
c

cQ
STUDENT RECORD MANAGE:f\1ENT SYSTEM

Submitted to the Graduate School of Computer Science
in partial fulfillment of the requirements for the
degree of:

!•lAST:ER OF COMPUTER SCIENCE

BY

GOVIND KRIPLANI
GRADUATE SCHOOL OF CONPUTER SC.

McGILL UNIVERSITY
!•1ARCH 197 5

ADVISER: PROF. T. H. MERRETT

i

I~

c

ABSTRACT

The Student Record Hanagement System was

designed to create and maintain up-to-date students

records for the school year and to print current class

lists, student schedules and grade reports.

The database designed for the system corresponds

to the proposals of the Data Base Task Group of CODASYL.

This has been shown by describing the database of

the system in terms of Schema and Sub-Schema using

Data Description Language and Data Manipulation Language.

The various functions of the system has been

cost ~~alysed. For comparing the cost of this system,

another system using different approach has been

designed, costed and compared. The result of the cost

analysis of the two systems indicate that the maintenance

of the multi-linked list structured database, such as

this system, is much more expensive.

The system has been tested, but it has not been

implemented in any school .for thorough testing wj. th

real data.

<0

c

A C K N 0 W 1 E D G E M E N T

I would like to expre::;s my indebtedness to

Professor T. H. Merrett, under whose supervision this

system was designed, for his guidance and suggestions

during all phases of the system.

For the purpose of costing the system, I have

used Professor Merrett's unpublished paper on 11 Cost

Analysis Techniques".

Govind Krip1ani

ii.i

(Q

1

TABLE OF CONTENTS

1 • INTRODUCTION

IMPLE?<IENTATION OF SID'IS - P A R T I

1.1

1. 1. 1
1.1.2
1.1.2.1
1.1.2.2
1.1.2.3
1.1.2.4

1.1.2.5
1.1.2.6
1.1.2.7
1.1.2.8

1.1.2.9
1.1.3

1. 2

1. 2.1
1.2.2
1. 2. 3

1.2.4

1.3

1.3.1
1. 3. 2
1.3.3

USING THE SYSTEM
General
Usage Details
Create Course-file
Update Course-file
Create Performance-file
Create Student-file, store info in
Performance-file and link with the
Course-file.
Update Student courses
Insert Narks or I•larks & Grades
Print Grade Reports
Print Class Lists and/or Deck for
Grades.
Update address changes
System Messages to User

RECORD LAYOUTS AND DESCRIPTIONS

Introduction
Systems flowcharts
Considerations for file organization
on DASD
Record layouts

PROGRA .. !'viS AND DESCRIPTIONS

Introduction
Program Logic and flowcharts
J.C.L. Procedures

PAGE

3

7

7
15
16
1 7
18
20

22
23
25
26

27
28

29
31
33

35

40
42
65

'0

0

2

TABLE OF CONTENTS

PAGE
A."'ALYSIS AND COMPARISON \HTH
ALTERNATIVE SYSTE£1IS P A R T II

2.1
2 .1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8

2.3.8.1
2.3.8.2
2.3.9
2.4
2. 4.1
2.4.2
2.4.3

DATA BASE TASK GROUP
Introduction
Principles of DBTG
Data Structures

IMPLEMENTATION OF Sfu~ IN DBTG
Sfu"'vlS' s Database
Schema
Sub-Schema
Programs and flowcharts
Conclusion
COST ANALYSIS TECHNIQUES
Introduction
Definitions
Access Cost
Storage Cost
Analysis of sorting
SR1'·1S Databank Description
I/0 Operations
Cost of operations using different
access methods
Cost of operations using DAM
Cost of operations using SAM
Conclusion

COMPARISON WITH ALTEIDJATIVE SYSTEMS
Mcgill University System
CASJARHS
Conclusion

75
75
76
79

83

87
87
91
94

103
105

1 05
106
108
109
109
112
11 7
123

124
130
139
1 41

141
1 43
146

APPENDIX - A SORTING & SEARCHING TECHNIQUES 149
APPENDIX - B PROGRA1Yi. LISTINGS 16 2

.Create Course-file 162

.Update Course-file 167

.Create Performa~ce-file 171

.Create Student-file and link 174
with Course-file and
Performance-file

.Update Student-file, Course-file 182
~~d Performance-file

.Insert Grades 193

.Grade Reports 199
• Class Lists 204
.Address Changes 210

APPENDIX - C PROGRArJI FUNCTIONS 21 3

0

3

1. INTRODUCTION

In any educational environment the number of

students keeps on changing. The students normally register

for a year, but some leave before completing a semester

or completing the full year. The number of cov.rses taken

by students also varies. The Professors report to the

administration the performance of students in different

courses.

In this complex environment the administration has

the task of maintaining and putting together all the

information required to inform the students of their perfor­

mance during the semester or the period of tt:eir stay in

the school. This task has been very time consuming for

Professors and school administration. I1oreover, it has

been found thz.t due to using manual system throughout

there has been many errors in areas. It has been

realized that the computers must be used to minimize the

errors and reduce the burden on the professors and adEinis­

tration.

The Student Record Management System has been

designed to d educational institutions in maintaining

up-to-date student records the current school year.

The system will be able to or ~elete courses due to

c'·urse changes made by the stu.dents after the initial

registration. It will also produce required reports such

Q

0

4

as class lists, transcripts, and current schedules of the

students. The system will not schedule the students in

classes, but will print out ir schedules.

The system uses nine computer programs to maintajn

the records and print out the reports. The information

such as student number, name, address, telephone number,

sex, degree, courses taken, performance in each course,

is maintained on-line for easy access.

The section 11Using the System" is written from the

user's point of view and describes when to use the

different programs. The section also contains the function

of each program and the necessary input required.

The record layouts and description of the files

are detailed in section "Record Layouts and Descriptions 11
•

In case more reports are required special programs can

be written. This section may also be used to find out where

the information required is located. The system flowchart

shows t different programs and how the databank is

maintained in the system.

With the intention of making the mainte-na."lce of

the programs easy the general flowcharts and the logic

of mch program is also included.

The proposals of the Data Ease Task Group is

discussed in depth. The D3TG introduced several concepts,

such as, Schema and Sub-Schema. A Schema consists of

Data Description Language entries and is a complete

description of a database. A Sub-Schema also consists

http:mainte-na.'1.ce

0

0

5

of data description la.Ylg~Jage entries. It, however, need

not describe the entire database but only those areas,

sets, records and data items, which are known to one or

more speci c programs.

The database of the Student Record Management

System has been compared with the proposals of the DBTG.

It also describes the database of the SffiiiS using Data

Description Lanaguage and the.Data Manipulation Lanaguage.

However, the programs have not been run on any DETG Compiler.

Section 11 Cost Analysis Techniques 11 is devoted to

analysing the costs of computer operations using SRMS.

The cost associated v.ri th SRl'>IS is primarily the cost of

peripheral device access and peripheral device storage.

Howevert before analyzing the cost of any particular

system, such as this, techniques of analyzing the cost

of any system have to be developed. Since the databank

of this system is organized on DASD using Relative Access

Method, another system v.ras also designed to use Sequential

Access Nethod, cost analyzed and compared. The cost of

the above two systems is also compared with the cost of

a system us tapes inst of DASD.

The last part of the manual discusses a couple of

existing Student Record Nanagement Systems. The result

shows that the goal of a:l the SRfiiSs is the sar:e, maintain­

ing up-to-date student records, even though methods,

techniques and data structures may vary.

~ A R T I

IHPLEivlENTZTION OF SRMS

0

7

1.1 USING THE SYSTEM

1.1.1 GENERAL

The Student Record Management System is designed

to maintain up-to-date records of the students by adding

and/or deleting the courses and printing out certain

reports.

The system has nine programs to perform various

functions, such as creating Course-file, updating Course­

file, crea.ting files with students' information a..11d

courses taken, printing class lists, updating the files

to effect the course cha..'1ges made by the students,

address changes, inserting grades in the files, and

finally printing grade reports.

The programs are written in ANS Cabal and can be

used on any computer having ~~S Cobol Compiler simply

by writing Job Control Statements of that particular

computer.

The Section "Schedule of Events" describffithe

the order in which the programs are normally used.

However, the order may be cha..nged to meet the requireT!ents

of a particular institution.

8

SCHEDULE OF EVENTS

Every year new files are created for all the

students and maintained on a Direct Access Device. At

the end of the school year the files are transferred to

a tape.

BEFORE REGISTRATION

At this time the Department decides the courses

they are going to offer during the school year. These

courses are punched according to the layout of card type

01. By using the prograin "CR.CRSE.FILEtt with the data

cards the system will set up a file on Disk containing

the courses offered by the Department.

However, if the Department decides to add some

more courses to the above file later during the school

year, they could do so by using the program "UP.CRSE.FILErt

with the data punched as described above.

These cards do not have to be in any particular

order for creating the initial course file or adding the

courses. The programs sort the cards in the required

order.

Also this time, use the program ncR.P:ERF.FILE"

which creates the Performance-file with dummy records.

This file is used later after the registration. The

program expects a function card which tells the comnutcr

the number of dummy records needed in the Performance-filev

The function card required is card type F1.

0

9

DURING REGISTRATION

At this point the system needs information about

the students for two files. One file needs their student­

number, student-name, address, sex, degree, level, telephone

number, etc. according to the layout of card type 02,

and the second file needs information indicating the

courses taken by the students. The informa"tion is punched

according to the card type 03.

ON COMPLETION OF REGISTRATION

ltlhen the registration is completed the system

expects card types 02 and 03 for the program "CR.STUD.LINKn.

This information is linked up by the computer with the

third file containing courses created before registration.

Card types 02 and 03 do not have to be in any particular

order. The system sorts the cards and link the three

files together.

DURING COURSE CHANGES

Normally, after tending sanE classes students

l:i.ke to change some courses. To make course changes the

system expects one card for each course added or dropped<

For the "drop course" the information should ne punched

according to the card type 04, and the 11 add course"

according to the card type 05.

10

ON COf'IPIJETION OF COUHSE C2ANGF:S

The schools normally have a fixed date after which

no course changes are allowed. Till this date the above

two card types, 04 and 05 are collected. After the last

date for making changes has expired these cards are used

with the program "UP.THRE.FILE" to make the desired

additions and deletions in their schedules.

BEFORE GRADING

The system has a program to punch out cards for

the courses the students are taking, i.e. one card per

course. The cards will be punched out sorted in the

order of course code, so that the cards can be handed

out to the professors for grading without rearranging.

Each card contains student number, student namet course

code, semester and a character "M" to indicate the marking

card. These cards are type 06 and used by the professors

for placing the marks earned by the students on their

cards. The marks are then punched on the same pre-punched

cards.

DURING GRADING

The above cards type 06 are marked by the professors

for entering in the system. If a professor wants to enter

test marks only, which weighs 25% of the course and has

been marked out of 100, he needs to write the weight of

the test, i.e. 25 and the marks obtained by the student.

,c

11

The system can also grade students according to the marks

earned by them till then. The pro expects a function

card - card type F2 which tells the system to add the

marks only or add and grade them according to the grading

scale provided on the function card.

END OF THE SElVlES TER

The files are now up-to-date and contain all the

information about the students for the whole semester.

They are ready to be used for different kind of reports.

The system can print out the following reports.

1. The grade reports for the semester or for the

whole year at the end of the second semester. The program

expects a Function Card - card type F3 which tells the

system the option chosen for printing out grade reports.

2. The class lists c~~ be printed out. In this

case also the system provides options to print out class

lists for the first semester students or all the students

who took this course during the first and the second

semester. The option must be specified on the function

card - card type F4.

The system is quite simple and straight forwardo

It sets up files for the s ' information to be

used during and at the end of

all the schools have the requi

semester. Normally,

of maintaining the

students' up-to-date records <1nd print out certain

12

reports, such as grade reports and class lists which is

fulfilled by this system. The grade report progra~ can

also be used to get the current schedules of the students

during any time of the school year. It will look like

grade reports but without grades. It indicates the

courses a student is taking.

Similarly class li can be used for several

purposes. It could be printed out after registration for

the professors to see who and how many students are in

their classes. It can also be printed out at the end of

the semester for the pro ssors to verify the gradeso

The section "Usage Detailsn contains the layout

of all the cards required for the sybtem. The programs

are also described in this section.

0

• PUNCH
CV' I.\ R.S E s-

puNCH
. 6'tud.enb i."Fo

-~ ~ n11 d t'n~iT""
cour<.St:S

(
(

Pl..l~(\-1

COLI RSt:= ~
CHI-.t-44~? CAi'<.l)$ -

[C=Tir1-1 r 1
jCO~RSt- i

l F!Lt;: I
I

'C.OqRSE I
t.\-\A.~u_;:;:s!

l
I

13

http:HIo.I-.j4

(
I
P'L\NCH ~N.t:S~~-'l

CO\.,\Rs.&.S A•·li) ..
"-IE:W Si\l();:;cNi u-
!Nfo A.t-t~ 'r~tc.llt f

(.0 ·-H< S\,$

~

"' 1/
I :l f..lv '3- E: f'r' l u .< r

(
{. I

Pl.l\.lClt\ I\.
CDt.tR<:.i? ~ b.
CH f..N 4 t= tl• &C>S - ;

l

0

Q

14

15

1.1.2 USAGE DETAILS

The table below shows the programs to be used to

perform the. different functions. The programs have been

tested on McGill 1 s IBM 360/75 OS Computer. The JCLs for

the programs are written as seperate procedures. To

execute any program on the above computer only few cards

are required which are described under each program

seperately.

SC.\-\rOULE Of E..'JfNTS PROG:t~l\t1 PAGE"
N1J

BEFCR.~ \~EG\\S T~~'T\0 "-\ C.~- C...Rs.E-. f-\ Lt
\l p. <:...R.S~~ ~\LE

!C.fL f>£7P.F. F-\\ .. t
!

t.)l--l CCM fi\.E't\ON OF FtfCtlSTR.I\1\01\l 0<-Sl\.\t>·LI't-.\\(
j

ON C: o M P L~ T\ Dt---r-eF~C..o-t\R:s~--~ U-P. :r· \-\ Rt::~ f \LE
CttA.N ~E-5

B.EFOP...G GtRA-t>INGt ·~ R.C..L. C!>

!

)>UR.I~(::f (::t RAt> I N C:f IN 'E. -M~A.~.lt~A.b

i
J

fN.i:::> Of- Tt\-t SE MBlrR.. P~. ~ R.. R£:P
PR.- t..L. C..l>

-...-..-· --

------- -----------'--

0

Q

0

0

1.1.2.1 CREATE COURSE-FILE (CR.CRSE.FILE)

This is the program used by the administration

to create the Course-file.

Once the department has decided to teach certain

courses during the current year they can be punched

according to the following format.

CARD TYPE 01

Cols. Contents Bytes

4-9 Course-Code 6

10 Semester 1

11-35 Course Description 25

36 Credits 1

80 t SI 1

These are the courses offered by the depart~ent

from which the students make selection for the schedule.

To create the Course-file the following cards are required.

//JOB
I I EXEC CRCRS E:B'L
/ICCF.CARDS DD *,DCB=BLKSIZE=80

I*

0

0

17

1. 1. 2. 2 UPDATE COURSE-FILE (UP. CRSE. }'ILE)

This program is used to add more courses to the

Course-file.

In case, after the initial set-up of the Course-

file, the department decides to offer some more courses

this program c~~ be used with the cards punched according

to the following format.

CARD TYPE 01

Cols. Contents Bytes

4-9 Course-Code 6

10 Semester 1

11-35 Course Description 25

36 Credits 1

80 t s f 1

The program 11 UP. CRSE. FILE" is used for adding

the courses to the origjnal Course-file. To execute

the program the follO'\.'Ting cards are required.

//JOB
I I EXEC UPCHSEJ<~IJ
//UC?.CARDS DD *,DCB=BLKSI~E=80

CA~t) T'tPf 01.

I*

0

18

1.1. 2.3 CREATE PERFOR1'11ANCE-FILE (CR.PERF.FILE)

This program creates the Performance-file with

the dummy records.

The Performance-file is used by the program

'CR.STUD.LI.NK" to store a part of the student information.

The program expects the function card - card type F1

which tells the system the number of dummy records

required in the Performance-file.

CARD TYPE F1

Cols.

1-6

80

Contents

No. of dummy records

'A'

Bytes

6

1

The number of dummy records for the first

semester is equal to the number of students times courses

allo,rred to take per student. For the second semester

the number of dummy records is equal to the number of

students times the courses allowed to take per student

plus the number of courses a student was allowed to take

during the first semester.

The Performance-file with the dummy records is

created every year before the first semester and before

the second semester starts t flrst semester's Performance-

file is transferred to the new Performance-file. The

idea behind this is not to block extra space on the Disk.

For example, during the rst semester a student will have

http:CR.STUD.LI.NK

19

only five courses in the file and second semester ten,

so why create a Performance-file with ten dunmy records

when only five will be used.

IBf'l Utility Program "IEHCOPY" can be used to tra.YJ.sfer

the first semester's Performance-file to the ne,,., Perforr.la"Yl..ce-

file.

To create the Performance-file for the first

semester the following cards are required •.

//JOB
// EXEC CRPERFF
//CRP.CARD DD *,DCB=BLKSIZE=80

I*

0

0

0

20

1. 1. 2. 4 CREATE STUDENT- , STORE INFO IN ygRFOIU'IANCE-
FILE AND LINK THE£1 \•/ITH THE COURSE-FILE
(CR.STUD.LINK)

After the completion of the registration the card

types 02 and 03 are used with this program to store

students' information in the Student-file and Performance-

file, and link the t\•TO files with the Course-file.

CARD TYPE 02

Cols.

1-3

4-9

10-29

30-33

34

35

36-52

53-56

57-72

73-79

80

CARD TYPE; 03

4-9

10-11

12

16-21

80

Contents

Department

Student Number

Student Name

Degree

Level

Sex

Number and Street

Apartment Number

Tovm

Telephone Number

I F t

Student Number

Current Year

Semester

C ou:r·s e Co

'·G'

Bytes

3

6

20

4

1

1

17

4

16

7
..
I

6

2

1

6

1

0

c

21

The data cards do not have to be in any sorted

order. To execute the program the following cards are

required.

//JOB
// EXEC
//CSL.CARDS DD

./

C..A.~l> l'{fl~ 02.

CRSTLINK
*,DCB=BLKSIZE=80

A.l-l t> 0 3 !-

I*

c

0

22

1.1.2.5 UPDATE STUDENT COURSES (UP.THP~.FIL~)

The program is used to update the files after the

students have made changes in their courses.

The program expects only two type of cards, card

type 04 and 05 one for each deletion or addition of

courses.

CARD TYPE 04

Cols. Contents B;ytes

4-9 Student Number 6

10-11 Current Year 2

12 Semester 1

16-21 Course Code 6

80 I A I 1

CARD TYPE 05

4-9 Student Number 6

10-11 Current Year 2

12 Semester 1

16-21 Course Code 6

80 ID' 1

The cards do not e to be in any sorted order.

1ro execute the program the owing cards are required.

//JOB
// EXRC UPTHREFL
//UTF CARDS DD *,DCB=BLKSIZE=80

./r-------'-1

/*

(c

c

0

23

1.1.2.6 INSERT J.VIARKS OR K.\RKS AND GRADES (H:S.NARK.GRAD)

The program will add marks in the student records.

The marks and the percentage of the marks is punched on

the card type P6. The cards are pre-punched and needs

only two numbers to be punched.

It can also add marks and grade the students

according to the Grading-Scale specified on the Function

Card - card type F2. The Function Card also contains

the length of the Grading-Scale.

CARD TYPE P6

Cols.

1-3

44-46

Contents

Percentage

Marks

Bytes

3

3

If the marks for an assignment are beine entered

and it weighs 33% of the course marks, 33 is punched in

percentage field and the marks obtained in marks field.

It is assumed that marking is done on a scale of 100.

CARD TYPJ<~ F2

1-3

4-5

78-79

80

'YES 1 if grades to
be given

or
t NO' if grades not

to be given.

Marks obtained -
Grading Scale.

Length of the above
Grac,ing Scale.

t A I

3

2

2

1

24

The following is an example of the Function Card

with the Grading Scale option.

3A

This means if a student earned 80 or over gets A,

65 or over gets B and so on. The number of the s in

the above example is three and therefore 3 punched in

columns 78-79, right adjusted. Column 80 contains "A"

to identify the Function Card. In the absence of the

Function Card a message will be printed out and the

program will stop execution.

To execute the program the following cards are

required.

//JOB
I I EXEC INSNRKGR
I IUJIG. CARDS DD * , DCB=BI1KSI ZE::::80

I*

c

0

25

1.1.2. 7 PRINT GRADE RE:C·ORTS (PR.GR.REP)

The progra~ prints the Grade Reports of the

students for the first semester and/or the second semester.

It expects a Function Card - card type F3 which

indicates the option chosen for printing the Grade Reports.

In the absence of the Function Card it will print out

a message and stop the execution.

CARD TYPE F3

Cols. Contents Bytes --
1-2 Year - for example 2

"7 2 11

3 Semester 1

80 "A" 1

The Function Card is the only data card with the

program which will produce the required Grade Reports.

To execute the program the following cards are required.

//JOB
I I EXEC
I IPGR. CARDS

I*

PRGRRJW
*,DCB=BLKSIZE=80

0

26

1. 1. 2. 8 PRINT CLASS LISTS AJ.'JD/OR DECK Ji'OR GRAD"SS
(PR.CL.CD)

The program will print out class lists and/or punch

cards - type P6. These cards are meant for the professors

to place marks on them. It expects the Function Card -

card type F4 which indicates the option selected.

Cols.

1-2

or

or

3

4-5

or

6

80

Contents Eytes

'AL.' - class lists with 2
all the students needed.

'74' - class lists of the
students of class 74
needed.

'NO' - class lists not
needed.

Semester

'00' - Card type P6 not
needed.

'74' - Cards for the
students of class 74 needed

Semester - for cards.

'A'

1

2

1

The Function Card is the only data card tte

program which indicates the option for the output. To

execute the prot;rarn the following cards a:r:= required.

//JOB
I I EXBC
//PCD.CARDS

PRCLCTJ
DD *,DCB=BLKSIZE=80

GARJ) TiPE f4

I*

http:PR.CL.CD

0

27

1.1.2.9 UPDATE ADDI-~ESS CH.A?\GES (UP.STUD.FILE)

The program updates the students' addresses.

It expects one address c~ange card - card type 06

for each student whose address is to be changed. The

cards must be punched according to the format given

below.

CARD TYPE 06

Cols. Contents B;ztes

1-6 Student Number 6

7-26 Student Name 20

27-30 Degree 4

31-32 Level 2

33 Sex 1

34-50 Number & Street 17

51-54 Apart:nent Number 4

55-70 Town 16

71-77 Telephone Number 7

80 'C' 1

To execute the program the follo'lr!ing cards are

required.

//JOB
I I 1:'1';.,..-1:'0

L.:.',....i....iv

I /USF. CARDS

I*

T'T' J..hJ

UPSTUDFL
*, IZE=80

c
f

0

28

1.1.3 SYSTEM MESSAGES TO USER

ASKED TO ADD - ALREADY TAKING

CHECK COL - 80

COURCE NOT FOUND

CHECK FUNCTION CARD

FUNCTION CARD !1IISSING

NO NORE DU.t;J.IviY RECORDS

NO. OF DUM~IT RECORDS CREATED XXXXXX

RECORD NOT WRITTEN

SEARCH UNSUCCESSFUL

SORT UNSUCCESSFUL

STUDENT NOT FOUND

STUDENT NOT TAKING THIS COURSE- NOT DELETED

STUDENT NOT IN THIS CLASS

29

1.2 RECORD LAYOUTS A~D DESCRIPTIONS

1 • 2. 1 · INTRODUCTION

The system is designed to maintain up-to-date

records of the students by adding, deleting and updating

the files. It can also print class lists, current

schedules and grade reports.

The system has the following three files and two

directories:

The Student-file contains the students' information

such as name, address, sex, telephone number, degree,

level and student number. There is a Student-file-directory

used by the system to access the students' records directly.

The Course-file contains the courses offered by the

school. The Course-file has a Course-file-directory which

enables the system to access any course record directly.

The Performance-file contains information such as

semester, year, marks and grade earned by students. The

number of performance records for a student is equal to

the number of the courses he is enrolled in.

All tbe three files o~ the system, Student-file,

Co·arse-file ancl Performance-file are organized on a Disk.

The files a<r:-e linked vd th ea other by pointers which are

addresses of the connecting records in the other files.

This is shown in the :Figure ''SRl\'i:Ss Data Structure".

The records in the las are accessed either by

Student number or Course code which are in Student-file a11d

Course-file.

0

30

No searching is req~ired in the Performance-file,

because the pointers of these records are stored in records

of the Student-file, Course-file or eve::1 Performance-file.

To reduce the searching time to minimum the above two

directories for the Student-file and the Course-file are

maintained on a DASD. The layouts of the three files and

the two directories are given in this section.

The system consists of nine programs to perform

the various functions. All the programs are listed in

the section "Usage Details". The system flowchart shows

the functions of the different programs. For the purpose

of sorting records Sort verb .o1· ANS Cobol is coded in the

programs.

The Job Control Language for each program is written

as a separate procedure. To execute any program of the

system 0:::1 IBM 360 OS Com~uters only couple of statments

are required which are described under each program.

\

1

1?E.Rh:>A1'1AN (~~
f-1 LE

--~-----

31

I
CR.C:..RSt;.'f\L\: :

I

c

PR.C.L.C..b

c

32

S Y.S1 e t--\S_ FLoW t.\-1 Aft 'T ((ut--\._)

(tR f\ J>I:C'O.
<:AR.D l''{P p b

UP.ST\...\.D. ~11....\Z
CAP..p 't'i p E" Of..

33

1. 2. 3 CONSIDERATIONS FOR FILE ORGANIZATION ON
DIRECT ACCESS DEVICE

The system needs to have all the three files on

a direct access device so that they are easily accessable

for using or updating. There are many considerations

before it could be decided whether the files should be

organized sequential, relative, index sequential or

direct access, which depends on the use of that particular

file.

COUESE-FILE

The Course-file contains the courses offered by

the school. The. usage of the file is as follows:

1. We may want to add new courses to the file.

However, this will be done only once a semester. For this

purpose the courses can be sorted added even in a file

organized sequentially.

2. We will use this file to link the Student-file

and Performance-file with it which will be done two times

every semester, first time when the students register

for the courses and the second time when they ma~e changes

in their courses. For this purpose we need to access

records from the Course-file, store the address of

performance record in it and store the record back in its

original position. This is only possible if the Course-file

is organized index sequential, relative or direct access

so that any record can be accessed and stored back after

updating the pointers.

34

3. The system will use this file to insert the

grades and marks earned by the students. The grades will

be entered about three times a semester, i.e. six times

a year. For this purpose also the Course-file should

be organized by index sequential, relative or direct access

method.

4. When the grade reports or class lists are

printed the system accesses the Course-file randomly,

which also requires the Course-file to be organized by

index sequential~ relative or direct access method •

. After considering the above factors it is desirable

to have the Course-file organized by relative method on

a Direct Access Storage Device.

Initially the records in the Course-file will be

sorted but when the additions are made the new records

will be stored at the end in the Course-file.

STUDENT-FILE AND PERFORMANCE-FILE

The above two files should also be organized by

relative access method on a DASD since they will also

be accessed in the same way as the Course-file.

The two directories for the Student-file and the

Course-file are accessed sequentially and therefore,

stored by sequential access method.

35

1.2.4 RECORD LAYOUTS

STUDENT-FILE

Cols Contents Bytes --
1 - 3 Department 3

4 - 9 Student Number 6

10 - 29 Student Name 20

30 - 33 Degree 4

34 - 35 Level 2

36 Sex 1

37 - 53 Number & Street 17

54 - 57 Apartment Number 4,

"' 58 - 73 Town 16

74 - 80 Telephone Number 7

81 - 84 Address of a record 4
in the Performance-
file.

84

STUDENT-FILE-DIF~CTORY

Cols.

1 - 6

'7 - 12

•

•

989 - 994

995 - 1000

Contents B:i:tes

Student Number 6

Address of a record 6
in the student-file.

•

•

•

•

Student Number 6

Address of a record 6
in the Student-file.

12,000

3'7

,....
PERFOID1AN CE-FILE ..

Cols. Contents B;rtes

1 - 4 Address of a record 4
in the Student-file.

5 - 8 Address of a record 4
in the Performance-
file for the next
student in the same
class.

9 - 10 Year. 2

11 Semester. 1

12 Grade obtained. 1

13 .. 14 Percentage. · 2

15 - 18 Address of a record 4
in the Performance-
file for the next course

1!111>, of the same student .. ,;

19 - 22 Address of a record 4
in the Course-file.

22

"""'-
till

38

COURSE-FILE

Cols. Contents Bytes

1 - 4 Address of a record 4
in the Performance-file
for the first student
in this class.

5 - 10 Course Code 6

11 Semester Code 1

12 -36 Course Description 25

37 Number of Credits 1

37

COURSE-FILE-DIRECTORY

1 - 6

7 - 12

•

•

•

189 - 194

195 - 200

Course Code

Address of a record
in the Course-file.

Course Code

Address of a record
in the Course-file.

6

6

•

•

•

•

6

6

2,400

39

"'"'
1111111 *n w 1.1- 1.J)

UJ!w "" ~ ..!\

Jl '{].
cl. ~ C! .j l)

J v
0 v

et:
Ul
.:t: ...
w
.:;
{:

ilJ
..J I [

~

~
I i I

I..U

~ I

Jit.

:t I
z

4. ~ o I J! & ·o eel _,
1: I LL I & lu..

z z lz. :z:.l
d. i!. :l

[-
If)

0 1-
. _, - u.r

; u..
_..

t:1.
-t.J,.

i.lJ
Cl..

UJ
UJ
Cl.
±
t-

lj
I.\..
I

t-
z

j ~ l..lJ
~ 1-

" :I
j., \{\

rl \-
If\

\[\

40

1.3 PROGRAMS & DESCRIPTIONS

1.3.1. INTRODUCTION

There are nine programs in the system to create

the files, update them and print out reports. The function

of each program is described seperately with the necessary

input data and output.

This section also contains the documentation and

a general flowchart for each program. The programs are

written in k~S Cobol using list processing techniques.

For the purpose of sorting and searchin g the verbs Sort

and Search of ~~S Cobol are used.

The programs have been tested on IBM 360/75 OS

Computer. The procedures for JCL are written which can

be cateloged and jobs executed by calling the procedures.

The database consists of three major files,

Student-file, Performance-file and Course-file, and two

directories. The two directories are for the Course-file

and the Student-file sorted on Course code and Student

number respectively. The directories are stored as two

separate files.

The Student-file contains information, such as

student number, name, degree, level, sex, street, apartment

number, town and telephone number.

The Course-file contains information, such as

course code, semester, course description and credits.

This is the file of the courses offered by the school.

41

New courses can be added to this file.

The Perform2nce-file contains information, such

as the year, semester, grade earned, and the marks

obtained. If a student takes five courses he will have

five records of this type but only one record in the

Student-file.

At the beginning of the school year the files are

set-up on a DASD. The files are kept up-to-date, by

adding/deleting the courses, entering marks for tests/

assignments, grading the students, and finally printing

out the grade reports.

42

1.3.3 PROGRAM DESCRIPTIONS AND FLOWCHARTS

CREATE COURSE-FILE & DIRECTORY
(CR.CRSE.FILE)

This program creates the Course-file and its

directory. The initial Course-file is in sorted order.

Normally course-code-field has the course-code,

but if the course-code-field has zeros in it, indicates

the first dummy record and new courses can be added

from hereon. These dummy records are at the end of the

file.

In the directory there are two fields £or each

course, i.e. course-code in sorted order and a pointer

for the course-record in the Course-file. However, after

all the pointers in the directory the ne~t address field

contains zeros to indicate the end of the pointers in the

directory.

To create the Course-file cards are read and

stored in a temporary Disk-file. These cards should

contain 'S' in Col-80 otherwise they will be rejected and

not stored in the Disk-file. A message saying 'wrong card'

vrill be printed out. The Disk-file is then sorted and

stored in a relative file called Course-file. The records

in the Course-file are stored relative to 1. At the same

time it also stores course-code with a pointer starting

from 1 in the memory and the address field is incremented

43

by 1 every time a new course-code is stored. This

points to the record in the Course-file. After all the

courses are stored in the Course-file their course-codes

and addresses are also stored in a sequential file as

a single record. The is the Course-file-directory.

44

Cc\.\ Rs \:- \=-\LE -I>\ R ~ c.T t \<.'I

RE Ab

C.Cl\..\I<SE.- F1 u;

S TC> ft" t>~

t'> t>~- l 1'4 Tt-lt·f\

45

UPDATE COURSE-FILE (UP.CRSE.FILE)

This program adds new courses to the Course-file

in the end of the file. It also stores the course-codes

and their keys, i.e. pointers where they are stored in

the Course-file, in the Course-file-directory. The

Course-file-directory is moved in memory and while the

courses are being added to the Course-file, the course-

code and its address is being printed out and also stored

in the Course-file-directory in the memory. When all

the courses are added the Course-file-directory is sorted

on ascending key using course-code and stored back on a

Disk as a single record. The first available slot in

the Course-file-directory is indicated by zeros in the

address field. After updating the Course-file-directory

again zeros are left in the address field for future

updates. Similarly the first available dummy record

in the Course-file contains zeros in the course-code

field.

SIO\o't~

LD~fl:!>E..ZODt

ON .t>\:0.\<. ANi>
AI>D I~ J:>\;><

46

1--~--<

47

CREATE PERFOR?-!ANCE-FILE \viTH DUMMY RECORDS
(CR.PERF.FILE)

The program creates the Performance-file with

dummy records. The file is used by the system for storing

students' course performance.

The progra~ reads the card-file and the only data

card is the function card which indicates the number of

dummy records required in the file. The number is moved

to the nominal-key of the Performance-file. Now just

by saying once 'write Stud-work-rec from new-rec, it

creates the required number of dummy records. The new-rec

area contains zeros and therefore all the dummy records

contain zeros.

48

CREATE STUDENT-FILE, ITS DIRECTORY, SORE INFO IN
PERFORHANCE-FILE AND LIKK THE!/f WITH TEE COURSE-FILE
(CR.STUD.LINK)

This program creates the Student-file with informa-

tion like Student number, Name, Address, Telephone number,

etc., stores information such as Grade, Marks, year, in

the Performance-file and links them to the Course-file.

