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Abstract

This thesis explores a strategy of audio source separation that relies on a classification of

partials via their measured modulations. Perceptual studies have shown that signals with

common amplitude- and frequency-modulation are heard as coming from the same source

[35], [34]. To include these modulations in a sum-of-sinusoids model a nonlinear polynomial

phase function is adopted whose parameters are estimated using the Distribution Deriva-

tive Method (DDM) [2]. For better estimation accuracy, a window is designed that has

lower side-lobes than the canonical Hann window but that is also once-differentiable — a

requirement of the DDM. These estimated parameters are used in a new partial tracking

algorithm based on linear programming. The resulting partials are classified using the clus-

tering technique of Gaussian mixture models [14] on frequency- and amplitude-modulation

data. Principal components analysis is used to emphasize the parameter on which it would

be best to perform classification. Once the partials have been classified into sources, the

sources are synthesized from the measured sinusoidal parameters.

The additional information provided by the DDM (namely the frequency and log-

amplitude slope) is incorporated into interpolating polynomials for the phase and amplitude

of sinusoids. The quality of different model-orders for these polynomials is assessed on syn-

thetic signals. The source separation system is evaluated on both simulated data and on a

mixture of real recordings of percussive and plucked string instruments. In this latter case,

it is shown that using amplitude-modulation is a good criterion for separation when there

is little frequency-modulation.



Résumé

Dans ce mémoire nous explorons une stratégie de séparation de sources sonores s’appuyant

sur une classification de partiels selon leurs modulations observées. Des études percep-

tives ont montré que des signaux dont les modulations d’amplitude et de fréquence sont

communes sont perçus comme provenant d’une même source [35], [34]. Afin d’inclure ces

modulations dans le modèle de synthèse additif, la phase est représentée par une fonc-

tion polynomiale non-linéaire dont les paramètres sont estimés par la méthode de distri-

bution dérivée (Distribution Derivative Method - DDM) [2]. Afin d’améliorer la qualité

d’estimation, nous avons conçu une fenêtre dont la résolution dynamique est meilleure que

celle de la fenêtre canonique de Hann, tout en étant dérivable sur tout son domaine, pro-

priété requise par la technique DDM. Les paramètres ainsi estimés sont utilisés par un

nouvel algorithme de suivi de partiels fondé sur le principe d’optimisation par program-

mation linéaire. Les partiels trouvés sont alors classifiés en différentes sources par une

technique de mélange gaussiens appliquée aux paramètres de modulation de fréquence et

d’amplitude. Au préalable une analyse en composantes principales (PCA) est utilisée afin

de faire ressortir les paramètres les mieux appropriés pour la classification. Une fois les par-

tiels regroupés et classifiés en sources, celles-ci sont synthétisées en fonctions des paramètres

associés aux trajets de partiels.

Plus précisément, les informations additionnelles fournies par la DDM (dérivée de la

fréquence et de la log-amplitude) sont prises en compte selon plusieurs stratégies impliquant

des polynômes de reconstruction de phase et d’amplitude d’ordres différents. La qualité

des signaux re-synthétisés est alors évaluée pour chacune de ces stratégies.

Enfin, ce système de séparation de sources est testé sur un mélange de signaux synthétiques

puis sur un mélange de signaux instrumentaux réels de percussion et de corde pincée. Dans

ce dernier cas, nous montrons que la prise en compte de la modulation d’amplitude aide à

la classification en l’absence de modulation en fréquence.
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Chapter 1

Introduction

1.1 Motivation

This thesis was written in the information age where digital signals can be produced easily

and are produced in great volumes. As stated in the introduction of [21], signals are

the means by which information is transmitted. In the past, producing a digital signal

was costly and required specialized equipment, motivating the user of the equipment to

carefully plan the process that was to be documented by encoding the measurements into

the signal. Now these tools are widely available and accessible to everyone, increasing both

the variance in quality, but also the potency of information. For this reason, new signal

processing techniques require ways of removing extraneous information, that is, data that

have meaning and structure, but that are not pertinent to the information of interest. In

this thesis, a producer of information is a source, and we have many sources transmitting

information in a single signal.

Source separation is a difficult problem because it involves simultaneously estimating

characteristics of the sources while separating them: for improved estimation, interference

from other sources should be minimized; in order to remove interfering sources, their char-

acteristics must be known. For the estimation problem, we must resort to using prior

information: we assume we know the structure of the sources and can quantify in some

way their characteristics, penalizing characterizations estimated by our system that do not

match presumptions. For the separation problem, we often must resort to suboptimal so-

lutions. These solutions may be adequate to aid a human in manual refinement of the

sources, or serve as input to another technique.
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1.2 Applications

Applications of source separation exist in a variety of disciplines and entire conferences are

dedicated to the subject (see, for example, [64]). Here we will only consider applications

pertinent to audio, acoustics and music. One of the most popular applications of audio

source separation is for automated music transcription (see e.g., [1]). Having access to both

a representation of the musical score and its constituent sounds would be very convenient

for composers and sound engineers. Those interested in isolating individual voices in a

recording of multiple speakers (for honourable or dishonourable purposes) would benefit

from audio source separation — [42] discusses a strategy using characterizations of language

to aid in the separation. There are no doubt many more applications of source separation

in the field of audio signal processing.

1.3 Organization

The general strategy explored in this thesis is an iterative process with four distinct steps.

(1) a model is chosen of the signals of interest. (2) realisations of this model are identified

in the measurement signal. (3) once these have been identified, the parameters of the

realisations are estimated. (4) the estimations are used to classify these realisations as one

of a smaller set of higher-level objects. The structure of these objects is used to inform the

selection of the new model, whose parameters are then estimated, etc.; the process can be

repeated to build up successively higher-level models.

This thesis is structured according to these steps and is as follows. Chapter 2 discusses

previous approaches to audio source separation and introduces the method adopted here.

The following, Chapter 3, describes the signal model chosen to describe musical signals —

the additive sinusoidal model with polynomial log-amplitude and phase — and describes

a technique for estimating the parameters of models of arbitrary order. We introduce a

new analysis window to have more control over the estimation process. Techniques to

identify these models in signals are discussed in Chapter 4, where a classical technique

of partial tracking is compared to a new linear programming formulation. Chapter 5

shows how the separated sources can be synthesized from the estimated model parameters

using the additional information provided by the higher-order polynomial model. Finally,

two experiments are carried out that demonstrate the use of amplitude- and frequency-
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modulation to classify sources. The first, in Chapter 6 is on synthetic data and the second

in Chapter 7 on a recording of percussion and plucked string instruments. It is in these

latter chapters where classification is performed and its adaptation to the particular audio

source separation problem is discussed. The Appendices A through C explain elements of

these classification techniques.

1.4 Notation

1.4.1 Vectors and matrices

While scalars are typeset normally — x is an example of a scalar — vectors and matrices

are typeset in a boldface font, with matrices written with a capital letter, e.g., x is a vector

and X a matrix. If a number is written instead of a symbol, we mean a vector whose

entries are all that number, e.g., 1 is the vector of all 1s, 0 the vector of all 0s. The ith

entry of a vector x is written xi and the entry in the ith row and jth column of a matrixX

is written Xi,j. Both are scalars and therefore typeset normally. Sometimes we might find

it convenient to extract a column vector or row vector from the matrix X. We write xi,:

to extract all columns from the ith row and x:,j to extract all rows from the jth column.

These are the ith row vector and jth column vector respectively. The orientation of a

vector will be clear from the context, but in general x is a column vector while yi,: and xT

are row vectors.

1.4.2 Operators

Inner product

We will be dealing with objects in vector spaces. The operator 〈x, y〉 takes two objects in
a vector space V , x, y ∈ V and maps them to an element k ∈ K of a field K. For this

thesis, the field will always be the field of real numbers R or complex numbers C. The

vector space can be the set of vectors of N elements in R
N or CN , in which case the inner

product is defined, for x,y ∈ K
N , k ∈ K

〈x,y〉 = xTy = k
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The inner product is also defined on the vector space of functions Φ mapping from a set S

to a field K, Φ : ∀f s.t. f(s) = k, s ∈ S, k ∈ K in which case the inner product on g, f ∈ Φ
is defined as

〈g, f〉 =
∫ ∞

−∞
g(x)f(x)dx

and a gives the complex conjugate of a.

General outer operators

The outer operator · ⊗O· will only be defined for vectors in this thesis. It operates on the
two vectors x,y ∈ K

N and is defined as

x⊗O y = W

where the ith row and jth column of W are

wi,j = O(xi, yj)

Canonically, the operator O is multiplication in which case

x⊗× y = W

where the ith row and jth column of W are

Wi,j = xiyj

This outer product is also known as the Kronecker product, and we will omit the operator

subscript when that is the case, i.e., we will simply write ⊗. As stated above, however, O
can be defined arbitrarily as any function taking two inputs a returning a single output.

Point-wise operators

If an operator on matrices ◦ is written with a period preceding it, i.e., .◦ it means perform
that operation on each element individually. Some examples follow.

For matrix X ∈ K
M,N and p ∈ K

X .p = W
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where

Wi,j = Xp
i,j

For matrices X,Y ∈ K
M,N

X.Y = W

where

Wi,j = Xi,jYi,j

(contrast these with canonical matrix multiplication).

1.4.3 Random variables

Many authors denote random variables with a normally typeset uppercase letter. We will

use this convention only when convenient, but will always state explicitly that a certain

variable is random. We distinguish between discrete and continuous random variables in

our notation.

Discrete random variables

If a random variable X can only take on values in a discrete set, we say that this random

variable is discrete-valued. Formally a discrete set Γ of size N is one for which there exists

an isomorphism I that maps Γ on to the subset of the integers [1, . . . , N ]. The probability

that X takes on the value x is written p(X = x) for discrete random variables.

Continuous random variables

If a random variable X can take on values in a set Γ isomorphic to R we say this random

variable is continuous-valued. The probability that X takes on the value x is written p(x)

for continuous random variables.

1.4.4 Complex numbers

A complex number z ∈ C can be described in Cartesian notation as

z = a+ jb, a, b ∈ R

or in polar notation as

z = α exp(jω), α, ω ∈ R
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where j =
√
−1. j is also often used to denote an index variable. It will be clear from the

context when the imaginary number is meant and when the index is meant.

1.4.5 Logarithms

The logarithm base-e1 of x is written log(x). The logarithm in any other base b will be

denoted as such: logb(x).

1.4.6 Ultimate values

This thesis presents a number of iterative algorithms whose steps will be counted using an

index l and whose solutions will take on the values xl. We use the ∗ notation to refer to
these values at the final iterates: the index of the final iteration is written2 l∗ and its value

xl∗ = x∗.

1e is Euler’s constant.
2Arbitrary letters can be used.
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Chapter 2

Methodology

Most audio source separation strategies use some combination of two general methodologies:

at one end of this continuum are those that use physical or structural models of the sources

and at the other, those that use purely statistical models. Here we give a brief overview of

some previously proposed techniques.

2.1 Additive sinusoidal model

The additive sinusoidal model [52], [36], is a convenient model with wide-spread use in

the computer music community. Various authors have applied this model to the source

separation problem. For example, in [61] a prior estimation of the fundamental frequencies

is used in tandem with temporal and spectral smoothness constraints to separate sources

estimated via an additive model. Similar to this thesis, [6] uses an additive sinusoidal

model to provide frequency-modulation cues to a latent component technique, and in [31],

common amplitude-modulation and fundamental frequency estimation are used to separate

sources, the additive sinusoidal model being used to reconstruct the phases of overlapping

harmonics using the fundamental frequencies. The additive sinusoidal model is also the

model adopted in this thesis and its use is justified in Chapter 3.

2.2 Multiple fundamental frequency estimation

This technique assumes the signal considered can be described in a format akin to the

musical score — a collection of notes each with times indexing their beginning and end
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and a frequency, the fundamental, describing the perceived pitch of the note. Multiple

fundamental frequency estimation for the purposes of music transcription dates back to

the 1970s [20, ch. 20] [41]. This is related to audio source separation because the resulting

high-level representation — the estimated score — can be used to synthesize signals corre-

sponding to subsets of notes in the score, e.g., if a particular instrument is desired, its notes

are extracted and then a signal is synthesized using stored recordings of the instrument or

instrument-modeling synthesis techniques. The technique has become quite developed, see

[20, ch. 20] for a review of modern techniques.

There are some drawbacks to the technique. Many musical signals of interest such as

unpitched percussion, do not always have a perceivable fundamental frequency. A musical

score describes notes as having distinct boundaries in time and frequency, which is not

always true when one considers musical gestures such as portamento or dal niente1. Never-

theless, the production of even a crude score from a musical signals is useful in applications

such as automated music transcription (e.g., [51]) or music catalogue query [37].

2.3 Principal latent component analysis (PLCA) and

non-negative matrix factorizations (NMF)

2.3.1 Motivation

Finding it difficult to specify a detailed model for all types of acoustic sources, we can at-

tempt source separation with a more general criterion: that different sources only combine

constructively in a mixture. This is a plausible criterion as the power spectrum of a signal

and consequently its spectrogram are always non-negative valued. If a signal is considered

as consisting of a sum of original source signals, these source signals will have non-negative

spectrograms as well. The following two techniques attempt to determine these spectro-

grams solely from a spectrogram of their mixture using techniques for determining latent

variables. We will refer to techniques of this sort as latent variable models. The technique

is discussed in a bit more detail in the following to demonstrate how it differs from the

additive technique explored in this thesis.

1“Out of nothing”: usually accompanying a crescendo and indicating that the player start from silence
and gradually increase their playing dynamic.
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2.3.2 Approaches

The PLCA and NMF approaches to the audio source separation problem are very popular.

An early and highly cited work that applies NMF to polyphonic music transcription is

[54]. Since then many variations on this approach have been proposed. A technique using

smoothness based on spectral difference and sparseness as regularization terms is presented

in [62]. In [60] vectors in the resulting matrices are forced to be a linear combination

of predefined “basis spectra”, chosen for their harmonic and perceptual properties. [1]

explores the uses of different divergences for the purposes of up-mixing and noise removal.

2.3.3 PLCA

In this formulation, the spectrogram (defined in Section 3.2), being non-negative like a

probability distribution, is considered as such

c|X(t, f)| = p(t, f)

where c is a constant so that the distribution integrate to 1. Explicitly, we consider the

probability that energy in the spectrogram lie in the vicinity of time t and frequency f .

