

STUDENT RECORD MANAGEMENT SYSTEM

Submitted to the Graduate School of Computer Science
in partial fulfillment of the requirements for the
degree of: :

MASTER OF COMPUTER SCIENCE

BY

GOVIND XRIPLANI
GRADUATE SCHOOL OF COMPUTER SC.
McGILL UNIVERSITY
MARCH 1975

ADVISER: PROF. T. H. MERRETT

ABSTRACT

The Student Record Management System was
designed to create and maintain up-to-date students
records for the school year and to print current class
lists, stﬁdent schedules and grade reports.

The database designed for the sjstem corresponds
to the proposals of the Data Base Task Group of CODASYL.
This has been shown by describing the database of
the system in terms of Schema and Sub-Schema using
Data Description Language and Data Manipulation Language.

The various functions of the system has been
cost analysed. For comparing the cost of this system,
another system using different approach has been
designed; costed and compared. vThe result of the cost
analysis of the two systems indicate that the maintenance
of the multi-linked list structured database, such as
this system, is much more expensive,

The system has been tested, but it has not been
implemented in any school for thorough testing with

real data.

ii

ACEKENOWLEDGEMENT

I would like to express my indebtedness to
Professor T, H. Merrett, under whose supervision this
system was designed, for his guidance and suggestions
during all phases of the system.

For the purpose of costing the system, I have
used Professor Merrett's unpublished paper on “"Cost

Analysis Techniques".

Govind Kriplani

i1

TABLE OF CONTENTS

1. INTRODUCTION

IMPLEMENTATION OF SRMS = P AR T - I

1.1 USING THE SYSTEM

1.1.1 General

1.1.2 Usage Details

1.1.2.1 Create Course-~file

1.1.2.2 Update Course-file

1.1.2.% Create Performance-file

1.1.2.4 Create Student-file, store info in

Performance~file and link with the
Course~file.

1.1.2.5 Update Student courses

1.1.2.6 Insert Marks or Marks & Grades

1.1.2.7 Print Grade Reports

1.17.2.8 = Print Class Lists and/or Deck for -
Grades.

1.1.2.9 Update address changes

1.1.3 System Messages to User

1.2 ECORD LAYOUTS AND DESCRIPTIONS

1.2.1 Introduction

1.2.2 Systems flowcharts

1.2.3 Considerations for file organization
on DASD

1.2.4 Record layouts

1.3 PROGRAMS AND DESCRIPTIONS

1301 Introduction

1.3.2 Program Logic and flowcharts

1.3.3 J.C.L. Procedures

PAGE

N — e ot ot
QN0 N

40
42
65

TABLE OF CONTENTS

ANATYSIS AND COMPARISON WITH
ALTERNATIVE SYSTEMS - PART - I1

DATA BASE TASK GROUP
Introduction
Principles of DBTG
Data Structures

IMPLEMENTATION OF SRMS IN DBTG

SRMS's Database

Schema

Sub-~Schena

Programs and flowcharts
Conclusion

-COST ANALYSIS TECHNIQUES

Introduction

Definitions

Access Cost

Storage Cost

Analysis of sorting

SRMS Databank Description
I/0 Operations

Cost of operations using dlfferent
access methods.

Cost of operations using DAM
Cost of operations using SAM
Conclusion

COMPARISON WITH ALTERNATIVE SYSTEMS

McGill University System
CASSARMS
Conclusion

APPENDIX - A SORTING SEARCHING TECHNIQUES
APPENDIX ~ B PROGRAM LISTINGS
.Create Course-Ffile
.Update Course-file
.Create Performance-~file
.Create Student-file and link
with Course-~file and
Performance~file
.Update Student-file, Course-file
and Performance-~file
.Insert Grades
.Grade Reports
.Class Lists
.Address Changes
APFENDIX - C PROGRAM FUNCTIONS

o o o
WM -

* . L L] L]

* o e 9 .

L] L 4 - [] *

[\ J5 L N G §
[2 L] L]
WM —

e o o ¢ o o e o .
¢ o o ® o o @ o

« o o

. s o
.
N —

*

L 4 »

PP WL WD RWDID W ROROMNMNRN N e

L]

. .
NN

PAGE

182

193
199
204
210
213

1. INTRODUCTION

Iﬁ any educational environment the number of
students keeps on changing. The students normally register
for a year, but some leave before completing a semester
or completing the full yesar. The number of courses taken
by students also varies. The Professors report to the
administration the performance of students in different
courses.,

In this complex environment the administration has
the task of maintaining and putting together all the
information required to inform the students of their perfor-
mance during the semester or the period of treir stay in
the school. This task has been very time consuming for
- Professors and school administration. Moreover, it has
been found thet due to using manual system throughout
there has been many errors in all areas. It has been
realized that the computers must be used to minimize the
errors and reduce the burden on the professors and adminis-
tration.

The Student Record Management System has been
designed to aid educational institutions in maintaining
up~-to-date student records for the current school year.

The system will be able tc add or delete courses due to
crurse changes made by the students after the initial

registration. It will also produce reguired reports such

4

as class lists, transcripts, and current schedules of the
students. The system will not schedule the students in
classes,_but will print out their schedules.

The system uses nine computer programs to maintain
the records and print out the reports. The information
such as student number, name, address, telephone number,
sex, degfee, courses taken, performance in each course,
is maintained on-line for easy access.

The section "Using the System" is written from the
user's point of view and describes when to use the
different programs. The section also_contéins the function
of each program and the necessary input required.

The record layouts and description of the files
are detailed in section "Record Layouts and Descriptions',
In case more reports are reguired special programs can
be written. This section may also be used to find out where
the information required is located. The system flowchart
shows the different programs and how the databank is
maintained in the system.

With the intention of making the mainte-nance of
the programs easy the general flowcharts and the logic
of each program is also included.

The proposals of the Data Base Task Group is
discussed in depth. The DE7G introduced several conceptis,

such as, Schema and Sub-Schema, A Schema consists of

4.

Data Description Language entries and is a complete

description of a database. A Sub-Schema alsc consists

http:mainte-na.'1.ce

of daté description languare entries. 1t, however, need
not describe the entire database but only those areas,
sets, records and data items, which are known to one or
more specific programs.

The databaée of the Student Record Management
System has been compared with the proposals of the DBTG.
It also describes the datatase of the SRMS using Data
Description Lanaguage and the Data Manipulation Lanaguage.
However, the programs have not been run on any DETG Compiler.

Section "Cost Analysis Techniques" is devoted to
analysing the costs of computer operations using SRMS.

The cost associated with SEMS is primarily the cost of
peripheral device access and peripheral device storage.
However, before analyzing the cost of any particular
system, such as this, techﬁiques of analyzing the cost

of any system have to be developed. Since the databank
of this system is organized on DASD using Relative Access
Method, another system was also designed to use Sequential
Access liethod, cost analyzed and compared. The cost of
the above two systems is alsc compared with the cost of

a system using tapes instead of DASD.

The last part of the manual discusses a couple of
existing Student Record Manasgement Systems. The result
shows that the goal of a’l the SRMSs is the same, maintain-
ing up-to-date student records, even though methods,

techniques and data structures may vary.

P A R T - I

IMPLEMENTATION OF SRMS

©

©

1.1 USING THE SYSTEM

1.1.1 GENERAL

The Student Record Management System is designed
to maintain up-to-date records of the students by adding
and/or deleting the courses and printing out certain
reports.

The system has nine programs to perform various
functions, such as creating Course-file, updating Course~
file, crezting files with students' information and
courses taken, printing clasé lists, updating the files
to effect the course changes made by the students,
address changes, inserting grades in the files, and
finally printing grade reports.

The programs are written in ANS Cobol and can be
used on any computer having ANS Cobol Compiler simply
by writing Job Control Statements of that particular
computer.

The Section "Schedule of Events" describes the
the order in which the programs are normally used.
However, the order may be changed to meet the requirements

of a particular institution.

SCHEDULE OF EVENTS

Every year new files are created for all the
students and maintained on a Direct Access Device. At
the end of the school year the files are transferred to
a tape.

' BEFORE REGISTRATION

At this time the Departmént decides the courses
they are going to offer during the school year. These
courses are pﬁnched according to the layout of card type
01. By using the program "CR.CRSE.FILE" with the data
cards the system will Set up a file on Disk containing
the courses offered by the Department.

However, if the Department decides to add some
more courses to the above file later during the school
year, they could do so by using the program "UP.CRSE.FILE"
with the data punched as described above.

These cards do not have to be in any particular
order for creating the initial course file or adding the
courses. The programs sort the cards in the required

order.

Also at this time, use the program "CR.PERF.FILE"
which creates the Performance-file with dummy records.
This file is used later after the registration. The
program expects a function card which tells the computer
the number of dummy records needed in the Performance-file.

The function card required is card type Fi.

DURING REGISTRATION

At this point the system needs information about
the students for two files. One file needs their student-
number, student-name, address, sex, degree, level, telephone
number, etc. according to the layout of card type 02, |
and the second file needs information indicating the
courses taken by the students. The information is punched

according to the card type 03.
ON COMPLETION OF REGISTRATION

When the registration is completed the system
expects card types 02 and 03 for the program "CR.STUD.LINK",
This information is linked up by the computer with the
third file containing courses created before registration.
Card types 02 and O3 do not have to be in any particular
order. The system sorts the cards and link the three

files together.
DURING COURSE CHANGES

Normally, after attending some classes students
like to change some courses. To make course changes the
system expects one card for each course added or dropped.
For the "drop course'" the information should be punched
according to the card type 04, and the "add course”

according to the card type 05,

10

ON COMPLETION OF COURSE CEZEANGES

The schools normally have a fixed date after which
no course changes are allowed. Till this date the above
two card types, 04 and 05 are collected. After the last
date for making changes has expired these cards are used
with the program "UP.THRE.FILE" to make the desired

additions and deletions in their schedules.
BEFORE GRADING

The system has a program to punch out cards for
the courses the students are taking, i.e. one card per
course. The cards will be punched out sorted in the
order of course code, so that the cards can be handed
out to the professors for grading without rearranging.
Fach card contains student number, student name, course
code, semester and a character "M" to indicate the marking
card. These cards are type 06 and used by the professors
for placing the marks earned by the students on their
cards. The marks are then punched on the same pre-punched

cards,
DURING GRADING

The above cards type 06 are marked by the professors
for entering in the system, If a professor wants to enter
test marks only, which weighs 25% of the course and has

been marked out of 100, he needs to write the weight of

the test, i.e. 25 and the marks obtained by the student.

11

The system can also grade students according to the marks
earned by them till then. The program expects a function
card - card type F2 which tells the system to add the
marks only or add and grade them according to the grading
scale provided on the function card.
END OF THE SEMESTER

The files are now up-to-date and contain all the.
information about the students for the whole semester.
They are ready to be used for different kind of reports.
The system can print out the following reports.

1. The grade reports for the semester or for the
whole year at the end of the second semester. The program
expects a Function Card - card type F% which tells the

system the option chosen for printing out grade reports.

2. The class lists can be printed out. In this

‘case also the system provides options to print out class

lists for the first semester students or all the students
who took this course during the first and the second

semester. The option must be specified on the function

card -~ card type F4.

SUMIARY

The system is quite simple and straight Iorward.
It sets up files for the students' information to be
used during and at the end of the semester. Normally,
2ll the schools have the reguirement of maintaining the

students' up~-to-date records and printing out certain

12

reports, such as grade reports and class lists which is
fulfilled by this system. The grade report program can
also be used to get the current schedules of the students
during any time of the school year. It will look like
grade reports but without grades. It indicates the
courses a student is taking.

Similarly class lists can be used for several
purposes. It could be printed out after registration for
the professors to see who and how many students are in
their classes. It can also be printed out at the end of
the semester for the professors to vérify the grades.

The section "Usage Details" contains the layout
of all the cards required for the system. The programs

are also described in this section.

RN St e e -

{ BEFOL:
.ﬁ j\i TR '
cPUNCH
CouRses-
offFerEp gy &5 L
SCiiaok
L
(Jjguﬁﬂl(w) .
E{;&K}ité‘l&#xvn g C—QEA c !’
e |
Astudents info tCDUQ £~
~"land thetr . Fiun e ?
COURSES i
L |
L |
. 7 N\
STudEnTs
ADDRESSES
AND THEID -
Counrseg
(C
) T 1
COuRSE i J1s classoLisrs |
CHANGE CARDS SR §

Pe

R

R |
JCoOUuRse {
CHAvgEs

i
:

T
5

v
CrinT B

PR

Letpssopsrs o
$2.5UDERT i
o Senspunss. i

13

http:HIo.I-.j4

{n
(3]
€y
(O
v
¢
e
¢
wrk
Cis
w

-~
EORCE 2D S
CouRaEs Axd

SMew stTudsMpb
tNFO :\r"; THG\{L ._J
<f)‘si

QI Np SEM
COURSES

AnDd oW

SIUbDE MYS 14D

AnD THERUR
COARLE S,

A |

i

‘ T PRinT i
PuNCl ! —
CoursE N cv:\?.s.lusrs ;
H . [Y

Q\’\P\H e S
N
CRINT
=t
ilLerass-LiseTs ’
%z‘g(ulkh—|
EoSeuedulEi.
¢ e
~ ,...,»-/ /).—’”’—‘
. }
L I
" CARDS P
FoR GrapES ! LI
td

.

14

-

15

1.1.2 USAGE DETAILS

The table below shows the programs to be used to
perform the different functions. The programs have been
tested on MceGill's IBM 360/75 OS Computer. The JCLs for
the programs are written as seperate procedures. To
execute any program on the above computer only few cards

are required which are described under each program

seperately.
SQHEDULE OF EVENTS PROGRAM Pﬁ:g‘E
BEFORE REG\S TRATION CR.CRsE.FILE
UP.Crse-FILE
cr. PERE. FILE

On COMPLETION OF REGIS TRATIN CR.STUD.LIMK

011 COMP LE TIort OF COURSE (1P T HRE. CILE

CHANGES

RBEFORE GRADING ‘ RR.CL.CH
DURING GRADING INS - MIARK.GRAD
CND OF THE SEMESTER PR.GR.REP

PR.CL.CD

16

‘:> ' 1.1.2.1 CREATE COURSE-FILE (CR.CRSE.FILE)

This is the program used by the administration
to create the Course-file.

‘Once the department has decided to teach certain
courses during the current year they can be punched

according to the following format.

CARD TYPE 01

Cols. Contents Bytes
4-9 Course-Code ‘ 6
10 Semester ' 1
11-35 Course Description 25
36 Credits 1
C 80 s 1

These are the courses offered by the department
from which the students make selection for their schedule.

To create the Course-~file the following cards are required.

//JOB
// EXEC CRCRSEFL
//CCP.CARDS DD *,DCB=BLKSIZE=80

L;QRDTYPE oL

/*

17

1.1.2.2 UPDATE COURSE-FILE (UP.CRSE.FILE)

This program is used to add more courses to the
Course~file,

In case, after the initial set-up of the.Cou:se—
filé, the department decides to offer some more courses
this program can be used with the cards punched according

to the following format.

CARD TYPE 01

Cols. Contents _ Bytes

4-9 Course~-Code 6
10 Semester 1
11-35 ' Course Description 25
36 Credits : -1
80 st | 1

The program "UP.CRSE.FILE" is used for adding
the courses to the original Course-file. To execute

the program the following cards are required.

//JOB .
// EXEC UPCRSEFL
//UCR®.CARDS DD *,DCB=BLKSIZE=80

_CARB TNPE OL

/*

1.1.2.3 CREATE PERFORMANCE-FILE (CR.PERF.FILE)

This program creates the Performance-file with
vthe dummy records.

The Performance-file is used by the program
'CR.STUD.LINK" to store a part of the student information.
The program expects the function card - card type F1
which tells the system the number of dummy records

required in the Performance-file.

CARD TYPE F1

Cols. Contents ' Bytes
1-6 No. of dummy records 6

80 YAY 1

The number of dummy records for the first
semester is equal to the number of students times courses
allowed to take per student. For the second semester
the number of dummy records is equal to the number of
students times the courses zllowed to take per student
plus the number of courses a student was allowed to take
during the first semester.

The Performance-file with the dummy records is
created every year before the first semester and before
the second semester starts the first semester's Performance-
file is transferred to the new Performance-file. The
idea behind this is not to block extra space on the ﬁisk.

For example, during the first semester a student will have

http:CR.STUD.LI.NK

19

only five courses in the file and second semester ten,
so why create a Performance-file with ten dummy records
when only five will be used.

IBM Utility Program "IEHCOPY" can be used to transfer
the first‘semester‘s Performance~file to the new Performance~
file.

To create the Performance-file for the first

semester the following cards are required. .

//JOB
// EXEC CRPERFF
//CRP.CARD DD *,DCB=BLKSIZE=80

EA:RD TYPE FL

/¥

o

20

1.1.2.4 CREATE STUDENT-FILE, STORE INFO IN PERFORIMANCE-
FILE AND LINK THEM WITH THE COURSE-FILE
(CR.STUD,LINK)
After the completion of the registration the card
types 02 and 03 are used with this program to store

students' information in the Student-file and Performance-

file, and link the two files with the Course-file.

CARD TYPE 02

Cols. Contents Bytes
1-3 Department 3
4-9 Student Number 6
10-29 Student Name 20
30-33 Degree 4
34 Level 1
35 Sex 1
36=-52 Number and Street 17
53-56 Apartment Number 4
57-T2 Town 16
T3%-79 Telephone Number T
80 'F! 1

CARD TYPE 03

4-9 Student Number 6
10-11 Current Year 2
12 Semester 1
16-21 Course Code | 6

80 'G v 1

21

The data cards do not have to be in any sorted
order. To execute the program the following cards are

required.

//JOB
// EXEC CRSTLINK
//CSL.CARDS DD *,DCB=BLKSIZE=80

o
CARD TNPE 02 J
AMD 03

/*

22

1.1.2.5 UPDATE STUDENT COURSES (UFP.THRE.FILE)

The program is used to update the files after thev
students have made changes in their courses.

The program expects only two type of cards, card
type 04 and 05 6ne for each deletion or addition of

courses.

CARD TYPE 04

Cols. Contents Bytes
4~9 Student Number 6
10-11 .Current Year 2
12 Semester 1
16-21 Course Code 6
80 TA! 1

CARD TYPE O5

4-9 Student Number 6
10-11 Current Year 2
12 Semester 1
16-21 Course Code 6
80 ' 1

The cards do not have to be in any sorted order.

To execute the program the following cards are reguired.

//JOB

// EXEC UPTHREFL

//UTF CARDS DD *,DCB=BLKSTZE=80
CARD TYPE Of
(Ann 05

/*

23

1.1.2.6 INSERT MARKS OR MARKS AND GRADES (INS.MARX.GRAD)

The program will add marks in the student records.
The marks and the percentage of the marks is punched on
the card type P6. The cards are pre-punched and needs
only two numbers to be punched.

It can also add marks and grade the students
according to the Grading-Scale specified on the Function
Card - card type F2. The Function Card also conteins

the length of the Grading-Scale.

CARD TYPE P6

Cols. Contents Bytes
1-3 : Percentage 3
44-46 Marks 3

If the marks for an assignment are being entered
and it weighs 33%% of the course marks, 33 is punched in
percentage field and the marks obtained in marks field.

It is assumed that marking is done on a scale of 100.

CARD TYPE F2

1-3 'YES' if grades to 3
be given
or
' NO' if grades not
to bhe given.

4-5 Marks obtained - 2
Grading Scale.

18-T79 Length of the above 2
Grzding Scale.

80 L - 1

G‘\

O

24

The following is an example of the Function Card

with the Grading Scale option.
- YES80A65B50C 3A

This means if a student earned 80 or over gets A,
65 or over gets B and so on. The number of the grades in
the above example is three and therefore 3 punched in |
columns 78-79, right adjusted. Column 80 contains "A"
to identify the Function Card. In the absence of the
Function Card a message will be printed out and the
program will stop execution,

To execute the program the following cards are

required.

//JOB o
// EXEC INSMRKGR
//INMG.CARDS DD *,DCB=BLKSIZE=80

2

l;ARD TVPE F&

/¥

25
1.1.2.7 PRINT GRADE RE®ORTS (PR.GR.REP)

The program prints the Grade Reports of the
students for the first semester and/or the second semester.
It expects a Function Card - card type F3 which
indicates the option chosen for printing the Grade Reports.
In the absence of the Function Card it will print out

a message and stop the execution.

CARD TYPE F3

Cols. v Contents Bytes

1-2 Year - for example 2
"7 2!!

3 Semester 1

80 . Coman) 1

The Function Card is the only data card with the
program which will produce the required Grade Reports.

To execute the program the following cards are required.

oy
@]
td

/ T
/ - EXEC PRGRREC
/PGR.CARDS DD *,DCB=BLKSIZE=80

NN
Hd
o5}
J

L;ARL‘TYPE F3

/*

26

1.1.2.8 PRINT CLASS LISTS AND/OR DECK FOR GRADES
(PR.CL.CD)

- The program will print out class lists and/or punch
cards - type P6. These cards are meant for the professors
to place marks on them. It expects the Function Card -

card type F4 which indicates the option selected.

CARD TYPE F4

Cols. . Contents Bytes
1=-2 VALY - class lists with 2
all the students needed.
or t74' - class lists of the
students of class 74
needed.
or INO* - class lists not
needed,
3 Semester ' 1
4-5 '00' -~ Card type P6 not 2
needed. :
or t74' ~ Cards for the
students of class T4 needed
6 Semester - for cards.
80 AL 1

The Function Card is the only data card for the
program which indicates the option for the output. To
execute the progrém the following cards are required.

JOB

//
// EYEC PRCLCD
//PCD.CARDS DD *,DCB=BLKSIZE=80

L;QRDT%PE Fl

http:PR.CL.CD

27

1.1.2.9 UPDATE ADDEESS CHANGES (UP.STUD.FILE)

The program updates the students' addresses.
It expects one address change card - card type 06
for each student whose address is to be changed. The
cards must be punched according to the format given

below.

- CARD TYPE 06

Cols. Contents Bytes
1-6 Student Number 6
T-26 Student Name 20
27-30 | Degree 4
31-32 Level 2
33 Sex ' 1
34-50 Number & Street 17
51—54V Apartment Number 4
55-T70 Town 16
T1-T7 Telephone Number 7
80 'c! . 1

To execute the program the following cards are

required.

//JOB
// EXEC UPSTUDFL
//USF.CARDS DD *,DCB=BLKSIZE=80

L;ARDTVPE F4

/*

28

1.1.3 SYSTEM MESSAGES TC USER

ASKED TO ADD - ALREADY TAKING

CHECK COL - 80

COURCE NOT FOUND

CHECK FUNCTION CARD

FUNCTION CARD MISSING

NO MORE DUMMY RECORDS

NO. OF DUMMY RECORDS CREATED XXXXXX
RECORD NOT WRITTEN

SEARCH UNSUCCESSFUL

SORT UNSUCCESSFUL

STUDENT NOT FOUND

STUDENT NOT TAKING THIS COURSE- NOT DELETED
STUDENT NOT IN THIS CLASS

29

1.2 RECORD LAYOUTS AND DESCRIPTIONS

1.2.1 - INTRODUCTION

The system is designed to maintain up-to-date
records of the students by adding, deleting and updating
the files. It can also print class lists, current
schedules and grade reports,

The system has the following three files and two
directories: |

The Student-file contains the students' information
such as name, address, sex, telephone number, degree,
level and student number. There is a Student-file-directory
used by the system to access the students' records directly,

The Course-~-file contains the courses offered‘by the
school. The Course-file has a Course-file-directory which
enables the system to access any course record directly.