The program reads the Card-file and stores all the

cards containing 'F' and 'G' in Col-80 in a temporary

Disk-file. The letter 'F' indicates card meant for the

Student-file and 'G' for the Performance-file. If col-80

contains something else the card is printed out with a

message to check the card. It is probably the wrong card.

The Disk-file is sorted before processing. If the record

read is F-type the student information is moved in memory

and next record is read. If the record belongs to the

same student, which is determined from the Student number,

it must be G-type record because the Disk-file is sorted

so that any student's 'F' record will be the first and 'G'

records follow it. Since it is 'G' type record the

information is moved in memory for the Performance-file.

Thus all the records read after 'F' type card having the

same student nur.1ber must be G-type records. When all the

cards of a student have been moved in memory, i.eo when

student number changes, F-type record is stored in the

Student-file and G-type in the Performance-file.

The address of the first Perfcrmance-file-record is

stored in the Student-file-record. There is a variable in

49

memory which contains zeros to start with and also zeros

moved in it when the student number changes. Hence when

the first G-type record is read this variable contains

zeros and the address of the Performance-file-record is

stored in the Student-file-record and in this variable,

which is a pointer to the next Performance-file-record

and this record should contain pointer to the next

Performance-file-record.

Similarly, there is an array corresponding to the

Course-file-directory, which contains zeros initially to

indicate that the courses in the Course-file are not

pointing to any Performance-file-record. The first

Performance-file-records address is stored in the

Course-file-record and when it is done so, the corresponding

element of the above array also contains this address.

Next time when a Performance-file-record is added the

corresponding element of the array is checked. This time

it contains an address of a Performance-file-record. Hence

this address is stored in the Performance-file-record.

The first four bytes of the record number 0 in

the Performa.."lce-file contain a..Yl address of the first avail-

able record in the Perform~~ce-file. Also the first four

bytes of the first available record contains zeros.

The Student number field of the first available

record in the Student-file contains zeros. Similarly,

the course code field of the first available record in

the Course-file contains zeros.

t-\w6
Sr-41)-1 N Fo

IN 1"1:\:-MO\l.'f- i
1"\.\ l"t-~ I

SWITC\-1 OH- I

50
C..R'EA.Tt S1'l\ t>t=N 1' -f-\Lt_..

AN\> Lt N \::. wt nt P>E~~OR.M P-.N.t\? t:-tLf
A l---It> Co\.\.P..S.E -F\ LE"

1 i'>\.D\18 Z:r:R:l
! TO L-A->T Ltli 1<. I
i lH. t>Ettf, RE"'-- I
L~- -·------"

R::;AD CAR-D·FtLe

(S\-udt.Y\~ l"\~0
c...~c! Cov.csc

CA'<".:\S)

MO\/(; C.O\.\R.'!>~- \ l-\ f.O
TO

t'>'\EI'no fLY

lf FtP-':.f co~..u::~..s.f:t c,rot'r::
~1>P~l;S.S tM ST•·U::O- t~FO t
MtATQi jo nte-Pi'E:VtO~

<..C\o\~~t;;

S ~#\R.L\t C.ou..P.H:-<.o{)E 1 N
tCU..f:;!.<)E.-F\LE />.1--\0 '>t'o ~E
,._t>Pt2-e-s.r t 14 PeRt:- P.a.

If tsr f'trP-f- R.£c... ?TI)R..E
Proo~t. OF Tl+l~ PG~F-RR IN
The ABOv~ (1)..\.~~!Ht.tc.... E.LS.E
ATiARI1 TO 1\lt: U'I!>T F'!!IC!=--~&L

P.,U..O S.lO~ <:,;,.11-I.D- Ab Pit.
'tk 11-\€

f>£Rf- R,t;c..

51

UPDATE STUDENT-FILE, COUE.SE-FILE AND PERFORN.AJWE-FILE
ADDITIONS & DELETION OF COURSES (UP.THRE.FILE)

The program updates the three files Course-file,

Student-file and the Performance-file. Updating means

rearranging the links so as to have the pointers to the

student's current courses. The program is used when the

students change their courses which is normally done

once a semester. The program disconnects the links from

the courses the students do not want to take and connects

with the one they want to add. The deletion and addition

of courses are punched on card type 04 and 05. The

addition is made in the sequential order, in two directions

i.e. student's courses and class list.

The cards meant for deleting courses contain 'D' in

col-80 and the one meant for addition contains 'A' in

c0l-80. The Card-file is read and the one containing 'A'

or 'D' are stored in a temporary Disk-file and others are

printed out with a message to check the cards. The Disk­

file is sorted major field being student-number in ascend­

ing order and minor field col-80 in decending order. Thus

a student's deletion card will be first and then addition

cards, if any.

The records are added or deleted from the Performance-

file but in the Course-file and Student-file only the

links are changed. When a student drops a course a record

is released in the Perform~~ce-file and is r.ow available

for use. Ther is an array in memory where the address of

c

0

52

the records. which are available due to deletions, are

stored. Now when an addition record arrives the program

checks this array to see if there is a pointer to any

available record for use. Thus this array never fills

up. By deletion addresses are stored in it and additions

take them away. However, when ttere is no address in

it the program picks up the address of the next available

record, which is in the end of the Performance-file. This

address is stored in the record number 0 of the Perforn~~ce­

file by the previous program. At the end of this program

the updated address of the next available record in the

Perform~~ce-file is stored back in the record number 0

for updating files in future.

For deletion, the particular student's records

from the Performance-file are read in memory one by one,

checking for the one to be deleted. ~~en the record is

found the links are changed in the preceding and the follow­

ing records and written back in the Performance-file.

This is done in two directions, i.e. student's courses

and class list. Also the address of the free record is

stored in the above array.

Similarly. for addition records from the Performance­

file are read in memory checking for where the new record

fits in sequentiallyo w~en found links are ch~~ged in the

preceding and the following records and written back in

the Performance-file~ The address of the new record is

picked up from the array, if there is any, otherwise

address of the next available record is picked from the

53

record number 0 in the Performance-file. This linking is

also done in both the directions, student's courses and

class· list.

!

54
4Pt::>A1f" FtLF.S

(At>t:> ~N DEt£1£ Co\..I.R-'>E'>)

...
"'tcve, Lt-\fv To t-t~I,,
PeR.f~\:).K tN ME:M~'f 1 '
$tOR.!;STU.D"'-I-(t5 f

,..t>l)j;!.~,S

1
STOR{i: f;u.MM'{ oR.
HtW 'PE:R~-El-e:i'}
flt>r>.:tt;-S.5 \1'-1 ST~-tDSHT-

~&

t
"'f:.T 11\l> C.OI.\~<:,1;'-~I:C
f!<!{;>M C0\.1!<.<;.10'--ftt .. E' STo~
1r:s ~Pt'>i2.tS.5 IN pr;;~F-

c<.e-c_

-J,
ST~R.t;; J>qMM \.(og,_ Nt;j
f6'"P.f-i2-t;c\ ~l:>t>ll.'e<;S! N
C.ou..R.SI::-R.~C-l>J R.lf~ ~~j
L!o-.j FILii:'->·

~-
Dts.p LA"I -
"?TU.O!;;"NT'- N01 LOI.A~:>I::

COt> I: 'At>t>en"'.

... J. ..
UPDATE D4Mil'IY
~Lot:~-OS A f2-R..A....,.

L.
'

'iE"S

RE'AP CAFI.D·tltf
(tot.-\(.)~ o..AJ·,t;o,..

O."d ch.t}ion)

ONI..Y APt> fTI-4P
t>~U?Tt:: L..P-A..!U

{:t'e"At>
9oFtnn:.

f-tL~

G,E T T\Wr. sruo's .
.S.T\..t}eNT-P-~C.

F~ <;il.t!>E\'-\T~
r\ \.:e

--~~---,-"···--

/" lS
(oL.. 'SO

'A'

t-to Cter ~ TH tS ccut.t>~ B'f
TR.,IN4 ,:.opt:~.. FRO~ $~0-

I Re'C.' If ntt> I!> HoT T\11<'
ON I? tO f.!,~ .l>'l:ri..E;:Te-0 C,t? f
To 'T\te' NP><"r. .. ~
f>(C.~ \..(p PE'~- R.t?'-'s
ctc\c\c. f'llutl\ W\.l~J::.:-~e:c..
AND s.roA.t; lT IH THe
PP.cV\'i:IA5 OM(O: ..

~ 5"'f $T40EHT-""
R-'!. e -c..o r:."" Pt--\.D
t;L~Tl21) '·

~loVE Z.EI To '""" J
f'D~\TIGN FROM lN\i(;IU;;!

T\11? ASDV'6' ADPR. Ptt~<s;j
-.tP.

l
?lORE' 1 r> f'> t:>D R ts. .s
lN DUMMY R.r;:t:~

AR.RA'j •

55

INSERT MARKS OR MAill(S .~ID GRADES (INS.MARK.GRADE)

The program adds the marks given by the Professors

in the students' records or adds and grade them. The

Function Card indicates the option selected. The Function

Card is suppose to be the first data card.

The program reads the Card-file and encounters the

Function Card which it holds in memory till the end of the

execution. In case. it is not the first card it will print

out a message and stop further execution. Other data cards

which are only rot-type cards, are stored in a temporary

Disk-file and at the end sorted on ascending keys, student­

number being major field ru~d course-code minor.

The Student-file-directory is read in memory to

access the students' records directly.

The sorted Disk-file is now read, the student's

fetched from the Student-file-directory and the record

is accessed from the Student-file. This record contains

the address of his. first performance-record which is read.

The performance-record contains the address of the

course-record which is also read.

Now the course-code is compared with the course-code

in 1'1-type card and if it agrees the marks given by the

Professor are added to the performance-record. If marking

and grading option is selected, the program will check the

Grading-Scale given through the function card and grade

the student. If the course-code does not agree there could

either of the two reasons given below:

56

1. If the course-code of M-type card is smaller than

the course-code of the course-record means the student is

not taking this course - the card is erroneous. A message

to this effect is printed out.

2. If the course-code of M-type card is bigger than

the course-code of the course-record next performance-record

is read, whose address is also in the performance-record

just read. From this second Performance-record the address

of the course-record is picked up and read. The course-code

of the course-record and M-type card are compared and the

above procedure is repeated.

The procedure is repeated to handle all the M-type

cards.

. 57

PRINT GRADE REPORTS (PR.GR.REP)

The progrrun prints out students' Grade Reports.

It can print out Grade Reports for a semester or for the

whole year. The option is indicated by the Function Card.

The program reads the Card-file and expects the

Function Card to be the first and the only card. It holds

the function card in memory till the end of the execution.

If zeros are punched instead of the year, it means Grade

Reports for the whole year are required. In case, the

first card is not the Function Card it prints out a

message to this effect and stops further execution.

It reads the Student-file-directory in memory for

direct access to the students' records.

The first address of the Student-file-directory is

moved to the nominal-key of the Student-file and read.

In this record the address of his first performance-record

is stored, which is moved to the nominal-key of the

Performance-file and read. The performance-record contains

the address of his next performance-record and also the

address of the course-record in which he obtained the

grade and marks shown in the performance-record. The

record is compared against the requirement given in the

Function Card and the following action is taken.

1. If the semester-required in the Function Card is

equal to zeros means the Grade Reports for the whole year

are required, in which case no further checking is necessary.

58

2. If they are are equal the address of the course­

record is moved to the nominal key of the Course-file and

read. Now the course-code, course description, grade,

etc. are printed out. Then the address of the next

performance-record from this performance-record is moved

to the nominal-key of the Performance-file and read, and

the above procedure is repeated. When this student's

performance-records are finished, which is indicated by

zeros in place of the next performance-record's address

the next student is taken up and the whole procedure is

repeated.

3. If they are not equal the address of the next

performance-record is moved to the nominal-key of the

Performance-file and read, and the procedure repeated.

l
l
I

I

59

f"lC\<.. UP $TU.£>
,b.J;>[>R,~ f-~oM

\

i
. ~'\OV\? l-\IS. (i:X{fjt)

A't-t b P ~ f'O~I'\A­
NC..\: IN 'Tllfi
Co~tO.

L ____ _ PRINT

ut~ ,.._t>G"·R£Poi{T

. o

60

PRINT CLASS LISTS AND/OR PUHCH CARD DECK FOR GRADES
(PR.CL.CD)

The program prints out class lists and/or punches

M-type cards for the professors to use for marking the

students. The Function Card indicates the option selected.

The program reads the Function Card and holds it

in memory till the end of the execution. If, however,

the first card is not the Function Card it prints out a

message and stops execution. The Function Card is the

only data card but if there are more data cards behind it

they are ignored.

It reads the Course-file-directory in memory for

direct access to the course-records and holds it till

the end of the execution •

The address of the first course-record from the

Course-file-direct is moved to the nominal-key of the

Course-file and read. The course-record contains the address

of the first performance-record of the student in this

course which is moved to the nominal-key of the Performa~ce-

file and read. The performance-record contains the address

of the next student's performance-record address in this

class and also the address of the student whose work is

shown in this performance-record. At this point the

semester-required in the Function Card is compared with

the semester of the. performance-record.

If they are equal the address of the student-record

http:PR.CL.CD

0

61

is moved to the nominal-key of the Student-file and read.

Now the student's inform ation from the student-record

and his work from the performance-record is printed out.

Next, it checks if the M-type card is required. If the

N-type card is required punches a card,and if not, it

moves the address of the next performance-record to t~e

nominal-key of the Performance-file and repeats the whole

procedure.

However, if the semester-required in the Function

Card is 'AL' no checking is done and all the records are

printed out. If the semester-required is 'NO', no checking

is done ~~d no records printed out.

The last performance-record is indicated by zeros

in place of the address of the next performance-record.

When it is encountered the program moves the address of

the next course from the Course-file-directory to the

nominal-key of the Course-file and the whold procedure is

repeated from the beginning till it reaches the end of

the Course-file-directory.

0

62
RINT C...LP....~S \...\S"T.S

~!>
C0~R.St:--ft u:_

J>tR'E'c:tOR'f

PICK. 1.tP c.at.ew­
l?.~c. ·~ ~~M~- r>.t-.t~
Gterr tT.

I t't\<JII€ CEI\.t~!>t·
rCot>~, O~tPil1;~
!?ROf=5S.a/t, ~Tc.
lN M 8"\0A..'f.

PtO- UPPE"M·
~ '"c'> Ar>DIJ.. P~
l£:;(Je)f:,Rec.

jPllk L\P t.Jt:r:r
!Pt-RF- t:Ec.5 Atll)~.
lf'I'ZoM nu..s

I PER-f.-Re£. A-N b
l-tEt IT.

L--~

f'R\'-l, r n;E"
Sf40fN. T Wt Tl:i
th:. t J.J.i='D.

'/ES

63

UPDATE STUDENT-FILE - ADDRESS CHANGES (UP.STUD.FILR)

The program is me~~t for changing the students'

address in the student-file. New addresses of students

are punched on cards according to the card type 02.

The Student-file-directory is read in memory and

held till the end of the execution, which enables direct

access of the desired records.

The Card-file is read and if the card col-80 does

not contain 'C' it is printed out with a message 'wrong

card' and the next card is read. If the Col-80 does

contain 'C' the program gets the address of this student

from the Student-file-directory, reads the record from

the Student-file and replaces the address with the new

one. It also prints out the old and the new address.

Thus the whole procedure is repeated till all the cards

are dealt with.

0

64

READ
STUI)rNi- File·

C>\l~.t'CiOfl...1

I
Ptc..t-- up T\H: ~
Of- Tit\.~ Sn-tD8'-\f

1 PR.oll'\ rtt~ PI £g.'

TOP...."(A-NI) Gtti
.S r:1.1 D -- ~r;c..

65

(Q 1.3.4 JCL PROCEDURES

//JOB
//CRCRSEFL PROC 11 CR. CRSE. FILE 11

//CCF EXEC PGr'l=CRSEFILE
//INDISK DD DSN=INDISK,
I/ UNIT=ONLY
I/ DISP::.:(NEW,DELETE),
/I SPACE=(TRK,(10,5)
I/ DCB= (RECF.IYI=FB, LRECL=80, BLKSI ZE=800)
//CLASSDIR DD DSN =CLASSDIR,
/I . UlHT=ONLN,

/I SPACE=(TRK,(2,2),RLSE)
I/ DCB=(RECFM=FB,LRECL= 80,BLKSIZE=800)
I/ DISP=(NEv/ ,DELETE)
I /~ORTW1(01 DD UNIT=ONLN,SPACE=(CYL,(3),,CONTIG)
I /SORT\'lK02 DD UNIT=ONLN,SPACE=(CYL,(3),,CONTIG)

(0 //SORTWK03 DD UNIT=ONLN ,SPACE=(CYL, (3),, COHTIG)
I /SORT'r/K04 DD ~:tmiT=ONLN ,SPACE=(CYL, (3),, CONTIG)
//CFD DD DSN::::CS13019.CFD,
I/ UNIT=ONLN,
/I DISP=(NEW,CATLG,DELETE),
I/ SPACE=(TRK,(2,2),RLSE),
/I DCB=(RECFM=FB,LRECL=2400,BLKSIZE=2400)
//CF DD DSN=CS13019.CF,
I/ UNIT=ONLN
I/ DISP=(NEW,CATLG,DELETE),
I/ SPACE=(TRK,(5,5),RLSE),

I/ DCB=(RECFM::::FB,LRECL=37,B1KSIZE=37)
//SORTLIB DD DSN=SYS1.SORTLIB,DISP::::SHR
//PRINTS DD SYSOUT=A
//CARDS DD DUT1P'IY,

I/ DCB=BLKSIZE=80

I/ PEND
rQ

http:DSN=CS13019.CF

66

(Q
//JOB
//UPCRSEFL Pit.JC. "UP. CRSE. FILE 11

//UCF EXEC PGM=UCRSEFIL
//CFD DD DSN=C813011.CFD,
I/ UNIT=ONLN
I/ DISP=OLD
//INDISK DD DSN=INDISK
I/ UNIT=ONLN
I/ DISP=(NEW, PASS,DELETE)
/I SPACE=(TRK,(10,2)),
I/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//CLASSDIR DD DSN=CLASSDIR
I/ UNIT=ONLN
I/ DISP=(NEW,PASS,DELETE)
/I .·SPACE=(TPJ~(10, 2)),
/I DCB=(RECFM:FB,LRECL:80,BLKSIZE=800)
//SRF DD DSN:CS13011.STUDRF,

'0
/I UNIT=ONLN
I/ DISP=OLD
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
I /SORT\•[l{Q 1 DD UNIT=2314,SPACE~(CYL,(3),,CONTIG)

//SORTWK02 DD UNIT=2314,SPACE=(CYL,(3),,CONTIG)
I /SORT~4X03 DD UNIT=2314,SPACE=(CYL,(3),,CONTIG)
//SORTWK04 DD UNIT=2314,SPACE=(CYL,(3),,CONTIG)
//CARDS DD DU:t•i!VlY

/I DCB:BLKSIZE=80
/I PEND

·Q

67:

//JOB
//CRSTLINK PROC "CR.STUD.LINK 11

//CSL EXEC PG!•T:CRSTUDLK
//CFD DD DSN=CS13011,CFD,
I/ UNIT=ONLN
/I DISP=OLD
//SFD DD DSN:CS13011.SFD
I/ UNIT=ONLN
I/ DISP=(NEW,CATLG,DELETE)
I/ DCB~(RECFM=FB,LRECL=2400,BLKSIZE=2400)

I/ SPACE=(TRK(2,2),RLSE)
//INDISK DD DSN:INDISK
I/ UNIT=ONLN
/I DISP=(NEW,PASS,DELETE)
I/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
I/ SPACE=(TRK,(5,5))
//OUTDISK DD DSN=OUTDISK
I/ UNIT=ONLN

:o /I DlSP=(NEW,PASS,DELETE)
I/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

I/ SPACE=(TRK(5,5))
//SF DD DSN=CS13011.SF
/I UNIT=ONLN
/I DISP=(NEW,CATLG,DELETE)

I/ DCB=(RECFM=FB,LRECL=84,BLKSIZE=84)
I/ SPACE=(TRK95,5))
jjS\'IF DD DSN:CS 13011. STUD\'/F

/I UNIT=ONLN

/I DISP=OLD
//SRF DD DSN=CS13011.STUDRF

I/ UNIT=ONLN

I/ DISP:OLD
//SORTLIB DD DSN=SYS1,SORTLIB,DISP=SHR
I /SORTW'".i\.01 DD UNIT=2314,SPACE=(CYL,(3),,CONTIG)
I /SORTVIK02 DD U~IT=2314,SPACE=(CYL,(3),,CONTIG)

~c I /SORTWT£03 DD UNIT=2314,SPACE=(CYL,(3),,CONTIG)
//SORTWK04 DD UNIT=2314,SPACE=(CYL,(3),,CONTIG)
//PRINTS DD SYSOUT=A

//CARDS DD DUI'-1NY

http:DSN=CS13011.SF

68

11 DCB=BLKSIZE=80

· I I PEND

0

69

//JOB
(Q //UPTHREFL PROC 11UP.THRE.FILE 11

//UTF EXEC PG M= UPDATE
//CFD DD DSN=CS13011.CFD
I/ UNIT=ONLN
I/ DISP=OLD
//SFD DD DSN=CS 13011 • S:FD
I/ UNIT=ONLN
I/ DISP=OLD
I /INDISK DD DSN:::INDISK
I/ UNIT::::ONLN
I/ DISP=(NEW,PASS,DELETE)
I/ DCB=(RECFM:::FB,LRECL=80,BLKSIZE:::800)
I/ SPACE=(TRK(5,5,)
//OUTDISK DD DSN=OUTDISK
I/ UNIT=ONLN
I/ DISP=(NEW,PASS,D~LETE)

(0 I/ DCB=(RECFM=FB,LRECL=80,BLKSIZE~800)

I/ SPACE=(TRK\5.5))
//SF DD DSN=CS 13011 .SF
I/ UNIT=ONLN
I/ DISP=OLD
I /8\'iF DD DSN=CS13011.STUD\'lF
I/ UUIT=ONLN
I/ DISP=OLD
I /SRF DD DSN=CS13011.STUDRF
I/ lJNim=ONLN

I/ Disp=OLD
//SORTLIB DD DSN=SXS1.SORTLIB,DISP=SHR
I /SOET\'f£01 DD U~IT=2314,SPACE=(CYL,(3),,CONTIG)

//SORTWKOa DD UNIT=2314.dPACE=(CYL,(3),,CONTIG)
//SORTWI\.03 DD UNI T=2314. SPACE= (CYL, (3) , , COl·~TIG)
I /SORTViK04 DD UNIT=3214.SPACE=(CYL,(3),,CONTIG)
I /PRINTS •' DD SYSOUT=A
//CARDS DD DUENY

I/ DCB=BLKSIZE=80
I/ PEND

70

(Q
//JOB
//INSHRKGR PROC ttiNSNARKGRADE 11

//IMG EXEC PGN=GRADING
//SFD DD DSN=CS 130'1'1 .SFD
//.' UNIT=O:NLN
11 DISP=OLD
//INDISK DD DSN=INDISK
I/ UNIT=ONLN
I/ DISP=(NEW,PASS,DELETE)
I/ SPACE=(TRK(5,5))
I/ DCB=(RECFM=FB,LRECL=2400,BLKSIZE=2400)
//OUTDISK DD DSN=OUTDISK
/I UNIT=ONLN
I/ DISP=(NEW,PASS,DELETE)
I/ SPACE=(TRK,(5,5))
/I DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//SF DD DSN=CS13011.SF
I/ UNIT=ONLN

(0 /I DISP=OLD
I /S\'lF DD DSN=CS13011.STUDWF,
/I UNIT=ONLN
/I DISJ?=OLD
//SRF DD DSN=CS13011.STUDWF
/I UlUT=ONLN

I/ DISP=OLD
//PRINTS DD SYSOUT=A
//CARDS DD DUNl"lY

I/ DCB=BLKSIZE=80
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
I /SORT'dK01 DD UNIT=DISKi,SPACE=(CYL,(3),,CONTIG)
//SORTWK02 DD UNIT=DISK,SPACE=(CYL,(3),,CONTIG)
//SORTWK03 DD UNIT=DISK,SPACE=(CYL,(3},,CONTIG)
I /SORT\IftC04 DD UHIT=DISK,SPACE=(CYL,(3),,CONTIG)

I/ PEND

(Q

http:DSN=CS13011.SF

71

//JOB

(0 //PRGRREC PROC "PR.GR.REP."
//PRG EXEC PGlVI=PRINTGR
//SFD DD DSN=CS13011 ;SFD

If UNIT=ONLN

If DISP=OLD
I /SF DD DSN=CS13011.SF

If UNIT=ONLN

If DISP=OLD
I /SWF' DD DSN=CS13011.STUDWF

I! UNIT=ONLN

I/ DISP=OLD
//SRF DSN=CS13011.STUDRF,

If UNIT=ONLN

I/ DISP=OLD
j /J?RIN·rs DD SYSOUT=A
//CARIJS DD DUMNY

If DCB=BLKSIZE=80

:o I/ PEND

(Q

http:DSN=CS13011.SF

72

//JOB

(Q //PRCLCD PROC "PR.CL.CD."
//PCD EXEC PGM=CLASSLST.
//CFD DD DSN=CS13011.CFD

I/ UNIT=ONLN

I/ DISP=OLD
I /SF DD DSN=CS 13011.SF

I/ UNIT=OULN

I/ DISP=OLD
//SWF ~~D DSN=CS13011.STUDWF

I/ UlUT=O~LN

I/ DISP=OLD
//SRF DD DSN=CS13011.STUDRF

I/ UNIT=ONLN

I/ DISP=OLD
I /PRINTS DD SYSOUT=A
//CARDS DD DUIJIMY

I/ DCB=BLKSIZE=80

<0 I/ FEND

http:13011.SF
http:PR.CL.CD

73

//JOB
//UPSTUDFL PROC nup. STUD. FILE. 11

//USF EXEC PGrrl::AJ)DRIHNG
//SFD DD DSN=CS 13011. SFD
I/ UNIT=ONLN
I/ DISP=OLD
//SF DD DSN::CS13011.SF
I/ UNIT=ONLN
/I DISP=OLD
//CARDS DD DUMHY
I/ DCB=BLKSIZE=80
/I PEND

i.Q

http:DSN::CS13011.SP

P A R T II

A N A L Y S I S
AND

COi':PAF SOl:~ WITH AL1'-~RNATIVE SYSTBiviS

(Q

\0

75

2. 1 DATA BASE TASK GROUP

2.1. 1 INTRODUCTION

Normally, files are designed to optimize the processing

of a run-unit; for other processing to be performed on the

same data, the files are resorted or new files are created

which redundantly include the same data. The traditional

approach to data was thus to create process-oriented files.

This is adequate in some circumstances, but is too costly or

impractical in others. Therefore, to design systems capable

of handling our current demands, it is essential to develop

databases that are available to and suitable for processing

by multiple aoplications.

The Data Base Task Group has proposed a Data Description

Language for describing a database, a Data Description

LanQuage for describing that part of the database known to

a program, and a Data Manipulation Language. The Data

Manioulation Language is the language which the programmer

uses to cause data to be transferred between his program

and the database.

The principles of the Data Base Task Group and the

concepts are discussed in this section.

<0

76

2.1.2 PRINCIPLES OF DBTG

The principles of the Data Base Task Group are given

below:

1. Allow data to be structured in the manner most

suitable to each application, regardless of the fact that

some or all of data may be used by other applications -

such flexibility to be achieved without requiring data

redundancy.

2. Allow more than one run~unit to concurrently

retrieve or uodate the data in the database.

3. Provide protection of the database against unauthoriz­

ed access of data.

4. Provide for centralized capability to control the

physical .placement of data.

5. Allow the declaration of a variety of data structure

ranging from those in which no connection exists between

data-items to network structures.

6. Allow the users to interact with the data while

being relieved of the mechanics of maintaining the structural

associations which have been declared.

7. Provide for seperate descriptions of the data in the

database and of the data known to the program.

These features provide both generality and flexibility

and allow the building and manipulation of data structures

as complex as necessary.

(Q

77

DBTG CONCEPTS

The Data Base Task Group introduced several concepts

for describing database. Some of the major concepts are:

SCHEMA

A Schema consists of Data Description Language entries

and is a complete description of a database. It includes

the names and descriptions of all the areas, set occurences,

record occurences and associated data-items and data-aggregates

as they exist in the database.

SUB-SCHEMA

A Sub-Schema also consists of Data Description Language

entries. It, however, need not describe the entire database

but only those areas, sets, records, data-items and data­

aggregates which are known to one or more specific program s.

Further, it describes them in the form in which they are known

to those specific programs and it may also rename them.

AREA

An Area is a named sub-division of the addressable

storage space in the database and may contain occur-ences

of records and sets or parts of sets of various types.

SET

A set is a named collection of record types with an

owner and may have one or an arbitrary number of member

78

records declared for it in the Schema. The tree and network

structure figures show the sets.

•

ro

79

2. 1 . 3 DATA STRUCTURES

SEQUENTIAL STRUCTURE

A sequential data structure is one in which each

element in the structure, except the first and last, is

related to the element preceding it and the element following

it. A list is an example of a sequential data structure.

A list may be a one-way list, where each element points

only to the next, a two-way or a circular list. There is

11 on e - t o - n " re 1 a t i on s h i p be tv1 e e n t h e own e r re c o r d s an d the

member records. Thus, for each occurence of the owner record,

t h e re may be " n 11 occur en c e of the member records . D i a gram 1

is a set representation of a one-way, two-way and a circular

sequential data structure. Tree structure has several sets

of one or more members, but it is not a sequential structure.

80

NETWORK STRUCTURE

A network is the most general form of data structures.

In a network any given element may be related to any other.

Diagram 4 shows a network structure in which a node

has more than one branches into it. In network structure

a record may participate as a member in more than one set,

and therefore may have more than one owner, which allows

networks to be built. In using sets to represent networks

each set represents a collection of one-to-many relationships.

Where there is many-to-many relationship, for example that

between students and classes in a school, it can be represented

by two sets, the owners of which are the records involved in

the relationship. The members of both sets are a third

record type, each occurence of which represents one association

between two occurences of the owner records, for example, the

performance of a given student in a given class. Since it

is often desirable to store information about the associations

themselves, for example, the grade for a student in a class,

these records are useful apart from their role in the

representation of many-to-many relationships. This corresponds

to the performance record which participates in two sets,

who s e o \v ne r s are " s tu d en t 11 and " c 1 as s 11
• I n d i a gram 5 , re cord

no. 1 represents one association between two occurences of the

owner records, i.e. a given student in a given class.

(Q

81

~ ETW 0~~ · S T ~U C.\\U\ t:

' •
.·
"

--­...

@ m
rn m

.1/l~C:rRJ\M - 5

82

CQ

w
LU

~

r~.
\~

83

2.2 IMPLEMENTATION OF SRMS IN DBTG

The database of the Student Record Management System

has been structured, which provides generality and flexibility

and is suitable for each application without requiring redundancy.

It has one-to-one correspondence with the proposals of the

Data Base Task Group.

The database is structured in a manner which permits

access in different sorted ways without resorting. The

directories have pointers to tghe students and classes,

which in turn have pointers to the connecting records in

sequential order. The students with their courses and

courses with their students can be accessed without any

sorting.

The database will be accessed only by one run-unit

at a time, and therefore, it is not necessary for the

protection against concurrent retrieval and updating data in

the database.

The pro-rams of the system provide for control of

relative placement of records in the database to increase

efficiency.

The database is structured which corresponds to the

proposals of the Data Base Task Group shown in diagrams

6, 7 and 8.

It permits the users to retrieve and update data

without being concerned of the mechanics of maintaining the

structure,

Each program is only concerned with the data known to

it and not the entire database.

84

DA~~A STRUCTURE

Since there is one-to-one correspondence of database

of the Student Record rr;anagement Systen with the proposals

of the Data Base Task Group, it can be described in terms

of Schema and Sub-Schema us Set concept. The Schema

:Oeta Description La.Ylguage provides for an arbitrary

number a~ Set modes and representation of Data Structure.

The data structure of the Sffi·lS' s database corresponds to

the D3TG's structure.

The one-way list data structure corresponds to a

set composed o"" student-information-record as owner and

"Jerfor:-::ance-records as its !Tlembers, shown in diagram 2.

It also correspo~lds to a set of class-record as ovm.er

and perfor::Je.nce-:;necords as its members, which is shmvn

in diagram 3.

,..,....... . . I
!Pcl(-(c(1
' \. ' . ··t~··-""

t
-"·~-.--,

· i•· c I .. __ J

0

85

SR!'IS DATABASE IN SE1J:S

The database of e Student Record Management

System has been described the Schema in six sets. The

syster.1 has t~m directories, a student-file and a course-file,

which are described in four seperate sets with dummy-records

as their owners. The fifth set consists of student-record

as O'WTl.er with perforrn?JJ.ce-records as members, and the sixth

one with course-record as o·vmer and performance-records as

its ~embers. The systems database is illustrated by

dia.:::ram 4.

$1 ~.i·/.::-. \'-·~.T

v~c·~. ::·t-::~ ~·

n .. ~f '--,.,-"'
rcf\!:"\l,.,_,",!'•:"'~

1 e !uc.\s

'

cc~!;.::;) -
f.\·-~

Cc_j ~-
:i, ~··. t. .,_ ')>.)'~--·~·

86

The sets in the database are required to be sorteo

in some order. Several sorting a~d searching techniques

have been discussed in A-r'pe:r..dix A. The analysis of the

different sorting techniques indicate that Radix sort will

be quite sui table for SRJVIS' s da.tabase.

For exercise few Sub-Schemas and programs have

been written. The flowcharts for these programs have also

been drawn to show how to invoke a Sub-Schema of the

Scl:ema in programs. There are some verbs, such as, Insert,

Searc"ht Nodify, Sort, etc. in the Schema. Attempts have

been made to expand the internal steps of these verbs by

f1ow-ch?~rts. However, the programs were not run on

D?TG Compiler.

2.2.1

2.2.1.1

87

SRM Is DATABASE

SCHEMA NAME IS ~TUDE_NT -.B_E~_D.B_D-iY~TfM;

PRIVACY LOCK IS STUDSYS.

AREA NAME IS STUD-lN£.0-~RfA.i_

PRIVACY LOCK IS ST-IN-KEY.

