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ABSTRACT

This thesis reports the comparison of numerical modeling approaches for the extreme case of
pulse propagation in optical fibers leading to supercontinuum generation. The widely-used
generalized nonlinear Schrédinger equation is introduced along with two other propagation
models, the Fourier-domain generalized Schrédinger equation and the nonlinear envelope
equation, which are physically more accurate and retain the same first-order differential
equation formalism. The performance of the three propagation model is investigated with
simulations of different experimental results from the literature. The numerical results show
that the Fourier-domain generalized Schrodinger equation and the nonlinear envelope equa-
tion are useful tools in specific cases and that the generalized nonlinear Schrodinger equation
is nonetheless sufficiently accurate to model supercontinuum generation in a wide range of
experimental conditions. This is subsequently corroborated in a practical example of super-

continuum source prototype optimization aided with numerical simulations.



RESUME

Ce mémoire est une étude comparative des approches de modélisation numérique de la
propagation d’impulsions lumineuses dans la fibre optique, spécifiquement appliquée au
cas extréme de génération de supercontinuum. Largement utilisée en optique nonlinéaire,
I’équation de Schrodinger nonlinéaire généralisée est présentée parallélement avec deux mod-
éles de propagation alternatifs, I’équation de Schrodinger non linéaire généralisée dans le do-
maine spectral et ’équation d’envelope nonlinéaire généralisée. Ces deux modéles alternatifs
sont plus précis au niveau phénoménologique et conservent le méme formalisme d’équation
différentielle de premier ordre. La performance des trois modéles de propagation est évaluée
au moyen de simulations de résultats expérimentaux provenant de la litérature. Les résultats
numériques montrent que les deux models alternatifs peuvent étre essentiels dans certains
cas spécifiques, mais que 1’équation de Schrédinger nonlinéaire généralisée demeure suffisa-
ment précise pour modéliser la génération de supercontinuum dans une large étendue de
conditions expérimentales. Cette conclusion est ensuite corroborée par un exemple pratique

d’optimisation d'un prototype de source supercontinuum a 'aide de simulations numériques.

ii



ACKNOWLEDGMENTS

I would like to thank my supervisor, professor Martin Rochette, for his support and men-
torship. I would also like to thank Thibaut Sylvestre from the Femto-ST institute for giving

me the opportunity to work as part of his team for an internship.
I am also grateful for the financial support from professor Rochette, the SUPUVIR Eu-

ropean project, the department of electrical and computer engineering of McGill University,

the Mitacs organization, and the STARaCom strategic cluster.

il



Contents
ABSTRACT . . . . . s
RESUME . . . ... ... ...
ACKNOWLEDGMENTS . . . .. .. . o .
Chapter 1: Introduction . . . . . . ... ... ... ... ... .........

Chapter 2: Pulse Propagation Equations . . . . . . . ... ... ... ....
2.1 Derivation of a Propagation Equation from First Principles . . . . . . . . ..
2.2 The Generalized Nonlinear Schrédinger Equation . . . . . .. .. ... ...
2.3 The Fourier-Domain Generalized Schrodinger Equation . . . . . . . . . . ..
2.4 The Generalized Nonlinear Envelope Equation Model . . . . . . . . .. ...

2.5 Assumptions and Approximations . . . . . .. ..o

Chapter 3: Theory of Supercontinuum Generation in Optical Fibers . .
3.1 Ultrashort Pulses in the Anomalous Dispersion Regime . . . . . . ... . ..
3.2 Quasi-CW Pulses in the Anomalous Dispersion Regime . . . . . . . .. . ..

3.3 Normal Dispersion Regime . . . . . . . . ... ... 0o

Chapter 4: Numerical Methods . . . . . ... ... ... ... ........
4.1 The Split-Step Fourier Method . . . . . . . . .. ... . ... ... .....
4.1.1 Overview of the Algorithm . . . . . . . . .. ... ... ... .....
4.1.2  Error Analysis for the SSFM Algorithm . . . . . . ... .. ... ...
4.2 The Fourth-Order Runge-Kutta Method . . . . . . ... ... ... .....
4.3 Practical Implementation in Matlab . . . . . . .. ... ... ...
4.3.1 Time and Frequency Discretization . . . . . . . . ... .. ... ...
4.3.2 The Fast Fourier Transform in Matlab . . . . . ... . ... ... ..
4.3.3 Adjusting the Frequency Window . . . . . . . .. .. ... ... ...
4.4 The Adaptive Step Size Method and Convergence Criterion . . . . . . . . ..
4.5 The Goodness of Fit Criterion . . . . . . . . .. ... ... .. ... ...

v

ii

iii

12
14
15



Chapter 5: Comparison of the Three Envelope Equation Models

5.1 Example 1: Large Bandwidth Mid-Infrared SC . . . . . . . . . ... .. ...
5.2 Example 2: Near-Infrared SC Generation with a PCF . . . . . ... ... ..
5.3 Example 3: THG with Near-Infrared Pumping . . . . . . .. ... ... ...
5.4 Example 4: Visible to Near-Infrared SC with Tapered Silica Fibers . . . . .
5.0 Discussion . . . . ..o

Chapter 6: Practical Implementation for a Cascaded Fiber System . . .

6.1 Introduction and Motivation . . . . . . . . ... ...
6.2 Selenoptic’s Experimental Setup . . . . . . . . . ... ... L.
6.3 Experimental Results . . . . . . . . ..o oo
6.4 Fiber Characteristics . . . . . . . . . . . . . .
6.4.1 Fiber 1: SMF-28 . . . . . . . . ...
6.4.2 Fiber 2: ZBLAN Step-Index Fiber . . . . . .. ... ... ... ...
6.4.3 Window filter . . . . . . . . ..
6.4.4 Fiber 3: Chalcogenide PCF . . . . . . ... ... ... ... .....
6.5 Simulation Results . . . . . . ... oo
6.5.1 Fiber 1: SMF-28 . . . . . . . . .
6.5.2 Fiber 2: ZBLAN Fiber . . . . . . . . .. ... L
6.5.3 Fiber 3: Chalcogenide PCF . . . . .. ... ... ... ... .....
6.5.4 Fiber 3: Alternative Chalcogenide PCF . . . . . .. .. ... .. ...
6.6 Recommendations . . . . . . . .. ..
Chapter 7: Conclusion . . . . . . .. ... ... ... ... ... .. ......
References . . . . . . . . . .
Appendix . . . . .. e



List of Figures

2.1
4.1
4.2

5.1

5.2
9.3

5.4

9.5

0.6

5.7
5.8
5.9

hg(t) for a silica fiber, taken from [2]. . . . . . . . . ... ...
Schematic of the SSFM algorithm, taken from [44] . . . . . ... .. ... ..
Time-domain profile and shifted spectrum for a 1 kW 200 fs pulse centered at
8O0 nm. ..o
(a) Dispersion curve of the step-index chalcogenide fiber with a ZDW of
5.83 um. (b) Calculated effective mode area (blue), nonlinear parameter (or-
ange), and approximation of the nonlinear parameter with a corrected shock
term: v & vy + Y7082 (dotted line). . . . . ...
Loss coefficient used in the simulations, modeled after [36]. . . . . . . .. ..
Simulated spectral evolution along the fiber with the GNLSE (bottom) and
comparison of the three numerical output spectra with the experimental out-
put spectrum (top) for 67 kW coupled peak power (simulated with 13.4 kW
peak power). . . . .
Convergence analysis for the three numerical methods with 13.4 kW (simu-
lated) peak power . . . . ...
Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE (c)
with 692 kW experimental coupled peak power (simulated with 180 kW peak
power). Spectral evolution is shown on the left and the output spectra are
shown on the right. . . . . . . . . . ... .
Convergence analysis for the three numerical methods with 180 kW (simu-
lated) peak power . . . . . ...
Numerical noise accumulation through the FFT operations. . . . . . . . . ..
scanning electron microscope image of the PCF used in [54]. . . . . ... ..
(a) Dispersion curve of the F2 glass PCF with a ZDW of 2.82 um. (b) Effective
mode area (blue) from [54], nonlinear parameter (orange), and approximation
of the nonlinear parameter with a corrected shock term: ~ =~ vy + Y70f2

(dotted line). . . . . .

5.10 Fiber losses considered in the simulations for the F2 glass PCF. . . . . . ..

vi

36



5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18
5.19

5.21

Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE
(c) with 250 kW peak power (simulated); comparison with the experimental
output spectrum. Spectral evolution is shown on the left and the output
spectra are shown on the right. . . . . . ... ... o000 45
Convergence analysis for the three numerical methods with 250 kW (simu-
lated) peak power . . . . . ... A7
(a) Dispersion curve of the highly nonlinear fiber with a ZDW of 1410 nm.
(b) Nonlinear parameter (orange) and shock term: v = 79 + Y7082 (dotted
line). In this case, Aqg is considered constant, so the shock term is exact in
modeling the frequency dependence of v. . . . . . . . . ... ... 48
Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE (c)
with 12 kW peak power, comparison with the experimental output spectrum
with THG around 520 nm. Spectral evolution is shown on the left and the
output spectra are shown on the right. . . . . ... ... ... ... ..... 49
Convergence analysis for the three numerical methods with 12 kW (simulated)
peak power . . ... 51
Diagram of the mode confinement along the taper 90 mm taper waist, taken
from [34] . . . .. 52
(a) Calculated dispersion curve of the fiber taper with a ZDW of 688 nm.
(b) Calculated effective mode area (blue), nonlinear parameter (orange) and
shock term: v & o + 707082 (dotted line). . . . . . . ... ... ... ... .. 53
Temporal profile evolution along the tapered fiber, simulated with the GNLSE. 54
Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE (c)
with 14 kW peak power, comparison with the experimental output spectrum.
Spectral evolution is shown on the left and the output spectra are shown on
theright. . . . . . . . o 55
Convergence analysis for the three numerical methods with 14 kW (simulated)
peak POWer . . . . .. e 56
SC generation in a fused silica nanowire modelled using the GNEE (solid line),

and without THG (dashed line), taken from [25]. . . . . ... .. ... ... 57

vii



6.1

6.2

6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13

6.14

6.15

6.16
6.17
6.18

Experimental cascaded fiber setup from Selenoptics for mid-infrared SC gen-
eration, taken from [59]. . . . . ... L Lo
Experimental spectra measured at the output of the ZBLAN fiber (blue) and
after the filter (red). . . . . . . ...
Experimental spectra measured at the output of the chalcogenide PCF. . . .
Dispersion curve used for numerical modeling of the SMF-28 fiber. . . . . . .
(a) Calculated dispersion curve of the ZBLAN fiber with a ZDW of 1525 nm.
(b) Calculated effective mode area (blue), nonlinear parameter (orange) and
shock term: v & o + 707082 (dotted line). . . . . . .. ... ...
Numerical model for the Raman gain of the ZBLAN fiber. . . . . . ... ..
Optical losses for the ZBLAN fiber. . . . . . . . . ... . ... ... .....
Modelization of the filter transmission. . . . . . .. .. .. ...
Cross section of the microstructured chalcogenide fiber. . . . . . . . . . ..
(a) Calculated dispersion curve of the chalcogenide PCF with a ZDW of
4838 nm. (b) Calculated effective mode area (blue), nonlinear parameter
(orange) and shock term: v & vy + Y702 (dotted line). . . . . . . .. .. ..
Measured optical losses for the chalcogenide PCF. . . . . . .. ... ... ..
Color scale for time and spectral evolution maps. . . . . . .. ... ... ..
Temporal and spectral evolution in the SMF-28 fiber for a 460 ps pulse. 40 dB
dynamic range (see figure 6.12). . . . . . . . ...
Spectral and time-domain evolution for the 50 ps (a), 200 ps (b), and 460 ps
(¢) pump pulse with the output spectra on the right. 40 dB dynamic range
(see figure 6.12).. . . . . . ..o
Initial spectral evolution in the ZBLAN fiber, 40 dB dynamic range (see fig-
ure 6.12). The wavelengths marked with the dotted lines correspond to the
theoretical MI and Raman wavelengths calculated with equation 3.6 and the
Raman gain peak at 17.4 THz respectively. . . . . . . . . ... ... ... ..
Initial temporal evolution in the ZBLAN fiber. . . . . .. ... ... ....
Typical solitons from the pulse train. . . . . . .. .. ... ... ... ...

Filtered spectrum injected in the chalcogenide fiber. . . . . . . . . . ... ..

viii

65

67

70



6.19 Initial spectral evolution in the chalcogenide PCF. 40 dB dynamic range (see
figure 6.12). . . . . .. 75
6.20 Full spectral evolution in the chalcogenide PCF with final output spectrum.
40 dB dynamic range (see figure 6.12). . . . . . ... ... 76
6.21 (a) Cross-section of the alternative chalcogenide fiber (adapted from [62]). (b)
Dispersion curve with a ZDW of 3.81 pm. . . . . ... ... ... ... ... 7
6.22 Spectral evolution in the 7 pm-core chalcogenide fiber. 40 dB dynamic range
(see figure 6.12). . . . . . ... 78

X



Chapter 1: Introduction

Numerical modeling is an essential tool in the development of novel laser sources as it allows
to gain insight on the physical mechanisms at play and sheds light on the effects of design
changes and possible optimizations from the earliest stages of development to the final proto-
type. One of the more challenging elements to model in an optical system is nonlinear pulse
propagation in waveguides: the interplay between linear and nonlinear interactions of light
inside a waveguide gives rise to complex behaviours which in most cases cannot be predicted
analytically. In optical fibers, these mechanisms (self-phase modulation, soliton formation,
soliton fission, self-steepening, Raman scattering, etc.) have been extensively studied and
theorized. While these nonlinear effects are often avoided and can be neglected in telecom-
munication systems, they play a key role in the generation of supercontinuum (SC) light.
With their unique high brightness and large bandwidth characteristics, SC light sources are
in high demand for applications in medicine, environmental monitoring, industrial processes,
and sensing [1],[2]. In response to this, several research groups have invested efforts towards
the development of SC sources with improved properties. Taking the Nonlinear Photonics
Group at McGill University as an example, important characteristics of SC sources such as
broad bandwidth but also low power consumption, brightness, and compactness have been

the subject of many investigations [3],[4],[5],6],|7],[8]-

SC generation is an extreme case of pulse propagation in optical fiber where nonlinear ef-
fects interact to produce large spectral broadening. It was first observed in bulk glass by
Alfano and Shapiro in 1970 [9]. Pulse propagation in this regime has been the subject of
numerous studies, and is generally well understood. It is most commonly modeled with the
generalized nonlinear Schrodinger equation (GNLSE) [2], a first-order differential equation
that describes pulse propagation and includes the effects of dispersion and nonlinearity with
some approximations. With the advent of novel speciality fibers and high-energy ultra-short
laser sources, multi-octave spectral broadening and sub-cycle dynamics are now achievable
experimentally. These effects go beyond what was observed in 1970 by Alfano and Shapiro,

and beyond what is achievable in conventional silica fiber. Some approximations of the



GNLSE model become questionable in these cases. Consequently, efforts have been made
to develop pulse propagation models with fewer approximations [10],[11],[12],[13] for more

accurate simulations in these extreme regimes.

The propagation equations proposed by Laegsgaard [12] and by Kibler et al. [25] are of
particular interest because they conserve the same simple formalism as the GNLSE are
numerically solved with the same techniques. They are referred to as the Fourier-domain
GNLSE (FD-GNLSE) and the generalized nonlinear envelope equation (GNEE) respectively.
The aim of this work is to compare the performance of the GNLSE with these two alternative
propagation models in the context of SC generation. Performance will be evaluated for the
three models in terms of their ability to accurately model different physical mechanisms, and

in terms of the time complexity of their algorithm.

This thesis is divided into seven chapters. After this introductory chapter, the GNLSE
is derived from first principles to highlight the important approximations in the model. The
FD-GNLSE and the GNEE models are then presented. The assumptions and approximation
for the three models are then discussed. In chapter 3, an overview of the different SC gener-
ation mechanisms is presented. Chapter 4 presents the numerical methods used in this work
to solve the three propagation equations and introduces the performance criteria. In Chapter
5, the three envelope equation models are compared quantitatively using these performance
criteria. Four examples of experimental SC generation are used as references. In chapter 6,
a practical example of SC source prototype optimization aided with numerical simulations is
presented. This work is the result of a three-month internship at the Femto-ST institute in

France. Finally, the conclusion is presented in chapter 7, where the results are summarized.



Chapter 2: Pulse Propagation Equations

In this chapter, three mathematical models for pulse propagation in optical fiber are in-
troduced: the generalized nonlinear Schrédinger equation (GNLSE), the Fourier-domain

GNLSE (FD-GNLSE), and the generalized nonlinear envelope equation (GNEE).

