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THE BUOYANT TWO-DIMENSIONAIL LAMINAR VERTICAL JET
by

S.B. Savage and G.K.C. Chan

The problem of a hot two-dimensional laminar jet issuing
vertically into an otherwise quiescent fluid of a lower temperature
is studied by means of two coordinate-type expansions. Detailed
calculations are carried out for a Pra;dtl number of two. Solutions
- for the temperature and velocity diétributions obtained by the
serie; expansions are compared with those obtained by a simple
integral approach. It is found that the velocity along the vertical
axis of symmetry initially decreases with distance from the virtual
origin, reaches a minimum and thereafter steadily increases. rThe
centreline temperature decreases monotonically from the virtual

origin.

1. INTRODUCTION

This paper concerns the flow developed by a hot vertical
two-dimensional laminar jet in an otherwise quiescent, uniform and
colder fluid. Recently Brand and Lahey (1967) treated this problem,

as wéll as the corresponding axisymmetric case, using the usual



boundary layer equations for natural convection flows. TFor the
two-dimensional case they found similarity solutions in which the
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maximum (centreline) velocity was proportional to x where x is
the vertical coordinate along the axis of symmetry of the jet.

the;e solutions predict that the centreline velocity vanishes at

. the virtual origin. However, if we assume the flow to be generated
by a virtual source of both heat and momentum, the velocity wbuld
increase without limit as x-+0. Thus the analysis of Brand and
Lahey (1967) is an asymptotic solution valid at large x such that
the initial conditions of momentum flux have been "lost'. From a
somewhat different standpoint their solution corresponds to the flow
generated by a virtual source of heat but no momentum. Such laminar
natural convection plumes have been studied by Schuh (1948), Yih (1952),
Bendor (1956), Mahony (1957), Serruck (1958), Crame (1959), Spalding
and Cruddace (1961), and Fujii (1963). Some of these references
contain most of the solutions presented by Brand and Lahey (1967).
Experimental measurements of the velocity and temperature fields
have been carried out for the plume by Bendor (1956), Brodowicz and

Kierkus (1966), and Forstrom and Sparrow (1967).

The present work considers the problem of steady laminar
two-dimensional flow developed by a virtual line source of both heat
and momentum. A solution is obtained by means of direct and inverse
coordinate expansions valid at small and large distances respectively

from the virtual origin. The analysis is similar in certain respects



to that of Van Dyke (1964a) for the laminar boundary layer on a
parabola in a uniform free stream, and that of Wygnanski (1967) for
a laiinar jet in a streaming flow. The distributions of centreline
temperaﬁure and velocity obtained from the series expansions are
comﬁared with those obtained by a simple integral method which is
expected to be quite accuratedgﬂ£randt1 number, d = 2. Although
detailed numerical calculations are presented only for the case of

0 = 2, the series expansions can be applied for arbitrary Prandtl

numbers.

2, ANALYSIS

The usual form of the steady, two-dimensional, laminar
boundary layer equations for the case of thermal buoyancy with small
temperature differences (cf. ex. Ostrach 1964) may be expressed non-
dimensionally as
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Here X and’y'are Cartesian coordinates (the x-axis is directed
vertically upwards and coincides with the axis of symmetry of the
~ ~ ~ ~
jet), U and V are the velocity components in the x and y directions
‘respectively,.¥ is the local fluid éemperature,‘¥°9 is the uniform
temperature of the ambient fluid, 7 1is the kinematic viscosity,
OC is the thermal diffusivity, O is the Prandtl member, £ is the
volumetric expansion coefficient, g is the gravitational acceleration,
and U*, T* and L are reference velocity, temperature and length.
The Boussinesq approximation has been adopted and thus all fluid
properties are assumed constant except for the essential density

variations.

A virtual source of heat and momentum is assumed to be
located at the origin of the coordinate system. The boundary
‘conditions to be satisfied by the velocity and temberature profiles
are

for X>0 , y=0. U_ M_V=0

¥ Yy )
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for XZO0 , Y=o U=T=0,



. Considering the flow in the region close to the virtual
source where the flow velocity is high we anticipate that the
buoyancy forces are negligible compared with the inertial and viscous
forces. The velocity field will be approximated by the classical
solﬁtion of Schlichting (1933) for a momentum jet in a uniform
quiescent ambient fluid. Thus we are lead to attempt a perturbation
solution for the velocity and temperature fields close to the origin
by expanding in terms of direct (fractional) powers of the distance
x from the virtual source. Since the governing equations are
'parabolic and x is time-like, subsequéﬁt terms in the expansion can
be calculated without difficulty in terms of the initial conditions
at the virtual source. Although the reéulting series will diverge
for some value of x, hopefully we can extend its radius of convergence

by use of, for example, the Euler transformation (Van Dyke 1964b).