RECORD NAME IS 3_TUDfNT-.B_E~;

LOCATION t10DE IS VIA SlUD-lN£.0-SEI SET;

WITHIN ~TQD-lNFO-~Rf_A;

PRIVACY LOCK IS ST-REC-KEY.
02 DEPT PICTURE XXX.
02 StUD-NO PICTURE 9(06).
02 STUD-NAME PICTURE X(20)
02 DEGREE PICTURE XXXX.
02 LEVEL PICTURE XX.
02 SEX PICTURE X.
02 STREET PICTURE X(17).
02 APT-NO PICTURE XXXX.
02 Tmm PICTURE X(16).
02 TELEPHONE PICTURE X(07).
02 PERF-ADDR PICTURE 9999.

NAME IS STQD-lNFO-~El;

MODE IS POINTER-ARRAY;

ORDER IS ~O.B_TfD;

OHNER IS STUD-DUMMY-REC. ----- --

MEMBER IS ~TQDENl-RE£ OPTIONAL AUTOMATIC;

ASCENDING KEY IS ~TQD-liO, QEfT;

SEARCH KEY IS STQD-NO, .Q.EfT;

SET OCCURENCE SELECTION IS THRU

LOCATION t40DE OF miNER

USING STUD-NO.

88

AREA NAME IS COQR~E-l_Nf_O-~RIA;

PRIVACY LOCK IS CR-IN-KEY. - - --
RECORD NAME IS fOQR~E-JiEf;

LOCATION MODE IS VIA COQR~E-l_N[O-SET SET;

WITHIN fOQR~E-l_Nf.O-B_REA;

PRIVACY LOCK IS CR-REC-KEY.

02 WORK-ADDR PICTURE 9(05).
02 CRSE-NO PICTURE 9(06).
02 SEMESTER PICTURE X.
02 COURSE-DESC PICTURE X(25).
02 COURSE-CREDIT PICTURE 9.

SET NAME IS COQRSE-l_NFO-~EI_;

MODE IS f.OlNIEJi-B_RB_A.Y_;

ORDER IS SOJiTID;

OWNER IS COURSE-OUMMY-REC. ------ --
MENBER IS fOQRSI-JiEf OPTIONAL AUTOMATIC;

ASCENDING KEY IS fRSE-liO;

SEARCH KEY IS CRSE-NO;

SET OCCURENCE SELECTION IS THRU

LOCATION MODE OF OWNER

USING CRSE-NO.

6

0

89

STUDENT WITH PERF-RECS-SET

AREA NAME IS ~T-f.EE_F-lN£0-ARI_A;

PRIVACY LOCK IS ST-PR-IN-KEY.

RECORD NAME IS f.ERF-B_Ef;

LOCATION MODE IS VIA ST-f.ERF-lN£0-SEl SET;

WITHIN ~T -f.ERF.:.I[FO-.B_REA;

PRIVACY KEY IS ST-PR-REC-KEY. -- ----
02 ADDR-1 PICTURE 9999.
02 ADDR-2 PICTURE 9999.
02 YEAR PICTURE 99.
02 TERM PICTURE X.
02 GRADE PICTURE X.
02 MARK PICTURE 99.
02 ADDR-3 PICTURE 9999.
02 ADDR-4 PICTURE 9999.

NAHE IS ST-PEB_F-lN£.0-~ET;

t~ODE IS QN£-}i_AY-!JST;

ORDER IS FI RSI;

OWNER IS STUDENT-REC.

~~E11:8ER IS f.EB_F-B_Ef.. OPTIONAL AUTOMATIC;

SET OCCURENCE SELECTION IS THRU

STUD-INFO-SET USING

CURRENT OF SET

STUOENT-REC USING STUD-NO.

90

COURSE-REC WITH . PERF-RECS-SET

SET NAME IS £R-PEB_F-lN[O-~EI;

MODE IS ON£-!i.AY-.b_I~T;

ORDER IS liE!T;

OWNER IS COURSE-REC. --- --
MEMBER IS PERF-REC OPTIONAL AUTOMATIC;

SET OCCURENCE SELECTION IS THRU

COURSE-INFO-SET USING

CURRENT OF SET

COURSE-REC USING CRSE-NO. --- -- ---

2.2.2.2

91

SUB-SCHEMAS CREATE-COURSE-FILE

SUB:..SCHEMA IDENTIFICATION DIVISION.

SUB-SCHEMA NAME IS CREATE-CRSE-FILE OF --- -----
SCHE~~ NAME STUDENT-RECORD-SYSTEM ------- ---

PRIVACY LOCK IS CCF-KEY

PRIVACY KEY FOR COPY IS STUDSYS.

AREA SECTION

COPY COURSE-INFO-AREA ----------
PRIVACY LOCK IS Cl-KEY.

RECORD SECTION

01 COURSE-REC;

SET SECTION

WITHIN COQRSE:..If!_FQ-ARf_A;

PRIVACY LOCK IS CR-KEY.

02 WORK-ADDR PICTURE 9(05).

02 CRSE-NO PICTURE 9(06)

02 SEMESTER PICTURE X.

02 COURSE-DESC PICTURE X(25).

02 COURSE-CREDIT PICTURE 9.

COPY COURSE-INFO-SET.

92

CREATE STUDENT -FILE~ PERFORNANCE-FILE, AND LINK THEM WITH
COURSE-FILE

SUB-SCHEMA IDENTIFICATION DIVISION.

SUB-SCHEMA NAME IS fR-STQD-WDRIC-~TTA~-fRSE.

OF SCHHV\ ~fQDfNT-B.EfOB.D-~YSTfM

PRIVACY LOCK IS ~WC-KEI

PRIVACY KEY FOR COPY IS STUDSYS. ----
AREA SECTION

COPY ALL AREAS. ----

RECORD SECTION

01 STUDENT-REC;

WITHIN STUD-INFO-AREA;

PRIVACY LOCK IS SI-KEY.

02 DEBT PICTURE XXX.

02 STUD-NO PICTURE 9(06).

02 STUD-NAME PICTURE X(20).

02 DEGREE PICTURE XXXX.

02 LEVEL PICTURE XX.

02 SEX PICTURE X.

02 STREET PICTURE X{l7).

02 APT-NO PICTURE XXXX.

02 TOWN PICTURE X(16).

02 TELEPHONE PICTURE X(07).

02 PERF-ADDR PICTURE 9999.

93

Q 01 COURSE-REC;

. WITHIN COQR~E-_!_N£_Q.::_AB_E~;

PRIVACY LOCK IS Cl-KEY. - --
02 WORK-ADDR PICTURE 9(05).

02 CRSE-NO PICTURE 9(06).

. 02 SEMESTER PICTURE X .

02 COURSE-DESC PICTURE X(25).

02 COURSE-CREDIT PICTURE 9.

01 PERF-REC

WITH IN ~T -.E_ERF:_I.J1FO-~R£A,

CR-PERF-INFO-AREA

PRIVACY LOCK IS ST-CR-KEY. - - --

0 02 ADDR-1 PICTURE 9999.

02 ADDR-2 PICTURE 9999.

02 YEAR PICTURE 99.

02 TERM PICTURE X.

02 GRADE PICTURE X.

02 MARK PICTURE 99.

02 ADDR-3 PICTURE 9999.

02 ADDR-4 PICTURE 9999.

SET SECTION

COPY ALL SETS.

(0

(Q

94

2.2.1.3 PROGRAMS AND FLOWCHARTS

CREATE COURSE-FILE

IDENTIFICATION DIVISION.

PROGRAM- I D.

PRIVACY KEY OF COURSE-INFO-AREA IS Cl-KEY - --- -- --

PRIVACY KEY OF COURSE-REC IS CR-KEY. - --- --
DATA DIVISION.

SCHEI>tl\ SECTION

INVOKE SUB-SCHEMA CREATE-CRSE-FILE --- -- --
OF SCHEMA STUDENT-RECORD-SYSTEM

PROCEDURE DIVISION

OPEN AREA COURSE-INFO-AREA

USAGE-MODE IS UPDATE

PROCESS IT.

GO TO PROCESS IT.

CLOSE AREA COURSE-INFO-AREA. ----- -----

http:SCHEf.tl

:0

95
C.R i: AT' C.C\.\~S>t.- F \ Lt

l t-~\lo~.E
'$.48-St ~~t-'1~
c~e-A \E:- -c ~s.t·

~1'-E

0 1>t~ C04iSt­
INf<>- se:r

,O..WJ)
C.A.Rt> -~\L~

C.\.oSE
c. C>.J. su Go· '"'f-..

~---"M '> f: r A,... j)

Move c oues~t
tm=o 1'0 ('OURS~

Re c.

\f.J.S\;RT
to~..t~s~ .. f<ec.

IN 'to
tou c:tS.E: ~ '"" fo.

li:'T

t flo. Cl!)- <='H.E
$'TOP

~t~ P\.A'f
1W Ra u c.,

C.~"-£)'

96

CREATE STUD-FILE, PERFORt·1ANCE FILE AND LINK THEM
WITH COURSE-FILE.

I DENT! FICATION DIVISION.

PROGRAM- I D.

PRIVACY KEY OF ALL AREAS IS ~T~IR-KE!.

CR-IN-KEI, ST-PR-IN-KEY, CR-PR-IN-KEY

PRIVACY KEY OF ALL RECORDS IS SI-KEY,

Cl-KEY, ST-CR-KEY.

DATA DIVISimL

SCHE~tA. SECTION

INVOKE SUB-SCHEMA CR-STUD-WORK-ATTACH-CRSE.

OF SCHEMA STUDENT-RECORD-SYSTEM -----------

PROCEDURE DIVISION.

OPEN All

PROCESS IT.

IF COL-80 IS EQUAL TO 'F' MOVE DEPARHtENT TO DEPT
MOVE STUDENT-NO TO STUD-NO ...

ELSE GO TO MOVE-PERF.

INSERT STUDENT-REC INTO STUD-INFO-SET.

GO TO PROCESS IT.

MOVE-PERF.

MOVE YEAR-IN TO YEAR TERM-IN TO TERM ...

INSERT PERF-REC INTO ~R~PfR£-lNFO~SfT,

ST-PERF-INFO-SET. GO TO PROCESS IT.

CLOSE ALL

(Q

(0

\NSE~ r
I~TO

---1SN l>t-Nf·
lNFO -~~

97

C,{{EA'\E STul>~~\ • f'-\L~, f~RfORf'll"-t-\C.E.-fllt

ANi> L\~\o(. "T\\Et-1\ \\1\T\\ ~I.UtS~·f\\..E.

t<'\ov~
STUDi ~ f
\NFO lW
~1\lP'i'N r

~tC.

snttE
c. Jl.~p ~R.~
\N p..

opeN
1:>.u.. s.e- T S
CA.~ b • F-1 \..E'"

,e..t-~t>

blS\11: - ~n.i:..S

Soil' l>\1)\C·Hlt
ON ~e'ls­

'S'TUI>·NO
C..~!.'i· NO

REfl..b
So~T€'0.

I>\ S.le • ftt..E

!---------ll:>t~t'-rl Lf

t>\SP\..A."f

"'Wlt.ON Gt
c..~~j)'

'N\ovt; lt--tfo to

pt;~fOA.MP.Nf.f
Re-c.

IMS~~T
PEp. i=-Oft.MAT'<\lf
RE="~ f14TO
>1'-tbe r-n- P~~r-~
C.!ll4Me-~Rf-·SH

98

INSERT MARKS OR MARKS AND GRADES

IDENTIFICATION DIVISION.

PROGRAM-I D.

PRIVACY KEY OF ALL AREAS IS ~T.:Jli-KE.!:_,

fR.:.Ili-KE.!:_, ST-PR-lN.:.Kf.Y, CR-PR-lN.:.KEY

PRIVACY OF ALL RECORDS IS SI.:.KfY, CI.::_KEY, ST -CR-KE_'L.

DATA DIVISION

SCHEi'·tll. SECTION

INVOKE SUB-SCHEMA CR-STUD-WORK-ATTACH-CRSE ------------
OF SCHEMA STUDENT-RECORD-SYSTEM. -------- ----

PROCEDURE DIVISION

OPEN ALl

PROCESS .IT

FINJ COURSE-REC USING CRSE-NO.

GET COURSE-REC.

PROCESS AGAIN.

FIND NEXT PERF-REC RECORD OF CR-PERF-INFO-SET SET ----- ----------

MODIFY PERF-REC USING GRADE MARK.
~·--··- -----

GO TO PROC-AGAIN.

"J;J

\"S.VItT M"'-Fl\<S OJV}t-\JO Gt~Aot:S

l>\>PlA'f
C.A~I> I'Nt>

(/'

WRowt.
(.~A.!> ..

Of>eN
,.._LL SE'P

A~ to

<..~~c ·rn .. E

~fr 1'»e ~er
0~ Ov..l 'i:~

t\:)u"~E'-Co 0 e

't-tiOD\ f'/
nt e MeM~al.
.PuQ~()IN(y
'f\) fUM(.ft'OH

C..P..~P

y

t>\SPLA'f
1 put-\ c. T\ON

ANt) .\>AT A
l~I).S t"hlSINt.'

C>l~PLA'I

, f\.t "'<. \\ c""'
t"'Q.t> '

f"\\"<>~\Nlt

http:WRo)...tG

100

GtET To TlHE
WRSf-.1 t.ltO·

">fT

I
FI.._.D N.~r

AVP..\1. .. "-&u;
SLOT

I
STORE TH€

0.:.MR.Sc·~EC.

I
$'EAR.t\-l \t-.\!)~R T" e'

-r \i 'S ftll 1'4 ,.~ ~
p.~~'t

Po'~ Te;~ l N
P..V'-\Lt\tllf'
'S\.OT

I r
\NS~~iTttE ~"e" ~~r
PotN'l&R.,. To
nns t.~"'~-u:-

Ft~

(Lo'S.Eb,])61\'\S.
'$0 A.T'> l'lo\ €'
f'o lt-t\€'~ ARtA1

I
Tl\~ ~aov~
Por'kl"T~f.l.. ts
SToR.et> \ 'N
S.t>I\.Wt> 'O~'OER...

101

MOt:>\FY

$"E#\~t H
Po 1 ~1"\?il- A u~

ALtoAOIN <1 To
iHI: crase-c.oe>l:

'
MA~ 1\t~ c;.n
llvf'l't.P,!Hf. oF-
WtHltl THISC~f'
Ceto e- • ,$ ow I>\ E-R

J:
'St.4~P THe
t.-le-M eeR..
'-I.S I tot~ &""8tP-
P>?!) Po, ~"le" ItS

~
~~r ntE

1-'lf"MSE=f'.

0
,I/

A.'Ot;. MAR!~:. oR
MAAtc. ANi> 4AA~!
A-CtOI:lJ)INC., ro
THE FUN C. TIO~

<.AA..J}

' I/ ~TO~€ IT f)fltl<
IN -rtteSET -

OS. eo.,...-,~ lOtP.itON

102

\NSEFtl l="'ii~FOf\flll~"-\C..~ t\EC.o~b3

\NTO COU~~G AN~ $'TUb~Nf '!.~T.S.

~~t 1'0 tHe"
'>TV.t>E1MT ...
?e- ~ f'o~V" #!I "M.«•
se r '-l~ 1"' C::t

«;'f'\.\ S> ... ""''\)

I
t'\QV'E. 11-l~ f\lltfJS .
OP lST to\t;\'\&f~
FROM OW ~-teSt.
TO ..,....,~ PEttf-

A.ec..

I
Mov~ nt~
R>tN'T£~ OF
'1'1+1; P~f..~~
To "'THE OW Nf'~

I
<.:tt r TO TMt:
to .. u~)f·PE RF·
s~r u~''l-l"
C.O\,\esf..tOD~

I
Move-nt~
Pon-4'fE1\ OF 1'\lf
1.~-r Mt:tflef'll
F ~\lM OW "'E it
T\) nt\45. PERf...ft.El

I
""tOV ffl li E"
\'01 NTE'R. Of lliiS
P€P..f~R~c..1o
T1\t. 0\Wl-\tR.

I
SfORtiT4-If
PeRf..PRtH
Ne)(T AVAH.A9l~
$pM,.~~eAHJ
FQ!t. P Pf- • ~ C

(0

103

2. 2. 2 CONCIJUSION

The data base is :he foundation of the information

system~ In reality the data base is a collection of data

files. A data file in t~rn is a collection of data records

that are composed of data fields. There are many advantages

and some disadvant s of the generalized data base. Some

of t~em are ven below:

1. The a·::.-ili ty to organize data in a manner which is

suitable and appropriate to the interrelated functions of

e o:!:'ganization.

2. Data description is contained in the data base

indenendent fro~ programming functions, thus relieving

progra~~ers of data management.

3. A lity to provide users with a direct interface

with the data base.

4. Allows ~ore inte~gration of data elements to

mini~ize redundancy.

5. ;_ b to grow wi tb.out a major overhaul of the

6. Gives ter response to user needs.

7. Al users to interrogate the nata base and make

8. Ability to meedi changing needs of users over time.

9. Data errors and inconsistencies are reduced because

dupliration is reduced.

10.Cost savings are effected.

104

The disadvantages of t'ce generalized data base

management system are:

1. The design and irr;ple:nentati.on of the data base

approach requires highly skilled professionals.

2. The initial investment is extremely high.

3. A sophisticated level of hardware and software is

necessary.

4. High level of security safeguards and backup is

required.

5. Errors ~ig~t develop thoughout the data base bacause

of a ~ gle error emanating from a source document.

105

2.3 COST M~ALYSIS TECHNIQUES

2.3.1· INTRODUCTION

The objective of this part of the Student Record

Management System is to develop techniques to analyse

various costs.

We shall restrict ourselves to computer operations

involing peripheral devices, which is basically the cost of

peripheral device access and peripheral de~ice storage.

However, there are other factors to be taken into consideration

such as personnel, CPU time, maintenance of computers,etc.,

but for our purpose we shall not consider them.

The cost of any I/0 operation can be analsed by the

number of accesses and auxilary storage. For instance, the

cost of retrieving, deleting, adding or storing information

ea~ be computed by the number of accesses and/or storage

required.

The number of peripheral device access depends on

the orga~ization of the databank. For instance, a request

to retrieve an item from the databank may require only one

peripheral device access or it may require many, depending

on the orga~ization.

The organization of the databank and all I/0

operations are discussed in detail in this part. The total

cost·· is the summation of the cost of I/0 operations and

storage.

106

2.3.2 DEFINITIONS

Before we start the SRHS databa.YJ.k, it is

necessary to start with its description and some definitions

used very often:

A databank is a collection of files, related to each

other. The databa.YJ.k of Slli~S has five files.

A file is a collection of identical records on a

secondary storage device. In case of SR11S the files are on

IBr~ 3330 DAS:9.

A~ record is a named collection of one or more data-

fields or data-aggregates. There may be an arbitrary number

of occurences of a record in a file of each record type.

For exa~ple, there would be one occurence of the record type

STUDENT-INFO-RECORD for each student. This distinction between

the actual occurences of a record and a type of the record

is an impor.ta.~t one.

A data-field is the smallest unit named data. The

a.~ount of storage defined for a field depends on the type

a."ld range of data to be stored. For insta.'1ce, Student-

number is a data-field and is 6 bytes long.

Files in a·databank may be organized in di[fferent ways

determined by the access method. Three of the five files of

the SRJYIS are organized using relative access and two using

sequential access method.

Relative access: Each record is stored at a unique

position and accessed by the address of this position. The

address is measured relative to the beginning of the file.

eO

tO

107

In this cRse any record of the file ca.'Yl be accessed from

secondary to primary storage without accessing the preceding

records. Three files of the Sffi1S organized by relative access

are cross-referenced, which makes it faster and cheaper to

access the connecting records directly.

Sequential access: The records of a file are organized

in sequence and a record can be accessed only after all the

preceding records have been accessed. Two files of the Sffit1S

organized by sequential access method have only a few records

in each files for directories.

A block i~ the unit of peripheral storage which is

read or wri en in a single access.

An access is the operation of copying a block into

a buffer area in core, or conversely copying a block from

core into secondary storage.

Access time differs from one device to another. How­

ever we will restrict ourselves to IBN 3330t which is used:

for·t.he system. Table 1 shows the average access for 2314

and 3330.

130
90
60 -
45
30

15
0

0 50 100 150 200

tracks travelled

IBM 2314 access time

108

---~--

Device Track 1' "' .. ~umuer of l\umber Seek time
Capacity tracks cyl. of cyl. M in 1•lax Ave
(Bytes} (MS) (MS) (MS)

2314 7294 20 200 25 130 60

3330 13030 40 400 10 30 55
-------- -· -

Table 1

2.3.3 ACCESS COST

The access cost,C~ is the cost per access to dat~ on

peripheral devices. The access cost can be expressed as:

C.:\= uCro

where Cro is the actual charge for access or I/0 request and

1 if the peripheral unit is on line
and

1 + .Qrg_
vc10 if the peripheral unit must be

U=

mounted

where, Cm is the mounting charge and v blocks per volume. A

voluille must be mounted after every v I/0 requests.

The charge Cle will usually vary in an installation

depending on time of day, priority, core, etc. At McGill ELTJ.

access c10=0.133~, if programs run in_dOOk at priority 2

ELTJ.d c10=0.167~, if a progra~ runs in 200k at priority 2.

In our case we will presume that files are stored on-line

so that there is no mounting charge and

109

2.3.4 STORAGE COST

To find the storage cost, Os, we must relate the block

size, B, to the unit of storage, Q. Let the number of blocks

per unit of storage, b, be so that

bB=pQ

where p is the proportion of the storage unit actually

occupied

where O~is the cost per unit time of a unit storage space.

The storage cost will vary, depending on whether the file

is stored o~ tape, on-line or off-line. At McGill storage

charge for en-line is C=20li per track/week• This can be

in terms of n(t):

C' S" Cs = -f -n (t:) d.t'
0

expressed

2. 3. 5 A...~ALYSIS OF SORTING

External sorting c~~ be made fairly straightforward

with a few simplifying assumptions. \Ye follow Knuth's 11The

Art of Computer Programming 11
, sections 5.4.1,5.4.6.,and 5.4.9.

The time required to do a sort-merg on a disk can be expressed

NOwt(1+ flog p sl)
where N= number of records in a file

C= number of characters per record

w= 11 overhead ratio"-the ratio of t to the affective

time to read or write a character. On IBM 2314

will f~ll cylinders and tracks,

(Q

110

the file is on single cylinders

1.05 if the file is on contigous cylinders
W=

1.12 if the file is on non-contigous cylinders

or if the multi-tasking causes arm contention

t= the time required to read or write a single character

On IBM 2314. t 25 ms tracks 3 44 ' = 7294 ehars track = · usec

S= the number of initial runs,i.e. the number of subfiles

that are sorted with 9.-'ll internal memory independently
a'lld placed on external files before merging begins

P= the num~er of simultaneous merges used to merge the
resulting subfiles together

The expression of NCwt is the time required to read a

single pass of the file and 1+flog p ~ is the number of

passes, i.e. a pass to distribute the S initial runs and

log p S passes to do the P-ways merge. S is determined by

the nuober of records in the placement section, (see Knuth

5. 4. 1), F that can fit only into core memory(r'1 characters)

less three buffers (B characters each);

P 1={11-3B)/C

According to Knuth for random data the number of initia

runs S can be eatimated as

s~(;~ + +1.
Once S is determined the order of

found which gives the smallest number of

the merg~~' can be

passes, ~og p ~'
subject to P being small enough that P buffers will fit

1 1 1

into core memory.The appropriate relationship among P,S

and m= \log. p s\ is:
. . 1

P={S nq
since m=rlog p S\ = f ln S/lnPl

implies (m-1) lnP ..c lnS..:::.. mlnP

i • e • pm-1.&:. S ~ pm

This relation can be used as follows: given S

. r :t find the smallest m for which P= S m1 is not greater then

the number of buffers that can fit into core. Thus in Knuth's

example (P3.6.4) B=5000 and S= 60 indicates that for an 8

way merge two passes are required.

A-.'1 expression for the number of access required in

a.sort c~'1 be obtained from (1) by replacing the time wt

by 2/B. Since NC/B=n, the number of tlocks of data in the

file, we have the cost for sorting:

C8 = 2n (1+[log p Sl)C~ or

2n {1+m)C~

The factor of the two enters because each· pass

involves simultaneous reading and writing on different

diskfiles. In analysis of .,..,eal life sorting the parameters

P and S must be chosen to correspond the sort para~eters

actually used.

Analysis indicate that the sort could be done either

with m=3 in 100k or with m=2 in. 20Dk.

In our case we have: M=200k, B ~13030 bytes.

112
2. 3. 6 SR!vlS DATABANK D}~SCRIPTION

The SRMS has five files with a fixed number of blocks,

which makes it easier to a,.'1alyze the cost. Two files are

organized by SAM (Sequential Access He.thod) with one record

in one file and two records in the other file. The rest of

the three files known as Student-file,Course-file and

Performa,.~ce-file are organized by RAM(Relative Access Method)

which permits the access of any record directly if the

address is known. The two sequential files are in fact the

two directories for the student-fileand course-file. The

three filest Student-filetCourse-file and Performance-file

are linked up with each other by embedded pointers.

The S:fUvis is designed to maintain records of upto

1000 students. The length of files in bytes at any given time

t is:

CFD=Nc(t) * (Kl+Al)
CF=Nc(t) * Rl

SFD=Ns(t) * (Kl+Al)

SF=~~ s (t) * Rl
P:?=Ns(t) * (Np(t) * Rl)

v;he:::-e,Nc is the number o:f courses offered, Ns is the

number of students, Np the number of Performance-recordsr

Rl, record length in bytes,Kl, key length in bytes and

Al, address length in bytes.

However, to analyze the cost of various operations

and compare it with another system, we assume the number of

students is 1000, the number of courses offered by the

department is 200 and finally the number of Performance-

~.Q·

113

records is 10,000, @ 10/students. With this assumption

we can see the strength of the files with respect to

the number of records/track and the number of tracks

occupied by each file which is shown in the table below:

iflt'S hl4l•t 14.MF l(.r'{ A.t>~~· fl..et.oe~:..!) N.o. o~ Htl-CfR.wC."/ t:-IO·Of TRI!.O;:S
I 1:' ')\;J) c~,) Ll'!lLlli L•""r UekC.nl Re-r 0 R..DS Till<."> (N.R..f;) hr ~C>M l.J..<o ~EM

~>)
1
(N0 (kL) {At.) l~\.) \~P-/T) 0-h) ~~-r)

jC.FO l2.oo [(;. 3 l,~oo 1 1 \. t
' l I iSH Loo~ j \';) 'r ll,Doo 2. 1. 2 2.
I C. F I l2.oo ! · ;(:. 2.0 o t'f {, Z, '3 I I !

Table 2

The number of tracks required for each file is

obtained by using the formula given in IBN DASD book.

The DASD used 3330.

The number.of records of 80 bytes/record, if

blocked is 162/track.

http:number.of
http:N41'l-14.0.01

114

We could use different distributions to find out

the average number of courses per student, the average·

number of students in a class and also the average number

of courses added or deleted every semester. However, it

may not be appropriate to use various distributions

to find out this information.

It is up to the educational institution to decide

the minimum and maximum number of students in a class and

hence the average will differ in each school. Therefore,

the average could be found by using the previous or past

couple of years real life data.

As far as the average number of courses per student/

semester is concerned the schools require a certain

number of credits to be earned for a particular degree.

For exa~?le, a student is required to earn 120 credits for

a Bachelor's degree. Full time students are expected to

earn 120 credits over a four year period. This tells us

the average number of courses a student should take is

5 per semester to earn 120 credits in four years.

If we decide to use various distributions to find

out the average every distribution will give us different

figures, anyway. Therefore t for the sa.ke of the cost analysis

we have decided to take an arbitrary number of 100 as,

average number of students in a class and 5, as average

number of courses per student which seems to be quite generall:

applicable.

10

(Q

115

The files of the SF~S are set-up on DASD by relative

access method, which means any student or course can

be accessed directly. However the courses of a student

can be accessed only sequentially. Similarly, students in

a course also can be accessed only sequentially. We can

see from the example belo~ that if we wanted to access a

students record 320 we would have to read all his preceding

courses till we reached to course 320. We also notice that

to reach -b:> a course we have to access two records, ie.

performance-record and course-record.

Student

005
Courses

308

This indicates that if in a course there are 100

students we have to access 200 records to go through the

100 students .. Similarly-, if a- student is taking 5 courses,

we have to access 10 records. Thus we can imagine that the

data bank consists of 200 course-files of 200 records,

(100:;.students) in each course-file and 1000 student-file

116

of 5/10 records depending on 1st or 2nd semester, in each

student ... file.

Now that we have the technique:of analyzing the cost

of various operations we will carry on with cur assumption

of 1000 students in a department, 200 courses offered by

it, average no. of students in a class is 100 and a student

normally takes 5 courses per semester. With this assuption

the cost of storage and various other I/O operations

will be as follows:

<(;

117

2.3.7 I/0 OPERATIONS

The cost of the operations on the organization

and maintenance of the databank can be analyzed as

updates,deletions,additions,printing grade reports,etc.

We define these operations for the basic access unit, the

block. The number of accesses in each case is ana~l~ge~

separately. The access is the elementary costing unit for

computer operations.

An u~date is the operations of adding or deleting

information in an existing record. For instance, entering

students grade in record.

?rinting grade reports involve obtaining data from

the existing blocks and printing out.

A deletion is the operation of excluding a block

of data. ?or instance, a course dropped.

An addition is the operation of including a new

block of" data. For instance a new course taken by student.

All the above operations involve ·retrieving (accessing

blocks from databank.

k~ALYSIS OF ACCESSES

The average number of accesses required in each

operation can be analyzed seperately. The cost for

retrieving (accessing) blocks is discussed in the

following pagee.

118

INITIAL COST

The initial cost is to set-up the databank on a DASD

(Direct Access Storage Device) or add courses during the

following semsters to the existing databank. Setting-up

databank occurs only once a year,i.e. in the beginning

of the year. ~;.ring the following semester the initial cos.t

is due to the addition of-co~rses.

DATABA~K SET-UP

To set-up the databank on the DASD there are seve:t;"al

operations i!'lvol ved, such as creating Student-file .and its

directory, Course-file and its directory, Performance-file,

and linking the three files together. The operations are

performed by the following computer programs.

The program CR.CRSE.FILE stores the course-records

in a relative access file and the directory as a single and

the only record in a sequential access file. The number of

acce2ses is the number of courses, plus 1 for storing the

directory. The program also uses an external sort before

transferring the records to the course-file. For sorting.

physical block size is 61 card image records. Thus, the

cost for creating the course-file is

=((Nc(t) +1)*0~) + Cs',

where Nc(t) is the number of courses at any time, C~ is

the cost/access and Cs' is the cost for sorting.

119

The program CR.PERF.FILE creates a file of 10,000

dummy records in a relative access file, known as Performance­

file. The number of accesses is the number of records

created and therefore the cost is

=Np * Cc(,

where Np is the number of performance-records and Cc< is

the cost/access.

The program CR.STUD.LINK creates student-file and its

directory, stores the student-file in a relative access file,

the directory as the first two records in a sequential

access file a~d links the student-records with the performance

and course records. The number of accesses involved, is 2

for storing the directory, plus Ns, the number of students

times Ne, the number of courses a student can take, plus

2Nc for storing the addresses of the first student in each

course in Course-records. The factor of two enters because

to store the addresses the course-records have to be accessed

and then stored back. The program also sorts a file of

students records before linking them with Performance and

course records. Thus the cost is

= ((2+Ns(1+Nc) + 2Nc)C~ + Cs'

NEW SENEST:SR

After the initial set-up of the files, the courses

are added to the databank in the following semester. The

program sorts the course-records before adding to the data

bank. The number of records sorted is Ns(t), the number of

120

students., times, Ne' the number of courses a student can

take. Thus the cost is

= (Ns(t) * Cr) + Cst

where Ns(t) is the number of students, Cr (Cr= ~; 1)

is the retrieval cost and Cs 1 is the sorting cost. In this

case n. in Cr= nr is
· r+1 '

= n = 2(Ncs + Nsc),

where, Ncs is the number of courses a student takes, Nsc

is the number of, students in a class and the factor of

2 enters because to access a course-record, a performance-

record is accessed and then the course-record is accessed.

Similarl~ to access a student-record, a performance-record

is accessed a.."ld then the Student-record is accessed.

\ student-record!~
1 4 I Pj"·l~--------71~ JcRsE.REC. ~

CRSE.REC

CRSE.REC

ADDITIONS

It is quite difficult to estimate the number of

course additions every semester. However, we can assume

a student will add one course. In this way, some students

may not add any and some may add a couple, which will

balance it all out. Thus, the cost for course addition is

CA = (Ns(t) * Cr) + Cs'

eo

121
where N8 (t) is the number of students in the department at

any time t;Cr(Cr= ~),the average cost for a batch of

requests(accesses) and C
8

•, the cost for sorting. In this case

also n in Cr=~ is= n = 2(Ncs + Nsc), which is described

under new semester.

DELETIONS

In the case of deletion$too, we can assume a course

deletion for each student each semester, which will permit

some students to drop more then one course and some may not

drop any. Th~s the cost for deletion is

C =~ (Ns(t) * Cr) + Cs'
D

where Ns(t) is the number of students in the department at

any +;~e t·c~(cr- ~) V~,), ' ..._ - r+ 1 ' the average cost for accesses and

Cs' is the cost for sorting. In th:ts ease also, n in Cr=

nr is = n = · 2(Ncs + Nsc), as above.
r+1

UPDATES
This is normally the cost of entering the grades in

the perform~~ce-records. The grade-cards are sorted in class

order, before they are entered in their respective records.

Thust the cost for entering grades is

U = T (Nc(t) * Cr) + Cs~

where Nc(t) is the number of courses offered by the department

(nr) h t f · th at any time t, Cr Cr= r+1 is t e cos or access1ng e

records,cs• is the cost for sorting and finally T, is the

number .. ·of times the grades are entered. In this case the

0

122

nr length of the file, n in Or r+1 is

n= 2 Nsc,

where Nsc is the number of students in a course and 2 enters

because to access each student-record, a performance-record

and then the student-record is accessed. Even though the

grades are entered in the performance-records, student-

records are read to check if the grades are being entered in

the right performance-records.

GRADE R3PCRTS

The grade-reports are printed out at the end of each

semester. In this case no sorting is required. The files are

simply read ~~d printed out. The cost for printing out the

grade report is

GR = Ns(t) *er,
where Ns(tJ is the number of students in the department at

any time t, ~~d Cr(Or ~~1) is the average cost for accessing

records. In this case the length of the file n is Or- ~~ 1 is

n= 2Ncs,

where Ncs is the number of courses a student takes and 2

enters because to obtain each course-information two records

are read.

