NGUYEN, Thi Huong

"Heats of mixing

. .

, , , , , ,

· · · ·

Ph.D. Chemical Engineering

 \succ

· · · · · · ·

ૢૢૢૢૢૢૢૢૢૢ

Thi Huong Nguyen

ENTHALPIES DE MELANGE: MESURES ET PREDICTIONS PAR UNE METHODE ANALYTIQUE DE CONTRIBUTIONS DE GROUPES

RESUME

Le modèle dit "de contributions de groupes" de Ratcliff et Chao pour la prédiction des chaleurs de mélange des solutions liquides a été mis sous une forme analytique en utilisant l'équation de Wilson. Ceci élimine certaines des restrictions et imprecisions du modèle précédent et le rend particulièrement adapté a la corrélation de données expérimentales et à la prédiction des chaleurs de mélange.

Un calorimètre isotherme semi-continu du type "Van Ness" permit des mesures précises et très rapides des chaleurs de mélange. L'ensemble des données ainsi obtenues a partir de plusieurs systèmes alcool/alcane, et à diverses températures, a pérmi d'abord de vérifier le modèle analytique, ensuite de déduire les paramètres de Wilson relatifs aux groupes methylene/ hydroxyl, lorsque ces deux groupes sont utilisés conjointement dans un domaine de température allant de 15° a 55°C. A les températures semblables, il est alors possible de prédire, sans aucune autre mesure experimentale, les chaleurs de mélange de deux ou plusieurs constituants liquides ne contenant que ces deux groupes.

Un accord quantitatif entre la theorie et les experiences a été egalement obtenue pour les mélanges binaires constitués, d'une part de n-pentanol ou d'isopentanol, d'autre part d'isomeres de l'hexane. Pour ces systèmes, la ramification ne present qu'un effect d'ordre secondaire, qui ne demande ni traitement spécial, ni modification du modèle analytique.

Thi Huong Nguyen

Heats of Mixing: Measurement and Prediction by an Analytical Group Solution Model

ABSTRACT

The Group Solution Model of Ratcliff and Chao for heats of mixing of liquid mixtures has been put in an analytical form using the Wilson equation. This procedure obviates some of the limitations and inaccuracies of the previous model and is very powerful for correlating and predicting heat of mixing data.

A semi-continuous isothermal calorimeter of the Van Ness type built during this work has allowed very rapid measurements of accurate heat of mixing data. This collection of data on several alcohol/alkane systems at different temperatures allowed a very good test of the analytical model. Group Wilson parameters were generated for methylene/ hydroxyl mixtures from 15 to 55°C. At temperatures within or close to this range, these parameters allow the prediction of heats of mixing of binary or multicomponent mixtures containing these two groups; no experimental data are required.

Quantitative agreement between theory and experiment was also obtained for binary mixtures of n-pentanol or isopentanol with hexane isomers. Branching in these systems has only a second order effect and modification of the model to allow for branching is unnecessary.

HEATS OF MIXING: MEASUREMENT AND PREDICTION BY AN ANALYTICAL GROUP SOLUTION MODEL

A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy

Department of Chemical Engineering McGill University Montreal

ų,

February 1974

÷.,`

(c) Thi Huong Nguyen 1974

<u>ACKNOWLEDGEMENT</u>

I wish to express my gratitude to all people who[®] contribute to this work. In particular, I would like to thank

- My research director, Professor G.A. Ratcliff for his support and encouragement throughout the course of this work.

- The staff of the Chemical Engineering Department electronic and machine shops, particularly Mr. B. Hoogendoorn, Mr. S. Jakab and Mr. A. Krish for their help in designing and constructing the calorimeter.

- The members of the research group, especially Dr. J.M. Dealy and Dr. J. Brunet, and fellow graduate students, Dr. M. Ronc and Mr. S. Sayegh, for many valuable discussions.

- Mr. H. Franklin for his help in taking the data on branched alcohol/alkane systems during the last phase of this work.

- Mr. I. Simonsen for the use of his equipment in calibrating the thermistor and quartz thermometer.

- Dr. G.C. Benson and Mr. P.J. D'Arcy at the National Research Council of Canada for their courtesy in giving detailed information on the construction of the apparatus.

- i -

- The National Research Council of Canada for an equipment grant.

- i i -

- Proctor and Gamble Company for a fellowship in the period 1970-1971.

- McGill University for the McConnell Memorial Fellowship in the period 1971-1974.

ſ

TABLE OF CONTENTS

		י ו ו		· •	-			•	- ,	Page
(ACKN	ÓWLE	DGEMENT	• • •	-	, ' ,		,	-	i
	TABL	E OF	CONTENT	S ,	4	•	,			
	LIST	0F	FIGURES	• •	1		•,	•		vii
	LIST	0F	TABLES	•		, ,	•,	, , ,		ix j
	INTR	D DUC	TIQN		۰.		• ر	, ,		j
	l	SOL	UTION OF	GROUPS AP	PROACH	3	, e •	,	•	, 4
ı		1.1	Langmu	ir Model	,	•			l	4
		1.2	Butler Activi	et al. Mo ty Coeffic	del for ient	Limit	ing	• •		, 5
,		1.3	Pierot	ti Correla	tion		• *	,		['] 6
	3	1.4	Group	Interactio	n Model			•		8
		1.5	Soluti	oʻn qf Grou	ps		、	,		10
	3	1.6	Analyt	ical Solut	ion of	Groups	•			13
	1	Nom	enclatur ,	e`		ĸ				19
	2.	GRO	UP.SOLUT	ION MODEL	FOR HEA	TS OF	MIXING	3		16
		2.1	Descri	ption of t	he Mode	:1		•		.16
		22	Limita	tions of t	he Mode	1	·*			18
, o			2.2.1	Limitatio	ns Inhe	rent i	n the			18
			2.2.2	Limitatio of the Mo	ns in t del ्	he App	licat	ion		19
٤		Nom	enclatur	e '	, ,					22

-111-

·	. •		
	, •	-iv-	• • • •
	,		
		, s	
	,		Page
	3.	ANALYTICAL GROUP SOLUTION MODEL	23
	a	3.1 Analytical Expression of Activity Coefficient	['] 23
	•	3.2 Analytical Representation of Group Activity Coefficient	ⁱ , 28
		3.3 Analytical Representation of Group Excess Enthalpy	30
• •		Nomenclature	-32 /
,a	4.	APPARATUS AND EXPERIMENTAL PROCEDURE	[^] 34
		4.1 Description of the Calorimeter	36
	د ۲	 4.1.1 Calorimeter Housing 4.1.2 Calorimeter Plug 4.1.3 Calorimeter Heater 4.1.4 Calorimeter Stirrer-Baffle System 4.1.5 Calorimeter Mercury Trap 4.1.6 Feed System 4.1.7 Calorimeter Electrical Circuit 	36 36 37 37 38 38 38 38 39
1	r F	4.1.7.1 Input Energy to the	39
۳	5 • • •	4.1.7.2 Temperature of the Solution in the Dewar Flask	39
		4.1.8 Constant Temperature Bath	41
1		4.2 Operating Procedure	42
-	5.	MATERIALS /	55
	6.	EXPERIMENTAL RESULTS	58
` `		6.1 Experimental Results	58
		6.2 Discussion on Experimental Results	` 66

•

,					
7	7.	APPL	ICATION	N OF THE ANALYTICAL GROUP	74
ð		7.1	Detern from E	nination of Group Wilson Parameters Excess Free Energies	74
•		7.2	Detern from H	nination of Group Wilson Parameters leats of Mixing	78
		7.3	Effect Mixing	t of Molecular Shape on Heats of	91
		7.4	Con≿lı	usion	93
8	3.	CONCÌ	USIONS	AND RECOMMENDATIONS FOR FURTHER WORK	9 8
		8.1	Semi-c	continuous Isothermal Calorimeter	98
		8.2	The Pr	redictive Model	99 (*
R	REFE	RENCE	5		102
A	APPEI	NDICES	5:	•	106
		Al.	Calcul Heats	ation of Composition and Integral of Mixing	A1
			A1.1	Composition of Solution in the Dewar Fyask	V]
			, •	Al.1.1 Mass of Material Charged	A1
				Al.1.2 Moles of Feed Material	A3
				Al.1.3 Mole Fraction of Component 1/2 in the Dewar Flask	A3
			A1.2	Calculation of Integral Heats of	A3
		۲	A1.3	A Programme for Calculation of Ex-	A5

1

Page

P	а	g	e
_			

1 a_a wa -7

•.

	, О	
A2.	Tabulated Experimental Results - Heats of Mixing for Alcohol/Alkane Systems 2	A10
A3.	Algorithms for Non-Linear Parameter Estimation	A46
L	A3.1 Marquardt's Algorithm A3.2 Spiral Algorithm A3.3 Listing of Non-Linear Fitting Program "GAUSS" (Marquardt's Algorithm)	A48 A49 A54
A4.	A Programme for Prediction Heats of . Mixing	, A64
A5.	Prediction Results on Alcohol/Alkane Systems	A67

-vi-

1

. 0

۰.

۶

ler. Ita t

\$

•

LIST OF FIGURES

Figure	Caption	Page
3,1	Local Composition	• 25
· 4.1	Schematic Diagram of the Calorimeter	48
4.2	Calorimeter Housing and Support	49
[°] 4.3	Calorimeter Plug-Side, View	· 50
4.4	Calorimeter Plug Detail	51
[°] 4.5	Calorimeter Circuits	v 52
4.6	General Lay-Out of the Calorimeter - Photograph	53
4.7	Calorimeter Plug - Photograph	54
6.1 ⁶	Plot of $\Delta H/x_1x_2$ vs x_{alc} for the System n-Octanol/n-Heptane at 55°C	61
6 .2 ·	Plot of $\Delta H/x_1x_2$ vs x_{alc} for the System n-Hexanol/n-Octane at 15°C	62
6.3	Plot of AH vs x for the System n-Butanol/n-Octane at 55°C	.63
6.4	Plot of ΔH vs x for the System n-Pentanol/n-Heptane at 15°C	64
6.5	Plot of ΔH vs x for the System Isopentanol/2-Methylpentane at 25°C	65
ໍ່6 . 6 ຸ້	Energy Effects on the Calorimeter System During a Mixing Step	66
6.7	Heats of Mixing for the System Benzene/Cyclohexane at 25°C	[*] 69
6.8	Heats of Mixing for the System Benzene/Cyclohexane at 50°C	7.1

°۶

-vii-

г., •,

i.

-viii-

Figure	<u>Caption</u>	Page
7.Î	Heats of Mixing for the System n-Pentanol/n-Hexane at 25°C	•77
7.2	Group Interaction Energies in Alcohol/Alkane Mixtures at 30 ⁰ C	79
7.3	<pre>Prediction of Heats of Mixing for the System n-Pentanol/n-Decane at 15°C</pre>	84
7.4	Prediction of Heats of Mixing for the System n-Pentanol/n-Hexane at 30 ⁰ C	85
7.5	Prediction of Heats of Mixing for the System n-Octanol/n-Nonane at 45°C	86
7.6	Prediction of Heats of Mixing for the System n-Pentanol/n-Octane at 55°C	87
7.7	Prediction of Heats of Mixing for the System n-Pentanol/n-Propanol/ n-Heptane at 25°C	88
7.8	Prediction of Heats of Mixing for the System n-Pentanol/2,2-Dimethyl- butane at 25 ⁰ C	95
7.9	Prediction of Heats of Mixing for the System IsoPentanol/2,2-Dimethyl- butane at 25 ⁰ C	96
A3.1	Geometry of Spiral Program 🦂	А49
A3.2	Block Diagram of Spiral Algorithm	A52

LIST OF TABLES

۴

-13-

<u>Table</u> .	Title	Page
5.1	Materials-Suppliers, Specifica- tions and Refractive Indices	56
6.1	Experimental Results	59
7.1	Group Wilson Parameters for Heats of Mixing of Alcohol/Alkane Systems	81
7.2	Prediction Results on Alcohol/Alkane Systems	83 [']
7.3 °	Prediction Results on Ethanol/n- Alkane Systems	89
7.4	Heats of Mixing for Equimolar Mix- tures of n-Hexane/n-Alcohol at 25 ⁰ C	90
7.5	Heats of Mixing Near Equimolar Composition for Branched Alcohol/ Alkane Systems at 25°C	92
7.6	 Prediction Results on Branched Alcohol/Alkane Systems at 25°C 	94
A.I.	Heats of Mixing for System Benzene/ Cyclohexane at 25°C	AlOa
Å.2	Heats of Mixing for System Benzene/ Cyclohexane at 50°C	A10b
A3-26	Heats of Mixing at 15, 50 ⁰ C for n-Alcohol/n-Alkane Systems	AļOc
A27-38	Heats of Mixing at 25 ⁰ C for Branched Alcohol/Alkane Systems	A34
a39-89	Prediction Results on Alcohol/ Alkane Systems	A68

INTRODUCTION

Information on heats of mixing of liquid solutions is important beyond its usefulness for heat effect calculations. Heat of mixing gives a direct measure of the rate of change of excess free energy with temperature. Excess free energy is basic to the study; correlation and prediction of vaporization properties of non-ideal solutions. Heat of mixing information, when available, provides a reliable means for extrapolation of such vaporization properties over a range of temperature.

Unfortunately, no generally satisfactory methods of prediction for highly non-ideal mixtures have been derived from rigorous liquid state theories. The analytical group solution model (AGSM) offers a method of wide applicability while requiring a minimum of experimental data. The model is perhaps simple but nonetheless isolates and takes account of the important effects.

The attractiveness of group solution models stems from the fact that large numbers of compounds are made up of relatively few groups. Once the group parameters are evaluated, mixture properties can be predicted for all mixtures that contain these groups. Complicated multicomponent mixtures can be handled as they are reduced to systems containing only a few groups. It entails the following: 1) A suitable reduction of experimentally obtained heats of mixing to obtain a set of parameters for each pair of structural groups in a specific system. These parameters are group parameters rather than molecular parameters.

2) The use of these parameters to predict properties of other systems which contain the structural groups.

The accuracy of such a model depends not only on the effective extrapolation involved and the inherent limitations of the approach, but also on the accuracy of the base data. Excellent experimental data over a reasonable range of temperature are required for a good test of the model. Literature data are restricted to a small temperature range. Therefore, experimental measurements are necessary.

A semi-continuous isothermal calorimeter of the Van Ness type built during this work has allowed very rapid collection of accurate heat of mixing data.

The calorimeter was essentially operated by mixing two components, each at the same constant temperature in a thermally insulated vessel with no vapor space at such a rate as to maintain the temperature of the solution in the vessel at a given temperature while adding energy to the solution electrically. Periodically, the mixing process was interrupted and heating was discontinued. The composition of the mixture in the vessel was then determined and the amount of energy added was recorded.

-2-

Thus, the objectives of the present work reflect both of the following practical aspects. The construction of a calorimeter for rapid and accurate measurements of heats of mixing. The data obtained from this apparatus are not only useful in themselves, but also serve as base data for developing a predictive model which would be simple, easily applicable and suitable for computer use. The present_objectives emphasize an engineering approach rather than a theoretical one.

-3-

1. SOLUTION OF GROUPS APPROACHES

The "group solution" approach, also called "group interaction" approach, treats liquid mixtures in terms of their constituent functional groupings, e.g. CH₂, OH, CO.... This treatment is based on the intuitive assumption that the intermolecular forces can be considered to be of a local nature between adjacent groups and that the nature of a group is independent of how it is linked in a molecule. Interatomic forces are-short range so that the effect of distant groups will be small. As there are many fewer groups than molecules, the group contribution methods have the advantage of predicting solution behavior from a minimum of experimental information.

As will be illustrated below, surprisingly farreaching and precise estimates of properties in mixtures of simple organic molecules can be made on the basis of appropriate systematic observations and correlations with contributions from structural groupings.

1.1 Langmuir Model

The most significant early description of simple mixtures in terms of groups was probably given by Langmuir (L¹) some fifty years ago. Langmuir began with the basic assumption

-4-

that the force field around a group or radical which is accessible to other molecules is characteristic of that group or radical and is largely independent of the nature of the rest of the molecule. By summing the interfacial interaction energies between dissimilar groups, weighted according to the surface fractions of these groups in their respective molecules and according to the overall surface fraction of solute and solvent, Langmuir derived an expression for the partial pressures in a mixture of two components:

$$P_{1} = P_{1}^{sat} \times_{1}^{c} \exp(s_{1} \in S_{2}^{2}/RT) \qquad (1.1)^{\infty}$$

where P_1 is the partial pressure of component 1, s_1 is the molecular area of component 1 and S_2 is the surface fraction of component 2. c is an interfacial energy per unit area and is characteristic of the kinds of group and group fractions in the respective components 1 and 2. Langmuir dealt with molecules of the sort R-X in which a nonpolar R group is considered a single group and X is a polar group. Apparently Langmuir did not pursue the approach very far, perhaps as a result of inadequate experimental data.

1.2 Butler et al Model for Limiting Activity Coefficient

The work of Butler et al. (B1,B2) is basically a group approach. Butler considered the infinitely dilute

-5-

solution of a series of solutes in a given solvent as the simplest case for study. He systematically measured Henry's law constants for a wide range of solutes within a given family of solutions and observed a simple relation between solute carbon number and its limiting activity coefficient. He also indicated that this relation depends roughly on the nature of the polar grouping.

1.3 <u>Pierotti Correlations</u>

Some ten years later, Pierotti et al. (Pi,P2) at Shell Development Co. began a more extensive systematic study of homologous series. Here, as had Butler, they considered the infinitely dilute solution to be the least complicated and most promising for the study of group effects. The dilute regions are of considerable technological importance since applications are frequently in purifications. Moreover, in view of the usual shape of log γ - concentration curves, interpolations from dilute regions to the standard state can be expected to be more precise than extrapolations from data in the middle range of concentrations.

In practice, this work involved measuring Y's at high dilution for homologous series of solvents and inspecting the dependence of log Y^O's upon the carbon numbers of solute and solvent. For n-alkyl homologs, a series of relations

-6-

were developed for successively more complicated cases. The procedure can be thought of as simply determining the response of log Y^O's as a function of the number of methylene (methyl) groups, n_1 and n_2 , of the solute and solvent molecule for the case in which the groups are connected as in homologous series. Thus, for paraffin-paraffin mixtures, that \int_{S} the series H (CH₂)_{n1}H in the series H (CH₂)_{n2}H, the deviations from ideality are relatively small. The expression for the congruent solutions of Bronsted and Koefoed (B1) was adopted as sufficiently precise, i.e.,

$$\log \gamma_{1}^{0} = D(n_{1} - n_{2})^{2}$$
 (1.2)

where D is a constant.

For a homologous series of solutes of the type, H $(CH_2)_{n1} R_1$, in a homologous series of solvents of the type H $(CH_2)_{n2} R_2$, they found that:

$$\log Y_{1}^{0} = A_{12} + \frac{F_{2}}{n_{2}} + B_{2} \frac{n_{1}}{n_{2}} + \frac{C_{1}}{n_{1}} + D_{0}(n_{1} - n_{2})^{2}$$
(1.3)

where all the coefficients A_{12} , F_2 , B_2 , C_1 and D_0 are temperature dependent and characterize the various group interactions.

Although the model was derived for the special case of solute at infinite dilution in solvent, the success with which very broad range of solute-solvent cases have been dealt with suggests that any environment, such as the range of finite concentrations in a binary or more complex mixtures, might be similarly treated.

There has been no systematic attempt to define Pierotti characterizations for molecular mixtures, but the viewing of a molecular environment as an environment of its constituent groups has proved a valuable guide in making estimates of activity coefficients in mixtures.

1.4 Group Interaction Model

Redlich, Derr and Pierotti (R1) later developed a group interaction model which calculates the heat of solution as the sum of contributions from interacting groups proportional to the number of groups present, a group cross section characteristic of each kind of group and an interaction energy characteristic of each group pair. As does the original Langmuir model, it neglects any local ordering or segregation except in so far as it is implicitly taken into account through the determination of the parameters from experimental data. It provides a relation for the partial molar free energies with concentrations expressed in surface fractions. As a result, the limiting partial molar free energies in a binary are in the ratio of the total molecular cross sections of the component molecules.

In a companion paper, Papadopoulos and Derr (P4) provided a preliminary test for this model for hydrocarbon

· the same

-8-

systems. But as energy considerations are ignored in evaluating the probability of interactions, their model only applied to hydrocarbon mixtures in which the interaction energies are of comparable order of magnitude. For mixtures containing polar groups it is not possible to ignore preferential interactions due to large interaction energy differences between groups.

The group interaction theory of Redlich, Derr and Pierotti was further developed for heats of mixing by Chao and Coworkers (Cl) to apply to solutions containing polar substances. Chao has considered the probability of interaction between two groups to be dependent both on the magnitude of the interaction energy between the groups and on the free surface area of the groups. The surface areas have been calculated from realistic geometric models of the molecules involved, i.e. from Van der Waal's and covalent radii of atoms. Local concentrations due to energy differences are taken into account using Boltzmann type relations. The interaction energies between group pairs in the mixtures have been determined as adjustable parameters in fitting the theory to experimental data. The model has provided satisfactory qualitative predictions for heats of mixing in n-alcohol/n-paraffin mixtures with reasonable values for the group interaction energies.

-9-

The relative success of Chao's model gives some credibility to the basic assumptions.

-10-

1.5 Solution of Groups

Wilson (W2) has proposed a solution of groups approach which estimates the partial molar excess free energies as the sum of group contributions and provides a concentration dependency for these group contributions. In this case, a "group" portion of the partial excess free energy is taken as the difference between contributions in solution and molecular standard state,

$$\log \hat{Y}_{i}^{G} = \sum_{k} N_{ki} (\log \lceil_{k} - \log \lceil_{ki}^{*})$$
 (1.4)

where log $\lceil \cdot s \rceil$ represent group contributions in the solution, the superscripts G and * denote the group contribution and the standard state respectively, and N_{ki} is the number of groups of type k in molecular species i.

temperature and pressure,

 $\int_{k_1}^{k_2} = f_k(X_1, X_2, ..., T, P)$ (1.5)

where the X's are the group fractions:

Ð

$$X_{k} = \frac{\sum_{i}^{N} k_{i} \times i}{\sum_{i}^{\Sigma} \sum_{k} N_{ki} \times i}$$
(1.6)

The molar activity coefficient is taken as the sum of the group contribution and a contribution due to the relative sizes of the molecules:

$$\log Y_{i} = \log Y_{i}^{G} + \log Y_{i}^{S} \qquad (1.7)$$

where the size contribution, denoted by the superscript S, represents the only distinction between the environments of the same group constitution and different molecular constitution. It is evaluated from a Flory-Huggins type expression using only the number of groups in the respective molecules of the mixture:

$$\log \gamma_{i}^{S} = \log \frac{N_{ki}}{\sum_{i}^{\Sigma} N_{ki} \times_{i}} + 0.4343(1 - \frac{N_{ki}}{\sum_{i}^{\Sigma} N_{ki} \times_{i}})$$
(1.8)

Wilson and Deal applied such an approach to two fairly extreme cases - CH₂-OH and CH₂-CN mixtures - making no distinction between methylene and methyl groups. Substantial was agreement^vobtained over a wide range of values from a single base system; the logarithms of activity coefficients are

٧.1

generally estimated to within about 10%. For highly nonideal systems, the size contribution is only a minor contribution compared to the group contribution. Therefore, the error in evaluating the size would be minimized.

As this model is applied to paraffin mixtures, Ratcliff and Chao (R1) found that the Flory-Huggins equation predicts values which are numerically too large. One may think that the size contribution has been overestimated. This conclusion leads to the modified group solution model of Ratcliff and Chao (R1), with another expression for log γ_i^S using Bronsted and Koefoed's equation (B3):

$$\log \gamma_1^S = B(N_{k1} - N_{k1})^2 x_2^2$$
 (1.9)

where B is a temperature dependent constant. For multicomponent mixtures,

$$\log Y_{i}^{S} = B(N_{ki} - \sum_{j} x_{j} N_{kj})^{2}$$
(1.10)

Tests of this model on various alcohol/alkane and alcohol/water systems are quite successful. Maripuri and Ratcliff later applied the model to alkane/ketone systems (M1) and to mixtures containing aromatic hydrocarbons (M2).

-12-

1.6 Analytical Solution of Groups

A new step in the group contribution approach was made by Deal and Derr recently (D1) by using an analytical expression for the group activity coefficient [. They have chosen to represent the log Γ - concentration dependency with the Wilson (W1) molecular free energy expression based largely on the observation that this relation gives a more suitable shape to log Γ_k - concentration dependencies in binary systems. The use of the Wilson equation also permits the treatment of binary and multicomponent systems having many kinds of groups and makes computer calculation possible. 100

The form of Wilson equation in representing the group activity coefficient is shown in the following equation:

$$\log \left[\sum_{k=1}^{N} \log \left[\sum_{i=1}^{N} x_{i}a_{ki} + 0.434(1 - \sum_{i=1}^{N} \frac{x_{i}a_{ik}}{\sum x_{m}a_{m}} \right] \right]$$
(1.11)

where the a's are binary group parameters.

The development is particularly attractive for correlating complex systems which contain more kinds of molecules than kinds of groups, since many fewer adjustable parameters are required. Such an "analytical solution of groups model" has the advantage of storing an enormous amount of data using only a few temperature dependent parameters. The advantages of the analytical model will be discussed in detail later.

-13-

Some similar but more theoretical approaches suggest that further work in theories of mixtures using a group interaction approach will result in quantitative predictions of solution behavior. Three recent papers published by Chao and coworkers (C2-4) show interesting results in this direction. Statistical thermodynamics based on cell theory and quasi-lattice theory has been developed for pure n-alkane and n-alcohol molecules and their mixtures. Formulas for the excess properties have been derived from the partition function and applied to n-alcohol/n-alkane and n-alcohol/n-alcohol mixtures. Predictions of heats of mixing are about 10% on alcohol/alkane mixtures. The deviation tends to become larger for the lower alcohol solutions. The solution behavior of alcohol/alcohol mixtures appeared not to be well described. by the group interaction model.

'As will be apparent, this "solution of groups" approach of treating mixtures in terms of their constituent groupings is thermodynamically sound. The projections of the model are particularly valuable in process designs when no experimental data are available.

-14-

group Wilson parameter in equation (1.11) aii N_{ki} number of groups of type k in molecular species i pressure ideal gas constant R molecular area in equation (1.1) S surface fraction in equation (1.1) S absolute temperature Т mole fraction х X group fraction

Greek Letters

Y liquid phase activity coefficient
 energy constant in equation (1.1)
 Γ group activity coefficient

<u>Subscripts</u>

i 🚁 molecular species i k group species k

Superscripts

G group contribution S size contribution * standard state

2. GROUP SOLUTION MODEL FOR HEATS OF MIXING

-16-

2.1 Description of the Model

The group solution model of Ratcliff and Chao has been used previously to predict excess free energies (R2-3, M1-2) and transport properties (R4) of non-ideal systems. The application of a similar model has been extended to excess enthalpies of mixing (N1-2).

With the idea that a group is any convenient structural unit such as -CH₂-, OH- ..., the present model rests on the following four postulates:

<u>Postulate l</u>

The non-ideal behavior of a molecule in a liquid solution may be broken down into two independent parts. One is associated with the overall size of the molecule and the other with the interactions between the functional groups of the molecule and those present in the solution.

This first postulate may be written in terms of heats of mixing as:

$$\Delta H = \Delta H^{G} + \Delta H^{S} \qquad (2.1)$$

where the superscripts S and G denote the size and group contributions respectively.

Postulate 2 "

The size contribution accounts only for the differencesin size of the molecules, and can be obtained from the heats of mixing of n-alkane mixtures.

Postulate 3

The group contribution to ΔH is assumed to be the sum of the individual contributions of each group present, i.e., all groups are assumed to act independently. Each group is imagined as an individual entity in a "solution of groups", and a group excess enthalpy H_k of a group k is defined in a similar manner to a molecular excess enthalpy. By definition, H_k is zero for a solution containing only group k. We thus have the relation:

$$H^{G_{2}} = \sum_{i} x_{i}^{\circ} \overline{\Delta H}_{i}^{G}$$
 (2.2)

and

$$\overline{\Delta H}_{i}^{G} = \sum_{k} N_{ki} (H_{k} - H_{ki}^{*})$$
(2.3)

where

N_{ki} = number of groups of type k in molecular: species i H^{*}_{ki} = excess enthalpy of group k at standard state.

The standard state chosen for a group is that of the pure molecular species i under consideration. This agrees with normal practice, and assures that the partial molar heats of mixing are zero for pure compounds. The same group must be referred

-17-

to different standard states depending on the molecular species under consideration. The choice of the groups is arbitrary, but consistent definitions must be employed both in the determination of H_k and in the application of the model to new systems.

Postulate 4

At a given temperature and pressure, the group excess enthalpies H_k are functions only of the group composition, and therefore are independent of the molecular species under consideration.

$$H_k = f_k(X_1, X_2, ..., X_k, T, P)$$
 (2.4)

The group fraction X_k is computed in the same way as a mole fraction, i.e.,

$$X'_{k} = \frac{\sum_{i=1}^{\Sigma} x_{i} N_{ki}}{\sum_{i=1}^{\Sigma} \sum_{k=1}^{\Sigma} N_{ki}}$$
(2.5)

2.2 Limitations of the Model

2.2.1 Limitations Inherent in the Model

The model takes into account the differences in molecular size, but not molecular shape. The model predicts the same heats of mixing for isomeric molecules in solutions of identical group composition. This restriction is not very serious and will be discussed in 'the last chapter on the study of mixtures of alcohol with hexane isomers. Since only highly non-ideal systems are considered, even approximate predictions are valuable from a practical point of view.

Another assumption inherent in the model is that the forces acting on a group are functions only of the average group concentration. No account is taken of the tendency of the molecule to segregate. However, as predictions for new systems are made through group excess enthalpies computed from experimental data on chosen reference systems containing the same groups, some cancellation of errors would be expected when applying the data from one mixture to another.

2.2.2 Limitations in the Application of the Model

In the earlier use of the model (N1-2), experimental heats of mixing for reference systems were used to compute H_k 's. These were being expressed as functions of group composition, either graphically or by fitted power series. This computation procedure resulted in the following limitations or inaccuracies:

1) The number of groups present in the reference system can not exceed the number of molecular components, since otherwise equation (2.3) will provide insufficient equations to solve for the H's.

-19-

2) Unless each molecular species consists of a single group, it is impossible to compute all the H's directly from the experimental data for a single reference system. for example, if for mixtures of the groups methylene and hydroxyl, we chose n-butanol/n-hexane as the reference system, then we can only compute $H_{CH_{o}}$ and $(H_{OH} - H_{OH})$, butanol) from equation (2.3). We can nevertheless now predict heats of mixing of any mixture as long as the individual molecular constituents lie, within the group compositions represented by pure butanol, i.e. $X_{CH_2} = 0.80$, and pure hexane, i.e. $X_{CH_2} = 1.0$. In the particular example, the methylene group fractions range from 0.80 to 1.0 and the model can be used to predict heats of mixing for pentanol/alkane systems (0.833 < X_{CH_2} < 1.0) but can not be applied to propanol/alkane systems ($\bar{0}.75 < X_{CH_2} <$ without uncertain extrapolation.

However, if we wish to extend predictions to lower CH₂ concentrations, we are forced to choose a second reference system covering this extended range. Furthermore, we need data for both systems at the same temperature, pressure and preferably an appreciable overlap in group composition.

3) - On the previous model, H_k 's were expressed as functions of group composition by fitted power series with arbitrary parameters. These parameters could be used only at the studied temperature. Interpolation or extrapolation of temperature in making the predictions can be inaccurate. The application of this model has been investigated for systems containing aliphatic alkanes and alcohols (N3) at 25° C and 45° C. For 14 binary group mixtures, the model required experimental data for two reference systems; one to evaluate the size contributions and the other, the group contributions. The model gave very satisfactory predictions of heats of mixing with an average root-mean-square deviation of about 11% over a group CH₂ composition range from 0.80 to 1.0.

The size contribution to heats of mixing was very small compared to the group contribution in the 14 systems studied. Neglect of the size contribution did not significantly decrease the prediction accuracy (N2). Derr and Deal (D1) have suggested that the size term could be neglected in developing, a group model for heats of mixing since this term can be accounted for by entropy. Although we expect that for mixtures of component molecules with large differences in size, the effect might be of some significance, e.g. propanol/nhexadecane; this neglect added the advantage that predictions are not limited by the lack of heat of mixing data for low molecular weight alkanes in computing the size contribution.

-21-

Nomenclature

Hk excess enthalpy of group k number of groups of type k in molecular species i N_{ki} Ρ pressure absolute temperature Τ x mole fraction Х group fraction heat of mixing (excess enthalpy) per mole of mixture ΔH ΔH partial molar excess enthalpy

Subscripts

i	molecular	species i
k	groups spe	cies k

Superscripts

- G group contribution
- S size contribution
- * standard state
3. THE ANALYTICAL GROUP SOLUTION MODEL

All the limitations in the applications of the group solution model can be eliminated by the application of an analytical group solution model. This involves the choice of a suitable analytical function for f_k 's of equation (2.4). The function should have a minimum of adjustable parameters and should represent the data with minimal loss of accuracy. If such⁴ function can be found, it would also reduce the data required, and be readily amenable to computer calculations and to temperature interpolations.

3.1 Analytical Expression for Molecular Activity Coefficient

Wilson (WI) derived a semi-empirical equation for the excess free energy ΔG^E from a theoretical expression for ΔS^E . Flory and Huggins (F1) had shown that for a binary athermal mixture (i.e. a mixture where $\Delta H^E = 0$), the excess Gibbs free energy for a binary mixture resulting from molecular size difference is given by:

$$\frac{\Delta G^{E}}{RT} = x_{1} \ln \frac{\phi_{1}}{x_{1}} + x_{2} \ln \frac{\phi_{2}}{x_{2}} \qquad (3.1)$$

where Φ_i = volume fraction of component i, that is,

-23-

 $\mathbf{i} = \frac{\mathbf{x}_{i} \mathbf{v}_{i}}{\sum_{i} \mathbf{x}_{i} \mathbf{v}_{i}}$ (3.2)

 v_i is the molar volume of pure liquid i_{i_i}

Wilson suggested that in a real (i.e. not athermal) solution, equation (3.1) could be used for ΔG^E provided that the overall volume fractions Φ_1 and Φ_2 be replaced by local volume fractions S_1 and S_2 . Wilson's suggestion produces an equation highly useful for strongly non-ideal binary and multicomponent mixtures.

To understand the significance of local volume fractions, we first explain what we mean by local mole fractions. Molecules 1 and 2 in a binary liquid mixture do not, in general, distribute themselves in a random manner but tend to segregate, depending on what attractive forces are larger: 1-1, 2-2, or 1-2.

To illustrate this idea, Figure (3.1) shows schematically a mixture of 20. shaded molecules and 20 unshaded molecules. The overall mole fraction is therefore 0.5 for both components.

24-

FIGURE 3.1: Local Composition

However, if attention is fixed on the intermediate surroundings of a central shaded molecule (area within the circle) we find that the local mole fraction of shaded molecules is 8/19.

In a binary mixture, there are four local mole fractions but only two of these are independent. The symbol x_{ij} stands for the local mole fraction of molecule i around a central molecule j. Thus in a binary mixture we have:

$$x_{12} + x_{22} = .1$$
 (3.3)

$$x_{01} + x_{11} = 1$$
 (3.4)

To relate local mole fractions to overall mole fractions we assume a relation of the Boltzmann type:

$$\frac{x_{21}}{x_{11}} = \frac{x_{2} \exp(-g_{21}/RT)}{x_{1} \exp(-g_{11}/RT)}$$
(3.5)

where g_{21} is an energy term reflecting the forces between molecules of species 1 and 2 and g_{11} is a similar term for forces between molecules of species 1.

Also we have:

912

×12

$$\frac{x_1 \exp(-g_{12}/RT)}{x_2 \exp(-g_{22}/RT)}$$

9₂₁

and

The local volume fractions are given by weighted local mole fractions, the weighting factors are set equal to , the pure component molar volumes v_r ,

$$\frac{s_{21}}{s_{11}} = \frac{v_2 x_{21}}{v_1 x_{11}}$$
(3.7)

(3*.6)

and

$$\frac{12}{22} = \frac{v_1 \times 12}{v_2 \times 22}$$
(3.8)

where
$$\frac{5}{21} = \frac{1}{1} - \frac{5}{11}$$

and $\frac{5}{12} = \frac{1}{1} - \frac{5}{22}$ (3.9)

Substituting equations (3.5), (3.6) and (3.9) to equations (3.7-8) we arrive at the following expressions for local volume fractions ξ_{11} and ξ_{22} ,

$$\frac{x_{1}}{x_{1}} = \frac{x_{1}}{x_{1} + x_{2}(v_{2}/v_{1}) \exp(-(g_{21}-g_{11})/RT)} \quad (3.10a)$$

and

$${}^{5}_{22} = \frac{x_{2}}{x_{2} + x_{1}(v_{1}/v_{2}) \exp(-(g_{12}-g_{22})/RT)}, (3.10b)$$

Now, upon substitution ξ_{11} for $\frac{1}{2}$ and ξ_{22} for $\frac{1}{2}$ in equation (3.1), we obtain;

$$\Delta G^{E}/RT = \sum_{i} \Sigma_{i} \ln \left(\Sigma_{i} \times_{j} A_{ij} \right)$$
 (3.11)

where A_{ij} is given by:

$$A_{ij} = (v_j/v_i) \exp(-(g_{ij} - g_{ii})/RT)$$
 (3.12)

For binary mixtures, equation (3.11) becomes

$$\Delta G^{E}/RT = -x_{1} \ln(x_{1} + A_{12}x_{2}) - x_{2} \ln(x_{2} + A_{21}x_{1})$$
(3.13)

From equation (3.13), the activity coefficients of the two components are determined by:

$$\ln Y_{1} = -\ln(x_{1} + x_{2}A_{12}) + 1 - \frac{x_{1}}{x_{1} + x_{2}A_{12}} - \frac{x_{2}A_{21}}{x_{2} + x_{1}A_{21}}$$

(3.14a)

$$\ln Y_{2} = -\ln(x_{2} + x_{1}A_{21}) + 1 - \frac{x_{2}}{x_{2} + x_{1}A_{21}} - \frac{x_{1}A_{12}}{x_{1} + x_{2}A_{12}}$$
(3.14b)

where A₁₂ does not equal A₂₁ although g₁₂ does equal g₂₁. Wilson's treatment is particularly successful for mixtures containing alcohols in non-polar solvents. One of the main advantages of Wilson's equations follows from its straightforward extension to multicomponent mixtures. The important feature of these equations is that all parameters A_{ij} may be obtained from reduction of binary data; no ternary (or higher) constants are required.

3.2 Analytical Expressions for Group Activity Coefficients

Recently, Deal and Derr (D1) have chosen to represent the ln \lceil concentration dependency by the Wilson molecular free energy expression, based largely on the observation that this relation gives a more suitable shape to the log \lceil versus concentration curve in binary group systems. The form of the Wilson equation in representing group activity coefficients is shown in the following equa-, tion, for a group k in a mixture containing groups I...N:

$$\ln \Gamma_{k} = -\ln \frac{N}{1} \sum_{l=1}^{N} X_{l} a_{kl} + 1 - \sum_{l=1}^{N} \frac{X_{l} a_{lk}}{\Sigma}$$
(3.15)

where the a's are binary "group" parameters analogous to the conventional molecular binary parameters; the sums are to be taken over all groups in the mixture including k with $a_{kk} = a_{11}$ $a_{mm} = 1$ and the X⁴s are group fractions as defined by equation (2.5).

For the case of a solution containing only two groups 1 and 2, equation (3.15) takes the simple form:

$$\ln \Gamma_{1} = -\ln(X_{1} + X_{2}a_{12}) + 1 - \frac{X_{1}}{X_{1} + X_{2}a_{12}} - \frac{X_{2}a_{21}}{X_{2} + X_{1}a_{21}}$$
(3.16a)

$$\ln \Gamma_{2} = -\ln(X_{2} + X_{1}a_{21}) + 1 - \frac{X_{2}}{X_{2} + X_{1}a_{21}} - \frac{X_{1}a_{12}}{X_{1} + X_{2}a_{12}}$$
(3.16b)

The group solution model of Ratcliff and Chao for the excess free energies of liquid mixtures has also been put the in analytical form using Wilson equation. It was tested and found satisfactory for a wide range of mixtures containing the groups methylene and hydroxyl (R3).

3.3 Analytical Group Solution Model for Heats of Mixing

It seems possible now that independent correlations of heats of mixing by an analytical group solution model can be developed and would give a basis for projecting heats of mixing and temperature effects.

With the assumption of negligible size contributions, the analytical model for heats of mixing can be summarized by the following equations,

$$\Delta H = \Delta H^{G} = \sum_{i} x_{i} \overline{\Delta H}_{i}^{G}$$
(3.17)

$$\overline{\Delta H}_{i}^{G} = \sum_{k} N_{ki} \left(H_{k} - H_{ki}^{*} \right)$$
(3.18)

From the Gibbs-Helmholtz relation,

$$\frac{\partial}{\partial T} \left(\Delta G^{E} / RT \right)_{P,X} = -\frac{1}{RT^{2}} \Delta H \qquad (3.19a)$$

 H_k is related to Γ_k by:

$$\frac{\partial}{\partial T} (\ln f_k)_{P,X} = - (1/RT^2) H_k \qquad (3.19b)$$

Thus by differentiating equation (3.16) with respect to temperature and rearranging the terms, the analytical expressions for H_v of binary group mixtures are given by:

-30-

$$H_{1}/RT^{2} = X_{2}^{2} a_{12}^{2} b_{12}^{2}/(X_{1} + X_{2} a_{12})^{2} + X_{2}^{2} b_{21}^{2}/(X_{2} + X_{1}a_{21})^{2}$$
(3.20a)

MA:

$$H_{2}/RT^{2} = X_{1}^{2} a_{21} b_{21}/(X_{2} + X_{1}a_{21})^{2} + X_{1}^{2} b_{12}/(X_{1} + X_{2}a_{12})^{2}$$
(3.20b)

where
$$b_{12} = \frac{\partial_{1}}{\partial T} (a_{12})$$
 and $b_{21} = \frac{\partial_{1}}{\partial T} (a_{21})$ (3.21)

The parameters (a's and b's) can be determined from experimental data for reference systems. To fix these parameters with confidence, we require data of high quality and quantity over a reasonable range of temperature. Recently, excellent heat of mixing data on n-alcohol/n-alkane mixtures the have become increasingly available in literature. However, the temperature ranges of these data are very restricted, e.g. $25^{\circ}C-45^{\circ}C$ (S1-3). Therefore, an isothermal semi-continuous calorimeter was built in order to extend this temperature range. Experimental measurements have been performed on several aliphatic alcohol/alkane mixtures at $15^{\circ}C$ and $55^{\circ}C$ and on branched pentanol/hexane systems at $25^{\circ}C$.

-32-

Nomenclature

A _{ij}	molecular Wilson parameter in equation (3.11)
a _{ij}	group Wilson parameter in equation (3.15) ^{, *}
^b ij	group Wilson parameter in equation (3.21)
9 _{ij}	energy term in equation (3.5)
H _k	excess enthalpy of group k
N _{ki}	number of groups k in molecular species i
Р	pressure
R	ideal gas constant
т	absolute temperature
v	molar volume of pure component
×	mole fraction
X	group fraction
ΔΗ .	heat of mixing per mole of mixture
ΔH	partial molar heat of mixing
∆G ^E	excess free energy of mixing
Greek Letters	
Y ,	liquid phase activity coefficient
Г	group activity coefficient
	volume fraction
5	local volume fraction

1

ð

<u>َ</u>

Subscripts

i,j molecular species i,j^{*} k group species k

Superscripts,

G ' group contribution

- S size contribution
- * standard state
- E r excess property

-33-

4. APPARATUS AND EXPERIMENTAL PROCEDURE

The importance of obtaining accurate enthalpy of mixing data has led to many diverse methods of measurement. The major differences between different calorimeters are the rapidity and the ease with which the data may be gathered.

Calorimeters may be classified according to their principle of operation: point-wise or semi-continuous. Point-wise isothermal calorimeters employed for the measurement of endothermic binary heats of mixing usually consist of a cell containing two liquids separated by #some type of diaphragm or mercury trap. When the diaphragm is ruptured, the liquids mix and isothermal conditions are maintained by the addition of a measured quantity of electrical energy. Although, some investigators (Al), (B4), (M3) have obtained satisfactory measurements with calorimeters of this type, the basic principle limits the usefulness of such an apparatus: direct measurement of heats of mixing cannot be obtained below a certain concentration and many independent experiments are necessary for the measurement of the heat of mixing over the entire composition range, i.e., the procedure is very time consuming.

-34-

Semi-continuous isothermal calorimeters are based upon semi-continuous addition of one component into a cell initially containing the second component. The entire heatof-mixing curve can be obtained by two experimental runs. Therefore, the procedure is rapid.

A semi-continuous isothermal calorimeter of the type built during this work was first described by Mrazeck and Van Ness (M4) in 1961. Subsequent refinement of this calorimeter by Van Ness and Coworkers (S2-3) has led to the development of a highly versatile instrument which lends itself to a rapid and routine production of data. There are, of course, many differences in detail such as will be found in any custom-built instrument.

The principle operation of this isothermal calorimeter is as follows: two liquids are mixed at constant temperature and pressure in an isothermally insulated vessel. ^a Since all systems studied in this work are endothermic, the mixing process is accompanied by absorption of heat. Immediately upon mixing, the temperature of the system is maintained by adding electrical energy to the system. The amount of energy added is a measure of the heat of mixing.

An important feature of this calorimeter is the absence of vapor space. As pointed out by Mrazek and Van Ness (M4), this feature eliminates the source of error due to

-35-

vaporization-condensation effects.

The calorimeter is shown in Figures (4.1-5).

4.1 Description of the Calorimeter

4.1.1 <u>Calorimeter Housing</u>

The calorimeter housing consists of a stripsilvered precision-bore, 150 ml Dewar flask. The Dewar flask was made up from precision-bore tubing with inside diameter of 1.999 ± 0.001 " (H.S. Martin Co.). The use of the precision-bore glass tubing allows a concentric fit between the flask and the Teflon calorimeter plug.

4.1.2 Calorimeter Plug

The Teflon plug (Figure 4.3-4) is approximately 1" thick and is $1.978" \pm 0.001"$ in diameter at room temperature of about 25° C. Sealing of the plug to the Dewar flask is accomplished by two Viton-A "0" rings (linear number 11-131, 11-132 or 11-133). The grooves are approximately 0.01" wide with a groove depth of 0.08". A tight seal is obtained at room temperature when the plug is positioned within the Dewar flask.

[°] Four holes are bored through the plug. One hole contains four electric probes which are connected to the calorimeter heater. The second hole allows a glass-coated

-36-

thermistor probe and its housing to pass through the plug. A threaded vent hole is also located in the calorimeter plug, when the screw is tightened, the calorimeter plug is sealed with the help of an "O" ring (linear number 11-009). The feed tube passes through the fourth hole which contains a hypodermic needle.

4.1.3 Calorimeter Heater

The calorimeter heater is a single filament, 0.00225" diameter Karma wire (an 80% nickel, 20% chrome alloy with addition of Al and Fe) having a resistance of about 45 Ohms, The heating element is non-conductively threaded on a small Teflon tube which then is mounted in a thin-wall copper housing tube. The ends of the heating filament are soldered to the heater probes with resin-core solder.

4.1.4 <u>Calorimeter Stirrer-Baffle System</u>

Mixing of the contents of the calorimeter is accomplished by a small Teflon-coated stirring bar. Four baffles are used to create an efficient circulation pattern. The baffle-magnet mixing system is supported by baffle rods screwed into the bottom of the calorimeter plug. The baffles and rods are constructed from coin silver. A large Alnico bar magnet is located outside the Dewar flask, in the constant temperature bath and activates the small magnet contained within the calorimeter. The external driving magnet is driven by a motor.

4.1.5 Calorimeter Mercury Trap

The calorimeter feed cup is supported by a Teflon strip fastened to the baffle rods. The end of the feed tube is drawn into the hypodermic needle which is centrally located in the Teflon cup. Mercury in the cup separates the liquid in the Dewar flask from that in the feed tube and feed bulb. Injected material flows upward into the system between the feed tube and mercury. A film type of flow is obtained. No mercury is discharged into the Dewar flask at both low and high rates of injection.

4.1.6 Feed System

The feed material is stored in a glass bulb C (Figure 4.1) having a capacity over 100 ml. This bulb is rested on a Plexiglass platform connected to the calorimeter support rack and is joined to the calorimeter feed tube by "O" ring pyrex joint. The feed bulb is also connected to a 5 ml water-jacketed, gravity filling automatic burette A

-38-

(Figure 4.1) and are held to proper alignment by clamps to a support stand above the constant temperature bath.

4.1.7 Calorimeter Electrical Circuit

All the systems studied are highly endothermic. Therefore, in order to maintain isothermal conditions on mixing, electrical energy is supplied to the calorimeter. The calorimeter circuits are shown in Figure 4.5. There are two fundamental measurements: energy input to the calorimeter and temperature of the solution in the Dewar flask.

4.1.7.1 Input Energy to the Heater

Three measurements are needed for this determination: current, potential drop across the heater and the length of time that current is flowing through the calorimeter heater.

4.1.7.2 Temperature of the Solution in the Dewar Flask

The temperature of the solution in the Dewar flask is sensed with a thermistor probe (Fenwal Catalog No. GA51P8). The resistance of such a probe is strongly temperature dependent and is measured by a guarded Wheatstone Bridge (Leeds and Northup, Model No. 4736). A Leeds and Northup Type 9834 D.C. null detector is used to sense the output of the Wheatstone

-39-

rbridge. The current flowing through the Wheatstone bridge circuit is supplied by a D.C. power supply (Hewlett Packard Model No. 6201B). It has been found that a voltage of less than 0.5 volt supplied to the bridge results in a self heating of the thermistor probe of less than 0.001° C. Note that the thermistor probe is periodically calibrated against a Leeds and Northrup Model 8164 Platinum resistance thermometer in a Mueller bridge circuit (Rubicon Co., Model 1550). The absolute accuracy of the temperature measurement is believed to be better than $\pm 0.005^{\circ}$ C.

The calorimeter heater circuit has been designed so that the power drawn from a power supply (Hewlett Packard Model No. 6201B) is constant whether the heater is on or off. This stabilizes the power source. Switching off the power between the ballast circuit and the calorimeter heater is performed with a 4PDT relay (Potter and Brumfield 4PDT relay, type GF17A, 120 VAC coil).

The ballast circuit is a 100 Ohm wire-wound potentiometer in series with a decade resistor box (Leeds and, Northrup, Model No. 4776). Theyvused as a fixed resistor and are connected to a normally-closed position on the relay.

Two precision wire-wound resistors (Leeds and Northrup, No. SR-300-M-.01-A-1-DC and No. SR-2700-M-0.01-A-1-DC) in series form a voltage divider and are connected in parallel with the calorimeter heater. When the calorimeter is operating;

-40-

the potential drop across the heater is given by a fraction of (300+2700)/300 = 10.000 by a D.C. digital voltmeter (Hewlett Packard Model No. 2401C).

A calibrated standard resistor of 1.00002 Ohms (Electro Scientific Industries, U.S.A., No. 743016) and a D.C. milliammeter (0-200 milliamperes) is used in setting the ballast resistor equal to the resistance of the heater circuit. If the ballast resistor is properly adjusted, the voltage across the standard resistor will remain constant as the heater circuit is switched to the ballast circuit.

A precision stopwatch (Canlab No. C6550) is connected to the normally-open position on the relay. The stopwatch and the heater are switched on or off by the 4PDT relay.

4.1.8 Constant Temperature Bath

The calorimeter must be immersed in a constant temperature environment in order to prevent heat transfer through, the walls of the mixing Dewar flask and in order to insure that the injected component is at the same temperature as the solution into which it is injected.

A Tamson, constant temperature bath (Neslab Instrument Inc. Model TEV45) provides a generous working area for such a purpose. Stirring of the water in the bath is performed by a circulation pump which also circulates the water from the bath to the water jacket of the automatic burette mounted above the bath. The setting temperature of the bath can be controlled to within $\pm 0.005^{\circ}$ C by the use of a fused quartz infra-red heater and a fast solid state relay. When the bath is operating at temperature below 40° C, circulation of cooling fluid through a cooling coil in the bath is recommended. This is accomplished by the use of a bath cooler (Neslab Instrument Inc. Model PCB-4) in combination with a circulating bath (Neslab Instrument Inc., Model TC9). This unit provides temperature-controlled water circulating through the cooling coil of the main bath.

The temperature of the thermostat bath is sensed with a quartz thermometer probe (Hewlett Packard, Model 2801A) which is periodically calibrated against a Platinum resistance thermometer (Leeds and Northrup Model 8164) in a Mueller bridge circuit already mentioned.

4.2 Operating Procedure

The experimental procedure for measuring the heats of mixing of binary systems is as follows (letters in parenthesis refer to Figure 4.1):

1) Constant temperature bath (F) is set at the desired temperature which is maintained to within $\pm 0.005^{\circ}$ C. The cooling fluid is used when the bath is operating at temperatures of 40° C and below.

-42-

2) The water in the bath is allowed to circulate to the water jacket of the burette (A). The burette is filled with one of the component of the binary mixture prior to the experiment.

3) The "O" rings are placed on the fixed Teflon plug (E) and the feed bulb (C) is connected to the feed needle (H) by a glass tubing carrying stopcock 2.

4) The small Teflon cup (G) is filled to within 1/16" of the top with mercury and the liquid in the bulb (C) is allowed to flow out of the needle (H) for several drops by opening connector stopcocks 1 and 2. Excess liquid is wiped away. A small droplet is allowed to collect at the needle. In one motion, touch the drop with the tip of a kleenex and slip the mercury cup over the needle allowing no air bubble to be trapped. The mercury level is then raised to mark M in the feed tube by opening stopcock 2 (stopcock 1 being closed) to the vacuum line attached above.

5) If bubbles form in the glass tubing, step (4) is repeated.

6) A 100 ml stoppered volumetric flask containing the second component is weigh-ed with a type B-6 Mettler balance. Approproximately 90 ml are poured into the Dewar flask (\dot{D}) which is mounted on a platform below the calorimeter plug (E). The volumetric flask is immediately sealed and the Dewar flask.

+ that .

-43-

is quickly raised by a driving mechanism until the "O" rings surrounding the calorimeter plug are engaged. The volumetric flask is weighted again later with the Mettler balance.

7) Sealing of the calorimeter plug is completed. Vapor is driven out of the calorimeter by raising the Dewar flask. When the liquid is visible at the bottom of the vent hole, the Teflon vent screw is fastened under the calorimeter plug.

8) The calorimeter is placed into the constant temperature bath. The upper arm of the feed storage bulb is connected to the microburette (A). All stopcocks are slightly opened to see if the mercury level in the feed tube rises above or falls below the reference mark (M). If the mercury level begins to fall, the pressure in the lower part of the system is increased by raising the Dewar flask. If the mercury level tends to rise above the mark (M), this pressure is reduced by lowering the Dewar flask.

After several pressure adjustments, all stopcocks are fully opened and the mercury level in the feed tube is again set at the reference mark (M).

9) The electrical circuit is completed by connecting the calorimeter multi-contact electrical connector to a receptacle on the circuit control box.

10) The D.C. power supply is turned on and the ballast circuit is energised by closing a switch on the circuit.

-44-

at 200 RPM.
II) The calorimeter stirrer is started and set at 200 RPM.

12) Decades on the Wheatstone bridge are set at a resistance corresponding to the bath set temperature. The voltage supply to the Wheatstone bridge is set at 0.4 volt. Since the calorimeter is not yet at the bath set temperature, the bridge is unbalanced. The unbalanced signal, properly attenuated, is indicated by a null detector in the bridge circuit.

13) The calorimeter is brought to thermal equilibrium with the constant temperature bath. Initially, the calorimeter is below the set temperature. Therefore the calorimeter heater is energized by closing a switch on the circuit. Energy is added to the calorimeter until the null detector indicates the Wheatstone bridge is balanced. When the bridge remains balanced at the same setting for 1/2 hour, it is assumed that the calorimeter and the bath are in ther-* mal equilibrium.

14) The calorimeter is operated as follows:

14a. Timer is set at zero

14b. Mercury level in the feed tube is checked and adjusted if necessary so that the level corresponds to the reference mark (M)

- 14c. The initial reading of the burette is recorded. The first component in the burette is introduced into the Dewar flask by a drive mechanism. As the flask comes down, the liquid in the burette is drawn into the flask.
- 14d. The heater is turned on. The injection of the first component is introduced at a rate such that the temperature of the liquid in the flask is maintained to within 0.003° C of the set temperature.
- 14e. With the calorimeter on, the potential drops across the standard resistor and the voltage divider are measured with a D.C. voltmeter.
- 14f. When the desired amount of the feed material is added to the Dewar flask, the heater is turned off and injection of material is stopped. The temperature in the Dewar flask is reproduced to within <u>+0.0005</u>°C of the set temperature.
- 14g. The readings of the stopwatch and the burette are recorded.
- 14h. Repeating steps 14b to 14g allows the determination of another data point on the heat of mixing curve.

-46-

The experiment is terminated when the calorimeter plug is at the top of the flask. Approximately 100 ml of the feed material is added to the flask over the course of one experimental run. Two experimental runs are necessary to completely determine a heat of mixing curve. Half of the curve is obtained from an experiment in which one component is initially placed in the flask and the other in the feed storage bulb and burette. In the second run, these components are interchanged.

The heats of mixing are calculated from the following measurement:

the mass of component 1 initially in the

Dewar flask.

the volume of component 2 injected into the Dewar flask.

the potential drop across the standard resistor.

the potential drop across the heater as measured across the voltage divider.

the time interval during which the heater is operational.

Sample calculations of heats of mixing are shown in Appendix Al.

-47-

0

.-

Schematic Diagram of the Calorimeter

S

, **O**,

Schematic diagram of the calorimeter

Ì

Calorimeter Housing and Support

A. Stainless steel supporting tube for Teflon plug

B. Ball joint

C. Dewar vessel

D. Supporting framework for calorimeter

E. Threaded rod for the moving of Dewar vessel

F. Hand wheel

G. Rubber mold

5>

Calorimeter Plug - Side View

A. 150 ml. Precision bore Dewar flask

B. Teflon plug

C. Feed cup

D. Stainless steel hypodermic needle

E. Supporting tube for Teflon plug

F. Heater housing

G. Thermistor Housing

H. Stirrer paddle

1. Teflon-coated stirrer magnet

J. "O" rings

K. Vent screw

0.

Calorimeter Plug - Detail

-51-

Ъ

FIGURE 4.5

Calorimeter Circuits

4.0 i

-

J.

3 -

General Lay-Out of the Calorimeter Photograph

۰ ۲

-53-

-54-

6.

FIGURE 4.7

Calorimeter Plug - Photograph

n de la

° . .

ę

5. MATERIALS

Specifications of all materials used in this study are listed in Table 5.1. The refractive indices of the materials were measured at 25[°]C with a Bausch and Lomb Precision Refractometer and are also tabulated in Table 5.1 along with values from literature.

All reagents had a purity in excess of 99 mole percent with the exception of n-hexanol which had a purity over 98 percent. As pointed out by Bennett and Benson (B5), the impurities which are the most difficult to remove from the reagents are not likely to effect the heats of mixing appreciably. Therefore, no attempt was made to achieve the utmost purity for the reagents.

