpsenosX in Wyseres U Thus we may apply Fubini's

?heorem to v arid such a measure.

&
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O

( At this point we introduce the following useful notation. If f is an

Y .

‘ extended real valued function on a set G in le see X Qn, for any integer 1
\

—

from 1 to n, 7 and £t are defined in ¢ by

~

i .
f,‘ (xl,....,xn) = 1im inf f(?J_,...,zn)
\(zl,...,zn)+(x1,...,xn) R
) zi =xi m '
%i(x oyX ) =  lim inf f(x x Z,,X ceesX )
1% SRR B Rt R U5 AR\
Zi '-)'Xi .

Before proving the theorem we consider several preliminary results.

l

Lemma 3.1.2: Let U

&

and (wk)k}_l

in n—S-*_(p1 X 4oo X Un) with limit function w. Suppose that for every positive

.,Un be domains in @ @ respectively, n > 2, ) e

17" 1o

a pointwise decreasing sequence of locally bounded functions

integer k and (Xl’ .. .,xn_l) in U, x ... X Un—l the mapping x wk(xl, ...Txn)

1
is harmonic on Un‘ Assume further that the Convergence Theorem holds on \
+ o
} Ul X yua X Un-l for pointwise decreasing sequences (vk)k>l in (n-1)-S (U1 X,.. X Un—l)

; Xith vy locally bounEled. (This will later be an induction assumption.)

~

Then w equals w everywhere except on an n-negligible set contaiped in a set

N x Un where N is (n-1)-negligible in Ql X ., .XQn. In addition w = w~ !

' onle ...XUn . , :

Proof: Let (xl,.. .,xn) be any point of Uix XUn and for each integer i

PE e tan v dyr n ¢

from 1 to n let (wi)bl be a sequence of regular domains in Qi such that
. |

for each %, Bi < wi and N wi' = {;ci}. Since v 18 nearly n-superharmonic T

241 o1
on Ul Xuus ><Un it follows from Proposition 1.2.10 that

n
wl

(L) v:z(xl,...,x) = gup [ ...J wdp . vee dp
n X
R 1 n

() | | - |
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<
@

Now by assumption we have for each k and £ ,
1 n . 1 n-1

P wy w, , C Wy wy
S ... Vi dpx de = fi.. /'wk(zl,...,zu__l,zn)dc)X (zl)...dpX ' (zn_l)
1 n o 1. n—l/‘

[N
thus the Monotone Convergence Theorem implies it is also true for w.
3

A

Hence by (1) ) L

: wr WL (
- _ ; 2 L :
(2) w(xl,.‘..,xn) = sup J ...fw(zl,...,zl_l__l,xn)dpx (zl)... dpx (zn_1
2 1 n-1
(3), = " (x50 ,xn) (Proposition 1.2.10).
e

This proves the last assertion.

From Remark 2.3.7 the sequence : ,
1 n-1 - . /

w w
(f...J w(zl, cen ,zn_l,xn)dpxz(zl) - dpx}l is non—d'ecrea'sing./
1 n-1

Since for every (zl,~.. . ’zn—l) the mapping x -+ w(zl, cee ’zn—l’xn) is /

(241051

harmonic on Un (A}E:i:om 3) it follows that for every (xl""’xn—1> in -
Ul ><l... X Un—J. azglpositive integer 2, X J ool f w(zl,...,zn__l,xn) //
T . L ' , < i/
1). .o dpxn~l(zn_1) is harmonic on Un (Proposition l.ﬁg,énd b}j/
Axiom 3 we deduce from (2) and (3) that x = wh (%X, ,,7,%x ) 1s a harmonic )
v A N

function on Un' ' ' L ;

o

/

We show now that the set E defined by

o

E = {(xl,...,xh) € le... xUn:a'(xl,...,xn) < w(xl,...,xn)}

=~{(xl,...,xn) € le veax Un:t:rn(xl,...,xn) < w(xl,...,xn)}

_»;,s-‘coil/tﬁained in a set of the form N x Un where N is (n-1)-negligible in

d.Fv

A, Xeee X0 f Forx\inU define
1 n-1" n n

.
, o

An ~
E(xn) = {(xl""’xn—l) eUl Un_l.w (x ,...,xn)<w(xl,...,xn)}.
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. be a countable base of open sets of IIl
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v
f

Clearly this set is (n-1)-negligible by the assumption concerning the

Convergence Theorem on le P S Un—l'

Now fix any xI" in Urx" We claim E
: ]
is contn:ained in E(xn ) x Un' For if (xl""’}fn) is in E, since
~h
z +w (xl, .o "xn—l’zn) and z, > w(x1~, - "xn—l’zn) are both harmonic

on Un and @™ (xl,...,xn) < w(xl,.. .,xn) it follows from Remark 1.2.3(b) that Ead

S PAtehar e A A v D T AR & St b T B

- \

~n
(4) w (xl,...,x "xn—-l’zn) for all 2:n in Un'

" ,zn) < wix

100

- ! ‘ C g vy
In pazl'ticular (4) holds fqr 2 =X - Thus (xl,...,xn'_l) is in E\(xn)
and the claim is’proved. It follows from Proposition 2.2.7 that E is

R

n-negligible and we are done.

"
o

Lemma 3.1.}3: Let (Vk)k>l’ v, and U be as in the Convergence Theorem ,

with v assumed to be non-negative and v log:ally bounded. Then vl i

1

Borel measurable on U.

'

Proof: Let a be any real number. We must show that
§
— .An !J
E = {(xl,...,xn) e Usv (xl,...,xn) >al is a Borel set. Let (“’z)2>1

n—l(U) consisting of relatively

compact open sets. Then it is easy to see that

E= N U {(xl,...,xn) € U:(xl,...,xn_l) € mz,v(z,xn) za—l

m=1l £l n i

for all z in Z;g‘ }.
y
1
vt (x) > @ =(1/m) and hence there is an £ with (xl,..‘.“,xn_l) in wy and

v(z,xn) > o =(1/m) for all z in -“;ﬁ, . Conversely if x is in the right hand

Indeed if x = (x .,xn) s ‘in E, then for all positive integers m

side, then for all positive integers m there 18 an £ such that (xl,.. .y )

xn-—l

and v(z,xn) > a ~(1/2m)> a-(1/m) on @ . Thus v (x>0 =-(1/m).

is in w 1y

)

*
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©

Since m 1s arbitrary we have x is. in E an;i the claim is proved. It
thus suffices to show that for ?ny relatively compact open set w in

Hl, ¢ s ,n-l (U) and any r[eal number B ;

Q

{(xl,...,xn) € U:(xl,...,xn__lf) £ W, v(z,xn) > B for all z in
is Borel. But this set-is just . \

oo x {xn € Hn(U): vgz,xn) > B for all z in o }.

S \

Thus we need ‘consider only the last set‘in this produet. For that set

we have o . 4 )
{xn € Hn(U):v(z,xn) » B for all z in w }= . (;-:l{xne HH(U)‘:Vk(Z’xn) > B -
b : \ for all z in w }.

o

Therefore we will be done once we show that for any k and any real numb

iw
—_

G = {xn € Hn(U):vk(z,xn) > vy for all z Iin w }u

a

N

I,

1
%

er vy,

|

is open. Indeed let x' be a point of G. Since v, is lower semicontinuous,
n k

2

( v N

such that o

~

- ]
of x
n

(1) vk(z',z") > Y&, for all z' 'in Gz and z" in 6'z .

for every z in  there exists Gz' a neighbourhood of z and G'Z a neighbourhood

Now {dz:z £ w } is an open cover of © thus there exists a finite'subcover

\ .
' is a neighbourhoo

1

. ' ‘
{§, s000p 6 1. Put &' =46' 0 ... 038 . Thens
zl z!’ . z] z

' ' - : 1
of L and for any x, in §' and z in w, since (z,xn) is in t?.zix 8 7y

d

for

gome 1, we have from (1) that vk(z,xn) > Y. Thus G is indeed open and we

]
are done. . \

(2)‘&

4

A

ey

s




Lemma 3.1.4:

" Let wi,.. -» w_ be-relatively compact domains in Qyeees a
respectively and v a non-negative locally bounded n—superhatjmahic function

N Then the mapping
N | 9 “n i
we, (xl,...,xn)k, > S .S duxl... duxn

Fad

defined on a neighbourhood of 61 Xoo X @,

XeaaXw

1 n
If n = 1 this is Axiom D.

is the greatest n-harmonic minorant of v on w

Proof: The proof is by induction on n. Suppose

then n > 1 and the lenn}la holds for smaller integers’. We have seen that w is

5 .
P

in n—H+(ml X ... X wn) (Theorem 2.3.6) and since v is ‘n—-supedrharmoni“c on a

o
neighbourhood of 51 X yee Xan, w minorizes v at each /point of Wy X .. X Woe

Now let u be an n-harmonic minorant of v onm w, X... X mn. in wn‘

1
the induction hypothesis implies that the greatest (n-1)~harmonic minorant

For any x
y n

of (xl,...,xn_l) > v(xl,...,xn) on w, X... an—l is |
N, *xand (z)... apit ). Th \
x Y(Zl""/’zn—l’xn Hy (zl een dn (zn__1 . Thus |
1 n-1
’ . w w '
1 n-1. '
Wrp, eenx ) £ Fed Vzgeezux )dn (@) dp PRz ) \
l 1 n-1 .
,l
: . o{‘uwlx'“x mn.|
If (6k)k>l is a gequence of relatively compact subsets of Uy with = ’
- o v ’
. a U -
ék c 6k+1 for each k and k;lﬁk w then for all (xl,...,xn) in
ml X... xmn and all sufficie;tly 1Lz§rge k,
N h 6k N
}(l) , ugxl,...,xn) = f u(xl,...,xn_l,zn)duxn(zn) .
Wy Yp-1 dsic
< Joo S v(zl,...,zn)dpx (zl)...dux (zn_l) Uy (zn).
1 n-1 n