123

2.3.8 COST OF OPERATIONS USING DIFFERENT ACCESS
METHODS

After having developed the techniques of cost

analysis in the previous sections, we can now cost the

various functions of the Student Record Management System

using different access methods and storage devices.

The data bank of this system is organized on a

Direct Storage Device using Relative Access Method.

However, for comparing the cost of this system, another

system using Sequential Access Method was also designed,

costed ~d compared.

The section 'Cost of Operations using D~~~ computes

the cost of storage and the various function, such as

create and update files, performed by this system through

out the school year. It also computes the cost of printing

out the reports.

The section 'Cost of Operations using SAM' also

computes the cost of all the operations performed though

out t~e school year. However, in this case all the records

are organized on a Disk using Sequential Access Method.

Both the systems perform exactly the same functions.

The only difference is the organization of the files, and

therefore the cost.

124

2.3.8.1 COST OF OPERATIONS USING DAM

(C) We maintain all the students' current years records

on a DASD and the previous years records on tapes, which

reduces the storage cost considerably. The cost per track

at NcGill is .20~ per week. Whereas cost of storage on

tapes is negligible. Therefore,the cost for storage on

DASD for the current year is as follows:

1st Sem .

The average number of courses per

student is 5. Therefore the total

number of courses for the first semester is

=Ns * Ne'

=1000 * 5 = 5000

'!.:le C2..1'1 see from table 2, the number of

tracks required for the first semester

is 96, Thus the cost is

=96 * .20~ per week

= $19.20 per week

•• 1st sem = $19.20 * 26 weeks

2nd Sem

The number of tracks required for the

secor.d semester is 148. (see table 2)

Thus the cost is

= NT(t) * Cd

= 148 * • 20~ per week

-· $29.60 per week
•

• 2nd sem = $29.60 * 26 '!leeks •

$499.2000

$769.6000

125

2) DATABANK SET-UP

CQ A. CREATE COURSE-FILE

- (Nc(t) +1 * Cc~) + Cs'

= (201 * .0013) + Cs'

= .2673 + (2n(1+2) * .00133)

= • 2673 + (2 * 2(3) * .00133)

··- • 2673 + .0106 = • 2779

B. C~.EATE P:SRE'OPJIIANCE-FILE

= Np(t) * C

13.3000

C. CREATE STUDENT-FILE .AND LINK WITH

COURSE-FILE .A.clifD PERFORMANCE-FILE

= (2+Ns(1+Nc') + 2Nc) Co(+ Cs t

. - ((6002 + 400) * .00133) ·+ Cs'

= 7.1833 + 2n(1+2)Ct<

= 7.1833 + (2*99(3) * .00133)

= 7.1833 + .7900 = 7.9733

3) liE~,~~ SE!~3S 7:3:R

(Ns(t) * er) + Cs'

= 1000 * (nr) --r+T eo(+ Cs'

1000 * (210 * 5 * .00133) + Cs' = 6
= (1000 * .2328) + Cs'

= 232.80 + (2n (1 + 2) C.,;)

= 232.80 + (2*31(3)*.00133)

= 232.80 + .1649 = 232.9649

,Q The length of the files are 210, because
..

the five courses are to be added in 2

directions, student-file (5 records)

126

and course-file (100 records). Two

accesses are required to access each record.

4) COURSE DELETIONS -1st SEM

A. For course deletionswe have assumed 1000

course deletions every semester.

= {Ns(t) * Cr) + Cs'

:;:: (1000 * (210 * 1 * .00133) + Cs'
2

= (1000 * .1397) + (2n(1+2)*.00133)

= 139.7000 + (2*7(3) *.00133)

= 139.7000 + .0559

B. 2nd SEH

= (Ns(t) * Or) + Cs'

= (1000 * (220 ~ 1 * .00133) +Os'

:: (1000 * .1463) + (2n(1+2) *.00133)

= 146.3000 + (2*7(3) *.00133)

= 146.3000 + .0559 =
During the second semester the length of the

file in Or= ~~ 1 t is 220 because the average

139.7559

146.3559

no. of students in a class is 100 and 10 courses

per st~dent makes it 110. To access each record,2

accesses are required, which makes it 220.

5) COURSE ADDITIONS -1st SEM

For course additions too~we have assumed 1000

course additions every semester. During the 1st

semester the average number of courses per student

is 5. If the course deletions are made first the

average number of courses per student left in the
nr file is 4. This means the length of file in Cr= r+T is

n=2(Ncs + Nsc)

= 2 * (4 + 100)

=208

127

Therefore~the average cost of the additions

during the first semester is

(Ns(t) * Or) +Os'

=(1000 * (208
2* 1 * .00133)) +Os'

=(1000 * .1383) + {2n(1+2) * .00133)

= 138.3200 + (2*7(3) * .00133)

=138.3200 + .0559 =

E. 2nd s::.::r-:

Similarly,.the length of file in Or= ~~ 1 ,

is 218. The average cost is

(Ns(t) * Cr) + Os'

=(1000 *(218 ; 1 * .00133)) +Os'

=(1000 * .14291) + (2n(1+3) * .00133)

=142.9700 + .0559 =

6. A) UPDATES -1st SEM

T(Nc(t) * Cr) + Os'

=3((200 * (200* 100) * .00133) +Os') 101
=3((200 * .26334) + Cs')

=3((52.6680 + (2n(1+2)C~))

=3(52.6680 + (2*31(3) *.00133)

=3(52.6680 + .1649)

=3 * 52.8329

13$.3759

143.0259

158.4987

'0

128

B) UPDATES -2nd SEM

T(Nc(t) * Cr) + Cs'

= 3 ((200 * (~~ 1 c,.)) + c s •)

=3((200 * (40~;~oo * .00133)) +Cs?

=3((200 * .5267) + (2n(1+2)C~))

=3(105.3400 + (2*31(3) * .00133))

=3(105.3400 + .1649)

=3 * 105.5049 =
During the first semester the length of the

file,i.e. n=200, in Cr= ~! 1 • This is because

316.5147

the average number of students in a class is 100

but to access each record two accesses are involved.

Eowever, during the second semester n=400,

because the file of the course>is now doubled,

even though the average no. of students in the class

are still 100. Therefor~the request is still 100.

7. A) GP.AD~ REPORTS -1st SE:'-1

·- (.....) * ,., .N 8 V · vr

=10oo * (~~1) c(

=1000 * ((1 ~* 5)* .00133)

=1000 * .01064

A student takes on the average, 5 courses and

10.6400

therefore1 there are five requests. The length of

file, n= 10, be~ause to access a record two

records. are read.

B) GRADE REPOR'l'S-2nd SEH

Ns(t) * Cr

=1000 * (!!.!_) c r+1 o<.

129

=1000 * ((2~~ 10) * .00133)

=1000 * .02394

During the second semester a students'

file has doubled cause of 1st a~d 2nd

semester courses. Therefore,the file is

equal to 20~and request 10.

COST FOR YEAR = $2590.42

COST PER JT]DENT = 2.59 per year

130

2.3.8.2 COST OF OPERATIOX.SUSING SA11

INTRODUCTION

The purpose of the Student Record Management

System is to maintain up-to-date students records and

print out transcripts at the end of each semester.

The Databa...'l'lk of the SR!1IS has only one file

called Student-file, set-up on a D~~D by Sequential

Access 1r!ethod. A student has one record per course, i.e.

if he is taking five courses, he has five records. in

the student-file. Each record contains Student-code,

student-na~e, sex, degree, level, address, telephone

number, course-code, course-description, class performance

etc.

The main purpose of the SRMS is to maintain

student~up-to-date records by deletion or addition

of courses, entering grades and marks obtained

in different classes and printing out the grade

reports at the end of each semester. However,the data

ba"lk can be u ed for any other purpose by writing specific

progr~~s. These requirements will differ from school

to school.

CQ

131

STUDENT-FILE

Each record of the student-file has the following

information:

INFOID"!ATION COLS BYTES

Dept. 1-3 3

Student code 4-9 6

Student n~-ne 10-29 20

Degree 30-33 4

Level 34-35 2

Sex 36 1

Street 37-53 17

Apt.:~o. 54-57 4

Tow-n 58-73 16

Telephone Ho. 74-80 7

Course-code 81-86 6

Semester 87 1

Year 88-89 2

Courae-tescription 90-114 25

No. of credits 115 1

Grades Obtained 116 1

I'1Iarks Obtained 117-118 2

:Record hark 119 _1_

TOTAL 119

At the time of registration t1rro cards per course

for each student is punched and stored as one record per

course, as described above. Thus each student will have five

or six records, depending on the no. of courses he takes .•

However, the normal load is five courses per semester.

{0

132

The cost for setting up the databank on a DASD is

(N s (t) u * 5 cc<) + c s 1 ,

where;Ns(t) is the number of students at any time, 5

courses is the normal load, u is the number of records per

track, C~ is the cost per access and Cs' the cost of

sorting.

NE\'/ SEMESTER

When the second semester starts each student takes 5

n~w cottrses, which should be added to the databank. The

databank is organized sequentially and therefore~new

records are stored on a Disk-file, the old records added

sorting the new updatedfile is stored bacK

to its original position. The cost is

= (2n0 + 2n 1 (t)) c o\ + c s 1

where>n is the number of physical blocks in the original

file, n 1 (t) is the addition of blocks, c~,the cost per

access ~~d Os' is the cost for sorting the file.

ADDI mrs

After the school has started the students are

allowed to change any ccurse they wish within a certain

period. These changes cause additions and deletions of the

course records in the databank. However,it is done only

once a semester. We will assume one addition course per

student, which will account for some students adding a couple

and some none. The addition of courses is also handled

similar to the new semester course addtions. Thus the cost

is

=(2n0 + 2n1 (t))C~ + Os'

rO

133

The variables are the s~me as explained under new

semester.

DELETIONS

Changing courses cause additions and deletions of

course-records in the databank. We have assumed a student

will add a new course, which means he is most likely deleting.

a course. The number of course deletions, therefore will b~

approximately equal to the number of students~ In the case

of course deletions, the cards are sorted on a Disk-file in

Student~code order. The Student-file is also sorted in

Student-code order. Now both files are read and the

Student-file is stored,deleting the records, on its original

Position. Thus the cost is

=(2n0 + 2n1 (t)) C~ +Cs'

UPDATES

The updates are normally entering grades and marks
c. A

in the student-file records. The grades are enter~ng th~ough

data cards. The cards are stored on a disk-file in Course-

code order a..'1d then the gra.des are entered by reading the

sequential Student-file. However, the student ... file is also

sorted in c~urse-code order before reading it. The cost of

entering the grades in the Student-file is
f

=T(L-s + Cr)

' where·~ is the number of times the grades are entered, Cs

is the cost of sorting the grades card file on Disk,and

134

Cr,is the cost of retrieval of records for entering the

grades.

GRADE. REPORTS

The grade reports are printed out every semester. The

file is sorted in Student-code and Course-code order and then

simply reading and printing is performed. The cost for

printing grade reports is

=T(Cs' +Cr).

The variables are the same as described under Updates.

STC?..AGE

To access the databank when neededt the student-file

is stored o~ direct access storage device. The cost of the

file is de~ermined from the number of tracks occupied by the

databa~k which depends on the number of students. Thus the

cost is

whereJNT(t) is the number of tracks required at any time>

and C(is the cost per track. The present cost per track on

IBM 3330 at McGill is .20~ per week.

Records are blocked j09 per track,and therefore for

5000 recor~46 tracks are required.

CO ANALYSIS OF SRMS USING SAM

To a.."'lalyze the cost of storage and various I/0

operations of the SR.rv1S, \•le must know the number of students

in the department using the system. For the purpose of analysi

we assume the number of students is 1000 in the department.

135

With this assumption the cost of the storage and I/0

operations will be as follows.

STORAGE -1st SEM

Each student takes five courses per semester.

Therefore, the total numbe,' of courses for the 1st semester is

=Ns * Ne'

=1000 * 5 = 5000.

The course records are blocked 109/track,and therefore the

number of tracks required is

=5000/109 = 46.

The cost for storage is

= 46 *.20~ per week

= ~9.20 per week
•

•• 1st sem = $9.20 * 26 $239.20

STORAGE-2nd SEH

The cost for 2nd sem is the number of tracks

from the ~st sem plus the number of tracks

required for the 2nd semester. During the 2nd

se~ester also, each student takes 5 courses1 which

me&!S the number of tracks required is

=46 + 46 =92.

The cost for storage is

=NT(t) * C~

=92 * .20~ per week

=$18.40 per week
•

•• 2nd sem = $18.40 * 26 = $478.40

Q

136

NEW ~EJYIESTER

The cost for adding 5 courses for each student

in databank is

. =(2n0 + 2n1 (t)) cl(+c's

=(92 +92 * .oo133) + cs
= (• 244 7 + ds)

=(.2447 + (2~(1+2)0~)

=(.2447 + (2*92(3)-.00133))

=(.2447 + .7342)

D3L3TICN-1st SEM

In this case n;(t) is 7, whereas n0 , is

46. The cost is

=(2n0+2r'1.(t))Ct{ +Os'

=(92+14) *.00133 + Cs'

=(.1410 + (2n(1+2)C~))

=(.1410 + (2*53(3)*.00133))

=(.1410 + .4229)=

D?:LETION-2nd SEH

In this case n1 (t) is 7, whereas n0 , is

92. I' he
COS;, J..S

= (2n0+2n1(t)) c~ +C's

= (184+ 14) 0 +a's

=(.2633 + (2n(1+2)C~)

=(.2633 + (2*99(3)*.00133))

~(.2633 + 0.7900) +

ADDITION-1st SEM

0,98

.4229

$1.0533

Initially n0 was 46, but after deleting 1000 courses

(7 tracks),n0 is now only 39, and n~t) is 7. The cost for

addition is

rO

.o

137
=(2n0 + 2nft)C~ +ds
=(78 *.00133) +Cs
=(.1037 + (2n(1+2)C~))

=(.1037 + (2*46(3) *.00133))

= • 1037 + • 3671

ADDITIONS -2nd S3M

After deleting 1000courses (7 tracks), n0 is

only 85 tracks a..'1d n
1
(t) is 7 tracks. The cost for

adding 1000 courses during the 2nd semester is

' =(2n0 + 2nft)C~ +Cs

• =(170 +14 * .00133) +Cs

= (• 2 4 4 7 + (2n (1 + 2) q,())

=(.2447 + (2*92(3)~.00133))

=(.2447 + .7342) =
UPDATES-1st SE]';!

Assuming the grades are entered 3 times a semeste~

.4708

.9789

the cost for entering 5000 grades is computed from the cost

of sorting grade.cards and student-file recordsJa..'1d

the retrieval cost for entering grades. The number

of tracks re~uired for 5000 grade cards is

5000/80 ~ 32_,

which is used to compute the cost of sorting. Thus

the cost for entering grades is

T(ds +Or)

=3((2n(1+2)C~) +Cr)
=3((2*32(3)*.00133l +Cr)

=3(.2554 + (~~ 1 C~))

=3(.2554 + (4~~~~00 * .00133))

=3(.2554 + .0612) =3 *.3166= .9498

eo

... Q

138

UPDATES-2nd SEN

During the 2nd semester the student~file will

be twice as big as the first semester,and therefore>

it will occupy 200 tracks. However,the tracks required

for sorting the grad~fards will be the same i.e.

84. Assuming the grades vlill be entered 3 times, the cost is

T(Cs' +Cr)

=3((2n(1+2)C~) +Cr

=3((2*32(3) *.00133) +Cr)

= 3 (• 2 5 54 + (~~ 1 c Cl())

=3(. 2:n4 + (92 * 5000 *.00133)) 5001

=3(.2554 + ~1224)

=3 * .37?8 =
GRADE P3FORTS-1st SEM

The cost for printing grade reports during the

1st semester is

T(Cs' +Cr)

=1((2n(1+2)C~) +Cr)

=(2*46(3) * .00133) + Cr

=.3671 + (~~ 1 *C~)

~ .3671 + (46 5;6~~0 *.00133)

$1.1334

=.3671 + .0612 = .4283

GRADE REPORTS-2nd SEr1

Assuming the grade reports are printed out only

once during the second semester,the cost is

T(Cs' +Cr)

=1((2n(1+2)C~) +Cr)

=(2*92(3) * .00133) + Cr

139

= .7342 + (nr)
r+1 c~

= .7342 + (92 * 50·~0 *.00133) 5001

= .7342 + .1224- .8566

TOTAL $724.8740

The cost for maintaining a students up-to-date

records per year is 724.87/1000 • 72

per student/year.

However,if tne data is stored on tapes instead of on-line

device,the cost is negl gible which is:

$7.27/1000 .01

per student/year.

2.3.9 CONCLUSION

We c~~ see from the cost analysis of the two Sffi1S's,
'\.... . 1S., l' . .

t~,e main cos~ ~or onb 1ne storage. RMM 1s more expensive

then SP:·~ on DASD. If we use tapes instead of on-line

storage~he cost of SRMS is negligible. However,with the tapes,

only Sk~ ea~ be used. We should not forget that we have not

cost analyzed many items, like part of the CPU cost, personneJ

key :punching, unit record, papers or forms used for output.

etc. Since these items are common for both the systems_,

it will just increase the cost of both the systems by the

same amount.

140

In short, comparisons of the Sfu~S's using RAN and

S.Afvl shows S.AM is quite cheaper. l1oreover, if tapes are

used the cost goes down to the bottom, which is shown

below.

$3

ING RA}!
' ~- - - __,_ --------.

$2

$1

-~~-------

USING TAPES

0

141

2.4 COKPARISON WITH ALTE~~ATIVE SYSTEMS

2. 4. 1 · IVfcGILL UNIVERSITY SYST3T1

The Student Record 1\1a..Yl.agement System could be very

simple and yet meet all the requirements of the institution.

We can look at the HcGill Student Record Management System

which is quite simple and meets all their requirements.

McGill University maintains the students records on

tapes. Each student has two records for the current year, of

750 by~es each, one containing hi~ academic information,such

as caurses,grades, marks, semester,etc. and the other: record

contai:::ing personnal information such as name, local

address,permanent address, telephone n~mber, sex,etc. The

reason for having so big records is that they allow enough .

space for storing up to 20 course information.

The previous year's academic and personnal information

is stored o~ a different tape, which has variable length

records. fhe length of the records depends on the amount of

the information of the students. Normally,the information

is add.ed or changed only on the current tape,and therefore,

the length of the records have to be big enough to be able

to store information in them.

When students register, the forms are sent from each

department to the main office, where academic and perso~~el

information is punched on ·cards and stored on the tape. The

two records per students are fixed length of 750 bytes each

and therefore, there is still a lot of space reserved for

each student on the tape.

[/0

142

Similarly, the course changes are also sent by all the

departments to the main office, where the cards are punched

and the tape updated. The grades are also handled the

same way.

To meet the requirements of each department several

different reports are being produced from these tapes. The

grade reports for the students are also being printed out

from this tape.

We c~~ see the data s~ructure of the McGill system is

simply sequential and on tape. The length of the records is
1h

750 bytes, whether it is used or not and most cases we will

see, it is not used, since there are not many students who

will take 20 courses. Slli1S is organized on DASD with links

to the connecting records. This means, if a student is taking

only 3 courses he has only 3 records o£_22 bytes each. When

he takes the 4th course one more record of 22 bytes gets

attached to his other records. Thus, the students have the

exact ~ount of space they need.

In McGill System,all the records are sequential which

mea."ls eve:::·y time different reports are required, the tapes,--

are to be sorted before each rep~rt is printed out, whereas

in SF~S the databank is linked in two order~,i.e. courses

within students and students within courses. Most of the

reports can be printed out without any sorting.

However, we may say that l'-cGill System has information

on tapes, which is much cheaper than DASD and the cost of

sorting is also very cheap. This is true,but then SRPIS's

143

files can also be transferred frorr~ASD to tape after use.

The SRMS has student~file, course~file, performance-file,

student-file-directory ~~d course-file-directory, which could

be stored as five separate sequential files on a tape and

every time used can be stored on DASD and then transferred

back on the tape.

However, if the student information is on DASD the

system keeps track of the different files. No tape handling

is required, which eliminates human errors such as submitting

wrong tape with program. If a couple of wrong reports are

produced in a year this will justify the extra cost for

using DASD. If the institution is not using their own

computer, they have to pay a certain amount, like$2.00

every time the tape iE required to be mounted. lt costs to

transfer the data from tape to disk,. to produce a report

and the~ back to tape.

2. 4. 2 CASSAR1<1S

The System Cassarms, the Computer Assisted Student

Scheduling and Record Hanagement System, is being used by

USDESEA, United States Dependent Schools in European Area.The

tern is based on a number of computer programs developed

by USDESEA personnel, supplemented by prograTLs supplied by

the IBM Corporation. The Scheduling phase of the system

utilizes the IB!If programs, while the student record

management phase applies the USDESEA programs in a logiaal

sequence. We shall discuss only the student record management

phase of CASSAR!-'I.

http:like$2.00

c
'

144
The scheduling phase of CASSARMS produces a student

schedule tape from which a new card for each student, listing

the course-code to which he is assigned, is produced.These

cards are called L-deck, which lists the students actual

course assignments. If a student has six or fewer course

assignments, he has one L-card; if he has more then six

he has two L-cards. The system will accommodate a maximum of

twelve course assignments.

These cards updated manually as course changes are

made form tne bases for different reports. The department has

the listing of the course corresponding to the course codes.

from which the course cha~ge forms are filled out and sent

to the Keypunch Dept.The Keypunch Dept will update the

computer cards.

The ~··aster deck containing course-code, course-descrip­

tion, section,period,instructor,class roomsrtc,prepared by

the School Administration for the scheduling phase is used

thro'..lgh out the student rec·:Jrd management phase. This

t-:as ter .:_eck is known as the G-deck.

Just prior to a grading period this G-deck and_·,L­

deck are processed by the computer and one card for each

course a student takes,is produced in the course-code order.

This ne\'l deck is known as E-deck. An 11 E11 card depicts a

given course in which a student is enrolled. He has one

"E 11 card for each course, containing all the information

necessary to define the particular class and section.The

11 E" cards are given to the teachers for marking grades. The

teachers mark on each card the grade received for that

marking period, sorts the cards grade~wise and returns to

the keypunch department. The keypunch department has card

145

boxes marked with A,B,C,D,E,F,etc. where cards are placed

in the appropriate boxes. After all the cards are received

the grades are punched on the same cards.

The deck of cards is now ready for various reports,

such as class-lists with grades on them, grade reports for

mail-ing to the students, grade reports on gum labels for

their permanent record card,etc. The students are graded

twice a semester and the srune computer cards are used for

the second grading period too. For the second semester a

, nevi set of cards is produced using the L-deck and the G~

deck of the second semester.

0

146

2.4.3 CONCLUSION

The Student Record !1ana-gement System will maintain

up-to-date records of the students. It updates the

various files to accommodate the changes made by the

students in their programs.

The system has nine computer programs to maintain

the files a."ld print out reports. The section "Using

the System 11 describes how to use the programs to perform

the various functions. The system is quite simple and

to perfor~ any function a cateloged procedure can be

invoked. 0:1ly a few cards are required to call any

cateloged procedure which is discussed in the above section.

In the databank the connecting records are linked

by embedded pointers. This provides faster access to

the logically connected records.

The Data Base Task Group has proposed a Data

Description Language and a Data Manipulation Language·

to manage the database efficiently. These languages

have been applied in a few programs of the Student Record

Manage~ent System to determine if it falls on the lines

of the proposals. It can be seen in the section

"Implementation of SPJ·1S in DBTG" that the database of the

SRlVIS does fall on the lines of the DBTG 1 s proposals.

It has pointers in different directions to all the connect­

ing records. There is no redundancy of data. It has a

147

centralized database, parts of which are uc:-ed by different

programs for performing the various functions. It is

organized on a Direct Access Storage Device. However,

to maximize the advantages of this database structure,

it should be interrogative, using TSO or some other

method. This will permit retrieving and entering specific

information via a terminal device when it is required.

The section "Cost Analysis Techniques" indicates

that t:1e maintenance of the databank, such as above, is

quite e.x:pens i ve. This is mainly because of the expensive

storage ::nedia and the high cost of updating the integrated

database. However, the advantages of the integrated

database justifies the extra cost.

148

References:

1. Compiler Construction for.Digital Computers
by David Gries.

2. The Art of Computer Programming Vol.III
by Donald E Knuth.

3. Unpublished paper on 11 Cost Analysis Techniques"
by Professor Tim H. Merrett.

4. Data Structures and Program:ning
by Malcoln C. Harrison.

5. Data Base Task Group (Codasyl)
Report of April 19?1.

(Q

149 APPENDIX - A

SORTING A~D SEARCHING TECHNIQUES

The n2tural physical characteristics of co~ventional
memory make i}; more suitable for representing ordered sets

then unordered sets. The elements of a set must be ordered

according to s::>me property of the elements, wh2-ch permits

us to locate a particular i~em with ater ease then if

the elements are not ordered. There are several sorting

te iques and any of them can be used to order a set.

for"':unat ~:r, there is no known best way to sort: there are

mar1y ·cest ::~et"" ~ds, depending on what is to be sorted on what

machine, for what pD.rpose. In wor(~s of Rudyard pling,

"There ar"': nine and sixty ways of conc:;tructing tribal·laws,

and every single one is rir;ht. 11 Some of the cor;;Mon sorting

techniques are di cussed below:

SEQur!~TI SCP.T

We will svppose tr ... at an i tern contains a key which is

to ~e ~sed to order the items. The items are to be sorted

so that their keys are in increasin~ order. The simplest

method of doing this is to search the whole sequence for the

smallest item and then to exc~ange it with the rrt position

in th2 list. Then the li;'t except for thi smallest i tern

is searched for the next smallest and this is exchanged

with the second item on the lic:;t,etc .•

Tl'.is is siY'lple ~8 profrar.i, bvt it he,s the disadvantage

that, for a sequence of n items, it req~ires n(n-1)/2 tests.

IC)

150
APPENDIX - A

It also has the C.isadva:r:tage that it will "take just e.;} long_,

even if the list i~ in the correct order initially.

Et:E51E SORT

This sort 2tar~by co~paring the first two ite~s in

t~e sequence. if these are in incorrect order, they are

interchanged. The procedure then goes on to examine the

secor;.d a:-_C. ~:nird i term, in the sequence. In general, if the

i-th (i+1)-st elements are in incorrect order, the lower

one ie ~oved upwards until it is in the correct position~

Other<,.,i::e t!-1e comparison co!:tinues with the (i+1)-st and

(i+2)-nd elements until the end of the ~ist is reached.

The whole procedure is repeated until a pass iA found without

a pair o;;t of order. :f..ubble sort, in the worst case will

requ.ire n(n-1) /2 tests and exchanges, while in the best case,

it will req:u ire (n-1) tests and zero exchanges.

~he essential idea of the merge sort is that two

ordered sequences of lengths m1 and m2 can be mer~:;ed to

provide a completely ordered sequence length m1 + m2 ,

using approximately m1 + m2 moves and less tha.."l m1 + m2 tests.

This can be accomplished simply by removing at each.step

the smallest element of either of the two lists onto a ~erged

list. The complete mer~e sort can the~ be acco~plished by

first converting the sequence of length into approximateiy

n/2 sequences, each of which is of length 2 and in v.,rhich

(Q

151
APPENDIX - A

the elements are ordered. The sequences are then merged

in pairs to form approximately n/ 4 sequences of length

4, e .• Thus the total number of comparisons required to

sort a sequence of length n is approximately n log2 n.

The merge sort is very efficient when it is possible

to collect all the items to be sorted before the sorting

operation begins. In some situations, it i~ necessary to

sort a sequence of i~ems and then to add a number of further

items to the sequence in their appropriate position. If a

linked representation is satisfactory, then the new items

ea~ be inserted without moving the remaining items. However,

finding the position for the insertion will on average require

n/2 tests, when n is the number of items in the sequenceo

This can be improved considerably if the sorted sequence is:

stored as a tree structure.

152
APPENDIX - A

BINARY TF~E SORT

The binary tree of 1 levels can have 2 1 ~1 nodes.

Each node can be used to store an element, so 21-1 elements

can be located by tracing down 1 links. A sorted binary

tree is built in such a way that both its left and right

subtrees are sorted, and all those items in the left

subtree occur 8efore the items in the node, and all the items

in the right subtree occur later. For example the following

tree is sorted.

In this example, some of the subtrees contain one

or zero branches. This tree has four levels and could
-1

contain 2'-1 items, which is equal to 15 items. Inserting

a new item in a sorted binary tree is simple~ It is added

as a new terminal node, whose position in the tree is obtained

by tracing down the tree, taking each node if the item is

before the node item in the required order, and the right

branch if it is after the node item. For example, the number

6 would be inserted to the right of 5 and the left of 1.

A new item can be inserted using l tests. However, if

the tree is completely unbalanced, that is, i.f the entries

are made in it in such an order that each node specifies at

most one subtree, then we have effectively generated a table

! ,e

153

which is searched linearly, and will thus require an average

of n/2 tes~per insertion. For maximum efficiency it is

necessary to keep the tree as balanced as possible. In some

cases this will require that the tree be reorganized, putting

different nodes at the head of subtrees, and re-org~~izing

the subtrees acco ngly. Thus for 7 items the first item

should be 4th, and the second item should be either second

or sixth. £oth the order 4,2,6,1,3,5t7 and the order

4,2,1,3,6,5,7 can be used.

Ho·,.,.ever, to rebuild the tree from top· do\m. is not

trivial. It is much easier to build it from the bottom up,

constructi a subtree with the first 3 items on it, and then

a subtree with the 5th-7th items and joining these using the

4th.

The radix sort is a modification of the procedure

used by physical card :sorters. lt is convenient when the key

on which sort
!,.'0;

is to be done relatively short. The

procedure takes the form of sorting the items first on the

least significant symbol. The result is then sorted on the

second least significant symbol, then on the third, and so on.

re

154

For example, if we were to sort 51,40,60,80,20, after

the first pass we wo~ld have 40,60,80,20,51 and after

the second pass 20,40,51,60,80. If the numbers 1,2,3, •.• 4096

are to be sorted it will take 4 passes.

This is much better then the merge sort which takes

of the order 4096 log2 4096= 12 X 512 comparisons.

S:2A?CHING

For 16cating a particular item of a set we will assume

that a:1 iten has a key which will identify it. There are

seve::ral s~arcting methods available, but some of the comnon

methods a::re discussed below:

The si~plest search procedure is the linear search, in

\'lhich all the i terns are examined in turn until the correct one

is found. This can be used when the items are stored

sequentially in memory, or in a chain, but it has a dis­

advantage that locating a random item will require an average

n/2 atterr-ps where n is the number of iteffis.

Eov:ever, there are certain situations where this process

can be effective. If all items are not searched for equally

often, the more frequent ones can be placed at the beginning.

Also this process is so simple that it can easily be implement­

ed in the hardware, thus speeding up the search. An example

of this is found in the address search in the CDC STAR

155

machine, which looks up all addresses in a table to find

out the physical memory location assigned to the block of

memory in which the address lies. The top 16 entries in the

table, are searched in parallel, but if the block address

is not found the table is searched linearly by hardware at a

great speed. V.nen an address is found, it is moved to the top

of the table, and the entries above it are moved down one place

Since the address generated by a program tend to be clustered,

most addresses will be found in the top 16 entries, and

little ti=e will be spent in the linear searoh.

If the items are sorted, for instance, retr.kval

can be done from n items by using log2 n tests, which is

known as a binary search. In binary search, the first item

to be exa~ined in the table is the item in the middle. By

comparing this with the object found, it can be determined

if the object is in the first half of the table or the

second. Subsequent tests on items at the centre of the

appropriate half of the table will determine which quarter of

the table the particular object is in, etc. A binary search

of 7 items is illustrated below. The 4 is compared with the

search argu~ent. Depending on the result, the comparison

is performed with 2 or 6 again, and so on.

156

This procedure does have the disadvantage that all

elements in the table must be in sorted order, and any

insertions into the table require resort •

nASH ADDRESS HW

Hash coding has applications in a number of areas

including inserting and searching items. This is a method

for converting i terns or its key',to indexes of entries in

the table (the entries are numbered O, ••• N-1 where the

table has N entries). The index is obtained by 11 Hashing"

the symbol by performing some simple arithmetic or logical

operation on the symbol and possibly its length. As long

as two syr::bols do not hash to the sa'!le index the cost of a

search is just the cost of doing the hashing. Trouble occurs

however, if two symbols hash to the same index, which is callec

collision. Only one symbol can be placed at that entry, so

we Gust find another spot for the second. We can use chaining

or rehashing to solve the collision problem.

The chained hash addressing technique uses a hash

table whose elements. called buckets, are initially zero.

The symbol table itself which is initially empty and a pointer

which points to the current last entry in the symbol table

initially points to the location before the beginning of

the table. The symbol table has another chain field, which

may contain zero or an address of another entry in the

symbol table. The initial tables look like this:

157

HASH TABLE
Buckets

SYT-1BOL TABLE

1

2

3

4

5
6

HASH ~P.A.BLE

:Buckets

1

2

3

4
5
6

7

A'RG CHATN ~
0

0

0
·-

0 POINTRR
0 I
0

Each bucket is zero or points to the symbol table entry for

the symbol which hashed to it. The chain field of each

entry is used to chain entries whose symbols hash to the

sa~e b~cket. Suppose that a symbol, 81 is to be entered

into the symbol table. The hash function produces the addreE
\

of a hash table entry, for example bucket 4, which at this

poi~t is zero. We do the following.

1. Add 1 to pointer.

2. Insert the value 81 and zero in chain column into

the symbol table entry pointed at by pointer.

3. Put pointer in bucket 4.

Now if we want to enter symbols S2, S3 and S4 which hash to·

buckets 1,3 and 6 respectively, the tables would look like

this:

SYI'·'IBOL TA:SLE

ARG CHAIN
------- .. S1 0 -

0
,j

---182 0

) S3 0
....,

Stt: 0 / I L.

" POINTER 0

0

c

158

However, when a symbol 85 will be entered which hashes to

a bucket which has been used before, the chain field comes

into play. S5 will be entered into the symbol table and

added to the end of the chain for that bucket. Thus if

85 hashes to bucket 6, we have the following structure.

rr , ""=lT .'<'
..... .:.i--.,.;.; SYMBOL TABLE

\.

2.

3
lt

s
b

7

ARG. CHAIN
I
I I 1 81 0

0
I 82 0 j

~ !