- 55-

TABLE	5.1
-------	-----

Materials-Supplier, Specifications and Refractive Indices

0 c ~

Material	Supplier	Specification	n_(Meas.) 25°C)	n _D *(Lit.)
n-butano ⁻¹	Aldrich Chemical Co.	Pure grade, 99 mole %	1.3970	1.3973
n-pentanol	Aldrich Chemical Co.	99 mole %	1.4079	1.4081
n-hexanol	Aldrich Chemical Co.	98 mole %	1.4160	1.4161
n-octanol 🔩	Aldrich Chemical Co.	99 mole %	1.4276	4.4275
iso-pentañol	Matheson, Colemann and Bell	Chromatoquality ,99+ mole %	1.4046	1.4051
n-pentane	Phillips Petroleum Co.	Pure grade, 99† mole %	1.3547	1.35472
n-hexane_	Phillips Petroleum Co.	Pure grade, 99+ mole %	1.3725	1.37226
n-heptane	Phillips Petroleum Co.	Pure grade, 99+ mole %	1.3850	1.38511
n-octane	Phillips Petroleum Co.	Pure grade, 99 ⁺ mole %	1.3954	1.39505
.n-nonane	Phillips Petroleum Co.	Pure grade, 99 ⁺ .mole %	1.4034	1.40311
n-decane	Phillips Petroleum Co.	Pure grade, 99 ⁺ mole %	1.4096	1.40967
n-dodecane	Phillips Petroleum Co.	Pure grade, 99 ⁺ mole %	1.4196	1.41949
benzene	Phillips Petroleum Co.	Pure grade, 99 ⁺ mole %	1.4979	1.4976
cyclohexane	Phillips Petroleum Co.	Pure grade, 99 ⁺ mole %	1.4235	1.4232

-56-

TABLE 5.1 (cont'd)

.

Material	Supplier	Specification	n _D (Meas.) 25°C	n <mark>#</mark> (Lit.)
2,2-dimethyl- butane	Phillips Petroleum Co.	Pure grade, 99 ⁺ mole %	1.3662	1.36595
2,3-dimethyl- butane	Phillips Petroleum Co.	Pure grade, 99† mole %	1.3723	1.37231
2-methyl- pentane	Phillips Petroleum Co.	Pure grade, 99+ mole %	1.3687	1.36873
3-methyl- pentane	Phillips Petroleum Co.	Pure grade, 99+ mole %	1.3739	1.37386

2

(*) A.P.I., Volume 1, Refractive Indices at 25°C

6. EXPERIMENTAL RESULTS

-58-

6.1 <u>Experimental Results</u>

Heats of mixing were measured for many aliphatic alcohol/alkane systems at 15° C, 25° C and 55° C and are reported in Table 6.1. The 36 sets of data on heats of mixing are tabulated both as $\Delta H/x_1x_2$ and ΔH versus concentration and are shown in Appendix A2. Some of the experimental results are graphically represented by the functions $\Delta H/x_2x_1$ and ΔH versus x_1 in Figures 6.1 through 6.5. As pointed out by Van Ness (V1), representation of heat of mixing measurements by the $\Delta H/x_1x_2$ function is very advantageous because it gives a very sensitive indication of the precision of the data.

The alcohol/hydrocarbon mixing process results in a large endothermic effect. This is largely the result of dissociation of the hydrogen-bonded alcohol structure in the hydrocarbon solvent. The dissociation process consumes a large amount of energy and the process is almost complete at relatively low alcohol concentration. Therefore, the heat of mixing curves are markedly asymmetric and ΔH usually passes through a maximum at an alcohol mole fraction of 0.2-0.3.

TABLE 6.1

Experimental Results

Systems (Temperature, ^O C
n-butanol/n-hexane	,; ² 15 ∖
n-butanol/n-heptane	15
n-butanol/n-octane	15
n-butanol/n-decane	<u> </u> 5
n-pentanol/n-heptane	15
n-pentanol/n-decane	· [·] 15 ,
n-hexanol/n-heptane	15 -
n-hexanol/n-octane	⁻ اڭ ~
n-octanol/n-heptane	15
n-octanol/n-octane	15
n-octanol/n-decane	l`5
n-butanol/n-heptane '	、 55 ,
n-butanol/n-octane	、 55 🖔
n-butanol/n-nonane	55
n-butanol/n-dodecane	5 5
n-hexanol/n-octane	55
n-pentanol/n-octane	5 5
n-pentanol/n-nonane	· 55
n-pentanol/n-dodecane	55
n-octanol/n-heptane	55
n-octanol/n-octane	55
n-octanol/n -nonane	· 55
n-octanol/n-dodecane	55
<pre>n-pentanol/n-hexane</pre>	25 .
n-pentano1/2,2-dimethylbutane	25
n-pentano1/2,3-dimethylbutane	ź 25

IABLE OIL (CONT. a)	TABL	BLE 6	.1	(cont'	d)
---------------------	-------------	-------	----	--------	----

) .

Systems	<u>Temperature</u> , ^O C
n-pentanol/2-methylpentane	# 25 ·
n-pentanol/3-methylpentane	25
isopentanol/n-hexane	25
isopentanol/2,2-dimethylbutane	25
isopentanol/2,3-dimethylbutane	· 25
isopentanol/2-methylpentane	25
isopentanol/3-methylpentane	25
isopentanol/n-heptane	25
isopentanol/n-octane	25

١

ζ.

'/

۲ ۳ ۰

2

-61

FIGURE 6.1

Heats of Mixing at 55⁰C for the system n-Octanol/n-Heptane

Ş

-63-

FIGURE 6.5

Plot of ΔH vs x_{alc} for the System Isopentanol/ 2-Methylpentane at $25^{\circ}C$

6.2 Discussions on Experimental Results

The isothermal, semi-continuous dilution calorimeter constructed in the course of this work permits rapid determination of heats of mixing for highly non-ideal alcohol/alkane'systems. Direct association of the measured electrical energy input with the heats of mixing takes no account of any secondary effect which may enter during the mixing process. The secondary effects due to stirring have been discussed in details by Van Ness and Coworkers (S3). These effects will be briefly discussed with reference to Figure 6.6. This figure shows the Dewar flask, the feed bulb and the burette.

FIGURE 6.6

Energy Effects on the Calorimeter System during a Mixing Step

-66-

The thermodynamic system is taken as component 1. in the Dewar, flask and component 2 in the feed bulb and the burette. Component 2 is to be injected into the Dewar flask. Pressure forces are exerted on the system by the liquid in the feed burette and the feed bulb and by the closure plug of the Dewar flask. These forces move during the mixing process and do work on the system. However, since they move slowly, their work effects essentially cancel.

The quantity W shown in Figure 6.6 represents the work of stirring. The steady stirring work raises the temperature in the Dewar flask by an amount of ΔT above that of the constant temperature bath during the equilibrium period. This ΔT is large enough as a heat transfer driving force so that the rate of heat transfer, q, from the Dewar flask to the bath just balances the energy input due to stirring. Since the energy input of stirring S is balanced by the energy loss by heat transfer q, no direct account need be taken of the stirring energy.

However, during mixing the energy supplied by the calorimeter heater Q must not only balance the set of mixing but must also provide the sensible heat required to raise the temperature of the feed component from T to T + ΔT .

The energy input of stirring at constant stirrer speed is proportional to the density of the liquid in the

-67-

Dewar flask and thus ΔT is proportional to density. For highly non-ideal systems such as alcohol/hydrocarbon systems studied, the total heat Q for a run is about 300 to 400 cal., the densities are in the range 0.65 to 0.85 g/ml. In this case ΔT amounts to no more than 0.02° C and the heat capacities are about 0.5 cal./g, °C. Injection of about 70 grams of feed requires a sensible heat of about (0.5)(70)(0.02) = 0.7cal. Thus the correction for the full run is less than 0.3%and need not, therefore, be made with great exactness. No other secondary effect of any significance is encountered in running the calorimeter.

Obtaining a good estimate of the accuracy for such a complex equipment as the calorimeter is extremely difficult. The best test of reliability of the calorimeter is, probably, to compare the results obtained with this instrument to the 'results obtained from other calorimeters. Heats of mixing of system benzene/cyclohexane have been studied by several investigators and therefore were chosen as data by which the performance, of this calorimeter could be compared to others.

Figure 6.7 shows the heats of mixing for the system benzene/cyclohexane at 25° C as measured by Benson and Coworkers (M7) and Lundberg (L2) and this work. Data of Van Ness and Coworkers (S3) are represented by the fitted curve which has a root-mean-square deviation of 0.084% from experimental points.

-68-

in the second se

, -69-

FIGURE 6.7

Heats of Mixing at 25°C for the System Benzene/Cyclohexane

Figure 6.8 again compares the results taken in this work with those of Lundberg (L2) and Van Ness and Coworkers (S3) for the same system, but at 50° C.

The reagent impurities might not account for the small discrepancies among the data. Bennettand Benson (B5) have made some experiments aimed at determining the effect of impurities on heats of mixing for the system benzene/carbon tetrachloride and found no significant difference between highly purified and the "reagent" grade materials as received from manufacturers.

There are, undoubtedly, systematic sources of errors in all calorimeters. Judging from the distributions of literature values shown in Figures 6.7 and 6.8, it seems reasonable to say that the values obtained with the present calorimeter fall within 1% of the true heats of mixing for the system benzene/cyclohexane at 25° C and 50° C.

The accuracy of the present calorimeter is, of course, very dependent on the types of systems investigated. For systems having small heats of mixing, a small fluctuation. 2 of the bath temperature may become very important while for systems having larger heats of mixing, the thermal gradients within the Dewar flask might present the biggest problem. In any event, for systems with heats of mixing not greatly different from those of benzene/carbon tetrachloride such as alcohol/hydrocarbon systems, it is quite reasonable to assume

یے

-70-

ī

e.

Heats of Mixing at 50[°]C\for the System Benzene/Cyclohexane

. 1

ç.

, ^a

that the heat of mixing data obtained with this calorimeter are within 1% of the true values.

The systems which have been studied in this work were chosen primarily for the purpose of evaluating the temperature dependency of the group Wilson parameters. However, some observations may be made which might be of some significance.

For all the aliphatic alcohol/alkane systems studied, the heats of mixing increase with increasing temperature. Heats of mixing also increase with increasing difference in the number of carbon atoms in the constituents. Generally speaking, if the number of carbon atoms in the n-alkane component is fixed, the heats of mixing decrease with an increase in the number of carbon atoms in the alcohol components.

Three types of behaviours are observed for the branched pentanol/hexane mixtures. When both the alcohol and alkane molecules have branching in the alkyl group, e.g. in the system isopentanol/2,2-dimethylbutane..., the branching does not have any effect on heats of mixing, that is, the system isopentanol/2,2-dimethylbutane has almost the same heats of mixing as the system n-pentanol/n-hexane. For systems containing a branched alcohol molecule and a n-alkane, the heats of mixing are a few percent higher than those of the

-72-

equivalent n-alcohol/n-alkane system. The reverse is observed for branched alcohol/n-alkane systems, i.e., their heats of mixing are slightly lower than those of the equivalent n-alcohol/n-alkane mixtures.

Thus moderate branching in the cases studied has only a small effect on heats of mixing. One may expect these effects to be significant as found in alcohol/alkane systems containing secondary and tertiary alcohols (B6) where branching occurs in the vicinity of the polar group in the alcohol molecules.

-73-

7. APPLICATION OF THE ANALYTICAL GROUP SOLUTION MODEL TO ALCOHOL/ALKANE MIXTURES

The introduction of the analytical Wilson equation in the group solution model for heats of mixing provides a potentially powerful tool for correlating and predicting heat of mixing data.

Isothermal heats of mixing of n-alcohol/n-alkane systems found in the literature at 30° C and 45° C (S1-3) and those obtained from this work at 15° C and 55° C were used as reference data to study the temperature dependence of the model parameters.

(.) Determination of Group Wilson Parameters From Excess Free Energies

Attempts to calculate heats of mixing using molecular parameters computed from vapor-liquid equilibrium data have not been very successful. The method consists of using measured vapor-liquid equilibrium data to evaluate the parameters in semi-empirical equations which in turn are used to calculate heats of mixing using the well-known Gibbs-Helmholtz relation:

-74-

$$\Delta H^{M} = -T^{2} \left(\frac{\partial G^{E}/T}{\partial T} \right)_{P,x}$$
(7.1)

Thus, the error magnification inherent in differentiation of the basic experimental vapor-liquid equilibrium data can result in poor agreement between calculated and measured heats of mixing.

It has been found that group Wilson parameters computed from vapor-liquid equilibrium data (R3) can not be used to predict heats of mixing. One reason for the poor agreement is inherent in the results of the temperature dependency of the group Wilson parameter, a_{CH2}/OH, computed from vapor-liquid equilibrium data for alcohol/alkane mixtures, i.e. mixtures formed from methylene and hydroxyl groups (methylene and methyl groups being assumed equivalent),

$$a_{OH/CH_2} = e \times p(7.55 - 3800/(t + 273.16))$$
 (7.2)
 $a_{CH_2}/OH = 0.5$ (7.3)

t is in degree C.

Since ${}_{0}CH_{2}/0H$ is independent of temperature (equation (7.3)) the analytical expressions for group excess enthalpies, $H_{CH_{2}}$ and H_{0H} , described by equations (3.20a) and (3.20b) are reduced to:

-75-

 $H_{CH_2/RT^2} = \chi_{OH}^2 \frac{\partial}{\partial T} (a_{OH}/CH_2) / (\chi_{OH} + \chi_{CH_2} a_{OH}/CH_2)^2$

$$H_{OH/RT}^{2} = \chi^{2}_{CH_{2}} \frac{\partial}{\partial T} (a_{OH/CH_{2}})^{a} OH/CH_{2} / (\chi_{OH}^{+} \chi_{CH_{2}}^{a} OH/CH_{2})^{2}$$
(7.5)

Heats of mixing for n-alcohol/n-alkane systems computed from equations (7.2-5) and (3.17-18) exhibit a very skew shape for the ΔH^{M} versus x plot. One example is shown in Figure 7.1 where heats of mixing are plotted against composition for the system n-pentanol/n-heptane (R6) at 25°C. The maximum of the computed curve occurs at a lower alcohol composition than the experimental.

Attempts were also made to estimate a_{OH/CH_2} and its temperature derivatives directly from experimental heats of mixing, using equations (7.4) and (7.5). Unfortunately, the results found indicated that the expressions (7.4) and (7.5) can not represent heats of mixing for n-alcohol/n-alkane mixtures because of the skew shape of ΔH^M versus concentration that these two expressions could give.

As will be apparent later, even though heats of mixing are very insensitive to variation in the value of a_{CH2}/OH, as found by Ronc (R3) for excess free energies, "it does not necessarily mean that this parameter is independent of temperature.

-76-

y

11.14

FIGURE 7.1

; .

0

Heats of Mixing for the System n-Pentanol/ n-Hexane at 25°C ŀ

Therefore, it was proposed to study the temperature dependence of the model parameters directly from heats of mixing for the aliphatic alcohol/alkane systems.

.7.2 Determination of Group Wilson Parameters From Heats of Mixing

Wilson parameters for binary group mixtures of methylene and hydroxyl were determined for each of the eighteen n-alcohol/n-alkane systems at 15° C and 55° C using data collected during this work, and five such systems at 30° C and 45° C using the data of Van Ness and Coworkers (SI-3). As in previous work (NI-2), to preserve the simplicity of the model, no distinction is made between methylene and methyl groups, otherwise an alcohol/alkane mixture would be a ternary group system. This assumption seems reasonable in view of the group interaction energies computed at 30° C by Chao and Coworkers (Cl) and shown in Figure 7.2 for various pairwise interaction groups; CH_2-CH_2 , CH_2-CH_3 , CH_3-CH_3 , CH_2-OH , and OH-CH interaction energies.

The estimation of the group Wilson parameters in the non-linear model has been performed using the two best existing algorithms (J1): Marquardt algorithm (M5-6) and Spiral algorithm (J1). There were no significant differences between the least squares estimates of the parameters obtained from the two algorithms and it may be safely said that correct answers

were obtained for the group Wilson parameters.

-78-

FIGURE 7.2

Group Interaction Energies in Alcohol/Alkane Mixtures at 30°C

÷

*

The Marquardt program coded as GAUSS was obtained from the University of Wisconsin Computing Centre and the Spiral program from Shell's Thornton Research Centre. The Spiral program, originally written in FORTRAN V for the UNIVAC 1108, was converted to FORTRAN IV and only minor modifications were needed to adapt it to the IBM S360 of the McGill University Computing Centre. A brief description of the two programs is given in Appendix A3.

The group Wilson parameters were evaluated over the temperature range 15° C to 55° C for n-alcohol/n-alkane mixtures, and the values of the parameters were found to be:

 $a_{0H/GH_2} = 34.95 \exp(-2908/T)$ (7.6)

 $a_{CH_2/0H} = 26.69 \exp(-1336/T) + 7.705$ (7.7)

It should be mentioned that the computed heats of mixing using the values of the group parameters given by equations (7.6) and (7.7), were found to be insensitive to the variation in $a_{CH_2/OH}$. This observation is very well indicated by the slight change of its values over the range of temperature studied (Table 7.1), i.e. from 7.96 to 8.16. Any value of that order used for $a_{CH_2/OH}$ would not effect the prediction accuracy. However, it should be emphasised that $a_{CH_2/OH}$ should not be fixed constant with respect to temperature, since this would result in equations (7.4) and (7.5)

-80-

TABLE 7.1

ļ

Group Wilson Parameters for Heats of Mixing of Alcohol/Alkane Systems

<u>T^oc</u>	^а он/сн ₂	<u>д</u> <u>Эт</u> он/сн ₂	асн ₂ /он	<u>д а</u> сн ₂ /он	
15	.00144	.5046 × 10 ⁻⁴	7.96305	.00416	Ą
30	.002373	.7516 x 10 ⁻⁴	8.0297	.00477286	
45	.003732	1.0730 × 10-4	8.1047	.005284	Ø
55	.004932	1.333 × 10 ⁻⁴	8.1593	.005645	-

,72

-18-

<u>ار</u>

₹ <

as described in section 7.1. Thus, even though heats of mixing are insensitive to the variation in the value of $a_{CH_2/OH}$, as found by Ronc (R3) for excess free energies, it does not necessarily imply that $a_{CH_2/OH}$ is temperature independent.

Use of the parameters given by equations (7.6) and (7.7) regenerated experimental heats of mixing for reference systems with an average root-mean-square deviation of less than 5%; details are given in Table 7.2. The calculated values for ΔH may be regarded as essentially predictions since the elimination of any one of the reference systems would not effect the best values of the parameters.

Figures 7.3 through 7.7 compare the prediction with experimental values. Prediction is as good in the case of ternary mixtures, as shown in Figure 7.7 for the system n-heptane/n-propanol/n-pentanol at 25°C (R6).

Predictions are poorer for lower alcohol/alkane mixtures such as ethanol systems for which the average rootmean-square deviation is about 15% (Table 7.3). The increased discrepancy for mixtures of lower alcohols in n-alkanes is related to their apparent anomalous behaviour shown in Table 7.4, where the heats of mixing of equimolar mixtures of various alcohols in n-hexane (B6) show a common trend for all alcohols except for ethanol and methanol. Brown, Fock and Smith (B6) attempted to explain this anomalous behaviour as

-82-

Prediction Results	on n-Alcol	nol/n-Alkane	Systems
	^{* e3} ty ~~	RMD (%)	0
System	<u>15</u>	<u>c 55</u>	<u>, 2</u>
n-butanol/n-hexane	7.2	?	•
n-butanol/n-hepțane	9.5	5 3.	1
n-butanol/n-octane	3.5	5 2.	5
n-butanol/n-nonane		3.	3
n-butanol/n-decane	. 8.3	}	ι
n-butanol/n-dodecane		5.	1
n-pentanol/n-octane	2 3.1		•
n-pentanol/n-nonane		. 4.	4
n-pentanol/n-decane	3.3	3	3
n-pentanol/n-dodecane		4.	9
n-hexanol/n~heptane	9.0)	
n-hexanol/n-octane	6.6	5 2.	7
n-octanol/n-hexane	6.5	5	
n-octanol/n-heptane	7.6	5 2.	8
n-octanol/n-octane	5.0) 3.	6
n-octanol/n-nonane	.	5.	5
n-octanol/n-decane	5.9)	
n-octanol/n-dodecane	-	6.	1
	<u>30^c</u>	<u>c</u> 45	° <u>c</u>
n-propanol/n-heptane	3.9) 2.	6
n-butaŋol/n-heptane	2.7	4.	0
n-pentanol/n-hexane	4.3	3 4.	0
n-octanol/n-heptane	· 4.4	• • 3.	r
n-octanol/n-nonane	3,5	5 4.	3

TABLE 7.2

-83-

ļ â

Ľ

FIGURE 7.3

÷.

٤

.

c

Ĵ

 $^{\prime} Prediction$ of Heats of Mixing for the System n-Pentanol/n-Decane at 15%C

0 0

ŝ

7

ΥŚ

ţ.

۵ ۱

5. *1, F*

FIGURE 7.4

Prediction of Heats of Mixing for the System n-Pentanol/n-Hexane at $30^{\circ}C$

∦s

٤

FIGURE 7.5

-86-

Ð,

5

Prediction of Heats of Mixing for the System n-Octanol/n-Nonane at 45°C

1.4 cm#

ø

6

đ

-

-87-

7

ها

Prediction of Heats of Mixing for the System n-Pentanol/n-Octane at 55°C

<u>ه ۲</u>

AH, JOULES/ MOLE

Ð

FIGURE 7.7

Prediction of Heats of Mixing for the System n-Pentanol/n-Propanol/n-Heptane at 25°C

1.

-88-

**

£: * •

a

TABLE	7.3	· · ·
Prediction Results on	Ethanol/n-Ålka	ne Systems
s <u>System</u>	<u>T(^QC)</u>	RMS Deviation (%)
ethanol/n-heptane	30	13.1
ethanol/n-hexane	30	11.3
ethanol/n-nonane	30	18.5
ethanol/n-hexane	45	10.9
ethanol/n-heptane	* 45, *	° 11.3
ethanol/n-nonane	45	. 22.3
,	. *	

<u>.</u>

n A

Heats of Mixing for Equimolar Mixtures of n-Alcohol/n-Hexane at 25°C (B6)

<u>n-Alcohol</u>	. <u>H</u> E	J/mole ⁻¹
methanol	•	500
ethanol	\$ \$	555
propáno l		565
pentanol		570
hexano l		465
octanol		415

¥

.

-90-

follows: in addition to the hydrogen bond contribution to heats of mixing, another contribution due to the mixing of the alcohol homomorph with the solvent was also important for the systems containing lower alcohols such as ethanol and methanol. This contribution accounts for the decrease in heats of mixing (Table 7.4) in systems containing lower alcohols.

7.3 Effect of Molecular Shape on Heats of Mixing

One of the limitations inherent in the group solution model is that the model does not take into account molecular shape. The model thus predicts identical heats of mixing for isomers. This effect of molecular shape on heats of mixing may be judged by inspecting the experimental heats of mixing of binary systems of n-pentanol or isopentanol with hexane isomers (2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane). Table 7.5 shows the heats of mixing of these systems at 25°C at near equimolar composition. The small difference in heats of mixing of these systems suggests that there is only a small contact energy difference between methyl and methylene groups.

Most recently, Patterson (P5) has also made some study on the effect of the molecular shape on heats of mixing of alkanes of different molecular size. He measured heats of mixing for equimolar mixtures of alkane isomers of formula

-91-

TABLE 7.5

Heats of Mixing at Near Equimolar Composition for Branched Alcohol/Alkane Systems at 25°C

	× _{alc}	<u>AH Joules/mole</u>
n-pentanol/n-hexane	.4962	482.
.n-pentano1/2,2-dimethybutane	. 5000	454.
n-pentanol/2,3-dimethylbutane	·4984 `	457:
n-pentanol/2-methylpentane	.4975	456.
n-pentanol/3-methylpentane	4965 -	459
isopentanol/n-hexane	.5068	529.
isopentano1/2,2-dimethylbutane	.4971	491.
isopentanol/2,3-dimethylbutane	.4950	494.
isopentanol/2-methylpentane		513.
isopentanol/3-methylpentane	.4972	508 , 8
isopentanol/heptane	.4966,	599•
isopentanol/octane	.4947	668.

-92-

1.

, i , i

۴.

 $C_{16}H_{34}$, and found that there is very small contact energy difference between methyl and methylene groups in n-hexane/ 2,2-dimethylbutane system. This fact is also indicated by the heats of mixing of both n-hexane and 2,2-dimethylbutane with hepta-methylnonane which are of similar magnitude.

However, the branching effect on heats of mixing has been found to be significant in systems of n-alkane with branched alcohol (BG). The heats of mixing of branched butanol/n-hexane systems are found to decrease appreciably in the order tertiary > secondary > iso- > n-.

Thus moderate branching in an alkyl group located so as not to interfere directly with a polar groups gives rise only to second order effect, at least for the twelve alcohol/alkane systems studied, and no special modification on the model is necessary. The average root-mean-square deviation between experiment and theory (using group parameters given by equations (7.6) and (7.6)) is 8.3%. Details are given in Table 7.6. Some of the prediction results are also plotted in Figures 7.8 and 7.9.

7.4 Conclusion

The simplicity of the fundamental equation used in the model together with the quality of prediction make the analytical group solution model a very useful and powerful tool for generating heats of mixing of non-ideal systems. It

-93-

T/	۱BL	.E	7	.6
----	-----	----	---	----

System	RMS Deviation (%)
n-pentanol/n-hexane	5.8
n-pentanol/2,2-dimethylbutane	10.3
n-pentano1/2,3-dimethy1butane	11.8
n-pentanol/2-methylpentane	7.7
n-pentano1/3-methylpentane	9.2
isopentanol/n-hexane	9.1
isopentanol/2,2-dimethylbutane	5.9
isopentano1/2,3-dimethylbutane	5.7
isopentanol/2-methylpentane	6.0
isopentanol/3-methylpentane	5.5
isopentanol/heptane	10.6
isopentanol/octane	12.1

0

Prediction Results on Alcohol/Alkane System at 25°C

FIGURE 7.8

· • • •

-95-

\$0

Prediction of Heats of Mixing for the System n-Pentanol/2,2-Dimethylbutane[,] at 25^oC

¥.,

ų.

 $f \to f^{k-1} k$

о ,

,

FIGURE 7.9

Ż

Prediction of Heats of Mixing for the System Isopentanol/2,2-Dimethylbutane at 25°C

`7

has numerous advantages over the previous group solution model where the group excess enthalpies, H_k , were computed from the partial molar heats of mixing and its values were plotted graphically or fitted with polynomial functions of X_k . For a binary group system, the analytical expressions only incorporate two parameters, thereby minimizing the amount of data needed.

Moreover, the predictive analytical group solution model developed in the present study has increased the accuracy of the prediction substantially. Estimates produced by the model are generally quite adequate for preliminary process evaluation and design and very suited for computer calculation.

-97-

8. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

8.1 Apparatus and Experimental Results

Je.

A semi-continuous, isothermally operated calorimeter of the Van Ness type for measurements of endothermic heats of mixing over a wide temperature range has been constructed and thoroughly tested. The calorimeter has many desirable features. It contains no vapor space. Thus the errors associated with vaporization and condensation effects are completely eliminated.

The heats of mixing of 17 systems of n-alcohol/ n-alkane and 12 systems of n-pentanol or iso-pentanol with hexane isomers over a temperature range 15° C to 55° C are believed to be a significant contribution to the body of data for the heats of mixing of binary solutions. These data are not only useful in themselves for engineering purposes but they also served as base data for the predictive model.

Some modifications can be made to the existing apparatus that would extend its capabilities.

a) The addition of other automatic burettes would extend the capabilities of the apparatus to study multicomponent mixtures. Strictly speaking, we could study multicomponent systems in the apparatus as it is by having mixtures of known compositions in the burette. Many runs would be

-98-

necessary to determine the entire composition range. In the case of a ternary mixture, with one additional burette containing the third pure component, the entire composition diagram could be covered reasonably well in three consecutive runs.

b) The calorimeter can be modified to measure heats of mixing for either endothermic or exothermic systems. In addition to the existing electrical heater, a thermoelectric cooling device can be added to the present apparatus. For the measurement of an exothermic heat effect (W3), the cooling device can be adjusted to remove heat from the calorimeter.

8.2 The Predictive Model

The predictive method developed in the present study is based on the intuitive approach of treating mixtures in terms of their constituent structural groupings. The simplicity of the fundamental Wilsop equation used in the model, the small amount of information required for the prediction together with the quality of prediction make the analytical group solution model a very useful and powerful tool for generating heats of mixing of non-ideal systems.

It has been shown that the group solution model for heats of mixing, put in analytical form using the Wilson

-99-

equation, gives a good representation of non-ideal liquid mixtures containing the groups hydroxyl and methylene. The analytical model obviates some of the limitations and inaccuracies of the previous model and is well suited to \computer calculation.

The group Wilson parameters were evaluated from experimental heats of mixing for n-alcohol/n-alkane systems in the temperature range from 15° C to 55° C. Use of these parameters regenerated experimental heats of mixing with an average accuracy of 5%. Agreement between theory and experiment was also obtained for binary systems of n-pentanol or iso-pentanol with hexane isomers. Branching in an alkyl group in these systems has only second order effect and no special means of modification on the model is necessary.

In the chemical industry, accurate design of separation operations requires reliable thermodynamic properties of mixtures. But for binary systems, the required data are often not available at the temperature and pressure where we want them, and for ternary or multicomponent mixtures, there are frequently no data at all.

The analytical group solution model is especially useful for making reliable predictions of liquid mixtures. The model can be readily extended to various

-100-

classes of systems containing other functional groups such as CO-, CN-... Parameters associated with pair of structural groups generated from experimental data of binary systems at various temperature can be used to project data of multigroup and multicomponent mixtures. Thus the experimental efforts could be minimized to supply the desired design data.

-101

Ċ

REFERENCES

.

-102-

5	•
A1.	Adcock, D.S., McGlashan, M.L., Proc. Roy. Soc. (Lond.) 226A, 226 (1954).
B1.	Butler, J.A.V., Ramchandoni, C.N., J. Chem. Soc., Lond., 952 (1935).
B2 .	Butler, J.A.V., Ramchandoni, C.N., Thompson, D.W., Ibid., 280 (1935).
в3.	Bronsted, I.N., Koefoed, J., Kgl. Danske Videnskab. Sers-Kab, Mat-fys. Meds. <u>22</u> , 1 (1946).
B4.	Brown, C.P., Mathieson, A.R., Thyne, J.C., J. Chem. Soc., 4141 (1955).
B5.	Bennett, J.E., and Benson, G.C., Can. J. Chem., <u>43</u> , 1912 (1965).
,вб.	Brown, I., Fock, W., Smith, F., J. Chem. Thermodyn., <u>1</u> (3) 273 (1969).
C1 •	Chao, K.C., Robinson Jr., R.L., Smith, M.L., Kuo, C.M., Chemical Eng. Prog. Symp. Series 81, <u>63</u> , 121 (1967).
C2 .	Chao, K.C., Lee, T.W., Greenkorn, A., Can. J. Chem. Eng., <u>51</u> , 81 (1972).
ç3.	lbid, Chem. Eng. Science, <u>28</u> , 1005 (1973). ù
с4.	lbid, Ind. Eng. Fundam., <u>11(</u> 3), 293 (1972).
ĐÌ.	Derr, E.L., Deal, C.H., Proceedings International Symp. on Distillation, <u>3</u> , 37 (1969).

5

8

FI.	Flory, P.J., Polymer Chemistry, Cornell Univ. Press, Ithaca, New York (1953).
JI.	Jones, A., The Computer Journal, <u>13(</u> 3), 301 (1970).
J2 ~	Jones, A., Spiral Program, Shell Research Ltd., Thornton Research Center, P.O. Box 1, Chester CH1 3SH.
LĨ.	Langmuir, I., Third Colloid Symposium Monograph, Chemical Catalog Co., New York, 1925.
L2.	Lundberg, G.W., J. of Chem. Eng. Data, <u>9</u> (2), 193 (1964).
ŇÌ.	Maripuri, V.C., Ratcliff, G.A., Can. J. Chem. Eng. <u>49</u> , 375 (1971).
M2.	Ibid, <u>49</u> , 506 (1971).
M3.	Missen, R.W., Moelwyn Hughes, E.A., Trans. Far. Soc., <u>53</u> , 607 (1957).
M4.	Mrazek , R.V., Van Ness, H.C., Amer. Ingl. Chem. Eng. J., 7, 190 (1961).
M5.	Marquardt, D.W., Supplementary Program Series GAUSHAUS, No. 603, The University of Wisconsin Computing Center.
мб,	Marquardt, D.W., J. Soc. Ind. Appl. Math., 2, 431 (1963).
M7.	Murikami, S. and Benson, G.C., J. Chem. Thermodyn., <u>1</u> , 559 (1969).
۳́N۱.	Nguyen, T.H. and Ratcliff, G.A., Can. J. Chem. Eng., <u>49</u> , 120 (1971).

-103-

53

,	
, N2.	Ibid, <u>49</u> , 889 (1971).
N3.	Nguyen, T.H., Master Thesis, McGill University (1970).
P1.	Pierotti, G.L., Deal, C.H., Derr, E.L., Ind. Eng. Chem., <u>51</u> , 95 (1959).
P2.	Pierotti, G.L., Deal, C.H., Derr, E.L., Porter, P.E., J. Am. Chem. Soc., <u>73</u> , 7939 (1956).
P3.	Pope, A.E., Pflug, H.D., Dacre, B. and Benson, G.C., Can. J. of Chemistry, <u>45</u> , 2665 (1967).
P4.	Papadopoulos, M.N., Derr, E.L., J. Am. Chem. Soc., <u>81</u> , 2285 (1959).
P5.	Patterson, D., J. of Paint Technology, <u>45</u> (578), 37 (1973).
Rì.	Redlich, O., Derr, E.L., Pierotti, G.L., J. Am. Chem. Soc., <u>81</u> , 2283 (1959).
R2.	Ratcliff, G.A., Chao, K.C., Can. J. Chem. Eng., <u>47</u> ; 148 (1969).
R3.	Ronc, M. and Ratcliff, G.A., Can. J. Chem. Eng., <u>49</u> , 825 (1971).
R4.	Ratcliff, G.A. and Khan, M.A., Can. J. Chem. Eng., <u>49</u> , 125 (1971).
R5.	Ronc, M., Ph.D. Thesis, McGill University (1973).
R6.	Ramalho, R.S., Ruel, M., Can. J. Chem. Eng., <u>46</u> , 467 (1968).

-104-

\$1.	Savini, C.G., Winterhalter, D.R., Van Ness, H.C., J. Chem. Eng. Data, <u>10</u> , 171 (1965).
, ۶2۰	Savini, C.G., Winterhalter, D.R., Van Ness, H.C., J. Chem. Eng. Data, <u>10</u> , 168 (1965).
[°] S3•	Savini, C.G., Winterhalter, D.R., Kovach, L.H., Van Ness, H.C., J. Chem. Eng. Data, <u>11(</u> 1), 40 (1966).
vì.	Van Ness, H.C., "Classical Thermodynamics of Non- Electrolyte Solutions", p. 100, McMillan, New York (1964).
W1.	Wilson, G.M., J. Am. Chem. Soc., <u>86</u> , 127 (1964).
W2.	Wilson, G.M., Deal, C.H., Ind. Eng. Chem. Fundam., <u>1</u> , 20 (1962).
W3.	Winterhalter, D.R., Van Ness, H.C., J. Chemical

0 P

3. Winterhalter, D.R., Van Ness, H.C., J. Chemical Eng. Data, <u>11</u>, 189 (1966).

ېر ۲

A1. CALCULATION OF COMPOSITION AND INTEGRAL HEATS OF MIXING

Al.I. <u>Composition of Solution in the Dewar Flask</u> Al.I.I. <u>Mass of Material Charged to Dewar Flask</u>

Prior to, and immediately following, charging the Dewar flask, the 100 ml. stoppered volumetric flask is weighed. Since the volumetric flask is stoppered under atmospheric conditions, it contains vapour, assumed to be air at room temperature, in addition to the charged material. In order to obtain the actual amount of material placed in the Dewar flask, the mass of additional vapour in the volumetric flask must be sub-tracted from the balance weighings.

Thus

and

$$m_2' = m_2 - w_1' (\rho_{air}/\rho_1)_{T=25} c$$
 (A1.1)

$$m_{1}^{2} = m_{1} - m_{2}^{2}$$
 (A1.2)

Solving for wi:

$$w_1' = \frac{m_1 - m_2}{(1 - \rho_{air}/\rho_1)_{T=25}^{\circ}C}$$
 (A1.3)

where m_l, m₂ are initial and final weights of the stoppered weights

w₁ is the weight of pure component 1 charged to the Dewar flask.
and m¹₂ is defined by equations (Al.1-2). The Dewar flask is charged quickly with the first component and is sealed immediately with the calorimetric plug. Some of the pure liquid is lost due to evaporation during this step. The small amount of liquid lost can be estimated on the assumption that the entire vapour space (total Dewar flask less liquid volume) is saturated with vapour and this vapour is completely lost.

Assuming that this vapour behaves as ideal gas, i.e. PV = nRT, then the mass of vapour loss, m_{vap}, is

$$m_{vap.} = \frac{P_{l}^{o} V}{RT} M_{l} \qquad (A1.4)$$

where P_1^o = vapour pressure of pure component 1, mm Hg V = (Volume of Dewar flask - volume of pure liquid 1), ml

> R = gas constant = 62.3×10^{-3} ml, mm Hg gmmole/^oK T = 298° K

 M_{l} = molecular weight of pure component l Thus, the corrected weight of pure component l, w_{l} , charged to the Dewar flask is finally given by:

$$w_1 = w_1 - m_{vap}$$
. (A1.5)

-A2-

Al.1.2 Moles of Feed Material Injected into the Dewar Flask

The feed material is pure component 2 and the amount of material added to the Dewar flask, w_2 , is calculated from:

where ρ_{2} = density of pure component 2.

Al.1.3 Mole Fraction Component 1/2 in the Dewar Flask

Mole fraction of component 1, x_1 ,

$$x_{1} = \frac{w_{1}/M_{1}}{w_{1}/M_{1} + w_{2}/M_{2}}$$
(A1.6)

where M_1 and M_2 are the molecular weight of pure components 1 and 2 respectively.

Mole fraction of component 2:

 $x_2 = 1 - x_1$ (A1.7)

Al.2 Calculation of Integral Heat of Mixing at x,

The energy of "heat" added, Q, to the system during a mixing step is given by the following equation:

or, referred to Figure 4.5

-63-

$$Q = \frac{e_{S}}{R_{S}} \cdot \frac{R_{1} + R_{2}}{R_{1} + R_{2} + R_{H}} \cdot e_{H} \cdot \frac{R_{1} + R_{2}}{R_{1}} \cdot \theta$$
(A1.9)

where

es

potential drop across the standard resistor
 R_S, volts

 R_{S} = resistance of the standard resistor, ohms $R_{1}+R_{2}$ = resistance of the resistors in parallel with the calorimeter heater, ohms

$$R_{H}$$
 = resistance of the calorimeter heater, ohms
 e_{H} = potential drop across R_{1} , volts

$$\frac{e_S}{R_S}$$
 = current in the circuit

 $\frac{R_1 + R_2}{R_1 + R_2 + R_H} = \text{ratio of current passing}_i \text{ through the calor$ imeter heater to the total current in the circuit $<math display="block">\frac{R_1 + R_2}{R_1} = \text{multiplication factor for the voltage divider}$

The integral heat of mixing is given by:

$$\Delta H(Joules/Gmole) = Q/n \qquad (A1.10)$$

where n is the number of moles of liquid in the Dewar flask,

$$n = w_1/M_1 + w_2/M_2$$
 (A1.11)

A listing of the program to calculate the compositions and integral heats of mixing is given in Section Al.3.

- A Program to Compute Composition and Integral Heats of Mixing A1.3
 - -
 - Listing of the Program "Heats" Sample of Input Data for the Program "Heats" Sample of Output Data for the Program "Heats"
 - -

1

Ī

LEVEL MAIN DATE = 7317121 13/03/5 THIS PROGRAM IS USED TO CALCULATE THE EXPERIMENTAL HEATS OF MIXING C J OF NON IDEAL SYSTEMS С **`C** NPTS=NUMBER OF EXPERIMENTAL POINTS . С RS=RESISTANCE OF STANDARD RESISTOR С RI = RESISTANCE OF VOLTAGE DIVIDER RESISTOR C R2= RESISPANCE OF VOLTAGE DIVIDER RESISTOR С RH=RESISTANCE OF THE HEATER С EH=VOLTAGE OF THE HEATER AS READ ACROSS R1 С ES=VOLTAGE ACROSS STANDARD RESISTOR WI=WEIGHT OF PURE COMPONENT INITIALLY IN DEWAR FLASK С С AV2=V2=VOLUME OF THE OTHER PURE COMPONENT ADDED TO THE DEWAR FLASK С TIME=HEATING TIME DELTAH=CALCULATED INTEGRAL HEATS OF MIXING ' C DIMENSION TITLE1(20).TITLE2(20) DIMENSION AV2(50), ATIME(50), DELTAH(50), X1(50), X2(50), HX1X2(50) DIMENSION VEH(50), VFS(-50), TIME(50), Q(50) DIMENSION H1(50)+H2(50) REAL M1, M2 10 READ(5,20,END=1000)TITLE1,TITLE2 20 FORMAT(20A4/20A4) READ(5,15)VP1 FORMAT(F10.0) 15 READ(5,30)R2,R1,RH,RS 30 FORMAT(4F10.0) READ(5,40)NPTS,R01,M1,R02,M2 40 FORMAT([10,4F10.0) READ(5,45)DW1,DW2 45 FORMAT(2F10.0) READ(5,50) (ATIME(I),H1(I),H2(I),VEH(I),VES(I),I=1,NPTS) 50 FORMAT(5F10.0) CALCULATION OF THE CORRECTED MASS OF MATERIAL IN THE DEWAR FLASK С C -2 VCLDF=325. С VAPORIZATION CORRECTION W1 = (DW1 - DW2) / (1. -0.0012 / RO1)WVAP=VP1*(VOLDF-W1/RO1)*M1/0.1850E08 WI = WI - WVAPCALCULATION OF INTEGRAL HEATS OF MIXING. С V2=0. TIME(1) = ATIME(1)DO 70 I=2.NPTS 70 TIME(I)=ATIME(I)-ATIME(I-1) DO 100 I=1,NPTS AV2(I) = H2(I) - H1(I)V2=V2+AV2([) RAT1=W1/M1 RAT2=R02+V2/M2 Dg=(VES(I)/RS)*((R1+R2)/(R1+R2+RH))*VEH(I)*((R1+R2)/R1)*TIME(I) IF(I.EQ.1) GO TO 80 Q(1)=Q(1-1)+DOGO TO 90 80 Q(I) = DQ90 HEATS=Q([)/(RAT1+RAT2) DELTAH(1)=HEATS ۸

LEVEL	21	MAIN	DATE = 7	3171	13/03
_					
C	CALCULATION	OF COMPOSITION	1		
	XI(I)*RATI/(RATI+RATZ)			*
	X2(1)=1X1(D	• •		
	HX1X2(1)=DEL	TAH([]/(X]([]*X2([))		
100	CONTINUE				
	PRINT 180	,			
190	FURMATCIHLI		•		
	PRINT 190, TT	TLEL, TITLE2			
140	FURMAT (20447)	20441	5		
200	PRIMI 209,0W	1,0W7,R01,M1,R02,M		, , , , , , , , , , , , , , , , , , , ,	
204	FUKRAI(15, 10)	WI=*++ [U.4+123+*DW	2=•,F10-4/15,•R(1=", F10, 4, [25	•••M[≡
	LIFIU.41147; 1	KU2='+FIU+++103+'M	2=++F10+4/1	•	
210	PRIMIZIU				-
210	TURMAILILU;"	N' + 1 1 2 + 1 1 ME' + 1 2 / +	* VUL • * • • • • 2 • * VEH*	11214.462.410	
	LITT ** 2 * 107	- UELIAN - 1931 - UEL	1 AM/ X1 X2*/ }		
	PREMI 2209 (1,AILAC(1/,AV2(1/, NOTC)	VEH(1), VES(1), XI	(1), X2([], UEL	IAMU
220	ECOMATICY IS	1NF137 2610 2 616 699616 /	L 2510 4 2510 1	•	
220	- FURMAT(3A113	127100217130317130 TITICI TITIC3	0+2F1U+4+2F1U+1	,	
	DO 220 F-1.N	919LE199194EZ			
2304	UD 250 1-194	713 72(1),06(1A4(1) 47			
240	FORMATIE20.4	-2F20-13			
240		12120111	•		
1000	STOP	Ð			
	FND	2	•		
		,		•	-
FEFE		C.SOURCE.NOLIST.NO	CECKALOAD NONAP	,	1
EFFF	CT* NAME = N	AIN . I INFCNT =	56		
			- 0		
•	SOURCE STATEM	ENTS = 58.PR	NGRAM STZF =	4364	

•

•,

ç

9

,

ð ŧ

ĩ

r

1

.

SAMPLE INPUT DATA FOR HEATS'

Ŋ,

Ċ

HEAT OF MIXING OF ESOPENTANON - N-HEDTANE AT 25 DEG G. JUNE ES 1973 FIRST COMPONENT - N-HEDTANE THERMISTOR READING-101700 VPI= 52.25

R2# 2700. R1# 300. 41# 45. R5#0.999997 * PTS# 26 RC1#0.6795 M1# 100.206, R02#0.8059 M2#* 88.190 DW1# 123.89407 DW2# 57.41060

\$					-	
N ,	TIME	142	112	"NULLIA	VES	
1	704.70	0.25	1.86	0.31656	0.07706	
2	1016.80	4.86	6.14	0.31666	07000000000000000000000000000000000000	
3 1	1314.90	0.20	4.11	0.1054	0 0770 g	3
. 4	1572.40	» 0.21 ·	- 4.16	0.11656	0.07704	
5 - 5 - 2	1775.30	0.21	4.19	0.31464	0.01100	
6 😓	1955.80	0.21	4 . 10	- V. 11004 - N. 11666 -		
7	2117-40	0.20	4.20	() 1) () () () () 1) () () ()	· · · · · · · · · · · · · · · · · · ·	
- 8	2263.90	0.20	A 13	0 11654		,
9	2397.40	0.21	X 9 1 3	0 31034	0.07796	
10 、	2519.70	0.21 (······································	0.01484	0.07796	
าไป เ	2628.40 %	0.20	4 • 1 7	0.31034	-0407796	
12	2733.40	0.22	* • 1 3, 6 30	0. 110 24	0.01796	
13 ª	2829.96	0.20	4.64	0.11054	0.07796	
14	2014.70	0.21	4.19	0.11654	0.07796	
15	2004 20	9.71.5	4.66	0.11654	0.07796	
16	1069 00	0.77	4.23	0.11654	0.07796	
17	1136 60	0.71	4.22	. 0.31654	0.07796	
18	2122420	0.71	4.31	0.31654	°C+07794	
10	3197.40	0.21	4.27	0.11654	0.07196	•
20	, 2636.40	0.21	4.24	0.11654	0.07.796	
21	3307-00	9.20	"4.71 °	0.31654	0.07796	
22	1344.47	0.71	4.12	0.31654	0.07796	
22	3391.20	· 0.19 ·	4.19	0631654	° 0.07796 -	د
23	3417.90	0.20	` `4 ∙ 25°	0.31654	0.07796	
79 26	3467.70	0.21	4.18	0.31654	0.07796	
23	1498.00	, 0 . 19	~ 4.15	0.31654	0.07796	
76	3550.20	.0.21	6 .17	0 344.67		

SAMPLE OF OUTPUT DATA FOR THE PROGRAM 'HEATS'

HEAT OF MIXING OF ISOPENTANOL- N-HEPTANE AT 25 DEG C JUNE 19 1973 FIRST COMPONENT - N-HEPTANE THERMISTOR READING-103700

	DW1=	123.	8941	DW2=	57.4106	•	-	•				
,	R01=	0.	6795	M1=	100.2060	R02.	0.8059	M2 =	88.1500			
		N	TIME	vol	. •	VEH °	VES	Xi	• X2		DELTAH	DELTAH/X1)
	•	1	704.70	1.0	51	0.31654	0.077960	0.9783	0.0217	9	252.4	11898.2
		2 1	016.80	2.2	8	0.31654	0.077960	0.9492	0.0508	4	353.4	7323.6
		3 1	334.90	3.9	3 '	0.31654 *	0.077960	0.9027	0.0973		2441.2	5025.5
	,	4 1	572.40	3. 9)5	0.31654	0.077960	0.8605	0.1395	•	495.4	4127.0
		5 1	775.30	3.9	8	0.31654	0.077960	0.8217	0.1783		534.2	3646.7
	•	6 1	955.80	3.9	8	0.31654	0.077960	0.7863	0.2137		563.1	3351.7 🚬
		72	117.40	· 4.0	0	0.31654	0.077960	0.7537	0.2463		584.3	3147.7
	· · ·	8 2	263.90	3.9	3	0.31654	0.077960	0.7242	0.2758		600.3	3005.2
1	•	9 2	397.40	3.9	91	0.31654	0.077960	· 0.6970	0.3030		611.8	2896.7
6	1	0 2	519.70	3.9	, 76	0.31654	0.077960	0.6714	0.3286		619.4	2807.8
•	1	1 2	628.40	3.6	34	0.31654	0.077960	0.6484	0.3516		624.0	2736.9
	1	2 2	733.40	. 4.0)7 .	0.31654	0.077960	0.6256	0.3744		626.1	2673.3
	1	3 2	828.95	3.9	95	0.31654	0.077960	0.6050	0.3950	-	626.7	2622.5
	1	4 2	914.70	4.0	r	0.31654	0.077960	0.5855	0.4145	~ *	624.8	2574.5
	1	5 2	994.20	4.0)1	0.31654	0.077960	0,5671	- 0.4329		621.8	2532.8
	1	6 3	068.00	. 4.0)1 .	0.31654	0.077960	. 0.5499	0.4501		617.8	2495.9
	1	73	135.50	4.1	.0	0.31654	0.077960	0.5334	0.4666		612.3	2460.3
	1	8 3	197.40	4.0)6	0.31654	0.077960	0.5179	0.4821		606.3	2428.5
	1	93	252.40	. 4.()3	0.31654	0.077960	0.5034	0.4966		599.5	* 2398.3
	2	0 3	302.60	4.()6	0.31654	0.077960	0.4896	0.5104		592 . 1 '	2369.5
	2	1 3	349.95	3.9	1	0.31654	0.077960	0.4771	0.5229		585.2	2345.7
	2	2 3	391.20	3.9	9	0.31654	.0.077960	0.4649	0.5351		577.2	2320.4
	. 2	3 3	435.90	4.0)5	0.31654	0.077960	0.4531	ີ 0.5469		570.1%	2300.5
	2	4 3	467.70	. 3.9	7	0.31654	0.077960	0.4422	0.5578	•	561.4	2276.2
	2	5 [°] 3.	498.00	3.9	16°	0.31654	0.077960	0.4318	0.5682		553.0	2254.0
	2	6 3	530.20	3.8	6	0.31654	0.077960	0.4221	0.5779		545.6	2236.7

Tabulated Experimental Results A2.

Heats of Mixing for the System Benzene/ Cyclohexane at 25°C and 55°C Heats of Mixing for Alcohol/Alkane Systems

-A10-

TABLE A1

\$

Ĵ.

FEATS OF MIXING AT 25 DEG.C FOR THE SYSTEM BENZENE/CYCLOHEXANE X=MCLE FRACTION OF BENZENF, CELTA H=FEATS OF MIXING

	×	CELTA H	CEL +/X1X2
· · 1	0.0468	139.0	3115.
2 4	0.0992	278.4	• 3115.
r 3	0.1508	359.4	3119.
• 4 、	041969	493.8	3123.
5	0.2272	549.2	3128.
• • 6	0.2781	629.2	3134.
7	0.3006	660.2	314C.
8	0.3291	694.4	3145.
9	0.3684	733.2	3151.
10	0.3896	751.2	3159.
· 11	0.4247	773.5	3166.
12	0.4551	786.6	-3172.
13.	0.4808	793.3	3178.
14 -	0.5002	796.2	3185.
15	0.5192	796.6	3191.
16	0.53¢3	-795.3	3193.
• • 17	0.5382	794.6	3197.
18	0.5470	792.9	3200.
· 19 .	0,5479	. 793.6	3204.
· 20	0.5744	784.7	3216.
21	0.5847	780.9	3216.
` 22 <i>`</i>	0.6023	771.8	3222.
23	0.6208	760.6	· 3231.
24	0.6404	746.1	3240.
, 25	0.6699	698.1	3157.
26	0.6904	676.5	3165.
27	0.7104	🗙 653.4 ·	3176
28	0.7305	646.7	3285.
29	0.7470	623.3	3298.
30	0.7831	564.1	3321.
31	° 0.8C89	517.4	3347.
32	0.8582	411.1	3378.
33	0.8089	528.8	3421.
. 34	0.94C2	193.7	3445.
' 35	0.9845	53.2	3487.

, fi

-A10a-

-A10b-

TABLE A2

11 .1 "

HEATS OF MIXING AT 50 DEG.C FOR THE SYSTEM RENZENE/CYCLCHEXANE X=MCLE FRACTICN CF BENZENE, CELTA H=HEATS CF MIXING

			, .	1
	. N	X '	CELTA P	DEL H/X1X2
,	,	·		
	1	0.0487	131.4	2837.
	2	0.0922	237.8	2841.
-	3	0.1315	324.7	2843.
	4	0.1685	398.9	2847.
	5	0.2025	460.6	2252
	6	0.2341	511.5	2853.
	• 7	0.2633	554.2	2857.
	8	0.2903	589.2	286C.
`	· 9	0.3200	£23.C	2863.
	10	0.3430	646.3	2868.
	11	0.3813	677.1	2870.
	12	. 0.4011	690.6	2875.
	13	0.4197	701.4	2880.
	14	0.4533	714.7	2884.
	15	0.4684	720.1	2892.
	. 16	0.4569	724.5	2858.
	171	0.5097	725.7	2904.
	18	0.5108	726.7	2908.
	19	. 0.5449	722.1	2912.
	20	0.5279	. 724.7	2908.
	21	0.5655 ,	717.0	2918.
•	22	0.5713	714.2	2916.
	23	0.5822	· · 711.2°	2924.
	24	0.6077	699.2	2933.
	25	0.6211	691.4	2938.
	26	0.6357	3.183	2944.
	27	0.6509	. 670.3	[,] 2950.
- '	28	0.6668	657.4	2959. '
u u	29	0.7017	621.3	2968.
	30	0.73C5	586.1	2977.
	31	0.7501	559.9	2987
	32 °	0.7651	531,9	2995.
	33	0.8001	481.3	3009.
	34 · ' ,	. 0.83Q4	476.5	3028.
-	35 · `	0.852C	383.3 。	3040.
•	36	0.8820	318.3	3058.
	37	0.9012	274.1	3078.
•	38	0.9464	173.75	3100.
	39	0.9703	90.1	3125.

214

TABLE A3

Ø

48

HEATS	OF	MIXING	AT	15	DEC.C	FUR	THE	SYSTEM	N-RUTANOL	+N-HEXANE
CELTA	H 1	IN JQULE	ES/M	UL.E	1					

N	X ALC	DFLTA H	DEL H/Y1X2
1	0.0272	143.8	7324.0
2 0	0.0546	257.0	4978.0
3	0.1044	328.4	3512.0
4	0.1479	371.8	2950.0
5	0.1883	402.4	2633.0
6	0.2252	423.8	2429.0
7	0.2582	438.0	2287.0
8	0.2904	446.1	2165.0
9	0.3198	450.3	2070.0
10	0.3478	450.9	1988.0
11	0.3730	448.3	1917.0
12	0.3997	, 442.7	1845.0
13	0.4203	437.8	1797.0
14	0.4379	432.0	1755.0
15	0.4552	425.3	1715.0
16	0.4727	418.0	1677.0
17	0.4881	410.8	1644.0
18	0.5038	~ 403.0	1612.0
19	0.5207	393.6	1577.0
20	0.5338	386.5	1553.0
21	0.5460	379.0	1529.0
22	0.5559	373.0	1511.0
23	0.5670	365.8	°1490.0
24	0.5730	363+1	1484.0
25 。	0.5767	359.8	1474.0
26	0.5828	356.4	1466.0
27	0.5866	353.1	1456.0
28	0.5927	349+6	1448.0
29	0.5956	347.1	1441.0
30	0.6026	342-2	1429.0
31	0.6130	335.0	1412.0
32	0.6241	327.3	1795.0
33	. 0.6361	319.2	1379.0
34	0.6479	310-7	1362-0
35	0.6605	301.6	1345.0
36	0.6,736	291-8	1327.0
77	0.6870	281.5	1309.0
38	0.7011	270-3	1290.0
39	0.7159	2,58.9	1273.0
40	0.7313	246.6	1255.0
41	0.7465	233.5	1234.0
42	0.7624	219.7	1214.0
43	0.7797	. 205.8	1198.0
44	0.7975	190-7	1181.0
47	0.8151 -	176.2	1169.0
40	0.8338	139.6	1152.0
47	0.8549	141.5	1141.0
48 40	0.3766	122.2	1130.0
49	0.8990	102.3	1127.0
7U 61	0.9227	81.5	1140.0
フレ	0.9472	50.51	1170.0
76	0.9729	54+4	1304.0.