With the hope of retrieving the spectrograms of the P underlying sources, it is proposed

that the distribution is actually the distribution of K random variables each being chosen

with probability p(Z = k). The pair of random variables from component k, Tk and Fk are

assumed independent, i.e., p(t, f |Z = k) = p(t|Z = k)p(f |Z = k). Each random variable,

it is hoped, describes a source (K = P ) or a part of a source (K > P ). In addition, each of

these underlying distributions has marginal distributions p(t|Z = k) and p(f |Z = k). The

marginal distributions and p(Z = k) can be estimated using the expectation maximization

algorithm with the following update rules for the lth iteration of the algorithm [55]

pl+1(Z = k|t, f) = pl(Z = k)pl(t|Z = k)pl(f |Z = k)∑K−1
j=0 pl(Z = j)pl(t|Z = j)pl(f |Z = j)

pl+1(t|Z = k) =

∑
f p(t, f)pl+1(Z = k|t, f)∑

s

∑
f p(s, f)pl+1(Z = k|s, f)

pl+1(f |Z = k) =

∑
t p(t, f)pl+1(Z = k|t, f)∑

t

∑
g p(t, g)pl+1(Z = k|t, g)
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pl+1(Z = k)

∑
t

∑
f p(t, f)pl+1(Z = k|t, f)∑K−1

j=0

∑
t

∑
f p(t, f)pl+1(Z = j|t, f)

After convergence, the marginal distribution pl∗(t|Z = k) gives the distribution of energy

of the kth component over time. Similarly, the marginal distribution pl∗(f |Z = k) gives the

distribution of energy of the kth component over frequency. Once the set of components

{k̃} belonging to the pth source has been determined, we can synthesize the spectrogram
of this source as

|Xp(t, f)| =
1

c

∑
j∈{k̃}

pl∗(t, f |Z = j)pl∗(Z = j)

PLCA can be extended by the use of “kernel distributions” that allow the specification

of marginal distributions with both time and frequency extent, and “entropic priors” that

encourage sparsity in the resulting marginal distributions [53].

2.3.4 NMF

Instead of considering |X(t, f)| as a probability distribution, we consider it at discrete

frequencies mcf and times nct with m,n ∈ N, the entry at the mth row and nth col-

umn of matrix Vm,n = |X(nct,mcf )| with non-negative entries. We seek an approximate

factorization of V ∈ R
M×N
+ into matrices W ∈ R

M×K
+ and H ∈ R

K×N
+ such that

V ≈WH (2.1)

This can be done by solving the program

minD(V ,WH)

subject to

V ≥ 0

W ≥ 0

H ≥ 0

The particular choice of function (D) that measures divergence leads to different update

equations in the iterative procedure for finding W and H .
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The Kullback-Leibler divergence [30]

The Kullback-Leibler divergence function for measuring the divergence between two matri-

ces X and Y is

DKL(X,Y ) =
M−1∑
m=0

N−1∑
n=0

Xm,n log(Ym,n)−Xm,n + Ym,n

and can be minimized using the following update equations for the lth iteration2

H l+1
a,b = H l

a,b

∑M−1
j=0 W l

j,aV
l
j,b/(W

lH l)j,m∑M−1
j=0 W l

j,a

W l+1
a,b = W l

a,b

∑N−1
j=0 H

l+1
b,j V

l
a,j/(W

lH l+1)a,j∑N−1
j=0 H

l+1
b,j

The Itakura-Saito divergence [11]

Another divergence popular for factorizing spectrograms is the Itakura-Saito divergence

DIS(X,Y ) =
M−1∑
m=0

N−1∑
n=0

Xm,n

Ym,n

− log

(
Xm,n

Ym,n

)
− 1

This divergence is scale-invariant, meaning that DIS(cX, cY ) = DIS(X,Y ), which makes

it well suited for audio signals which have a large dynamic range. Put another way, di-

vergences involving large values in V and WH will be weighted similarly to divergences

involving small values, which is not the case with the Kulback-Leibler divergence. The

Itakura-Saito divergence is minimized through the following update equations

H l+1 = H l.
W lT ((W lH l).−2.V l)

W lT (W lH l).−1

W l+1 = W l.
((W lH l+1).−2.V l)H l+1T

(W lH l+1).−1H l+1T

Once convergence has been obtained the kth column of matrix W will contain values

representing the level of activation of the kth component at the frequency corresponding

2It can be shown that these update equations are equivalent to those for PLCA [53].



12 Methodology

to the row index and the kth row of H the level of activation of the kth component at the

time corresponding to the column index. If the set of components {k̃} belonging to the pth
source has been determined, we can synthesize the spectrogram of this source as

|Xp(nct,mcf )| =
∑
j∈{k̃}

W:,jHj,:

2.3.5 Synthesis of factorized spectrograms

Synthesizing the original signal is less straightforward as the phase information contained

in the STFT was discarded to obtain a non-negative spectrogram. We can simply use

the original phases of the STFT used to compute the spectrum with the new magnitude

information from |Xp(t, f)| but the resulting signal may have artifacts due to the phase

information of unwanted sources that remains in the STFT. A technique to lessen these

artifacts using constrained Wiener filtering has been proposed in [29]. One may also choose

to invert the spectrogram without any phase information by using an algorithm that iter-

atively reconstructs the phase part of the STFT while minimizing the error between the

spectrogram of the reconstructed signal and its original power spectrum, starting from an

initial guess [17]. Each iteration requires transforming the signal to its spectrogram and

then back to a time-domain signal, requiring considerable computational effort.

2.3.6 Extensions and shortcomings

As with PLCA, certain extensions can be integrated into NMF to encourage particular

solutions. For example, to promote sparseness in the resulting matrices, i.e., to encourage

that fewer entries be non-zero, one can add the regularization term

α

M−1∑
m=0

K−1∑
k=0

W 2
m,k + β

K−1∑
k=0

N−1∑
n=0

H2
k,n

to the divergence to penalize matrices with large entries. α and β are terms that control

the influence of this regularization. A variety of regularization terms are possible [5, ch. 3].
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Equation 2.1 can be seen as the sum

V ≈
K−1∑
k=−0

w:,k ⊗ hk,:

i.e., the sum of all the outer products between columns of W and rows of H . From this

perspective, we can see the columns ofW as a collection of K spectral “templates” and the

rows of H as their time-varying gains. What this means is, sounds exhibiting frequency-

modulation require a large number of columns in W . This large number of columns makes

the organizing of templates into sources a difficult task.

2.4 An approach using amplitude- and frequency-modulation

Perceptual studies have shown that sounds modulated synchronously in amplitude or fre-

quency are heard as one sound, whereas asynchronously modulated sounds are heard as

distinct [35] [34]. Here we define the modulation of parameters θi and θj as being syn-

chronous if they are given as functions of time, θi = fi(t) and θj = fj(t) and there is an

affine transform A such that A {fi}(t) ≈ Afj(t)+B where A and B are constants that do

not vary with time (at least for the time that we observe the signal). If we can accurately

measure these parameters and they are typical of the sounds we are trying to separate,

then we can design techniques to reliably separate these sounds from acoustic mixtures.

This involves picking those parameters classified as belonging to the same sound, discarding

the rest, and resynthesizing from these parameters. The task of audio source separation

therefore comprises the following tasks:

• Decide on a signal model for the sound of interest, with parameters that can be

estimated and that are similar for similar sounds. We have chosen the additive

sinusoidal model with a higher-order polynomial description of amplitude and phase.

• Locate regions in the signal where these signals are thought to be present using a

peak-picking technique. Estimate the signal parameters at these locations. Here we

use the Distribution Derivative Method [2] to estimate these parameters.
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• Use these measurements as input to a partial tracking algorithm. We compare the

effectiveness of the original peak matching procedure of McAulay and Quatieri [36]

and a new linear programming formulation of the problem.

• Classify the partials and group them as sets of parameters coming from the same

source. One of these sources will be the sound of interest. The classification is carried

out on the frequency- and amplitude-modulation parameters. Principal components

analysis is used to preprocess the data before classification.

• Choose a group of parameters (partials) representing the sound of interest and syn-

thesize the separated signal from them. We compare the quality of synthesis for three

models. The first assumes constant amplitude and linear phase at the analysis step

resulting in linear amplitude and cubic phase at the synthesis step [36]. The second

assumes quadratic amplitude and phase at the analysis step but constrains the ampli-

tude to be cubic at the synthesis step. The final model assumes quadratic amplitude

and phase at the analysis step resulting in a quartic model for phase and amplitude

at the synthesis step.

It should be noted that the strategy for source separation relies on the same perceptual

principle as in [6]. The work here differs in many respects. We have chosen to use solely the

additive sinusoidal model as a model of the signals considered. In addition to frequency-

modulation, we incorporate amplitude-modulation to aid in the source separation. The

source separation itself differs technically from their approach as well. Chapter 7 uses only

the amplitude-modulation to classify partials into sources. This is similar to the strategy

explored in [31], but does not use a prior estimation of the fundamental frequencies of the

sources.
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Chapter 3

Signal Modeling

3.1 Introduction

To build tools to analyse and synthesize signals some structure must be imposed on the

signals. The structures chosen can reflect something about the behaviour of these signals

as observed in the field, as we will see with sinusoidal models. Other structures are chosen

phenomenologically — we do not really know the underlying mechanism behind the produc-

tion of these signals, but a particular structure is chosen for its mathematical or conceptual

convenience, such as is the case when we consider higher-order models for sinusoidal phase

and amplitude.

We begin the chapter with what could be seen as a mathematical analog of the mu-

sical score: time-frequency representations. Through this we will justify the adoption of

a sinusoidal model for musical signals. Finding this inadequate to describe the signals of

interest with sufficient quality, the sinusoidal model is generalized to incorporate modula-

tions in frequency and amplitude. A technique is described to estimate the parameters of

these more complex models which requires windows that are everywhere differentiable —

we design a new window having desirable properties close to those of well-known optimal

windows, but that is everywhere differentiable.

3.2 Time-frequency representations

As most musical instruments are resonating media, and excited resonating media are well

described as linear time-invariant (LTI) auto-regressive (AR) structures, many popular
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models of musical audio are some variation of this description [12]. Strictly speaking, in-

corporating moving-average (MA) structures into a model of musical signals could improve

its quality, but such a model would preclude the sum-of-sinusoids model adopted later in

this thesis.

An LTI auto-regressive structure is a signal that can be described using the following

difference equation:

x(n) =
K∑
k=1

akx(n− k) + b0v(n)

Here x is the output of the system (what is heard or measured) and v is the input.

K is the order of the model. Both are general functions of time which, in the case of

properly sampled digital audio, can be considered at discrete times n ∈ Z without any

loss of information [7, ch. 2]. ak, b0 ∈ C and are constants. Casually you can think of the

output of the system at time n as being a linear combination of past outputs, plus some of

the scaled input.

AR structures are excited in various ways: some are bowed, others struck, etc. To

characterize the above structure we excite it with a simple signal, the Kronecker delta

δ(n) =

⎧⎨
⎩1 n = 0

0 otherwise

This Kronecker delta input will yield its impulse response from which we can derive

many properties of the AR structure.

As an example take the case where K = 1 and a1 = r exp(jω), r, ω ∈ R, |r| < 1. Then

the difference equation is

x(n) = r exp(jω)x(n− 1) + v(n)

Exciting this with the Kronecker delta we get

x(0) = 1

x(1) = r exp(jω)

x(n) = rn exp(jωn)
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which is a complex exponential starting at n = 0 and periodic in nT = 2π
ω
multiplied by

the real-valued exponential rn. In other words, the output is a damped sinusoid. From

this it is not hard to see that if we can estimate the coefficients ak, we can then know the

frequencies, amplitudes and damping factors of the sinusoids that are output when this

structure is excited by an impulse (the Kronecker delta). This principle is presented as a

motivation for the following techniques and is not pursued here. The interested reader is

referred to [33] for more information.

An alternative method for determining the frequencies and amplitudes of sinusoids in

mixture is to take the inner product of the signal with a complex exponential of known

frequency

X(ω) =
∞∑

n=−∞
x(n) exp(−jωn)

The function X(ω) will be large if x(n) contains a complex exponential of frequency ω

and small if it does not, effectively indicating which sinusoidal functions are present in the

signal. This transformation of a signal as a function of time n into one as a function of

frequency ω is known as the Discrete-time Fourier Transform (DTFT).

To create a variety of pitches and timbres, typically the media of musical instruments

are not static, but vary in time. That means the sets of sinusoids describing the state of

the media and its excitation also change in time. To account for this we consider many

small intervals of signal where we assume its characteristics are roughly static. We can then

piece these time-intervals together afterwards to get a description of the signal in both time

and frequency. To do this, we multiply the signal by a window w which makes the signal

0 outside of the interval of interest. We then test what sinusoids with frequencies ω are

present at different times τ , giving a function of two variables

X(τ, ω) =
∞∑

n=−∞
x(n)w(n− τ) exp(−jωn) (3.1)

This transformation of a signal of time n into one of time τ and frequency ω is known as

the Discrete-time Short-time Fourier Transform (DTSTFT).

One further point about the window should be discussed. The Fourier transform of the

product of two functions, like we have in Equation 3.1, is equal to the convolution of the

Fourier transform of each function separately. If we denote the Fourier transform operator
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as F , for functions g and f we have

F(gf) = F(g) ∗ F(f)

where ∗ is the convolution operator. The value X(τ, ω), which will be a complex number,
can be seen as describing the amplitude and phase of a sinusoid at that frequency and

time. If the Fourier transform of the window function is not purely real its imaginary part

will offset the phase of this sinusoid. It is usually simpler to avoid this complication. The

Fourier transform of a real even function

f(n) = f(−n), f(n) ∈ R

is real, so we choose windows with this property. See [19, p. 52] for a concrete illustration

of this.

3.3 Polynomial phase models

The DTFT and DTSTFT are very useful because they are invertible [45]1 and fast algo-

rithms exist for their computation by digital computer [59]. If the presence of a sinusoid

is determined, e.g., by finding τ ∗ and ω∗ such that X is maximized, that signal can be

removed or altered easily.

One drawback of these transforms is they only project onto sinusoidal functions of

linear phase, i.e., functions of constant frequency. In general, musical signals are not

linear combinations of sinusoids of constant frequency (consider, for example, vibrato).

We could decide to project onto a different family of functions and considerable effort has

been devoted to finding alternatives (see [28] for a review). In the case of musical signals,

however, we have some prior information about the mechanics of the their production and

can make certain assumptions about the underlying functions.

3.3.1 Sinusoidal Representations

Many musical acoustic signals are quasi-harmonic [12], meaning that they consist of a sum

of sinusoids whose frequencies are roughly integer multiples of a fundamental frequency.

1Provided proper sampling in time and frequency.
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For these kinds of signals, most of the energy can be attributed to sinusoids and so the

signal can be described by a small number P of sinusoids with slowly varying amplitude

and phase, plus some noise. The model is

x(n) =
P∑

p=1

Ap(n) exp(jφp(n)) + ε (3.2)

where ε ∼ N (0, σ2), σ2 quantifies the power of the noise, and Ap(n), φp(n) ∈ R are

the functions of amplitude and phase respectively for the pth sinusoid. In the following,

we consider equivalent sinusoidal mixtures of complex-valued polynomial phase and log-

amplitude exponentials

x(n) =
P∑

p=1

exp(Pp(n)) + ε

where Pp is the complex valued polynomial of order Q describing the argument of the pth

sinusoid, i.e.,

Pp(n) =

Q∑
q=0

cqn
q

and cq ∈ C. Note the form in Equation 3.2 can be retrieved as

Pp(n) = log(Ap(n)) + jφp(n) = �{Pp(n)}+ j�{Pp(n)}

In Chapter 5 we will see how estimations of these parameters at different times can be inter-

polated to create higher-order phase and log-amplitude functions with improved synthesis

quality.