( 3
let k -+« , “Since for each' (xl,.;.,xn_l) in Wy Xaess X ®oq the mapping

@
« ¥

°

DY weute awb e A e d W s
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i L ml ‘wn—l
iz * Jooo J v(zl,. .. ,zn)duxl(zl) ces qun_l(zn_l)

is locally bounded and in S:(wn) (same proof as Proposition 1.2.8), the

¥
last expression in (1) converges to the greatest harmonic minorant of g on

|

w evaluated at x_ .. Axiom D implies this is just the mapping .
® m W

x »>fgdy = /...0 v du 1...dun . Thus (1) gives
n X X X
n 1 n

AN
wl wn
u(xl,‘..,xn)f_f...fvdpx...dux onmlx...xunn
1 n
= w(xl,...,xn). 7

v

. §
This completes the proof.

¢ 1)

Corollary 3.1.5: Let Wpseees Uy be relatively compact domains in Q g

SRR B

respectively and (Vk)k>1’d v, and U as in the Coﬁvergence Theorem with

Wy, X 4ue X?n-n ¢ U, v assumed to be non-negative, and V., assumed to be locally

1 1
bounded. Then for all (x ,...,x ) in w, %X ...x @ ,
1 n 1 n
. wy w o Wy w
(1) S oS vdu ... dp = [..0%du ... du
X X x X
1 n . ‘ 1 -n
and hence ﬁor each integer 1 from EL to n,
® Iy w
n n

el ~1 Y1
(2) S oS duX dux =‘f ...f«vuquxl-... dux

. 1 n n l
Proof: For every positive integer k and (.xl...:.,‘xl‘i) in 0y x .ax‘wn we have

1

(Dl wn ! ’
P Tu @ il v g en) :

/

»

Letting k + « and applying the Monotone Convergence Theorem we get & * -

{
similar result for v. Furthermore Theorem 2:3.6 implies

oo W LW ' :
1 n
g:(xl,.'..,xn):r‘[ ...‘f v du ) dux T

Xl o

¢
»

o e e e Bt S 2 rmath M Sk St I b o ot o 2 e ot ik P e

3 = At e ST A, o i T

R WS

e FEpes Sty - e
T B : IR
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\

l

+ . |
is in fn-li (un1 X aus an)_. In particular it is continuous and hence g
P e \ :
K r ) minorizes v on ml* R 0 . Now v ig locally bounded and m-superharmonic

on U (Proposition 1.2.10 and Propo!siticm 1.2.11). Thus g minorizes the
greatest n-harmonic minorant of v on mlx Xwn . Lemma 3.1.4 gives us
that for all (xl""’-xn) L

@ [\ w w

1 n ’ ~ 1 n
S oo fvduxl... dux < Lo f vdux dpx .

n 1 n

9

The reverse inequality being obvious we have equality and equation (1) does

indéed hold. Finally (2) follows since for each i and x in wy Xeee ¥ gy Vs

b .
+

v(x) _<_Gi(x) < v(xj.

Lemma 3.1.6: Let (vk)k>l’ v, and U be as in the Convergence Theorem

.with v assumed to be non-negative and vy assumed to be locally bounded.

-,

Let Ul’ .o .,Un be relatively compact domains in Ql, ceey Qn respectively ,

L such that U, X... xU c U. Then
: . i 1 N n . l jt
{

1

v {(xl,...,xn) € le vee XUn: fr(xl,...,xn) <_v(x1,...°,xn)}

1s n-negligible.
. Proof: The proof is by induction on n. For n = 1 the result follows from

A Theorem 1.1.15. Now assume n > 1 and the lemma holds for positive integers

smaller than n. Let Gn be a regular domain in a, with -G_n c Un. -Define

.

n

- Kln ) n
F {(xl,...,xn) € le xUn__lx fn' Iv (xl"”’xn—-l’zn)dpx (zn)
- ' _ v

4
:
i
K
:
i
H
£
!
I

: n
< T v(xyseenx 102 0dp (2D}
| n
We first show F is n-negligible.

Define for each ?ositiye integer k and (xl,...,xn) in U1 X epa X Un—-l x 61!.
§
n
.wk(xlg - ,xn) J vk(xl, ces ,xn_l,zn)dpxn(zn) and
. } : , cn °
w(xl,. .o ,:‘:n‘) - J v(xl, .o "xn-l'zn) d%‘ (zn) .
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»

Then (Wk)k>1 1s a pointwise decreasing sequence of locally boundéd functioms

\

+
in n-$ (le Y Un-l x ‘Gn) (Proposition 1.2.8, Proposition 1.1.1\?),

/

\

and Proposition 1.2.5(c)) with limit function w(Monotone Convergence\ Thecrem)

the mapping

Ta
such that for every k and (xl,. . .,an_l) in U1>< iee X Un—l
x, wk(xl,...,xn) is harmonic oq/én (Proposition 1.1.1(b)). Furthermore
our induction hypothesis impliés the Convergence Theorem holds on le,.. .

. + ,
for pointwise decreasing sequences in (n-1)-§S (Ul Xeow X Un—l) with first \

member locally bounded. Thus we may apply Lemma 3.1.2 and deduce w = w T T
: : e '
except on an n-negligible subset of U,x ... x U x § .. In order to show F
1 n-1 n i
is n-negligible it therefore suffices to prove that on le .o xUn—l x (‘Sn . \
A An 6‘
(1 Wixgseesx ) = V(x5 ’xn—l’zn)dpxn(zn) .
: : ;
Let (xl,...,xn) be any point in Ul Xove X Un-—l X Gn and for each'integer i g
from 1 to n-1 let (w;)bl beI a seque\nce of regular domains with ;
w. c wi c U, for every £ and N wi' = {x,}. Again by Lemma 3.1.2 é
g+l % 451 & i e 1 3
2. . _-g
' ~ ~ s
w(xl,...,xn) =wh (xl,...,xn) - ;‘%
- " p—
w}“ \wz 1 . §
= sup /S ...t wl(zyseeesz Lyx ddo (2.)...dp (z, .) %
. 7 1 n-1"n" ""x, 1 Xl 1 ~ 5
. | - (Propositon 1.2.10)
Gn w% ‘ mg—l
= gup'S ... S Vv dpx pr (zl)...dpx (zn__ )
\ L . n 1 Ti~1
| 5 1 . n-1
~n n % ) wJL
) = s;p Fovilvi(zys... ,zn_l,zn)dpxn(zn)d xl(z1 "dpxn(zn)

(Corollary 3.1.5 J
- sm yd 6n ) .
= v (xl""’xn—l’zn pxn(zn | .

.
2 '
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(This last equality holds for the following reason: from Lemma 3.1.3,
!

Proposition 1. 2. 8, and Proposition 1.2.10 we see the mapping
8

) n +
(ul, . ,Qn_f >Iv (ul, . ,un_l,zn)dpxn(zn) is in (n-1)-8 (Ul X .. % Un-l) .
Now by again applying Proposition 1.2.10 the ‘result follows). We therefore

have verified (1) and have hence shown F is n-negligible.

Now for each integer i from 1 to n let Bi be a countable base of J—

3

« .
open sets of U1 consﬁ.sting of regular domains. Define the sets Gi by
' !

!

= U .
G, { ®pevesx ) e Uy xU, xuwx UppgXeee U
weBi '

o w
I'v (Xl"'"xi—l’zi’xi¢l”"’xn)dpx (Zi)

-]

i

w
< v(\xl,. ceaXy 102K '."Xn)dpxi(zi)} .

From what we have just seen and the fact that a countable union of n-

)

negligible sets is n-negligible, Gi is"r;—negligible.

Define the set K by ' r

o - . -
R= N {Gxp,eenx) e Uy xa x 0 v1<x1,...,xn> < Wl seenx )}
i=1 . .
|

oo
We claim K is n-neglgible. Indeed by the symmetric nature of K it dis

enough to show that there is an (n—l)-negligi‘tble, set N in Ul><.. . X Un—l
such that if (xl,. ..,1§1_1)is :Fn U % ... xUn_l-N, P(x,,. ..,xn_l) = {xn x U :

(xl,.. .,xn) € K} 1s polar. Well just take N to be the empty set. For

1f (xl,. . .,xn_l) is any point in le e X Un-—l’ P(xl, .. .,xn_l) is polar

E

by the Convergence }Theorem on . , ;
N ¢ ! ' .

1

A

A M anb s trn At Ay o
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Thus E= Ky U Gi is n-negligible and we will be done if we can
i=1
show that for (x,. ..,xn) in U-E, v(xl,...,xn) = v(xl,...,xn).

Indeed 1et(x1,. . .,xn) be a fixed point in U-E. Without loss of.

generality we may assume

(2) v n(xl,...,xn) = v(x X ).