At large values of x the buoyancy forces will be of the
same order as the other terms in the momentum equation and the flow
will asymptotically approach the similarity solutions given by
Brand and Lahey (1967), Schuh (1948), Bendor (1956), etc., that were
mentioned earlier. Here it is natural to seek an approximate solution
by means of an inverse coordinate expansion. There occur eigen~
solutions, the undetermined multiplicative constants of which are
related to‘the initial conditions at the virtual source. These
_ constants may be determined by a suitable joining or numerical

patching procedure.



2,1 Direct Expansion For Small x

‘It will be convenient to define the coefficient of T in

the momentum equation of (1) as
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where Ts and Ug are the reference temperature and velocity for
small x. Unique definitions for Tg, Ug and L may be obtained by
making use of equation (4) and two integral conditions. The initial

jet momentum per unit length of source in terms of the physical

variables is defined by ) _ .
9
~ . . ~ el
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IH+0 o g (5)

where ?; is chosen as the fluid density emerging from the slit and
is a convenient reference density. We note that the integral in
equation (5) is not independent of x as in the classical solution
of Schlichting (1933) for a constant temperature jet. Rewriting

equation (5) in terms of the dimensionless variables yields
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where kl is simply a numerical constant which may be determined from

subsequent solutions.

From the original physical form of the last of equatioms

(1) (the energy equation) it is found that
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where Q is the heat flow per unit length of line source, Cp is the

specific heat at constant pressure.
Expressing equation (7) in dimensionless form gives

5 G
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where k2 is a numerical constant.

Equations (4)? (6) and (8) provide three equations to

determine the reference temperature, velocity and length as follows?
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A stream function gE (K)y)'is now defined such that

U= oY V= - oY (10)
dy ’ Y3
It is now assumed that the stream function and the temperature can

be expanded in the region close to the origin as follows :
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| The similarity variable /}Z and the leading term of the
stream function expansion are of the same form as those in the
classical jet solution of Schlichting h(1933). The form ;)f the first
. term of the expansion for the tempefature is determined by the
integral condition (8). Substitution of equations (10) and (11)
into the last two of equations (1) suggests that it is matural to

take

v
E=X (12)
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In fact, the choice of other fractional powers of x such as x 7,

x2/3, etc., for € is found to produce identically zero for the
related functions Fn(/rl) and Hn(/lz). We are thus lead to the

following sequence of ordimary differential equations for the

functionAs Fn('7() and Hn(oz)'.

1 1] 2
FDH -+ ZFOF;) + ZCFO) = 0 )
Ho“ + 2« (Fo Ho)r =0 s

F" +2FRF"-4FF +10F'F = -Ho

W'+ 2R K - 6FH, = —10f H, - 2F'H,

A
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R 2R - 205'R' 426 RA" = 20R'E 105 5"
| -85 5"~ Hy 3 | (13)
B+ 2R Hy' - 22 F'Hy = ME'H - JoFH +¢RH,
| _/85/1?'_2@’#0 26 B Ho'
etc.,
where the primes denote differentiation with respect to7 . The

boundary conditions (3) reduce to
R0 = F"(0) = F, (=)= Hn () = Ha () = © (199

The first of equations (13) is easily integrated to yield
the classical solution of Schlichting (1933) for the constant

temperature free jet

Fo=Tashg .

(15)

The second of equations (13) yields
90"
Ho= (.&@aﬁ.ﬂz) . (15)

- where the integration constant has been chosen as unity for

convenience. The solution for the two dimensional heated jet
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corresponding to equatiomns (15) and (16) has been obtained previously
by Yih (1950). The remaining equations of (13) were integrated

numerically by means of a Runge-Kutta technique.