3.4 Polynomial phase parameter estimation

Assuming this sinusoidal model, how can we then estimate the parameters describing a

signal of interest? Recently a set of techniques has been developed that use some combi-

nation of derivatives of the analysis window w or the signal x to estimate the polynomial

coefficients directly [18]. For this thesis we will only consider a technique that does not

estimate derivatives of the signal and only requires a once-differentiable analysis window

as it is relatively easy to implement and suits our purposes.
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The following is adapted from [2]. Consider the inner product of the signal x(n) =

exp(Pp(n)) and a known analysis atom ψ(n)

〈x, ψ〉 =
∫ ∞

−∞
x(n)ψ(n)dn

Differentiating with respect to n, we obtain by the product rule

dx

dn
(n)ψ(n) + x(n)

dψ

dn
(n) =

(
Q∑

q=1

qcqn
q−1
)
x(n)ψ(n) + x(n)

dψ

dn
(n)

If ψ(t) is 0 outside of some interval n ∈ [−T, T ] then

Q∑
q=1

qcq

∫ T

−T
nq−1x(n)ψ(n)dn+

〈
x,
dψ

dn

〉
= 0

If we define the operator T α : (T αx)(n) = nαx(n) we can write

Q∑
q=1

qcq
〈
T q−1x, ψ

〉
= −

〈
x,
dψ

dn

〉

From this we can see that to estimate the coefficients cq, 1 ≤ q ≤ Q we simply need R

atoms with R ≥ Q to solve the linear system of equations

Q∑
q=1

qcq
〈
T q−1x, ψr

〉
= −

〈
x,
dψr

dn

〉
(3.3)

for 1 ≤ r ≤ R. To estimate c0 we write the signal we are analysing as

s(n) = exp(c0) exp

(
Q∑

q=1

cqn
q

)
+ η(n)
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η(n) is the error signal, or the part of the signal that is not explained by our model. We also

define a function γ(n), the part of the signal whose coefficients have already been estimated

γ(n) = exp

(
Q∑

q=1

cqn
q

)

Computing the inner product 〈s, γ〉, we have

〈s, γ〉 = 〈exp(c0)γ, γ〉+ 〈η, γ〉

The inner-product between η and γ is 0, by the orthogonality principle [26, ch. 12]. Fur-

thermore, because exp(c0) does not depend on n, we have

〈s, γ〉 = exp(c0) 〈γ, γ〉

so we can estimate c0 as

c0 = log (〈s, γ〉)− log (〈γ, γ〉) (3.4)

The estimation of the coefficients of a phase and log-amplitude polynomial using this

method is known as the Distribution Derivative Method (DDM).

3.5 Choosing atom ψ

As we are dealing with mixtures of sinusoids of small bandwidth, in addition to the finite-

time support constraint, we desire atoms whose inner-product is only significant within a

finite bandwidth of interest. To construct these atoms, we multiply the Fourier atom by

the window w

ψFw
τ,ω(n) = w(n− τ) exp(−jω(n− τ))

A good overview of different windows and their properties is given in [19]. We re-

quire that the window be at least once-differentiable and zero outside of a certain interval,

therefore, somewhat informally, we require

lim
n→T

ψ(n) = ψ(T ) = 0
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3.5.1 The Hann window

The Hann window possesses this property

wh(n) =

⎧⎨
⎩0.5 + 0.5 cos

(
n
T
π
)
−T ≤ n ≤ T

0 otherwise

The Hann window is a member of a class of windows constructed by summing scaled

harmonically related cosine functions, subject to the constraint that the scaling coefficients

sum to 1 so that the window have a value of 1 at n = 0. Letting T = N/2, where N is the

length of the window

w(n) =

⎧⎨
⎩
∑M−1

m=0 am cos
(
2π
N
mn
)
−N

2
≤ n ≤ N

2

0 otherwise

With M = 2 and a0 = a1 = 0.5, we have the Hann window.

The simple expression for its calculation and good trade-off between main-lobe width

and side-lobe height make the Hann window a popular choice in many signal processing

applications. The expression for its Fourier transform is such that fast digital implementa-

tions of windowing a signal by a Hann window involve no multiplies [19, p. 183]. A recursive

implementation of the DTSTFT is possible when windowing with the Hann window, which

is important for applications where little storage is available [58, p. 102]. In spite of all

its merits, other windows have been proposed that have superior qualities, such as lower

side-lobes.

3.5.2 Continuous Blackman-Harris windows

A family of windows with certain properties superior to the Hann window is the Blackman-

Harris family of windows. These are also sum-of-cosine windows and so are easily tabulated.

To design these windows, optimization techniques were used to search for coefficients giving

minimum height of the highest side-lobe (maximum out-of-band rejection) [47]. The 4-term

window whose coefficients a are listed in Table 3.1 has a maximum side-lobe level of -92

dB, just shy of the quantization noise of a 16-bit linear pulse code modulated signal (-96

dB). As can be seen in Figure 3.2, this window has a very large main-lobe which means
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Fig. 3.1: Minimum 4-Term Blackman-Harris: Time-domain

two sinusoids of similar frequency will be difficult to resolve. Furthermore, as shown in

Figure 3.3, the window has a discontinuity at its boundaries, e.g., w
(
N
2

)
�= 0, and is

not once-differentiable. In any case the window is valuable in that it effectively nulls any

influence of signals outside of a bandwidth of interest. The shape of the Blackman-Harris

window in the time- and frequency-domains can be seen in Figures 3.1 and 3.2 respectively.

It should be clarified that when we compare the widths of the main-lobes of two windows,

we compare two windows of the same length. Of course, the bandwidth of a window can also

be decreased by increasing its length, at the expense of time-resolution. When searching

for windows superior to the Hann window, we are motivated by our ability to describe the

Table 3.1

Window a0 a1 a2 a3
Minimum 0.35857 0.48829 0.14128 0.01168
C1 0.35874 0.48831 0.14127 0.01170
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Fig. 3.2: Minimum 4-Term Blackman-Harris: Frequency-domain

signal with more detail between two analysis frames than would be possible with a simple

linear-phase sinusoid model. Using a longer window to decrease the main-lobe width is not

problematic in this case, but we would still like a high level of signal rejection outside of

the bandwidth of interest for improved estimation accuracy of the signal parameters. For

this reason, we search for windows that have very low side-lobe height and are also once-

differentiable, without caring so much about the width of the main-lobe. To find a window

with properties similar to the 4-term Blackman-Harris window but without a discontinuity,

we solve the optimization problem

min ||a− ã||2

subject to

wã

(
N

2

)
= wã

(
−N
2

)
= 0
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Fig. 3.3: Comparison of endpoints of window in time-domain. Here we observe
that the C1 4-term Blackman-Harris window approaches 0 at the boundary of its time
support, whereas the Minimum 4-Term Blackman-Harris window does not.

M−1∑
m

am = 1

where

wã(n) =

⎧⎨
⎩
∑M−1

m=0 ãm cos
(
2π
N
mn
)
−N

2
≤ n ≤ N

2

0 otherwise

The solution ã∗ is given in Table 3.1 and time- and frequency-domain plots are given

in Figures 3.4 and 3.5 respectively. This window will be referred to as the C1 4-Term

Blackman-Harris window. Some figures of merit for the two windows are compared in Ta-

ble 3.2 in a similar fashion to [19]. We see from comparing Figures 3.1 and 3.2 with 3.4

and 3.5 that the C1 4-Term Blackman-Harris window is not too different from the Minimum

4-term Blackman-Harris window, but has the additional desirable property of differentia-

bility everywhere in its domain. A comparison of the windows’s endpoints is presented in

Figure 3.3.
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Fig. 3.4: C1 4-Term Blackman-Harris: Time-domain

3.6 Conclusion

In this chapter we have developed the rationale for adopting the sinusoidal model when

analysing musical signals. In turn we have presented some techniques for estimating the

parameters of these signals. Obviously these techniques only work as well as their assump-

tions are true — for the best results we should use these techniques only on signals that

indeed contain sinusoids. For the signals considered in this thesis, we assume this to be

true.

Table 3.2

Window Highest side-lobe
level (dB)

6-dB bandwidth
in bins

Side-lobe fall-off
(dB/octave)

Minimum -92 2.72 6
C1 -90 2.66 12
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Fig. 3.5: C1 4-Term Blackman-Harris: Frequency-domain

The techniques presented in this chapter are typically used to estimate the parameters

of short signals as we see in the use of window functions to limit the time-frequency extent

of our analysis. For the source separation problem we are interested in larger sinusoidal

objects — partials — whose global properties are more readily classified. We could use

a very large analysis window and a high-order polynomial for phase when solving for the

coefficients, but the size of the linear system to be solved in Equation 3.3 will increase

quadratically in the order of the model. Furthermore, it is difficult to account for situations

where the signal is corrupted or briefly absent. In these situations we may prefer to use

interpolation to reconstruct the signal in the corrupted region. For these reasons, we prefer

to make multiple estimations of the parameters of low-order models and connect those

estimations thought of as belonging to a single partial. We will see in Chapter 5 that this

will allow postulating a higher-order phase model. Before that is possible, however, we

must determine how to connect multiple estimations to form partials.
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Chapter 4

Partial Tracking

In the previous chapter, we saw how to estimate parameters of sinusoids with polyno-

mial phase. While theoretically applicable to signals of arbitrary length, for reasons of

flexibility and efficiency, we usually estimate the local parameters of the signal under a

low-order model and connect multiple estimations to form a partial. We will call these

local estimations “analysis points” or “parameter sets”.

This chapter presents an interpretation of the peak matching procedure of McAulay and

Quatieri [36], a classical approach to discovering partials. Our interpretation allows for the

specification of an arbitrary cost function measuring the plausibility that a set of analysis

points forms the path of a partial. With this path interpretation, we were able to design a

technique that finds the optimal set of paths under a constraint on the number of paths.

The chapter concludes with an example of partial tracking on a synthetic signal.

Typically the DTSTFT is computed for a block of contiguous samples, called a frame

and these frames are computed every H samples, H being the hop-size. We will denote

the M sets of parameters at local maxima in frame h as θh0 , . . . , θ
h
M−1 and the N in frame

h + 1 as θh+1
0 , . . . , θh+1

N−1 where h and h + 1 refer to adjacent frames. We are interested in

paths that extend across K frames where each path touches only one parameter set and

each parameter set is either exclusive to a single path or is not on a path.

4.1 A greedy method

In this section, we present the McAulay-Quatieri method of peak matching. It is concep-

tually simple and a set of short paths can be computed quickly, but it can be sensitive to
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spurious peaks and is optimal only in the sense that the set of paths computed contains

the best path possible — the quality of the other paths may be compromised under this

criterion.

In [36, p. 748] the peak matching algorithm is described in a number of steps; we

summarize them here in a way comparable with the linear programming formulation to

be presented in the sequel. In that paper, the parameters of adjacent frames h and h + 1

are the instantaneous amplitude, phase, and frequency and are indexed by frequency as

ωh
0 , . . . , ω

h
M−1 and ω

h+1
0 , . . . , ωh+1

N−1 but we will allow for arbitrary parameter sets. Define a

distance function D (θi, θj) that computes the similarity between K = 2 sets of parameters.

We will now consider a method that finds L pairs of parameters that are closest.

We compute the cost matrix C

C = θh ⊗D θh+1

so that the ith row and jth column contain Ci,j = D
(
θhi , θ

h+1
j

)
. For each l ∈ [0 . . . L− 1],

find the indices il and jl corresponding to the shortest distance, then remove the ilth row

and jlth column from consideration and continue until L pairs have been determined or

the distances exceed some threshold Δ. This is summarized in Algorithms 1

Algorithm 1: A generalized McAulay-Quatieri peak-matching algorithm.

Input: the cost matrix C

Output: L pairs of indices Γi and Γj

Γi ← ∅;

Γj ← ∅;

for l ← 0 to L− 1 do

il, jl = argmin
i∈[0,...,M−1]\Γi,j∈[0,...,M−1]\Γj

Ci,j;

if Cil,jl > Δ then
return Γi,Γj

end

Γi ← Γi ∪ il;
Γj ← Γi ∪ jl;

end

return Γi,Γj
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This is a greedy algorithm because on every iteration the smallest cost is identified and

its indices are removed from consideration. Perhaps choosing a slightly higher cost in one

iteration would allow smaller costs to be chosen in successive iterations. This algorithm does

not allow for that. In other terms, the algorithm does not find a set of pairs that represent

a globally minimal sum of costs. Another drawback of the algorithm is that it only works

between two successive frames. The cost function could be extended to consider K frames

(K arbitrary) of parameter sets, constructing a K-dimensional tensor instead of a matrix,

but assuming equal numbers of parameter sets in all frames, the search space would grow

exponentially with K. Nevertheless, the method is simple to implement, computationally

negligible when K is small, and works well with a variety of signals encountered in audio

[36] [57].

4.2 An optimal method

There is a way to find a set of paths over multiple frames (K > 2) having the lowest total

cost if we restrict the search to exactly L paths. Instead of indexing parameters by their

frame number h, we make h part of the parameter set so that it can be used by the distance

function D. Assume that over K frames there are M total parameter sets. In this context

we will consider them as nodes in a graph. We define the vector c ∈ R
M2

where the entry

ci+Mj = D (θi, θj). If we have a set of connections Γi,j we can calculate the total cost of

these connections by defining the vector

xi+Mj =

⎧⎨
⎩1 there is a connection between i and j

0 otherwise

and then forming the inner product

ctotal = 〈c,x〉

Note that a node cannot be connected to itself. The question is how to find x∗ so that ctotal
is minimized. If no constraints are placed on x, the solution is trivial, but not useful. How

do we constrain x to give us a solution to the partial tracking problem? Let us consider

an example.
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Fig. 4.1: Possible graph connections

In Figure 4.1 we have an example of a simple graph or lattice. Such a graph represents

a plausible partial tracking situation: vertically aligned nodes are parameter sets estimated

from the same analysis frame and we would like to connect these parameter sets between

frames. The numbers are indices of nodes in the graph and the possible connections between

them are indicated by lines, or edges. Imagine that we would like to find the two shortest

paths. We will now examine the resulting paths from two algorithms using different criteria

for shortness.

In Figure 4.2 we find the paths using an algorithm similar to Algorithms 1 but search

instead over a tensor of distances C ∈ R
3×4×2 whose entry Ci,j,h represents the cost of

travelling on the path connecting the ith node in layer 0, the jth node in layer 1 and the

hth node in layer 2. This cost is the sum of the Euclidean distances giving the lengths of the

connections. This is the greedy method of searching for the best paths whose optimality

criterion is to find the set of best paths containing the absolute best path. We see in

Figure 4.2 that the absolute shortest path, 1 → 4 → 8, is discovered, followed by the

second shortest path not using the nodes of the first path, 2→ 5→ 7.
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Fig. 4.2: Two shortest paths using the greedy method

4.2.1 L shortest paths via linear programming

To find a set of paths minimizing the total cost, we instead search for total solutions x that

describe all paths in the graph. Assume for now that we can guarantee that the entries of

x will be either 0 or 1. To find a set of constraints for our search, we consider the structure

of a valid solution x∗. To maintain that paths not overlap, a valid solution’s nodes are only

allowed to have one edge entering — coming from a node in a previous frame — and one

edge leaving — going to a node in a successive frame. To translate this into a constraint,

consider the node i and its possible Ri successive connecting nodes j0 . . . jRi−1. Define the

vector1

as,ii+Mjr
=

⎧⎨
⎩1 ∀jr ∈ [j0 . . . jRi−1]

0 otherwise

1The superscript s stands for “successive”.
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As all the entries of x are either 0 or 1, we have

0 ≤
〈
as,i,x

〉
≤ 1

so we can make this a constraint to ensure that a node has at most one path leaving.

