
Serendipitous Recommendations for the
Social Online Collaborative Network GitHub

Guillaume Viger

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

April 2015

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering.

c© 2015 Guillaume Viger

2015/04/03

i

Abstract

Github.com is a site where open-source projects can be freely hosted and where collabora-
tion is mixed with other more explicit social features such as the capacity to follow other
users or be followed. Serendipity is a recent recommendation engine criterion that seeks to
measure how surprising and accurate are generated suggestions. The user-project interest
links and user-user social links found on github.com provide a unique and realistic con-
text in which to study serendipity since there is a large amount of data and chronological
constraints must be respected. The presented thesis compares dissimilarity, unexpected-
ness and novel social distance based serendipity measures for recommendations made on
a one year dataset of github.com’s activities. We focus on recommendation approaches
that rely on the network structure of the captured social network of users and interest net-
work of user-projects. Item-based collaborative filtering and popularity recommenders are
compared with adapted time-based link prediction approaches and a novel Markov chain
algorithm. This first side-by-side comparison of serendipity and recall accuracy of graph-
based algorithms shows that different serendipity measures favour different algorithms and
that GitHub is a dynamic environment where new interests are greatly influenced by recent
activities.

ii

Abrégé

Github.com est un site web où des projets à code source ouvert peuvent être gratuitement
hébergés et où collaboration et autres fonctionnalités sociales telles que suivre d’autres
membres du site se mêlent. La sérendipité est un récent critère de mesure pour les en-
gins de recommendation qui détermine à quel point les recommendations générées sont
surprenantes et justes. Les liens d’intérêts entre membres et projets et les liens sociaux
entre membres que l’on peut trouver sur github.com fournissent un environnement unique
et réaliste où la sérendipité peut être étudiée; les données recueillies sont nombreuses et
reflètent une chronologie d’évènements qui doit être respectée. Ce mémoire compare trois
mesures de sérendipité basées sur la dissemblance, l’inattendu et, contribution originale, la
distance sociale toutes trois appliquées à un ensemble de données correspondant à un an
d’activités sur github.com. Nous nous concentrons sur des méthodes de recommendation
qui reposent sur la structure du réseau social (membre-membre) et du réseau d’intérêts
(membre-projet) obtenus à partir de ces activités. Des méthodes de filtrage collaboratif
objets et de recommendations par popularité sont comparées avec des méthodes adaptées de
prédiction de liens et un nouvel algorithme basé sur le principe de chaînes de Markov. Cette
première comparaison de la sérendipité et du rappel d’algorithmes basés sur les graphes
démontre que différents choix de définitions pour le concept de sérendipité favorisent dif-
férents algorithmes et que GitHub est un milieu très dynamique où les nouveaux intérêts
sont grandement influencés par l’activité récente.

iii

Acknowledgements

I owe many thanks to many people for their support and help in making this thesis.
First I want to thank my family. I am deeply appreciative of the material and not-so

material support my parents provided me over all these years of study. My brother and
sisters to whom I dedicate this thesis are my role models. Ever since my eldest sister
Caroline started her Master’s degree, I knew I would do one too. My brother Martin
deserves thanks for pushing me toward a field that creates concrete value for others. Finally,
I am very grateful to my youngest sister Marie-Élise who has always been there for me and
especially so since I started at McGill while she was pursuing her own Engineering Master’s
degree. I am indebted to all of them.

I am sincerely thankful to my supervisor, Professor Michael (Mike) Rabbat. His ap-
proachability, openness to ideas and patience have made it a pleasure to work with him
on this thesis. His guidance and comments have made the experience rewarding. I truly
appreciated all of the four (!) classes I took with him at McGill.

I would also like to show my appreciation for the friendly and supportive atmosphere
provided by my friends and colleagues past and present of the Computer Networks lab. I
am grateful for Professor Mark Coates’ presence in the lab and feedback on presentations.
Thanks to Babak for thesis ideas when I started, Sean for the technical help early on,
Benjamin and Arslan for sharing their experience working with a remote supervisor, Jay
for the grading help, Milad and Deniz for their deep knowledge and good Iranian restaurant
tip, Aida for the occasional chocolate, Shohreh and Naghmeh for the constant good cheer,
Santosh for the company on Saturdays and the occasional ice-cream review on Tuesdays,
Zhe for all the societal discussions and the computer help and Yunpeng for the mouth-
watering chicken, the squash games and the willingness to try out many things.

Last I want to thank Sarah for getting me through some very rough months by her
sheer presence. I heartily appreciate all you have done and I am deeply happy to know
you.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Thesis Contribution and Organization . 5

2 Background and Related Work 7
2.1 Notation . 7
2.2 Recommender Systems Criteria . 8
2.3 Framing Serendipity . 11

2.3.1 Novelty . 12
2.3.2 Diversity . 12
2.3.3 Serendipity . 13

2.4 Recommendation Approaches . 15
2.4.1 Latent Factor Approaches . 16
2.4.2 Graph-based Approaches . 18

2.5 GitHub Research . 22
2.5.1 Recommending Repositories . 22
2.5.2 Qualitative Characterization . 23
2.5.3 Quantitative Characterization . 25
2.5.4 Limits of the GitHub Data . 27

2.6 Summary . 29

3 The Dataset 30
3.1 Github.com . 30

3.1.1 The Website . 30

Contents v

3.1.2 Events . 32
3.2 Acquisition and Processing . 34

3.2.1 Acquisition . 34
3.2.2 Processing . 35

3.3 Considered Graphs . 36
3.4 Statistics . 38
3.5 Summary . 42

4 Methods 45
4.1 Overview . 46
4.2 Popularity . 47

4.2.1 Most Popular . 48
4.2.2 Trending . 48

4.3 Similarity . 49
4.3.1 Most Similar . 49
4.3.2 Most Popular among Similar . 50

4.4 Link Prediction . 51
4.4.1 Interest-based Link Prediction . 51

4.4.1.1 Common Neighbours . 51
4.4.1.2 Adar-Adamic Index . 52
4.4.1.3 Resource Allocation Index 53

4.4.2 Social-based Link Prediction . 53
4.4.2.1 Common Social Neighbours 54
4.4.2.2 Social Adar-Adamic Index 54
4.4.2.3 Social Resource Allocation Index 55

4.5 Markov Chain . 55
4.6 Summary . 56

5 Results 57
5.1 Measuring Recall . 57
5.2 Measuring Serendipity . 58

5.2.1 Similarity-based Serendipity . 59
5.2.2 Unexpectedness-based Serendipity 59

Contents vi

5.2.3 Social distance-based Serendipity 60
5.3 Result Comparisons & Discussion . 61

5.3.1 Recall . 61
5.3.2 Windowed Recall . 63
5.3.3 Distribution of Recall Scores . 65
5.3.4 Serendipity . 66

5.3.4.1 Similarity-based Serendipity 66
5.3.4.2 Unexpectedness-based Serendipity 67
5.3.4.3 Social distance-based Serendipity 68

5.4 Overall . 69
5.5 Summary . 71

6 Conclusion 74
6.1 Concluding Remarks . 74
6.2 Future Work . 75

A Appendix 77
A.1 Source Code and Processed Data . 77

References 78

vii

List of Figures

3.1 Bipartite interest graph GI . 37
3.2 GU at time t3 and subsequent time t5 . 38
3.3 In, out and degree distribution of social connections 39
3.4 Degree distribution of repositories of GI 41
3.5 Degree distribution of users of GI . 42
3.6 Number of users of GI per number of interests and social connections (social

degree) . 43

5.1 Recall distribution of users . 66
5.2 Distributions of TIRAD UserTop20Recall per number of total interests . . . 67
5.3 Algorithms with respect to recall and TopKSerendipitysim 70
5.4 Algorithms with respect to recall and TopKSerendipityunxp 71
5.5 Algorithms with respect to recall and TopKSerendipitysdist 72

viii

List of Tables

2.1 Kalliamvakou et al.’s GitHub data mining perils 27

3.1 Retained GitHub activity events . 33

4.1 Symbol definitions . 46
4.2 Top 10 most popular repositories over time 48
4.3 Top 10 most popular repositories prior to February 11 2012 49

5.1 Recalls of algorithms for K = 10, 20, 40 . 61
5.2 Commonality of SCN’s valid predictions with those of interest-based predic-

tion techniques . 63
5.3 Recalls of best windowed algorithms . 64
5.4 Similarity-based serendipity of algorithms 68
5.5 Unexpectedness-based serendipity of algorithms 68
5.6 Social distance-based serendipity of algorithms 69

ix

List of Algorithms

1 Amazon Item-to-item Collaborative Filtering Pseudo-code 19
2 Full-text Collaborative Filtering Pseudo-code 23

x

List of Acronyms

API Application Programming Interface
JSON Javascript Object Notation
SHA1 Secure Hashing Algorithm Version 1
RMSE Root Mean Square Error
MAE Mean Absolute Error
POP Most Popular Recommender
POPSIM Most Popular Among Similar Recommender
SIM Most Similar Recommender
ICN Interest Common Neighbour Recommender
IAA Interest Adar-Adamic Recommender
IRA Interest Resource Allocation Recommender
SCN Social Common Neighbour Recommender
SAA Social Adar-Adamic Recommender
SRA Social Resource Allocation Recommender
MKV Markov Chain Recommender
T<ALG>M Time windowed version of <ALG> for last month
T<ALG>W Time windowed version of <ALG> for last week
T<ALG>D Time windowed version of <ALG> for last day

1

Chapter 1

Introduction

1.1 Motivation

The amount of information on the Internet is staggering, and discovering relevant, new
and delightful information online is difficult. Internet retail stores, large media sites, online
music or movie services, and online collaborative platforms index a significant amount
of content, whether it be product dependent or user generated. Browsing through this
information is time-consuming. Searching for specific content assumes a known goal and it
can filter out potential unexpected discoveries.

In this setting of information overabundance, one of the most prevalent solutions has
been to surface the most popular or most recent content. Such top lists expose a human-
manageable selection of archived data to the public at large; the music top charts, movie
box-office, and latest news are examples of such inherently biased surfacing of information.
These charts are impersonal and leave no room for niche interests. Moreover, what is
most popular is by very definition what has already been seen or consumed by the greatest
number of people.

Recommender systems automatically generate targeted recommendations that stem
from usage data. They are an avenue explored in the last fifteen years by some large
companies such as Amazon in its ‘Your Recommendations’ section, Google in its tailored
search results, Facebook in its Paper application1 and Netflix in its custom movie sugges-
tions. In all these cases, the underlying method is generally the same: predictive models

1https://www.facebook.com/paper

1 Introduction 2

are generated by individuals’ observed or implied interests and then are employed to rate
other items—books, movies, news articles among others—where the ones with the highest
predicted ratings, i.e., the ones deemed the most relevant, are suggested back to the original
individuals. Properties inherent to the used content are also considered and social networks
(backed by significant data) are starting to be used.

Generating recommendations that simply and only mimic the provided signals of users’
interests can be criticized as pushing the pendulum too far the other way. Instead of
repeating only what others find most appealing—as is the case in those top lists—, rec-
ommendation engines would now repeat only what oneself finds most appealing. In both
solutions where one is only recommended the most popular items and where one is only
recommended items very similar to one’s history of interests, discovery of novel unexpected
items is hindered.

Predicting exact future interests has been a long standing goal of recommender systems
and more importantly a measure of their success. The different goal of acting as a discovery
medium for novel items of potential interest has received less attention.

The discussed solutions to the problem of information overabundance are clearly not
focused on discovery but rather on the desire to match a user’s interest. Popular items have
pleased many individuals and are thus likely to please new individuals. Recommendations
too well tailored can trap individuals in their own taste enclosure. A balancing act between
relevant and horizon-expanding recommendations must be reached to enable the better
exploitation of the ever larger troves of information and provide a positive user experience.

Serendipity is the recommender systems’ criteria most aligned with this goal. Serendip-
ity is the sudden discovery of novel items of interest. The Merriam-Webster dictionary
defines it as “luck that takes the form of finding valuable or pleasant things that are not
looked for”. Dissimilarity with past interest and unexpectedness with respect to another
prediction approach have been used to assess serendipity, but quantitative comparative
studies are lacking in the literature. A clear comparison of the effectiveness of different
prediction approaches on these serendipity measures is needed.

A trove of potentially interesting information that would gain significantly by improved
discovery mechanisms is github.com. Github.com, also known by its eponymous company
name GitHub, is an online collaborative platform where open-source developers can host
their projects for free and host private projects at a fee. Members of the site can collaborate
with others on these projects as well as take advantage of other social features such as

1 Introduction 3

following one another or showing their interest in repositories publicly by starring them
—a form of public bookmarking. With close to 7.1 million users and more than 16 million
hosted projects as of October 2014,2 GitHub can provide a satisfying data sample on
which to measure how well discovery processes fare and the impact of different serendipity
measurements.

Discovery of code repositories on GitHub is a real concern marked by the presence of
site features designed to address it and the ecosystem of third-party services attempting
to reduce some of the friction in uncovering these valuable code repositories. In effect, the
main purpose of the social aspects of GitHub are to enable one to stay abreast of new
developments —interviews retrieved from past work and outlined in Chapter 2 confirm this
usage. The ability to follow other users is not found in other open-source code hosting sites
such as Bitbucket3 or the late Google Code4. Furthermore, GitHub dedicates a section of
their website5 to the very objective of showcasing new projects to potentially interested
developers. Third-party programming sites, e.g., Reddit6, are frequently used to announce
new projects and third-party newsletters such as The Changelog Weekly7 use an editorial
approach to surface interesting or up-and-coming projects.

These considerations combined with the presence of social links in the GitHub data
and, most crucially, the availability of the GitHub data have guided our choice of dataset.

The GitHub data is naturally modelled via networks and graph-based approaches ex-
plicitly rely on the structure of a network to provide recommendations. Because of the
novelty in using GitHub as a dataset, graph-based predictive approaches, also known as
neighbourhood-based predictive approaches seem a promising avenue. Not only the interest
network of user-objects, but the user-user social networks can thus be leveraged directly.
These approaches have the advantage of mapping back to clear interpretations as well. This
choice narrows our focus and allows further work to build on this base. Understanding the
discovery processes with GitHub in mind can start from such an analysis.

2https://github.com/about/press
3https://bitbucket.org/
4https://code.google.com/
5https://github.com/explore
6https://www.reddit.com/r/programming
7http://thechangelog.com/weekly/

1 Introduction 4

1.2 Problem Statement

Recommender systems are automated ways of suggesting relevant items (movies, songs,
open-source projects in our case...) to a given user of a larger service provider. We are
interested in the ‘top-K’ formulation of the predictive problem, which can be formally
stated as:

Consider a set of M users U = {u1, . . . , uM}, a set of N items I = {i1, . . . , iN} and a
positive integer K. Given training data T subdivided into user training data Tu(t) for each
user u ∈ U at time t, recommend a set of K relevant items RK

u (t) ⊂ I to user u.
In this thesis, we extract two novel user-user and user-item networks from hourly

github.com activities of more than 46000 users and more than 180000 repositories spanning
a one year period between February 2011 and February 2012. We use this collected data
as the training data.

Relevancy of the recommendations is assessed by measures of recall—how many of the
predicted suggestions are adopted by the targeted users— and serendipity—how unexpected
are these predicted suggestions.

To understand the challenges with making serendipitous recommendations with this
dataset one has to be cognisant of the context in which our exploratory study embeds
itself.

The github.com data under study is implicit; a user interacts with the website and
the generated records of these interactions are used to assess preferences without the user
ever rating repositories explicitly or providing an explicit record of his or her discovery
process. We induce from observed actions principles that can be used to predict actual or
potential repositories of interest. We use implicit feedback to generate a list of recommended
repositories.

Additionally, there is an inherent tension between providing unexpected recommen-
dations and providing relevant recommendations. Relevancy stems from the interaction
history and thus is achieved by providing interests similar to the past. Unexpectedness, by
definition, is achieved by a recommendation algorithm that returns interests different from
the past (or from what is commonly returned). Serendipity metrics aim to bridge these
aspects in their assessments.

From the Github data we can extract social data in addition to preferences. This
complementary network of interconnected users potentially provides new insights into the

1 Introduction 5

discovery process. Homophily hypothetically connects users with strong links. Prediction
methods must then be adapted to rely on multiple networks to output their suggestions.

Finally, the notion of time adds a further challenge to the lack of explicit ratings and
the difficulty in defining serendipity. Time is an important factor in providing realistic
recommendations: a suggestion embeds itself at a moment in time and a list of recom-
mended repositories should therefore change over time. Repositories cannot be part of a
suggested list if they have not been created yet. The main cost of keeping track of time is in
increased computation and implementation complexity. An off-the-shelf approach dealing
with time appropriately and that can be used in research directly is for the most part not
readily available or needs significant alteration to be adapted to the specificities of a dataset
similar to the studied one. As such, all of the explored approaches are implemented and
adapted to recreate the realistic setting we are intent on modelling.