2.1 Derivation of a Propagation Equation from First Principles

This derivation closely follows the work presented in references [2] and [14] and aims to
provide insight on the origin of the widely used nonlinear Schrodinger equation in optics.
In the next subsection, it is shown how this propagation model can be adapted for short
pulses (< 1 ps) and extreme spectral broadening (i.e. the GNLSE). We start the discussion
by defining the electric field E(r,t) of a pulse guided by an optical fiber. A z-propagating
and linearly z-polarized field with a slowly varying envelope is assumed. Hence E(r,t) is

described as the product of a rapidly oscillating field with a spatial and temporal envelope

E(r,t):

E(r,t) = %(E(r, 1) expl—iwot] + c.c.)% (2.1)

where c.c. denotes the complex conjugate and r is the position vector with its origin at the
center of the fiber cross-section. wy is the reference frequency of the pulse, which is assumed
far from any material resonances, and FE(r,t) is separated into its spatial and temporal

envelopes:

E(r,t) = F(x,y)A(z,t) explifoz] (2.2)

where F(x,y) is the transverse spatial distribution of the guided mode, f, is the corre-
sponding propagation constant at the reference frequency, and A(z,t) is the temporal pulse
profile, with |A|*> normalized to represent instantaneous power. Single-mode propagation
only is considered, thus F'(x,y) is described as a two-dimensional Gaussian distribution as
an approximation of the fundamental Bessel mode profile [2], [15]. The complex pulse enve-
lope A(z,t) will become central to the discussion as the propagation model is developed. It

contains relevant information about pulse evolution: temporal profile, power, phase, chirp,

3



spectral phase, and spectral power density.

To model propagation of the pulse electric field E(r, ¢) in a dielectric medium, the starting
point is the set Maxwell’s equations with current density, charge density, and magnetization

set to zero:

VxE= —pyH (2.3)
VxH= 22 (2.4)
V-D= 0 (2.5)
V-H= 0 (2.6)

Where H is the magnetic field related to the pulse electric field E, p is the vacuum perme-

ability, and D is the electric flux density response in the medium:
D=¢E+P (2.7)

where € is the vacuum permittivity. The polarization response of the medium P is separated
into a linear part P, and a nonlinear part Py, P = Py + Pyy. The effects of this linear
and nonlinear polarization response will become clear later on. Optical fibers are made of
amorphous materials with inversion symmetry and therefore exhibit third-order nonlinearity:.
Neglecting non-instantaneous molecular vibrations (Raman scattering) in the nonlinear term

for now, the material response is described as:

P=P,+ Py, =cox'V - E+¢x®EEE (2.8)

Where y") and x®) are the first and third order susceptibility tensors defined by the mate-
rial properties of the fiber. It is worth noting that in general, the tensor products of P are
described by time convolutions because of the frequency dependence of linear and nonlinear
susceptibilities. This is considered when shifting to the frequency domain later on. Further-
more, without the inclusion of the delayed Raman response, ) is treated as constant for
this derivation. With these definitions in place, the derivation of a propagation equation for

the pulse envelope A(z,t) can start. Taking the curl of equation 2.3, inserting equation 2.4



and using the definition for electric flux density (equation 2.7), the following equation for E

is obtained:
1 O’E 0’P, O?Pyp
2o M T T

Where ¢ is the speed of light in vacuum. Then, using the following relation with V- E = 0

VXxVXE=—

(2.9)

from equation 2.5 (weak-guidance approximation, see section 2.5):
VxVxE=V(V-E)-V’E=-V°E (2.10)

the following equation is obtained:

1 °E 9°P 5°P
QE _ = L NL
VIE =G5 TH e T 5

(2.11)

This is now transferred to the frequency domain centered at the reference frequency with

the Fourier transform:

E(r,w) = /OC E(r, t)exp[iwt]dt = /OC E(r, t)exp|(i(w — wo)t]dt = F(z,y)A(z, w) exp[ifoz]
- - (2.12)
and equation 2.11 becomes
2
V’E = —%E — WP — w? o Py (2.13)

The tilde superscript is used to denote Fourier space. At this point, both polarization terms
are substituted by the result of their tensor product, which are both reduced to a single
term since a linearly polarized electric field in x far from any material resonances is assumed
(see [14] for more details). For the linear term: P, = eo)zi(clx)E, where )Zg(glm) is the frequency-
dependent nonzero tensor element from . For nonlinear polarization, the third-harmonic

generation (THG) term that arises from the tensor product is neglected. Pyy is transferred

to the Fourier domain to obtain:

- > 3e : 3€ 2
Pyp = / TOX;?xAEPE - exp[(i(w — wo)t]dt ~ TOX;??E)m|E|2E (2.14)

—00

where chf,;)m is the nonzero tensor element from X(?’)- Here, the frequency-dependence of X(3)

is neglected and the quantity ?j% Xfﬁmw | is treated as a constant in time. This is justified

5



by the slowly varying envelope approximation (SVEA) and the perturbative nature of this
nonlinear term |[2]. ;zfj} and X,(i)m are related to the refractive index and the nonlinear
refractive index respectively. For now, the imaginary parts of )Zg(glx) and X;(,i)m are neglected.
They are related to linear and nonlinear losses respectively; their effect is included later on.
Substituting the polarization terms, equation 2.13 then becomes:

- 2 3
V2B = =SB (1 3+ D P (215

which is rewritten in the following form, with £(w) = 1 + )z:(le) + %Xg:)xﬂE |2 :

27 w? -
V°E = —gEa(w) (2.16)
E = F(z,y)A(w, z) exp[ifpz] is now substituted and the separation of variables method is

used to obtain separate equations for the mode profile F(z, i) and the pulse envelope A(w, 2):

ViF = (Bz — "cj—jg(w))F (2.17)
A e 5
e (/32 - B&)A (2.13)

Equation 2.18 is obtained by assuming that the pulse envelope is a slowly varying function
of z and thus neglecting the second-order z-derivative term from the Laplacian. Here, 52 is
introduced as a separation constant. Its relation with the propagation constant will become

clear in the following.

The goal is now to obtain an explicit expression with known fiber parameters for 32 so
that equation 2.18 becomes a practical pulse propagation equation. To start, the nonlinear
part of e(w) is treated as a small perturbation and the unperturbed equation 2.17 is evaluated
with e(w) =1+ X(I}L“) Using the relation between refractive index and linear susceptibility:

n?=1+ Xélx), and converting to cylindrical coordinates, equation 2.17 becomes

d’F  1dF  [(w® 5 =
-4 di BN F=0 2.19

dp2+pdp+<62n 6) (2.19)
In this form, equation 2.19 corresponds exactly to the Bessel differential equation describing

the fundamental mode profile of a step-index fiber (see |2] for more details). Therefore, in

6



this unperturbed case, the eigenvalue B is equivalent to the modal propagation constant
B(w). First order perturbation theory is now used to include the effect of the nonlinear part

of e(w) =1+ 7+ %Xg?m|E|2. £(w) is approximated as

e(w) = (n+ An)? = n® + 2nAn (2.20)

where it is assumed that n >> An. An is related to the nonlinear refractive index nqy in the

following way:

3 ‘ 3 ., ‘
2nln = ZXf;)m|E|Z = An= 8—><§f;3m|E|2 = no| ] (2.21)
n

In the same way, the perturbed eigenvalue /3 is rewritten as :

p=p+Ap8 (2.22)

where [ is the modal propagation constant found from equation 2.19 (or in practice, found
from dispersion measurements in the optical fiber) and Af is the first-order perturbation to
the eigenvalue (its frequency dependence is implicit). Using (8 + AB)? ~ % + 28A3, the

perturbed case for equation 2.17 is:
w? w?
[V% + —2n2] F — B*F + =2nAnF = 2BABF (2.23)
c c

It is assumed that this nonlinear index perturbation does not affect the modal distribution
F(x,y). It follows that the first two terms on the left side of equation 2.23 cancel out through
their relation from the unperturbed equation 2.17. Following first-order perturbation theory
[16], equation 2.23 is now multiplied by the conjugate F* and integrated over the transverse

plane on both sides:

W2
//F*EZnAana:dy=//F*QBABFdxdy (2.24)

Rearranging, this yields:
w?n [ [ An|F(z,y)|*dzdy

Ap = 2.25
7B [ [IF(e.y)Pdrdy (2:29)
The propagation equation for the pulse envelope (equation 2.18) is now written as
0A .

7



where the approximation (BQ — B3) ~ 260(5 — fo) is used. To obtain the time-domain
formulation of the nonlinear Schrédinger equation from equation 2.26, a few steps are still
necessary. First, the propagation constant (w) is expanded as a Taylor series around the

reference frequency wy:

KﬁlQJr 207+ BBQ3+...> +Aﬂ}fl (2.27)

where () = w—wqg and 5, = J It is now clear how the linear polarization term P, from the

medium’s electric flux density response directly leads to familiar phenomena such as group
velocity, related to 31, group velocity dispersion (GVD), related to s, third-order dispersion
(B3), and so on. Next, several approximations regarding the nonlinear perturbation AjS are
necessary. The propagation constant 3 is approximated as 8 = “neg ~ “n. Then, An is
replaced by its definition (equation 2.21) and ns is factored out of the integral assuming it
does not vary significantly along the fiber diameter. Finally, all frequency dependence (which

is implicit in ny and F'(x,y)) is dropped and AS is evaluated at the reference frequency:

wona|Al? [ [ |F(x,y)|"dzdy
[ [1F(z,y)?dzdy

Converting to the time domain using the following inverse Fourier transform definition:

AB — ABy = (2.28)

Al t) = F AR )} = 5- / Az, Q)exp|—i04)d0 (2.29)
T J -
Equation 2.27 becomes:
8A(Z,t) . kﬁk 8k
5 ! 1 Bt"fA +iABA (2.30)

k>1

As a final step, the following normalization is performed: A — and equation

A
VI TIF @ y)Pdedy
2.30 is multiplied by \/ J [|F(z,y)|>dzdy on each side to obtain the nonlinear Schrédinger

equation:

DA(z,t) . i Bk 9
5, L X 8tkA+1’yo|A] A (2.31)

k>1

where 7 is the nonlinear parameter at the reference frequency:



_ Wone (wo)

= D) 2.32
The effective mode area A.g is obtained with the final normalization, it is defined as:
2
(ff IF(Ly)IZd»’Udy)
At = (2.33)

J JIF(z,y)|*dzdy

Two of the more limiting approximations made in the derivation of the nonlinear Schrédinger
equation are the omission of the delayed Raman response in the nonlinear polarization term
and the omission of all frequency dependence in the nonlinear perturbation Af. Those
limit the validity of this propagation model to cases for which the pulse bandwidth is much
smaller than the reference frequency (Aw << wp). In the next subsection, as the first of
the three propagation models, the generalized version of the nonlinear Schrodinger equation
is introduced. It is valid for much shorter pulses (<1 ps) and accurately models significant

spectral broadening.

2.2 The Generalized Nonlinear Schrodinger Equation

Building upon the model derived in the previous section, the GNLSE is now introduced. The
GNLSE has two essential additions that enable a more accurate modeling of short pulses
and large bandwidth dynamics [17]: the Raman term and the nonlinear shock term. The

Raman term is first added.

In deriving the standard nonlinear Schrédinger equation, it is assumed that the nonlinear
polarization consists exclusively of instantaneous electronic response. The total nonlinear
response function R(t), which takes into account both the instantaneous electronic response
(Kerr nonlinearity) and the delayed molecular response (Raman effect) is now introduced.
With the inclusion of this delayed response, the nonlinear polarization tensor product (equa-

tion 2.8) has to be described as a time convolution:

Pai = 2039, / R(t — ) E*(t — ) E(t — t)dt (2:34)



where the upper integral bound ¢ ensures causality. Following the same perturbation theory
development used in the previous section, it can be shown [17] that the inclusion of the

Raman effect with R(t) leads to the following propagation equation:
dz k! Otk

E>1

where it is assumed that R(t) is normalized such that [~ R(t)dt = 1. Analytical forms of

A+ivy {A/ R()|A(z,t —t)|*dt (2.35)
0

the full response function R(t) are generally not known for isotropic glass materials. R(t)
is therefore often separated into an instantaneous electronic response modeled with a Dirac

delta function §(t), and a delayed molecular response hg(t):

R(t) = (1 = fr)o(t) + frhr(t) (2.36)
where fr is the fraction of the Raman contribution to the total nonlinear response. If the

Raman gain spectrum contains a single peak, the Raman response function hr(t) is often

modeled in the following way [17]:

he(t) = (172 4 75 2)m exp(—t/m2) sin(t/11) (2.37)
where 7; is the inverse of the phonon frequency in the material and 7 is related to the
bandwidth of the Raman gain peak. Figure 2.1 shows hg(t) extracted from experimental

measurements for a silica fiber. The corresponding characteristic timescales are 7 = 12.2 fs

and 79 = 32 fs.

| I | I I
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Time (ps)

Figure 2.1: hg(t) for a silica fiber, taken from [2].
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Alternatively, if the Raman gain spectrum gz(€) is known, it can be fitted with a sum

of Gaussian functions and hg(t) can be extracted with [18]:

ha(t > 0)=C- / " gn(Q) sin(1)d0 (2.38)

where C'is a normalization constant chosen such that [fooo hgr(t)dt = 1. With this definition

of R(t), the total nonlinear convolution is equivalent to:
/ R Azt =)t = (1= fr)| AP + fr(hn @ [A) (2339)
0

where ® denotes convolution.

The nonlinear shock term is now added to the propagation equation to obtain the GNLSE.
The nonlinear shock term is a first-order correction on vy to account for the frequency de-

pendence of :
wna(w)

Y(w) = An(o) (2.40)

This amounts to expanding y(w) as a Taylor series around the reference frequency, keeping

only the first two terms, and transferring back to the time domain:

) )

A =+ N T 0t img (2.41)
with v, = g—z evaluated at wy. Adding this to the propagation equation, the GNLSE is
obtained:

OA(2,T) —iB O , .0 )
—_— = ———A 1 — | |A-R(T)® |A 2.42
0z 1/<;>2 k! oTk 10 —HTO@T R(T) @ 4] (242)

where 79 = 71 /7 is referred to as the shock time-scale, often approximated by 7o ~ 1/wp. It

can be calculated to also contain the dispersion of both ny(w) and Aeg(w) [19]:

Tozi_[ L dAeff} +{ 1 %} (2.43)

wo Agg(w) dw ne(w) dw
In the numerical examples presented in this work, ny will be considered constant either
because of its negligible contribution to the dispersion of v(\) or because of a lack of exper-

imental ny(A) data for materials such as ZBLAN or F2 glass. For example, in silica glass
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pumped at 850 nm, the ny contribution (3rd term in equation 2.43) is 3.5-107'7 s according
to data from [20]. In comparison, the contribution from the 1/wp term is more than ten
times larger at 4.5- 10719 5. As will be seen in the numerical examples, the A.g contribution

can range from negligible to significant depending on the waveguide properties.

This shock term is responsible for what is known as pulse self-steepening, where group ve-
locity becomes intensity-dependent [2],[21]. In equation 2.42, the time ¢ is transferred to a
frame of reference moving with the group velocity of the pulse: T' =t — 5;z. The Raman
convolution (shown equation 2.35) is represented with the symbol ® on the right side. It is
important to stress two limitations regarding the shock term. First, 7y is only a first-order
correction to 7o and therefore does not account for the full frequency dependence of Aeg)
and no(w). Second, the inclusion of the frequency dependence of v and its expansion into
a Taylor series are performed a posteriori, which is not perfectly well founded in light of
the derivation presented in the previous section, where the frequency dependence of Ap
is dropped all together before converting back to the time domain and normalizing to ex-
tract 7. In other words, the frequency dependence of v has to be neglected to obtain the
time-domain nonlinear Schrédinger equation (2.31), but it is then introduced in the GNLSE
without mathematical basis. That being said, as will be seen with different numerical exam-
ples in chapters 5 and 6, this approximation (equation 2.43) is sufficient in most situations.
With the inclusion of the shock term and the Raman effect, the GNLSE is adequate for
broadband propagation, with pulse duration approaching the single-cycle regime and band-
widths up to ~ wp/3 [17],[19]. It is important to note that this bandwidth limitation applies
to coherent pulses, the GNLSE still accurately models incoherent spectral broadening over
multiple octaves. Moreover, the GNLSE can be readily implemented for numerical simu-
lations with the split-step Fourier method, which is described in section 4.1.1. For those

reasons, the GNLSE is generally seen as the workhorse of nonlinear optics simulations.