Similarly, if we consider the node j and its possible Rj previous connecting nodes i0 . . . iRj−1,

the vector2

ap,jir+Mj

⎧⎨
⎩1 ∀ir ∈

[
i0 . . . iRj−1

]
0 otherwise

constrains that node j have only one path entering through the constraint

0 ≤
〈
ap,j,x

〉
≤ 1

A node on a path will also have an edge entering and an edge leaving. To translate this

into a constraint, we define a vector that counts the number of edges entering a node and

subtracts then the number of edges leaving a node. The result should always be 0 for an

equal number of edges entering and exiting a node. If r is the index of the node considered,

the vector is simply 3

ab,r = ap,r − as,r

and the constraint 〈
ab,r,x

〉
= 0

Finally we want to constrain that there be only L paths. We do this by noticing that if

this is true, there will be L edges between frames h and h + 1. We constrain the number

of paths going from edges Γh in frame h to Γh+1 by forming the vector
4

ac,h =
∑
j∈Γh

as,j

and asserting the constraint 〈
ac,h,x

〉
= L

2The superscript p stands for “previous”.
3The superscript b stands for “balanced”.
4The superscript c stands for “connections”.
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Fig. 4.3: Two shortest paths using the LP method

The length of x is M2 so the total size of all the constraints is not insignificant, but most

entries in the constraint vectors will be 0 and therefore the resulting constraint matrices

very sparse, so sparse linear algebra routines can be used in computations. Furthermore,

the ab and ac constraints are derived from ap and as, so only the latter need to be stored.

The complete linear program (LP) solving the L shortest paths problem is then

min
x
〈c,x〉

subject to

0 ≤
[
As

Ap

]
x ≤ 1

[
Ab

Ac

]
x =

[
0

L1

]

0 ≤ x ≤ 1
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where As is the matrix with as,m as its rows for m ∈ [0 . . .M − 1] and Ap is the matrix

with ap,m as its rows, etc.

The solution of the two best paths using the LP formulation is shown in Figure 4.3 and

a comparison of the total costs is shown in Table 4.1

The LP formulation is inspired by a multiple object tracking algorithm for video [23].

A proof that the solution x∗ will have entries equal to either 0 or 1 can be found in [44,

p. 167]. The theoretical computational complexity of the linear program is polynomial in

the number of variables, see [25] for a proof and the demonstration of a fast algorithm for

finding its solution. In practice, to extract paths from the solution, we do not test equality

with 0 or 1 but rather test if the solution vector’s values are greater than some threshold.

This may mean that suboptimal solutions may still be close enough. The tolerance of the

solutions to suboptimality should be investigated, as if they are tolerant, fewer iterations

of a barrier-based algorithm would be required to solve the problem. More information on

linear programming and optimization in general can be found in [3].

4.2.2 Complexity

The LP formulation of the L-best paths problem gives results equivalent to the solution to

the L-best paths problem proposed in [63]. The complexity of our algorithm is different.

Assuming we use the algorithm in [25] to solve the LP, our program has a complexity of

O(M7B2) where M is the number of nodes (parameter sets) and B is the number of bits

used to represent each number in the input. The complexity of the algorithm by Wolf

in [63] is equivalent to the Viterbi algorithm for finding the single best path through a

trellis whose hth frame has
(
Nh

L

)(
Nh+1

L

)
L! connections where Nh and Nh+1 are the number

of nodes in two consecutive frames of the original lattice. Therefore, assuming a constant

number N of nodes in each frame, its complexity is O((
(
N
L

)2
L!)2T ). If there are few nodes in

each frame and a small number of paths are searched, Wolf’s formulation is superior as its

complexity increases linearly with the number of frames in the lattice. On the other hand,

Table 4.1. Comparison of total costs in Figure 4.3

Greedy LP
5.354102 4.946461
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if each frame has a large number of nodes or many paths are searched, the LP formulation is

superior. Informally we have found this to agree with reality — both algorithms were tried

when producing the figures in Section 4.3. Indeed the Wolf formulation took prohibitively

long to compute when many paths were desired, as did the LP when many frames were

considered.

It should be noted that in the special case that only 1 shortest path is searched an

algorithm exists that requires on the order of N2T calculations [46] where N is the number

of nodes in each frame and T is the number of frames (assuming the same number of nodes

in each frame): this algorithm is known as the Viterbi algorithm [13].

4.3 Partial paths on an example signal

We compare the greedy and LP based methods for peak matching on a synthetic signal.

The signal is composed of K = 6 chirps of constant amplitude, the kth chirp s at sample

n described by the equation

sk(n) = exp(j(φk + ωkn+
1

2
ψkn

2))

The parameters for the 6 chirps are presented in Table 4.2.

Two 1 second long signals are synthesized at a sampling rate of 16000 Hz, the first with

chirps 0–2, the second with chirps 3–5. We add Gaussian distributed white noise at several

SNRs to evaluate the technique in the presence of noise.

Table 4.2. Parameters of kth chirp. f0 and f1 are the initial and final frequency of the
chirp in Hz.

k φk ωk ψk f0 f1
0 0 0.20 2.45 ×10−6 500 600
1 0 0.39 4.91 ×10−6 1000 1200
2 0 0.59 7.36 ×10−6 1500 1800
3 0 0.27 -7.36 ×10−6 700 400
4 0 0.55 -1.47 ×10−5 1400 800
5 0 0.82 -2.21 ×10−5 2100 1200
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Fig. 4.4: Compare greedy and LP partial tracking on chirps in noise, SNR 20
dB. Line-segments representing the frequency and frequency-slope at local spectrogram
maxima. In the bottom two plots the line segments not deemed by the respective algorithms
as belonging to a partial path are discarded, revealing the estimated partial trajectories.
See Table 4.2 for the chirp parameters.

A spectrogram of each signal is computed with an analysis window length of 1024

samples and a hop-size H of 256 samples. Local maxima are searched in 150 Hz wide bands

spaced 75 Hz apart. A local maximum is only accepted if its amplitude is greater than -20

dB. At each local maximum the DDM is used to estimate the local chirp parameters, the

ith set of parameters in frame h denoted θhi =
{
φh
i , ω

h
i , ψ

h
i

}
. The results of the analyses

of both signals are lumped together and it is on this lumped data that we perform partial

tracking.

We search for partial tracks using both the greedy and LP strategies. Both algorithms

use the distance metric Dpr. between two parameters sets:

Dpr.

(
θhi , θ

h+1
j

)
=
(
ωh
i + ψh

i H − ωh+1
j

)
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Fig. 4.5: Compare greedy and LP partial tracking on chirps in noise, SNR 15
dB. Line-segments representing the frequency and frequency-slope at local spectrogram
maxima. In the bottom two plots the line segments not deemed by the respective algorithms
as belonging to a partial path are discarded, revealing the estimated partial trajectories.
See Table 4.2 for the chirp parameters.

which is the error in predicting jth frequency in frame h + 1 from the ith parameters in

frame h. For the greedy method, the search for partial paths is restricted to one frame

ahead like in [36]. For the LP method, to keep the computation time reasonable, we search

over 6 frames for 6 best paths5. To maintain connected paths, the search on the next frames

uses the end nodes of the last search as starting points. For both methods, the search is

restricted to nodes between frequencies 250 to 2250 Hz.

Figures 4.4, 4.5, and 4.6 show discovered partial trajectories for signals with a SNR of

20, 15, and 10 dB, respectively. It is seen that while the greedy method begins to perform

poorly at a SNR of 15dB, the LP method still gives plausible partial trajectories for SNRs of

10 and 15 dB. At lower SNRs, the LP formulation gives some paths that do not correspond

to an underlying partial. These could be filtered out by examining the cost of these paths

5The number of paths does not affect the computation time.
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Fig. 4.6: Compare greedy and LP partial tracking on chirps in noise, SNR 10
dB. Line-segments representing the frequency and frequency-slope at local spectrogram
maxima. In the bottom two plots the line segments not deemed by the respective algorithms
as belonging to a partial path are discarded, revealing the estimated partial trajectories.
See Table 4.2 for the chirp parameters.

and comparing them to the costs of the others. Those that deviate from a mean cost more

than a certain amount should be rejected. This is the strategy used in Chapter 7 and

illustrated in Figure 7.6. In any case, the lower SNRs are relatively challenging for any

partial tracking technique.

But why did the LP discover a path not present in the underlying signal? This is

due to the cost function, which finds a path with minimum prediction error in using the

frequency and frequency slope coefficients of one node to predict another node’s frequency

coefficient. When there are many nodes in the original analysis it is not surprising that

some unexpected path exists. An attribute of these erroneous paths is that they are not

smooth. To deter the algorithm from finding such paths, regularization could be used like

in Section 3.3.1 that minimizes the integral of the squared estimate of the path’s second

derivative. More on regularization in optimization can be found in [3, ch. 6.3].
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4.4 Conclusion

In this chapter we reformulated the classical greedy algorithm of McAulay and Quatieri

and showed that it can be seen as a greedy algorithm for finding the L shortest paths in

a lattice. An algorithm was then proposed minimizing the sum of the L paths, using a

linear programming approach. It was shown on synthetic signals that the new approach

finds plausible paths in lattices with a large number of spurious nodes.

There are problems with the proposed approach. As discussed in 4.2, “jagged” paths

should be removed using regularization. There are also situations where it is undesirable

to have paths extend throughout the entire lattice. Acoustic signals produced by striking

media, such as strings or bars, exhibit a spectrum where the upper partials decay more

quickly than the lower ones (e.g., see Figure 7.1) — it would be desirable in these situations

to have shorter paths for the upper partials, those decaying more quickly. This could be

addressed as in [9] where the signal is divided into overlapping sequences of frames and

partial paths are connected between sequences.

The proposed algorithm, while faster than algorithms based on the Viterbi algorithm,

is still not fast. Assuming the same cost function Dpr. as in Section 4.3 it would be more

efficient to consider narrow bands over which to search for paths when analysing signals

with little frequency modulation. However, as we will see in Chapter 6, with different cost

functions, the algorithm is useful for solving general L shortest paths problems outside of

partial tracking.
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Chapter 5

The extended phase and amplitude

model

In Chapter 4 techniques were presented for discovering partials in a signal. Each partial is a

set of analysis points indexed by time. The information at each analysis point can be used

to synthesize a portion of the partial and these are combined to give a signal representing

a partial. The various techniques to synthesize these pieces of the signal discussed here

differ in the orders used for analysis and those for synthesis. The first technique presented

simply synthesizes signals of short duration using the estimated parameters and blends

these segments together. We recognize that having multiple estimations of parameters

at discrete times within the partial’s duration allow us to postulate, via interpolation,

functions describing the partial of higher-order than those whose parameters were estimated

during analysis. It is shown that this strategy is not always to our advantage — interpolants

of higher-order than the underlying function can suffer from errors due to over-fitting. In

the case of functions that are always better approximated by higher-order polynomials,

we will see that there is an advantage to using high-order interpolation. These cases are

illustrated through the analysis and synthesis of synthetic signals.

5.1 Partial synthesis

A popular technique for synthesizing partials from a set of analysis points is the overlap-

and-add procedure [45], [40]. We assume that in the neighbourhood of τr the partial’s

signal is approximately described by the function x(n) ≈ fτr(n − τr). To synthesize an
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approximation of x we sum windowed fτr at multiple locations, windowed by a function w

with finite support so the resulting signal has finite energy and the piecewise assumption is

maintained. For simplicity we assume the τr are equally spaced by H samples, and τ0 = 0,

so we have τr = rH. The length of the window function w is M = V H + 1 samples, with

V,H ∈ N
1. The approximate signal at sample n is then

x̃(n) =
L+∑

l=L−

w(n− lH)fτl(n− τl)

where

L− =
⌈ n
H

⌉
− V

and

L+ =
⌊ n
H

⌋
+ V

This method has some drawbacks. Usually the function f is an approximation f̃ of the

true underlying function. In the case of partial tracking, often partials that are too short

are discarded or missed. At amplitude transients, these short partials are important for

reproducing sharp attacks that are shorter than the window length. If these partials are

missing, the resulting signal takes on a transient similar to the window shape. This could

be overcome by choosing a window with a shape similar to the overall amplitude envelope

in the attack region when resynthesizing an attack transient.

Another drawback is that no attempt is made to interpolate between the functions es-

timated at τr and τr+1 using the model that the underlying sinusoids are non-stationary
2.

From Equation 3.3 we know we can estimate a polynomial of arbitrary order for the argu-

ment of the complex exponential. We will see that using this additional information can

give us an interpolating function closer to the underlying model.

1M is always odd so one may wonder how the Fast Fourier Transform can be used to invert Fτr , the
frequency-domain representation of fτr . Recall that the DTFT can be interpreted as the coefficients of a
Fourier series that give the periodic version of the analysed signal. Also recall that we use window functions
that are real and even. In practice the edges of the window are often equal to zero so that the length of the
non-zero part is equal to the length of the DTFT N . In the case they are not, simply ensuring that values
in the window indexed by integer multiples of N are 0, and that the value at the centre of the window
is 1 will ensure proper synthesis [45, p. 244]. In that case, the values outside of the part of the window
presented to the DTFT are folded into this region using the window indices modulo-N . See [45] and [40]
for more details on this procedure.

2This is one of the causes of “pre-echo” when time-stretching using the STFT [49].
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5.2 The interpolating analysis-synthesis system

In the following, we investigate the synthesis quality of three interpolating analysis-synthesis

systems. The qualifier “interpolating” is used because each system takes the multiple sets

of estimated parameters of a smaller-order model and interpolates them with a higher-order

model, which is then used for synthesis. This is necessary because we only have values every

H samples from the analysis step but require a value for every sample value in the output.

The systems will be denoted Sp,q where p is the order of the analysis system and q the

order of the synthesis system, e.g., a linear analysis system has p = 1, etc.

5.3 S1,3: the McAulay-Quatieri method

5.3.1 Analysis: linear phase and constant amplitude

For the McAulay-Quatieri method, the analysis model is a sinusoid of constant frequency

and amplitude (linear phase and constant log-amplitude) in each analysis frame. To esti-

mate the frequency of this sinusoid we find the bin with the most energy and find a refined

estimate of the frequency as the maximum of a quadratic interpolating polynomial fit to

this bin and its two neighbouring bins. This is a procedure documented in [52, p. 45]. The

interpolation is best performed in the log-spectrum and on a spectrum produced using a

window, such as a zero-padded Hann window, giving a wide enough main-lobe so that the

three points lie on this lobe and not on side-lobes. A refined estimate of the amplitude of

the sinusoid is obtained with this procedure as well.

In the original paper by McAulay and Quatieri, they do not use this technique but, as

they show an example analysis of a speech signal, instead adjust the analysis window to be

a multiple of the period of the glottal pulse. The bins of the DTFT used in the analysis

will be integer multiples of the frequency given as the reciprocal of this period. Under

the model of the speech signal as harmonically related sinusoids, the best estimate for the

frequency is the bin of a local maximum, its amplitude the modulus of the spectrum at

this maximum, and the phase the argument.

In our system, we use a fixed window size. To estimate the initial phase then we use

Equation 3.4 with

γMQ(n) = exp(2π
k∗

M
n)
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where k∗ is the bin we have determined to correspond to the frequency of the sinusoid. The

initial phase is then �{c0}.