I
~ 83 0 ! " -

i
.... 84 - -i

: I POINT

0
I

85 0
I

! ~-·

ER

i "' i

I

In this procedure only the buckets need to be initialized

not the entries themselves. The actual symbol table entries

should be more then the buckets. Once all entries have been

entered the hash tables can be thrown away and its space

released for other purposes. For retrieval of an item also.

hashing is used to generate the index in the table, which is

then searched.

HAS HI FUNCTION

There are a number of ways of obtaining such indexes

(Hash Code).

eo

1

2

3

4

159

1. Multiply the key by itself and use the middle n bits as

the hash(if the table has 2**n entries). The middle n bits

depend upon every bit of key.

2. Use some logical operation, such as EXCLUSIVE OR, on

certain parts of the key.

3. If there are 2**n entries in the table, split the key

up into n bit sections and add thern together. Use the

right~ost n bits of the result.

4. Divide the key by the size of the table and use the remainde

as the hash index.

There could be other methods devised besides the above. How-

ever,these ~ethods give satisfactory results.

LINEAP .. REH;tSH

In this method if the collison occurs the item will

be stored in the next sequential entry. In the example

below synbols S1 and S2 were hashed and entered at entries

2 and 4 respectively (fig. A). Suppose now that symbol S3

also hashes to entry 2. Because of the collision it v:ill be

stored in entry 3(fig.E). Finally, suppose the next symbol

S4 also hashes to entry 2. There will be 3 collisions

with S1, S3 and ~2 in that order- before S4 is finally stored

at the 5th entry (fig.C)
A

I 1

S1
2

I
3

82
4

I

S1

S3

S2

B

1

2

3

4

5

c

S1

I
S3

82

s.d.

(

0

160

An approximation to the average number E of comparisons

necessary to search for an item is

E= (1 -lf/2)(1-lf)

where,lf is the load factor, i;e. current number of entries

n divided by the maximum number of N entries possible (lf=n/N)

This method is not very efficient but still much faster than

the binary tree search. Suppose a table of 1024 entries is

half-filled. ·:rhus 512 entries are filled. In binary search we

expect 9 to 10 comparisons while here we expect only 1.5. The

se arc!: for sorted or unsorted tables depends not on the

maxin:u:n size of the table but on the current number of entries.

Thus if t:r.e table is 10% full, we would expect 1. 06 comparison~

if half full 1.5 comparisons; and if 90% full 5.5, comparisons

The straightforward implementation of a set is very

inefficient. The elements must be in some order which will

make the searching of the elerr:en:ts easier and efficient. How­

ever, implementing sort and sea.rch routines differ from set to

set. Let us consider the database of Student Record Management

System using Set concept. In our case, we have four sets.

The Student-Info-Set and the Course-Info-Set are

desired to have the order in which the members can be

accessed sequentially or randomly. Therefore, these sets

are defined as ofmode Pointer-Array. It looks like the

structure on the next page:

161

owner list of
p

T'P~OT'n
members p

I member r-L. i

P= memter pointer

l tnember
./

L
It does not matter where the members are physically located

in the set. However, in the array the pointers must be sorted

to be able to access the members sequentially. From our

discussion about sorts and searches, we find that the Radix

sort will be quite suitable for sorting the array. Since the

key, in our case, is 6 digits long, it will require only 6

passes a."ld no comparisons to sort the array. For accessing

members, binary sort can be applied, which requires log2 n

tests. However, if the members werepot desired sequentially,

Hash Addressing could have been used for entering and searching

members in the set, which does not require sorting, and

search too is faster then binary search.

The Student-Perf:...Set and Course-Perf-Set are not sorted.

They have embedded pointers, the members of whtch point to the

next member in the set. The search is therefore, sequential.

The physical location of the m~mbers could be anywhere in the

set.

APPENDIX - B

. '

CREATE COURSE-FILE

(

0

(

/
\.

10'7 i'I,..!FICAT11JN D!VISI!J'J.

p;.-;J(.qA'1-I~;. cr~,-:A.T€::.3.

163

AUTYrJt<. G•JVI!-J) K P. ! ? L :... •'l ! •
P='-1.69r.:;~_;. THIS PR;}GRA,\1 ·:r~:::::.F.S C:JU.SS"-F:L.:: ;J;-J r:I3K.

2NV!qo~~?NT DIVISION.

CCl~JF!GtJ::?ATIO!\J S::.:CTIQ:-..
SCcU c:=-oJro~JPUT :::_:q. I flvl-3 6') -F TS •

n~J CT-CO~PUT~~. I2Y-361-F75.
PF)UT-OUTPUT SECT lOi'<.

FILF.-C:J~'-JT:::UL.

SEL~C,.. CARD-FILE ASSIG~ T~

s.=u::c..,.. PGIN7-;;:rL::. ,:..,:;sr·-:>'l TG u~-l£~.03-s-;:::;:)INTs.

s~L~CT DIS~-IN ASSIG~ TO UT-2~!4-S-INDISK.

S~L=CT COURS -FILE-DIP~(TCRY ASSIG~ TO UT-2314-5-CFD.
3~LEC7 ~G~~-FILE ASSIGN TG 4 DA-2314-D-SO~T#KOl.
S~L=CT INT~~-FILc ASSIGN TO UT-?3\4-S-CL~SSCIR.
S~LECT CSU~SE-FILE ASSIGN TO DA-2314-R-S~F

ACC:::ss IS SEQUENTIAL
~.;:J·.!I'l'-L KEY IS t·EJM-KC:Y.

Cl'.\.,. A OIV!S I:::;:·~ •

sn 'tl" P K.- F 1 L :::

R~CO~DI~J ~~D~ IS F
R~CO~D C0~-AI~5 30 CHARACT~RS
L/\'J:C::L ,:.>;:::::: 1=<0 ! S STA:4DL','-'D

~ATA ?~CD~~ !S wC~KS.

•J'lc':'!KS.
02 DfPT-~J~< ?ICTURE XXX.
0?. STUD-:-.:.:;- NtJC{c< P IC TUP= 9 { 06) •
0-:? SC.:: '1.- .<i C! {K PI CTtr-!l': X.

12 GRAG~-j8RK PICTURE X.
02 MARK-nJRK PICTURE XX.
()? , ~--

02 cou::cs
.02 FILL~R PICTURE XCSBJ.

02 COL-)-~G~K PICTUR_ X.

FD CA.RD-~="!LE

IS F

RFC0PD CO~TA[~S 80 CHAPACTERS
LA8EL qECC D IS C~ITT~D
~~TA RECOR0 IS CPRD-REC.

01 C~.Ri)-CE(.

02 CILLEq PICTUR~ X(7~')).

02 COL-dO 0 ICTU~~ X.
F9 pcpn-F!Lc-;

~~(~CDING MOO~ IS F
LA\3t:L ::;t:CJ~D IS CM!TTt:.C
D~TA RECORD IS Ll~=-Fn~~AT.

01. L! N.::-FOPr.; 1\ T.
02 FILLER PICTU~E Xlli~).

X ('16) •

Q(

164

DIS>C-H~

cccoou!~~ ~ODF IS =
P~COPD CONTAINS 91 ~~A~ACT~~S
AL ·"1CK CONT A I ~IS l :') :::.c. CO">() S

LA8:=L ;:>~C;.NO IS ST;'\.~D:>,c.,f)

DATA GECO~D IS DISK-IN-~~C.
')! :J!SK-1:--J-R:.:;C ..

0? FILL~R PICTUR ~x~.

C2 STUD-NO-I~ PICTU~E 9(0~).

n2 YEAR-IN PICTU~~ XX.
C2 S~M-iN P!CTUR~ X.
02 FILL~R PICTU~~ X(67).
02 CC~L-30-Ii'J PICTU..,(F.. X.

::'"D HiT":'-'-FiL:':
R~C~~0!NG MOO~ IS F
PECJ 0 C•J;..,jT A !'JS g.:} CH.t.RACTEF~S

LA8~L R~C RD IS STA~DA~D
DATA ~~C~RD IS INT2~-CEC.

02 F!LL~R P!CTUR~ XXX.
02 cc:;;,;c . .s::::-! ?ICTUi-<>C: 9(06 l.

0?. C L;cs -:'):::S-1 PICTURE X{25).

02 FiLL:~ PiCTU~~ X(4~J •
F:::; C'HPS::.-;= l L.::::

RECORCI~~ ~eo= IS F
R:;:COPC CC'~TAIT:; 37 CHt.:::::r~CT::::RS

LA8~L ~~CC?D IS STANOARO
DATA ~=CC~D !S COU~SE-~EC.

Cl COURS:·.-R:::c.
02 FILL~; PICTURE ~{Qa).

9(06).

0~ FILL~ P!CTUC~ X(27J.
~o couos~-FIL~-QI 2CTO~Y

R~CQRG!NG ~~~~ IS F
REC~qo C~~TAl~S 24JJ CHARACTERS
LAB~L ~~C~RD !S STANDAqn
DATA ~~CC~D !S CCURSE-F!LE-CI~ECT.

0! C~uos~-FILE-DIR~CT.

0? F!LL~~ PICTURf X{2~00l.
W8~KING-ST~ AG~ SECTION.
77 NC~-K Y PlCTU~~ SS(SJ CCVP SY~C.

T! (:>! P~CTU'<E :)(-:'6) VALU2 ('.

7 7 PI 0 D I C T lF E 9 (0 6 J V A UF: Z E R C S •

01

02 A~DR-C PICTUP~ ~909 VALU~ Z~PGS.

I') ~ C •J '.P 5 c-C P I C TU,:('::: ':) (0 :) } •

02 S ~-C PICTURE x.
0? C'JURSE:O::-D::::S-C PICTiV~::. X{25).
02 c;,-c PICTURE X.
C r. D - •J J P K •
o::: c:::;st:.-DlR:':CT cc::::ur:<s 21)) rr.:c:s.

(

{
\

Ql

165

0-: C ~< :5?:- [· t:..> I C T d ,.. : :;; (':' 1:· l •

, Jr~')X-0 PICTu;:; .. ::<:::",) •
PROC:'=fl'JD<= DlVISIO~J.

STU.f-''':i.
0P~N iNPUT CARO-F!L~ ~~T ~T ~:S<-!~.

P::: ·~D-C "!...'OS •
::··r::\D CA"·F)-!=lLf: AT ·'::'H; C)·l TC CL;JSc-CDCI~'l.

ye: C<JL-RO IS EQUAL 7 'S' •vRI'r_ 0ISK-IN-P=C F;::')r..! Cftl=.c-r:c;c
G~ T8 P~AD-C~GOS. 0I~~LAY CARr-H~c ~~ON~ CA~O' GC TC
::Jc:.AD-CARDS.

CLJS .. -::::lOIN.

CLOS~ CARD-FILE DISK-!N. . .·
SJq•-~.

s•:::r W':JRK-FILE
m~ ASCC;-..Dii'!G KeY STUQ-1',(;-l:J!!RK

USING D!SK-li'J

G·! V!>~::; I "·IT :0:: c-i- i= I LE.
CH'?: C I(-S '.J ~ T -1 •

IF SO~T-~~~U~N IS N~T QUAL TC 0 DISPLAY
'SO~T-1 \J''<3'JCC:::ssFUL 1 GO TO '.'J=<:AP-UP.
0! sOL .l, y I s:::;;, T - 1 .JK J •

1P:=:N- !~,JTt=:.=.-1 •
()P:'::'J p .. :;u- INT:.'::;-FILF ClUT'=L!T C>.JURS'i':-FIL?.:

Ct.liPS:.::-r I :_~-0I ~. CT·PY.
TR :\"1 ~; FC:P.

~OD J TO C~ MCV~ CN TO NCV-K~Y.
r'..:::l\0 I'~Tc::..:.:-cr LE AT i'<) GC TO t-:RJ\P-U0-1.
'1[jVC:: (':.JU!:: ::;::;:-! TO C•JURS'::-C '-·JiJVt' Si:~:4-I TC S<=',!-': WJV~

COURS~-D S-I TO COURSE-D ~-C MOV~ CR-I TO C~-C
DISPLAY JU~SS-CC. wRIT~ COUPS -~~C FROM CO~~S~-CC
<'-J)O 1 TO l'!D ~'OV::: CQUi~SC::-1 iD Cr-.:S:-::-0 (fr-FJ) !VCV It--.0 TC
! N D X- 0 (I : l J l G 'J T ;J T ~ ~~ :'<l S ;:- C: P •

::?RORS.
DISPLAY CGJ~S~-CC • R~C0R8 NCT WRITTE~' GO TO TRANSFE~.

\•i?;\P-UP-1 •

A~D 1 TO IN~ MOVE z::ROS TC I~OX-D (!NO) Y~V~ 0 TO INC WFIT~
COURSE-FIL~-DI ECT FRO~ CFD-~0RK.
ADD 10 TO CN MOVE CN TO NC~-KEY ~OVE z~~0S TO COU~SE-C
~~ITC CCU~S=-R~C F~OM COU~SE-CC.

CL~SE !~T ~-FIL~ CJU~S::-FIL CCU~SE-FILE-DI~~CTO~Y.

i) I S PL;.. Y 1 t •

DIS~L;Y CGU~SE-FIL~-DI~=CTCGY•.

DISPLAY I ---------------------•.

PRT "-lT -D p:~.
ADD 1 T'J I'D•
IF P~C'X-D (INDl IS ~../CT EGlJAL TO ZFP.OS DISPL~Y

c:: S""- :::> I P C T (I N D > G J T'J P f:' U..: T-D I R •

',!iJV"': 1 TOOl. C.lP:::t'l INPlJT CCUFS:::C-FlLC:-DIR::Cr:RY. PEAC

C'Jd~S -FILr::-DIP:::CTu=:y !"JT0 CFi-';IQ.::K AT H·E) .:;o TJ ._;ISPU','f-IT.

DISPLAY 'CFD FROY JISK'•

O!SPLAY •--------------'
DISPLAY-IT.

D!SPLAY C::JSt--ulPcCT (C'J>. IF 0·· IS i'l !T :;::uu•u_ T!J Ii'IC .ACD 1 TC

z.

166

CN GO TO 'J!SPLA¥-IT. ~.DD ~ Tf.."J Ct: DI:~PLf,y c::;,s:;:-)IPE:.CT (Ct'-.)
1 LI\ST ('\.J'::' • CLi)Sf:': C!JtFS:'::-i==ILE-,)Ir:E:CTCi:-1Y.

Wq\P-UP.
STG::> l-UN.

. '

http:COlFS:'::-F=rLE-,)Ir,E:CTCi:.1Y
http:C::;,S::.::-)IPE:.CT

UPDATE COURSE-FILE

IDENTIFICATION DIVISION~
PROGRAM-IDo UPDTCRSEo

168

AUTHORo GOVIND K R I P L A N Io
REMARKSo THIS PROGRAM UPDATES COU~SE-FILEo
ENVIRONMENT DIVISIONo
CONFIGURATION SECTION~
SOURCE-COMPUTERo IBM-360-F75o
OBJ~CT-COMPUTERo IBM~360-F75o

INPUT-OUTPUT SECTIONo
FlLE-CONTROLo
SELECT CARD-FILE ASSIGN TO UR-2540R-S-CAROS

RESERVE NO ALTERNATE AREAa
SELECT DISK-I~ ASSIGN TO UT-2314-S~INDISKo
SELECT COURSE-FlLE-DlRECTORY ASSIGN TO UT-2314-S-CFOo
SELECT ~ORK-FILE ASSIGN TO 4 DA-2314-D-SORTWKOlo
SELECT INTER-FILE ASSIGN TO UT-2314-S-CLASSDIRo
SELECT COU~SE-FILE ASSIGN TO DA-2314-R-SRF

ACCESS IS RANDOM
NOMINAL KEY IS NOM-KEYo

DATA DIVISIO~~.

FILE SECTION,.
SO \YOR:<-F! LC.

RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS C> (LABEL RECORD IS STANDARD
DATA RECORJ IS WORKSo

C>.

01 WORKS,
02 STU0-~0-WCPK PICTURE 9{06).
02 FILLER PICTURE X(l4}o

FD CARD-FILE
RECORDING MODE IS F
RECORD CONTAINS 80 CHARACTERS
LABEL RECGR) IS OMITTED
DATA RECORD IS CARD-RECo

01 CARD-?-=: Co
02 FILLER ?lCTURE XXXo
02 COURSE-CD PICTURE 9{06}o
02 SEM-CD PICTURE Xo
02 COURSE-DES-CO PICTURE X(25)o
02 CR-CD PICTURE Xo
02 FILLER PICTURE X(43)o
02 COL-80 PICTURE Xc

FD DISK-IN
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
BLOCK CONTAINS 10 RECORDS
LABEL RECORD IS STANDARD
DATA RECORD IS DISK-IN-RECo

01 DISK-IN-RECo
02 FILLER PICTURE X(20)o

~(
FD INTER-FILE

RECORU1NG MODE IS F

169

RECORD CONTAINS 20 CHARACTERS
LA3EL RECORD IS STANDARD
DATA RECORD IS INTER-RECo

01 IN TER-RECo
02 COURSE-I PICTURE 9(06).
02 INOX-1 PICTURE 9{06)o
02 FILLER PICTURE X{08)o

FD COuRSE-FILE
RECORDING MODE IS F
RECO~D CONTAINS 37 CHARACTERS
LASEL RECORD IS STANDARD
DATA RECORD IS COURSE-REC&

01 C!JU;:{SE- RECo
02 F!LLER PICTURE 9(04)o
02 C~SE-KEY PICTURE 9(06)o
02 FILLER PICTURE X{27)o

FO COURS~-FILE-DIRECTORY

RECOR~lNG MJ~E IS F
RECORD CO~TAI~S 2400 CHARACTERS
LABEL RECGRD IS STANOARO
DATA RECORD IS COURSE-FILE-DIRECTo

01 COU;:<SE-FILE-DiRECTo
02 FILLER PICTURE X(2400)~

wORKING-STORAGE SECTIONo
77 CN PICTURE 9999 VALUE lo
77 IND PICTURE 9(06) VALUE ZEROSo
77 NOM-KEY PICTURE S9(8) COMP SYNC»
0 l COURSE-CCo

02 ADDR-C PICTURE 9999 VALUE ZEROS~

02 COURSE-C PICTURE 9(06).
02 S~M-C PICTURE Xo
02 COURSE-JES-C PICTURE X(25lo
02 CR-C PICTURE Xo

0 l CDF-WORK-A.,
02 CRSE-DIRECTA OCCURS 200 TIMESo

03 CRSE-A PICTURE 9(06)~
03 INDX-A PICTURE 9(06)to~

01 DISK-IN-~ORKo

02 COURSE-DIN PICTURE 9(06)o
02 INDX-DIN PICTURE 9(06)a
02 FILLER PICTURE X(08)~

PROCEDURE DIVISIDNo
STARTS ..

OPEN INPUT CARD-FILE OUTPUT DISK-IN COURSE-FILE-DIRECTORY
I-J COURSE-FILE ..

RC:ADING;:,
ADD 1 TO IND MOVE IND TO NOM-KEYo READ COURSE-FILE INTO
CJURSE-CC INVALID KEY OISPLAY 'END OF COURSE-FILE• GO TO
WRAP-UPo
IF COURSE-C IS EOUAL TO ZEROS GO TO RD-CARDo
MOVE COURSE-C TO

\.

170

COURSE-DIN MOVE INO TO INDX-DIN WRITE DISK-IN-REC FROM
DISK-IN-WORK DISPLAY COURSE-CC GO TO READINGo

RD-CRSE-FILEo
ADD 1 TO IND MOVE. IND TO NOM-KEYo
HEAD COURSE-FILE INTO COURSE-CC INVALID KEY DISPLAY
' NO MORE DUMMY RECORDS' GO TO WRAP-UPo

RD-CARDo
READ CARD-FILE AT END GO TO SORT-DIR~

MOVE-IT.
IF COL-80 IS NOT EQUAL TO •s• DISPLAY CAkD-REC 1 WRONG CARD•
GO TO RD-CARDo MOVE
COURSE-CD TO COURSE-C COURSE-DIN MOVE SEM-CD TO SEM-C MOVE
CJURSE-DES-CD TO COURSE-DES-C MOVE CR-CD TO CR-C MOVE INO
TO I NDX-DI No

UPDATE-~OURSE-FIL o

RE~RITE COURSE-REC FROM COURSE-CC INVALID KEY GO TO ERRORSo
DISPLAY COURSE-CC&

UPDATE-DISK.....; I N.,
WRITE DISK-IN-REC FROM DISK-IN-WORK GO TO RD-CRSE-FILE 0

ERRORS;)
DISPLAY I~D COURSE-CC ' REC NOT WRITTEN' GO TO WRAP-UP~

SORT-DIRo
DISPLAY 1

CLOSE DISK-INo
SORT WORK-FILE

• 0

ON ASCE~DING KEY STUD-NO-wORK
USING DIS;<-IN
GIV[NG INTER-FILEo

CHECK-RESULT ..
IF SORT-RETU~N IS NOT EQUAL TO 0 DISPLAY 1 SORT UNSUCCESSFUL•
GO TO WRAP-~~o DISPLAY 1 SORT OK•o
MOVE ZEROS TO INDo

OPEN-I \ITER•
OP N INPUT INTER-FILEo
t40VE ZeROS TO INDo DISPLAY • 'o
DISPLAY •COURSE-FILE-DIRECTORY'o
DISPLAY 1

--------------- -----•.,

R:::AD-INT::::R.:.
READ INTER-FILE AT END GO TO WRAP-UP.
ADD 1 TO IN~ ~OVE COURSE-I TO CRSE-A (IND} MOVE INDX-I TO
INDX-A {H,Q}

DISPLAY CRS:::-DIRECTA (IND) GO TO READ-INTER.
\'/RAP-UP a

ADD 1 TO IND MOVE ZEROS TO lNDX-A (INO)o
WRITE COURSE-FILE-DIRECT FROM CDF-WORK-Ao
CLOSE CUURSE-FILE-DIRECTORY INTER-FILE CA~D-FILE
COUKSE-FlLEo
OPEN INPUT COURSE-FILE-DlRECTORYo READ COURSE-FILE-DIRECTORY
INTO CDF-WORK-A AT END GO TO NEXT-SENo

NEXT-SENo
DISPLAY CRSE-DlRECTA (CN)c IF CN IS NOT EQUAL TO IND ADD 1
TU CN GO TO NEXT-SENo CLOSE COURSE-FlLE-DlRECTORYo
STJP RUN.,

CREATE PERFO~M~~CE-FILE

rQ

17 2

IDENTIFICATION DIVISIC~.
PR~GRA~-ID. CR~ORKF.

AUTHOR •.. GOVINC K R I P LA~ I.
R~MARKS. THIS PROGR~~ CREAT~S ~C~K-FILE WITH DUMMY RECC~CE.

ENVIRONMENT 0IVISID~.
CU~FlGURATION SECTIC~.

SOURCE-COMPUTE~. IEM-360-F75.
C3J~CT-COMPUTER. l6~-360-F75.

IN?UT-OUTPUT S~CTIO~.
FILE-CC~TRCL.

SELECT Sw-F!L~ ASSIG~ TO CA-2314-R-SSS
ACCESS IS S2CUENTIAL
~CV!NAL K~Y IS WK-KEY•
s=L CT ChRO-FILE ASSIG~ TC

C .t:. T A C I V I S I G ~- •
FIL=: s=:cnc;;;.
FD CARC-f::IL:::

~ CCRDI~G MODE IS F
RECCRD CO~TA!NS 80 CbARACTERS
LA3EL RECORD IS CMITTED
CATA ~ECDRD IS CARD-REC.

Cl CA::<D-R:::c.

UR-25~0R-S-CARDS.

02 Di.J;·'~·1 Y -RECS PIC 9{06).
()2. FILL::::R PlC X(73) •
02 LAST-COL PlC x ..

FJ S'.,-FrLe
~ECCROING MODE IS f
RECORD C~~TAINS 22 CHARACTE~S
LAgEL RECCRD IS STANDARD
CATA R2CJRD IS SW-REC.

01 S\\-REC.
02 FIL~ER PICTURE X(22>•

~ORKI~G-STO~AGE SE~TlON.

77 ~-KEY PIC 9{06).
77 ~<~-Ccu;·H PIC 9(06) VALUE ZEf'CS.
77 ~K-KEY FICTURE 59{8) CC~F SY~C.
01 NE:"n-AR:::A.

(. ~ F l L L :::_ ::< P I C T U RE X { 2 2 J v A L L t:: Z t:: R 0 S •
PR~CEDURE DIVISION.
C~:::ATE-!T.

CFEN lNPUT CARD-FILE OUTPUT s~-FILE.

R::AC CARC-FILE AT END GC TC \'11-'AP-UP ..
IF LAST-CCL IS NOT EQUA- TC 'A'
CISPLAY •FUNCTION C~RO MISS!~('• GO TC ~RAP-UP.

~CVE DUMMY-RECS TO ~-KEY•
LOOP-2ACi<.