2.3 The Fourier-Domain Generalized Schrodinger Equation

The second of the three propagation equation models presented in this work is the Fourier-

domain GNLSE (FD-GNLSE). The main motivation for this model is to preserve the full
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frequency dependence of the nonlinear perturbation Aj (equation 2.25), so that the disper-
sion of fiber parameters Aeg, neg, and ny are accurately modeled over large bandwidths. This
leads to a different definition of the nonlinear parameter . In this work, we simply introduce
the FD-GNLSE without derivation. The reader is referred to Lacgsgaard’s paper [12] and
Koleski et al. 22| for a detailed derivation. It is important to note, however, that as with
the GNLSE, this derivation still relies on the SVEA. As presented in |1], the FD-GNLSE is

written as:

DA (2, Q)
0z

In this model, the pulse evolution is described as an ordinary differential equation in the

=i-5- exp[—Dz]f{A "R® \AP} (2.44)

Fourier domain. As with the GNLSE, the Raman effect is included in the nonlinear response
convolution denoted with ®. The Fourier-domain pulse envelope A is moved into what is

called the interaction picture with the following change of variable:

A(2,9) = A(z, Q)exp(—D(Q)2) (2.45)
where D(Q) = i(B(Q) — /1 — f) is the dispersion operator, equivalent to time-domain
dispersion operator i), ., lk%% in the GNLSE (equation 2.42) transferred to the Fourier

space. As previously mentioned, the derivation of this equation leads to a different definition

of the nonlinear parameter:

B WNoNe(wo)
() = Lratnlen)

(2.46)
NegA g
Moreover, the nonlinear response convolution is evaluated with the time-domain pulse enve-

lope normalized in the following way:

_ A(z,Q
A2, T) = f—l{%} (2.47)
Aeff (Q)

In addition to correctly modeling the dispersion of nonlinearity, equation 2.44 has the
advantage of being a non-stiff differential equation thanks to the interaction-picture change
of variable, which removed the stiff dispersive part [1], i.e. the dispersion operator. The
stiffness of a differential equation refers to its tendency to produce rapid variations in the

numerical solution with small changes to the initial conditions [23]. The removal of the stiff

term makes the FD-GNLSE suitable for numerical integration with Runge-Kutta methods.
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2.4 The Generalized Nonlinear Envelope Equation Model

The third propagation model presented in this work is the generalized nonlinear envelope
equation model (GNEE). Both the GNLSE and the FD-GNLSE rely on the SVEA, which
limits their validity in situations where the pulse bandwidth exceeds ~ wy/3 (i.e. ultrashort
pulses with durations <5 fs). In ref. [13], Genty et al. bypass the SVEA and obtain a first
order propagation equation by separating the backward and forward propagating fields (see
[24] for details). The motivation for this model is to obtain a propagation equation with the
same simple GNLSE formalism, but with no bandwidth constraint. The resulting GNEE is
as follows [13]:

OA(z,T) 1", O , 0 o Lo o
o —1]C>2 o akaH—l/O 1+1T08T (1= fr)||A] +3Ae A+ fry(z,T,A)
(2.48)
where g(z,7, A) is the Raman convolution term:
2 2 . .
g(z, T, A) = 3 [hR(T) ® |A|2} A+ ge_leT {h’R(T) ® |A|2} Re(e T A) (2.49)

with Wy(T) = hp(T)exp(—i2weT'). As mentioned, the GNEE has the same structure as the
GNLSE: the first term on the right models dispersion in the same way, and nonlinearity is
modeled through 7y and the shock term, which can be corrected to account for the dispersion
of Ao and ny (equation 2.43). The difference lies in the nonlinear response convolution. For
the instantaneous electronic contribution (1 — f term), there is an added term: %AQe_iQon
which models the contribution of THG (THG is neglected in the derivation of the GNLSE).
Although THG is usually non-phase-matched in single-mode optical fibers, this higher har-
monic term can have a significant contribution to the blue-shifted spectral broadening in
highly-nonlinear fibers ([13], [25], [26]). For the delayed Raman response (fp term), the
model used here is derived from [27] and contains rapidly oscillating terms from the sub-
cycle interactions of the Raman frequency components. Having the same structure as the

GNLSE, equation 2.48 is also numerically solvable with the split-step Fourier method.
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2.5 Assumptions and Approximations

In this subsection, the major assumptions and approximations on which the three propaga-

tion equation models rely (the GNLSE, FD-GNLSE, and GNEE) are discussed.

e The weak-guidance approximation
All three propagation models are derived from Maxwell’s equations by approximating
V - E =0 (see equation 2.10). This amounts to assuming that susceptibility (z,y) is
homogeneous in space, which is only valid if the fiber has a simple step-index geometry
and is weakly guiding, that is if the refractive index difference between core and cladding
is very small (see |15] for more details). This allows to treat the guided field as a
scalar mode with no component in the z direction (i.e. completely transverse) and
ultimately obtain unidirectional propagation equations for the pulse envelope. This
approximation is sufficient in most cases for a qualitative assessment of SC dynamics,
even in different non-weakly-guiding fibers (e.g. step index with high index contrast,
microwires, and photonic-crystal fibers) [1],[28],[25]. However, it has been shown [29]
that a full vectorial approach for deriving a propagation equation leads to a different
definition of v and an effective nonlinearity up to ~2 times stronger than with the scalar
definition in strongly-guiding fibers. Despite this, most models used in simulations for

strongly-guideing fibers in the litterature rely on the scalar approximation [1].

e The SVEA
Both the GNLSE and the FD-GNLSE rely on the SVEA. As mentioned earlier, this
limits their validity to cases where the pulse bandwidth does not exceed wg/3. This
condition is satisfied most of the time, unless extremely short pulse durations are
involved [13|. For example, the GNLSE and FD-GNLSE are still valid for pulses
as short as 10 fs at 1060 nm under this condition. However, if significant spectral
broadening occurs on the blue-shifted side of the pump, the higher-harmonics terms in

the GNEE could provide more accurate modeling.

e Single-mode propagation

All three equations presented in this work are simplified to model single-mode propaga-
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tion, .e. propagation of the fundamental mode. For SC generation, even when pump-
ing in the single-mode regime, blue-shifted spectral broadening can excite higher-order
modes which have different dispersion and nonlinear properties [15]. Multi-mode pump-
ing has been shown to lead to complex spatio-temporal nonlinear dynamics [30],[31],
and generalized multi-mode propagation models have been presented in the literature
[32/,|33]. In this work, we focus on fundamental mode pumping with the GNLSE,
FD-GNLSE, and GNEE, and therefore neglect excitation of higher-order modes.

Birefringence

Fiber birefringence is neglected for all three propagation models. With the GNLSE,
the effects of birefringence can be easily accounted for by considering two coupled
equations (one for each polarization state) with an added cross-phase modulation term

in the nonlinear part [2].

Losses

Losses are omitted in the three propagation equations for conciseness. In each case,
linear losses can be added directly to the dispersion operator in the frequency domain:
D(Q) =i(B(Q) — B1Q — Fo) — a(Q)/2, where () is the linear loss coefficient in m™~".
Nonlinear loss from two-photon absorption is ignored here as it is often negligible in

the transparency windows of fibers [2].
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Chapter 3: Theory of Supercontinuum Generation in Op-

tical Fibers

This section presents an overview of the key physical mechanisms involved in SC generation
for three different pumping regimes of dispersion and pulse duration. Concepts of nonlinear
fiber optics are used here without introduction, namely self-phase modulation (SPM), four-
wave mixing (FWM), solitons, and Raman-induced frequency shifts (RIFS). The reader is
referred to [2] and[14] for a thorough description of these phenomena, and to [1] for a detailed

account of the history of SC sources.

3.1 Ultrashort Pulses in the Anomalous Dispersion Regime

SC generation can be achieved by pumping with ultrashort pulses (typically below ~ 1 ps)
in the anomalous dispersion regime of an optical fiber [34],[35],[36]. For example Ranka et al.
[35] obtained a SC spanning from 400 to 1400 nm by pumping a microstructured silica fiber
at wavelength of 790 nm (anomalous dispersion) with pulses of 100 fs duration and ~8 kW
peak power. The main physical mechanism that initiates large spectral broadening in this

regime is known as soliton fission [28],[37]. As a reminder, the soliton order N is given by:

N2 _ ’YOPOTQQ
|Ba]

Where Ty is the soliton duration and F is the peak power. When a high-order soliton (N>1)

(3.1)

is excited in a fiber it, initially compresses its duration until it reaches a point where the
perturbative effects of higher-order dispersion (f33, 4,...) and self-steepening are significant.
At this point, the N"-order soliton breaks into a collection of N fundamental solitons of

deterministic duration and peak power given by [2]:

To
o= 20 2
FTON+1-2k (3:2)
ON +1— 2k)?
R (3.3)

where k goes from 1 to N. T} is the duration of the kth fundamental soliton, and P is its

peak power. After this point, further spectral broadening occurs with the propagation of
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the N fundamental solitons. On the red-shifted side, spectral broadening occurs through the

continuous red-shift Av of each soliton induced by RIFS:

_ATx|B| |
1577y

Av(z) = (3.4)

where 7T is the soliton duration and 7T = fOOOR(t)tdt. As the fundamental solitons propagate
in the fiber, they are perturbed by higher-order dispersion, losses, and self-steepening. To
compensate for this, the solitons continuously adjust their parameters by shedding part of
their energy in the form of dispersive waves [1],[2]. A soliton at a given frequency w, will
emit a dispersive wave at a frequency wy for which the phase velocity is the same as the
nonlinearly propagating soliton. For fibers with a single zero-dispersion wavelength (ZDW)
and red-shifted solitons, wy lies on the short-wavelength side of the pump. The dispersive
wave frequency is approximated by [2] :

302 | vEsbs

Wy A ——= +

B3 303

As a result, further spectral broadening occurs on the blue-shifted side as the soliton fre-

+ ws (3.5)

quency w, continuously decreases from RIFS.

3.2 Quasi-CW Pulses in the Anomalous Dispersion Regime

SC generation can also be achieved by pumping with quasi-CW or continuous-wave (CW)
light in the anomalous dispersion regime [38],[39],[40]. In terms of SC generation mechanisms,
pump pulses with durations longer than ~10 ps can be considered quasi-CW: the process
of SC generation with such pulses is identical to the CW case. Unlike the mechanisms of
soliton fission that drives SC generation with ultrashort pulses, modulation instability (MI)
is the main phenomenon that initiates large spectral broadening for quasi-CW pulses and
CW pumps. MI is a nonlinear phenomenon that occurs in the anomalous dispersion regime.
It is analogous to a FWM process that is phase-matched by the nonlinear phase shift of
SPM. When a CW or quasi-CW pump is injected in the anomalous dispersion regime, MI
will amplify certain frequencies from quantum noise or amplitude fluctuations of the pump.

This leads to the apparition of two sidebands around the pump frequency. Their specific
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frequencies relative to the pump (Qy) are given by the phase matching condition [2]:

Ba

6291%/[1 +

MI also enables Raman amplification of noise both on the Stokes and anti-Stokes side via
FWM (see |41] for more details). This amplification of noise and amplitude fluctuations
from MI and Raman gain eventually breaks up the quasi-CW pump into a chaotic train of
thousands of ultrashort femtosecond pulses, which evolve into fundamental solitons. Since
this process is seeded by random noise and both MI and Raman gain have a certain band-
width, solitons with a wide range of durations and peak powers are formed within the initial
quasi-CW pulse envelope. This contributes to the initial broadening of the spectrum. After
the train of solitons has been formed, the main mechanism that contributes to large spectral
broadening on the long-wavelength side is the RIFS of each individual soliton. As seen with
equation 3.4, the RIFS of an individual soliton strongly depends on its duration Ty. For a
train of thousands of solitons with variable durations T, this will therefore generate a smooth
continuum on the long-wavelength side because each one experiences a different RIFS over
the total propagation length. Another mechanism that further extends the continuum on the
long-wavelength side is called soliton collision. If at any point during propagation there is a
coherent temporal overlap between one soliton and a more red-shifted soliton, the first soliton
can act as a pump for Raman amplification of the more red-shifted soliton. After amplifica-
tion, the red-shifted soliton compresses its duration T to conserve its fundamental soliton
number N = 1. This compression then leads to greater RIF'S upon propagation, thus further
broadening the long-wavelength side of the continuum. Broadening on the blue-shifted side

again produced by the dispersive waves emitted by the perturbed soliton propagation.

3.3 Normal Dispersion Regime

SC generation has also been achieved in the normal dispersion regime without the involve-
ment of solitons and dispersive waves [40[,[42],[3]. The physical mechanisms at play in this
regime are not as straightforward as in the anomalous dispersion regime, but usually in-
volve SPM, FWM, and Raman amplification. For example, Abeeluck et al. [40] have shown

that cascaded Raman amplification is the main phenomenon that seeds SC generation with
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CW pumping in highly nonlinear fibers. Yuan et al. [42| have shown that pumping photonic
crystal fibers (PCF) with ultra short pulses produces SC by SPM and phenomenon called op-
tical wave-breaking. Wave-breaking can be simply seen as FWM between different frequency
components of a single pulse [2],[43]. On the other hand, Hudson et al. [3] have achieved
broadband mid-infrared SC generation by pumping ultrashort pulses in an all-normal disper-
sion chalcogenide microwire. The extreme nonlinearity involved in their experiment make it
difficult to isolate the mechanisms at play. It can be interpreted as a chaotic mix of SPM,

wave-breaking, cascaded FWM, and cascaded Raman amplification.
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Chapter 4: Numerical Methods

As one might expect from the nonlinear nature of the three propagation equations studied
here, the GNLSE, FD-GNLSE, and GNEE do not lend themselves to analytical treatment.
This section presents the numerical methods used to solve these equations and discuss the
important practical details of implementing such numerical schemes in Matlab. Example

codes for the three propagation models are presented in the appendix.

4.1 The Split-Step Fourier Method
4.1.1 Overview of the Algorithm

The split-step Fourier Method (SSFM) is the most widely used numerical method to solve
the GNLSE [2],[44]. As mentioned before, the GNEE also lends itself to the SSFM in the
exact same manner. To make matters more simple, the GNLSE is used as the example to
introduce the SSFM. To begin, the GNLSE (equation 2.42) is rewritten in the following way:

0A(2,T)

o =(D+N)A (4.7)

where D is what is called the dispersion operator, and N , the nonlinear operator. Following
equation 2.42 D is given by:
k k
A, "6 0 o
D= _ = 4.8
VL TR aTk T 2 (4.8)
k>2

As a reminder, D can be converted to the Fourier domain to obtain a simpler form:

.| B Bs a(Q)

D(Q) =i m+—W+%m+J—%9=mm%ﬂfmm—jr (4.9)

20 3! 2

where the frequency dependence of losses can be directly included. The nonlinear operator

has the following form:

~ 1 .0

Notice that the 1/A factor appears because A cannot be factored out of the square brackets
when the time derivative from the shock term is considered. The idea behind the SSFM is

to divide the total propagation length L into small z-steps of size h and to approximately
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A~

solve equation 4.7 over each small step by treating dispersion (ﬁ) and nonlinearity (V)
independently, i.e. by successively setting D =0 and evaluating N , then setting N =0 and

evaluating D, and so on. This is schematized in figure 4.1.

Nonlinear segments

Pulse in

=>

Dispersive segments

Figure 4.1: Schematic of the SSFM algorithm, taken from [44]

For a small step in z, starting at an arbitrary point zg, the nonlinear part of the equation

is first solved:

0A(2,T) 0
0 v 1+ irg— | |A- R® |AJ? 4.11
2 (1 +ins )[40 Re 4l (@.1)
when the shock term is ignored (in which case N = iyoR ® |A[?) the solution at z = 2o + h
is found in a straightforward manner by approximating |A|* as constant over the small step

h, i.e. |A(z,T)]*> = |Ao)*> = |A(20,T)|* and simply integrating from zy to z . We call the

solution to the nonlinear step Any:
Anp = A(2.T) - exp[No(z — )] (4.12)

where Ny = i7oR ® |Ap|?>. When the shock term is considered, however, the integration
of equation 4.11 is more involved. Theoretically, one could use the same technique, but
with the full definition of the nonlinear operator (equation 4.10). However, this approach is
numerically unstable in practice because of the 1/A factor. To include the shock term, the
approach presented by Blow and Wood [17] is followed here. The shock term is treated as a

perturbation and the following change of variables is used:
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V(z,T) = A(z,T) - exp[-No - (z — 2)] (4.13)

Where Ny = ivgR ® |Ap|? is the unperturbed nonlinear operator. From equation 4.11, this
yields:

ov A 0
82 = iR ® [|V|2 - |V0|21 - ’YoToaT

where Vo = Ag = A(z = 29, T). Treating the shock term as a perturbation, the approxima-

tion Z[A-R(T)®|V[*] ~ Z[V-R(T")®|V|?] is used. A second-order Runge-Kutta scheme

[v ‘R® ]V|2} (4.14)

is now used to integrate equation 4.14 over the step size h. The variation of V at z = z is:

klza—v

= —YoT
92 YoTo =75

2=20 ar [
A first estimate of V(2o + h/2,T) is then found with:

Vo-R® |V0|21 (4.15)

h
Vi=V(x+h/2,T) =Vb+k15 (4.16)

The variation of V at z = zp + h/2 is now estimated by:

b OV

. 0
v RS [W _ w] - [vl ‘R& W] (4.17)

0

z=z0+h/2

An estimate of V at z = z5 + h is then found:

V(ZQ + h, T) = Vo + kah (418)

Inverting the change of variables, the solution for the nonlinear step with the shock term

included is

ANL = V(ZO + h, T) . exp[]%h] (419)

The solution of the nonlinear step Any, is now used as the input for the dispersive step.
For the dispersive step, N = 0 is assumed and the dispersive part of the GNLSE is solved
independently:

A2, T) o = iB, OF

k>2

To solve this, it is transferred to the Fourier domain using equation 4.9:

dA(z,Q)

P DA = 1{5(9) — By — 519] A — @fl (4.21)
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This equation is solved by direct integration: A(zy + h,Q) = A(20,9) - exp[Dh]. To get
the full estimate (nonlinearity and dispersion included) of the solution after one step, the
dispersion step is applied on the solution to the nonlinear part Ayp, in the Fourier domain

and then transferred back to the time domain:

Alzo+h,T)=F! (]—"(ANL) : eXp[Dh]) (4.22)

This solution is then used as the input for the next step, and the process is repeated until

the total propagation length L is reached.