5.3.2 Synthesis: cubic phase and linear log-amplitude

The phase part

Given two local maxima of the DTSTFT X(τ0, ω0) and X(τ1, ω1), where H = τ1−τ0 we can
conjecture a cubic polynomial phase function for the imaginary part of the phase argument

φ̃(n) = �{c3} (n− τ0)
3 + �{c2} (n− τ0)

2 + �{c1} (n− τ0) + �{c0}

By noting that we have 2 measurements of the phase and frequency, ∠{X(τ0, ω0)}
and ∠{X(τ1, ω1)}, and the frequency is the derivative of the phase, we can solve for the

coefficients of the polynomial phase function using the following linear system of equations,

assuming the DTSTFT was computed using a real and even window

⎛
⎜⎜⎜⎜⎝

0 0 0 1

H3 H2 H 1

0 0 1 0

3H2 2H 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
�{c3}
�{c2}
�{c1}
�{c0}

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∠{X(τ0, ω0)}
∠{X(τ1, ω1)}+ 2πM

ω0

ω1

⎞
⎟⎟⎟⎟⎠

We choose M so that ∫ H

0

(
d2φ̃

dt2
(t))2dt (5.1)

is minimized in order to have a smooth evolution of frequency in the interpolated region.

M is necessary because some integer number of periods of a sinusoid will have passed from

times τ0 to τ1. Informally we chooseM so that a polynomial describing the phase evolution

between these two times takes a direct route, which is a plausible criterion because a signal

with more radical phase variation would unlikely exhibit a spectrum that could be well

described by two points in the time-frequency plane, i.e., the signal would exhibit a large

bandwidth. See [36, p. 751] for further clarification.

The amplitude part

As only two measurements of the amplitude of the sinusoid are available, |X(τ0, ω0)| and
|X(τ1, ω1)|, the coefficients c3 and c2 are purely imaginary and the real parts of c1 and c0
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are determined as (
0 1

H 1

)(
�{c1}
�{c0}

)
=

(
log(|X(τ0, ω0)|)
log(|X(τ1, ω1)|)

)

5.4 S2,3 and S2,5: the DDM-based methods

Here we extend the S1,3 model of McAulay-Quatieri to account for the additional parame-

ters estimated via the DDM. For the S2,3 model, we must introduce additional constraints

into the system as we have more estimated parameters than are available in the synthesis

model. It would be possible to solve this system via least-squares, but the proposed con-

straints simplify analytically the expression maximizing the smoothness of the phase and

log-amplitude functions, and give satisfactory results. For the S2,5 model the derivation is

straightforward as in the S1,3 case — there are the same number of estimated parameters

as there are parameters in the model.

5.4.1 Analysis: quadratic phase and log-amplitude

The DDM is used on segments of the signal to estimate the parameters of a sinusoid with

a complex quadratic polynomial argument. This sinusoid has the form

xa(n) = exp
(
a2n

2 + a1n+ a0
)

(5.2)

with ai ∈ C.

We can estimate the coefficients of Equation 5.2 using the DDM. We write Equation 3.3

in matrix form with Q = 2

⎛
⎜⎜⎝
〈
T 0x, ψ1

〉 〈
T 1x, ψ1

〉
...

...〈
T 0x, ψR

〉 〈
T 1x, ψR

〉
⎞
⎟⎟⎠
(
a1

2a2

)
=

⎛
⎜⎜⎜⎝
−
〈
x, dψ1

dn

〉
...

−
〈
x, dψR

dn

〉
⎞
⎟⎟⎟⎠

From this we recognize we need to define three functions

〈
T 0x, ψk

〉
=

M−1∑
m=0

w(m)x(m+ τ) exp(−j2πkm
M

)
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〈
T 1x, ψk

〉
=

M−1∑
m=0

mw(m)x(m+ τ) exp(−j2πkm
M

)

〈
x,
dψk

dn

〉
= −j2π k

M
Xp1 (τ, k) +

M−1∑
m=0

dw

dn
(m)x(m+ τ) exp(−j2πkm

M
)

Where M is the length of the window and k is the frequency “bin”3. We also only consider

x at the samples m = [0, . . . ,M −1] because we can always shift the time reference to view
an arbitrary contiguous segment of signal with these indices.

We then find k∗ such that X is maximum. If multiple components are present in the

signal and are sufficiently separated in frequency, we can split the signal up into frequency

bands and find local maxima. A technique for doing so is described in [52, p. 42]. To have

a system of equations with a unique solution, we take the two adjacent bins k−1 and k+1
to have enough unique atoms for Equation 3.3. These bins should only contain energy

from the component whose parameters we are interested in measuring — this is true if the

components are adequately separated in time and frequency. We could choose only two bins

to have a non-singular system, and there are many possibilities for choosing different atoms

[2, p. 4639]. We choose three from the same frame to have improved estimation accuracy in

situations where components are adequately separated in frequency, while avoiding a more

sophisticated local peak selection procedure. Then a2 and a1 can be determined by solving

the linear system

⎛
⎜⎝
〈
T 0x, ψk−1

〉 〈
T 1x, ψk−1

〉〈
T 0x, ψk

〉 〈
T 1x, ψk

〉〈
T 0x, ψk+1

〉 〈
T 1x, ψk+1

〉
⎞
⎟⎠
(
a1

2a2

)
=

⎛
⎜⎜⎜⎝
−
〈
x,

dψk−1

dn

〉
−
〈
x, dψk

dn

〉
−
〈
x,

dψk+1

dn

〉
⎞
⎟⎟⎟⎠

With a1 and a2 determined, we can use Equation 3.4 to estimate a0. We will write aτi to

refer to coefficient i determined at time τ .

5.4.2 Synthesis: cubic order (S2,3)

In this section we describe how to obtain a cubic phase and log-amplitude polynomial from

local estimations of the coefficients of a quadratic phase and log-amplitude polynomial.

3For tractability, the functions X(τ, k) are only evaluated at a finite number of frequencies, which are
often called “bins” in the signal processing literature.
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The phase part

A complex sinusoid with cubic phase has the following form:

β(n) = exp
(
j
(
b3n

3 + b2n
2 + b1n+ b0

))
(5.3)

with bi ∈ R. This sinusoid has magnitude 1 everywhere, only its phase is changing.

Once the aτ have been determined at two times τ0 and τ1, with H = τ1− τ0, and these
times have between determined as connected (see Chapter 4), we can write a system of

equations to determine an interpolating cubic phase polynomial. To avoid numerical insta-

bilities and for simplicity, we shift the time origin so that τ0 = 0. This means b0 = �{aτ00 }.
To reduce the size of the system, we require that

dφ

dn

(
H

2

)
=
1

2
(�{aτ01 }+ �{aτ11 })

and
d2φ

dn2

(
H

2

)
=
1

2
(�{aτ02 }+ �{aτ12 })

i.e., the frequency and first-order frequency modulation in the middle of the segment are the

average of the two measured coefficients. Finally we require that the change in phase from

time 0 to H correspond to that what was observed, but account for the cycles that were not

observed by adding an integer number of 2π radians. If φ(n) = j(b3n
3 + b2n

2 + b1n + b0),

then

φ (H) = �{aτ10 } − �{aτ00 }+ 2πU∗

where U∗ ∈ Z is determined to minimize Equation 5.1, in this case:

Ũ = argmin
U

∫ H

0

(6b3t+ 2b2)
2 dt (5.4)

which is then rounded to the nearest integer to give U∗. To summarize we have

⎛
⎜⎝
H3 H2 H
3
4
H2 H 1

3H 2 0

⎞
⎟⎠
⎛
⎜⎝
b3

b2

b1

⎞
⎟⎠ =

⎛
⎜⎝
�{aτ10 } − �{aτ00 }+ 2πU∗

1
2
(�{aτ01 }+ �{aτ11 })

1
2
(�{aτ02 }+ �{aτ12 })

⎞
⎟⎠
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Solving for b1, . . . , b3, we have

⎛
⎜⎝
b3

b2

b1

⎞
⎟⎠ =

⎛
⎜⎝

4
H3 (�{aτ10 } − �{aτ00 }+ 2πU∗)− 2

H2 (�{aτ11 }+ �{aτ01 })
−6
H2 (�{aτ10 } − �{aτ00 }+ 2πU∗)− 3

H
(�{aτ11 }+ �{aτ01 }) + 1

4
(�{aτ02 }+ �{aτ12 })

−H
4
(�{aτ02 }+ �{aτ12 }) + 3

H
(�{aτ10 } − �{aτ00 }+ 2πU∗)−�{aτ11 } − �{aτ01 }

⎞
⎟⎠

and then Ũ is determined using Equation 5.4 to be

Ũ =
1

4π
[H (�{aτ11 }+ �{aτ01 })− 2 (�{aτ10 } − �{aτ00 })]

and then rounded to obtain U∗.

The amplitude part

Solving for the cubic polynomial describing the local log-amplitude function

μ(n) = exp
(
d3n

3 + d2n
2 + d1n+ d0

)
with di ∈ R, is more straightforward analytically as it does not require solving to maximize

the smoothness of resulting polynomial. To require continuity at the end-points of our

polynomial, we require

μ(0) = �{aτ00 }

and

μ(H) = �{aτ10 }

The first constraint is satisfied simply by setting d0 = �{aτ00 }. The second will be accounted
for in a constrained least-squares solution for the other coefficients. The other observations

are
dμ

dn
(0) = �{aτ01 }

dμ

dn
(H) = �{aτ11 }

d2μ

dn2
(0) = �{aτ02 }

d2μ

dn2
(H) = �{aτ12 }
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The constrained least-squares problem to be solved is then

⎛
⎜⎜⎜⎜⎝

0 0 1

3H2 2H 1

0 2 0

6H 2 0

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝
d3

d2

d1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝
�{aτ01 }
� {aτ11 }
� {aτ02 }
� {aτ12 }

⎞
⎟⎟⎟⎟⎠

subject to

(
H3 H2 H

)⎛⎜⎝
d3

d2

d1

⎞
⎟⎠ =

(
�{aτ10 }

)

This can be solved using numerical methods, in particular, using a specific interpretation

of weighted least-squares [16, p. 266].

5.4.3 Synthesis: quintic order (S2,5)

The phase part

Solving for the coefficients of a quintic phase polynomial is done very similarly to Sec-

tion 5.4.2. As we have the same number of analysis and synthesis parameters, no con-

straints have to be introduced to solve the system apart from the value U that maximizes

smoothness of the phase function. The quintic phase polynomial is4

λ(n) = exp
(
j
(
u5n

5 + u4n
4 + u3n

3 + u2n
2 + u1n+ u0

))
(5.5)

with ui ∈ R. We have

φ(0) = �{aτ00 }
dφ

dn
(0) = �{aτ01 }

d2φ

dn2
(0) = �{aτ02 }

4Remember, this sinusoid has constant amplitude of 1 and this function only describes its change of
phase.
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and solving for the remaining coefficients is done using the linear system of equations:

⎛
⎜⎝

H5 H4 H3

5H4 4H3 3H2

20H3 12H2 6H

⎞
⎟⎠
⎛
⎜⎝
u5

u4

u3

⎞
⎟⎠ =

⎛
⎜⎝
−H2

2
�{aτ02 } −H�{aτ01 }+ �{aτ10 } − �{aτ11 }+ 2πU∗

−H�{aτ02 }+ �{aτ11 } − �{aτ01 }
� {aτ12 } − �{aτ02 }

⎞
⎟⎠

The smoothness maximizing Ũ is found as

Ũ =
1

80π

[
20H(�{aτ01 }+ �{aτ11 }) +H2(�{aτ02 } − �{aτ12 }) + 40(�{aτ00 } − �{aτ10 })

]
and then rounded to produce U∗ as above.

The quintic interpolating phase polynomial has been proposed in a previous paper [15]

although they do not directly estimate the frequency slope, choosing instead to derive it

using the difference in frequency between two analysis frames.

The amplitude part

Solving for the quintic log-amplitude polynomial

ρ(n) = exp
(
v5n

5 + v4n
4 + v3n

3 + v2n
2 + v1n+ v0

)
(5.6)

with vi ∈ R, is as follows:

μ(0) = �{aτ00 }
dμ

dn
(0) = �{aτ01 }

d2μ

dn2
(0) = �{aτ02 }

and solving for the remaining coefficients is done using the linear system of equations:

⎛
⎜⎝

H5 H4 H3

5H4 4H3 3H2

20H3 12H2 6H

⎞
⎟⎠
⎛
⎜⎝
v5

v4

v3

⎞
⎟⎠ =

⎛
⎜⎝
−H2

2
�{aτ02 } −H�{aτ01 }+ �{aτ10 } − �{aτ11 }
−H�{aτ02 }+ �{aτ11 } − �{aτ01 }

� {aτ12 } − �{aτ02 }

⎞
⎟⎠
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Fig. 5.1: Spectrograms of T3,4, S1,3, S2,3 and S2,5. Spectrograms of the true signal
and estimated signals for the T3,4 signal.

5.5 Evaluation

We compared the quality of an analysis-synthesis system using the original S1,3 method,

S2,3 method, and the S2,5. Frequency- and amplitude-modulated sinusoids were synthe-

sized and then analysed frame-by-frame using the DDM to estimate their initial phase (am-

plitude), frequency (amplitude slope), and frequency-modulation (amplitude-modulation).

Afterwards, the signals were resynthesized using the estimated parameters and compared to

the original. We are interested in seeing in what cases higher-order phase and log-amplitude

polynomials will improve the accuracy of synthesis.

5.5.1 Evaluation on a sinusoid of cubic phase and quartic log-amplitude

The initial evaluation illustrates how higher-order phase and log-amplitude polynomials will

not necessarily improve the quality of synthesis if the underlying phase and log-amplitude
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Fig. 5.2: T3,4 vs. S1,3, S2,3 and S2,5: Upper error bound. The power of the error
when subtracting the original signal from the estimated signal. The local upper bound on
the error was produced by connecting the local maxima in the error data.

functions are a polynomial of lower order than the polynomials used for synthesis. As we

will see, the estimated phase and log-amplitude functions suffer from “overfitting”.

The synthesized signal has 3 frequency break-points and an initial phase, therefore its

phase function can be interpolated by a cubic polynomial

xφ(n) = exp
(
g3n

3 + g2n
2 + g1n+ g0

)
the frequency break-points are summarized in Table 5.1. The initial phase is 0 radians.

Table 5.1

Time (seconds) 0 0.25 0.5
Frequency (Hz) 100 200 100
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Fig. 5.3: T3,4, S1,3, S2,3 and S2,5: Log-amplitude functions. This compares the
original log-amplitude function with the interpolated log-amplitude functions. The log-
amplitude functions are considered because these are the real part of the polynomial expo-
nents in the complex sinusoid model.

A quartic polynomial is used for the log-amplitude function

xμ(n) = exp
(
h4n

4 + h3n
3 + h2n

2 + h1n+ h0
)

and its amplitude break-points are summarized in Table 5.2. This will be referred to as

the T3,4 signal.

Table 5.2

Time (seconds) 0 0.1 0.3 0.5
Amplitude (dB) -10 0 0 -10
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Fig. 5.4: T3,4 vs. S1,3, S2,3 and S2,5: Log-amplitude function error. This shows
the error of the interpolated log-amplitude functions when compared with the original
log-amplitude function for the three proposed methods.

These polynomials are chosen because their orders are greater than or equal to the order

of the synthesis model in the S2,3 system and less than the order of the synthesis model in

the S2,5 system.