For the particular case of Prandtl number equal to two,
the shapes of the velocity and temperature profiles for x =0
(obtained from equations (15) and (16)) are identical to the shapes
associated with the asymptotic solution for x — oo (cf. ex. Brand
and LAhey 1967). It would appear reasonable to assume that the
profile sh;pes do not change signif%cantly for intermediate values
of x. Thus we expect that an integral method using fixed temperature
and velocity profiles (of the proper asymptotic form) should yield
accurate solutions of the flow development for the particular
Prandtl number of 2. Such an integral approach is outlined in the
Appendix and it will be compared subsequently with the series
expansion solutions. For Prandtl numbers other than 2, a more
general integral method which allows for variations in the profile

shapes with axial distance would be desirable.

The numerical solutions for the functions FO' to F3’ and

HD to H3 for the case of O = 2 are shown in Figures 1 and 2. The

numerical constants in equations (6) and (8) are found to be

_ 16
kl = ) b

(17)

. b4 -
ky, = 5% for & = 2
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where” the contributions to the integrals in (6) and (8) come only

from the zeroth order terms Fo' and HO.

The distributions of the centreline velocity and temperature
oBtained from the direct series expansions and froh the integral
method (cf. Appendix) are shown in Figures 3 and 4. 1In its present
form the series diverges at some downstream distance. We shall now
proceed to a discussion of the solution valid at large distances,
after which we shall return to a further discussion of the preceding

work,

2.2 Inverse Expansions For large x

We shall make. use of the equations of motion in the form
of equations (1), subject to boundary conditions of the form of
equations (3). For large x the non~dimensional velocity components
.and temperature will be defined by the lower case symbols u, v and t.
The variables are non-dimensionalized in a manner similar to
equations (2) where the large x reference velocity U{, temperature
Ti and length L are chosen in the following way. The reference
length L is taken to be the same as that determined for the small x
case (cf. equation (9)). It is conv;nient to define

gfTC L
U |

. (18)

Analogous to eﬁuation (8) we may obtain
UK
ke Q15E

7 S A ) (19)

- Do ?CFUL-TL L

where k3 is a numerical constant.
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From equations (18) and (19) and the previous definition

for the reference length L, the large x reference velocity U‘i and

temperature T. may be uniquely determined. They are related to the

L

small x reference velocity and temperature by

- (g} o

15 = (bL
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~We define a stream function \P (x,y) such that

oY W
by | and vV = .5;( (21)

By introducing the similarity variable 37 , the momentum and energy

(20)

o

L=

equations can be expressed as

47/

2 5 |
%Wxg-g%(— y“gi&’?y'—‘x t *—;1/5%3’5" y
(22)

, qéftx - %& tny = | t;gf y

where j’ = y

Ve
and the subscripts denote partial differentiation.

We now seek a solution which is close to the asymptotic

solution for large x. Thus assume that



W(x,b’)= qﬁ*** )
.-&(Xjk): -t°1'-t;+""‘ )

e Y= L
-to = —Xl—’ Ahd (3) )

(23)

35
ﬁnd [k'.-n 44 k{')b 9 tiﬂ < +-;.

After substituting equations (23) into (22) the zeroth order problem

is found t; be .
‘ 2
_Fom . % -po -porl _ %({L,) _ L\Q ’

W t2e (B = 0

(24)

!

subject to the boundary conditions
n / ! .
'ﬁ(O) = (:) (0)= ’II:\Q (D’O) = L\0 (O) = L‘D(W\) = O . (25)

These zeroth order equations describe the laminar plumes studie& by
Fujii (1963), Spalding and Cruddace (1961), Cranme (1959) and others.

The solution for O = 2 may be obtained in closed form as
_ 3
FD_-{__AMl\TB& b
(26
b :isef,ﬂf(ﬁ) )
o ) »

125
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'The first order equations are

_ . / 0 s
%y ey Tty e

/
-~ K - _3 L‘\u
t"” +§'p°t‘3 _xﬂt'ﬁ- 5 Xes (P’J‘ - hg ({')X )
subject to the boundary conditions
‘ L —
(x,0) = %r(X)O) = Lhy (4, ) = ‘-!3"(")0) =L =0 . (28)

Separation of variables is now assumed, whereby we write

k‘H(X)3’>= Zl(-?) N,(X) 2

(29)
t 8= Y () M
Sﬁbstitution of equations (29) into (27) yields
W
N,= C, %
b

M, = C‘X‘(xﬁg) |

: )