1.3 Thesis Contribution and Organization

The areas of investigation of this work are threefold; one of them is to conduct an exper-
imental comparative study of serendipity on a novel dataset, another one is to use and
compare graph-based techniques to generate predictions and the last one is to extract from
this process some quantified understanding of novel unexpected discovery on GitHub.

The aim of the comparison of simple but solid and understandable predictive approaches
is to lay a foundation for understanding and assessing the processes of discovery on GitHub.
Because the dataset is new, we favour testing tried approaches with interpretive power in
order to cover the basics. We conduct an experimental comparison of popularity based
predictions, traditional collaborative filtering approaches, link prediction techniques and a
simple novel Markov-chain approach to generate personalized serendipitous recommenda-
tions of open-source repositories. We compare their effectiveness across different proposed
serendipity metrics: past dissimilarity, unexpectedness of results and a proposed novel mea-
sure considering social awareness. The recommendation process is made to mimic as closely
as possible a real one by taking into account time and thus inscribing the predictions and
their assessment over a timeline.

With serendipity being a hard property to quantify, we analyze the correlation be-
tween three different metrics to see if the attempts made at measuring serendipity without
user survey reveal similar trends. Two of the considered metrics are (dis-)similarity-based

1 Introduction 6

serendipity and unexpectedness-serendipity. The third is a novel social distance-based
serendipity metric where the social network structure due to homophily is used to measure
surprise.

To the best of our knowledge our work is the first to compare serendipitous measure-
ments across a gamut of neighbourhood-generated list of predictions. Although GitHub
data has been used in other research, our specific dataset is novel. It is tailored to mimic
a real setting like few others are and it is used in this context for the first time.

In Chapter 2 of this thesis, we detail the common graph-based recommendation ap-
proaches and the notion of serendipity by framing them with respect to the wider literature.
We review previous work on serendipity in recommender systems with a focus on recent
attempts at defining it for top-K recommendations and identify how neighbourhood-based
approaches are an appropriate avenue of exploration. In the following chapter, we explain
our data collection process and the nature of the generated dataset. As this is a novel
dataset, which we hope might be useful for further research, we provide ample information
on the selection and cleaning process as well as the statistics of the data used. Chapter 4
describes all the techniques compared and how they are adapted to our real-time prediction
setting. Chapter 5 presents the serendipity metrics used and the experimental results. We
conclude the chapter with a comparative analysis of the different serendipity metrics and
a discussion of what basic conclusions these entail as to the discovery processes at play on
GitHub. We conclude the thesis with a summary of this exploratory research and potential
future usage of the dataset as well as untested but potentially valuable recommendation
techniques.

7

Chapter 2

Background and Related Work

In this chapter we begin by giving a summary of the notation used in the rest of this thesis.
The various criteria by which recommendation systems have been measured are then listed
in order to distinguish and hone in on the criteria of novelty, diversity and serendipity with
focus on the latter. Novelty and diversity are common stepping stones to the concept of
serendipity which we detail. Then we frame where our work resides in the vast body of
literature on recommendation systems. We distinguish neighbourhood-based recommen-
dation approaches from recent latent factors recommendation methods. In particular, we
review recent serendipitous recommendation techniques for academic papers, songs and
movies that illustrate these two categories with an emphasis on neighbourhood-based rec-
ommendation approaches. In the final section of this chapter relevant prior research on
GitHub is summarized.

2.1 Notation

The notation used throughout this thesis, unless noted otherwise, is as follows.

Vectors

Vectors are column vectors by default. Vectors of n elements are typeset in lower-case bold
with individual elements indexed with subscripts starting at 1:

2 Background and Related Work 8

x =

⎛
⎜⎜⎜⎝

x1
...

xn

⎞
⎟⎟⎟⎠ .

The transpose of a vector is:

xT =
(
x1 . . . xn

)
.

The dot product between two vectors x and y is xT y = ∑n
i=1 xi · yi. The norm of a

vector is denoted by: ‖x‖ =
√

xT x which is the Euclidean length.

Sets

Sets of n elements are denoted by a calligraphic font, and their elements are indexed like
vector elements: S = {u1, . . . , un}. Their cardinality (number of elements) is |S| = n.

Conventions

Averages and predictions are denoted respectively by a line and a hat over the symbol: x

for an average and respectively x̂ for an estimate.
Long variable names for non-set or vector variables are in sans-serif font e.g.,

LongVariableName = 4. (2.1)

2.2 Recommender Systems Criteria

Recommender systems seek to predict from past purchasing, viewing, listening or other
usage history the next items an individual would want to purchase, view, listen to or
otherwise use. Originally, recommender systems were assessed primarily on their ability to
predict users’ likes or dislikes (e.g. movie ratings). The usefulness of a recommendation
generator depended on predicting previous ratings or interests correctly and precisely, but
McNee et al. [1] and Pariser [2] have broadened the discussion. Metrics that only assess
how close a predicted rating is to the original rating have detracted attention from other
worthy features that contribute to a positive experience.

2 Background and Related Work 9

Pariser [2] makes the point that current algorithms create a filter bubble where our own
preferences are parroted back to us with little room for differing points of view. Individuals’
taste and point of views are reinforced rather than expanded. Other desirable features exist
beyond predicting the past accurately. In fact solely relying on this accuracy metric can
be detrimental to the overall quality of the recommendations perceived by the user [1].
Multiple constraints and goals are at play in the type of real-time setting we investigate
and must be addressed.

We further categorize the different assessment criteria outlined by reviews of the field
of recommendation systems made by Herlocker et al. [3] and Ricci et al. [4]. For many of
these assessment criteria, the data is divided into a training set T and a validating set V .
The training set is used to learn the solution model or determine directly the recommenda-
tions while the validating set is a set of withheld data that validates the recommendations
generated according to the criterion of interest.

Accuracy and Error Metrics. Accuracy and error metrics measure how close the
generated predictions are to the withheld usage data. Recall, precision and root mean
square error (RMSE) or mean absolute error (MAE) are the basic accuracy metrics by
which proposed recommendation techniques are often evaluated.

Recall measures the ratio of predicted correct recommendations over all actually correct
(validating) recommendations. Let U be the set of users, RK

u be the K-size set of recom-
mendations for user u ∈ U and Vu be the set of validating withheld items for u. Overall
recall is given by Equation 2.2 in the typical top-K recommendations setting.

TopKRecall = 1
|V|

∑
u∈U

|RK
u ∩ Vu|. (2.2)

The average user top-K recall is more representative of the efficacy for each user:

UserTopKRecall = 1
|U|

∑
u∈U

|RK
u ∩ Vu|
|Vu| . (2.3)

However, recall does not indicate how well the system avoids recommending disliked
items. Precision does by measuring the proportion of predicted correct recommendations
over all predicted recommendations:

UserTopKPrecision = 1
|U|

∑
u∈U

|RK
u ∩ Vu|
K

. (2.4)

2 Background and Related Work 10

When ratings are available, RMSE and MAE can be used to measure the average distance
over all users between the current user u’s rating ru,i for an item i and the predicted rating
r̂u,i for that same item:

RMSE =

√√√√
∑

(u,i)∈P(ru,i − r̂u,i)2

|P| , (2.5)

MAE =
∑

(u,i)∈P |ru,i − r̂u,i|
|P| . (2.6)

The set P = {(u, i)|ru,i ∈ T } is the set of observed (user, item) pairs.
Novelty, Diversity & Serendipity. These criteria measure how well the system

reveals previously unknown items to the user (novelty), how different are those (diversity),
and how much the interesting data surprisingly delights the user and broadens his or her
interests (serendipity). Serendipity itself is nebulous and hard to automatically assess as
it seems to be at odds with accuracy metrics. How can a proposed item be original and
yet suggested from past recommendations? Conversely, how can a completely unrelated
repository be selected to please the user? Serendipity is therefore often seen as a sum of
novelty and diversity that is greater than its constituent parts. Direct user surveys have
been used in the context of serendipity assessment e.g., Andre et al.’s work on web search
serendipity [5]. We explore the literature associated with serendipity in the next section.

While our thesis focuses on the above criteria, what follows are the other criteria that
have been proposed in the literature [3,4] to assess recommendations. These criteria should
be kept in mind whenever one generates recommendations.

Coverage. Item coverage is the percentage or simply the number of all items that can
be suggested by the system. Similarly, user coverage is the percentage or the number of
all users for which recommendations can be made. The sparsity of data per user often
limits how many users can be recommended against. Higher coverage also incurs higher
computational costs.

Learning Rate & Computational Performance. This category of criteria describes
how well the algorithms underlying the system learn with additional data, over time and
across users. This category focuses on the actual engineering performance of the system.
Can it return recommendations in a reasonable amount of time? Can it scale to millions
of items and users? Can it be robust to failure? Answers to these questions may limit

2 Background and Related Work 11

the success of other criteria e.g., better accuracy is usually associated with more data,
but processing today’s large amounts of data is a significant performance challenge time,
memory and money-wise.

Confidence & Trust. Confidence and trust are respectively the system’s own as-
sessment of the quality or accuracy of its predictions and the user’s assessment of the
credibility of the system. In other words, this category deals with the general reasonable-
ness and convincing nature of the system. Explaining recommendations can help build
trust and educate the user as to what he or she can do to receive better recommendations.

Agent satisfaction. This criteria expresses the users or the system stakeholders’ satis-
faction through experimental trials, surveys, analyzed behaviours and utility maximization.
Sales revenue maximization, or risk-minimization can be seen as examples of goals whose
level of attainment will quantify the system’s success. This is a catchall category that
includes a combination of the other criteria by letting the stakeholders express their satis-
faction directly. The two main drawbacks of this method are the constraints of having a
limited number of explicit feedback and the necessary interactive nature of the assessments
which might prove to be too obtrusive in a practical context.

Our aim is to compare non-personalized popularity approaches and neighbourhood-
based approaches in a realistic setting and so we take into account recall, empirically sound
coverage, reasonable computational performance and user trust in support of the main
serendipity criterion in our processing of the dataset and in our selection of algorithms.

2.3 Framing Serendipity

Novelty, diversity and serendipity are intertwined in the literature. Two overarching ways of
characterizing the serendipity of recommendations have been used. On one hand, accuracy,
novelty and diversity measures are taken. Serendipity is then said to be favoured when
the measurements are all high. On the other hand, two distinct metrics (not compared
as of yet) for measuring serendipity directly have been proposed. We summarize these
two prevalent views on serendipity —measuring serendipity through other metrics and
measuring serendipity directly— here.

2 Background and Related Work 12

2.3.1 Novelty

A recommended item is novel if it is not known by the user to whom it is recommended [4].
Recommending an item previously seen is a reminder medium rather than a discovery
medium. In our work, we focus on the process of discovery. Recommending the most popu-
lar project on GitHub (currently the Bootstrap project https://github.com/twbs/bootstrap)
to a developer, i.e. a GitHub user, is less likely to be effective since she will have presum-
ably already been exposed to it. Moreover, if the developer did not show interest in the
project already, it is because she is not interested.

Less strict definitions of novelty have also been explored to give more fine-grained re-
sults. Taking time into account allows for this. In Sugiyama and Kan’s algorithm [6] to
recommend scholarly papers, an exponential decay factor is used to emphasize more recent
publications over older ones. As such, novelty can be time-dependent where a more recent
item is more novel than an older item. These novel items are at the mercy of a dearth of
usage data, however. Moreover, focusing on the latest items for the sake of their recency
ignores the vast number of past items that might be more appropriate and still novel.

Another aspect to be weary of when considering novelty measures is the degenerate
case: recommending all items a user has not seen will maximize pure novelty, but it is
impractical for the user. It does not solve the original problem of information overload, it
is not accurate and it can lead to mistrust in the system which culminates in non-usage.

2.3.2 Diversity

Diversity represents how dissimilar listed recommendations are to each other. This seem-
ingly quite separate criterion has in fact been used as a proxy to serendipity [6, 7]. In a
top-K list, it is often better to have diverse items in order to provide differing thematic
options.

Zhang and Hurley [7] pose the problem of maximizing top-K diversity while maintaining
similarity with a user’s history as a binary optimization problem. The obtained quanti-
zation strategy used to solve the relaxation of the binary optimization problem results in
what is interpreted to be more serendipitous1 recommendations. Since users typically have
interests that go beyond a single specific area, a diverse list is more apt to include these
varied interest centres and go beyond into new areas of potential interest.

1‘Serendipity’ is mentioned all but by name.

2 Background and Related Work 13

Where RK
u is a user u’s recommended list, Pi(u) = {(i, j)|i, j ∈ RK

u , i �= j} is the
set of all possible different pairs of items in this list, pi and pj are item profile vectors
and d : Rn × R

n → R is a dissimilarity function, Zhang and Hurley propose the following
measure of average list diversity:2

diversity = 1
|U|

∑
u∈U

1
|Pi(u)|

∑
(i,j)∈Pi(u)

d(pi, pj). (2.7)

Item profile vectors, pi and pj, are vectors containing a numerical interpretation of the
various features of each respective item i and j.

Dissimilarity functions are usually the converse of similarity functions, the most common
one being cosine similarity:

similaritycos(pi, pj) = pT
i pj

‖pi‖‖pj‖
. (2.8)

The derived dissimilarity can then be:

dcos −diff (pi, pj) = 1 − similaritycos(pi, pj) (2.9)

or
dcos −inv(pi, pj) = 1

(similaritycos(pi, pj) + k) (2.10)

where k is a positive scalar used to bound the dissimilarity result as suggested in [6].
Finally, we note that aiming for a diverse recommendation set can also be equated to

representing the diversity of the original data. Rarity or uniqueness of certain types of data
points (items or users) was used in early definitions of diversity [8]. Recommendations are
more diverse if they cover a greater range of rarer items. This aspect is closely tied to the
coverage criterion.

2.3.3 Serendipity

Serendipity measures how ‘surprising successful recommendations are’ according to the Rec-
ommender Systems Handbook of Ricci et al. [4]. Herlocker et al. [3] describe a serendipitous
recommendation as one that is interesting but would not have been discovered otherwise.

2It is referred as ‘item novelty’ in their paper but it does not have the same meaning as the novelty
criterion seen above.

2 Background and Related Work 14

Serendipity should therefore combine a measure of relevance and surprise. Ge et al. [9]
propose a metric that mixes the two by taking into account unexpectedness. A serendipitous
recommender should avoid returning obvious results. To do so a base algorithm referred
to as a ‘primitive method’ is used to produce an expected recommendation list EK

u for user
u ∈ U . The algorithm whose serendipity is measured produces a recommended list RK

u

that is compared to EK
u , to obtain the unexpected set of recommendations:

UX P(u) = RK
u \ EK

u . (2.11)

A recommendation’s relevance is its usefulness according to Ge et al. [9]. This usually
translates to whether or not the prediction is accurate. Lu et al. [10], in their measure of
serendipity for Netflix movies recommendations, thus define the top-K serendipity as:

TopKSerendipityunxp = 1
|U|

∑
u∈U

|UX P(u) ∩ Vu|
K

. (2.12)

The only other explicit serendipity measure found in the literature focuses on the defini-
tion of serendipity by Herlocker et al [3]. Recommended items are judged to not have been
discovered otherwise by a measure of their difference from past items. The more different a
suggestion is from previously used, played or purchased objects, the more likely it is to not
have been discovered through a casual usage of the providing service. This interpretation
explains why the concept of serendipity has been evaluated through diversity: a recom-
mendation list that is diverse is more likely to be different from the past and to contain
niche objects.

Zhang et al. [11] and Sugiyama and Kan [6] assess serendipity by considering the distance
between a suggested list and the history of items used to generate that list, Tu. The distance
function d(pi, pj) is typically cosine similarity, but variations on graph distances have been
used [12, 13]. Zhang et al., in their Auralist music recommendation system, quantify this
distance while not having to use a bounded cosine similarity inverse by using Equation
2.13.

unserendipity = 1
|U|

∑
u∈U

1
|Tu|

∑
j∈Tu

1
|RK

u |
∑

i∈RK
u

similaritycos(pi, qj) (2.13)

A set of items different from what was seen before is more likely to catch a user’s new
centre of interests. This formulation shows the inherent tension between accuracy and

2 Background and Related Work 15

serendipity: an engine that recommends completely based on past interest would score
highly according to Equation 2.13. This is addressed in [11] by measuring TopKRecall as
well.

In Nakatsuji et al.’s work [12] on expanding user interests in the domains of music,
movies and restaurants, taxonomies are used. Taxonomies are expert-provided semantic
classes grouping items together. They are especially useful in providing semantic reasoning
behind recommendations. The serendipity provided by item i ∈ I is measured by taking
into account the taxonomic class Ci to which item i belongs to and a distance function d

that takes two taxonomic classes as inputs and returns an integer valued distance:

serendipity(i, u) = min({d(Ci, Cj) | j ∈ Iu}). (2.14)

The distance between two taxonomic classes is determined by the distance between
those classes on the tree connecting classes to each other based on their hierarchy.