The signal was sampled with a sampling rate of 16000 Hz and was analysed every 256

samples with an analysis window of length 1024 samples. For the DDM method, the C1

4-Term Blackman-Harris was used (see Section 3.5).

The results of the evaluation are presented in Figures 5.1 through 5.5. In Figure 5.1 we

see informally that the synthesis quality is good for all model orders even though the S1,3

model assumes linear phase in its analysis. Figure 5.2 shows how accurately the different

model orders reconstruct the original signal. We see that the S2,5, although of higher-order,

is not systemically a better interpolator of the true underlying signal. Figure 5.3 shows the

estimated log-amplitude functions along with the original and Figure 5.3 their respective

errors in approximating the true log-amplitude function. Finally, Figure 5.5 shows that
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Fig. 5.5: T3,4 vs. S1,3, S2,3 and S2,5: Phase function error. This compares the
theoretical phase function with the interpolated phase functions. The phase functions are
considered because these are the imaginary part of the polynomial exponents in the complex
sinusoidal model. The errors are “wrapped” to lie between −π and π. The errors stem from
both the estimation of the phase and the interpolation of phase between analysis points.
As a frequency modulated sinusoid is considered, it is not surprising that the stationary
frequency assumption of the S1,3 model exhibits the most errors.

the models incorporating the non-stationary assumption in their analysis perform better

at approximating the true phase function.

5.5.2 Evaluation on sinusoid of exponential phase

The previous evaluation of this analysis-synthesis system was on a sinusoid with small-

order polynomial phase and log-amplitude. In the cases where we observed overfitting,

the polynomial used for synthesis was of higher-order than the true underlying one — the

interpolating polynomials were more times differentiable than the true polynomial. We

propose evaluating the system on an infinitely differentiable and analytic phase function.

The rationale behind this stems from the definition of an analytic function: one whose
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Fig. 5.6: Spectrograms of Texp., S1,3, S2,3 and S2,5. Spectrograms of the true signal
and estimated signals for the exponential phase signal.

power series representation (a polynomial) converges to the function as the number of

terms approaches infinity. What this means is, in the region of convergence, the larger the

number of terms in the approximating polynomial, the better the approximation to the

true underlying function. The exponential function

y = exp(x), x, y ∈ R

is one such function whose power series is

exp(x) =
∞∑
n=0

xn

n!

To find the radius of convergence, we use the ratio test

lim
n→∞

|1/n!|
|1/(n+ 1)!| = lim

n→∞
n =∞



5.5 Evaluation 59

0 1000 2000 3000 4000 5000 6000 7000

Time (samples)

−70

−60

−50

−40

−30

−20

−10

0
E

rr
or

(d
B

po
w

er
)

S2,3

S1,3

S2,5

Fig. 5.7: Texp. vs. S1,3, S2,3 and S2,5: Upper error bound. The power of the error
when subtracting the original signal from the estimated signal for the signals of exponential
phase. The local upper bound on the error was produced by connecting the local maxima
in the error data.

i.e., the power series of the exponential function converges everywhere and so using more

terms of its power series will improve its approximation for any x ∈ R.

The exponential function arises in music. In 12-tone equal temperament tuning, to find

the frequency f1 of a pitch b-semitones away from the frequency f0 we compute

f1 = f02
b
12 = f0 exp(log(2)

b

12
)

So a linear transition from pitch b0 to b1 (in semitones) is an exponential change in frequency.

This could be observed in recordings of performances of the portamento gesture.

We synthesize a sinusoid of length N samples with exponential phase and use the

same analysis system as in Section 5.5.1 to evaluate the synthesis accuracy for piece-wise
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interpolating polynomials of cubic and quartic order for phase. The signal x is defined

x(n) = exp(j
2πf0
c1

exp(c1n+ c0))

with

c0 = log(2)
b0
12

and

c1 = log(2)
b1
12N

i.e., a signal starting at pitch b0 with frequency f0 and arriving at pitch b1 in N samples.

We keep the amplitude of the signal constant in this evaluation as we are interested in the

accuracy of the phase reconstruction. The same procedure as in Section 5.5.1 is used to

estimate the parameters of piece-wise interpolating phase polynomials. We can see in Fig-

ure 5.7 that the resynthesis accuracy is greater for higher-order polynomials. Spectrograms

of the original and estimated signals are plotted in Figure 5.6.

5.6 Conclusion

5.6.1 Polynomial phase and log-amplitude function

For the polynomial signal model considered, we observed that increased orders for anal-

ysis and synthesis models did not necessarily improve signal reproduction fidelity. For

instance, we observe overfitting by the proposed cubic and quintic models in Figure 5.3.

This is consistent with the results of [15]. From Figure 5.5 it is clear that the DDM-based

methods provide superior estimation of the phase function — this is not the case for the

log-amplitude function. Depending on the underlying signal, perhaps better results can be

obtained by postulating a lower-order log-amplitude function and higher-order phase func-

tion. The possibility of errors arising from numerical accuracy when evaluating the quintic

polynomials has been ruled out. We evaluated these polynomials using an implementation

of Horner’s method that keeps track of the error bound [22, p. 95]: the errors are negligible,

see Figure 5.8 for the results.
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Fig. 5.8: S2,5 evaluation error bound. The error bound in evaluating the quintic log-
amplitude and phase polynomials of S2,5 using Horner’s method. This plot was produced
by plotting only the local maxima of the error bound data in order to reduce the plot’s
range.

5.6.2 Exponential phase function

The quintic interpolation S2,5, the polynomial of highest order, performs the most accurate

resynthesis. This is consistent with the analytic property of the exponential function and

an encouraging result as it confirms that analytic phase functions can be approximated

with arbitrary accuracy simply by increasing the order of the interpolating polynomials.

Many models of musical gestures involve such functions, apart from the portamento gesture

modeled by an exponential phase function, vibrato can be modeled as a sinusoid with

sinusoidal phase [32]. The DDM-based analysis system combined with the higher-order

polynomial phase and log-amplitude synthesis system presented here allows for accurate

modeling of these gestures.
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Chapter 6

Experiment: Partial grouping by

amplitude- and frequency-modulation

6.1 Introduction

To evaluate whether the grouping of partials with common amplitude- and frequency-

modulation (AM and FM) parameters is plausible, we synthesize a set of parameters cor-

rupted with noise and add to this signal spurious sets of parameters that should not belong

to any sources. We then attempt to retrieve the original parameters.

6.2 Methodology

We assume parameters have been estimated already so we start from theoretical values

for the amplitude, frequency, frequency-modulation and amplitude-modulation. On each

frame of analysis data, i.e., for parameters belonging to the same time instant, we consider

each data-point as a multi-dimensional random variable. With these random variables, we

compute principal components in order to produce a variable with maximum variance. This

variable is classified using a clustering algorithm and we evaluate the results. A summary

follows:

• Parameters are synthesized from a theoretical mixture of AM and FM sinusoids.

Spurious data are added to these parameters.
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• Principal components analysis is carried out on the parameters happening at one time

instance.

• A histogram is made of the first principal components. Values sharing a bin with too

few other values are discarded to remove spurious data points.

• Initial means and standard deviations for the GMMs (see Appendix B) are made by

dividing the histogram into equal parts by area and choosing the centres of these

parts.

• The EM algorithm (see Appendix B) for GMMs is carried out to classify the sources.

6.3 Evaluation

The algorithm is run on a typical source separation problem to evaluate its plausibility. Two

sources are synthesized, each exhibiting both frequency- and amplitude-modulation. The

amplitude and frequency of the frequency-modulation are chosen to be realistic with respect

to musical instrument sounds — ±12.5 cents surrounding the fundamental at around 6 Hz
(see Table 6.2), similar to the measurements obtained in [38] for violin vibrato. Because

musical sounds exhibit a wide variety of amplitude envelopes, one is chosen that is realistic,

but that is not based on any particular instrument or recording. For this process all that is

important to carry out source separation is the relative amplitude-modulation of the two

sources — a reasonable assumption for recordings of a mixture of two different instruments

or two performers of the same instrument.

To have control over the frequency- and amplitude-modulation separately, we compute

the parameters of a function describing the amplitude envelope, and one describing oscil-

latory part. The parameters are combined when carrying out the classification.

6.4 Synthesis

Our model makes available the parameters summarized in Table 6.1. To incorporate inhar-

monicity often observed in real string instruments where the strings exhibit some stiffness,
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H Duration between data-point cal-
culations in samples (i.e., the hop
size).

N Number of sources.

p Which source.

f0,p Fundamental frequency.

Kp Number of harmonics.

k60,p Harmonic number 60 dB lower
than the first.

Bp The inharmonicity coefficient.

φ0,p Initial phase.

φ0,f,p Initial FM phase.

t60,p Time until amplitude of partial
has dropped 60 dB.

tattack,p Time duration of attack portion.

Af,p Amplitude of FM.

ff,p Frequency of FM.

sp The signal representing the pth
source.

a60,p The slope of the line in the argu-
ment of the exponential describing
the amplitude variation.

ak,60,p The coefficient of the harmonic
number in the argument of the
exponential describing the initial
amplitude of a harmonic as a func-
tion of its harmonic number.

Table 6.1. Synthesis parameters. Time values are in seconds, frequency values are in Hz
and phase values are in radians.
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Fig. 6.1: Original data-points. Line-segments describing the frequency and frequency-
modulation of both sources with no added spurious parameters. The amount of noise added
and the corresponding plot title number are summarized in Table 6.3.

we define the stretched harmonic numbers as follows [56]1

KB(k) = k(1 +Bk2)
1
2

Each source is synthesized using the following equation:

sp(t) =

Kp∑
k=1

Ap(k, t) exp(j((2πf0,pt−
Af,p

ff,p
cos(2πff,pt+ φ0,f,p))KBp(k) + φ0,p))

1http://ccrma.stanford.edu/~jos/pasp/Dispersion Filter Design I.html
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Fig. 6.2: Amplitude function for each source (true). Line-segments representing
the instantaneous amplitude and amplitude slope at analysis time points. The amount of
noise added and the corresponding plot title number are summarized in Table 6.3.

where

Ap(k, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
exp(a60,pt+ ak,60,pk) cos

2(π
2
( t
tattack,p

− 1)) if t ≤ tattack,p,

exp(a60,pt+ ak,60,pk) if t > tattack,p,

0 otherwise.

a60,p =
log(10−3)
t60,p

ak,60,p =
log(10−3)
k60,p

The piecewise amplitude function is based on the amplitude function of the Formant Wave

Function (FOF)2 described in [48, p. 19].

2FOF stands for Forme d’Onde Formantique.
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Fig. 6.3: Original and spurious data-points. Line-segments describing the frequency
and frequency-modulation of the original data and the spurious data. The amount of noise
added and the corresponding plot title number are summarized in Table 6.3.

6.5 Analysis

The estimation of these parameters is a separate problem addressed by the DDM (see

Section 3.4). We use theoretical values calculated directly from the model signals. For

interpretation, and to make it possible to simply replace the theoretical values with those

obtained from an analysis, we compute parameters that correspond to a model whose

parameters could be estimated through a technique such as the DDM.

For this experiment we seek signals sk ∈ C of the following form:

sk(n) = exp(log(Ak) + αkn+ j(φk + ωkn+
1

2
ψkn

2)) (6.1)
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Parameter Source 1 value Source 2 value
f0,p 261.63 277.18
Kp 20 20
k60,p 20 20
Bp 0.001 0.001
φ0,p 0 0
φ0,f,p 0 0.8
t60,p 0.5 0.75
tattack,p 0.1 0.1
Af,p 3.805 4.032
ff,p 6.5 5.5

Table 6.2. Synthesis parameters for source separation by frequency- and amplitude-
modulation. Sources 1 and 2 have the fundamental frequencies of a C4 and C

�
4 respectively.

The values for Af,p are found by computing f0,p2
1/48−f0,p, giving ±12.5 cents of frequency-

modulation centred around the fundamental frequency.

Title number ψno ωno αno Ano

1 1.0× 10−2 1.0× 10−2 1.0× 10−2 3.2× 10−5

2 1.0× 10−2 1.0× 10−2 1.0× 10−2 1.0× 10−5

3 1.0× 10−3 1.0× 10−3 1.0× 10−3 3.2× 10−5

4 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−5

Table 6.3. The plot title numbers and the amount of noise added to the synthesis param-
eters for that realisation.

Here n is the sample number. This is the model of a sinusoid with linear amplitude-

modulation and quadratic phase-modulation. We compute from the synthesis model what

these parameters would be and add noise to simulate measurement error.

Typically when performing a short-time analysis, the time corresponding to n = 0 is

made to be the centre of the window, therefore, t is the time at the centre of the window

and Nw, in samples, is the length of the middle (usually non-zero) portion of the window.
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6.5.1 The amplitude signal

The coefficients describing the amplitude-slope of the kth harmonic of the pth source from

our synthetic model are given by

αk,p(t) =
a60,p
fs

Ak,p(t) = exp(a60,pt+ ak,60,pk)

for the part of the signal after the attack portion. Note that the amplitude-slope is not

time-varying.

For the attack portion, we estimate the amplitude parameters of Equation 6.1 using

least-squares on a rectangular-windowed signal3. Let

ŝk,p(tn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q(tn − Nw

2fs
)

Q(tn − Nw

2fs
+ 1)

...

Q(tn +
Nw

2fs
− 1)

Q(tn +
Nw

2fs
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with

Q(t) = exp (a60,p (t) + ak,60,pk) cos
2

(
π

2

(
t

tattack,p
− 1

))

the function describing the amplitude during the attack portion of the signal. Then

log(Ak,p) and αk,p are found as the least-squares solution of⎡
⎢⎢⎣
1 −Nw

2
...

...

1 Nw

2

⎤
⎥⎥⎦
(
log(Ak,p(tn))

αk,p(tn)

)
= log ŝk,p(tn)

where tn = n
fs
is the time in seconds at sample n. For the argument parameters (those

multiplied by j in Equation (6.1))

φk (t) =

(
2πf0,pt−

Af,p

ff,p
cos (2πff,pt+ φ0,f,p)

)
KBp (k) + φ0,p

3We cannot simply compute the modulation parameters of Equation 6.1 using the Taylor-series expan-
sion of Q(t) because the attack portion is an exponential function modulated by a raised cosine, which
does not match the analysis model.
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ωk,p (t) =
2π

fs
(f0,p + Af,p sin (2πff,pt+ φ0,f,p))KBp (k)

ψk,p (t) =

(
2π

fs

)2

Af,pff,p cos (2πff,pt+ φ0,f,p)KBp (k)

To simulate the noise that would be present in an estimation of the signal parameters

from an arbitrary signal, we create noise corrupted values by substituting the random

variables:

• ψ̃k,p(t) ∼ ψk,p(t) +N (0, ψno)

• ω̃k,p(t) ∼ ωk,p(t) +N (0, ωno)

• α̃k,p(t) ∼ αk,p(t) +N (0, αno)

• Ãk,p(t) ∼ Ak,p(t) +N (0, Ano)

The θno (where θ is replaced by ψ etc.) specifies the variance of the particular parameter.

Most likely in practice these random variables would be correlated but not knowing the

estimation method, we cannot at this point say anything about this correlation. Therefore

the noisy parameters are uncorrelated random variables for this experiment.