1,--., n

N
|

1
We can find, for each integer 1 from 1 to n, sequences (w; )l >1 in Bi
i "i-
{ |

i .
Al =
, and g 3 wy {xi}. Now fl.’or eagh
t 1 0y g
, n
positive integer'k the n-time indexed sequence ( f.../ v, dp_1t..dpo_ )
k x:L xn 21,.

, 3 # 1, are fixed

-1

such that for each zi, 9’1+ 1 <

w

sl
increases in each 2{ if all other indices “Q'j
{

(Propogition 1.1.6). The Monotonme Convergence Theorem then gives the same \

. ' w w
result for ( f... [fv dp £1... d J?'n) ., Therefore |
X X TR0, 2
1 n 1 n
. 1 .
) | “9 = tQi(e
V(X 50003k )= sup S... fvdp_ ... dp R (Proposiion 1.2.10)
1 n X X
SN 1 n .
l, n 1 n
w w
R . ) 'y
= gup ( sup S... [ vdp .. dp ) :
Y T * *n
n 177" -l _ N
wﬂ - L\l)l w'ﬂ"'l
- sup / d ) [t yio Yo )erdo. ha )
= sup o (zn ( sup v(zl,..,zn px z,).-dp_ Zn—l)
L n 21,‘...,2 1 n-1
n n-1

(from the Monotone Convergence Theorem and Fubini's Theorem)

o
~ n 2’?
= gup S v (xl, e ’xn—l’zn)dpx zn) l (Proposition’ 1.2.10)
En of n

1

: L
> sup [f v(xl,.'..,:\:n__l,z“)dpx lz!zn)
L n . N
n

is in Bn and (xl"7"xn) is not in Gn)

' t

(since w:

! n
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i (xl,...,xn) (Proposition 1.1.6)

-

= v(‘xl,...,xn) (equation (2)).

This completes the proof.

\

Proof of the Convergence Theorem: Define E to be

&

E = {xe U:%({() < v(x)}. .

We must show E is n-negligible . Let us suppose‘ first that vy is locally

Lo

respectively with U1 X ,.0X ﬁn c U. Choose u to be a function n~harmonic

bounded above. Let Ul" .. ,Un be relatively compact’ operr sets in Q

on a neighbourhood of ﬁlx “ea xﬁn «sdch that v(x) + u(x) is positive for

every X in le - XUn. Then we may apply Lemma 3.1.6 to the sequence
1

(vk + U)kf_l to deduce

a

En Ul Koo s ><Un {(xl,...,xn) € Ul>< ...XUn: v(x ,...,xn) < v{x

1’

]

N .
{(xl,...,xn) E’le... XUn. v+u(?{1,...,xn)

.

: ‘ ‘L 3 v(xl,...,xn? + u(xl,...,xn)}

is n-negligible. Now by applying the local property for n-negligible sets

we see| E is n-negligible. a['hus the theorem holds if vl,is locally bounded. 1
; ‘
In general let v be a positive continuous member of n—S+(U). For
[ R

each pair of” positive integers k and-% we define w or; U to be1

kyf

wk,z(x5~3'= min (vk(x), [} vo(x)).\\‘

.. ,xn)}

s,

% P b Sl
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( Then for each L the sequence (wk P, k>l is in n-S(U), it is uniformly

|- C)

‘locally lower bounded, it decreases pointwise to a function we call Vo o

and LI is locally bounded above. By the special case of the theorem
, .

which we. have just verified, Wy = Wy except on an n-negligible subset

Ek of U, PutE= Y E Then E is n-negligible (Proposition 2.2.6).

el b |
It is clear that for all x in U, w&c,2+1(x) iwk’z(x) hence wz_*_l(x) > WJL(X)’

that is '(w is a pointwise increasing sequence of functions. Notice

27851
also that for each x in U, v(x) = 1lim wz(x). Indeed if v(x) < =, then
L0

for all § sufficiently large v(x) = WJL(X) hence v(x) = lim Wp,(x)' If
. R0
v(x) =, wk’z(x) = Rvo(x) for all % and k hence WIL(X) = f vo(x) .
Letting £ + o, gives lim wl(x) = o= y(x), Denote lim %2 by w.
Lo £+ )
Then w is the limit of an increasing sequence in n-S(U), it is not id,entiéally m
; . on a connected componenft of U(since it is bounded py vl),therefore it is

in n~-S(U). It minorize\s v on U hence since it is lower semicontinuous it

minorizes ¥ on U. It follows that if x is in U-E,

v, v(x) lim wz(x)

oo

B )
]

lim @ (x)
2
I |

= w(x)

A A T

] < ¥(x)
\ < v(x)

This completes the proof.

Now by using the topological lemma of Choquet ([1] page 3), we deduce

easlly the more general form of the co‘nvergence result,

0
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Theorem 3,1.7: Let (v be any family of locally uniformly lower

i"iel

bounded n-superharmonic functions on an open set and let v be the point-
wise lower envelope of this family. Then v = v except on an n-negligible

set.

Corollary 3.1.8: Let v be in n-S+(Ql>< ‘e xszn) and let E be any subset of
Ql X.,.0% Qn. Then for all x except in an n-negligible set
E ~E
Rv(x) = Rv(x) .
Using the fact that a countable'\unian of n-negligible sets is n-

negiigible we also deduce the following result.

a sequence of

Qorollary 3.1.9: Let U be open in Ql X... ><,»Qn and (vk)k_>_l
uniformly locally lower bounded functions in n~S(U). Then for all x of

U except an n-negligible subset

1lim dinf vk(x) = l1im inf vk(x)
k> o k+o

Section 2 Thin Sets )

Definition 3.2.1: Let E be contained in U an’open s’u‘pset’ of Q. X«uuo X 0,

1 n
and let x be any point in U. We will say E is thin at x in U if -one of the

,
following three properties holds:

| v

(1) x is not in E , ‘ \

5

(2) =x1is in E-E and there exists w in n-S+(U) with 1lim inf w(y) > w(x),

| y +x
; . yeE

(3) -x is in E, {x} is n-polar, and (1) or (2) holds for x and E-{x} .
il

In (3) above nothing is lost in taking x to be n-polar as opposed to

n-negligible., We demonstrate this in the following simple result.

s e e s st

e e e
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Proposition 3.2.2: A point set {x} = {(xl, “ee ,xn)} is n-polar if
. and, only if it is n-negligible. :
i

£
‘e
£

Proof: Since n-polar sets are n-negligible(Proposition 2.2.12) there is
only one assértion to prove and this we dq_l;;@nduction onn. Ifn=1
there is nothing to show. Suppose them n > 1 and the proposit:{on holds

\ f
for integers smaller tham n. Let {x} = {(x .,xn)}be nsnegligible.

1
Without loss of. generality we mé.y assume X is not polar iri Ql for

if 1t were, {x} = {xl}X{(xz,...,xn)}would be n~polar. (Proposition 2.1.2).

Now since {x} is n-negligiblethere is a polar set P in 0 such that if y
is in 91 -P, {(yz,. .. ,yn)} €y X.u. xQn: (yl,. . .,yn) = (xl";"’xn)} is
(n-1)-negligible. Since {xl} is not polar X; can not be i:{ P. Hence

{(YZ"")yn)} 692)( see X Qn:(ylw")yn) =((xls---)xn)} = {(é{z""’xn)}n

1

Thus (xz,. ..,xn) is (n~1)-negligible and hence by the inductive hypothesis

is n-polar. . It follows {(x)} = {xl,.;c,xg)} is n-polar,

H

We wish now to apply theContinuation Theorem and deduce a local

1

g
H

property of thinness.

1
1
i

Lemma 3.2.3:‘ Let f and g be positive extended real x{aldgd functions
defined on a Hausdorff space X,E'a subset of X, and x a point in E -E.

Then if h is defined in X as h(y) = min(f(y),g(y)), we have\,

o

(L 1lim inf h{y) = min( 1im inf £(y), 1im inf gy) ) -
y + X ‘ ¥y + X v+ X
y e E yek yekE

\

Proof: Clearly t‘he left hand side of (1) 1s smaller than or equal to the

right hand side. If ) >‘2’)‘3 are real numbers with X, > .}

1 2>A3 and the

1’

riéht hand side of (1) is bigger than Al, then there erist open sets W ,W

1
such that f(y) > Ay for y in W, nE and g(y) 2 &; for y in W, n E. Thus

hiy) > AponW, nW,nE and hence

1 2

2

o
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Hm dnf h(y) 2%, > X, .
y+x * o
vye E ‘

-

This proves the result. ‘

”

, Lemma 3.2.4% Let E be thin at the point x 171 the open set U with x in E .

Then there exists w in n—S+(U) such that w i% locally bounded and
) 3 |

lim inf w(y) > w(x) |
y > x\: \
y € E-{x}

v

Proof: By definition there exists v in n—S+(U) such thdt

lim inf v(y) > v(x).
| ’ g+ x
¥ € E-{x}

Let u be a continuous member of n—-S+(U) with u(x) lying strictly between

these two numbers. \Define w on U by w(y) = min(u(y),v(y)). Then w is in

e 5 e Sy v Tt Beany s ot € i

n—S+(U), it 1s locally bounded, and from Lemma 3.2.3
i ‘ | |
{ ’ lim inf w(y) miL(n ( lim inf v(y), 1lim inf u(y)) . ¢

]

2 e y X cd Yy X y+ X
y e E-{x} \ y & E~{x} y e E-{x}
Q
| » o |
I = U('—‘\() ;
{ § '
S > v(x) }

. \ ) '
| w(x)\ . | . |
| -

completing the proof.