In the context of web search, serendipity has been defined by Andre et al. [5] as inter-
esting but irrelevant results from the point of view of the query at hand. This qualitative
measure is gathered by user survey or interactive logging which are feedback methods
beyond the scope of our approach. We also forgo relying on user queries in our setup.

2.4 Recommendation Approaches

As can be induced from the listing of criteria for recommendation systems given above, these
tools to navigate large information spaces have a significant body of literature. Research
on recommender systems materialized in the 1990’s with the works of Belkin and Croft [14]
and Goldberg et al. [15], and has since then progressed with the goal of taking into account
the increasing and diverse amount of information available. The papers by Belkin and
Croft and Goldberg et al. are credited with the introduction of collaborative filtering as a
popular means of suggesting items to users.

Collaborative filtering relies on many individuals making use of a common service to
filter and choose which items to show a specific user. The usage patterns, the explicit
filtering by users (e.g., marking an email as spam or not) or the given ratings are recorded
and used for the benefit of the other individuals interacting with the service. To this day,
collaborative filtering is among the most effective means of recommending items to users

2 Background and Related Work 16

given a large amount of data and a few examples of interests per user.
In this context, each user and each item are typically represented by their features. The

data makes up a profile used in various techniques. The user profile may be constructed
by associating a positive or negative rating to each item used and/or by giving a numerical
value to inherent properties of the user: male or female, age group, personal social network,
etc. Similarly, item profiles may be constructed by storing the set of users who have
reviewed the item, the co-purchased items and/or inherent attributes such as the item’s
category (book, movie, song...), the item’s creator (author, singer...) and the item’s genre
(e.g., romance, action, rock...). These profiles are usually in the form of numerical vectors
of equal length for each user or item.

Two main approaches to generating recommendations based on collaborative filtering
can presently be distinguished: latent factor approaches and neighbourhood-based ap-
proaches. Although both rely on the user-item network, their means of going about rec-
ommending is quite different. We discuss these two approaches next.

2.4.1 Latent Factor Approaches

Latent factor approaches, also known as matrix factorization approaches, are recent ex-
tremely successful predictive techniques. Their effectiveness is mostly attributed to their
use by the winning team of the Netflix prize competition.3 From a set of training quadru-
plets of the form [<user>, <movie>, <rating>, <time>], contestants of the competition
had to predict the true rating, ru,i, given to a movie i by a user u and beat by a 10%
margin Netflix’s own Cinematch algorithm. The basic assumption underlying the winning
approach of the Bellkor team [16] models the estimated rating, r̂u,i, as the dot product of
the user and item’s latent vector profiles pu and qi respectively:

r̂u,i = qT
i pu. (2.15)

The problem becomes one of finding for all users and items their corresponding latent
profile vectors such that the squared rating error—an equivalent of the RMSE—is mini-
mized. Where T is the set of observed ratings and P = {(u, i)|ru,i ∈ T } is the set of
observed (user, item) pairs, the squared rating error is minimized for all pu denoted with
the matrix Pu and all qi denoted with the matrix Qi by Equation 2.16.

3http://www.netflixprize.com/

2 Background and Related Work 17

min
Qi,Pu

∑
(u,i)∈P

(ru,i − qT
i pu)2 + λ(‖qi‖2 + ‖pu‖2) (2.16)

A regularization coefficient λ is used in this minimization equation in order to prevent
overfitting to the training data. The obtained profile vectors can then be used to predict
how a given user would rate a never-before-seen movie. Stochastic gradient descent and
alternating least squares are efficient algorithms that can be used to solve equation 2.16.
For details on these approaches and the many subsequent refinements to this model, we
refer the interested reader to recent papers by Koren and co-authors [17,18]. Rating biases,
time decay, neighbourhood size and influencing factors are typically added to Equation
2.15. Indeed, because of their effectiveness in predicting Netflix ratings, the latent factors
approaches have garnered a significant amount of attention and become the state-of-the-art
in the field.

Lu et al. [10] in particular have adopted this latent factor strategy to assess serendipity
on the top-K recommendation problem applied to the Netflix movie and Yahoo! music
datasets. A loss function �() is defined to represent logistic or hinge loss. Pop(j) denotes
the popularity of item j. The authors define Pt, the set of user u, item i, item j preference
triplets where u is assumed to prefer i over j because ru,i is above a rating threshold and
ru,j is not observed or ru,j < ru,i. The authors maximize SAUC, a modified area under the
receiver-operating curve specialized for serendipity.

SAUC = 1
|Pt|

∑
(u,i,j)∈Pt

�(r̂u,i − r̂u,j)(Pop(j))α (2.17)

SAUC is parameterized by α which tunes how much importance is assigned to cases
where the user favours a less popular item to a more popular item. A greater α favours
less popular items. By their rarity, these items are assumed to be more unexpected and
therefore serendipitous.

Strict popularity prediction is used as the primitive method and TopKSerendipityunxp is
computed. Lu et al. [10] obtain superior precision and unexpectedness serendipity scores
than by simply using regular latent factors approaches. It is observed that the exponent
α in Equation 2.17 gives the best results when set close to 0.5, but not 1. Recommending
from the long-tail too much, leads to recommendations that are truly not useful which
decreases the serendipity score. Serendipity is a balancing act.

2 Background and Related Work 18

Latent factor approaches rely on factorizing the matrix of user-item ratings. To apply
them one needs ratings, but there are no ratings of repositories on GitHub. Hu et al. [17]
produce ratings from implicit TV watching feedback through frequency and duration of
the collected watchings. Repeat watchings and long TV sessions quantify a confidence
score. The matrix factorization approach is then used on these confidence scores to predict
confidence in attractiveness of other shows.

Multiple problems remain. RMSE is still the benchmark. The original intent of these
techniques is to estimate ratings values rather than recommending a list of interesting items.
It has been shown by Cremonesi et al. [18] that collaborative filtering centred on reducing
RMSE or MAE does not translate into effective top-K techniques. In fact these ported
techniques fare worse than non-personalized approaches in some case. Moreover, interest
in repositories cannot easily be quantified by a proxy like TV watching. Contributing to a
repository is only one way of showing interest but there exist many others that do not entail
repetitive actions. Stepping away from this literature reveals more appropriate means of
prediction for this context.

2.4.2 Graph-based Approaches

Graph-based approaches constitute an alternative to matrix factorization. These tech-
niques, although also using the user-item matrix, often represent the interests of users for
items through graphs and base their recommendations directly on the graph structure.
Neighbourhoods can be formed by users that have rated the same items similarly. Alter-
natively they may be formed by similarity of content; users interested in similar content
form neighbourhoods. Oftentimes, items the neighbourhood rates highly are suggested to
a neighbourhood member that has not yet been exposed to them.

The original collaborative filtering papers [14, 15] are examples of such approaches.
It is however the use of item-item collaborative filtering by Amazon [19] that has clearly
popularized the approach. Algorithm 1 of Linden et al. [19] is used offline to precompute the
item popularity score and the item-item similarity matrix; the popularity and similarity
of each item and each co-purchased item are determined. Similarity is computed using
Equation 2.8 and a profile vector of each item.

2 Background and Related Work 19

Algorithm 1 Amazon Item-to-item Collaborative Filtering Pseudo-code

def offline_cf_precomputation(items_catalog):
for item1 in items_catalog:

for customer in purchasers_of(item1):
for item2 in purchases_of(customer):

popularity[item1] += 1
popularity[item2] += 1

for item2 in items_catalog:
item_item_sim_matrix[item1, item2] = similarity(item1, item2)

The scalability of this approach is a great advantage. Usually customers have very few
purchases making this algorithm O(NM) where N is the number of users and M is the
number of items. Using the graph of user-item connections (purchases, usage...) directly
rather than building an intricate model has the further advantage of providing a clear
explanation for each recommended item.

Zhang et al. [11] propose a serendipitous recommender that moves away from the pop-
ular matrix factorization technique to rely on a setup closer to the one above. Their
Auralist artist recommender is an intermediary between latent methods and graph-based
approaches. The authors collect which individuals listen to which artist, i.e., a simply
binary mapping from individuals to music groups. Each artist is associated with a profile
vector mapping to their listener constituencies. These listener constituencies distributions
are obtained by Latent Dirichlet Allocation (LDA) [20], another way to obtain latent fac-
tors. The artists’ profile vectors represent the interest of different listener communities in
them. The generated basic score, Basic(u, i), a user u with history of artist preference Tu

gives an unknown artist i is:

Basic(u, i) =
∑

j∈Tu

similaritycos(pi, pj), (2.18)

where pi and pj are the C-elements LDA profile vectors of artists i and j respectively.
Basic(u, i) is blended with other scoring approaches. For instance ListenerDiversity(i)

uses entropy to measure how spread out an artist is over multiple listener communities.

2 Background and Related Work 20

ListenerDiversity(i) = −
|C|∑
c=1

pi,c log2(pi,c) (2.19)

The more spread out is an artist’s Dirichlet distribution (i.e. the greater their entropy)
the more different listener communities he or she reaches. By recommending artists that
reach numerous affiliated communities to an individual, it might open his or her musical
affinity to different genres they did not know existed. In practice this approach is offset by
a popularity bias.

Another of the scoring approaches introduced in [11] relies on the clustering coefficient
used for de-clustering purposes. The clustering coefficient is a network theory metric in-
dicating how interconnected are the neighbours of a graph node. This is done to favour
artists that are the most cluster avoiding in the artist-artist graph where two artists are
connected if their similarity score is non-zero. The blending is done with respect to the
ranking obtained. The ranking produced by each single technique is blended with the
others as follows:

Hybrid(u, i) =
∑
a∈A

λaranka(u,i), (2.20)

where A is the set of algorithms to blend together and the coefficients λa , with ∑
a∈A λa = 1,

determine the weight given to each algorithm. The resulting rank of algorithm a for user
u and item i is ranka(u,i)

Zhang et al.’s [11] approaches show the inherent trade-off between accuracy and serendip-
ity, but not between novelty, diversity and serendipity. All three metrics are increased
significantly by their node de-clustering approach. It identifies the usefulness of easily
interpretable graph approaches to serendipity measurement. Their user surveys conclude
that individuals are ready to accommodate a lower accuracy in exchange for discovery
opportunities.

A pure graph-based approach is followed in Sugiyama and Kan’s [6] scholarly paper
serendipitous recommender. Like Zhang et al. [11] and this work finds, the data considered
is most easily modelled by a user-item (researcher-paper in this case) network. In addition
to the knowledge of which researcher has written which paper, the time (year) of these
scholarly contributions is known. A researcher u is modelled through his or her serendipity
profile pu. An unknown paper i is modelled through its feature vector pi. The score u

2 Background and Related Work 21

would assign to i, is again similaritycos(pi, pj).
What is different about the Sugiyama and Kan’s approach is the way these profile and

feature vectors are built. They reflect graph properties and take into account time. The
basic user profile is:

pu =
∑
i∈Tu

e−γ·(yearn−yeari)pi (2.21)

where γ is a tunable forgetting factor and n is the index of the most recent publication
of u. The paper profiles pi are term frequency vectors summed with the weighted term
frequency of cited papers and referencing papers by cosine similarity of term frequencies.
This basic researcher profile is complemented in two different ways. One profile construction
blends the profiles of dissimilar researchers and the other blends the profiles of other authors
in the researcher’s co-authorship network weighted by their transitive distance to him or
her. By building a user profile based on dissimilar users, the cosine similarity returns
results that are more dissimilar to a researcher’s interest. Complementarily, by building a
user profile based on collaboration, the authors attempt to capture the real-life dynamic of
colleagues suggesting avenues unthought of to each other.

A co-authorship network is built for each researcher. It is a tree centred on the user
and expanding according to his co-authorship and his co-authors’ co-authorships and so
on. Many heuristics are experimented to assign a weight w(capl) to co-author ca’s profile
pca at path length pl of researcher u. The different heuristics are: no weight (w(capl) = 1),
reciprocal path length (w(capl) = 1/(pl+k), where k is a constant), dissimilarity (w(capl) =
1/(similaritycos(pu, pcapl

) + k)) and product of reciprocal path length and dissimilarity. In
effect Sugiyama and Kan find that using the co-authorship network with the product of
reciprocal path length and dissimilarity beats using dissimilar users on a similarity-based
serendipity measure. What this research highlights though is the flexibility of heuristics
that can be used for serendipity once a network is created and how easy it is to interpret
the processes.

Note however that in each case the proposed approaches are validated on a random
subset of the collected data that is withheld. None of these works attempt to predict in
real-time fashion. Time is used only as a weighting parameter.

The above papers and the ones mentioned in the criteria section cover the essential
research on serendipitous predictions. Measurement of serendipity is fragmented. There

2 Background and Related Work 22

is a need for a better understanding of its measurement tools. Also nearly inexistent, is
prediction on GitHub data. We describe the research that this new data trove has caused
in the next section.

2.5 GitHub Research

The openness of GitHub data has recently attracted several studies [21–25] aimed at char-
acterizing this novel collaboration context. On the one hand, Suchal and Návrat [21] take
up the task of predicting repositories users would bookmark. On the other hand, [22–25]
analyze collected GitHub data in a software engineering context where the goal is to better
understand the interactions and particularities stemming from an environment like GitHub
which mixes social and collaborative features. Although not providing adapted recommen-
dation techniques, this body of research produces insights into the motivations of GitHub
users and helps us qualify, motivate and explain the results we obtain in our own work. We
review this body of work next.

2.5.1 Recommending Repositories

Suchal and Návrat [21] propose a top-K nearest neighbour based recommendation sys-
tem that leverages the full-text search capabilities of modern database systems to predict
repositories GitHub users would star —‘bookmark’ in the site’s parlance. This action is
detailed in Chapter 3. Each repository is associated to a string built by concatenating the
developers interested in the repository. Similarly each developer is associated to a string
built by concatenating its repositories of interest.

The authors generate the top-K list by first selecting the top N users sharing the most
repositories in common with the selected user. This neighbourhood is then queried for their
repositories and the repositories already seen are removed from the resulting list. The first
K returned results are chosen to form RK

u . This neighbourhood approach relies on the
inherent full-text search indexing of the database (MySQL or Sphinx) to rank the results
with respect to their match to the queries. A pseudo-code version of their algorithm is
shown in Algorithm 2.

2 Background and Related Work 23

Algorithm 2 Full-text Collaborative Filtering Pseudo-code

#Inputs: user_id, k, neighborhood size N
#Output: top-k recommended items for user user_id
def recommend_with_fulltext(user_id, k, N):

items = find_items_connected_to(user_id)
items_query = create_query(items.ids)
n_similar_users = query_per_user(items_query, N)
n_similar_users.remove(user_id) # remove current user
user_query = create_query(n_similar_users.ids)
find items not already seen, based on similar users
similar_items = query_per_item(user_query, k, items)
return similar_items

The dataset used in Suchal and Návrat [21] paper was directly provided by GitHub
as part of a contest held in 2010. The dataset represented 440,237 developer-to-project
watching links across 56,519 developers and 120,867 projects, i.e. a 6.44 × 10−5 matrix
connection density. For K = 10, the best ratio of correct guesses to all guesses was 20.0%.
This result beat out all other alternatives. It gives us a benchmark, albeit a precision
benchmark, to compare against in terms of the accuracy of our methods.

2.5.2 Qualitative Characterization

To the best of our knowledge Suchal and Návrat’s work is the only one to tackle the
recommendation problem for the rich data provided by GitHub. The other works focus on
characterizing GitHub as a collaborative environment.

Dabbish et al. [22] interviewed 24 developers using the github.com site. Hobbyists,
professionals working in a software development organization and professionals working in
a (mainly) non-software development organization were selected. This sample was further
divided into users with greatly watched repositories (at least 80 watchers) and users with-
out. The goal was to assess the value of user visibility and of a transparent collaboration
process. It was found that GitHub members induce a level of commitment, intention be-
hind decisions, relevancy to community and personal relevancy by watching the activities

2 Background and Related Work 24

of other members of the site. These inferences in turn fuel project management, reputation
management and personal growth as a developer.

Dabbish et al. [22] importantly provide potential motivations for the actions and reac-
tions of individuals interacting on the site. It was remarked that the decision to contribute
to a project often depends on the number of prior contributors or watchers. Because the
spent effort will have a bigger impact on a largely watched project than on an unknown
one, surveyed users said they were more likely to contribute to popular repositories than
unpopular ones. More individuals are interested in the project and thus more individuals
will reap the benefits of the contributions.

Prior activity around a project is also a good indicator as to the liveliness of the project.
Projects with no recent activity are assumed dead. Therefore individuals are less inclined
to submit code to them: their submission is less likely to be reviewed at all, and if it is
reviewed and accepted, it is less likely to affect a significant user base.