The Performance-~file contains information Such as
semester, year, marks and grade earned by students. The
number of performance records for a student is equal *to
the number of the courses he is enrolled in.

A1l the three files of the system, Student-file,
Course~file and Performance~Tile are organized on a Disk.
The files are linked with ezach other by pointers which are
addresses.of the connecting rscords in the other files.
This is shown in the Figure "SRMSs pata Structuren,

The records in the filas are accessed either by

Student number or Course code which are in Student-file snd

Course~file.

30

No searching is reguired in the Performance-~file,
because the pointers of these records are stored in records
of the Student~-file, Course-file or even Performance-file.
To reduce the searching time to minimum the above two
directories for the Student-file and the Course-file are
maintained on a DASD. The layouts of the three files and
the two directories are given in this section.

The system consists of nine programs to perform
the various functions. All the programs are listed in
the section "Usage Details". The system flowchart shows
the functions of the different programs. For the ?urpose
of sorting records Sort verb ot ANS Cobol is coded in the
programs.

The Job Control Language for each program is written
as a separate procedure. To execute any program of the
system on IBM 360 0S Computers only couple of statments

are required which are described under each program.

0O

31

_
V2. SYSTEMS FLOW C HART

' (
F(Nd

L CARDTIVE £4 (CARDTNPE 0 (CARD TIE 01]

R.Perrrfite CR.CRSE.FILE

UP.(RSE. F1E

|

N

Perbormance- Coume-?&%e
\ e

SYSTENMS FLOW CHART ((ozu., T

32

~

A

(CoabYPe 02

-~

(

(mao ™fe o3

- ¥

¢ i
L e
(CAR%\ZZPE %‘é (CARD TRE P6

' 1 UP. THRE FILE INS. 7 ARk QRADE
CR.STUD, Link
N =
P sTud, fing
| MRpYyRE of
Course-FiLe PerFormance- STupemT-FLe -——-———l
fFuLe
A l N 1 \L
PR.cL.CD l , PR.GR.REP | PR-CL.CD
‘ '
\
- . |]
‘i LASS-LISTS Gy RADE- REPLEY CARDS FoRr ‘
‘ ‘ GRADTS, __J*""
/_‘ |__chor? Po

O

\ ¥4

33

1.2.3 CONSIDERATIONS FOR FILE ORGANIZATION ON
DIRECT ACCESS DEVICE

 The system needs to have all the three files on
a direct access device so that they are easily accessable
for using or updating. There are many considerations
before it could be decided whether the files should be
organized sequential, relative, index sequential or
direct access, which depends on the use of that‘particular

file,

COURSE~FILE

The Course-~file contains the courses offered by
the school. The usage of the file is as follows:

1. We may want to add new courses to the file,
However, this will be done only once a semester. For this
purpose the courses can bte sorted added even in a file
organized sequentially.

2. We will use this file to link the Student-file
and Performance-~file with it which will be done two times
every senmester, first time wnen the students register
for the courses and the second time when they maké changes
in their courses. For this purpose we need to access
records from the Course-file, store the address of
performance record in it and store the record back in its
original position. This is only possible if the Course-file

is organized index sequential, relative or direct access

so that any record can be accessed and stored back after

updating the pointers.

\ 9

34

3, The system will use this file to insert the
grades and marks earned by the students. The grades will
be entered about three times a semester, i.e. six times
a year. For this purpose also the Course-file should
be organized by index sequential, relative or direct access
method.

4. When the grade reports or class lists are
printed the system accesses the Course-file randomly,
which also requires the Course-file to be organized by
index sequential, relative or direct access method.

.After considering the above factors it is desirabdle
to have the Course-file organized by relative method on
a Direct Access Storage Device.,

Initially the records in the Course~file will be
sorted but when the additions are made the new records

will be stored at the end in the Course-file,

STUDENT-FILE AND PERFORMANCE-FILE
The above two files should also be organized by
relative access method on a DASD since they will also

be accessed in the same way as the Course-file.

The two directories for the Student-file and the
Course-~file are accessed sequentially and therefore,

stored by sequential access method.

O

L W 4

A4

35

1.2.4 RECORD LAYOUTS

STUDENT-FILE

Cols
1-3

4 -9
10 - 29
30 - 33
34 - 35
36

37 - 53
54 - 57
58 - 713
74 - 80
81 - 84

Contents
Department
Student Number
Student Name
Degree

Level

Sex

Number & Street
Apartment Number
Town

Telephone Number
Address of a record

in the Performance-
file. ‘

84

O

A\

.7

36

STUDENT~-FILE-~-DIRECTORY

Cols.
1 -6
7 - 12

989 - 994
995 - 1000

Contents Bytes
Student Number 6
Address of a record 6

in the student-file.

Student Number 6

Address of a record 6
in the Student-file.

12,000

O

\

PERFORMANCE-FILE

Cols.

1 -4

5~ 8

9 ~ 10

11

12

13 - 14
15 - 18

19 - 22

31

Contents

Address of a record
in the Student-file,

Address of a record
in the Performance-
file for the next
student in the same
class.,

Year,

Semester.,

Grade obtained.
Percentage.

Address of a record
in the Performance-

file for the next course

of the same student.

Address of a record
in the Course-file,

22

Q)

\ ¥

38

COURSE-FILE

Cols, Contents Bytes
1 - 4 Address of a record 4

in the Performance-~file
for the first student
in this class.

5 - 10 Course Code 6
11 Semester Code 1
12 =36 Course Description 25
37 Number of Credits 1

37

CCURSE-FILE-DIRECTORY

1 -6 Course Code 6

7 - 12 Address of a record 6
in the Course-~file.

189 - 194 Course Code 6

195 -~ 200 Address of a recocrd 6
in the Course-file,

2,400

39

¥IH13IDOL GINNIT €378 3aNHL

N4A-3sIN0D

()

= bchd
SERNE
3
0w
T D \ _ T o
453D r_rX\«\ \ llw ~ o3 W
\
/ vi o..:,:.
2%37 4
\ \& oI
359D

3114 -3ONY L W04 ¥3d

{2

~

aNis

-

- . (AW {4
TUA-INAINLS

[Y

8

) W4

40

1.3 PROGRAMS & DESCRIPTIONS

1.%.1. INTRODUCTION

There are nine programs in the system to create
the files, update them and print out reports. The function
of each program is described sepefately With the necessarj
input data and output.

This section also contains the documentation and
a general flowchart for each program. The programs are
written in ANS Cobol using list processing technigues,

For the purpose of sorting and searchin g the verbs Sort
and Search of ANS Cobol are used.

The programs have been tested on IBM 360/75 0S
Computer. The_procedures for JCL are written which can
be cateloged and Jjobs executed by calling the procedures.

The database consists of three major files,
Student-file, Performance-file and Course-file, and two
directories., The two directories are for the Course-file
and the Student-file sorted on Course code and Student
number respectively. The directories are stored as twe
separate files,

| The Student-file contains information, such as
student number, name, degree, level, sex, street, apartment
number, town and telephone nunmber,

The Course-file contains information, such as
course code, semester, course description and credits.

This is the file of the courses offered by the school.

\ &

)’

\ W4

41

New ccurses can be added to this file.

The Performance-file contains information, such
as the year, semester, grade earned, and the marks
obtained. If a student takes five courses he will have
five records of this type but only one record in the
Student~file.

At the beginning of the school year the files are
set-up on a DASD. The files are kept up-~to-date, by
adding/deleting the courses, entering marks for tests/
assignments, grading the students, and finally printing

out the grade reports,

9

\ ¥/

A W

42

1.3.3 PROGRAM DESCRIPTIONS AND FLOWCHARTS

CREATE CCURSE-FILE & DIRECTCRY
(CR.CRSE.FILE)

This program creates the Course—file'and‘its
directory. The initial Course-file is in sorted order.

Normally course-code~field has the course-code,
but if the course~code-field has zeros in it, indicates
the first dummy record and new courses can be added
from hereon., These dummy records are at the end of the
file, |

In the directory there are two fields for each
cdurse, i.e. course-code in sorted order and a pointer
for the course-record in the Course-file. However, after
all the pointers in the directory the next address field
contains zeros to indicate the end of the pointers in the
directory.

To create the Course-file cards are read and
stored in a temporary Disk-file. These cards should
contain 'S' in Col-80 otherwise they will be rejected and
not stored in the Disk-file., A message saying ‘'wrong card'
will be printed out. The Disk-file is then sorted and
stored in a relative file called Course-file. The records
in the Course-file are stored rélative to 1. At the same
time it also stores course-code with a pointer starting

from 1 in the memory and the address field is incremented

)

\ 8

43

by 1 every timeva new course-code is stored. This
points to the record in the Course-file. After all the
courses are stored in the Course-file their course-codes
and addresses are also stored in a sequential file as

a single record. The is the Course~file-directory.

O

W

\ W4

Couest

44

S EILE-DIRECTORY

READ
Course-FiLE

g

MovE coupge-
Cove, AbD

iapex

)

STORE Ony

DSk~ 1 TeR-fug

READ
SORTEDP FILE

N

Move
CLoyrse—-topg
Awd
INDeEx

|

T
!
[

STORE (1 9]

DS K -CBUpLE~
DrECTERY

O

U

45

UPDATE COURSE-FILE (UP.CRSE.FILE)

This program adds new courses to the Course~file
in the end of the file. It also stores the course-codes
and their keys, i.e. pointers where they are stored in .
the Course-file, in the Course-file-~directory. The
Course-file~directory is moved in memory and while the
courses are being added to the Course-file, the course-
code and its addréss is being printed out and also stored
in the Course-file-~directory in the memory. When all
the courses are added the Course~file-directory is sorted
on ascending key using course-code and stored back on a
Disk as a single record. The first available slot in
the Course-file-directory is indicated by zeros in the
address field. After updating the Course-file-directory
again zeros are left in the address field for future
updates., Similarly the first available dummy record

in the Course-file contains zeros in the course-~code

field.

1 9,

L9

46
UPDATE COURSE-FILE

Reat
ChRD-FiLE

,
EDIT AMD

STORE T AT
THE END M

L,

STORE 4.
CAanps

ReAap
Coupse-FiLE

STORY
Coupseobe
ON DASIKK AND
Abp INDEX

L

STORE T
RLQ'D(QE(YO-Q'Y

\

'§)

)

47

CREATE PERFORMANCE-FILE WITH DUMMY RECORDS
(CR.PERF.FILE)

The program creates the Performance-file with
dummy records. The file is used by the system for storing
students' course performance.

The program reads the card-file and the only data
card is the function card which indicates the number of
dummy records required in the file; The number is moved
to the nominal-key of the Performance-file. Now just
by saying once 'write Stud-work-rec from new-rec, it
creates the required number of dummy records. The new-rec
area contains zeros and therefore all the dummy records

contain zeros.

O

U

48

CREATE STUDENT-FILE, ITS DIRECTORY, SORE INFO IN
- PERFORMANCE~-FILE AND LINX THEM WITH THEE COURSE~FILE
(CR.STUD.LINK)

This prégram creates the Student-file with informa-
tion like Student number, Name, Address, Telephone number,
etc., stores information such as Grade, Marks, year, in
the Performance-file and links them to the Course-file.

The program reads the Card-file and stores all the
cards containing 'F' and 'G' in Col-80 in a temporary
Disk~file. The letter 'F' indicates card meant for the
Student-file and 'G' for the Performance-file. If co0l-80
contains something‘else the card is printed out with a
message to check the card. It is probably the wrong card.
The Disk-file is sorted before processing.. If the record
read is F~-type the student information is moved in memory
and next record is read. If the record belongs to the
same student, which is determined from the Student number,
it must be G-type record because the Disk-file is sorted
so that any student's 5F' record will be the first and 'G'
records follow it. Since it is 'G' type record the
information is moved in memory for the Performance-file.
Thus all the records read after 'F' type card having the
same student number must be G-type records. When all the
cards of a student have been moved in memory, i.e. when
student number changes, F-type record is stored in the
Student-file and G-type in the Performance-file.

The address of the first Perfcrmance-file-record is

stored in the Student-file-record, There is a variable ih

O

s’

%7

49

memory which contains zeros to start with and also zeros
moved in it when the student number changes. Hence when
the firsf G-type record is read this variable contains
zeros and the address of the Performance-~file-record is
stored in the Student-file-record and in this variable,
which is a pointer to the next Performance-file-record
and this record should contain pointer to the next
Performance-file-record,

Similarly, there is an array corresponding to the
Course~-file-directory, which contains zeros initially to
indicate that the courses in the Course-file are not
pointing to any Performance-file-record. The first
Performance~-file-records address is stored in the
Course-file~record and when it is done so, the corresponding
element of the above array also contains this address. |
Next time when a Performance-file-record is added the
corresponding element of the array is checked. This time
it contains an address of a Performance-~file-~record. Hence
this address is stored in the Performance-file-record.

The first four bytes of the record number 0 in

the Performance-file contain an address of the first avail-

ahle record in the Performance~file. Also the first four

bytes of the first available record contains geros.
The Student number field of the first available
record in the Student-file contains zeros. Similarly,

the course code field of the first available record in

the Course~file contains 2zeros.

\ 9

A Y4

MoV g
STup-Info
f:- N NEMQP.\{.

TURN
SWTLR DN .

50

CREATE STUDEMT-FILE,
AND Limk WiTh PERFORMANCE-FILE

AMND COURSE-FILE

READ CARD-FuE

(student Inlo
and Coursc
Cavds)

S TORE
o

Ao

Reaps
SorTeED
e

WRITE
STUDEMNT 1N

N STUDEMT -

188 =

J

™Mode zeRo
TO LAST LINK
I Peaf-Rec.

Welttg
PERF-RECS
IN pERE-FILE

L]

FOVE COuRsE-IMFO

TO
TAEMD RY

ALDRESS 1M STUD- { NEO EISE

{F FLRST CoupsE, STORE

V0
AvTAtch To THe PREMIOMS

SEARCH COURSE-CODE 1IN

cuRse-fue AN store
ADDRES 1M PERF- REC.

IF ST PERE REC. STORE
ADpR. OF THIS PERF-REC (N

THE ARDVE (DMRME-REC ELSE
ATTATLH TOTUE LAST PERF-REC,

ALSO STORE «Tud- AbpR.
™ hg
PERF-REC.

]

\ 9

L

O

51

UPDATE STUDENT-FILE, COUESE-FILE AND PERFORMANCE-FILE -
ADDITIONS & DELETICN OF CCURSES (UP.THRE.FILE)

The program updates the three files Course-file,
Student-file and the Perfofmance—file. Updating means
rearranging the links so as to have the pointers to the
student's current courses. The program is used when the
students change their courses which is normally done
once a semester. The program disconnects the links from
the courses the students do not want to take and connects
with the one they want to add. The deletion and addition
of courses are punched on card type 04 and 05. The
addition is made in the sequential order, in two directions
i.e. student'é courses and class list.

The cards meant for deleting courses contain 'D' in
col-80 and the one meant for addition containg 'A' in
¢01-80, The Card-file is read and the one containing 'A'
or 'D' are stored in a temporary Disk-file and others are
printed out with a message to check the cards. The Disk-
file is sorted major field being student-number in ascend-
ing order and minor field col-80 in decending order. Thus
a student's deletion card will be first and then addition
cards, if any.

The records are added or deleted from the Performance-
file but in the Course-~file and Student-file only the |
links are changed. When a student drbps a course a record
is released in the Performance~file and is now available

for use. Ther is an array in momory where the address of

O

O

52

the records, which are available due to deletions, are
stored. Now when an addition record arrives the program
checks this array to see if there is a pointer to any
available record for use. Thus this array never fills

up., By deletion addresses are stored in it and additions
take them away. However, when trere is no address in

it the program picks up the address of the next available
record, which is in the end of the Performance-file. This
address is stored in the record number O of the Performance-
file by the previous program. At the end of this program
the updated address of the next available record in the
Performance~file is stored back in the record number O

for up&ating files in future,.

For deletion, the particular student's records
from the Performance-file are read in memory one by one,
checking for.the one to be deleted, When the record is
found the links are changed in the preceding and the follow-
ing records and written back in the Performancé-file.

This is done in two directions, i.e. student's courses
and class list. Also the address of the free record is
stored in the above array.

Similarly, for addition records from the Performance-
file are read in memory checking for where the new record
fits in sequentially. When found links are changed in the
preceding and the following records and written back in
the Performance-file. The address of the new record is
picked ﬁp from the array, if there is any, otherwise

address of the next available record is picked from the

O

L

A W

53

record number 0 in the Performance-file. This linking is
also done in both the directions, student's courses and

class list.

\ &/

54
UPPDATE FILES
(ADD> AND DELETE COURSES)

READ CarD-FiLe
(COL\{SQ_ cstdibion
and Ol(.f.z,’riov\)
N
EDIT and $Tors

OMNLY app AND
DELETE CAADS

74
READ
SORTED
FlLg

v

GE T Thys STups.
STUPEMT-REC
FROM sTUDEMT-
1 FA\LE

Move LHFo To HBW
PeErF-REC 1N EMCRY:

STORE STUDEMTS
ACDORESS

SToRE bumpmy oR

Ngw Perf-Recs

QPP RESS M STUDENT-
REC

. N
GET TUIS (DURLE-REC
FRom C(OCURSE-FLE SToRg
{1s ADDRESS IN PERF-

REC
N

STORE DummMy o MEW
PERF. eEs MoDRESS LN

COUWRSE-REC— LIRITE RES
W PILes.
Al

Dispray —
STUDENT- NO, (ORRSE
CodE “AbpED .

e

U PDATE Duymmy
READs ArRpY.

-

GET TO THS CoulsSe BY

TREING ADDR. FROM STyp-
REC, {F THIS 15 Mot TUE
OME TO0 B PeLETEDGET

[T0 THe NexT.

PlCk UP PERF-REC'S
aAde FROM Wikk-REC
AND STORE 1T 1M Tye
PREVITUS ODME

DISPLAN STUDE M T-No
COURSE-CODE AND |
“peLeted .

\

tlovE ZEans To THE

PostTioN FROM WYeRE

THE ABDVE ADDR. Pilrel
“ue.

A4

STORE TS5 ADDRESS
iy Dummy RECS
ARRAN.

\

n

RS

\ %/

% 7

55

INSERT MARKS OR MARKS AND GRADES (INS.MARK.GRADE)

The program adds the marks given by the Professors
in the students' records or adds and grade them. The
Function Card indicates the option selected. The Function
Card is suppose to be the first data card. -

The program reads the Card-file and encounters the
Function Card which it holds in memory till the end of the
execution, In case, it is not the first card it will print
out a message and stop further execution. Other data cards
which are only M-type cards, are stored in a temporary

Disk-file and a2t the end sorted on ascending keys, student-

number being major field and course-code minor.

The Student~file-directory is read in memory to
access the students' records directly.

The sorted Disk-file is now read, the student's
fetched from the Student-file-directory and the record
is accessed from the Student-file, This record contains
the address of his first performance-record which is read.
The performance-record contains the address of the
course~-record which is also read.

Now the course-code is compared with the course-code
in M-type card and if it agrees the marks given by the
Professor are added to the performance-record. If marking
and grading option is selected, the program will check the
Grading~Scale given through the function card and grade

the student. If the course-code does not agree there could

either of the two reasons given below:

A\ W4

-r

o

56

1. If the course~code of M-type card is smaller than
the course-code of the course-record means the student is
not taking this course - the cérd is erroneous. A message
to this effect is printed out.

2.l If the course-code of M-type card is}bigger than
the course-code of the course-record next performance-record
is fead, whose zddress is also in the performance-record
just read. From this second Performance-record the address
of the course-record is picked up and read. The course-~code
of the'course—record and M-type card are compared and the
above procedure 1is repeated.

The procedure is repeated to handle all the M-type

cards.

U

\ W4

s

51

PRINT GRADE REPORTS (PR.GR.REP)

‘ The program prints out students' Grade Reports.
It can print out Grade Reports for a semester or for the
whole year. The option is indicated by the Function Card.
The program reads the Card-file and expects the
Function Card to be the first and the only card. It holds
the function card in mémory till the end of the execution.
If zeros are punched instead of the year, it means Grade
Reports for the whole year are fequired. In case, the
first card is not the Function Card it prints out a
message . to this effect and stops further execution,
| It reads the Student-file-directory in memory for
direct access to the students'! records.
The first address of the Student-file-~directory is
moved to the nominal~key of the Stﬁdent—file and read.

In this record the address of his first performance-record

- is stored, which is moved to the nominal-key of the

Performance-file and read. The performance—record cdntains
the address of his next performance-~record and also the
address of the course-record in which he obtained the
grade and marks shown in thesperformance—record. The
record is compared against the requirement given in the
Function Card and the following action is taken.

1. If the semester-required in the Function Card is

equal tc zeros means the Grade Reports for the whole year

are required, in which case no further checking is necessary.

o

A/

58

2. If they are are equal the address of the course-
record is moved to the nominal key of the Course-file and
read. Now the course-code, course description,.grade,
etc. are printed out. Then the address of the next
performance-record from this performance-record is moved
to the nominal-key of the Performance-file and read, and
the above procedure is repeated.' When this student's
performance-records are finished, which is indicated by
zeros in place of the next performance-record's address
the next student is téken up and the whole procedure is
repeated,

3., If they are not egqual the address of the next
performénce-record is moved to the nominal-key of the

Performance-file and read, and the procedure repeated.

L O

PRINT GRALGE-REPORTS

59

REAL
CARD-FLE

STORE STMESTER
IN A WARIRSG
“SEm-REQD

Reas
STUDE™NT -FLE
Dm.wea\(

g

Pit wp stup
AoprEss FrRomM
DlQELToR\[

LMOUE STUD MPME
fODRESS ETC.

TMOVE H1S COUPSES
AviD PERFopMA-
NCE 1IN ThHE
Coupsts.

PrRINT
C4R A DE-REPORT

60

PRINT CLASS LISTS AND/OR PUNCH CARD DECK FOR GRADES
(PR.CL.CD)

The program prints out class lists and/or punches
M-type cards for the professors to use for marking the
students. The Function Card indicates the option selected.

The program reads the Function Card and holds it
in memory till the end of the execution. If, however,
the first card is not the Function Card it prints out a
message and stops execution., The Function Card is the
only data card but if there are more data cards behiﬁd it
they are ignored.

It reads the Course-~file~directory in memory for
direct access to the course-records and holds it till
the end of the execution,

The address of the first course-record from the
Course-file-direct is moved to the nominal-key of the
Course-file and read. The course-record contains the address
of the first performance-record of the student in this
course which is moved to the nominal-key of the Pérformance-
file and read. The performance-record contains the address
of the next student's performance-record address in this
class and also the address of the student whose work is
shown in this performance-record. At this point the
semester-required in the Function Card is compared with
the semester of the performance~record,.

If they are equal the address of the student-record

http:PR.CL.CD

61

is moved to the nominal-key of the Student-file and read.
Now the student's inform ation from the student-recorad
and his work'from the performance-record is printed out.
Next, it checks if the M-type card is required. If the
M-type card is required punches a card,and if not, it
moves the address of the next performance-record to the
nominal-key of the Performance-file and repeats the whole
procedure,

However, if the semester-required in the Function
Card is 'AL' no checking is done and all the records are
printed out. If the semester-required is 'NO', no checking
is done and no records printed out.

The last performance-record is indicated by zeros
in place of the address of the next performance-record.
When it is encountered the program moves the address of
the next coﬁrse from the Course-~-file-directory to the
nominél—key of the Course-file and the whold procedure is
repeated from the beginning till it reaches the end of

the Course-file-directory.