: (30)
z:\_*%'poz t (X*s)p z, —X‘P = -, ,
LY 3 s Ord 0% - hz b 2,

The boundary conditions on Z, and Y, are

2,0) = 2'lo) = Z () = Y, (o) = V(o) = O | on

Equations (30) and (31) constitute an eigenvalue problem somewhat

reminiscent of the investigation of the perturbed Blasius solutions
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carried out by Libby and Fox (1963). Only for discrete values of
)\1 = >\’)k can all of the boundary conditions (31) be satisfied.
Thus the solutions for LV and t‘ are

[

Mg

\‘H-(x)jo) = é Ct,k X_ Zr))p, (3)

o, -()\.);,_4-36) (32)

{,(X)ff)"’ %l C!)h)( Y}h(.‘f) .

Our purposés are quite different from those of Libby and Fox (1963)
and we need not compute a large number of eigenvalues and eigen-

functions.

. Solutions to the last two of equations (30) were obtained
!
numerically by a Runge-Kutta method. For convenience th(O) may
be chosen as unity. Using trial values for >\’)k and Yl;k 0)

the equations were integrated from _\' = 0 to a suitably large value

of i’ . The proper values of >\1):,\ a

nd Y,)k(O)_ were selected when |
the boundary conditions for _%—*O" were satisfied. The constants
C;)k_ are related to the initial conditions at the virtual origin
and can be determined by some joining or matching procedure. For a
Prandtl number of 2, the first eigenvalue was found to >\|,; = 2/5.

!
The corresponding eigenfunctions ZI,] (i‘) and Yﬂ c}’) are

shown in Figures 5 and 6 along with f(')(j") and ho(j").*

* The second eigenvalue for O = 2 is found to be >\!;2_ = 1.800,
but because of the difficulties involved in joining the "large x"

and '"small x" expansions, only the first eigenfunctions are shown
here.
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2.3 Transformation of the Direct Expansion

From Figures 3 and 4 it is evident that the direct
expansions for velocity and temperature obtained from equations (1l1)
hﬁVg utility only for small values of x. It is suspected that
convergence of these series is restricted by singularities on the
negative axis of the complex plane (cf..Van Dyke 1964b). Accordingly
we éhall attempt to extend the radius of convergence of each éeries
to infinity by applying the Eule% transformation. Attention will
be restricfed solely to the centreline velocity and temperature.
Hﬁwever, the Euler transformation may-be applied to the complete
velocity and temperature profiles similar to the way in which Van
Dyke (1964a) has appliea it to the complete stream function in the

boundary layer on a parabola.

It will be convenient to rearrange the expressions for

the centreline velocity and temperature in the following form:

-%o I : l
e OO _ 4 ;| Er)+ef©+ Rl +53F3‘(o)1-..:(,
‘ I);* 3

o /o

~ Ys
: T(i}T”)‘ L [HO)r e + Mo+ Sh 6] .

(33)

Recasting the above series in terms of a new variable

£

€= ¢

(34)

and making use of the numerical solutions for Fi(o) and Hk(O) we



- 17 -

obtain

2
(5) J:J -0.29286 ¢ - O, Oé?‘FO(g) - 0. 075"?!(5>+..]
(35)

~ s NG
To T’f): ZL7_ (e) [f+0.182|42 +0.09982 (£)" +0.,06705 (§)3+--j

Hopefully the above transformed series converge to the

exact solution for all x. It is straightforward to compare equations

(35) for E —» 1 (i.e., x—+0o9) with the asymptotic solution for

From equations (20), (21), (23) and (26) we obtain

large x.
~%o -
5 Y5
e Vo _ RN p
7/ (T(O) T-c — (kZBEL\ (0 = 0 1283
TS ’ ‘

for the asymptotlc large x sclution.

The successive partial sums of first of equations (35)

for g"" 1 are

%o ~
U@ - 0.ce67 y0.4714 ,0.4292,0.4132 5,.... GD

X
Us
These appear very likely to be converging quite rapidly

to the required value of 0.4004. Figure 7 shows the variation of

the centreline velocity as obtained from the successive partial
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sums ©of the transformed direct series. Four terms of the transformed
series are seen to agree very well with the integral solution

(cf. Appendix) which merges into the asymptotic solutions valid for

both small and large values of x.