4.1.2 Error Analysis for the SSFM Algorithm

We now focus on the error of the SSFM algorithm relative to the step size h. The two sources
of error in this algorithm are the second-order Runge-Kutta integration of the nonlinear part
and the independent treatment of the effects of D and N. By definition, the second-order
Runge-Kutta integration has a local error that is third-order with step size O(h®) [17]. The
dominant error term comes from the independent treatment of D and N. Treating the two
operators independently amounts to approximating them as commutative (i.e. DNA =~
NDA), which is not the case [2]. A more formal solution to equation 4.7 should be written
as:

A(zo+ 7, T) = exp [(D + N)h] A(z0, T) (4.23)

However, the SSFM algorithm approximates this solution in the following way:

~

exp [(D + N)h}A(zo, T) ~ exp[Dh] exp[Nh)A(z, T) (4.24)

Using the following relation for two non-commutative operators [2[:

2
exp[Dh]exp[Nh] = exp | (D + N)h + %[D, N]+ O(h?) (4.25)

where [f), N] = DN — ND is the commutator for D and N. The dominant error term
is %[ﬁ, N] and thus second-order with step size O(h?). Therefore, the local error for the
SSFM algorithm follows O(h?) and the global error follows O(h). A symmetrized version of

the SSFM algorithm can be easily implemented to improve on this and achieve second-order
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global accuracy O(h?) [45]. The idea for each step is to propagate through half a dispersion

step, then a full nonlinear step, and finally the remaining half of the dispersion step:
~h - ~h
A(zg + h,T) = exp[D§] exp|Nh| eXp[Dg]A(zo, T) (4.26)

When the shock term is involved, the nonlinear step should be carried out with the Runge-

Kutta scheme presented in section 4.1.1.

4.2 The Fourth-Order Runge-Kutta Method

The FD-GNLSE (equation 2.44) can be solved numerically with any explicit Runge-Kutta
method. Following [46], the fourth-order Runge-Kutta (RK4) method is presented here.

From equation 2.44, the four slope estimates k; through k4 are given by:

k= iy- exp[—[)zo]}'{fl(zo, T)- R® |A(z, T)|2} (4.27)
Al = A(2,T) + kr 2 (4.28)
Al = Al(29,Q) + ksh (4.32)
ky = iy - exp[— Dz + h]f{/_lg -R® |/_13|2} (4.33)

where A’ is related to A, through equation 2.47. The approximate solution for one step is

given by:

4.34
6 3 3 6 (4:34)

The global accuracy of this method is of fourth-order with step size O(h*). This gain of accu-

~ ~ k k k k
Alzg 4 h, Q) = A'(2,9Q) + <—1 +2423 —4>h

racy over the symmetrized SSFM comes at the cost of a more involved algorithm. Moreover,
a practical implementation of this algorithm necessitates at least 16 discrete Fourier trans-

form operations per iteration (as seen in the Matlab code in Appendix B), which introduces
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round-off errors. As will be seen in the numerical results, this hinders the RK4 algorithm’s
convergence rate in certain cases. In comparison, the SSFM algorithm for the GNLSE re-
quires only 6 discrete Fourier transform operations per iteration. On the other hand, the
RK4 method has the advantage of being easily implemented in Matlab with the built-in
ordinary differential equation solver ODE45 [47].

4.3 Practical Implementation in Matlab

In this subsection, we elaborate on a few key concepts for a practical implementation of the

SSFM and the RK4 method in Matlab.

4.3.1 Time and Frequency Discretization

The windowing and discretization of time (7') and frequency (2) is a crucial step in nonlin-
ear pulse propagation modeling: it must be carefully accomplished so that both time and
frequency-domain interactions are accurately captured when numerically solving a propa-
gation equation. The following parameters define the time and relative frequency €2/2m

windows and increment size. They are all related in the following way:

(
Nt — Number of sampling points in time and frequency

dT — Time increment size

§ Tmax = Nt - dT/2 — Time window defined from -Tmax to Tmax

fmax = 0.5/dT — Frequency window defined from -fmax to fmax

df = 1/(Nt - dT) — Frequency increment size

\
Using these definitions, the time window actually represents time delay centered at the peak
of the pulse, such that the leading edge of the pulse is situated in negative time and the
trailing edge in positive time. Also, the frequency window actually represents frequency dif-

ference centered at the reference frequency of the pulse, such that blue-shifted components
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have positive frequency and red-shifted components have negative frequency.

In the simulations, the number of sampling points Nt and the time window size Tmax
are defined first. The other parameters are then based on the values chosen for Nt and
Tmax. The first consideration for this choice is that the time window size Tmax must be large
enough so that throughout the propagation length, the field intensity stays effectively 0 at
the edges of the time window. This ensures that the signal does not fold over the sampling
window during fast Fourier transform (FFT) conversions. The choice of Nt also requires
careful attention. Nt should be a power of 2 (e.g. 2'?) to optimize computation time: the
fast-Fourier transform algorithm in Matlab is optimized for vectors with lengths that are
powers of 2. More importantly, Nt must be large enough so that the frequency window size

fmax can contain the entire spectrum at each point along the propagation length.

4.3.2 The Fast Fourier Transform in Matlab

The FFT function in Matlab (fft) and its inverse (ifft) are built-in functions that calcu-
late the discrete Fourier transform. Throughout this work, the following definitions for the

analytical Fourier transform are used:

A(2,Q) = F{A(2, 1)} = / h A(z, T)exp[iQT)dT (4.35)
—1r A 1 R .
Az, T)=F {A(z,Q)} = %/_ A(z, Q)exp[—iQT]d2 (4.36)

The built-in fft and ifft functions in Matlab use the inverse sign convention for the ex-
ponential term and a different scaling [48]. To obtain the correct scaling and the same
sign convention, one could define the following compound functions and use them when

transferring back and forth between time and Fourier domains:
Af =FT(A,Nt,dT) := Nt -dT - fftshift (ifft(ifftshift(4))) (4.37)

A = IFT(Af,df) := df - fftshift(fft(ifftshift(Af))) (4.38)

where Af is the discretized frequency-domain envelope and A is the discretized time-domain

envelope. Here the fftshift and ifftshift functions are built-in Matlab functions that
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are used to shift vectors to and from the shifted space, where their zero component (7" = 0
and 2 = 0) are shifted to the first element of the vector. For example, in the normal space, A
is the pulse envelope vector with its maximum value (the pulse peak at 7' = 0) at the center
of the vector. To obtain the discrete Fourier transform 4.37 with a definition coherent with
4.35, it is transferred to the shifted space, which is the natural way that the ifft and fft
functions interpret their input vector. The ifft is then applied to account for the different
sign convention. The vector is then shifted back to normal space and scaled with Nt - dT.
These compound functions are useful for writing more understandable code, however they
come at the cost of more computing time. A more optimized way to transfer to and from the
Fourier domain is to perform all calculations in the shifted space and shift back to normal

space only for data visualization.

4.3.3 Adjusting the Frequency Window

In some situations, the frequency windows requires to be adjusted to avoid negative values
in absolute frequency and wavelength. Let Omega be the angular frequency difference vector
ranging from —27 - fmax to 27 - fmax. The absolute frequency vector w is then given by
w = Omega + w0, where w0 is the reference angular frequency. In some cases, the spectral
broadening on the short wavelength side of a SC is large enough that new spectral components
are separated from w0 by a frequency difference larger than w0 (i.e. the bandwidth of a SC
may be larger than the reference frequency wy). This requires that 27 - fmax > w0, which
creates negative values in the absolute frequency vector w. This is generally undesirable as
it can create problems such as negative values for the propagation constant or the nonlinear
parameter. This problem can be bypassed by shifting the center of the frequency window
vector £. The following shows an example of how this can be implemented with the built-in

circshift function.
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Nt = 2~14; %
Tmax = 10e-12; :
T = linspace (-Tmax, Tmax,Nt) ; % Tim
dT = Z*Tmax/Nt; %
fmax = 0.5/dT; %
df = (2*fmax) /Nt; %
f = linspace(-fmax, fmax,Nt);

f shift = linspace(-(fmax-0.4*fmax), fmax+0.4*fmax, Nt);
shift = —-round(Nt*0.4/2);

Omega shift = 2.*%pi.*f shift; %

[rad/s]

w = Cmega shift+w0; %
lam = 2.*pi.*c./w; %

T EWHM = 200e-15: E
T0 = T FWHM/1.7627; %
PO = le3; % E

20 = sgrt(P0) .*sech(T./T0):; %
BRf0 = FT(AD,Nt,dT); %
Af0 shift = circshift (Af0,shift);

In this example, a 200 fs pulse centered at 850 nm is considered, and the desired wave-
length window is from 350 nm to 2 microns. Here, Nt and Tmax are defined first and the
other parameters are computed from those values. The values for Nt and Tmax are chosen
so that fmax is sufficiently large to include short wavelengths (high frequencies) down to
350 nm in the frequency vector £f. However, in this case, if the frequency vector £ is not
shifted, the large negative frequency limit -fmax will cause negative values in the absolute
frequency vector w. Here, the shifted frequency vector £_shift is shifted by 0.4*fmax i.e.
the negative limit is reduced by 0.4xfmax and the positive limit is increased by the same
amount. It is crucial that the shift is symmetric to preserve the equivalences between df
and Nt. Using f_shift, wavelength values ranging from 324 nm to 2.8 microns are obtained
in the wavelength vector lam, which covers the desired window. With this shifted frequency

window, the pulse spectrum is computed in two steps. First the Fourier transform of the
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time-domain pulse profile (A0) is computed with the FT compound function described the
previous section. Second, the resulting vector is shifted with the built-in circshift function
so that the position of the peak of the spectrum in the vector corresponds to the position
of the zero in the shifted frequency vector f_shift. The value of shift depends on the
amount by which the frequency limits are modified. The resulting shifted spectrum is shown

with the time-domain profile in figure 4.2.
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Figure 4.2: Time-domain profile and shifted spectrum for a 1 kW 200 fs pulse centered at
850 nm.

It is important to note that a shifted spectrum must be shifted back by an amount -shift
before being converted to the time domain with the IFT function so that the correct phase

and scaling are preserved: A0 = IFT(circshift (AfO_shift,-shift),df).
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4.4 The Adaptive Step Size Method and Convergence Criterion

A crucial step in modeling nonlinear pulse propagation is defining the longitudinal step size
h. To accurately model the effects of nonlinearity and dispersion, A must be much smaller

than both the dispersion length and the nonlinear length:

1

h << Ly, = —
A 7

o

h<< Lp=—
TEY

where P, is the peak power, and Ty is the 1/e pulse width. These two conditions must hold
throughout the propagation length. As discussed in the theory section (section 2.5), pumping
with a quasi-CW laser, for example, leads to the break-up of the pulse into fundamental
solitons with variable peak powers Py and durations 7. The choice of h is therefore not as
straightforward in this case. Typically, Lxy, is a much more limiting factor than Lp for the
step size h because of the high peak powers reached in the different SC generation regime.
When the soliton train starts propagating, the maximal peak power varies significantly along
the propagation distance z because of randomly occurring soliton collisions. This means that
the condition h << Lyp, can change drastically along z. This is also true for soliton fission,
where the higher-order input soliton is initially compressed. To account for this, an adaptive
step size method for is used in our algorithms: the nonlinear phase-rotation method (see [49]
for more details). This method consists of limiting the nonlinear phase-shift ¢n1, = v0FPoh to
a sufficiently small value at each iteration, i.e. the step size h is adapted at each iteration to
optimize computing time and accuracy. For a train of soliton pulses, the maximal phase-shift
is calculated from the maximal soliton peak power P["*. Every iteration ¢, the step size h(i)

is determined by :

hi) = —Smae__ (4.39)

A convergence criterion is now defined to allow to find suitable values for ¢,,., for the
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simulations. Following reference [45], a normalized global simulation error is defined as:

A ine — Acoarse

Error = =
|| Aol|

where ||A|| = 1/ [ |A]2dw. Aji. is the output spectrum simulated with a very fine step size
(i.c. a very low value for dpmaz), Acoarse is the output spectrum simulated with a more coarse
step size (i.e with the chosen value for ¢,,,,), and AQ is the input spectrum. For convergence
analysis, ¢mq. 18 at least two times less for the fine reference solution flfme. An error of
107! or less is sufficient for convergence: further refining the step size to obtain a lower error
does not produce any visible difference in the output spectrum. This convergence criterion

of Error < 107! allows for a more complete comparison of the three models in terms of

precision and computing time.

In this work, the value of ¢,,,, necessary for convergence will be referred to as the con-
vergence rate. This value is used in parallel with the computing time and the goodness of
fit criterion defined in the next subsection to quantify the performance of each model for a
particular simulation. Although the convergence rate for a simulation strongly depends on
the accuracy of the numerical integration scheme (SSFM or RK4 method), a convergence
analysis allows to compare the numerical accuracy of different models solved with the same
integration scheme, i.e. the GNLSE and the GNEE sovled with the SSFM. It also allows to
put into perspective the numerical precision and computing time for the FD-GNLSE solved
with the RK4 scheme, which is mathematically more precise than the SSFM (O(h') versus
O(h) globally).

4.5 The Goodness of Fit Criterion

As discussed in section 2.5, all three propagation models rely on several important approx-
imations and assumptions. Moreover, the exact experimental conditions for a particular
experiment cannot be retrieved and used in simulations. For these reason, the propagation
models are generally used for a qualitative comparison with experimental measurements,

i.e. to interpret the underlying physical mechanisms, compare total spectral bandwidth and
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temporal profile, and estimate coherence degradation. In this work, however, the coefficient
of determination R? is used to quantify and compare the performance of the three propa-
gation models in their ability to accurately predict experimental output spectra. R? is a
number between 0 and 1 that gives information about the goodness of a fit, with R? = 1

corresponding to a perfect match between experimental and simulated data. R? is defined
as [50:
> iy — fi)?

where y; is the ith numerical data point 7 is the mean of all numerical data points, and f; is

(4.41)

the ith experimental data point. In the context of optical pulse propagation, the numerical
data corresponds to the simulated output spectra, and the experimental data corresponds to
the measured output spectra. As will be seen in the next section, the SC generation process
can produce heavy and chaotic modulations in the output spectrum, which are impossible
to precisely recreate via simulation due to a lack of knowledge of the exact experimental
conditions and the model approximations. For this reason, the goodness-of-fit coefficient R?
is expected to be low in some cases (<0.5), even if the overall behaviour is well reproduced.
It is nonetheless a useful tool to compare and quantify the performance of the three models

in terms of total bandwidth and general spectral dynamics.

33



Chapter 5: Comparison of the Three Envelope Equation
Models

This chapter reports the investigation of the performance of the three envelope equation
models presented in this work: the GNLSE, the FD-GNLSE, and the GNEE. To achieve
this aim, the three models are used to simulate pulse propagation and SC generation in four
different fibers reported in the literature and the results are compared with the experiment.
The four examples are strategically chosen to represent typical experimental settings for SC
generation or to showcase the differences between the three simulation models. Various types
of fibers are studied in the four examples to show the extent of the propagation models. The
first is a chalcogenide glass fiber, the second is a F2 glass PCF, the third is a Fluorine-doped
silica fiber, and the fourth is a silica microwire. For each example, performance is quantified
via the three criteria discussed in the previous chapter: the goodness of fit (R? parameter),
the convergence rate (¢may necessary for convergence), and the resulting computing time.

As a reference, the computing times are measured on a core i5-8350U processor at 1.7 GHz.

5.1 Example 1: Large Bandwidth Mid-Infrared SC

In this example, simulations are carried out with the experimental conditions reported in
reference [36]. In their article, Petersen et al. report on the generation of SC spanning the 2
to 12 um region by pumping in the normal dispersion regime of a high-numerical-aperture
chalcogenide step-index fiber. The experimental conditions for the pump pulse are shown in

table 1

Table 1: Experimental pump parameter

Pump Parameter | Py [kW] | Teymu [fs] | Ao [pm]
Value 691.9 100 4.5

The fiber used in this experiment is a high-index-contrast step-index chalcogenide fiber.
The core is made of AsgoSegy glass and has a diameter of 16 pum. The cladding is made

of a lower index germanium-based chalcogenide glass. The dispersion curve of the fiber
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is shown in figure 5.1 (a). The dispersion and the loss data are taken directly from [36].
The zero-dispersion wavelength (ZDW) of the fiber is 5.83 ym. Figure 5.1 (b) shows the
calculated effective mode area and the resulting nonlinear coefficient v over the bandwidth
of interest. The effective mode area is calculated by solving the characteristic equation
for the fundamental mode of a step-index geometry with the wavelength dependent core
and cladding indices provided in [36] (see [15] and |2| for more details). The nonlinear
index ny = 4.893 - 107® m?W~! is taken from [51] and is assumed constant over the entire
bandwidth. From this, the nonlinear parameter y(\) (equation 2.40) is calculated and shown
in figure 5.1. The Raman response for this chalcogenide glass is modeled with equation 2.37.
The characteristic timescales 7, and 7, are taken from [52|. They are shown in table 2 along
with the other fiber parameters. The fiber losses used in the simulations are shown in figure

5.2.
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Figure 5.1: (a) Dispersion curve of the step-index chalcogenide fiber with a ZDW of 5.83 um.
(b) Calculated effective mode arca (blue), nonlinear parameter (orange), and approximation

of the nonlinear parameter with a corrected shock term: v ~ v + 70702 (dotted line).