62
PRINT Cuimss tisTs

A
CouRst-Fiie-
DIRECTO Ry

PICK uP (euese-
REC's ADPR hup

GET 1T,

\

Move CouRSE-
CODE, D?Sultpmﬁ‘
PROFESOR ETC
IN MEMoRY

/
PL= WP PERF-
Rec's ADDR. Fron
(ouest-rec,

N

LT
STUD IN Ty
Course

MES

PILE wp neeT
PeRrF. recs Appe.
Faom Thes
PERF-REC AN D
&L 7,

\
™Mowe 1o
(4N} “'\Eﬁ/w??-\f

PrRiuT Tue

STUDENT WHTH
s yuFo.

63

UPDATE STUDENT-FILE - ADDRXSS CHANGES (UP.STUD.FILE)

The program is meant for changing the students'
address in the Student-file, New addresses of students
are punched on cards according to the card type 02.

The Student-file-directory is read in memory and
held till the end of the execution, which enables direct
access of the desired records.

The Card~file is read and if the card co0l-80 does
not contain 'C' it is printed out with a message 'wrong
card' and the next card is read. If the Col-80 does
contain 'C' the program gets the address of this student
from the Student-file-directory, reads the record from
the Student-file and replaces the address with the néw
one. It also prints out the 0ld and the new address.
Thus the whole procedure is repeated till all the cards

are dealt with,

64

ADDRESS CwANGES

Reap
STUDENT- File-
©RecTory

READ
CARD-FILE
1s .

coL-§o
ra
\es

Pl Ue THE BODR]
OF Tuis stubemt
From Tue DIRE-
Tory AND GET
STUD --REC.

DASPLAN SI-H9,
STUD-NAME AND
GesrlE

rstud MOT IN
FILE®

Nes

UPDaTe THE
STUDEW T-REC

DIsPLA Y

STUD- NAME AR
MESSAGE
TADPR. U PONED,

65

1.3.4 JCL PROCEDURES

//J0B

//CRCRSEFL PROC

//CCF
//INDISK
//

//

//

//
//CLASSDIR
//

//

//

//

/ /SORTWKO1
//SORTWKO?2
//SCORTWKO3
//SORTWKO4
//CFD

//

//

//

//

//CF

//

!/

//

//
//SORTLIB
//PRINT
//CARDS

//

//

EXEC

DD

DD

DD
DD
DD
DD
DD

DD

DD
DD
DD

PEND

"CR.CRSE.FILE"
PGHM=CRSEFILE
DSN=INDISK,
UNIT=ONLY
DISP=(NEW,DELETE),
SPACE=(TRK, (10,5)
DCB=(RECFN=FB, LRECL=80, BLKSIZE=800)
DSN=CLASSDIR,

UNIT=ONLN,

SPACE=(TRK, (2,2),RLSE)
DCR=(RECFM=FB,LRECL= 80,BLKSIZE=800)
DISP=(NEW,DELETE)
UNIT=ONIN,SPACE=(CYL,(3),,CONTIG)
UNIT=ONLN,SPACE=(CYL,(3),,CONTIG)
UNIT=ONLN,SPACE=(CYL, (3),,CONTIG)

BN IT=0NIN,SPACE=(CYL,(3),,CONTIG)

DSN=CS1%019.CFD,
UNIT=ONIN,

DISP=(NEW,CATLG,DELETE),
SPACE=(TRK,(2,2),RLSE),
DCR=(RECFM=FB,RECL=2400,BLKSIZE=2400)
DS§=C313019.CF,

UNIT=ONLN

DISP=(NEW,CATLG,DELETE),
SPACE=(TRK,(5,5),RLSE),
DCB=(RECFM=FB,ILRECL=37 ,BLKSIZE=3T)
DSN=SYS1,SORTLIB,DISP=SHR '
SYSOUT=A

DUMMY,

DCR=BLKSIZE=80

http:DSN=CS13019.CF

//30B
/ /UPCRSEFL
//UCF

~ //CFD

//

//
//INDISK
//

//

//

//
//CLASSDIR
//

//

//

//

//SRF

/!

//

//SORTLIB .

/ /SORTWKO1
//SORTWKO?2
/ /SORTWKO3
//SORTWKO4
//CARDS

//

//

66

PRGC,
EXEC
DD

DD

DD

Db

DD
Db
DD
DD
DD
DD

PEND

"UP.CRSE.FILE"
P3M=UCRSEFIL
DSN=CS813011.CFD,
URIT=ONIN
DISP=0LD
DSN=INDISK
UNIT=ONLN
DISP=(XEW, PASS,DELETE)
SPACE=(TRK,(10,2)),
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
DSN=CLASSDIR
UNIT=0NLN
DISP=(NEW,PASS,DELETE)

"SPACE=(TRK(10,2)),

DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
DSN=CS13011.STUDRF, ‘
UNIT=ONLN '
DISP=0LD

DSN=3YS1.SORTLIB,DISP=SHR
UNIT=2314,SPACE=(CYL,(3),,CONTIG)
UNIT=2314,SPACE=(CYL,(3),,CONTIG)
UNIT=2%14,SPACE=(CYL,(3),,CONTIG)
UNIT=2%14,SPACE=(CYL,(3),,CONTIG)
DUMMY

DCB=BLKSIZE=80

//J0B

//CRSTLINK

//CSL
//CFD
//

//
//SFD |
//

//

//

//
//INDISK
//

//

//

//
//OUTDISK
//

//

//

//
//SF
//

//

//

//
//SWF
//

//
//SEF
//

//
//SORTLIB

/ /SORTWKO1

/ /SORTWKO?2
/ /SORTWKO3
/ /SORTWKO4

//PRINTS
//CARDS

67

PROC
EXEC
DD

DD

DD

DD

DD

DD

DD

DD
DD
LD
DD
DD
DD

DD

"CR.STUD.LINK"
PGM=CRSTUDLK
DSN=C313011,CFD,
UNIT=0ONLN
DISP=0LD
DSN=CS13011,SFD
UNIT=ONIN
DISP=(%EW,CATLG,DELETE)
DCB=(RECFNM=FB,LRECL=2400,BLKSIZE=2400)
SPACE=(TRK(2,2),RLSE)
DSN=INDISK
UNIT=ONIN
DISP=(NEW,PASS,DELETE)
DCB=(RECFM=FB, LRECL=80,BLKSIZE=800)
SPACE=(TRK,(5,5))
DSN=QUTDISK
UNIT=ONIN
DISP=(NEW,PASS,DELETE)
DCE=(RECFM=FB,LRECL=80,BLKSIZE=800)
SPACE=(TRK(5,5))
DSN=CS13011.SF
UNIT=ONLN
DISP=(NEW,CATLG,DELETE)
DCB=(RECFM=FB,LRECL=84,BLKSIZE=84)
SPACE=(TRX95,5))
DSN=CS13014.STUDWF
UNIT=CNLN
DISP=0LD
DSN=CS13011.STUDRF
UNIT=ONIN
DISP=0LD
DSN=SYS51,SORTLIB, DISP=SHR
UNIT=2314,SPACE=(CYL,(3),,CONTIG)
UNIT=2314,5PACE=(CYL,(3),,CONTIG)
UNIT=2%14,SPACE=(CYL,(%),,CONTIG)
UNIT=2%14,SPACE=(CYL, (3),,CONTIG)
SYSOUT=4

DUMM

http:DSN=CS13011.SF

//

//

PEND

68

DCB:BLKSIZE=8O

//30B

/ /UPTHREFL
//UTF
Z/CFD

// ’

//

//SFD

//

/)

//INDISK
//

//

/]

//
//OUTDISK
//

//

//

//

//SF

//

//

//SWF

//

//

//SEF

//

//
//SORTLIB

//SORTWKO1
//SORTWKOZ
//SORTWKO3
//SORTWKO4
//PRINTS -

//CARDS

//

//

69

PROC
EXEC
DD

DD

DD

DD

DD

DD

DD

DD
DD
DD
D
DD
DD
D

PEND

"UP.THRE.FILE"
PGM=UPDATE
DSN=08130141.CFD
IRIT=ONLN
DISP=0LD
DSN=CS13011.S¥D
UNIT=0NIN
DISP=CLD
DSK=INDISK
UNIT=ONIN
DISP=(NEW,PASS,DELETE)
DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
SPACE=(TRK(5,5,)
DS¥=0UTDISK
UNIT=ONIN
DISP=(NEW,PASS,DELETE)
DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
SPACE=(TRK{5,5))
DSKN=CS13011.SF
UNIT=ONIN
DISP=0LD
DSN=CS13011.STUDWF
UNIT=ONLN
DISP=0LD
DSN=0S13011.STUDRF
UNIT=ONLN
Disp=0LD
DSN=5Y51.SORTLIB,DISP=SHR
UNIT=2%14,SPACE=(CYL,(3),,CONTIG)
UNIT=2314,5PACE=(CYL, (3),,CONTIG)
UNIT=2%14.SPACE=(CYL,(3),,COKTIG)
UNIT=3214.SPACE=(CYL,(3),,CONTIG)
SYSOUT=A
DUIMY
DCR=BLKSIZE=80

6

//J0B
//INSMRKGR
//IMG

- //SFD

a

//
//INDISK
//

//

//

//
//OUTDISK
//

//

//

//

//ST

//

//

//SWE

//

//

//SRF

//

//
//PRINTS
//CARDS

//
//SORTLIB
//SORTWKO1
//SORTWKO?2
//SORTWKO3
/ /SORTWEO4
//

70

PROC
EXEC
DD

DD

DD

DD
DD
DD

DD
Db

"INSMARKGRADE"
PGM=GRADING
DSN=CS130%1.SFD
UNIT=0NLN
DISP=0LD
DSN=INDISK
UNIT=ONLN
DISP=(NEW,PASS,DELETE)
SPACE=(TRX(5,5))
DCB=(RECFM=FB, LRECL=2400,BLKSIZE=2400)
DSN=0UTDISK
UNIT=0ONIN
DISP=(NEW,PASS,DELETE)
SPACE=(TRK, (5,5))
DCE=(RECFM=FB,LRECL=80,BLKSIZE=800)
DSN=CS13011.SF '
UNIT=0NLN
DISP=0LD
DSN=CS13011.STUDWF,
UNIT=0NLN
DISP=0LD
DSN=C$13011 .STUDWF
UNIT=ONLN
DISP=0LD
SYSOUT=4
DUMIMY
DCB=BLKSIZE=80
DSH=SYS1.SORTLIEB, DISP=SHR
UNIT=DISK,SPACE=(CYL,(3),,CONTIG)
UNIT=DISX,SPACE=(CYL,(3),,CONTIG)
UNIT=DISK,SPACE=(CYL,(3),,CONTIG)
UNIT=DISE,SPACE=(CYL,(3),,CONTIG)

http:DSN=CS13011.SF

//

//30B
/ /PRGRREC
/ /PRG
//SFD
//

//
//SF
//
/-
//SWE™
//

//

»//SRF

//
//
//FRINTS
/ /CARDS

//

PROC
EXEC
DD

DD

- DD

71

"PR.GR.REP."
PGM=PRINTGR
DSN=CS13011.SFD

UNIT=0ONLN
DISP=CLD

DSH=C513011.8F

UNIT=ONLN
DISP=0LD

DSN=CS813011.STUDWF
UNIT=0ONLN

DISP=CLD

DSN=CS13011.STUDRF,

UNIT=ONLN
DISP=0LD
SYSOUT=A
DUMMY

DCB=BLKSIZE=80

http:DSN=CS13011.SF

©

//JOB
//PRCLCD
//PCD
//CFD -
//

//

//SP

//

/!
//SWF

7/

//
//SRF
/]

/7
//PRINTS
//CARDS
//

//

PROC
EXEC

DD

DD -

5D

DD

DD

"PR.CL.CD."
PGM=CLASSLST.
DSN=CS13011.CFD
UNIT=ONLH
DISP=0LD
DSN=CS13011.SF

UNIT=CNIN
DISP=0LD
DSK=CS13011.STUDWF
UNIT=ONLN
DISP=OLD
DSN=CS13011.STUDRF
UNIT=ONIN
DISP=0LD
SYSOUT=A
DUMMY
DCB=BLKSIZE=80

http:13011.SF
http:PR.CL.CD

.//JOB

/ /UPSTUDFL
//USF
//SFD
//

//

//SF

//

//
//CARDS
//

//

13

PROC
EXEC
DD

DD

DD

PEND

"UP.STUD.FILE. M
PGM=ADDRIHENG
DSN=C513011.5FD
UNIT=0ONLN
DISP=0LD
DSN=C313011.8F
UNIT=ONLN

‘DISP=0LD

DUMMY
DCB=ELKS1ZE=80

http:DSN::CS13011.SP

P A R T - 1II

A L Y 5 I s
AND

N WITH ALTYRNATIVE SYSTEMS

15

2.1 DATA BASE TASK GROUP

2.1.1 INTRODUCTION

Normally, files are designed to optimize the processing
of a run-unit; for other processing to be performed on the
same Hata, the files are resorted or new files are created
which redundant]y include the same data. The traditional
approach to data was thus to create process-oriented files.
This is adequate in some circumstances, but is too costly or
impractical in others. Therefore, to design systems capabie
of handfing our current demands, it is essential to develop
databases that are available to and suitable for processing
Ey multiple applications.

The Data Base Task Group has proposed a Data Description

- Language for describing a database, a Data Description’

Langquage for describing that part of the database known to
a program, and a Data Manipulation Language. The Data
Manipulation Language is the language which the programmer

uses to cause data to be transferred between his program

~and the database.

The principles of the Data Base Task Group and the

concepts are discussed in this section,

©

76

2.1.2 PRINCIPLES OF DBTG

The principles of the Data Base Task Group are given
be1bw:

1. Allow data to be structured in the manner most
suitable to each application, regardless of the fact that
some or all of data may be used by other applications -
such flexibility to be achieved without requiring data
redundancy. |

2. Allow more than one run-unit to concurrently
retrieve or upndate the data in the database.

3. Provide protection of the database against unauthoriz-
ed access of data.

4, Provide for centralized capability to control the
physical placement of data.

5. Allow the declaration of a variety of data structure
ranging from those in which no connection exists between
data-items to network structures.

6. Allow the users to interact with the data while
being relieved of the mechanics of maintaining the structural
associations which have been declared.

7. Provide for seperate descriptions of the data in the.
database and of the data known to the program.

These features provide both generality and flexibility
and allow the building and manipulation of data structures

as complex as necessary.

(@

1

DBTG CONCEPTS

The Data Base Task Group introduced several concepts

for describing database. Some of the major concepts are:

SCHEMA

A Schema consists of Data Description Language entries
and is a complete description of a database. It includes
the names and descriptions of all the areas, set occurences,
record occurences and associated data-items and data-aggregates

as they exist in the database.
SUB-~SCHEMA

A Sub-Schema also consists of Data Description Language
entries. It, however, need not describe the entire database
but only those areas, sets, records, data-items and data-
aggregates'which are known to one or more specific program s.
Further, it describes them in the form in which they are known

to those specific programs and it may also rename them.

AREA

An Area is a named sub-division of the addressable
storage space in the database and may contain occur-ences

of records and sets or parts of sets of various types.

SET

A set is a named collection of record types with an

owner and may have one or an arbitrary number of member

©

18

records declared for it in the Schema.

structure fiqures show the séts.

The tree and network

(©

19

2.1.3 DATA STRUCTURES

SEQUENTIAL STRUCTURE

A sequential data structure is one in which each
element in the structure, except the first and last, is
related to the element preceding it and the element following
it. A list is an example of a sequential data structure.

A 1ist may be a one-way list, where each element points

only to the next, a two-way or a circular list. There is
"one-to-n" relationship between the owner records and the
member records. Thus, for each occurence of the owner record,

1

there may be "n" occurence of the member records. Diagram]
is a set representation of a one-way, two-way and a circular
sequential data structure. Tree structure has several sets

of one or more members, but it is not a sequential structure.

DIAGRANM -

80

NETWORK STRUCTURE

A ' network is the most general form of data structures.
In a network any given element may be related to any other.
Diagram 4 shows a network structure in which a node
has more than one branches into it. In network structure
a record may participate as a member in more than one set,
and therefore may have more than one owner, which allows
networks to be built. In using sets to represent networks
each set represents a collection of one-to-many relationships.
Where there is many-to-many relationship, for example that
between students and classes in a school, it can be represented
by two sets, the owners of which are the records involved in
the relationship. The members of both sets are a third
record type, each occurence of which represents one association
between two occurences of the owner records, for example, the
performance of a given student in a given class. Since it
is often desirable to store information about the associations
themselves, for example, the grade for a student in a class,
these records are useful apart from their role in the
representation of many-to-many relationships. This corresponds
to the performance record which participates in two sets,
whose owners are "student" and "class". In diagram 5, record
no. 1 represents one association between two occurences of the

owner records, i.e. a given student in a given class.

81

NETWORK-STRUCTURE

DIAGRAM -

DIAGRA™M - 5

83

2.2 IMPLEMENTATION OF SRMS IN DBTG

The database of the Student Record Management System
has been structured, which provides generality and flexibility
and is suitable for each application without requiring redundancy.
It has one-to-one correspondence with the proposals of the
Data Base Task Group.

The database is structured in a manner which permits
access in different sorted ways without resorting. The
directories have pointers to tghe students and classes,
which in turn have pointers to the connecting records in
sequential order. The sthents with their courses and
courses with their students can be accessed without any
sorting.

The database will be accessed only by one run-unit
at a time, and therefore, it is not necessary for the
protection against concﬁrrent retrieval andlupdating data in
the database. |

The pko~rams of the system provide for control of
relative placement of records in the database to increase
efficiency.

The database is structured which corresponds to the
proposals of the Data Base Task Group shown in diagrams
6, 7 and 8. |

It permits the users to retrieve and update daﬁa
without being concerned of the mechanics of maintaining the
structure,

Each program is only concerned wiph the data known to

it and not the entire database.

84

DATA STRUCTURE

Since there is one-to-one correspondence of datahasse

S

9]

ysten with the proposals

(1)
3

of the Student Record Management
of the Data Base Task Group, it can be described in terms
of Schema and Sub-Schema using Set concept. The Schema
Dzta Description Language provides for an arbitrary
rumber of Set modes and representation of Data Structure.

The data structure of the SRHS's database corresponds to

Tne one-way 1list data structure corresponds to a

ia

set comonosed of student-information-record as owner and

erformance-records as its members, shown in diagram 2.
] [esd

3

o

t also corresvends to a set of class-record as owner

nd performence~records as its members, which is shown

o

in diagranm 3.

F‘r:,n,:?w'.«?c-x'u.] P e e
""“""““"‘”‘”":\ / Chu-re Lj :

DIAGRAT 3 Lrmizhan

85

SRMS DATABASE IN SEIS

The database of itr2 Student Record Management
System. has been describéd in the Schema in six sets. The
system has two directories, a student-file and a course-file,
which are described in four seperate sets with dunmmy-records
as their owners. The 7ifth set consists of student-record
ag owner with psrformance-records as members, and the sixth
one with course-record as owner and performance-records as

its members. The systems database is illustrated by

e oy

g ""fi —""—\‘) \\

]

i -
1}

| S

D R {:g RAA fe'

86

The sets in the database are required to be sorted
in some order. Several sorting and searching techniqgues
have been discussed in Avpendix A, The analysis of the
different sorting techniques indicate that Radix sort will
be quite suitable for SRMS's dzstabase.

For exercise few Sub-Schemas and programs have
been written. Tne flowcharts for these programs have also
been drawn to show how to invoke a Sub-Schema of the

”

~ema in programs. There are some verbs, such as, Insert,

,
e}

w
¢}

STre
arc

<

, Modify, Sort, etc. in the Schema., Attempts have

Ly

been made to expand the internal steps of these verbs by

i

}oad
O

w-charts. However, the programs were not run on

-3
[op]
',.J
qv]

lier.

L

D Com

3

©

2.2.1
2.2.1.1

87

SRM's DATABASE

SCHEMA NAME IS STUDENT-RECORD-SYSTEM;

PRIVACY LOCK IS STUDSYS.

AREA NAME IS STUD-INFO-AREA;

PRIVACY LOCK. IS ST-IN-KEY.
RECORD NAME IS STUDENT-REC;

'LOCATION MODE IS VIA STUD-INFO-SET SET;
WITHIN STUD-INFO-AREA;
PRIVACY LOCK IS ST-REC-KEY.

02 DEPT PICTURE XXX.
STUD-NO PICTURE 9(06).
STUD-NAME PICTURE X(20)
DEGREE PICTURE XXXX.
LEVEL PICTURE XX.

SEX PICTURE X.

STREET PICTURE X(17).
APT-NO PICTURE XXXX.
TOWN PICTURE X(16).
TELEPHONE PICTURE X(07).
PERF-ADDR PICTURE 9999.

O O O O QO O QO O O O
N NN N NN NN N

SET NAME IS STUD-INFO-SET;

MODE IS POINTER-ARRAY;
ORDER IS SORTED;
OWNER IS STUD-DUMMY-REC.

ASCENDING KEY IS STUD-NO, DEPT;
SEARCH KEY IS STUD-NO, DEPT;
SET OCCURENCE SELECTION IS THRU
LOCATION MODE OF OWNER

USING STUD-NO.

88

AREA NAME IS COURSE-INFO-AREA;
~ PRIVACY LOCK IS CR-IN-KEY.
LOCATION MODE IS VIA COURSE-INFO-SET SET;
WITHIN COURSE-INFO-AREA;

02 WORK-ADDR PICTURE 9(05).
02 CRSE-NO PICTURE 9(06).

02 SEMESTER PICTURE X.

02 COURSE-DESC PICTURE X(25).
02 COURSE-CREDIT PICTURE 9.

SET NAME IS COURSE-INFO-SET;

ASCENDING KEY IS CRSE-NO;

SEARCH KEY IS CRSE-NO;

SET OCCURENCE SELECTION IS THRU
LOCATION MODE OF OWNER

USING CRSE-NO.

5

STUDENT WITH PERF-RECS-SET

89

AREA NAME IS ST-PERF-INFO-AREA;

PRIVACY LOCK IS ST-PR-IN-KEY.

RECORD NAME IS PERF-REC;

LOCATION MODE IS VIA ST-PERF-INFO-SET SET

PRIVACY KEY IS ST-PR-REC-KEY.

02
02
02
02
02
02
02
02

SET NAME

MEMBER IS PERF-REC OPTIONAL AUTOMATIC;
SET OCCURENCE SELECTION IS THRU

ADDR-1 PICTURE 9999.
ADDR-2 PICTURE 9999.
YEAR PICTURE 99.
TERM PICTURE X.
GRADE PICTURE X.
MARK PICTURE 99.
ADDR-3 PICTURE 9999.
ADDR-4 PICTURE 9999.

IS ST-PERF-INFO-SET;

STUD-INFO-SET USING

CURRENT OF SET

>

C

90

COURSE-REC WITH PERF-RECS-SET

SET NAME IS CR-PERF-INFO-SET;

MEMBER IS PERF-REC QPTIONAL AUTOMATIC;

SET OCCURENCE SELECTION IS THRU
COURSE-INFO-SET USING
CURRENT OF SET

91

2.2.2.2 SUB~SCHEMAS CREATE-COURSE-FILE

SUB-SCHEMA IDENTIFICATION DIVISION.

SUB~SCHEMA NAME IS CREATE-CRSE-FILE OF

PRIVACY LOCK IS CCF-KEY
PRIVACY KEY FOR COPY IS STUDSYS.
AREA SECTION

PRIVACY LOCK IS CI-KEY.
RECORD SECTION

01 COURSE-REC;
PRIVACY LOCK IS CR-KEY. :

02 WORK-ADDR PICTURE 9(05).
02 CRSE-NO PICTURE 9(06)

02 SEMESTER PICTURE X.

02 COURSE~DESC PICTURE X(25).
02 COURSE-CREDIT PICTURE 9.

SET SECTION
COPY COURSE-INFO-SET.