\ Proposition 3.2.5 (local property of thinness) Let E be a subset of

o ‘ Ql Xaew X ﬂn and x in )E.r\l\for some neighbourhood w of x we have ¢ n E §
: C) thin at x in o, i:hen E is thin at x in nl X emo xgn. ;

~
!

- 1
.
. \ : . ,




Sy ward
/
+

i

( ‘ Proof: Let Ul,U2 be relat\ively compact neighbourhoods of x with

1" . Ul c U2 c U2C w . From the previous lemma there exists w in n-—S+(1ﬂ) such

‘that w is bounded on ﬁz and

3

lim Inf w(y) > w(x).
¥~ x
a0 Yy € E"{K}

From Theorem 2.4.3 there exist P1sPy in n-S+(Ql><...“ xs‘zn) such that Pa

is continuous and pl(y)= 92.Q)+w(y) for all y in Ul. Therefore

1lim inf pl(y) = 1im inf (pz(y) + w(y))
| y *+x y >X
vy ¢ E-{x} y eE-{x} .

o

pz(x) + 14im inf w(y)
: v - x
y € E-{x}

> Pz(x) + w(x)

i * = . pl(x) .

This_ completes the proof. |

l

From now on we will just refer to a set as being thin at a point

without reference to|any open set.

,

Using tools as in [1] and the Convergeﬁce Theorem we show below in

Proposition, 3.2.7 that the set c;f points in a given set at which the set

o

\ is thin is n-negligible,

vt . ks e 2ok s i i e

ANt e AN S o8 e S 7t e m vt i o
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(\\ Proposition 3.2.6: Let E be a subset of nl Xoww X Q and x a point in

N
. U S

N\

~
~—

Ql X ..\?\QI\I-EV\J.‘h\eg“E‘is thin at-x if and only if for each positive

continuous v in 1'1--S+(Q1 Xaus xnn) there exists a neighbdurhood w of x sﬁch
n(l) . [ \

that Rv' (x) < v(x). )

o

Proof: Suppose first E is thin at x. If x is not in E we can findy a
' \ - . Enuw
neighbourhood of x such that wn E = dk\ Hence Rv %) = 0 <v(x). Thus we

- +
may assume x is in E. There exists w in\sn—-s (Szl Xaoa xﬂn) such that

* 1lim inf w(x) > w(x) . i .
y>x \

yek

o

Choose a real number A so that Av(x) lies strictl between both members of

this inequality. Since v is continuous

!

Rn * Um inf (w(y) - Av(y)) = (lin inf

y + X y+x
y ¢ E yekE
B >0°
mereﬁw exists a x%eighbourhood‘w of x such t}at for ; ﬂinww n-E,
“wiy) -av(y) > 02 hence for all y in Q) % een % /5 w(y) > RAv(x) "It
follows - ?K,:
aw(x) > wix) !
Eoaw ,
2R I o
. ) .
DR
S ; ““\\ .
Since A 1s positive the result follows ‘ . ~—

o

+
Conversely let v be a positive continuous member of n-§ (ﬂl X0, X Qn)
: ‘ : E N
and suppose there exists a neighbourhood ® of x such tt‘xlat, R vix) < v(x).

: y ,.
i \

sk e A o e
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.

We may dssume x 1is in E for otherwise there is nothing to show. There.
i

exists w in n—S+(ﬂl Xueaa ><Qn)~ such that w majorizes v on E 0w and w(:Ej < v(x).

It follows ) ‘ ‘ .

l AN

lim inf w(y) > lim inf v(y) '

y+x - y+x
yeE ) ye\E
, > v(x) ‘
— > wx) .
* . . » '

Thus E is thin at x and we are done.

;

Proposition 3.2.7: Let E be a subset of le ees X ﬂn. Then T = {x e E:

E is thin at x} 1is n-negligible.

Proof: Let (mi) be a countable base of open sets of nl Xeoo X §,

i1 n

v a continuous member of n-S."(ﬂ1 X oo X ﬂn) and x'in T. Prom Proposition

-

3.2.6 there exists an integer 1 such that wy is a heighf:ourhood of x and
(E-x)nuw 1 ’

Rv i(x) < v(x). Since {x} is n-polar it follows
Enowg .,Enmi-{x} : '
Rv (x) = Rv s (=) (Corollary 2.2.16)
. < Enuwg-{x} ) ( |
- R (x) ;

p(B-{x}) ney
v

(x)
\! N ) N N 'p
o< ov(x) A
. E n Ni > | -
Q = R, n (since x is in E n mi)
™\ .
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%

P - cg ) This shows that
' ‘ E 0w E 0w ‘ )
Tec U {xe@, x...xQ : R (x) <R x)} .
1 n v v
1>1 .
¢ This set 1s n-negligible by Corollary 3.1.8 and Proposition 2.2.6. %

The proof is complete, . €

3 R

Section 3 The Extension Theorem

Theorem 3.3.1: ,Let N be a closed n-negligible subset of an open' set U

1 \ in ﬂl Xooe X Qn and v an n-superharmonic function on U-N that is locally
' ‘ i

lower bounded on U. (By this we mean for every compact set K,v is lower,

B

bounded d&i “(U-N) n K.) Then there exists a unique member of n-S(U) which

: equals v on U-N,

RIS 4

Notice that no generality is lost in having v in n-S(U-N) as opposed

. to n~hyperharmonic on U-N. For if v were identicélly © on a -connected component

g

)

of U-N we could just extend ‘it to be = on the whole component. i

Remark 3.3.2: Define h on U by

v(x) - x in U-N .
* h(x) = ' ‘ ' _— N
L
lim inf v(z) x in N 3
. oz X .
1 ’ - z £ U-N -~

-

i
J

Notice h i_s Borel measurable. The;)rem 2.2.,17 implies that if the '

Extension Theorem holds then the extension must be h. (This gives the

uniqueness assertion immediately). However, we camot show directly tt‘tat h-

is the required extensilm. The idea of the proof is to extend u(x,-) o v

S n-hyperhaxhonically for "most" x by an inductive procedure. (This procedure

0 : | | :




- 85\9 - K
~

»
T

is of course extending by means of limit infimum in the last n-1 variables.

Notice this'gives a function which majorizes h(x, «)). Then it is easy

oy

\

to extend it to all of N. We then show we get a nearly n-superharmonic

function on U and the lower semigdntinuous regularization of it gives the

required solution. ' ' s

Proof of the theorem: . The proof is by induction on n. If n = 1'it is just

-

'P‘ropoSition 1.1.13. Now assume n > 1 and the theorem holdsl for positive

integers smaller than n. Since N is n-negligible,thére exists a Gd polar
- \

5 Ve

get P ‘such that if z1 ig in Hl(U)—P, Nl(zl) is (n—l)—{negl'ig,ible in 3

Croae

; N 92 Xege X Qn and closed. By the induction hypothesis, for each such z

l’

the mapping (zz, vee ,zn) + v'(zl, Ve ,zn) can be exténded to one-that is (n-1)-

f

oo

!
y is defined everywhere on U except on M, where

3

i . M=0Nn {(zl,...,,in).e Uiz, e P},

1

Vi’ ‘ anr'?l,for each Zl»im]ll(U)—P, the mapping (ZZ"“’Zn) - v(zl, ...,zn) is (n-1)-
hyperharmonic on‘ U, (z
7 1 171

majorizes h(zl,')for such z

R

). A5 we observed in Remark/?}_.@.Z this mapping
1°

Observe that M is n-polar in Ql XaedX szn since it is contained in

. P x Qy Xevw X Q (Proposition 2.1.12). Therefore there exists u in

n |

n-S+(Ql>< vee X Qn) such that u(z) = » for all z in M. Define for each

1
o .

positive integer k the function u, on U by
-1
v(z) + k “u(z) z in U-M

uk(z) =

o© 2z in M,

hype;:harmonic on -Ul(zl)' 'i'hus, by a slight abuse of notation, we may assume Vv

or’
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T e,

locally lower bounded. Let &
respectively with

In 8, x ..o x§ .
n

1

(1

Since N is a Borel measurable set with 0 product measure (Remark 2.2.14),

u equals the locally lower bounded Borel measurable function h + kK

v

12

1

8

\7uk(zl,...,zn)(p}1{x... x p'xn)(dz ver dz ) _<_uk.(x1 <t x) .

wo

We must show

- v
8, X, X% Bn‘ contaipgd in U and (xl,...,xn) a point

at

-

8

1 n

1
8 8

- n
on U-N (here they are both just v + k 1u), and p lx v X p is totall
i N

X X
1 n

finite we may apply Fubini's Theorem and deduce

-

»