Table 2: Parameters of the chalcogenide step-index fiber

Parameter | L [em| | ng [m?/W] | Aeg(Xo) [pm?] | 7o [km™ WL | fr | 71 [fs] | 72 [f5]
Value 8.5 4.893-10718 113 60 0.1 23.2 195
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Figure 5.2: Loss coefficient used in the simulations, modeled after [36].

The numerical results of simulations carried out with all three propagation models are now
presented. To begin, the models are tested with lower peak power against the experimental
output spectrum for 67 kW coupled peak power provided by Petersen et. al.. This allows
to introduce the performance comparison scheme with a simpler example. The numerical
results are shown in figure 5.3 along with the experimental output spectrum. All three models
show good agreement with the experimental total bandwidth and replicate the dip in the
spectrum around 5.83 pm caused by the transition from normal to anomalous dispersion.
This similarity in the numerical results is expected, because the three models are almost
equivalent for these experimental conditions. For the FD-GNLSE, the dispersion of effective
mode area is slow relative to wavelength: less than 70 gm? in the total 12 pm of bandwidth.
Consequently, the corrected shock term is sufficient to model the dispersion of v (as seen
in figure 5.1 (b) with the dotted line), so the FD-GNLSE is equivalent to the GNLSE. For
the GNEE, higher-harmonic dynamics would occur outside the transparency window of the

fiber, below 2 pum, this means that it is also equivalent to the GNLSE.
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Figure 5.3: Simulated spectral evolution along the fiber with the GNLSE (bottom) and
comparison of the three numerical output spectra with the experimental output spectrum

(top) for 67 kW coupled peak power (simulated with 13.4 kW peak power).

Table 3 shows the performance comparison of the three models with the R? parameter,
the convergence rate, and the computing time. The peak power used in the simulations is
13.4 kW, which is 20% of the experimental peak power. This is a common phenomenon in
SC simulations: lower peak power is required in simulations to achieve spectral broadening
and dynamics similar to the experimental case. This is mainly attributed to experimental
conditions which are not accounted for in the propagation models: measurement uncertainty,
coupling to an orthogonal polarization, and coupling to higher-order modes of the fiber [36].
As expected from figure 5.3, the fit is good and R? is high for all three models. The only
differentiating factors are computing time and the convergence criterion (Error< 1071) for
the maximum nonlinear phase shift ¢,,.,. The convergence analysis is presented in figure

5.4. The RK4 method used with the FD-GNLSE converges faster to Error= 107!, which
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is expected because the algorithm has higher accuracy (O(h?')). For the same ¢,q, as the
GNLSE, computing time is significantly higher for the GNEE due to the more involved

calculations the model requires.

Table 3: Numerical results with Nt= 26, By = 13.4 kW

Model GNLSE | FD-GNLSE | GNEE
R? 0.71 0.72 0.73
1/ Pmax 50 12.5 50
CPU time [s] | 14 12 24
10° :
—=—GNLSE with SSFM
mg FD-GNLSE with RK4
E\ —+5—GNEE with SSFM
S N
5 10 S
: AN
= QY
[} N P E]
§ 107 B e
107 : :
0 50 100 150
1/c‘bmax

Figure 5.4: Convergence analysis for the three numerical methods with 13.4 kW (simulated)

peak power

The focus is now shifted on one of the main results from Petersen et al.: the large band-
width SC generated by pumping the same fiber with 692 kW peak power. The results are
presented in figure 5.5. Heavy and chaotic modulations can be seen in the output spec-
trum due to large SPM and soliton interactions in the anomalous dispersion regime (above
5.83 pm) [36]. Qualitatively, the overall spectral dynamics and total SC bandwidth are rel-
atively well reproduced by all three simulation models. The red-shifted edge of the SC is

limited by the transmission window of the fiber, which ends around 12 ym. The main differ-
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ence lies in the heavy spectral modulations, which are significantly stronger in the simulated
spectra than in the experiment. This is also a recurring phenomenon in SC simulation and is
attributed to the spectral resolution being much higher in simulations than what is possible
to measure experimentally with a spectrometer [3]. For the same reasons mentioned for the
low coupled peak power case, the three models perform almost equally in terms of the good-
ness of fit parameter R2. The values achieved for R? are relatively low because of the heavy
spectral modulations. The convergence analysis is shown in figure 5.6. The GNLSE with the
SSFM has the highest convergence rate in this case. This is most likely due to the fact that
the SSFM algorithm is more stable for this case with chaotic spectral modulations because
it has less FFTs per step than the RK4 FD-GNLSE and the GNEE. The GNLSE algorithm
contains 6 FFT operations per step, compared to 16 for the FD-GNLSE with the RK4
method and 10 for the GNEE with the SSFM. The discrete nature of the FFT introduces a
round-off error, which accumulates as numerical noise over all the FFT operations |53]. This
phenomenon is illustrated in figure 5.7, where the 10000 FFT operations are performed on
the initial spectrum and the noise floor rises by 75 dB as a consequence. This does not affect
the overall SC behaviour, but is seen to have an effect on the evolution of noise-sensitive fine
spectral modulations. Furthermore, the high-frequency terms in the GNEE add to the noise
sensitivity of the spectral modulations in this case. As a consequence, the GNEE has the
slowest convergence rate. This noise sensitivity is significant enough that the convergence
criterion (Error < 107') cannot quite be achieved with reasonable computing time for the
FD-GNLSE with RK4 and the GNEE with the SSFM. However, the simulations show that
the overall behaviour is stable at the chosen maximal phase shift value of 1/¢y. = 200 for

the FD-GNLSE and the GNEE.

From these results, it is clear that the GNLSE is the most effective simulation model for
these experimental conditions as it requires much less computing time and has a better

convergence rate than the FD-GNLSE and GNEE for qualitatively identical output spectra.
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Figure 5.5: Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE
(c) with 692 kW experimental coupled peak power (simulated with 180 kW peak power).

Spectral evolution is shown on the left and the output spectra are shown on the right.
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Table 4: Numerical results with Nt= 26, Py = 180 kW

Model GNLSE | FD-GNLSE | GNEE
R? 0.36 0.34 0.31
1/ bumax 100 200 200
CPU time [s] | 216 1444 790
. GNLSE with SSFM
100+ FD-GNLSE with RK4 | 1
—— GNEE with SSEM
g
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Figure 5.6: Convergence analysis for the three numerical methods with 180 kW (simulated)

peak power

-100 [

-200 [

-300

Relative Intensity [dB]

Initial spectrum
Spectrum after 10000 FFTs

7 8
A

9 10 11
[pem]

12 13 14

Figure 5.7: Numerical noise accumulation through the FFT operations.
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5.2 Example 2: Near-Infrared SC Generation with a PCF

In this example, simulations are carried out with the experimental results reported in ref-
erence [54]. In their experiment, Klimczak et al. use a dispersion-engineered PCF made
of F2 glass and high-energy pulses to generate SC in the 1 to 2.5 pum region in the all-
normal-dispersion regime. The experimental conditions for the pump are shown in table

5:

Table 5: Experimental pump parameters from [54]

Pump Parameter | Py [MW] (before coupling lens) | Teym [fs] | Ao [pm)]
Value 37 60 2.16

The fiber used in this experiment is a hexagonal lattice PCF with a core of 2.46 pm. A

scanning electron microscope image of the fiber facet is shown in figure 5.8.
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Figure 5.8: scanning electron microscope image of the PCF used in [54].

The dispersion curve of the fiber is shown in figure 5.9 (a). The ZDW is located at
2.82 pm. Figure 5.9 (b) shows the wavelength dependence of the effective mode area and
the resulting nonlinear parameter. The value for ny = 2.9 - 1072 m?*W~! is taken from [55]
and is considered constant over the total bandwidth. This fiber is a good example of strong
wavelength dependence of effective area and its effect on nonlinearity. It is clear from figure

5.9 (b) that the shock term approximation (dotted line) is not quite sufficient to model the
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full wavelength dependence of v in this case. It is therefore expected that the FD-GNLSE is

more suitable to simulate pulse propagation in this fiber. Other fiber parameters are shown

in table 6. Raman scattering is neglected in the simulations because most of the spectral

broadening occurs on the blue-shifted side and its effects are expected to be suppressed by

SPM and wave-breaking [54]. The fiber losses considered in the simulations are shown in

figure 5.10.
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Figure 5.9: (a) Dispersion curve of the F2 glass PCF with a ZDW of 2.82 um. (b) Effec-

tive mode arca (blue) from [54|, nonlinear parameter (orange), and approximation of the

nonlinear parameter with a corrected shock term: v ~ 79 4+ 7702 (dotted line).

Table 6: Parameters for the F2 glass PCF

Parameter

L [cm)]

ny [m?/W]j

Aeﬁ()‘o) [,um2]

Yo [km =W

Ir

7 [fs]

75 |fs]

Value

30

2.9-107%0

11.5

7.6
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Figure 5.10: Fiber losses considered in the simulations for the F2 glass PCF.
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Figure 5.11: Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE (c)
with 250 kW peak power (simulated); comparison with the experimental output spectrum.

Spectral evolution is shown on the left and the output spectra are shown on the right.

The simulation results are shown in Figure 5.11. Qualitatively, it is clear that the FD-
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GNLSE simulation provides a better fit to the experimental spectrum, especially on the
blue-shifted edge of the SC. This is expected, because the FD-GNLSE accurately models
higher nonlinearity at blue-shifted wavelengths, which pushes the blue-shifted edge of the
SC further than with the GNLSE. In the case of the GNEE (figure 5.11 (c¢)), harmonic
generation does not play a significant role in this experiment. As mentioned before, most
of the spectral broadening occurs on the blue-shifted side due to SPM and wave-breaking,
while the red-shifted broadening is limited by significant transmission losses above 2.5 pm.
In terms of goodness of fit, the FD-GNLSE clearly exhibits better performance with its high
R? of 0.84. The convergence analysis is shown in figure 5.12 and reveals that the GNLSE
with the SSFM still has the fastest convergence rate in this case. This is again explained by
the fewer FE'Ts per iteration of the SSFM algorithm and the higher sensitivity to numerical
noise of the FD-GNLSE and GNEE.

This is a clear example of a case where the fundamental mode of the fiber exhibits very
large frequency dependence of effective area and where the shock term approximation in the
GNLSE starts to break down. For this type of experimental conditions, it is clear from the

results that the FD-GNLSE is the better suited pulse propagation model.

Table 7: Numerical results with Nt = 25, Py = 250 kW

Model GNLSE | FD-GNLSE | GNEE
R2 0.40 0.84 0.69
1/ max 50 100 200
CPU time [s] | 10 62 80
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Figure 5.12: Convergence analysis for the three numerical methods with 250 kW (simulated)

peak power

5.3 Example 3: THG with Near-Infrared Pumping

In this third example, simulations are carried out with the experimental conditions reported
in reference [56]. In their paper, Kibler et al. report on the generation of non-phase-matched
single mode THG in a highly nonlinear fiber made of Fluorine-doped silica. The pump lies
in the anomalous dispersion regime of the fiber, at 1560 nm. Experimental parameters for

the pump are shown in table 8:

Table 8: Experimental pump parameters from [56]

Pump Parameter | Py [kW] | Teymu [fs] | Ao [pem]
Value 16 90 1.56

The highly nonlinear fiber used in this experiment is a commercially available fiber from
OFS Danemark [57|. Its core is made of Fluorine-doped silica, which produces a high index
contrast with the pure silica cladding and ensures tight modal confinement for higher non-
linearity. The dispersion curve of the fiber is shown in figure 5.13 (a), the ZDW is located

at 1410 nm. Figure 5.13 (b) shows the nonlinear parameter y(\). The nonlinear index is
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ne = 2.7-107% m?W~! and is considered constant in the simulations. For this fiber, the
wavelength dependence of effective mode area is not specified. It is thus considered constant
at 11.6 pm? (from [56]) in the simulations. As a consequence, the shock term is exact in
modeling the frequency dependence of +, which is simply linear with w. This can be seen in
figure 5.13 (b). The GNLSE and the FD-GNLSE are therefore expected to yield the same
output spectrum in this example. The other fiber parameters used in the simulations are
presented in table 9. The Raman parameters for non-doped fused silica [2] are used as an

approximation, and losses are neglected.
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Figure 5.13: (a) Dispersion curve of the highly nonlinear fiber with a ZDW of 1410 nm. (b)
Nonlinear parameter (orange) and shock term: v & 79 + Y70(2 (dotted line). In this case,
Aegr 1s considered constant, so the shock term is exact in modeling the frequency dependence

of .

Table 9: Parameters for the highly nonlinear fiber

Parameter | L [cm| | ng [m?/W] | Aeg(Xo) [pm?] | 7o [km™ W | fr | 71 [fs] | 72 [fs]
Value 4.5 2.7-107% 11.6 9.4 0.18 | 12.2 32
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Figure 5.14: Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE
(¢) with 12 kW peak power, comparison with the experimental output spectrum with THG
around 520 nm. Spectral evolution is shown on the left and the output spectra are shown

on the right.
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The simulation results for 4.5 cm of propagation with 12 kW are shown in figure 5.14. As
expected, the GNLSE (a) and the FD-GNLSE (b) yield the same result down to the -100 dB
point, where numerical noise becomes more important in the FD-GNLSE spectrum. This is
again explained by the higher number of FFT operations per step in the FD-GNLSE algo-
ritm. Both the GNLSE and FD-GNLSE fail to replicate the experimental THG peak around
520 nm. On the other hand, the GNEE (figure 56| (c)) does replicate the 520 nm THG
peak fairly precisely. According to Kibler et al., the second peak around 575 nm seen in the
experimental spectrum is thought to be the result of spectral broadening of the pump and
pump-THG group velocity mismatch. This peak is not reproduced in simulations. Rapid
spectral modulations can be seen around the THG peak in the simulated GNEE spectrum.
This is most likely due to THG amplification of numerical noise and the very fine spectral
resolution at shorter wavelengths. The quantitative performance analysis is presented in ta-
ble 10. As expected, the goodness of fit parameter R? is low for the GNLSE and FD-GNLSE,
and high for the GNEE at 0.89. In terms of convergence, figure 5.15 shows that all three
simulations reached the convergence criterion of 10~ with fairly coarse step sizes. However,
it was found that this convergence criterion is not sufficient for this particular simulation,
because spectral dynamics down to -100 dB are modeled. In other words, spectral dynamics
at -50 dB and below have a negligible contribution to the global simulation error (equation
4.40) and therefore may not converge even if an error of 107! is reached. A more qualitative
criterion is used for convergence in these simulations, where the maximal nonlinear phase

shift ¢may 18 reduced until no change in spectral dynamics are noticeable.

Results for this simulation show the pertinence of the GNEE model when harmonics gen-
eration are observed in experiments. The GNEE is the only one of the three models to
accurately model THG at 520 nm. Extremely fine step size are required to model the spec-
tral dynamics below -50 dB, but convergence can still be achieved with reasonable computing

time.
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Table 10: Numerical results with Nt = 25, Py = 12 kW

Model GNLSE | FD-GNLSE | GNEE
R? 0.22 0.22 0.89
1/ Pmax 100 200 1500
CPU time [s] | 5 37 195
107! ‘ ‘
—— GNLSE with SSFM
1 FD-GNLSE with RK4
& —E— GNEE with SSEM
E 107
(5]
E
=
£
3 107 F
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Figure 5.15: Convergence analysis for the three numerical methods with 12 kW (simulated)

peak power

5.4 Example 4: Visible to Near-Infrared SC with Tapered Silica
Fibers

In this example, numerical simulations are carried out with the experimental conditions from
reference [34]. In their work, Birks et al. usc fiber tapers drawn from commercially available
SMF-28 fiber to generate SC spanning the 400 to 1600 nm region. The pump lies in the
anomalous dispersion regime of the silica microwire at 850 nm. This is a typical example
of SC generation by soliton fission and dispersive waves. Table 11 shows the measured
pump parameters. Input pulse durations ranging from 200 to 500 fs were measured. In the

simulations, 200 fs pulses are considered.
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Table 11: Experimental pump parameters from [34]

Pump Parameter | Py [kKW] | Ty [fs] | Ao [nm]
Value 17 200 - 500 | 850

The fiber taper is drawn from SMF-28 silica fiber to a taper waist of 1.8 pum. Along
the taper waist, the initial SMF-28 core is negligible in size and the mode is guided by the
high-index contrast between silica and air, which ensures tight modal confinement and high

nonlinearity. The fiber taper is schematized in figure 5.16.

J taper waist ¥

untapered untapered
fiber fiber

B ﬁﬁ

Figure 5.16: Diagram of the mode confinement along the taper 90 mm taper waist, taken

from [34]

The dispersion curve of the 1.8 pm taper is shown in figure 5.17 (a). It is calculated by
solving the characteristic equation for a step-index fiber with a silica core and an infinite air
cladding. The ZDW is located at 688 nm, which puts the pump in the strong-anomalous
dispersion regime. The effective mode area of the fundamental mode is calculated in the
same way and is shown in figure 5.17 (b). With a constant ny = 2.7 - 1072 for silica |2],
the resulting nonlinear parameter is shown in orange in figure 5.17 (b). In this case, the
corrected shock term approximation (shown with the dotted line) is sufficient to model the
full frequency dependence of Aeg. The Raman parameters for fused silica are taken from [2]
and are presented in table 12 with the other fiber parameters. Losses are neglected in the

simulations.
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Figure 5.17: (a) Calculated dispersion curve of the fiber taper with a ZDW of 688 nm.
(b) Calculated effective mode area (blue), nonlinear parameter (orange) and shock term:

v & Yo + Y702 (dotted line).