MOVE W-COUNT TO WK-KEi· ~~ITE SW-REC FRCM NE~-ARE~

11\.VALIO Kt:Y DISPLA'\' •NC.J CLI>':VY-RECS C><E,'ITED 1

GO TU ".VRAP-UP. ! i' 'tl- <:DUNT IS t-CT E(.UAL TO W-KEY ACC 1 TC

173

~-CCUNT GC TO LOCP-B~CK.
DISPLAY 'NO OF D~MMY-~~CS C~~ATED = ' CU~~Y-RECS.

~~~P-UP. 

CLCSE CARC-FIL~ s~-FILE. 
STOP RUN. 



. .' 

CREATE STUDE"NT-FIIJE 
ITS DIRECTORY 
AND LINK WITH 

COURSE-J!'ILE AND P:SR:2'QRI"tANCE-FILE 



(, 
~ ID~NTIFICATION DIVISION~ 

PROGRA~-IDo CREATEFo 

175 

AUTHOR~ GOVIND K R I P L A N Io 
REMARKS. THIS PROGRAM CREATES THE .INITIAL FILE ON DISK., 
ENVIRON~ENT DIVISION .. 
CONFIGURATION SECTION2 
SOURCE-COMPUTERo ISM-360-F75o 
OBJECT-COMPUTcRo IBM-360-F75o 
INPUT-OuTPUT SECTION~ 
FILE-CONTROLo 

S~LECT COURSE-~IL~-DIRECTORY ASSIGN TO UT-2314-S-CFDo 
SELECT STUD-FILE-DIRECTORY ASSIGN TO UT-2314-S-SFD~ 
SELECT CARD-FiLE ASSIGN TO UR-2540R-S-CARDS? 
SELECT PRINT-FILE ASSIGN TO UR-1403-S-PRINTSo 
SELECT DISK-IN ASSIGN TO UT-2314-S-INDISK~ 
SELECT DISK-OUT ASSIGN TO UT-2314-S-OUTciiSKo 
S~LECT ~OqK-FILE ASSIGN TO 4 DA-2314-D-SORTWKOlo 
SELECT STU~ENT-F!LE ASSIG~ TO DA-2314-R-SF 
ACCESS IS SEQUENTIAL 
NOMINAL KEY IS STUD-KEYo 
SELECT STUD-WOPK-FILE ASSIGN TO DA-2314-R-SWF 
ACCESS IS R.; ~J00M 

NUMINAL ~EY IS WORK-KEYo 
SELECT COURSE-FILE ASSIGN TO DA-2314-R-SRF 
ACCESS IS RANDOM 
NO~INAL KEY IS COURSE-KEYe 

DATA DIVISION::) 
FILE SECTION:. 
SD WORK-F!LE 

RECORDING MODE IS F 
RECORD CONTAINS 80 CHARACTERS 
LAdEL RECORD IS STANDARD 
DATA RECORD IS WORKS~ 

0 l >'IORKS> 
02 DEPT-WCRK PICTURE XXX~ 
02 STUO-NO-WC~K PICTURE 9{06)o 
02 YEAR-WORK PICTURE XXo 
02 S~M-WORK PICTURE Xo 
02 GRADE-WORK PICTURE Xo 
02 ~ARK-~OqK PICTURE XXa 
02 COURSE-CODE-WORK PICTURE 9(06)a 
02 FILL~R PICTURE X(58}o 
02 COL-8C-WORK PICTURE Xn 

FD CMD-FILE 
RECORDING MODE IS F 
RECORD CONTAINS 80 CHARACTERS 
LABEL RECORD IS OMITTED 
DATA RECORD IS CARO-RECa 

01 CARD-REC, 
02 FILLER PICTURE X(79)~ 



.Q 
l 

176 

02 CDL-80 PICTU~E x. 
FD PRINT-F-ILE 

RECORDING MODE IS F 
LABEL RECORD IS OMITTtD 
RECORD CONTAINS 133 CHARACTERS 
DATA RECORD IS LlN~-FORMATo 

01 LINE-FORMAT. 
02 FILLER PICTURE X{133)o 

FD DISK-IN 
RECO~OING MODE IS F 
R~CORD CONTAINS 8~ CHARACT S 

BLOCK CONTAINS 10 RECORD~ 
LAdEL RECORD IS STANDARD 
DATA R~CORD IS DISK-IN-REC~ 

01 OISi<-IN-REC'-' 
02 FILLER PICTURE XXXo 
02 STUD-NO-I~ PICTURE 9(06)e 
02 Y~AR-IN PICTURE XXo 
02 SEM-IN PICTURE X. 
02 FILLER ~!CTURE X(67)v 
02 COL-SS-IN PICTURE Xo 

FO OISK-UUT 
RECORDING MODE IS F 
RECORD CONTAINS 80 CHARACTERS 
LASEL RECO~D IS STANDARD 
DATA RECGRD IS DIS-DUT-REC~ 

Cl DIS<-OUT-RECo 
02 FILLER PICTURE X{80)o 

FD STUDt:NT-FILE 
RECORDING MODE IS F 
RECCRD CONTAINS 84 CHARACTERS 
LABEL R~CCRD IS STANDARD 
DATA RECO~D IS STUDENT-RECo 

01 STUDE~H-REC:o 

02 FILLER PICTURE XXX~ 
02 STUDENT-~0 PICTURE 9(06)a 
02 FILLER PICTURE X{75)~ 

FO STUD-~ORK-FILE 

RECOT?D I r-.;G ~J.::JD IS F 

RECORD CONTAINS 22 CHARACTERS 
LA3~L RECORD IS STANDARD 
DATA RECORD IS ST-WORK-RECo 

01 ST-\'iO;..?J<-REC., 
02 KEY-ST-WK PICTURE 9999. 
02 FILLeR PICTURE X(l8)y 

FO COUi,(SC::-FILE 
RECORDING MODE IS F 
RECORD CONTAINS 37 CHARACTERS 
LA8EL RECORD IS STANDARD 
DATA RECORD IS COURSE-RECa 

Cl COURSC.-RECo 
02 FILLER PICTURE X(04)~ 
02 CRSE-KEY PICTURE 9(06)o 



{ 

Q 

177 

02 FILLER PICTURE X(27). 
FD COURSC-FILE-DIRECTORY 

RECORDING MODE IS F 
RECORD CONTAINS 2400 CHARACT~RS 
LABEL RECORD IS STANDARD 
DATA RECORD IS COURSE-FILE-DlRECTo 

01 COURSE-FILE-DIRECTc 
C2 FILLER PICTUR X(2400)o 

FD STUQ-FILE-DIRECTORY 
RECORDING M~DE IS F 
RECORD CONTAINS 2400 CHARACTERS 
LAoEL RECORD IS STANDARD 
DATA RECORD IS STUD-FILE-DIRECTo 

01 STUD-FILE-DIRECT~ 

02 FILLER PICTURE XC2400). 
WORKING-STORAGE SECTIONo 
77 WORK-KEY PICTURE 59(8) COMP SYNCo 

~RK PiCTURE 9999 VALUE Oo 77 
77 
77 
77 
77 
77 
77 
77 
77 
77 
77 
Ol 

01 

SK PICTUPE 9999 VALUE Oo 
STUO-K_Y PICTURE S9(8) COMP SYNCo 
COURS~-KEY PICTURE S9(8) COMP SYNC3 
!NO PICTU~~ 9999 VALUE Oo 
EXT PICTURE 9999 VALUE lo 
GG PICTURE 9999 VALUE lo 
wK PICTURE 9999 VALUE Oo 
SI PICTURE 9999 VALUE Oo 
CT PICTURE 9999 VALUE Oo 
CN PICTURE 9999 VALUE lo 
CFD-FILL. 
02 FILLER PICTURE X(2400)~ 
CFD-~ORK REDEFINES CFD-FILLo 
02 CRSE-DIRECT OCCURS 200 TIMES IND~XED BY IN2a 

03 CRSE-D PICTURE 9{06ln 
03 INDX-D PICTURE 9{06lo 

01 COURS~-REL~ 

02 ADDR-REL PICTURE 9999o 
02 CJURSE-CD-REL PICTURE 9(05). 
02 FILLER PICTURE X(27)o 

Cl COURSE-ChECKo 
02 FRST-0~-NO PICTURE 9999 OCCURS 200 TIMES~ 

01 WORK-REC-OLDo 
02 LINK-1-0LD PICTURE 9(0~Jo 
02 LINK-2-0LD PICTURE 9990e 
02 YEAR-CLD PICTURE XX. 
02 TERM-OLD PICTURE Xo 

02 GRADE-OLD PICTURE Xo 
C2 MARK-OLD PICTURE XXo 
02 LINK-3-DLD PICTURE 9999~ 
02 LINK-4-0LD PICTURE 9999~ 

01 COURSE-REu 
02 ADR-C PICTURE 9999o 
02 CRSE-KAY PICTURE 9(06)Q 
02 FILLER PICTURE X(27)~ 



Q, 
\ 

178 

01 DISK-OUT-REv 
02 FILLER PICTURE XXXQ 
02 STUD-NO-OUT PICTURE 9{06), 
02 Y~AR-OUT PICTURE xx~ 
02 S~M-IN PICTURE Xs 
02 GR-RE PICTURE x~ 

02 MARK-RE PICTUR~ 99? 
02 COuRSt-CD-RE PICTURE 9(06)~ 
02 FILLER PICTURE X(58)~ 
C2 COL-80-0UT PICTURE Xo 

01 FDK~-F REDEFINCS DISK-OUT-REa 
02 DEPT-F PICTU~E xxx. I 

02 ST-NO-F PICTURE 9(06)? 
02 ST-NAME-F PICTURE X(20)o 
02 DCGREE-F PICTURE XXXXn 
02 LEVEL-F PICTURE X• 
02 SEX-F PICTJRE Xo 
02 STREET-F PICTURE X(17)? 
02 APT-F PICTURE XXXX0 
02 TOw~-F PICTURE X(l6)o 
02 TEL-F PICTURE X(07)Q 
02 Cw~-80-F PICTURE x~ 

01 FDRM-G REDEFINES DISK-OUT-REo 
02 D~PT-G P!CTURE XXX~ 
02 ST-~0-G PICTURE 9(06)o 
02 YEAR-G PICTURE XXo 
02 TERM-G PICTUR~ x. 
02 GRADE-G PICTURE Xo 
02 M~RK-G PICTURE XXa 
02 C~URSc-COD~-G PICTURE 9(06)~ 
02 FILLER PICTURE X(58)o 
02 CO~-oO-G PICTURE Xo 

01 FORM-F-IN~ 

02 DEPT-F-IN PICTU~E XXXa 
02 ST-NO-F-IN PICTURE 9(06)o 
02 ST-NA~E-F-IN PICTURE X(20)~ 

02 DEGREE-F-IN PICTURE XXXXo 
02 LEVEL-F-IN PICTURE XXo 
02 SEX-F-IN PICTURE x~ 

02 STREET-F-IN PICTURE X(17)o 
02 APT-F-IN PICTURE XXXXo 
02 TO~N-F-IN PICTURE X(l6Ja 
02 TEL-F-IN PICTURE X(07)~ 
02 KEY-F PICTURE 9999u 
02 LL-S PICTURE 9999 VALUE o~ 

01 FO~M-G-INo 

02 ST-WORK-CO~E OCCURS 15 TIMeS. 
03 LINK-1 PICTURE 99Y9o 
03 LINK-2 PICTURE 9999o 
03 YEAR-G-IN PICTURE XXo 
03 TERM-G-IN PICTURE x~ 

03 GRADE-G-IN PICTURE x~ 

03 MARK-G-IN PICTURE XXc 



0 

179 

03 LINK-3 PICTURE 9999. 
03 LINK-4 PICTURE 9999o 

01 FF I-WORK'} 
02 STUD-DIRECT OCCURS 2~C Tl~ES. 

G3 STUD-NO-D PICTURE 9(06)~ 
03 STUD-INOX-D PICTURE 9(05)a 

·01 N~W-AREA .. 
02 FIL-ZEROS PICTURE 9999~ 
02 FILLER PICTURE X(lB)o 

PROCEDJRE DIVISION~ 
ZERO-IT,. 

MOV~ ZEROS TO FRST-OR-NO (EXTJo IF EXT IS NOT EQUAL TO 
20J ADD 1 TO EXT GO TO ZERO-I T,• MOVE 1 TO EXTc 

STARTS,. 
OP~N INPUT CARD-FILE OUTPUT DISK-OUT PRINT-FILEo 

RE AD-CARDS a 

READ CARD-FILE AT END GO TO CLOSE-1~ 
IF COL-80 IS EQUAL TO 'C' MOVE CARD-REC TO DISK-OUT-RE 
MOVE ST-ND-G TU CRSE-0 (EXT) MOVE COURSE-CODE-G 
TO INDX-D {SXT) 

ADD 1 TO EXT GO TO READ-CARDS. 
IF COL-8J IS EQUAL TO 'F' GO TO WRITE-ITa 
IF COL-80 IS EQUAL TO 1 G 1 GO TO WRITE-ITo 
DISPLAY CARO-REC • CHECK COL-80' GO TO READ-CARDSo 

WxiTE-ITo 
WRITE DISK-OUT-REC FROM CARD-REC GO TO READ-CARDSa 

CLOSE-1. 
CLOSE CARD-FILE DISK-OUTo 

sorn-2, 
DISPLAY • '• 
SORT hORK-FILE 

UN ASCENDING KEY STUD-ND-WOR~~ YEAR-WORK* 
COURSE-CODE-WORK. COL-80-WORK 

USING D I Si.Z-OUT 
GIVlNG DISK-IN:o 

CHECK-SORT-2 .. 
IF SORT-RETURN IS NOT EQUAL TO 0 DISPLAY 
•sORT-2 UNSUCCESSFUL' GO TO WRAP-UP~ 
DISPLAY •SORT - 2 OK'~ 

OPEN-DISK-I No 
OPEN INPUT COURSE-FILE-DIRECTORY. 
READ CQURSE-FlLE-DIRECTORY INTO CFD-FILL AT END GO TO 
CLOSE-CFD., 

CLOSE-CFDe 
CLOSE COURSE-FILE-DIRECTORYo 
OP~N INPUT DISK-IN OUTPUT STUDENT-FILE 
STU0-FILE-DIR CTORY I-0 STUD-~ORK-FILE COURSE-FILE~ 

i·10VE 1 TO EXT o 

0 I SP-D I SKo 
MOVE EXT TO COURSE-KEYo READ COURSE-FILE INTO COURSE-REL 
INVALID KEY DISPLAY 'CHECK NO 1' GO TO ERRo IF COURSE-CD-REL 
IS EQUAL TO ZEROS MOVE 1 TO EXT GO TO READ-DISK-IND MOVE 
ZERUS TO ADDR-REL REvJR I TE COURSE-REC FRDM COURSE-REL 



I 
\ 

180 

INVALID KEY DISPLAY •CHECK NO 2• GO TO ePR~ ADD 1 TO EXT GO 
TO DISP-DISK, 

RC: AD-DISK- I N.;:~ 
READ DISK-IN INTO DISK-OUT-RE AT END GO TO WRAP-UP~ 

PROC-DISK-INo 
IF COL-80-F IS EQUAL TO 'F' GO TO MOVE-STUU~ ADD 1 TO WK CT 
MOVE YEAR-G TO YEAR-G-IN (CT) MOVE TERM-G TO TERM-G-IN (CT) 
MOVE G~ADE-G TO GRADE-G-IN (CTJ MOVE MARK-G TO 
MARK-G-IN (CT), IF LL-S IS EQUAL TO ZEROS GO TO MOVE-WK.-
MOVE LL-S TO EXT MOVE WK TO LINK-3 (EXT) MOVE CT 
TO LL-S GO TO READ-IS~ 

MJVE-vn<.. 
MOVE WK TO KEY-F MOVE CT TO LL-5~ 

REAO-!So 
SET IN2 TO 1,. 
SEARCH CRSE-DIR~CT AT END GO TO ERR WHEN. 
COURS~-CD-RE = CRSE-D (IN2) NEXT SENTENCE: 

NOW-MOVEo MOVE INDX-D {IN2) TO COURSE-KEYa 
MOVE INDX-D £IN2) TO LINK-4 {CT)o 

CHECK-I To 
IF FRST-=R-~~ (IN2) IS NOT EQUAL TO 0 GO TO MOVE-FRST-OR-NOo 
READ COURS~-FILE INTO COURSE-REL MOVE WK TO ADDR-REL 
FRST-OQ-NO {1~2) MOVE SI TO LINK-1 (CT) REWRITE COURSE-REC. 
FROM C3U~SE-REL GO TO READ-DISK-IN~ 

MOV~-FRST-OR-~GQ 

MOVE F~ST-cq-~0 (1N2) TO WORK-KEY READ STUD-WORK-FILE INTO 
WORK-REC-OLDo MOVE WK TO LINK-2-0LD FRST-OR-NO {lN2) 
MOVE Sr TO LINK-1 (CT)n 

REWRITE ST-WORK-REC FROM WORK-REC-OLD GO TO READ-DISK-INo 
MOVE-STUD~ 

IF SI IS NOT EQUAL TO 0 GO TO WRITE-Sio 
ADD-S I~ 

ADD 1 TO SI MOV DEPT-F TO OEPT-F-IN MOVE ST-NO-F TO 
ST-NO-F-IN MOVE ST-NAME-F TO ST-NAME-F-IN MOVE O~GREE-F 
TO OEG~EE-F-IN MOVE LEVEL-F TO LEVEL-F-IN MOVE SEX-F TO 
SEX-F-IN MOVE STREET-F TO STREET-F-IN MOVE APT-F TO APT-F-IN 
MOVE TOWN-F TO TOWN-F-IN MOVE TEL-F TO TEL-F-IN GO TO 
READ-viSK-IN.;, 

'#Kl TE-SI" 
AOD 1 TO SK.,. 

MOVE SK TO STUD-KEY~ 
WRITE STUD~~T-REC FROM FORM-F-IN INVALID KEY DISPLAY 
'FORM-F-IN ERROR' GO TO ERRa 
MOVE ZEROS TO LIN~-3 {CT)a MOVE ST-NO-F-IN TO 
STUD ~J-D {SKI MOVE SK TO STUD-lNOX-0 (SK)m ADD 1 TO GG. 

W~ITE-SW" 

ERRo 

ADD 1 TO WR~ MUVE WRK TO WORK-KEY MOVE 0 TO LINK-2 {~RKJ~ 

MOVE ST-WORK-CODE {CN) TO NEW-AREAY REW~ITE ST-WORK-REC 
FRO~ N_W-AREA INVALID KEY 
DISPLAY 'STUD-WORK-CODE ERROR• GO TO ERRo IF CN IS NOT 
EQUAL TO CT ADO 1 TO CN GO TO WRITE-SWo MOVE l TO CN 
MUVE ZEROS TO CT LL-S GO TO ADO-SI& 



181 

DISPLAY 'SEARCH UNSUCCESSFUL' GO TO WRAP-UPo 
•·iRAP-UP • 

MOVE ZEROS TO ST-NO-F-IN ADD 1 TO SK MOVE SK TO STUD-KEYe 
W~ITE STUDENT-REC FROM FORM-F-IN INVALID KEY DISPLAY 
•LAST NOT WRITTEN' GO TO WRAP-UP-1. 
MOVt ZEROS TO FIL-ZEROS ADO 1 TO WQK MOVE WRK TO WORK-KEYs 
REWRITE ST-WORK-REC FROM NEW-AREA INVALID KEY DISPLAY 
'LAST WORK NOT WRITTEN' GO TO WRAP-UP-lo MOVE WRK TO 
FlL-ZEROS MOVE 0 TO WORK-KEY. REWRITE ST-WJRK-REC FROM 
NE#-AREA INVALID KEY DISPLAY 'CHECK ZERO STUD-WORK-REC• GO 
TO WRAP-UPo MOVE 1 TO WRKc 
CLOSE STUOENT-FILEJ OPEN INPUT STUDENT-FILEo 

PRlNT-'I'IF .. 
MOVE ~RK TO WOR<-KEYo READ STUD-WORK-FILE INTO NEW-AREA 
rNVALlD KEY DISPLAY 'NOT OK-1• GO TO WRA?-UP-lo IF FIL-ZEP.OS 
IS NOT EQUAL TO ZEROS WRITE LINE-FORMAT FROM NEW-AREA AFTER 
POSITIONING 3 ADO 1 TO WRK GO TO PRINT-WFu MOVE 1 TO SK~ 

PRINT-SFo 
MOV~ SK TO STUD-KEYe READ STUOENT-FILE 
AT E~D GO TO WRAP-UP-lQ IF STUDENT-NO IS NOT EQUAL TO 
ZEROS ~RITE LINE-FORMAT FROM STUDENT-REC AFTER POSITIONING 
3 ADD 1 TO SK GO TO PRINT-SFo MOVE 1 TO CTo 

PRINT-CFo 
MOVe CT TO CuURSc-KEYo READ COURS~-FILE INTO COURSE-REL 
INVALID KEY DISPLAY 'NOT OK-3' GO TO WRAP-UP-1::- IF CT IS 
NOT EQUAL TO 21 WRITE LINE-FORMAT FROM COURSE-REL AFTER 
POSITIONING 3 ADD 1 TO CT GO TO PRINT-CFe 
MOVE 1 TO CTo DISPLAY 'STUDENT FILE DIRECTORY'o 

DISPLAY 1 -~--------------------'o 
PRINT-SFDI ~,.. 

DISPLAY STUD-DIRECT {CT}o IF CT IS NOT EQUAL TO GG ADD 1 TO 
CT GO TO PRINT-SFOIRa MOVE 1 TO CTo DISPLAY ' 'o 
DISPLAY YCQURSc FILE DIRECTORY•. DISPLAY •-----------------•a 

PRINT-CFDlRo 
DISPLAY CRSE-OIRECT (CT)n IF CT IS NOT EQUAL TO 21 ADD 1 TO 
CT GO TO PRI~T-CFOIR. 

~'iR A.P-UP-1" 
MOVE ZEROS TO STUD-NO-D (GG)o 

WRITE STUD-~IL -DIRECT FROM FFI-WORKa 
CLUSE PRINT-FILE STUD-WORK-FILE STUDENT-FILE 
DISK-IN COURS~-FILE STUD-FILE-DIRECTORY. 
STOP RUNo 

http:FIL-ZEP.OS


UPDATE STUDENT-FILE, 
COURSE-FILE AND PERFORlVIANCE-FILE 



IDENTIFICATlON DIVISIONs 
PROGRAM-ID. UPDTSWC~· 

183 

AUTHORJ GOVIND K R I P L A N I. 
REf-IARKSQ 

*****'*******•**************~****~************************** * THIS PROGRAM UPDATES STUDENT-FILE. STUD-WORK-FILE AND * 
* COURSE-FILEo IT IS REQUIRED TO UPDATE THESE FILES WHEN * 
* THE STUDENTS MAKE CHANGES IN THEIR COURSES. WHICH THEY * 
* NORMALLY DO ONCE A SEMESTERo IT WILL DELETE THE COURSES * 
* THEY DONT WANT TO TAKE AND ADD THE COURSES AND PLACE o 
* THEM IN THE SEQUENTIAL ORDERo' 

* * INPUT DATA FOR DELETION. 

* ------------------------
* COL 4 - 9 
* COL 16 - 21 
* COL 80 

* 

STUDENT NO. 
COURSE CODE 
t D ' 

* INPUT DATA FOR ADDITION 

* -----------------------
* COL 4 - 9 STUDENT NO 

* COL 10 l 1 YEAR 

* COL 12 SEMESTER 

* COL 16 - 21 COURSE CODE 

* COL 80 • A • 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

**************~*********************************************o 
ENVIRONMENT DIVISION~ 
CONFIGURATION SECTION: 
SOURCE-COMPUTER. IBM-36D~F75a 

OBJECT-COMPUTERa IBM-360-F75~ 

INPUT-OUTPUT S~CTIONo 
FILE-CONTROL, 

SELECT COURSE-FILE-DIRECTORY ASSIGN TO UT-2314-S-CFDo 
SELECT STUD-FILE-DIRECTORY ASSIGN TO UT-2314-S-SFD~ 
SELECT DISK-IN ASSIGN TO UT-2314-S-INDISKo 
SELECT CARD-FILE ASSIGN TO UR-2540R-S-CARDSc 
SELECT PRINT-FILE ASSIGN TO UR-1403-S-PRINTS. 
SELECT DISK-OUT ASSIGN TO UT-2314-S-OUTDISK. 
SELECT WORK-FILE ASSIGN TO 4 DA-2314-D-SORTWKOlo 
SELECT STUDENT-FILE ASSIGN TO DA-2314-R-SF 
ACCESS IS RANDON 
NOMINAL KEY IS STUD-KEY~ 
SELECT STUD-WORK-FILE ASSIGN TO DA-2314-R-SWF 
ACCESS IS RAND0~-1 

NOMINAL KEY IS WORK-KEYa 
SELECT COURSE-FILE 
ACCESS IS RANDDI·l 

ASSIGN TO OA-2314-R-SRF 

NOMINAL KEY IS COURSE-KEYo 
DATA DIVISION., 
FILE SECTION·~ 



10 

/ 
\ 

184 

SD WORI<:.-FIL£: 
RECORDING MODE IS F 
RECORD CONTAINS 80 CHARACT~RS 
LABEL RECORD IS STANDARD 
DATA RECORD IS WORKS~ 

01 WORKSe 
02 DEPT-WORK PICTURE XXX~ 
02 STUD-ND-WORK PICTURE 9{06h 
02 YEAR-WORK PICTURE 99Q 

·02 SEM-WORK PICTURE x~ 

02 GRADE-WORK PICTURE x~ 

02 MARK-WORK PICTURE XX• 
02 COURSE-CODE-WORK PICTURE 9(06)o 
02 FILLER PICTURE X(58)~ 
02 COL-80-WORK PICTURE Xe 

FD CARD-FILE 
RECORDING MODE 15 F 
RECORD CONTAI~S 80 CHARACTERS 
LA3EL R~CO~D IS OMITTED 
DATA RECORD IS CARO-RECe 

0! CARD-REC, 

FJ 

01 

FD 

02 FILLER PICTURE X(79)a 
02 COL-80 PICTURE x~ 

PRiNT-FILE 
RECORDING MODE IS F 
LABEL RECORD IS OMITTED 
RECOQD CONTAINS 133 CHARACTERS 
DATA RECORD IS LINE-FORMAT• 
L !NE-FORMAT o 

02 FILLER PICTURE X(133)o 
DISK-IN 
RECOR31NG MuOE IS F 
RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 10 RECORDS 
LABEL RECORD IS STANDARD 
OAT A RECORD r S DISK- IN-RE C.} 

01 O!SK-IN-REC., 
02 FILLER PICTURE XXXo 
02 STUD-NO-IN PICTURE 9{06Jg 

02 YEAR-IN PICTURE 99~ 

02 SEM-IN PICTURE x~ 

02 GRADE-IN PICTURE Xo 
02 MARK-IN PICTURE 99• 
02 COURSE-IN PICTURE 9(06)e 
02 FILLER PICTURE X(58)~ 

02 COL-80-IN PICTURE Xo 
FD DISK-OUT 

RECORDING MODE IS F 
RECORD CONTAINS BC CHARACTERS 
LABEL RECORD IS STA~OARD 
DATA RECORD IS DIS-OUT-REC~ 

01 DISK-OUT-RECv 
02 FILLER PICTURE X(BO~. 



0( 

Q 

185 

FD STUDENT-FILE 
RECORDING MODE IS F 
RECORD CONT A .INS 8'• CHARACTERS 
LAfJEL RECORD IS STANDARD 
DATA RECORD IS STUDENT-RECo 

01 STUDENT-REC" 
02 FILLER PICTURE XXX~ 

02 STUDENT-NO PICTURE 9(06)n 
G2 FILLER PICTURE X(75)o 

FD STUD-WORK-FILE 
RECORDING MODE IS F 
RECORD CONTAINS 22 CHARACTERS 
LABEL RECORD IS STANDARD 
DATA RECORD IS ST-WORK-REC9 

01 ST-':f'ORK-REC" 
02 KEY-ST-~< PICTUR~ 9999a 
G2 FILLER PICTURE X{l8)o 

FD COURSE-FILE 
RECORDING N~DE IS F 
RECOR:) CONTAINS 37 CHARACTERS 
LABEL RECORD IS STANDARD 
DATA RECORD IS COURSE-RECo 

01 COURSE- RECo 

FD 

02 FILLER PICTURE X(04)~ 
02 C?.SE-KEV PICTURE 9{06). 
02 FILLER PICTURE X(27)o 
COURSE-FILE-DIRECTORY 
RECORDING MODE IS F 
RECORD CONTAINS 2400 CHARACTERS 
LABEL RECORD IS STANDARD 
DATA RECORD IS COURSE-FILE-OIRECTo 

01 COURSE-FILE-DIRECT. 
02 FILLER PICTURE X(2400)~ 

FD STUD-FILE-DIRECTORY 
RECORDING ~ODE IS F 
RECORD CONTAINS 2400 CHARACTERS 
LABEL RECO~D IS STANDARD 
DATA RECCRD IS STlJD-FILE-DIRECT.-

01 STUD-FILE-DIRECT~ 

02 FILLER PICTURE X(2400)~ 
WORKING-STORAG~ SECTION. 
77 WRK PICTURE 9999. 
77 WORK-K Y PICTURE 59(8) COMP SYNCo 
77 STUD-~EY PICTURE S9(8) COMP SYNCc 
77 
77 
77 
77 
77 
77 
77 
77 
77 

COURSE-KEY PICTURE 59(8) COMP SYNCo 
EXT PICTURE 9999~ 
RR PICTURE 9999 VALUE lo 
CD PICTURE 9999 VALUE lo 
SR PICTURE 9999 VALVE lo 
WR PICTURE 9999 VALUE lo 
CT PICTURE 9999 VALVE lB 
CXT PICTURE 99 VALUE 2~ 

FR PICTURE 9999 VALUE lo 



4.1 r· 

77 AXT PICTURE 9999a 
01 Hi.:'AD-1., 

186 

02 FILER PICTURE X(33) VALUE 
'FILES AFTER DELETION AND ADDITION*o 

Cl FILL-KEYS,-, 
02 KEYS-IN PICTURE 9999 OCCURS 15 TIMESo 

01 FF I -WORKo 
02 STUD-DIRECT OCCURS 200 TIMES INDEXED BY INl~ 

03 STUD-NO-D PICTURE 9{06)~ 
03 STUO-INDX-9 PICTURE 9{06)~ 

01 CH-INr. 
02 CNT PICTURE 9999 OCCU.RS 20 TIMES:. 

01 COURSE-REL-:> 
02 ADDR-REL PICTURE 9999o 
02 COVRSE-CD-REL PICTURE 9(06)G 
02 FI~LER PICTURE X(27)e 

01 DUMMY-REC-TRACKo 
02 DU~MY-ADDR PICTURE 9999 OCCURS 10 TlMESo 

Ol FORM-G-IN> 
02 ST-WORK-CODE OCCURS 20 TIMESo 

03 L!N~-1 PICTURE 9999G 
03 LINK-2 PICTURE 9999& 
03 YEAR-G-IN PICTURE 99. 
03 TERM-G-IN PICTURE XQ 
03 GRADE-G-IN PICTURE Xa 
03 MAR<-G-1N PICTURE 99.., 
03 LINK-3 PICTURE 99999 
03 L!NK-4 PICTURE 99999 

01 CFD-FILL, 
02 CRSE-DIRECT OCCURS 200 TIMeS INDEXED BY IN2o 

03 CRSE-D PICTURE 9(06)~ 
03 INDX-D PICTURE 9{06)o 

01 CARD-RECS~ 

02 SW-FORM PICTURE X(22)o 
02 FILLER JICTURE X(~~~~ 
02 KOL-80 PICTURE X0 

Ql CF-REC REC=FINES CARD-RECSs 
02 CF-FOR~ PICTURE X(37)* 
02 FILLER PICTURE X(43)~ 

01 DIR-REC REDEFINES CARD-RECS. 
02 CRSE-WRK-DIRECT PICTURE 9{12le 
02 FILLER PICTURE X(~B)e 

0 l AD-REC REDEF INF.S CARD-RECSe 
02 FILLER PICTURE XXX~ 
02 ST-NO-AD PICTURE 9(06)9 
02 YEAR-AD PICTURE 99n 
02 TERM-AD PICTURE X. 
02 GRADE-AD PICTURE x~ 

02 t.lARK-AD PICTURE 99;, 
02 CRSE-CD-AD PICTURE 9(06), 
02 FILLER PICTURE X(59)e 

01 F-REC., 
02 SF-FORMo 



~( 

187 

03 SF-STUD PICTURE 9(C5)~ 
03 FILLER PICTURE X{~. 

02 SF-NO PICTURE 9(04} VALUE 1~ 

01 SWF-AREA., 
02 SWF-IN. 

03 SWF-LINK-1 PICTURE 9999o 
03 SWF-LINK-2 PICTURE 9999a 
03 SWF-YEAR PICTURE 99~ 

03 SWF-SEM PICTURe x. 
03 SWF-GRADE PICTURE X. 
03 SWF-MARK PICTURE 99o 
03 SWF-LINK-3 PICTURE 9999~ 
03 SWF-L!NK-4 PICTURE 9999. 

,nROCEDURE DIVISIO~. 
''STARTS~ 

OPEN INPUT CARD-FILE OUTPUT DISK-OUT PRINT-FILE 
I-0 COURSE-FILE STUD-WORK-FILE STUDENT-FILE~ 
MOVE ~ TO WORK-KEYo READ STUD-WORK-FILE INTO SWF-AREA INVALID 
KEY DISPLAY 1 CHECK STARTS' GO TO WRAP-UPu MOVE SWF-LINK-J 
TO ',I{RK, 

R:EAD-CAI-<DSn 
READ CARD-FILE INTO CARD-RECS AT END GO TO DISPLAY-FILEt~ 

'• .. ··-
IF KOL-80 IS EQUAL TO 'A' GO TO MOVE-TO-DISK. 
IF KOL-30 IS EQUAL TO 'D' GO TO MOVE-TO-DISK9 
DI AV CARO-R~CS ' CHECK COL-80 1 GO TO READ-CARDS~ 

MOVE-TO-DI~K~ ' . . 
WRITE DISK-OUT-REC FROM CARD-RECS GO TO READ-CAROSa 

DISPLAY-FILElo 
MOVE CT TO ~ORK-KEY~ READ STUD-WORK-FILE INVALID KEY DISPLAY 
•CHECK 1 1 G3 TO WRAP-UPo IF KEY-ST-WK IS NOT EQUAL TO 
ZEROS WRITE LINE-FORMAT FROM ST-WORK-REC AFTER POSITIONING 
3 ADD 1 TO CT GO TO DlSPLAY-FILEl~ MOVE 1 TO FR CT~ 

DISPLAY-STUl .. 
MOVE FR TO STUD-KEY, READ STUDENT-FILE INVALID KEY DISPLAY 
'CHECK 2 1 GO TO WRAP-UPa IF STUDENT-NO IS NOT EQUAL TO 
ZEROS WRITE LINE-FORMAT FROM STUDENT-REC AFTER POSITIONING 
3 ADD 1 TO FR GO TO DISPLAY-STUlG MOVE 1 TO FR~ 

DI SPL;\ Y- COURS lo 
MOVE FR TO COURSE-KEYo READ COURSE-FILE INVALID KEY DISPLAY 
•cHECK 3' GO TO WRAP-UPo IF CQSE-KEY IS NOT EQUAL TO ZEROS 
WRITE LINE-FORMAT FROM COURSE-REC AFTER POSITIONING 3 ADD 1 
TO FR GO TO DISPLAY-COURSlo MOVE 1 TO FR~ 

CLOSE-:::>1 S'<.-OUTo 
CLOSE DISK-OUT u 

DISPLAY ' 
SORT-IT, 

SORT WORK-FILE ON 
ASCENDING KEY STUD-NO-WORK 

DESCENDING KEY COL-80-WORK 

USING DISK-OUT 
GIVING DISK- INn 

CHECK-RESULT,) 

ASCENDING KEY COURSE-CODE-WORK 



I 
I 

··C> 

188 

IF SORT-RETURN !S NOT EQUAL TO 0 DISPLAY 1 SORT UNSUCCESSFUL' 
GO TO WRAP-UP: DISPLAY 1 SODT OK•~ 

OPEN-DISK- I Nt;, :: .~ •.· i. · 
Qi=>EN .:::-NPUT .D.lSK-1 N COURSE-FI L E-DI RECTORY STUD-FILE-D I RECTORY:, 
READ COURSE-FILE-DIRECTORY INTO CFD-F!LL AT END GO TO 
READ-SFD:> 

READ-SFDa 
READ STUD-FILE-DIRECTORY INTO FFI-WORK AT END GO TO 

CLOSE-DIRECTS:.. 
CLOSE-DIRECTSo 

CLOSE COURSE-FILE-DIRECTpRy STUD-FILE-DIRECTORY~ 
MOVE 1 TO CD RR SR WR FR3 MOVE 2 TO DUMMY-ADDR (1). 

R:::AD-DI SK-I N. 

READ DISK-IN AT END GO TO SET-WORK-FILE~ 

IF CCL-80-IN !S EQUAL TO 'A' GO TO SEARCH-STUD-A~> 
SEARCH-STUD~ 

SET INl TO l:; 
SEARCH STU0-DIRECT AT END DISPLAY •STUDENT NOT FOUNOt GO TO 
WRAP-U~ ~HEN STUD-NO-IN= STUD-NO-D (INl) NEXT SENTENCEo 

M::lVE-STUD-ADDR., 
MOVE STUD-INDX-D (1Nl) TO STUD-KEYo READ STUDENT-FILE INTO 
F-REC INVALID KEY DISPLAY •CHECK STUD-KEY' GO TO WRAP-UP~ 
MOVE SF-~0 TO WORK-KEY CNT (CT)u READ STUD-WORK-FILE INTO 
S'.'JF-AR2::A INVALID KEY DISPLAY •woRK-FILE~l' GO TO 
WRAP-UD~ MOVE SWF-IN TO ST-WORK-CODE (CD) DISPLAY SWF-AREA~ 

MOVE LINK-4 {CD) TO COURSE-KEY? READ COURSE-FILE 
INTO COURSE-REL INVALID KEY DISPLAY 'CHECK MOVE STUD-ADDR• 
GO TO WRAP-UP~, 

IF COURSE-CD-REL IS EQUAL TO COURSE-IN GO TO ADJUST-la 
NEXT-WORK., 

IF LI~K-3 (CD) IS EQUAL TO ZEROS DISPLAY DISK-IN-REC 
• STUQENT NOT TAKING THIS COURSE -NOT DELETED• GO TO 
READ-DISK-IN~ ADD 1 TO CT MOVE LINK-3 (CD) TO WORK-KEY 
CNT (CTJ ADD 1 TO CD READ STUD-WORK-FILE INTO SWF-AREA 

INVALID KEY DISPLAY 'WORK-FILE-2• GO TO 
WRAP-UP~ MOVE SWF-IN TO ST-WORK-CODE (CD} 

MOVE LINK-4 (CD) TO COURSE-KEY READ COURSE-FILE 
INTO COURSE-REL INVALID KEY DISPLAY •CHECK COURSE-FILE 2' GO 
TO WRAP-UPc IF COURSE-CD-REL IS NOT EQUAL TO COURSE-IN GO TO 
NEXT-WORKa MOVE CD TO SR SUBTRACT 1 FROM SR MOVE LINK~3 (CD} 
TO LINK-3 {S~l MOVE ZEROS TO LINK-3 (COl MOVE CNT (CD) TO 
WORK-KEY MOVE ST-WORK-CODE (CD) TO SWF-IN 

REWRITE ST-WORK-REC FROM SWF-AREA INVALID 
KEY DISPLAY 'CHECK 1• GO TO WRAP-UP~ MOVE CNT {SR) TO. 
\>JORK-KEY :'-iOVE ST-\<lORK-CODE {SR} TO S~F-IN 

REWRITE ST-WORK-REC FROM SWF-AREA 
INVALID KEY DISPLAY 'CHECK NEXT-WORK~ G~ TO WRAP-UPo 
MOVE 1 TO CD CT GO TO SEARCH-COURSE~ 

ADJUST-1 o 
MOVE LINK-3 {CD~ TO SF-NO MOVE ZEROS TO LINK-3 (CO) 
MOVE ST-WORK-CODE (CD) TO SWF-IN 
REWRITE ST-WORK-REC FROM SWF-AREA 
DISPLAY 'CHECK ADJUST-1' GO TO WRAP-UPQ 

INVALID KEY 



l 
' 

189 

REWRITE STUOENT-REC FROM F-REC INVALID KEY DISPLAY 
'CHECK ADJUST-I - 2' GO TO WRAP-UP~ 

SEARCH-COtJRSEo 
SET IN2 TO 1 ,, 
SEARCH CRSE-DIRECT AT END DISPLAY •COURSE NOT FOUND' GO TO 
WRAP-UP WHE~ COURSE-IN = CRSE-0 (1N2) NEXT SENTENCE~ 

MOVE-COURSE-AOORo 
M8VE INDX-D (IN2) TO COURSE-KEYo READ COURSE-FILE INTO 
COURSE-REL INVALID KEY DISPLAY 'CHECK MOVE-COURSE-ADDR~ GO TO 
WRAP-UP~ MOVE ADDR-REL TO WORK-KEY CNT (CT)? READ 
STUD-WORK-FILE INTO SWF-AREA INVALID KEY DISPLAY 
1 CHEC~ MOVE-COURSE-ADDR - 2' GO'TO WRAP-UP~ 
MOVE SWF-IN TO ST-WORK-CODE {CD) MOVE LINK-I (CO) 
TO STUD-KEY READ STUDENT-FILE INVALID KEY DISPLAY 
1 CHECK MOVE COURSE-ADDR - 3~ GO TO WRAP-UPe IF 
STUD-~J-IN = STUDENT-NO GO TO AOJUST-2b 

NEXT-STUD~ 

IF LINK-2 (CD) = ZEROS DISPLAY •sTUDENT NOT IN THIS CLASS• 
GO TO READ-DISK-INs ADD 1 TO CT MOVE LINK-2 (CD) TO WORK-KEY 
CNT CCTJ ADD 1 TO COo READ STUD-WORK-FILE INTO 
SWF-A~EA INVALID KEY DISPLAY •CHECK NEXT-STUD• GO 
TO WRAP-UP. MOVE SWF-IN TO ST-WORK-CODE (CD) 

MOVE LINK-1 {CD) TO STUD-KEY READ STUDENT-FILE 
INVALID KEY DISPLAY 'CHECK NEXT-STUD 1' GO TO WRAP-UPo IF 
STUD-NO- IN IS NOT EQUAL TO STUDENT-NO GO TO NEXT-STUD.;. 
MOVE CD TO SR SUBTRACT 1 FRO~ SR MOVE LINK-2 (CO) TO 
LINK-2 {SR) MOVE ZEROS TO LINK-2 (CD} MOVE CNT (CO) TO 
WORK-KEY~ MOVE ST~WORK-CODE (CO) TO SWF-INa REWRITE 
ST-WORK-REC FROM SWF-AREA INVALID 
KEY DISPLAY 'CHECK NEXT-STUD-2' GO TO WRAP-UPo MOVE CNT (SR} 
TO WORK-KEY MOVE ST-WORK-CODE (SR} TO SWF-IN REWRlTE 
ST-WORK-REC FROM SWF-AREA 
INVALID KEY DISPLAY 'CHECK NEXT-STUD 3• GO TO WRAP-UP~ 
DISPLAY DISK-IN-REC • DELETED' GO TO DUMMY-TRACKe 

ADJUST-2o 
MOVE LINK-2 (CO) TO ADDR-REL MOVE ZEROS TO LINK-2 (CD) 
REWRITE CCURSE-REC FROM COURSE-REL INVALID KEY DISPLAY 
'CHECK ADJUST 2' GO TO WRAP-UPo 
DISPLAY DISK-IN-REC ' DELETED'~ 

DU~..!M'f-TPACK c 
MOVE DUM~Y-ADDR (1) TO EXT MOVE CNT {CT) TO DUMMY-ADDR [EXT) 
ADD 1 TO EXT MOVE EXT TO DU~MY-AODR (l) MOVE 1 TO CO CT GO 
TO READ-DISK-IN~ 

SEARCH-STUD-A<> 
MOVE l TO CD~ 

S!::T IN! TO lo 
SEARCH STUD-DIRECT AT END DISPLAY 'STUDENT NOT FOUND - A' 
GO TO WRAP-UP WHEN STUD-NO-IN= STUD-NO-D {1Nl) NEXT 
SENTENCE., 

MOVE-STUD-ADDR-A• 
MOVE STUD-INDX-D (1Nl) TO STUD-KEY S~F-LINK-1~ READ 
STUDENT-FILE INTO F-REC INVALID KEY DISPLAY 'CHECK S-KEY A' 
GO TO WRAP-UP., 



I 

cQ ' 

190 

MOVE SF-NO TO WORK-KEY KEYs-IN (CD)~ READ STUD-WORK-FILE 
INTO ST-WORK-CODE (CD) INVALID KEY DISPLAY •CHECK STUD-A-1' 
GO TO WRAP-UPa MOVE LINK-4 {CD> TO COURSE-KEY3 READ 
COURSE-FILE INTO couqsE-REL INVALID KEY DISPLAY 'CHECK ST2• 
GO TO WRAP-UP, IF COURSE-IN IS NGT GREATeR THAN 
CQURSE-CD-REL GO TO ADJUST-l-A~ 

NEXT-'dORK-Ao 
IF LINK-3 (CO) IS EQUAL TO ZEROS GQ TO ADJUST-2-Ao MOVE 
LINK-3 {CO) TO WORK-KEY? MOVE CD TO AXT ADO 1 TO CDo 
MOVE LINK-3 (AXT) 
T:J KEYS-IN (CD) o READ STUO-\'IDRK-F 1LE INTO ST-WORK-CODE {CO_) 
INVALID KEY DISPLAY 'CHECK NEXT~WOR< ' GO TO WRAP-UP? IF 
YEAR-G-IN (CD) IS NOT EQUAL TO YEAR-G-IN (AXTJ GO TO 
ADJUST-3-Ao MOVE LINK-4 (CD) TO COURSE-KEY. READ COURSE-FILE 
INTO COURSE-REL INVALID KEY DISPLAY 'CHECK NEXT-WORK 2 1 GO 
TO WRAP-UP~ IF COURSE-IN IS GREATER THAN COURSE-CD-REL GO-TO 
NEXT-WORK-Ao IF COURSE-IN IS EQUAL TO COURSE-CO-REL GO TO 
ADJUST-l-A,. 

ADJUST-LESSo 
MOVE LINK-3 (AXT) TO SWF-LINK-3 PERFORM MOVE-SWF~ 
SET I N2 TO 1:::. 
SEARCH CASE-DIRECT AT END DISPLAY •COURSE NOT FOUND - s• GO 
TO WRAP-UP ~HEN COURSE-IN= CRSE-D {1N2) NEXT SENTENCEa 
MOVE CD TO AXT SUBTRACT 1 FRO~ AXTo MOVE INDX-D CIN2) TO 
SWF-Ll~K-4~ IF CXT IS EQUAL TO DUMMY-ADDR (1] MOVE WRK TO 
LINK-3 (AXT) WR ADD 1 TO WRK GO TO WRITE-SWF-Ba MOVE 
OUMMY-ADDR {CXT) TO LINK-3 (AXT) WR ADD 1 TO CXTo 

WRITE-SV.JF-8 .. 
MOVE K~YS-IN (AXT) TO WORK-KEY REWRITE ST-WORK-REC FROM 
ST-WORK-COD~ (AXT) INVALID KEY DISPLAY 'CHECK WRITE-SWF-8• 
GO TO WRAP-UP~ GO TO ADJUST-CLASS-A~ 

ADJUST-3-A:> 
MOVE LINK-3 (CO) TO SWF-LINK-3 GO TO MOVE-SWFo 

ADJUST-2-Ao 
MOVE ZEROS TO SWF-LINK-3o 

MQVE-S>'iF" 
MOVE YEAR-IN TO SWF-YEAR MOVE SEM-IN TO SWF-SEM MOVE 
GRADE- IN TO S~'<'F-GRADE r,JOVE MARK-IN TO S~vF-MARK~ 

SEARCH-COURSE-Ao 
SET I N2 TO 1,., 
SEARCH CRSE-D I R ECT AT END DISPLAY • COURSE NOT FOUND - A. • 
GO TO WRAP-UP WHEN COURSE-IN = CRSE-D (IN2) NEXT SENTENCEa 

MOVE-COURSE-ADDR-A~ 

MOVE CD TO AXT SUBTRACT 1 FROM AXT~ 
MQVE INDX-D (!N2) TO SWF-L!NK-4• 
iF CXT IS EQUAL TO OUMMY-AODR {1) GO TO MOVE-WRKo MOV~ 

DUM~Y-ADDR (CXT) TO LINK-3 {CD) WR ADO 1 TO C~TD 
WRITE-SWF-A~ 

MOVE KEYS-IN (CO) 
ST-WORK-CODE (CD) 

TO WORK-KEY REWRITE ST-WORK-REC FROM 
INVALID KEY DISPLAY •CHECK WRITE-SWF-A• 

GO TO WRAP-UP~ GO TO ADJUST-CLASS-A~ 
MOVE-\vRK., 

MOVE WRK TO LINK-3 (CD) WR ADD 1 TO WRK GO TO WRlTE-SWF-A• 



0( 

.o 

191 

AOJUST-1-Ao 
IF COURSE-IN IS EOUAL TO COURSE-CO-REL MOVE 1 TO CD DISPlAY 
DISK-IN-REC 1 ASKED TO ADC - ALREADY TAKING* 
GO TO READ-DISK-IN~ MOVE YEAR-IN TO SWF-YEAR MOVE SEM-IN 
TO SWF-SEM MOVE GRADE-IN TO SWF-GRADE MOVE MARK-IN TO 
SWF-MARK MOVE SF-NO TO SWF-LINK-30 

SEARCH-COURSE-A-2~ 

SET IN2 TO 1 .. 
SEARCH CRSE-DIRECT AT END DISPLAY 1 CHECK A-2' GO TO WRAP-UP 
WHEN COURSE-IN= CRSE-D {IN2) NEXT SENTENCE9 

MOVE-A-2o 
MOVE INDX-D (IN2} TO SWF-LINK-~h 
IF DUMMY-ADDR {1) IS EQUAL TO 2 GO TO MOVE-WRK-1. SUBTRACT 

-- 1 F;:;:o-.: uUWJ\Y-ADDR ( l) MOVE oU:-.1!'-W-ADDR (l) TO CXTo MOVE 
DU~~Y-ADDR (CXT} TO SF-NO WR GO TO WRITE-A-2e 

MOVE-WRK-1. 
MOVE WRK TO SF-NO WR ADD 1 TO WRKo 

WRI TE-A-2-: 
REWRITE STUDENT-REC FROM F-REC INVALID KEY DISPLAY 
•CHEC~ WRITE-A-2' GO TO WRAP-UPo 

ADJUST-CLASS-A, 
MOVE 1 TO CD ~OVE INDX-D {IN2) TO COURSE-KEY READ COURSE-FILE 
INTO COURSE-REL INVALID KEY DISPLAY •CHECK ADJUST-CLASS A' 
GO TO WRAP-UPo IF AODR-REL IS EQUAL TO ZEROS GO TO 
ZERO-ADDR-REL~ MOVE ADOR-REL TO WORK-KEY READ STUD~WORK-FILE 

INTO ST-WCRK-CODE (CD) INVALID KEY DISPLAY tCHECK-ACA-1' GO 
TO WRAP-UP: MOVE L!NK-1 (CO) TO STUD-KEY READ STUDENT-FILE 
INTO F-REC INVALID KEY DISPLAY •CHECK ACA - 2 • GO TO 
WRAP-UPa IF STUD-NO-IN IS NOT GREATER THAN SF-STUD GO TO 
ZERO-AD DR-R L., 

CHECK-L I N<-2c 
IF LIN<-2 (CDJ IS EQUAL TO ZEROS GO TO MOVE-ZEROSe MOVE 
LI NK-2 (CD) TO WORK-KEY EXT ADD 1 TO CD READ STUD-IiORK-FILE 
INTO ST-WORK-CODE (CD) INVALID KEY DISPLAY 'CHECK CHECK-L2' 
GO TO WRAP-UPD MOVE EXT TO KEYS-IN {CD) MOVE LINK-1 (CD) TO 
STUD-KEY READ STUDENT-FILE INTO F-REC INVALID KEY DISPLAY 
'CHECK CHK-LINK-2 1 GO TO WRAP-UP. IF STUD-NO-IN 
IS GREATER THAN SF-STUD 
GO TO CHECK-LINK-2? MOVE CD TO AXT SUBTRACT 1 FROM AXTo 

MOV~ LINK-2 (AXT) TO SWF-LINK-2 MOVE 
WR TO LINK-2 (AXT) WORK-KEY REWRITE ST-WORK-REC FROM 
SWF-AREA INVALID KEY DISPLAY ~CHECK CL-2 - 1 1 GO TO WRAP-UPe 
MOVE KEYS-IN CAXT) TO WORK-KEY REWRITE ST-WORK-REC 
FROM ST-~ORK-CODE (AXT) GO TO DISPLAY-DISK-INo 

MOVE-ZEROS_, 
MOVE ZEROS TO SWF-LINK-2 MOVE WR TO LINK-2 {CO) WORK-KEY 
REWRITE ST-WQRK-REC FROM SWF-AREA INVALID KEY DISPLAY 
'CHECK MOVE-ZEROS 1 1 GO TO WRAP-UP~ MOVE KEYS-IN (COl TO 
WORK-KEY RE~RITE ST-WORK-REC FROM ST-WDRK-CODE (CD) INVALID 
KEY DISPLAY 'CHECK MOVE-ZEROS 2 1 GO TO WRAP-UPo GO TO 
DISPLAY-DISK-IN:. 

ZERO-ADDR-RELc 
MOVE ADDR-REL TO SWF-LINK-2 MOVE WR TO ADDR-REL REWRITE 



,Q 

192 

COURSE-REC FROM COVRSE-REL INVALID KEY DISPLAY •CHECK ZAR 1' 
GO TO WRAP-UPa MOVE WR TO WO~K-KEY RE~RITE ST-WORK-REC 
FROM SWF-AREA INVALID KEY DISPLAY 'CHECK ZAR 2' GO TO 
\YRAP-UP" 

DISPLAY-DISK-IN<> 
DISPLAY DISK-IN-REC ' COURSE ADDED'o 
MOVE 1 TO CD GO TO REAO-DISK-lNo 

SET-t)'ORK-F ILE., 
WRITE LINE-FORMAT FROM HEAD-1 AFTER POSITIONING Oc MOVE ALL 
•-• TO FILERo WRITE LINE-FORMAT FROM HEAD-1 AFTER 
POSITIONING 1 .. 
MOVE ZEROS TO SWF-LINK-1 MOVE WRK TO WORK-KEY~ REWRITE 
ST-',-:ORK-REC FRO"' S','iF-AREA INVAL.ID KEY DISPLAY 
1 CH~CK SET-WORK-FILE' GO TO WRAP-UP~ 

DISPLAY-FILES., 
MOVE FR TO WORK-KEY~ READ STUD-WORK-FILE INVALID KEY DISPLAY 
•CHECK 1' GO TO WRAP-UP~ IF KEY-ST-WK IS NOT EQUAL TO 
ZEROS. l'iR ITE LINE-FORMAT FROM ST-WORK-REC AF.TER POSITIONING 
3 ADD 1 TO FR GO TO D!SPLAY-FILESo MOVE 1 TO FR~ 

DISPLAY-STUD., 
MOVE FR TO STUD-KEYo READ STUDENT-FILE INVALID KEY DISPLAY 
'CHECK 2' GO TO WRAP-UPo IF STUDENT-NO IS NOT EQUAL TO 
ZEROS WRITE LINE-FORMAT FROM STUDENT-REC AFTER POSITIONING 
3 ADD 1 TO FR GO TO OISPLAY-STUDn MOVE 1 TO FPn 

D! SPLAY-COURSE,. 
MOVE ~R TO COURSE-KEYo READ COURSE-FILE INVALID KEY DISPLAY 
1 CHECK 3' GO TO ~'fRAP-UPc · IF CRSE-KEY 1 S NOT EQUAL TO ZEROS 
WRITE LINE-FORMAT FROM COURSE-REC AFTER POSITIONING 3 ADD 1 
TO FR GO TO DISPLAY-COURSE& 

'.oiRAP-UPo 
CLOSE CARD-FILE PRINT-FILE COURSE-FlLE STUD-WORK-FILE 
STUDENT-FILE DISK-IN~ 
STOP RUNJ 



H~SERT GRADES 



I 

194 