J uk(zl, e -,zn) (px

(

8 8 .
) n —
.X...xpx )(d?a... dzn) =
1 n

I

-

”5L be /regular domains in g .-+, 0

.u

¥y

° = f(h+k-‘l{1)(z . z)(palx‘ Xp n ) (dz, . éz)
LA Ty, T T x 17"
1 1 n
' 8 -1 | ) Sn. .
= . f dpx (zl'),f (h+k “u) (zl,...,zn) (px b ...pr)(dzz...dzn)
e zleﬂ -P 71 2 n"
. 1 \
61
(since P has 0 p measure) \
7 _ 61 52 5n
/ < J dpx (zl) fuk(zl,""’zn) (px Xewe P )(dzz,..,dzn)
4 zleﬂl—P 1 : 2 n .
AN N .
- 61
o < / uk(zl,xz, ves ,xn)dpx (zl) .
i zleﬂl—P 1

(This-last inequality follows from the fact that if zy is in Ill(U)—P, the

mApping (zz, .o ,zn) + uk(zl‘, .e .,'zt‘l) is (n—l)-—h?‘perharmonic on Ul(-zl))' lThus

(1) will be proved if we can show

S

\
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. . R
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Qr _ ) 61
(2) J u.k(zl,xz, . ""xn)d“)xl(zl) < u.k(xl,.».. ,xn). . i,

R Y T et T, W w3 T AT T Oy M T

~
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_Thus from the previous case we have for each % , o

13

Suppose first (xl,.. .,xn) ts in U~N. Since N is ﬂ—negligible there

¢

exists an (n-1)-negligible set Q in 92 Xuua X Qn such that 1if (22/,. .. ’Zn)

)
is in 92‘>< ...XS?,n—Q, NZ p

se00y

n(zz, .. .,zn) is polar. If (xz,. - ,an) ‘is in
4y x. Sox Qn—Q then (2) holds since by Proposition 1.1.13 there exists a

function hyperharmgnic on U2 (xz, . .,xn) which equals 2y > uk(z]:, ve :,zn)

gevey

everywhere except on 1}12 n(xz, .es
sly e eylly

'Now use the fact that X is not in N2
. yoos

(xz, LN ) is in Q, since uk is n—hyperharmonic Ontl U-N,N is closed and Q

,X.), a Borel (cloéed) set-of p_ 1
n xl

measu{re» 0. (xz, -esX ). If

is (n—li—negligible, it follows from Theorem 2.2.17 thalt there is a sequence

L

in @ ><...4>(9
n

(y 1'r,g,>1 2 s:onverging to (Xz,-..,xn) such that for every z,y *

is not in Q, (xl,yl) ‘iss ot in N, 'aqﬁr}( |

uk(x ERERTE N ) = 1im inf uk( ,y'q')_

13 > o

P

*

u
v -~

§

«3)

x

~
\

(4)

Taking lower limits'as

2’ -—
(x5 > J
uk r z, €0 ~P

1

L » o

1

gives

~

*

2,1
uk(zl,y )d p}-{l(zl).

(x,...,x) = ‘lim infu ( ,Y)
& tn nf v, (4
. > ) _— * & 51 ’
(5) > lim inf J o \w (z,,yde " (2)) ‘
PP zooE Q.- 1 X1
] ? 11
< 6 < ‘
(6) > S 7. lim Inf uk(z ,“2)! )dp (z ut:(*i'ﬁt:ou'cs Femma)
- zpe P doe e ’

45
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(7) u (2 %70 ,xﬁ)d:pxl (Zl) .

M A

since for z, in Q,~P the mapping (z2,. ..,zn) > uk(zl, . ..,zn) is lower -

1
gemicontinuous. Thus (2) hoids if ,(xl,...,xn) is in U-N..

1f (xl,...,xn) is in M, (2) clearly holds since in this case:

, . , uk(xl""’xn) = . i
J Lo
_Finally suppose (xl, .o .,:gn) .is in N-M: Then Xy is not in P and )

‘therefore Nl(';(l) is (n—l)--ru—:glig:i.bi‘e.\l Since the mapping (zz, . ..,zn) -+

‘u.k(‘zl,‘...,zn) is .(n-1)-superharmonic in Ul(xl) we can find a sequence

2

gl 4 ‘ 9' + 2
(y )221 in sz ...‘XQn such that for every £, y is not in ?Il(xl), )

e e

converges to (xz, .- .,xn), and | ]

. uk(xl-,...,xn) = Iii;’x_wionf' u'k(xl’yz)
i

.‘t

4 ('{.‘heorém 2,2.17). Since (xl,y‘l')2 is not in N we may apply a previous case

\
and proceed exactly as¢in inequalities (3) - (7) to deduce (2) holds.

i )

Thus (2) holds for all (xl,...,x;l) in U and therefore uk\i\s indeéd nearly
, .

n-superharmgnic. k
- ) X . \ 7 . g '

Define w on U by ! /

w(x) = lim inf u}((;{)' A )

kv S »
C ~ e '
Then w is nearly n-superharmonic and hence w is n~-superharmonic on U.
‘ . ' o,
,We claim w = v on U-N. Well clearly w = v on the subset of U-N where u'is - ,

i
finite, that is everywheré on U-N except an'n-po_.lar gset . Since n-polar sets

are n-negligible it follows w = v on U=N (Corollary 2.2.18). Thus W
Y | Y
y |

is the required extension and we are done. . . e
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Remark 3.3.2: Let h be n-harmonic on U-N where U is open in Ql X ... X Qn s
’ N b
and N is n-negligible. If h is locally bounded on U then we may apply the \
. ‘ ; — ,
Extension Theorem to h and (~h) and deduce there is a unique n-harmonic “
extensic;n of h to U. \, x
roy ” ‘\
|
1 W
/ |
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CHAPTER 4 ,

[ N - . -
AppliEations to Plurisuperharmoni¢ Functions
13 % M

- b \ '

kS T N - |
In this chapter we apply the results obtained so far to the study

. > f ~
of plurisuperharmonic functions. In particular we gﬁnsider twa typpgs of
Je:gceptional_ sets, th@, n-P negligible sets and the sets-of Ronkin )I‘—capacity Y
zero, and prove theoxﬁ%ms analagous to Theorem 3.l. 1 and The;)}rem 3.3.1 in

which the exceptional sets are either of these types. \gg

.

. .
. %

-
Section 1 Introduction ot -

Recall that C( = ,'Rz) is a Brelot space if the harmonic functiops are

b
V o v | .
the twice continuously diffe}'entiable functions sat;i\f?ﬁing Laplace s equation

‘

and the set of discs is thd base of regular domains. However only tixq open -
sets having a Greenl' functioﬁ (for exah;ple the relatively compact open sets)

L K ,‘ @
have a positive potential. Thus to apply results obtained so far to ¢ we

P
. * v .

must first of all make some additional definitions and check that certain
/ \ !
fugdamehtal properties go through. For more details see [10].

"

JFirst of all the hyperharmonic, Superhamonic', n-hyperharmonic, and n-

s;.lperharmonic functions are defined exactly as before. Tﬁey all satisfy

Pl -
N A 5

a local property » and therefore they" have the same basic properties as the .

.

coicrespbnd,ing functions we have been studyiné. It 1s also t}@.’thaé the

' 4 [
composition of a superharmonic and a holomorphic mapping is /superharmonic.
s . . ; o~

-

We next consider the pelar 'sets._ g A

®

Definitiom 4.1.1: A subset E of C is said to be polar if there exists a v
i N L]

r

superharmonit-on a neighbourhood of E such that v(z) = » for all z in E.
‘ :

!

-

Y [
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i i In this definition wé can assume v is non—negative aincg clearly,

e
t
5 - 4 ‘ 3
i . 1 "

' - of E. It thus follows from the local property that our two notions of polar

‘set agree 1f E is contained in an open set having a Green function. It can

e e

be shown a countable union of polar sets is'pglar. Polar sets aléo have the

-
- R v b

following global property: a set E is polar if amnd only if there exists a

superharmonic function v on C such that v?z) = « for allz in E. Furthermore

z

capacity 0. Thus point sets are polar and line segments are not (since the

e e

‘ logarithmic capacity of a line segment 1s 1/4 its length).

-

. 4, . i

With this definition of polar we define the n-negligible sets gust as

Ry P

before. It. is immediate that if /Q

R

a Green function, then a subset E of Ql XoeopX Q is n—negligible in this
new sense If and only if it 1s n-negligible in 91 Xvos xQ i'n the sense
| of Definition 2.2.1. We can also show (exactly as in the proof of Proposition
' 2.2, 6) a countable union of n—negligiblev sets is n-negligible. W“ith this

fact we cat), deduce all basic properties. In particular we have that a set

3 ( E iw—negligible if and only if for all dntegers 1 from 1 tb n,

o
“ M 1’

-
- }

\
13

ig (n-1)-negligible (see Proposition 2.2.4), for v in n-S(U) where U is an"™*

open subset of Cp, n > 2, and k an integer between 1 and n-1 there exists a

k-negligible set N in C such that if x is in I, k(U)-lil the mapping
yeny

y -+ v(x,y) is in (n—k)-S(Ul k(1:;)) (see Proposition 2.2.10), and for w in
. ’ aro0y ' - o
h\N .

n-S(U) ‘and N an, n-negligible set,

Lo

A

\ ' w(x) = 1im inf w(z) .