92

CREATE STUDENT-FILE, PERFORMANCE-FILE, AND LINK THEM WITH
COURSE-FILE

SUB-SCHEMA IDENTIFICATION DIVISION.

SUB-SCHEMA NAME IS CR-STUD-WDRIC-ATTACH-CRSE.
PRIVACY LOCK IS SWC-KEY
PRIVACY KEY FOR COPY IS STUDSYS.

AREA SECTION

COPY ALL AREAS.

RECORD SECTION

01 STUDENT-REC;

WITHIN STUD-INFO-AREA;

PRIVACY LOCK IS SI-KEY.
02 DEBT PICTURE XXX.
02 STUD-NO PICTURE 9(06).
02 STUD-NAME PICTURE X({20).
02 DEGREE PICTURE XXXX.
02 LEVEL PICTURE XX.
02 SEX PICTURE X.
02 STREET PICTURE X(17).
02 APT-NO PICTURE XXXX.
02 TOWN PICTURE X(16).
02 TELEPHONE PICTURE X(07).
02 PERF-ADDR PICTURE 9999.

93

01 COURSE-REC;

PRIVACY LOCK IS CI-KEY.
02 WORK-ADDR PICTURE 9(05).
02 CRSE-NO PICTURE 9(06).

- 02 SEMESTER PICTURE X.
02 COURSE-DESC PICTURE X(25).
02 COURSE-CREDIT PICTURE 9.
‘01 PERF-REC
CR-PERF-INFO-AREA

PRIVACY LOCK IS ST-CR-KEY.
02 ADDR-1 PICTURE 9999.
02 ADDR-2 PICTURE 9999.
02 YEAR PICTURE 99.
02 TERM PICTURE X.
02 GRADE PICTURE X.
02 MARK PICTURE 99.
02 ADDR-3 PICTURE 9999.
02 ADDR-4 PICTURE 9999.

SET SECTION
COPY ALL SETS.

o

2.2.1.3

94

PROGRAMS AND FLOWCHARTS

CREATE COURSE-FILE
IDENTIFICATION DIVISION.

PROGRAM-ID.

PRIVACY KEY OF COURSE-INFO-AREA 1S CI-KEY
PRIVACY KEY OF COURSE-REC IS CR-KEY.

DATA DIVISION.

SCHEMA SECTION

INVOKE SUB-SCHEMA CREATE-CRSE-FILE
OF SCHEMA STUDENT-RECORD-SYSTEM

PROCEDURE DIVISION

OPEN AREA COURSE-INFO-AREA

USAGE-MODE IS UPDATE

PROCESS 1IT.

INSERT COURSE-REC INTO COURSE-INFO-SET.

GO TO PROCESS 1IT.

CLOSE AREA COURSE-INFO-AREA.

http:SCHEf.tl

95
CREATE COURSE-FILE

INVOKE
SUB-~S(HEMM
CREATE-CRSE:

FILE

OPEN Coygse-
INEO-SET
AND
CARD-F1LE

1

READ
CHRD- FALE

C\lose

COURIE- M-

Laao-CiLE

DASPLAY Dis PLAY

! 13
CARD WRON G
Rec CARD®

N

Move Couest
IFFO TO (DURSE
Rec

INSCRT
COURSE-REL

MY
LouRsE- INFD
Se T

96

CREATE STUD-FILE, PERFORMANCE FILE AND LINK THEM
WITH COURSE-FILE.

IDENTIFICATION DIVISION.

PROGRAM-ID.
PRIVACY KEY OF ALL AREAS IS ST-IN-KEY.

PRIVACY KEY OF ALL RECORDS IS SI-KEY,
CI-KEY, ST-CR-KEY.

DATA DIVISION.

SCHEMA SECTION

INVOKE SUB-SCHEMA CR-STUD-WORK-ATTACH-CRSE.

PROCESS 1IT.
IF COL-80 IS EQUAL TO 'F' MOVE DEPARTMENT TO DEPT
MOVE STUDENT-NO TO STUD-NO...
ELSE GO TO MOVE-PERF.
INSERT STUDENT-REC INTO STUD-INFO-SET.
GO TO PROCESS IT.
MOVE-PERF.
MOVE YEAR-IN TO YEAR TERM-IN TO TERM...
INSERT PERF-REC INTO CR-PERF-INFO-SET,

ST-PERF-INFO-SET. GO TO PROCESS IT.

CLOSE ALL

97

CREATE STUDENT-FILE, PEREDRMANMCE-FILE

AND Link THEM WITYH COUuRSE-F\LE

OopEN
MLL SETS
CARD-FILE

A
Disk - FiLes

INSERT
INTO

STY beNT-
INFO -SET

Move
STUDEN T
\BFO 1IN
STDENT
REC

STIRE
C ARD -REU
WA

DisK-FILE

SORT D\SK-FNE
ON Kevs -
STUD-NO
CRSe-M0

READ
SoRTED
Disg-fiLe

o)

No
PR\Nf MOVE INFO Yo
PERFoRMANLE
-
CARD-REC REC
~ n X
MSERT
’ REC {10
WRON ¢ AR AP
ChRD (RS E-PERE-SET

98

INSERT MARKS OR MARKS AND GRADES -

IDENTIFICATION DIVISION.

PROGRAM-ID.

PRIVACY KEY OF ALL AREAS IS ST-IN-KEY,

DATA DIVISION

SCHEMA SECTION

INVOKE SUB-SCHEMA CR-STUD-WORK-ATTACH-CRSE

PROCEDURE DIVISION

OPEN ALL
PROCESS IT
FIND COURSE-REC USING CRSE-NO.

PROCESS AGAIN.

FIND NEXT PERF-REC RECORD OF CR-PERF-INFO-SET SET

GO TO PROC-AGAIN.

C

J2
ANMSERT MBRRKS OR/AMD GRADES

o PEN _
AL seTs
AND
CORD “FILE

fREAD
CArD-fiLg

'STORE I
Memofy

DISPLAY
CARD AND

S WReNG

CARD

o

(READ
{(aep-FiLt

DI\SPLAY
Fumenon

ANp DATA

CHRDS TsING

O1SpPLAY

‘Puniction

(heae .
TANSSIN G

GET THE SET
OF CWINE R
LouRsg-tong

)

Mob1 ey
THE MeMPER
Ploprding

(TioN
To PuntlRs

http:WRo)...tG

100
INSERT

GET To THe

CouRSE-1n€p-
SET

FIND NExT
AVAILABIE
SLOT

|

STORE THE
Course-Rec

1

SEARCH
T™E foiNTeR
PRRNY

INSERYT THE
POINTER_ To
T™HIS (ougsE-
RE&

THE ABovg
fPoiuTen 1S
STORED N
SokTted DROER.

W em s eee e g
- e = @ W owm om s

- e ww W

o o = o-

WNSER TUE
POINTER tM
AVAWLA A LY
<SvoT

1

WHEN SET
CLOSED, DEMS
SOATS ™ €
PoINTER pREAY

101

MODIFY

SEARC

ALtorDING TO
THE (RSE-CODE

PoINTER A RRAY

PARE TRE SET
AVAILABLE oF
W HILH THES CR5E-
CopE 15 OWNER

A2

SEARLP THE

HMEM BER
MS N Ly B rvi8eD-
DPED PoivTERS

&

GeEr T™ME
MEMBER

: \l
ADD MARK OR
Mpak AND GRAD
ALlordINg T
THE FUNCLTON
CARD

1}

STORE 1T BAKK
IN THE SET

SOME LOLATION

102

INSERT PERFORMANCE RECORDS
INTO COURSE AND STUDEMT SETS

QET TO THE

STUDENT-

Pe R FoRmARLE.

S5ET dainmin
STUD YN

OF AS5T MEMBE
FROM OWNER
T° TEis Perf-

__REC

MOVE Tue pmmj

MOVE ThE
PoIMTER OF
THIS PERFREC
To THEOWNER

GEr TO THE
Coupse-pe RE-
SET USING

Coue-Lope

Move THE
POINTER OF THE
5T memgeRr
FROM OWNER
TO THS PERR.REL

MOVE THE
POINTER OFTHS
PERF-ATC TO
THE OWMER

STORE THE
PERR RECIN
NEXT AVAILAZLE

SPALE mMTaANT
FOR PERE-REC

2.2.2

103

CONCLUSION
The data base is the foundation of the information

system. In reality the cdata base 1s a collection of data
files. A data file in turn is a collection of data records
that are composed of data fields. There are many advantages
end some disadvantarses of the generalized data base. Some
of Trem are given below:

1. The atility to organize data in a manner which is
suitable and zppropriate to the interrelated functions of

the orgzanizati

[
@]
¥
¥

2. Data description is contained in the data base
independent from programming functions, thus relieving
programrers of data management,

3., Ability to provide users with a direct interface

with the data DTzse,

6. Gives faster response to user needs.

7. Allows users to interrogate the data base and make

8. Ability to meed§ changing neéds of users over time,.

9. Data errors and inconsistencies are reduced because
duplication is reduced.

10.Cost savings are effected.

104

The disadvantages of the generalized data base

management system are:

1., The design and implementation of the data base
approach requires highly skilled professionals.

2. The initial investment is extremely high.

%. A sophisticated level of hardware and software is
necessary.

4, High level of security safeguardé and btackup is

5. Brrors nmight develop thoughout the data base because

>

of a single error emanating from a source document.

Q

105

2.3 COST ANALYSIS TECHNIQUES

2.%5.1 INTRODUCTION

The objective of this part of the Student Record
Management System is to develop techniques to analyse
various costs.

We shall restrict ourselves to computer operations
involing peripheral devices, which is basically the cost of

peripheral device access and peripheral deyice storage.

However, there are other factors to be taken into consideration

such as personnel, CPU time, maintenance of computers,etc.,
but for our purpose we shall not consider them.

The cost of any I/C operation can be analsed by the
number of accesses and auxilary storage. For instance, the
cost of retrieving, deleting, adding or storing information
can be computed by the number of accesses and/or storagé
required,

The number of peripheral device access depends on
the organization of the databank. For instance, a request
to retrieve an item from the databank may require only one
peripheral device access or it may reguire many, depending
on the organization,

The organization of the databank and all I/O
operations are discussed in detail in this part. The total

cost is the summation of the cost of I/0 operations and

storage.

106
2.5.2 DEFINITIONS

Before we start the SRMS databank, it is
necessary to start with its description and soﬁe definitions
used very often:

A databank is a collection of files, related to each
other. The databank of SRMS has five files.

A file is a collection of identical records on a
secondary storage device. In case of SRMS the files are on
IBM 3330 DASD.

A record is a named collection of one of more data-
fields or data-aggregates. There may be an arbitrary number
of occurences of a record in a file of each record type.

For exanmple, there would be one occurence of *the record tjpe
STUDENT-INFC-RECORD for each student. This distinction between
the actual occurences of a record and a type of the record

is an important one.

4 data-field is the smallest unit named data. The

amount of storage defined for a field depends on the type
and range of data to be stored. For instance; Student-
number is a data-field and is 6 bytes long.

Files in a -databank may be organizedvin different ways
determined by the access method. Three of the five files of
the SRMS are organized using relative access and two using

sequential access method.

Relative access: Each record is stored at a unique

position and accessed by the address of this position. The

address is measured relative to the beginning of the file.

©

107
In this ca2se any record of the file can be accessed from
secondary to primary storage without accessing the preceding
records. Three fileé of the SRMS organized by relative access
are crdss-referenced, which makes it faster and cheaper 1o
access the connecting records directly.

Sequential access: The records of a file are organized

in sequence and a record can be accessed only éfter all the
preceding records have been accessed. Two files of the SRMS
organized by Sequential access method have only a few records
in each files for directofies.

A blockx i: the unit of peripheral storage which ié
read or written in a single acceés.

An access is the operation of copying a block into

a buffer area in core, or conversely copying a block from

core into secondary storage.

Access time differs from one device to another. How-

ever we will restrict ourselves to IBM 3330, which is used
for.the system. Table 1 shows the average access for 23%14

and 3330.

0 50 100 150 200

tracks travelled

IBM 2314 access time

108

Devicevr Track Kumbter of Number Seek time .
Capacity tracks cyl. of cyl. Min | Max |[Ave
(§ytes) (MS)|(MS) | (MS)
2314 7294 20 200 25 | 130 |60
3330 13030 40 400 10 30| 55
Table 1

2.%3,3 ACCESS COST
The access cost,Cx is the cost per access to data on
peripheral devices. The access cost can be expreséed as:
Cx= uC1o
where C1g is the actual charge for access or I/0 request and

1 if the peripheral unit is on line

a= on and
+ veyrg 1if the peripheral unit must be

mounted
where, Cm is the mounting charge and v blocks per volume. A
volume must be mounted after every v I/0 requests.

The charge CIG will usually vary in an installation
depending on time of day, priority, core,etc. At McGill an‘
access CIO=O.133¢, if prozrams run in . 400k at priority 2
and CIO=O.167¢, if a program runs in 200k at priority 2.

In our case we will presume that files are stored on-line

so that there is no mounting charge and

C{=Cyo=0-133¢

©

<

109

2.3.4 STORAGE COST
To find the storage cost, Cs, we must relate the block
size,‘B, to the unit of storage, Q. Let the number of blocks.
per unit of storage, b, be so that
bB=pQ
where p is the proportion of the storage unit actually
occupied by data. The storage cost 1s
Cs = TA’L("T + M ‘)
;.C.g. ’(,(no + “x("D)

where Cpis the cost per unit time of a unit storage space.
The storage cost will vary, depending on whether the file
is stored on tape, on-line or off-line, At McGill storage
charge for cn-line is C=20¢ per track/week. This can be
expressed in terms of n(t) |
= 52 j () &t
2.3.5 ANALYSIS OF SORTING
External sorting can be made fairly straightforward
with a few simplifying assumptions. Ve follow Knuth's "The
Art of Computer Programming", sections 5.4.1,5.4.6.,2and 5.4.9,
The time reguired to do a sort-merg on a disk can be expressed
Newt(1+ |log p 51)

where N= number of records in a file
C= number of characters per record

w= "overnead ratio%"-the ratio of t to the affective
time to read or write a character. On IBM 2314

will full cylinders and tracks,

110
1 if the file is on single cylinders
1.05 if the file is on contigous cylinders
1.12 if the file is on non—cdntigous cylindérs

or if the multi-tasking causes arm contention

t= the time required to read or write a single character

iy 25 ms/tracks _
On IBM 2314, b= 7294 ehars/track ~ 3.44 usec

S= the number of initial runs,i.e. the number of subfiles

that are sorted with an internal memory independently
and placed on external files before merging begins

P= the nunmter of simultaneous merges used to merge the
resulting subfiles together

The expression of NCwt is the time required to read a
single pass of the file and 1+Yiog P §\ is the number of
passes, i.e. a pass to distribute the S initial runs and
log p S passes to do the P-ways merge; S is determined by
the number of records in the placement section, (see Knuth
5.4.1), T that can fit only into core memory(M characters)

k)

less three tuffers (B characters each);

According to Knuth for random data the number of initia
runs S can be egtimated as
5= ?%" + '%;qf
Once S is dgtetmined the order of the mergg@, can be
found which gives the smallest number of passes,[iog P é}

subject to P being small enough that P buffers will fit

11

into core memory.The appropriate relationship among P,S
and m=fiog,p S\ is:

| P=[s ;ﬂ

since m=[log P SX: ['ln S/lnﬁ\

implies (m-1) 1nP< 1InS <« minP

ie. PPle gapl

This reliazation can be used as follows: given S
find the smallest m for which'szS %1 is not greater then
the number of buffers that can fit into core. Thus in Knuth's
example (P3.6.4) B=5000 and S= 60 indicates that for an 8
way merge two passes are required.

An expression for the number of access required in
a -sort can be obtained from (1) by replacing the time wt
by 2/B. Since NC/B=n, the number of tlocks of data'in‘the

file, we have the cost for sorting: -
b

[

Cs= 2n (1+[log p S|)C« or
2n (14m)Cx

The factor of the two enters because each pass
involves simultaneéus reading and writing on different
disk files. In analysis of real life sorting the parameters
P and S must.be chosen to correspond the sort parameters
actually used.

Analysis jmdicate that the sort could be done either

with m=3% in 100k or with m=2 in. 200k.

In our case we have: M=200k, B £13030 bytes.

112
2.3.6 SRMS DATABANX DiSCRIPTION

The SRMS has five files with a fixed number of blocks,
" which makes it easier to analyze the cost. Two files are
organized by SAM (Seguential Access.Mathod) with one record
in one file and two records in the other file., The rest of
the three files known as Student-file,Course-file and
Performance~file are organized by RAM(Relative Access Method)_
which permits the acéess of any record directly if the
address 1is known. The two sequential files are ih fact the
two directories for the student-fileand course-file. The
three files, Student-file;Course-file and Performance-file
are linked up with each other by embedded pointers.

The SRMS is designed to maintain records of upto
1000 students. The length of files in bytes at any given time
t is:

Po=Ne(t) * (K1+Al)
CF=Nc(%t) * Rl -
SFD=Ns(t) (K1+A1)

P=Ns(t) * Rl
7=Ns(t) (Np(t) * R1)

r
A%

*

S
P

x*

where,Nc is the number of courses offered, Ns is the
number of students, Np the number of Performance-records,
R1l, record length in bytes,kKl, kéy length in bytes and
Al, address length in bytes.

However, to analyze the cost of various bperations
and compare it with another system, we assume the number of

students is 1000, the number of courses offered by the

‘department is 200 and finally the number of Performance-

115 »
records is 10,000, @ 10/students. With this assumption
we can see the strength of the files with respect to
the number of records/track and the number of tracks

occupied by each file which is shown in the table below:

P 4t s K)ol Lo | Secoman] TS) b s, s S5
ts) 19 | (o) |)] By We/r) () | ()
CFo 200| 6 |5 | LBoo 1 i\ \ L
Sep |Looe b | & 12,000 2 L 2 2
Ce 200 3¢ | 200 76 3 3
SF jloeo By | 4000 bo 3] L8
P [1ooo 26 84| 62] 12y
TOTAL MO Op TRALKS REQRD. 6| Ly
Table 2

The number of tracks required for each file is
obtained by using the formula given in IBM DASD book.
The DASD used 3%3%30.

The number of records of 80 bytes/record, if

blocked is 162/track.

http:number.of
http:N41'l-14.0.01

114

We could use different distributions to find out
the average number of courses per student, the average
number of students in a2 class and also the average number
of courses added or deleted every semester. However, it
may not be appropriate to use various distributions
to find out this information.

It is up to the educational institution +to decigde
the minimum and maximum number of students in a class and
hence the average will differ in each sbhool. Therefore,
the average could be found by using the previous or past
couple of years real life data.

As far as the average number of courses per studenﬁ/
semester is concerned the schools require a certain
number of credits to be earned for a particular degree.
For example, a student is required to earn 120 credits for
2 Bachelor's degree. Full time students are expected to
earn 120 credits over a four year period. This tells us
the average number of courses a student should take is
5 per semester to earn 120 credits in four years.

If we decide to use variow distributions to find
out the average every distribution will give us different
figures, anyway. Therefore, for the sake of the cost analysis
we have decided to take an arbitrary number of 100 as,
average number of students in a class and 5, as average

number of courses per student which seems to be quite generall

applicable.

115

The files of»thv SRMS are set-up on DASD by relative
access method, which means any student or course can
be accessed directly. However the courses of a student
can be accessed only sequentially. Similarly, students in
a course also can be accessed only sequentially. We can
see from the exemple below that if we wanted to access a
students record 320 we would have to read all his preceding
courses till we reached to course 320. We also notice'that
to reach W 2 coufse we have to access tws records,ie.

- performance-record and course-record.

Student
Courses
005
308
R 310
[1315

[————\ﬂ 320

This indicates that if in a course there are 100

students we have to access 200 records to go through the
100 students. Similarly, if a student is taking 5 courses,
we have to access 10 records. Thus we can imagine that the

data bank consists of 200 course-files of 200 records,

(100::students) in each course-file and 1000 student-file

©

116

of 5/10 records depending on 1st or 2nd semester, in each
student-file.

Now that we have theAtechnique:of analyzing the cost
of various operations we will carry on with cur assumption
of 1000 students in a department, 200 courses offered by
it, average no. of students in a class is 100 and a student
normally takes 5 courses per semester, With this assuption
the cost of sitorage and various other I/0 operations

will be =23 follows:

©

117

2.3.7 1I/0 OPERATIONS

The cost of the operations on the organization
and méintenance of the databank can be analyzed as
updates,deletions,additions,printing grade reports,etc.
We define these operations for the basic access unit, the
block. The number of accesses in each case is anakﬂgge&
seperately. The access is the elementary costing unit for
computer operations.

An update is the operations of adding or deleting
information in an existing record. For instance, entering

<

students grade in record.

,_l.

FPrinting grade reports involve obtaining data from

the existing blocks and printing out.
A daletion is the operation of excluding a blockv
of data., For instance, a course dropped.
An addition is the operation of including a new
block of data, For instance a new course taken by student.
211 the above operations involve ‘retrieving (accessing

blocks From databank.

ANALYSIS OF ACCESSES
The average number of accesses required in each
operation can be analyzed seperately. The cost for

retrieving (accessing) blocks is discussed in the

following pages.

118

- INITIAL COST

The initial cost is to set-up the databank on g DASD
(Direct Access'Storage Device) or add/courses during the
following semsters to the existing databank. Setting-up
databank occurs only once a year,i,e. in the beginning
of the year. During the following semester the initial cost
is due to the addition of cowurses.

DATABANX S8ET-U

Lae]

+3

o set-up the databank on the DASD there are several
operations involved, such as creating Student-file and its
directory, Course-file and its directory, Performance-file,
and linking the three files together. The operations are
performed by the following computer programs.

- The program CR.CRSE.FILE stores the course-records

in a relative access file end the directory as a single and
the only record in a sequential access file. The number of
accexzses is the number of courses, plus 1 for storing the
directory. The program also uses an external sort before
transferring the records to the course—file._For‘sorting,
physical block size is 61 card image records. Thus, the
cost for creating the course-file is
=((Nc(t) +1)*Cx) + Cs',
where Nc(t) is the number of courses at any time, Cyx is

the cost/access and Cs' is the cost for sorting.

119

The program CR.PERF,FILE creates a file of 10,000

dummy records in a relative access file, known as Performance-
file. The number of accesses is the number of records
created and therefore the cost is
"-‘—Np * Co
wnere Np is the number of performance-records and Cg is
the cost/access. -

The program CR.STUD.LINK creates student-file and its

directory, stores the student-file in a relative access file,
the directory as the first two records in a sequential
access file and links the student-records with the performance
and course records. The number of accesses involved, is 2

for storing the directory, plus Ns, the number of students
times Nc, the number of courses a student can take, plus

2N¢ for storing the addresses of the first student in each
course in Course-records. The factor of two enters because

to store the addresses the course-records have to be accessed
and then stored back. The program also sorts a file of
students records before linking them with Performance and
course records. Thus the cost‘is

= ((2+Ns(1+Nc) + 2Nec)Cyg + Cs'

NEW SEMESTZR
After the initial szt-up of the files, the courses

are added to the databank in the following semester, The

program sorts the course-records before adding to the data

bank, The number of records sorted is Ns(t), the number of

120

students, times, Nc' the number of courses a student can
take. Thus the cost is
~=- (Ns(t) * Cr) + Cs!

s - — nr
where Ns(t) is the number of students, Cr (Cr= 5

is the retrieval cost and Cs' is the sorting cost. In tais

. — nr” .
case n, in Cr= FFT 0 18

=n = 2(Neg + Nsc),

where, Ncs is the number of courses a student takes, Nsc
is the number of. students in a class and the factor of
2 enters beczause to access a course-record, a performance-
record is accessed and then the course-record 1is accessed.
Similarly, to access a student-record, a performanée-record

is accessed and then the Student-record is accessed,

student-record L\\\\
N

p.T. CRSE.REC.

p.T. CRSE.REC

p.r.| F——3 |CRSE.REC

ADDITIC&S

It is quite difficult to estimate the number of
course additions every semester. However, we can assume
a student will add one course. In this way, some students
may not add any and some may add a couple, which will

balance it all out. Thus, the cost for course addition is

CA = (Ns(t)‘* Cr) + Cs!