The popularity of a project is also often seen as a sign of quality and thus influential in its
adoption. Because developers can also watch each other, the same is said about developers
with a large following. Those are seen as noteworthy individuals who are more likely to
produce work of quality and are thus more relevant to follow in turn. Another influence on
watchings is remarked upon: some developers also follow projects and other developers to
be informed about opportunities to contribute and to keep up with potentially problematic
changes. This motivation relates to the notion of communities which are supported by
GitHub. The social features of GitHub provide a way for developers to keep abreast of the
changes and discussions surrounding a project and thus fuel the community around it.

Finally, developers take into account the effect of their own actions on other developers.
Contributions, watchings or followings are seen as ways to promote the work of others as
well as build their own reputation and encourage them to be more mindful of their work.
A process of curation emerges from this dynamic. Some users become curators for others
using their notoriety to shed light on specific projects. Brian Doll, a GitHub employee
running the marketing section, illustrates it best [26]:

I just got an email two days ago from an ex-coworker that I had not seen in a
couple of years. He said, “It’s been great following you on GitHub. You provide
the curation of a lot of the content that I’m interested in because we have similar
technical backgrounds. [...] The benefit that he was referring to was that by

2 Background and Related Work 25

watching me on GitHub, he could see that I had starred certain repositories.
For example, thousands and thousands of jQuery plugins vary widely in quality,
but if you know somebody who is a prominent jQuery developer and they star
a bunch of interesting jQuery plugins, those plugins are probably pretty good.

All in all, the open development on GitHub makes interconnections between users and
between users and repositories an important deciding factor in further interconnections
according to the surveyed users.

2.5.3 Quantitative Characterization

Thung et al. [23] begin to complement this qualitative description of interconnections on
GitHub by a quantitative study of randomly picked users and their repositories. They
construct two graphs: a developer graph and a repository graph. The developer graph
has a node for each developer and an edge between two nodes if the two corresponding
developers have contributed to the same repository. The repository graph has a node for
each repository and an edge between a pair of nodes if the corresponding repositories share
a contributor in common. The strength of the developer-developer links and the repository-
repository links are computed by respectively counting the number of repositories each pair
of developers have collaborated on and the number of developers in common between each
pair of repositories. Using these measurements, the PageRank algorithm [27] is run to
suggest the most influential users and repositories in each graph.

One hundred thousand projects are randomly chosen by interfacing with the github.com
site and, from the pool of all developers that have contributed to those, 30,000 developers
are randomly sampled. The developer-developer degree distribution exhibits strong varia-
tion in its tail, whereas the repository-repository graph exhibits a power-law distribution.
The average shortest path of the repository graph’s largest connected component is 3.7
and the average shortest path of the developer graph’s largest connected component is 2.7.
These findings are much lower than what has been observed in other networks implying
that communities of developers on GitHub are more tightly knit and benefits from a select
number of greatly active users.

The dataset used by Thung et al. [23] is composed of randomly sampled data. Thus
it only paints a limited picture without fixed boundaries. Moreover it only considers con-
tributions as the source of connection between developers and between repositories. Many

2 Background and Related Work 26

of the other mechanisms GitHub provides for interaction (such as following other users or
starring a repository) are completely ignored.

The most recent paper by Lima et al. [25] is the most current and wide-spanning quan-
titative analysis of the interaction networks on GitHub. The authors look at an 18-month
period of activities from March 11, 2012 to September 11, 2013 and construct the networks
of developer-developer followings, developer-developer collaborations and developer-project
watchings and contributions from the 183.54 million observed activities. The structural
properties of these networks is studied.

The constructed graph of followings contain 671,751 user-nodes and 2,027,564 edges
for a density of 4.49 × 10−6. Following ties are at 90.6% non-reciprocal: a user follows
another without the other following them back. This confirms the use of developers as
curators or as sources of news and not simply as social acquaintances. We add to this
observation that this presents GitHub as more of a goal-driven environment than a social
environment. Many of the decisions faced by an active user (e.g., starring or contributing
to a repository) are subject to a cost-benefit analysis. Details of the network composition
of the other graphs are not provided but the degree distribution of each graph is again
shown to follow a power-law which has been observed as typical of networks of people [28].

Lima et al. [25] make two other observations of interest in characterizing the user activi-
ties. Firstly, a highly active user is not necessarily followed by a large number of individuals.
This reinforces the notion that there are projects receiving sustained attention which are
otherwise unnoticed by large swaths of the broader developer community. Secondly, and in
line with this observation, collaboration among users on projects is rare. Only 74.22% of
their final number of repositories have at least two contributors. In other words, more than
a quarter of the observed maintained repositories have only a single developer working on
them over the 18-month period. This motivates the need for a better discovery process.

The number of missing interactions per repository is unknown in Lima et al.’s [25]
study because the considered activities start on March 11, 2012 and the github.com site
was launched in 2008. Moreover, the follow actions prior to the starting date of the collected
data are also unknown. One must be careful in the usage of GitHub data.

2 Background and Related Work 27

2.5.4 Limits of the GitHub Data

The above research included all observed events in their analysis with only limited filtering.
From our experience and according to Kalliamvakou et al.’s recent work [24], considering this
raw data as such is problematic. It is important to filter the collected data appropriately.
Specifically, Kalliamvakou et al.’s mentioned work outlines nine perils to which researchers
mining GitHub data are exposed. We list these perils in Table 2.1.

Peril Description
I A repository is not necessarily a project.
II Most projects have very few commits.
III Most projects are inactive.
IV A large portion of repositories is not for software development.
V Two thirds of projects (71.6% of repositories) are personal.
VI Only a fraction of projects use pull requests. And of those

that use them, their use is very skewed.
VII If the commits in a pull request are reworked (in response

to comments) GitHub records only the commits that are the
result of the peer-review, not the original commits.

VIII Most pull requests appear as non-merged even if they are
actually merged.

IX Many active projects do not conduct all their software
development in GitHub.

Table 2.1 Kalliamvakou et al.’s GitHub data mining perils

Because of the accessibility of the web, various users interact with the GitHub site in
various ways. This requires keeping only potentially informative events about repositories
for which we know the complete history. We provide a detailed description of some of these
perils here in preparation for the explanations of our counter-measures.

Peril I stems from the observation that the artifacts of the work on a software code
base in a distributed environment are by definition not centralized. A single repository will
not capture the entirety of the history of the changes made leading up to what is presently
observed. The original repository and its development copies should be considered together
when looking at its development as a whole. A “project” in the description of the perils
refers to the ensemble of original repository plus clones. We do not follow this dichotomy in
the rest of our work. The last peril, Peril IX, drives at this point also: software engineering is
a multi-faceted process for which not all facets are present at the same location. Community

2 Background and Related Work 28

and developer-to-developer discussions are sometimes held on mailing lists or IRC chats.
Bugs and issues may also be reported on external trackers (e.g., bugzilla.org used by Mozilla
in particular). GitHub captures a large and rich part of the whole process—importantly
the code itself—but does not have a monopoly on every aspect.

Perils II and III highlight the limited amount of activity per project found on GitHub.
Many projects have few contributions and so it is difficult to extract much information from
them. As time goes by, many repositories are left abandoned as well. There is a timeliness
to the collaborative and interest processes at play on the site.

Because GitHub allows the hosting of raw files on its servers, many of the observed
repositories are not necessarily for software development. Peril IV reflects the notion that
the site has moved on to include a slightly wider technologically-savvy audience than simply
developers.

The hosting flexibility has made it easy for personal projects to be hosted on the site.
90 out of the 240 respondents to Kalliamvakou et al.’s user survey said they hosted and
worked on their personal projects with no intention of collaborating directly with others.
71.6% of repositories analyzed have only one participant. This is even more than what was
observed in [25].

Perils VI through VIII deal with pull requests a specific artifact of the collaboration
model on GitHub. Pull requests are a way for a developer to solicit inclusion of proposed
changes into a repository by its owners. However GitHub’s logs are inconsistent when it
comes to assessing whether such a request has been accepted and merged back. The example
given is the logs of pull requests for the popular ‘homebrew’ project. On the site 13,164 pull
requests have been opened and 12,966 have been closed, but the logs for the corresponding
period only show 6,947 pull requests closed. ‘Closed’ here simply means the request has been
addressed —it might have been merged or it might not have. According to [25], GitHub
does not log merges made outside the website and so a potentially important number of
such pull requests might simply not be logged. We do not dwell on the problems related to
these logging artifacts as we circumvent the usage of the pull request logs altogether in our
work. The rest of these perils must be kept in mind when dealing with raw GitHub data.

2 Background and Related Work 29

2.6 Summary

This chapter summarized background work on the three fronts of research our work inves-
tigates: the notion of serendipity, graph-based recommendation approaches and the nature
of GitHub.

Serendipity has been considered an emerging property of the criteria of novelty and
diversity and, more recently, it has been analyzed as a criteria of its own. Two specific
definitions have been proposed: unexpected but useful discovery and discovery that would
not have been made otherwise. However, these diverse definitions have not been compared
on the same dataset.

Top-K recommendation methods stemming from collaborative filtering were organized
into latent factors approaches and graph-based approaches. We highlighted how other
researchers have used graph distances and diverse similarity heuristics to provide recom-
mendations they deemed serendipitous. Modelling predictions through a graph opens up
flexible heuristics and interpretative power.

GitHub user surveys have identified the motivations behind following users and reposi-
tories. Prior level of activity, popularity of the contributors, popularity of the repositories
indicate work of interest, quality, and attractiveness to the wider community. A self-
fulfilling prophecy dynamic can occur where individuals work on a project thinking that
others will too. Only statistical data characterizations have been done to complement
these surveys of agent satisfaction. Usage of these insights for predictive purposes have
been largely unconsidered.

In the next chapter, we methodically describe the nature, acquisition processing and
statistical properties of our GitHub dataset. We address along the way the mentioned
perils of mining GitHub for data.

30

Chapter 3

The Dataset

One of the important contributions of our work is a novel dataset of GitHub activities. In
this chapter we first describe the GitHub site and the type of data of interest to our study.
Then the acquisition and the processing of this dataset to obtain timestamped user-user
and user-repository networks are presented. A summary of the salient statistical features
of the generated networks follows. Because of the novelty of the data, we spend some time
justifying the different filtering processes used.

3.1 Github.com

3.1.1 The Website

The site github.com offers free code repository hosting for public projects and paid code
repository hosting for private projects. These projects have traditionally been software
source code, but recently other types of repositories have appeared: data repositories (e.g.
the Code of Laws of the United States of America1), various books2, websites3 and others.
We will use the terms “project” and “repository” interchangeably to denote these online col-
laborative spaces. Kalliamvakou et al. [24] distinguishes between repositories —associated
with a single URL— and projects —groups of repositories that are variations (forks) of
each other. As we focus on the process of discovery, discovering a fork or a normal repos-
itory, as long as it is of potential interest, is not a distinction worth making. Sometimes

1https://github.com/divegeek/uscode
2https://github.com/showcases/writing
3http://jekyllrb.com/

3 The Dataset 31

recommending forks of some repositories is the appropriate action to do.
Public projects are made available to review, use, copy and contribute to by any reg-

istered user of the website free of charge. In addition to this collaborative infrastructure,
social features are present on github.com. Comments and discussions can be had around
pieces of code. Appreciation or interest is made known through the action of starring
repositories —a form of public bookmarking. Individuals can follow one another much like
users of Twitter can in order to stay aware of each other’s activities. Following another
user on GitHub provides notifications of the followed individual’s starrings, repository cre-
ations and other relevant actions concerning that individual such as addition to a team.
Starring a repository also provides similar notifications, but pertaining to the repository
itself: creation of issues, fixes and contributions as well as comments. The site also allows
for the creation of organizations which are entities grouping different users together.

Git4 is the underlying technology behind github.com’s infrastructure for collaboration.
Git is a distributed version control software that facilitates the exchange and merging of
atomic changes known as commits between repositories. These commits are pushed to a
repository on GitHub and can be retrieved by the owner of another repository by pulling
the commits into his or her own repository. This effectively pushes the changes to the other
project hosted on the GitHub platform. Contributions on GitHub can come from email
patches, pull requests —a suggestion to merge changes from one repository into another—
or direct contributions. By analyzing the commits found in the push events, we piece
together the contributors of each repository. We explain in some detail how the data was
acquired and processed in the next section.

The github.com website leverages Git to facilitate open and accessible online collabo-
ration between individuals. As is exemplified by GitHub’s tagline “Social Coding”, inter-
personal interactions and individual contributions are strongly promoted [26]. Members
have a profile page showcasing their own repositories, the repositories they contributed to
and their recent activities. A project’s web address places the name of the owner first:
github.com/<user name>/<project name>, and pictures of contributors are associated
with any page containing the files to which they contributed. All of these aspects conduce
to putting members and their work front and centre.

GitHub’s popularity —7.1 million users and more than 16 million hosted projects as
4http://git-scm.com/

3 The Dataset 32

of October 20145— make it an appealing target for data analysis [22, 23, 25]. GitHub
is growing: there were 6.5 million users and 14.3 million repositories in August 2014.
Most interestingly for our research, this popularity has made it difficult for users to make
serendipitous discoveries as only a fraction of this vast number of repositories is featured
prominently on the site.

Two methods, the ‘Showcases’ and the ‘Trending’ pages,6 surface a sliver of the projects
for potential discovery. The ‘Showcases’ page is a set of curated lists7 of projects grouped
by topics e.g., ‘Science’, ‘Emoji’, ‘Projects that power GitHub’. These lists are manually
generated and not exhaustive; they rely on the second method of discovery: trending
repositories. The Trending page enumerates the projects that have been the target of
recent and frequent user interests. This approach is effectively a time dependent top list.
For both discovery methods, the same repositories are exposed to all users and popularity is
the main deciding factor. When logged in, the Trending page will also display the recently
starred repositories of the individuals one follows. The window of time under consideration
can be shortened to the previous day or extended to the previous month with the last week
as the in-between option.

All of the above, mixed with GitHub’s openness with its data, makes it a ripe target
to test the serendipitous nature of automated recommendations. We look at the events
occurring on the website to provide our data.

3.1.2 Events

We reconstruct the relationships between users and between users and repositories from
the activity feed made available by GitHub. All public events on the site (following another
user, starring a repository, contributing to a repository...) are timestamped and logged in
Javascript Object Notation (JSON) format [29]. The most recent events are made avail-
able through GitHub’s application programming interface8 (API). This API also exposes
information on a per-user (user name, followers, repositories...) or per-repository (owner,
name, README, main language...) basis.

As of the time of writing of this thesis, there are 19 different visible event types9 in the
5https://github.com/about/press
6https://github.com/showcases and https://github.com/trending respectively
7https://github.com/blog/1802-showcasing-interesting-projects-in-explore
8https://developer.github.com/
9https://developer.github.com/v3/activity/events/types/

3 The Dataset 33

feed. Table 3.1 contains the subset of six events that are retained for our purposes and the
meaning of these events in our context.

The 13 other events were discarded for various reasons. Two of these events are re-
lated to other services provided by GitHub (GistEvent and GollumEvent). Three
events were better captured by another type of event: the ForkApplyEvent is sub-
sumed by the ForkEvent, and the PullRequestEvent and PullRequestReview-
CommentEvent are better captured by PushEvents because the latter confirms ac-
ceptance of the contributions. The rest were out of scope for the prediction task at hand
(TeamAddEvent, DeleteEvent, MemberEvent,...).

Event Name Description
CreateEvent a new repository is created
FollowEvent a user follows another user
ForkEvent an independent copy of a repository is made
PublicEvent a private repository is made public (open-sourced)
PushEvent at least one Git commit is merged in a repository
WatchEvent a user stars a repository

Table 3.1 Retained GitHub activity events

A CreateEvent is generated in the activity feed whenever a new project is hosted on
github.com. This does not include forks or open-sourced projects. Both normal users and
organizations can create a repository.

A FollowEvent is logged in the activity feed when a user decides to follow another
one. From then on, updates about the followed user will be transmitted to the follower via
his or her notification page.

A ForkEvent records the cloning of an existing project for the purpose of contributing
back at a later point in time or to initiate an alternative implementation. These events
along with PublicEvents are the only other indicators that a new repository has been
created.

PushEvents refer to the action of transmitting a series of commits (at least one) to a
hosted project. Because Git is a distributed version control system, any permanent update
to the project will eventually be pushed to the hosted repository. This makes it possible
for us to track all collaborations occurring on the project.

Finally, WatchEvents correspond to a user starring a repository. The notification
semantics we explained for FollowEvents and in our original description of the site

3 The Dataset 34

applies to starred repositories because this is what starring meant between February 2011
and February 2012 —our period of study. In August 2012, the semantic of starring changed
to simply bookmarking with no notification. The name WatchEvent has been kept
despite the change and the new notion of watching (to get notifications) does not have a
distinct API event.