Lz X \
/ﬁ z £ U-N

because of the lower semicontinuity of w, v is non-negative on a neighbourhood,

. N B [

it can be shown that the polar sets are precisely the, sets of outer logarithmic

170 Q are open subgsets of C having P

. N -1
Ni = {(xl,-...,xi_l,xiﬂ,...,xn) e c° :{xi £ C:(xl,..'. ,xn) ¢ E Jnot polar}
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1
.

for all x in U, (Sée Theorem 2.2.17);

K 3]

+ Finally we deduce that the Convergence Theorem and Extension Theorem

ko1 is a pointwise

both hold on.any open subset U of C". ' First suppose (vk)

decreasing and locally uniformly lower bounded sequence in n-Sup(U) with

1imit function v. Choose (U!L ¢>1 @ ‘sequence of relatively compact open sets
- -

in C" such that U1 u, = 1. Theorem 3.1.1 implies {x ¢ Ui:GCx) <v(x)} is
> ’ / -

2
n—negligible for ie-ach'}: . Itlfollmm

€

{x eV v <v(®)}= U {x e UQ: v(x) < v(x)}
s 2>1

is n-negligible and hence the Convergence Theorem does indeed hold. ° Suppose '
. . H , . -
{i ~now w is n—superharmonic on U-E where E is n-negligible and wis locally

g
lower bounded on U. Define w' on U by
’ w(x) x in U-E
N s \\
: W'(x) = .\\
. lim jnf w(z) x\in E
z™> x \
- . z ¢ U-E \\
|
v ) _\l \ N
g Theorem 3.3.1 and Theorem 2.2.17 imply that w' is n-superharmonic in any

relatively compact open subset of U. Thu§ from t\"e local property w' is

B in n-S5(U) and we see the Extension Theorem too 1s 'valid.

™ 2 B U
1

. e Section 2, n~P Negligible Sets

Definition 4.2.1; Let U be an open subset of- Cu »0 > 1. An extended real

J - valued function v defined on U is said to be plurisuperharmonic on U if
(i} v(z)> -» for all z in U, ,

@ \ .’ ()

N

@,ﬁd-"d‘ "
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*(141) v 1is not ident:ical‘ly © on a cpnnescted component of U,

(iii) v is lower semicontinuous, o
(iv) f{)t avery z and w in C" the mapping A > v(Az + w) is hyper-

harmonic on {A eC: Az + w & U}, ‘ N

. . |
We denote the set of all plurisuperharmonic functions on U by P Sup ).

'

ity

G

Let v be in P Sup(U). If {el,. - ,en} is the canonical basis of,Cn,
n- 4

e, for any 1 between 1 andnand w="f e, ~e,,

i . j= i1

. B
we see that v is separately hyperharmonic on U. Since v in addition

by choosing in (iv) z =

satisfies (1), (i1), and (iii) we see v'is in n-Sup(U). Thus P Sup(U)

is a subset of n-Sup(U). It is now almost immediate that a convergence
~ X e, «

~

theorem analagous to Theorem 3.1.1 holds for P Sup(U) in which the exceptional
set is n-negligible. However, as we shall see shortly, we can say much

. more about this set. ' With this in mind we define the following class of sets.

s
/

Definition 4.2,.2: A subset E of C* 1s said to be n-P negligible 1f for every

z in C® , ’

»

{wec: {AeC; Az +w € E } not polar }
\ .

¥ -is n-negligible.

Proposition 4.2.3: "An n-P negligible set is.n-negligible.
| N »

ey \

Proof. Let E be n-P negiigible . .By symmetry it is enough to show that there
exists an (n-1)-negligible set N suf:h that if (WZ”"’wn) ig in Cn_l - N,

, .
{2 eC:()\,wz,...,wn) e E} is polar./ Choose z in Definition 4.2.2 to be -

«  (@1,0,...,0). Then
l’wZ’“"wn) £ E} not polar }

M= {\w e C {(veC:(r+w
. c \ ~. 4




i

. (Indeed if v is 'superharmoni'c on C and equal to ® on the former set then .

* polar. .
P / | ‘ ‘W

|

e At 8 SAPTS it ppsramren St a2 4w o % a s e e 5 e s < o
=08~

<

is n-negligible. Note now that if for any (wl,..,r'ﬂn) the set

{re C:(xr +w1,w2,...,wn) € E‘ }ig rpola);‘,, so is {A € C:()\,wz,.:.,wn) e E}.

the mapping A +v(A -wl) is dlso superharmonic on C and equal to « on the

o L4

latter.) Since M is n-negliglble, there is an (n-1)-negligible set N

n-1 : .
such that %f (wz,".’..,wn) is in C "-N, {w1 € C:(wl,...,wn) £ I«?} is polar . .

Thus for each (wz,-\-.,wn) /in ™ LN there is at least one w; such that

{xec:(x + WysWosneo ,wn)' e E} is’}aolar. By our previous remark then,

-

for such’ (wé,. . ,wn)'{ )\:(hA, wz,...,wn) ¢ E} is also polar and we are done.

- i o~

I g

Definition 4.2.4: ' A subset E—of an—open set=b-in C" 15 said to be pluri-

polar in U if there is a function v in P Sup(U) such .that E is contairded

in {z e U: v(z2)= = }. y

} K3

Proposition 4:2.5: A pluripolar subset of U is n~P negligible. o

Proof. Let E be a p]:uripolar subget of U, There exists v in P Sup(l)

) o
such that v(z) = = for all z in E, Now fix z in c?. \S‘Wé must show there

1

is an n-negligible set N sych that for w in Cn—N, {AeC: Az +we E} is

. v . .-
Put W= {(A,w) € Cn+1: Xz +we U}, On this open. set the mapping

] -

«

(Ayw) = v(az + w) is (n+l)-superharmonic and hence there is an n-negligible .

i

set N such that 1f w is in {w e C: there exists X in C with (A,w) in W} -N,

the mapping A+ v(Az + w) is superharmonic on {\ ¢ C:(},w) -e W}, It follows

\

that for such a A {» eC:dz + w ¢ U and v(Az + w) = »} ig a polar set con—

taining {A €C: Az +w € E}, This implies the latter -set is polar and we are done.

The cbnverse of Proposition 4.2.5 is false, as is illpstrated in the

7

following céunterexample . o . o
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L] I3

Example (Kiselman See also [4].). Put H = {(él,zz) € Cz: Im 1 = Re(z. +zz) = 0}

For every z;inCwith Im 2= o0 (that is for every zy ona 'lin'e segment “in C, )

a non-polar set) ‘ i T S

i - -9 T |
{7-2 e C: (zl,zz)} eH} = {z e C: 22; -z, +1b, b ER} :

¥ KY

which is a line in C. It follows H is not 2—negligible and therefore not

pluripolar. Let g be the biholomorphic mapping (zl,zz) ) (z1 - ;,z ) Then

t

o 2 2 - 20 .
(H) = {(zl,z ), e C: Im(zl,j-zz) = R'e(z1 +z2 +z2) >0} .
, - 2 )
This set is 2-P negligible since for every zsw 1 C; 1A € Ct AZ+w £ g(H)3}

containg at most )4 points. It is not however pluripolar since if :I;t were there

P

would be a v i)\\f Sup(Cz) with v(z) = ¢ for all z in g(H). But v o g is also

in P Sup (Cz) and equals « on H. This is impossible. Thus g(H) is not

pluripolar. ‘ v ' -

ot

The following convergence theorem is a simple consequence of Theorem 3,1.1

°
' '

B )
Theotem 4.2.6: Let U be an open subset of ¢" and v the lower limit of a

peixﬁ:wise decrease uniformly locally dower bounded sequénce (vk)bl in P Sup(U).

3
a

Then v and v are equal everywhere except on an n-P negligible subset of U.

Proof: Fix z in C-. Put W= {j(l w) € Cn+1‘: Az +w e U}. Define the -

—

sequence of functions (gk)lol on W by gk()\ w) = Vi (\z +w). Then (gk)k>l is

'y pointwise decreasing sequence of uniformly 1ocally 1ower bounded functions
P 4 .

s
?

.
& in (n+1) Sup(U) with lim:l,t funcf:ion g, where g(k,w) = v(kz +%). Therefore
by Theorem 3.1. l g and g differ " at: most on an (n+1)-negligible subset of W.

It is easy to see that . for °a11 (A,w) in W g(A w) = v(Az +w),° Thus there -

‘exists an n—-negld.gible set N in c™ such that if w is in Ch—N,

1 . 0

£
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AN
Mec:v(z+w) <v(az+w)} ={) ¢ C: é(A,W) < g(x,w)}
is polar. This completes the proof.

‘We now prove an analogue of Theorem 3.3.1.

/

!

Theorem 4.2.7: Let U be an open subset of Cn, Ea closed: n—P negligible

subset of U, and Vv plurisuperharmonic on U-E. 1If v is locally lower ﬁmunded

on U there exists a unique v

1 in P Sup(U) ‘such that v, = v on U-W. °

1

[y

We first prove a lemma.

LI
N

Lemma 4.2.8: Let E be a closed n~P negligible set. Then for every
-~

u =% (ul,...,un)‘ in Cnm {wecCl: utw ¢ E} is n-negligible.

I
i

Proof: The proof is by induction on n. If n =1, since E 1s polar, there

»
exists a function v superharmoth that v(w) = «» for all w in E.

Consider now the mapping w > v(w-u) on C. This is superharmonic on C and

equals ~ = on {w ¢ C: w~+§1 e E} Therefore the 1eu;ma holds for n = 1.