-A10c-

TABLE A4:

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-PUTANOL+N-HEPTANE. CELTA H IN JOULES/MOLE

N	X ALC	DELTA H	DEL H/X1X2
1	0.0337	203.1	6238.0
2	0.0631	266.7	4511.0
3	C-1213	349.2 **	3276.0
4	0.1720	399.6	2806.0
5	0.2202	435.6	2537.0
6 -	0.2614	457.6	2370.0
7 °	0.2984	471.5	2252.0
8	0.3326	478.1	2154.0
9	0.3630	480.3	2077.0
10	0.3911	479.1	2012.0
11	0.4175	474.5	1951.0
12	0.4405	469.5	1905.0
13	0.4656	461.1	1853.0
14	0.4857	453.9	1817.0
15	0.5043	445.5	1782.0
16	0.5204	438.0	. 1755.0
17	0.5359	429.8	. 1728.0
18	0.5508	421.4	1/03-0
19	0.5650	413.1	1691.0
20	0.5779	405.2	1661.0
21	0.5904	397.8	1645.0
22	0.5935	393.3	1630.0
23	0.6018	389.6	1626-0
24	0.6020	387.2	1616.0
25	0.6118	380.5	1602.0
26	0.6215	375.7	1597.0
27	0.6125	381.9	1609.0
28	0.6219	372.5	1584.0
29	0.6315	369.1	1586.0
30	0.6323	364.8	1569.0
31	0.6410	362.4	- 1575.0
32	0.6428	356.6	1553.0
33	0.6487	356.0	1562.0
34	0.6539	348.8	1541.0
35	0 - 6651 .	340.1	1527.0
36	0.8772	330.1	1510.0
37	0.6895	319.8	1494.0
38	0.7019	309.0	1477.0
39	0.7156	296.5	1457.0
40	0.7295	284.9	1444.0
41	0.7437	272.2	1428.0
42	0.7585	257.5	1406.0
43	0.7743	242.6	1388.0
44	0.7907	227.1	1372.0
45	U_8075	211-1	1358.0
46	0-8237	194.6	1340.0
47	0.8416	175.8	1319.0
48	0-8613	156.4	1309.0
49	0.8811	134.6	1285.0
50	0.9019	111.7	1263.0
51	0.9229	88.0	1237.0
52 .	0.9456	62.6	1217.0
53	0.9749	27.1	1109.0

-A11-

• | •

HEATS OF MIXING AT 15 DEG. C FOR THE SYSTEM N-BUTANOL + N-OCTANE DELTA H'IN JOULES/MOLE

		-		
N	X ALC	DELTA H	· DEL H/X1X2	•
1	0.0352	252.3	7429.0	
2	0.0680	324.2 、	5116.0	
3	0.1266	405.8	3670.0	1
4	0.1787	457.5	3117.0	•
5	0.2265	492.3	2810.0	
6	0,2687	513.8	2615.0	I
7	0.3074	527.4	2471.0	
8 -	- 0.3430	534.1	° 2370.0	
9	0.3749	535.7	2286.0	
10	0,4030	533.9	2219.0	,
11	0.4286	529.2	2161.0	
12	0.4531	522.9	2110.0	1
13	0.4745	516.2	2070.0	
14	0.4950	507.7	2031.0	
15	0.5128	499.2	1998.0	•
16	0.5300	490.2	1968.0	
17	0.5442	482.0	1943.0	
18	0.5580	473.8	1921-0	•
19,	0.5718	465.2	1900-0	T
20	0.5844	456.6	1880-0	•
21	0.5969	448.3	1863-0	
22	0.6092	439.0	1'844_0	o ,
23	0.6122	439.4	1851-0	4
24	0.6206	430.2	1827.0	
25	0.6212	433.0	1840.0	
26	0-6304	425.9	1828-0	
27	0.6310	422.1	1813.0	•
28	0.6399	418.0	1814-0	
29	0.6412	413.9	1799.0	
30	0.6496	409.7	1800-0	۲.
31	0.6512	405.4	1785.0	•
32	0-6602	400.7	1786-0	
33	0.6709	391.5	1773.0	
34	0.6823	380.6	1756-0	
35	0.644	369.9	1743.0	
36	0.7061	359.4	1732.0	Ш., с
37	0.7189	347.0	1717.0	3
38	0.7323	333.7	1702.0	
39	0.7454	320.3	1688-0	
40	0.7593	306.1	1675-0	i
41	0.7735	291.2	1662.0	۰,
42	0.7887	274_8	1649_0	
43	0.8045	256.5	1631.0	*
44	0.8212	238.6	1625.0	
.45	0_8373	219.5	1611-0	(
46	0.8547	198.5	1598.0	
47	0.8728	176.1	1586-0	· · ·
4.8	N_ 8921	151.6	1575_0	
49	0.9123	124.9	1561.0	-
50	0.9135	96.8	1559.0	
51	0-955A	~ 65.9	1561.0	
52	0.9782	37.0	1546.0	
26	(VUTIUE	, J J • V	134000	

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-RUTANOL+N-DECANE DELTA H IN JOULES/MOLE

		c	
N	X ALC	DELTA H	DEL H/X1X2
1	0.0469	275.8	6171.0
.2	0.0766	345.6	* 4886.0
3`	0.1428	448,0	3660.0
4	0.2014	509.4	3167.0
5	0.2531	551.1	2915.0
6	0.2985	577.3	2757.0
7	0.3399	591.7	2637.0
8	0.3756	599.9	2558.0
9	0.4092	601.2	2481.0
10	0.4399	599.2	\$2432.0
11	0.4661	593.8	2386.0
12	0.4890	587.0	2349.0
13	0.5079	580.9	2324.0
4	0.5279	572.2	2296.0
15	0.5455	563.8	2274.0
16	0.5635	554.2	2253.0
7	0.5821	542.5	2230-0
8	0.5970	533.1	2216.0
19	0.6107	523.3	2201.0
20	0.6225	514.4	2189.0
21	0.6341	505.1	2177.0
22	0.6450	496.2	2167.0
23	0.6551	487.4	2157.0
24	0.6653	479.0	2151.0
25	0.6668	487.7	2195.0
26	0.6748	470.5	2144.0
27	0.6754	479.9	2189.0
28	0.6835	462.3	2137.0
29	0-6840	471.6	2182.0
30	0.6933	462.3	2174.0
31	0.7026	452.2	2164.0
32	0.7123	441.6	2155.0
33	0.7227	430.7	2149.0
34	0.7329	418.9	2140.0
35	0.7431	407.2	2133.0
36	0.7542	395.0	2131.0
37	0.7650	* 381.7	2123-0
38	0.7759	368.6	2120.0
39	0.7879	35,2.8	2111.0
io -	0.8001	337.3	© 2109.0
41	. 0,8125	321.0	2107.0
42	0.8257	302.8	2104.0
43	0.8394	283.4	2102.0
<u>44</u> .	0.8531	262.9	2098.0
45	0.8694	240.2	2102.0
6	0.8831	217.5	2107.0
• 7	0.8980	197.4	2100.0
- 84	0.9140	165.4	2104.0
19	0.9298	137.8	2111.0
0 0	0.9468	106.5	2114.0
	0.9645	. 72.3	2112.0
52	C.9816	38.3	2119.0

L ...O.

TABLE A7:

HEATS OF MIXING AT 15 DEG. C FOR THE SYSTEM N-PENTANOL+N-HEPTANE Delta H in joules/pole

N	X ALC	DELTA H	DEL H/X1X2
1	0 0315	215 3	7056 0
2	0.0519		06373.0
2 '	0.1002	201.3	2645 O
۲ ۵	. 0 1436	372 0	2002eli 2026 0
7 C	0.1935		3033.0
7	0.1037	903.5	2643.0
0	0.2204	427.4	2476.0
1	0.2742	441.9	2331.0
0	0.2052	302-2	2221.0
9 10	0.3140	459.9	2135+0
10	0.3384	463-4	2070.0
	0.3619	465-8	2017.0
12	0.3833	463.3	1960.0
13	0.4019	461.0	1918.0
14	0.4211	457.8	1878.0
15	0.4400	452.9	1838.0
16	0.4568	447.4	1803.0
17	0.4739	440.5	1767.0
8	0.4883	434-0	1737.0
19	0.5054	426-2	1705.0
20	0.5172	419.8	1681.0
21	0.5284 /	413-7	1660.0
22	0.5407	407-0	1639.0 ',
23	0.5525	400-0	1618.0
24	0.5570	399.7	1620.0
?5	0.5639	393.2	1599.0
26	0.5668	393-4	1602.0
27	0.5747	386.4	1581.0
28 、	0.5769	386-4	1583.0
29	0.5849	379.2	1562.0
30	0.5877	378.5	1562.0
31	0.5986	370.5	1542.0
32	0.6102	361.8	1521.0
33	0.6222	352.8	1501.0
34	0.6341	343-4	1480.0
35	· 0.6472	333.1	1459.0
36 🦂	0.6605	321-8	1435.0
37	0.6739	310.3	1412.0
38	0.6882	298-3	1390.0
39	0.7027	285-6	1367.0
10	0.7179	272-0	1343.0
41	0.7334	257.7	1318.0
42	0.7504	241.8	1291.0
43	0.7679	225.8	1267.0
44	0.7867	207.6	1237.0
15	0.8063	189.6	1214.0
16	0.8269	169.0	1191.0
47 ·	0.8485	148.3	1154-0
8	0.8704	127.0	1126-0
49	0.8941	102-9	108/-0
50	0.9162	81.1	1056.0
51	0.9424	54.3	1001-0
52	0.9722	25.3	935.0
		•	

C

-A14-

HEATS OF MIXING AT 15 DEG.C FUR THE SYSTEM N-PENTANOL +N-DECANE DELTA H IN JOULES/MOLE

N	X ALC	Ø DELTA	H DEL H/X1X2
1	0.0418	285.8	7135.0
2	0.0665	338.8	5458.0
3	0.1265	427.7	3871.0
4	0.1804	482.3	3262.0
5	0.2293	518.3	2933.0
6	0.2717	545.0	2754.0
7	0.3104	563.0	2630.0
8	0.3445	574.9	2546.0
9	0.3758	581.5	2479.0
10	0.4047	584.0	2424.0
11	0.4307	583.6	2380.0
12	0.4546	580.4	2341.0
13	0.4754	575.4	2307.0
14	0.4951	569.7	2279.0
15	0.5140	561.8	2249.0
16	0.5306	553.7	2223.0
17	0.5448	546.3	2203.0
18	0.5586	539.0	2186.0
19	0.5733	530.1	2167.0
20	0.5866	521+1	2149.0
21	0.5989	511-9	2131.0
22	0.6100	503-4	2116.0
23	0.6209	- 494.5	2101.0
29	0.6291	481.4	2063.0
27	0.6309	486.0	2087.0
20	0.6354	476.8	2053.0
21	0.6407	477.2	2073.0
20	0.0434	470-1	3049.0
27	0.0489	451.8	1983.0
20	0.0527	460.8	2033.0
22	y.0040	450-9	2023.0
22	0.4950	441.0	2013.0
34	0 4044	4 30 • 7	1999.0
15	0.0304	42U+L	1987.0
36	0.7109	408.5	1975.0
37	0.7318	342•1	
18	0.7440	302.49	
39	0.7572	7 200-7	1936.0
40	0.7709	337+1	
41	0.7845	321.0	1911,0
47	0.7983	302 9	1077.0
43	0.8128	286.7	1471 0
44	0.8284	263.6	1954 0
45	0.8450	240.7	1930 0
46	0.8616	218.6	1834 0
47	0.8787	194_0	1820 0
48	0.8979	165_6	1806_0
49	0.9174	135-1	1783.0
50	0.9372	103.1	4 1751.0
51	0.9570	71_R	1745.0
52	0.9783	36.4	1713.0

ية. ميد -416-

۰.

,

٥

		•		
N	X ALC	DELTA H	DEL H/X1X2-	
1	0.0280	210.8	7746.0	
2	0.0455	248.5	5723.0	
,3	0.0885	307.6	3813.0	
4	0.1276	343.8	3088.0	
5	0.1642	- 369.3	2691.0	
6	0.1961	387.8	2460.0	
7	0.2260	402.8	2303.0	
8	0.2531	412.5	2182.0	
9	0.2773	420.2	2097.0	
10	0.3008	426.3	2027.0	
11	0.3231	430.2-	1967-0	
12	• 0.3438	432.5	1917.0	
13	0.3632	433.2	·· 1873.0 .	
14	0.3812	432.6	1834-0	
15	0.3997	431.2	1797.0	
16	0.4169	429.3	1766.0	
17	0.4360	426.2	1733.0	
18	0.4519	421.3	1701.0	
19	0.4659	416.8	1675.0	
20	0.4789	411.8	1650.0	
21	0.4908	406.9	1628.0	
72	0.5017	402.2	1609.0	
23	0.5139	\$ 396.9	1589.0	
24	0.5216	390.3	1564.0	
25	0.5256	391.7	1571.0	
26	0.5318	384.7	1545.0	
27	0.5366	386.4	1554.0	
28	0.5416	379.1	1527.0	
29	0.5488	/ 379.1	1531.0	
30	0.5527	373.1.	1,509.0	
21	0.5040	366.2	1489.0	
22	0.5007	158.0	1466.0	
331	0.5887	349.9	1445.0	
25		391.2	1423.0	
22		• 331.0	1400.0	
27		322.0	1379.0	
38	0.0410	⊅LL+7 200 9	1330.0	
10	0 6731	294.7		
40	0.6890	200.1		
41	0 7067	259 5	1247 0	
42	·0 - 7255	230.7		
43	• 0.7446	241.0	1713.0	
44	0.7647	206.9		4
45	0.7863	188.2	1120.0	
46	0.8049	171.5	1002-0	
47	0.8287	149.5	1053.0	
48	0.8536	126.6	1013.0	
49	0.8792	107.9	969-0	
50	0.9070	77.2	915.0	
51	0.9354	52.7	872.0	
52	0.9636	26.8	. 764.0	

TABLE A10:

-A17-

ð

υ,

c

150

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-HEXADOL+N-OCTANE DELTA H IN JOULES/MOLE

1 0.0232 203.8 8991 $\frac{6}{10}$ 2 0.0503 270.9 5671.0 3 0.0977 377.6 3830.0 4 0.1409 377.9 3122.0 5 0.1795 406.1 2757.0 6 0.22493 443.7 2523.0 7 0.2493 443.7 2371.0 8 0.2797 454.9 2258.0 9 0.3080 462.5 2170.0 10 0.3318 466.3 2103.0 11 0.3529 468.1 2050.0 12 0.3746 470.2 2007.0 13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 462.4 1770.0 17 0.4666 457.7 1899.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 419.1 1693.0 23 0.55404 420.7 1701.0 24 0.5694 407.5 1662.0 29 0.5748 400.8 1645.0 21 0.5593 414.3 1681.0 22 0.5798 400.8 1645.0 30 0.5798 400.8 1645.0 31 0.6028 385.0 1606.0 <	N-	X ALC		DELTA H	0EL H/X1X2
20.0503270.95671.030.0977 337.6 3830.0 40.1409 377.9 3122.0 50.1795 406.1 2757.0 60.2164 477.8 2523.0 70.2293 443.7 2371.0 80.2797 454.9 2258.0 90.3080 462.5 2170.0 100.318 466.3 2007.0 110.3529 468.1 2050.0 120.3746 470.2 2007.0 130.3953 470.2 2007.0 140.4152 468.6 1930.0 150.4337 465.7 1896.0 160.4503 462.4 1866.0 170.4666 457.7 18939.0 180.4810 452.8 1814.0 190.4945 447.7 1791.0 200.5067 442.4 1770.0 210.5177 437.2 1761.0 220.5287 432.3 1735.0 230.5404 426.4 1717.0 240.5497 419.1 1693.0 250.5516 420.7 1701.0 260.5593 414.3 1681.0 270.5642 413.1 1680.0 280.5694 407.5 1662.0 290.5748 406.4 1663.0 300.6798 400.8 1645.0 310.6645 397.4 1624.0 3	1	0.0232		203.8	8991 0
3 $\begin{pmatrix} 0 & 0.977 \\ 0 & 1409 \\ 377.9 \\ 3122.0 \\ 0 & 0.1409 \\ 377.9 \\ 3122.0 \\ 0 & 0.2164 \\ 427.8 \\ 2523.0 \\ 7 \\ 0 & 2493 \\ 443.7 \\ 2311.0 \\ 8 \\ 0 & 2797 \\ 454.9 \\ 258.0 \\ 9 \\ 0 & 3080 \\ 462.5 \\ 2170.0 \\ 10 \\ 0 & 3118 \\ 466.3 \\ 710.2 \\ 10318 \\ 466.3 \\ 710.2 \\ 103.0 \\ 11 \\ 0 & 3529 \\ 468.1 \\ 2007.0 \\ 12 \\ 0 & 3746 \\ 470.2 \\ 2007.0 \\ 11 \\ 0 & 3746 \\ 470.2 \\ 2007.0 \\ 12 \\ 0 & 3746 \\ 470.2 \\ 2007.0 \\ 13 \\ 0 & 3953 \\ 470.2 \\ 1967.0 \\ 14 \\ 0 & 4152 \\ 468.6 \\ 1930.0 \\ 15 \\ 0 & 4337 \\ 465.7 \\ 1896.0 \\ 16 \\ 0 & 4503 \\ 462.4 \\ 1868.0 \\ 17 \\ 0 & 4666 \\ 457.7 \\ 1896.0 \\ 18 \\ 0 & 4810 \\ 452.8 \\ 1814.0 \\ 19 \\ 0 & 4945 \\ 447.7 \\ 1791.0 \\ 20 \\ 0 & 5067 \\ 442.4 \\ 1770.0 \\ 21 \\ 0 & 5177 \\ 437.2 \\ 1751.0 \\ 22 \\ 0 & 5287 \\ 432.3 \\ 1751.0 \\ 23 \\ 0 & 5540 \\ 426.4 \\ 1717.0 \\ 24 \\ 0 & 5497 \\ 419.1 \\ 1693.0 \\ 25 \\ 0 & 5516 \\ 420.7 \\ 1701.0 \\ 26 \\ 0 & 5593 \\ 414.3 \\ 1681.0 \\ 27 \\ 0 & 5642 \\ 413.1 \\ 1680.0 \\ 28 \\ 0 & 5694 \\ 407.5 \\ 1662.0 \\ 31 \\ 0 & 5798 \\ 406.4 \\ 1663.0 \\ 30 \\ 0 & 57788 \\ 406.4 \\ 1663.0 \\ 30 \\ 0 & 57788 \\ 406.4 \\ 1663.0 \\ 31 \\ 0 & 6517 \\ 346.6 \\ 157.5 \\ 1589.0 \\ 34 \\ 0 & 6261 \\ 37.5 \\ 1589.0 \\ 34 \\ 0 & 6261 \\ 37.5 \\ 1599.0 \\ 34 \\ 0 & 6261 \\ 37.5 \\ 1599.0 \\ 34 \\ 0 & 6261 \\ 37.5 \\ 1599.0 \\ 34 \\ 0 & 6261 \\ 37.5 \\ 1599.0 \\ 34 \\ 0 & 6386 \\ 37.5 \\ 1549.0 \\ 34 \\ 0 & 6386 \\ 37.5 \\ 1549.0 \\ 34 \\ 0 & 6386 \\ 77.8 \\ 322.9 \\ 1482.0 \\ 46 \\ 0 & 8187 \\ 186.7 \\ 128.0 \\ 47 \\ 0 & 8387 \\ 166.0 \\ 15.4 \\ 119.0 \\ 10 \\ 90.8867 \\ 115.4 \\ 119.0 \\ 10 \\ 90.8867 \\ 115.4 \\ 119.0 \\ 10 \\ 90.8867 \\ 115.4 \\ 119.0 \\ 149.0 \\ 160.0 \\ 110.0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	2	0.0503		270.9	5671.0
40.1409 377.9 3122.0 50.1795 406.1 2757.0 60.2164 477.8 2252.0 70.2493 443.7 2371.0 80.2797 454.9 2258.0 90.3080 462.5 2170.0 100.3318 466.3 210.0 110.3529 468.1 2050.0 120.3746 470.2 2907.0 130.3953 470.2 1967.0 140.4152 468.6 1930.0 150.4337 465.7 1896.0 160.4503 462.4 1868.0 170.4666 457.7 1899.0 180.4945 447.7 1791.0 200.5067 442.4 1770.0 210.5177 437.2 1751.0 220.5287 432.3 1735.0 230.5404 426.4 117.0 240.5593 414.3 1681.0 270.5642 413.1 1680.0 280.5694 407.5 1662.0 290.5748 406.4 1663.0 300.5798 400.8 1645.0 310.6261 367.1 1568.0 350.6386 377.5 1549.0 360.66261 367.1 168.0 370.6648 344.9 1503.0 380.6793 322.9 1487.0 490.8867 109.8 1407.0 <	3 🕺	0.0977		337.6	3830.0
5 0.1795 406.1 2757.0 6 0.2164 477.8 2523.0 7 0.2493 443.7 2371.0 8 0.2797 454.9 2258.0 9 0.3080 462.5 2170.0 10 0.3318 466.3 703.0 11 0.3529 468.1 2050.0 12 0.3746 470.2 2007.0 13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 462.4 1866.0 17 0.4666 457.7 1899.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 171.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 30 0.5798 400.8 1645.0 31 0.6142 376.5 1589.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6261 367.1 158.0 37	4	0.1409	~	377.9	3122.0
60.2164 477.8 2523.0 70.2493 443.7 2371.0 80.2797 454.9 2258.0 90.3080 462.5 2170.0 100.3318 466.3 7103.0 110.3529 468.1 2050.0 120.3746 470.2 2007.0 130.3953 470.2 1967.0 140.4152 468.6 1930.0 150.4337 465.7 1896.0 160.4503 462.4 1868.0 170.4666 457.7 1899.0 180.4945 447.7 1791.0 200.5067 442.4 1770.0 210.5177 437.2 1751.0 220.5287 432.3 1735.0 230.5404 426.4 117.0 240.5497 419.1 1693.0 250.5516 420.7 1701.0 260.5593 414.3 1681.0 270.5642 413.1 1680.0 280.5694 407.5 1662.0 290.5748 400.8 1645.0 300.5798 400.8 1645.0 310.6142 376.5 1599.0 340.6261 367.1 1568.0 350.6386 357.5 1597.0 360.6648 334.9 1503.0 370.6648 334.9 1503.0 380.6793 322.9 1487.0 <t< th=""><th>5</th><th>0.1795</th><th></th><th>406.1</th><th>2757.0</th></t<>	5	0.1795		406.1	2757.0
7 0.2493 443.7 2371.0 8 0.2797 454.9 2258.0 9 0.3080 462.5 2170.0 10 0.3318 466.3 2103.0 11 0.3529 468.1 2050.0 12 0.3746 470.2 2007.0 13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.44503 462.4 1868.0 17 0.4666 457.7 1899.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1701.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.52877 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 400.8 1645.0 30 0.5798 400.8 1645.0 31 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 377.5 1589.0 36 0.6261 367.5 1589.0 37 0.6648 334.9 1503.0	6	0.2164		,427.8	2523.0
8 0.2797 454.9 2258.0 9 0.3080 462.5 2170.0 10 0.3318 466.3 2103.0 11 0.3529 468.1 2057.0 12 0.3746 470.2 2007.0 13 0.3953 470.2 2007.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 462.4 1868.0 17 0.4666 457.7 1899.0 18 0.4945 447.7 1791.0 20 0.5667 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 412.3 1735.0 23 0.5404 426.4 1717.0 24 0.5593 414.3 1681.0 27 0.5642 413.1 1689.0 28 0.5694 407.5 1662.0 29 0.5798 400.8 1645.0	7	0.2493	3	° 443,7	2371.0
90.3080 462.5 2170.0 100.3318 466.3 7103.0 110.3529 468.1 2050.0 120.3746 470.2 2007.0 130.3953 470.2 1967.0 140.4152 468.6 1930.0 150.4337 465.7 1896.0 160.4503 462.4 1868.0 170.4666 457.7 1839.0 180.4910 452.8 1814.0 190.4945 447.7 1791.0 200.5067 442.4 1770.0 210.5177 437.2 1751.0 220.5287 432.3 1735.0 230.5404 426.4 1717.0 240.5497 419.1 1693.0 250.5516 420.7 1701.0 260.5593 414.3 1681.0 270.5642 413.1 1680.0 280.5694 407.5 1662.0 300.5798 400.8 1645.0 31 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1451.0 41 0.7750 280.5 1407.0 42 0.7783 729.1 1328.0 44 0.7783 729.1 1328.0 45 0.7973 209.1 <t< th=""><th>8</th><th>0.2797</th><th></th><th>454.9</th><th>2258.0</th></t<>	8	0.2797		454.9	2258.0
10 0.3318 466.3 7103.0 11 0.3529 468.1 2050.0 12 0.3746 470.2 207.0 13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 462.4 1868.0 17 0.4666 457.7 1896.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5504 426.4 177.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 400.8 1645.0 31 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6495 309.8 1460.0 41 0.7798 29.1 1328.0 45 0.7973 29.1 1328.0 46<	9	0.3080		462.5	2170.9
11 0.3529 468.1 2050.0 12 0.3746 470.2 2007.0 13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 462.4 1868.0 17 0.4666 457.7 1899.0 18 0.4910 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5944 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.6142 376.5 1589.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 44 0.7783 729.1 1328.0 45 0.7773 209.1 1294.0 46 0.8187 166.0 1227.0 47 0.8887 166.0 1227.0 <td< th=""><th>"10</th><th>0.3318</th><th></th><th>466.3</th><th>2103.0</th></td<>	"1 0	0.3318		466.3	2103.0
12 $0.3746'$ 470.2 2007.0 13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 $462.4'$ 1868.0 17 0.4666 457.7 1899.0 18 0.4910 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 412.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 400.8 1645.0 30 0.5798 400.8 1645.0 31 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1589.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 44 0.7793 274.8 1380.0 45 0.7973 274.8 1328.0 46 0.8187 186.7 1294.0 47 0.8887 141.4 1191.0 <	r1	0.3529		468.1	2050.0
13 0.3953 470.2 1967.0 14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4503 462.4 1868.0 17 0.4666 457.7 1839.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5798 400.8 1645.0 30 0.5798 400.8 1645.0 31 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1589.0 36 0.6793 322.9 1487.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1497.0 39 0.6945 309.8 1440.0 41 0.7793 274.8 1356.0 44 0.7783 729.1 1328.0 45 0.7971 209.1 1294.0 46 0.8187 166.0 1227.0 <td< th=""><th>12</th><th>0.3746′</th><th></th><th>470-2</th><th>2007.0</th></td<>	12	0.3746′		470-2	2007.0
14 0.4152 468.6 1930.0 15 0.4337 465.7 1896.0 16 0.4337 465.7 1896.0 16 0.4303 462.4 1868.0 17 0.4666 457.7 1839.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.5 1549.0 35 0.6386 357.5 1549.0 36 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7793 274.8 1328.0 45 0.7973 229.1 1328.0 45 0.7973 229.1 1328.0 <td< th=""><th>13</th><th>0.3953</th><th></th><th>470-2</th><th>1967.0</th></td<>	13	0.3953		470-2	1967.0
15 0.4337 465.7 1896.0 16 0.4503 462.4 1868.0 17 0.4666 457.7 1839.0 18 0.4810 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1761.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 400.8 1645.0 31 0.5178 400.8 1645.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6517 346.6 1527.0 35 0.6386 357.5 1549.0 36 0.6793 322.9 1482.0 37 0.6648 344.9 1503.0 38 0.6793 322.9 1482.0 49 0.7793 747.8 1328.0 44 0.7783 729.1 1328.0 45 0.7973 209.1 1294.0 49 0.8867 141.4 1191.0 49 0.8867 141.4 1191.0 49 0.8867 141.4 1191.0 <td< th=""><th>14</th><th>0.4152</th><th></th><th>468.6</th><th>1930.0</th></td<>	14	0.4152		468.6	1930.0
16 0.4503 462.4 1968.0 17 0.4666 457.7 1939.0 18 0.4910 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1761.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 $34'$ 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 344.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7783 229.1 1328.0 44 0.7783 229.1 1328.0 45 0.7971 299.1 1294.0 45 0.7971 299.9 1057.0 52 <td< th=""><th>15</th><th>0.4337</th><th></th><th>465.7</th><th>1896.0</th></td<>	15	0.4337		465.7	1896.0
170.4666457.71839.0180.4810452.81814.0190.4945447.71791.0200.5067442.41770.0210.5177437.21751.0220.5287432.31735.0230.5404426.41717.0240.5497419.11693.0250.5516420.71701.0260.5593414.31681.0270.5642413.11680.0280.5694407.51662.0290.5748406.41663.0300.5798400.81645.0310.517346.51589.0340.6261367.11568.0350.6386357.51549.0360.6517346.61527.0370.6648334.91503.0380.6793322.91482.0410.7250280.51407.0420.7421264.11380.0430.7593747.81356.0440.7783729.11294.0450.7973209.11294.0460.8187186.71258.0470.8387166.01227.0480.8673141.41191.0490.8667115.41149.0520.968129.3949.0	16	0.4503		462.4	1968.0
18 0.4910 452.8 1814.0 19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 400.8 1645.0 30 0.5798 400.8 1645.0 31 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1294.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 <td< th=""><th>17</th><th>0.4666</th><th></th><th>457.7</th><th>1839.0</th></td<>	17	0.4666		457.7	1839.0
19 0.4945 447.7 1791.0 20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.6 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34, 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 141.4 1191.0 48<	18 '	0.4810		452.8	1814.0
20 0.5067 442.4 1770.0 21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.6 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1328.0 45 0.8673 141.4 1191.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8667 115.4 1149.0 49 0.8867 115.4 1149.0 50 0.9397 59.9 1057.0	19	0.4945	Υ.	447.7	1791.0
21 0.5177 437.2 1751.0 22 0.5287 432.3 1735.0 23 0.5404 422.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.6 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1664.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 $34'$ 0.6261 367.1 1568.0 $35'$ 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7593 247.8 1328.0 43 0.7593 247.8 1328.0 44 0.7783 229.1 1328.0 45 0.7971 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8867 115.4 1149.0 49 0.8867 115.4 1149.0 49 <t< th=""><th>20</th><th>0.5067</th><th>. •</th><th>442.4</th><th>1770.0</th></t<>	20	0.5067	. •	442.4	1770.0
22 0.5287 432.3 1735.0 23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1431.0 41 0.7750 280.5 1407.0 42 0.7421 264.1 1380.0 44 0.7783 229.1 1328.0 45 0.7971 209.1 1294.0 45 0.7971 209.1 1294.0 46 0.8887 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 52 0.9681 29.3 949.0	21	0.5177		437.2	1751.0,
23 0.5404 426.4 1717.0 24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.6 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34/ 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1328.0 45 0.7971 209.1 1294.0 46 0.8187 146.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 $0.8867/$ 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0 <		0.5287		432.3	1735.0
24 0.5497 419.1 1693.0 25 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 36 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 729.1 1294.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 68 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	23	0.5404	-	426.4	1717.0
25 1 0.5516 420.7 1701.0 26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 36 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1224.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 68 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	24	0.5497		419.1	1693.0
26 0.5593 414.3 1681.0 27 0.5642 413.1 1680.0 28 0.5694 407.5 1662.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1224.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8867 115.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 52 0.9681 29.3 949.0	25 . (0.5516		420-1	1701.0
27 0.5642 413.1 1680.6 28 0.5694 407.5 1662.0 29 0.5748 400.8 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 $34'$ 0.6261 367.1 1568.0 $35'$ 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1224.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	20	0.5593		414.3	1681.0
28 0.5694 407.5 1682.0 29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 $34'$ 0.6261 367.1 1568.0 $35'$ 0.6386 357.5 1549.0 $36'$ 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 729.1 1224.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	21	0.5642		413.1	1680.0
29 0.5748 406.4 1663.0 30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 729.1 1294.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 146.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	28 .	0,5694		407.5	1662.0
30 0.5798 400.8 1645.0 31 0.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1228.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	29	0.5748	•	406.4	1663.0
31 6.5914 397.4 1624.0 32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7971 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	30,	0.5798		400.8	1645.0
32 0.6028 385.0 1608.0 33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	3 1	0.020	•	397.4	
33 0.6142 376.5 1589.0 34 0.6261 367.1 1568.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	22 22	0.6028		382.0	1508.0
34 0.6201 367.1 1566.0 35 0.6386 357.5 1549.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	33	0.6761	-	2671	1569.0
36 0.63760 137.5 1347.0 36 0.6517 346.6 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	25, 1	0.6201)0/•l 757 5	1200.0
37 0.6917 340.0 1527.0 37 0.6648 334.9 1503.0 38 0.6793 322.9 1482.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	- 3 L	0.0500		766 6	1547.0
38 0.6040 334.4 1703.0 38 0.6793 322.9 1487.0 39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	37	0.6648		776.0	1503 0
39 0.6945 309.8 1460.0 40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	38	0.4793		322.4	- 1692.0
40 0.7098 294.8 1431.0 41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 729.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	19	0.6945		309.9	1462.0
41 0.7250 280.5 1407.0 42 0.7421 264.1 1380.0 43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	40	0.7098		294.8	1431.0
42 0.7421 264.1 1380.0 43 0.7593 747.8 1356.0 44 0.7783 729.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	41	0.7250		280.5	1407.0
43 0.7593 247.8 1356.0 44 0.7783 229.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	42	0-7421		264.1	1380-0
44 0.7783 729.1 1328.0 45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	43	0.7593		247.8	1356-0
45 0.7973 209.1 1294.0 46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8673 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	44	0.7783		229.1	1328.0
46 0.8187 186.7 1258.0 47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	45	0.7973		209.1	1294-0
47 0.8387 166.0 1227.0 48 0.8623 141.4 1191.0 49 0.8867 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	46	0.8187		186.7	1258-0
48 0.8673 141.4 1191.0 49 0.8867 115.4 1191.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	47	0.8387		166.0	1227.0
49 0.8867 / 115.4 1149.0 50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	48	0.8623	ı	141.4	1191.0
50 0.9114 89.8 1112.0 51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	49	0.8867		115.4	1149.0
51 0.9397 59.9 1057.0 52 0.9681 29.3 949.0	50	0.9114	Ĺ	89.8	1112.0
52 0.9681 29.3 49.0	51	0.9397		59.9	1057.0
	52	0.9681		29.3	

ډلر

. .

.

đ

9

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-OCTANOL+N-HEXANF DELTA H IN JOULFS/POLE

	,			•		
N	X ALC	.DELTA H	DEL H/X1X2	•	•	
1	0.0171	160.7	9563.0			
2	0.0316	199.0 °	6504.0			
3	C-0627	244.2	4156.0			
4	0.0925	. 271.7	3737.0			
5	0.1185	289.6	2772.0		4	-
6	0.1431	103.6	2476.0			
7	0.1679	315.5	2258.0			
8	0-1923	325.2	2094.0			
9	0.2144	331.8	1970.0			
10	0.2334	336.9	1883.0			
11	0.2513	341.1	1813.0			
12	0.2690	344.9	1754.0			
13	0.2861	347.2	1700.0		82	,
14	0.3014	349.3	1659.0	1		
15	0.3165	350.9	1622.0	4 .,4		
16	0.3321	351.8	1586.0			
17	0.3474	352.1	1553.0			
18	0.3619	351.7	1523.0			•
19	0- 3753	351.2	1498.0			
20	0.3880	350.2	1475.0			
21	0.4012	348.6	1451.0			
22	0.4128	346.6	1430-0	•	,	
23	0-4239	344.3	1410.0			
24	0.4342	342.2	1393.0			
25	0.4446	1 339.8	1376.0			
26	0.4523	337.6	1363.0		•	٥
27	0.4628	326.2	1312.0			
28	0.4719	324.7	1303.0	1		
29	0.4820	322.3	1291.0			
30	0.4924	318.7	1275.0			
31	0,5033	315.2	1261.0			
32	0.5156	310.4	1243.0			
33	0.5280	305.8	1227.0			•
34	0.5410	300.0	1208.0			
35	0.5547	243.9	1190.0			
36	0.5682	287.8	1173.0			
37	0.5832	280.3	1153.0			
38	0.5995	271.1	1129.0			
39	0.6166	260.3	1101.0			
40	0.6344	251.0	1082.0			
41	0.6534	239.2	1056.0			
42	0.6726	227.0	1031.0			
43	0.6931	- 213-1	1002.0			
44	0.7151	198.2	973.0			
45	0.7379	182.2	942.0			
46	C. 7627	164.9	711.0		-	
47	0.7896	144.7	871.0			
48	0.8182	124.5	837.0		<u>,</u>	
49	0.8494	. 102.0	797.0		e'	
50	0.8831	76.9	745.0			
51	0.9198	50.6	656.0			
52	0.9564	24.9	598.0			

TABLE A12:

۰.

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-OCTANOL+N-HEPTANE DELTA H IN JOULES/MOLF

				ч •	1		
N ^{c,}	•	X ALC	ı	DELTA H	DEL H/XIX	2	
1		0.0208	•	188.3 .	9247.0	-	
, 2	,	0.0352		224.4	6608.0		
3.	•	Ů.Q699	,	276-4	4752.0	,	
4	ن د	0.1017	-	307.2	3363.0	۰.	
5		0.1316	. ·	328.3	2873.0		•
6		0.1598	•	* 344.3	2564.0	•	
7	. •	0.1854		* 355.8	2356.0	u u	, 1
8		0.2076		363.9	2212-0		•
9		0.2278		. 370.8	2108.0		
10		0.2484		376.6	2017.0		
11 .		0.2686		381.5	* 1942.0		
12		0.2883		385.3	1878.0		
13		0.3063	``	388.0	1826-0		
14	° 📣	0.3234	s	389.9	1782.0		
15 °	,	0.3383	-	790.6	1745.0		
16		0.3532		390.9	1714.0	I.	-7
17		0.3675		9 391.4	1684.0		
18		0.3823		390.8	1655-0		
19	۲.	0.3960		389.9	1630.0		<
20		0.4094	,	388.6	1607.0		
21		0.4223		386.4	1584.0 '		Y
22	•	0.4341		384.5	1565.0		· -
23		0.4450		382.1	1547.0	-	,
24		0.4553		379.9	\$ 5.32.0		ť
25.		0.4583	1	382.6	1541.0		v
26		0.4665		376.3	1512.0		
27		0.4678		380.9	1530.0		
28		0.4750	-	373.6	1498-0		٥
29		0-4778	p ²	378.3	1516.0	,	
3C	1.2	0.4880	 -	- 373.8	. 1496.0	<i>'</i>	
31		0.5012		370.5	1482.0	,	•
32 ·		0.5136	-	366.2	4466.0	~	^ ,*
33		0.5263		360.3	1445.0		
34	*	0.5392		354.8	1428.0		
35	,	0.5528		348.6	1410.0		
36		-0.5673	•	341.0	1389.0	* •	
37		0.5816	-	333-1	1369.0		• -
38 .~		0.5978		323.6	1346.0) 7	
39		0.6150	* '	313.5	1324.0	•	
40		0.6326		301.7	1298.0	,	
41	i	0.6503		290.6	1278.0		
42		0.6698	-	°277•1	1253.0		
43		0.6913	>	261.6	1226.0		, `
44		0.7147 🛒	, \	243.3 👘	1193.0		*
45		0.7395		224.8	1167.0		
46		0.7656	•	1,89,1	1048.0		n
4.7		0°.7941	ډ	164.3	1005.0		
48	ſ	0.8242		140.3	968.0		· ·
49	•	0.8547	•	114.9	サ25ゅ の		•
50'		0.8869		87.9	876 .0 ੈ		•
51		0.9244	1	57.7	825.0		
52	`	0.9581		28.9 🗋	720.0	Ý	• •.

TABLE A13:

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-OCTANOL+N-OCTANE " Delta M in Joules/Mole

-A20-

12

		0			
N		X ALČ	DELTA H -	DEL H/XIX2	
ł	- 0	0.0201	192.3	9762.0	
2	-	0.0378	241.7	6646.0	
3		0.0741	297.1	4331.0	
4		0.1096	- 332-3	3405.0	
5		0.1418	355-1	2918.0	
6		0.1705	371.4	2626.0	
7	4	0.1966	382.6	2422.0	
8	-	0.2205	´ 391 . 9	2280.0	
9		0.2437	399.6	2168.0	
10		0.2661	405-8	· 2078.0	
11		0.2872	410.7	2006.0	
12	,	0.3068	414.7	1950-0	
13	'	0.3262	417.2	1899.0	
14	U U	0.3437.°	418.4	1855.0	
15	•	0.3607	418.3 %	1814.0	
16		0.3757	418.0	1782.0	
17	6	0.3905	417.7	1755.0	
18		0.4048	416.8	·1730,-0	
19	-	0.4197	415.5	1706.0	
20	•	0.4336	413.6	1684.0	
21		0.4470	411.3	1664.0	1
22		0.4618	407-1	1638.0	
23	۰ <u>۰</u>	0.4723	404.3	1622.0	
24		0.4837	400.8	1605.0	
25		0.4.909	396-6	1587.0 g	
26		0.4942	397.4	1590.0	
2.1		0.500	393.7	1575.0	
28		0.5048	. 393.0	1572.0	
29		0.5099	390.6	1563.0	
30	-	0.5203.	380.0	/ 1549.0 ·	
21		0.5508	381-8	1933.0	
22	u l	0.5420		1517.0	
33 36	-	0.5444	370.7	1500.0	
24 25	•	0.5707	304•2. 4		
22 24		0.5076			•
70 27	1	0.3730)40.0 × 220.0	* 1440.0	ζ
38	,	0.6239	320 4	1470.0	
39		0.6405	317.3	1178 0	
40		0.6586		1152 0	
40 41	2	0.6767	289.9	1325 0	
42	*	0.6964	* 271.8 *	1295 0	
43		0.7177	256.1	1266.0	
44		0.7391	237.6	1232.0	
45	<i>y</i>	0.7620	* 217.4	1199.0	
46	v	0.7848	196.9	1166-0	
47	,	0.9077	175.4	1129_0	
48	8 .	0.8352	150.1	1090_6	
49		0.8638	123.8	1052-0	
50		0.8945	· 95.1	1008-0	
51		0.9289	63.1 - /	955.0	
52	- ,	0.9609	33.0	879-0	٠
				··· · · · · · · · · · · · · · · · · ·	

•

<u>م</u>

TABLE A14:

HEATS OF MIXING AT 15 DEG.C FUR THE SYSTEM N-OUTANOL+N-DECANE DELTA H IN JOULES/MOLE

N	Y ALC	ΣΕΙ Τ Α «Μ		
· 1		221 K	0405 AL	•
;	0.0447	221.0	4631 0	-
3	6.0891	344.2	4265 0	ì
4	0.1298	385.4	3612 0	
5	0.1654	410.3	2072 0	• •
6	0,1981	420.0	2702 0	ب
7	0,2261	440.9	2520 0	
8	0.2532	462.3	23/0-0	ø
ġ	0-2803	460.2	2281 0	n
10	0.3056	466.9		~
11	0,3282	471.0 4	2136 0	٦.
12	0.3494	674.0	2170.0	
13	0-3701	474.6	2036 0	· ,
14	0-3884	475 3		,
15	0.4062	475.2	1970 0	
16	· 0.4235	473.0		
17	0.4400	472.1	1916 0	
18	0.4559	469.6	1893 0	
19	0.4707	466.)		
20	0.4841	463.0	1954 0	• *
21	0.4968	459.7	1970 0	
22	0,5095	455.3	1977 0 1	,
23	0-5213	450.0	1807 0	
24	0-5322	446.9	1795 0	
25 *	0.5428	442.2	1792 0	
26	0.5430	447.9	1905 D 4	
27	0-5529	437.1	1769 0	
28	0.5535	443.6	1795° 0	,
29 p	0-5642	437.7	1780 0	•
30	~ 0.5747	- 431.2	1764-0	
31	0.5853	474.3	1748.0	
32	0.5963	416.7	1/31.0	-
33	0.6077	409.3	1717.0	` ~
34	0.6194	401.2	1702.0	
35	0.6316	393.2	1690-0	ر خ
36	° 0.6464	381.9	1671-0	
37	0.6615	369.9	1652.0	•.
38	0.6764	357.4	* 1633.0	
39	0.6907	344.8	1614-0	
40	0.7106	326.0	1585.0	•
41	0.7288	310.5	1571.0 10	•
42	0.7450	293.3	1544.0	* • •
43	0.7638	274.6	1522.0	
44	0.7881	244.7	1489.0	*
45	0.8093 -	225.3	1460.0	, 9
47	0.8306	200.8	1427.0	•
`47	0.8553	173.5	1402.0	
48	0.8796	145.4	1373.0	
49	0.9042	114.1	1317.0	8° 0
5C ·	0.9347	75.4	1236.0	
51	0.9615	42.2	1140.0	
		•	-	

-A21-

TABLE A15:

- <u>A</u>22 -

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-BUTANOL+N-HEPTANE CELTA H IN JOULES/MOLE

N	X ALC	DFLTA H	DEL H/X1X2
1	0.0305	493.0	16674.0
2	0.0617	702.6	12136.0
3	0.1159	885.0	8637.0
4	0.1648	[°] 980.3	7122.0
5`	0.2091	1038.2	6278.0
6	0.2490	1073.6	5741.0
7.	0.2860	1094.3	5359.0
8	0.3192	1104-8	5084.0
9	0.3492	1107.2	4972.0
10	0.3770	1103.9	4700.0
11	0.4026	1095.5	4555.0
12	. 0.4252	1087.1	4448.0
13	(0.4465	1974.6	4348.0
14	° 0.4657	1061.0	4264,0
Ĩ5	0.4847	1046.0 "	4188.0
16	0.5024	1030.2	4121.0
17	0.5189	1013.8	4061.0
18	0.5345	` '996.7	4006.0
19 /	′ 0 . 5491 ℓ	979.7	3957.0
20	0.5625	963.0	3913.0
21	0.5749	946.5	3873.0
22	0.5863	930.7	3337.0
23	0.5979	904.7	3763.0
24	0.5996	911.3 ·	3796.0
25	0.6076	990.5	3735.0
26	0.6090	897.2	3768.0
27	0.6173	875.0	3704.0
28	0.6180	883.6	3743.0.
29	0.6272	859.1	3674.0
30	, 0,6280	867.9	3715.0
31	0.6373	841.2	3639.0
32	0.6476	. 826.6	3622.0
33	0.6585	808.0	3593.0
34	0.6697	787.7	. 3561.0
35	0.6813	767.3	3534-0
36	0.6933	744.2	3500.0
37	0.7057	720.5	3469.0
38	0.7186	694.2	3433.0
39 -	0.7321	666.6	3399-0
40	0.7462	636.9	3363.0
41	0.7637	001.1	, 3331.0
42	0.7790	567+4	• 3296.0
43	0.9174	737+0	. 3/03.0
44 \ 15	0.0114	473.4	3229.0
47	0.9443	430.0	> 3177.0
40	×V+0703 0.9467	400+0 (3130 0
41 70	0 9954	212 0	31/3.0
	0.90650	257 5	2011-1 1 3038 0
50	0.9284	1.00 4	3000.0
51	⁶ 0.9514 4	136_6	2955-0
52	0.9752	70.8	2928-0
		· · · · · · · · · · · · · · · · · · ·	an

Ð

TABLE A16:

HEAT'S OF MIXING AT 55 DEG.C FUR THE SYSTEM N-PUTANOL+N-UCTANE DELTA H IN JOULES/MOLE

	" کر	v		•	Mar 1
N	ť,	X ALC	DELTA H	DEL H/X1X2	۲
1	4 3	0.0338	539.8	16529.0	
2	•	0.0708	778.6	11735.0	
3		0.1301	970.4	8574.0	
4		0.1820	1066.1	1 7161.0	
5		0.2288	1123.1	6365.0	•
6		0.2705	1157-1	5864.0	
7		0.3074	1175.7	5522.0	-
8		0.3417	1183.2	5260.0	
9		0.3721	1183.9.	5067.0	-
10	t	0.4001	ʻ 1178.3	4909.0	
1		0.4254	1170.4	4788.0	
12	e	0.4488	1158.0	4681.0	
3		0.4699	1144-1	4593.0	
4		0.4896	1128.5	4516.0	
5		0.5072	1113.0	4453.0	
6		0.5234	1097.1	4398.0	
7		0.5393	1080-5	4349.0	
18		0.5550	1061-5	4298.0	
9		0.5691	1043.9	4257.0	
20		0.5822	1026.5	4220.0	
21		0.5945	1008.9	4185.0	
22		0.6087	987.0	4144.0	
23		0.6178	973.5	4123.0	
24	-	0.6230	949-1	4041.0	
25		0.6280	957-1	\$ 4097.0	
26	د	0.6324	933.8	4017.0	
27		0.6381	940-3	4072.0	
28		0.6420	917-0	3990-0	
20		0.6473	924-6	4050.0	
30		0-6519	900-2	3967.0	
31		0.6565	908-6	4029.0	
32 4		0.6620	882.0	3942.0	
22	•	0.6724	862-2	3914.0	
., <u>,</u> 74	-	0.6836	840.7	3887.0	
25	•	0.6948	818.5	3860-0	
36	•	0,7067	794.7	3934.0	
37		0,7187	769.3	3805.0	
JA	с ч	0.7308	743-3	3778.0	•
20	Ŧ	0.7435	715.2	3750.0	
40		0.7567	685-6	3724.0	
41	-	0.7705	653-0	3693.0	
42		0.7839	621-2	3667.0	
42		0.7984	585.7	3639.0	
46		0.8133	547.2	3604.0	
45		° 0 - 8291	· 506-8	3577.0	3
7 J 46		0.8452	464.2	3548.0	
40		0,9620	418_1	*3515-0	
48		0.8794	· · · · · · · · · · · · · · · · · · ·	3488.0	
40		10-807A	316-8 '	3453-0	
77 50		0.0140	260-4	·· 3417_0	
51		0_07.07	200-0	3183.0	
52		0.9568	138_6	3353.0	٩
72 57	/ · ·	0.9786	69-2	3304-0	
,,	•	V . 7100	U / • C.		

-A23-

TABLE A17:

۲

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-DUTANOL+N-NONANE DELTA H IN JOULES/MOLE

55

1 .

i

	Y ALC	DELTA H	
N N		578.9	16637-0
1	0 0719	821.5	12311.0
2	0.1347	1031.4	8849.0
2	0.1900	1137.2	7389.0
-	0.2391	1197.5	6582.0
2 A	0.2829 83	1231.8	6072.0
7	0.3219	1249.4	5724.0
Å	0.3575	1256.0	5468.0
a	0.3900	1254.0	5271.0
10	0.4189	1246.3	5120.0
11	0.4456	1234.5	4991.0
12	0.4697	1219.5	4896.0
13	0.4908	1203.1	4814.0
14	0.5108	1185.2	4743,0 .
15	0.5286	1167.7	£ 4686.0
16	0.5453	1149.0	4634.0
17	0.5590	1132.0	4592.0
18 /	0.5731	1114.2	4554.0
19	0.5871	1095.0	- 4517.0
20	0.6005	1075.7	4484.0
21	0.6130	1056.2	4452.0
22	0.6248	1036.4	4421-0
23 /	0.6353	1018.5	4396.0
24	0.6448	1002.5	4377.0
25	0.6477	597.2	- 4370.0
26	0.6542 \	985.4	4356.0
27	0.6566	980.8	4350.0
28	0,6633	- 968.4	4336.0
29	0.6658	963.0	4328.0
30	0.6723	951.3	4318.0
31	0.6753	944.6	4308.0
32	0.6849	· 925.6_	4289.0
33	0.6949	905.5	4271.0
34	0.7051	887,5	
35	0:7159	859.5	4726.0
36	0.7268	835.2	4206.0
37	0.7381	809.0	
38	0.7497	781.0	- 4103.0
39	0.7616	(72+2	
40	0.7739	((1.0)	4122.00
41	0.7864	. 000.07	° 4075-0
42	0.0131	64.5 2	× 4049-0
45		675 g	A 4028-0
44	_U.8272	522 9	4006-0
47	U+047V A 9679	22707 487 8	3985-0
40	V.0.7.16	117 T T T T T T T T T T T T T T T T T T	1958_0
47	0.0006	384-6	37 13.0
40	0 00X3 0 0033	111-0	3918.0
47 50	0.0226	273_9	3881-0
51	0. 72 30 A 29415	212_8	3164.0
52	0.9603	146-0	3830.0
53	0.9798	75.5	3815.0
	· · · · · · ·		

TABLE A18:

HEATS OF MIXING AT 55 DEG.C FUR THE SYSTEM N-MUTANOL+N-DUDECARE DELTA H IN JOULES/MOLE

N	X ALC	DELTA H	DFL H/X1X2
1	00447	717.5	16802.0
2	0.0896	1007.6	12352.0
3	0.1668	1247.7	9978.0
4	0.232?	1358.5	7670.0
5	0.2878	1413.3	6895.0 ,
6	0.3361	1435.7	6434.0
7	0.3786	1443.8	6137.0
8	0.4160	1438.7	5922.0
9	0.4494	1426.5	5765.0
10	0.4796	1407.9	5641.0
11	0.5064	1386.0	5545.U
12	0.5307	1362.3	5470.0
13	0-5523	1338-2	5412.0
14	0.5720	1313.4	5365.0
15	0.5905	1286.7	5321.0
16	0.6073	1261.1	5288.0
17	0.6229	1235.1	5258.0
18	0.6375	1209.3	5233.0
19	0.6510	1183.5	5209+0
20	0.6629	1160.7	5194.0
21	0.6739	1138-6	5181.0
12	0.6847	1115.7	5168.0
23	0.6948	1093.3	5156.0
24	0.09/5	1040-8	5[5].0
27	0.7040	1072.6	° 5147.0
20	0.7058	1067.9	2143.0
21	0.7123	1072.5	5138.0
20	0 7202		5131-0
20	0 7228	1034-0	5136-0
31	0.7316	1004.4	5115-0
32	0.7406		5106 0
33	0.7595	· 930-3	5093-0
34	0.7694	902.7	5088-0
35	0.7793	872.5	5073.0
36	0.7895	843.9	5078-0
37	0.3002	· 811.6	5076-0
38	0.8111 %	776.7	5069.0
39	0.8221	142.1	5074.0
4C	0.8338	703.3	5075.0
41	0.8459	661.5	9075.0
42	0.8582	618.4	5082.0
43	0.8708	571.8	5092.0
44	° 0.8837 .	522.7	5086.0
45	0.8966	472.3	5095.0
46	0.9100	417.9	5103.0
47	0.9242	358.3	5114.0
48	. 0.9387	. 295.5	- 5135.0
49	0.9534	228.9	5151+0
50	0.9683	158.3	5156.0
51	0.9841	, * * 80.5	5144.0

·

TABLE A19:

1

	ATS OF MIXING AT 5	5 DEG.C FUR TH	E SYSTEM N-PENTANOL	+N-00 TANT
Ň	X ALC	DELTA H	DEL H/X1X2 "	, ,
1.	0.0277	464.7	17254.0	0
2	0.0567	684.8	12804.0	
3'	0.1087	877-1	9053.0	•
4	0.1560 🔹	974.4	. 7401.0	
5	0.1994	1032-2	6466.0	
6	0.2377	1067.4	5891.0	
7	0.2729	1089.6	5491.0	
8	0.3054	1101.0	5190.0	
9	0.3350	1105.9	4964 - 0	
10.	0.3623	1106-2	4788.0	
11	0.3874	1102.1	4644.0	
12·	0.4105	1095-2	4526.0	
13	0.4315	1086.7	4430.0	
14	0.4510	1075-8	4345.0	•
15	0.4688	1064.6	4275.0	
_16	0.4863	1052.0	4211.0	
17	0.5024	_ L038 1 5	4154.0	
18	0.5170	1025-1	4105.0	o
19	0.5304	1011-2	4060.0	
20	0.5427	998.2	4022.0	
21	0.5552	984.4	3786.0	le.
22	0.5673	970-1	3952.0	_
23	0.5732	951.9	3891.0	•
24	0.5810	951.4	3908.0	
25	. 0.5826	939.4	3863.0	
26	0.5910	938-4	3882.0	
27`	0.5927	925.8	3835.0	1
28	0.6012	924.0	3854.0	6 3
29	0.6032	910.7	3805.0	L
30	0.6106	910.6	3830.0	•
31	0.6139	894.8	3775.0	
32	0.6198	896.9	3806.0	
33	0.6248	878.9	3749.0	
34	0.6286	883.4	3784.0	
35	0.6364	860.6	3719.0	
36	0.6483	840.9	3688.0	•
37	0.6605	820.3	3658.0 1	,
38	- 0.6734	797.0	- 3624.0	
39	6 0.6867	773.0	3593.0	1
40	0.7005	746.9	3560.0	`
41	0.7150	718.1	3524.0	
42	0.7299	688.6	3493.0	•
43	0.7453	655.7	3454.0	
44	0.7617	621 .0	3421.0	- •
45	0.7784	583.4	3 182 . 0	•
46	0.7960	541.9 *	3337.0 '	
47	- 0.8146	499.3	3306.0	
48	- 0.8344	450.6	· 3261.0	
49	0.8549	. 398.9	13216.0	
5C	0.8766	343.2	5173.0	
· 51	0.8988	283.7	A119.0	
·52	้ 0-922ส้	219-1	73076.0	`
53	0.9473	150.7	3018.0	
54	0.9737	76.1	\$ 2970.0	

-426-

1 I

۱, • .

1

TABLE A20:

HEATS OF	MIXING AT 55	DEG.C FUR TI	HE SYSTEM N-PENTANOL+N-MONAUE
UELIA H IS		0	
N	X ALC	DELTA H	DEL H/XIX2
ĩ	0.0302	506.2	17293.0
2	0.0611	738.1	12867.0
3	0.1167	944.1	9159.0
4	0.1658	1044.9	7555.0
5	0.2104	1104-6	6649.0
6	0.2510	1141.7	6073.0
7	0.2875	1162.7	5674.0
8	0.3207	1174.0 .	5389.0
9	0.3509	1177.6	5170.0
10	0.3778	1220-0	5190.0
-Ú1	0.4029	1209-1	5026.0
12	0.4259	1228.4	5024.0
13	0.4473	1211.9	4902.0
14	0.4666	1194-6	4800.0
`15	0.4845	1176.9	4712.0
16	0.5014	1158.5	4634.0
17	0.5173	1140-1	4566.0
18	0.5322 .	1122.6	4509.0 .
19	0.5462	1105.0	445d.O
20	0.5601	1086-1	4408.0
21	0.5730	1067.5	4363.0
22	0.5855	1048.7	4321.0
23	0.5964 1	1031.9	4287.0
24	0.6069	, 1015-1	4255.()
25	0-6109	993.6	4180.0
26	0.6168	998.6	4225.0
27	0.6205	978-2	4154-0
28	0.6750	985.1	4203.0
29	0.6303	962.6	4131.0
30	0.6337	970.0	4179.0
31	0.6401	945.9	4106.0
32	0.6503	927.8	4080.0
33	0.6612	908.6	4056.0
34	0.6719	889.3	4034.0
35	0.6830	966.7	
36	0.6949 -	844.0	3981.0
37	0.7068	819.6	3955.0
18 *	0.7187	794.1	1928.0
39	0.7317	100.0	3902.0
40	U.1471	136.2	
41	0.7722	101.4	3997 • U 3916 ()
47	U. 1132	6100	2707 A
4 J 4 A	0 0027	647 7	3754 0
47	0.0000	661 7	3734 0
45	0 9743	505 7	3666 ()
47	0.8539	451.2	3665-0
48	0.8722	404.1	3625-0
49	0.8911	348.2	3588.0
50	0.9109	287.7	3545-0
51	0.9316	222.3	3489-0
52	0.9532	153_5	3441_0
53	0.9760	79.0	3374.0

-A27-

TABLE A21:

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-PENTANOL+N-DUDECAPE DELTA H IN JOULES/MOLE

-A28-

N	X. ALC	DELTA H	DEL H/X1X2
1	0-0399	641.9	16756.0
2	0.0762	908.2	12902.0
3	0.1440	1149.2	9323.0
4	0.2032	1260.8	1787.0
5	0.2560	1321.6	6939.0
6	0.3014	1353-5	6428.0
7	0.3419	1367.4	6077.0
8	0.3772	1371.0	5836.0
9	0.4101	1365.4	5644.0
10	0.4398	1355.3	5501.0
11	0.4657	1343.9	5401.0
12	0.4893	1327.9	5314.0
13	0.5100	1311.0	5246.0
14	0.5276	1295.8	5199.0
15	0.5454	1277.4	5152.0
16	0.5614	1260.5	5119.0
17	0.5774	1240.9	5085.0
18	0.5924	1220.4	5054.0
19	0.6071	1199.1	5027.0
20	0.6197	1148.7	4874.0
21	0.6316	1131.8	4864.0
22	0.6434	1143.1	4982.0
23	0.6544	1123.8	4969.0
24	0.6641	1090.6	4889.0
25	0.6648	1104.4	4956.0
26	0.6730	1072.6	4874.0
27	0.6743	1086.2	4946.0
28	0.6817	1055.6	4865.0
29	0.6833	1068.4	4937.0
30	0.6907	1035.9	4849.0
31	0.6918	1050.9	4929.0
32	0.6983	1037.0	4922.0
33	0.7000	1016-4	4840.0
34	C.7096	994.9	4828.0
35	0.7193	972.0	4814.0
36	0.7298	947.1	4803.0
37	0.7404	921.3	4793.0
38	0.7510	894.4	4783.0
39	0.7618	865.6	4770.0
40	0.7732	. 833.5	4753.0
41	0.7852	. 900.5	4746.0
42	0.7972	765.7	4736.0
43	0.8098	728.4	, 4729.0 ~
44	0.8277	6R7.8 ·	4715.0
45	· 0.8358	646.4	4710.0
46	0.8495	601.0	4701.0
47	0.8641	550.6	4699.0
48	0.8791 ,	497.8	4684.0
49	0.8944	/ 441.6	4616.0
50	0.9102	380.4	4654.0
51	0.9270	314.9	4653.0
52	0.9445	243.3	4647.0
53	0.9627	166.6	4640.0
5,4	, C.9811.	85.1	4587.0

6.