Table 12: Parameters for the silica fiber taper

Parameter | L [cm| | ng [m?/W] | Aeg(Xo) [pm?] | 7o [km™ W | fr | 71 [fs] | 72 [fs]
Value 9 2.7-107%° 1.49 200 0.18 | 12.2 32

The simulation results and experimental output spectrum are shown in figure 5.19. All
three models reproduce the soliton and dispersive wave dynamics with fidelity. The dispersive
wave accumulation peak around 400 nm and the spectral dip around the ZDW of 688 nm
are well reproduced. Soliton red-shifting dynamics are also relatively well reproduced. The
difference between simulated spectra and the experimental spectrum on the long wavelength
side is explained by the fact that soliton fission is sensitive to noise, peak power, and pulse
duration [58|. Therefore, the difference between the exact experimental conditions and the
simulation produce a different set of red-shifted fundamental soliton after the fission. The
soliton fission phenomenon is clearly seen in the temporal profile evolution shown in figure
5.18. In the simulations, a peak power of 14 kW is used. This corresponds to a soliton number
N = 23. The fission of the high-order soliton begins after 1 cm of propagation in the fiber
taper. After the fission, individual fundamental red-shifted solitons are seen to drift in time at

different rates; their group velocity differ because they are centered at different wavelengths.
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In the same way, the acceleration of their temporal drift is the temporal manifestation of
their continuous red shift from RIFS. The lower intensity (<20 dB) dispersive waves are also

seen drifting from the initial pulse center.

z [em]
[dB]

-2 0 2 4 6 8
Time delay [ps]

Figure 5.18: Temporal profile evolution along the tapered fiber, simulated with the GNLSE.

The quantitative performance analysis for the three models is presented in table 13. In
terms of goodness of fit, all three models have similar performances, with the GNEE being
slightly lower. The real differentiating factor is the convergence rate, shown in figure 5.20.
In this example, the FD-GNLSE solved with the interaction-picture RK4 method converges
much faster. This advantage in performance is presumably due to the way the stiff disper-
sive term is treated in a more mathematically exact way with the change of variable in the
interaction picture method. This seems to have a significant effect in this example because
dispersion is very high (D = 122 ps’nm~'km™! at the pump wavelength). The GNEE is also
solved with the interaction-picture RK4 method for this example, and it converges faster

than the SSFM as a result.

While all three models are accurate enough for this example in terms of the physical mecha-
nisms they encompass, the FD-GNLSE interaction-picture RK4 method has a clear advan-

tage in terms of convergence rate and computing time.
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Figure 5.19: Numerical results for the GNLSE (a), the FD-GNLSE (b), and the GNEE
(c) with 14 kW peak power, comparison with the experimental output spectrum. Spectral

evolution is shown on the left and the output spectra are shown on the right.
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Table 13: Numerical results with Nt = 2%, Py, = 14 kW

Model GNLSE | FD-GNLSE | GNEE
R2 0.48 0.42 0.34
1/ Pmax 200 50 150
CPU time [s] | 370 150 1834

—=—GNLSE with SSFM
FD-GNLSE with RK4
—H—GNEE with RK4

Normalized error
e
(e

107 ‘ : .
0 50 100 150 200

l/¢max

Figure 5.20: Convergence analysis for the three numerical methods with 14 kW (simulated)

peak power

5.5 Discussion

Through the four examples presented here, it is shown that the enhanced versions of the
GNLSE, namely the FD-GNLSE and the GNEE, are useful to model pulse propagation in

specific experimental conditions, but that the GNLSE is sufficient in most cases.

Example 1 is a typical example of SC generation with a chalcogenide-based fiber. Other
examples can be found in [3|, [64], and [59]. In these experiments, the high nonlinearity
of the chalcogenide glass generally produces a high-bandwidth mid-infrared SC through a

chaotic mix of SPM, four-wave mixing, RIFS, and dispersive waves. Since the transmission
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window of chalcogenide is limited to around 2 pm on the sort-wavelength side, THG dynam-
ics likely do not occur or are heavily suppressed by the chaotic mix of nonlinear effects. As
shown in the selected example, the GNEE therefore does not provide any advantages in these
cases. Morcover, since the dispersion of v is generally well modeled with the corrected shock

term, the FD-GNLSE also does not add significant accuracy in terms of physics modeling.

Example 2 is chosen specifically for the large wavelength dependence of effective area. This
is a rare case where the corrected shock term is not sufficient to model the full dispersion of
~. In this situation, the FD-GNLSE, which implicitly includes the full frequency-dependence

of v, has a clear advantage in terms of modeling.

In example 3, a specific case of non-phase matched single-mode THG is studied. The GNEE
is the only model that includes THG dynamics and is therefore the most suitable of the
three models in this case. However, these experimental conditions are not typical. THG in
fibers is generally achieved via inter-modal phase matching of higher-order modes, as shown
in [60]. Nonetheless, Kibler et al. [25] argue in their paper that the GNEE could be useful
to model SC extending to the deep UV with near-IR pumping. To show this, they simulate
SC generation in a 600 nm silica nanowire pumped by a 50 fs, 500 kW peak power pulse
centered at 1060 nm. Their results, shown in figure 5.21, confirm the pertinence of their

model for the simulation of extreme blue-shifted spectral broadening.

| T
|

Spectral Amplitude
(10 dB/div.)

Frequency o/,

Figure 5.21: SC generation in a fused silica nanowire modelled using the GNEE (solid line),

and without THG (dashed line), taken from [25].
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Example 4 is a typical example of SC generation via soliton fission, RIFS an dispersive
waves. Other examples can be found in [35], [37]. THG dynamics generally do not come
into play in these cases, therefore the GNEE has no significant advantage, as shown in the
results for example 4. Unless a speciality fiber with large effective mode area dispersion is

used, the GNLSE with the corrected shock term is sufficient.
In the next chapter, it is also shown that the GNLSE with the corrected shock term is

adequate for two other typical fibers: a ZBLAN step-index fiber and a chalcogenide glass
PCF.
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Chapter 6: Practical Implementation for a Cascaded Fiber
System

This chapter presents the work I accomplished during my internship at the Femto-ST insti-
tute in France as part of my Masters degree. Under the supervision of Thibaut Sylvestre
in Femto-ST’s nonlinear optics group, and in collaboration with the company Selenoptics,
I conducted numerical simulations for the analysis and optimization of a mid-infrared SC

source prototype. In this work, the GNLSE is used for all simulations.

6.1 Introduction and Motivation

Mid-infrared SC sources in the 2 to 20 pm molecular fingerprint region are in demand for a
wide range of applications including optical coherence tomography, remote sensing, molec-
ular spectroscopy, and frequency metrology ([1],[28]). The spectral coverage of practical
mid-infrared SC sources is often limited by the availability of suitable mid-infrared pump
lasers and the transmission windows of mid-infrared optical fibers. In this work, we nu-
merically investigate SC generation in a cascaded fiber system pumped with a commercially
available 500 ps fiber laser in the telecommunication window. This cascaded fiber system was
experimentally investigated by Selenoptics and Le Verre Fluoré companies, and was shown
to generate a flat broadband mid-infrared SC from 2 to 10 gm. Their experimental work
paves the way for cheaper, practical, and robust broadband SC sources in the mid-infrared.
The aim of this numerical study is therefore to provide insight over the physical mechanisms
at play in their system to shed light on possible optimizations. We first expose the details
of the experimental cascaded fiber system with the physical parameters and the models
used for each component, and we discuss the experimental results measured by Selenoptics.
Then, the numerical results are discussed and compared to the experimental results. The
conclusion presents the recommendations proposed to Selenoptics to optimize their cascaded

system based on the simulation results.
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6.2 Selenoptic’s Experimental Setup

The experimental cascaded fiber system setup developed by Selenoptics is schematized in
figure 6.1. It consists of a pump source, three different fibers, and a window filter, all of
which are commercially available. The pump laser is an Erbium-doped fiber laser centered
at 1550.6 nm producing 460 ps pulses at a repetition rate of 90 kHz with an average power of
750 mW. This translates to a pump peak power of about 18 kW. A length of 20 cm of single
mode SMF-28 silica fiber is directly pigtailed to the fiber laser output. The SMF-28 fiber
end is butt-coupled to the second fiber, which is a step-index ZBLAN fiber of 25 m length
from the company Le Verre Fluoré. Between the ZBLAN fiber and the third fiber, there is
a Germanium window filter which acts as a low-pass filter to avoid optical damage and two-
photon absorption from short wavelengths in the final fiber segment. The last fiber segment
consists of 9 m of chalcogenide glass PCF. A detailed overview of the linear and nonlinear
parameters of each fiber is presented in the subsequent sections. The output spectra are
measured with a Fourier-transform infrared (FTIR) spectrometer. The measured spectra

are presented in the next subsection.

Silica fiber ZBLAN fiber Chalcogenide PCF
20cm 25m 9m
Erbium-doped fiber laser FTIR
1550.6 nm, 90 kHz, 460 ps * Spect t
750 mW average powerJ @ @
Ge Window

filter <1.9 um

Figure 6.1: Experimental cascaded fiber setup from Selenoptics for mid-infrared SC genera-

tion, taken from [59].

6.3 Experimental Results

Selenoptics provided experimental data for the spectra measured at three key points in the
cascaded fiber setup. The first spectrum, shown in figure 6.2 (blue curve), is measured
directly at the output of the ZBLAN fiber, before the filter. The second spectrum, shown
in figure 6.2 (red curve), is measured after the filter. This is the spectrum injected into the

chalcogenide fiber.
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Figure 6.2: Experimental spectra measured at the output of the ZBLAN fiber (blue) and
after the filter (red).

The final spectrum measured at the output of the chalcogenide fiber is shown in figure 6.3.
Each of the measured spectra show a decrease in spectral intensity for shorter wavelengths
and significant modulations in intensity (especially from 2 to 4 pm). The simulations show
that those are not entirely a result of actual SC dynamics, but presumably artefacts from the
wavelength sensitivity of the spectrometers used for measurement. The measured average
power at the output is 16 mW, which corresponds to roughly 2% of the pump’s average power
(750 mW). Significant losses occur in the cascaded system, mainly from the free-space optics
between the ZBLAN fiber and the chalcogenide fiber: Fresnel reflections and coupling losses
from mode field diameter mismatch, cleaving imperfections, and alignment imperfections.

Table 14 shows an estimation of the losses at each stage of the system.
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Figure 6.3: Experimental spectra measured at the output of the chalcogenide PCF.
Table 14: Optical losses in the cascaded fiber system
Free- | Coupling to 9 m
Pump-SMF | 20 cm | SMF-ZBLAN 25 m
Stage space | chalcogenide chalco-
connexion | SMF connexion ZBLAN
optics fiber genide
Loss 0.2 dB 0dB 1dB See Fig. 6.7 | 5dB 3-6 dB See Fig. 6.11

6.4 Fiber Characteristics

6.4.1 Fiber 1 : SMF-28

The first fiber segment consists of a length of 20 cm of standard SMF28 step-index silica

fiber. The nonlinear parameters for fused silica fiber are taken from [2] and presented in

table 15:
Table 15: Nonlinear parameters for the SMF28 fiber
Parameter | L (cm) | ny (m?/W) | Agg (pm?) | vo (km W1 | fr | 7 (fs) | 7o (fs)
Value 20 2.7-10720 85 1.3 0.18 | 12.2 32

The wavelength dependence of A.g and n, is negligible over the spectrum bandwidth along

this first fiber segment. The dispersion characteristics of SMF-28 are modeled using a Taylor
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series expansion. The second and third-order dispersion terms are sufficient considering the
initial pulse is long and does not undergo significant change in the 20 cm of SMF28 fiber.
The following values are used: By = —21.4-1072" §*/m, 83 = 0.12-107% s*/m (from [2]).
The resulting dispersion curve is shown in figure 6.4. The 1550 nm pump is in the anomalous

dispersion regime. Optical losses are neglected for this fiber segment.
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Figure 6.4: Dispersion curve used for numerical modeling of the SMF-28 fiber.

6.4.2 Fiber 2: ZBLAN Step-Index Fiber

The second fiber consists of a length of 25 m of commercially available step-index ZBLAN
fiber from Le Verre Fluoré [61]. The core diameter is 8.5 pm and the cladding diameter is
125 pm. The dispersion curve is presented in figure 6.5 (a). Selenoptics provided dispersion
values from 1.2 to 2.2 um. To obtain the dispersion of the fiber over the full bandwidth,
the characteristic equation for a step-index fiber with the wavelength-dependent core and
cladding indices is solved. The ZDW is 1525 nm, therefore the 1550 nm pump is in the
slightly-anomalous dispersion regime. Figure 6.5 (b) shows the calculated effective mode

arca and resulting nonlinear parameter with ny = 2.1 - 1072°m? /W taken from [18].
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Figure 6.5: (a) Calculated dispersion curve of the ZBLAN fiber with a ZDW of 1525 nm.
(b) Calculated effective mode area (blue), nonlinear parameter (orange) and shock term:
v & Yo + Y702 (dotted line).

The nonlinear parameters for the ZBLAN fiber are presented in table 16:

Table 16: Nonlinear parameters for the ZBLAN fiber

Parameter | L (cm) | ny (em?/W) | Aeg(No) (um?) | 7o (km "W | fr
Value 2500 2.1-10716 43 2 0.2

The wavelength dependence of the nonlinear index is neglected. The Raman response
function hp is obtained with the model presented in [18] and mentioned in section 2.2, where
the measured Raman gain gr((2) is approximated by a sum of two Gaussian functions, and

the response function is extracted from the complex part of the Fourier transform:

hgr(T'>0)=C- /OO gr(£2)sin(Q7)dQ (6.1)

where C' is a normalization constant chosen such that ffooo hr(T)dT = 1. The following

equation is used in the simulations to model gr(£2):

R (T Ehc WY (T S R

2 2
2wy 2wy
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with a; = 0.54 - 107"'em/W, as = 0.25 - 10 "em/W, vy = 17.4 THz, v, = 12.4 THz,
wy = 0.68 THz, wy = 3.5 THz, from [18]. gr(Q2) is plotted in figure 6.6. Here, the anti-Stokes

absorption is neglected in the frequency-domain Raman response.
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Figure 6.6: Numerical model for the Raman gain of the ZBLAN fiber.

Figure 6.7 show the optical losses for the ZBLAN fiber modeled after the data from Le
Verre Fluoré. The transmission window limit of the ZBLAN fiber, which ends around 4.5 m

is the most important feature of the loss curve as it will ultimately limit spectral broadening.
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Figure 6.7: Optical losses for the ZBLAN fiber.
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6.4.3 Window filter

The short-wavelength filtering of the ZBLAN fiber output is achieved experimentally with a
combination of a germanium window filter (THORLABS WG91050-C9) and lenses with Ar
anti-reflective coatings. This filtering system aims to cut all the energy below 2 ym in the
ZBLAN fiber output spectrum to prevent two-photon absorption and optical damage in the
chalcogenide fiber. The global transmission function of this filtering system is modeled with

a supergaussian function of the following form:

(- (52)

The parameters Ag, m, and A\ are adjusted to obtain the best possible fit with the exper-

imental spectrum measured after the filtering system (see figure 6.2). The following values
are used: Ay = 11.87 um, m = 80, and AX = 10 pm. The resulting transmission function is

plotted in the bandwidth of interest in figure 6.8.

Transmission
S = o
N [o)} oo
T T T

e
N
T

A [pm]

Figure 6.8: Modelization of the filter transmission.

6.4.4 Fiber 3: Chalcogenide PCF

The third fiber segment consists of a microstructured chalcogenide PCF from Selenoptics.
It is made of AszsSegs glass, has a core diameter of 11.2 pum, a pitch of 7.11 um, and an
air-hole diameter of 3.23 pum. Figure 6.9 shows a cross section of the fiber with dimensions

for the air hole structure.
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Outer diameter= 125 um

Pitch=7.11 um

d/pitch =0.454

Core diameter=11.2 pm

Figure 6.9: Cross section of the microstructured chalcogenide fiber.

The dispersion curve for the fundamental mode is calculated by the finite-element method
using the COMSOL software with the wavelength dependent index and the dimensions pro-
vided by Selenoptics. The result is shown in figure 6.10 (a). The zero dispersion wavelength
is 4.838 pm. The calculated effective mode area is shown in figure 6.10 (b) with the resulting
nonlinear parameter (orange curve). A constant nonlinear index of ny = 1.1-107""m? /W is

assumed [1]. The corrected shock term approximation is sufficient in this case.
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Figure 6.10: (a) Calculated dispersion curve of the chalcogenide PCF with a ZDW of
4838 nm. (b) Calculated effective mode area (blue), nonlinear parameter (orange) and

shock term: v & v + 707082 (dotted line).
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The nonlinear properties of AszsSegs glass are approximated by the properties of As,Ses,

which can be readily found in the literature. The following table shows the nonlinear pa-

rameters considered for this fiber:

Table 17: Nonlinear parameters for AssgSegy microstructured fiber

Parameter

L (cm)

ny (m*/W)

Acr(Ao) (pm?)