©

121
where Ng(t) is the number of students in the department at

any time t;Cr(Cr= %%T), the average cost for a batch of
requests(accesses) and Cg, the cost for sorting. In this case
also n in Cr=—%§T is = n = 2(Nes + Nsc), which is described

under new semester,

DELETIONS
In the czse of deletiong too, we can assume a course
deletion for each student each semester,.which will permit
some students to drop more then one course.and some may not
drop any. Thus the cost for deletion is
cD == (Ns(t) * Cr) + Cs'

where XNs(t) is the number of students in the department at

nr
r+1

any time t;Cr(Cr=), the average cost for accesses and

Cs' is the cost for sorting..In this case also, n in Cr=

nr is =n =- 2(Nes + Nsc), as above,
r+1
UPDATES

This is normally the cost of entering the'grades in
the performance-records. The grade-cards are sorted in class
order, before they are entered in their respective records.
Thus, the cost for entering grades is

U =T (Nec(t) ¥ Cr) + Cs',

where Nc(t) is the number of courses offered by the department

nr
r+1

records,Cs' is the cost for sorting and finally T, is the

at any time t, Cr(Cr=) is the cost for accessing the

number ..of times the grades are entered. In this case the

122

length of the file, n in Cr:;%§~is

n= 2 Nsc,
where Nsc is the numter of students in a course and 2 enters
because to access each student-record, a performance-record
and then the student-record is accessed. Even though the |
grades are entered in the performance-records, student-
:ecords are fead to check if the grades are being entered in

the right performance-records.

The grade-reports are printed out at the end of each
semester. In this case no sorting is required. The files are
simply read and printed out. The cost for printing‘out the
grade report is

GR = Ns(t) * Cr,

where Ns{t/ is the number of students in the department at

. n . .
any time %, and Cr(Cr;vrf1) is the average cost for accessing
records. In this case the length of the file n is Cr= §§1 is

n= 2Ncs,
where Necs is the number of courses a student takes and 2
enters because Lo obtain each course-information two records

are read.

123

2.3.8 COST OF OPERATIONS USING DIFFERENT ACCESS
METHODS

After having develored the techniques of cost
analysis in the previous sections, we can now cost the
various functions of the Student Record Management System
using different access methods and storage devices,

The data bank of this system is organized on a
Direct Storage Device using Relative Access Method.
However, for comparing the cost of this system, another
system using Seguential Access Method was also designed,
costed zand compared.

The section 'Cost of Operations using DAM' computes
the cost of storagé and the various function, such as
create and update files, performed by this system through
out the school year. It also computes the cost of printing
out the reports.

The section 'Cost of Operations using SAM' also
computes the cost of all the operations performed though
out the schoocl year. However, in this case all the records
are organized on a Disk using Sequential Access Method.

Both the systems perform exactly the same functions.
Thne only difference is the organization of the files, and

therefore the cost.

©

124 |
2.3.8.1 COST OF OPERATICNS USING DAM

We maintain all the students' current years records

on a DASD and the previous years records on tapes, which

reduces the storage cost considerably. The cost per track
at McGill is .20¢ per week. Whereas cost of storage on

tapes is negligible. Therefore,the cost for storage on

- pasD for the current year is as follows:

1st Sem

The average number of courses per

student is 5. Therefore the total

number of courses for the first semester is
=Ng ¥ Nc;.
=1000 * 5 = 5000

We can see from table 2, the number of

tracks required for the first semester

is 96, Thus the cost is

=96 ¥ ,20¢ per week
= $19.20 per week

. . 18t sem = $19.20 ¥ 26 weeks $499, 2000

2nd Sem
The number of tracks required for the
secord semester is 148. (see table 2)
Thus the cost is

= Np(t) * o4
148 * ,20¢ per week

]

-$29.60 per week

L 3

. . 2nd sem = $29.60 ¥ 26 weeks $769,.6000

2)

A.

125

DATABANX SET-UP
CREATE COURSE-FILE

= (Ne(t) +1 * ¢ + Cs'
(201 * .0013) + Cs!

.2673 + (2n(1+2) * .00133)
= 2673 + (2 * 2(3) * .00133)
= 2673 + ,0106 =

= 10,000 * ,00133 =
CREATE STUDENT-FILE AND LINK WITH
CCURSE~-FILE AND PERFCRMANCE-FILE
= {(2+Ns(1+Nc') + 2N¢) Cy+ Cs'
~= ({6002 + 400) * .00133) % Cs'
7.1833% + 2n(1+2)Cx
+ (2%99(3) * .00133)
3 + .7900 =

I N
-3 =
*
— —
w
N N
M

3) WEW

The
the

(Ns(t) * Cr) + Cs'
= 1000 * (
1000 * (giggz_g_ ¥ .00133) + Cs'

1 CK) + Cs!

(1000 * ,23%28) + Cs'

23%2.80 + (2n(1+2)Q()
2%2.80 + (2%¥31(%)%,001%3)

I

2%2.80 + .1649 =
length of the files are 210, because

five courses are to be added in 2

directions, student-file (5 records)

2779

13.3000

1.9733

232.9649

126

and course-file (100 records). Two

accesses are required to access each record.
4) COURSE DELETIONS -1st SEM |

A. For course deletions we have assumed 1000

course deletions every semester.

i

(Ns(t) * Ccr) + Cs!
*
(1000 * (2192 1 x 00133) + cs°

}

2
(1000 * .1297) + (2n(1+2)*.00133)
1%3.7000 + (2*7(3) *,00133)
139,7000 + .0559 139.7559

B, 2nd SEM

i

"

C

]

Ns{t) ¥ Cr) + Cs'

(1000 * (339—%—1— * ,00133) + Cs!

0

n

(1020 * .1463) + (2n(1+2) *,00133)
146,3000 + (2%7(3) *.00133)
146,3000 + ,0559 = 146.3559

]

I

During the second semester the length of the

. . nr .
file in Cr= 77 18 220 because the average
no. of students in a class is 100 and 10 courses
per student makes it 110. To access each record, 2

accesses are required, which makes it 220.

5) COURSE ADDITIONS ~-1st SEM

For course additions too,we have assumed 1000
course additions every semester. During the 1ist
semester the average number of courses per student
is 5. If the course deletions are made first the

average number of courses per student left in the

file is 4. This means the length of file in Cr= %57 is

127

n=2(Ncs + Nsc)

=2 * (4 + 100)

=208
Therefore,the average cost of the additions
during the first semester is

(Ns(t) * Cr) + Cs!

=(1000 * (28X % 00133)) + s

=(1000 * .1383) + (2n(1+2) * .00133)
138.3200 + (2%7(3) * .00133)

=138.3200 + .0559 =

1

imilariy, the length of file.in Cr= %57,
is 218, The average cost is
(Xs(t) * Cr) + Cs'
=(1000 *(E821 % ,00133)) +Cs'
=(1000 * .14297) + (2n(1+3) * .00133)
=142,9700 + ,0559 =
6. A) UPDATES -1st SEM
T(¥c(t) * Cr) + Cs!
=3((200 » (29912) * .00133) + Cs')
=3((200 * ,26334) + Cs')
=%3((52.6680 + (2n(1+2)0&))
:3(52.6686 + (2%31(3) *.00133)
=3(52.6680 + .1649)

=3 * 52.8329

138.3759

14%.0259

158,4987

128

B) UPDATES -2nd SEM
T(Nc(t) * Cr) + Cs!
=3((200 *(r+101)+ Cs')

=3((200 * (210« 00133)) +cs)
=3((200 * .5267) + (20(1+2)Cx))

=3(105.%400 + (2%31(3) * ,00133))

=3(105.3400 + .1649)

=3 ¥ 105.5049 = - 316.5147

During the first semester the length of the

cn . n c s
file,i,e. n=200, in Cr= ?%T' This is because

the averazes number of students in a class is 100

but to =zccess each record two accesses are involvéd.
However, during the second semester n=400,

because the file of the courses is now doubled,

even though the average no. of students in the class

are s3till 100, Therefore, the request is still 100.

7. A) GRAD® REZDORTS -15%t SEM

*
«Q
[z}

)
=1000 * (‘r+1) Cx

=1000 * ((—2=2)% ,00133)

=1000 * ,01064 10.6400
A student takes on the average, 5 courses and
therefore,there are five requests. The length of
file, n= 10, besause to access a record two
records are read.
B) GRADE REPORTS~2nd SEM

Ns(t) * Cr

=1000 * () &

©

129

=1000 * ((2?:10—) * ,00133)

=1000 * .02394
During the second semester a students'
file has doubled because of 1st and 2nd
semester courses..Therefore,the file is
equal to 20,and request 10.

COST FOR CNE YEAR = $2590.42

COST PER STUDENT = 2.59 per year

23.9400

130

2.3.8,2 COST OF OPERATIONS USING SAM

INTRODUCTION

The purpose of the Student Record Management
System is to maintain up-to~date students records and
print out transcripts at the end of each semester,

The Databvank of the SRMS has only one file
called Student-file, set-up on a DASD by Sequential
Access iethod., A student has one record per course, i.e.
if he is taking five courses, he has five records in
the student-file. FEach record con%ains Student-code,
student-name, sex, degree, level, address, telephone
number, course-code, course?description, class performance
etc,

The main purpose of the SRMS is to maintain
students up-to-date records by deletion or addition
of courses, entering grades and marks oﬁfained
in diffesrent classes and printing out the grade
reports at the end of each semester. However, the data
bank can be uszed for any other purposeby writing specific
programs. These requirements will differ from school

to school.

©

151
STUDENT-FILE
Each record of the student-file has the following

information:

INFORMATICN COLS BYTES
Dept. . 1-3 3
Student code 4-9 .6
Student name 10-29 | 20
Degree 30-33 4
Level 34-35 2
Sex 26 | 1
Street 37-53 17
Apt.Yo. 54-57 4
Town 58-73 - _ 16
Telephone Ho. T74-80 i
Course-code 81-86 6
Semester 87 1
Year : 88-89 2
Course-cescription 90-114 25
Ko. of credits 115 1
Grades Obtained 116 1
Marks Obtzined 117-118 , 2
Record iark 119 1
TOTAL 119

At the time of registration two cards per course
for each student is punched and stored as one record per

course, as described above. Thus each student will have five

or six records, depending on the no. of courses he takes.

However, the normal load is five courses per semester,

132

The cost for setting up the databank on a DASD is
Ns(t) * 5

(u
where, Ns(t) is the number of students at any time, 5

%)}ng

courses is the normal load, u is the number of records per
track, Cx is the cost per access and Cs' the cost of
sorting. |
NEW SEMESTER

When <he second semester starts each student takes 5
new cowrses, which should be added to the databank., The
databank is organized sequentially'and therefore,new
records zre stored on a Disk-~-file, the old records added
toc it,after sorting the new updated file is stored back
to its originai position., The cost is

=(2ng + 2n4(%)) Cy + Os'

where,n is the number of physical blocks in the original
file, n1(t) is the addition of blocks, Q(,the cost per
access and Cs' is the cost for sorting the file.
ADDITICHS

After the school has started the students are

i
ot

o]

ot
O

allowed hange any ccurse they wish within a certain
period. These changes cause additions and deletions of the
course records in the databank. However,it is done only

once a semester. We will assume one addition course per
studént, which will account for some students adding a couplé
and some none. The additicn of courses is also handled |
similar to the new semester course addtions. Thus the cost

is

=(2n0 + 2n, (t))C&‘+ Cs!

133

The variables are the same as explained under new
semester, | |
DELETIONS

Changing courses cause additions and deletions of
coupse-records in the databank. We have assumed a student
will add a new course, which means he is most likely deleting

a course. The number of course deletions, therefore will be

~approximately equal to the number of students. In the case

of course deletions, the cards are sorted on z Disk-file in
Student-code order. The Student-file is also sorted in
Student-code order. Now both files are read and the
Student~file is stored,deleting the records, on its original
Positicn. Thus the cost is

=(2ny + 2n, (t)) Cy +Cs'
UFDATES

The updates are normally entering grades and marks

in the student-file records. The grades are entegg;g thxgugh
data cards. The cards are stored on a disk-~file in Course-
code order and then the grades are entered by reading the
seguential Student-file. However, the student-file is also
sorted in C%urse«code order before reading it. Thé cost of
entering the grades in the Student-file is

=T(Ys + Or)
where ® is the number of times the grades are entered, Cs

is the cost of sorting the grades card-file on Disk,and

©

134

Cr,is the cost of retrieval of records for entering the
grades.
GRADE REPORTS
The grade reports are printed out every semester. The
file is sorfed in Student-code and Course-code order and then
simply reading and printing is performed. The cost for
printing grade reports is
=T(Cs' +Cr).

The variables are the same as described under Updates.
STCRAGE

To access the databank when needed, the student-file
igs stored on direct access storage device. The cost of the
file is dextermined from the number of tracks occupied by the

t

nkx which depends on the number of students. Thus the

é??,i,(t) * Cpy

where)NT(t) is the number of tracks required at any time,
and C/ is the cost per track. The present cost per track on
IB¥ 3330 at McGill is .20¢ per week.

Records are blocked 109 per track,and therefore for
5000 record 46 tracks are required.
CO3T ANALYSIS OF SRMS USING SAM

| To @nalyze the cost of storage and various I/0

operations of the SRMS, we must know the number of students
in the department using the system. For the purpose of analysi

we assume the number of students is 1000 in the department.

135

With this assumption the cost of the storage and I/0
operations will be zas follows.
STORAGE ~1st SEM
Eachbstudent takes five courses per semester.

Therefore, the total numbe. of courses for the 1st semester is

=Ng * Nc'

=1000 * 5 = 5000.
The_course records are blocked 109/track,and therefore the

numoer of tracks recuired is

'm(t) * Cg
= 46 *,20¢ per week

= ¥38.20 per week

. . 18% sem = $9,20 * 26 $2%9,20

The cost for 2nd sem is the number of tracks

from the 8% sem plus the number of tracks
required for the 2nd semester. During the 2nd
gsenester a2lso, each student takes 5 courses, which
means the number of tracks required is

=46 + 46 =92,

The cost for storage is
. n
-NT(-t) * vg
=92 * ,20¢ per week
=$18.40 per week

L 4 »

ond sem = $18.40 * 26 = $478.40

136

NEW SEMESTER
The cost for adding 5 courses for each student

in databank is

=(2n5 + 2n,(t))Cy +C's

(92 +92 * ,0013%) + Cs
(.2447 + Cs)

=(.2447 + (2n(1+42)Cy)

=(.2447 + (2%92(3%)-.00133))

=(.2447 + .7342) = @,98
DELETICN-1st SEM

In this case ni{t) is 7, whereas Ny, is

46,

F]

I'he cost is
= ~4n£t))q< +Cs!
=(92+14) *.,00133 + Cs!
=(.1410 + (2n(1+2)C«))
=(.1410 + (2%53(3)*.00133))
=(.1410 + .4229)= | L4229
DELETION-2Z2nd SEM
In this case nj (t) is 7, whereas ng, is
92. The cost is
*(2n0+2-$t))0& +Cs
=(184+14)C +Cs
=(.2633 + (2n(1+2)Cy)
=(,2633 + (2¥99(3)*.00133))
=(.2633 + 0.7900) + | $1.0533
ADDITION-1st SEM
Initially‘no was 46, but after deleting 1000 courses
(7 tracks),no is now only 39, and n(t) is 7. The cost fofv

addition is

©

(@

137
=(2nO + 2n£t)q< +Cs

=(78 *,00133) +Cs

=(.1037 + (2n(1+2)C,))

=(.1037 + (2%46(3) *.00133))

= 1037 + .3%671 «4708
ADDITIONS =-2nd S=ZM
After deleting 1000courses (7 tracks), ng is
only 85 tracks and nft) is 7 tracks. The cost for.
adding 1000 courses during the 2nd semester is

=(2n, + 2ni(t)Cp(+Cs

=(170 +14 * ,00133) +Cs

=(.2447 + (2n(1+2)QKj)

=(.2447 + (2%92(3)%.00133))

=(.2447 + .7342) = | - .9789
UPDATES-1st SZ3 |
Assuming the grades are entered 3 times a‘semestag
the cost for entering 5000 gradés is cdmputed from the cost
of sorting grade.cards and student-file records,and
the retrieval cost for entering grades. The number
0f tracks recuired for 5000 grade cards is

5000/80 ~ 32,
which is used to compute the cost of sorting. Thus
the cost for entering grades is

7(Cs +Cr)

=3((2n(1+2)Cy) +Cr)
=3((2%32(3)#%.00133) +Cr)

c nr
=3(.2554 + (=55 C))

=3(.2554 + (ﬁ%%%%gg * .001%3))

=3(.2554 + ,0612) =3 *,3166= .9498

©

138

UPDATES-2nd SEM

During the 2nd semester the student-file will

be twice as big as the first semester, and therefore,

it will occupy 200 tracks. However, the tracks required

for

=,3%671 +

sorting the gradgéards will be the same i.e.

Assuming the grades will be entered 3 times, the cost is

?(Cs' +Cr)

=3((2n{1+2)G;) +Cr

=3((2%32(3) *.0013%3) +Cr)
=3(.2554 + (3370w))

+ (225572290 %.00133))

=3(.2554 + .1224)

\DE RIPCRTS-1st SEM

cost for printing grade reporis during the
semester is

T(Cs' +Cr)

=1((2n{1+2)Cq) +Cr)

=(2%46(3) * ,00133) + Cr

nr
r+1

*q()
- 46 #5000
= 3671 + (Boppdi2 *.00133)
=,3671 + .0612

1l

GRADE REPORTS-2nd SIM

Assuming the grade reports are printed out only

once during the second semester, the cost is

T(Cs'A+Cr)
=1((2n(1+2)qx) +Cr)
=(2%92(3) * .00133) + Cr

$1.1334

139

* 5000

92
1342 + (5567

*,00133)

i

TOTAL $724.8740

The cost for maintaining a students up~-to-date
records per year is 724.87/1000 o~ 12

per student/year,

However,if tne data is stored on tapes instead of on-line
device, the cost is negl gible which is;
$7.27/1000 .01

per student/year.

CLUSION

-y

2.%2.9 CO?
We can see from the cost analysis of the two SRMS's,

the méin costwfor on=line storage. RAM 1s more expensive

then SA¥ on DASD. If we use tapes instead of on-line

storageﬁhe cost of SRMS 1is negligible., However,with the tapes,

only SAM can be used. We should ﬁot forget that we have not

cost analyzed many items, like part of the CPU cost, personnel

key punching, unit record, papers or forms used for output,

etc. Since these items are common for both the systems’

it will Just increase the cost of both the systems by the

same amount.

@

140

In short, comparisons of the SRMS's using RAM and
SAM shows SAM is quite cheaper. Moreover, if tapes are

used the cost goes down to the bottom, which is shown

below,
l
33
USING RAM
g2 |
i
|
$1
_ __ __ _USING SAM e .
USING TAPES o
0

©

141

2.4 COMPARISON WITH ALTERNATIVE SYSTEMS

2.4.1 MeGILL UNIVERSITY SYSTEM

The Student Record Management System could be very
simple and yet meet all the requirements of the institution.
We can look at the lMcGill Student Record Management System
which is quite simple and meets all their requirements.

MceGill ﬁniversity maintains the students records bn
tapes. Each student has two records for the current year, of
750 bytes each, one containing his academic informatién,such
as courses,grades, marks, semester,etc. and the other: record
containing his personnal information such as name, local
address,permanent address, telephone number, sex,etc. The
reason for having so big records is that they allow enough .
space for storing up to 20 course information.

The previous year's academic and personnal information
is stored or a different tape, which has variable length
records. The length of the records depends on the amount of
the information of the students. Normally, the information

is added or changed only on the current tape,and therefore,

AV

the length of the records have to be Dbig enough to be able

to store information in them., -

When students register, the forms are sent from each
department to the main office, where academic and personnel
informatién is punched on ~cards and stored on the tape. The
two records per students are fixed length of 750 bytes each
and therefore, there is still a lot of space reserved for

each student on the tape}

©

142

Similarly, the course changes are also sent by all the
departments to the main office, where the cards are punched
and the tape updated. The grades are also handled the
same way. |

To meet the requirements of each department several
different reports are being produced fromkthese tapes. The
grade reports for the students are also béing printed out
from this tape.

We can see the data structure of the McGill system is
simply sequential and on tape. The length of the records is
750 bytes, whether it is used or not andh%ost cases we will
see, it is not used, since there are not many students who
will Taxe 20 courses. SRMS is organized on DASD with links
to the connecting records. This means, if a student is taking
only.B courses he has only 3 records of_22 bytes each. When
he tzkes the 4th course one more record of 22 bytes'gets

attached to his other records. Thus, the students have the

.exact amount of space they need.

In McGill System,all the records are sequential which
means every time different reports are required, the taﬁes\“
are to be sorted before each repeort is printed out, whereas
in SRMS the databank ig linked in two orders,i.e. courses
within students and students within courses. Most of the
reports can be printed out without any sorting.

However, we may say that eGill System has informatioﬁ
on tapes, which is much cheaper than DASD and the cost of

sorting is also very cheap. Thié is trué,but then SRMS's

143
files can also‘be transferred from@ASD to tape after iuse.
The SRMS has student-file, course-file, performance—filé,
student-file-directory and course~-file-directory, which could
be stbred as five separate sequential files on a tape and
every.time used cén be stored on DASD and then transferred
back on the tape.

However, if the student information is on DASD the

‘system keeps track of the different files. Lo tape handling

is required, which eliminates human errors such as submitting
wrong tape with program. If a couple of wrong reports are
produced in a2 year this will juvstify the extra cost for
using DASD. I7f the institution is not using their own

computer, they have to pay a certain amount, 1like$2.00

every time the tape is reguired to be mounted. 1t costs to

transfer the data from tape to disk.. to produce a report

2.4.2 CASSARMS |

The System Cassarms, thebcbmputer Assisted Student
Scheduling a2nd Record Management System, is being used by
USDESEA, United States Dependent Schools in European Area.The

system is based on a number of computer programs developed

the IBM Corporation. The Scheduling phase of the sys¥em
utilizes the IBM programs, while the student record
management phase applies the USDESEA programs in a logieal
sequence. We shall discuss only the student record management

phase of CASSARM.

http:like$2.00

144
The scheduling phase of CASSARMS produces a student

schedule tape from which a new card for each student, listing
the course-code to which he is'assigned, is produced.These
cards are called L-deck, which lists the students actual
course assignments, If a student has six or fewer course
assignments, he has one L-card; if he has more then six
he has two L-cards. The system will accommodate a maximum of
twelve course assighments.

These cards updated manually as course'changes are
made form the baées for different reports. The department has

the listing of the course corresponding to the course codes, .

" from wnich the course change forms are filled out and sent

to the XKeypunch Dept.The Keypunch Dept will update the

The "aster deck containing course-code, éourse~descrip-
tion, section,period,instructor,class roomqktc,prepared by
the Scrool Administration for the scheduling phase is used
through out *the student record management phase. This
Master deck is known as the G-deck.