- .--

-5

'n,

4 ۸

HEATS OF MIXING AT 55 DEG.C FUR THE SYSTEM N-HEXANOL+N-OCTANE DELTA H IN JOULES/MOLE

N	X ALC	DEL TA H	DEL HIXIXZ
1	0.0243	410.7	17321-0
2	0.0491	620.8	13296.0
3	0.0954	807.1	9352.0
4	0.1379	899.7	7568.0
5	0.1773	955.7	6552.0
6	0.2122	988 <u>.</u> 6	5914.0
7	0.2435	1008.9	5477.0
8	0.2732	1022.0	5147.0
9	0.3010	1028.6	4889.0
10	0.3268	1030.5	4684.0
11	0.3499	1029.5	4526.0
12	0.3719	1025.9	4392.0
13	0.3933	1019.8	4274.0
14	0.4127	1017.4	4177.0
15	0.4310	1003.5	4092.0
16	0.4478	994.3	4021.0
17	0.4634	984.2	3958.0
18	0.4781	. 974.4	3905-0
19	0.4931	962.1	3849.0
20	- 0.5061	950.9	3804.0
21	0.5181	939.8	3764.0
22	0.5287	930.2	3733.0
23	0.5401	919.3	3701.0
24	0.5474	899.8	3632.0
25	0.5514	906.8	3666.0
26	0.5570	889.8	3606-0
27	0.5617	895.2	3636.0
28	0.5670	878.4	3578.0
29	0.5718	883.2	3607.0
30	0.5775	865.9	3549.0
31	0.5809	872.1	3582.0
32	0.5883	852.3	3519.0
33	,0.5997	836.8	3486-0
34	0.6114	820.9	3455.0
35	0.6237	. 803.4	-3423.0
36	0.6366	, 784.2	3390.0
37	. 0.6501	763.4	3356.0
38	0.6640	. 742.3	3321.0
39 -	0.6783	718.3	3292.0
40	0.6932	692.7	3257.0
41	• 0.7086	664.9	3220.0
42	0.7249	635.2	3185.0
43	0.7416	603.1	3141.0
44	0.7592	568.6	• 3110.0
45	0.7786	527.8	3062.0
46 /	0.7986	485.6	3019.0
47	0.8196	439.9	2975.0
48	0.8411	392.1	2434.0
49	0.8638	339.5	2986-0
50	0.8887	280.5	2836-0
51	0.9143	217.6	2777_0
52	0.9413	150.3	2721-0
53	0.9676	77.9	2644-0

•

ŝ,

4

• ·

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOL+N-HEPTANE DELTA H IN JOULES/MOLE

.

55° 56	0.9165	157.5	2058.0	۰ ۱
55″	0.0191 /	2 2 1 4 1		
	0 9707	226.8	2143-0	
54	0.8462	287.2	2207.Ù	
53	0.8146	343.6	2275.0	
52 (0.7868	389.8	2324.0	- ~
51	0.7598	434.4	2380.0	
50	0.7348	474.1	2433.0	
49	0.7111	509.7	2481.0	
48	0.6385	542.8	. 2531.0	
47	0.6680	571.7	2578.0	•
46	0.6488	596.8	2619.0	-
45	0.6308	619.5	2660.0	
44	0.6137	642.0	2108.0	
43	0.5975	661.4	2150.0	
42	0.5821 /	678•7	2790.0	
4 k	U.56/5	642.5	≠ 2700 0	
40	U.57.55	YUYa8	2072+U 2022 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
54	U+34UZ	123+3 7704 0	27123V 2972 A	
ט כ מיכ	V.JC/J 0 6403	772 2 `	2912 W	3
ז כ פ ב	\ U+J270 A 5275	725.0	2952-0	
סכ רב	0.5254	767.A	2000 L • V	*
26	0.5179	754 2 '	3021-0	•
25	0 5153	747.0	2991_0	
77	0.5103	760.7	3044_0	
27	<u>й</u> ,5036	757.5	3030-0	
22	0-5016	768.2	3073-0	
~ 31	0.4922	768.1	3073.0	
30	0:4918	776.0	3105.0	
29	0.4819	782.7	· 3135.0	•
28	0.4817	777.7	3115.0	
27 -	0.4712	784.1	3147.0	,
26	0.4695	792.5	3182.0	
25	0.4613	791.7	3186.0	
24	0.4580	800-1	3223.0	
23	0.4472	806.4	3262.0	
22	0.4354.	813-2	3308-0	-
21	0.4237	· 819.5	3356.0	_
,20	0.4120	925.1	3406.0	
19	0.4001	830.7	3461.0	
18	0.3875	836.4	3524.0	J
17	0.3735	842.2	3599.0	
16	0.3591	847.2	3681.0	
15	0.3433	851.5	3/77.0	
14	0.3263	855.8	3893.0	
13	0.3078	854.Z	4078.U	
12	0.2897	858.9	4174 • U	*
11	., 0.2701 ···	858.6 059.0	4177 · U	
10	0.2514	837.4 850.4	4747.0	
9		07101	4000-17	
n a	U•2U19	747.07 981 7	4806.0	
(0	V • 1023	067+1 867.1	5115-0	
0 1	0 1996	970 1	5557-0	
2	U . 1543	[/4+0 400 1	6132 A	
4	0.0771	1840+1 776 &	6761+V 6854-0	
5	ז כסטיים	077+3 720 7	8221 A	
2		41/0U 625 2	10350 N	-
. 1	· U.UI/U	249.1 117 A	↓ L / J J ♥ • U 1 D 0 4 1 0	\$\$
N	X ALL			•
	Y N C			

'

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOL+N-OCTANE DELTA H IN JOULES/MOLE

-A31-

N	X ALC	DELTA H	DEL H7X1X2	•	•
1	0,0189	330 5	17824 0		
5	0 0349	404 9	14734 0	*	
2	0.0403	· · · · · · · · · · · · · · · · · · ·			4
,		771 1			
-	0.1224		77010		
2	0.1324	827.4	1203.0		
0	0.1607	×63.3	6401.0		
1	0.1887	(888.5	5904.0		
8	0-2149	903.8	5357.0		
9	0-2384	914.9	5039.0		
10	0.2580	918.9	4800.0	~	
11	0.2750	927.1	4628.0		
12	0-2920	924.1	. 4470.0		
13	0.3104	923.4	431,4.0	-	
14	0.3279	921.9	4183.0		•
15	0.3456	918.4	- 4061.0		
16	0.3613	914-7	3964.0		
17	0.3766	910.4	3878.0		
18	° 0.3918	704.6	3796.0		
19	0.4059	898.3	3725.0		
20	0.4192	891.6	3662.0		
21	0.4323	884.5	3604.0 ~		
22	0.4453	876.4	3548.0		
23	0.4568	868.2	3499.0	τ	
24	0.4679	860.2	3455-0		•
25	0.4785	852.4	3416.0		
26	0-4838	845.6	3386-0		
27	0.4878	* 846.2	3387.0		
28	0.4935	838.6	3355.0		
29	0.4984	838-2	3353-0		
30	0.5034	830-0	3320-0		
31	0-5084	930-5	3323-0		
32	0-5141	821.1	3281-0		
33	0.5183	822.4	3294-0		
34	0.5253	810-4	3250-0		
35	0.5293	811.7	3258-0		
36	· 0.5367	798.9	3213.0		
37	0.5489	786.9	3178.0		
38	0-5616	773.9	3163 0		
19	0.5747	759.2	3106 /		
40	0.5984	743 0	3069 0		
41	0-6031	/25.5	3031 0		
42	0.6183	705 9	2091 0		
42	· 0 6366		2051 0		
45	0 4517	560 5	2010 0		
45	0 \$696	(36 7	2940 0		
44	0 4994		2007.0 3		
A 7	0.0004				
- 1 6 P	0 7311	, JT7•7 630 E	2101+1 +		
0 F	V. ()[]	337 . 7 /61 7	219900		
47		477.6	2047+U 3504 A		
7U 51		4U7.7	2340.0		
21	0.0500	374.7	2748.0		
72	0.8040	300.8	2492.0		
22	0.8340	251.7	244,0.0		
74	0.9249	165.8	7347.0		
55	0.9608	- 87.1	2312.0		

۵

TABLE A25:

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOL - NONANE DELTA H IN JOULES/MOLE

-A32-

N	X ALC	DÈLTA H	DEL H/X1X2
- 1	0.0223°	334.5	15340.0
2	0.0431	542.6	13157.0
3	0.0844	744.8	9638.0
4	0.1223	R39.5	7921.0
5,	0.1580	895.9	6734.0
6	0.1904	930.6	6037.0
7	0.2213	953.3	5532.0
8 -	0.2496	967.8	* 5167.0
9	0.2743	974.6	48960
10	0.2959	976.7	4688.0
11	0.3175	977.9	4513.0
12	0.3384	977.9	4368.0
13	0.3582	976.8	4249.0
14	0.3770	972.1	4139.0
īs	0.3949	966.3	4044.0
16	0.4113	960.3	3966.0
17	0.4268	953.1	3896.0
18	0-4296	965.2	3939-0
19	0.4434	957.3	3879.0
20	0.4573	920-2	3708-0
21	0.4705	939.7	3772-0
22	0.4828	930.6	3727.0
27	0.4947	921-1	3685-0
2 J 7 A	0.5058	912.4	3650-0
25	0.5115	4 000 3 ·	3603.0
26 26	0.5165	904.0	3620-0
27	0 5212	990.4	3568-0
2 T 7 R	0.5276	894.5	3589.0
20 20	0.5315	· 980-0	3534.0
20	0.5376	885 7	3562 0
) 7)	0 5420	870 1	3505.0
ンL ココ	0.5476	974 0 1	3534 //
75 23	0.5520	059 3	- 1477 0
]]]K	0.5577	PJ0+J , 065 1	3507 0 5
77 75	0.5511	60J•L	3617 0
36	0.5658	0446J 056 4	0 4845
70	0.5763	831.2	3404.0
ינ 19	0 5896	2.1(3	371 0
20	0.6021	708 7	3334 0
40	0.0021	780 1 -	334+0
41 4	0 6292	761 5	3250.0
71 47	0.0772	739.0	2229.0
72 43	0.6406	715 7	344704
4 J 4 4	0.6770	490 1	3154 0
 45	0.6770	670.l 467 l	3130+0
7 J 4 4	0 7139	107.J	3090 0
70 47	0.7127	604 4	
- I 4 0	0.7521	770.0 550 J	3000 0
70 40	0 7721	519-5	2050 0
77 50	0.7054	マビアット ムアム ト	· 2777+U . 2012 0
70 61	0.1739 0.1739	777.L '	2713+0
71 63	0.0[A0	96360 J	- 270¥+11 2013 A
72 53	0.4772	- 207.9	2723.0
73	0.01/1	JU / • / ·	*/ ZIIU+U
77 56		290.0	2708.0 7480 0
77 64	1 0.4330		7078.U
70	1604.0	81.2	2604:0

D

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOL+N-DDDFCANE DELTA H'IN JOULES/MOLE

•				
N	XALC	DELTA H	DEL [®] H/X1X2	,
1	0-0271	- 473.1	17941-0	-
2	0.0547	732 0	16176 0	< .
2.	0 1037	052 7	10260'0	· · ·
5	0 1691	1057 7	10200+0 0193 0	J
•••	0.1005		7175.0	د ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،
9 ,	U. 1895		7302.0	
6 4	0.2258	1149-8	6577.0	_
7 .	0.2597	1167.0	6070.0	,
` 8 -	.,0.2912	1476.5	5700.0	, <i>a</i>
9, '	0.3190	1177.4	5420.0	¢ ۲
10	0.3449	1175.6	5203.0	# 2 2
11 1	0.3698	1169.0	° 5016.0	•
12	0.3928	1160.3	4865.0	• • · · · · · · · · · · · · · · · · · ·
·13	0-4142	1150.8	4743.0	, ,
14	0.4341	1140.1	4641.0	
15'	0.4523	1129.1	4558.0	
16	0.4699	1116.2	• 4491.0 ·	2
17'	B 0.4865		· • • • • • • • • • •	•
18	0 5012	1087 2	4360 0	· · · ·
10	0.9013 s		4347•U	d 1 1
20	0.5149		4239.0	.
20 , * * *	0.5219	1060.9	4257.0	•
21	-0.5402	1048.7	, 4222.0	, , ,
22	0.5523	-1035-8	4189.0	,
23	0.5645	1021.5	4155.0	
24	0.5760	1001.1	4099.0	
25	0.5761.	1007.1	4124.0	3
26 \	.0.5851	· 989.5	4076.0	, , , , ,
27	0.5869	993.9	4098.0	' e
28	0.5947	976.7	4052.0	۱ ۵
.79 .	0.5967	979.4 ~	4070.0	
30	0.6047	* 962.8	4028.0.	1 K
31 1	0.6058	966.1	4048.0	1 1
32 🦿	0.6145	1 954.4	4029.0	*
33.	0.6156	947.7	4005.0	-
34	0.6265	930.8	3978-0	₩ # °``
35	0.6379	912.6	· *3951.0	*
36	0-6498	894.1	3929.0	
37	0.6620	873.1	3902 0	
18	0-6768	851.7	3881 8	、 、 、
30	0 6870	977 0	3052 0	° °
40 · \	0 7014			
	0.7150	° 775 0	10,00+0	
41	0.7200	77242	3709-0	Q '
47	1.12.90	147.0	3782.04	1
43 * *	0.1449	11349	3757.0	• · · ·
44	U.4017	011.1	3729.0	:
45	0.7793	61/.6	· 3/0/.0 ·	· · · ·
46 1	-0.1913	594.6	3679.0	· · · · · · · · · · · · · · · · · · ·
4 <u>k</u> .		548.6	3649 (1)	• °
48	0.8353	- 499.0 ·	-3627.0	
49	0.8552	445.7	3599.0.	· · · · · · · · · · · · · · · · · · ·
50 ,	0.8772 .	· 383.3 · ·	3558.0	4 ¹ C ⁶
512 -	0.8994	119.9	3536.0	
52 , ,	_0 . 9227_+	249.1	· 3493.0	0.
53 🦯 ,	Q.9470	174,-8	3482.0 '	· · · · · ·
54 '	0.9724	91.1	3393.ń -	
· ·		e de y	í ·	
•••	_	, .	,	1

HEATS OF MIXING OF SYSTEM NETTANOL - N-HEXANE TEMP=25 DEG C. DELTA, H IN SUDLES/MOLE

:

K

- `		· (۲	.
N.	X ALC	DELTA H	* DEL H/X1X2
1	0.0205	229.8	11442-2
2	0.0459	311.3	7114.2
3	~ 0.0880 ·	385.4	4802.8
4	0.1277	431.8	3875 1
5	0-1637	462.5	3377 7
6	0.1962	· • 684.8	
7	0.2260	501 0	• 3074•3
Ŕ	0.2551	, , , , , , , , , , , , , , , , , , , ,	2980.1
ŏ	· · · · · · · · · · · · · · · · · · ·	512.0	. 2699-0
10	0.2013	521.4	2577-8
10	0.3058	525.9	2477.5
, 11	0.3291	579.0	2395-8
12	0+3706	529-1	2323.6
2	0.3707	527.5	22.61.1
14	0.3996	524.5	2205+6
15	0.4072	519.7	2153.1
16	0.4243	° 515.4	2110.0
17	0.4404	509.5	2067.2
F 8	· 0.4554 °	503.2	8202
19	0.4700	496.5	1993.0
20	0.4835	489.4	1959-8
21	0.4962	482.1	1928-5
22	0.5107	473.5	1894.9
23	0.5224	465.6	1866-1
24	.0.5318	458.8	1842 6
25	0.5325	458.3	1841.1
.26	1 0.5410	452.2	1921-1
27	0.5423	451.6	1819.6
28	0.5504	445.7	1801.0
29	- 0.5527	443.3	1992.0
30	0.5595	439.0	1791 1
31	0.5632	435.6	1770 5
-32	0.5746	426.3	1763 9
33	0.5858	417.0	1719 5
34	0.5980	406.7	1601 9
35	0.6108	396.1	1666 1
36	046238	384.1	
a 37	0.6371	372 0	
38	0.6509	250 1	
39	0.6652	22741	
40	10.6805	371.0	
41	4070000))[,+0	
42	0 7131	212•2	1490.9
43	0 7309	298.1~	1474.09
45	0 74 03	280.1	1420.6
45	0 7699	202.0 '	1394.9
45	/ V • 10.00	24LoH	1360.1
47		219.7	, 1322.9
1 1		.19843	1291.7
71 13 1 10		1/3.5 4	· 1250.5
-77 60		, 198.6	1.217.0
, 9U	0.8725	-127.5	1182.1
71.	0.9104	(93.0	- 1140-4
72	· · · · · · · · ·	65.4	1.115.2
22	Q.9688 🛸	• • • 32.4	1074.7 🕈

.

· •
-A35-

HEATS OF MIXING OF SYSTEM N-PENTANOL - 2,2-DIMETHYLBUTANE TEMP=25 DEG C. DELTA H IN JOULESCHULE

N	X -ALC	DELTA H	DEL HAXIX2	· · · ·
- 1	0.0196	221.4	11524.3	2
· 2	0.0458	304.9	6982.7	
3	0.0887	376.5	- 4659.3	н н Истори
4 1	0.1280	418.8	3752.8	· · · · ·
5	0.1644	448.0	3260.8	
6	0.1975	469.2	2960.2	•
, 7	0.2277	483.9	2752.0	ц. Ц
8 / .	0.2559	494.4	2596.3	
9	0.2820	501.3	2475.9	
YO	0.3065	505.5	2378.3	
ί <u>λ</u> ι -	0.3298	507.5	2296.2	
12	° 0•3516	50 7. 0	2723.7	, ,
13	0.3726	504.9	2159.7	· • · · · · · · · · · · · · · · · · · ·
14	0.3919	501.0	2102.0	•
15	0.4110	495.8 7	2048-2	, [°] t
16	0.4281	490.3	2002.8	• • • •
17 ·	0.4442	4.83.4	1957.9	
18	0.4597	476.8	-1919.7	م ^۲
-19	0.4738	469.3	1882.5	`, `
20	0.4876	462.3.	1850-2.	~ •
21.	0.5000	454.3 "	1817.0	•
22	0.5123	447.1	1789.5	, • ,
23	0.5233	439.1	1760.4	
24 •	0.5318	436.8	1754.3	
25	0.5367	430.7	1732.2	- , 1
26	0.5472	423.0	1707.0	
27	0.5418	429.7	1730.7	ن م
28 अ	0.5518	427.5	1708.1	· · ·
29	0.5574	415.6	1684.6	•
30	0.5622	413.9	1681.6	• 0
31	0.5732	° 405.6 10	1658.1	8.
- 32 * :	0.5844	397.0 💐	1634.6	
33	0.5961	- 387.1 ~	1607.9	, · · · ·
34	0.6085 ~	. 376.3	« 1579 . 4' `	• • • • • •
35 .	0.6217	÷ 365.0	1551.7	•
36 1	0.6353	352.6	1522.0 ···	•
37 -	0.6491	340.4	1494-3	· · · · ·
38 *	0.663,7	326.8	-1464-2	
39	0.6794	, 3 11-8	° 1431.3 ∂•°	
40	0.6954	296.9	1401 - "A"	
₃ ,41	0.7119	281.0	1370.0	υ
42	0.7294	264.3	133922	. 1
43	0.7477	248.2	1305.2	
44	0.7672	227.0	1271.3	
45	0,7878	207.0		<i>م</i>
40	0.8092	• 186.3	1206.5	د ۲
47	0.8320	163.9	11/2.7	• •
48	U-8558	140.2	1135.8	.•
<u>4</u> 7	0.8814		- L096÷2	
ຸວບ	0.90%I	N	1064%-3	¢
21 ° EJ	0,0474	- <u>64</u> -9 -	1024.6	
5 72	U.YO/Z .	₹ 5La4	440•S	
· ,				*

4

• • •

ج م

- •

.

	•	
HEATS OF MIXING OF SYSTEM	N-PENTANOL -	2,3-DIMETHYLBUTANE
TEMP=25 DEG C. DELTA H IN	JOULES/MOLE	· · · · · · · · · · · · · · · · · · ·

			-
N	X ALC	DELTA H	DEL H/X1X2
- 1	0.0217	233.6	10992.9
2	0.0452	. 305.5	7080.3
3.	0.0877	377.5	4718.5
<u> </u>	0.1270	420%4	3791.6
5	0.1627	449.9	3303.4
-7.6	0.1959 -	4/1.5 。	2994.0
7	0.2268 .	486-4	2773.8
8.	, 0 . 2553 °	497.6	2616.7
· 9	0.2818	· 505.0	2495.2
10	0.3070	· 509 .0	2392.3
11	0.3341	508.8	2287.1
12	0.3551	509.3	2224.1
13	0.3757	[°] 506.7	2160.1
14	0.3942	502.5	2104.2
.15	0.4114	497.9	2056.2
16	0.4279	497.4	2011.3
-17	0.4435	486.1	1969.8
1.8	0.4581	479.8	1932.7
19	0.4723	472.2	1894.7
20	.0.4855	465.2	1862.4
21	0.4984	457.7 /	1830.7
22	0.5110	449.9	1800-4
23	0.5231	e 441.9	1771.2
24	0.5327	434.8	1746.8
25	0.5342	432.7	1738.9
26	· 0.5423	428'-0	1724.3
27 .	0.5439	425.7	1716.0
28	0.5515	421.4	1703.8
29	0.5540	417.9	1691.2
30	0.5647	409.7	1666.9
31	0.5759	400.8	1640.9
32	0.5870	391.6	1615.3
33	0.5988	381.5	1588.2
34	0.6108	371.3 2	1561.9
. 35	0.6238	359.9	1533.5
36	0.6371	348.0	1505.0
′ 37 '	0.6511	335.7	1477.8
* 38 ,	0.6656	321.9	1446.1
39	0.6807 *	307.3 -	1413.8-
- 40	0% 6958	. 293.4	1386.2
· 41	0.7172 / "	277.6	1354.7
42	0.7296	760.8	1322.3
• 43 °	0.7478	243.2	1289.4
44	0.7681	222.7	1250.3
45	0.7880	203.1	1215.9
46 [']	0.8089	183.0	1.183.7
47	0.8313	160.7	1146-1
48	0.8552.	137.4	/1109.5 *
.49	0.8807	112.6	1072.0
[^] . 50	0.9077	86.6	1033.1
, 51 🐝 -	0.9373	58.5	995.2
` 52	0.9669	30.1	939.4
	•		•

Ĵ

٦

١

Ø

HEATS OF MIXING OF SYSTEM N-PENTANOL - 2-04 TEMP=25 DEG C. DELTA H IN JOULES/MOLE

RETHYLPENTANE

	208427 1		IN H IN JOULESTMOLE	
N	,	X ALC	DELTA H	DFL H/X1X2
1		0.0174	213.6	11216.1
2		0.0446	295.2	6922.2
3		0.0862	168 . 1	4673.6
4	• •	0.1248	41-3 . 3	3783.9
5		0.1612	444.0	3283.3
6	د	0.1941	466.5	2982.4
7		0.2247	483.1	2772.4
้่อ	\$	0-2532	494 .8	2616-4
ġ	¢	0.2795	502.4	2495.1
10		0.3040	508.0	2400.8
11	٠.	0.3273	510 4	2719 3
12	·	1 3487	510 K	.2268 1
12		0.3494	, 20 - 9	7740•L วงอนี่77
12	,	0.3070	1000 1 1004 7	2100+r ⁹ 2124 3
19		0.000	· · · · · · · · · · · · · · · · · · ·	212402
12		0 4 2 2 7		2002+1
10		0.4237	471.4	· 2037
11		0.4397	491.8	1496.1
, 18		0.4552	485.7	1958.5
19		0.4701	478.6	1921-5
20	١	0.4841	471.3	1887+0
21		0.4975	463.5	1853.9
22		0.5096	456.3	. 1825-7
23	L	0.5207	44913	1800.4
24	1	0.5314	447.2	1776.0'-
? 5	•	0.5324	5 447:4	1797.1
26	v	0.5421	435.0	1752.3
27	•	.0.547,2	440.6	ື້ 1774.8 🦾
28	(0.5516	428.0	´⁼ 1730.6
29	-	0.5524	· · 433.0, :	··· 1751.0
30		0.5630	424.7	1726.2
31		0.5739	- 416.0	1701.2.
32		0.5855	40.6.6	1. 1675.5
× 13		0.5974	396.2	1647.4
34		0.6098	386.3	1623.5
. 35		0.6230	374.6	1595.1
36		0.6363	362.2	1564.9
· 17		0.6504	349.5	151649
38		0.6650	335.9	1507.7
39		0.6803	321.2	1476.7 '
40		0.6961	306.0	1446.3
41		0.7129	289.4	1413.9
42	4 ⁻ ,	0.7301	272.3	1381-8
43	•	10.7486 A	253.6	1367.6
44		· 0.7675	234.7	1716.2
45	• ••,	° ∆ູ 7973 ′	214 7 ¹	1202 2
4	•	0.8097	A T • I A	10'AG P
67	. 🖓 💓	0 9316/		12470700
20	`	0 0643	, LO7,0, 1/E 4'	1107 4
0 T 0 A [°]	•	10 001C	147.0	1163 1
47		0.0012 4	117.7	1143.1
20	•	0.9075	76.8	1001967
21		0.4300	04.3	
72		0'* A00Q *	- 55.4 × -	エリダリッズ・・・

1

÷

HEATS OF MIXING OF SYSTEM N-PENTANOL - 3-METHYLPENTANE TEMP=25 DEG C. DELTA H IN JOULES/MOLE

	6		· د
N	T X ALC	DELTA H	DEL H/X1X2
- 1.	0.0206	226.6	11230.4
2	0.0446	303.7	7132.5
3	0,0860	375.9	4784.5
4	0.1257	421.2	3833.6
5	0.1618	452.1	3333.A
6	0.1944	474.3	3029.2
7	0.2251	489.9	2808-4
8	0.2538	- 501.3	2647.3
g.	0.2808	509.9	2525-1
10	0.3061 *	514.1	2420.4
11	0-3293	516.6	2338-9
12	0.3513	515.9	2263.9
13	0.3709	514.5	2205.2
14	0.3934	509.4	2134.5
15		505-8	2090-4
16	¹ · · · 0 - 4274	500.5	2045.2 '
17	0.4431 *** * >	406 3	· 2003 2
18	0 4576	487 0	1965 6
10	1 0 4711 ·	407•7 400•8	
20	0 4947	400°0	1907 2
2021		4/100	× 1777+2 ° 1947 0
21 22	0 5000	400.1	
2 <i>2</i> 77		437.5 157 0 ¹	1037 4 4
2 J 7 L	0.5204	451 6 -	1800.3
ノヨ ブに	0 5250	451.0	
2,5	0 5215	4319C	
20	0.5361	44444 4427	1792 0
ς, 28	0 5422	44Je7 126 6	1750 0
20	0 5469	430.0	1756 4
30	0,5515	4 4 0	1726 4
31	0.5576	426 1	1727 5
32	0.5688	417 6	1702 8
72	0.5808	407 2	1672 6
34	0.5000	206 4	1642 7
74	0 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 ·	170 • 4 . 396 9	1612 5
36		177 5	1591 0
37		350 0	1550 9
2.8	0.0040	345 1	
20	0.6646	331.0 4	1484.8
άń		315.2	1451 1
40	0 6882 **	200 0	1410.1
42	0 7163	29700	1392 3
42	- 0.7353	262.5	1349 7
66	0 7549	262 • 7	1310 7
45.	0 7760	· 221 2	1272 1
46	0.7094	100 1	1226 0
47	0.8222	175 1	1107'0
6 A ·	0.84K7 ×	150 4	117107 1160 A
49	10-8728 · ·	124.4	1170.0
50	0_9022	105.1	1070 8 1
51	0_0333	66_7	1040.2
52		37.0	078.1
· • •			. ₽10+ 2
	· · ·	-	

Y

•

,

		*		
,	HEATS	OF MIXING OF	SYSTEM ISOPENTANOL	- N-HEXANE
	TEMP=	25 DEG C. DFL	TA H IN JOULES/MULE	
	•			
	N	X ALC	, DELTA H	DEL H/X1X2
	1	0.0212	238.7	11481.3
	2	0.0449	316.9	7390.6
	3	0.0869	* 395.3	4981.3
	4	0.1257	445.3	4050.9
	5	0.1617	481.0	3548.8
ı	6	0.1943	506.6	3236.9
	7	0.2243	526.6	3026.1
•	R	0.2529	542.3	2869.9
	ŏ	0.2793	553.7	2750-9
	10	0 3040	561 5	2652 7
	10	0 3340	· 546 0	2574 1
i	11	U+3209	507.9	27/044
	12	0.3484	509.4	°2508.1
	1 3	0.3687	570.3	2450.2
	14	0.3878	\$69.7	2399.5
	154	0.495,7	567.4	2353.2
	104	0.4725	563.8	°2310.6
	17 🥄	0.4384	559.8	2273.6
	18	0.4536	554.9	2238.8
	19	0.4685	548.4	2202.3
	20	0.4819	°542.8	2173.9
	21	0.4948	536.3	2145.5
	22	0.5068	\$ 529.2	.2117.3
	23	0.5183	522.6 7	2093.4
	24	0.5291	515.4	2068.8
	25	0.5360	506.8	2037.7
	26	0.5396	508-8	2048.0
	20	- 0 5/54	500-0	2016 8
	21	- 0.5450	501.3	2010+0
	20	0.5477	201.02	1005 0
	29	0.5443	492.0	1973.7
	30	0.5001	484.0	1912.0
	31	-0.5771	415.1	1949-0
	32	0.5887	466.0	- 1924.4
	33	0.6007	455.4	1898.6
	34	0.6130	444.5	1873.6
Ţ	3,5	, 0.6258	· 432.7	1847.6
	36	0.6390	419.6	1819.0
	37	0.6529	406.1 V	1792.0 '
	38	0.6677	391.0	1762.4
	39	0.6831	. 375.4	1734.4
	40	0.6993	* 358.3	1703.6
.'	41	0.7157	340.2	1671.7
	42	0.7330	320.9	-1639.8
	43	0.7512	299.7	1603.7
	44 ~	0.7702	278.4	1572.5
· .	45	0.7903	254.9	1538.0.
-	45	0.8114		149.9.3
-	47 [°]	0.02A1	202.6	-1464-5
	49 "	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	172 3	1422.0
	70 60	, <u>0</u> 0000	1 1 2 4 1 1 2 4	P101 0
	50	, .V.OCZ7		* 1767 Q
٠	50 . e 1	0.0204	104•Q	13470
	51	0 °U5 ¥584		1902.00
-	25	0.9684	38.4	1222.4

HEATS OF MIXING OF SYSTEM ISOPENTANOL - 2,2-DIMETHYLBUTANE TEMP=25 DEG C. DELTA H IN JOULESZMOLE

N	X ALC	DELTA H	DEL HZX1X2	
1	0.0216	232.1	10980.7	
2	-0.0462	309.8	7028.2	,
3	0.0887.	383.34	4740.9	
4	0.1291	428.6	3812.4	
5	0.1658	460.0	3325.4	
6	0.1991 /	482.8	3028.4	
7'	″ ೧.2298	500.2	2825.9	
8	0.2590	511.8	2666.7	. 1
9	0.2862	520.6	2548.3	·
10	0.3105	526.2	2457.8	
11	0.3133	529.8	2384.2	
12.	0.3541	530.9	2321.0	
13 '	0.3739	510-4	2265.6	*
14	0,3925	527.8	> 2213.4	
15	0.4099	524.8	2169.6	
16	0.4764	520.8	2129.4	
17	1 0.4424	515.8	2090.8	
18	0.4576	509.8	2053.9	
19	0.4713	504.1	2023.3	
20	0.4844	497.8	1993.0	
Żł	0.4971	491.1	1964.4 -	
22	0.5094	484.0	1936.6	
23	0.5213 1	477.2	1912.2 4	
24	0.5321	469.6	1886.3	
25	- 0.5441	457.0	1842.5	
26	015448	. 461.0	1858.9	
27	0.*5540	449.3 ***	1918.3	
28	0.5552	5 453.7 ·	1837.3	
29	0,•5643	441.1	1794.1	
10	0.5750	433.8	1775.3	
31	05866	. 423,.7	1747.3	٩
32	• 0.5981	414.3	· 1723.6 *	
33	• 0•6103	403.3	1695.8	
34	0.6234	391.6	1668.0	• `
35	0.6363	377.2	1629.9	
36	0.6929	364.3	1607.4	ð
3.7	0.6677	350.7	1580.7	
96	. 0.6823	335.5	1547.5	
39	• 0.6986	318.8	1514-1	
90	• 0.7149	302.3	1483.4	
5	0.7328	283.4	1447.5	
4Z -	0.7509	263.9	1411.2	
43	.0.7699	244.0	1377.3	r •
44 	0.7409	222.6	1346.0	
	0.9123	199.5	1302.0	
10	0.8341	175.4	1767.7	
• 7	U-8577	149.8 -		
10	U•0750	122.5	: 1190.6	
9 7 5 A	0.9096	94.9	.1154.4	*
	- U+ 4 383	65.9		
21	C• 4040	51.0	1052.3	- `
		0 .	a 1.	•

ş

HEATS OF MIXING OF SYSTEM ISOPENTANOL - 2, 3-DIMETHYLBUTANE TEMP=25 DEG C. DELTA H IN JOULES/MOLE

41-

N	XÁLC	DELTA H	NEL H/X1X2
1	⁶ 0,0200	217.3	11081-6
2	0.0449	297.5	6941-6
1	0.080.0	371.5	4724.5
4	0-1262 *	419.7	3804.6
5	0.1616	451.8	3338.1
Á	0.1947	4 16 5	3033 0 4
ž	0.2251	444-3	2834.1
Å	0.2531	507 7	2695 3
٠q	0.2786	517.1	2572.8
10	0'- 3032	524.5	2492.7
11	0.3264	529.0	2406.3
12	0.3476	530-1	2337.4
13	0.3675	531-1	2284.9
14	0.3867	529.7	2233.7
15	0.4048	527.3	2188.7
16	0.4248	521.6	2134.7
17	0.4410	517.7	21 00 . 1
18	0.4546	512.1	2065.3
19	0.4687	506.7	2036-8
20	0.4818	500.3	2003.9
21	0.4950	493.6	1974.7
22	0.5065	487.1	1948-9
23	0.5177	480.4	. 1924.0
24	0.5286	473.5	~ 1900.3
25	* 0.5317	472.7	1898.3
26	0.5386	466.4	1876.9
27	. 0.5415	465.8	1976.0
28	0.5482	4.59.8	1856.4
29	0.5519	458.7	1852.9
°30	0.5628	450.0	1828.6
31	0.5736	₩ 441.6 ·	1805.4
٦2	0.5850	431.9	1779.0
33	0+5968	421.9	1753.3
34	0,6092	410-8	1725.7
35	0.6222	399.Q ,	1697.5
36	, 0.6357	386-1	· 166752 / ·
37	/ 0 . 6500 ` '	372.3	1636.5 /
38	0.6648	358.2	1607.3
39	1 0.6793	343.6	1577.0
40	0.6957	326.8	1543.8 >
41	0.7124	309.8	1512.4
42	- C. 7302 ·	290.8	1476.2
.43	0,7486	271.5	1443.0
44	0.7680	250.2	.1404.5
47	U-1887	227.3	1364.2
740 1.7	0.8108	203.7	
41	0.8332	* 119.3	
70 704	U•8575	152.5 "	· 124758 · · ·
475		a' 174•7	
50	0 0377	47, J 4 26 6	ししつびゅう 11つい ス
ן ג <u>י</u>	0.73// \ 0.04 70	Q7•7 ⊐3 A	
76	U. 90/0	74.4	1054•%

HEATS	ŮF	MIX	ING	OF	SYS	TEM	ISOPENTANOL	 2-METHYLPENTANE
TEMP=2	5 D	EG	C. I	DELI	A H	E N	JOULES/NOLE	

[\] N	ΧΑΪΓ		DEL H/X1X2
1	0.0217	241.9	
2	0.0462	319.4	7243.7
3	0,0886	395.7	4901.5
4	0.1281	447.2	3958.7
5	0.1649	475.4	3452.7
6	0-1984	498.7	3136-0
7	0.2291	517.1	2928-1
`8	0.2578	531.1	2175.9
9	0.2839	540.2	2657.4
10	0.3091 -	547.0	2561.5
11	0.3317	550.0	2480-9
12	0.3533	551.6	2414-0
13 ~	0.3730	551.8	2359.2
14	0.3918	549.8	2307.4
15	0.4098	547.1	2262.1
16	0.4265	543.1	2220.6
17	0.4423	538.0	2181.2
18	0.4576	532.7	2146.3
19	· 0.4718	- 526.0	2110.8
20	0.4847	519.6	2080.4
21	0.4977	513.1	2052.4
22	0.5102	506.1	2025.3
23	0.5220	498.5	1998.0
24	0.5331	491.1	1973.2
25	0.5361 /	486.9	1957.7
26	0.5439	484.0	1951-1
27	0.5459	479.8	1935.5
28	0.5543	476.4	1928.3
29	° 0.5560	471.9	1911-5
30	0.5666	463.5	1887.4
31	0.5779	454.8	1864.5
32	0.5894	444.4	1836.4
33	í, 0.6012 ·	435.1	1814.6
34	. 0.6136	424.3	1789.6
35 .	0.6267	412.3	1762.2
36	0.6401	399.1 '	1732.6
37	0.6540	385.3	1702.9
38	0.6688	370.9	1674.3
39	0.6847	355-3	1646.O
40	• 0.7010	338.2	1613.6
41	• 0.7177	320.3	1580.7
42	0.7355	301.3	1549.1
43 -	0.7540	281.1	.1515.3
,44	0.7731	259.7	1480.2
45	0.7931	237.2	1445.4
46	0.8143	213.4	1410.8
47	0.8366	, 187.7	1372.9
48	0.8608	, 159.5	1331.2
49	. 0.8855	131.5	a 1297.6
50	. 0.9109	101.7	1253.3,
51	0.9390	69.6 /	1214-8 '
52	´ 0 , 9688 ,	36.0	1190.8

. 3

ł,

HEATS OF MIXING OF SYSTEM ISOPENTANOL - 3-METHYLPENTANE TEMP=25 DEG C. DELTA H IN JOULES/MOLE

N	X ALC	DEL TA M		
1	0 (0206			
2	0.0633	212.0		
` 7		244.2		
<u> </u>		* 407•L	4349.1	
5	0 1747	444.3	3077.0	
5	0.1747	412.9	3279.5	
7	0.2266	493.3	3028.6	
0	0 2415	512.3	2854.3	١
· 0 0	0.2017	574.0	2716.4	
10		534.0	2612.4	
10,	0.3102	540.2	2524.6	
11	0.3321	544.0	2452.6 ~~	
12	0.3569	544.0 /	2370.3	
13	0.3761	545.5	2324.8	
14	0.3942	544.0	2278.2	
15	0.4119	541.3	2234.7	
16	0.4279	537.4	2195.2	
17	0.4432	532.9	2159.6	
18	0.4578	527.3	2124.3	
19	_ 0.4717	521.5	2092.8	
20	0.4850	514.9	2061.6	
21	0,•4972	508.2	2032.8	•
22	0.5089	502.2	2009.6	
23	0.5205	`495.0	1983.4	
24	0.5268	487.4	1955.4	
25	0.5314	487.6	1958.3	
26	0.5369	480.8	1933.8	
27	0.5420	480.5	1935.5	
28	0.5472	473.5	1910.9	
29	0.5522	473-8	1916-2	
30	0.5576	464.7	1881.7	
31	~ 0.5684	456.2	1859.4	
32	0.5797	446.9	1834.2	
33	0.5915	437.0	1808-8	
34	0.6039	426.2	1781.6	
35	0.6172	414.4	1753.8	
36	0.6306	402.0	1725.8	
37 1	0.6449	388.1	1694.7	
38	0.6600	373.4		
39	0.6758	357.5	1631 0	
40	0.6922	341 1		
41	0.7091	323.4	1567 6	
42	0.7268	3067	1507+0	
43	0.7453	283 0	1605 6	
44	0.7652	263.7	1493.0	
45	0.7856	206.1	1402.07	
46	0.8077	727+0 215 0	1760 A	
47 -	0.8204		1340.4	
48	0 9547	190.0	1212 1	
40		107.9	1312-l	
50		179.1	1270.7	
51 .	0 0347	103.4		
52	0 0477	10.5	1184.7	I
		32.0	1136.7	
÷-	<i>2</i>	. * &		

HEATS OF MIXING OF SYSTEM ISOPENTANOL - N-HEPTANE . TEMP=25 DEG C. DELTA H IN JOULESZMOLE

N [`]	X ALC	DELTA H	DEL H/X1X2	
1	0.0217	252.4	11898.2	
2	0.0508	353.4	7323.6	3
3	0.0973	441.2	5025.5	
4	0.1395	495.4	4127.0	
5	0.1783	534.2	3646.7	
6	0.2137	563.1	3351.7	
7	0.2463	584.3	3147.7	
Å	0.2758	600.3	3005-2	
ğ	0.3030	611.8	2896.7	
10	0.3286	619.4	2807.8	•
11.	0.3516	624.0	2736-9	
12	0.3744	626.1	2673.3	
13	0.3950	626.7	2622.5	
14	0 4145	626.1	2522.5	L.
15	0 4329	624.0	2532.8	•
16	0.4501	617 9	2332+0	
17	0 4444	612 3	2440 3	
10		017.3	2400+3	`
10		- <u>nun</u> .j _	- 2428+7 -	
14	0.4900	549.5		
20	0.5104	592+1	2364.5	
71	0.5229	207•2 (77)	2147.1	
22	0.5151	577.2	2320.4	
23	· U.5469	· 5/0•1	2300.5	
24	0.5572	202.2	2291.3	
25	0.5578	561.4	3 7216.2	,
26	0.5661	558.0	22/1./	
21	0.5682	553.0	2254.0	
28	0.5762	. 550 • 1	2252-1	
29	0.5779	545.6	2236.7	
30	0.5866	541.2	2231.7	
31	0.5970	532.2	2212.0	
32	. 0.6083	521.9	2190-1	
33	0.6198	511.0	2168-4	1
34	» 0.6320,	499.2	2146.3	v
35	0.6447	486.5	- 2123.9	
36	0.6578	472.4	- 2098,•8	
37	0.6715	457.2	{2072 ₄ 6	
38	- Q.6858	442.4	2053.0	
39	0.7006	424.8	2025-1	
40	0,7158	406.3	1997.3	
41	0.7323	386.5	· · · · · · · · · · · · · · · · · · ·	¥.
42	0.7494	364.7	1-41.9	
43	0.7673	341.6	1913.3	
44.	0:7861	316.5	1882.6	
45	0.8053	290.0	1850+1	
46	، ،0 ،825 8 ` ,	261.7	1919.3	
47	0.8471	230.9	1783.1	
48	0,8697	198.3	1749.8	
49	A 068935 J	167.4	1717.9	<i>.</i>
50	0,9187	124.5	1667.7	
51	0.9442	86.7	1644.9.	
52	0.9717	43.0 .	1565.8	
			,	

..

TABLE A38:+

1

s'

HEATS OF MIXING OF SYSTEM ISOPENTANOL - N-OCTANE TEMP=25 DEG C. DELTA H IN JOULES/MOLE

-A45-

N	X ALC	DELTA H	0EL H/X1X2
1	0.0247	279.3	11584.2
2	- 0.0548	383.1	7393.1
3	0.1056	484.1	5127.4
4	0.1513	545.2	4246.4
5	0.1924	588.6	3788.4
6	0.2294	621.2	3514.2
· 7	0.2647	644.6	3312.5
8	0.2957	661.7	3177.2
9	0.3248	671.8	3072.5
1 C	° 0.3524°	681.7	2987.3
11	0.3776	686.3	2920.3
12	0.4011	687.7	2862.9
13	0.4228	686.1	2811.4
14	0.4425	683.4	2770.5
15	0.4613	679.,7	2735.2
16	0.4784	674.1	2701.5
17	0.4947	-667.9	2672.0
18	0.5099	. 660.9	2644.6
19	0.5269	652.2	2616.5
20	0.5403	643.4	2590.4
21	0,5528	635.4	2570.3
22	0.5645-	627.0	2550.6
23	0.5756	618.2 🛇	2530.5
24	0.5804	608.6	2499.2
25	0.5866	609.4	2513.0'
26	0.5902	600.9	2484.4
27	0.5968	600.6	2495.9
28	0 ••6002	591.9	2466.8 -
29	-0.6084	590.2	2477.1
30	0.6106	582.4	2449.6
31	0.6214	572.3	2438, 8
32	0.6324	561.0	2413.2
33	0.6439	548-8	2393.4
34	0.6559	535.9	2374.2
35	0.6682	522.0	2354.3
36 -	0.6810	506.9	2333.3
37.	0.6944) 490+9	2313.2
38		473.6	2292.4
39	0.7227	455.3(2271.7
40	0.7375	435.3	2248.4
41	0.7529	444.1	2225-8
42	0.7691	3991+6	2205.3
43	10.7858	366.8	2179.1
44	0.8032	6	- 2154-6
45	0.8214		2131.3
46	0.8404	282.5	, 2106.0
47	0.8601	250.2 3,	2079.7
48	0.8810	215.2	2052.7
49,	. 0.9029	177.4	2024.0
50	Q.9255	137.8	, 1997.9
51.	0.9495	.94.5	1969.7
52	0.9743	48.7 •	1942.9

1

A3. ALGORITHMS FOR NON-LINEAR PARAMETER ESTIMATION

Let the mathematical model be represented by

(X3.1)

(A3.2)

 $\eta = f(\underline{\beta}, \underline{x})^{*}$

where η is the experimentally observed variable $\frac{1}{2}$ is the vector of unknown k parameters <u>x</u> is the vector of independent variables

The problem is to find an estimate <u>b</u> for $\underline{\beta}$ for which the sum of squares

 $h_{\alpha} = \sum_{i=1}^{m} (y_i - f_i)^2$

is a minimum where \boldsymbol{y}_i is the ith observation of $\boldsymbol{\eta}$ and

 $f_i = f(\underline{b}, \underline{x}_i)$ where x_i being the corresponding values of the independent variables \underline{x} .

The ordinary least-square method may be applied if the model is expanded in a Taylor Series about a current estimate <u>b</u>, only first order terms being retained. This leads to an improved estimate <u>b</u> = (b + t) for the linearized model, where <u>t</u> is the solution of

F' being the (m x k) matrix with elements $\begin{pmatrix} \partial f_i \\ \partial b_j \end{pmatrix}$ and F'^T being the transpose matrix of F'.

If the sum of squares at a new point <u>b</u> is smaller than the sum of squares at the point <u>b</u>₀, then repeated application of this procedure will lead to a solution of the problem. If not, then the Taylor Series method may not converge. However, at points away from the minimum, it is always possible to reduce the sum of squares by taking a sufficiently small step in the direction of steepest descent, \underline{d} (= -<u>g</u>). Methods based entirely in the direction of steepest descent have not been successful since they take a very large number of iterations.

A3.1 Marquardt's Algorithm

Marquardt's algorithm (M5) is based on the idea that the best direction for finding a reduced sum of squares lies in a direction δ lying between <u>d</u> and <u>t</u>. He finds this direction by solving the equation:

$$(A + \lambda I) \underline{\delta} = \underline{q} \qquad (A3.7)$$

-A47-

i.e. he adds λ to the diagonal elements of A. (For this to be meaningful, the system must be scaled so that the matrix \overline{A} has ones on the main diagonal.

When $\lambda = 0$, $\underline{\delta}$ is the Taylor Series direction \underline{t} , and as λ increases, $\underline{\delta}$ swings towards the steepest descent direction \underline{d} . The idea behind the algorithm is based on the following observations. The method of steepest descent often works well on the initial iterations but the approach to the minimum grows progressively slower. On the other hand, the method of Gauss (Taylor Series) works well when the minimum is near but often gives troubles on the initial iterations. From equation (A3.7), we see that the two extremes are represented by $\lambda \rightarrow \infty$ and $\lambda \rightarrow 0$.

This algorithm should share with the gradient or steepest descent method the ability to converge from a region far from the minimum and like the method of Gauss, should converge rapidly once the vicinity of the minimum is reached. The listing of the Marquardt's program is given in Section A3.3.

A3.2 The Spiral Algorithm

The basic idea behind the Spiral Algorithm (J1-2) is that a reduced sum of squares can always be found in the plane defined by the Taylor Series point and the line of steepest descent at the base point. In Figure A3.1, 0 is the base FIGURE A3.1

-

Geometry of Spiral Algorithm

.

ሌ

point T is the Taylor Series point and OD is the direction of steepest descent.

Since the sum of squares must decrease initially -along OD and since the Taylor Series approximation predicts a reduced sum of squares at the point T, then it is reasonable to assume that the reduced values of the sum of squares can be found in the area OTD.

In the spiral algorithm, a base point for the next iteration is sought as far as possible from the base point 0. The first point to be investigated is the Taylor Series point T. It is reasonable to assume that the sum of squares "valley" is moving away from the line OT. To try intercepting the valley, the spiral OTS is searched, this curve moves out from T at an angle β into the area OTD and moves back into 0 tangentially to OD. The most suitable equation for this spiral (expressed in polar co-ordinates with 0 as origin) has been found to be

 $r = r_0(1 - \theta \cos \beta - (1 - \gamma \cos \beta)(\theta/\gamma)^2) \quad (A3.8)$

where

r is the distance OS

-r is the distance OT

The sequence of points, S, on the spiral to be investigated is computed from a sequence of points, L, generated on the line TD such that L divides TD in the ratio μ :(1- μ). The successive values of μ are computed from the recurrence relation:

- 450 -

 $\mu_{n+1} = 2 \mu_n / (1 + \mu_n);$

which has chosen to insure that the points become closer together as they approach D.

(Å3.9)

The abové equations are basic for the Spiral Algorithm. A block diagram of the algorithm is given in Figure A3.2. The Spiral program allows, as standard, four spirals to be searched. If a reduced value of the sum of squares has not been found in any of these spirals, then the direction of steepest descent itself is searched. The only occasions that this could happen are for badly defined problems, i.e. problems for which very high correlations exist between parameters. This situation is usually due to redundant parameters in the model, or to poor starting values for parameters.

-A51 -

, , ,

FIGURE A3.2

Block Diagram of Spiral Algorithm

ŧ

۲. ۲. ۲.

-A52-

A3.3 Listing of Non-Linear Fitting Program "GAUSS" (Marguardt's Algorithm)

G LEVEL	20	·····	MAIN	 	DATE =	71308	,	18/12/25
	REAL P(4)) H(4) JY(25	;),G(25),DEV	/(25)				•
·	REAL DIF	2(4),5]ĢNS [.] ((4)	· •		••	•7	-
	COMMON N	ERJTRACE					1	
•	LUGICAL (DER		**		•		•
	LEGICAL	TRACE						
	COMMON/SI	JB2/XEXP(25	i),XG(25),YE	EXP (25)	AN1JAN2	V1,V2		
	COMMON/SI	JB3/T	1	1	-	• •		
	TRACE=.F/	ALSE.	r					Υ.
1	READ(5,10	09, ĖND=1000))		-	U		4
109	FORMAT(1)	K>79H			•	J.		\backslash
	1							
•	2 /1X, 791	4						
	3						•	°)
	DER=.TRU	Ε. «			;			
	READ(5,1)	LO) No Mo Io Jo	K					
110	FORMAT(5)	[6]			-			0
	M=-M		•		\bigcap		Ň	
	READ(5,1)	L1)(P(I) ,I=	112N)		1			
111	FORMAT (4)	=10.0)	•					
-	READ 9012	V1,V2,T,AN	IJAN2 °	>				-
901	FURMAT(5	F10.0)_	۵			-	•	
	READ 902	▶ (XEXP(I)́>Y	'EXP(I),I=1,	• M)				
902	FORMAT (2)	=20.0)			-	ŧ		
	DD 220 I	=1>M (*				
-	X1=XEXP()	[]						
	X2=1X1							*
	XC([)=(A	N1#X1+AN2#X	(2)/((AN1+1,	,)*X1+AN	2*X2)			
	YEXP(I)='	YEXP(1)=X1=	'X2			•	•	~
220	CONTINUE		۲					
	·EPS1=1.E	-07			• •		•	`
	EPS2=1.E.	-07 [·]					,	
	NPRUB=1	•	•		t		•	
	MIT=40	,			~	1		
	FLAN=0.0	1	r					1
	FNUE10.					,		
•	D[] 10 I = 1	L » Ŋ	,				•	
	DIFZ(I)=	0.001	-					
10	CONTINUE		Å					
	51645(1)	=1.	3			#		
	SIGHS(2)	•1•				. 4		
	SIGHS(3)	= 0, · ·						
,	51615(4)	= U •		'n				•
3 L ¹	- PRINI 25							•
27	DOTAT 14	117					ŧ	
	- CVI 1 - CVI	7 5 5 / Nid D D D . 44 -		167:51-44	C. EDC1 -	COC2-417	. 61. 4.4 . 61	
	- CALL GAU:	32 (HAKDRY WY	TEATINITYU	17 27 3 1 GN	3764374	Er 323M11) C C AM) PI	
1000	00 IU 1 Stid	,	•				•	
. 1000	END							
•	C, NU							

-A53-

J

		-		1-A54-				
V G LEVEL	20)	GAUSS	······	DATE =	71308	18/12/2	25
	SUBROUTIN	IE GAUSS (N	IPROB_11()8, Y	, NP , TH , DI	FZ,SIGNS.	EPS1,EPS	2,MIT,	
	1		FLAM,	FNU)			-	
· ·	REAL TH(N	1P)∂DIFZ(N {\•P(\0\•P	P) > S 1 GNS (N	P) / Y (NUB)	5.101.80	251. 78/10		•
	1 = E(10)	A(1)	WICIONPACE	077022272	39 101 9 ()	237710(10		
	LOGICAL D	DER			•	•	•	
	LOGICAL 1	TRACE						
		RETRACE	NOD NO					
	PRINT 100	10, 1164110) 11	NUDIMP					
	CALL GAUS	560 (1. NP. T	H, TEMP, TEM	P)		•		
,	PRINT 100)2					, ,	/-
	CALL GAUS	60(1,NP,D	IFZ, TEMP, T	EMP)		_	•	
	IF(NP,LT)	$1 \cdot 0R \cdot NP \cdot$	61.50,DR.N	UB.LT.NP)	GO TO 99	9 60 TH 30		
		INP		7 OK PR	0.11.14/	00 10 99		
	TENP = DI	IFZ(1)	•		3			
	IF(TEMP)	1759918				١		
. 17	TEMP=-TEM	1P		o o 'bo	70 00	•	•	
19	CONTINUE	E • I • C • UR	• IH(1), EQ	.0.0) 60	10 99	•		
	GA=FLAM				,			
	NIT=1	.,					-	
3	IRAII=1		4					
-	JUKDAN#1		FOSIAD O	` .			· .	
	IF(FPS2	GT. 0.0)	GO TO 30		• •	•	- 0	
	IF(EPS1.	T.0.0) GU	J TO 50	* ° * ,	•		1	
	IRAN=2	¢				0		
	GD TO 70						· •	
a 20 '	1KAN33							
30	IF(EPS1	GT.0.0) G	JO TO 70					
·	JDRDAN=2	•				q		
70	SSQ=0.0					•		
	CALL FOF	(NPROB) TH)	F, NOB, NP)					
	R(1) = Y(1)	(I)~F(I)	•	•			(
90	SSQ= SSQ	+R(1)*R(1))		•		\ •	
	PRINT 100)3, SSQ						
¢	· · · ·	26 NTT	<i>•</i>	•	BEGINE	ITERATIO		
100	TCOUNT =	747 NLII 5			,	•	•	
	GA=GA/FN	j ·						
	IF(DER) (CALL DERIV	/E(TH,DELZ,	NOR, 6122)				
	DD 130 Ja	=1,NP						1
1	TEMP=TH(】) 7 / 1、二十日 / 1、				9		P
0	- TH(J)=TH	(J)+6(J) 7(2)±14(2))		•			
	Q(J)=0.0			• ,		,		
	CALL FOR	(NPROB, TH)	DELZ(1+3)+	NOB, NP)				
	DD 120 I	=1,NOR		•		۲		
- 1.20	UEL2(I)]	7 = UELZ(1)=DEL7/1-	2J]-7[]) }=0/])	-	\$		*	
	TIN-LOIN	, *UELZ\IJ J	17TN(47 '		-	•		
-	•		· · ·		•			
		-			•			
	· · · ·	Ŧ				~ 4		

!