It is also important to note that only additive events are made available by GitHub.
Repository creation, project starring and user following are tracked and made public
while repository destruction (or renaming), project unstarring and user unfollowing are
not recorded. In the cases where a repository is starred multiple times by the same user
(which implies it was unstarred in-between the two distinct events), we have kept the
earliest starring time. The same approach was taken for FollowEvents; only the first
FollowEvent was kept.

3.2 Acquisition and Processing

We explore the possibility of a personalized recommendation system by the capture of social
relationships between users via their ‘followership’ connections and the capture of users’
interests via their contributions, stars and forks of repositories. We describe here how the
data was collected and processed.

3.2.1 Acquisition

Because only the most recent activities are available through the GitHub API and because
only 5000 requests per hour can be made to the API by a single user, the GitHub Archive
site10 was used to download past compressed archives of hourly activities.

The GitHub Archive stores all events emitted by the GitHub public activity feed since
February 12th 2011. This data is made available raw in the form of hourly compressed
archives of concatenated JSON strings summarizing the events.

We used archives from February 12th 2011 starting at 00:00 UTC to February 11th 2012
at 23:59 UTC. A one year span was chosen as it is wide enough to provide a representative
amount of data, while not too wide as to be computationally prohibitive to process. This
selection also addresses Peril III of Table 2.1: “most projects are inactive”. All of the studied

10http://www.githubarchive.org/

3 The Dataset 35

repositories have been active within the year by definition. However, it is also important
to note that a serendipitous recommender would help counteract inactivity. Analyzing its
performance in a realistic setting where some repositories are less active than others (some
repositories have received the attention of a single user over the year for instance) paints a
more accurate picture of the reality in any case.

With GitHub being founded in February 2008, the collected data necessarily lacks in-
formation from events prior to the earliest retrieved archive. The earliest available archives
were therefore chosen so as to cover as many influencing GitHub events as possible and to
thus limit the influence of those GitHub events that are unobservable. This has the limita-
tion of collecting repositories that might now be deleted on the GitHub website. Content
properties cannot be collected for all repositories and their usage is therefore ignored.

Only repository-related events pertaining to projects for which we have observed a
CreateEvent, a ForkEvent or a PublicEvent are kept. Moreover, ForkEvents
duplicating a repository for which we have not observed the original CreateEvent or
PublicEvent are filtered out. For ForkEvents that target other forks, the creation
of the original root repositories of the forking hierarchy must have been seen. Only user-
related events for users that interacted with those new projects were considered. This way,
all the contributors, starrers and forkers of each considered repository are completely known
and the full history of each repository is known as well. In doing so we eliminate cases
where unobservable users might have played a significant influential role in the amount of
interest devoted to repositories for which we do not have the full history.

Thus, a total of 26,064,630 events were assessed over the one year period and 18,557,838
of them fell in one of the six types outlined in Table 3.1 once malformed observed events
were discarded.

3.2.2 Processing

Additional processing to further select valid users and repositories from the raw events was
done to produce analyzable networks with enough data points. We process the data in
order to predict using networks constructed with sound empirical evidence.

In Table 3.1, a PushEvent is described as potentially containing multiple Git commits.
These different commits can be from different authors. To determine the original author
of each contribution across the different contribution approaches, we kept track of the

3 The Dataset 36

author of each individual commit and the commit’s numerical hash. Git associates a 160-
bit numerical hash to each commit. This hash is generated using the Secure Hashing
Algorithm Version 1 (SHA1).11 By associating to such a hash the first GitHub user to have
contributed it in a PushEvent, we reconstruct the contributions of users to repositories.
The SHA1 hash makes it extremely unlikely for an attribution collision to occur among
the retained commits in the observed year span. By counting contributions this way we
side-step the problems associated with pull requests entirely and thus eliminate Perils VI,
VII and VIII of Table 2.1. Only accepted pull requests are taken into account because they
will have resulted in a PushEvent containing the pull request’s original commits.

Users who have shown interest in at least three projects not owned by themselves
through contributing, starring or forking such projects, and who follow or are followed by
another user satisfying these interest conditions are kept. This selection process keeps users
with a minimum number of external interest examples and ensures that social (following)
links are potentially analyzable. The resulting set of repositories these users are interested
in is kept except for some of the repositories that are forks.

A common collaboration pattern on GitHub is to fork a project, push changes to the
fork, submit a pull request to the original maintainer of the project and have the proposed
changes merged back inside the main project (or not). These forks can also merge some
of the changes made to the main repository back to them, therefore potentially incorrectly
assigning interest on a user’s behalf to a fork when the user was only interested in the main
upstream repository. Indeed, not all forks should be treated as projects to be recommended
since some are simply the byproduct of collaboration on GitHub. To handle such cases,
among the repositories that are forks, only those that have been starred are kept. All
repositories that are artifacts of the collaborative process are discarded this way and only
those forks that have been manually starred by an individual are incorporated in the final
set of repositories. These forks were interesting enough to warrant their explicit starring
which means these are instances it would make sense to recommend.

3.3 Considered Graphs

The collected and processed data are used to create multiple time-weighted graphs which
we use to run our graph-based recommendation algorithms.

11http://tools.ietf.org/html/rfc3174

3 The Dataset 37

The first of these graphs is the interest bipartite graph, GI . Nodes in the left partition
are users U and nodes in the right partition are repositories I. There exists an edge (u, r)
with u ∈ U and r ∈ I if user u has shown interest toward repository r in the form of a
starring occurrence, a contribution or a forking event. The weight t assigned to edge (u, r)
is the earliest time at which the interest artifact was created. If multiple interest events
are recorded between u and r, only the earliest interest event’s time is kept. We denote the
state of the graph immediately prior to time t as GI(t). Figure 3.1 illustrates an example
interest graph.

Fig. 3.1 Interest graph GI : users are on the left and repositories are on the
right. User-repository interest links are labelled with the timestamp of the
associated earliest interest event

The second graph is the interest-neighbour graph GN which is not constructed explicitly
but rather implicitly. The nodes of GN correspond to the users and its edges indicate co-
interest between two users. There is an edge (u, v) with u, v ∈ U if there is a node r in
GI such that the edges (u, r) and (v, r) exist in GI . The weight t assigned to edge (u, v) is
max(t(u,r), t(v,r)) where t(u,r) is the weight assigned to edge (u, r) and t(v,r) the one assigned
to edge (v, r) in GI . The state of GN immediately prior to time t is denoted GN(t). For
modelling purposes it is clearer to have it be a separate graph although it can be entirely
reproduced from GI .

The last considered graph is the followership graph or social graph, GF . We construct
it by considering the FollowEvents. Its nodes are users and there is an edge (u, v) with

3 The Dataset 38

u, v ∈ U if u or v follows v or u respectively. The edges in GF are undirected even though
a follower-followee relationship is not. This was chosen to be so because we consider a
FollowEvent to indicate a commonality between two users. If a user follows another
one, it must be because they share similar interests irrespective of whether one knows the
other or not. The activities of one are attractive to the other. The weight t assigned to edge
(u, v) is the timestamp of the FollowEvent or the minimum of the FollowEvents
relating users u and v together. Again the state of GF immediately prior to time t is
denoted GF (t).

Figure 3.2 shows an example user-user graph GU (in practice GN or GF) at two pro-
gressive points in time analogous to the observed dynamics.

(a) GU (t3) (b) GU (t5)

Fig. 3.2 GU at time t3 and subsequent time t5

3.4 Statistics

We summarize here the characteristics of the collected data and constructed graphs.
There are 46,423 users and 180,488 repositories satisfying the conditions outlined in

section 3.2.2. Figure 3.3 shows the indegree, outdegree and degree distribution of the
social (follower-followed) connections. The degree distribution of GF corresponds to the
degree distribution shown in 3.3. There are 156,280 links in GF for a graph density of

3 The Dataset 39

1.45 × 10−4.

Fig. 3.3 In, out and degree distribution of social connections

The median user degree is 3 (comparable to the average degree of 3.019 observed by
Lima et al. [25] for a different and longer period), the tenth percentile is 1 and the 90th
percentile is 13. Only 75.6% of the considered users follow at least one other user. In fact
29.3% of users only follow and are not followed, 24.4% are only followed and do not follow
and 46.3% follow and are followed. The reciprocity of followership links is of only 8.06%.
Reciprocal links are associated with friendship, work relations and mutual admiration.

We conclude from this that the number of explicit followership-social links is limited
among active users of GitHub. Lima et al. [25] propose the explanation that the asso-
ciated notifications are disruptive. They crowd the notifications page with less relevant

3 The Dataset 40

information and so following other users has a high cost which elevates the value of the
actually followed user. We add that alternative means of following an individual exist such
as following them on Twitter, checking their blogs or manually observing what they have
recently done on github.com. We hypothesize that the existing social links must carry some
influential weight despite their low numbers.

Figure 3.4 shows the distribution of repositories per number of users interested in them
(interests). The interest graph, GI , contains 680,228 edges and its connection density is
8.12×10−5 which is comparable to the 6.44×10−5 connection density of Suchal and Návrat
[21]. The distribution follows a clear powerlaw here. Notably, two-thirds of repositories
(66.6%) have only one user interested in them. Kalliamvakou et al. [24] observed that 71.6%
of repositories have only one contributor. Moreover, as was observed in the contributors,
collaborators and stargazers distributions obtained by Lima et al. [25], there are only very
few popular repositories relatively speaking. We observe that only 710 repositories break
the 100 interest links threshold. This is 0.3% of all observed repositories. The top 1% of
repositories in terms of popularity accounts for 42.4% of all interests. Most of the attention
is funnelled on relatively few repositories considering that these repositories cover a variety
of programming languages.

Figure 3.5 shows the converse of Figure 3.4, that is, the distribution of users per number
of different total repositories they are interested in (per their number of interests). The
median interest span of users is 9 which confirms GitHub’s ability to involve or simply
attract its members to various hosted projects. Indeed the top 1% of involved users only
accounts for 10.7% of all observed interests. This decent quantity of interests per user
allows us to attempt recommendation methods on a sound training and validating dataset.

Comparing the number of social connections (followers and ‘followeds’) versus the num-
ber of interested repositories for each user does not reveal any apparent correlation. Figure
3.6 illustrates the number of interests versus the number of total social degree over a mag-
nified region. A user with many social connections is not more or less likely to show interest
in more or less repositories than a user with few social connections. Most users tend to
have a limited number of interests and a limited number of social connections: 75.1% of
users have at most 20 interests and at most 10 social interests.

We note that despite the availability of project READMEs (a file describing the project)
through the GitHub API, this information was not used in our work. The main reason
for this is that the selected repositories obtained from the period under review are not

3 The Dataset 41

Fig. 3.4 Degree distribution of repositories of GI

available anymore. In fact 92.2% of the collected repositories have no READMEs that
can be retrieved at this point. This is either because the repository has been deleted or
renamed since or because the repository had no README to start with. The programming
language used can also not be retrieved for 63.4% of the captured repositories. Choosing
a more recent period would leave us without the accumulated social links and interests;
repositories from this period might additionally still suffer from lack of README and
language. We leave the non-trivial work of investigating a temporally wider period for
future works.

3 The Dataset 42

Fig. 3.5 Degree distribution of users of GI

3.5 Summary

In this chapter we have outlined the workings of the collaborative website github.com.
It currently highlights trending repositories and curates topic-focused repositories as its
discovery medium.

We collect archived activity events related to project creation, user interaction with
those projects and user-user interactions. FollowEvents, WatchEvents, ForkEvents and
PushEvents are used to build a social graph, an interest-neighbour graph and a bipartite
interest graph, all with fine grained temporal information. GitHub is a rich and dynamic
environment where social links and interests are evolving through time.

We have restricted ourselves to users with at least three external interests as our

3 The Dataset 43

Fig. 3.6 Number of users of GI per number of interests and social connec-
tions (social degree)

goal is to assess recommendation of external repositories with enough empirical evidence.
Repository-wise, only those that have been created during the one year span of our col-
lected data have been kept so as to reduce the amount of unobservable influence and thus
give richer interpretive power to the graph-based method we will attempt. Collaboration
through pull requests is tracked via PushEvents and the potential paucity of information
per user is countered by selecting users with a minimum history of activity on the web-
site. We provide in the appendix the location of graphs GI and GF for download (GN is
reproducible from GI).

In the next chapter we present the different graph-based recommendation techniques

3 The Dataset 44

whose serendipitous nature is assessed. The techniques presented allow us to propose a
more dynamic evaluation of this dataset that goes beyond the static observations made so
far.

45

Chapter 4

Methods

We present here the graph-based recommendation techniques we compare. Specifically, we
consider a traditional similarity-based collaborative filterer and a popularity recommender
filtered by similarity. Both of these are adapted from [19] to a real-time setting. We then
introduce the usage of temporal link prediction techniques for the top-K task. Some of these
techniques are based on the interest links of users, and others on their social links. Finally
we consider a one-step Markov chain model to explore if paths of interests are formed over
time. All of these techniques are benchmarked against recommending time-windowed and
un-windowed most-popular repositories.

The goal of these techniques is two-fold. First, and more directly, it is to generate
project recommendations for the members of the GitHub site. These recommendations have
to reflect some of the actual recorded interests of the considered users and also show signs
of serendipity. Second, as a consequence of the results of these recommendations, the other
goal is to assess and characterize the ecosystem of user-project and user-user interactions
on GitHub. By considering schemes which either use only user-project connections or
only user-user connections, and by also considering schemes which combine both types of
connections, we highlight which signals are most useful for making recommendations.

The first section provides an overview of the prediction task and the notation used. The
subsequent sections group and explain the prediction approaches.

4 Methods 46

4.1 Overview

Each of the detailed approaches described below assigns a score su,r(t) by user u ∈ U to
repository r ∈ I at time t where U and I are respectively the set of all valid users and
valid repositories as described in Chapter 3. The time t is the point in time at which u’s
top-K recommended repositories, RK

u (t), are generated. We summarize the notation used
throughout our description of the approaches in Table 4.1.

Symbol Definition
Nitem(u, GI(t)) set of repositories user u is interested in prior to time t
Nuser(r, GI(t)) set of users interested in repository r prior to time t
Nuser(u, GN(t)) set of users that have shared at least one interest with user u

prior to time t (interest-neighbours of u)
Nuser(u, GF (t)) set of users that follow u or are followed by u prior to time t

(social neighbours of u)

Table 4.1 Symbol definitions

Because all the predictions are generated in pseudo real-time causal manner, a static
training set is not used. Instead, a validation threshold time, tthreshold,u is chosen for
each user from which onwards external interests are predicted. For a user u, tthreshold,u,
is determined by first ordering chronologically the external interest times of user u, then
splitting the times into the first 2/3 and the last 1/3, and finally selecting the first time
of the last 1/3 of external interest times to be tthreshold,u. This way we make sure to begin
predictions at a time where we have a minimum of two external interests for each user (as
per 3.2.2, each user has at least three external interests) and as many internal interests as
that user has before tthreshold,u. As time advances, both internal interests and preceding
external interests (validation ones) are taken into account for the next predictions. Only
external interests are predicted however. Let Vu denote the validation set of external
interests associated with user u.

GitHub organizations can create repositories. This means that the first signal of interest
toward a repository might not be coming from its owner if the owner is an organization.
Because the graph techniques used rely on having at least one prior interest to a repository
for that repository to be part of the graph and recommended, the instances of first interest
toward a repository owned by an organization cannot be predicted.

By relying on a real-time approach rather than a standard training and validating sets

4 Methods 47

separation, we mitigate further degradation of the number of external interests that could
be predicted. A real-time approach allows the algorithms to predict correctly at most 87.6%
of validating interests. A standard training/validating split based on time would have only
allowed the prediction of 41.7% of interests because many repositories would not have been
created during the period covered by the training set.

For a real website constantly serving web pages and under response time limits, when to
update the underlying similarities or connection graphs appropriately given their time cost
is an open problem. Each hour, each day or each week might be more suitable than trying
to compute all intermediate results (similarity scores, connection graphs) every second. A
trade-off between an update’s cost and its benefit has to be made. For our purposes, we
generate K recommendations for each user immediately prior to tvr ∈ V t

u where V t
u is the set

of timestamps corresponding to each validation repository of u. These recommendations
only take into account information available prior to tvr.

Such an online setting is not often considered in the literature due to its computational
cost. As discussed in the previous chapter, most validation techniques rely on random
training and validating separation rather than chronological separation. Chronological
separation has the advantage of representing the reality of how these networks grow over
time and thus takes into account the time-dependent nature of discovery. Using future
interests to predict past interest has no direct commercial application. To the best of our
knowledge our work is the only one to attempt this realistic online prediction setting for
the GitHub data.

After generating the scores for each user u, repository r and associated time t, RK
u (t)

is generated by picking the top K repositories with the highest scores for each user at each
validation time. Score ties are broken randomly.

We next group the recommendation approaches by which we attempt to characterize
the discovery process.