~~~NTIFIC~TiaN DIVISION. 
P 11 !J 0 !::> A··~- I D .. T ~ S G RA 0 E •

AUTHO~. GnVIND K P I P LA ~ I.
P:CMAql(S.

~~•••~~·~~-*~~~·~•r•~*~=~*P•~~=~•~*&•~~~k•~a*******~****~***
* THTS PR!f;PA EXPEC7S ;\ FlJ''-lCTICJN C~Y-'D• 'l!H{C:-1 CONTAINS ,.
* GPAOE-SC~LE AND ALSG TELLS ~h~T~~R TC GIV~ GRADE C4 ~CT *
* THE:: FCR>1AT FOLLC',-;S. *
'it (OLS 1 - 3 'Y~S• IF G~ACE TO Bf GIVE4 "'

~ARKS. EXAMPLE 79. ~EANS ANY STUDENT *
ri~VING '\>!OPE THEN THIS GIV;:: HP4 THE GPt.DE *

* THAT FCLLCWS ON THE NEXT =oL. *
* C:JLS 6 GRADE TC BE GIVEN IF TM~ PREVICUS *
:1: CCNDITI~N IS MET. *
* COLS 7

*
*
* COLS 7?:3

'"' CCLS ;:.,
,,; ._,

-

-

3..3

?9

ACCORDING TC THE FORM AHqVE. EVERY T~PEF ~

CCLS. CONTAIN MAPKS ANU THE GRADE TC BE ~

GIVEN IF TH~ STUDENT HAS AROV~ THIS MARK.~
THE LENGTH CF GRADI~G SCALE. ~

'A' TO INDICATE THIS IS TH~ FU~CTIC~ CARD*
~
* COLS 1 - 2 'NC' IF GRACES NOT TOR':. GIV::N. * ., COLS .3·~ 'A' TO INDICATE THIS IS THE FU~CTIO~ CARD*

P~V!RONM~NT ~!VISION.

CGNF!GU~~TIC~ SECTIO~.

S OUPC'.::- CCF·~;:. u; :::~.
02J~CT-C'J~·':::>lJT=q •

I 3 >i- 3 ~> 0 - F 7 5 •
I 0"-1-3f.C-F75.

INPuT-OUTPUT s:::CTI:1:...:.
F"ILE-CnNTr:;JL.

S:::LECT STUJ-FIL~-DIRECTURY

s::LECT CAQJ-FILE ASSIGN TC
ftSSIGN TO VT-2314-S-SFD.

UR-254CP-5-(Aqos.
SELECT P~I~T-FlLE ASSIGN TQ UR-1403-S-PRINTS.
SELECT DISK-I:--! . .\SSIGN TO UT-2:314-S-INCISK.
SC:Lt;:CT DIS<-UUT ASSIGN TO U7-2314.-S-OUTDISK.
SFLECT WORK-FIL::: ASSIGN TC A nft-23!4-D-SORT~K01.

SELECT STUJ~~T-FILE ASSIGN TO JA 2314-R-SF
A C C '::: SS i S ;:; A '' c) 0 .·,1

r-.;f)'' I ~;;\L K:OY IS STUD-KEY.
SELECT STUD-~O~K-FILE ASSIGN TO DA-2314-D-S~F
A.CCC'SS IS ::;:ANDiJ'-1

~O~IN~L KEY IS WORK-K~Y.
S~L~CT CJURS~-FILE ASSIG~ TO DA-2314-R-SqF

N::J~l!'U\L ;<;:;:·r IS COU~SE-KEY.
D /l. T .A D I V! SI ~;'\J •

FILE SCCTIO'J.
SO I•IT::(K-F I Li::

qc(CQDING ~ODE IS ~

RECQQD CONTAINS BO CHARACTERS
L/\f~EL PECm~o IS 5 T <H\ ') L\;.'D

f
\

01

195

f)hTA RECOR~ IS wnR<S.
'•/DQKS.

02 OEPT-WO~K PICTURE X~x.

02 STUD-NO-~ORK P!CTU~~ S{06}.
02 FJLLE~ PICTURE X(24).
0 2 CG U R SE.:- C ClD i::- 11 Cl;:; K P I C TU R t: · 9 (G f:) ~

02 FILLEP. PICTUR-= X(41).

Ft) CI\~1)-FILE

~~CORDING MOQE IS r
P~CORD CONTAINS 80 CHAPACTECS
L~9~L RECORD IS O~!TTED
O~T~ qECORQ IS CA~D-P~C.

01 CA 0 '!-REC.
02 FILLER PICTUR~ X(79).
02 CClL-30 P!CTUi?F X.

F 0 D P. ! '-l T- F I L:::

LI\REL ~FCO~D IS OMITTED
P2C0~0 CO~TAINS 133 CHAP.ACTERS
!)~TA PE:JRD IS LINE-FORMAT.

C 1 L HE-r 0 '-' '.!!.;.

0? FILL~P ~ICTUPE X{l33).
FO OISK-P!

R:::cc~~r~~ vo~~ IS F
P':CC'-':J C!''~T~It.;.:; 130 Ct-4R£1(T"'P.S
l~BEL R:::Co~o IS STANCAqo
D~TA R~CG~D IS DISK-IN-REC.

01 DISK-IN---<:::C.
C2 FILL:::~ PICTURE X(80).

FD DISK-DUT
IS F

~~(O~D CONTAINS HO CHA~ACTCRS

RLI1CK CJNT~Ii'J3 10 RECORDS
LAREL 2~CG~D IS STANCAPD
D~TA R~CQ~D IS DIS-CLT-REC.

0! DtSK-OUT-PEC.
0?. P::,:.{ ::;:,~'i ~I CTU~E 999 •
0? 5T-'!::J-I r>ICTUPE ;(06).

02 FILL~~ 0 ICTU~E x.
02 ST-~AV~-1 PICTURE X(20).
0? FILL~~ PICTURE XXX.
02 CGUP.S~-CD-I 0 ICTURF 9(06}.
02 SE~-I PICTURE X.
02 FILLER PICTURC XXX.
0? Gr)T PI CTl.J''E gqrJ ~

02 FfLLEP PICTURE X{3~).

0~ c::.:L-.>3:)-l PICru:,::.=: X.
F ') S T•JIJEI\lT -FILE

R=CQDOI~G ~ODE IS~

01

RFCDRD CONTAINS 34 C~A~ACTERS

LaGEL RECO~D IS STANCACQ
QATA RECOR0 IS STUQE~T-R~~.
STUD'?.~lT-Rt,C.

c

196

0~ FILL~R PICTU~ xxx.
02 S7UD~NT-~O PICTU~C 0(C~).

C2 FILL~R PICTUQE X(7! l.
0 ~ 5 TU 0- L 1 N K D I C TU£~ :: S 'J') 1 •

FQ STIID-WORK-FIL:::
r<=.COPDING 4DOE IS F
R~CORD CONTAINS 22 Ch~PACTERS

L~9EL R~COR0 IS STANCAPD
DATA ~~CORD IS ST-WCRK-~C(.

0 1 S T - \'! O>::: K - R E C •
0~ FILL~R P!CTU~c X{22).

FD C'JiJ:-:s:::-FIL.::
RECOQ0ING ~O~E iS F
G:CO~~ CONTAINS 37 CH~RACTEGS
L~QEL RECOq0 IS STANDARD
DATA ~EC'JRD IS CGURSE-REC.

01 COlJPS=-.:<:::c.

02 FILLE~ ?ICTU~~ X(04).
02 C~S~-~::Y ?ICTURE 9{06).
02 FILL~~ O!CTVRE X(27).

FD STUD-riLE 0I~~CTORY
RECORDING ~~~E IS F
P::c:oc:;:l cr:;:.;TAI··~S 2tf00 CHAR;\CTC::RS
LA9::L qE~~ IS STANOAPD
DATA R~C~~0 IS STUD-FILE-CIR~CT.

01 STUD-FIL~-DIRECT.

02 FILL~~ PICTU~E X(2400).
WOGKTNG-ST~?AGE SECTIQN.
77 STUD-KEY 0 ICTU~E S9{8) CC~P SYNC.
77 COURS~-K~Y PICTUP~ S9(A) CC~P SYNC.
77 WOR~-KEY PICT~PE 59(8) CCNF SYNC.
77 SW PICTURE 9 VALUE O.
77 STU~-CO~E PICTUPE 9{06).
77 ST PICTU~~ 9~ VALUE 1.
77 CALC PICTU~E 9~.

Cl SF'J-FILL•
02 STU0-~ICECT OCC~PS 20Q TI~ES IND~XED PY 1~2.

0 ""t S T 'J D- .'~ J - D D I C TU PE -:;t { 0 6) •
03 STUD-INDX-0 PICTU~~ 9(06).

01 FU"<CTIO'i-=:t::c.
0? YES-0~-~,') DICTUC:E XXX •

02 SC~LI~G ~ccuos 10 TIM~S.
03 MA~KING PICTURE];.
03 G?~OING PICTURE x.

02 FlLL~q 0 ICTURE X(q4}.
02 1--'.AX-SCALE PICTUPF 99.
02 FILL=R PICTUP[X.

0 ! \\ C' =< K I N G - >-< ;: C •
02 LI 1\JK-1 DI CTtPE 9 gr)q •

0'?. LI NK-2 PICTU-'.':: 9 9 :;Fi •

02 YF= A'<-~.; PICTUR;:': f.J <; ..

02 T!::Rf-1-'.o/ PICTURE 9.
o.z Gl-! A DE- ':1 PICTU>(f= X •

c;><

197

02 ~4RKS-W PICTU4C ~9.

02 LINK-3 PICT0RE 9909.

02 Ll~K-~ PICTU~[9S~0.

p~.;>fJC;:OtJr~::: DIVISION.

Sl"ARTS.
or.:N INPUT CAF<O-F!Lc OUTPUT Pfd"lT-FILE ~)!S<-IN.

qcAf.' C:.t1RD-FILE ,l,T t::NC GO TO DISPL..\Y-:vliSSfr-.<G. IF COL-80
IS !'l:lT EQUAL TO 'A 1 CIS.::JLAY 1 FUI\CTlm~ CAQC t-!ISSII\G• GC Tu
wo•.P-UP. MOVE CARD-'1EC T~ FUNCTF.Ji'.l-REC.

O!SPLAY FU~CTION-~EC.
qr::t:.C-C!:PDS.

P:: q; CA ?.D-F I LE AT ::.1\.D GO ·TO CLO~E-CARD-F I LE • IF CCL-a 0 IS
N'1T ":'}U.'\L TO "·~ 1 DISPLAY CAPD-REC ' WPONG CARD' GO TD
R=AD-CAQOS. W~ITE DISK-IN-REC FRG~ CA~D-REC GO T: REAC-CARDS.

CLOS=:-C:400-FILE.
CLOS~ CARD-FiLE DISK-IN. OPEN INPUT STUD-FILE-DIPECTCRY.
RE~O STU~-F!LE-DI~~CTORY INTO SFD-FILL AT ENO GO TO

CLCS :::-s FD.
')! S n LAY ' C r(-1 t •

CLGS-::-SFD.
DI SPL!>.Y t 0-<.-2.' •
CLQS~ STUD-FIL~-DI~ECTORY.

SO:::ZTH~'3.

D I S P u~. Y 1 D'<.- 3 ' •

sr.r:> T >-;f': C:<-F I Li:: ON A SCE: ND I 1\G K:=;Y S TUD-1\.-C-•·IGRK CCU4SE-C.CDE-ViDRK
USING o:SK-I!'-J

G I V I!'J G D I S K- CV T •

C Hf:.CK-RE SUL T •
I) I SPLAY • 0'<.-4 • •
IF SORT-P:::Tu=<:;, IS ~!.JT EOUAL TC 0 DISPLAY *SORT UNSUCCESSFUL'
Gn Tn 4RAP-U?. DISPLAY 'SC~T OK•.

OPEN-IF.

DISPLAY '!JK-5'.
OPfN !N=>UT DIS'<-~1UT I-G STUDEI\.T-FILE STUD-','JORK-FILE

COUOSf:-FlL •
::;::=;\[)-IF.

OISf:JLAY '0~-6'.

p~ao OISK-OJT AT END GC TC SET-ST. IF 5~ IS ::OUAL TO 0
GO TJ <.~2·/?. ST-':·J. IF ST-N0-1 IS NOT EOUAL TO STUC-CCD"' GO TO
'AD v:= -S T -t-"CJ.

oiS0 L~·.Y •oK-7'.
~·DVF:: L I ~!K- 3 TO .,v(JqK-K:::Y GO TO REAU-S\.'JF •

~lOVE-ST -'Ji).

M~VE ST-N0-1 TO STUD-CO~~.

SE t.PCH-STUO.

DI SP 1_AY I OK-::) 1 •

SE T p,;2 T 0 1 •
Sf:.'•YCI-t STUD-DIC<ECT AT f:ND OISf::Lf\Y 'STUDeNT '-illT FCU~~I)' GO TO
~~6°-UP WHEN ST-NG-I = STUO-NC-G (IN2) MGVE STUD-INDX-0 (!~2}
T~ STU~-KEY. READ STCD~NT-~IL~ INVALID KEY DISOL~Y

'CH:':O<. SEARCH-STU~)t G•J TG v~;AP-UP. ·'-10VC STUO-Ll..._,K TO
1:/lJP K-KE Y.

(
\

,Q

198

L.,tf::.-'\0-S,•iF •

DISPLAY 'Ct<-0'•
0 t::"l10 STUD-'.>~0•-(K-FTLE PH:~ ,_, __ i-'K':'<G-Pt=C P.v,:u_:,) KEY DISPLAY
'CH'CK. PCAD-SWt= 1 GOT _,:::-·:.r:-UP. :•1ClV:: l..!i';:-.--'> TO CCtJf~S~-KEY.

P~:AD COURS~-FILE L'lVr>.L:D KEY ClSPL;W '(n':;C:<. >~EAO-SWF 1' GC
TD WPAP-uo ..

C ~cEC'<! NG.
r) I s DU\ y t OK - 1 0 ••

rF COURSE-CO-I IS G~EATER THf·N CRSt:- KC Y '~D TO

CH C;<;-LINK-3. IF CJURSE.-CG-I IS LESS TH.l.N C.'(SE-I<EY

D!S~LAY DISK-OUT-R~C ' STUOE~T NOT TAKING THIS CCURSE'
PF~FGRM READ-IF GO TO CHECKING. CO~PUT[
CALC = (PERC N GOT) / lJO ACC CALC TO ~A~KS-W. I~

Y~s-=~-NO IS EQU~L TC 'YES• GC TC MOVE-GRADE.

DISDL.,!,Y 'GK- 11*.
REWRIT_ ST-~GRK-REC FRCM ~ORKING-REC INVALID KEY DISPLAY
'CHEC~ CrlEC<-LINK-3' GO T~ ~RAP-UP.

GfJ TO Rc~.0-IF.

CrECK-LIN<-3.
DISDL/·,y •.-:-:<- 12'.
!F LI~K-3 IS ~QUAL TC ZERCS MCVE 0 TO SW GO TO READ-IF.
MOVE Ll~<-3 TO ~ORK-KEY GO TO REAO-SWF.

~!SPLAY 'C<- 13'•
IF MA!:.:;<.$-,; IS EOUt',L T:J '·lAI<KH\IG (ST) QF: MAR~-:S-\~ IS G~EATER
THAN ~A~~I~G (3T) MOVE GRACING (ST) TO
GqAOF-W ~OVE 1 TO ST GO TC RE~RlTE-SWR. IF ST IS NOT

EmJAL TO '·'AX-SCAL::: ACD 1 T::J ST GO TO f.~cvc:-G~ADE. DISPLAY

•CHECK FU~CTIDN CA~D - SC~ETH!NG W~ONG' GO TO WRAP-UP.
D I <:; P L ~ Y - '.q S S I ·' l c; •

OJSDLAY *FUNCTIO~ C~RD AND DATA MISSING' GO TO WRAP-UP.
SE I-ST.

DlSPLi\Y ~c.<- 14t.

MOVE 0 TO ST.
!1 I SPLAY- S'.'IF.

OISPL.;Y *C•(- 15'.
MOVE ST TC WOR<-~EY. RtAO STUG-WORK-FILE INTO WCRKING-REC
INVALID K=Y DISPLAY 'CHECK DIS 0 LAY-SWP• GO TU WRAP-UP. IF
LP·!K-1 IS 'WT ::::OUAL TO ZEf<CS \\RITe Llf'iE-FORMAT FRCI.1
W~P~I~G ~~C AFTE~ PCSITIO~ING 3 ACO 1 TO ST GO TO
DISPLAY-S;;;:.

\tiP !\P- 1.J" •

CLQS D!SK OUT STUDE~T-FIL STUD-~nPK-FIL~ CDURS -FILE
o P ! i'J T- ~ I L ~ •

SFJP RUN.

http:DISPL.AY

GRADE REPORTS

(

0

I) ,:: '"'-~ T 1 ·•.: I C ,\ T I C f'l ; 1 I V I S I 'Y : ,

{) ·"~- c1t.; ·)A 1- I c~ ~, c, ~.{A 1) r:: ~- t: P v

~' N V f ~ ,-J '• ''i :· i'· T I) I V I :; I f~ ~.; ,

C):--.:r": I C,~J'~ ,-l T I .JN .secT I f:i':"

200

S:JlPO::C::- C ()'!PUT::: R, I >:•. •4 - :' :) '~ -F 7':1 1

cf ~ J ::::: c T- c tJ , . P lJ T E>< tj I c~ :\ ~- -=, . ..; . J - F 7 s ~
J:-.,P.JT--HiT::•ur SECTIO:.~

S::-L Ci

S~L~CT CA~D-FlLE ~;SIGN TC
s ·.:::: L :--: ·: : P L! r t j r - := r u:: :\ ·s s r s '~ To

uP-?'5<+::: r -s -cP. q:')s?

U~-14~3-5-P~INTSe

S:;: L c_: C.,.- S TU;:;.:: ·~ 7- F I L b~ ASS I G "' T 0 :->A-? 3 1 t;.- P-S F
P.. CC E S 'o 1 S ~. < D L"' : .• :

t'Fl'-'I'L' <::Y IS STU)-K':::Y~

S=L C.,.- STU)-NC~K-FTLE \SS!GN TO D~-231A-R-SAF
Acc~ss :s ~A~co~.
i'~iJ:\.~ft'-; . .:L :~.::Y I~; H(l;:;_?(-!·'..:2Yo

ASSIG~ T~ DA-?314- 0 -S~F

D,\T'\ DIVISi '"-::_.

FILe: :3'::':Ci lU'~'

F .-, C ·\ K !) - F T L :.

1-'.=cJr-::.•I~~c, ·.•.-;:)E IS F

t<::::CCJ'~.) C!l:.T;.\Jr·lS s::· CHAi::.'\CT€'.~5

Lli·1EL ~C:C.'<::) IS D~·ll TTE)

a 1 c t\ ~ -) -::::: c -o

0? Y ;= :.:; -' -:: c; F l C TU:~ C: ·J 'l ~
02 FILL~~ orrTUPE X{77}~

F0 PRPH-F I
f..>f:C'JPCI!"~G -.1Qf)E IS F

LA3~L R~C 0~D IS O~ITTE~
Pt.::CCKL' CJt•,L'..P~S 1T3 CH1\ClACT[i'C::

OATA L=C0 ~ !S LIN=-F~P~ATo
C 1 LI -1::.-F""< f,To

c:; .:: ;= r :_ t=::: c 1 c r u L:F >: (1 3 =·n :
F::J STU:)E:'.T-Fit.f~

r: f C U :-. '! r .'...i c; . " ! D r:~ I S F

D~TA ~Ec~so IS STUJENT-RCC:
C 1 S T d L) F ~.; T - :".'/ ;_- C "

('2 STUC!C'Il-DF.f T' ?fCTIJ'~;~: XXXo

::-? STUJUlf-".:U =•ICTU;:;-'': ?{~.:,))

STUi) <·;T-i,;t'-'-:: ;->ICTU"-<::: X{2C)">

sruo~ ~·fT-f)f<~;·.;c;.: :> u::r:J.:.: x <' -2 l"

http:STUC!C'IT-DF.rr

(

(

,., ~?

201

S T d •J f 1'1 T l f V [L i' 1 Cl J .,, - >(X .,

STJ);::I'!T-'~i=)(f:·!(.TU~'- .. ;;,

S l Ll 0 c-: ~JT- ':_'. l F F-: C T -, I C ·r J ::: :.": X (l '7) 'J

~>TUt)::::t·lT-1\PT I'If:TIJ .:_ c. (~4) ·

STUf.JC'JT-Tli<iN I'! ·:T!J _ X (1 f·) ·

STUt)CNT-TFL:::~:•r'::.: ·F 'I(11J;=:~;. ·"' (C7),

STU:)t:t-iT-Lii'!K ~'ICTt.l;. ··_.·:n•-J.,
F!) .:.; TU·)-':~:"'! r~"--F I L t·:

~-;:c;_;;.>:~ I 'JG '-'-:.L)t-: IS =c

Q-"CJ''L· CCJNTA lt--lS 2:? ::Ht\~'-.t:.CTCP.S

L.-,:....cL ;:<>:Ct!~'D I~. ST~\J!).~\')8

iJi>,T~ P:::;cur:•l) I~; .31-.IU~K-'<EC..,

Cl :;T-·~;:·;<-PfCc

02 LINK-1 P!CTUO[9999~

C 2 Y ~ f<:- C)- ! · -: P l C TlF-! r:: 'Y·h
02 T~Q~-G-I~ PICTU~E .x,
(? G~~2~-G-I~ P!CTU~E Xo
C2 \~A::><-G-t~• P!CHF~[·:;!'}.,

C2 LIN<-~ PlCTUQ~ 9990~

R:.C(;:::~_'fi';:'; '<]~)E I.S r-

:_~ f C ::J ~; ~: C .: '\: T t\ I :- ,~ ::. 2 4 (~ ;:,: C: I t";:.; ~ C T l=.: Q S

L\ "'. L D c:: .- :· r:: :J ; s 5 T .!\ 'l D 1\ V)

Dt.,T;'. ;.·2:(-H-') IS STUO-FIL::::-~)IR;;:CT,.