5	LEVEL	ZO GAUSS	DATE = 71308
		- 	
	C	Q=	XT*R (STEEPEST DESCENT)
	130	TH(J)=TEMP	•
		GD_TO_152	· ·
	122	00/123 J=1,NP	1
		Q(J)=0.	· · ·
<u></u>		DU 123 I=1,NUB	
	123	Q(J) = Q(J) + DELZ(I) + R(I)	a
	152	DO 150 I=1,NP	
		00 151 J=1/I	•
	140	UIJ 100 K#19900 SIME SIME DSE 778, TY+DSE 778, 11	•
	100	3043308+0662(KJ1)+0662(KJJ)	· ·
	•	1EMP=30M7(P(1)+P(J)).	THY / MOMENT MATRIX)
	L L		TAX FIGHENT DATKING
	151	D(J)I)-TEMD	
	180		
	100	DR 153 (=1.00	•
	000	DD = 153 + 1 + 1	•
	-	$A(T_{A}J) = i)(T_{A}J)/(F(T) * F(J))$	0
	·	$A(J \bullet I) = A(I \bullet J)$	
	153.	CONTINUE	, · · · · · · · · · · · · · · · · · · ·
	C		A=SCALED MOMENT MATRIX
	•	DO 155'I=1,NP	
	•	P(I) = Q(I)/E(I)	
		PHI(I)=P(I)	
	155,	$A(I_JI) = A(I_JI) + GA$	· · · · · · · · · · · · · · · · · · ·
		CALL GAUSSO(NP)A,P,DET,1,0E-30	¢0,11,61555,64100) ۶
	1555	5 IF(TRACE) PRINT 1005, DET	
		STEP=1.0	
		SUM1=0.0	
		SUN3=0.()	
		UU 231 (=1)NP SUM)-EUN)AD/1\#DU1/1\	ć
		SUNT-SUNTYPAL/TYPALAI/	1
	,	SUN2 - SUN2+F(1)+F(1) SUN2+ SUN2+DU1(1)+DU1(1)	· · · ·
	271		•
	2-1	ANGI F#SUM1/SORT(SUM2#SUM3)	•
		IF (ANGLE.GT.1.0) ANGLE=1.0	$\mathbf{\lambda}$
		ANGLE= 57.295+ARCOS(ANGLE)	
	_	IF(TRACE) PRINT 1041, ANGLE	The second se
	170	00 220 [=1,NP	
	220	T8(I)=P(I)*STEP/E(I)+TH(I)	man Arien in
•		IF(TRACE) PRINT 7000	
	7000	FORMAT(+ TEST POINT PARAMETER	VALUES!)
		IF(TRACE) PRINT 2006)(TB(I))I=	LINY)
	•	00 2401 I=1,NP	
		IF(SIGNS(I) , GT. 0.0 .AND. TH([]#IB(I) .LE. U.V) GU IU 663
•	2401		
		3UJ77#U+U CALL EAC(NDDAD - 70 - 5 - NAD)	• • •
	,	NARE FURINERNOFIOFFINUDJAF/	•
		20 230 1-19HD0	•
			-
		υ,	

:

G	LEVEL	20	J	GAUSS	DATE = 71308	18/12/25
•	1	R(1)=	Y(I)-F(I)	· · ·	d*	•
	230	SUMB	SUMB+R(I)	+R(I)		
		IF(TR	ACE) PRINT	1043, SUMB	٩	
		IF(SU	HB .LE. SSC	*(1.0+EPS1)) GD	TD 662	,
	663	IFLAN	GLE.LT.45.C) GO TO 665		•
	•••	GA=CA	86 NII 86 NII		• •	
			T= ICNINT+1			
		TEITC			, -	
		CO TO			•	
	445	5750-0	555 5759/2 A			
		- 3 1,6 P = 3 - 1 C (1) (N)	3 C F / C # U E _ T C D (N T A	, ,		• ;
		10000	F = 1000007			
			JUNI .02. 3			
-		GU TU	170		•	
	002	PRIM	1007		ς	
		00 669	7 I=1,NP		,	•
	669	TH(])	= T8(I)			N
		CALL	GAUS60(1,NP	TEMP J TEMP)		
		PRINT	1040, GA,S	UMB		
		GO TO	(225,270,2	(65), IRAN		
	225	HZ=0.) .			
		HF=0,(0		· ·	<i>i</i>
		DD 240) I=1,NP	` .	,	
		HF,₽HF	+ABS(P(I)*S	TEP/E(I))		
		HZHZ	+ABS(TH(I))			
	240	CONTIN	NUF			
		IF (HF	GT. HZ*EP	S2) GD TD 250		•
`		PRINT	1009. EPS2		, ,	÷ -
		GD TD	280	•		•
• •	250	60 TO	(265,270)	INRDAN	,	. ·
	265	IF(AB	SCUMB-SSO	J/SSO) GT. EPSI) GO TO 270	1
		DDINT	1010.5001			
		CO TO	200			
	270	101 00				
	240	N1[-N]	1718 · · ·		•	-
		·····································			•	•
		IFINI	I.LE.MII)- G		·	
		GU TU	280	•	•	
	2700	PRINT	2710			
	2710	FORMA	T(THE SUM	I OF SQUARES FANN	IDT BE REDUCED TO THE S	UH OF SOUARES
	•	<u>15 at 1</u>	THE END OF	THE LAST ITORATI	ON-ITERATING STOPS!/)	,
	C			j –	• END ITERATION	
	280	SUM1=(0.0	• •/	*	
		DU 27	14 I=1,NOB	•		
,		R(1):	=100.*R(I)/	'Y(1)		
	2714	SUM1=	SUM1+R(İ)*R	· · · · ·		*
		RHS=S(RT(SUH1/NC)B) -		
		PRINT	1011, (Y(I)	F(I) = R(I) = I = I = N	IOB)	•
		PRINT	1012 - RMS			• •
		550-51	UMR			•
	•			•	•	
			584185 <u>6780</u> - "		1.11.57601.561001	
	7691	DA 740	37433333333437771 32 1-1 - ND	·/· / ·· ·· ·· · · · · · · · · · · · ·	1.11.0.0.11041001	
	1071	10 0 10	76 IFLJNP Forting - T-			
	7092	E(1)=		1	•	
`		100 340	U I=1,NP		•	
		QO 34(U J≖I≠NP			
					• • · · ·	
	•	• .			æ	
				~	· ·	
				/\ .	- ,	

. •

•

1

1

١

-421	-
------	---

VG	LEVEL	20	GAUSS	DATE = 71308 18712/25
		$A(I_J) = D(J$,I)/(E(I)#E(J))	
_		$D(J_JI) = D(J$,I)/(DIFZ(I)*TH((I)#DIFZ(J)#TH(J))
• ••		$D(I_J) = O(J$	▶ []	
	340	$A(I_{J}J) = A(J)$, , , , , , , , , , , , , , , , , , ,
		IF(IDF.EQ.0)	GU TU 410	
		SDEV=SSQ/IDF		•
•	,	PRINT 1014,	SOLVIIUF	
	•	SUEV = SQRT(SULV)	• 0 '
		DO 3AT IETIN		
		$P(\{\}) = TH(\{\})$	+2,07E(I) +50EV	
	391	1B(1) = 1H(1))-2.0+E(1)+SDEV	۰. ۲
,	I	PRIOT 1039	A NO TH A TEMPA	\sim
		CALL GAUSOU		
•		DU 415 K=1/N	10.15	· · · · · · · · · · · · · · · · · · ·
		IEMP =0.0	·	·
		00 420 [=1,1		` .
		DO 420 JELON		
	420	TEMP = TEMP+	$DELZ(K)I) \neq DELZ(I)$	KġJ)≠D(IġJ)
		TEMP=2.0=5QR	T(TEMP) + SDEV	· · · · ·
		R(K) = F(K) +	TEMP	•
	415	F(K) = F(K) =	TEMP	
		PRINT 1008		1
۰ ت		IE=O		·
		DD 425 1=1,N	IDB / 10	
		IE=IE+10		, ,
		IF(NDB .GE.	IE) GO TO 435	· ``
		IE=HOB	1	•
	435	PRINT 2001, (R(J),J=1,IE)	
•	425	PRINT 2006 (F(J), J=1, IE)	· · ·
	410	PRINT 1033, N	IPROB	
		RETURN		
	99	PRINT 1034		
		GD TD 410	¢,	•
	4100	PRINT 4110		
		GD TO 410		· · · · · ·
	1000	FORMATINA	NUNLINEAR ESTIM	ATION, PROBLEM NUMBER 1, 13, //15, 1
	1000	1 DBSERVATION	SIA 15, PARAMETE	PS1)
	1001	EDBMAT//I TA	ITTAL PARAMETER	VALUESIN
	1002	EDRIAT(/) PR	INPURTIONS USED	IN CALCULATING DIFFERENCE QUATIENTS!
	1002	FORMAT() INI	TTAL SUM DE SOU	Apps $= 1.512.4$
	1003		SYLITEDATION N	
	1004	ENGLATIS DET	COMINANTI SIZ A	
	1005	- FURMAILY DE - EmphAt/// E1	CENVALUES OF MO	MENT MATRIX-DREITMINARY ANALYSISI)
	1000	- FUNDATU/ - EI	LOCHVALOES OF HO	VIA PECPECCIUNIN
	1007	- FURIAIL/ * FA	ARANETEN AREVEJ	NETRENCE L'IMITS FOR EACH FUNCTION VALUELA
	Tons	TURNALL////	APPROATIATE CO	AFIDENCE LINITS NON EXCHININGELIUM ANDREAL
	1000			PLATING CHANCE IN CACH DADAHETED LESS T
٩.	1004	FURNAILY I	IERALIUM STUPS-K	ELATIVE CHANCE IN CACH PARAMETER LEUD I
		1HAN JE12.4)	COATION STORE	DELATIVE CHANCE TN SUM DE COUADES 1 ESS
	1010	TURNAL (/ 1)	EVALTON 21062-	VERMITAE AUMUNC IN DOW ON DAMAKED FEDD
	1	11MAU 712.4		CLEVETINE TAN PERMETING MALUFCICAL ONLY THAT
	101	FUKHAT(/T10)	THUNCTION VALUE	STEAPIET STAUS TRUNCTION VALUES CALUTS 173
		170, DEVIATI	IN(PCT) ')/(T11)E	15,7,741,E12,7,770,F10,4)).
` h	1012	FORMAT(/TSO	, RMS DEVIATION(PCT) = 'JF10,2)
	1914	FJRHAT(///	VARIANCE OF RES	IDUALS#1,E12,4,11,14,10EGREES OF
	~	• .	· · · ·	
	/			
			•	
		•		۰ ^۱

.....

1.

	<u>`</u>		• · · · ·	w	-004-	an To Marin There we are set of the		** • • •	1 m / h n * * *
VGL	EVEL	.20	• •	GAUSS	~ `	DATE	- 11308	18/	12725
,	1	FREEDUM						· ·	,
<u> </u>	015	FORMATC	//// NÜRM	INLIZING E	LEMENTS!).	Ľ		· · ·
	033	FURNAT(//! END OF	: PKOBLEM *******	NU.'.13) ***PARAME	TER ERROR	******	****	*!)
1	039	FORMATO	/' INDIVIC	UAL CONFI	DENCE LI	MITS FOR	EACH PARAME	TER (UN L	INEAR
1	1 040,	R HYPHT FORMAT'(HESIS)') /' LAMDA';	E10.3.40X	SUM OF	SQUARES	AFTER REGRE	SSINN=1,	E15.7)
	· 1	7) a	5 • • • • • • • • • • • • • • •	SCALED C	י הוב מפרורי	(9 EQ 2.1056	RECSIN		۰ ·
]	043	FORMAT (TEST POL	INT SUM OF	SQUARES	=1,E12.4)			•
2	001	FORMAT(/10E12.4)	`				њ. "	. 0
, 4	110	FORMATI	5X THE N	IDMENT HAT	RIX XT#X	IS SINGU	ILARCUNTI	NUE TO	e
,	. 1	_ ANOTHE END	R DATA SEI				٠		,
		TA ÍD							,
5 IN 5 IN	EFFEC	,1# ,10, ;T# ΝΔΗ	E = GAUSS	LINEC	NT =	56			•
1105×	i S	OURČE S	TATEMENTS	= ' 21 ≥∧Ten	5, PROGRA	M SIZE =	10006	~	
1004		UT Rolling							
					•				
			° '	·			٥	<i>ن</i> ل (• •
	*		· .	۰ د					
			· · ·	•		, I	ð		ব্ ৬
-	ب و ر		ه ر ت		, 0		-	•	
I				۲ ۲				<u>,</u>	
٠,		•	· ·	۰ ۴			,	° °	
۲ . ک		و بر ب	٠,	' *	ø				4
	· •	ې •	•	ę			c ~	,	, -
• •		•	*	ia			, • .		
,	, 1		• ۴۰ ،	,	ب د	>		•	
	•		، ر	, ,			, o)	°,	,
	, ,	•				•			۲. ۹
		: 9	* D		\$	۰ ۱۰ ۲۰	3 °	,	
	•	۵ ,	'n	¢		о о	-		E.
,	•	١		5 <mark>,</mark> 2			4 C		. •
	• •	• •	10 0	•	^ع ت الا		· ·	• ·	
•	,	• •	, °	ě		۰ ۲ ۵	٤		
۵,	•	, · · •	i		٥				<i>, 2</i>
	•	•	•			, P	- •,	•	
			°ç ,	1	, *	ı	ار) بر		١
<u> </u>			-				· ·		
, ,		,	3 1	٥	-	t			1
, , ,	,			، •		د بر	, ,		ď