4.2 Popularity

Popularity approaches are the most common ones in online settings: iTunes top charts and
all bestseller lists follow this approach for instance. In particular, popularity is currently
used on github.com (Chapter 3, 3.1.1 The Website) with a time-dependent twist.

4 Methods 48

4.2.1 Most Popular

In order to compare how well our proposed approaches are doing with respect to the current
online standard of generating a global most popular list, we generate recommendations
based solely on total popularity. The subsequently considered recommendation alternatives
should provide better recall and serendipity scores than this benchmark technique.

The “Most Popular” approach (POP) scores repositories as follows:

su,r(t) = |Nuser(r, GI(t))| (4.1)

Each repository is assigned a score equal to the number of users interested in it just
prior to time t. Sources of interest are contributions, stars and forks as described in Chapter
3. Interests since the beginning of the collected period are taken into account and have
equal weight. Although POP is indexed on time, the importance of older interests is not
exponentially decayed as others have done [6, 16].

Table 4.2 shows the top 10 most popular repositories after 1 month, 6 months and 12
months. A repository is presented in the format <owner>/<repository name>.

Rank March 11 2011 August 11 2011 February 11 2012
1 github/pycon2011 harvesthq/chosen twitter/bootstrap
2 postrank-labs/goliath defunkt/jquery-pjax harvesthq/chosen
3 LearnBoost/cluster altercation/solarized torvalds/linux
4 defunkt/dotjs 37signals/pow defunkt/jquery-pjax
5 wesabe/ssu twitter/twui zurb/foundation
6 rstudio/rstudio devstructure/blueprint fgnass/spin.js
7 cldwalker/one9 jeff-optimizely/Guiders.js nathanmarz/storm
8 rtomayko/posix-spawn postrank-labs/goliath addyosmani/Backbone-Fundamentals
9 nathanmarz/elephantdb ded/Ender xdissent/ievms
10 couchbaselabs/iOS-Couchbase cloudfoundry/vcap github/hubot

Table 4.2 Top 10 most popular repositories over time

Owners of popular projects like defunkt, nathanmarz or github reappear over time for
different projects.

4.2.2 Trending

The trending approach (TPOP) forgets older interests and mimics closely GitHub’s own
Trending Page which lists repositories that are receiving the most attention in the last day,
week or month. Scores are computed by only considering a past interval of time rather than

4 Methods 49

all information observed so far. The time window captures momentary spikes of attention,
but only repeatedly recommends repositories that are continuously popular over time.

Equation 4.2 lists the scoring procedure of TPOP with τ the window of time and
GI(t − τ, t) the bipartite graph of interests from t − τ up to and excluding t:

su,r(t) = |Nitem(r, GI(t − τ, t))|. (4.2)

We assign τ the value of a month, a week or a day and denote the respective approaches
TPOPM, TPOPW, TPOPD.

Table 4.3 lists the top 10 most popular repositories in the one month, one week and one
day interval of time before February 11 2012.

Rank 1 month prior 1 week prior 1 day prior
1 twitter/bootstrap tommoor/tinycon nytd/ice
2 tbranyen/backbone-boilerplate twitter/bootstrap twitter/bootstrap
3 tommoor/tinycon blasten/turn.js Zevas/jQuery-Scroll-Path
4 shichuan/JavaScript-Patterns visionmedia/uikit tommoor/tinycon
5 ubuwaits/beautiful-web-type jairajs89/Touchy.js jairajs89/Touchy.js
6 Lokaltog/vim-powerline simplebits/Pears needim/noty
7 enyojs/enyo d5/node.native elabs/serenade.js
8 amoffat/pbs square/SocketRocket darcyclarke/Front-end-...-Questions
9 23/resumable.js chjj/tty.js steipete/PSYouTubeExtractor
10 visionmedia/uikit mperham/sidekiq milohuang/Reverie

Table 4.3 Top 10 most popular repositories prior to February 11 2012

This time-windowing approach has also been tested for all of the techniques below.

4.3 Similarity

Item similarity is the staple of recommendation systems. It is used on amazon.com since
at least 2003 [19] to produce high-quality recommendations. Our implementations instill
some potentially serendipity-enhancing components.

4.3.1 Most Similar

The similarity approach (SIM) follows the traditional item-based collaborative filtering ap-
proach used at amazon.com [19] whose main offline computation is showcased in Algorithm

4 Methods 50

1. Each repository r is associated to a vector profile vr(t) at time t of size equal to the
number of valid users such that:

vr
u(t) =

⎧⎪⎨
⎪⎩

1 if (u, r) ∈ GI(t)

0 otherwise.
(4.3)

Users are associated an index in the profile vector. To compute the similarity between
two repositories, SIM uses the cosine similarity Equation 2.8. The score for each repository
is as follows:

su,r(t) = max
p∈Nitem(u,GI(t))

similaritycos(vp(t), vr(t)). (4.4)

As it was remarked in the original amazon.com paper [19], similarity is only non-zero for
two repositories that share at least one interested user in common. We define N Ritem(u, t),
the set of repositories which users that have shared at least one interest with user u in the
past have also shown interest in prior to time t:

N Ritem(u, t) =
⎛
⎝ ⋃

v∈Nitem(u,GN (t))
Nuser(v, GI(t))

⎞
⎠ \ Nitem(u, GI(t)). (4.5)

Computing similarity for these brings the complexity to O(MN).
The SIM approach favours a repository that has many interested site members in com-

mon with one of the repository the user has already been interested in. Allowing only one
repository in the user history to be very similar to a compared one favours serendipity we
hypothesize. A past niche interest can promote a related niche repository to have a higher
score than repositories that are similar to the average of a user’s history but not quite as
close to a specific repository.

4.3.2 Most Popular among Similar

This most popular among similar approach (POPSIM) is our implementation and adapta-
tion of another suggested technique by Linden et al. [19]. The generated recommendations
are the result of first filtering the repositories based on their similarity with repositories the
user is connected to in the interest graph GI and of then recommending the overall most
popular ones among these.

4 Methods 51

Since the similarity used is based on interest, we select, for the first step, only reposito-
ries that share at least one edge with an interest-neighbour of the considered user; we have
defined this set of neighbouring repositories, N Ritem(u, t), above in Equation 4.5.

Only the popularity of such kept repositories is computed and used as the score:

su,r(t) =

⎧⎪⎨
⎪⎩

|Nuser(r, GI(t))| if r ∈ N Ritem(u, t)

0 otherwise.
(4.6)

This simple heuristic filters out repositories that might be popular, but that are likely
to be unrelated to the sphere of interest of the user. It then hones in on those related
repositories that are overall most popular.

4.4 Link Prediction

Link prediction approaches pose the prediction problem as one of estimating which edge
will be created in the bipartite interest graph at time t given the structure of the graph prior
to t. We consider approaches based solely on the interest network GI and then approaches
taking into account the social network GF as well.

4.4.1 Interest-based Link Prediction

Interest-based link prediction is a category of approaches stemming for the field of network
science which is particularly suited to our knowledge of the evolving structure of GI . We
do not have information about content and thus look to methods with proven track records
that only need knowledge of the graph structure. The three recommendation heuristics
considered are: Common Neighbours [30], Adar-Adamic Index [31], and Resource Alloca-
tion Index [32]. We have modified these approaches to embed themselves in a real-time
setting and to operate on a bipartite interest network. They were originally considered on
co-authorship networks where every node represents the same entity. Changes were made
to take into account the heterogeneity of nodes in our interest network.

4.4.1.1 Common Neighbours

The interest-based Common Neighbours approach (ICN) scores repositories N Ritem(u, t)
(Equation 4.5), for a given user u at time t, by assigning them their local popularity count

4 Methods 52

instead of their overall popularity count as in POPSIM. The neighbours of u interested in
repository r at time t are defined as such:

IN (u, r, t) = Nuser(r, GI(t))
⋂

Nuser(u, GN(t)). (4.7)

The score is the number of neighbouring users interested in the repository, i.e., the
cardinality of IN (u, r, t):

su,r(t) =

⎧⎪⎨
⎪⎩

|IN (u, r, t)| if r ∈ N Ritem(u, t)

0 otherwise.
(4.8)

Only the influence of a user’s neighbourhood is taken into account. Neighbourhood is
defined here as it was before by the commonality of interests of users which means that
only users interested in the same repository as the considered individual influence him or
her.

4.4.1.2 Adar-Adamic Index

Another variation on the use of local structure to predict link formation is the Adar-Adamic
weighting scheme (IAA) originally presented by Adar and Adamic [31] in the context of
web page features. This approach works similarly to the Common Neighbours approach
but assigns a weight to each neighbour’s contribution to the score. This weight is inversely
proportional to the base 10 logarithm of the number of interests of the user; a user with
a high degree in GI —a large interest span— is assumed to be less discerning than a user
with a small degree —a small interest span. It is assumed that a node of less degree filters
its connections more and thus its recommendations are of higher quality. A user with low
degree in GI can also be supposed to mostly focus on their own projects. These works with
perhaps less wide attention are promoted with this technique.

We further adapt the reformulation of this index by Lü and Zhou [32]. The assigned
score is:

su,r(t) =

⎧⎪⎨
⎪⎩

∑
v∈IN (u,r,t)

1
log(1+|Nitem(v,GI(t))|) if r ∈ N Ritem(u, t)

0 otherwise.
(4.9)

By definition |Nuser(v, GI(t)| ≥ 1 so 1 is added to the logarithm to prevent division by

4 Methods 53

zero. In IAA, the order of magnitude of a user’s number of interests determines the user’s
interest span.

Liben-Nowell and Kleinberg [33] compared Common Neighbours and Adar-Adamic In-
dex to 10 other link prediction techniques, and despite their simplicity these two heuristics
have consistently performed well in the studied prediction task on five co-authorship net-
works. In particular the Adar-Adamic Index achieved the best predictive performance on
two of the five considered networks and Common Neighbour has achieved it on one of them.

4.4.1.3 Resource Allocation Index

Resource Allocation (IRA) was presented by Zhou et al. [32]. Instead of considering the
order of magnitude of a user’s number of interests as is done in the Adar-Adamic weighting
scheme, this weighting scheme considers the exact number of interests of a user. Again,
more weight is given to a website member’s ‘advice’ the more that member is parsimonious
with his interests. The same serendipity interpretation as with the Adar-Adamic Index can
be made here.

su,r(t) =

⎧⎪⎨
⎪⎩

∑
v∈IN (u,r,t)

1
|Nuser(v,GI(t)| if r ∈ N Ritem(u, t)

0 otherwise.
(4.10)

Zhou et al. [32] have compared these Common Neighbours and Adar-Adamic Index
approaches to the Resource Allocation Index and found that on six disparate networks
(instances of which include a protein interactions network, a power grid network and an
Internet router topology network) Resource Allocation Index consistently performed the
best with Common Neighbour tying or coming in second and Adar-Adamic coming in the
top three. This high-performance tied with simplicity of implementation is why we chose
all three approaches.

4.4.2 Social-based Link Prediction

Our proposed social-based link prediction techniques take into account the social neighbours
of the considered individual. We adapt the above interest-based techniques to formulate
the novel Common Social Neighbours, Social Adar-Adamic Index and Social Resource
Allocation Index techniques.

4 Methods 54

The commonality of interests of different developers is not the only way to build a
neighbourhood. In fact, the followership graph, GF , provides a potentially richer definition
of neighbourhood through time. Social networks generate additional signals of great import;
advice from close friends and colleagues holds more persuasive power than from unknown
individuals. We hypothesize these links to be of stronger significance as they are explicitly
formed by the users; whereas, the previous interest-neighbour links are implicitly formed.

4.4.2.1 Common Social Neighbours

We adapt Common Neighbours to obtain Common Social Neighbours (SCN). It scores the
set of repositories SN Ritem(u, t) of the social neighbours of u at time t.

SN Ritem(u, t) =
⎛
⎝ ⋃

v∈Nuser(u,GF (t))
Nuser(v, GI(t))

⎞
⎠ \ Nitem(u, GI(t)). (4.11)

The neighbours of u interested in repository r at time t are defined with respect to
GF (t) as:

FN (u, r, t) = Nuser(r, GI(t))
⋂

Nuser(u, GF (t)). (4.12)

The score is assigned as follows:

su,r(t) =

⎧⎪⎨
⎪⎩

|FN (u, r, t)| if r ∈ SN Ritem(u, t)

0 otherwise.
(4.13)

Here the local social connections filter what is recommended and the score assigned to
each recommendation is the number of social neighbours interested in the repository.

4.4.2.2 Social Adar-Adamic Index

The Social Adar-Adamic Index (SAA) is a variant of the Adar-Adamic weighting scheme
where the followership graph is used to determine which user advice is taken from. It
otherwise operates like the regular Adar-Adamic scheme.

The score is assigned as follows:

4 Methods 55

su,r(t) =

⎧⎪⎨
⎪⎩

∑
v∈FN (u,r,t)

1
log(1+|Nuser(v,GI(t))|) if r ∈ SN Ritem(u, t)

0 otherwise.
(4.14)

4.4.2.3 Social Resource Allocation Index

Social Resource Allocation Index (SRA) is our adaptation of the Resource Allocation
scheme with GF used to determine the initial neighbourhood of the considered user.

The score is assigned as defined:

su,r(t) =

⎧⎪⎨
⎪⎩

∑
v∈FN (u,r,t)

1
|Nuser(v,GI(t)| if r ∈ SN Ritem(u, t)

0 otherwise.
(4.15)

The idea behind these social methods is also to take advantage of the notifications on
GitHub. Social neighbours’ actions are notified to a user on his or her GitHub homepage.

4.5 Markov Chain

The last technique we consider (MKV) uses the idea of a Markov chain [27] to predict
which next repository is of interest only considering the previous repository of interest.

Given the history of interests leading to the event that user u shows interest toward
repository rn at arbitrary time tn, denoted u → rn(tn), the probability of showing interest
in rn is simplified via the Markovian assumption:

P (u → rn(tn)|u → rn−1(tn−1), ..., u → r0(t0)) = P (u → rn(tn)|u → rn−1(tn−1)). (4.16)

The probability P (u → rn(tn)|u → rn−1(tn−1)) is given by counting the instances of users
showing interest in rn−1 and then immediately showing interest in rn.

When a repository is new, it may not be common to observe transitions from it to
another one. This is why we admit the more realistic proposition that a transition from
rn−1 to rn not only contributes to the likelihood of transitioning from rn−1 to rn for other
users, but also from rn back to rn−1 to a lesser extent. Indeed we want to capture the
correlation between the two while still favouring the transition from rn−1 to rn.

Let Nr→p(t) be the number of observed transitions from repository r to repository p

4 Methods 56

prior to time t. The scoring equation must be reformulated as follows where p is the last
repository user u has shown interest in and su,r(t)|p denotes the score assigned to r given
p:

su,r(t)|p = Np→r(t) + αNr→p(t) (4.17)

with α a parameter belonging to [0, 1.0] assigning more or less weight to the reverse tran-
sition.

We justify this approach as being graph-based as it leverages explicitly the graph dy-
namics. We tie these transitions to the notion of interest paths. We want to test whether
there are sequences of repositories that are more likely to be visited over time. In other
words, do users tend to follow similar paths of repository interests strictly based on their
current interests? The reverse transitions might also open up surprising avenues of interests.

4.6 Summary

We have presented above the five groups of recommendation techniques assessed in our re-
search. Traditional popularity and similarity scorers represent the most commonly applied
commercial solutions to the problem. They form the benchmark of our study, although we
have chosen a similarity scorer that allows for niche recommendations. A novel application
of Common Neighbours, Adar-Adamic Index and Resource Allocation Index link predic-
tions to a real-time setting is proposed to take advantage of local structure and users with
few interests. A first version is based on interest-neighbours and a second on social neigh-
bours. Finally a Markov chain of transitions is also considered to see if there are interest
paths over time and if interest progression has any potential. A time-window is also used
to test the effectiveness of a crude forgetting tactic in each case.

The main goal of this selection of algorithms is to test their effectiveness at predicting
future interests on GitHub and to compare the extent to which they provide serendipitous
recommendations. The novelty of the studied data requires techniques that score high on
recall first to shed some light on the processes at play.

In the next section we show the obtained results of using the above algorithms. The
serendipity measures studied are also presented and a new one is proposed. Discussion of
the assessment results follows.

57

Chapter 5

Results

In this chapter we assess the proposed methods on recall and on three serendipity measures.
The first two serendipity measures —dissimilarity with past history and unexpectedness
with respect to a base method— can be found in the literature, while the third measure is
a proposed novel assessment tool that considers the social distance of a recommendation.

We present the measure of recall adapted to real-time recommendations first. Then we
define the serendipity measures. Following these definitions are the experimental compar-
ative results of the various techniques on these measures. Finally the implications of such
results and their wider meaning for the GitHub milieu are discussed.