The successive partial sums of the second of equations (35)

for é—v 1 are

Hére, the series is converging more siswly, but it seems possible
that the partial sums are approaching the required value of 0.1283.
Figure 8 compares the centreline temperéture distribution obtained
from the transformed direct series with that from the integral

solution,

2.4 Determination of Constants in Inverse Expansion

It was originally anticipated that the direct and inverse
coordinate expansions could be joined in a manner similar to that
followed by Van Dyke (1964a). However, it is not obvious how this
Qay be done for the present case and we have had to resort to a
crude numerical patching. The constant Cy,y for the first eigen-
solution was chosen to be approximately 0.18 by patching with the
integral solution at large finite values of x. The two term inverse
expansions for the centreline velocity and temperature using this

value of C, , are shown in Figures 9 and 10. The constants



associated with the higher eigensolutions can be determined, but
because of the rather arbitrary manner of the numerical patching,

we shall not bother to show them here.

3. 'CONCLUDING REMARKS

The flow developed by a buoyant two-dimensional vertical
laminar jet has been analysed by means of direct and inverse
coordinate expansions valid at small and large distances from the
virtual origin. After applying the Euler transformation to the
direct expansions, it is found that for a Prandtl number of 2 the
partial sum of the first form terms for the centreiine velocity
agrees to within 3% of the asymptotic solution for large x. The
agreement for the temperature distribution is not as good and here
the four term direct series underestimates the centreline temperature
by some 22% as x —» 2 . Comparisons have also been made with a
simple integral method which is expected to be valid for a Prandtl
number of 2. The centreline velocity was found to decrease with
distance from the virtual origin, reach a minimum and thevreafter
increase, whereas the centreline temperature was found to decrease
monotonically. From a physical standpoint this type of behaviour
is to be expected. Close to the orifice where bouyancy effects are
negligible the flow develops like a momentum jet. Far from the
orifice where the initial conditions of momentum flux have been
"forgotten'" and buoyancy effects are essential,the flow behaves

like a buoyant laminar plume.
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The series expansions could, of course, be carried out
for other values of Prandtl number. However, it should be quite
.gtraightforward to work out an integral method which is more flexible
‘than the present one in order to produce reasonable accuracy for
Prendtl numbers other than 2. The asymptotic soiutions for large
';nd small x could be used as a guide for the choice of velocity and

temperature profiles.

With some suitable assumption regarding eddy viscosity,
series exp;nsions could be carried out for the turbulent case.
y;cause of the rather arbitrary nature of such assumptions, a
8impler integral approach is undoubtedly more appropriate at this

time,

This work was supported by the National Research Council
9§;Canada. The authors are indebted to Dr. B.G. Newman for

ggscussions and for reading the manuscript.



APPENDIX. INTEGRAL METHOD

Consider equations (1), (2) and (3) in which the reference
temperature, velocity and length are the '"'small-x" values given by
;%agation (9). By integrating the momentum equation between y = 0

gﬂd y = ©®  and making use of the continuity equation we obtain
oo =
d [v* .
3)—( jU dy = JTCI7 . (A1)
0 0

The following expressions are assumed for the velocity

and temperature profiles

Uky)= 0,09 sk 2,

) (A2)

Tly) = () sech” Y . (43)
b

The above profile shapes should be reasonable for a Prandtl
qtmﬂer, 0 =2, since they are of the same form as the asymptotic
solutions for both small at;d large x. For other Prandtl numbers
4t would be more precise to adopt a general integral approach which

permitted the profile shapes to vary rather than remain fixed as

above.

Substituting equations (A2) and (A3) in (Al) we obtain

Za;b%% + CL\Z%%. = a, b (a4)
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Applying the momentum equation of (1) at y = O gives

da . QA2 _ 2
dx a, bz

Substituting (A2) and (A3) in equation (8) yields

16 aa, b=k
5 ' z

where k2 = %%E for § = 2 as obtained from equation (17).

(A5)

(A6)

Equations (A4), (AS5) and (A6) can be reduced to two first

order simultaneous ordinary differential equations of the form

do, — 4 2

dx 77 a b b
db - _4  _ 4
a';( 0., b 27@}3

A7)

Equations (A7) were integrated by means of a Runge-Kutta

method using the "small %' zeroth order solution to provide starting

values. The solutions to (A7) combined with equation (A6) then

provide complete information concerning the flow field.
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