Yo (km™'W™)

fr

T1 (fS)

D) (fS)

Value

900

1.1.107Y7

62

720

0.1

23.2

195

The Raman parameters are taken from [52]. This gives Raman gain peak centered around

6.9 THz with a linewidth of about 3.2 THz. Optical losses for the chalcogenide fiber (provided

by Selenoptics) are shown in figure 6.11. The transmission window ends at around 10 pm,

and there is an absorption peak around 4.6 ym due to the presence of Se-H chemical bounds

in the glass.

Loss [dB/m]

A [pm]

Figure 6.11: Measured optical losses for the chalcogenide PCF.

6.5 Simulation Results

The simulation results are now presented for the measured pulse duration of 460 ps and two

shorter pulse durations of 200 and 50 ps. We aim to show that the quasi-CW SC mecha-

nisms are still well reproduced with shorter pulse durations as to ultimately save computing

time. Since the experimental pulse duration is long and the spectral broadening spans many

octaves, the number of necessary discretization points is very large (Nt>219), which leads to
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lengthy simulations. A peak power of 6 kW is chosen for the three pump pulses to get the
best match with experimental results. As mentioned before, a lower peak power than the
experimental peak power (18 kW) is used. This is due to the fact that the simulation model
considers perfectly polarized and single-mode propagation. In experimental conditions, ran-
dom polarization and multi-mode behavior is generally detrimental to spectral broadening
mechanisms, hence the need for less power in simulations. Simulations are carried out for the
three pump pulse durations in the SMF-28 fiber and the ZBLAN fiber. As expected from the
theory of SC generation with quasi-CW pulses (see section 2.5), it is shown that the same
mechanisms occur for the three different pump pulse durations, and that the experimental
SC bandwidths at the output of the ZBLAN and chalcogenide fibers can be achieved with
pump pulses as short as 50 ps. The SSFM algorithm requires high longitudinal precision in
the chalcogenide fiber because of high nonlinearity (7o = 720 km~'W~!). As a result, sim-
ulations for 200 ps and 460 ps pump pulses, which require at least Nt = 22! sample points,
would require unreasonable computing times. Therefore, simulations in the chalcogenide

fiber are only carried out with the intermediate ZBLAN results from the 50 ps pump pulse.

The spectral and temporal evolutions in this section are represented with color maps of
relative intensity with a 40 dB range from blue to red. This means the maximum relative
intensity will appear in deep red, and all points with intensities that are lower by 40 dB or

more will appear in deep blue, as shown in figure 6.12.

0 5 10 15 20 25 30 35 40
dB

Figure 6.12: Color scale for time and spectral evolution maps.

6.5.1 Fiber 1: SMF-28

The simulation results for 20 cm of propagation in the SMF-28 fiber are shown in figure
6.13 for a 460 ps pulse. The pulse shape remains virtually unchanged throughout this fiber

segment. The only notable feature is the apparition of MI sidebands in the spectrum around
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1.51 and 1.59 pm, which correspond to the theoretical MI wavelength values derived from
equation 3.6 (a more detailed view is shown in figure 6.15). They can be seen appearing
on either side of the pump in the spectral evolution (figure 6.13 on the right). The results
for the 200 and 50 ps pulses are identical: the pulse shape is unaffected and MI sidebands
appear around the same wavelengths. The results from this simulation are taken as initial
pulses for the ZBLAN fiber simulations. It is worth noting, however, that the simulations
show this first fiber segment has little to no effect on the overall SC evolution in the ZBLAN

and chalcogenide fibers.

MI sidebands
0.2 ¥ Y

0.2
0.15
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Figure 6.13: Temporal and spectral evolution in the SMF-28 fiber for a 460 ps pulse. 40 dB

dynamic range (see figure 6.12).

6.5.2 Fiber 2: ZBLAN Fiber

The simulated spectral and temporal evolution in the ZBLAN fiber are shown in figure 6.14
for the three pulse lengths. On the right, the final spectrum after 25 m of propagation is
compared to the experimental result. The break-up of the pulse into a train of solitons can
be seen around 2 m. Beyond this point, the continuous RIFS of the solitons is clearly seen
in the spectral evolution and in the temporal evolution as they gradually separate from the
main pulse due to their dispersion increasing with the RIFS. Events of soliton collision can
also be observed in the spectral evolution. They manifest themselves as sharp increases in

the spectrum bandwidth on the long-wavelength side (e.g. around 16 m in the 50 ps spectral
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evolution). Dispersive waves can be seen rapidly drifting away from the main pulse in the
time evolution. In each of the three cases, the dispersive waves are not fully contained in the
time window for the entire propagation length. Their time aliasing did not affect the overall

SC dynamics and is suppressed with the post-processing of the plots.
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Figure 6.14: Spectral and time-domain evolution for the 50 ps (a), 200 ps (b), and 460 ps
(¢) pump pulse with the output spectra on the right. 40 dB dynamic range (see figure 6.12).

As expected from theory, the SC mechanisms in play are the same for the three pulse
durations. Moreover, the final spectra for the three pulse lengths are nearly identical. This
is due to the fact that the total bandwidth and soliton RIFS is only limited by the trans-
mission window of the fiber (see figure 6.7) in the mid-infrared, which ends between 4 and

4.5 pm. In terms of bandwidth, all three pulse duration provide a nearly perfect match with
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the experimental spectrum. However, the output spectrum becomes smoother as the pump
pulse duration increases. This is due to the fact that a greater number of solitons are created

from longer pulses, which leads to a more continuous range of values for total soliton RIFS.

From theory and simulation, it is confirmed that the time and spectral domain evolution of
the 460 ps pulse is well approximated by the 50 ps pulse. Therefore, from now on, simulations
are carried out only with the result from the 50 ps pump pulse to save computing time. To
gain insight on the processes initiating SC generation in the ZBLAN fiber, figure 6.15 shows
the details of the first 50 cm of spectral evolution. The strongest sidebands correspond to the
MI-enabled Stokes and anti-Stokes Raman sidebands around 1.42 and 1.70 ym. Around 1.51
and 1.59 pum are the residual MI sidebands from the SMF-28 fiber. Very weak MI ZBLAN
sidebands are visible around 1.39 and 1.755 pm. Each of the wavelength pairs given here
and identified on the plot are calculated theoretically. The MI wavelengths are derived from
equation 3.6, and the Raman wavelengths correspond to the peak of the ZBLAN Raman gain
(figure 6.6), at 17.4 THz. As discussed in chapter 2.5, this gradual amplification of noise
breaks up the pulse into a train of femtosecond pulses, as seen in figure 6.16. Figure 6.17
shows a zoom on three solitons from the pulse train. They have typical durations between

100 and 200 fs.
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Figure 6.15: Initial spectral evolution in the ZBLAN fiber, 40 dB dynamic range (see figure
6.12). The wavelengths marked with the dotted lines correspond to the theoretical MI and

Raman wavelengths calculated with equation 3.6 and the Raman gain peak at 17.4 THz

respectively.
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Figure 6.16: Initial temporal evolution in the ZBLAN fiber.
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Figure 6.17: Typical solitons from the pulse train.

Figure 6.18 shows the filtered simulated spectrum (filtered with the transmission func-

tion of figure 6.8) compared with the experimental filtered spectrum. This is the spectrum

injected in the chalcogenide fiber. The dynamics of the experimental spectrum are related

to the measurement technique and not a consequence of actual SC dynamics.

Intensity [dB]

—Filtered Simulation
—Filtered Experimental

A [pum]

Figure 6.18: Filtered spectrum injected in the chalcogenide fiber.

6.5.3 Fiber 3: Chalcogenide PCF

The simulation result for the first 2 cm of propagation in the chalcogenide fiber are shown

in figure 6.19. The injected spectrum from the filtered ZBLAN output lies entirely in the

normal dispersion regime of the chalcogenide fiber which has its ZDW at 4.838 pm (marked

by the dotted line). The initial spectral evolution shows that, from the train of thousands of

pulses injected in the chalcogenide fiber, a fraction of them have a small enough width 7§ to

drift through the zero-dispersion via RIFS (see equation 3.4). The pulses crossing the ZDW
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evolve back into solitons and create an initial low-intensity continuum on the long-wavelength

side through RIFS.
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Figure 6.19: Initial spectral evolution in the chalcogenide PCF. 40 dB dynamic range (see
figure 6.12).

The spectral evolution over the full 9 m of chalcogenide fiber is shown in figure 6.20. The
top of the figure shows the final output spectrum compared to the experimental spectrum.
In terms of spectral bandwidth, the numerical result matches nearly perfectly with the ex-
perimental measurement. As in the ZBLAN fiber, spectral broadening in the chalcogenide

PCF is only limited by its transmission window.

The spectral evolution of figure 6.20 shows interesting SC dynamics. From 0 to 5 m, most of
the energy remains in the normal dispersion regime (3 > 0). Energy rapidly accumulates at
the limit of the transmission window (around 9.5 pm) from the pulses that initially crossed
the ZDW. These solitons tend to accumulate around this wavelength as their RIF'S is stopped
by the limit of the transmission window. The effect of the absorption peak at around 4.6 pum
(see figure 6.11) can be clearly seen on the low-energy continuum. From the beginning, the
main train of pulses can be seen drifting (though RIFS) towards the ZDW. After 5 m most
of the pulses remain trapped by the ZDW barrier and stop their frequency drift. From 5 m

onward, a fraction of the pulses cross the ZDW barrier and start evolving as solitons on the
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anomalous dispersion side (2 < 0). This gradually adds energy to the initial low-energy
continuum via the RIFS of the solitons. The spectrum then evolves towards thermalization,
where energy is equally distributed throughout the transmission bandwidth. The output is

therefore a relatively flat spectrum from 2 to 9.7 pm.

, 2 3 4 5 6 7 8 9 10 11
—Simulation

-10 - —Experimental| -
)
=,-20 7
)
2 -30 y
3
= 40 1

9
S

A [pm]

Figure 6.20: Full spectral evolution in the chalcogenide PCF with final output spectrum.
40 dB dynamic range (see figure 6.12).

6.5.4 Fiber 3: Alternative Chalcogenide PCF

In this subsection, simulation results for an alternative 3rd fiber in the cascaded system
are presented. The chosen fiber was presented by Saghaei et al. [62] in 2015 as part of
an experimental study on mid-infrared SC generation. It is microstructured with the same
air-hole pattern as the one use experimentally by Selenoptics. Figure 6.21 shows a diagram
of its cross-section. It is made of AsySes glass, which has similar nonlinear properties to

AssgSegs glass. The main difference is its lower ZDW, which is at 3.81 pm. This is due to
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the different dimensions of its air-hole structure: it has a core diameter of 7 um, a pitch of

5 pm, and an air-hole diameter of 3 pm.
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Figure 6.21: (a) Cross-section of the alternative chalcogenide fiber (adapted from |62]). (b)

Dispersion curve with a ZDW of 3.81 um.

Figure 6.22 shows the spectral evolution over 1 cm of this alternative chalcogenide fiber.
This short propagation distance allowed to carry out the simulation with the filtered ZBLAN
spectrum from a 460 ps pump pulse. With the ZDW at 3.81 um, a fraction of the filtered
ZBLAN output spectrum is injected directly in the anomalous dispersion regime of this fiber
(on the right of the dotted line in figure 6.22). This allows a great number of solitons to
form directly without having to cross the ZDW barrier. Through RIFS, the solitons rapidly
fill the transmission window with a relatively high-energy continuum. Therefore, by shifting
the ZDW to 3.81 pum with this alternative chalcogenide fiber, the simulations show that an

almost flat SC spanning the 2-10 ym window could be generated with only 1 cm of fiber.

The study of broadening dynamics in this fiber shows that, over the first centimeters of
propagation, energy injected in the normal dispersion regime tends to stay concentrated
on that side of the ZDW, and energy injected in the anomalous dispersion regime rapidly
spreads to fill the transmission window. Therefore, shifting the ZDW further towards short
wavelengths (with an even smaller core diameter) would help achieve an even flatter SC with

only a few centimeters of fiber. This would reduce cost and the overall losses in the cascaded
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system.
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Figure 6.22: Spectral evolution in the 7 pym-core chalcogenide fiber. 40 dB dynamic range
(see figure 6.12).

6.6 Recommendations

The simulations are consistent with the theory of quasi-CW SC generation. It is observed
numerically that noise amplification through MI and Raman gain leads to the break-up of
the pulse envelope into a chaotic train of solitons which broadens the spectrum through RIFS
and dispersive waves. It is also confirmed that the same SC mechanisms take place for pump
pulses as short as 50 ps. This allows to approximate 460 ps pulse evolution with a 50 ps
pulse for greatly reduced computing time. In terms of bandwidth, the numerical results are
nearly identical to the experimentally measured spectra, both at the output of the ZBLAN
fiber and the chalcogenide fiber. The final output spectrum is a flat broadband SC from 2 to

10 pm. Further broadening is only limited by the transmission window of the chalcogenide
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fiber.

Our main recommendation consists of using a chalcogenide microstructured fiber with a
smaller core diameter as the third fiber of the cascaded system. This would shift its ZDW
towards shorter wavelengths and, according to our simulations, allow to fill the desired win-

dow (from 2 to 10 pm) with a few centimeters of fiber.

Our second recommendation consists of exploring different options for the filtering system
and to avoid free-space optics if possible. The free-space optics and the re-coupling to the
chalcogenide fiber induce considerable losses in the system. An all-fiber filtering system, for

example, could provide more robustness and less loss.
Finally, we also recommend exploring telluride-based fibers as a fourth fiber to add to the

system. This would potentially allow to further broaden the spectrum and reach wavelengths

beyond 10 pm [63].
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Chapter 7: Conclusion

In this work, three waveguide pulse propagation models were investigated: the GNLSE, the
FD-GNLSE, and the GNEE. The three models were used to simulated SC generation in four
different examples from the experimental literature. The simulation results confirmed that
the widely-used GNLSE model is sufficiently accurate to model most physical mechanisms
involved in SC generation. However, the pertinence of the two other models was demon-
strated through key examples. The FD-GNLSE proved useful in a case where the dispersion
of v was very strong in the fiber and the shock term in the GNLSE was not sufficient to
approximate it, even with the effective area slope correction. The GNEE was shown to be
useful in a case of non-phase-matched single-mode THG in a highly nonlinear fiber. Ex-
amples of deep-UV SC generation are also thought to be more accurately modeled through
the GNEE. This could be investigated in future work along with cases of sub 10 fs pulses
and sub-cycle dynamics. To allow for a more a more thorough performance comparison,
a convergence analysis was carried out for each simulations in the four case study fibers.
The results showed that the GNLSE solved with the SSFM has a performance advantage in
terms of convergence rate for cases where spectral broadening is dominated by noise-seeded
phenomena such as soliton fission and MI. This was explained by the lower number of noise-
inducing discrete FFT operations in the GNLSE-SSFM algorithm. It was also shown in
the tapered silica fiber case study that the FD-GNLSE solved with the RK4 method has a

convergence rate advantage when high dispersion is involved.

The extent of the scope of the GNLSE was shown through a practical example of analy-
sis and optimization of a SC source. In this work, GNLSE-based simulations were used to
fully model a cascaded fiber SC source designed by the company Selenoptics. The simulation
results allowed to make precise recommendations regarding their prototype: to consider a
chalcogenide PCF with a smaller core for the third fiber, to explore different options for the
filtering system, and to consider adding a fourth fiber made of telluride glass to potentially

extend the SC deeper in the mid-infrared.
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Appendix

A. SSFM code for the GNLSE

function [A,

Af] = GNLSE_SSFM_func(E,L,h_ratio,gammaO,taushock,chi,fR,

betas,maxorder,wrel,dt,lossw,shift,npts,nplots)

bl kTt tototehhololotototohho o Tototototo oo ToToTototo o hoTo To To To 1o o foTo To To 1o 16 %o o Jo To 1o 1o %o %o o o o To To 1o %6 %o o o To To To %6 o

Francois St-Hilaire, MEng, McGill University

Adapted from a J.M. Dudley code (Femto-ST)

This function solves the GNLSE

With a SSFM and adaptive step size method.