Just prior to a grading period this G-deck and5L~
deck are processed by the computer and one card for each
course a student takes,is produced in the course-code order.
This new deck is known as E-deck., An "E" card depicts a
given course in which a student is enrolled. He has one
"Bt card for each course, containing all the information
necessary to define the particular class and section.The
"EW cards are given to'the teaéhers for marking grades. The
teachers mark on each card the grade received for that

marking period, sorts the cards grade-wise and returns to

the keypunch department. The keypunch department has card

o

145
boxes marked with 4,5,C,D,E,F,etc. where cards are placed

in the appropriate boxes. After 2ll the cards are received
the grades are punched on the same cards.

The deck of cards is now ready for various reports,
such as class-lists with grades on them, grade reports for
mail-ing to the studénts, grade reports on gum labels for
their permanent record card,etc. The students are graded
twice a semester and the same computer cards are used for

the second grading period too. For the second semester a

.new set of cards ig produced using the L-deck and the G-

deck 2f the second semester,

-

146

2.4.3 CONCLUSIOR

The Student Record Mana-gement System will maintain
up~to~date records of the students. It updates the
various files to accommodate the changes made by the
students in their programs. |

The system has nine computer programs to maintain‘
the files 2z2nd print out reports. The section "Using
the System" describes how.to use the programs to perform

the various functions. The system is quite simple and

-y

to perform asny function a cateloged procedure can be
invoked. Only a few cards zre required to call any
catelezed procedure which is discussed in the above section,
In the databank the connecting records are linked
by embedded pointers. This provides faster access to
the logically connected records. |
The Data Base Task Group has proposed a Data
Description Language and a Data Manipulation Language:
to manage the database efficiently. These languages
have been applied in a few programs of the Student Record
Management System to determine if it falls on the lines
of the proposals. It can be seen in the section
"Implementation of SRMS in DERTG" that the database of the
SRMS does fall on the lines of the DBTG's proposals.,

It has pointers in different directions to all the connect-

ing records. There is no redundancy of data. It has a

147

centralized database, parts of which are used by different
programs for performing the various functions. It is
organized on a Direct Access Storage Device. However,

to ﬁaximize the advantages of this database structure,

it should be interrogative, using T30 or some other
method, This will permit retrieving and entering specific
informztion via a terminal device when it is required.

The section "Cost Analysis Techniques" indicates
that te maintenance of the databank, such as above, is
quite expensive., This is mainly because of the expensive
storaze mediz and the high cost of updating the integrated
database, However, the advantages of the integrated

.

database Jjustifies the extra cost,

)

148

References:

1. Compiler Construction for Digital Computers
by David Gries.

2. The Art of Computer Programming Vol.lII
by Donald E Knuth,

3. Lnnuleshed paper on "Cost Analysis Techniques"
oy Professor Tim H. Merrett.

i, Data Structures and Programming
by Malcoln C. Harrison.

Base Task Group (Codasyl)

5. Data
Report of April 1971,

149 APPENDIX - A

SORTING AND SEARCHING THCHNIQUES

The natural physical characteristics of conventional
memory make it more suitable for representing ordered sets

then unordered sets. The elements of a set must be ordered
according to scome property of the elements, which permits

us to locate a particular item with zreater ease then if

the elements are not ordered. There are several sorting.
technigues and any of them can be used to order z set.
Infor-una*tely, there is no known best way to sort: there are
many cest methods, depending on what is to be sorted on what

machine, Tor wrl

3

2t purpose. In words of Rudyard -ipling,

-

"Phere are nine and sixty ways of constructing tribal lews,
and every single one is right." Some of the common sorting

technigues are discussed below:

SEQUENTIAL =SCRT

We will suppose that an item contains a ¥ey which is
to e used to order the items., The items are to te sorted
so that their keys are in increasing order. The simplest
method of doing this i= To search the whole seguence for the
smallest item and then to exchange it with the first position

t. Then the 1ist except for this smallest ilem

is searched for the next smaglleszt and this is exchanged
with the second item on the list,etc..

mrhis is simple %o program, but it has the disadvantage

that, for a sequence of n items, it raguires n{n-1)/2 tests.

150
APPENDIX - A

It also has the disadvantage that it will take just’as long,

even if the 1list i=s in the correct order initizlly.

This sort startsbJ conmpering the first two iterms in

the sequerce. 1f these are in incorrect order, they are

erchaenged. The procedure then goes on to examine the
second and tnird items in the sequence. In general, if the
i-th and {i+1)-st elements are in incorrect order, the lower
one is moved upwards until it is in the correct position.
ize the comparison continues with the (i+1)-st and
(i+2)-nd elements until the end of the list is reached.

snole procedure is repeated until a pass is found witnout

=3
ba
3]
<t

a pair out of order. kubble scrt, in the worst case will
require n(n-1)/2 tests and excharges, while in the best case,
it will regquire (n-1) tests and zero exchanges.

¥TRAT
U o G% gl

The escential idea of the merge'sort is that two
ordered sequences of lengths my and m, can be merged to

ovide a completely ordered sequence len gth m, + m, ,

o]
]

o
6]
e
[
o

avproximetely m, + m, moves and lezs than my + m, tests.
This can be accomplished simply by removing at each step

the smallest element of either of the two lists onto a merged
list. The complete mer:ze sort can‘then be accomplished by
first converting the sequeﬁce of length into approximately

n/2 sequences, each of which is of length 2 and in which

151
APPENDIX - {4
the elements are ordered. The sequences are then merged
in pairs to form approximately n/ 4 sequences of length
4, e .. Thus the total number of comparisons required to
sort a sequence of length n is approximately mn logo n.

The merge sort is very efficient when it is possible
to collect all the items to be so:ted before the sorting
operation begins. In some situations, it is necessary to
sort a sequence of items and then to add a number of further
items to the sequence in their appropriate position. If a
linked representation is sétisfactory, then the new items
can ve inserted without moving the remainiﬂg items. However,
finding the position for the insertion will on averagé require
n/2 tests, when n is the number of items in the sequence.
This can be improved considerably if the sorted sequence is

stored as a tree structure.

©

152
APPENDIX - A

BINARY TREE SORT

The binary tree of 1 levels can have 21—1 nodes.
Each node can be used to store an element, so 21~1 elements
can be located by tracing down 1 links. A sorted binary
tree is built in such a way that both its left and right
subtrees are sorted, and all those items in the left
subtree occur tefore the items in the node, and all the items

in the right subtree occur later. For example the following

tree is sorted,

In this example, some of the subtrees contain one
or zero branches., This tree has four levels and could
contain 21—1 items, which is equal to 15 items. Inserting
a new item in a sorted binary tree is simple. It is added
as a new terminal node, whose position in the tree is obtained
by tracing down the tree, taking each node if the item is
before the node item in the required order, and the right
branch if it is after the node item. For example, the number
6 would be inserted to the right of 5 and the left of 7.

A new item can be inserted using 1 tests. However, if
the tree is completely unbalanced, that is, if the entries
are made in it in such an order that each node specifies at

most one subtree, then we have effectively generated a table

o

153

which is searched linearly, and will thus require an average
of n/2 tests per inseftion. For maximum éfficiency it is
necessary to keep the tree as balanced as possible. In some
cases this will reguire that the tree be reorganized, putting
different nodes at the head of subtrees, and re—organizing'
the subtrees accordingly. Thus for 7 items the first item
should be 4th, and the second item should be either second

or sixth. Zoth the order 4,2,6,1,3,5,7 and the order

4,2,1,3,5,5,7 can be used.
) | ()
@ W Q) @
O o O O ® 6 O

nowever, to rebuild tﬁe tree from top down is not
trivial. It is much easier to build it from the bottom up,
constructing a subtree with the first 3 items on it, and then
a subtrée with the 5th-7th items and joiﬁing these using the

4th,

RADIX 30RE

The radix sort is a modification of the procedure
used by physical card sorters. it is convenient when the key
on whichbsorting is to be donemrelatively short. The /
procedure takes the form of sorting the items first on the
least significant symbol. The result is then sorted on the

second least significant symbol, then on the third, and so on.

154

For example, if we were to sort 51,40,60,80,20, after
the first pass we would have 40,60,80,20,51 and after
the second pass 20,40,51,60,80. If the numbers 1,2,3,...4096
are to be sorted it will take 4 passes.
This is much vetter then the merge- sort which takes

of the order 4096 1og2 4096= 12 X 512 comparisons.

STAPCHING

For locating a particular item of a set we will assume
that an iftem has a key which will identify it. There are
several sear nlpg methods available, but some of the common

methods are discussed bhelow:

SEQUZLTIAL SZTARCH
The sirplest search procedure is the linear search, in

wnhich all the items are examined in turn until the correct one
is found. This can be used when the items are stored
sequentially in memory, or in a chain, but it has a dis-
advantage that locating a random item will require an average
n/2 attemps where n is the number of items.

However, thereare certain situations where this process
can be effective. If.all items are not searched for equally

often, the more frequent ones can be placed at the beginning.

Also this process is so simple that it can easily be implement-
ed in the hardware, thus speeding up the search. An example

of this is found in the address search in the CDC STAR

©

155

machine, which looks up all addresses in a table to find

out the physical memory location assigned to the block of
memory in which the address lies. The top 16 entries in the
table, are searched in parallel, but if the block address

is not found the table is searched linearly by hardware at a
great speed. When an address is found, it is moved to the top
of the table, and the entries above it are moved down one place

Since the address generated by a program tend to be clustered,

‘most addresses will be found in the top 16 entries, and

little tize will be spent in the linear search.

t

3INARY

n

YA
-

C:

1

+

he items are sorted, for instance, retrieyal

L)
L)
ot

{

®

can be done from n items by using log, n tests, which is
known as a binary search. In binary search, the first item

to be examined in the table is the item in the middle. By
comparing this with the object found, it can be determined

if the object is in the first half of the table or the
second. Subsequent tests on items at the centre of the
appropriate half of the table will determine which‘quarter of
fhe table the particular object is in, etc. A binary search
of 7 items is illustrated below, The 4 is compafed with the

search argument. Depending on the result, the comparison

is performed with 2 or 6 again, and so on.

156

This procedure does have the disadvantage that all

- elements in the table must be in sorted order, and any

insertions into the table require resorting.

HASH ADDRESSING
Hash coding has applications in a number of areas

including inserting and searching items. This is a metheod
for converting items of its key.to indexes of entries in
the table (the entries are numbered O,...N-1 where the
table has ¥ entries). The index is obtained by "Hashing"
the symboi by performing some simple arithmetic or logical
operation on the symbol and possibly its length. As long

as two symbols do not hash to the same index the cost of =

| searcn is Jjust the cost of doing the hashing. Trouble occurs

however, if two symbols hash to the same index, which is calle¢
collision. Only one symbol can be placed at that entry, so
we must find another spot for the second. We can ucse chaining
or rehashinz to solve the collision problem.

The chained hash addressing technique uses a hash
table whose elements, called buckets, are initially zero,
The symbol table itself which is initially empty and a pointer
which points to the current last entry in the symbol table V
initially points to the location before the beginning of
the table. The symbol table has another chain field, which
may contain zero or an address of another entry in the

symbol table. The initial tables look like this:

'©

157

HASH TARLE SYMBOL TABLE
Buckets
ARG CHEATN €&—

1 0

2 0

3 0

4 0 POIRTER
5 0

6 0

HASH TABLE

fuckets

1

= 0N - W N

Each bucket is zero or points to the symbol table entry for
the symbol which hashed to it. The chain field of each
entry is used to chain entries whose symbols hash to the
same bucket, Suppose that a symbol, S1 1is to be entered
into the symbol table. The hash function produces the addres
0f a hash table entry, foi example bucket 4, which ;f this
point is zero. We do the following.

1. . 4dd 1 to pointer.

2. Insert the value S1 and zero in chain column into

the symbol table entry pointed at by pointer.

3, Put pointer in bucket 4. |

Now if we want to enter symbols §2, S3 and 5S4 which hash to

buckets 1,3 and 6 respectively, the tables would look like

this: -
SYMBOL TABLE
, ARG CHAIN
—2 | 81 0
0 > 52 0
> 53 0
SEL 0

0 : POINTER

158

However, when a symbol S5 will be entered which hashes to
a bucket which has been used before, the chain field comes
into'play. S5 will be entered into the symbol table and
2dded to the end of the chain for that bucket. Thus if

S5 hashes to bucket 6, we have the following structure.

HASH TARLE SYMBOT. TABLE
BUCKETS TABLE ARG . CHAIN
11 S 0
2| o 52 0
3 | S3 0
* I S4 I POINTER
25| o | S5 0 k-t
¢
v

In this procedure only the buckets need to be initialized
not the entries themselves. The actual symbol table entries
should te more then the buckets. Once all entries have been
entered tne hash tables can be thrown away and its space
released for other purposes. For retrieval of an item also,
hashing is used to zenerzate the index in the table, which is

then sesrched,.

HASHIKG FUNCTION
There are a number of ways of obtaining such indexes

(Hash Code).

159

1. Multiply the key by itself and use the middle n bits as
the hash(if the table has 2**n entries). The middle n bits
depend upon every tvit of key.

2, Use some iogical operation, such és EXCLUSIVE OR, on
certain parts‘of the key.

3. If there are 2**n entries in the table, split the key

up into n bit sections and add them tcgether. Use the
rightmost n bits of the result.

4. Divide the key by the size of the table and use the remainde
as the hash index.

There could be other methods devised besides_the aboze. How-

ever, these methods give satisfactory results.

LINEAR REHASH
In this method if the collison occurs the item will
be stored in the next seguential entry. In the example
below symovols S1 and S2 were hashed and entered at entries
2 and 4 respectively (fiz. A). Suppose now that symbol S$3
also heshes to entry 2. Because of the collision it will be
stored in entry 3(fig.E). Finally, suppose the next symbol
S4 also hashes to entry 2. There will he 3 collisions
with 81, 33 and 52 in that order- beforevs4 is firally stored

at the S5th entry (fig.C)}

A B | - c
vl
1 1
2 51 , | 81 2 |81
3 3 |83 3 |83
, 5
432 4 | s2 4
5 5 |sy4

160

An approximation to the a&erage numter E of comparisons
necessary to search for’an item is

E= (1 -1f/2)(1-1f)
where,1f is the load factor, i.e. current numder of entries
n divided by the maximum number of N entries poséible (1f=n/N)
This method is not very efficient but still much faster than
the binary tree search. Suppose a table of 1024 entries is
half-filled. Thus 512 entries are filled. In binary search we
expect 9‘to 10 comparisons while here we expect only 1.5. The
searcn time for sorted or unsorted tables depends not on fhe
maxinum size of the tabvle but on the current number of entries,
Thus if the table is 10% full, we would expect 1.06 comparisons

if hal? full 1.5 comparisons; and if 90% full 5.5, comparisons

CONCLUZILXN

The siraightforward implementation of a set is very
inefficient. The elements must be in some order which will
make the searching of the elements easier and efficient. How-
ever, implementing sort and =earch routines differ from set to
set. Let uz consider the database of Student Record Management

System using Set concept. In our case, we have four sets.

3

The Student-Info-Set and the Course-Info-Set are
desired to have the order in which the members can be
accessed sequentially or randomly. Therefore, these sets
are defined asdﬁode Pointer-Array. It looks like the

structure on the next page:

o

161

owner list of P
roanrd members 13
P= memter pointer
member 3
member

It does not natter where the members are physically located
in the set. However, in the array the pointers must be sorted
to be able to access the members sequentially. From our
discussion about sorts and searches, we find that the Radix
sort will te quite suitable for sorting the array. Since the
key, in our case, is 6 digits long, it will require only 6
passes and no comparisons to sort the array. For zecessing
members, binary sort can be applied, which requires log2 4
tests, However, if the members wergﬁot desired sequentially,
Hash Addressing could have been used for entering and searching
members in the set, which does not require sorting, and
search too is faster then binary search.

The Student-Perf-Set and Course-Perf-Set are not sorted.
They have embedded pointers, the members of which point to the
next member in the set. The search is therefore, sequential.

The physical location of the members could be anywhere in the

set.

CREATE COURSE-FILE

APPENDIX - R

IOTMTIFICATION

CROAT

PROG2AM=ID
AUTHOR,
BE=ZMARKS .

ENVT AONMETN

CONF IGURATION

-

STURLCE~COMPUT
O[S J=ZCT-CA9yuT
I~NoyUT-0UTPUT

N

File-

STLT LT CA

SILECT PRI
STELECT
STLEZCT
SELECT
SEL=CT
SELECT

DaATA DIVIS
FILT SECTI
SN WNPK~F
RECORD
RECORD
AIEL
NATA P
01 WD2AKS.
o2 DE
02 ST
n2 s
G

oo
FUREN

0?2 A

G2 Y=

o2 CcO

.02 I

N2 cS

FD CARD-FI

: RECOIN

RECN2D
LARSL
nATA R

01 CARD=-E
02 =1

e2 C3

FD PETNT-—
BECTED
LA3SL
DATA &2

D LINZI~-F
n2 FIL

L () e

>
B

[RA IS

N A
~
th

Z

1)

mortIT oo

[N]
m

r
m

COMTRIL .
ARD-FILE
SINT-FILz

GUGVIND
THIS

e T e RS I)

>

X

DISK—IN

Z O
L e

'

[aNNE e

{ U X QO
W 1

[

1

&)

Oan N

o

L C OO T W

RN g) Z o]
®

[N

)

(o)

.
,

U

PYREET I

O

[RIRe

A O
()

[

o

Py

o

o<

Ao~

ol

ap

AL

>
T - U

Ol =

l
T 0
-

W0

=

.

A
<

2
-
-
R

]
A

X O X 1
A

Ry

A

¥

» O
~ 1)

(S

0w

YN
»

o

-
)

=
u

ey

A

7

-

—
0

Lot B S8

o

AU

0

8]

’
\

X0 U v

v O

oy
£

(u

O
4

I
.

» G
™ U () st

U

0T
e NN

-4 1

A -
cc

n
LR
(W)
2
L]

.

z »

]

<

{

n

by

—

]

=

VAR

OO o

v oW
DL
T e

Rely]

U

163

LA N I,

CIRIZATLS COUSGYE-FIL
BED-F75 .

330-F75 .
Gy T3 UrR—-252
IS TG Ur-ia
SIGN TO UT-2314-35-1
Z-DIREZCTCRY ASSIGN
ASSIGN TG 4 LA-2314

> T

[
mn

=
M1
NE

I

-

]
-4 T
i b
[@ IRV

pel

-
H

o

5 MNIM-KZY.,.

0
>
&)
—
i
X
Ji

(72) .

ICTURE X(13537).

C

n1

e B %]

164

DISK-IN
EECOPUING MODE IS =
DICOSD CONTAINS 99 MTHADACTSAS
BLICK CONTAINS 10 =2C070S5
LABTL RECI2D IS5 STAJDARD
DATA RECOSD I3 DISK-IN-F3ZC.
DISK-IN~-REC.
N2 FILLTER PICTURS XA %X,
02 STUD-NO-IN PICTURE S (24).
N2 YZAR-IN PICTU2Z Xx.
n2 S5IM-In PICTURE X.
0Z FILLER PICTURE X({67)..

2 COL-30-IM PICTURE X.

N

Fo o INTS ,
R=CD MBS IS F
BECTIED IN3 89 CHARACTERS
LABE S STANDARD
DATA : . INTHER2=-EEC.,

21 INTER T,
N2 F IO PICTURS XXX
n2 3EZ=-1 PICTURE 9(05),
Ny s I PICTURE X,
N2 CLURST=DES~1 PICTUIE X(ZS).
092 -1 SICTUSIE X.
N2 FILLIS PICTURT X{as4).

Fo CuUPST—FILT
RECONDING M2DE 15 F
RECOPE CONTAINS 37 CHARACTERS
LASBIL RSCIRD I35 STANDASD
DATA EZCCRD 15 COURSE-REC.

C1 COURS=-RTC.

' 02 FILLSS PICTURE 3(04),
02 CE35-<£Y PICTURS S(CA).
472 FILLIR PICTUET X(27).

D CNUBSE-FILI-0IRECTORY
RECOPGING MODe IS F
RECARD CIOMNTAING 2690 CHAOACT7PS
LABEL ZEC3RD IS STAMDAR
ATA RD OIS CC04SE—rIL~—DTC~CT.

¢r Caues LE-DIRICT.
NP FILLER PICTURE X{2400).

WODKING-STITAGE SZCTICM.

77 NOM—-KEY RPICTUDE SS(5) CCME ZSYNC.

77 CM PICTURE 2{(05) VALUST C.

77 IMD PICTURE 9(N5) VALUT ZERCS,

CNURPSZ-CC .

(03¢) ALDR=-C PICTURI $5859 VALUT ZZR(C
N2 COURSE-C RPICTURE 2(0%5) :

02 SZM~-C PICTURE X.
A2 C3JRSE~-DIS-C PICTURI X{(25).
z Cr=C PICTURE X.

v M
2
I
)
P
*

= C

Q
o
)
o]
A
—
Py
N
iy
L)
[
—
=
5
Ui
.

O)
3]
U\
rr
~.J
—

165

Q7 CRa= =0 PICTJw
A IndOX=0 PICTURD S5,
PROCEOHYDE DIVISIGH,.
STARL TS,
APIN INPUT CARD-FILD T2UTEUT OIEK-1M.
PZAD-CALDS .)
DEAD CAROD=-FILF AT 2N 6T 702 C
TEe COL=-A80 IS5 EQUAL TO 'S¢ I
S3TLAY CARD=-RTC ¢

18]
—~
v

Y
.

50 -CDCIN.

L
TL OISK=IN-P

SR a0M

WEONS CARDY

[l
-
L
2]
Tit
|
@)
v
—t
Z
.

SART~-1,
S7=2T WDIRK-FILE
ON ASCENDIMNG KEY STUD-NOG-WIRK
USING DISK-IH
NT

H
GIVING I
CHECK -S0=RT ~1

I/ SO 7T-ETU=N

N3T TQUAL TC O DISPLAY

GO TO wW=AP-UP.

—KZY .

= GC 7O aap-ur
TS JJPST C M3ve S
COIREE-DES-C MOVE
WRITE COURSE-~-REC FHOM
COURSE~-I TO CrSE~DC (TN}

) THRANSFEZR,.

"10

Cr-1 TG C2-C

iy
COL

D:sDLAv_C':
anD 1 TO
INDX=D ¢
EPRORS,
DISPLAY C

WRAP-UP -1,

[N U) W)
[,
S0 2 R
n
A |
-

I

vovE

-1
v,

R 3E—-CC Y RACUORE NCT WRITTIN' 502 TO

M-I TC 5S4W-C MOV

~
A=
G

5~ CC

AR~
T

FEC

1

IND TC

TRANSFER,

ATD 1 TS IND MOVE ZEROS TLC INDX=D (IND)Y #2vZ O
COURSE-FILI-OIRECT FROM CFO-2TFK. _
ADD 12 TO CiN MOVE CN TS NCM-KEY MOVE Z&70S TO COURSZ-C
A= ITE LCUSBEE-REC FROM COUR3IE-CC,
CLL2SE INTZ=R-FIL=Z COURS FILE CCURSE-FILE-DIRECTORY.
DISPLAY ! LS
DISFLAY ¢ COURSSC-FILE-DIRICTCRY ',
DISPLAY ' = e m s e e mm e e A

PRINT-NIR,
ALDD 1 2 I8ND .