5.1 Measuring Recall

Serendipity requires some measure of accuracy. To measure accuracy we use a formula-
tion of recall adapted to the evolution of the networks on GitHub. In particular, only
TopKRecall and UserTopKRecall are considered in terms of accuracy metrics as precision is
naturally averse to serendipity. Suggesting a wide list of repositories containing many un-
substantiated recommendations is not problematic as long as this list does contain correct
predictions as well. The goal is to extend an individual’s interest horizon and so producing
many recommendations that do not concur with future interests is expected. Furthermore,
disliked repositories are unknown on GitHub which makes it inappropriate to assign a great
penalty to missed predictions. These predictions are not bad per se, but simply unproven.

Error metrics require ratings, but individuals do not rate repositories on GitHub. Hu
et al. have proposed a method to turn implicit feedback into confidence and preference

5 Results 58

ratings [17] in the context of TV watching. How many times and for how long a show is
watched gives a real valued confidence rating in their context. Because two of the three
interest indicating events (forking and starring) are not (technically) repeated events on
GitHub, this avenue is unfit. Moreover, because the focus is on repository discovery, a
single interest signal is enough. Recall is therefore chosen to measure accuracy.

We adapt the formulation of recall for top-K lists originally proposed by Cremonesi et
al. [18]. Let δ(e, S) denote the indicator that the element e is in the set S, formally defined
as,

δ(e, S) =

⎧⎪⎨
⎪⎩

1 if e ∈ S

0 otherwise.
(5.1)

Let Vp
u be the set of validating repositories and their associated time for user u. V t is the

set of validating times only. |V t| = ∑
u∈U |Vp

u|. The TopKRecall and the average user recall
are then:

TopKRecall = 1
|V t|

∑
u∈U

∑
(r,t)∈Vp

u

δ(r, RK
u (t)), (5.2)

and

TopKRecall = 1
|U|

∑
u∈U

1
|Vp

u|
∑

(r,t)∈Vp
u

δ(r, RK
u (t)). (5.3)

TopKRecall indicates the total number of correct predictions made, while TopKRecall
indicates the average over all users of correctly predicted percentages per user. The latter
represents how on average a user would perceive the performance of the recommendation
algorithm.

5.2 Measuring Serendipity

We measure the serendipity of the produced recommendations on three metrics: similarity-
based serendipity as defined by Zhang et al. [11], unexpectedness-based serendipity pro-
posed by Ge et al. [9], and our own serendipity metric based on social-distance.

5 Results 59

5.2.1 Similarity-based Serendipity

The similarity-based serendipity metric is taken from Zhang et al.’s work on the Auralist
serendipitous music recommender [11]. Equation 2.13 of Chapter 2 outlines their definition.
We adapt it to our real-time setting. Let vq(t) and vr(t) be the profile vectors built
according to Equation 4.3 at time t of repository q and r respectively. We define the
unserendipity of a user u at time t for a set of K recommendations to be:

unserendipity(u, t, K) = 1
|Nitem(u, GI(t))|

∑
q∈Nitem(u,GI(t))

1
K

∑
r∈RK

u (t)
similaritycos(vq(t), vr(t))

(5.4)
Averaging the unserendipity(u, t, K) metric over all users U and over all times of the kept

validating interests V t
u for each user u, gives:

TopKSerendipitysim = 1 − 1
|U|

∑
u∈U

1
|V t

u|
∑
t∈Vt

u

unserendipity(u, t, K) (5.5)

The TopKSerendipitysim metric reveals how different on average, in terms of cosine sim-
ilarity, recommended repositories are from the ones a user has favoured in the past. The
more distinct recommended repositories are from a user’s history, the more likely it is
that the recommendations are quite surprising. Recall must be computed separately and
evaluated jointly to confirm the relevancy aspect of the implied serendipity.

5.2.2 Unexpectedness-based Serendipity

Ge et al. [9] measure serendipity by comparing the recommendations of the considered
approach with those of a primitive method that provides obvious recommendations. The
number of produced recommendations that are not predicted by the primitive method and
that are relevant forms the basis of this assessment of serendipity.

Let EK
u (t) be the primitive method’s recommendations and UX P(u, t, K) be the time

dependent unexpected set of repositories:

UX P(u, t, K) = RK
u (t) \ EK

u (t). (5.6)

In real-time, serendipity is then assessed as follows:

5 Results 60

TopKSerendipityunxp = 1
|U|

∑
u∈U

1
|Vp

u|
∑

(r,t)∈Vp
u

δ(r, UX P(u, t, K)). (5.7)

For assessment purposes we chose to use POP as the primitive method generating the
obvious set of recommendations EK

u (t). POP is a legitimate choice as it recommends the
most well-known repositories.

5.2.3 Social distance-based Serendipity

The concept of surprise found in the definition of serendipity can generally be thought as a
measure of how far recommendations are from the user’s sphere of awareness. For instance
TopKSerendipitysim models this sphere of awareness via similarity: the more similar to a
user’s history a repository is, the more likely it is that the user is aware of the project
before it is recommended to him or her. The farther a recommended project is from this
sphere of awareness, the more surprising it is. In TopKSerendipityunxp the sphere of awareness
is explicitly defined via EK

u (t). Projects out of this set are unexpected.
In this vein, we propose to use social distance as a measure of a user’s sphere of aware-

ness. We follow the remarks of Dabbish et al. [22] regarding the usage of the follow feature:
this feature is used to keep track of interesting individuals and by proxy of noteworthy new
projects. Individuals use the ability to follow one another as a means to keep abreast of
changes and new repositories of interests. Value to oneself and to the greater community
is assessed through GitHub’s transparent collaborative process. We measure how far on
average a recommended repository is from the considered member’s social connections.

To make this definition clear, we define dsocial(u, r, t) the social distance from a repository
r to a user u at time t as the minimum graph distance on GF (t) from u to any member
of Nuser(r, GI(t)). If there does not exist a path from u to any member of Nuser(r, GI(t)),
dsocial(u, r, t) is set to the eccentricity of u in its connected component, i.e. the length of
the longest path from u to any other user node in u’s connected component. If u is not
connected to any other user, the number of users minus one is assigned.

Averaging the dsocial(u, r, t) metric over all users U and over all validating interest times
V t

u for each user u, gives:

TopKSerendipitysdist = 1
|U|

∑
u∈U

1
|V t

u|
∑
t∈Vt

u

1
K

∑
r∈RK

u (t)
dsocial(u, r, t). (5.8)

5 Results 61

Naturally, the social based approaches SCN, SAA and SRA are expected to score 1
on this approach. Like TopKSerendipitysim, TopKSerendipitysdist needs to be analyzed along
recall as it would be easy to recommend the socially furthest away, but irrelevant, reposi-
tories.

5.3 Result Comparisons & Discussion

5.3.1 Recall

Table 5.1 shows TopKRecall and UserTopKRecall for all the algorithms for K = 10, 20, 40.
Despite score ties being broken randomly, it was observed that the standard deviation across
10 runs for each algorithm was negligible and so a single run is used instead. Different values
of α for MKV were tried and α = 0.6 gave the best recall results.

Algorithm K = 10 K = 20 K = 40
POP 3.30% 4.56% 4.75% 6.15% 7.08% 8.44%

TPOPM 6.45 6.93 9.93 9.79 14.44 13.59
SIM 4.47 7.03 6.11 9.31 8.26 12.02

POPSIM 4.00 6.16 5.76 8.41 8.45 11.44
ICN 6.20 9.84 8.79 12.94 12.02 16.51
IAA 6.48 10.44 9.14 13.67 12.52 17.42
IRA 6.62 10.68 9.36 13.98 13.07 18.03
SCN 4.46 6.19 6.25 8.25 8.22 10.32
SAA 4.43 6.54 6.11 8.59 8.06 10.62
SRA 4.11 6.29 5.79 8.39 7.70 10.46

MKV0.6 13.26 10.60 16.27 12.62 19.29 14.61
The first inner column of each K column is TopKRecall and the
second is UserTopKRecall. The highest score for each K is in bold.

Table 5.1 Recalls of algorithms for K = 10, 20, 40

The rise of the recall score across K’s is expected as a higher K means a larger recom-
mendation list that includes the previous recommendations of the smaller lists.

All of the proposed methods score higher on TopKRecall and UserTopKRecall than the
most basic non-personalized benchmark of POP at least. POPSIM is only marginally
better and still less accurate than SIM except for TopKRecall(K = 40); the pure similarity
approach does better without the popularity factor taken into account. Repositories with

5 Results 62

a similar composition of interested members as a given member’s repository present in his
or her history make better recommendations than overall popular projects.

The two best approaches are IRA and MKV. They distinctly divide the best results with
IRA scoring higher on UserTopKRecall while MKV scores (much) higher on TopKRecall.

We see two factors contributing to the relatively high performance of MKV. First MKV
takes timeliness into account by only considering the last repository of interest as its rec-
ommendation jumping point. This repository is more likely to be current and thus more
related with other timely repositories. Considering timely projects, projects that receive
at least one show of interest in the short period of time before the recommendation, is
a beneficial approach as the near doubling of accuracy TPOPM has over POP seems to
attest to. We come back to this point in the next section. Second, it seems that there
are indeed some paths of interest over time. Correlation between repository transitions
identifies interest migration patterns rather than strict interests.

For instance, if one typically uses the list of most popular repositories as a means to
discover new repositories, MKV will be able to predict these repositories since every other
user who does (and importantly did) the same contributes to making such next repositories
more probable. This self-fulfilling process would even capture the effect of other top lists
found outside of github.com. If a user tends to typically show interest in projects featured
on prominent technology news sites such as Hacker News1, Reddit2, Slashdot3 or others,
then MKV can capture that pattern as well. Note that these top lists are usually similar
to each other. Thus MKV will not only recommend a project featured on these sites
because it will have seen many other users do the same type of attention transition, but
the recommended repositories are chosen as to be related to a user’s last interest and so
more likely to be relevant for that user.

We note that personalization of recommendations through social peers (SCN, SAA,
SRA) fares better than an impersonal top list (POP), but a personalization based on ac-
tual interests fares much better. Also taking time into account as TPOPM does surpasses
any usage of the social network. Compared to the other approaches, social-based recom-
mendations perform the weakest overall, but it is important to remember that the median
social degree is only 3 and so most users have a smaller outreach to potentially recom-

1https://news.ycombinator.com/
2https://www.reddit.com/r/programming
3http://slashdot.org/

5 Results 63

mendable repositories. For such a limited source of influence, the results are not orders of
magnitude different from the others.

It can also be argued, that other approaches take into account social influence implicitly.
We compare SCN, the best of the social-based link prediction techniques, to SIM, IRA and
MKV to see how much these other techniques subsume SCN in Table 5.2. IRA and MKV
do overlap significantly with SCN.

Algorithm K = 10 K = 20 K = 40
SIM 21.9% 24.3% 27.6%
IRA 37.8 40.0 42.9

MKV 32.5 34.0 35.8

Table 5.2 Commonality of SCN’s valid predictions with those of interest-
based prediction techniques

SCN’s recommendations overlap more with IRA’s than with SIM’s. Its overlap with
IRA is probably due to the fundamental reliance on common neighbours of both IRA and
SCN. However SCN is complementary to SIM. SIM relies on the overall composition of the
interested members in a repository whereas SCN considers the number of friends interested
in the repository rather than its complete composition. These two tactics lead to different
results.

The near doubling of TopKRecall when considering the month-long previous time window
for POP is surprising. TPOPM scores among the top results of the techniques other than
MKV or IRA. Timeliness seems to provide an advantage that we confirm next.

5.3.2 Windowed Recall

The advantage of forgetting older interests and only relying on recent ones motivates the
analysis of recall for windowed versions of the best algorithms of each category. Table 5.3
shows the obtained recalls for relevance windows of one month, one week and one day. The
results for month, week and day windowed versions of SCN are two orders of magnitude
lower than the rest and as such they are not displayed here.

The highest recalls are now those of TIRAD and TPOPSIMD. Therefore, on average,
recommending repositories from peers is more effective when the weight given to each peer’s
repository is inversely proportional to the interest span of that peer or when that peer’s
repository is quite popular. TPOPSIMD leverages the high results of TPOPD to signifi-

5 Results 64

Algorithm K = 10 K = 20 K = 40
TPOPM 6.45 6.93 9.93 9.79 14.44 13.59
TPOPW 12.52 11.24 17.44 15.00 23.14 19.51
TPOPD 19.60 15.95 24.84 19.84 30.35 24.07
TSIMM 3.53 5.53 4.70 6.96 6.25 8.74
TSIMW 2.96 3.68 4.19 4.93 6.17 6.78
TSIMD 3.81 3.19 6.61 4.80 11.1 6.90

TPOPSIMM 7.34 8.69 11.39 12.33 16.39 16.94
TPOPSIMW 13.63 12.77 19.32 17.27 25.68 22.54
TPOPSIMD 20.51 16.82 26.33 21.12 32.50 25.95

TIRAM 9.98 12.47 14.60 16.81 20.72 22.20
TIRAW 15.99 15.29 22.07 20.15 28.64 25.18
TIRAD 22.10 17.13 27.42 20.82 32.50 24.16

TMKV0.6M 11.93 8.90 14.57 10.56 17.16 12.20
TMKV0.6W 9.81 6.30 11.75 7.41 13.35 8.25
TMKV0.6D 5.56 3.02 6.09 3.24 6.42 3.37

The first inner column of each K column is TopKRecall and the
second is UserTopKRecall. The highest score for each K is in bold.
Only IRA was chosen from its group as it had the strongest
previous recall scores.

Table 5.3 Recalls of best windowed algorithms

5 Results 65

cantly boost its selection process. Another way to see this is that its refinement of choosing
among interest-neighbour gains it only a few percentage points above TPOPD. Filtering
solely by commonality of interest gives a slight recall advantage. Choosing selective peers
which act as apt guides in the plethora of on-going activities provides great accuracy on
its own. Combined with timeliness IRA is quite effective.

All of the other algorithms show a degradation of performance when a smaller time
window is used. The limited outreach of SCN is worsened making its recommendations
devolve into randomness. We confirm this in the next section. Strict similarity and Markov
transitions also see their pool of influence much reduced when considering a small time
window. The absence of related activities (transitions or interests) in the preceding time
window provides less information to benefit from than the full history.

5.3.3 Distribution of Recall Scores

The standard deviation for UserTopKRecall is not provided because the obtained distribu-
tion clearly does not follow a normal Gaussian. The effectiveness of the techniques remains
restricted to a minority of users. We provide the distribution of recall scores in Figure 5.1
for MKV, TIRAD, TPOPSIMD and K = 20. A similar distribution is observed for other
Ks. Each recall percentage interval includes its lowest value and excludes the highest value.
The distribution is over percentages. Therefore a few hits or misses translate into large
swings of percentages in some cases, while numerous hits or misses are needed to provide
the same swings in other cases.

What is observed is that a large portion of users are still eluding the best techniques.
The distribution is multi-modal with bumps past the 0-10 range in the 20-40, 50-60 and
90-100% intervals. Most of the gain due to using a time window is found in providing users
with no previously correct recommendations some number of correct recommendations.

A challenge with real-time predictions like ours is the variation of ‘training’ data per user
and over time. An approximation of this data with respect to interests per user over time
is the total number of interest instances for that user. Figure 5.2 shows the distributions
of UserTop20Recall with respect to the number of total interests per users.

We see that the median of UserTopKRecall (other values of K exhibit the same pattern)
rises with the number of interests. It is indeed the users with the lowest number of interests
that are most poorly recommended against. As more interests can be taken into account,

5 Results 66

Fig. 5.1 Recall distribution of users

the more accurate are the proposed techniques (a similar trend is observed for TPOPSIMD).

5.3.4 Serendipity

We present here the obtained serendipity measures for the similarity, unexpectedness and
social distance-based approaches. Table 5.4 summarizes the results obtained for the best
recall algorithms of each category with the similarity-based metric. Table 5.5 summarizes
the results obtained for the unexpectedness-based metric and Table 5.6 summarizes our
findings for social distance-based approaches.

5.3.4.1 Similarity-based Serendipity

In practice similarity-based serendipity measures how different from the past all recommen-
dations are. As can be seen from Table 5.4, TPOPD is slightly more serendipitous than
the alternatives. TPOPD does not cater to users’ histories and thus recommendations are
dissimilar from their history. TPOPD also achieves high recall scores and so according to

5 Results 67

Fig. 5.2 Distributions of TIRAD UserTop20Recall per number of total inter-
ests

this serendipity metric it serves its purpose of presenting serendipitous recommendations;
the recommendations are accurate and less likely to be shared by the same users as before.

The differences between results are not tremendous however. In effect the results shown
are averages across users but the standard deviations are relatively large as was the case
for recall. The distribution is similar.