We also add spurious data-points as a fraction r of the number of true data-points. Their

values are drawn from uniform distributions with boundaries θmin and θmax, where θ is some

parameter above, e.g., ωmin and ωmax for the ω parameter. For this experiment r = 0.25,

which is quite a large number of spurious points. This value is chosen to show that, given

an acceptable accuracy of estimation of the true parameters, good source separation results

can be achieved, even with such a high proportion of spurious points. The parameters of the

uniformly distributed random variables are given in Table 6.4. Data-points are computed

for the times tn = 0, H
fs
, 2H

fs
, . . . ,

�N
H �H
fs

.

Table 6.4. Distribution parameters of uniformly distributed random variables

Parameter θmin θmax

ω 0 π
ψ −1× 10−4 1× 10−4

α −1× 10−3 1× 10−3
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Fig. 6.4: Principal components and their classification. The PCs for each theoretical
analysis time-point. μ0

i and σ0
i are respectively the initial mean and standard deviation

guesses for the EM algorithm fitting the GMM parameters to the ith source. These values
are also visible on the plot. The spurious points rejected using the process described in
Section 6.7 are included for comparison. The amount of noise added and the corresponding
plot title number are summarized in Table 6.3.
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6.6 Computation of principal components

At each time t we have L data-points. As the source of each data-point is now unknown, we

replace the k and p indices with index l. We only consider the amplitude- and frequency-

modulation. According to our model, the frequency-modulation is greater for harmonics

of greater centre frequency. To take this into consideration, we divide the frequency-

modulation estimate ψl(t) by the constant frequency estimate ωl(t). This is similar to the

approach taken in [6]. The amplitude-modulation αl(t) remains constant for all harmonics

of the same source4, only its initial value changes according to k60,p. We compile the

data-points at one time into a set of observations.

xl(t) =

(
ψl(t)
ωl(t)

αl

)

X(t) =
[
x1(t) . . .xL(t)

]
From these L observations the correlation matrix S is computed5. We use the correlation

matrix because the values in each row of xl(t) do not have the same units, see [24, p. 22]

for a discussion about this.

Following the standard technique for producing principal components (see Appendix A

and also [24, p. 11]), we obtain a matrix V(t) of eigenvectors sorted so that the eigenvector

corresponding to the largest eigenvalue is in the first column, etc. The principal components

A(t) are then computed as

A(t) = VT (t)X(t)

4We acknowledge that this might not be realistic for all sounds. If the amplitude-modulation is a
function of (normalized) frequency as well as time βl(t) = A(ω) we need only perform the transformation
αl(t) = A−1(βl(t)) to obtain the same data points as classified here.

5If we have N samples of random variables Xi and Xj , the entry in the ith row and jth column of
correlation matrix S is their estimated correlation, i.e.,

Si,j =

∑N
n=1(xi,n − xi)(xj,n − xj)√∑N

n=1(xi,n − xi)2
∑N

n=1(xj,n − xj)2

where xi =
1
N

∑N
n=1 xi,n, the sample mean [21, p. 66].
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Fig. 6.5: Source 1 (estimated). Line-segments classified as belonging to Source 1. The
classification is done on each frame so classifications in consecutive frames may not belong
to the same true source. This is because the ordering of the clusters in each frame in
Figure 6.4 is not predictable. The amount of noise added and the corresponding plot title
number are summarized in Table 6.3.

We have found it sufficient to use only the first principal component and therefore only use

the values in the first row of A(t). The ith principal component of sample l at time t is

written ai,l(t).

If we see the xl(t) as realizations of a random variable, the above computation of

principal components has the effect of projecting realizations of xl(t) to points a1,l(t)

on a 1-dimensional subspace. It is a fundamental theory of principal components that

the transformation above maximizes the expected Euclidean distance between the points

a1,l(t). This is desirable for the current problem because it will always produce a variable

emphasizing the parameter with the most variance. More specifically, if a scatter plot

of the frequency-modulation measurements shows multiple distinct clusters whereas the
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Fig. 6.6: Source 2 (estimated). Line-segments classified as belonging to Source 2. See
Figure 6.5 for more information. The amount of noise added and the corresponding plot
title number are summarized in Table 6.3.

amplitude-modulation measurements are all close and show only one cluster in a scatter

plot, the first PC will emphasize the frequency-modulation measurements, which we desire

for ease of clustering. The drawback of this approach is that if one parameter is very noisy

and the other is not, the noisy parameter will be emphasized but forming informative clus-

ters will be difficult. In that case it would be better to reject this parameter or use more

PCs on which to perform clustering.

6.7 Preparing data for clustering

The EM underlying the Gaussian mixture model parameter estimation can converge to a

local maximum [8], therefore, for the best results, we compute a good initial guess and

remove obvious outliers before carrying out the clustering algorithm.
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The a1,l(t) are compiled into a histogram of Nb bins. The minimum and maximum bin

boundaries are computed from the maximum and minimum values of a1,l(t) respectively.

Values in a bin with less than λh other values are discarded. We find N contiguous sections

of equal area in the new histogram omitting the discarded values. We use the centres of

these sections as the initial mean guesses and half their width as the distance 3 standard

deviations from the mean (roughly 99.7 percent of values drawn from one distribution will

lie within this interval if they follow a normal distribution). The initial guesses for the

weights are simply 1
N
.

6.8 Clustering

GMM parameter estimation is discussed in Section B. After convergence we have an es-

timated probability p(a1,l(t) from distribution p). We choose the distribution p for each

a1,l(t) that gives the highest probability of it having occurred. The values xt(t) corre-

sponding to the a1,l(t) have this same classification. Those sharing the same classification

can be interpreted as coming from the same source. The figure shows the results of the

above steps carried out on a mixture of two sources synthesized with the parameters sum-

marized in Table 6.2. The length of the signal N is 8000 samples and the analysis hop size

H is 256 samples.

6.9 Results

Here we show source separation results for the synthesized signals with noise added to

the synthesis parameters ψ, ω, α and A. Each plot shows four realisations with varying

amounts of noise. The amount of noise added and the corresponding plot title number are

summarized in Table 6.3.

The Figures 6.1, 6.3, 6.4, 6.5, 6.6 and 6.9 summarize the results of the source separation

experiment before the smoothing step. Figure 6.1 shows a time-frequency representation of

the original data, Figure 6.3 shows the original data with spurious data added, Figure 6.4

shows the principal components at each time frame and the initial guesses for the EM

algorithm, Figure 6.5 shows the initial classifications for source 1 and Figure 6.6 the initial

classifications for source 2 before the smoothing step.
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Fig. 6.7: Source 1 (estimated) after smooth amplitude path search. Line-segments
classified as belonging to source 1 after smoothing in amplitude using Da. The amount of
noise added and the corresponding plot title number are summarized in Table 6.3.

As seen in Figure 6.5 and 6.6, while classified well in individual frames, the overall

classification does not always correspond to a single source. We must find a collection of

frames with high plausibility of belonging to one source. We consider the collections of

classified data-points corresponding to each source as a node in a lattice. Each frame of

the lattice contains two nodes, one for each source. A best path through the lattice should

connect together those nodes belonging to a single source. We use the results of Section 4.2

to find the two best paths through this lattice. We compare two distance metrics for the

cost function.

The first prefers smoothness in frequency between two frames. For frame h with initial

classification p̃ we have frequency measurements ωh
k,p̃ and frequency slope measurements

ψh
k,p̃. The set of parameters at time h from initially classified source p̃ we will denote

θh
p̃ . Between frame h and frame h + 1 we use Algorithm 1 on the pairs

{
θh
m̃,θ

h+1
ñ

}
with
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Fig. 6.8: Source 2 (estimated) after smooth amplitude path search. Line-segments
classified as belonging to source 2 after smoothing in amplitude. The amount of noise added
and the corresponding plot title number are summarized in Table 6.3.

(m,n) ∈ {0, 1} × {0, 1}. For each pair, L is set to min(#θh
m̃,#θh+1

ñ ).6 The cost function

is the absolute error in predicting the frequency in the next frame from parameters in the

current frame, i.e.,

Df

(
θhi,m̃, θ

h+1
j,ñ

)
= |ωh

i,m̃ + ψh
i,m̃H − ωh+1

j,ñ |

where H is the hop-size in samples between the two frames. The second distance metric

measures the smoothness in amplitude between two frames by predicting the next frame’s

amplitude parameters using the amplitude and amplitude-modulation parameters of the

current frame. It is given as

Da

(
θhi,m̃, θ

h+1
j,ñ

)
= | log(Ah

i,m̃) + αh
i,m̃H − log(Ah+1

j,ñ )|

6Here, the threshold parameter Δ =∞, i.e., a connection of any cost is possible.



6.9 Results 79

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

qu
en

cy
(ra

d s
)

1. 2.

0.0 0.1 0.2 0.3 0.4

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
re

qu
en

cy
(ra

d s
)

3.

0.0 0.1 0.2 0.3 0.4

Time (seconds)

4.

Fig. 6.9: Source 1 (estimated) after smooth frequency path search. Line-segments
classified as belonging to source 1 after smoothing in frequency. The amount of noise added
and the corresponding plot title number are summarized in Table 6.3.

We have found the absolute error to give better results than the squared error.

The costs of these connections are summed over the index pairs Γh to give the entries

of the cost vector c in the LP7

c4h+2m+n =
∑

i∗,j∗∈Γh

D
(
θhi∗,m̃, θ

h+1
j∗,ñ
)

The specification of the constraint matrices is done according to the topology of the lattice

and the requirement that we find 2 non-overlapping paths (see Section 4.2). An example of

7The indexing of c is explained as follows. There are 4 possible classification connections between frame
h and h+ 1. Each source m at time h has a cost of being associated with a source n at time h+ 1, which
is stored in the index 4h + 2m + n. This is merely how the indices are laid out in the array representing
the cost vector c. See Section 4.2 for more about c.
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Fig. 6.10: Source 2 (estimated) after smooth frequency path search. Line-
segments classified as belonging to source 2 after smoothing in frequency using Df . The
amount of noise added and the corresponding plot title number are summarized in Table 6.3.

discovered paths is given in Figure 6.11. The estimated sources after smoothing in frequency

using Df are shown in Figures 6.9 and 6.10. The estimated sources after smoothing in

amplitude using Da are shown in Figures 6.7 and 6.8. We see that when smoothed in

frequency, the results are acceptable. However, when both sets of parameters are close and

give close costs, the spurious data-points can influence the cost function causing a false

classification. This difficulty is not surprising, looking at Figure 6.1 we see that there are

some segments where the frequency slopes are close.

When smoothed in amplitude, the results are less convincing. This is not surprising as

smoothness in amplitude is not the best criterion at all time points. In Figure 6.2 we see

that the amplitudes of both sources are similar at many points, e.g., at around 0.05 and

0.15 seconds.
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Fig. 6.11: Smoothed paths. The points originally classified as source 1 are marked
with circles and those originally classified as source 2 squares. The paths in black or grey
connect the points for source 1 or source 2 respectively with optimal smoothness. Plots
indicated with an a are the paths with frequency smoothness as the criterion and those
indicated with b are with amplitude smoothness as the criterion. The amount of noise
added and the corresponding plot title number are summarized in Table 6.3.

6.10 Conclusion

In this chapter we evaluated the plausibility of separating two mixed sources based on

their theoretical frequency- and amplitude-modulation. We obtained acceptable results

for signals with small measurement errors. The method is also robust in the presence of

spurious data points. A shortcoming of the method is the requirement that the frequency

and frequency-modulation of the signals be known. Although for this experiment syn-

thetic data were used, if the signals are sufficiently separated in frequency and have small

bandwidth, as shown in Section 3.4, the DDM can be used to estimate these parameters.

There are also techniques for estimating amplitude- and frequency-modulation that were
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Fig. 6.12: Paritioning example. The data points are convolved with some smoothing
kernels giving a function with a small number of extrema. The minima, indicated by circles,
are used as boundaries between the partitions which are illustrated with different shades
of grey.

not explored in this thesis. If signals are close in frequency, but the number of partials is

known, and these exhibit slow modulations, signal subspace methods could be used [50]

where the estimations at different time points are connected as in Chapter 4 and the modu-

lation parameters postulated via interpolation similarly to Section 3.3.1. If it is possible to

make uncorrupted measurements of the two signals and identify where the signals are not

easily identified (e.g., the locations that their partials cross in the time-frequency plane) a

strategy might be to use two measurements of one source and extrapolate the parameters

of the signal in the part corrupted by the other source. A similar approach is explored in

[27] where the Hough transform is used to identify crossing partials. Another shortcom-

ing of the technique presented here is the use of the costly EM algorithm to classify data

points using GMM (see Appendix B). A more ad hoc approach could be taken to save on
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these computations, perhaps partitioning the data sets using local minima as illustrated in

Figure 6.12. In any case, the source separation technique presented here, being iterative, is

of a complexity similar to NMF or PLCA but can also resolve the phases of the sinusoids

which are discarded in most NMF or PLCA implementations8.

8See [4] for an approach that does take into consideration the phase information in the spectrogram.



84



85

Chapter 7

Experiment: Separation of two

sources using partial decay rate

7.1 Introduction

In this section we demonstrate how the techniques described above can be used to per-

form audio source separation on signals obtained from recordings of acoustic instruments.

Specifically, we show that in the absence of frequency-modulation, amplitude-modulation

— the decay rate — can be used to classify partials in a mixture of two sources into two

groups, each group representing an underlying source.

7.2 Description of problem

We start with a recording of an acoustic guitar playing A3 and a xylophone playing F
�
4. The

recordings are from [43] and have been mixed down to one channel (by simply adding the

two signals together) and resampled at 16 kHz, coded simply as a stream of 64-bit floating-

point numbers. Spectrograms of the original signals are shown in Figure 7.1 and Figure 7.2.

The spectrograms were produced with a Hann window, DFT size of 4096 samples and a hop

size of 512 samples. We see that neither source exhibits much frequency-modulation. The

spectrogram of the mixture can be seen in Figure 7.3 and the partial paths in Figure 7.4.

The mixture of the two signals was analysed using the DDM for finding the coefficients

of a cubic complex phase polynomial. Local maxima in each frame were found using

the technique described in [52, p. 42]. For each of these local maxima, the polynomial
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Fig. 7.1: Spectrogram of acoustic guitar. The fundamental is A3 or 220 Hz.
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Fig. 7.2: Spectrogram of xylophone. The fundamental is F�
4 or approximately 370 Hz.
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Fig. 7.3: Spectrogram of mixture. This spectrogram is the sum of the spectrograms
in Figure 7.1 and 7.2.

coefficients were estimated. The analysis used the C1 4-Term Blackman-Harris window

that was designed in Chapter 3. To obtain partials it was then necessary to connect the

local maxima. As the partials of these two sound sources are quite stable in frequency

it sufficed to use the Viterbi algorithm [13] and the cost metric Dpr. from Section 4.3

to connect local maxima in sub-bands of the spectrum. The cost function is simply the

Euclidean distance between the frequencies of two local maxima. Partial starting points

are considered in sub-bands of width 15 Hz and these sub-bands overlap by 7.5 Hz. A

partial path starts on the first local maximum in the band exceeding -100 dB and ends at

the last maximum exceeding -100 dB. The path search algorithm will also look ahead to

further frames if no maximum is present in the next frame. Because of this, sometimes

unrealistic paths are discovered that jump between spurious maxima. These are filtered

out by discarding paths whose cost-length ratio is excessive. See Figure 7.6 to see a plot

of these values and the thresholding function.
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Fig. 7.4: Spectrogram of mixture and partial trajectories
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Fig. 7.5: Partial trajectories. Line functions are fit to the partial trajectory data of
each partial to examine their general amplitude slopes.
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Fig. 7.6: Path cost vs. length and thresholding boundary. Paths, represented as
circles, are considered only if their path cost is smaller than the threshold function, the black
curve. The threshold is higher for shorter partials as to not reject those that represent the
transient region of the sound. The partials during this time typically have rapidly changing
frequency- and amplitude-modulation, so their path costs could be disproportionately high.