(IND)Y IS NZT
(IND)Y GO0 T3

EGUAL TO

ZERGS RISPLAY
EPRINT-DIR,

DV E CMe OPZINMN INFPUT CLOUPSE-FILI~-DIRECTZIRY.
C2URSE-FILE-DIRZCTORY INTC CFD-wWORK AT &£rD 50 TD
DISPLAY 'CFD FROM DISK!',

DISPLAY P e e e e e e '
DISPLAY=IT.
DISPLAY CR30=0IRPECT (CHNY . IF ChN IS MO2T ZQUAL TO

= A
wl

O

SPLAY-TIT

»

N

CH
1 4

WRAP ~U
ST

G TS DISPLAY-

LAST ON=ZYe CLIZ

0,

52 FUN,

DTG Ot OIEPLAY

SI-FILE-DIniCTCRY .

CRSZ~-JIR

http:COlFS:'::-F=rLE-,)Ir,E:CTCi:.1Y
http:C::;,S::.::-)IPE:.CT

UPDATE COURSE-FILE

168

IDENTIFICATION DIVISION.

PROGRAM=1IDs UPDTCRSE,

AUTHORe GOVIND K R I P L A N Is

REMARKSo THIS PROGRAM UPDATES COURSE-FILEo

ENVIRONMENT DIVISION»

CONF IGURATION SECTION,

SOURCE~-COMPUTERs IBM-3560-F750

DBJECT-COMPUTERs IBM-360-F75,

INPUT-3UTPUT SECTION. : .

FILE~CONTRGOLo :

SELECT CARD-FILE ASSIGN TO UR-2540R~S~-CARDS
RESERVE NU ALTERNATE AREA

SELECT DISK-IN ASSIGN TO UT-2314-S—-INDISKo
SELECT COURSZ~FILE~-DIRECTORY ASSIGN TO UT-2314-S—CFDoe
SELECT WORK-FILE ASSIGN T0O 4 DA-2314-D-SORTWKOlo
SELECT INTER-FILE ’ ASSIGN 7O UT-2314-S-CLASSDIR,
SELECT COURSE-FILE ASSIGN TO DA-2314-R~-SRF

ACCESS 15 RANDOM

NOMINAL KEY IS NOM-KEYo,

J
L

DATA DIVISION.
FILE SECTION,
SD WORK~-FILE
RECORDING MODE IS F
RECCORD CONTAINS 20 CHARACTERS
LASBEL RECORD IS STANDARD
DATA KECORD 1S WORKSo
01 WORKSe
02 STUD-NO-WGRK PICTURE G{(06).
02 FILLER PICTURE X{l1l4)o
FDO CARD-FILE
RECORDING MDDOE IS F
RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED
DATA RECORD IS CARD=-RECo
01 CARD-REC,
02 -FILLER PICTURE XXXo
02 COURSE-CD PICTURE 9{06)o
02 SEM-CD PICTURE Xo»
02 CIOURSE~DES-CD PICTURE X(25),
02 CR-CD PICTURE Xo
02 FILLER PICTURE X(43)e
02 COL-80 PICTURE Xo
FD DISK-IN
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
BLOCK CONTAINS 10 RECORDS
LLABEL RECORD IS STANDARD
OATA RECORD IS DISK—-IN—-RECe
01 DISK-IN-REC,)
02 FILLER PICTURE X{20)o

N

FD

01

FD

01

169

INTER-FILE

RECORDING MUODE IS F

RECURD CONTAINS 20 CHARACTERS
LA3EL RECORD IS STANDARD

DATA RECORD IS INTER-REC.
INTER-RECo)
02 CCURSE~-I PICTURE 9(061)s

oz INDX—-I PICTURE 3{086),

02 FILLER PICTURE X{08)o
COURSE~-FILE

RECORDING MODE IS F

RZCORD CONTAINS 37 CHARACTERS <
LASEL RECORD IS STANDARD

DATA RECORD IS CRURSE-RECs
COURSEZ-RECs

02 FILLER PICTURE 9{04)e

02 . CRSE-KEY PICTURE 9{(06).

02 FILLER PICTURE X{27)»
COURSZ-FItLz~-DIRZCTORY

RECORSING M33Z IS F

RECORD CONTAINS 2400 CHARACTERS
LA3CL RECUORD IS STANDARD

DATA RzZCORD IS COURSE-FILE-DIRECTo
COURSE-FILE-DIKECT

oz FILLER PICTURE X(2400)»

WORK ING~-STORAGE SECTION.

77
77
77
01

01

01

CN PICTURE G953 VALUE 1»
IND PICTURE 9(06) VALUE ZEROSs
NOM—~-KEY PICTURE 359(8) COMP SYNCs
COURSE~CCoe
02 ADDR-C PICTURE 9999 VALUE ZEROS»
02 COURSE-C PICYURE 9(06).
02 SEM~C PICTURE Xo
02 COURSE-DES-C PICTURE X{(23)e
02 CR-C PICTURE Xo
COF=-%0ORK~As
c2 CRSEZ~-DIRECTA OCCURS 200 TIMESo
03 CRSZ—~A PICTURE 9{(08)e
03 INDX-~A PICTURE 9{06)¢
DISK=IN=-40RKo>
62 COURSE-DIN PICTURE 9{06)0
02 INDX-DIN PICTURE 9{061),
02 FILLER PICTURE X{08)»

PROCEDURE DIVISIONe
STARTS.

grPeEN INPUT CARD-FILE OUTPUT DISK-IN COURSE-FILE-DIRECTORY
I-0 COURSE~FILE.

RZADING>

ADD 1 TO IND MOVE IND TO NUM~KEYe READ COURSE-FILE INTO
COURSE~CC INVALID KEY DISPLAY 'END OF COURSE-FILE* GO TO
WRAP—-UPo

IF COURSE-C IS EQUAL TO ZEROS GO TO RD~-CARDo

MOVE COURSE~C TO

170

COURSE~DIN MOVE IND TO INDX-DIN WRITE DISK-IN-REC FROM
DISK=IN—-WORK DISPLAY COURSE-CC GO TO READINGs
RD-CRSE~FILE.
"ADD 1 TO IND MDVE IND T3 NOM—KEYo
READ COURSE~-FILE INTO COURSE-CC INVALID KEY DISPLAY
* NO MORE DUMMY RECORDS' GO T3 WRAP-UP,
RU-CARDo i
READ CARD-FILE AT END GO TO SORT-DIRs
MOVE-IToe
IF COL-80 IS NDT EQUAL TO 'S* DISPLAY CARD—-REC * WRONG CARD!?
GO TO RD-CARDo MOVE
COURSE-CD TO COURSE-C COURSE-DIN MOVE SEM-CD TO SEM-C MOVE
C3JURSE~-DES~CD T3 COURSE-DES—-C MOVE CR~CD TO CR-C MOVE IND
7O INDX-DINe
UPDATE-COURSE~FILE.
RSWwRITE COURSZI-REC FRUM COURSE-CC INVALID KEY GO TO ERRORS,
DISPLAY CCOURSE~CCe
UPDATE-DISK~INs
WRITE DISK-IN-REC FROM DISK~IN-WDORK GO TO RD-CRSE~-FILE,

ERRQORS, .

DISPLAY IND CUURSE-CC * REC NOT WRITTEN® GO TO WRAP-UP,
SORT-DIRS

DISPLAY ¥ ‘e

CLOSE DISK—-INs
SORT wIRK-FILE
ON ASCENDING KEY STUD-ND-#ORK
USING DISK~-IN
GIVING INTER-FILE.
CHECK-~RESUL T .
IF SORT-RETURN IS NOT EQUAL TO O DISPLAY *SORT UNSUCCESSFUL?
GO TO ¥WRAP-UPo DISPLAY 'SORT OK'o
MOVE Z2ZRG0S 70O INDs
OPEN-INTERS
OPZN INPUT INTER~FILEs

MOVE ZEROS T3 IND» DISPLAY '
DISPLAY *COURSE~FILE~DIRECTORY',
DISPLAY #mommm s ',

REZAD-INTERS
READ INTER-FILE AT END GO TGO 9WRAP-UPe
ADD 1 TO IND MOVE COURSE-I TO CRSE-~A {(IND) MOVE INDX-I TO
INDX~A {IND) :
DISPLAY CRSZ-DIRECTA {IND) GO TO READ-INTER.

WRAP~-UPo
ADD 1 TO IND MOVE ZERGCS 7O INDX—-A (IND)o
WRITE COUKSE~-FILE-DIRECT FROM CDF—-WORK-Ap
CLUSE CUURSE-FILE-DIRECTORY INTER-FILE CARRD-FILE
COURSE~FILES
OPEN INPUT COURSE-FILE-DIRECTORYoe READ COURSE~FILE~-DIRECTORY
INTO CDF~WORK-A AT END GO TO NEXT-S5ENe

NEXT~SENe
DISPLAY CRSE-DIRECTA (CN)e IF CN IS NOT EQUAL TO IND ADD 1
T3 CN GO TO NEXT-SENe CLOSE COURSE-FILE-DIRECTORY,
STIP RUNoe

CREATE PERFORMANCE-FILE

172

ICENTIFICATION DIVISIGN.
PRIGRAM=ID. CRWORKF . _
AUTHCRe GOVINLGL K R I P L A N I.

RIMARKS. THIS PRCGRAM CREATZIS WCRK-FILE wWITH DUMMY RECCRCS.
ENVIRONMENT OIVISIGN.

CUNFIGURATICN SECTICN.

SOURCE~COMPUTER. 1EM=360-F75 .,

CB3JECT-COMPUTER. [3M=360~F75.
INPUT-OUTPUT SECTION.
FILE~CCNTRCL

SELECT Sw—-FILZ ASSIGN TO CA-2314-R-S35S

ACCESS I3 3ZCUESNTIAL

NCMINAL KZY IS WK-~KE Y.

SELECT CARD-FILE ASSIGN TC UR~2540R=-5=-CARDS.
CATA CIVISIGON,
FILE SECTICN,
FD CARC=-FILEZ

' REZCCRDING MODE IS F

"RECCRD CUONTAINS 80 CHARACTERS

LASEL RECCRD IS CMITTED

CATA RESCORD IS CARD-REC.
1 CAXD=R:=C.

02 DUMMY=-RECS FIC G(06).

02 FILLEIR PIC X733

02 LAST-COL FIC X.
FJ Suw-FILES

RECCROING MODBE IS F

RECCRD CIONTAINS 22 CHARACTERS

LASEL RSCCRD IS STANDARD

CATA RECJRD IS SH-REC,
01 S‘A"‘QEC.

02 FILLER PICTURE X(22).
WORKING=-STORAGE SECTION.
77T we-REY PIC 9(C6).
77 4-CCUNT PIC 9(08) VALUE ZERLS.
77 wK-XZTY FICTURE S9(8) CCMF SYNC,
01 NEwW=ARZA.

C2z FILLER PICTURE X (22) VALLE ZERUS.
PRICEDURS DIVISION.
CREATE-IT.

CFEN INPUT CARD-FILE QUTEUT Sw-FILE.
READ-CARDS .,

READ CARC-FILE AT END GT TC wRKAP—-UP.

IF LAST-CCL IS NOT EQUAL TC 'A:®

CISPLAY *'FUNCTION CARD MISSINGY, GO TC wRAP-UP,.

MOVE DUMMY=~RECS TO W-KEY.

LOORP -2ACK .

MOVE W~COUNT TO WK-KEY. H%RITE Sw—REC FROM NEAW-AREA
INVALID KEY DISPLAY *NTJ CUMMY-RECS CREATED?
GO TO WRAF-UP. [f #W-LOUNT IS NCT SGUAL TO W-XEY ACC 1 TC

©

DISPLAY 'NO OF DuUMMY =K

wRARP-UB,
CLCSE CARU-FILE
STOP RUN

113

Sw-FILE.

LUMMY-RECS .,

CREATE STUDENT~FILE
ITS DIRECTCRY
AND LINK WITH
COURSE-FILE AND PERZORVFANCE-~FILE

175

IDENTIFICATION DIVISIONa
PROGRAM=-IDs, CREATEF,
AUTHOR. GUVIND KR I P L AN Io

REMARKSs THIS PROGRAM CREATES THE .INITIAL FILE ON DISK

ENVIRONMENT DIVISIGNe
CONFIGURATION SECTION:
SOURCE-COMPUTERs IBM-360-F755,
OBJECT~-COMPUTERs IBM-350-F75s
INPUT-OUTPUT SECTIONS>
FILE-CONTROLo

SELE
SELECT STUD-FILE~-DIRECTCRY ASSIGN TO UT~2314-S-SFD,
SELECT CARD-FILE ASSIGN TO UR-2540R~S~CARDS»
SELECT PRINT-FILE ASSIGN TO UR~-1403-5-PRINTSo
SELECT DISK~IN ASSIGN TO UT-2314~S-INDISKo»

SELECT DISK-0OUT ASSIGN TO UT-2314-S—-0UTDISK.

SELECT W#ORK~FILE ASSIGN TGO 4 DA-2314-D-SORTWKQO1lo

SELECT STUDENT-FILE ASSIGN TO DA-2314-R~-SF
ACCESS IS SZQUEINTIAL
NOMINAL KEY I3 STUD-KEY:

SELECT STUD-WOFK~-FILE ASSIGN TO DA-2314-R-SWF
ACCESS IS RANDOM

UOMINA KEY IS5 WORK-KEYoe

SELECT CUOURSE-FILE ASSIGN TO DA-2314-R-SRF
ACCESS IS RANDCHM

NOMINAL KEY IS COURSE~KEY s
DATA DIVISIONS
FILE SECTION,
SD WORK~FILE
RECORDING MODE IS F
RECORD CONTAINS 85 CHARACTERS
LASEL RECORD IS STANDARD
DATA KECORD IS WORKSa
01 WORKS,
02 DEIPT—-%WIRK PICTURE XXXo
02 STUD-NO-WORK PICTURE 9{06)»
o2 YEAR-W3ORK RPICTURE XXo
C2 SEIM=WORK PICTURE Xo
02 GRADE-WORK PICTURE Xo
G2 MARK=WORK PICTURE XXo
02 COURSE-CODE—-WORK PICTURE 9(08)»
02 FILLER PICTURE X(58)o
€2 COL-8C~WCORK PICTURE Xo
FD CARD-FILE
RECORDING MODE 1S F
RECURD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED
DATA RECORD 1S CARD=~RECo
Q1 CARD~RECs
02 FILLER PICTURE X{(79)s

CT COURSE-FILE-DIRECTORY ASSIGN TO UT-2314-5-CFDo,

F£D

Q1

C1

F0

o1

01

FD

C1

- G2

176

02 COL-8C PICTURE X
PRINT-F ILE
RECORDING MODE 1S F
LABEL RECORD IS QMITTED
RECORD CONTAINS 133 CHARACTERS
DATA RECORD IS LINS—-FOURMAT,
LINE~FORMAT, .
02 FILLER PICTURE X{133)»
DISK=IN
RECORDING MODE IS F
RECORD CONTAINS 87 CHARACTERS
BLOCK CONTAINS 1C¢ RECORDS
LABEL RECORD IS STANDARD
DATA RECORD IS DISK-IN-REC,
DISK-IN~REC,
02 FILLER PICTURE XXXo
02 STUD-NO-IN PICTURE 9(G6)e
C2 YZAR-IN PICTURE XX»
02 SEM-IN PICTURE Xe

= ER PICTURE X(67)e
—SC—IN PICTURE Xo

U L H'
r
r

£ 1S F
NS 8C CHARACTERS
IS STANDARD

DATA Q_CURD IS DIS—QUT-REC,
DISK-CUT-REC

02 FILLER PICTURE X(80)o
STUDENT—F ILE

RECORIING MDODEC 1S5 ¥

RECCRD CONTAINS 84 CHARACTERS
LABEL RECORD IS STANDARD

DATA RECOXD IS STUDENT-RECs
STUDENT~REC,

02 FILLER PICTURE XXXa

62 - STUDENT-NO PICTURE 9{08)s
02 FILLER PICTURE X(75)e
STUD-#ORK-FILE

RECORDING M3DE IS5 F

RECORD CONTAINS 22 CHARACTERS
LABEL RECORD IS STANDARD

DATA RECORD IS ST-WORK~RECo
ST-4ORK=-RECs

02 KEY—ST-WK PICTURE 9999,
02 FILLER PICTURE X(18)s
COURSE-FILE

RECORDING MDDE I3 F

RECORD CONTAINS 37 CHARACTERS
LABEL RECGRD IS STANDARD

DATA RECORD 1S COURSE—RECo
COURSE —-RECo

02 FILLER PICTURE X(04)s
02 CRSE—-KEY PICTURE 9(06)s

G M
R:»LRU ;C T

177

62 FILLER PICTURE X(27)e
FD COURSE-FILE-DIRECTORY
RECURDING MODE 1S F
RECORD CONTAINS 2400 CHARACTERS
LASEL RECURD IS STANDARD
DATA RECORD IS COURSE-FILE-DIRECTo
01 COURSE-FILE~DIRECTs)
€2 FILLER PICTURE X(2400)
FD STUD-FILE-DIRECTORY
RECORDING MIDE IS F ,
RECORD CONTAINS 2400 CHARACTERS
LASEL RECORD IS STANDARD ‘
DATA RECORD IS STUD—FILE-DIRECTs
G1 STUD-FILE-DIRECT,
02 FILLER PICTURE X(2400).
WORK ING-3TORAGE SECTIONo
77 WORK-KEY PICTURE S9{8) COMP SYNC»s
77 WRK PICTURE 9999 VALUE Q.
77 SK PICTUPE 9999 VALUE 0.
77 STUD-XZY PICTURE $9(8) COMP SYNCo
77 COURSE-KEY PICTURE S9(8) COMP SYNC,
77 IND PICTURZ 9999 VALUE 0,
77 EXT PICTURE 6999 VALUE 1,
77 GG PICTURE 9992 VALUE 1,
77 Wk PICTURE 9999 VALUE 0.
77 SI PICTURE 9999 VALUE O,
77 CT PICTURE 9559 VALUE 0.
77 CN PICTURE 9999 VALUE 1o
01 CFD-FILL,
02 FILLER PICTURE X{2400)»
01 CFD-wWORK REDEZFINES CFD-FILLoe
’ 02 CHSE-DIRECT OCCURS 200 TIMES INDEXED BY IN2,
C3 CRSE-D PICTURE 9{(C6),
. 03 INDX-D PICTURE 9(06)s
61 COURSZ-REL: _
02 ADDR-FEZL PICTURE 9999,
02 C3URSE~-CDO-REL PICTURE 9(056)e
62 FILLER PICTURE X{27)s
C1l COURSE~-CHECK»
02 FRST-0R-NO PICTURE 9999 OCCURS 20C TIMES,
01 WORK-REC-0LDs
2 LINK=1-0LD PICTURE 9(C&4)s
02 ULINK=-2-0LD PICTURE 9999
G2 YZAR-CLD PICTURE XXo
02 TEZRM-OLD PICTURE Xo
02 GRADE-OLD PICTURE Xo
C2 MARK-OLD PICTURE XXo»
02 LINK=-3-0LD PICTURE 9999,
02 LINK=4-0LD PICTURE 9599,
01 COURSE~REs
02 ADR-C PICTURE 9999,
02 CRSE-KAY PICTURE 9(06)¢
62 FILLER PICTURE X(27)a

.y

c1

01

ci

Gl

178

DISK~0OUT-REs»

LLER PICTURE XXX,
UD-NO-0UT PICTURE 9(36)
AR-QUT PICTURE XxXo

M=IN PICTURE X

RE PICTURE X -
RK-RE PICTUREZ $9-
URSE~-CD-RE PICTURE 9(086)-
LLER PICTURE X(581J.
L-80—-0UT PICTURE Xo

FORM~F REDEFINEZS DISK-DUT—-RE.

PT—F PICTURE XXX
NO~F PICTURE 9(CH),
NAME~F PICTURE X(20}e

DZGREE-F PICTURE XXXXa

VEL~F PICTTURE X

X—=r PICTJRE Xo

REET=F PICTURE X{17})»
T—-F PICTURE XXXXo
#N=-F PICTURE X(161}s
PICTURE X{07)e

‘;~BG—F PICTURE Xo

INES DISK-0OUT~-REs

SPT-G PICTURE XXXe

-NI~G PICTURE 9(06)
AR-G BPICTURE XX
RM=G PICTURE X
ADE-G PICTURE Xo
RK=G PICTURE XXa
URSE-CODE-G PICTURE 9{058)e
LLER PICTURE X(58)
L=80-GC PICTURE Xoe

PT-F-IN PICTURE XXX»
~NJ~-F~In PICTURE 9{0&1})e
NAMI-F~IN PICTURE X(2C)-»

EZ~F—-IN PICTURE XXXXs
L-F-IN PICTURE XXo»
~F~IN PICTURE X>»
EET-F~IN PICTURE X{17),
-F~IN PICTURE XXXXo»
'N-F—IN PICTURE X{16)s
-F~IN PICTURE X{C7)
Y—-F PICTURE 9993
-5 PICTURE 9999 VALUZ 0o
G-INs

LINK~1 PICTURE 99%9%
LINK-2 PICTURE 99539,
YEAR-G-IN PICTURE XXo
TERM-G-IN PICTURE Xs
GRADE-G~IN PICTURE Xa»
MARK-G~IN PICTURE XXe

‘gZ2 FI1
cz ST
02z YE
02 SE
o2 GH~—~
o2 MA
02 CC
c2 FI
cz2 CO
¢2 DE
2 5T~
g2 ST~
02
02 LE
02 sZ
o2 ST
02 AP
g2 TO
0z Tz
g2 CJ
FORM-G
2 D&
02 ST
o2 Y=
02 TE
c2 GR
02 MaA
2 2
c2 Fi
¢2 CG
FORM~F-INs
02 D=t
0z ST
62 ST
oz D=
02 LE
02 S&
oz ST
oz AP
02 TOw
02 TEL
g2 K&
c2 Lo
FOR M-

02 ST~
03
63
c3
03
c3
03

WORK-COOE QOCCURS 15 TIMES,

179

03 LINK-3 PICTURE 9999
: 03 LINK-4 PICTURE 999%
0 (01 FFI-wORKs»
4 02 STUD-DIRECT OCCURS 206 TIMES,
C3 STUD~-NO-D PICTURE 9(06),
03 STUD-INDX~D PICTURE 9({05)s
‘01 NEW-AREA.
02 FlL=-ZEROS PICTURE 9999,
02 FIlLLER PICTURE X(18)o
PROCEDURE DIVISION:
ZERD-IT,
MOVE ZERUS TO FRST-0OR-NO {EXT)o IF EXT IS NOT EQUAL TO
203 ADD 1 TO EXT GO TO ZERO«IT;'MOVE 1 TO EXTe
STARTS,
PPZM INPUT CARD-FILE OUTPUT DISK~DUT PRINT-FILE,
READ-CARDS,
READ CARD-~FILE AT END GO TO CLOSE-1le
IF CDL~SC IS EQUAL TO *'C' MOVE CARD~REC TO DISK~-QUT-RE
MOVE ST-NO-G TU CRSE-D (EXT) MOVE COURSE-CODE-G
TO INDX-D [ZXT)

ADD 1 TO EXT GO TO READ-CARDS.
IF COL-8C IS EQUAL TO 'F' GO TO WRITE-ITo
IF CO.-82 IS EQUAL TO *G' GO TO WRITE-ITe
DISPLAY CARD-REC * CHECK COL-80° GO TO READ-CARDS.
WRITE=-1To
WRITE D1SK-OUT~REC FROM CARD-REC GO TO READ-CARDSS
CLOSE-1. |
@ CLOSE CARD-FILE DISK~OUTe
: SORT—25
DISPLAY * ‘s

SORY WORK-FILE
UN ASCENDING KEY STUD-ND-YWORKs YEAR-WORKS
COURSE~-CODE~WORK,, COL-30-WORK
USING DISK-0QUT
GIVING DISK=INs
CHECK~30RT-2»
IF SORT—-RZTURN IS NOT EQUAL TO C DISPLAY
*SORT-2 UNSUCCESSFUL? GO TO WRAP-UPs
DISPLAY *SCRT - 2 OK?y
OPEN~DISK-INe
OPEN INPUT COURSE~FILE-DIRECTORY.
READ COURSE-FILE-DIRECTORY INTO CFD-FILL AT END GO TO
CLOSE-CFDe
CLOSE-CFD:
CLOSE COURSE~FILE-DIRECTORY.
OPZN INPUT DISK~IN QUTRPUT STUDENT-FILE
STUD-FILE-DIRECTORY -0 STUD-A0ORK~-FILE COURSE~-FILE.
MOVE 1 TO EXTe
DISP-DISKs
MOVE EXT TO COURSE~KEYe READ COURSE-FILE INTO COURSE-REL

INVALID KEY DISPLAY 'CHECK NO 1*' GO TO ERRe IF COURSE-CD-REL

IS EQUAL TO ZEROS MOVE 1 TO EXT GO TO READ-DISK~-INs MOVE
‘:} ZERUS TO ADDR-REL REWRITE COURSE-REC FROM COURSE~REL

180

INVALID KEY DISPLAY *CHECK NO 2' GO 70 EPR, ADD 1 TO EXT GO
TO DISP-DISK
READ-DISK-INo
READ DISK~IN INTO DISK-0OUT-RE AT END GO 70O WRAP-UPo,
PROC-DISK~1I No
IF COL-80~F IS £QUAL 70 *'F' GD TO MOVE-STUD> ADD Y} TO wK CT
MUVE YEAR-G TO YEAR-G-IN (CT) MOVE TERM-G 7O TERM-G-IN {(CT)
MOVE GRADE-G TO GRADE-G-IN (CT) MOVE MARK~-G TO
MARK=G~IN (CT)»s IF LL-S IS EQUAL TO ZEROS GO TO MOVE-4WKe-
MOVE LL-S TC EXT MOVE WK TO LINK-3 (EXT) MQOVE CT
TO LL-S GO TO REAUL-1IS,
MOVZ~wKe ’ .
MOVE WK TO KEY-F MQOVE CT TO LL-Ss
READ-IS,
SET INZ2 TO 1o
SEARLCH CRSE-DIRECT AT END GO TO ERR WHEN.
COURSZ~CD-RE = CRS5E-D {IN2) NEXT SENTENCE:

NOW-MOVEs MOVE INDX-D (IN2) TO COURSE-~KEYs

MOVE INOX-D (INZ2) TO LINK-4 {(CT)e
CHECK~-1ITe ' .
IF FRSET~-3R-NG (INZ2) IS NOT EQUAL TO ¢ GO TO MOVE-FRST~0R-NOo
READ COURSE-FILE INTO COURSE-REL MOVE WK TO0 ADDR-REUL
FRST-3OR-NO {INz) MOVE SI 70 LINK-1 {CT) REWRITE COURSE-REC .
FROM C3URSE-RZL GO TO READ-DISK-IN:
MOVE~-FRST-OR-NGSe
MOVE FR3T7-CR-=NO (IN2) TO WORK-KEY READ STUD—-WORK-FILE INTO
,C.—.