ŧ

			•			
	SUBROUTINE GAUS REAL IRDW(10),J	50(N,A,X,DETER) COL(10),JURD(10	EPS, INDIC, NRC), Y(10), A(NRC	⇒≠≠≠≯ ≠NRC)→X(N)	-	•
	MAX=N IF(INDIC.LT.O)	60 TO 6	٢			· • • !
	MAX=N+1	-	4			
	'UO 4 I=1,N		,			
4	$A(I_MAX)=X(I)$		()			
6	IF(11, LE.50) GD	τα 5				
ŝ	PRIMI 200	· .		Υ.	-	
•	RETURN 2			\backslash		
5	DETER=1.	*	E.			
	DD 18 K=1.N		, -			
,	KM1=K-1					
	PIVUT=0.0	•				
	DO 11 I=1.N		۰. · ·	•		
1	$DD 1, I J = I \neq N$, · · , · · · · · · · · · · · · · · · ·	9		•	
~ 1	IF(K.EQ.1) GO T	D 9,				
	DU 8 ISCAN=1,KM		♣,	• `		
٥	TELLEA TOURIS	1 (CAND) CO TO 11				
		CANY CO TO IL				,
. 8	CONTINUE	CHILL OF IT IT		• *		•
ğ	JF(ABS(A(IJ)))	LE_ABS(PIVOT))	GO TO 11		,	•
a	PIVOT=A(I,J)					
	IROW(K)=I			a	•	
,	JCUL(K) = J	2		,		
11	CONTINUE	۰ ۰	•	• •		
	IF(ABS(PIVOT),G	F,EPS) GO TO χί	3	~		
~	DETER=0.0	•	•		J	
, , , , , , , , , , , , , , , , , , ,	RETURN 2	0	•			, i
13	IRUWK=IRUW(K)	•	· · ·	•		
	JUULK=JUUL(K)	In t '			•	
	DCIEK=UEIEK=PIV	101				
14	ALTROWK.LANAA		•		·	
A T	$\Delta (TRDWK \cdot JCD) K) =$	I./PIVOT	,	· · ·	•	
,	DD 18 I=1.N	· · · · · · · · · · · · · · · · · · ·	, ť			
•	AIJCK=A(I)JCOLK	3	•	۲.,		
,	IF(I.EQ.IROWK)	GO TO 18		•	· a	
,	A(I,JCOLK)=-AIJ	ICK/PIVOT 🥂	-			
	DD 17 J=1+HAX			1	- , .	
17	IF(J.NE.JCOLK)	$A(I \not J) = A(I \not J) - I$	AIJCK*A(IROWK)	(J)		
18		о ^т		o		
14	100 20 I=LJN 18001-1000/11		•	*	I	
L.	10001-1KOM(1)	*		•	<i>.</i>	
	JÓKD(IRNWI)±JCH	IL I	6	ŋ	-	
20	IF(INDIC_GF_0)	X(JC()LI)=A(IRA	WIJMAX)		o	
~~~	INTCH=0	······································	··· ·· ·· ·· · · · · · · · · · · · · ·			
•	NM1=N-1					
	00 22 I=1,NM1			· ·		
l -	IP1=I+1	,	٥			
	DD 22 J=1P1.N		(	۳,	• , •	
<b>پ</b> ن		° · ·		<b>,</b> ' .		

ļ

•

4

٥

, **.** 

.

		-A60-						
	1		,	• •	•	5.		į
	,	Ň	<b>*</b> 9	1 5				
		· A			-			÷
IV G LEVEL	20	GAUSSO	·	DATE	= 7130	8	-	18/
•	IF(JDRD(J),GF,J	/ INRD(1))_GO_1	י מ 22 י		•			
	JTENP=JORU(J)							
` <u>.</u>	JORD(J)=JORD(1)	)			4			
	JURD(I)=JTEMP	۴				4	٠.	
	INTCH=INTCH+1			-				
22	CONTINUE	R		•			,	
	IF(INTCH/2*2.NE	.INTCH) DETE	R=-DETER		•	•		•
24	IF(INDIC_LE_O)	GO TO 26		ે <b>ા</b> ે	• •			
<b>L</b> 7	RETURN 1	, , , , , , , , , , , , , , , , , , ,						
26	00 28 J=1+N		ŝ			1		
	DD 27 I = 1 + N	٩	•		•			
	TROWT=TROW(T)							
ť								•
27		(1)	l		٠	+	•	
, 21	00 28 I=1.N		`					
20				4				
20	$\frac{1}{2} \frac{1}{2} \frac{1}$		•			v	•	
	00 29 J=1.N		6	• -	•			
¢	TROWLETROWCIN			•		نعر		
		1				<b>G</b> .		
20	V/100W11=A/1-16	ີ ເກັບ		- ,				
6 Y	DD 20 1=1-N		<i>.</i>					
. 20	Δ( ¹ .) = Υ(.)		· ·			1		
· • • •	DETIIDN 1		•	•				•
200	FROMATIONY 1444		IS TOD B	<b>TCas</b> ===	******	****	***	***
200	FURMALLEVAJ 'TT	[ + + + + + + + + + + + + + + + + + + +	13 100 0	10	··••••••	·····	·• ·• •	· f · · <del>f ·</del> · · <del>f</del> · ·
				•		• 1		
,		•			,	•		_

Q

ķ

. 1 1

٠,

7

5

١. .

VG	LEVEL	20	GAUS60	DATE = 71308	18/12/25
		SUBROUTINE G	AUS60(ITYPE,NP,A,B,C)	•	
۲		DIMENSION A	'NP),B(NP),C(NP,NP)		
		DIMENSION I.	(10)	•	<b>b</b> -
,		NR=NP/10		*	
		LOW=1			•
ø		LUP=10	٥		
	1.0	IF (NR) 15,20	1,30	· · · · · · · · · · · · · · · · · · ·	•
	15	RETURN			•
	20 4	LUP=NP	• .	1	-
•	30	00 555 J=L0W	1. LUP	•	
	555	IJ(J)=J	•	•	
	•	PRINT 500+(1	【J(J), J=LOW, LUP)	¢ .	1
		GD TO(40,60,	80),ITYPE	1 .	
	40	PRINT600 (A)	(J)#J=LUW#LUP)		•
	ι,	GD TD 100			
	60	PRINT 600+ (E	3(J),J=LOW,LUP)	<b>1</b> • • •	•
		GD TO 40		۰. ۱	•
	08	D0 90 I=LOW,	LUP		•
	90	PRINT 720,1,	+ (C(J,I), J=LOW,I)		¢.
		IF(NR.E9.0)	RETURN	· · ·	
_		LOW2=LUP+1	ۍ		
-	*	DD 95 I=LOW:	2, NP	•	•
	95	PRINT 720, 1,	•(C(J+I)+J=LOW+LUP)	ب -	•
	.100 -	rom=rom+to	· · · · · · · · · · · · · · · · · · ·	-	
	^	LUP=LUP+10	•		
		NR=NR-1		-	
		GD TO 10	•	•	
	500	FORMAT(/IB)	9112)		۲
•	600	FORMAT(10E12	2.4)		1,
	720	FURMAT(1HO)	13,1X,F7.4,9F12.4)		
•		END		, t	
		. 1	•		-
•					

1

<u>۲</u>

G LEVEL	20	FOF	DATE = 71308	18/12/25
	SUBROUTINE FOR	= ( NPR(18 . P . Y . M . NP )	`	
	REAL P(4) Y(2	5) GN25)		ι.
	CGMHUN/SUB2/XE	EXP (25) XG (25) YE)	(P(25)) AN1) AN2, V1, V2	
	COMMON/SUB3/T			
	· RT2=1,989*4.18	3≠Т≠Т ₀		
	SX1=AN1/(1.+AN	41) -	A.'	
	SX2=1,-SX1	•		
	H1S=RT2*(SX2*)	5X2*P(1)*P(3)/((S)	(1+SX2*P(1))**2)+SX2*S	X2*P(4)/((SX2+
	15X1*P(2))*#2);	)		1
. 1	H23=K12*(3X1*:	58178(2)78(4)/((5)	(5+2X1+6(5))++5X1+2	X1*P(3)/((5X1+
- j	15X2#P(1))##2)			
	X = YG(T)	· -		
	$X_{2}=1$ , $-X_{0}(1)$	T I		
	H1=RT2+( X2+X2	2*P(1)*P(3) /(( X)	+X2*P(1))**2)+ X2*X2	*P(4)/(( X2+
	1 X1*P(2))**2)			
	H2=RT2*( X1*	X1*P(2)*P(4)/((_)	(2+ X1*P(2))**2)+X1* X	1*P(3)/(( X1+
	1X2*P(1))**2)			
•	G(I) = XEXP(I) * (	[AN1*(H1-H1S)+H2-H	125)+(1XEXP(I))*AN2*	H1 .
3	Y(I) = G(I)	•	ۍ ۲۰	•
	RETURN	-		~
	END	•		
				1
				,
	· -	٥		L.
		,		

- 462 -

SUBROUTINE DERIVE(PJDFDX,M,*) REAL P(4), Y(25), G(25) DFDX(25,10) COMMON/SUB2/XEXP(25),XG(25),YEXP(25),AN1,AN2,V1,V2 COMMON/SUB3/T SX1=AN1/(1+AN1)SX2=1.-SX1 RT2=1.989+4.18*T*T DH115=RT2+(SX2+SX2+P(3)+SX1-SX2+SX2+SX2+P(3)+P(1))/((SX1+SX2+P(1)) 1**3) DH21S=-RT2*2.*SX1*5X1*SX2*P(3)/((SX1+SX2*P(1))**3) DH12S=_RT2*2.*SX2*SX2*SX1*P(4)/((SX2+SX1*P(2))**3) DH225=RT2*(SX1*SX1*SX2*P(4)~SX1*SX1*SX1*P(4)*P(2))/((SX2+SX1*P(2)) 1**3) ÚH135=RT2*SX2*SX2*P(1)/((SX1+SX2*P(1))**2) DH23S=RT2*Sx1*Sx1/((Sx1+Sx2*P(1))**2) DH14S=RT2*SX2*SX2*1./((SX2+SX1*P(2))**2) DH24S=RT2*SX1*SX1*P(2)/((SX2+SX1*P(2))**2) DO 1 I=1,M X1=XG(-1-)----X2=1:-X1 DH11 =RT2*( X2* X2*P(3)* X1- X2* X2* X2*P(3)*P(1))/(( X1+ X2*P(1)) 1**3) DH21 =-RT2*2<u>*X1</u>*X1*X2*P(3)/(( X1+ X2*P(1))**3) DH12 =-RT2*2.* X2* X1*P(4)/(( X2+ X1*P(2)).**3) DH22 =RT2*( X1* X1* X2*P(4)- X1* X1* X1*P(4)*P(2))/(( X2+ X1*P(2)) 1**3) DH13 =RT2* X2* X2*P(1)/(( X1+ X2*P(1))**2) DH23 =RT2* X1* X1/(( X1+ X2*P(1))**2) DH14 =RT2* X2* X2*1./(( X2+"X1*P(2))**2) DH24 =RT2* X1* X1*P(2)/(( X2+ X1*P(2))**2) DFDX(I,1)=XEXP(I)=(AN1=(DH11-DH11S)+DH21-DH21S)+(1.-XEXP(I))=AN2= 1DH11 DFDX(I)2)=XEXP(I)*(AN1*(DH12-DH12S)+DH22-DH22S)+(1.-+(EXP(I))*AN2* 10H12 DFDX(1,3)=XEXP(1)*(AN1*(DH13-DH13S)+DH23-DH23S)+(1.-XEXP(L))*AN2* 10H13. DFDX(I=4)=XEXP(I)*(AN1*(DH14-DH145)+DH24-DH245)+(1--XEXP(I))*AN2* 1DH14 CONTINUE RETURN

END

1



A4. A Programme for Prediction of Heats of Mixing



1

\$

, `

<b>C</b> "	A PROGRAM TO PREDICT HEATS OF MIXING OF ALCOHOL +HYDROCARBON MIXTURES
-	DIMENSION TITLE1 (20). TITLE2 (20)
	DOUBLE PRECISION T
	DOUBLE PRECISION 8(4)
	REAL NA .NH . X (60) . Y (60) . XCH2 (60) . HCH2 (60) . HDH (60) . DHRH (60) . DHRA (60)
	REAL YPRED(60).DEVP(60)
- 100	READ(5.101.END*2000) TITLE1.TITLE2
101	FORMAT(2084/2084)
Int	- DEADIS - 1021N1 - N2 - N3 - N6 - N5 - N6 - N7 - N8 - N9
` 107	- TE NOT 27 EVE JUL 112 112 112 112 112 112 112 112 112 11
IV2	
	$\mathbf{COPMAT}(\mathbf{J} \in \mathbf{I}_{0} \land \mathbf{I}_{0} )$
ta 2	FURMALLJFLU#U #177
	· 4LI2=UT
	KEAP(7) LUTI(A(1)) T(1) (= 1) NP(3)
10/	
E	CALCULATION OF STANDARD STATE AND GROUP COMPOSITION.
	SX1=NA/(1.+NA)
_	SXZ=1SXI
C	CALCULATION OF WILSON PARAMETERS
	R=8.31439
-	B(1)=26.69*DEXP(-1336./T) + 7.705
,	B(2)=(26.69)*(1336./T**2)*DEXP(-1336./T)
	B(3)=34.95+DEXP(-2908./T)
	B(4)=(34.95)*(2908./T**2)*DEXP(-2908./T)
	DO 200 I=1,NPTS
200	XCH2(I)=((X(I)*NA+(1.'-X([))*NH)/((1.+NA)*X(I)+(1X('I))*NH))
C	CALCULATION OF DELTAH FROM READ IN DATA
	00 15 I=1,NPTS ·
	IF(LM)12,14,12 °
14	Y(I)=Y(I)
-	GO TO 15
12	Y([)=Y([)*X([)*(]X(]))
15	CONTINUE
C	CALCULATION OF PREDICTED HEATS OF MIXING
-	SHCHA=(SX2+SX2+B(1)+B(2)/((SX1+SX2+B(1))++2)+
	15X2*5X2*8(4)/((5X2+5X1*8(3))**2))*R*T*T
	SHOHA=(SX1*SX1*B(4)*B(3)/((SX2+SX1*B(3))**2)+
	1\$x1+\$x1+R[2]/((\$x1+\$x2+R[1])++2))*R#T#T
	OD 1 T=1_NPTS
•	□ C = 4 0 − 5 4 HC H2 / 1 \= / Y2 ★Y2 ★Q / 1 \ ★Q / 2 \ / / / Y1 ↓Y2 ★Q / 1 \ \ ± ± 2 \ ↓ Y2 ★V2 ± Q / 4 \ /
	16/2742148/2114421148/21148/27012//TTC/TTC/TTC/TTC/TTC/TTC/TTC/TTC/TTC/T
	111727717013/J772/J787171 UNU(11_17149)40/21/1/1/9249140/211443)
	TUTLIFIALTALTD17////////////////////////////////////
, ×	IALTALTD(2//((ALTA2TD(L//TT2)) TKT/T) DUDU//)NU4U2U2//)
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
· .	
· 1	$YPKEU(I) = X(I) = UHBA(I) + (I_{\bullet} - X(I)) = UHBH(I_{\bullet})$
Ľ,	COMPARISION OF YPRED WITH EXPERIMETAL HEATS OF MIXING
	' UI=0.
	DO 370 I=1,NPTS
	DEVP(I)=(Y(I)-YPRED(I))*100./Y(I)
	P1=D1+DEVP(1) **?
320	ÇONT Î NUE

٢

۱,

)	
,	FNPTS=NPTS
	ERROR=SORT(DI/ENPTS)
С	PRINT OUT RESULTS
•	PRINT 400.
40	O FORMAT(1H1)
•	PRINT 410, TITLE1, TITLE2
41	0- FORMAT(20A4/20A4)
,	PRINT 420, (B(1), I=1, 4)
, <b>4</b> 2	0 F()RMAT(5X, 'B(1)=', F10.6, T25, 'B/2)=', F10.6/T5 , 'B(3)=', F10.6,
	1' T25, *B(4)=*, F10, 6)
	PRINT 430
43	PRINT 430 O FORMAT(5X, 'X', T15, 'XCH2', T25, 'Y', T35, 'YPRED', T45, 'DEVP'/)
43	<pre>     PRINT 430 0 FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/)     PRINT 440,(X(I),XCH2(I),Y(I),YPRED(I),DEVP(I),I=1,NPTS) 0 FORMAT(2510, (2510, 1)) </pre>
43 44	<pre>PRINT 430 0 FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(1),XCH2(1),Y(1),YPRED(1),DEVP(1),I=1,NPTS) 0 FORMAT(2F10.4,3F10.1) PRINT 450 EPPOP</pre>
43 44	<pre>PRINT 430 0 FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(I),XCH2(I),Y(I),YPRED(I),DEVP(I),I=1,NPTS) 0 FORMAT(2F10.4,3F10.1) PRINT 450, ERROR 0 FORMAT(T40.'RMS_DEVIATION=',F10.1)</pre>
43 44 45	<pre>PRINT 430 0 FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(I),XCH2(I),Y(I),YPRED(I),DEVP(I),I=1,NPTS) 0 FORMAT(2F10.4,3F10.1) PRINT 450, ERROR 0 FORMAT(T40,'RMS DEVIATION=',F10.1) CO TO 100</pre>
43 44 45	<pre>PRINT 430 0 FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(1),XCH2(1),Y(1),YPRED(1),DEVP(1),I=1,NPTS) 0 FORMAT(2F10.4,3F10.1) PRINT 450, ERROR 0 FORMAT(T40,'RMS DEVIATION=',F10.1) GO TO 100 00 STOP</pre>
43 44 45 , 20	<pre>PRINT 430 O FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(1),XCH2(1),Y(1),YPRED(1),DEVP(1),I=1,NPTS) O FORMAT(2F10.4,3F10.1) PRINT 450, ERROR O FORMAT(T40,'RMS DEVIATION=',F10.1) GO TO 100 00 STOP END</pre>
43 44 45 20	PRINT 430 O FORMAT(5X, 'X', T15, 'XCH2', T25, 'Y', T35, 'YPRED', T45, 'DEVP'/) PRINT 440, (X(I), XCH2(I), Y(I), YPRED(I), DEVP(I), I=1, NPTS) O FORMAT(2F10.4, 3F10.1) PRINT 450, ERROR O FORMAT(T40, 'RMS DEVIATION=', F10.1) GO TO 100 OO STOP END
43 44 45 20	PRINT 430 O FORMAT(5X, 'X', T15, 'XCH2', T25, 'Y', T35, 'YPRED', T45, 'DEVP'/) PRINT 440, (X(I), XCH2(I), Y(I), YPRED(I), DEVP(I), I=1, NPTS) O FORMAT(2F10.4, 3F10.1) PRINT 450, ERROR O FORMAT(T40, 'RMS DEVIATION=', F10.1) GO TO 100 OO STOP END
43 44 45 , 20	<pre>PRINT 430 0 FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(I),XCH2(I),Y(I),YPRED(I),DEVP(I),I=1,NPTS) 0 FORMAT(2F10.4,3F10.1) PRINT 450, ERROR 0 FORMAT(T40,'RMS DEVIATION=',F10.1) GO TO 100 00 STOP END</pre>
43 44 45 , 20	<pre>PRINT 430 O FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(I),XCH2(I),Y(I),YPRED(I),DEVP(I),I=1,NPTS) O FORMAT(2F10.4,3F10.1) PRINT 450, ERROR O FORMAT(T40,'RMS DEVIATION=',F10.1) GO TO 100 OO STOP END</pre>
43 44 45 20	PRINT 430 O FORMAT(5X,'X',T15,'XCH2',T25,'Y',T35,'YPRED',T45,'DEVP'/) PRINT 440,(X(I),XCH2(I),Y(I),YPRED(I),DEVP(I),I=1,NPTS) O FORMAT(2F10.4,3F10.1) PRINT 450, ERROR O FORMAT(T40,'RMS DEVIATION=',F10.1) GO TO 100 OO STOP END

3

.

• •

•



## A5. Prediction Results on Alcohol/Alkane Systems

-----

• • •

ł

•

5

### TABLE A39:

L

 $\hat{\boldsymbol{x}}$ 

HEATS OF MIXING AT 15 DEG.C.FOR THE SYSTEM N-BUTANOL+N-HEXANE DELTA H IN JOULES/MOLE B(1)= 7.963050 B(2)= 0.004156 B(3)= 0.001440 B(4)= 0.000050 X XCH2 Y YPED DEVD

-**A68-**

X	XCH2	¥ ,	YPRED	DEVP,	
0.0272	0.9954	193-8	202.8	-4.7	, ^ '
0.0546	0.9908	257.0	263.3	-2.5	<i>P</i>
0.1044	0.9823	328.4	333.9	-1.7	
0.1479	0.9747	371.8	377.3	-1.5	
0.1883	0.9676	402.4	407.3	-1.2	· .
0.2252	0.9610	423.8	427.4	-0-8	
0.2582	0.9550	438.0	440.3	-0.5	
0.2904	0.9491	446.1	448.6	-0.6	
0.3198	0.9437	450.3	452.9	-0.6	
0.3478	0.9385	450.9	454.2	-0.7	· 、
0.3730	. 0.9337	448.3	453.2	-1.1	
0.3997	0.9286	442.7	450.0	~1.7	•
0.4203	0.9247	437.8	446.2	-1.9 -	
0.4379	0.9213	432.0	442.0	-2.3	
0.4552	0.9179	425.3	437.1	-2.8	
0.4727	• 0.9145	418.0	°431.4	-3-2	
0.4881	0.9114	410.8 .	425.8	-3.7	~
0.5038	0.9083	403.0	419.4	-4.1	<i></i>
0.5207	0.9050	393.6	412.0	-4.7	*
0.5338	0.9023	386.5	405.8	-5.0	
0.5460	0.8999	379.0	399.7	-5.4	
0.5559	0.8979	373.0	394.5	~5.8	
0.5670	0.8956	. 365.8	388.4	-6.2	
0.5730	0.8944	363.1	385.0	-6.0	
0.5767	0.8937	359.8	382.9	-6:4	r .
C.5928	0.8924	356.4	379.4	-6.4	
0.5866	0.8916	353.1	377.1	6.8	
0.5927	0.8904	349.6	373.5	-6.8	
0.5956	0.8898-	347.1	. 371.7	-7.1	ų
0.6026	0.8884	342.2	367.4	-7.4	
0.6130	0.8862	, 335.0	360.8	-7.7	
0.6241	0.8839	327.3	353.5	-8.0	
0.6361	0.8814	319.2	345.4	-8-2	, ,
0.6479	0.8789	310.7	337.1	-8.5	-
0.6605	0.8763	301.6	328-1	-8-8	
0.6736	0-8735	291.8	318-4	-9-1	
0.6870	0.8707	281.5	308-2	-9.5	
0.7011	0.8677	270.3	297.1	-9.9	
0.7159	0.8645	258.9	285.2	-10-2	
0.7313	0.8612	246.6	272.4	-10.5	
0.7465	0.8579	233.5	259.5	-11-1	
0.7624	0.8544	, 219.9	245.6	-11.7	•
0.7797	0.8506	205.8	230-0	-11-8	
0.7975	0.8467	190.7	213.6	-12.0	
0.8151	0.8478	176.2	197.0	-11.8	
0.8378	0.8386	159.6	178-8	-12.0	
0.8549	0.8338	141,5	157.9	-11.5	
0.8766	0.8289	172.2	135.7	-11.1	
0.8990	· U.8238	102.3	112.3	-9.8	
0.9227	U.8183	81.3	86.9	-6.9	
0.9472	0.8175	58.5	60.0	-2-6	
0.9729	V. 8065	34.4	31.2	9.3	
			RMS	DEVIATION	E i

7.2
	HEATS OF M	IXING AT 15 JOULESZMOL	DEG.C FOR	THE SYSTEM	N-BUTANOL	N-HEXANE
	B(1)=	7.963050		.004156		
•	8(3)=	0.001440	B(4) = 0	0.000050	,	
	X	XCH2	Ŷ	YPRED	DEVP	
	0.0272	0.9954	193.8	202.8	<b>~4.7</b>	
	0.0546	.0.9908	/ 257.0	263.3	-2.5 -	
	0.1044	0.9823	328.4	333.9	· -1.7	•
	0.1479	0.9747	371.8	377.3	-1.5	n
	0.1883	0.9676	402.4	407.3	-1.2	
	0.2252	0.9610	423.8	427.4	<del>-</del> 0.8	
	0.2582	0.9550	438.0	440,3	-0.5	
	0.2904	0.9491	446.1	448.6	-0.6	
	0.3470	0.9437	470.3	452.9	-0.6	
	0.3470	U+7307	420.9	454.2	-0.7	
	0.3997	0.9337 N. 0.9286	470.5	433+2		
	0.4203	0.9247	437.8	470.0		
	0.4379	0.9213	432.0	.442.0	-2.3	
	0.4552	0.9179	425.3	437.)	-2.5	-
•	0.4727	0.9145	418.0	431.4	-3.2	
	0.4881	0-9114	410.8	425.8	-3.7	
	0.5038	0.9083	403.0	419.4	4.1	٠.
	0.5207	0.9050	393.6	412.0	-4.7	r
	_ 0.5338	0.9023	386.5	405.8	-5.0	
	0.5460	0.8999	379.0	399.7	-5.4	
	0.5559	0.8979	373.0	394.5	1-5.8	
	0.•5670	ø 0.8956	365.8	388.4	-6.2	
,	0.5730	• 0.8944	363.1	385.0	-6,.0	
	0.5767	0.8937	359.8	382.9	-6.4	•
1	0.5828	0.8924	356.4	379.4	-6.4	
	0.5866	0.8916 -	353.1	377-1	-6.8	
	. 0.5927	0.8904	349.6	373.5	-6.8	
	0.5950	0.8898	347.1	371.47	v=7.1	
	0.6120	U+C0C4 0 0042	342+2	30149	-/.4	
	0.6241	0.8830	227.2	300.0		,
	0.6361	0.8814	310.2	373+7		
	0.6479	0.8789	310.7	27204	-0.2	
	0.6605	0.8763	301.6	328-1	-8.8	•
	0.6736	0.8735	291.8	318.4	-9-1	
	0.6870	0.8707	281.5	308.2	-9.5	
	0.7011	0.8677	270.3	. 297.1	-9.9	
	0.7159	0.8645	258.9	285.2	-10.2	
	0.7313	0.8612	246.6	272.4	-10.5	
	0.7465	0.8579	233.5	259.5	-11.1	
٠	0.7624	0-8544	219.9	245.6	-11.7	
	0.7797	0.8506	205.8	230.0	-11.8	
	0.7975	0.8467	190.7	213.6	-12.0	x
	0.8151	0.8428	176.2	° 197.0	-11.8	
	0.8338	0.8386	159.6	178.8	-12.0	•
	0.3549	0.833R	141.5	157.9	-11.5	
	0 ° 8000	U•8239 0 0339	122.2	135.7	-11.1	•
	0.037U	0 0103	102.5	112.3	~ 7.8	
	1.9672	0+71,07 0 8135	9103 80 5	n0.9	, -0.9	/
	0.9779	0.8045	36.2	0U+U -11-2	-2.0	
			· <b>~ • ~</b>	2010 2102	TO DEVIATION-	<b>,</b>
		•				

7.2

0

Ð

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-BUTANOL+N-HEPTANE DELTA H IN JOULES/MOLE

、 ·

	- GOGELSFINDE	•		,
8(1)=	7.963050	B(2)=	0.004156	
R(3)=	0.001440	B(4)=	0.000050	
X	XCH2	Y	YPRED	DEVP
0.0337	0.9951	201 1	261 5	-19 0
0.0431	0.0000		241.3	-10+4
0.0051	0.9908	200+1	304.4	-14.2
0.1213	0.9820	344.2	384 • 6	-10-1
0.1720	0.9742	399.6	432.5	-8.2
0.2202	0.9664	435.6	464.8	-6.7
0.2614	0.9596	457.6	483.8	-5.7
0.2984	0.9534	471.5	494.8	-5-0
0.3326	0.9475	478.1	500.3	-4-6
0.3630	0.9421	480.3	501.7	-4 5
0.3911	0.9371	. 479 1	500 2	-4 4
0.4175	0 0272	* * * * * • L	500.2	
0 4405		71463	470.1	
0.4405	0.9280	404.5	491.4	-4.7
0.4070	· U.9233	461+1	484.2	-5.0
0.4857	0.9194	453.9	477.1	-5.1
0.5043	0.9158	445.5	469.6	-5.4
0,5204	0.9127	438.0	462.3	-5.6
0.5359	0.9096	429.8	454.7	-5.8
0.5508	0.9066	421.4	446.8	-6-0
0.5650	0.9037	413.1	438.9	-6.2
0.5779	0.9011	405.2	431.1	· _6 _6
0.5904	0.8985	307 0	. 402.0	-0.4
0.5035	0 9070	377.00	· · · · · · · · · · · · · · · · · · ·	-0.4
0.6019	0.00(3	397.2	421.2	-/+1
0.0010	0.0902	387.0	415+8	-6.1
0.6020	0.8961	387.2	415+6	-7.3
0.6118	0.8941	380.5	409.0	-7.5
0.6215	0.8920	375.7	· 402.2	-7.1
0.6125	0.8939	381.49	408.5	-7.0
0.6219	0.8920	372,5	401-9	-7.9
0.6315	0.8899	369-1	394.9	-7.0
0.6323	0.9898 🧞	364.8	394.4	-8.1
0.6410	0.8879	362.4	387.9	-7.0
0.6428	0.8975	356.6	386.5	-8.4
0.6487	0.8962	356-0	382.0	-7.2
0.6539	0.8851	348.8	378.0	-8.4
0.6651	A. 8827	34010	340 1	-9 E
0 6772	0 9900	740 • 1	207+1	-0.3
0 60072	0 9773	330.1	. 379.2	-5-8
0 7010	0.07(4)	319.8	348.8	-9-1
0.7019	0.8746	309.0	335.1	-9.4
0.7170	0.8715	296.5	325.8	-9.9
0.7295	0.8683	284.9	313-1	-9.9
0.7437	1598.0	272.2	299.7	-10-1 -
0.7585	0.8617	257.5	285.3	-10.8
0.7743	0.8580	242.6	269.5	-11-1
0.7907	0.8541	227.1	252.6	-11.3
0.8075	0.8500	211.1	234.9	-11.3
0.8237	0.9461	124-6	217-3	-11.7
0.8416	0.8417	175.8	197.4	-12.2
0.8613	0.8368	156 4	17107	-11 4
0.8811	· 0.8210	174 4	€/707 1211 /	-ll+0 _12 4
0.0010	0.0344	111 7	171+D 194 4	-12.0
0 0330	U + 0207 A + 0207			-13.5
V+7((7 0 01E1		07.U	100.6	~14.3
0.7470	. U. 7144	02.0	71.9	-14.8
U. Y /49'	. 0.8070	27.1	33.7	-24-0
	•		RM\$	DEVIATION=

9.5

. . .

١

\$

H	EATS OF I	MIXING AT 15	DEG. C	OR THE SYS	TEM N-BUTANOL	+ 'N-OCTANE
C	ELTA H II	N JCULES/MOLI	Ε ,			
	B(1) =	7.963050	B ( 2:) =	0.004156		,
•	A(3)=	0.001440	B(4)=	0.000050	•	4
	X	XCH2	Y	YPRED	DEVP	
	0.0352	- 0.0055	767 7	245 0	· • •	
	0.0680		2267	207.5	-7.4	•
	0-1266	0 0034	324.2	338.8	-4.5	•
	0 1707	0.074	403.0	471.4	-3.8	
	0 2245	0.9/01	42/+2	472.1	-3.2	
	0 2407	0.9091	947.3	505.5	-2.7	
	0.2076	0.9020	713.8	526.1	-2.4	
-	0.3430	0.9700	721.4	558-4	-2.1	•
	0 3430	0.9508	534.1	544.5	-2.0	•
	0.4020	0.9475	535.7	546.0	-1.9	•
	0.4030	0.9407	533.9	544.3	-1.9	•
	0.457	0.9362	529.2	540.4	-2.1	
	0.4551	0.9318	522.9	534.6	-2.3	
	0.4745	0.9278	516.2	528.1	-2.3	
	0.4950	0.9740	507.7	520.4	-2.5	
	0.5178	0.9206	499.2	<b>512.8</b>	-2.7	
	0.5300	0.9173	490.2	504.5	-2.9	
	0.5442	0.9145	• 482.0	497.1	-3.1	
	0.5580	0.9118	473.8	489.3	-3.3	í
	0.5718	0.9090	465.2	480.9	-3.4	
	0.5844	0.9064	456.6	472.9	-3.6	•
	0.5969	0#9039	448.3	464.4	-3.6	
	0.6092	0.9013	439.0	455.7	-3.8	
	0.0122	0.9007	439.4	453.6	-3.2	
	0.6206	0.8989	430.2	447.3	-4.0	4
	2150.0	0.8988	433.0	446.9	-3•2	,
	0.6304	0.8968	425.9	439.8	-3.3	
	0.0310	0.8967	472.1	439.4	-4,1	
	0.0344	0-8948	418.0	432.3	-3.4	
	0.6404	0.8945	413.9	431.3	-4.2 ,	
	0.6490	0.8926	409.7	474.4	-3.6	
	0.6402	0.8923	405.4	423.1	-4.4	
	0.63002	0.8903	400.7	415.5	-3.7	
•	• 0 • 0 7 0 9	0.005/	391.5	406.3	-3.8	
	0 4044	· U.8074	380.0	396.1	-4.1	
•	0 7061	0.0700	367.4	385.0	-4 - 1	
	. 0.7199	' 0 0770	379.4	3/3.9	-4.0%	
	0.7323	10 9730	347.0	361.4	-4.1	
	·0.7454	0.0707	222.1	347.9	-4.3	
	0.7593	0 9473	320.3	. 339.5	-4.3	•
•	0.7715	0 04 7 0	300.1	319.4	-4.3	
	0.7497	0 9400	291.2	303.8	-4-3	
	0.8045	0 9560	714.0	200.0	-9.5	
	0.8212	0.8517	230.7	268.2	-4.0	
	0.8373	0.84749	210.5	247.62	-4.0	
	0.8547	0_842R	. 194 K	264 4		
	0.8728	0.9378	174.1	200.4	-4•U	
	0.8921	0.8124	151.4	1567 A	-1.0	
	0.9123	0.8267	124.9	120 2	-3.0 -3.5	
	0.9335	0.8205	96.A	40.1	- 3+7 '	· •
۰.	0.9558	0.8138	65.9	66.Q	-2.0	
	0.9782	0.8069	33.0	39.4	-1.2 7	
\$		) )		ZMR .	DEVIATION	A. 6
			<b>`</b>			

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-PENTANOL+N-DECANE

	DELIA H ,[	N JOULES/MOLE		+ • j			
9 e	_B(1)=	7,963050	(2) <del>=</del>	0.004156	· · · · ·		
	B(3)=	0.001440	B(4)=	n.000050	J • •		
	× X ,	XCH2	Y '	YPRFD	DEVP .	· ·	
· .	0 0410	· · · · · · · · · · · · · · · · · · · ·					a th
•	0.0410	0.9957	285.8	317.3	-11.0	U	
17	0.0005	0.9932	338.8	374.0	-10.4		
	0.1205	0.9867	427.7	460.3	, -7.6		:
-	.0.1804	0.9806	482.3	511-2	6.0 ,		,
	0.2293	0.9748	518.3	÷ 543.7	-4.9	- ,	
	0.2/1/	0.9695	545.0,	563-2	-3.3	、 •	
۰.	0.3104	0.9646	563+0	574-5	-2.1		t
	p.3445	0.9600	574.9	° 579.8	-0.8		¢
	.0.3758	0.9558	581.5	<b>"580</b> .9	0.1		•
	0.4047	° 0.9517	·594.0	578.9	0.9		• / ·
•	0.4307	0.9480 -	583.6.	574.6	1 #5		、 · ·
	0.4546	0.9444	580.4	568.7	· 2.0		
•	0.4754	0.9413	575.4	562.1	2.3	4	
	0.4951	· 0.7383 ~	- 569.7	6 554.6	- 2.6		•
	0.5140	0.9353 5	561.8	546.3	<i>。</i> 2.8	,	• *
	0.5306	0:9326	- 553.7	538 • Q	2.8	•	
•.	, [∞] 0° <b>.</b> 5448	. 0.9303	546.3	530 <b>.</b> Š	2.9		<u>х</u> • е
	0.5586	0.9281	539.0	522.3	3.1	÷	,
'	0.5733	, 0.9256	530.1	513.1	3.2	-, ,	n ` ,
	0.5866	0.9234	521-1	^ 504 <b>.</b> 2	3.2		•
•	· 0 <b>•</b> 5989	° 0.9212	511.9	495.6	3.2		•
,	0.6100	<b>~0.9193</b>	503.4	487.4	. 3.2	,	
*	0.6209	0.9174	494.5	479. Ó	3.1		
,	0,6291	0,9159 。	481.4	472.5	1.8		2
λ	.0.6309	0.9156	.486.0	471.1	3.1 .		
· •	0.6354	- 0.9148	476.8	467.4	2.0		· · · • ,
	[∙] ` 0,•6407	0.9139	477.2	463° 0	3.0		
,	. 0.6434	0.9134 0	470.1	460.7	2.0	r	
	0.6489	° 0.9124′	451.8	456.Ó	-0.9		
	0.6527	0.9117	460.8	452.7	1.8		ي دا
۱.	Q.6646	0.9095	450.9	442.2	1.9.		°
	ໍ່0.6750	0+9075	441.6	432.7	2.0	•	,
	~0.6859	0.9055	430.7	422.4	· · · · · · · · · · · · · · · · · · ·	•	~
	0.6964	0.9035	420.1	412.1	1.9	-	
	0.7077	.D.9013	408.5	400.8	1.9		· ·
	0.7198	0.8989	395.7	388.3	1.9		
	0.7318	0.8965	1382.9	375.6	1.9		•
	0.7440	0.8941	368.7	\$ 362.2	1.8	•	'*
•	0.7572	0.8914	353.7	347.3	1.8		. '.
$\sum_{i}$	1 0. 7709	0.8885	337.5	331.4	1.8		
X	0.7845°	0.8857	321.0	315.2	1.8	•	
,	0.7983、	0.8827	302.9	298.2	1.5		
	0.8128	0.8796	284.7	279.9	1.7		, 0
-	0.8284	0.8761	263.6	259.7	1.5		· ·
-	0.8450	0.8724	240.7	237.5	1.3		•
	. 0. 8616	0.8685	219.6	214.6	1.8	•	
	0.8787	0.8645	194.0	190-4	1_8		-
	0.8979	0.8599	165.6	162.5	1.9		-
	0.9174	0.8551	435.1	133.2	1.4		a
.'	0.9372	0.9501	103.1	102.6	0.4		· ·
•	0.9570	0.8449	71_8	~ 71.2	0.0		
	0.9783	0.8393	36-4	36.4	-0.2		
-	1	· · · · · · · · · · · · · · · · · · ·		P I V RMŠ	DEVIATION		3.3
	\`	· •	-	1911 <b>J</b>		-	707

HEATS	<b>NF</b>	MIXING	A T	15	DEC.C	FOR	THE	SYSTEM	N-BUTANOL+N-DECANE	
CELTA	H 1	'N JÕULE	ES/M	10L E					,	

		0		
B(1)=	7.963050	8(2)=	0.004156	
B(3)=	0.001440	8(4)=	0.000050	
X	XCH2	Y	YPRED	DEVP
A. 0469	0.9952	279 8	238 6	-22 7
0.0766	0 9920	345 4	0 00	-22.1
0.0100	0.00//	242.0	404.0	· -10+9
0.1420	0.9840	448.0	498.8	· -1(•3
0.2014	0.9776	509.4	555.3	-9.0
0.2531	0.9710	551.1	590.2	7.1
0.2985	0.9649	577.3	611.0	-5.8
0.3399	0.9591	591.7	622.3	5.2
0.3756	0.9538	599.9	676.6	-4.5
0.4092	0.9486	601.2	626.2	-4-1
0.4399	0.9436	599.2	622.0	-3.8
0.4661	0-9392	593.8	615 8	-3 7
0084 0	0 0252	597 0	600 3	-3.4
0.5070	0.0310			- 3.0
0.5079		570.9	, 600.7,	-3.4.
0.5279	0.9283	5/2.2	591.3	-3.3
0.5455	0.9250	563.8	581,.9	-3+2
0.5635	0.9215	554.2	571.1	-3-1
0.5821	0.9179	542.5	558.9	-3.0
0.5970	0.9149	533.1	. 548.2	-2.8
0.6107	·0.9121	523.3	537.8	-2-8
0.6225	0.9096	514.4	528.3	-2-7
0.6341	0.9072	505.1	518.6	-2.7
0.6450	SA06.0	496 7	500.0	_2 4
0.0450	0 0026	47002		-2.0
0.6653	0.7020	40(+4)	499.0	2 • 3
0.00000,	0.9003	419.0	490.1	-2+3
0.0008	0.9000	481.1	488•7	-0.2
0.6748	<b>.0</b> ∙8982	470.5	480.9	-2.2
0.6754	0•8980	479.9	480.3	-0.1
0.6835	0.8962	462.3	472.1	-2.1
0.6840	0.8960	471.6	471.6	0.0
0.6933	0.8939	462.3	462.0	0.1
0.7026	. 0.8917	452.2	452-1	0.0
0.7123	0.8894	441.6	441.5	0.0
0.7227	0.8868	430.7	470 8	0.2
0 7220	C 200000	4 19 0	42700	0.2
0 7631		407 3	410.0	0.2
0.75431	0.0700	305 0	407.8	.0.3
0.742	0.0709	145.0	592.5	0.1
0.7650	0.8761	381.7	378.7	8.0
0.7759	0.8732	368.6	364.7	1-1
0.7879	0.8700	352.8	348.9	1-1
0.8001	0.8666	337.3	332.3	1.5
0.8125	0.8632	321.0	315.0	1.9
0.8257	0.8594	302.8	296.1	2.2
0.8394	0.8554	283.4	275.9	2.6
0.8531	0-8512	262-9	255 2	2.9
0.8684	0.8465	240.2	221.5	2
0.8831	0.8410	217 6	2010J	7 •,0 A A
0 00001	V+0717 A 977A	21107		<b>4 • 4</b> / E
		176.4	103.0 /	4.7
0.7140	0.0317	107.4	120.1	5.2
0.9298	· · · · · · · · · · · · · · · · · · ·	137.8	129.4	<b>6</b> •1
0.9468	0.9202	106.5	99.3	°6 <b>.</b> 7
0.9645	0.8137	72.3	67.1	. 7.2
0.9816	0.8072	38.3	. 35 . 2	8.0
,				

RMS DEVIATION=

7,

-

l

	<i>, t</i>	4 ⁻				
EATS OF	MIXING AT 15	DEG. C FI	NR THE SYSI	IEM N-PENTAI	VOL+N-HE	PTANE
ELTA H I	N JOULES/MOL	,E		·	4	
8(1)=	7.963050	B(2)= (	0.004156		•	
B(3)=	0.001440	8(4)= (	0.000050			
X	XCH2	Y	YPRFD	DFVP		~
0.0315	0.9955	215.2	· 230.2	-7.0		
0.0518	0,9925	261.9	275.3	-5.1		4
0.1002	0.9855	330.4	344.6	-4-3	•	
0.1435	0.9791	373.0	387.0	-3-7	-	
0.1835	0.9731	403.5	415.9	-3.1		
0.2204	0.9675	425.4	435/6	-7.4		
0.2542	0.9623	441.9	448_4	-1-5		
0.2052	0.9698	362.2	428.2	-18-2		•
0.3140	0.9530	459.9	460-5	-0-1	,	
0.3384	0,9492	463.4	461.9	0_7	,	
0.3619	0,9455	465_R	461_4	0_9		
0.3833	0.9421	463.3	459 4	0_8		
0_4019	0.9391	461_0	456.9	<b>V</b> ⊺ <i>O</i> ^•0		
0_4211	0,9360	457.9	453.1	1.0		
0_4400	0,9329	452-9	448 4		4	Ð
0_4569	0,9302	467 4	443 6	1.0		
0_4720	0,9274	440.5	427.7	0 - A		
0_4883	0,9250	434.0	427 2	0.4		
0_5054	0,9222	426.2	, 425 2	0.2		
0_5172	0.9203	419.2	420 T	-0./1		•
0-5204	0.0104	412 7	- 414 O	~^ >		
0-5407	0,0162	407 0	2 2 AUS	-0-3 -0-4		
0_55707	0,0143	400 0	407 4	-0-7	~	
0_5570	0,0176	199.7	- 400 P	~^^ >		
0_5620	0,0124	202 2	304 E	-0•I -0•I		v
0-2445	1 0.9110	307 4	304 0	-0-0		
0_ 5747	0_0104	39614	200 2	-1 f		
0_5760	0_0102	326.4	190.1	⁴ -0 7		
0.5840	0_9089	370.2	394 2	-1-2		
0.5877	0,000	379 5	20707 782 7	· · · · · · · · · · · · · · · · · · ·		-
0_5004	0.001	370 6	274 1	-l•£		-
0_6102	0,0046	361 0	369 4	-1.0	3	A
0- 6222	0,0034	253 B	240.0	-1.7		•
0-6361	0.0004	363 4	252 4	-c+C. _7 7	•	
0_6677	0,0001	722 I	772•0 771 V	-2+1	•	
0_ 6605	0.0701	331 0	9 221 B	- 2 7	•	
0_6720	• 0, 8036	210 2	ם <b>ככר</b> מיררי	-241		
0_6883	0,8010	76V+3 208 3	212 0		,	
0,7027	0-0710	6.74.J 985 L	201 3	-7+7 _8 f		ν.
0_7170	0,9957	2070A	201•2 288 9	- 202		
0_7224	, 1600.0 Verse	257 7	200+0 976 7.	-4+6		
0-7504	0.8700	291+1	213+F 360-0	-1.U	n	
0_7470	0.9720	271+0 226 D	2004 Y	- ( • 7 - 0 4		
0.7947	0.9724 ·	26300 207 4	247+3 230 A	-0-0		
1001	0.0134'	201+0 180 4	220•U 200 4	-7.0		
0.8340	0 9070; 0 9440	140 0	20704 100 4	-12 0		
V + 0 Z U 7	00000	T04+A	107.9	~1C•U		

167.7

145.1

120.0

196.0

66.8

32.7

0.9162 0.9424 * 0.8444 0.9722

0.8621

0.8580

0.8536

0.9494

0.8387

148.3

127.0

102.9

81.1

54.3

25.3

0.8485

0.8704

0.8941

૾

RHS DEVIATION=

-13-1

-14.3

-16.6

-18.5

-29.4

. -23.0

#### -A75-

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-HEXANOL+N-HEPTANE DELTA H IN JOULES/MOLE

8(1)=	7.963050	B[2]=	0.004156	, <b>,</b> °	
B(3)=	0.001440	8(4)=	0.000050	1	
X	"XCH2	Y	YPRED	DEVP	
			k.		
0.0280	0.9960	210.8	216.1	-2.5	•
0.045,5	0.9935	248.5	256.9	-7.4	
C.0885	0.9874	307.6	319.1	-3.8	
0.1276	0.9818	343.8	357.1	-3.9	
0.1642	0.9765	369.3	383.3	-3.8	
0.1961	0.9720	387.8	400.6	-7.3	
0.2260	0.9677	402.8	412.7	-2.4	
0.2531	0.9638	412.5	420.6	-2.0	
0.2773	0.9604	420.2	425.5	-1.2	
0.3008	0.9570	425-3	428.3	-0.5	
0.3231	0.9538	\$30.2	420.4	0.3	
0.3438	0.9509	432.5	427•4 620 N	0.2	
0.3632	0.9481	43243	4 <u>7</u> 7.0	1 2	
0.3812	0.9455	427 4	421.0	1.3	
0.3997	0.9470	432.00	42204		
0.4169		434 2	72203	2.1	
0.4360	· 0 0277	427.3	410.0	2.5	
0.4510	0.0354	420.2	413.7	2.9	
0.4519	0.7004	421.5	409.0	2.9	
0.4007	0.0214	410.8	404.4	3.0	
0.4000	0.9310	411.8	399.8	2.9	
0.4908	0.9299	400.9	395.12	2.9	
0.5017	0.9283	402.2	390-8	2.8	
0.5216	0.9200	396.9	385.6	2.9	•
0.5210	0.9255	390.3	382-1	2.1	
0.5250	0.9249	391.7	380.3	2.9	
0.5318	0.9240	384 . 7	377.4	1.9	
U. 5300	0.9233	386.4	.375-1	2.9	
0.5410	0.9226	379.1	372.6	-1.7	
0.5488	0.9216	379.1	369.0	2.7	
0.5527	0,9210	373.1.	367.0	1.6	
0.5640	0.9194	366.2	361.1	.1.4	
0.5763	0.9177	358.0	354.5	1.0	
0.5887	0.9159	349.9	347.5	0.7	
0.6012	0.9141	341.2	340.2.	0.3	7
0.6145	0.9122	331.6	332-1	-0.1	
0.6284	0.9102	322.0	. 323.4	-0.4	
0.6418	0.9083	311.7	314-7	-0.9	
0.6567	0.9062	299.8	<u> </u>	-1.6	
0.6731	0.9038	286.7	~ 293.4	⁰ -2.3	
0.6890	0.9016	274.1	282.0	-2.9	1
0.7067	0.8990	258.5	268.9	-4.0	
0.7255	0.8964	241.6	254.6	-5.4	
0.7446	0.9936 '	244.0	239.6	1.8	
0.7647	0.8908	206.9	223.2	[°] -7.9	
0.7863	0.8877.	188.2	205.2	-9.0	
0.8049	°0.8850	171.5	189.2	-10-3	
0.8287	0.8816	149.5	168.1	¹¹ -12.5	
0.8536	0.8781	126.6	145.5	-14.9	• •
0.8792	0.8744	102.9	121.5	-18.1	
0.9070	0.8704	77.2	. 94 . 7	-22.8	
0.9354	0.8664	52.7	66.6	-26.5	5, ~
0.9636	0.8623	26.8	38.0	-41.8	ہ ب
	•	-	👾 🚬 🗸 RMS	DEVIATIO	Ņ=

9.Q

y,

٠	HEATS OF M	IXING AT 15	DEG.C FO	R THE SYSTER	N-HEXANOL	+N-OCTANE
	DELTA H IN	′ JOULES/MOLI	E		· , [–]	
	8(1)=	7.963050	B(2)=	0.004156	;	
	ጣ(3)=	0.001440	B(4)=	0.000050	•	ι.
	X	XCH2	Y	YPRED	DEVP	
	·	α <b>ν</b>		•	-	
	D.0232	0.9971	203.8	217.0	~6.5	
	0.0503	0.9937	270.9	289.1	-6.7	
	0.0977	0.9876	337.6	357.7	-6.0	· ·
	0+1409	0.9821	377.9	398.9	-5.6	
	0-1795	0.9770	406-1	425.8	-4.9	
	0.2164	0.9722	427.B	444.7 "	-3.9	
	0.2493	0.9678	443.7	456.7	-2.9	
	0.2797	0.9638 *	454.9	/ 464.1	-2.0	
	0.3080	0.9600	462.5	468.0	-1.2	
	0.3318	0.9567	466.3	469.4	-0.7	
	0.3529	0.9539	468.1	469.1	-0.2	•
	0.3746	0.9509	470.2	467.4	0.6	
	0.3953	0.9480	470.2	464.5	1.2	•
	0.4152	0.9453	468 . 6	460.7	1.7	
	0.4337	0.9427	465.7	· 456.1	° ?.0	•
	0.4503	0.9404	462.4	451.4	2.4	
	0.4666	0.9381	457.7	446.0	2.6	
	0.4810	· 0.9360	452.8	440.7	3 2.7	
	0.4945	0.9341	447.7	435.3	(m2.8	,
	. 0.5067	0.9324	442.4	• 430.1	2.8	
	0.5177	0.9308	437.2	425.1	2.8	ç
6	0.5287	0.9292	432.3	419.9	2.9	·
	0.5404	0.9276	426.4	414.0	· ·2.9	-
	0.5497	0.9262	419.1	40772	2.4	
	0.5516	0.9259	420.7	408.1	3.0	1
	0.5593	<ul><li>○ 0.9248</li></ul>	414.3	403.9	2.5	3
	• 0.5642	0.9241	41-3-1	401.2	2.9	
	0.5694	0.9234	407.5	398.2	2.3	`
	0.5748	0.9226	406.4	395.1	2.8	ş
	0.5798	0.9219	400.8	397.2	2.1	
	0+3914	0.9202	392.4	385.1	1.9	
	0.6028	0.9185	385.0	378.0	1.8	
	0.63(1	0.9168	310.5	370.6	1.6	
	0 6201	0.9171	30/•1	302.0	I.2 ,	,
	0.0100	0.9133	37747	373.9	1.0	۲
	0 6648	0.9115	340.0	344.2	0.0	
-	0.6793	0-9094	222 0	334.8	0.0	Q
	0.6945	0.9072	366.9	323.7	-0.3	•
	0.7098	0.9049	204 0	200 2	-0.0	
	0.7250	0 9003	294.0	294.5		
	0.7421	0.9009	200.5	200.2	-2.1	¥
	0.7593	0.8951	207.9	211.0	-2.5	
	0.7783	0.8972	229 1	230.7	-3.3	
đ	0.7973	0.8893	209.1	221 0	-9.5	8
	0.8187	0.8860	186.7	200.2	-7'2	÷ -
	0.8387	0.8829	166-0	180.1	-9.5	
	0.8623	0.8792	141.4	1. O. T 122 0	-10.2	
	0.8867	0.8753	115.4	129.R	-12.5	
	0.9114	0.8714	89.8	102.8	-14.5	¢
	0.9397	0.8669	59.9	71_0	-18.5	
	0.9681	0.8623	29.3	38.1	-29_8	
			••• •• ••	RMS	DEVIATION	6.6
			0			~ ~ ~ ~

ľ

8

#### -A77-

HEATS OF MIXING AT 15 DEG TOR THE SYSTEM N-OCTANOL +N-HEXANE DELTA H IN JOULES/MOLE

	a goorearmore			
8(1)=	7.963050`	៨(2)=	0.004156	
R(3)=	0.001440	"B(4)=	0.000050	
X	XCH2	Y	YPRED	DEVP
		,	0	
0.0171	0,9972	160.7	157.9	1.7
0.0316	0.9948	199.0	108.1	~ 0.4
0 0627	0 0900	244 2	27047	-0.4
0.0027	0.0057	· 299+2	243.0	-0.0
0+0925	0.9855	211.1	275.0	-1.2
0.1185	0.9814	÷, 289.6	294.0	-1.5
0.1431	0.9777	303.6	308-1	-1.5
0.1679	0.9742	315.5	319.2 *	-1.2
0.1923	0.9708	1325.2	327.5	-0.7 ,
0.2144	0.9677	331.8	333.1	-0.4
0.2334	0.9652	336.9	336.6	0.1
0.2513	0.9628	341.1	338.9	0.7
0.2690	0.9605	344.9	340.2	1.4
0 2961	0 0593	267 2	1340 7	1 0
0.2014	0.95039	341+2	340.5	1
0.3014	0.9703	349.3	.340.5	. 2
0.3165	0.9545	370.9	339.8	. 5 • 2
0.3321	0.9525	351.8	338.5	3.8
0.3474	0.9507	352.1	336.7	4.4
0.3619	0.9489	351.7	334.6	4.9
°0•3753	0.9473	. 351.2	332.3	5.4
0.3880	0.9458	350.2	329.8	⊳ <b>5</b> •8
0.4012	0.9443	4 348.6	326.9	6.2
0.4128	0.9430	346.6	324 . 1	6.5
0.4230	0.9417	> 366 3	221 2	67
0 4257	0 0405	267.7	210 2	7 0
0.4342	0.9403	34746	210.2	7.0
0.4440	• 0.9394	339.8	- 317.3	1.2
0.4523	0.9385	337.6	312.9	1.3
0.4628	0.9374	- 326+2	309.6	<b>5</b> •1
0.4719	0.9364	324.7	306.6	5.6
0.4820	0.9353	322.3	303.1	6.0
0.4924	°0•9341	318.7	299.3	6.1
0.5033	0.9330	315.2	295.3	6.3
0.5156	0.9317	310.4	290.5	6.4
0.5280	0.9304	305.8	285.5	6.6
0.5410	0.9290	300.0	280-1	6.6 '
0.5547	0.9276	293.0	274 1	6.7
0.5692	0 0263	297 0	24741	6 P
0.5005	0.7203	- 20140	200+1	000 20
0.5052	0.9247	280.1	201.1	S. D. 8
0.5995	0.9231	271.1	253.3	0+2
0.6166	· 0.9215	260.3	°244•9	5.9
0.6344	Q.9197	251.0	° 2,35 • 8	6.0 🥆
0.6534	0.9179	239.2	225.7	5.6/ -
0.6726	0.9161	227.0	215.3	5.2
0.6931	0.9142	213.1	203.8	4.4
0.7151	0.9122	198.2	191.1	3.6
0.7379	0.9102	182.2	177-6	2.5
0.7627	0.9090	° 164.9	162.5	1.4
0.7804	0.0056	144 7	145 4	-0.4
A. 01070	0 0022	136 6	17700	-0.0
0.0102	0.7032	102 0		-2+1
J. 0474	0.9000	102.0	100.0	-4.7
1648.0	0.8979	16.9	83.7	-9.0
0.9198	0.8950	50.6	\$ 58.1	-14.8
0.9564	٥ <b>٠8922</b>	24.9	31.9	-28.1
			DMC	NEVIATION-

Α,

•*

HEATS OF N	IXING AT 15	DEG.C FO	IR THE SYSTEM	NOCTANOL+	N-HEPTANE
DELTA H IN	I JOULES/MOLI	F	•	, [*]	
B(1)=	7.963050 -	8(2)=	0.004156		•
B(3)=	0.001440	B(4)=	0.000050		•
×	XCH2 ···	Y (	YPRED	DEVP	
0 0200	0 0070	100 2	107 1	• •	
0.0208	0.9970	194+3	187.1	0.7	
0.01372	0.9950	224.4	220.9	-1-1	
0.0699	0.9902	210.4	. 280.9	-1.6	
0.1017	0.9859	307.2	317+2	-1.0	`
0.1316	0.9819	328.3	333.9	-1.7	
C-1598	, 0to 9185	344.3	349.5	-1.5 "	•
0.1854	0.9748	355.8	360.4	-1-3	
0.2076	0.9720	363.9	367.6	-1.0	
0.2278	0.9694	370.8	372.6	-0.5	
0.2484	0.9669	376.6	376.3	0.1	
0.2686	0.9644	381.5	378.6	0.8	
0.2883	0.9619	395.3	379.7	1.5	
0.3063	0.9598	388.0	379.8	2-1	
0.3234	0.9577	389.9	379.1	2•8	
0,3383	0.9559	390.6	377.9	3.3	
0.3532	0.9542	390.9	_ 376+2	3.8	
0.3675	0.9525	391.4	. 374.1	4.4	·
,0 <b>.</b> 3823	0.9508	390.8	371.5	5.0	۲
0.3960	0.9492	° 389 <b>.</b> 9	368.6	5.4	
0.4094	0.9476	388.6	365.5	5.9	
0.4223	0.9462	386.4	362.1	6.3	
0.4341	0.9448	. 384.5	358.8	6.7	
0.4450	0.9436	382.1	355.5	6.9	
0.4553	0.9424	379.9	352.2	7.3	
0.4583	0.9421	382.6	351.2	8.2	
0.4665	0.9412	376.3	34.8.4	7.4	
0.4678	0.9411	380.9	348.0	8.7	
0.4750	0.9403	373.6	345.4	7.5	
0.4778	0.9399	378.3	344.4	9.0	
0.4880	0.9388	373.8	340.6	8.9	
0.5012	0.9374	370.5	335.4	9.5	
0.5136	0.9360	366.2	330.2	9.8	
0.5263	0.9346	360.3	324.8	9.8	
0.5392	0.9333	354.8	319.0	10.1	•
0.5528	0.9318	348-6	312.6	10.3	
0.5673	0.9303	341-0	305-6	10.4	
0.5816	0.9288	333.1	. 298.4	- 10-4	-
· 0.5978	0-9271	323-6	289.9	10.4	
0.6150	0.9253	313.5	280.5	10.5	,
0-6326	0.9235	301.7	270.6	10.3	
0.6503	0.9217	290.6	260.3	10.4 4	
0.6698	0.9197	277.1	248.5	10.3	
0.6913	0.9175	261.6	235.1	10.2	•
0.7147	0.9152	261.0	219.9	, Q.A	•`
0.7395	0.9128	274-8	203.3	9.6	
0.7656	0 9103	199 1	185 2	1.5	
0.7941	0.9075	166 3	160.0	-0.1	
0.9741 0.9747	0.0047	140 3	167.5	_1 7	•
0.0276 0.9617	0 0010	140+3	110 3	-1	4
0.034/ A 004A	V. 7017 () 9090	11407	11703	-7.7	
V • 9 9 9 7	V.0707 .0 0055	0147 E7 7	74.6	-10 4	
U+7244 0 0501	'V•0777 0 2025	7101 20 0	0J•3 35 •	-10.0	
0.72,71	4.0463	20.4		-2301 NEVIATION-	
			KU2	UCTIALLUM ³	
			•		

#### TABLE A50:

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-OCTANOL+N-OCTANE CELTA H IN JOULES/MOLE B(2)= 8(1)= 7.963050 0.004156 0.001440 8(3)= B(4) =0.000050 X XCH2 Y YPRED DEVP 0-0201 0.9975 192.3 199-1 -3.6 0.0378 0.9953 241.7 253.2. -4.7 0.0741 0.9908 297.1 312.0 -5.0 0.1096 0.9865 332.3 -4.6 347.6 0.1418 0.9826 355.1 371.0 -4.5 0.1705 0.9791 371:4. 386.8 -4.1 0.1966 0.9760 382.6 397.8 -4.0 0.2205 0.9732 405.5 391.9 -3.5 0.2437 0.9704 399.6 410.9 -2.8 0.9678 0.2661 405.8 414.4 -2.1 ,0-2872 0.9653 410.7 416.3 -1.4 0-3068 0.9631 414.7 416.9 -0.5 0-3262 0.9608 417.2 416.4 0.2 0.3437 0.9588 418.4 415.2 0.8 0.3607 0.9569 418.3 413.2 1.2 0.3757 0.9551 410.9 418.0 1.7 0.3905 0.9535 417.7 408.1. 2.3 0-4048 0.9518 ·416.8 404.9 2.9 0.4197 0.9502 415.5 401.1 3.5 0.4336 0.9486 413.6 397-2 4.0 0.4470 0.9471 411.3 393.0 - 4.4 0.9454 0.4618 407.1 388.0 4.7 0-4723 0.9443 404.3 384.2 5.0 ŋ 0-4837 0.9430 5.2 400.8 379.91 0.4909 0.9422 396.6 377.0 4.9 375.7 0.4942 0.9418 397.4 5.5 0.5003 0.9411 393.7 373.1 5.2 0.5048 0.9406 ** 393.0 371.2 5.5 390.6 0.5099 0.9401 369.0 5.5 0.5203 0.9389 386.6 364.3 5.8 0-5308 0-9378 381.8 359.4 5.9 0.5420 0-9365 376.6 354.0 6.0 0.5536 0.9353 370.7 348.2 6.1 0-5664 0.9339 364.2, 341.6 6.2 0.5793 0.9325 356.8. 334.6 6.2 0.5936 0.9309 348.8 376.6 6.4 0.6081 0.9294 339.8 318.2 6.4 0.6239 0.9277 329.4 308.6 6.3 0.6405 0-9259 317.3 298.3 6.0 0-6586 0.9239 304.2 286.6 5.8 0.6767 0.9220 289.9 274.4 -5.3 0.6964 0.9199 273.8 260.8 4.8 0.7177 0.9177 256.1 245.5 4.1 0.7391 0.9154 237.6 229.65 3.4 0.7620 0.9130 217.4 212.0 2.5 0.7848 ° 0.9107 196.9 1.5 194.0 0.8077 0.9083 175.4 175.3 0.0 0.8352 0.9055 150.I 152.2 -1.4 0.8638 0.9025 123.8 127.5 -3.0 0.8945 0.8994 100.1 95.1 -5.2 0.9289 0.8960 63.1 68.4 -8.5 0.9609 0.9928 33.0 38.1 -15.4

-479-

RMS DEVIATION=

.

HEATS OF MIXING AT 15 DEG.C FOR THE SYSTEM N-OCTANOL+N-DECANE DELTA H IN JOULES/MOLE

B(1)=	7.963050	B(2)=	0.004156		•
₿(3)=	0.001440	8(4)=	0.000050		
X	XCH2	Ŷ	YPRED.	DEVP	
,					
0.0234	0.9977	221.6	240.7	-8.6	
0.0447	0.9955	278.5	308.7	-10.9	
0.0891	0,9910	346.2	380.7	-10.0	
0.1298	0.9868	385.4	420.2	-9.0	
0.1654	0.9832	410.3	444.6	-9.4	
0.1981	0.9798	429.2	461 1	-7``4	
0.2261	0.9769	440.9	401.1	-1.4	,
0.25 2	0.9740	452 3	47145		
0,2902	. 0 0712	- 460 2	410+1 102 1	-5 0	
0 3056	0.9712	400.2	403.4		
0.3000	0.9093	40047	407.7	-4.0	
0 3404	0.9001	471.0	, 402.0	-3.1	
0.3701	0.9036	474.0	484.0	-2.3	
0.3701	0.9010	4/4.0	482.3	-1.6	
0.3084	0.9596	415.3	479.3	-0.8	
0.4062	0.9577	475+2	475.5	-0.1	
0.4235	0.9558	473.9	471.1	0.6	1
0.4400	0.9540	472.1	466.2	1.2	
0.4559	0.9522	469.6	460.9	1.8	
0.4707	0.9506	466.1	455.4	2.3	
0.4841	0.9491	463.0	450.0	2.8	
0.4968	0,9477	459.7	444.5	3.3	
0.5095	0.9463	455.3	438.7	3.7	
0.5213	0,9450	450.9	° 433∙0	4.0	
0.5322	0.9438	446.9	427.4	4.4	
0.5428	0.9426	442.2	421.8	4.6	
0.5430	0,9426	. 447.9	421.7	5.9	
0.5529	. 0.9415	437.1	\$ 416.2	4.8	
0.5535	0.9414	443.6	415.9	6.3	
0,5642	0,9402	437.7	409.7	6.4	
0.5747	0.9390	431.2	403.5	6.4	
0.5853	0.9378	424.3	397.0	6.4	
0.5963	0.9366	416.7	390.0	6.4	
0.6077	0.9353	409.3	382.5	6.6	
0.6194	0.9340	401.2	374.5	6.7	
0.6316	0.9326	393.2	366.0	6.9	
0.6464	0.9309	381.9	355.3	- 7.0	
0.6615	0.9292	369.9	343.9	7.0	
0.6764	0.9275	357.4	332.4	7.0	
0.6907	0.9258	344.8	320.9	6.9	,
0.7106	0.9235	- 326 - 0-	304.4	6.6	
0.7288	0,9214	310.5	288.9	7.0	
0.7450	0.9195	293.3	274.4	6.4	
0.7638	0.9173	274.6	257.2	6.3	
0.7881	0.9144	248.7	234.3	5 8	
0.8093	0.9119	225_3	213.5	5.2	
0.8306	0.9094	200_8	102.0		
0.8553	0.9065	173.6	166 2	/ T • T 2 2	
0.8796	0.0074	145 4	160.3	+•∠ * ⊥	
0.9042	0.0004	19204	112 0	7.0	
0,9347	0.2040	76 6	(13+V 70 3	-2 7	
0,9415	201049 200 049	13.4° 63.3	1002	-107	
V# 7013	V.0770	7602,	40%,1		
			KM2		제프

.

J

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-BUTANOL+N-HEPTÄNE DELTA H IN JOULES/POLE

B(1)=	8.159353	8(2)=	0.005642	n
B(3)=	0.004932	8(4)=	0.000133 %	
X	XCH2	Y	YPRED	DEVP
				-
0.0305	0.9956	493.0	472.8	4.1
0.0617	0.9910	702.6	694.8	<b>n</b> 2.5
0.1159	0.9829	885.0	883.8	0.1
0.1648	0.9753	980.3	989.0	-0.8
0.2091	0.9682	1038.2	1048.1	1.0
0.2490	0.9617	1073.6	1082.1	-0.8
0.2860	0.9555	1094.3	1099.7	-0.5
0.3192	0.9498	1104.8	1105.5	-0.1
U • 3492	0.9440	1107.2	1103,6	0.3
0.3770	0.9396	1103.9	1096.1	0.7
0.4020	0.9350	1045.5	1084.8	1.0
0.4252	0.9309	1087.1	1071.5	1.4
0 4463	0.07777	1074.6	1056.2	1.7
V+407(	0.9233	1061.0	1040.2	2.0
0 5024	0.9190	1046.0	1022.5	2.2
0.5129	0.9162	1030.2	1004.4	2.5
0.5265	0.9130	1013.8	986.0	2.7
0 5/01	0.9099	996.7	967.5	2.9
0.5491	0,9070	979.7	949.1	3.1
0 5749	0.9043	903.0	931.4	. 3.3
0.5043	0.9017	940.7	914.3	3.4
0 5079	0 0 7 7 4	930.7	898.0	3.5
0.5096	0.0970	904.7	880.8	2.6
10.6076	0.0700	911.3	878.2	3.6
0 6000	0 9967	840.J	865.0	2.8
0.6173	0 9970	871.2	805.8	3.7
0.6180	0.0727	073.U	870.8	2.8
0.6272	0 8000	850 1	, 847.7	3.8
0.6280	0 8907	-967 0	023 4	2.8
0.6373	0.8887	961 1	023.0	.1•Y
0.6476	0-8865	876 6	901 0	2.1
0.6585	0-8841	808 0	· 707 0	1•1 2 2
0.6697	0.8817	787.7	767 6	3•,C
0.6813	0.8791	767.3	767.4	3.6
0.6933	0-8765	744.2	719.2	2.4
0.7057	0.8737	720-5	695.7	3.4
0.7186	0.8708	694.2	670.7	3.6
0.7321	0.8678	666.6	643-9	3.4
0.7462	0.8645	636.9	615.2	3-4
0.7637	0.8605	601.1	578.8	3.7
0.7790	0.8569	567.4	546-1	3-8
0.7949	0.8531	532 d	511.4	3.9
0-8114	0.8491	493.4	474.5	3.8
0.8288	0.8449	450.8	434-8	3.5
0.8463	0.8405	408_0	393-9	3.5
0.8657	0.8357	363.8	347.6	4.4
0.8856	0.8306	312.8	299.0	4.4
0.9065	0.8252	257.5	246.9	4.1
0.9284 *	0.8195	199.4	. 191.0 ×	4.2
0.9514	0.8133	136.6	131.0	4.1
0.9752	0.8069	70.8	67.5	4.6
			e RNS	DEVIATION=

7

- 482-

.

•.1

3

		1	,	, ,
HEATS OF P	IXING AT 55	DEG.C F	DR THE SYSTE	M N-BUTANOL+N-OCTANE
DELTA H IN	I JOULES/MOLE	Ξ,		
B(1)=	8.159353	B(2)=	0.005642	
· B(3)=	0.004932	8(4)=	0.000133	
X	XCH2	Y	YPRED	DEVP
-			~	
0.0338	0.9957	539.8	529.6	1.9
0.0708	0.9909	778.6	780.3	-0.2
0.1301	0.9829	970.4	907.1	
0.1820	0.9756	1066 1	1000 0	
0.2288	0.9687	1122 1	1077.7	-3.2
0.2705	0 04 24	1157 1	1100.0	-3.3
0.3076	0.0544	1176 7	1197.0	-3.0
0 3417	0.0510	1103.7	1200.2	-2.6
0,3417	0.0150	1103.2	1209.0	-2.2
0.6001	0.9459	1133.9	1203-8	-1.7
0.4001	0.9412	1178.3	1193-1	·,-1.3
0.4274	0.9367	11/0.4	1178.9	-0.7
0.4488	0.9325	1158.0	1162-1	-0 ₂ 4
0.4699	0.9287	1144.1	1144.0	0.0
0.4896	0.9250	1128.5	1124.7	0.3
0.5072	0.9217	1113.0	1105.6	0.7
0.5234	0.9186	1097.1	1086.5	1.0
0.5393	0.9155	1080.5	1066.3	1.3
0.5550	0.9124	1061.5	1045.1	1.5
0.5691	0.9096	1043.9	1025.0	1.8
0.5822	0.9069	1026.5	1005.3	2.1 - '
0.5945	0.9044	1008.9	986.1	2.3
0.6087	0.9014	987.0	963.0	2.4
0.6178	0.8995	973.5	947.7	2.7 '
0.6230	0.8984	949.1	938-8	1.1
-0.628C	0.8973	957.1	930.1	2 8
0.6324	0.8964	933.8	922.3	1 2
0.6381	0.8951	940.3	912.2	2.0
0-6420	0.8943	917.0	905 1	3.U
0.6473	0.8932	924.6	905 A	1
0.6519	0.8921	900.2	996 0	)•C
0.6565	0.8911	00.2	070 3	
0.6620	0.8899	882 0	010.3	
0.6724	0.8876	867 7	001.9	
0-6836	0.8851	940 7	07/40	1.7
0.6948	0.9975	04U.I	023.0	1.7
0 7067	0.0023		802.9	1.9
0.7197	0 0770	74.1	118.2	. 2.1
0 7209	0 0767	709+3	× 152.1	2.2
0 7/36	0.0712	743.5	726.3	2.3
0 7547	0.8711	(15.2	698.0	2.4
0.7707	0.8679	685.6	667.9	2.6
0.705	0.8646	653.0	635.7	2.6
0.7839	0.8612	621.2	603.8	2.8
0.7984	0.8576	585.7	568.4	3.0
0.8133	0.8537	547.2	531.2	2.9
0.8291	0.8496	506.8	490.9	3.1 ·
0.8452	0.8453	464.2	448.9	· 3.3
0.8620	0.8408	418-1	404.0	3.4
0.8796	0.8359	369.4	356.0	3.6
0.8978	0.8308	316-8	305.2	3.7
0.9169	0.8253	260.4	250.7	3.7
0-9369	0.8195	200-0	192.4	3.8
0.9568	0.8135	138-6	133.0	4.0
0.9786	0.8068	69.2	66.6	3.7
	р <b>Ъ</b>	-	RMS	DEVIATION= 2-5

Þ

.

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-BUTANOL+N-NONANE DELTA H IN JOULES/MOLE

B(1)=	8.159353	B(2)=	0,005642	•
B(3)=	0.004932	B ( 4, ) =	0.000133	
X	_ XCH2	Υ·.	YPRED	DEVP
0 0261	0,0050	670 0	674 E	<b>~</b> (
	0.9959	970.9	210.2	-1 6
0.1347	0.991	1021 4	0.33+0 1076 0	-1.5
0.1900	0.9769	1127.2	1103 9	-4.2
0.2391	0.9703	1197.5	1258 2	-51
0.2829	0.9640	1231.8	1291.6	-4 0
0.3219	0.9583	1249.4	1305.3	-4.5
0.3575	0.9528	1256.0	1306.2	-4-0
0.3900	0.9476	1254.0	1298.2 1	-3.5
0.4189	0.9428	1246.3	1284.3	-3.1
0.4456	0.9383	1234.5	1266.3	-2.6
0.4697	0.9340	1219.5	1245.9	-2.2
0.4908	0.9303	1203.1	1224.9	-1.8
0.5108	0.9266	1185.2	1202.3	-1.4
0.5286	0.9232	1167.7	1180.2	-1.1
0.5453	0.9200	1149.0	1157.7	-0.8
0.5590	0.9174	1132.0	1138.0	-0.5
0.5731	0.9146	. 1114.2	1116.6	-0.2
0.5871	0.9117	1095.0	1094.2	0.1
`0 <b>.</b> 6005	0.9090	1075.7	1071.9	0.4
0.6130	0.9064	1056.2	1049.9	0.6
0.6248	0.9039	1036.4	1028.5	0.8
0.6353	0.9016	1018.5	1008.8	1.0
0.6448	0.8996	1002.5	990.5	1.2
* 0.6477	0.8989	997.2	984.9	1.2
0.6542	0.8975	985.4	972.0	1.4
0.6566	0.8970	980.8	967.1	1.4
0.6633	0.8955	968.4	95345	1.5
0.6658	0.8949	963.0	948.4	1.5
0.0723	, U•8935	951.3	934.9	1.7
0.6753	0.8928	944.D	928.0	1./
0.0049	0.0700	927.0	908 1	1.9
0.0749	0.0003	707+7 907 E	000+2	
0.7159	0,0007	950 5	002.4	2.02
0.7268	0.8807	. 835.2	912.2	2.44
0.7381	0.8780	809.0	786.2	2.0
0.7497	0.8751	781.6	757.8	2.0
0.7616	0.8721	752.2	728.0	3.2
0.7739	0.8689	721.3	696.4	3.4
0.7864	0.8657	° 688.5	663.7	3.6
0.7995	0.8622	653.2	628.6	3.8
0.8131	0.8585	615.3	591.4	3.9
-0.8772	0.8547	575-8	551.9	4.1
0.8420	0.8505	532.9	509.5	4.4
0.8572	0.8461	487.8	465.0	4.7
0.8730	0.8415	438.8	417.7	4.8
0.8895	0.8365	386.6	367.1	5.0
0.9062	0.8314	333.0	314.8	5.5
0.9236	0,18259	273.9	259.0	5.4
<b>9.9415</b>	0.8201	212.8	200.4	5.8
0.9603	0.8139	146.0	137.5	5.9
0.9798	0.8072	75.5	70.7	- 6.4
			284	DEVIATIO

#### TABLE A55:

HEATS OF M	IXING AT 55	CEG.C FOR	THE SYSTE	M N-BUTANOL+M	I-DODECANE
DELTA H IN	JOULES/MOL	E			,
B(1)=	8.159353	B(2)=0	-005642		
. R(3)= (	0.004932	B(4)= 0	•000133	•	• •
X	XCH5	Ϋ́Υ.	YPRED	DEVP	
0.0447	0.9962	717+5	731.3	-1.9	• •
0.0896	0.9921	1007.6	1064.0	-5.6	•
0.1668	0.9846	1247.7	1358.6	-8,9	)
0.2322	0.9776	1358.5	1488.5	-9.6	
0•2878.	0.9712	1413.3	1548.6	-9.6	
0,3361	0.9652	1435.7	1572.0	, <b>-9.5</b>	, <u> </u>
. 0.3786	0.9595	1443-8	1573.6	<b>∸9.0</b> \	
0.4160	0.9542	1438-7	1561.4	-8.5	$\sim$ .
0.4494	0.9492	1426.5	1540.5	0_8-	$\mathbf{\mathcal{A}}$
0.4796	0.9445	1407.9	1513.7	° -7.5	
0.5064	0.9401	1386+0	1483.8	-7.1	λ.
0.5307	049359	1362+3	1451.9	-6.6	1
.0.5523	0:9321	1338-2	1419.8	-6.1	
0.5720	0.9285,	1313.4	1387.4	-5.6	•
0.5905	0.9249	1296.7	1354.3	-5.3	
0.6073	0.9216	1261-1	1322.1	-4.8	
0.6229	0.9185	1235,1	1290.4	-4.5	-
đ.6375	0.9154	1209-3	1259,0	-4.1	-
0.6510.	0.9125	1183.5	1228.7	-3.8	•
0.6629	0.9099	1160.7	1200.8	<b>-3.5</b> /	
0.6739	0.9075	1138.6	1174.2	-3.1	
0.6847	0.9050	1115.7.	1147.2	-2.8	
- 0.6948	0•9026	1093-3	1121-2	-2.5	
0.6975 -	0.9020	1086.8	1114.1	-2.5	9
0.7040	0+9005	1072.6	1096.9	-2.3	•
0.7058	0.9000	-1067.9	1092.0	-2.3	
0.7125	0.8984	1052.5	1073.9	-2.0	•
0.7142	0.8980	1047.3	1069.2	-2.1	
0.7202	0.8965	1034.0	1052.6	-1-8	•
0.7228	0+8959	1020-8	1045.3	-1.8	
0.7406	0.8012	1004+4	1020-3	-1.0	
0.7400	0.0044	980.9	994.2	~1.4	
0 7604	0 9977	930 3	737+4	-0.8	
· 0.7793	0.9909	902 ST	700+1 976 1	-0.7	
0.7895	0.8780	943.0	847 3	-0.3	
0.8002	0.8749	911.6	8042.9	3.0	
0.8111	0.8717	776.7	769.9	0.0	
0.8221	0.8684	742-1	731.81	1.4	•
0.8338	0.8647	703.3	690.3	1.8	
0.8459	0.8608	661.5	646.4	2.3	
0.8582	0.8568	618.4	600.8	2.9	
0.8708	0.8525	571.8	553.0	3.3	
0.8837	0.8480	522.7	502.9	3.8	1
0.8966	0.9434	472.3	451.6	4.4	
0.9100	0.9384	417.9	397.2	5.0 ·	
0.9242	0.8329	358.3	338.2	5.6	
~ 0.9387	0.8271	295.5	276.5	6.4	
0.9534	0.8210	228.9	212.5	7-1	,
0.9683	0.8146	158.3	146.2	7.6	`
0.9841	0.8075	80.5	74.2	7.9	
			RMS	DEVIATION=	5-1

-484-

2

À,

	14	BLB	VODI	
--	----	-----	------	--

ŧ

]

-402-, -

,

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-PENTANOL+N-OCTANE DELTA H IN JOULES/MOLE

٢.

.

B (3) * COUCH 32 B (4) * O: 000133   X XCH2 Y YPRED DEVP   0.0277 0.9965 464.7 458.5 1.3   0.1087 0.9928 684.8 683.9 0.1   0.1087 0.9928 684.8 687.9 0.1   0.1087 0.9928 684.4 867.9 0.1   0.1087 0.9928 684.4 1009.0 -3.6   0.1560 0.9797 974.4 1009.0 -3.6   0.1994 0.9738 1032.2 1072.7 -3.9   0.2377 0.9684 1067.4 1108.2 -3.8   0.3630 0.9587 1101.0 1134.9 -7.1   0.3651 0.9587 1106.2 1188.9 -1.5   0.4105 0.9305 1075.8 1076.8 -0.1   0.4105 0.9478 1095.7 1106.3 -1.0   0.4386 0.9365 1075.8 1076.8 -0.1   0.4648 0.9365 1075.8 1076.8 -0.1   0.5024	8(1)=	8.[39333	8(2)=	0.005642	,
X   XCH2   Y   YPRED   DEVP     0.02777   0.9965   664.7   458.5   1.3     0.0567   0.9928   684.8   683.9   0.1     0.1087   0.9928   684.8   683.9   0.2     0.1560   0.9797   974.4   1009.0   -3.6     0.1994   0.9738   1032.2   1072.7   -3.9     0.2377   0.9684   1067.4   1108.2   -3.8     C.2729   0.9634   1089.6   1127.2   -3.5     0.3054   0.9567   1101.0   1134.6   -2.6     0.3350   0.9543   1105.9   1134.6   -2.6     0.3623   0.9502   1106.2   1178.7   -2.0     0.4105   0.9478   1095.2   1106.3   -1.0     0.4315   0.9365   1075.8   1076.8   -0.1     0.4610   0.9036   1075.8   1076.4   1.2     0.5170   0.9258   1025.1   1009.7   1.5	8(3)=	0.004932	, B(4) =	0.000133	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X	XCH2	Y, `	YPRED	DEVP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0277	0•9965,	464.7	458.5	1.3
0.10870.9860 $877.1$ $898.9$ $-2.5$ 0.15600.9797974.41009.0 $-3.6$ $4.1994$ 0.97381032.21072.7 $-3.9$ 0.23770.96841067.41108.2 $-3.8$ 0.33500.95871101.01134.9 $-3.1$ 0.33500.95871106.21178.7 $-2.0$ 0.38740.99621106.21178.7 $-2.0$ 0.38740.99621106.21178.7 $-2.0$ 0.38740.99641102.11118.9 $-1.5$ 0.41050.93951096.71092.2 $-0.5$ 0.45100.93651075.8106.3 $-1.0$ 0.46880.93611052.01043.6 $0.8$ 0.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53040.9215998.2977.82.00.55520.9194984.4961.12.40.55730.9164951.9936.01.70.58100.9150951.4924.62.80.59270.9130925.8907.12.00.60120.9112910.7896.92.20.61390.9074878.9856.12.60.62480.9074878.9856.12.60.66050.9011870.3746.43.40.59270.913925.8907.12.30.61390.9074878.9856.12.6 <td>0.0567</td> <td>0.9928</td> <td>684.8</td> <td>683.9</td> <td>0.1</td>	0.0567	0.9928	684.8	683.9	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1087	0.9860	877.1	898.9	-2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 0.1560	0.9797	974.4	1009.0	-3.6
0.2377 $0.9684$ $1067.4$ $1108.2$ $-3.8$ $0.2729$ $0.9634$ $1089.6$ $1127.2$ $-3.5$ $0.3054$ $0.9587$ $1101.0$ $1134.9$ $-3.1$ $0.3350$ $0.9587$ $1101.0$ $1134.6$ $-2.6$ $0.3350$ $0.9563$ $1105.9$ $1134.6$ $-2.6$ $0.3623$ $0.9562$ $1106.2$ $1178.7$ $-2.0$ $0.3874$ $0.9464$ $1102.1$ $1118.9$ $-1.5$ $0.4105$ $0.9468$ $1095.2$ $1106.3$ $-1.0$ $0.4315$ $0.9365$ $1075.8$ $1076.8$ $-0.1$ $0.4688$ $0.9336$ $1064.6$ $1060.9$ $0.3$ $0.4863$ $0.9365$ $1075.8$ $1076.8$ $-0.1$ $0.4668$ $0.9336$ $1062.0$ $1043.6$ $0.8$ $0.5024$ $0.9282$ $1038.5$ $1026.4$ $1.2$ $0.5170$ $0.9258$ $1025.1$ $1009.7$ $1.5$ $0.5304$ $0.9236$ $1011.2$ $993.4$ $1.8$ $0.552$ $0.9194$ $984.4$ $961.1$ $2.4$ $0.5573$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5732$ $0.9164$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9168$ $873.4$ $849.8$ $3.2$ $0.612$ $0.9118$ $925.8$ $907.1$ $2.0$ $0.6032$ $0.9133$ $938.4$ $896.9$ $364.3$ $3.6$ $0.5927$	<b>a</b> .1994	0.9738	1032.2	1072.7	-3.9
C.27290.96341087.61127.2-3.50.30540.95871101.01134.9-7.10.33500.95621106.21178.7-2.00.38740.94641102.11118.9-1.50.41050.94781095.21106.3-1.00.43150.93951075.71076.8-0.10.43150.93951075.71076.8-0.10.43150.93951075.71076.8-0.10.43160.93651075.71076.8-0.10.46880.93361052.01043.60.80.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53240.9215998.2977.82.00.55270.9174970.1944.42.70.57320.9164951.9936.01.70.58100.9150951.4924.62.80.59270.9133938.4909.73.10.59270.9164951.9864.33.60.60320.9112910.7890.92.20.61360.9068883.4849.83.80.61980.9074878.9856.12.60.62860.9068883.4849.83.80.62680.9054894.93.63.60.62680.9054878.9746.63.10.67480.8988773.0746.63.10.67440.8988 </td <td>2377</td> <td>0.9684</td> <td>1067.4</td> <td>1108.2</td> <td>-3.8</td>	2377	0.9684	1067.4	1108.2	-3.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-2729	0.9634	1089.6	1127.2	-3.5
0.3350 $0.9433$ $1105.0$ $1134.6$ $-2.6$ $0.3623$ $0.9562$ $1106.2$ $1178.7$ $-2.0$ $0.3874$ $0.9464$ $1102.1$ $1118.9$ $-1.5$ $0.4105$ $0.9478$ $1095.2$ $1106.3$ $-1.0$ $0.4315$ $0.9395$ $1096.7$ $1092.2$ $-0.5$ $0.4510$ $0.9365$ $1075.8$ $1076.8$ $-0.1$ $0.4686$ $0.9336$ $1064.6$ $1060.9$ $0.3$ $0.4863$ $C.9308$ $1052.0$ $1043.6$ $0.8$ $0.5024$ $0.9282$ $1038.5$ $1076.4$ $1.2$ $0.5170$ $0.9258$ $1025.1$ $1009.7$ $1.5$ $0.5324$ $0.92736$ $1011.2$ $973.4$ $1.8$ $0.5527$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5552$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5732$ $0.9164$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9133$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9112$ $910.7$ $896.9$ $3.64.3$ $3.6$ $0.6286$ $0.9074$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9073$ $896.9$ $864.3$ $3.6$ $0.6286$ $0.9074$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $894.8$ $873.9$ $2.3$ $0.6412$ $0.9073$ $896.9$ $864.3$ $3.6$ $0.6286$ $0.9073$ <	0.3054	0.9587	1101.0	1134.9	-3.1
0.13330.137.01137.01237.00.38740.94641102.11118.9-2.00.38740.94781095.21106.3-1.50.41050.93951096.71092.2-0.50.45100.93651075.81076.8-0.10.46880.93951052.01043.60.80.46880.93651052.01043.60.80.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53040.92361011.2993.41.80.55220.9194984.4961.12.40.55520.9174970.1944.42.70.57320.9164951.9976.01.70.58100.9150951.4924.62.80.58260.9168939.4922.21.80.58260.9112910.7890.92.20.61020.9112910.7890.92.20.61030.9094894.8873.92.30.61980.9074678.9866.12.60.62860.9068883.4849.83.80.63640.9054860.6836.72.80.63640.9054860.6836.72.80.63640.9054860.6836.72.80.63640.9054860.6836.72.80.63640.9054860.6836.72.80.63640.9054860.6 <t< td=""><td>0.3350</td><td>0.9543</td><td>1105 0</td><td>1126 6</td><td>-2.6</td></t<>	0.3350	0.9543	1105 0	1126 6	-2.6
0.36230.43621106.21176.4-2.50.41050.94641102.11118.9-1.50.41050.94781095.21106.3-1.00.43150.93951075.81076.8-0.10.46680.93651075.81076.8-0.30.4863C.93081052.01043.60.80.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53040.92361011.2993.41.80.54270.9215998.2977.82.00.55520.9194984.4961.12.40.55730.9174970.1944.42.70.57320.9164951.9936.01.70.58100.9150951.4924.62.80.59260.9148939.4922.21.80.59270.9133938.4909.73.10.59270.9116924.0894.03.20.61390.9094894.8873.92.30.61390.9094894.8873.92.30.61390.9054860.6836.72.80.62860.9068883.4849.83.80.63440.9054860.6836.72.80.64830.9074878.9856.12.60.66050.9011820.3794.63.10.67340.8988746.9720.03.60.77590.893874	0 2422	0 0503	1104 2	1139.0	-2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • • • •	0.9502	1100.2		• 2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3014	0.9404	1102.1	1118.9	-1.5
0.43150.93651075.81076.8 $-0.5$ 0.45100.93651075.81076.8 $-0.1$ 0.46680.93361064.61060.90.30.4863C.93081052.01043.60.80.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53040.92361011.2993.41.80.54270.9215998.2977.82.00.55520.9174970.1944.42.70.57320.9164951.9936.01.70.58100.9150951.4924.62.80.59260.9148939.4909.73.10.59270.9130925.8907.12.00.60120.9112910.7890.92.20.61060.9099910.6879.23.50.61390.9083896.9864.33.60.62460.9074878.9856.12.60.62660.9054860.6836.72.80.63640.9054860.6836.72.80.64630.9033840.9816.22.90.66650.9011870.3746.43.40.71500.8938746.9720.03.60.71500.8938746.9720.03.60.71500.8938746.9710.33.70.77440.8782557.7679.64.00.77500.8884671.9	0.4105	0.94/8	1095.2	1106.3	-1.0
0.4510 $0.9336$ $1075.8$ $1076.8$ $-0.1$ $0.4668$ $0.9336$ $1052.0$ $1043.6$ $0.8$ $0.5024$ $0.9282$ $1038.5$ $1026.4$ $1.2$ $0.5170$ $0.9258$ $1025.1$ $1009.7$ $1.5$ $0.5304$ $0.9236$ $1011.2$ $993.4$ $1.8$ $0.5427$ $0.9215$ $998.2$ $977.8$ $2.0$ $0.5552$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5552$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5552$ $0.9174$ $971.4$ $922.2$ $1.8$ $0.5826$ $0.9150$ $951.4$ $922.2$ $1.8$ $0.5910$ $0.9150$ $951.4$ $922.2$ $1.8$ $0.5927$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.6012$ $0.9116$ $925.8$ $907.1$ $2.0$ $0.6032$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $878.9$ $864.3$ $3.6$ $0.6248$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6364$ $0.9054$ $870.9$ $74.6$ $3.1$ $0.6734$ $0.8938$ $797.0$ $771.2$ $3.2$ $0.6665$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6246$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6734$ $0.8938$ $797.0$ $771.2$ $3.2$ $0.6665$ $0.9054$ $864.9$ $74.6$ <	0.4315	0.9395	1096.7	1092-2	-0.5
0.46880.93361064.61060.90.30.4863C.93081052.01043.60.80.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53040.92361011.2993.41.80.54270.9215998.2977.82.00.55520.9194984.4961.12.40.56730.9174970.1944.42.70.57320.9164951.9936.01.70.58100.9150951.4924.62.80.58260.9148939.4922.21.80.59100.9133938.4909.73.10.59270.9130925.8907.12.00.60120.9116924.0894.03.20.61030.9099910.6879.23.50.61040.9099910.6879.23.50.61390.9094894.8873.92.30.61980.9054860.6836.72.80.62860.9054860.6836.72.80.62860.9054860.6836.72.80.64830.9033840.9816.22.90.66050.8988797.0771.23.20.67340.8988797.0771.23.20.67450.8988797.0771.23.20.67450.8938746.9720.03.60.71500.8938746.97	0.4510	0.9365	1075.8	1076.8	-0.1
0.4863C.93081052.01043.60.80.50240.92821038.51026.41.20.51700.92581025.11009.71.50.53040.92361011.2993.41.80.54270.9215998.2977.82.00.55520.9174970.1944.42.70.56730.9174970.1944.42.70.56730.9164951.9936.01.70.58100.9150951.4924.62.80.58260.9148939.4922.21.80.59100.9133938.4909.73.10.59270.916924.0894.03.20.60120.9116924.0879.23.50.6120.9112910.7890.92.20.61060.9094894.8873.92.30.61980.9074878.9856.12.60.62860.9058883.4849.83.80.63640.9054860.6836.72.80.64830.9033840.9816.22.90.66050.9011870.3746.43.40.7050.8938746.9720.03.60.71500.8938746.9720.03.60.71500.8938746.9720.03.60.76170.8824621.0594.94.20.7640.878.951.3578.64.30.76400.8751283.7679.6 </td <td>0.4688</td> <td>0.9336</td> <td>1064.6</td> <td>1060-9</td> <td>0.3</td>	0.4688	0.9336	1064.6	1060-9	0.3
0.5024 $0.9282$ $1038.5$ $1026.4$ $1.2$ $0.5170$ $0.9258$ $1025.1$ $1009.7$ $1.5$ $0.5304$ $0.9236$ $1011.2$ $993.4$ $1.8$ $0.55427$ $0.9215$ $998.2$ $977.8$ $2.0$ $0.5552$ $0.9194$ $984.4$ $961.1$ $2.4$ $0.5552$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5732$ $0.9164$ $951.9$ $936.0$ $1.7$ $0.5810$ $0.9150$ $951.4$ $924.6$ $2.8$ $0.5826$ $0.9148$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6012$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9097$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $878.9$ $864.3$ $3.6$ $0.6286$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6465$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $711.2$ $3.2$ $0.6667$ $0.8944$ $773.0$ $746.6$ $3.4$ $0.7799$ $0.8984$ $773.0$ $746.6$ <td< td=""><td>0.4863</td><td>C.9308</td><td>1052.0</td><td>1043.6</td><td>0.8</td></td<>	0.4863	C.9308	1052.0	1043.6	0.8
0.5170 $0.9258$ $1025.1$ $1009.7$ $1.5$ $0.5304$ $0.9236$ $1011.2$ $993.4$ $1.8$ $0.5427$ $0.9215$ $998.2$ $977.8$ $2.0$ $0.5552$ $0.9194$ $984.4$ $961.1$ $2.4$ $0.5552$ $0.9174$ $970.1$ $944.4$ $2.7$ $0.5732$ $0.9164$ $951.9$ $936.0$ $1.7$ $0.5810$ $0.9150$ $951.4$ $924.6$ $2.8$ $0.5826$ $0.9148$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6139$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9074$ $876.9$ $720.0$ $3.6$ $0.6605$ $0.9011$ $820.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $714.2$ $3.2$ $0.6867$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7799$ $0.8884$ $655.7$ $679.6$ $4.0$ $0.7784$ $0.8972$ $583.4$ $558.6$ $4.3$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4$	0.5024	0.9282	1038.5	1026.4	1.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5170	0.9258	1025.1	1009.7	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5304	0.9236	1011.2	993.4	1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5427	0.9215	998.2	977.8	2.0
0.5673 $0.9174$ $970.1$ $944.4$ $2.7$ $0.5732$ $0.9164$ $951.9$ $936.0$ $1.7$ $0.5810$ $0.9150$ $951.4$ $924.6$ $2.8$ $0.5826$ $0.9148$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6246$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6266$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $820.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6667$ $0.8988$ $797.0$ $746.4$ $3.4$ $0.7799$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.77453$ $0.8925$ $655.7$ $629.6$ $4.0$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.4758$ $541.9$ $31.2$ $4.2$ $0.7844$ $0.8682$ $450.6$ $430.5$ $4.5$	0.5552	0.9194	984.4	961.1	2.4
0.5732 $0.9164$ $951.9$ $936.0$ $1.7$ $0.5810$ $0.9150$ $951.4$ $924.6$ $2.8$ $0.5826$ $0.9148$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9133$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9094$ $896.9$ $864.3$ $3.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6667$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7150$ $0.8947$ $718.1$ $691.5$ $3.7$ $0.7990$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7784$ $0.8792$ $583.4$ $578.6$ $4.3$ $0.7960$ $0.7758$ $541.9$ $517.3$ $4.2$	0.5673	0.9174	970-1	944.4	2.7
0.5810 $0.9150$ $951.4$ $924.6$ $2.8$ $0.5826$ $0.9148$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6130$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $878.9$ $866.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9074$ $878.9$ $816.2$ $2.9$ $0.6665$ $0.9011$ $820.3$ $794.6$ $3.1$ $0.6734$ $0.8968$ $773.0$ $711.2$ $3.2$ $0.6667$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.705$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7453$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.5$ <	0.5732	0.9164	951.9	936.0	1 7
0.5010 $0.5126$ $0.5126$ $0.5126$ $0.2184$ $939.4$ $922.2$ $1.8$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6286$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6286$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6665$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6667$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7453$ $0.8872$ $583.4$ $558.6$ $4.3$ $0.7784$ $0.8722$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8744$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9278$ $0.$	0.5810	0,9150	951.4	974.6	2 9
0.5020 $0.7140$ $77.4$ $7222$ $1.6$ $0.5910$ $0.9133$ $938.4$ $909.7$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6667$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7799$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7760$ $0.4758$ $541.9$ $519.3$ $4.2$ $0.784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.4758$ $541.9$ $519.3$ $4.2$ $0.8744$ $0.8682$ $450.6$ $430.5$ $4.5$ <td>0.5976</td> <td>0 0169</td> <td>930 4</td> <td>72760</td> <td>χ.σ</td>	0.5976	0 0169	930 4	72760	χ.σ
0.5910 $0.9130$ $925.8$ $907.1$ $3.1$ $0.5927$ $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7453$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$	0 5010	0 0133	777.4	922+2	1.0
0.5927 $0.9130$ $925.8$ $907.1$ $2.0$ $0.6012$ $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6136$ $0.9097$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.77299$ $0.8884$ $671.0$ $594.9$ $4.2$ $0.7617$ $0.8824$ $671.0$ $594.9$ $4.2$ $0.7784$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9278$ $0.8501$ $219.1$ $209.7$ $4.3$	0.5910	0.9133	437.4 075 0	909.1	3.1
0.6012 $0.9116$ $924.0$ $894.0$ $3.2$ $0.6032$ $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6286$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $671.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8769$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8769$ $0.8651$ $283.7$ $271.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.5$	0.012	0.9150	923.8	907.1	2.0
0.6032 $0.9112$ $910.7$ $890.9$ $2.2$ $0.6106$ $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6286$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $820.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $629.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.5$ $0.8146$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8764$ $0.8681$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.5$ $0.9278$ $0.8501$ $219.1$ $209.7$ $4.3$	0.0012	0.9110	924.0	894.0	3.2
0.6106 $0.9099$ $910.6$ $879.2$ $3.5$ $0.6139$ $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8988$ $797.0$ $774.6$ $3.4$ $0.7055$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $621.0$ $594.9$ $4.2$ $0.7744$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.7814$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8749$ $0.8651$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9473$ $0.8448$ $150.7$ $144.8$ $3.9$	0.6032	0.9112	910.7	890.9	· 2•2
0.6139 $0.9094$ $894.8$ $873.9$ $2.3$ $0.6198$ $0.9083$ $896.9$ $864.3$ $3.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $629.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9278$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9473$ $0.9448$ $150.7$ $144.8$ $3.9$	0,6106	0.9099	910.6	879.2	3.5
0.6198 $0.9083$ $896.9$ $864.3$ $3.6$ $0.6248$ $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $679.6$ $4.0$ $0.7617$ $0.8824$ $671.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9278$ $0.8501$ $215.1$ $209.7$ $4.3$ $0.9473$ $0.8448$ $150.7$ $144.8$ $3.9$	0.6139	0,9094	894.8	873.9	2.3
0.6248 $0.9074$ $878.9$ $856.1$ $2.6$ $0.6286$ $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $679.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9473$ $0.8448$ $150.7$ $144.8$ $3.9$	0.6198	0.9083	° 896.9	864.3	3.6
0.6286 $0.9068$ $883.4$ $849.8$ $3.8$ $0.6364$ $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $679.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $709.7$ $4.3$ $0.9473$ $0.8448$ $150.7$ $144.8$ $3.9$	0.6248	0.9074	878.9	856-1	2.6
0.6364 $0.9054$ $860.6$ $836.7$ $2.8$ $0.6483$ $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6767$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $679.6$ $4.0$ $0.7617$ $0.8824$ $671.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.4758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8549$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9278$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.6286	0.9068	883.4	849.8	3.8
0.6483 $0.9033$ $840.9$ $816.2$ $2.9$ $0.6605$ $0.9011$ $820.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8988$ $797.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.88255$ $655.7$ $629.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.6364	0.9054	860.6	836 • 7	2.8
0.6605 $0.9011$ $870.3$ $794.6$ $3.1$ $0.6734$ $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8255$ $655.7$ $629.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.4758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $21.9.1$ $209.7$ $4.3$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.6483	0.9033	840.9	816.2	2.9
0.6734 $0.8988$ $797.0$ $771.2$ $3.2$ $0.6867$ $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $679.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.6605	0.9011	870.3	794.6	3.1
0.6867 $0.8964$ $773.0$ $746.4$ $3.4$ $0.7005$ $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $629.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.4758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.6734	0.8988	797.0	771.2	3.2
0.7005 $0.8938$ $746.9$ $720.0$ $3.6$ $0.7150$ $0.8912$ $718.1$ $691.5$ $3.7$ $0.7299$ $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8255$ $655.7$ $679.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.4758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.6867	0.8964	773.0	746.4	3.4
0.7150 0.8912 718.1 691.5 3.7   0.7299 0.8884 688.6 661.5 3.9   0.7453 0.8855 655.7 679.6 4.0   0.7617 0.8824 621.0 594.9 4.2   0.7784 0.8792 583.4 558.6 4.3   0.7960 0.4758 541.9 519.3 4.2   0.8146 0.8721 499.3 476.8 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.7005	0.8938	746.9	720-0	3.6
0.7299 $0.8884$ $688.6$ $661.5$ $3.9$ $0.7453$ $0.8855$ $655.7$ $629.6$ $4.0$ $0.7617$ $0.8824$ $621.0$ $594.9$ $4.2$ $0.7784$ $0.8792$ $583.4$ $558.6$ $4.3$ $0.7960$ $0.9758$ $541.9$ $519.3$ $4.2$ $0.8146$ $0.8721$ $499.3$ $476.8$ $4.5$ $0.8344$ $0.8682$ $450.6$ $430.5$ $4.5$ $0.8549$ $0.8641$ $398.9$ $381.2$ $4.4$ $0.8766$ $0.8597$ $343.2$ $327.8$ $4.5$ $0.8988$ $0.8551$ $283.7$ $271.8$ $4.2$ $0.9228$ $0.8501$ $219.1$ $209.7$ $4.3$ $0.9473$ $0.8448$ $150.7$ $144.8$ $3.9$ $0.9737$ $0.8391$ $76.1$ $73.1$ $3.9$	0.7150	0.8912	718.1	691.5	3.7
0.7453 0.8855 655.7 629.6 4.0   0.7617 0.8824 621.0 594.9 4.2   0.7784 0.8792 583.4 558.6 4.3   0.7960 0.9758 541.9 519.3 4.2   0.8146 0.8721 499.3 476.8 4.5   0.8146 0.8682 450.6 430.5 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.7299	0.8884	688.6	661 5	2 0
0.7617 0.8824 621.0 594.9 4.2   0.7784 0.8792 583.4 558.6 4.3   0.7960 0.4758 541.9 519.3 4.2   0.8146 0.8721 499.3 476.8 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.7453	0 0055	455 7	630 6	2.7
0.7784 0.8792 583.4 558.6 4.3   0.7784 0.8792 583.4 558.6 4.3   0.7960 0.4758 541.9 519.3 4.2   0.8146 0.8721 499.3 476.8 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0 7617	-0 9974	621 0	504 0	4.0
0.7960 0.4758 541.9 519.3 4.2   0.8146 0.8721 499.3 476.8 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.7704	V . 0029 A 9703	0/1.U Eun /	774+7 556 4	9 • C
0.1750 0.41750 541.7 514.3 4.2   0.8146 0.8721 499.3 476.8 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0 7040	U+0176 0 4750	703+4	778.0	4.3
0.8140 0.8721 499.3 476.8 4.5   0.8344 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8371 76.1 73.1 3.9	0.01400	U+ "/78 0 077)	741.9	714.1	4.2
0.8144 0.8682 450.6 430.5 4.5   0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	U-8146	0.8/21	499.3	476.8	4.5
0.8549 0.8641 398.9 381.2 4.4   0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.8344	0.8682	450.6	430.5	4.5
0.8766 0.8597 343.2 327.8 4.5   0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.8549	0.8641	398.9	381.2	· 4.4
0.8988 0.8551 283.7 271.8 4.2   0.9228 0.8501 219.1 209.7 4.3   0.9473 0.8448 150.7 144.8 3.9   0.9737 0.8391 76.1 73.1 3.9	0.8766	0.8597	343.2	327-8	4.5
0.9228 0.8501 219.1 209.7 4.3 0.9473 0.8448 150.7 144.8 3.9 0.9737 0.8391 76.1 73.1 3.9	0.8988	0.8551	283.7	271.8	4.2
0.9473 0.8448 150.7 144.8 3.9 0.9737 0.8391 76.1 73.1 3.9	0.9278	0.8501	219.1	209.7	4.3
0.9737 0.8391 76.1 73.1 3.9	0.9473	0.8448	150.7	144-8	3.9
	0.9737	0.8371	76.1	73.1	3.9

RMS DEVIATION=

# TABLE A57:

. _{Cy} 🖲 🗋	NEATS OF	NTYTHE AT FE		COD THE ENET		*
	ELTA U TI	MIAING AT 33	りとらっし	FOR THE SYST	EM N-PENTA	NQL+N-NQNANE
	U118 1 1	Nº JUULES/MULE			1	3
١	B(1)≖ D(2)	8+139323	8(2)=	0.005642	•	
•	B(3)=	0.004932	B(4)=	0.000133		
	X	· XCHZ	Y	YPRED	DEVP	
, · ·	0 0 0 0 0 0	0 0010				
	0.0302	0.9966	506.2	505.0	0.2	۵
	0.0611	0.993,1	J.867 -	750.8	-1.7	
•	0.1167	0.9865	944.1	986.1	-4.4	
	0.1658	0.9805	1044.9	1102.2	-5.5	
•	0.2104	0.9749	1104.6	1168.1	· -5.7	
	0.2510	0.9696	1141.7	1205-2	-5.6	
•	0.2875	0.9647	1162.3	1223.6	5.3	١
-	0.3207	0.9601	1174.0	1229.8	· 1	1
- '	0.3509	0.9558 🏏	1177.6	1227.6	-4.3	·
	0.3778	0.9520	1220,.0	1219.9	0.0	•
	0.4029	0.9483	1209.1	1208.2	0.1	
•	~0.4259	0.9448	1228.4	1193.8	2.8	
	0.4473	0.9416	1211.9	1177.4	2.8	
	0.4666	0.9386	1194.6	1160.2	2.9	
~ .	0.4845	0.9358	1176.9	. 1142.3	2.9	
-	0.5014	0.9331	1158.5	1123.8	3.0	•
-	0.5173	0.9305	1140.1	`'1104.9	3.1	\$
	0.5372	. 0.'9281	1127.6	1086.0	3.3	*
1	0.5462	0.9258	1105.0	1067.1	3.4	
	0.5601	0.9235	1096.1	1047.4	3.6	¢
` و	.0.5730	0.9213	1067.5	1028.2	3.7	
	0.5855	0.9192	1048.7	1008.8	3.8	5
	0.5964	0.9173	1031.9	99473	3.9	× c
	0.6069	0.9155	1015.1	973.9	4-1	
	0.6109	0.9148	993.6	967.2 *	2.7	
••	.0.6168	.0.9137 '	998.6	957.0	4.2	,
,	0.6205	0.9131	978-2	950.6	2.8	¢
	0.6250	0.9123	985.1	7 942 . 7	4.3	1
•	0.6303	0.9113	962.6	933.3.	3.0	` 3
ه _	0.6337	0.9107	970.0	927.2	° 4.6	2
•	0.6401	Ø. 9096	945.9	916.5	3.2	
1	0.6503	0.9077	927.8	896.5	3.4	5
•	0.6612	0.9058	908-6	875.8	3.6	
, .	0.6719	0.9038	889.3	854.9	3.0	
s ,	0-6830	0:9017	866.7	· 832.7	3.9	
,	0.6949	·0. 8995	844 . 0	808-3	4.2	
	0.7068	° 0.8973 🔮	819.6	793.3	4.6	ت <b>ا</b> م
	0.7187	0.8950	794.1	757.7	4.6	
Λ.	0.7317	0.8925	766.0	729.1	4.8	
× -	0.7451	0.8899	736-2	698.9	5.1	
•	0.7589	0.8871	703-9	667.0	15-2	
•	0.7732	0.8843	668.8	633.2	° ~6,3	,
	0.7882	0.8812	632-2	596.9	5.6	1
	0.8037	0-8780	, 592 X	-558-6	5 7	• <i>•</i>
s (	0.8194	0.8747	· 551.7	518.8		v
	0.8363	0.8712 -	505.7	· 474 0	6.1	
`	. 0,8530	2 10.8674	467.21	77787 628 2	U • 1 6 1	
	0-8722	0,8634	404 1	7/Q+2 270 /	0.4 4.7	
	0_8011	0,9502	368 2	219.4		-
	0.0100	1 VIUJ72 0.9647	3 J40+2 707 7	· · · · · · · · · · · · · · · · · · ·	0.4	,
•	0,9314	1700.02	20101	207°4 200 1	0.4	
. ·	0,0522	©V●C777 ∩.Q&&⊖ °`	162 5	2UY+1 124 4	0.U	
` `	0,0740	V+0440 A 6202	17343	144.0 75 A	<b>⊅•</b> 8	,
	V#7(8V	0.0373	. 417+0.	().U	7•1	
		4 0		<u>, , ,,,,</u> ,	- VCVIA+ LUN3	i <u>4</u> .4

TABLE	<b>A58:</b>	
`		•

<u>} 1</u>

1

, · · `^

• •

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-PENTANOL+N-DODECANE DELTA H IN JOULES/HOLE

$\mathbf{L}$	1 address ince			-	
8(1)=	8.159353	8(2)=	0.005642	· · · · · · · · · · · · · · · · · · ·	
8(3)=	0.004932	8(4)=	0.000133		
X	XCH2	Y	YPRED	DEVP	
	, ,		· ·		
0.0399	0.9966	641.9	667.0	o -3.9	`
0.0762	0.9934	908,•2	959.2	-5.6	
0.1440	0.9871	1149.2	1249.0	-8.7	
0.2032	0.9812	1260.8	1382.4	-9.6	
0.2560	0.9755	1321.6	1450.0	-9.7	
0.3014	0.9704	1353.5	1480.0	-9.4	
0.3419	0.9656	1367.4	1488.8	-8.9	
0.3772	0.9613	1371.0	1484.3	-8.3	
0.4101	0.9570	1365.4	1470.5	-7.7	
0.4398	0.9530	1355.3	1450.8	-7-0	
0.4657	4949	1343.9	1428.1	-6-3	
0 4893	0.9460	1327.9	1403.2	-5 7	
0.5100	0646	1311.0	1379 1	-5 1	
0.5100	0.0400	1205 9	1364 3	-/ 5	
0.5454	0.7403	1279.0	133483	-4.5	
0.5434	·U•9373	12//+4	1320.2	-4.0	
0.5014	0.9350	1200.3	1302.9	- 3.4	
0.5/14	0.9324	1240.8	12/3.9	-2.8	
0.5924	0.9299	- 12206 3	, 1249.0	2.4	
0.6071	0.9274	1199-1	1221-3	-1.9	
0.6197	0.9252	1148.7	·1196.4	-4.7	
0.6316	0.9231	1131.8	1172.0	-3.6	
0.6434	0.9210	1143.1	1146.9	-0.3	
0.6544	° 0.9189	1123-8	1122.8	0.1	,
0.6641	0.9171	1090.6	1100.8	-0.9	
0.6648	0.9170	1104.4	1099.2	0.5	
0.6730	0.9155	1072.6	1080.2	-0.7	
0.6743	0.9152	1086.2	1077.1	0.8	
0.6817	0.9138	1055.6	1059.5	-0.4	-
0.6833	0,9135	1068-4	1055.7	1.2	
0.6907	0.9121	1035.9	1037.7	-0.2	
0.6918	0.9119	1050.9	1035.0	1.5	
0.6983	0.9106	1037.0	1018.8	1.7	
0.7000	0.9103	1016-4	1014.6	0.2	
0.7096	0.9083	994.9	990.2	0.5	
0.7193	0.9064	972.0	964.9	0.7	
0.7298	0.9042	947.1	937.0	1.1	
0.7404	0.9020	921.3	908.1	1.4	
0.7510	0.8998	894.4	878.6	1.8	4
0.7618	0.8975	865.6	847.8	2.0	
0.7732	0.8950	833.5	814-6	2.3	·
0.7852	0.9923	800-5	778.8	2.7	
0.7972	0.8895	765.7	742.2	3.1	
0.8098	· 0.8866	728.4	702.8	3.5	
0.8227	0.8835	687.8	661.5	3.8	•
0.8358	0.8803	646.6	618 7	4 2	
0 9495	0 9760	601 0	572 8	4.7	
0.047)	0 9722	550 4	572 7	5 1	
0.0071	V.0136 0 9403	200.0	26601	7+1 6 4	-
0.00171	V+0073 A 4463	497.68	47U+U	2.0	
0.0300	U. 4072	441.0	412.U		
0.9102	0.0008	380.4	370.8	0.2	
0.9210	0.8260	514.9	291.4	6.8 7 7	
U. 9445	0.8509	243.3	225.7	¥ 1.2	
U.9627	U.8453	166.6	153.5	1.9	
0.9811	0.8395	85.1	78.7	7.4	
			77 M	N DEVIATIONS	

HE	TS OF	IXING AT 5	5 DEG.C FU	NR THE SYSTEM	N-HEXANOL+N-OCTAN	<b>IE</b> -
UEL	.IA H [M			0.005449		<b>N</b>
	8(1)=	8.159353	8(2)=	0.005642		•
•	8(3)=	0.004932	B(4)=	0.000133	· · · · · · · · · · · · · · · · · · ·	
•	X	XCH2	* <b>Y</b>	YPRED	DEVP	
	0.0243	0, 9970	410.7	413-6	-0.7	
	0.0491	0.9938	620.8	622.1	-0.2	•
<b>.</b> .	0.0954	0.9879	807.1	830.9	-3-0	•
•	0.1379	0.9825	. 899.7	938-5	-4-3	
	0.1773	0.9773	955.7	1001.9	-4-8	•
	0-2122	0.9728	988.7	1038-6	-5-1	
	0.2435	0.9686		1059-6	-5.0	
,	0-2732	0.9646	1022-0	1070.7	-4.8	
	0.3010	0.9609	1028.6	107415	-4-5	_
	0.3268	0.9574	1030.5	1072-8	-4 -1	-
	0.3499	0.9543	1029.5	1067-4	-3.7	
	0.3719	0.9512	1025.9	1059.1	-3.2	
	0.3933	0.9483	1019.8	1048.2	-2.8	
	0-4127	0.9456	1012.4	1036.2	-2.3	2
3	0.4310	0.9431	1003.5	1023.0	~1 9	
	0-4478	0.9407	994.3	1023.0	-1	,
	0.4634	0.9385	084 7	005 4	-1.1	Q
	0.4781	0.9364	976 6	091 2	-0.7	
	0.4931	F 0 - 9363	962.1	70L+J 065 g	-0.4	
•	0.5061	0.9325	060 0	70J+0, 061 6		
	0.5181	0 9308	010 9	971.0U	0.7	•
	0 5297	0.9203		731+0		
	0 5401	0.7272	010 2	923+2		
	0 5474	0.9210	717•3 000 0	711.1	0.9	
•	0.5474	0,9203	077.0	901.07	-0.2	
**	0.5514	0.9200	/ 900+B	890.7		
	0.5570	0 0245	007.0	· 003.0	0.1	
	0.5670	0.0227	070.6	882.9 976 7	1.4	
	0.5010	0.0220	, 0/0.4	6 (p. (	. 0.3	
	0.5776	0.9230	003+2	809.0	, 1.0	
	0 5900	0 0217	, 007.9 , 07.1	001.01		
•	0.5007	0.0206	012.1	070.)	1.0	
	0.5000	0.9200	. 072.03	042.1	0.8	
	0 41 4	· 0 0173	0 30 • 0 0 30 • 0	020.9		
	0 4337	0.0154	02004	011+2 /	1.2	-
	0.6251	0.9194	796 3	17202		
	0.0300	V • 71 75	747	7/0./		
	0.6501	0.9005	7133	(47• <b>4</b> 77/ 0		
	0.6792	0.9095	710 3	701 7	<i>.</i>	
	0.60703	0.9051	/10.3	(01.)	24	
	0 7084	0.0030	042.1	0/4.8		r
	0 7240	0.9020	604.7	040.1		•
	0 7616	0.9004	600.7	010.3	3.0	
	0.7502	0 0051	6UJ•1	289.3	3.1	
	0 7794	0 0022	707.0	74747	3•3	
	0 700L	0 0001	721.8	21U+0 //D 2	<b>7 • 7</b>	
	0 0104	0 88EA	· 482.0	407•2 (	3.4	
	V 6733	V.CD74 0 0075	417.9		3 • D	
	V+0411 0 0420	V.0027 A 9700	. 372.1	. 311.9	3+0 2 (	,
	000000 O	U.3/9U 0.3750	5.57.5	521.5	5.0	
	V.000/	0.7170	280,5	270.5	5.0	
	V.7143		., 217.6	210.6	3.2	
•	V • 7415	U.8000	170.3	145.9	3.0	
· ·	4.4040	0.0021	11.9	/6.4	<b>2.</b> U	
		1	* _ a ` _	× KM2 (		• [

Î

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOLIN-HEPTANE

(	UELIA M I			~`~~~~~	М.	•
	B(1)=	R. 194393	8(7)=	0.007047	-	
	B(3)=	0.004937	8(4)=	0,000133		
	м <b>Х</b>	XCH2	Y .	YPRED	DEVP	•
•		· · · ·	- <b>N</b>			· · · · · · · · · · · · · · · · · · ·
	.0.0170	0.9976	289.7	. 30,1 . 7	-4.2	•
	0.0336	0.9952	417.0	461-1	-10.6	•
	0.0657	0.9908	635,3	634.3	- 0.2	•
	0.0971	0.9865	720.7	731.2	-1.5 -	
	0.1276	0.9824	77.4.6	. 797.4	-2.3	
	0.1562	0.9786	808.2	831.6	-2.9	
	0 1825	0 9752	829.1	856.7	-1.3	
	0.2070	0.9720	942 3	( 9 <b>73 7</b>	-3.7	
	0.2013	0.0401	051 7	007 4		
	0.2502	0.9091	02107	r 200	- ) = 0	-
	0.2514	0.9607	077.4	- 001.2		•_
	0.2701	0.9642	82410	888.7	-3.5	* * * *
	0.2897	0.9618	858.9	887.1	-3-4/	
	0.3078	0.9596	858.2	884.7	-3.1	,
	0.3263	0.9574	855.8	879,7	-2.8	
	0.3433	0.9553	851.5	873.5	-2.6	
	0.3591	.0.9535	847.2	866.5	-2.3	
	0.3735	0.9518	842.2	859.1	-2•Ô	
T.	0.3875	0.9502	836.4	⁴ 851.0	-1.7	
	0.4001	0.9487	830.7	9 843-0	-1-5	
	0 4120	0 0477	925 1	834 0	-1.2	•
	0.4120	0.0440	023+1	034.3	-1-2	
	0.4237	0.9460	× 819.5	020.7	-U.0	
	0.4354	0.9447	813.2	81(•3		
	0.4472	0.9434	806.4	807.7	-0+2	
	0.4580	0.9421	800.1	798.5	0.2	v
	0.4613	0.9418	791.7	795.6	· -0•5	
	0.4695	0.9409	792.5	788.2	0.5	
	0.4712	0.9407	784.1	786.7	-0.3	τ
	0.4817	0.9395	777.7	776.9 -	0+1	
	0.4819	0.9395	782.7	776.7	0.8	,
	0.4918	0.9384	776.0	767-2	1.1	ı
5	0.4922	0.9384	768.1	766.8	0.2	
	0.5016	0.9373	768.2	. 757.4.	1.4	
<b>,</b>	0.5010	0 0271	767 6	755 4	0.3	
	0.51030	0.0344	740 7	7/0 5	1 4	
	0.5103	0.9304		140.2	1.0	
	0.5153	0.9358	141.0	143.3	0.5	۲
;	0.5178	0.9356	154.3	, 740.7	1.8	*
	0.5256	0.9347	747.8	732.4	2-1	
	0.5275	0.9345	735.8	730.3	0.7	
	0.5402	° 0 <b>.9331</b>	723.3	716.3	1.0	
	0.5535	0.9317	709.8	701.2	,1-2	·
	0.5675	0.9302	695.3	684.8	<u>`</u> 1.5	,
	0.5821	0.9287	678.7	667.2	1.7	
	0.5975	0.9271	661-4	648.1	2.0	
	0.6137	0.9254	642.0	627.4	2.3	
	0.6308	0.9236	619.5	604.9	2.3	۰.
	000000	0 9218	596 9	580.6	2.7	
	0.0400	· 0 0100	571 7	552 0	2.1	~
•	0.0000	U • 7177	21101	773+7 69/ 4	J•1 2 / 1	· ·
	0.0000	0.9170	500 7		)• <b>-</b>	
	0.7111	0.4120	, 709.1	471.4	1+0	વ
	0.7348	0.9132	474.1	422.6	5.9	,
0	0.7598	0.9108	. 434.4	416.9	4.0	
	0.7868	0.9082	389.8	373-9	4.1	1
	0.8146	0.9056	343.6	328.5	4.4	۱ ~
	0.8462	0.9027	287.2	275.5	4.1	~
-	0.8797	0.8996	1226.8	217.9	3.9	
•	Q1 6. 9165	0.8962	157.5	153.0	2.9	
J	UI 0.9573	0.8926	81.1	19.2	2.4	۴.,
				DMC	DEVIATIO	N= 2-3

#### TABLE A61:

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOL+N-OCTANE DELTA H IN JOULFS/MOLE

• •

	B(17=	8.159353	0(2)=	0.005642	ι	
	R(3)=	0.004932	B(4)=	0.000133		
	X	XCH2	Y	YPRED	DEVP	
				•	. 8 .	v
	0.0189	0.9976	330.5	338.0	-2.3	
	0.0348	0.99,57	494.9	497.8	-0.6	
	0.0693	0.9914	676.8	697.8	-3.1	
	0.1020	0.9874	771.1	805.7	-4.5	
	<b>0.1324</b>	0.9837	827.4	871.4	-5.3	1
	0.1607	0.9803	863.3	913.8	-5.8	•
æ	0.1887	0.9770	888.5	943.0	-6.1	
	0.2149	0.9738	903.8	961.5	-6.4	
	0.2384	0.9711	914.9	971.9	-6.2	
	0.2580	0.9688	918.9	976.9	-608	
	0.2750	0.9668	922.7	978.7	-6.1	
	0,2920	0.9648	924.1	978.4	-5.9	
-	0.3104	0.9626	923.4	075.9	-5.7	
	0 2270	0 9606	921 0	071 6	-5.4	
	0.3454	0.9596	921.9	911.3	- 5.1	
	0 3613	0.9569	10.4 	907.2	-/ 9	
	0.3013	0.9500	914.7	920.2	-4.0	ı
	0.3000	0.9570	910.4	950.2	-4.4	
	0.3910	0.9000	904.0	941.0	-4.0	
	0.4059	0.9517	898.3	931.0	-3.1	
	0.4192	0.9502	891.6	921.8	-3.4	,
	0.4323	0.9487	894.5	911.5	-3.1	
	0.4453	0.9473	876.4	900.5	-2.8	
	0.4568	0.9460	868.2	890.3	-2.5	
,	0.4679	0.9447	<i>,</i> 860 <b>.</b> 2	879.9	-2.3	
	0.4785	0.9436	852.4	869.5	-2.0	
	0.4838	0.9430	845.6	864.2	-2.2	
	0.4878	0.9425	846.2	860.1	· <b>-1.6</b>	
	0.4935	0.9419	838.6	854.2	-1.9	
	0.4984	0.9414	838.2	849.0	-1.3	1
	0.5034	Q.9408	· 830.0	843.6	-1.6	
	0.5084	0.9402	830.5	838.1	-0.9	
	0.5141	0.9396	821.1	831.8	-1.3	
	0.5183	0.9392	822.4	· 827.1	-0.6	
	0.5253	0.9384	810.4	- 819.0	-1.1	:
	0.5293	0.9379	811.7	814.4	-0.3	
	0.5367	0]•9371 🗧	798.9	805 <b>.</b> 6 [.]	-0.8	
	0. 5489	0.9358	786.9	790.8	-0.5	۵
	0.5614	0.9344	- 773.9	775.1	-0.2	
	0.5747	0.9330	759.2	758.0	0.2	
	0.5884	0.9315	743.0	739.7	0.4	
	0.6031	0.9299	725.5	719.6	0.8	
	0.6183	0.9283	705.9	698.2	1.1	
	0.6346	0.9265	684.3	674.5	1.4	
	0.6517	• 0.9247	660.5	648.9	1.8	
	0.6696	0.9228	634.7	621.4	2.1	
	0.6884	0.9208	606.6	591.6	2.5	
	0.7088	0.9186	575.2	558.5	2.9	
	0.7311	0.0163	530 5	521 2	3.4	
	0.7780	0.9114	457 2	210 <i>2</i>		
	0.8036	0 0097	400 0	202 0	J. 7 4 1	
	0 00000	0.0050	70767 360 F	373.V 363 6 -	70L 2'6	
	V. 0500	U 9034	777.7	J46+J ~	4.J 4.E	
,	0.0000	0.9030	300.8	201.1 /		
	0.0340	0.0044	231.2	· ///· /	4.0	
	0.4749	0.8964	107.8	121.2	7.6	
~	8004.0	0.8928	5 0 Pa 1	03.U	4,0 061117100-	• •
81	b			, KMS	NEATUTINA	•
17 T	-					

3.6

·D

11	•		17 JF 1				
	HEATS OF	MIXING AT 55	DEG.C	FOR THE S	YSTEM	N-OCTANO	L+N-NONANE
	DELTA H IN	JOULES/MOLE		1	- I-	)	
	B(1)=	8.159353	B(2)=	0.005647		•.	• *
	B(3)=	0.004932	8(4)=	0.000133	1		
	X	XCH2	Y	YPRED	) (	DEVP	•
	• •	0		•			
ሳ	0.0223	、 0 <b>.</b> 9975 '	334.5	5 392.	7	-17.4	
	0.0431	0.9952	542.6	589.	5	-8.6 '	
	0.0844	0.9906	744.8	806.	1	-8.2	
	0.1223	0.9864	839.5	916.	6	-9.2	
•	0.1580	0.9824	895.9	982.	5	-9.7	
<b>ب</b> ا	0.1904	0.9788	930.6	1021.	8	-9.8	
,	0.2213	0.9754	953.3	1045.	9	-9.7	
	0.2496	0.9723	967.8	1058.	8	-9.4	
	0.2743	0.9695	974.6	1064.	1	-9.2	
3	0.2959	0.9671	976.1	1064.	7	-9.0	
1	0.31/5	0.9647	977.9	1061.	8	-8.6	
	0.3384	0.9624	977.9	1056.	1 .	-8.0	
	0.3587	0.9602	976.8	× 1048.	2	-7.3	
ı	0.37,10	0.9581	9/2.1	1038.	5	-6.8	
	° 0 4112	0.0542	900.3		>	-6.3	
	0 4115	0.9545	900.3	1016.	0 .	-5.8	`
o	0 4200	U. YJZO	90301	1003.	9	-5.3	
	0.4270	0 0507	707.2	1001.	0	-3.8	
	0.44,54	0 0402	92/02	, 989. 074		, , - 3 • 4	
	0.4705	0.9472	720.2	910.	0	-2.4	٩,
•	° 0.4828	0 9464	020 4	903.	0	-2.0	
3	D. 4947	0 9450	930.00	079	1	-2+2	
	0.5058	0.9438	912.4	930.	5	-1.0	
	0.5115	0.9432	900.3	9276	8	-1.4	\
	0.5165	0.9426	904.0	912	<b>0</b>	-1.0	
,	0.5213	0.9421	890.4	907.	1	-1.9	
	0.5276	0.9414	894.5	899	4	-0.5	٢
	0.5315	0.9409	.880.0	894	5	-1.6	,
<i>°</i>	0.5376	0.9403	885.7	886.	8	-0.1	
-	0.5420	0.9398	870.1	881.	ĩ	8-1.3	
	0.5476	0.9392	876.0	873.	8	0.2	
	0.5529	0.9386	858.3	866.	8	-1.0	
	0.5577	<b>50.9380</b>	865.1	860.	4 [°]	0.5	-
,	0.5646	° 0, 9373	844.9	851.	0,	-0.7	
	0.5658	0.9371 *	856.4	849.	4	0.8	•
• - -	0.5763	0.9360	831.2	834.	7	-0.4	
11	0.5886	0.9346	816.3	817.	1	-0.1	
	0.6021	0.9331	798.7	797.	2	0.2	
	0.6154	0.9/316	780.1	, 777.	0	0+4	
J	0.6292	0.9301	761,5	755.	5	° 0 <b>.</b> 8	
	0.6444	0.9284	.739.9	731.	2	1.2	
	0.6606	0.9266	7.15.7	704.	<b>9</b> 0	1.6	
N	0.6770	0.9248	690.1	676.	6	2.0	
	10.6942	0.9229	662.3	646.	7	2.4	
, 7	0.7129	0.9208	630.4	613.	2	2.7	•
	027521	0.9187	596+6	577.	9	3.1	•
	ひょくうてし ハーマンマン	• U•9164	· >>>.3	>40.	1	5.4	*
•	0.705/	U. 9141	219.1	499.	4	5.8	, 1
	0.1974	· V•9116 ,	, 414.l	455.	0	4.0	1
5	0 0190 0 0190	0.9089	- 423+8	405.	2	4.4	
	100772 0 0777	0 0020	307.4 307 7	572.	U o	9.1 4 0	-
	0.0171 A 0A17	U • 70 30 0 • 9000	JU[•]	272.	0 7	447 6 7	
		0 0 7 7 0 C 200 0	722 7	220.	<u> </u>		·
	017.0452	0.0703 0.8077	100.2	L7/• 42	7	2+U ≥5 2	
	10 <u>[</u> 1 · 70 / 3 ·	4 0761	01• <b>2</b>	₩Z•	PMC OF	J+2	
	-	+			INTIJ UC	. v tri t till <b>v=</b>	747

Ø

ß