5.3.4.2 Unexpectedness-based Serendipity

Next we consider the performance of the algorithms in terms of unexpectedness serendip-
ity. In Table 5.5, the top result is TIRAD. In part this is unsurprising as TIRAD scores

5 Results 68

Algorithm K = 10 K = 20 K = 40
TPOPD 0.9861 0.9876 0.9885

SIM 0.9097 0.9231 0.9368
TPOPSIMD 0.9797 0.9825 0.9841

TIRAD 0.9805 0.9833 0.9860
SCN 0.9697 0.9756 0.9817

MKV0.6 0.9659 0.9741 0.9806
The best score for each K is in bold.

Table 5.4 Similarity-based serendipity of algorithms

among the highest UserTopKRecall and TPOPSIMD is presumably more likely to recom-
mend repositories POP would recommend. It however confirms that TIRAD averaged
more correct predictions different from POP than the alternatives; it could have been that
another method with a lower recall deviated from POP more.

Algorithm K = 10 K = 20 K = 40
TPOPD 0.1222 0.1484 0.1713

SIM 0.0617 0.0788 0.0979
TPOPSIMD 0.1261 0.1540 0.1786

TIRAD 0.1470 0.1710 0.1876
SCN 0.0501 0.0661 0.0816

MKV0.6 0.0715 0.0811 0.0873
The best score for each K is in bold.

Table 5.5 Unexpectedness-based serendipity of algorithms

The difference between TPOPSIMD and TIRAD is not big either. Already the differing
conclusions between Table 5.4 and Table 5.5 show the complexity of assessing serendipity.
Table 5.6 adds to this.

5.3.4.3 Social distance-based Serendipity

In this measurement of serendipity, outlined in Table 5.6, SIM is the most serendipitous.
Its suggestions are on average the most distant from a user’s social circle. As we have seen
in Table 5.2 there is little overlap between social and the purely interest-based approaches.

Note that the recommendations that fall outside the social components would skew the
results much higher and hide the true most common size of the social components. Because

5 Results 69

of the high number of total recommendations (from 89 to 95%) that fall in users’ social
components, the results shown exclude recommendations outside social components.

The observed average social distances are very low. This indicates that the recommen-
dations across all techniques tend to be socially close to their associated user.

The fact that SCN does not show TopKSerendipitysdist = 1 is a testament to its lack of
outreach. After recommending all repositories socially connected, it reverts to recommend-
ing random repositories until its quota of K repositories is met.

Algorithm K = 10 K = 20 K = 40
TPOPD 2.339 (91.6%) 2.424 (91.6%) 2.489 (91.6%)

SIM 2.946 (89.5) 2.975 (89.4) 3.000 (89.4)
TPOPSIMD 2.161 (92.3) 2.240 (92.2) 2.296 (92.2)

TIRAD 2.444 (92.0) 2.507 (92.0) 2.580 (92.0)
SCN 1.035 (95.1) 1.203 (94.4) 1.457 (93.7)

MKV0.6 2.472 (91.1) 2.542 (90.9) 2.610 (90.7)
The best score for each K is in bold. The percentage in parentheses is the
ratio of the number of recommendations that are in a social component
over the total number of recommendations.

Table 5.6 Social distance-based serendipity of algorithms

MKV surprises here, by performing rather well: it ranks second on this metric. MKV
thus shows serendipitous potential as well.

5.4 Overall

We conclude these results with a few remarks. Like recall, serendipity grows with K in
each case. Lower ranked recommendations are typically not similar to past interests and
the less personalized a recommendation is the more likely it is to not be part of a user’s
social component. TopKSerendipityunxp is positively correlated with recall and so it naturally
grows with K.

As far as social influence is concerned on GitHub, it in fact does not seem to be a major
factor in the discovery of new repositories, at least with respect to techniques that specif-
ically target it. Followership links created before March 2011 are missing. The paucity of
social links may explain the lower performance. However creating links between individuals
based on their participation in the same commit discussion seems tenuous. In addition,

5 Results 70

MKV and TIRAD do significantly overlap with SCN. Social influence plays some role, but
less so than other factors.

To have a better idea of the serendipity scores, recall must be taken into account.
Figures 5.3, 5.4 and 5.5 position these algorithms with respect to their UserTopKRecall and
a measure of serendipity.

Fig. 5.3 Algorithms with respect to recall and TopKSerendipitysim

The day-timeliness indicates the fast-paced nature of attention in the GitHub ecosys-
tem. Taking it out of the equation, we can see that MKV is a surprisingly serendipitous
technique. It combines relatively high recall with high serendipity scores in nearly each
case. Also it is worth noting that MKV will recommend less popular repositories which
allows it to potentially recommend up-and-coming repositories rather than established pop-

5 Results 71

Fig. 5.4 Algorithms with respect to recall and TopKSerendipityunxp

ular repositories since MKV will start recommending a repository as soon as it has seen
someone show interest in it. We leave this avenue of research for future work.

5.5 Summary

In this chapter we have presented TopKSerendipitysim, TopKSerendipityunxp and the novel
TopKSerendipitysdist, three means of assessing serendipity. Our experimental recall results
and serendipity results were then produced and compared. Although the top approaches,
TPOPD, TPOPSIMD and TIRAD, stay in the same serendipitous region across different
measurements, SCN performs markedly better for TopKSerendipitysim, reciprocally SIM per-

5 Results 72

Fig. 5.5 Algorithms with respect to recall and TopKSerendipitysdist

forms much better for TopKSerendipitysdist and MKV consistently positions itself in a second
position of sort across all measurements. The exact numerical results show that different
definitions of serendipity favour different techniques over others. We can conclude that the
measures of serendipity used in the literature do not agree on the relative serendipity of al-
gorithms. The addition of the TopKSerendipitysdist also shows how discovery is perhaps not
as reliant on social connections as user perception [22] might lead us to believe. One must
then be careful when choosing serendipity metrics and interpreting the obtained results.

There are no clear winner either among the top approaches although TIRAD, TPOP-
SIMD and TPOPD perform well accuracy-wise and in two recall metrics. This is because
the differences in results between the techniques are not tremendous and the standard de-

5 Results 73

viation of the results cannot be trusted to properly frame the precision. A large portion
of users have low ‘training’ data and are therefore hard to predict against which skews the
results.

Timeliness on GitHub is an important factor —specifically past day activity. In fact,
GitHub’s trending page was implemented in August 20134 which might imply they have
discovered this very same fact about their data. A form of timeliness is also present in
MKV which performs surprisingly high in all serendipity metrics. This approach is worth
investigating further.

4https://github.com/blog/1585-explore-what-is-trending-on-github

74

Chapter 6

Conclusion

6.1 Concluding Remarks

We have put forward in this thesis a first preliminary comparison of serendipity measure-
ments on graph based techniques for a novel dataset of GitHub activities. Only newly
created repositories were selected to track their growth and only their associated users
were kept. The similarity, link prediction and Markov chain approaches have all been
generated in pseudo real-time to verify their effectiveness in the same context as GitHub
would be running these techniques in. These graph-based approaches were compared with
an all-time popularity recommender and a time-interval based popularity recommender.

The comparison of recall across these techniques revealed the effectiveness of considering
only past day activity in the recommendation process. This is a surprising result. It implies
less past data is more informative and that GitHub is a very dynamic setting where new
interests are made everyday. Interestingly, GitHub must have noticed this pattern as well
since it implemented a Trending page based on last month, week and day of activity in
August 2013.

From this first side-by-side comparison of serendipity measures, we can tentatively say
that the intuition of different serendipity concepts leading to different serendipity results is
true to some extent. The dissimilarity-based serendipity slightly favours unpersonalized last
day popularity. The unexpectedness-based serendipity slightly favours a last day version
of resource allocation and our introduced social distance-based serendipity favours the (all
time) similarity approach which is solely interest-based. No technique is strictly more
serendipitous than all the others across all three proposed serendipity measurements.

6 Conclusion 75

Another surprising conclusion drawn from this study is the apparent less effectual ap-
proach of relying mostly on social links. In effect their lower performance is in part due
to their lower numbers. The observed users on GitHub are better predicted for by relying
on their interests rather than their social links because the interests are more numerous
and influential social links may be lacking. During the observed period, the influence of
interests is stronger than the influence of social connections.

On the other side, the introduced Markov chain approach for this prediction task fared
relatively well on both recall and serendipity measures. Its ability to take timeliness into ac-
count and reproduce popular interest transition patterns are its strengths. We hypothesize
that its inability to reach as high performance as last day interest-based recommendation
approaches is because of the lack of transition patterns from or to repositories created in
such a short time frame.

6.2 Future Work

This work has looked at simple techniques under a realistic setting. A great number of users
have not been recommended any valid repositories however. As such a first avenue of future
work is to try more advanced approaches in this real time setting where validation is done
in chronological order. Blending and latent factors are avenues of interest in this regard.
The realized comparison of recommendations in common between certain techniques lets
us believe that trying mixed techniques that put more weight on certain algorithms versus
others for certain users might be beneficial. The time model used was simple as well. An
exponential time decay could be explored to enhance results by gradually phasing out the
importance of older interests rather than removing their influence abruptly.

Looking beyond network-based predictive approaches to methods based on natural lan-
guage processing, activity or language of the repositories is another avenue of work possible.
Such an approach was tried in a limited fashion, but was discarded because of the lack of
available features. Only 7.8% of captured repositories had READMEs in the period con-
sidered and only 36.6% had a retrievable language. Extending the period or taking a more
recent one with these findings in mind is a worthwhile next step.

Considering an even larger data set might help some techniques such as the Markov
chain. The Markov chain approach relies on the last repository of interest, but in our
dataset this repository had to be created during the year considered. In effect, the last

6 Conclusion 76

repository of interest in our analysis might not be the true last repository of interest if
that repository was created before the observed period of time. By taking into account all
interests, even the interests for repositories not created during the observed period of time,
the generated transitions would better reflect reality. This avenue was not investigated
in this thesis due to computational memory constraints. Processing all this data requires
dedicated technology that goes beyond a simple desktop computer.

Another avenue of work the Markov chain algorithm opens for further investigation is
its ability to potentially predict up-and-coming repositories. Because it does not rely on
overall or even day-of popularity, it might recommend repositories that will be popular.
Understanding if this is indeed the case is an open question.

All in all serendipity is hard to assess automatically on a large scale without user
feedback or content-based data. The three serendipity metrics that are considered explore
different definitions of surprise. Understanding whether there is a favoured one among
members of a given community could be done by asking a large sample of them which
serendipitous ranking is more ‘serendipitous’ to them and which better reflect their own
discovery process. A fine grained user survey asking how repositories of interest were
discovered might also highlight the avenues to focus on with this dataset. Indeed the
original discovery process is unknown and more than likely to vary among users. GitHub
is well-placed to lead such a survey. It could also leverage its undisclosed data such as the
logs of which page were visited by which users. A Markov chain based on these visits might
be an interesting avenue.

77

Appendix A

Appendix

A.1 Source Code and Processed Data

The source code used for this research is made available at github.com/fenekku/Masters.
The two networks used in this research, the followership network and the interest network,
are also made available there in Matrix Market format.

78

References

[1] S. M. McNee, J. Riedl, and J. Konstan, “Accurate is not always good: How accuracy
metrics have hurt recommender systems,” in Extended Abstracts of the 2006 ACM
Conference on Human Factors in Computing Systems (CHI 2006), 2006. 8, 9

[2] E. Pariser, The Filter Bubble: How the New Personalized Web Is Changing What We
Read and How We Think. Penguin Group US, 2011. 8, 9

[3] J. L. Herlocker, J. A. Konstan, L. G. Terveen, John, and T. Riedl, “Evaluating collab-
orative filtering recommender systems,” ACM Transactions on Information Systems,
vol. 22, pp. 5–53, 2004. 9, 10, 13, 14

[4] F. Ricci, L. Rokach, and B. Shapira, Introduction to recommender systems handbook.
Springer, 2011. 9, 10, 12, 13

[5] P. André, J. Teevan, and S. T. Dumais, “From x-rays to silly putty via uranus:
Serendipity and its role in web search,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’09, (New York, NY, USA), pp. 2033–
2036, ACM, 2009. 10, 15

[6] K. Sugiyama and M.-Y. Kan, “Serendipitous recommendation for scholarly papers
considering relations among researchers,” in Proceedings of the 11th Annual Interna-
tional ACM/IEEE Joint Conference on Digital Libraries, JCDL ’11, (New York, NY,
USA), pp. 307–310, ACM, 2011. 12, 13, 14, 20, 48

[7] M. Zhang and N. Hurley, “Avoiding monotony: improving the diversity of recommen-
dation lists,” in Proceedings of the 2008 ACM conference on Recommender systems,
pp. 123–130, ACM, 2008. 12

[8] G. Patil and C. Taillie, “Diversity as a concept and its measurement,” Journal of the
American Statistical Association, vol. 77, no. 379, pp. 548–561, 1982. 13

[9] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy: evaluating rec-
ommender systems by coverage and serendipity,” in Proceedings of the fourth ACM
conference on Recommender systems, pp. 257–260, ACM, 2010. 14, 58, 59

References 79

[10] Q. Lu, T. Chen, W. Zhang, D. Yang, and Y. Yu, “Serendipitous personalized ranking
for top-n recommendation,” in Proceedings of the The 2012 IEEE/WIC/ACM Interna-
tional Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume
01, pp. 258–265, IEEE Computer Society, 2012. 14, 17

[11] Y. C. Zhang, D. Ó. Séaghdha, D. Quercia, and T. Jambor, “Auralist: introducing
serendipity into music recommendation,” in Proceedings of the fifth ACM international
conference on Web search and data mining, pp. 13–22, ACM, 2012. 14, 15, 19, 20, 58,
59

[12] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, K. Fujimura, and T. Ishida,
“Classical music for rock fans?: Novel recommendations for expanding user interests,”
in Proceedings of the 19th ACM International Conference on Information and Knowl-
edge Management, CIKM ’10, (New York, NY, USA), pp. 949–958, ACM, 2010. 14,
15

[13] U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal, “Serendipitous recommendation
for mobile apps using item-item similarity graph,” in Information Retrieval Technology,
pp. 440–451, Springer, 2013. 14

[14] N. J. Belkin and W. B. Croft, “Information filtering and information retrieval: Two
sides of the same coin?,” Commun. ACM, vol. 35, pp. 29–38, Dec. 1992. 15, 18

[15] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering to
weave an information tapestry,” Commun. ACM, vol. 35, pp. 61–70, Dec. 1992. 15, 18

[16] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender
systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009. 16, 48

[17] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback
datasets,” in Data Mining, 2008. ICDM’08. Eighth IEEE International Conference
on, pp. 263–272, IEEE, 2008. 17, 18, 58

[18] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender algorithms
on top-n recommendation tasks,” in Proceedings of the fourth ACM conference on
Recommender systems, pp. 39–46, ACM, 2010. 17, 18, 58

[19] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-item
collaborative filtering,” Internet Computing, IEEE, vol. 7, no. 1, pp. 76–80, 2003. 18,
45, 49, 50

[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal of
machine Learning research, vol. 3, pp. 993–1022, 2003. 19

References 80

[21] J. Suchal and P. Návrat, “Full text search engine as scalable k-nearest neighbor recom-
mendation system,” in Artificial Intelligence in Theory and Practice III, pp. 165–173,
Springer, 2010. 22, 23, 40

[22] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github: transparency
and collaboration in an open software repository,” in Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, pp. 1277–1286, ACM, 2012. 22,
23, 24, 32, 60, 72

[23] F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang, “Network structure of social coding
in github,” in Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pp. 323–326, IEEE, 2013. 22, 25, 32

[24] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian,
“The promises and perils of mining github,” in Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pp. 92–101, ACM, 2014. 22, 27, 30, 40

[25] A. Lima, L. Rossi, and M. Musolesi, “Coding together at scale: Github as a collab-
orative social network,” arXiv preprint arXiv:1407.2535, 2014. 22, 26, 28, 32, 39,
40

[26] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software develop-
ment: Perspectives from github, msdn, stack exchange, and topcoder,” Software,
IEEE, vol. 30, no. 1, pp. 52–66, 2013. 24, 31

[27] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” 1999. 25, 55

[28] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press, 2010. 26

[29] “Ecma-404 (rfc 4627) the json data interchange format,” ECMA Standard, ECMA
International, October 2013. 32

[30] M. E. J. Newman, “Clustering and preferential attachment in growing networks,”
Phys. Rev. E, vol. 64, p. 025102, Jul 2001. 51

[31] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social networks,
vol. 25, no. 3, pp. 211–230, 2003. 51, 52

[32] T. Zhou, L. Lü, and Y.-C. Zhang, “Predicting missing links via local information,”
The European Physical Journal B-Condensed Matter and Complex Systems, vol. 71,
no. 4, pp. 623–630, 2009. 51, 52, 53

References 81

[33] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,”
Journal of the American society for information science and technology, vol. 58, no. 7,
pp. 1019–1031, 2007. 53