WORK~REC ChDo MOVE WK TO LINK-2-0LD FRST-0OR-NO (INZ2}

MOVE S TO LINK=-1 (CT)s

REWRITE ST7T-wWORK-REC FROM WORK-REC-0OLD GO TO READ-DISK~INS
MOVE~-STUD> '

IF SI IS NOT EGQUAL TO 0 GU TO WRITE-SIs
ADD~S1»

ADD 1 TG SI MOVE DERPTY~-F TGO DEPT-F~IN MOVE ST~NO-F TO
ST=NO-F—IN MOVZ ST—-NAME-F TO ST—-NAME-F-IN MOVE DEGREE-~F
TG DEGREE-F~IN MOVE LEVEL-F TO LEVEL-F-IN MOVE SEX-F TO

SEX~F—-IN MIOVE STREET~F TO STREET-F-IN MOVE APT-F T0O APT-F~IN

MOVE TOWN~F TO TOWN-F-IN MOVE TEL~F TQ TEL-F-IN GO TO
READ~-DISK~IN,
HARITE—-SI
ADD 1 T3 SK»
MOVE SK TO STUD—-KEYoe
WRITE STUPDENT-REC FROM FORM-F-IN INVALIO KEY DISPLAY
TFORM=F—~IN EZRROR? GO TO ERRe
MOVE ZEROS TO LINK-3 {CT). MOVE ST-NO-F-IN TO
STUS-NDI~-D (35K} MOVE SK TO STUD-INDX~D {(5K}): ADD 1 TO GG.
WRITE-SW,
ADD 1 TO wR<K MUVE WRK TO wORK-KEY MOVE O TO LINK-2Z {9WRK),
MOVE ST-wWORK~CODE {CN) TO NEW-AREA, REWRITE ST-WORK~REC
FROM NZw-~AREA INVALID KEY
DISPLAY 'STUD—-WORK~CUDE ERROR' GO TO ERRos IF CN IS NOT
EQUAL Ta CT ARD 1 TO CN GO TO WRITE-SWe. MOVE 1 TO CN
MOVE ZEROS TGO CT LL-S GO TO ADD-S1s

m
x
pe
o

181

DISPLAY 'SEARCH UNSUCCESSFUL* GO TO WRAP-UP,

WRAP=-UP
MOVE ZEROS TO ST-NO-F-IN ADD 1 TO SK MOVE SK TO STUD-KEYe
WRITE STUDENT-REC FROM FORM=F—-IN INVALID KEY DISPLAY
TLAST NOT WRITTEN' GO TO WRAP-UP-1le
MOVE ZEROS TO FIL-ZERDS ADD 1 TO WRK MOVE WRK TO WORK-KEY.
REWRITE ST-WORK~REC FROM NEW—AREA INVALID KEY DISPLAY
*LAST WORK NOT WRITTEN' GO TO WRAP-UP-1, MOVE WRK TO
FIL—-ZERGOS MOVE 0 TO WORK-KEYs REWRITE ST-WIRK~-REC FROM
NEW~AREA INVALID KEY DISPLAY '"CHECK ZERD STUD-¥WORK-REC* GO
TC WRAP-UPo MOVE 1 TO WRKs
CLOSE STUDENT-FILE, OPEN . INPUT STUDENT-FILE.

PRINT-WF. t
MOVE WRK TO WORX-KEYe READ STUD-WORK-FILE INTO NEW-AREA
INVALID KEY DISPLAY *NOT 0OK~-1*' GO TO WRAP-UP~-1o IF FIL-~-ZEROS
IS NOT EQUAL TC ZEROS WRITE LINE-FORMAT FROM NEW-AREA AFTER
POSITIONING 3 ADD 1 TO WRK GO TO PRINT-WFe MOVE 1 TO SKe

[

PRINT-SFo
MOVE SK TO STUD-KEYs READ STUDENT-FILE
AT END GO TO WRAP-UP-1, IF STUDENT-NO IS NOT EQUAL TO

ZEROS wRITE LINE-FORMAT FROM STUDENT-REC AFTER POSITIONING
3 ADD 1 TO SKX G0 TO PRINT-SFo MOVE 1 TO CTs

PRINT~CFo
MOVE CY¥ 70 COURSE-KEYs READ CROURSCE~FILE INTO COURSE-REL
INVALID KEY DISPLAY *NOT UOK-3' GO TO WRAP-UP-1: IF CT IS
NOT EQUAL TO 21 WRITE LINE-FORMAT FROM COURSE-REL AFTER

POSITIONING 3 ADD 1 TO CT GO TO PRINT—-CFe
‘:} ; MOVE 1 TO CTe DISPLAY 'STUDENT FILE DIRECTDRY?,
! ' DISPLAY ?—=m e e e e —————————— ' o

PRINT-SFDIRS
DISPLAY STUD-DIRECT (CT)e IF CT IS NOTYT EQUAL TD GG ADD 1 TO
CT GO TO PRINT-SFDIRs MOVE 1 TO CTo DISPLAY ? 'o
DISPLAY 'COURSE FILE DIRECTORY's DISPLAY ?—————rmmem e '
PRINT~-CFDIRe
DISPLAY CRSEZ-DIRECT (CT)a IF CT IS NOT EQUAL TO 21 ADD)} TO
CT GG TO PRINT-CFDIR.
WRAP-UP—-14
MGVE ZEROS TO STUD-NO=-D {GGle
WRITE STUD-FILE-DIRECT FROM FFI—-WORKse
CLUSE PRINT-FILE STUD—-#wORK-FILE STUDENT-FILE
DISK=IN COURSE~-FILE STUD-FILE-DIRECTORY,
STOP RUN»

http:FIL-ZEP.OS

UPDATE STUDENT-FILE
COURSZ-FILE AND PERFORMA

L)
T

NCE-

FILE

©

183

IOENTIFICATION DIVISION,
PROGRAM~IDs UPDTSWCo, -
AUTHOR: GOVINMD K R I P L A N Is

REMARKS. ,
5% 3 ok A R KOK koK xRk 3R sk % ok oK ok 3 TkokOR R o ok koo s ke ok ok Sk R R ok ok ok sk ook sk ook ok oR g0k %

RS R T T S

¥ ¥ % X

Sk sk 5 e T HOR SR oK 3k o KA A R ok sl 30k 50k ok 5 koK Kl oo ¥ sl sk e ol s o ok e e siofe s ek s ok
ENVIRONMENTY DIVISIONS

THIS PROGRAM UPDATES STUDENT~FILE,
COURSE-FILE, IT 1S REQUIRED TO UPDATE THESE FILES
THE STUDENTS MAKE CHANGES IN THEIR COURSES,
NORMALLY DO ONCE A SEMESTER,
THEY DONT WANT TO TAKE AND ADD THE
THEM IN THE SEQUENTIAL ORDERS

INPUT DATA FOR DELETION,

B

cCoL &4 - 9 STUDENT NO»
COURSE CODE
COL 8¢ *+ D ?

INPUT DATA FOR ADDITION

———— o~ e A —— e — . — -, o bont o T W

9]

coL 4 - 9 STUDENT NO
CoL 10 - 11 YEAR

coL 12 SEMESTER

. CoL 186 - 21 COQURSE CODE
CoL 80 * A

CONF IGURATION SECTION:
SOURCE~CUOMPUTER,s IBM-36C-F75,
OBJECT~-COMPUTERs [IBM-360-F75,
INPUT-DUTPUT SECTIONs
FILE~CONTROL

SELECT COURSE~-FILE-DIRECTORY ASSIGN TO UT-2314-S-~CFDo»
SELECT STUD-FILE-DIRECTORY ASSIGN TO UT-2314~5-SFDe
SELECT DISK-IN ASSIGN TO UT-2314-S—-INDISK:

SELECT CARD-FILE ASSIGN TO
SELECT PRINT-FILE ASSIGN TO

SELECT
SELECT
SELECT

ACCESS IS RANDOM
NOMINAL RKEY IS STUD-KEY,

SELECT STUD-WORK-FILE ASSIGN TO DA-2314~R-SWF

ACCESS IS RANDOM
NOMINAL KEY IS WORK-KEY»>

SELECT COURSE-FILE

ACCESS IS5 RANDDM
NOMINAL KEY 1S COURSE-KEYs

DATA DIVISION»
FILE SECTIONS

STUD-WORK-FILE AND

WHICH THEY
IT WILL DELETE THE COURSES
COURSES AND PLACE

UR-2540R~-5~-CARDS
UR~1403-S-PRINTS.
DISK~-0OUT ASSIGN TO UT-2314-S~-0UTDISK,
WORK-FILE ASSIGN TO 4 DA-23143-D-SCRTWKGC1Ls
STUDENT~FILE ASSIGN 7O DA-2314-R-SF

ASSIGN T0 DA-231 4-R-5SRF

%*
*
2
%*
*
*
%k
¥
¥
*
*
%
*
3%
*
e
*
*
*
%
®o

N

184

SD WORK-FILE
RECORDING MODE IS F
RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS STANDARD
DATA RECORD IS WORKSS
01 WORKSo»

02 DEPT-WORK PICTURE XXX,
02 STUD-NO-WORK PICTURE 9{C6)-
02 YEAR-WORK PICTURE 99, '

02 SEM-WORK PICTURE Xo»

02 GRADE-~WORK PICTURE X,

2 MARK-WORK PICTURE XX=

02 CDURSE~CUODE~-YWORK PICTURE 9{0&)x
02 FILLER PICTURE X{58)},

02 COL-80-WORK PICTURE X.

FD CARD-FILE

[}
[

N
&

g1

FD

D

o1

RECORDING MODE 1S F
RECORD CONTAINS 80 CHARACTERS
LAS3EL RECORD IS OMITTED

DATA RECORD IS CARD-RECs
CARD-REC,

02 FILLER PICTURE X(79)a

02 COL-80 DICTURE Xa
PRINT-FILE

RECORDING MODE IS F

LABEL RECORD IS OMITTED
RECORD CONTAINS 133 CHARACTERS
DATA RECORD 1S LINE~FORMAT,
LINE~EORMAT

G2 FILLER PICTURE X{133)e
DISK—IN

RECORJDING MODE IS F

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 10 RECORDS
LABEL RECORD IS5 STANDARD

DATA RECORD IS DISK-IN-REC,
DISK-IN-RECS

02 FILLER PICTURE XXXo»

02 STUD-NO-IN PICTURE 9(06)s
02 YEAR-IN PICTURE 99,

02 SEM—IN PICTURE Xa»

02 GRADE-IN PICTURE X»

g2 MARK~IN PICTURE 99,

02 COURSE-IN PICTURE 9{06)e
02 FILLER PICTURE X{58),

02 COL-80-IN PICTURE Xo
DISK-0UT

RECORDING MODE IS F :
RECORD CONTAINS 80 CHARACTERS
LASEL RECORD IS STANDARD

DATA RECORD IS DIS-DUT~REC-
DISK~0OUT~REC

02 FILLER PICTURE X(80),

185

FD STUDENT-FILE
RECORDING MODE IS F
RECORD CONTAINS 84 CHARACTERS
LABEL RECORD 1S STANDARD
DATA RECORD IS STUDENT-REC,
01 STUDENT—REC,
02 FILLER PICTURE XXXo
02 STUDENT-NO PICTURE 9(06),
02 FILLER PICTURE X(75)»
FD STUD-WORK-FILE
RECORDING MODE 1S F
RECORD CONTAINS 22 CHARACTERS .
LABZL RECORD IS STANDARD
DATA RECORD IS ST-WORK-REC,
01 ST-wDRK-REC,
02 KEY-ST-wX PICTURE 9999,
G2 FILLER PICTURE X(18),
FD COURSE-FILE
RECORDING MODE IS F
RECORD COMNTAINS 37 CHARACTERS
LABEL RECORD IS STANDARD
DATA RECORD IS COURSE~REC,
COURSE=-REC, .
62 FILLER PICTURE X{(C4)s
02 CRSE-KEY PICTURE 9{061). .
02 FILLER PICTURE X(27)ae
£D COURSE-FILE-DIRECTORY
RECORDING MDODE IS F
RECORD CONTAINS 2400 CHARACTERS
LABEL RECORD IS STANDARD
DATA RECORD IS COURSE-FILE~DIRECT»
01 COURSE~FILE-DIRECT.,
02 FILLER PICTURE X(2400)-
FD STUD-FILE~DIRECTORY
RECORDING MODE IS F
RECORD CONTAINS 2400 CHARACTERS
LABEL RECGORD 1S STANDARD
DATA RECCRD IS STUD-FILE-DIRECT.
01 STUD-FILE-DIRECT.
02 FILLER PICTURE X{(2400)s
WORKING-STORAGE SECTINON.
77 WRK PICTURE 9999,
77 WORK-KEY PICTURE $9(8) COMP SYNCs
77 STUD-KEY PICTURE S9(8) COMP SYNCe
77 COURSE~-KEY PICTURE S9(8) COMP SYNC,
77 EXT PICTURE 9999,
77 RR PICTURE 9999 VALUE 1o
77 CD PICTURE 9999 VALUE 1e
77 SR PICTURE 9999 VALUE 1.
77 WR PICTURE 9999 VALUE 1,
77 CT PICTURE 9999 VALUE 1.
77 CXT PICTURE 99 VALUE 2,
77 FR PICTURE 9999 VALUE 1,

(]
[

186

77 AXT PICTURE 9999

01

C1

c1

[&]
-

1

O
s

01

01

c1

01

HEEAD=1 »
c2 FILER PICTURE X{33) VALUE
*FILES AFTER DELETION AND ADDITION?o
FILL-KEYSs
02 KEYS~IN PICTURE 9399 CCCURS 15 TIMES,
FFI-WORKa
c2 STUD~-DIRECY OCCURS 200 TIMZS INDEXED BY
c3 STUD~NO-D PICTURE 9{06)2
03 STUD=-INDX-D PICTURE 39{061}>»
CNT=—-INo» - .
cz CNT PICTURE 9999 DCCURS 20 TIMES,
COURSE~RELS
02 ADDR~REL PICTURE 9999,
02 COURSE-CD~REL PICTURE 9{(06})a
c2 FILLER PICTURE X(27)»
DUMMY-REC~-TRACK

202 DUMMY-ADDR PICTURE 99S%9 OCCURS 1¢ TIMES:

FORM-G~1IN,

16374 ST~ wORK~-CODE QCCURS 20 TIMESS
03 LINK-1 PICTURE 99%9:
03 LINK-2 PICTURE 9995,
03 YEAR-G-IN PICTURE 99,
03 TERM~-G-IN PICTURE X
03 GRADE-G-IN PICTURE Xo
03 MARK~-G-IN PICTURE 99:
03 LINK-3 PICTURE 9999%a
03 LINK-4 PICTURE 9999,

CFD~-FILLs

g2 CRSE-DIRECT OCCURS 200 TIM=S INDEXED BY
03 CRSE-D PICTURE 9{05)»
03 INDX~-D PICTURE 9{((0D)o

CARD~RECS>

02 SW~-FORM PICTURE X{(22).

02 FILLER PICTURE X{o7)s

02 KOL-80 PICTURE X

CF-REC REDEFINES CARD-RECS,

02 CF=FORM PICTURE X{37)s

02 FILLER PICTURE X(43}»

DIR-REC REOVEFINES CARD-RECSe

02 CRSE-WRK~-DIRECT PICTURE 9{12).

02 FILLER PICTURE X{868}-

AD~REC REDEFINES CARD-RECSs

02 FILLER PICTURE XXXa

c2 ST-NO-AD PICTURE 9{06)s

02 YZAR-AD PICTURE 99:

c2 TERM—-AD PICTURE Xo

02 GRADE-AD PICTURE X»

¢z MARK-AD PICTURE 99

02 ' CRSE-CD-AD PICTURE 9(058)>

02 FILLER PICTURE X(59)a»

F~RECs

02 SF~FORM»

IN1s

INZ2s

C

0

187

03 SF-STUD PICTURE 9((5),
03 FILLER PICTURE X(Z57%
02 SF-NQO PICTURE 9(04) VALUE 1-
01 SWF—AREAe
02 SWF-IN,
C3 SWF-LINK-1 PICTURE 999399,
03 SWF-LINK-2 PICTURE 9399,
03 SUWF-YEAR PICTURE 99,
c3 SWF~SEM PICTURE X
03 SWF-GRADE PICTURE X»
03 SYWF-MARK PICTURE 99
03 SWF-LINK-3 PICTURE 9993%
03 SWF-LINX~4 PICTURE 9999,
L,OROCEDURE DIVISION,

;- Y'5TARTSS

OPEN INPUT CARD-FILE DUTPUY DISK—OUT PRINT-FILE
I1-0 COURSE-FILE STUD-WORK-FILE STUDENT-FILE,
MOVE O T9O WORK-KEY, READ STUD-WORK-FILE INTO SWF—-AREA INVALID
KEY DISPLAY 'CHECK STARTS' GO TO WRAP-UP. MOVE SKF~LINK—1
TO WRK» 7
READ~CARDS:
READ CARD-FILE INTO CARD-RECS AT END GO TO DISPLAY- FILEI»M,“
IF KOL-80 IS EOQUAL TO *A' GO TO MOVE-TO-DISK.
IF KOL-20 IS EQUAL TO *D' GO TO MOVE-TO-DISK.
DISPLAY CARD-RECS * CHECK coL—so* 50 TO READ—CARDSn
MOVE-T0O-DISK, : -
WRITE DISK-OUT—REC FROM CARD-RECS GO TO READ—CARDSo
DISPLAY-FILElo
MOVE CT TO WORK-KEYs, READ STUD-WORK~FILE INVALID KEY DISPLAY
*CHECK 1' G3 TO WRAP—-UP. IF KEY-ST-WK IS NOT EQUAL TO
ZEROS WRITE LINE~FORMAT FROM ST-WORK—REC AFTER POSITIONIMG
3 ADD 1 TO CT GO TO DISPLAY-FILEls MOVE 1 TO FR CTe
DISPLAY-STUl»
MOVE FR 70 STUD-KEY> READ STUDENT—FILE INVALID KEY DISPLAY
TCHECK 2' GO TO WRAP-UP. IF STUDENT-NO IS NOT EQUAL TO
ZEROS WRITE LINE-FORMAT FROM STUDENT-REC AFTER POSITIONING
3 ADD 1 TO FR GO TO DISPLAY-STUls MOVE 1 TO FR,
DISPLAY-COURS1,
MOVE FR TO COURSE~-KEYs READ COURSE-FILE INVALID KEY DISPLAY
YCHECK 3' GO TO WRAP-UP, IF CRSE-KEY IS NOT EQUAL TO ZEROS
WRITE LINE-FORMAT FROM COURSE-REC AFTER POSITIONING 3 ADD 1
TO FR GO TO DISPLAY—COURS1e MOVE 1 TO FRoa
CLUSE-DI SK~0UT»
CLOSE DISK=DUT.
DISPLAY * ',
SORT-1Ta»
SORT WORK-FILE ON
ASCENDING KEY STUD-NO-WIRK
DESCENDING KEY COL-8C-WORK
ASCENDING KEY COURSE-CODE—-WORK
USING DISK-OUT
GIVING DISK-INs
CHECK-RESULTo

6

188

IF SORT-RETURN IS NOT EQUAL TO O DISPLAY 'SORT UNSUCCESSFUL®
GO TO WRAP-UP: DISPLAY 'SOPT OK', :
OPEN-DISK-INs 221 - '
OPEN -INPUT DISK—-IN COURSE-FILE-DIRECTORY STUD-FILE-DIRECTORY.
READ COURSE-FILE-DIRECTORY INTO CFD-FILL AY END GO TO
READ-SFDo» :
READ-SFDa
READ STUD-FILE-DIRECTORY INTU FFI~wORK AT END GO TO
CLOSE-DIRECTS, .
CLOSE-DIRECTS,
CLOSE COURSE~FILE~-DIRECTORY STUD-FILE-DIRECTORYSs
MOVE 1 TO CD RR SR WR FRs MOVE 2 TO DUMMY-ADDR (1),
READ-DISK~INa , '
READ DISK=IN AT END GO TO SET-9ORK-FILE. _
IF COL-80-IN I3 EQUAL TO ?A? GO TO SEARCH-STUD-Aa
SEARCH-STUD>»
SET IN1 TO 1i-
SEARCH STUD-DIRECT AT END DISPLAY *STUDENT NOT FOUND' GO TO
WRAP~UD WHEN STUD-NO-IN = STUD-NO-D {IN1