~~~


ý

ŔŚ

1,+

HEATS OF MIXING AT 55 DEG.C FOR THE SYSTEM N-OCTANOL+N-DODECANE DELTA H IN JOULES/MOLE

| B(1)= | 8.159353 | B(2)= | 02005642 | , | |
|-------------|--------------------------|------------|------------------|---------------|---|
| B(3)= | 0.004937 | R(4)= | 0.000133 | `` | |
| X | XCH2 | Y | YPRED | DEVP | |
| 0.0271 | 0.9977 | 473.1 | 489.9 | -3.5 | |
| 0.0547 | 0.9954 | 732.9 | 760.4 | -3.7 | |
| 0.1037 | 0.9911 | 952.7 | 1024.2 | -7.5 | |
| 0.1481 | 0.9872 | 1057.7 | 1155.8 | -9.3 | |
| 0.1885 | 0.9835 | 1117.0 | 1229.1 | -10.0 | |
| 0.2258 | 0.9801 | 1149.8 | 1271.1 | -10.6 | |
| 0.2597 | 0.9769 | , 1167.0 | 1293.1 | -10.8 | |
| 0,2912 | 0.9738 | 1176.5 | 1302.3 | -10.7 | |
| 0.3190 | 0.9711 | 1177.4 | 1302.7 | -10.6 | |
| 0.3449 | 0.9685 | 1175.6 | 1297.3 | -10.4 | |
| × 0.3698 | 0.9660 | 1169.0 | 1287.3 | -10.1 | • |
| 0.3928 | 0.9637 | 1160.3 | 1274.1 | -9.8 | |
| 0.4142 | 0.9615 | 1150.8 | 1258.8 | -9.4 | |
| 0.4341 | 0.9594 | . 1140.1 | 1241.9 | -8.9 | |
| 0.4523 | 0.9575^ | 1129.1 | 1274.4 | -8.4. | |
| 0.4699 | 0.9556 | 1116.2 | 1205.6 | -8.0 | |
| 0.4865 | 0.9538 | 1101.7 | 1186.3 | -7.7 | |
| 0.5013 | 0.9522 | 1087.2 | 1167.9 | -7.4 | |
| 0.5149 | 0.9508 | 1073.8 | 1149.9 | -7.1 | |
| 0.5279 | 0.9493 | 1060.9 | 1131.9 | -6.7 | |
| 0.5402 | 0.9480 | 1048.7 | 1114.0 | -6 . 2 | |
| 0.5523 | 0.9466 | 1035.8 | 1095.7 | -5.8 | - |
| 0.5645 | 0.9452 | 1021.5 | 1076.5 | -5.4 | |
| 0.5760 | 0.9439 | 1001.1 | 1057.8 | -5.7 | |
| 0.5761 | 0.9439 | 1007.1 | . 1057.6 | -5.0 | |
| 0.5851 | 0 . 9429 | 989.5 | 1042.5 | -5.4 | ` |
| 0.5864 | 0.9427 | * 993.9 | 1040.3 | -4.7 | |
| 0.5947 | 0.9418 | 976.7 | 1026.0 | -5.1 | |
| 0.5967 | 0.9416 | 979.4 | 1022.5 | -4.4 | |
| 0.6047 | 0.9406 | 962.8 | 1008.4 | -4.7 | |
| , 0.6058 | 0.9405 | 966.7 | 1006.4 | -4.1 | |
| 0.6145 | 0,9395 | 954.4 | 990.7 | -3.8 | |
| 0.6156 | 0.9394 | 947.7 | 988.6 | -4.3 | |
| 0.6265 | (0.9381 | 930,8 | . 968.4 | -4.0 | |
| 0.6379 | 0.9368 | 912.6 | 946.6 | 3.7 | |
| 0.6498 | 0.9353 | 894.1 | 923.3 | -3.3 | • |
| 0.6620 | \ 0.9339 | 873-1 | 898.8 | -2.9. | |
| 0.0748 | 1 0.9324 | 851.7 | . 812.4 | , -2.4 | |
| 0.00/9 | 0.0301 | 021.7 | . 044.1
015 5 | -2.0 | |
| 0.7150 | 0.0274 | 775 7 | 513.J | | |
| 0.7200 | 0 0 7 2 1 4
0 0 7 5 6 | 745 9 | 761 6 | -0.9 | |
| 0.1270 | 0 9237 | 743.9 | 716 3 | -0.3 | |
| 0.7615 | 0.9216 | 677.3 | ° 676 5 | 0.1 | |
| 0.7793 | 0.9193 | 637.6 | 632.8 | 0.8 | |
| 0.7973 | 0.9170 | 594.6 | 587.3 | 1.2 | |
| 0.8157 | 0.9146 | 548.6 | 539.7 | 1.6 | |
| 0.8353 | 0.9120 | 499.0 | 487.6 | 2.3 | |
| 0.8552 | 0.9094 | 445.7 | 433.4 | 2.8 | |
| 0.8772 | 0.9064 | 383.3 | 371.9 | 3.0 | |
| 0.8994 | 0.9033 | 319.9 | 308.2 | 3.7 | |
| 0.9227 | 0.9001 | 749.1 | 239.6 | 3.8 | |
| 0.9470 | 0.8966 | 174.9 | 166.3 | 4.9 | |
| 0.9724 | 0.8929 | 91.1 | 87.6 | 3.7 | |
| | | , | RMS | S DEVIATION= | - |
| :818 | د يعمد ، | t i | , · · | r | |

6.1

:-6

Ċ

TABLE A64:

X

| FAI2 OF 1 | MIXING OF SY | SIEW FIH | ANDL HEXANE | AT 30' DEG.C. |
|-----------|------------------|-----------|-----------------------------|-----------------|
| =MOL.FRAG | CT. OF ALCOP | IOL, DATA | OF VAN NESS | с ́ |
| 8(1)= | 8.029658 | B(2)= | 0.004725 | |
| B(3)= | 0.002373 | R(4)= | 0.000075 | , |
| Χ. | XCH2 | Y | g YPRED V | DEVP |
| 0.0100 | 0.9983 | 178.3 | 168.9 | ч, `5°•3 |
| 0.0200 | 0.9966 | 256.0 | <u>,</u> 253 . 1 ∘ ' | 1.1 |
| 0.0300 | 0.9949 | 303.2 | 309.2 | -2.0. |
| 0.0400 | 0.9932 | 339-1 | 352.3 | -3.9 |
| 0.0500 | °0 . 9915 | 368.6 | . 388.0 | ` −5₊3 |
| 0.0750 | 0.9870 | 426.7 | 459.2 - 5 | ·-7.6 * |
| 011000 | 0.9825 | 469.8 | 515.7 | -9.8 |
| 0.1250 | 0.9778 | 505.3 | 562.8 | -11.4 |
| 0.1500 | 0.9730 | 534.2 | 602.9 | -12.8 |
| 0.1750 | 0.9680 | 3 ° 557.3 | 636-8 | -14.3 |
| 0.2000 | 0.9630 | 577.6, | 665.5 | -15.2 |
| .0.3000 | 0.9412 | 621.6 | 735.7 | -18.4 |
| 0.4000 | 0.9167 | 628.8 | 746-6 | -18.7 |
| 0.5000 | 0.8889 | 602.5 | 708.5 | -17.6 |
| 0.6000 | 0.8571 | 554.4 | 629-1 | ' -13.5 |
| 0.7000 | 0.8205 | 476.7 | × 514-1 | · -7.9 |
| 0.8000 | 0.7778 | 368.0 | <sup>6</sup> 368.5 | -0.1 |
| 0.9000 | 0.7273 | 218.7 | 196.0 | 10%4 |
| | | | RMS | DEVIATION= |
| | | - | | |

2

11.3

. }

- TABLE A65:

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

(

R. **1**

0.9394

0.9167

0-8889

0.8542

0.8095

0.7500

ł

HEATS OF MIXING AT 30 DEG FOR SYSTEM ETHANOL NONANE X=MOL.FRACT. OF ALCOHOL, DATA OF VAN NESS B(1) =8.029668 B(2)= 0.004725 8(3)= 0.002373 B(4) =0.000075 **XCH2** Y YPRED DEVP X 0.0100 0.9989 193.7 191.7 1.1 0.0200 0.9977 291.3 302.0 -3.7 0.0300 0.9966 349.5 377.8 -8.1 0.0400 0.9954 394.0 435.6 -10.6 0.0500 430.8 487.5 0.9943 -12.0 0.0750 0.9912 498.1 573.5 -15.1 0.1000 0.9881 543.6 643.4 -18.4 0.1250 0.9848 583.0 701.0 -20.2 0.1500 0.9815 617.1 750.0 -21.5 0.1750 0.9780 646.8 792.3 -22.5 0.2000 -23.6 0.9744 670.4 82848 0.3000 730.8 927.4 0.9583 -26.9

746.4

730.0

684.0

606.9

491.2

311.4

960.1

933.2

850, 2

713.5

525.0

286.6

-28.6

-27.8

-24.3

-17.6

-6.9

8.0

RMS DEVIATION= 🔬 1

ę.

18.5

TABLE A66; ,

4

2

| HEATS OF | WIXING AT 30 | DEG. C FI | DR SYSTEM P | ROPANOL" HEPTANE |
|-----------|--------------|------------|-------------|------------------|
| X=MOL.FRA | CT. OF ALCOH | CL, DATA (| OF VAN NESS | |
| B(1) = | 8.029668 | B(2)= (| 0.004725 | V |
| B(3)= | 0.002373 | B(4) = (| 0.000075 | Å
1 |
| X | XCH2 | Y | YPRED | DEVP |
| 0.0100 | 0.9986 | 188.6 | 174.7 | 7.3, |
| 0.0200 | 0.9971 | 281.5 | 265.5 | 5.7 |
| 0.0300 | 0.9957 | 337.9 | 325.6 | 3.6 |
| 0.0400 | 0.9942 | 378.2 | 370.9 | 1.9 |
| 0.0500 | 0.9927 | 411.3 | 407.7 | 0.9 |
| 0.0750 | 0.9889 | 478.7 | 479.0 | -0.1 |
| 0.1000 | 0.9851 | 529.2 | 533.8 | -0.9 |
| 0.1250 | 0.9811 | 569.8 | 578.5 | -1.5 |
| 0.1500 | 0.9771 | 603.1 | 616.0 | -2.1 |
| 0.1750 | 0.9730 | 630.9 | 647.5 | -2.6 |
| 0.2000 | 0.9688 | 654.4 | 673.9 | -3.0 |
| 0.3000 | 0.9508 | 707.7 | 737.1 | -4.2 |
| 0.4000 | 0.9310 | 708.0 | 744.1 | -5.1 |
| 0.5000 | 0.9091 | 667.5 | 704.5 | -5.5 |
| 0.6000 | 0.8846 | 5.90.4 | 625.0 | -5.9 |
| 0.7000 | 0.8571 | 485.1 | 511.0 | -5.3 |
| 0.8000 | 0.8261 | 353.6 | 366.5 | -3+6 |
| 0.9000 | 0.7907 | 194.4 | 195.2 | -0.4 |
| | | | 0.4.0 | |

RMS DEVIATION+

١

0

TABLE A67:

0

| HEATS OF M | IXING OF SY | STEM BUTA | NOL HEPTANE | AT 30 DEG.C |
|--------------------|-------------|-----------|-------------|-------------|
| X=MOL.FRAC | T. OF ALCOH | OL, DATA' | DF VAN NESS | |
| B(1)= <sup>y</sup> | 8.029668 | 8(2)= | 0.004725 | |
| B(3)= | 0.002373 | B(4)= | 0.000075 | , |
| × | XCH2 | ¥ | YPRED | DEVP |
| 0.0100 | 0.9986 | 182.1 | . 172.1 | 5.5 |
| 0.0200 | 0.9971 | 273.6 | 260.4 | 4.8 |
| 0.0300 | 0.9957 | 331.2 | 318.1 | 3.9 |
| 0.0400 | 0.9942 | · 373.2 | 361.1 | 3.3 |
| 0.0500 | 0.9928 | 406.6 | 395.6 | 2.7 |
| 0.0750 | 0.9891 | 467.6 | 461.6 | 1.3 |
| 0.1000 | 0.9853 | 514.8 | 511.1 | 0.7 |
| 0.1250 | - 0,9815 | 552.3 | 550.9 | 0.3 |
| 0.1500 | 0.9776 | 583.9 | 583.5 | 0.1 |
| 0.1750 | 0.9737 | 610.7 | 610.5 | 0.0 |
| 0.2000 | 0.9697 | 632.0 | 632.6 | -0.1 |
| 0.3000 | 0.9531 | 686.7 | 681.6 | 0.7 |
| 0.4000 | 0.9355 | 686.4 | 679.6 | 1.0 |
| 0.5000 | 0.9167 | 642.5 | 636.6 | 0.9 |
| 0.6000 | 0.8966 | 559.2 | 559.7 | -0.1 |
| 0.7000 | 0.8750 | 447.3 | 453.8 | -1.4 |
| 0.8000 | 0.8519 | 313.6 | 323.1 | -3.0 |
| 0,9000 | 0.8269 | 162.9 | 170.9 | -4.9 |
| | | | DMC | DEVIATION |

٥

. 2

TABLE A68:

٦,

| HEATS OF N | AIXING OF SY | STEM PENTA | NOL HEXANE | AT 30 DFG.C |
|---------------|--------------|-------------|------------|-------------|
| X=MOL.FRAC | T. OF ALCOH | IOL, DATA O | F VAN NESS | · · |
| B(1)= | 8.029668 | B(2)= 0 | .004725 | • |
| B(3)= | 0.002373 | B(4)= 0 | •000075 | |
| Χ. | XCH5 | ۲ | YPRED | DEAD |
| 0.0100 | 0.9983 | 177.1 | 160.9 | 9.2 |
| 0.0200 | 0.9967 | 257.0 | 237.6 | 7.5 |
| 0.0300 | 0.9950 | 304.1 | 286.7 | 5.7 |
| 0.0400 | 0.9933 | 338.7 | 322.8 | . 4.7 |
| 0.0500 | 0.9917 | 365.7 | 351.8 | `3.8 |
| 0.0750 | 0.9875 | 417.6 | 406.8 | 2.6 |
| 0.1000 | 0.9833 | 456.3 | 447.7 | 1.9 |
| 0.1250 | 0.9792 | 486.7 | 479.9 | . 1.4 |
| 0.1500 | 0.9750 | 512.5 | 505.7 | - 1.3 |
| 0.1750 | 0.9708 | ~ 532.7 | 576.4 | 1.2 |
| 0.2000 | 0.9667 | 550.4 | 542.8 | 1.4 |
| 0.3000 | 0.9500 | 590.1 | 573+3 | 2.9 |
| 0.4000 | 0.9333 | 585.6 | 560.8 | 4.2 |
| 0.5000 | 0.9167 | 540.0 | 516.2 | 4.4 |
| 0.6000 | 0.9000 | 458.4 | 446.5 | 2.6 |
| 0.7000 | 0.8833 | 357.0 | 356.7 | 0.1 |
| 0.8000 | 0.8667 | 243.2 | 250.6 | -3.0 |
| 0.9000 | 0.8500 | .122.4 | 130.9 | -7.0 |

RMS DEVIATION=

TABLE A69:

| HEATS OF M | IXING AT 30 | DEG. C FO | R SYSTEM O | CTANOL+HEPTANE |
|------------|-------------|------------|------------|----------------------|
| X=MOL.FRAC | T. OF ALCOH | OL, DATA D | F VAN NESS | 1 |
| 0(i)= | 8.029668 | H(2)= 0 | .004725 | $\boldsymbol{\zeta}$ |
| B(3)= | 0.002373 | B(4) = 0 | .000075 | |
| X | XCH2 | Ý | YPRED | DEVP |
| 0.0100 | 0.9986 | 176.5 | 164.2 | 7.0 |
| 0.0200 | 0.9972 | 259.3 | 245.3 | . 5.4 |
| 0.0300 | 0.9958 | 306.4 | 296.3 | .3.3 |
| 0.0400 | 0.9944 | 337.9 | 332.9 | 1.5 |
| 0.0500 | 0.9930 | 362.4 | 361.2 | 0.3 |
| 0.0750 | 0.9895 | 409.3 | 412.2 | -0.7 |
| 0.1000 | 0.9861 | 442.8 | 447.6 | -1.1 |
| 0.1250 | 0.9828 | 468.1 | 474.0 | -1.3 |
| - 0.1500 | 0.9795 | 487.0 | 494.0 | -1.4 |
| 0.1750 | 0.9762 | 501.0 | 509.Z | · -1.6 |
| 0.2000 | 0.9730 | 512.0 | 520.3 | -1.6 |
| 0.3000 | 0.9605 | 537.6 | 534.4 | 0.6 |
| 0.4000 | 0.9487 | 530.4 | 512.6 | 3.4 |
| 0.5000 | 0:9375 | 495.0 | 464.9 | 6.1 |
| 0.6000 | 0.9268 | 432.0 | 397.5 | 8.0 |
| 0.7000 | 0.9167 | 342.3 | 314.6 | 8.1 |
| 0.8000 | 0.9070 | 236.8 | 219.3 | 7.4 |
| 0.9000 | 0.8977 | 118.8 | 113.9 | . 4.2 |
| | | | DMC | DEVIATION- |

ථ

7.07

¢

TABLE A70:

0

3

| HEATS OF M | IXING OF O | CTANOL+NO | NANE AT 30 D | EG. C |
|------------|------------|-----------|--------------|--------------|
| X=MOL.FRAC | T. OF ALCO | HOL, DATA | OF VAN NESS | |
| 8(1)= | 8.029668 | B(2)= | 0.004725 | |
| B(3)= | 0.002373 | 8(4)= | 0.000075 | |
| X | XCH2 | Y | YPRED | DEVP |
| 0.0100 | 0.9989 | 184.2 | 177.9 | ,
3,5 |
| 0.0200 | 0.9978 | 281.5 | 275.3 | 2.2 |
| 0.0300 | 0.9967 | 338.4 | 338.9 | -0.1 |
| 0.0400 | 0.9956 | 379.8 | 384.9 | -1.4 |
| 0.0500 | 0.9944 | 410.9 | 420.5 | -2.3 |
| 0.0750 | 0.9917 | 466.9 | 484.0 | -3.7 |
| 0.1000 | 0.9889 | 505.8 | 577.4 | -4.3 |
| 0.1250 | 0.9861 | 535.9 | 559.5 | -4.4 |
| 0.1500 | 0.9833 | 558.4 | 584.1 | -4.6 |
| 0.1750 | 0.9806 | 577.5 | 602.9 | -4.4 |
| 0.2000 | 0.9778 | 597.0 | 617.1 | -4.2 |
| 0.3000 | 0.9667 | 623.7 | 639.3 | -2.5 |
| 0.4000 | 0.9556 | 621.6 | 619.7 | 0.3 |
| 0.5000 | 0.9444 | 587.5 | 568.4 | 3.3 |
| 0.6000 | 0.9333 | 511.2 | 491.4 | 3.9 |
| . 0.7000 | 0.9222 | 413.7 | 393.2 | 5.0 |
| 0.8000 | 0.9111 | 291.2 | 276.9 | 4.9 |
| 0.9000 | 0.9000 | 150.3 | 145.1 | ` 3.5 |
| | | | DHC | DEVIATIO |

RMS DEVIATION=

TABLE A71:

P.

| HEATS OF | MIXING OF E | THANOL+HEX | ANE AT 45 | DEG. C | |
|-------------|--------------|------------|------------|---------------|-----|
| X=MOL.FR | ACT. OF ALCO | DHCL, DATA | OF VAN NES | S | • |
| B(1) | = 8.104729 | B(2)= | 0.005281 | د | |
| P[3)= | 0.003732 | R(4)= | 0.000107 | | |
| Ϋ́Χ. | ^ ХСҢ2 | Ý | YPRED | DEVP. | |
| 0.010 | 0 0.9983 | 201.4 | 200.0 | · | c |
| 0.020 | 0 0.9966 | 323.2 | 319.1 | ` `1.3 | 0 |
| 0.030 | 0 0.9949 | 397.5 | 402.6 | -1.3 | |
| ·. 0.040 | 0 0.9932 | 452.0 | 467.1 | -3,3 | |
| 0.050 | 0 0.9915 | 495.4 | 519.9 | -4.9 | |
| 0.075 | 0 0.9870 | 576.5 | 622.3 | -7.9 | |
| 0.100 | 0.9825 | 637.2 | 700.1 | -9.9 | |
| 0.125 | 0, 0.9778 | 683.6 | * 762.8 | -11.6 | |
| 0.150 | 0' 0.9730 | 722.9 | * 814.5 | -12.7 | . 0 |
| 0.175 | 0 09680 | 753.6 | 857.5 | -13.8 | , - |
| 0.200 | 0 0.9630 | 779.2 | 893-1 | -14.6 | |
| Ö•300 | 0 0.9412 | 831.6 | 975:5 | -17.3~ | |
| 0.400 | 0 0.9167 | 839.4 | 980.8 | -18.1 | |
| 0.500 | 0 0.8889 | 790.0 | 924.3 | -17.0 | |
| 0.600 | 0 0.8571 | ° 712.8 | * 816.2 | -14.5 | |
| 0.700 | 0 0.8205 | 604.8 | 664.2 | -9°• B | |
| 0.800 | 0 9.7778 | 459.2 | 474.4 | -3,3 | |
| 0.900 | 0 0.7273. | . 263.7 | 251.6 | 4.6 | |

RMS DEVIAT PON=

10.9

1

1

TABLE A72:

| HEATS OF | MINENG OF SY | STEN ETH | ANOL + HEPTA | NE AT 45 | DEG. C | • |
|-----------|--------------|----------|--------------|----------|--------|---------|
| X=MOL.FRA | CT. OF ALCOH | CL, DATA | OF VAN NESS | • | | |
| 8(1)= | 8.104729 | 8(2)= | 0.005281 | , | | |
| 8(3)= | 0.003752 | B(4)= | 0.000107 | - | | |
| X | XCH2 | Y | YPRED | DEVP | | ę. |
| 0.0093 | 0.9987 | 194.0 | 196.5 | ° -1.3 | | |
| 0.0150 | 0.9978 | 284.0 | 279.1 | 1.7 | | |
| 0.0199 | 0.9971 | 345.0 | 336.7 | 2.4 | • | |
| 0.0268 | 0.9961 | 407.0 | 403.7 | 0.8 | 8 | |
| 0.0384 | 0.9944 | 483.0 | 492.1 | -1.9 | 9 | - |
| 0.0533 | . 0.9921 | 550.0 | 578.9 | -5.3 | | |
| 0.0729 | 0.9891 | 619.0 | 667.0 | -7.8 | | , |
| 1 0.0946 | 0.9857 | 678.0 | 744.2 | -9.8 | | · 7 |
| 0.1207 | 0.9815 | 733.0 | 819.0 | -11.7 | | |
| 0.1793 | 0.9715 | 819.0 | 942.0 | -15.0 | | ····· - |
| 0.2463 | 0.9591 | 877.0 | 1030.6 | -17.5 | - | |
| 0.3569 | 0.9360 | 909.0 | 1088.1 | -19.7 | | |
| 0.4695 | 0.9083 | 881.0 | 1054.9 | -19.7 | | |
| 0.5755 | 0.8775 | 810.0 | 952.3 | -17.6 | | |
| 0.6673 | 0.8459 | 716.0 | 814.5 | -13.8 | | ٠ |
| 0.7079 | 0.8302 | 663.0 | 740.3 | -11.7 | • | |
| 0.7785 | 0.7997 | 557.0 | 593.3 | -6.5 | | |
| 0.8632 | 0.7567 | 396-0 | 388.9 | 1.8 | | |
| 0.9444 | 0.7069 | 185.0 | 166.3 | 10.1 | | |

RMS DEVIATION=

TABLE A73:

1

ť

| HEAT'S OF N | IXING AT 45 | DEG. C F | OR SYSTEM | ETHANOL + | NONANE |
|-------------|-------------|----------|------------|-----------|----------|
| X=MOL.FRAC | T. OF ALCOH | OL. DATA | OF VAN NES | S | • |
| 8(1)= | 8.104729 | B(2)= | 0.005281 ் | • | |
| B(3)=` | 0.003732 | B(4) = | 0.00107 | ۱. | |
| X . | XCH2 | Y | YPRED | DEVP | |
| 0.0100 | 0.9989 | 208-1 | 219.4 | -5.4 | • |
| 0.0200 | 0.9917 | 355.5` | 367.4 | 3.3 | |
| 0.0300 | 0.9966 | 450.8 | 476.8 | -5.8. | |
| 0.0400 | 0,9954 | 519.2 | 562.8 | -8.4 | |
| 0.0500 | 0.9943 | 573-8 | 633.5 | -10.4 | |
| 0.7500 | 0•8333 🗂 | 1822.5 | 809.3 | 55.6 | |
| 0.1000 | 0.9881 | · 745.2 | 870.6 | -16.8 | |
| 0.1250 | 0.9848 | 6.008 | 951.3 | -18.8 | |
| 0.1500 | 0.9815 | 846.6 | 1017.9 | -20.2 | |
| 0.1750 | 0.9780 | 882.1 | .1073.8 | -21.7 | ,
a ' |
| .0.2000 | 0.9744 | . 912.0 | 1121.0 | -22.9 | *
* |
| 0:3000 | 0.9583 | 980.7 | 1241.0 | -26.5 | |
| 0.4000 | 0.9394 | 991.2 | 1272.0 | -28.3 | |
| 0.5000 | 0.9167 | 955.0 | 1276.0 | -28.4 | |
| 0.6000 | 0.8889 | 880.8 | 1109.2 | -25.9 | |
| 0.7000 | 0.8542 | 766.5 | 1925.4 | 20.7 | - |
| 0.8000 | 0.8095 | 601.6 | 677.6 | 12.6 | |
| 0.9000 | 0.7500 | 368,1 | 368.4 | -0.1 | · |

RMS DEVIATION=

22.3

TABLE A74:

| HEATS OF | MIXING OF | THE SYSTEM | PROPANOL + | HEPTANE AT | 45 DEG. | С |
|-----------|------------|--------------|-------------------|------------|---------|-----|
| X=MOL.FRA | CT. OF ALC | OHCL, DATA | DE VAN NES | S | | |
| 8(1)= | 8.104729 | B(2)= | 0.005281 | , | | |
| 8(3)= | 0.003732 | B(4)= | 0.000107 | | • | • , |
| X | XCH2 | Y [1] | YPRFD | DEVP . | | |
| • • | | • | | , | | |
| 0.0100 | 0.9986 | 205.5 | 203-8 | 0.8 | - | |
| 0.0200 | 0.9971 | 347.3 | ॏ 330.0∤ | 5.0 | | |
| 0.0300 | 0.9957 | 438.5 | 419.2 | 4.4 ' | | |
| C.0400 | 0.9942 | 506.1 | 487.7 | 3.6 | | |
| 0.0500 | 0.9927 | 553.4 | 543.2 | 1.8 | | |
| 0.0750 | - 0.9889 | 646.6 | 648.7 | -0.3 | | |
| 0.1000 | 0.9851 | 720.0 | 726.6 | -0.9 | • | |
| 0.1250 | 0.9811 | 777.7 | 788.0 | -1.3 | • | |
| 0.1500 | 0.9771 | 823.6 | 837.8 | -1.7 | - | |
| 0.1750 | 0.9730 | 859.0 | 878.6 | -2.3 | | |
| 0.2000 | 0.9688 | 889.6 | 912.0 | -2.5 | | |
| 0.3000 | 0.9508 | \ 957.6 | 986.6 | -3.0 | | |
| 0.4000 | 0.9310 | 957.6 | 986.8 | -3.1 | - | |
| 0.5000 | 0.9091 | 900.0 | · 927 <u>.</u> •6 | -3.1 | - t | |
| 0.6000 | 0.8846 | 796.8 | . 818.3 | -2.7 | | |
| 0.7000 | 0.8571 | 657.3 | 665.8 | -1.3 | | |
| 0.8000 | 0.8261 | 476.8 | 475.7 | 0.2 | | |
| 0.9000 | Q.7907 | 258.3 | 252.5 | \$ 7.2 | , | |
| | | | | | | |

- 1.4

RMS DEVIATION=

L. TABLE A75:

Ð

| HEATS OF | MIXING AT 4 | 5 DEG. C | FOR THE SYSTEM | BUTANOL ANE DTANE |
|------------------|-------------|-----------|----------------|-------------------|
| X=MOL.FRA | CT. OF ALCO | HOL. DATA | DE VAN NESS | HO HARLE HEP HAR |
| 8(1)= | 8.104729 | B(2)= | 0.005281 | |
| R(3)= | 0.003732 | 8(4)= | 0.000107 | |
| X | XCH2 | Y | YPRED | DEVP |
| 0.0100 | . 0.9986 | 203-1 | 200.3 | 1.4 |
| 0.0200 | 0.9971 | 340.6 | 323.2 | 5.1 |
| 0.0300 | 0.9957 | 430.4 | 409.3 | 4.9 |
| 0.0400 | 0.9942 | 497,7 | 474.8 | 4.6 |
| 0.0500 | 0.7928 | 547.2 | 527.5 | 3.6 . |
| 0.0750 | 0.9891 | 645.2 | 676.1 | 3.0 |
| ·0 • 1000 | 0.9853 | 701.1 | 697.5 | 0.5 |
| 0.1250 | 0.9815 | 747.0 | 752.7 | -0.8 |
| 0.1500 | 0.9776 | 787.9 | 796.6 | -1.1 |
| 0.1750 | 0.9737 | 822.9 | 831.8 | -1-1 |
| 0.2000 | 0.9697 | 854.4 | 859.9 | -0.6 |
| 0.3000 | 0.9531 | 921.9 | 917.2 | 0.5 |
| 0.4000 | 0.9355 | 971.6 | 906.6 | 1.6 |
| 0.5000 | 0.9167 | 865.0 | 843.6 | 2.5 |
| 0.6000 | 0.8966 | 760.8 | 737.5 | 3.1 |
| 0.7000 | 0.8750 | 611.1 | 595.3 | 2.6 |
| 0.8000 | 0.8519 | 430.4 | 472.3 | 1.9 |
| 0.9000 | 0.8269 | 225.0 | 722.7 | 1.0 |

RMS DEVIATION=

2..7

v

H
TABLE A76:

Q,

ď

| HEATS OF | MIXING OF S | Υ S T EM" OCT / | ANOL + HEPTA | NE AT 45 | DEG. |
|-----------------|---------------------|------------------------|---------------|----------|------|
| X=MOL.FRA | CT. OF ALCO | HOL, DATA | OF VAN MESS | | |
| B(1)= | 8.104729 | B(2)= | 0.005281 | | , |
| <u> •8(3) =</u> | 0.003732 | B(4)= | 0.000107, 🔨 | | |
| X | XCH2 | Y | YPRED | DEVP | |
| 0.0100 | 0.9986 | 195.9 | 189 8 | - 3.1 | |
| 0.0200 | 0.9972 | 322.4 | 302,9 | 6.1 | |
| 0.0300 | 0.9958 | 399.8 | 380.0 | 5.0 | 1 |
| 0.0400 | 0.9944 | 451.6 | 436.9 | 3.2 | 1 |
| 0.0500 | 0.9930 | 1 491.1 | 481.4 | .2.0 | • |
| 0.0750 | <sup>°</sup> 0,9895 | 562.6 | "560.9 | 0.3 | |
| 0.1000 | 0.9861/ | 610.2 | 614.4 | -0.7 | |
| 0.1250 | 0,9828 | 643.1 | 652.8 | -1.5 | |
| 0.1500 | 0,9795 | 666.8 | 681.0 | -2+1 | |
| 0.1750 | 0.9762 | 685.8 | 701.7 | -2.3 | |
| 0.2000 | 0.9730 | 699.2 | 716.3 | -2.4 | |
| 0.3000 | 0.9605 | 718.2 | 731.2 | -1.8 | |
| 0.4000 | 0.9487 | 698.4 | 697.0 | 0.2 | |
| 0.5000 | 0.9375 | 642.5 | 628.9 | 2.1 | |
| 0.6000 | 0.9268 | 554.4 | 535.5 | 3.4 | |
| ~ 0.7000 | 0,9167 | 443.1 | 422.4 | 4.7 | |
| 0.8000 | 0.9070 | 307.2 | 293.6 | 4.4 | |
| 0.9000 | 0.8977 | 156.6 | 152.0 | 2.9 | |
| | | | | | |

RMS DEVIATION=

• •

3.1

C

TABLE A77:

| HEATS OF M | IXING OF SY | STEN OCTA | NOL +NONANE | AT 45 DEG. C |
|------------|-------------|-----------|-------------|--------------|
| X=MOL,FRAC | T. OF ALCOH | CL, DATA | OF VAN MESS | |
| 8(1)= | P.104729 | 8(2)= | 0.005281 | |
| 8(3)= | 0003732 | R(4)= | 0.000107 | |
| X | XCH2 | Y | YPRED | DEVP |
| | 4 | | | |
| 0.0100 | 0.9989 | 200.1 | 201.2 | -0.6 |
| 0.0200 | 0.9978 | 346.3 | 331.9 | 4.2 |
| 0.0300 | 0.9967 | 439.7 | 425.0 | 3.3 |
| 0.0400 | 0.9956 | 500.4 | 495.5 | 1.0 |
| 0.0500 | 0.9944 | 543.9 | 551.2 | -1.4 |
| 0.0750 | 0.9917 | 628.5 | 651.5 | -3.6 . |
| 0.1000 | 0.9889 | 687.6 | 719.2 | -4.6 |
| 0.1250 | 0.9861 | 729.5 | 767.9 | -5.3 |
| 0.1500 | 0.9833 | 759.9 | 804.1 | -5.8 |
| 0.1750 | 0.9806 | 784•Ò | 831.0 | -6.0 |
| 0.2000 | 0.9778 | 801-6 | 850.7 | -6.1 |
| 0.3000 | 0.9667 | 831.6 | 877.5 | -5.5 |
| 0.4000 | 0.9556 | 816.0 | 845.6 | -3.6 |
| 0.5000 | 0.9444 | 762.5 | 77.1.3 | -1.2 |
| 0.6000 | 0.9333 | 676.8 | 663.7 | 1.9 |
| 0.7000 | 0.9222 | 552-3 | 528.8 | 4.3 |
| 0.8000 | 0.9111 | 392.0 | 371.0 | 5.3 |
| 0.9000 | 0.9000 | 205.2 | 193.9 | 5.5 |
| | | | DNC | OFVIATION- |

4.3*]*

Ð

HEATS OF MIXING OF SYSTEM N-PENTANOL - N-HEXANE

| ٩, | | | 3 |
|----|-------|---------|-------------|
| | LAMDA | CH2/0H= | 0.P00720_01 |
| 1 | LAMDA | OHICHS= | 0.203037-02 |

LAMDA PRIME CH2/DH= 0.454180-02 1 AMDA PRIME OH/CH2= 0.664190-04

6

η

| | · · · · · | Y CUD | | | | |
|--------|-----------|---------|--------------------|---|-----------|------|
| | | A 1 12 | 220 0 | - 210 0
- 210 0 | A 210 | |
| | 0.0450 | 050024 | 211 2 | 1106 1 | 1.471 | |
| | 0.0900 | 0 0063 | 21102 | | 1. 3/3 | |
| | 0.1777 | 0 0787 | A21 0 | 2010 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -0.241 | • |
| | 0 1637 | 10 0727 | 476 | 43607 | -0.516 | 1 |
| | 0.1047 | 0.0673 | 402 • 9
7.07. D | 40% • 7 | -0.306 | - |
| | 0.1792 | 0 0622 | 404.0 | 400+7
500 0 | -(+249 | |
| | 0.2551 | 0.0676 | 5 512 0 | 500.9 | 0 4 0 0 | |
| | 0 2915 | 0.9975 | 521 6 | 010+r
615 7 | 1 005 | |
| - | 0.3059 | 0 0400 | 576 a | 610 2 | 1 4402 | |
| | 0.3030 | 0 0462 | 620 0 | 510 6 | 1+447 | |
| | 0.3506 | 0.9416 | 570 1 | 517 2 | 2 267 | 1 |
| | 0 3707 | 0 0192 | 5776 | JL (• C
514 - 4 | 7 • 6 7 1 | |
| | 0.1006 | 0.0361 | 574 6 | 510 7 | 24400 1 5 | , |
| | 0.6072 | 0.9321 | 510 7 | 506 2 | 2 606 | 12 |
| | 0 4747 | 0.0202 | 515 4 | 500 • r
501 0 | 2 200 | |
| | 0 4404 | 0 0766 | 51544
600 6 | 101 • U | 2 740 | • |
| | 0.4554 | 0.9200 | 501 3 | 47304 | 2 717 | |
| | 0 4700 | 0.0717 | 696 5 | 6 11 7 7
6 11 7 7 | 2 • 1 • 1 | , (|
| a | 0.4700 | 0.0717 | | 10363
177 () | 2 6 2 2 | |
| - | 0 6067 | 0 0173 | 1441744
207 1 | . 477.07 | 2 2 2 2 2 | |
| | 0.5107 | 0.9173 | | 47047 | 2 201 | |
| | 0.5726 | 0.0120 | 41545 | 40241 | 1 940 | · · |
| | 0 5319 | 0.9124 | 40740 · | 4,51 3 | 1 . 940 | |
| | 0.5176 | 0.9117 | 458 2 | 450 7 | 1 457 | |
| | 0.5410 | 0.3008 | 452.2 | 446.6 | 1.450 | |
| | 0.5%23 | 0 0096 | 451 6 | 0.00
444.9 | 1.503 | • |
| | 0.5504 | 0.4070 | 401.00 | 444.B | 1 1 2 7 | |
| | 0.5527 | 0.9079 | 443.1 | 4749.13 | 1.120 | |
| р
, | 0.5505 | 0.9068 | 430 N | 234. () | 1.146 | |
| | 0.5632 | 0.9061 | 435.6 | 431.6 | n. 926 | |
| | 0.5746 | 0.9042 | 426.3 | 474.0 | 0.546 | |
| | 0.5858 | 0.9024 | 417.0 | 416:3 | 0.176 | |
| | 0.5980 | 0.9003 | 406.7 | 407.6 | -0.220 | |
| | 0.6109 | 0-8982 | 396-1 | 398.2 | -0.531 | |
| | 0.6238 | 0.8960 | 394.1 | 388.4 | -1.108 | • |
| | 0.6371 | 0.9938 | 372.0 | 379-0 | -1.607 | |
| | 0.6509 | 0.8915 | 359.1 | 366.9 | -2.169 | |
| | 0-6652 | 0.8891 | 345.8 | 355.1 | -2.678 | 2 |
| | 0.6805 | 0.9866 | 331.0 | 342.0 | -3.335 | |
| | 0.6964 | 0.8837 | 315.2 | 328.1 | -4.098 | • |
| | 0.7131 | 0.8812 | 298.7 | • 313.1 | -4.814 | |
| | 0.7308 | 0.8782 | 280.7 | 296.7 | -5.699 | |
| | 0.7493 | 0.8751 | 262.0 | 279.1 | -6.524 | |
| | 0.7689 | 0.8719 | 241.A | 260.0 | -7.537 | |
| | 0.7897 | 0.8684 | 219.7 | 239.0 | -8.802 | |
| | 0,8107 | 0.8647 | 198.3 | 217.4 | -9.624 | |
| , | 0.8335 | d.8611 | 173.5 | 193.3 | -11.391 | , |
| | 0.8576 | 0.8571 | 148.6 | 167.1 - | -12.451 | ι. · |
| | 0.9825 | 0.8529 | 122.5 | 139.4 | -13.782 | |
| , | 0.9104. | 0.8483 | 93.0 | 107.5 | -15.625 | |
| | 0.9375 | 0.8438 | 65.4 | 75.8 | -15.940 | |
| | 0.968R | 0.8385 | 12.4 | 34.3 | -18.232 (| |
| | 1 | | 1 | š | | |
| 144 | DEVIATION | = 5.A | [9] | | | |
| :30 | N | | | 1 | • | |