W

Suppose now n > 1 ‘and it holds for smaller integers. .By symmetry ‘it\is

’

enough to show there is a polar set P such that if w, is in C-P,

1
) . n-1
{(wz,. ‘e ,wn) e C (ul +wl, ceenu +wn) e E} is (n-1)-negligible. - Well -

.

s

certainly it is true that . ‘ - . ‘

.. . n—-1, ' - 1yl )
. {Wl e “C: {(\WZ’ oo ,Wn)L € Cq : (wl, ces ,wn) e E} not (n-1)-negligible}
N ! N
igs polar. Therefore by the induction hypothesis. .

/ ', | . M /

n
* . . negligible}

. Vs o
is in C-P the set N defined by e

1
: {

n-1 :
N = {(wz,...,wn) e C : (wl +ul,w2,w3,...,wn) e E} , /

S abn Wl o

P = {w—le C:{(wz,... LW E Cn--]‘:(w:L +u1,‘,wz,w3,...,w1:l)l g E}lnot (n~1)- "'

is polar. CIf w

RS

¢
.
-
B e o s o



¢

N

-101- *

[

N .

nmlc(u2 +w2, .o ,un+wn) e N} is also (n-l1l)-negligible.

{(w'z,...,w) e C

1

Theorem:  The uniq/ueness follows immediately since any such

‘extension is in particulhr in n-Sup(U) and functions in this set are

determined if spécified up to only an n-negligible set.

I Now since v is in n—Sup(U-E:.) and locally lower bounded on U, by

the Extension Theorem there exists vy in n-Sup(U) such that v = v, on

1

U-E. We claim Vi is the required extension. i y

@
- ‘

To prove this it is clear we need only prove that for each z and w
in C" 'the mapping A - vl()\z+w) is hyperharmonic on{} € C: xz+w ¢ U}. O

Well since v, is lower semicontinuous so is this mapping. It remains

1
. , ) .
to show that for )‘o a fixed complex number and § a regilar domain con-
tained with its closure in { A € C: z+w'e U},
. ; é .
(1) o i) vl(}‘z‘o+wo)dp>\_o()‘) ivl(lozo+wo) .
l b i ‘

We know, since E ig h-P negligible, there exists an n-negligible
set N (depending on zo) such that if w is in Cn—N,{A € C:‘}\zo-i-w ¢ El} .
is polar. Put . . ’ {

M=Nufwec™ Az +weE}.
o 0

We show first (1) hles, if LA is in C =M. Indeed in this case the .
S 3
mapping A - vl()‘zo+wo) is defined everywhere on{le C:lzo+wo e U}

except{) € C:)\zo+wo € E } and by our choice of Q’o the latter set is

i N

- ‘ % - .
polar and of course élosed. Thus this mapping has an extension to a

functioh hyperharmonic on{l ¢ C:)\zo+wo e U}, [ Call this extension u. \

e §

\

PR

P2
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Since closed polar sets have zero harmonic measure,

’ 8 _ )
fvl(lzo+wo)dpxo(>\) =f u(k)dplo(k)

< u(lo)

= vz +w) (since w. is in Cn-M)
(! o0 o o
- . R

\\ - ¥
o —\vl(}‘ozo-'-wo) .

This proves that (1) holds if v, is in C™-M. Now by the lemma and
Proposition 2.2.6 we see M is n-negligible, It follows that for v, in

general, since v, is in n-Sup(U), we can find a sequence (w )k>1 in C*

1

converging to v, such that for each k, wk is in "M and

-

fi .
- ,vl()tozo-%wo) = 1im inf vl(k z +w )
k + o

(This too uses the lemma). For every positive integer k we have from the

special-case we have just proven that
: 8
J Vl()«z0 +wk)dp>\o(>\). < vl(Aozo+wk) . |

Taking lower limits gives

vl(lozo+wo) = 1im’inf vl(k z +wk)
k—)— - 1

>  lim inf J v, ()\z +w, )dp ()

. k> » ‘,0
‘ o

) .

> J lim inf vl\)\z +w, )dp)\ (A) (Fatou lemma)
~ - k 5 o

§
Jvy Qe +w0)dp)\o(l) ,

Iv

since vy 1s lower semicontinuous. Th’us (1) holds and the theorem is proved.

v
v

e g
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' . Section 3 Sets of Rankin TI'-Capacity Zero

fh

Let ¢ denote the interior logarithmic capacity bn C.' For E a

subset of Cn,n > 1, we define the quantity Yn(E) inductively as follows:

Yl(E) = C(E)’ )

2

_ . n-1, ’ .
L Yn(E) = ¢ {z1 € C'Yn;l{ZZ e C .(zl,zz) e E} > 0}.

[

Ronkin's I'-capacity is defined on any subset E of Cn to be

Fn(E) = sup{yn(aE): a a complex unitary transformation of c™ .

\

We shall need the following result of Cegreli, See [4]

Propositfon 4.3.1: 1If E is universally capacitable then

-
}

jYn(E) = capz{zl € C:Yn_l{ zZ e Cn—lz(zl,z)re Ey > o0,

where cap2 is tﬁ; oﬁtér logarithmic capacity on C.

We now investigate the relationship bééween n—negfigible sets and sets
i f

of_zero Ronkin I'-capacity.
|

Lemma 4.3.2: Let E be a Borel subset of C" such that for every permutation o

of {1,2,...,n} , Y, (zol,zdz,...,zcnf:(zl,...,zn) ¢ E} =0. Then E is n~
negligible.

Proof: The proof is by induction on n. If n = 1 then c(E) = 0. Since

E is Borel it is universally capacitable and hence its ogter 1ogarithmiccapaéity
equals 0. Thus E is polar and,the result holds™for n = 1. Now suppose

n > 1 and the lemma holds for Borel subsets of Ck;k <n, We claim the¥e
exists/a polar set P such that if zZy ig in C- P, {(zz,..i,zn) £ Cn-l:\ {‘
(zl,...,zn) e E} ig (n-1)<negligible. For each permutatiQn o of {1,2,..:,n}

/ !

which fixes 1‘define

e
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M o= {(z,5000,2z) & C%: (2 yZ . seeesZ ) e E} .
O'[ 1 n 1 0_"‘12 U—ln

Since yn‘(Mc) =0 and Mcy is Borel Proposition 4.3.1 implies there is a

|

polar set 'Pc such that for all z in C:Po’

n-1
0 =,Yn-1 _{(22""’zn) e C - (zl\,...,zn) € MG.}

I
[ . .
{ “ n-1 , :
' = v 4 zyse00s2) eC "' (2052 . 42 0,005z ) € E}
! 4 ) { n-1 2 n 1 c.ﬁlzﬁo ]_3 cln
|

-1 ~
= Yn_l {(202;..-.Z°n) € Cn H (ZI,:..,Z;I) € E} .

-~

. Define P by

oy

P = U{PG: o a permutation of {1,2,...,n} .fixing 1} .

3
o e

This is a finite union hence P is polar. Now if z. is any point in C-P

1
i
the set F = {(zz,...,zn) E Cn*l: (zl,...,zn) e E} is Borel and for any-

AN VAt el sart

N li . \
permutation t of {2,...,n} - we have shown

: ‘ n-1 : . Ve
Y1 {(zTZ,...,'zm) eC gzz,...,zn) e F} = 00 J

[

By the induction hypothesis F must be (n-1)-negligible thus proving the claim.

In general, for any integer i from 1 to n, by cdn‘x\sidefing permutations

1y l\ 1

mapping 1 to i1 rather than-those fixing 1, we can find a polar set Q such
. ) ’ n-1 )

‘that if zy is in Cc-Q, { (zl"'"zi-l’zi+1""’zn) e C (gl,...,zn) e E}

is (n-1)-neg}ligible. Thus E is n-negligible and we are dome.

Theorem 4.3.3: Let E be a Borel subset of c® with I'n(E) ='0, Then for ‘

every complex unitary transformation o of Cn, o (E) is n-negligible.

[

@ ' Proof: Ifn=1 it follows easily from the-lemma.—Suppose m>-1 and o is &

-




comR}ex unitary transformation of c’. Letab any permutation of

- v

{2,3,.‘.,n}a There exists & unfdue complex unitary transformation 8 on C
3 ' . \S - -1
such that B(zl’f"’gn) (zl,zoz,..;,zcn). Since 8 "o o 1s complex unitary

Yn(B—l' a(E)) = 0. Therefore, there exists a polar set PU such that if

o

P 2, 1s in c-ﬁ’o ,
- 1

1 él,..L;zn) £ Bnl o a(E)} ¢

( = ’ ﬁ-'
' ~—g. Yo-1 {(zz,...,zn) e C

1 oz ) e a (D)

) ‘ . = n=
%ﬁi\" . 0 = Yn_l{(zz,.,.,zn) e C
+ }

A . ~

I \/(1)' o -

N ¢ 172527

/ Yn_l{(z 1 ,...fz 1)
- g "2 o n

'
1

4 ) ) Define Q. to be / -
; 1 - / |
;. \ 7 .