·.)1 STU-)-,::. I L''-DI -:=-er,

FD
02 FILL~~ ~ICTUQE

C.:FPS;':: -;:: ILf:

R~CG ~~~~ ~COl IS F
p~:crFm CY;Tr, U-.::> 37 CH>\'-<-\CF--PS

LA1 L ~-CGRC !S ST\NDAq~
DA''< ::,_ (":;CC) IS (f'lJPSF.- 0 C::Co

02 CCU~S~-A~D~ PICTU~~ ggqgn
02 cuuc;:s:=:-c,n>::. PICTU<::!:: q9'io

r~ CCU~5~-cns~-ss~ P!CTU~E 9°9u
02 FILL~ P!CTUPE Xa
C2 C~U~SE D~S PICTUR= ~(25}c

C? C~~~s~-c~~riTS PlCTUR~ 9a
~O?K!~~-STU~~G~ S CTIU~o
77 Y~A~-s=J~ ~ICTUPE 9~0

?7 CT :::> ! C Tu;:. 9 VA LU~. ,) •

-, 7 ·i . (, - < ~: y p I c T u '-' c s 9 (':'.) C:! ,·; C1 s y '•K ,,

7·1 STU·'>-:<:v PlCTLl~·c: .S9Lq C:~'>.'P SY'•JC,
77 Cf;.J S __ ,_y DICT\V~- s·:~(\) CJ~.·p SY~IC.,

Cl C"'~.l-FILL·:

r 2 er- s::-,-; I --:;-:_:er nccUR:.> .: :- r r ·Fs.)
\. 3 C ~' S :':- L' PI C T 1.) eo:-· ..) { •.: .':)) c·

(} l~DX-G PICTUU~ 0(:6)~

Cl AD'H :=c;q·.1,_:

FILLi:'P PJCTUC::" X{l

(

202

1. (:. ' ') •
f ! L L 1- P I C T U o ::. -< (' -;.) •; -~ L U ~: -, :. ~. ~ r- · , "

.... :..· ~ FILL-2;;.31- "ICT'Jo:;>': x, .
r r L L ;:· ;::. I c- T , J L' r= x < 1 1 > ,,

·:<:: f1LL<=-J-.> PIC7t'r'·.: X(l:i) V~LU': :'TA'~'-~:;')

':~ l_;::VEL-I~J P!CT~'-7:::, X{i)4)c

0 l C'J •Y< 5 ':: S - F C>' "-~ :
2? FILL~~ PJCTU ~ X(S) VALU~ S~AC~S~

:2 ~E0T-l~ 0JCTU~. XXXi
~~ FILLER-PIC-U?~ XXX VALUF SPAC~S~

') 2 C w lJ i< S ~-C ~· ::.- 1 ·I P I C TU::.> F 0 o .::) ~

r2 r!LLCR ~~CTU~~ X VALU~ '-•~

C2

)2

C2

FlLL.~ ~!CTU~F XX V~LUE SCAC~S~

CC.U-;>S -')S-IN PICTURE. X(25).,

FILL~~ PICTURF X VALUE SPACCSa
YP-I~ PiCTU~E 09c

r,2 F!LLE:..> PICTURf'-. XX VALUE: SPACt.:S~

·~2 C::-:1_1..:.•.:;;:- :~~::::'ITS- If~ JI CTUPF: 9.t;
•:· 2 ~'-' I L L '-' P 1 C T :. F! F X (: · :)) V cl. L U -= S ':' ,'l. C C:: S ,
r? G~~ ~ IN =!~TU~~ X~

P•<rlCCl>'.F·c il IV I Si~;,,,

Sfi\~T<:,_

OP:. '~ I ~j PUT c ,cc.)- f' I L c: C'

~ '~'- f\ i)- C A, P il S e

•.:C-\:) c,\~Q-':::'IL AT :."::Nf) CfJ TO CL:JSf-IL,

IF CC L- 3 C I S ~.;; T f_ 0 U AL T ,J ' A ' D IS PI_ !:'> Y
• F J ~ ~·: r l I C '-! Y C: ,:, :;· Y ·) U N r:: :-: !'') G R A D ;:::: - ~~ f" P 'J R T :3 - C l·f ,:: C !(C Cl - R \:- 1 (i 0 T 0

'.!; P. ~\ 0 -J :::> -::

MOV~ Y A~-Q~~ TU YEA

CU1Sf::-! T..,

CLOSE C~?~-FILE~ OPCN I 0 COURSE-FILE STU~-woqK-FTLE

~TU,E~T-F!LE I~:PUT ST~O-FILF-~IRECT~oy OUTPUT PRINT-FILE~
~<.:::: J\ i)-s ~:)"

Rt:./\) STtJ)-r:-IL.C-OIRi::CTtPY INTO CFO-FILL AT E'JD GO TC• CLOS~-SF,

CL:JS:O STU<J-F!L_-DIRECT:J;.:y,
S T ::1. R T- P k ,_~J C .3 S ~

IF C0S~-0 (5r) IS EQUAL TC Z~~CS GO TO ~~~o-uo, ~CV

I"l·1X.-::> (:STl TC; SfU·')-rc_:y, Pt.::.,\>) STUY::JH FILC INV~.L!D Kr-:·y
DIS:JLt.Y 1 (H2C< ST.'.,I-?f-Dp:·iC:ESS' r;n T') :lPAn-uo., '·~C;V[

STUU'""'.,T-i;l· T':J ',iCl-1'\J '-')\!,·': STUD:::NT-~1·'\'H=.: TiJ '1-;f.,''!c-IN r.1(';\ff:.
STJ';~ T-t);:-o::;:-:>Ef~ T•] LEVFL-IN-, w·;JITF LH·;':-Ff>='-l!\T r-C!C\1 4DDR-FG0\1

;~c.·~c--li·l t,t;::,v:;.: <:;:-:.\~_-:t:•S TD LEV.:'::'L-1'~ '·FlVC. Sft.PV..:'!T ST0FfT T'l

:-..:.!\ .;;:::-r"~'> ,,·:~IT': LI·'·l··~-r=·J·'.i''•\T F~;,;'' !l.J•F)-rn:<'· •'FT:.·-< ccsiTI:JNI"lG
1~ ~QV~ SP~C~S T~ ~\~~-~~

STIJOd.T-P.PT TP ,\PT- -~;'-f~.),

1\FL_R r.>f1St THH! ~u; 1, ·1,_,v;:;:

V;(}V_ *I'.PT• T•) llPT-I"i '.~CVF'

··~~~IT::: L !':c.:_ ... ;:-cr:•v'.T F~J··l .~D:)r~·-F0'-1:\l

STU') ~.iT-TT'I'J Tr; :'-:•P.:C:.-T 1\~ ·,.m 1 Tf:

(

0

203

LI~r-=:-r.l;t::',LuT Ft.C:··t r,_> >;:-;" ;..>·: :,!-' fc:P ::·1$!TI:•·.,rl\:G 1~ vovF
.STU'Jf-.!\oT Lli"<K Tr, ':ifJ'-'t<-",·c_y.,

r)J ;uLt,Y STU) f•JT-LI'JK 1 ';7Ur>::'·;T LI'.:"'~

) 1 S P L ;\ Y 1 : 'K (' ·;

['!'_');::>u\Y YEA.:! f;f-:J I Yf-~\' r,:':,)·~

r:'-"''} ::)TUQ-·;'IJIJK-F!L:~ l'N'.L!D Ko-y DJSDLt,y •CHECK h'Ef·O-S'.•iF'
G T Q w R ,'\o o-UP, I i-' Y-::: A:::- •< F '] D I S N J T r:: \J U A L T C Z C :.:~ :J S G D T 0

C'-, Cf<-'d our.;- v::::A;:: ·.J

:; I 3 P L :. Y S T - :,..· r J ;. f.: - ;:' :c.: C 1 ·:; T - ~·~ C R '< r.·:? (. • o

~<l~J v:=..-: ··1 c

-J!:)CJLAY 1 'JK 3' ·

:.1_::; LINK-<; i CJUP3r:-K::;:y, ~'=AC' C'JU~SE::-Fn:::: T~VI\LIO KFY

:.")! :O"JL.;;,Y 'CHC:,C.-~ '>IQVF-HI' GC TO 'tlf-)tP-IJPo \~OVE Y!::fV:<-G-IN TO
Y~-r·~ 'l"JVE rc.:;::;:-,•-G-I'J TfJ Sfr~-IN v:uvc: G!=iAf)[:-G-IN TC GPADc-IN
~•''1'./ C,..1U::JS::-:;.;:-_;r:; T:) CJUr~S:::-ct.nE-fN '·WVt: CCURSE-CIJDE-SE:-~

TG COli-<3_-CJ:::F-SF'<~-IN ;.lnVE. COUQSf-0ES T,J COUDSE-D::'::-IN MOVE
C.Cl'Y<:S-:·-c;:.'::-,IT.S TO CUU"3·::':-CkEQITS-IN., IF CT IS :::,)IJAL TP
Z~~O w~!T~ LIN~-FO~~AT FROM COUPSES-FOR~ AFTER POSITIONING
3 '-L'JV= l T,:; CT EL~>E 1.'/RIT;::: LIN:::-FOR:\1.:\T FJ.Jm,' CiJllPSES-FORM

AFT~~ ~oSITIGNING l ~ I~ LlNK-3 IS NOT F~UAL TO ZEROS MQVE
L!~<-3 TC ~0R~-KEY GO TO ~EAD-SWFo ADD 1 TO ST ~OVE 0 TO
CT {;~) TCJ .ST;..~T ~J~C1C2~··.,;-_

0 TU CT ~.~JD

1'1.~ :J.P-UP 1:

I~ EOUAL TO YFAR-~E00 GO TO ~GVE-IN~ MOV~
TO ST GO TO START-PRJC~SSo

c=~~s~-FILE STUO-WCRK-FILE STUDENT-FILE PPINT-FILEo

http:r-=:-r.I;r.:'i1.uT

0 CLASS-LISTS-

;0·

{

205

l D f N f I ~~ I C : .. T I UN J I V I S I l · ·J ~

Pf~;JGRf,\1 ItJt CL,\SSl IS,.

AUTrif"l•"<< GLVIND ;(P I ·:. L '"· ~! I ..

~ TY!S PROG~A~ P~I~TS ruT [!TH~R CLASS-LISTS U~ PUN(H~S *
~· :1 ~= C,<. S t.•E M'l! T r· 'J::,. •.q Cf' ·::SS CP. S FC r< W« J T PJG ()R MHc S CN THF:"" t 'if

-- D" f.OTH,._ JT EJ\PC:::C.TS A FU~CTICN C'\RD 'h'HICH TLLLS THE *

FLJP U~CHING T~E FU~CTIG~ CAPOc

C'JL
Cf1L 1

* COL • ...
COL 3

C•J L .:;;

·"' C!lL 4
,, CCL 4
~.~

"' C:J L 6
~

"' UJL 6
.>.< C!lL [> 0

,,

CR

~
• f

,'"'_ ._

2 -,.~

:.-

- f • C.':

A

'

5 7 ;_

CLASS-LISTS ~ITH ALL THf STU0~NTSo
CLAs~:;-L I 5TS <,of! TH ALL THE STUOEI\. TS OF 19 72*
~ONT N~ED CLASS-LISTS~ •
FIRST S~~ESTER O~LYa *
IN THIS CASE SECOND SF~DTCP ONLY

~EED OEC<S F~R THE STU0ENTS TAKING COU~S:*
0U"'I"-lG 1972~

t'-'IPSr 5[\lf.:ST'::f:.' C'lLYo

I:'>l THIS CAs·::. SF~C'JI'.JD SE'•~f.STE1.;> :JNLY
I~DICATfS THIS IS FUNCTION C~RDc

E i'i V I P 0 N '~ ::: ~. T D : V I S I N ~

CONFlGU~ATION S~CliON~

SCURU~-C o·.i~!JT roe" I 'J \!-3 5 J -F7").,

C3.J::: CT- C :,;,>;:>UT C: r:;o I L"'~·1-3 (, j -F7''3 •

!NPUT-OUTFU7 SECTION~

F I LE-CO:--.JT~'DL ~
SEL":::CT CARC:-FI!.._f: ASSIGI\l TC 1JR-25t.:.r1R-S-CA'<DS.,
SFL-::Cl PU:\.iCH-F- I LE ASSIGN TO U'-:-2S4:JD-S-SYSF•UI'lC~.,.

S~L~CT P~lNT-F!LE ~3SIGN TO UR-1401-S-PRI~TSo

SEL~CT CCJ\J:;.S -F0 IU::-DIPcC:TC>~y -~SSIG"l TO UT-?314-S-CFD"'
S~L=CT STU0r~T-FIL

ACCF :;~, IS ~~t,'.Ji)\'J.'.I

~S~!G~ TO DA-2314-R-Sr

:n,';P!r'L rZEY IS STU•)-f<EY·:

S~Li:-.CT STUO- C~K-FILE t,SSIGN T~ P.~-231'~-c:·-S'.'iF

ACCf-:SS IS c.~~·JC:CJ~·!

ND~IN~L ~EY 15 WURK-K~Y~

A5SIG~ Tn .QA-2~14-R-SR~
t~rr-o-c
.... ·-- ~->,.!

r-.; J • 1 I !',;:. L K C Y I S C 0 U ~ 3 E..: ,.(C V :

D ~ r A D I V I :: I CF,J o

f'ILE S::CTIOi'L,
FD C.t,•~D-FILE

f<:':CJf>:) I NG '·!DDi." IS >=

:~ 1

206

;-; t· ~ r l :.: l . (: ;~' N T .\ J I ':'. 1-; C >' :._ ·'. .: T C: ~~ ~'·

L•\ {r.::L PF CC';..;!} I c:, 0 ·'! T f•

F:) P < 1 ·4 T- F' I LE

~~C~PDING ~ODE IS
L,> 3:'-:::L t-~C:COPD I '3 Cl" i Tr-·,,

P~C~~L CONTAI~S 1 3 C~ARACTE~S

)/-.T~. i~ECUPD TS LI·JC-FU~''·1AT~

':-1 L!'.~-"-[lf-:,'.1/.•.T)

•.'~ ;::-ILLE'< PIC"U~~::: X(lJ:i)o

R c C l' ;-~ 0 C G ~JT ::.. I r· • •:;; 6 :~ C H.'\ .:;~ A C T 17. P. S

LAREL ~ccso0 IS OMITTEO

02 FILLE~ U!CTUPE X{9~)~

F:J STIJD:O:',T-=-!L:C::
R~CORDI~G ~GD~ IS F
RECCJPC CCn'~T::.:;'-~S 3~~ CH~:,:>l\CTERS

LZ'"'~'3~:L ;::.:=c(-~:_1 15 STA;·~:.;"qi.~~t>

i) t\ T :1, ,.:.· CC' q C 1 S S TlD r_:: :-..: T- .:~CC'-'

C STU'):'::t"-:T->::EC:·

02
::; .'2

S T U D i:: f·H- ;; 2' ~· T P I C T tJ f.; X X X J

S Tt n ::;- ~; T - :'H' P I C T 'J r:;· ,: SI (G 6 } "

02 STUnc::•.:T-~.J:.·:':_ PICHP{=' X(?C >~

') 2 s Tu 0 - N T- D r:.. (,;.; F.. c p l c Tu:·~ [X (('; 4) c

G2 STUO~~T-~EVfL orcru~c:: xx~

C2 STUD~~T-S~X PICTURE X0
02 STUG;~T-STFELT P!CTUqE X(l7)D

0 2 STUD= "' T ,:, ~:· T P I C TU t') F X X X X ;;
02 STUD~~T-Tu~~ PICTUR~ X(16)c
C2 STUD~~T-T~~EPHDNE PICTUQ~ X(07)o

L/J.SCL r.:::Cct."'·.) IS ST~!'\JDI\ U

OAT~ ~EC P~ IS ST-WORK-PCC~
:~ 1 5 T - ; C;l- K - :.:.: f' C ~

02 LI~K-1 PICTUP 99q0n
;;~ LPJK-;' PICTU'-<:: i9·)c;,

: 1 2 YE- A<~~-G-! ~~ PI CTU~~:)9"

02 TfR~~G-1~ P!CTU~~ x,
~2 GPADC-G-IN PICTUG~ Xc
I~-::: ~.j_.\ q K-G- IN p I c T 'J:~ f 'o~9 ~

,_-,;,;_ Ll NK->3 PICTUR;,: ?~9·?.,

G2 LHlK 4 PICTU,-',)f:: ·1<;;~;.)

Fd Ct1 tnSt::-FILf-Dii-t:ClJ~Y

ot•:CdRDING ;'•'O:')f. IS r

0

207

>-'cC•J'-'f' CfJI'.!TAJi·:::; ;~/~·:~) C<~~.:.<.(E.: ·:;

L A f) >:: L P ::: C L H) I S S T A 'li ·y " ; D
IJ.\T-'1. rt::r.rl!~!) !~, cnu ... :;::-::: t•- ::-~)I ~-::er,

.; 1 er) IF~ ,_;,~- F 1 L c- ·~· I :---' ~ c r 0

7 :!: F I L L t- P '' I C T lJ ~ . X (:£.:;. ·~) }
rD CUtmSf:-FILF

;;: __ CHUI NG ""'DDC. 1 '3 -
~~CS~~ CONTAINS 3 7 CH~~ACT~RS

L~~~L RECOh0 IS ST~~CA~D
•).:,. T.:.. hECtJr-'1) 1 s cn~J:::: st.:-·~~c o

0~ (CURSE-AS~~ ~TCTUR_ 9S99a
C2 CCURSL-CO~= PICTUR~ XXXm
:2 csuqsE-C00_-s~~ PICTu~~ xxxx~

C2 C~U~SC-0_~ orcTU~E X(25}c
G2 CCUQSE-C 0 E~IT5 PICTU~~ 9~

~ORKING-5TQ~AG? s-CTION,
7 7 S T D I C T U;::; :C :H ,-:, ~ V.'\ L U E 1 a

77 CT PlCTUQE 9 V~LUE 1n
77 ~0R~-~EY FICTUCE 5q(5) CO~P SY~C 8

77 STU0-~EY ~ICTU~~ 59(~} COWP SYNCo
77 C·~U;;>;;:::-~< V PTC•ur:• '59(-'{) CCt..q? SYI';C~

C 1 <: "\ ~.> D - :_, =: C S :.

(·2 $:7."·l L PICTlJ!-<E X:1
) 2 !/2.: C :< P I C TU;-):-: o1 :Cl,,

C2 Sr-A-~) PICT'JC::r Xo

~ILLE~ PICTUP_ ((74) 0

('1 AL~>-!4-Ri::C :;,::oc:=Ir·!F-5 C:!I.R!)-.:'2CS~

C2 y;~-~-~C:Cl P r C'U'H:: XX..:

02 FILLE~ PICTU~E X(7~)e

01 01-':C<.-Fr•c:';J~

•:2 F!LLEP PI CT!J;.~;:: XXX VALUE SDAC S()

C2
S2

D~C~-~J-!~ P!CTUC2 9{06)?
FILLEP PICTURE X V~LU: SP~CESa
i)fCK-~~_6,1':_:-!N ;::>ICTLJ;.:;E, X(20)"

FILL:::~' :J I CTU.~>=: XXX VALUC SDACC:So

J~CK-C00 -1 crcruq~ xxx~

CbCK CC~ -2 PICTUR=- XXX~

~ILL=-~ PtCTUDE X VALU~
L)l CFd-F-!LL;;

02 C~SE-DI~ CT QCCURS 2~; TI0~s~

C~ CRS~-C PICTU;-)E 0(C0)a
·.:3 H::JX-::l orcr;JP.C 9(.:.6)o

Fli.U:::P PICT ,__- X(lC) V,\LU SPAC::::S"

':~ 2 ;= I L L f: P P I C TU~::::: \ V;\ L lJ r:: t - • ._

C? GlUi=-ZSf---CtJL.::--s..::•.l-1''' PTCTU;:::o:: XXXX-,
~. FILLEP PIClURE X(~~~ V~LU

CC U R S C- I :'\1 P I C T • J .:{ f: X { 2 ::, J o

http:rt::r.rl

(

Qr

c 1

208

t: 2 C~'~LJ~SE~_-c;~L-C·Il:)~ I~ .. ,.J!CTu-=--:::.
~' :;> F I L L F r;; P 1 C T U q C X. X ~ ~• '; -~ c_ ,J -

• •. c. v, id<-1-''C.Q;)-11'-1 ,-,ICTU '- ,,,.,

.~TUO-f- Uf~''l'-'

FILLt:l: DICTUf">

DCPT-lN t>l CTLP

Nn-IN piCTUPF !((~):

r:ILL::'R :-'lCTur:<_ x v:,Lu_ 5°\Cc:s~

'J;,,'.lt~-IN P!CTU=:::: X{:?C),
r.,. I L L E: '-? P I C ; U ~: ;< (r: -" } ' V A L U .S ;::, A C ::: S ,

02 s~ADf-I~ P!cru~~ x~

·' ? F I L L r.: G ;:> I c Tu;:: X V;\ L I J F: spA c ';" "= "
C2 ~~?K-I~ PICTU~~ 99~

02 FILLE~ PICTUR~ XXX VALUE SDAC~S~

~2 S~ -I~ ?[CTU~C ~~

;=:<::JCEDU? ~ 0 I V I::; I :J" ~

s;ARTS,

0~-~ INPUT CAPD-FILE OUTPUT PUNCH-~ILEo
·:.: ': ·~D-C <\ R :J S ~

R~A~ CARO-~!Lc INTO C~PD-~ECS ftT E~O G~ TC CLns~-ITa

IF CGL-.:;:• IS 'dT f.::,)UAL
T') 1 : .. , !0

C<_:JSE-ITc:

C Ul S:: C -" ,: C:- 1- I L "
N J-l1 (:<'1.);?::_:--FILC:: STIJi)-\QP-(-FJLE STU:)~:tH-FILC: INPUT

CCU ~,::;;;:-F I L '7 -•) I ~;:eT :J•l Y CJUTFUT ::q IN T- I L ~=;:,
R::::.Ao-s.::-L)a

RE:f.\D CUU'<Si::-f'ILf:-Ol·<,:::CT'l~~y Il\;TQ CF)-FfLL AT Er--H) GC TO

CLCJSE-SF~

CL USE-SF~

CL~SE COU~SC-~IL~-~IPEC~n~y.

S T .L\ ''< T- :::::>,..: :J C [SS :)
DJSPL~Y 1 CK- l'a
IF U,;CX-0 {STl IS EOUAL TC zc:r::cs G~1 TO ;1°AP-U 0 ~

IF CRS": D (57) IS i:<)llf\L TC Z<7::>CS GD TO 't;(:!'\iJ-UDc r-.OVE
I~-J!)X-~ {ST) TU COURSE-'<t:Y-: PC:::l.') C'lUi~SE-"'ILE I!'iVi\LID KCY

DI5sLaY 'C~2CK STA~T-P~OCFSS• GC TO WRA 0-U 0 ~ IF C~URS~-ADD~
I S OL' ;.. L T C: l C: ~>J S ~) D 1 T 0 S T G C T :J S T A R T - ;:n;; 0 C ::: 5 S " ! F

y:_:. f:.'f'u IS ::::ou;L Ll •r-.JJ' G~ T'::' W.lVC-CPSf:'-.4DDc;~ "-1CVE
G;U"{St. C~;D~ :r: COLHSE--C'JOE-ii'' .·'OV'-c COU~Sf:-C!JI)c-S[lll TO

C~UPSE-CG0C-S ~-IN MCV~ CCURSC-DES TO COUPSE-I~ ~CV

CHIRSi::-c;:.:r:DITS I:') (lJIJ:<S''"-CR!':)!T::;-IN, \~-:>ITL' LT'Ji:.-FC~I-it.T "'"f:<C~~

A;) f) C.:- f: 0 u V AFT Cf.' P CJ 3 I T I r: "'l r 1'-, G (~

.~1: fJ Vf: C r:. S :::-A :.:; .. J :~. r:

~GVE COU~5~-~0~~ T~ wn~K-K~Y.

D l ') P LA Y ' U 1". - 2 1
0

R'::.\D STU0-\vf"H<K-FIL"=' I:,NALI':'i KC::Y Di:S=>LAY 1 C'ii::Cr~ S':·F ! ' () c
T:) tr.;:,~.P-UPc 't\UVE L I 'lK-1 T•:; ST!JO-I<~Y-~ q .·V' :O:TU:::'-JT-F IL:::

! :><V A L I D K t Y D I ·-; r-: L ,\ Y ' (!-F C K S ,:: - 1 • G 0 T l1 1, !~ '' :::> - U .::l

(

(

209

t) r ::; -' L .\ v • c ~<. - 3 ' ~

1 F Y J-.:- r~ ::=~ u r s ~, u; _) ; i''-- T

,'.11;_; VF::- I .'J F ;_i,·,

0ISPL~Y 'OK - 5'o
•'-'C1V::;. STUfH:JH-r.:::.~1 T ""J ()~7T-lr'' '•'lVi:' STUDE:NT-i'!iJ TG t-;()-!1'! ~·OV::'

s-:-:Jt)E'~·;T-NAiV't::' T.:' •-;:. ·..:::-!\: ·'•C'JE r_,~t\0':-::-.>-IN TO GPADE-IN :V10Vf':

~\~<-G-IN TG ~A~K-[' ~~V~ T~RV-G IN T~ S~M-IN~
IF CT I~:; EOUU.L T'. '':J.:'lTE LPli:-FDI~·-1 ,'\T ..
F:;1'' ~TUD-Fuc,r.• AFT=~ D!SIT!C.''-Jl'~G 3 .\Dll 1 TO CT t.L.S;:

h'-'IT:": L!t-.:C-t=t.''-'·'"'-T r~C~ STU;)-f:.:::>fv' AFTE'~ PI)SITI•J"'lNG lo

CHt:CK-.):::_(c:;.,

IF n::::c< IS JUfL T') ZEQOS GO TC CHFCK-LINK-2c IF DECK IS NOT
Ed AL r:::; YF::>. -G-I:·J GC Tt) Crl::::CK-LP+<-2.., IF TEPM-G-fN IS NOT

t':OU,~L TO s;;,:::;-0 Gn T·J Cli:::Cl<-L!!';'<-2?> MCJVE TER",.t-G-IN TO

STUDE"iT-'-i.~'.~f: T!J G~C:K-N\'1.':".-IN ~-'OVC COUPSE-COO~"'~ TQ OECK-CODE-1
'IYJ::. CJU,:S::;:-ccc;;:::-s::::_\1 TJ Oi::CK-C::J!)c-2 ·-~RIT[PUNCH-FO::::'V!AT

Cfi;:;:.C K-L I ~''<·'- 2 o

If-" L.P.:K-2 I5 ::;,::U!'.i_ TC z::::~<i'S lJJ8 1 TO ST 1"0VE r TC CT GO Tf~

ST~PT-P OC~SSc ~nv~ L[~K-2 TO ~C~K-K:::Y GO TO ~~VF-IT&
C!-iECK- Y.::: ~i:'..,

IF YEA~-G~OD IS NOT E~U~L TO Y~tR-G-[N GO TO CHECK-DECKc
IF' TEF--1--:-~-u~ IS Euu:\L ro s~:·:-L GC'• To MtWf-INFo.,

ADDRESS CHANGES

Q
\

IDENTIFICATION DIVISION.
PROGRAM-ID~ ADDRCHNGc

211

AUTHORo GOVIND K R I P L A N Io
REMARKS•
ENVIRONMENT DIVISION0
CONFIGURATION SECTIONo
SOURCE-COMPUTER~ IBM-360-F75$
OSJECT-COMPUTERo IBM-360-F75o
INPUT-OUTPUT SECTION~
FILE-CONTROL~

SELECT STUD-FILE-DIRECTORY ASSIGN TO UT-2314-S-SFD~
SELECT CARD-FILE ASSIGN TO UR-2540R-S-CARDS&
SELECT STUDENT-FILE ASSIGN TO DA-2314-R-SF
ACCESS IS PANOOM

NOMINAL KEY IS STUD-KEYo
DATA DIV!SIO~.J"

FILE SECTION,.
FD STUD-FILE-DIRECTORY

RECORDING MODE IS F
RECORD CONTAINS 2400 CHARACTERS
LABEL RECORD IS STANDARD
DATA RECORD IS STUD-FILE-DIRECTc

01 STUO-F!LE-DIRECTa
02 FILLER PICTUR2 X(2400)~

FO CARD-FILE
RECORDING MODE IS F
RECORD CONTAINS 80 CHARACTERS
LA3EL RECORD IS OMITTED
DATA RECORD IS CARD-REC~

01 CA~ D-R EC,
02 STUD-NO-C PICTURE 9(06)6
02 STUD-INFO-C PICTURE X(7l)o
02 FILLE~ PICTURE XX,
02 COL-80 PICTURE Xo

FD STUDENT-FILE
RECORDING ~ODE IS F
RECORD CONTAINS 84 CHARACTERS
LA8EL RECORD IS STANDARD
DATA RECORD IS STUDENT-REC.

01 STUDENT -REC-,
02 FILLER PICTURE X(84}?

WORKING-STORAGE SECTION?
77 STUD-KEY PICTURE S9{8) CO~P SYNC~
01 STUD-RE C.,

02 FILLER PICTURE XXX-
02 · STUDENT-NO PICTURE 9(061.
02 STUDENT-INFO PICTURE X(71)o
02 STUDENT-LINK PICTURE Q(04)~

01 SFD-F ILL<)
02 STUD-DIRECT OCCURS 200 TIMES INDEXED BY IN2.

c

(
'·

212

03 STUD-NO-D PICTURE 9{06)•
~3 STUO-INDX-D PICTURE 9(06)~

PROCEDURE DIVISIONe
OPEN-SFO,

OPEN INPUT STUD-FILE-OIRECTORYu
P READ-SFD::.

READ STUD-FILE-DI~cCTORY INTO SFD-FlLL AT END GO TO
CLOSE-SFDo

CLCSE:-SFD-
CLDSE STUD-FILE-DIRECTORY~ OPEN INPUT CARD-FILE I-0
STUDENT-FILE~

P..E.!\0-CF *>

READ CARD-FILE AT END GO TO WRAP-UP~ IF COL-80 IS NOT EQUAL
TO •er DISPLAY *WRONG CARD' GO TO READ-CF,

SEARCH-STUDo
SET I ~-l2 TO l c

SEARCH STUD-DIRECT AT END DISPLAY 'STUDENT NOT FOUND 1 GO
TO ;YP.AP-UP ~YHEN STUD-NO-C = STUD-NO-D (IN2) NEXT SENTENCE•

MOVE-INFO:
MOVE STUD-INDX-D (IN2) TO STUD-KEYe READ STUDENT-FILE INTO
STUD-REC INVALID KEY DISPLAY 'CHECK MOVE-INFO' GO TO WRAP-UP.
OISDLAY STUD-REC • OLD RECOR0 1 ~

MOVE OOOOC5 TO STUDENT-NO MOVE OOCl TO STUDENT-LINK,
MOVE STU0-iNFO-C TO STUOENT-INFOc REWRITE STUDENT-REC FROM
STVD-R~C INV~LID KEY DISPLAY 'CHECK MOVE-INFO- 2 1 GO TO
WRll.P-UPo

DISPLAY STUD-REC ' CHANGED RECORD'o
GO TO READ-CFo

WRAP-UP,,

CLOSE CARD-FILE STUDENT-FILEo STOP RUNo

213 APPENDIX - C

PROGRAM FUNCTIONS

CREATE COURSE-FILE M~D ITS DIRECTORY
(CR.CRSE.FILE)

Function: The program creates the Course-file and its

directory on a Disk. The file contains the

courses offered by the department/school.

Input: Card type 01.

Output: 1. Course-file.

2. Course-file-directory.

0

214

UPDATE COURS3-?IL3 ~~D ITS DIRECTORY
(UP.CRSE.FILE)

Function: The program adds new courses to the Course-file.

The courses a~e added if the department decides

to offer more courses after the initial set-up

of the Course-file.

Input: Card type 01.

Output: 1. Updated Course-file.

2. Updated Course-file-directory.

215

0 CREATE PERFOR:•lP1iCE-FILE (CR. PERF. FILE)

:Q

~~nction: The program creates the Performance-file

Input:

with du~my records. The program is run

after the Course-file is created. The

Performance-file is used to store the students 1

performance in each class. One record per

course is used.

Card type F1.

Output: Pe~formance-file with dummy records.

eO

Function:

Input:

Output:

216

CREATE STUD"SNT-F·ILE, ITS DIRECTORY AND LINK
WITH PERFORl~IAl:C:S-FILE AND COURSE-FILE
{CR.STUD.LH;K)

The program creates the Student-file with

students' informa~ion and links the records

of this file with the connecting records in

the Performance-file and the Course-file,

created by previous programs.

Card type 02 and 03.

1. Student-file.

2. student-file-directory.

3. Pointers stored in the three files to

link the connecting records.

'0

Function:

Input:

~17

UPDATE STUDENT-FILE, PERFORl'v:iANCE-FILE AND
COURSE-FILE (UP.THRE.FILE)

The program updates the three files by

adding and deleting the courses due to course

cha~ges made by the students.

Card type 03 and 04.

Output: Updated Student-file,
Performance-file and
Course-file.

218

INSERT MARKS F5D/OR GRADES (INS.MARK.GRADE)

Function: The program updates the Performance-file

by adding the marks or adding and grading

Input:

the students according to the option selected.

The grading-scale is provided by the function

card.

Card type P6 and F2.

Output: Updated Perform~~ce-file.

219

PRINT G~ADE R:S:FCRTS (PR.GR.REP)

Function: The program uses the database to print the

Grade Reports. The Grade Reports can be

printed out for one or both the semesters.

The Function card indicates the option

selected.

Input: Card type F3.

Output: Grade Reports.

Function:

Input:

220

PRINT CLASS LISTS (PR.CL.CD)

The program prints the class lists or punches

cards for the students one per course. The

option selected is indicated on the Function

c The cards are meant for marking grades

by the Professors.

Card type F4.

Output: Class lists or Card type P6.

http:PR.CL.cn