Inputs:

Outputs:

E = Initial time domain envelope

L

Fiber length

h_ratio = Inverse of max phase shift per step

gammaO = NL parameter at center wavelength

taushock = shock timescale

chi = Ramain gain FT(h_R)

fR = Raman fraction

betas = vector of beta coefficients [B2 B3 B4 B5...]
maxorder = max beta order

wrel = relative angular frequency vector centered at w0
w0 = reference frequency

t = time vector

dt = time increment

lossw = losses [1/m]

shift = shift amount fro frequency window

npts = number of discretization points

nplots = number of saved propagation points

A = Pulse envelope saved at nplots points in z

Af = Pulse spectrum saved at nplots points in z

b
b
h
b

h
b
b
h
h
b
b
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E

z =
ind1
ind2
sel

plot

fftshift (E);
0;
= [(2:npts) 1];

[npts (1:npts-1)1;
= (L/(nplots-1));

sel = sel;

plotn = 1;

A =
Af =
A(t,
Af (1

beta

beta

whil
k

zeros (nplots ,npts);

zeros (nplots ,npts) ;

:) = fftshift (E);

,i) = fftshift(circshift ((££t(E)),shift));

= 0;
for ii = 2:maxorder

beta = beta + betas(ii-1) .*xwrel.~(ii)./factorial(ii);

end

= fftshift (beta);

0;

e z<L

= k+1;

%% Nonlinear step

A0 = E;

peakP = max(abs(E)."2);

h = (1./(gamma0O.*peakP))./h_ratio;

IFT = fft(abs(A0)."2);

Iz = (1-fR)*(abs(A0) . 2)+fR*xifft (chi.*IFT);
NLfn = AO.xIz;

Al = AO-h/2%1/(2xdt) .*gammaOl .*taushock .*(NLfn(ind1) -NLfn(ind2));

IFT fft(abs (A1) ."2);

Izh

(1-fR)*(abs (A1) ."2)+fR*ifft (chi.*IFT);

NLfn = Al.*xIzh;

Al = AO-h.*1i.*gammaO.*Al.*x(Izh-Iz)-h.*1./(2.%dt) .*gammaO0.*
taushock .*(NLfn(indl1) -NLfn(ind2));

E = Al.*exp(-1i.*gammaO.*h.*Iz);

%% Dispersion + birefringence step
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end

end

betaop = exp(-lixh*beta);
EFT

circshift (fft(E),shift);

EFT EFT .*betaop;

%% Include loss

EFT= EFT.*(fftShift(exp(—lossw.*h)));
E = ifft(circshift(EFT,-shift));

z = z+h

%h save
if (z > plotsel)
plotsel = plotsel+sel;
plotn = plotn+1;
A(plotn,:) = fftshift(E);
Af (plotn,:) = fftshift (EFT);

end
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B. IP-RK4 code for the FD-GNLSE

function [A, Af] = FDGNLSE_RK4_func(E,L,h_ratio, gamma, gammaO,6 Aeff ,6 AeffO,

chi,fR,betas ,maxorder ,wrel ,lossw,shift ,npts,nplots)

Tttt h T lototototehhololoTototoholoTo To 1o 16 %ol To 1o 1o 1o %6t fo To To To 1o 1o 1o o To To 1o 1o 16 1o o fo To 1o 1o 1o 1o %o o o To 1o 1o %6 %o o o o To To 76 o

% Francois St-Hilaire, MEng, McGill University
% This function solves the FD-GNLSE from Travers et al.
% ’Nonlinear Fiber optics overview’

% With an IP RK4 method and adaptive step size method.

» Inputs: E = Initial time domain envelope

b L = Fiber length

% h_ratio = Inverse of max phase shift per step

yA gamma = n2*w/(c*sqrt (Aeff0 *xAeff (w)))

yA gammaO = NL parameter at center wavelength

% Aeff = frequency dependent effective area

yA Aeff0 = Aeff at reference frequency

yA chi = Ramain gain FT(h_R)

/A fR = Raman fraction

yA betas = vector of beta coefficients [B2 B3 B4 B5...]
/A maxorder = max beta order

yA wrel = relative angular frequency vector centered at w0
% lossw = losses [1/m]

% shift = shift amount fro frequency window

/A npts = number of discretization points

/) nplots = number of saved propagation points

% Outputs: A = Pulse envelope saved at nplots points in

% Af = Pulse spectrum saved at nplots points in

b
b
b

bl kTt toto ol loToToTototohho o ToTo ToTo oo T To To To %o %o/ Jo To To To 1o 1o o o o To To 1o 16 0o o o To 1o 1o %6 %o o o o To T 9o %o o o o o T T %o o

Aeff = fftshift (Aeff);
gamma = fftshift (gamma);

E fftshift (E);

Z 0;

EFT = circshift(fft(E),shift);
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CFT

sel (L/(nplots-1));
plotsel = sel;

plotn = 1;

A = zeros(nplots,npts);
Af = zeros(nplots,npts);

A(C1,:) = fftshift(E);

Af(1,:) = fftshift(circshift ((fft(E)),shift));

beta = 0;

for ii = 2:maxorder

beta = beta + betas(ii-1) .*wrel.~(ii)./factorial(ii);

end
beta = fftshift(beta);
k = 0;
while z<L
k = k+1;
A0 = E;

peakP = max(abs(A0)."2);
h = (1./(gammaO.*peakP))./h_ratio;

C = ifft(circshift (CFT.xexp(-1i.*beta.*z),-shift));

IFT = fft(abs(C)."2);

Iz

ki = -1i.xgamma.*circshift (fft(C.*Iz),shift) .*exp(li.*beta

CFT1 = CFT+kl.*h./2;

C = ifft(circshift (CFT1.*exp(-1i.*beta.*(z+h/2)),-shift));

IFT = fft(abs(C)."~2);
Iz

k2 = -1i.*gamma.*circshift(fft(C.*Iz),shift) .xexp(li.*beta

/2));
CFT1 = CFT+k2.%h./2;

C = ifft(circshift (CFT1.*xexp(-1i.*beta.*(z+h/2)),-shift));

IFT = fft(abs(C)."2);

Iz

k3 = -1i.xgamma.*circshift (fft(C.*Iz),shift) .*exp(li.*beta

/2));
CFT1 = CFT + h.*k3;

(Aeff ./Aeff0) .~ (-1/4) .*EFT;

(1-fR)*(abs(C) .~2) +fR*ifft (chi.*IFT);

(1-fR)*(abs(C) ."2)+fR*ifft (chi.*IFT);

(1-fR)*(abs(C) .~2) +fR*ifft (chi.*IFT);

LxZ)

.*(z+h

.x(z+h
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end

end

C = ifft(circshift (CFT1.*exp(-1i.*beta.*(z+h)),-shift));
IFT = fft(abs(C)."~2);

Iz (1-fR)*(abs(C) .~2)+fR*ifft (chi.*IFT);

k4

-1i.*gamma .*circshift (fft (C.*Iz) ,shift) .xexp(li.*beta.*(z+h))

CFT = CFT + (k1/6+k2/3+k3/3+k4/6) .*h;

Dot Include loss
CFT= CFT.x(fftshift(exp(-lossw.*h)));

E = ifft(circshift (CFT.*(Aeff./Aeff0).~(1/4) .xexp(-1i.*beta.*z),-
shift));
z = z+h

%h save
if (z > plotsel)
plotsel = plotsel+sel;
plotn = plotn+1;
A(plotn,:) = fftshift(E);
Af (plotn,:) = fftshift (CFT.*(Aeff./Aeff0)."(1/4) .xexp(-1i.*beta
.xz));

end
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C. SSFM code for the GNEE

function [A, Af] = GNEE_SSFM_func(E,L,h_ratio,gammaO,taushock,chi,chi_p,fR

,betas ,maxorder ,wrel ,w0,t,dt,lossw,shift ,npts,nplots)

Tttt h T lototototehhololoTototoholoTo To 1o 16 %ol To 1o 1o 1o %6t fo To To To 1o 1o 1o o To To 1o 1o 16 1o o fo To 1o 1o 1o 1o %o o o To 1o 1o %6 %o o o o To To 76 o

% Francois St-Hilaire, MEng, McGill University %
% Adapted from a J.M. Dudley code (Femto-ST) yA
% This function solves the GNEE from Kibler et al. (2007) pA
% Nonlinear envelope equation modeling of sub-cycle dynamics and %
% harmonic generation in nonlinear waveguides. yA
% With a SSFM and adaptive step size method. pA
% Inputs: E = Initial time domain envelope A
yA L = Fiber length yA
yA h_ratio = Inverse of max phase shift per step pA
pA gammaO = NL parameter at center wavelength pA
yA taushock = shock timescale yA
% chi = Ramain gain FT(h_R) yA
yA chi_p = FT(h’_R) (see reference paper) yA
yA fR = Raman fraction %
yA betas = vector of beta coefficients [B2 B3 B4 B5...] yA
yA maxorder = max beta order yA
% wrel = relative angular frequency vector centered at w0 %
yA w0 = reference frequency %
yA t = time vector yA
pA dt = time increment yA
yA lossw = losses [1/m] yA
% shift = shift amount fro frequency window %
yA npts = number of discretization points yA
% nplots = number of saved propagation points yA
% Outputs: A = Pulse envelope saved at nplots points in z %
yA Af = Pulse spectrum saved at nplots points in =z pA

bl kb Tt ot hoTototototo oo Totototo oo o To To To %o %o/ ho To To To 1o 1o o Jo T To To 1o 16 0o o o To 1o 1o %6 %o o o o 1o To 1o %o o o o o To T %6 o

E = fftshift (E);
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ind1
ind2
sel

plot

0;
= (

sel

plotn =

A =

Af =
A(L,
Af (1

beta

beta

k =

zer
ze
)
, 1)

for

end

0;

[(2:npts) 1];
[npts (1:mpts-1)1;
L/(nplots-1));
= sel;
1
os (nplots ,npts);
ros (nplots ,npts);
= fftshift (E);
= fftshift (circshift ((£ft(E)) ,shift));

0;

ii = 2:maxorder

beta = beta + betas(ii-1) .*xwrel.~(ii)./factorial(ii);

fftshift (beta);

while z<L

k

= k
hh
AO
pea
h =
IFT
g =
Iz
NLf

Al

IFT
g =
Izh
NLf

+1;
Nonlinear step
= E;
kP = max(abs(E)."2);
(1./(gamma0l .*peakP)) ./h_ratio;
= fft(abs(A0)."2);
(2/3) .*xifft (chi.*IFT);
= (1-fR)*(abs(A0) ."2+(1/3) .*xexp(1i.*x2.xw0.*t) .*xA0."2)+fR.*g;
n = AO.*Iz+fR.*(2/3) .xifft(chi_p.*fft(A0.~2)) .xexp(1li.*w0.xt) .*
real (exp(1i.*xw0.*t).*A0);
= AO-h/2%1/(2%dt) .*gammaO.*taushock.*(NLfn(ind1) -NLfn(ind2));
= fft(abs (A1) .72);
(2/3) .*xifft (chi.*IFT);
= (1-fR)*(abs (A1) .72+(1/3) .*exp(1i.*2.%w0.*t) .*A1l."2)+fR.*g;
n = Al.*Izh+fR.*(2/3) .*ifft(chi_p.*xfft(A1.72)) .xexp(1i.*w0.*t)

.¥real (exp(1i.*xw0.*xt) .*xA1);
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end

end

Al = AO-h.*x1i.*gammaO.*Al.*x(Izh-Iz)-h.*1./(2.%dt) .*gammaO0.x*

taushock .*(NLfn(ind1) -NLfn (ind2));

E = Al.xexp(-1i.*gammaO.*xh.*xIz);

%% Dispersion + birefringence step
betaop = exp(-li*hx*beta);

EFT = circshift (fft(E),shift);

EFT = EFT.*xbetaop;

YA Include loss
EFT= EFT.*(fftshift (exp(-lossw.xh)));
E = ifft(circshift (EFT,-shift));

z = z+h

%% save
if (z > plotsel)
plotsel = plotsel+sel;
plotn = plotn+1;
A(plotn,:) = fftshift(E);
Af (plotn,:) = fftshift (EFT);

end
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C. IP-RK4 code for the GNEE

function [A, Af,plotn] = GNEE_RK4_func(E,L,h_ratio,gammaO,taushock,chi,

chi_p,fR,betas ,maxorder ,wrel ,wO,t,lossw,shift ,npts,nplots)

Tttt h T lototototehhololoTototoholoTo To 1o 16 %ol To 1o 1o 1o %6t fo To To To 1o 1o 1o o To To 1o 1o 16 1o o fo To 1o 1o 1o 1o %o o o To 1o 1o %6 %o o o o To To 76 o

% Francois St-Hilaire, MEng, McGill University

% This function solves the GNEE from Kibler et al. (2007)

% Nonlinear envelope equation modeling of sub-cycle dynamics and

%» harmonic generation in nonlinear waveguides.

% With an

% Inputs:

% Outputs:

IP RK4 method and adaptive step size method.
E = Initial time domain envelope
L = Fiber length

h_ratio = Inverse of max phase shift per step
gammaO = NL parameter at center wavelength
taushock = shock timescale

chi = Ramain gain FT(h_R)

chi_p = FT(h’_R) (see reference paper)

fR = Raman fraction

betas = vector of beta coefficients [B2 B3 B4 B5...]
maxorder = max beta order

wrel = relative angular frequency vector centered at w0
w0 = reference frequency

t = time vector

lossw = losses [1/m]

shift = shift amount fro frequency window

npts = number of discretization points

nplots = number of saved propagation points

A = Pulse envelope saved at nplots points in =z

Af = Pulse spectrum saved at nplots points in z

h
h
b

b
h
b

Tttt h T lototototehholotototototheToTo To 1o 16 %ol To To 1o 1o %ot fo To To To 1o 1o 1o o To To To 1o 16 1o o fo To 1o 1o 1o %o %o o o To 1o 1o %6 %o o o o To To 76 o

[
1

z = 0;

fftshift (E);

sel = (L/(nplots-1));
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plotsel = sel;

plotn = 1;

A =
Af

ACL,

zeros (nplots ,npts) ;
zeros (nplots ,npts);

:) = fftshift (E);

Af(1,:) = fftshift(circshift ((£f£ft(E)) ,shift));

beta

beta

k =

= 0;
for ii = 2:maxorder

beta = beta + betas(ii-1) .*wrel.~(ii)./factorial(ii);
end

= fftshift (beta) ;

0;

while z<L

k

= k+1;

%% Nonlinear step

A0 = E;

AfO = circshift (fft (A0),shift) .*xexp(li.*beta.*z);

peakP = max(abs(E)."2);

h = (1./(gammaO.*peakP))./h_ratio;

IFT = fft(abs(A0)."2);

g = (2/3) .xifft(chi.*IFT);

Iz = (1-fR)*(abs(A0) . 2+(1/3) .*exp(1li.*2.%w0.*t) .*A0."2)+fR.*g;

NLfn = AO.*Iz+fR.*(2/3) .xifft(chi_p.*fft(A0.~2)) .*xexp(1li.*w0.xt) .*
real (exp(1i.*w0.*t).*xA0);

k1 =-1i.*x(l+taushock.*wrel) .*xgammaO.*circshift (fft (NLfn),6 shift) .*
exp(li.*beta.*z);

Af1 = AfO+(h./2) .%xkl;

A1 = ifft(circshift (Afl.*exp(-1i.*beta.*(z+h/2)),-shift));

IFT = fft(abs(Al)."2);

g = (2/3) .xifft(chi.*IFT);

Iz = (1-fR)*(abs (A1) .~2+(1/3) .xexp(1i.*2.*xw0.xt) .*xAl."2)+fR.*xg;

NLfn = Al.*Iz+fR.*(2/3) .*ifft(chi_p.*fft(A1.72)) .*exp(li.*w0.*t) .*
real (exp(1i.*w0.xt) .*xAl);

k2 = -1i.*x(1+taushock.*wrel) .xgammaO.*circshift (fft (NLfn),shift) .*

exp(1li.*beta.*(z+h/2));
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end

end

Af1
Al
IFT
g =
Iz
NLf

k3

Af1
Al
IFT
g =
Iz

NLfn = A1.*Iz+fR.*(2/3) .xifft(chi_p.*fft(A1.72)) .xexp(1i.*w0.*xt) .x*

k4

Af2
EFT

hh
EFT
E

zZ =

%
if

end

AfO0 + h./2.%k2;

= ifft(circshift (Afl.*exp(-1i.*beta.*x(z+h/2)),-shift));

= fft(abs (A1) ."2);
(2/3) .*ifft(chi.*IFT);

= (1-fR)*(abs (A1) .72+(1/3) .*exp(1i.*2.%w0.*t) .*A1l."2)+fR.*g;
n = Al *Iz+fR.*(2/3) .xifft(chi_p.*xfft(A1.72)) .*xexp(1li.*wO.*xt) .*

real (exp(1i.*w0.*t).*A1);

= -1i.*(1+taushock.*wrel) .*xgammaO.*circshift (fft(NLfn) ,shift) .*

exp(li.*beta.*(z+h/2));
= AfO + h.xk3;

= ifft(circshift (Afl.*exp(-1i.*beta.*(z+h)),-shift));

= fft(abs (A1) ."2);
(2/3) .xifft (chi.*xIFT);

= (1-fR)*(abs (A1) .72+(1/3) .*exp(1i.*2.*%w0.*t) .xA1."2)+fR.*g;

real (exp(1i.*wO.*t) .*xA1);

= -1i.*(l+taushock.*wrel) .*gammaO.*xcircshift (fft(NLfn) ,shift) .x*

exp(li.*beta.*(z+h));

Include 1loss

= EFT.*(fftshift(exp(-lossw.xh)));
= ifft(circshift (EFT,-shift));

z+h

save
(z > plotsel)

plotsel = plotsel+sel;

plotn = plotn+1;

A(plotn,:) = fftshift(E);
Af (plotn,:) = fftshift (EFT);

97

AfO + (k1/6+k2/3+k3/3+k4/6) .*h;
Af2 . xexp(-1i.*xbeta.*x(z+h));