IS . | . L
Q1 =7 {PU: o a permiutation of {2,...,n}} .|

[

Since thisis a finite union, Q1 s polar. If z1 is in C-Q, (1) holds for

"all perﬁutationg of {2,...,nj and by the lemma we conclude
' |

~1 ' :
{(ZZ""’zn) e C* :"(zl,...,zn) E o (E)} is(n-1)-negligible. Note that .

such a polar set exists for every complex unitary transformation a .
. e - N

_?é:; Now choosd a complex uniggi&wzgghsformation Bl of C* such ghat o

|
,Bl(zl,.,.gzn) = (zé,zl,z3,z4,...,zn). Siﬂce Blé o 1is unitary,fra@ what

- ,: we have just seen,éhere exists a polar set Q2 sdch that if zy is in C—Qz,
1 {(zz,...,zn) ;\Cn;lz(zl,...,zn).e (618 a) (E)} 1is (n-1)-negligible. But
this set ig just {(zz,...,zn).e qnﬁlz(zz,zl,z3,z4i...,zp) £ a,kE)}. By
- just relabelling we therefore have that if z, is in 0-92, A
f {(;1,23,24,...,zn) € Cnrlz(zl,..,,zn)e a(E}} is (n-l)-negligibie. Again
I' note that Q2 exists fornanb complex unitary transformation o .

¢ | ' ”
. ) ‘@

i
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; ( If n = 2 we are done. If n > 2 we choose .82 to be the complex unitary

' i {
transformation B(zl,.._.,zn) (zl,z3,z2,z4,...,zn). Since Bzo a is

-

R unltary there exists Q3 polar such that if z, is in C-Q3,

P

{(zl, Z35 24""’zn) e ¢ L. (zl,...,zn) e 8,°a(E)} is (n-1)-negligible.

- . n~1 .
This is just {(215_,23,1...,2[1) e C ~: (zl,z3,22§\kz4,...,zn) e a(E)} and by
| _ ! n-1,
relabelli‘hjg‘ we see that if 24 is in C Q3, {(21,22,24,...,zn) e C

e = e

(zll,‘...,zn) e o(E)} is (n-1)-negligible. Continuing in this way‘ it is
\ » .

RO .~ now clear d(E) is n—negligﬂ;le. The proof is comi:lete. R
[ ) “ ‘ .

@

R

-~ -~

The converse of Theorem 4.3.3 is much easier and does not recvluireiE
' . ol

- ‘ to be Borel. : ) :
‘ w

- .
Proposition 4.3.4: Let-E be an arbitrary subset of c®. IfE is n-negligible

then YD(E) = 0, Congequently,if for every complex unitary' transformation o,
- ' . ' {
o(E) 1s n—-negligiblesthen I’ (E) = 0.
n
x»
-

Proof: ' The proof lﬂ"by induction on n. If n = 1 then E is polar and

hence it has zero outer logarithmic capacity. It follows yl(E) = (., Suppose
¢ .
now n > 1 and the proposition holds for smaller integers. Since E is n-

negligible there exists a polar set P such fhat if zy is in C-P

, -1
M= {(zz,...,zn) e ¢ :(zl,...,zn) e E }

’ is (n—l)-negligible«’ By the induction hypothesis *‘yn_l(M) = 0. Thus by

definition yn(E) = 0 and we are done.

\ At this stage we.do not know how the n-P negligible sets and the set
| : i
of zero Ronkin T'-capacity compare. However we do stilll have analogues of
" Theorem 3.1.1 and Theorem 3.3.1. We {remarked in the introduction that both
R 4 L]

i ) / ' > v 1]
of these.results are knonw. We wish to include the pr&oofs as an applic\ation

of our methods. |

b \ ‘ t
\ . . 1 ]
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X (; . Theroem. 4.3.5: Let U be an open subset of ¢" and (vk)k>1 a pointwise

7 . — ¢
decreasing sequence of plurisuperharmonic functions on U that are uni- \

i ¢ - : :

/ © formly locally lower bounded. Then the limit function v differs from v on a

L

b set of zero Ronkin T-capacity.
§ ‘ :
3

Proof: Let E = {z ¢ U: v(z) < v(z)} 'and let o be ary complex unitary
transformation of C°. 'We will show a—l(E) is n-negligible and appeal to
Proposition 4.3.4. ~

v | - . . -
o | Consider first the Wko )y, defibed on the open set o L. ‘

By the linearity of a'it is easy to prove this sequence is in P Sup(cz":l wmy,

e

SR

- P

it is decreasing pointwise to v_o a, and it is uniformly locally Jlower

.~ bounded. Theore1/n 3.]:.1 proves that {z ¢ a—l(‘d): vo u(é)\< v o/a(z)} is n-

negligible. We \blaim that <o\a'= v ou.' Indeed since v is lower semi-

- A
continuous and o is continuous, vo o is lower semicontinuous and minorizes v\o o .

et s

R s Id
R It follows v.oa minorizes m . Conversely if A is a real number such that
e / N .
' v oa(zo) 5 A for z, in a—l(U) ,/there is a neighbourhood W of z, such that !

LI S WSS o TRt 1 T o

s s i ¢

3 v oq(z) > X for afll z in W. It follows v tﬁajorizes A on the open set a—l(W)

ey

and hence so does v. This just says v oa(z) > A on W and this implies,

~ /\ T » -
v oa(zo) >Vvoe a(zo). The claim is proved. We thus have [t:hag {z ¢ a«l(U):

v o a(z) < voa(z)} is n-negligible. But this set is nothing but a-l(E). .

The. proof is cdﬁplete. ‘ ‘

. e |
- \
1 Theorew’'4.3.6: Let U be z\m open subset of Cn, E a closed subset of U with

*Fn(E) '=‘0, and v a member of P Sup(U-E) that 1s locally lower bounded on U.

Then there exists a unique v in P Sup(U) such that v, =von U-E. ,

Proof: From Iheorém 4.3.3 E 1s n-negligible and hence the .Extension

[y

Theorem 3.3.1 implies there exists a unique vy in n-Sup(U) with v, =von \

“ 1
U-E. This immediately gives the uniqueness in the ‘theorem. We will prove ]
1

i is the required extension.

i -
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We first show that for every complex unitary transformation a of
\

Cn,vl og is in n—Sup(a—l(U)). Since it is lower semicontinuous we can
\ . s
prove this by using Proposition 1.2,11. That is it is enough to show

for every u = (ul,...,un) in a_l(U) and 61,..., Gn regular neighbourhoods

) - < -1
of 100 oYy respectively with 61 X ... X Gn < o “(U) that

b
. 5 5
(1) J eev fv,0adp “olodp < v, oa(u).
) X 1 uy N 1

Suppogse first u is in oc'l(U‘)-- a_l(E). Since a~1(E) is n-negligible
- T - ' - _ [ _ i
(Theorem 4.3.3), a closed subset of a l(U), voa is in n-Sup(a l(U) - a 1(E)),
- \
and voa is locally lower bounded on o l(U), there exists (by Theorem 3\.3.1)

LN -

a function w in n-Sup(a—l(U)) which equals v °a on a-]T(U)— a—l(E). Now

8 5
o l(E) is closed and hence it has 0 pulx... xpun measure (Rematk 2.2.14).
1 n \
It follows v
51 Gn 61 Gn
’ ] f...fvlo mdpu ...dpu = f...fwdpu ...dpu
"1 n 1 n

1A

w(u) '

]

(voun)(u)

]

(vlo o) (u).

Now in general, since v, is in n-Sup(U), there exists a sequence (xk) .=
1 ; : ‘ k31

((xli, coay Xl;)ﬁ>1 in'U converging to a(u) such that for every k xk is

! ~

v, @) = Umdnf v &) oo

k + o i

in U-E and

T T S0 W) €

R
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4 /
Put uk = a—l(xk). Then uk £§’)in a—l(U)—a—l(E) and the sequence (uk)kz
, : \ 2
converges to u. By the case we just proved we have for each k
' 5 5
N
1 n k
fvloadpk..d@kf_vlo\a(u).
u u
o1 n
th sides gives -
,—’——’—/'——__’_—-—‘_——_—Jl |
k
1im inf vl(a(u )))
k+ o N i
. 5, 5
- > Uminf f ... [ voeadp y .. dp D
a - 1 wk k,
k+ u u
1 n
) 61 Gn "
» =J... [ Vo o dp eeo dp (Remark 1.2.6(a)).
' . ‘ N ul un R ]

B
‘e

Thus (1) holds. This completes the proof that vie o is in n—Sup(a_l(U)).

AN i
It remains to show v; is in P Sup(U) and of this only (iv) of

-

B ' -

Definition 4.2.1 needs to be verified. Fix a nonzero' z in C'. We must show
. . ?

for ?very\w-in c® that the mapping A *‘vl(lz +w) is hyperharmonic on

{re C:le +w ¢ U}, Suppose first z and w are orthogonal and w is nonzero.

i
\

In thi;s ‘case there exists a complex unitary transformation a such that
q(l,O,...,O) = z/|z| ‘and a(O,l,q,.‘..,Oj = w/|w| . We have shown vy o

is in n—Eup(a-l(U)). It follows the mappinlg A+ Ve a(r, |w], 0,...,0) =
vl'()\z/lzl + w) 1is hyperharmonic ‘and hence 8o 18 A » v, (Az +w). L If

w= (0:...,0)‘, instead choose o saf:isfyi.ng ohl'}ui %('1,0,.. .,0) = z/|z_| . Then

again A+vl oa (A,0,...,0) = vl(kzllzl) is hyperharmovic.

-

In general w can be written as w = w'+ @z where w' is orthogona} to z
and B is some complex number. Since A + v(Az+ w') is hype‘rhqrmon:gc so

is A » v((A+8)z+w') = v(Aiz+w). The proof is complete.

.
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