HEATS OF MIXING OF SYSTEM N-PENTANOL - 2,2-DIMETHYLRUTANE

DEL H PRED

215.1

305.0

335.4

433.2

465.4

487.0

501.2

510.5

515.8

519.3

518.6

517.1

514.1

510.1

505.1

499.8

494.()

487.7

481.5

475.0

468.8

467.7

456.1

451.1

448.2

441.8

445.1

438.9'

435.3

432.2

424.9

417.2

409.0

399.9

390.0

379.4

369.4

356.3

343.0'

329.0

314.2

299.0

280-6

201.6

241.0

219.9

194.9

169.1

140.6

110.2 /

77.0

40.2

LAMDA CH2/0H= 0.800720 01 LAMDA 01/CH2= 0.203037-02 LAMDA PRIME CH2/0H= 0%454180-02 LAMDA PRIME 0H/CH2= 0%664190-04

DEVIATION

2.740

-0.310

-2.364

-3.449

-3.887

-3.783

-3.579

-3.246

-2.897

-2.535

-2.181

-1.983

-1.821

-1.874

-1.881

-1.928

-2.184

-2.294

-2.610

-2.751

-3.183

-3.378

-3.861

-3.278

-4.064

-4.441

-3.588

-3.882

-4.748

-4.427

-4.763

-5.099

-5.648

-6.275

-6.840

-7.601

-9.212

-9.032

-10.002

-11.805

-12.754

-13.986

-15.249

-16.411

-17.525

-18.896

-20.598

-22.707

-24.085

-26.449

-28.177

| X ALC | X CH2 | OFL' H FXP |
|--------|----------|------------|
| 0.0196 | 0.9967 | 221.4 |
| 0.0458 | 0.9974 | 304.9 |
| 0.0887 | 0.9452 | 376.5 |
| 0.1280 | 0.9787 | 418 R |
| 0.1644 | 0.9726 | 448.0 |
| 0.1975 | 0.9671 | 467.2 |
| 0.2277 | 0.9621 | 481.9 |
| 0.2559 | 0.9574 | 494.4 |
| 0.2820 | 0.9530 | 501.3 |
| 0.3065 | 0.9489 | 505.5 |
| 0-3298 | 0.9450 | 507.5 |
| 0.3516 | 0.9414 | 507.0 |
| 0.3726 | 0.9379 | 504.9 |
| 0.3919 | 0.9347 | 501.0 |
| 0.4110 | 0.9315 | 495.8 |
| 0.4281 | 0.9287 | 490.3 |
| 0.4442 | 0.9260 | 483.4 |
| 0.4597 | 0.9234 | 476.8 |
| 0.4738 | 0.3210 | 469.3 |
| 0.4976 | 0.9187 | 462.3 |
| 0.5000 | 0.9167 | 454.3 |
| 0.5123 | 0.9146 | 447.1 |
| 0.5233 | 0.9128 | 439.1 |
| 0.5319 | 0.9114 | 436.R |
| 0.5367 | 0.9105 | 430.7 |
| 0.5472 | 0.9098 | 423.0 |
| 0.5418 | 0,9097 | 424.7 |
| 0.5519 | 0.9080 | 422.5 |
| 0.5574 | 0.9071 | 415.6 |
| 0.5622 | 0.9063 | 413.9 |
| 0.5732 | 0.9045 | 405.6 |
| 0.5844 | 0.9026 | 397.0 |
| 0.5961 | 0.9007 | 307.1 |
| 0.6085 | 0.8986 | 376.3 |
| 0.6217 | 0.8964 | 365.0 |
| 0.6353 | 0.8941 | 352.6 |
| 0.6491 | .0.8918 | 340.4 |
| 0.6637 | 0.8894 . | 326.8 |
| 0.6794 | 0.8968 | 211.8 |
| 0.6954 | 0.8841 | 296.9 |
| 0.7119 | 0.8914 | 281.0 |
| 0.7294 | 0.8784 | 264.3 |
| 0.1477 | 0.8754 | 746.7 |
| 0.7672 | 0.8721 | 277.0 |
| 0.7978 | 0.8687 | 207.0 |

| 0.8914 | 281.0 |
|--------|---------------|
| 0.8784 | 264.3 |
| 0.8754 | 246.2 |
| 0.8721 | 2?7.0 |
| 0.8687 | 207.0 |
| 0.8651 | 186.3 |
| 0.8613 | 163.9 |
| 0.8574 | 140.2 |
| 0.8531 | 114.6 |
| 0.8487 | 88 . 8 |

60.9

31.4

RMS DEVIATION = 10.3412

0.8439

0.8388

239

0.8092

0.8320

0.8558

0.8814

0.9081

0.9365

0.9672

HEATS OF MIXING OF SYSTEM N-PENTANOL - 2, 3-DIMETHYLAUTANE

LAMDA CH2/0H= 0.800720 01 LAMDA 0H/CH2= 0.203030-02 EAMDA PRIME CH2/0H= 0.454180-02 LAMDA PRIME PH/CH2= 0.654190-04

| , | | | | | |
|-----------|---------------|---------------|------------|---------------------|--------|
| X ALC | X CH2 | TOEL IN EXP | DEL H PRED | DEVIATION | |
| 0.0217 | 0.9964 | 233.6 | 225.7 | 3.376 | |
| 0.0452 | 0.9925 | 305.5 | 304.4 | 0.374 | |
| 0.0877 | 0.9854 | 377.5 | 384.0 | -1.709 | |
| 0.1270 | 0.9788 | 420.4 | 43?.2 | -7.810 | |
| 0.1627 | 0.9729 | 449.9 | 464.1 | -3.161 | , |
| 0.1959 | 0.9674 | 471.5 | 485.1 | -3.089 | |
| 0.2268 | 0.9622 | 426.4 | 500.9 | -2.973 | - |
| 0.2553 | 0.9575 | 497.6 | 510.3 | -2.551 | |
| 0.2818 | 0.9530 | 505.0 | 515.9 | -2.137 | |
| 0.3070 | 0.9488 | 509.0 | 518.3 | -1.836 | 7 |
| 0.3341 | 0.9443 | 508.8 | 519.4 | -1.887 | |
| 0.3551 | 0.9408 | 509.3 | 516.7 | -1-445 | |
| 0.3757 | 0.9374 | 506.7 | 513.5 | -1.349 | |
| 0.3942 | 0.9343 | 502.5 | 509.6 | -1.417 | |
| 0.4114 | 0.9314 | 497.9 | 505.0 | -1.42ª | |
| 0.4279 | 0.9287 | 472.4 | 497.8 | -1.507 | |
| 0.4435 | 0.9261 | 436.1. | . 494.2 | -1.672 | |
| 0.4581 | 0.9237 | 479.8 | 488.4 | -1.794 | • |
| 0.4723 | 0.9213 | 472.2 | 487.2 | *-2.124 | |
| 0.4855 | 0.9191 | 465.2 | 476.0 | -2.330 | |
| 0.4984 | 0.9169 | 457.7 | 469.6 | -2.597 | -
N |
| 0.5110 | 0.9148 | 449.9 | 462.9 | -2.893 | • |
| 0.5231 | .0.9128 | 441.9 | 456.2 | -3.229 | |
| 0.5327 | 0.9112 | 434.8 | 450.6 | -3.631 | |
| 0.5342 | 0.9110 | 432.7 | 449.7 | -3.929 | • |
| 0.5423 | 0.9096 | • 428.0 | 444.2 . | -3.928 | |
| 0.5439 | 0.9094 | 425.7 | 443.8 | -4.259 | |
| 0.5515 | 0.9081 | 421.4 | 437.1 | -4.198 | • |
| 0.5540 | 0.9077 | 417.9 | . 437.5 | -4.692 | |
| 0.5647 | 0.9059 | 409.7 | 430.6 | -5.097 | |
| 0.5759 | 0.9040 | 400.8 | 423.1 | -5.562 | |
| 0.5870 | 0.9022 | 191.6 | 415.4 | -6.084 | |
| 0.5988 | 0.9002 | 391.5 | 407.0 | -6.689 | |
| 0.6108 | 0.8982 | 371.3 | 398.2 | -7.245 | |
| 0.6238 | 0* 8960 | 359.9 | 389.4 | -7.907 | |
| 0.6371 | 0.8738 | 343.0 | 378.0 | - <sup>9</sup> .614 | |
| 0.6511 | 0.8915 | 335.7 | 366.7 | -9.242 | |
| 0.6656 | 0.8891 | 321.9 | 354.7 | -10.197 | |
| 0.6807 | 0.3966 | 307.3 | 241.9. | -11-248 | _ |
| 0.6958 | 0.8840 | 293.4 | 729.6 | -12.014 | • |
| 0.7122 | 0.8813 | 277.5 | 313.9 | -13.077 | • |
| 0.7296 | 0.8724 | 260.8 | 297.× | -14.195 | |
| 0.7478 | 0.8754 | 743.7 | 280.5 | -15.353 | |
| 0.7681 | 0.1720 | 722.7 | 260.7 | -17.074 | × . |
| 0.7880 | 0.8627 | 203.1 | 240.8 | -19.546 | |
| 0.8089 | 0.8652 | ኒ ዞ3•0 | 219.3 | -19.816 | |
| 0.8313 | 0.8615 | 160.7 | 195.6 | -21.729 | - |
| 0.8557 | 0.8575 | 137.4 | 169.7 | -23.535 | f |
| 0.8807 | 0.9532 | 11.2.0 | 141.4 | -25.586 | L |
| 0.9077 | 0.8487 | 86.6 | 110.6 | -21.771 | |
| 0.9373 | 0.8438 | 58.5 | 76.1 | -30.019 | |
| 0.9669 | 0.8329 | 30.1 | 40.6 | - 74'. 921 | |
| | | • | • | | 1 |
| DEVIATION | a 11.3 | 7827 | | | .0. (|

240

RMS

HEATS OF MIXING OF SYSTEM N-PENTANOL - 2-METHYLPENTANE

LAMDA CH2/UH= 0.800720 01 LAMDA LAMDA 0H/CH2= 0.203030-02 LAMDA

LAMDA PRIME CH2/0H= 0.454190-02 LAMDA PRIME 0H/CH2= 0.664190-04

| | | , | | | e |
|-------------------|------------------|---------------|--------------|------------|-----|
| X ALC | X CH2 | DEL H EXP | DEL H PRED | DEVIATIO | 1 - |
| 0.0194 | 0.9768 @ | 213.6 | 214.3 | -0.325 | • |
| 0.0446 | 0.9926 | 295.2 | 302.4 | -2.592 | • |
| 0.0862 | 0.9856 | 368.1 | 381.8 | -1.709 | ` |
| 0.1249 | 0.9792 | 413.3 | 429.9 | -4:021 | |
| 0.1612 | 0.9731 | 444.0 | 463.0 | -4.272 | • |
| 0.1941 | 0.9677 | 466.5 | 495.0 | -3.974 | |
| 0.2247 | 0.9676 | 483.1 | 500.0 | -3.500 | - ` |
| đ.2532 | 0.9578 | 494.9 | 507.7 | -3.047 | |
| 0.2795 | 0.9534 | 502.4 | 515.4 | -2.594 | |
| 0,3040 | 0.9493 | 508.0 | 519.2 | -2.002 | |
| 0.3273 | 0.9455 | 510.4 | 519.6 | -1.614 | |
| 0.3487 | 0.9419 | 510.6 | 517.3 | -1-322 | |
| 0.3684 | 0.9386 | 504.3 | 514.8 | -1.080 | |
| 0.3879 | 0.9354 | 506.7 | 511-1 | -0.864 | |
| 0.4063 | 0.9323 | 502.3 | 506.5 | -0.828 - | , |
| 0.4237 | 0.9294 | 477.4 | 501.2 | -0.767 | |
| 0.4397 | 0.9267 | 491.8 | 495.6 | -0.783 | |
| 0.4557 | 0.9241 | 435.7 | 489.6 | -0.805 | |
| 0.4701 | 0.9216 | 479.6 | 483.2 | -0.965 | • |
| 0.4841 | 0.9193 | 471.3 | 476.7 | -1.149 | |
| 0.4975 | 0.9171 | 463.5 | 470.1 | -1.413 | |
| 0.5096 | 0.9151 | 456.3 | 463.7 | -1.616 | |
| 0.5207 | 0.9132 | 449.3 | 457.5 | -1.832 | |
| 0.5314 | 0.9114 | 442.2 | 451.4 | -2.071 | , |
| 0.5324 | 0.9113 | 447.4 | 450.8 | -0.757 | · |
| 0.5421 | 0.9097 | 435.0 | 444.9 | -2.283 | 1 |
| 0.5472 | 0.9096 | 440.6 | 444 : 9 | -0.970 | |
| 0.5516 | 0,9091 | 428.0 | 439.0 | -2.577 | |
| 0.5524 | Q.9079 | 433.0 | 438.5 | 1.276 | |
| 0.5630 | 0.9062 | 424.7 | 431.7 ' | -1.64R | |
| 0.5739 | 0.9044 | 416.0 | 424.4 | -2.031 | |
| 0.5855 | 0.9074 | 406.6 | 416.5 | -2.429 | |
| 0.5974 | 0.9004 | 396.2 | 404.0 | -2.985 | |
| 0.6098 | 0.8984 | . 376.3 | 399.9 | -3.274 | |
| 0.6230 | 0.8962 | 374.6 | 389.0 | -1.837 | |
| 0.6363 | 0.8940 | 362.7 | 379.6 | -4.531 | |
| 0.6504 | 0.4916 | 349.5 | 167.3 | | • |
| 0.6650 | 0.8392 | 335.9 | 355.2 | -5.754 | • |
| 0.6803 | 0.8866 | 321.7 | 342.2 | -6.547 | |
| 0.6961 | 0.8440 | 106.0 | 329.4 | -7.315 | 1.5 |
| 0.7129 | 0.8812 | 239.4 | 313.3 | -8.245 | • |
| 0.7301 | 0.8783 | 212.3 | 297.4 | -9.200 | |
| 0.7480 | 0.8752 | 253.6 | 277.8 | -10.319 | |
| U. (0(7 | 0.8721 | 214.7 | · 761.5 | -11.341 | |
| 0.18/3 | 0.4684 | /14.7 | 241.5 | -17.477 | |
| | U-507/ | 143+4 | 214.7 | -11.480 | |
| V+0 127
0 8543 | V+0014
0 9672 | 107•D | 147.9 | -L702L7 | • |
| U + 7703 | 0.053 | 110 8 | 107.7 | -17 - 147 | U |
| V+00[7
A AA70 | V+0731 | . 119.7 | 140.3 | -17.771 | |
| 0 0 2 4 4 | 0.0477 | 17 C + 15
 | 111.7 | | • |
| V+7300
0 0449 | 0.0434 | ,' OV•3 | 10.4 | -L'MED [-] | |
| V • 7000 | V • 0 7 7 7 | 73.4 | 70 .7 | -61+433 | |
| DEVIATION | = 7.7 | 313 | - | | |

241

RMS

HEATS OF MIXING OF SYSTEM M-PENTANOL - 3-METHYLPENTANE

LAMDA CH2/0H= 0.80072D 01 LAMDA 0H/CH2= 0.203030-02

LAMDA PRIME CH2/DH= 0.4**5**4190-02 LAMDA PRIME OH/CH2= 0.664190-04

| | | \$ | | | |
|----------------------------|----------------------|---------------|--------------------|----------------------|----|
| X ALC | X CH2 | DEL H EXP | DEL H PRED | DEVIATI | 0N |
| 0.0206 | 0.9966 | 726.6 | 220.4 | 2.739 | |
| 0.0446 | 0.9926 | 303.7 | 302.9 | 0.279 | |
| 0.0860 | 0.9857 | 375.9 | 381.5 | -1.478 | |
| 0.1257 | 0.9791 | 421.2 | 430.9 | -?.294 | |
| 0.1618. | 0.9730 | 452.1 | 463,4 | -2.506 | |
| 0.1944 | 0.9676 | 474.3 | 485.2 | -2,300 | |
| 0.7751 | 0.9625 | 489.9 | 500.2 | -2.097 | |
| 0.2539 | 0.9577 | 501.3 | 509.9 | -1.714 | |
| 0.2808 - | 0.9532 | 509.9 | 515.6 | -1-125 | |
| 0.3061 | 0.9490 | 514.1 | 518.3 | -0.816 | |
| 0.3293 | 0.9451 | 516.6 | 518.6 | -0.384 | |
| 0.3513 | 0.9415 | 515.9 | 517.1 / | -0.230 | |
| 0.3709 | 0.7382. | 514.5 | 514.4 | 0.022 | |
| 0.3934 | 0.9344 | 509.4 | 509.8 | -0-076 | |
| 0.4105 | 0.9316. | 505.9 | 505.3 | 0.104 | |
| 0.4274 | 0.7288 | 500.5 | 500.0 | 0.102 | • |
| 0.4431 | 0.9762 | 494.3 | 494.4 | -0.016 | |
| 0.4576 | 0.9237 | 487.9 | 488.6 | -0.147 | |
| 0.4711 | 0.9215 | 490.9 | 482.8 | -0-410 | |
| 0.4842 | 0.9193 | 473.9 | 476.7 | -0.605 | |
| 0.4965 | 0.9173 | 466.7 | 470.6 | -0.828 | |
| 0.5090 | 0.9152 | 459.3 | 464 . 0 | -1-023 | |
| 0-5160 | 0.9140 | 457.9 | 460-2 | -0.495 | |
| 0.5204 | 0.9133 | 451.6 | 457.7 | -1-351 | |
| 0.5259 | 0.9123 | 451.2 | 454 6 | -0.745 | |
| 0.5315 | 0.9114 | 466 6 | · 451 2 | -1 552 | د |
| 0.5361 | 0.9107 | 443 7 | · 448 6 | -1 006 | |
| 0.5422 | 0.0096 | 436 6 | 740.0 | -1 905 | |
| 0.5468 | 0.9090 | 430.0 | 444.4 | -1 666 | |
| 0.5515 | 0.9081 | 429 5 | 432 1 | -1.004 | |
| 0.5576 | 0 9071 | 4250. | 425 2 | -2.23 | |
| 0 5499 | 0 0052 | 420.11 | 437 0 1 | -7.131 | |
| 0 5808 | 0 0032 | 407.2 | 427.4 | -7 073 | |
| 0.5933 | 0.0011 | 306 6 | 414.1 | -1.019 | |
| 0.6066 | 0 9090 | 396 9 | 411.0 | -3.013 | |
| 0.6198 | 0.8967 | 372 5 | 301 4 | -4.504 | |
| 0.6340 | 0.8967 | ·260 a | 1 200 4 | -5.019 | - |
| 0.6430 | 0,0743 | 3.7.7.7 | 360.4 | -5.70 | |
| 0.6666 | 0 8902 | 221 / | 385 4 | -7 4 21 | |
| 0.6812 | 2888 0 | 215 2 | 263 6 | | |
| 0.60912 - | 0.000 | 200 0 | 371.4 | -0.207 | |
| 0.3702 | 0 9306 | 291 1 | 260+2 | -10 225 | |
| 0 7262 | 0.0776 | 20141 | 202 6 | | |
| 0 7569 | 0 0762 | 207.03 | 272+3 | -12 + 712 | |
| 0 7760 | 0.9707 | 221 2 | 252 0 | $-12 \cdot 701$ | |
| 0 709% | 0.4440 | 100 1 | 274.9 | -14 • 202
-15 50b | c |
| ひゅすラロサ
()、9ブフブ | 0 8420 | 17701 | 2 J'' • L
2 N = | -17.JOP
-17.JOP | |
| 0.97667 | 0 0 0 0 0 0 | 160 4 | 110 0 | ールド・とちご
-10 055 | |
| 0 0720 | 11-1777
0 9645 | 170+4 | 160 3 | -170U28 | |
| 0.0022 | 11.7747
0.9604 | 1/4.4 | 179.5 | -20.740 | - |
| 0, 20, 20, 20
0, 20, 20 | U . 0470
0 . 0447 | 42 . 7 | LL/•U
µ^ µ | -22.141 | |
| V•7)]]
0 0451 | U+0444
A 4303 | 04.1 | 70.7
7 0 | -20 01- | 1 |
| U•%071 | 0.3145 | 17.9 | 47.44 | - 10 - 06 7 | |
| NEWTATION | | | | | |
| UT VIAILUN | - 4./(| | | | |
| | | | | | |

242

RMS

. ป

HEATS OF MIXING OF SYSTEM ISOPENTANOL - N-HEXANE

LAMDA CH2/OH= 0.800720 01 LAMDA PRIME CH2/OH= 0.454180-02 LAMDA GH/CH2= 0.203030-02 LAMDA PRIME UH/CH2= 0.664190-04

| | | | | | + |
|---|-----------|--------------|-----------|-----------------|-----------|
| | X ALC | X CH2 | DEL H EXP | DEL H PRED | DEVIATION |
| | 0.0212 | 0.9965' | 238.7 | 223.3 | 6.441 |
| | 0.0449 | 0. 9925 | 316.9 | 303.6 | 4.195 |
| | 0.0869 | 0.9855 | 395.3 | 382.8 | 3.166 |
| | 0.1257 | 0.9791 | 445.3 | 430.1 | 3.242 |
| | 0.1617 | 0.9731 | 481.0 | 463.4 | 3.669 |
| | 0.1943 | 0.9676 | 506.6 | 485.2 | 4.234 |
| | 0.2243 | 0.9626 | 526.6 | 499.8 | 5.020 |
| | 0.2529 | 0.9579 | 542.3 | 509.6 | 6.022 |
| | 0.2793 | 0.9535 | 553.7 | 515.4 | 6.917 |
| | 0.3040 | 0.9493 | 561.5 | 519.2 | 7.717 |
| | 0.3269 | 0.9455 | 566.9 | 518.6 | 8.512 |
| | 0.3484 | 0.9419 | 569.4 * | 517.4 | 9.136 |
| | 0.3687 | 0.9386 | 570.3 | 514.8 | 9.740 |
| | 0.3878 | 0.9354 | 569.7 | 511.1 | 10.290 |
| | 0.4057 · | .0.9324 | 567.4 | 506.6 | 10.711 |
| | 0.4225 | 0.9295 | 563.8 | 501.6 | 11.032 |
| | 0.4384 | 0.9269 | 559.R | 496.1 | 11.374 |
| | 0.4536 | 0.9244 | 554.9 | 490.3 | 11.649 |
| | 0.4685 | 0.9219 | 548.4 | 483.9 | 11.756 |
| | 0.4819 | 0.9197 | 542.8 | 477.8 | 11.981 |
| | 0.4948 | 0.9175 | \$ 536.3 | 471.4 - | 12.096 |
| | 0.5068 | 0.9155 | 529.2 | 465.2 | 12.098 |
| | 0.5183 | 0.9136 | 522.6 | 458.9 | 1/2 . 192 |
| | 0.5291 | 0.9118 | 515.4 | 452.7 | 12.164 |
| | 0.5360 | 0.9107 | 506.8 | 448.6 | 11.479 |
| | 0.5396 | 0.9101 | 508.8 | 446.5 | 12.253 |
| | 0.5456 | 0.9091 | 500.0 | 442.9 | 11.444 |
| | 0.5499 | 0.9083 | 501.3 | 440.1 | 12.208 |
| | 0.5556 | 0.9074 | 492.8 | 436.5 | 11.427 |
| | 0.5661 | 0.9057 | 484.6 | 429.7 | 11.337 |
| | 0.5771 | 0.9038 | 475.7 | 422.3 | 11.231 |
| | 0.5887 | 0.9019 | 466.0 | 414.2 | 11.109 |
| | 0.6007 | 0.8999 | 455.4 | 405.6 | 10.927 |
| | 0.6130 | 0.8978 | 444.5 | 396.6 | 10.785 |
| | 0.6258 | 0.8957 | 432.7 | 386.8 | 10.604 |
| | 0.6390 | 0.8935 | 419.6 | 376.5 | 10.279 |
| | 0.6529 | 0.8912 | 406.1 | 365.3 | 10.058 |
| ę | 0.6677 | 0.8887 | 391.0 | 353.0 | 9.729 |
| | 0.6831 | 0.8962 | 375.4 | 339.8 | 9.486 |
| | 0.6993 | 0.8935 | 358.3 | 325.5 | 9.144 |
| | 0.7157 | 0.8807 | 340.2 | 310.7 | 8.671 |
| | 0.7330 | 0.8778 | 320.9 | 294.6 | 9.187 |
| | 0.7512 / | 0.8748 | 299.7 | 277.3 | 7.480 |
| | 0.7702 | 0.9716 | 278.4 | 258.6 | 7.097 |
| | 0.7903 | 0.8693 | 254.9 | 239.4 | 6.462 |
| | 0.8114 | 0.8649 | 2?).4 | 216.7 | 5.556 |
| | 0.8341 | 0.9610 | 202.6 | 192.6 | 4.926 |
| | 0.8583 | 0.8569 | 173.7 | 166.3 | 3.965 |
| | 0.8829 | 0.8529 | 143.8 | 138.0 | 3.385 |
| | 0.9107 | 0.8492 | 109.6 | 107.2 | 7.204 |
| | 0.9384 | 0.8436 | 75.3 | 74.9 | 0.719 |
| | 0.9684 | 0.8386 | 39.4 | 38.8 | -1.022 |
| | | | | \sim \wedge | |
| 5 | DEVIATION | = 9.0 | 0752 | | L |
| | | | | | |

Ċ1

RM

LAMDA CH2/0H= 0.800720 01 LAMDA PRIME CH2/0H= 0.454180-02 . LAMDA CH/CH2= 0.203030-02 LAMDA PRIME CH/CH2= 0.654190-04

| Y ALC | Y CH2 | | | DEVIATION | |
|------------------|---|--|--------------------|---|--------|
| X 4LL | 0 9966 | 717.3 | 225.2 | 3,039 | |
| 0.0463 | 0.0022 | 202.9 | 206 8 | 0 959 | |
| 0.0407 | 0.0952 | 303 3 | 395.4 | -0.548 | |
| 0 1201 | 0.9795 | 428.6 | 636.6 | -1.346 | |
| 0.1459 | 0.970 | 478.0 | 434.4 | -1.404 | |
| 0 1001 | 0.3469 | 400.10 | 400.1 | -1.042 | |
| 0.1771 | 0.0417 | 500 7 | 507 0 | -0 367 | |
| 0 2600 | 0.9917 | 511 9 | 511 2 | 0.100 | |
| 0 2940 | 0.0523 | 520 6 | 516 6 | 0 803 | |
| 0.2002 | 0.0693 | 526 2 | 519.5
518 5 | 1 463 | |
| 0.5105 | 0.9465 | 520.8 | 518.4 | 2.145 | |
| 0.3541 | 0 9410 | 510.9 | 516.8 | 2.660 | |
| 0, 1741 | 0.9410 | 510 4 | 512 0 | 2.000 | |
| 0.3739 | 0.0366 | 527 9 | 510 0 | 3 3 7 3 | |
| 0 4000 | 0.0117 | 526 8 | 505 4 | 3 688 | |
| 0.4094 | 0.0390 | · 520 Å | 500 3 | 1 022 | |
| 0.4204 | 0.0263 | 515 9 | 10(1• J | - A 102 | |
| 0 4424 | 0 0 2 2 7 | 500 9 | ~~~~ C | 4.155 | |
| 0.450 | 0.9231 | 507.1 | 400.0 | 4 943 | |
| 0.4944 | 0.9215 | | 407.01 | 4 265 | |
| 0.4844 | 0.9173 | 497.00 | 470 2 | ~ | ۔
ر |
| 0.4971 | 0.9172 | 491.1 | 4/0.7 | 7 • C 7 7
1 1 7 7 | |
| 0.5094 | | 474.0 | 403.5 | 4 107 | • |
| 0.5213 | 0.9131 | 411+2 | 457.2 | 7 • 1 7 7 | |
| 0.5321 | 0.9115 | 407.0 | 470.9 | 2 000 | |
| 0.5441 | 0.4041 | 477+11 | 447.1 | 7.909 | |
| 0.5448 | 0.9092 | 401.0 | 443.3 | 2.045 | |
| 0.5540 | 0.9077 | 444 | 471.7 | 2+027 | |
| 0.5752 | 0.9075 | 473+1 | 4 20 • 1 | 2 2 2 4 | |
| 0.5041 | 0.9060 | 441•L | 420.0 | 2+J24
· 2 220 | |
| 0.5750 | 0.9042 | 433.7 | 46341 | 1 9 9 7 | |
| 0.5000 | 0.9022 | 4/3./ | 41747 | 1 4 3 4 | |
| 0.5981 | 0.9003 | 414.7 | 407 | 1.172 | |
| 0.6103 | 0.8983 | 403+3 | 170.0 | · E • E / C | |
| 0.6234 | 0.3961 | 371+D | 1.01 | -0 376 | : |
| 0.6103 | 0.3940 | 711.7 | 7/0.0 | | |
| 0.0729 | 0.5912 | 204+2 | 307•3
363 0 | -0.646 | |
| 0.00// | 0.0067 | 170.47 | 393.0 | -1 495 | |
| 0.0021 | 0.0001 | 117.T | 140.3 | -2 2/19 | |
| 0.7140 | 0.000 | 202 3 | 269.6 | -7.077 | |
| 0.7149 | 0.0770 | 347 . 3 | 711.7
207 4 | | |
| 0.7520 | 0.07/9 | 243.0 | 1 277 6 | | |
| 0.7504 | 0.0749 | 203.4 | 277.0 | -3.17 | |
| 0.7099 | 0.9497 | 299.0 | 227.17 | -4 934 | |
| V.(7V9
A 0127 | U+700/ | 752+0
102 E | 73745 | -8.471 | |
| 0.01/1 | 0.0410 | 17747 | 103 4 | -9.07L | • |
| 0 4577 | 0.0010 | 1200 | 177.0 | - 7+01C
-11 677 | |
| 0 0036 | 0.3771 | 133 6 | 1202 | -12.947 | |
| 0.9537 | 11+07/0
0 9494 | 04 0 | 1100 5 | -16 286 | 3 |
| 0 0305
0.4040 | U. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ······································ | 1 UN + N
74 - A | -16 809 | |
| U•Y387 | U + 17 4 30 | Π)• Ϋ́
)1 4 | 77.0
74 1 | -10.000 | |
| 0.4040 | 0.4357 | 21+0 | 1 • " | -744971 | |

•

15

٩

RMS DEVIATION =

5.9419

P

 \mathbb{N}

| È t | | CH2/0H= | 0,800 | 720 01
030-02 | <u>ዚ</u> ለ ΜΩ ለ
ተ ለ Μιλά | PRIME | CH2/C | 11= | 0.45 | 4180- | -02 |
|------------------|---------------------------|--------------------|-------------|------------------|---------------------------------------|---------------|----------------|--------|--------------------|-------|--------|
| | | 007.00,6 - | 1 | , | | *** * | , intervice | 17 - | V + O G | | • () 4 |
| | X AL | C X | CH2 I | DEL H EX | P DEL H P | RED | DEVIAI | TON | | - | |
| | 0200 | 0.93 | 067 | 217.3 | / 21/.4 |) – | 0.030 | | | | |
| · (|).()449 | 0.99 | 125 | 207.5 | , 303.6 | - (| 7.097 | • | | | |
| | 240860 | 0.98 | 57 | 371-5, | . 381-5 | , – | 2.680 | • | | | |
| (|)•1702
• • • 7 | 0.97 | 90 | 419.7 | 431.4 | | 2.784 | | | | |
| · · · (| 2•1019
2•1019 | 0.97 | 31'
74 | 471.48 | 403.1 | | 7.5H5 | | ٩, | | |
| | / <u>•[94</u> /
\ 3361 | 0.96 | 010
0E | 4/3.7~ | 425 1 • 4
5 • 6 0 0 5 | | | | • | | |
| |)•773L
\ 3631 | 0.06 | 70 4 | 607 71 | · · · · · · · · · · · · · · · · · · · | - | 0 304 | | | ° . | |
| |) - 2 7 H A | 0.99 | 010
36 1 | 617.1 | | · - | 0 261 | | | • | |
| | ·•/ /00
• 3032 | 0.9 | 06 | 524 5 | 0 L J + 3
6 1 U - 1 | 1 | יומי.
עופיו | | | | |
| |) 1966 | · 0.94 | 56 | 520 0 | 610 7 | , | 1 066 4 | | | | |
| ~ (|) 3676 | 0.94 | | 510 1 | 617 6 | | 1 | | | • | |
| . (|).3675 | . 0.93 | 19.H | 631.1 | 51A C | , i | 3 062 | | | | |
| | 1.3867 | 0.7 | 56 | 520 7 | 511 Å | | 3 470 | | | | |
| · · · · |) 4 0'49 | 0.01 | 25 | 527.2 | 50A.0 | > | 1.974 | | | | |
| | . 4249 |
 | 92 | 521.6 | ና በስ - ሳ |) | 1.077 | | | | |
| ° « (|)_4410 | - 1, 12 | 65 | 517.7 | . 205.2 | ,
I | 6,762 | | | | |
| , i | . 4546 | 0.92 | 42 | . 512.1 | 489.0 | | 6.366 | đ | | | |
| · · · · | .4687 | 0.92 | 19 | 506.7 | 483.8 | t i | 4.511 | 1 | | | |
| ` |)_4818 | 0.91 | 97 | - 500.3 | 417.8 | | 6.696 | L | c | | |
| · · · · | . 4950 | 0.91 | 75 | 493.6 | 471.3 | •
• | 4.513 | | ~~ | | |
| • | 1.5065 | 0.21 | 56 | 487.1 | 465.3 | | 4.467 | | | ٠ | |
| - (|).5177 | 0.91 | 37 | 680.4 | 459.2 | 1 | 4.400 | | • | | |
| · · (| .5286 | 0.91 | 19 | 473.5 | 653.0 | | 4.330 | :
د | | | |
| Č |).5317 | 0.91 | 14 | 472.7 | 451.2 | | 4.553 | | | | ., |
| (| .5386 | 0.91 | 02 | 466.4 | 447.1 | • • | 6 44.7 | | | | • |
| • (| .5415 | 0.90 | 98 | 465.8 | 445.3 | | 4 - 401 | - | | . · | |
| Ċ | .5482 | 0.90 | 86 | 459. A | 441.2 | | 4.053 | | _ | | • . |
| . (| .5519 | 0.20 | 80 | 458.2 | 438.8 | | 4.225 | | ~ | | |
| Ċ | .5628 | 0.90 | 62 | 450.0 | - 431.8 | I . | 4.038 | | • | | |
| . (| .5736 | 0.90 | 44 | 441.6 | 424.7 | • | 3.838 | | • | | |
| , e | .5850 | 0.90 | 25 | 431.9 | 416.9 | | 3.491 | | | | |
| *. °(| .5968 | 0.90 | 05 | 421.9 | 408.5 | | 3.186 | | | °, , | |
| · (| .6097 | 0.87 | 85 | 410.8 | , 199.4 | • | 2.777 | | | • | • |
|) (| .67?? | 0.89 | 63 | 399.0 | 389.6 | | 2.360 | | | | |
| (| .6357 | 0 -89 | 41 | 386-1 | 379.1 | n | 1.817 | | | | |
| (| Í.6500 | 0.89 | 17 | 372.3 | 367.6 | • | 1.257 | , | | | |
| ΄. Ο | .6648 | 0.89 | 92 | 158.2 | 155.4 | . (| 0.783 | | | | |
| ۰ <sup>د</sup> ۲ | .6793 | -0.88 | 68 - | 343.6 | . 343.1 | | 0.153 | • | | c | |
| · (| .6957 | ะ 0.89 | 41 | 326.8 | 32P.7 | | 0.543 | | | •, | |
| (| .7124 | 0.88 | 13 | 309.9 | 313.7 | ' - | 1.265 | | ٠ | • | |
| ʻ (| 1.7302 | 0.87 | 83 | 290.8 | 297.3 | - ' | 2.221 | | | ٩ | |
| C | .7486 | 0.87 | 52 | 271.5 | 279.1 |) - | 7.045 | | | | • |
| , <u>'</u> (| .7680 | 0.8-7 | 20 | 250 . 2 | 260.ª |) - | 4.245 | | | | |
| (| ,7887 | 0.86 | .86 Z | 227.3 | 240.1 | | 5.617 | | • | | |
| (| .8108 | 0 4 . 0 | 49 \ | 20357 | 217.3 | | 6.667 | | | | |
| , (|). 9332 | 0.86 | 11 | 179.3 | . 193.6 | - | 7.967 | | | | |
| (| .9575 | 0.85 | 71 | 152.5 | 467.2 | • - • | 9,641 | | | , , | |
| i r | .8830 | 0.85 | 28 | 124.7 | 138.8 | -1 | 1.323 | | | - | |
| (| .9097 | 0.84 | P4 | 95.3 | 108.3 | -1 | 3.6P3 | | | • | |
| | .9377 | 0.84 | 37 | 65.5 | 75.6 | • −1 ' | 5.401 | | ۲. <sup>14</sup> . | • | • |
| · C | .9678 | 0.83 | 87 | . 32.4 | 37.5 | -2 | 1.976 | | • | | |
| ` | 4 | , | | | ۰.
۲ | ~ | | | | | • |
| OVC r | VEV FAT | | 5 744 | 0 | | | <u>۷</u> | | | | |

24

| | | ' λ | HEATS | OF MI | XING OF | E SYSTEM ISO | | - ?- | METHYLP | ENTANE | . — . |
|-------|------------|--------|------------------------|---------------------------------------|-------------------|------------------|------------------|------------|---------------|--|------------------|
| • | • | ہ
۔ | LANDA | CH2/(|)H= 0 . 80 | 0720 01 | LAMDA F | PRIME | CH2/CH= | 0.4541 | 1D-02 |
| ł | | | LAMDA | NH/CH | 12= 0.20 | 03030-02 | LAMDA 1 | PIME | 0H/CH2= | 0.66419 | 0() ≁0 ,4 |
| | | | V A4 | c · | v cup | 001 4 670 | 6.C1 N 00 | | | N | |
| 0 | | | | | | | 226 7 | KCU U
A | ~~~~ | 11 | |
| | `` | | 0.0710 | | 0022 | 241.47 | 273.1 | | 0.36 | | |
| | | • | V. U404 | | 1.9973
. 0053 | 117.4 | 300.0 | · · · | × × 10 | | |
| | | | 0.0000 | | 1.9032 | 19201 | 513.3 | , n | | | |
| | | | 0.1281 | | 0726 | . 447.02 | 431.3 | | • 007 | | • |
| | | | 0.104 | | 1.9125 | 4/7.4 | 403.0 | · 7 | • UZ7 | | |
| | | | 0.1984 | | 1.9009 | 448.7 | < 401.4
501.0 | 2 | • 6 20 | | |
| | | | 0.7291 | | | · 71/+1 | 501+0 | 7 | • 705
704 | | ` |
| • | ı * | a e | 0.2718 | |) • 95 7 U | 23[•] | 510.7 | | | • | |
| | | | 0.2001 | | 0/06 | 540.2 | 510.4 | , 4
5 | 5 220 | | |
| | • | | 0.3091 | | J•9402 | 550.0 | 510,44 | 5 | | | |
| | | | 0.3310 | |) • '/44 /
\ | 100.0
66114 | 516.0 | 6 | 206 | | |
| | | | 0. 3 7 <sub>7</sub> 7. | |)• 74 1 1
\ | 661.9 | 516 0 | 6 | 846 | ` | |
| | : | | 0 + 2/30 |) (
) (| 1.7510 | 540 9 | 514+0 | 7 | 200 | | |
| | | | 0 1000 | | 147747 | 547.60 | #605 5 | ,
ר | • <u>7.07</u> | | |
| ·. , | | | 0.4098 | • • |)•%)[/ | 047+L
547-1 | 500.3 | 7 | 1 992 | <i>A</i> . | |
| | | | 0.4/03 | |) • 92 • 9 | 7 247+L
638 0 | 200.7 | י
ג | 0.652 | | |
| | 0 | | 0 1 674 | | 1.7763 | | 494.1 | r
v | 275 | | |
| 5 | <i>t</i> a | | 0.4710 | | 1.9231 | 532+7 | 400+0 | c c | 2 270 | | • |
| | | | 0.4710 | • (
• / | 0102 | 720+77 | 477.5 | ،
۲ | 309 | a de la companya de la compa | |
| | | | 0.407 | | 1.9192 | 512 1 | 4/0.4 | r
F | 2 410 | • • • | |
| • | | | 0 610 | , (
, , | J • 9171 | 506 1 | 469.7 | S | 2 447 | | - |
| | | | 0.0104 | | | | 40.14.1 | ,
ç | 1 766 | | , |
| | | | 0.5720 | | | 490.5 | 450.0 | c.
ç | 207 | | • |
| | | | 0.5331 | | J•9112 | 471.1 | 490.4 | - | 1 977 | | |
| | | | 0.5430 | | | 400.9 | 447.0 | י
ב | 2 200 | | |
| | | | 0.343
0 5/5/ | 7 (
7 <i>(</i> | | 4 - 4 • U | | , | r 756 | U. | |
| | | | 0.545 | , , , , , , , , , , , , , , , , , , , | 1.9076 | | 447.0 | · · · | 204 | ι | |
| | , | , | 0.554 | | 0073 | 671.9 | 436.2 | - | 7.558° | | v |
| * | | | 0 5444 | | 0.0056 | 44147 | 4.20.3 | - | 7.379 | | |
| x (| | | N 5770 | | 1.9030 | 403.0 | 427.2 | - | 7 272 | · · · | |
| | | | 0.577 | | | | * 413.7 | · · · | 5.900 | | |
| | • | | 0.207 | • • | 7 8008 | 635.1 | 405.3 | | 5.855 | | |
| all a | | | 0 4130 | | 1 9977 | 424.3 | 396.1 | ĺ | 6.645 | | |
| | | | 0.0130 | 7 i | D. 8956 | 412.3 | 386.1 | Ĩ | 5.350 | | |
| | | | 0.640 | | 0.8933 | 399.1 | 375.6 | | 5.890 | | |
| | | | 0.654 | $\dot{\mathbf{D}}$ | 1-8910 | 385.3 | 364.4 | C | 5.437 2 | ð | |
| 0 | | | 0.668 | | 1.8885 | 370.9 | 352.0 | ۰ ۱ | 5.088 | | • |
| | • | • | 0.684 | 7 4 | 0.8859 | 355.3 | 338.4 | 4 | 4.757 | | |
| | | - | 0.701 | n (| 0.8832 | 338.2 | 324 0 | | 4.193 | | |
| | • | | 0.717 | 7 . | 8804 | 320.3 | 308.9 | | 3.570 | ÷ | |
| * | | | 0.7359 | 5` (| 0.8774 | 301.3 | 242.3 | ; | 2.997 | | |
| r. | | • | 0.754 | n i | 0.8743 | 281.1 | 274.5 | • | 2.332 | | |
| | | | 0.773 | 1 (| 0.8712 | 259.7 | 255 8 | | 1.518 | | |
| | * | | 0.793 | 1 | 0.0678 | 237.2 | 235.6 | (| 0.687 | | |
| | r | v | 0.814 | -
3,™ ∣ | 0.8643 | 213-4 | 213.6 | -1 | 0.102 | 1 | , |
| | | | 0.836 | -
6 (| 0.8606 | 187.7 | 189.9 | - 1 | 1.191 | | |
| | | | 0.860 | - · ·
B (| 0.8565 | 159.5 | .163.6 | - 2 | 2557 | • | - |
| | | | 0.885 | 5 | 0.8524 | 131.5 | 136.0 | - | 3,421 | , | - |
| | | | 0.910 | -
 | 0.8482 | 101.7 | 107.0 | , - | 5.165 | | |
| | | | 0.939 | 0 | 0.8435 | 69.6 | 74.0 | - (| 6.391 | • | 1 |
| | | | 0.968 | 8 (| 0.8385 | 36.0 | 38.3 | (| 6.409 | , | J |
| | | | | | ſ. | 1 | | | | | , |
| - | | RMS | DEVIA | TION | = | 0195 | - | | | | |

246

•

.•

A

0

7 1 1

·Ъ

¢°

HEATS OF MIXING OF SYSTEM ISOPENTANOL' - 3-METHYLPENTANE

LAMDA CH2/0H= 0.800720 01 LAMDA DH/CH2= 0.203030-02

LAMDA PRIME CH2/0H= 0.454180-02 LAMDA PRIME 0H/CH2= 0.664190-04

٩

Ι,

(

¢

| LAMUN ON | /UN/= 0.70 | 30 30 - 07 | Lamia PA | INC UNVER | |
|-----------|---------------------|------------|--------------------|---------------|-----------|
| X ALC | Х СН2 | DEL H EXP | DEL H PRE | D DEVIATI | ION , |
| 0.0206 | 0.9966 | 225.6 | 220.4 | 2.709 | |
| 0.0633 | 0.9895 | 344.3 | 343.5 | 0.225 | 3 |
| 0.1036 | 0.9827 | 404-1 | 405.5 | -0.343 | |
| 0.1406 | 0.9766 | 444 23 | 445.5 | -0.272 | , · , , |
| 0.1747 | 0.9/09 | 472.9 | 472.8 | 0.014 | |
| 0.2060 | 0.9657 | 415.3 | 421.5 | 0.776 | , |
| 0.2344 | 0.9609 | 512.3 | 503.8 | 1.667 | ۲ |
| 0.2615 | 0.9564 | 524.6 | 511.9 | 2,431 | ۰
۱ |
| 0.2865 | 0.9523 | 534.0 | 516.5 | 3,285 | , |
| 0.3102 | 0-9483 | 540.2 | 518.5 | 4.019 | |
| 0.3321 | 0.9447 | 544.0 | 518.5 | 4.690 | Ŭ |
| 0.3569 | 0-9405 | 544.0 | 516.4 | 5.065 | 1 |
| 0.3761 | 0.9373 | 545.5 | 513.5 | - 5.873 | |
| 0.3942 | 0.9343 | 544.0 | 509.6 | 6.325 | 1 |
| 0.4119 | 0.9313 | .541.3 | 504.9 | 6.731 | • |
| 0.4279 | 0.4287 | 597.4 | 499.2 | 6.993 | , |
| 0.4277 | 0 9261 | 532.7 | 494.3 | 7.236 | * |
| 0.4578 | 0. 2237 | 527.3 | 498-5 | 7.352 | |
| 0.4717 | 0.9214 | 521.5 | 492.5 | 7.478 | <i>,</i> |
| 0.4850 | 0.9192 | 514.9 | 476.3 | 7.500 | · |
| 0.4072 | 0 0171 | 508 2 | + 470.2 | 7.477 | |
| 0 6090 | 0.0152 | 502 2 | 41002 | 7.596 | - |
| 0.5205 | 0 0122 | 495 0 | 40441 | 7.546 | |
| 0.5269 | 0 0122 | 49,7.6 | 454 0 | 6 846 | |
| 0.5200 | 0 0116 | 401.4 | 454 C | 7 433 | |
| 0.5360 | 0.9119 | | <sup>2</sup> 668-1 | 6.804 | - |
| 0.5207 | 0 0007 | | 440.1 | 7 380' | |
| 0.5420 | · 0 9091 | 473 6 | · 441.8 | 6.698 | , |
| 0 5522 | 0 9090 | | 418.6 | 7.419 | · |
| 0.5576 | 0.90,00 | 1 473.0 | 435.2 | (6 246 | |
| 0.5686 | <sup>3</sup> 0 0053 | 464.7 | | 6.152 | · |
| 0.5797 | 0 9034 | 446.9 | 420.5 | 5.909 | • • |
| 0 5915 | 10 9016 | 470.0 | 412.2 | 5.664 | |
| 0.6039 | 0.8994 | 426.2 | 403.3 | 5.372 | • |
| 0.5037 | 0.8971 | 414.4 | 4 393.4 | 5.067 | |
| 0.6306 | 0.8949 | 402.0 | 393.1 | 4.704 | |
| 0.6449 | 0.8925 | - 388.1 | 371.7 | 4.243 | |
| 0.5600 | 0.8900 | 373.4 | 359.4 | 3.747 | |
| 0.6758 | 0.8874 | 357.5 | 346.1 | 3,195 | 1 |
| 0.6922 | 0.8846 | 341.1 | 331.8 | 2.717 | |
| 0.7091 | 0.8818 | 323.4 | 316.7 | 2.065 | • |
| 0.7268 | 0.8789 | 304.7 | 300.4 | 1, 197 | • |
| 0.7453 | 0.8758 | 283.9 | 292.9 | 0.338 | • • |
| 0.7652 | 0.8725 | 262.7 | 267.6 | -0-338 | i.
N |
| 0.7856 | 0.8691 | | 243.2 | <u>-1.418</u> | х
ж |
| 6.8077 | 0,8654 | 215.9 | 220-5 | -2.136 | · · · · · |
| AUE 8 - 0 | 0.8616 | 140-0 | 196 4 | ~1, 751 | ş |
| 0.8547 | 0.9576 | 162.9 | 170_3 | -4.574 | • • |
| 0_8808 | 0.8532 | 134_1 | 141.3 | -5, 367 | * |
| 0.9079 | 0.8487 | 103.4 | 110.4 | -6. 788 | |
| 0.9367 | 0.8439 | 70.3 | 76-8 | -9,205 | \$ |
| 0.9677 | 0.8387 | 35.6 | 39_6 | -11,353 | · .· |
| | U O U J U F | | < J700 | | i |

RMS DEVIATION =

5.4657

¢

1

-

LAMDA CH2/OH= 0.800720 01 LAMDA OH/CH2= 0.203030-02

۷

LAMPA PRIME CH2/0H= 0+454180-02 , LAMDA PRIME OH/CH2= 0.664190-04

| | | | • | |
|----------------------------|----------|-----------------|------------|----------------|
| X ALC | X CHS | DEL H EXP | DEL H PRED | DEVIATION |
| 0.0217 | 0.9969 | 252.4 | 244.7 | 3.070 |
| 5.0508 | 0.9977 | 353.4 | 348.6 | 1.361 |
| 0.0973 | 0.9859 | 441.2 | 436.4 | 1.087 |
| 1395 | 0.9797 | 495.4 | 48822 | 1.459 |
| 0.1783 | 0.9739 | 534.2 | 522.4 | 2.202 |
| 7. 213 <sup>7</sup> | 0.9685 | 563.1 | 545.2 | . 3.183 |
| .2463 | 0.9635 | 584.3 | 560.0 | 4.157 * |
| 0.2758 | 0.9590 | 600.3 | 568.9 | 5.225 |
| 0.3030 | 0.7548 | 611.3 | 573.7 | 6.225 |
| .3286 | 0.9507 | 619.4 | 5,75.4 | 7.104 |
| 0.3516 | 0.9471 | 624.0 | 574.7 | 7.895 |
| | 0.9435 | 626.1 | 572.1 | °.617 |
| 0. 3950 | 0.9402 | 626.7 | 568.2 | 9.327 |
|).4145 | 0.9371 | 624.8 | 563.2 | 9.852 |
| .4329 | 0.9341 | 621.B | 557.4 | 10.355 |
| 1.450 1 | 0.9313 | 617.8 | 551.0 . | 10.012 |
|) 4666 | 0.9286 | .612.3 | 544.0 | 14.147 |
| 0.4821- | 0.9260 | 606.3 | 536.8 | 11.469 |
|).4966 | 0.9236 | 599.5 | 529.4 | 11.700 |
| 0.5104 | 0.9214 | 592.1 | 521.8 | 11.877' |
| 0.5229 | 0.9193 | 585.2 | 514.5 | 12.086 |
|).5351 💡 | 0.9172 | 577.2 | 507.0 | 12.170 |
| 1.5469 | 0.9153 | 570.1 | 499.3 | 17.414 |
| 0.5572 | 0.9135 | 565.3 | 497.4 | 12.898 |
| 0.5578 | 0.9134 | 561.4 | 492.0 | 17.367 |
| 0.5661 | 0.9120 | 558.0 | 4ª6.2 | 12.871 |
| 0.5682 | 0.9117 | ~553 . 0 | . 484.7 | 12.353 |
| .5767 | 0.9103 | 550.1 | 478.7 | 12.942 |
| 0.5779 | 0.9100 | 545.6 | 477.7 | 12.453 |
| 0.5866 | 0.9085 | 541.2 | 471.2 | 12.940 |
|).5970 - | 0.9068 | 537.2 | 463,7 | 12.969 |
| 0.6083 | 0.9048 | 521.9 | 454.2 | 12.968 |
| 0.6198 | 0.9029 | 511.0 | 444.9 | 12.957 |
| 0.6320 | 0,9008 | 499.2 | 434.5 | 12.957 |
| 0.6447 | 0.8986 | 486.5 | 423.5 | 12.956 |
| 0.6579 | 0.8963 | 472.4 | 411.7 | 12.846 |
| 0.6715 🧋 | 0.8939 | 457.2 | 399.1 | 12.719 |
| 0.6858 | 0.8914 | 447.4 | 385.4 | 12.876 |
| 0.7006 | 0.8888 | 424.,8 | 370.9 | 12.683 |
| 0.7158 | 0.8861 | 406.3 | 355%6 | 12.487 |
| 0.7323 | 0.8832 | 386.5 | 338.5 | 17.431 |
| 0.7494 | 0.81801 | 364.7 | 320.2 | 12,207 |
| 0.7673 | 0.8769 | 341.6 | 300.5 | 12.031 |
| 0.7861 | 0.8735 | 116.5 | 279.2 | 11.770 |
| 0.8053 | 0.8700- | 290.0 | 256.9 | 11.401 |
| 0.8258 | 0.3662 4 | 251.7 | 232.5 | 11.172 |
| 0.84/L | 0.8623 | 230.7 | 206.3 | 10.636 |
| 0.8697 | 0.8581 | 198.3 | 1,77.9 | 10.298 |
| 0.8735 | 0.8517 | 105+4 . | 14/•1 | 90719
0710 |
| 0.4181
0.4181 | 0.8479 | 12407 | 113+5 | 0.413
0.477 |
| J. 744/ | 0.0300 | 10+1
43 0 | (8,9 S | 0.711
6:70E |
| U • 7111 | U•")"" | 43.0 | 40.0 | 2 • [0] · |
| | | | | |

J

1 -

RMS DEVIATION = 10-6768

へ

HEATS OF MIXING OF SYSTEM ISOPENTANOL - N-OCTANE . 1 .

.

| | X LHZ | | DIL H PRED | DEVIATION |
|----------|----------|------------------|-----------------|------------|
| 0.0247 | 0.9464 | 279.3 | 278.6 | 0,247 |
| 0.1054 | 0.0944 | 303.1 | 348.3 | -1.151 |
| 0 10 70 | 0.0007 | 979•1
676 D | 430.0 | -11.400 |
| 0 1026 | 0,9803 | 343.7 | 297.0 | りゅうどう |
| 0 2204 | 0 0404 - | ິງເດ∎ກ
ເວ່າ ລ | | 1+047 |
| 0.2667 | 0.0444 | | 000+p | 1. 2. 6. 0 |
| 0.7047 | 0.0601 | 04400 | n]n•9
∠n∠ | 9.4447 · · |
| 0 2757 | 0.0559 | 67.2 9 | ウイサ・C,
トラロー1 | 7.000 |
| 0 3524 | 0.0517 | 691 7 | 678 E | |
| 0-3776 | 0 '9479 | 686 3 1 | 626 2 | 9 762 |
| 0.4011 | 0 9443. | 5 6 Stor 7 | 621 0 | 0 572 |
| 0.4228 | 0.9409 | 686.1 | 616.1 | 10,197 |
| 0:4425 | 0.9378 | 633.4 | 619.5 | 10.812 |
| 0.4613 | 0.9348 | 679.7 | 602 0 | 11 436 |
| 0.4784 | 0.9321 | 674.1 | 504.1 | 11.450 |
| 0.4947 | 0.9294 | 667.9 | 585 B | 12.200 |
| 0.5099 | 0.9270 | 660.9 | 517.2 | 12.661 |
| 0.5269 | 0.9241 | 652.2 | 566.9 | 13.086 |
| 0.5403 | 0.9219 | 643.4 | 558.1 | 13.261 |
| 0.5528 | 0.9198 | 635.4 | 1 547.4 | 13.530 |
| 0.5645 | 0.9178 | 621.0 | 540.9 | 13.726 |
| 0.5756 | 0.9160 | 618.2 | 532.5 | 13.859 |
| 0.5804 | 0.9151 | 608.6 | 523.8 | 13.115 |
| 0.5866 | 0.9141 | 609.4 | 523.4 | 14.037 |
| 0.5902 - | 0.9135 | 600.9 | 520+9 | 13.305 |
| 0.5968 | 0.9123 | 600.6 | 515.5 | 14.165 |
| 0.6002 | 0.9117 | . 591.9 | 512.7 | 13.382 |
| 0.6084 | 0.9103 | 590.2 | 505.7 | 14.313 |
| 0.6106 | 0.9099 | 582.4 | 503.8 | 13.492 |
| 0.6714 | 0.9080 | 572.3 | 494.3 | 13.626 |
| 0.6324 | 0.9061 | 561.0 | 484.3 | 13.667 |
| 0.6439 | 0.9041 | 548.8 | 473.6 | 13.710 |
| 0.6559 | 0.9019 | 535.7 | 467.0 . | 13.796 |
| 0.6682 | 0.8997 | 522:0 - | 449.7 | 13.845 |
| 0.6810 | 0.8974 | 506.9 | 436.6 | 13.867 |
| -0.6944 | 0.8750 " | 490.9 | 422.5 | 13.943 |
| 0.7083 | 0.8924 | 473.6 | 407.3 | 13.992 |
| 0.7227 | 0.8897; | 455.3 | 391.2 | 14.076 |
| 0.7375 | 0.8870 * | 435.3 | 374.2 | 14.046 |
| 0.7529 | 0.8941 | 414.1 | 355.9 1 | 14.053 |
| 0•7691 | 0.8810 | 371.6 | 336.2 | 14+157 |
| 0.7858 | 0.8778 | 366.8 | 1315.2 | 14.060 |
| 0.8032 | 0.8744 | 340.6 | 292.8 | 14.031 |
| 0.8214 | 0.8708 | 312.7 | 268.7 | 14.067 |
| 0.8404 | 0.8670 | 282.5- | 242.5 | 14.030 |
| 0.8601 | 0.8630 | 250.2 | 215.3 | 13.934 |
| 0.881 - | 0.8588 | 215.2 | 185.3 | 13.875 |
| 0.9029 | 0.8542 | 177.4 | 153.1 | 13.721 |
| 0.9255 | 0.8495 | 137.1 | 118.9 | 13.748 |
| 0.9495 | 0.8444 | 94.5 | . 81.6 | 13.683 . |
| 0.9743 | 0.8390 | 48.7 | 47.0 | 13.699 |

RMS DEVIATION = 12,1033

· .