7.3 Motivation

Line functions (functions of time) are fit to the amplitude and frequency data on each

partial trajectory via least-squares, as shown in Figure 7.5. Here roughly two kinds of

partial slope with respect to amplitude are observed — those that are steep and brief and

others that are longer and more gradual. Our goal is to classify based on the amplitude-

modulation of each partial, or to an approximation, the slope of these line functions. We

found that examining the log-length of the partials gives better results than examining the

slope directly. This is perhaps because the log-length encodes both the starting amplitude

and the slope. Recall that the partials start on the first local maximum exceeding an

amplitude threshold — those with lower starting amplitude and steeper amplitude slope

will be shorter, while those with a higher starting amplitude and shallower slope will be
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Fig. 7.7: Log-partial-length vs. frequency: principal components. This shows
the distribution of partials when plotting their two principal components derived from
their mean frequency and log-length. In this case, the source memberships of the partials
are known. We see that there is generally a separation of the partials into two clusters
corresponding to the two sources.

longer. We see in Figure 7.7 that using both the amplitude slope and the initial amplitude

of the partial gives clear separation in a plot of the log-length vs. the average frequency of

the partials. These partials are from separate overlaid analyses of the guitar and xylophone

signals. The experiment uses an analysis of a signal consisting of a mixture of the sources,

of course.

The data-points have the form

ai =

(
ai,0

ai,1

)

where ai,0 is the first principal component and ai,1 the second and are computed via a linear

transformation of

xi =

(
f i

�i

)
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where f i is the mean frequency of the ith partial and �i its log-length (see Appendix A

for the computation of principal components). The set of principal components will be

denoted {a}. We see that, for the most part, the partials belonging to the two sources

are separated appropriately into two clusters. The partials from the xylophone present in

the guitar cluster belong to higher partials, whose omission in the final rendering of the

xylophone source would not be detrimental to its perceptual quality. Similarly, partials

belonging to the guitar present in the xylophone cluster are short and most likely belong

to briefly excited modes of the guitar body.

7.4 Classification

Our intention is now to use GMM (see Appendix B) on a set of unclassified partials to yield

a plausible source separation. GMM fitting is sensitive to its initial guess of the parameters

as the algorithm can converge to a local maximum of the likelihood function [26, p. 187].

To find an initial guess we convolve the scatter plot with kernel K , giving a continuous

function. K is defined1

K (x,β) = exp(−1
2
xTβ−1x)

Here x ∈ R
2 and β ∈ R

2×2 controls the extent of the kernel, i.e., how much it smooths in

each dimension.

We use the two local maxima of this function as the initial means for the two sought

classifying Gaussian distributions. The convolution function evaluated at â is

f(â) =
∑

ai∈{a}
K (â− ai,βa)

To make the variance proportional to the extent of each dimension, βa is defined as

βa =

⎛
⎜⎝

Δa1

Δa0+Δa1

θβa
0

0
Δa0

Δa0+Δa1

θβa

⎞
⎟⎠

where

Δa0 = max (a0)−min (a0)

1Note its similarity to the normal distribution, defined in Appendix C.
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Fig. 7.8: Estimated memberships. The contours of the function resulting from convolv-
ing the data-points with kernels are represented by the lines. It is from the local maxima of
these functions that the EM algorithm begins its search for the mixture of Gaussians (not
shown) that give the classifications. A marker’s classification is indicated by its colour.

Δa1 = max (a1)−min (a1)

and θβa
is a parameter to control the smoothness of the resulting function, here θβa

= 1.2.

A contour plot of the resulting function f(â) is shown in Figure 7.8.

To initialize GMM the initial means μ0 are chosen to be the points corresponding to

the local maxima of the smoothed scatter plot2. To determine initial weights w0 we first

determine the value of the function at the two local maxima, f(a∗0) and f(a
∗
1). To weight

relative to these two values, we compute

w0
i =

Θw {f(a∗i )}∑R−1
p=0 Θw

{
f(a∗p)

}

2Recall that the superscript here refers to the iteration number of the algorithm.
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Fig. 7.9: Spectrogram of source separated acoustic guitar. The fundamental is A3

or 220 Hz.

where Θw is some kind of weighting operator to have parametric control over the influence

of each function value and R is the number of maxima. Here

Θw {f(a∗i )} =

⎧⎨
⎩f(a

∗
i )θw i = 0

f(a∗i ) otherwise

and R = 2, i.e., only the first maximum is weighted. For this experiment the parameter

set as θw = 1.1 gave the best results. The covariance matrix Σ0 is computed as

Σ0 = S({a}) + εI

where S computes the sample covariance and εI is a matrix whose only non-zero entries are

on the main diagonal and are equal to a small constant to avoid a singular initial covariance

matrix. 100 iterations of the EM algorithm (see Appendix B) are performed to compute

classifications. Each point is assigned to its most likely cluster using the final estimated
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Fig. 7.10: Spectrogram of source separated xylophone. The fundamental is F�
4 or

approximately 370 Hz.

Gaussian distributions. The final classifications for this classification task can be seen in

Figure 7.8.

7.5 Synthesis

After the classifications have been made, synthesizing the separated sources simply involves

only synthesizing the partials classified as belonging to the same source. For the synthesis,

we use the technique described in Section 5.4.2. Spectrograms of the source separated

signals are shown in Figure 7.9 and Figure 7.10.

7.6 Conclusion

After an informal listening, the source separation is perceptually convincing.3 At least one

partial from the guitar can be heard in the xylophone recording, however — it is difficult

3Soundfiles can be downloaded from
https://drive.google.com/file/d/0B8B4c04j8tBwZDFraEZ1dFZHRFU/view?usp=sharing



7.6 Conclusion 95

to separate partials that do not have sufficient spatial separation in Figure 7.8. Another

drawback of the current technique is that it requires some tuning of the parameters θw

and θβa
. From the spectrograms of the resynthesized sources, we see that some of the

partials from both sounds were lost in the analysis. Although a shortcoming of the analysis

rather than the classification, if partials are not sufficiently separated in time or frequency,

they cannot be separated as their analysis will yield simply one partial when there are in

fact many. In any case, it is important to see that source separation can be carried out

by only considering the amplitude-modulation (in this case, the decay rate) in relation to

the partial frequency. Apart from the combination of instruments presented here many

plausible situations can be imagined where this technique could be carried out: e.g., with

a mixture of sustained instruments such as violin, voice or horns and pitched percussive

instruments such as the piano or guitar.
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Chapter 8

Conclusion

Here we summarize the results of our work, highlight our contributions to the audio source

separation problem, and suggest some possible extensions to the techniques presented in

this thesis.

8.1 Results

8.1.1 Quality of polynomial models for analysis and synthesis

In Chapter 5 we explored various orders of polynomial amplitude and phase models for

analysis and synthesis and assessed their fidelity in reproducing synthetic signals of with

polynomial and exponential phase functions. A quadratic estimation of the phase and log-

amplitude in the analysis step improved the synthesis quality over the constant amplitude

and linear phase model in all cases considered. The use of a quintic phase polynomial in

the synthesis step better approximated a signal with exponential phase. However, the use

of the quintic phase and amplitude polynomial did not necessarily improve the synthesis of

a signal with cubic phase and quartic amplitude. Nevertheless, the additional information

provided by the DDM in the analysis stage was shown useful in postulating interpolating

polynomials at the synthesis stage.
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8.1.2 The use of amplitude- and frequency-modulation in audio source

separation

Chapter 6 explored the contribution of amplitude- and frequency-modulation to the source

separation problem on simulated data. Chapter 7 investigated, using real recordings, how

to overcome the case where no frequency-modulation was present in either of the sources

and so only amplitude-modulation could be used to perform separation.

Using amplitude- and frequency-modulation

In Chapter 6 we considered both the amplitude- and frequency-modulation when classifying

into sources. We adaptively selected the best variable on which to classify using princi-

pal components analysis and found that amplitude-modulation aided in the case of little

frequency-modulation. A post-processing step was required to extract the original sources.

This step extracted sources based on the smoothness between analysis frames of the am-

plitude and frequency measurements. Only the post-processing encouraging smoothness

in frequency gave encouraging results — smoothing in amplitude failed due to the rapidly

varying amplitude in the transient regions of the sounds.

Real recordings with no frequency-modulation

In Chapter 7 we applied our source separation technique to a recording of a percussive and

a plucked string instrument. These instruments exhibit virtually no frequency-modulation.

We showed, as in Chapter 6, that it is possible to carry out source separation when the

difference in amplitude-modulation of the two sources is sufficient.

8.2 Contributions

8.2.1 Design of continuous windows with lower side-lobes

The DDM requires the use of windows that are once differentiable. The canonical window

with this property is the Hann window, however the Blackman-Harris window has better

properties in terms of its out-of-band signal rejection, but is not differentiable. In Chap-

ter 3, starting from the description of a Blackman-Harris window, we used optimization

techniques to search for a window close to the Blackman-Harris, but whose end-points

are 0, thus allowing differentiation everywhere after windowing with a rectangular window

(necessary to make the window have finite support). Although no formal quantification of
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the improvement was performed, we found this to improve the estimation accuracy of the

DDM for signals sufficiently separated in frequency (separated by at least the bandwidth

of the main-lobe of the frequency domain representation of the window) when compared

with the DDM using the Hann window.

8.2.2 Partial tracking using linear programming

The original peak-matching algorithm of McAulay and Quatieri [36] searches for partials

through a lattice of spectral analysis data by considering optimal peak-matches between

two adjacent frames. In Chapter 4 we show that this can be generalized to search for L

paths between an arbitrary number of frames in a lattice, and that it is a greedy algorithm

— one that gives the shortest possible path without considering the lengths of the other

paths in the solution. Also, it is shown that the complexity of this algorithm is exponen-

tial in the number of frames and therefore impractical to apply to even moderately sized

problems. A linear program to search for the L paths through a lattice with shortest total

cost is introduced. We show that this algorithm is computationally tractable and that it

outperforms the McAulay-Quatieri method on signals with low SNRs.

8.3 Future extensions

8.3.1 Continuous analysis windows

It remains to be seen systematically in what situations the continuous Blackman-Harris

window improves the estimation accuracy of the DDM. For this, DDM-based analysis using

both the Hann and continuous Blackman-Harris windows should be performed on mixtures

of synthetic signals and the accuracy of analysis compared. Further improvements to the

window design could be investigated, such as finding a continuous Blackman-Harris window

with good trade-off between main-lobe width and side-lobe height.

8.3.2 Partial tracking in an optimization framework

The reinterpretation of partial tracking as an optimization problem allows the application

of techniques from mathematical programming, a field with a rich body of knowledge [3].

As discussed in Chapter 4, regularization could be used to encourage less “jagged” partial
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trajectories. The merits of partial tracking via linear programming should be assessed on

real music and speech signals.

8.3.3 Signal modeling with nonlinear amplitude and phase polynomials

A non-stationary description of signals could make it possible to describe signals using fewer

analysis frames as the signal can be more accurately modeled between analysis points. As

mentioned in [2], it should be investigated whether or not such a model could contribute

to the field of audio coding. Specifically, compression ratios should be compared between

analyses using a lower-order model, but with more analysis frames, and those using higher-

order models but fewer analysis frames. Possible improvements to applications such as the

time-stretching of transients and the extrapolation of missing signals (inpainting) should

also be considered.
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Appendix A

Principal components analysis (PCA)

A.1 Motivation

If data-points consist of more than two dimensions (say p), it becomes burdensome to try

and find the single best or two best dimensions on which to examine for grouping. If we

consider variables on each of the dimensions that take on the data-point’s corresponding

values, we are interested in the variables that capture most of the data-points’s variance. It

turns out we can determine a linear transformation of our original dataset giving p variables

and their p variances such that the resulting variable with the highest variance will have

the maximum variance achievable, under some constraints that will be explained shortly.

A.2 Computation of principal components

The following development is based on [24]. Say we have a set {x} of data-points and their
covariance matrix S. A linear function of x, f1(x) = aT

1 x, has variance σaT
1 x = aT

1Sa1.

Therefore, we desire a vector a that maximizes σaT
1 x. We can find this via the program

maxaT
1Sa1

subject to

aT
1Sa1 = 1

(to obtain a bounded solution).
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The resulting function of x, f1(x) = a∗T1 x is called the first principal component. The

second principal component f2(x) = a∗T2 x is found similarly to the first, except with

the additional constraint that it be uncorrelated (orthogonal) to the first component, i.e.,

a∗T2 a1 = 0, and the third is found by requiring orthogonality with the first two principal

components, etc.

The principal components now allow us to examine for grouping more easily as the total

variance of the dataset has been captured in the first few principal component variables.

These transformed data-points can now be classified using a classification algorithm — see

Appendix B for the classification algorithm used for the experiments in this thesis.
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Appendix B

Gaussian mixture models (GMM)

Consider the data-points X as realizations of the vector Gaussian distributed random

variable X. With a large enough sample and a small enough covariance, we will observe

realizations of X as a cluster with some mean (centre point) μ and a shape described by

the covariance matrix Σ. If we observe multiple clusters this might imply that there are P

different distributions each with mean μp and covariance matrix Σp and on each iteration

one is chosen with probability wp. With N observations xn we can estimate, via maximum

likelihood, the P sets of parameters using a form of the expectation maximization (EM)

algorithm [39], [8], which is an algorithm suitable for estimating missing data from known

ones. First, define

p (xn|p) =
N
(
xn;μ

k
p,Σ

k
p

)
wk

p

P∑
l=1

N
(
xn;μ

k
l ,Σ

k
l

)
wk

l

the probability that xn given distribution p (see Appendix C for the definition ofN
(
x;μk,Σk

)
).

The superscript k indicates the value of this parameter on iteration k. To update wk
p :

wk+1
p =

1

N

N∑
n=1

p (xn|p)
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which means intuitively that the probability of a data-point having been generated by

distribution p is the average probability of observing any xn given p. To update μ
k+1
p :

μk+1
p =

N∑
n=1

p (xn|p)xn

N∑
n=1

p (xn|p)

which is a weighted mean of all the data-points. Those less likely for a given p will weight

the mean less and vice versa. A similar computation is made for Σk+1
p :

Σk+1
p =

N∑
n=1

p (xn|p)
(
xn − μk+1

p

) (
xn − μk+1

p

)T
N∑

n=1

p (xn|p)

The algorithm is halted after some number of iterations or when convergence is reached,

i.e., the parameters change little each iteration. After convergence, the classification p∗ of

the data-point x is simply

p∗ = argmin
p

p (xn|p)
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Appendix C

The normal distribution

If a random variable X is has mean μ = E(X) and variance σ2 = E((X − μ)2), where E

is the expectation operator, and is completely described by these two parameters, we say

that draws from X, x, follow a normal distribution. Put another way, given a draw x from

X, the probability of obtaining x is given by

pN (x) = N (x;μ, σ2) =
1√
2πσ2

exp(−(x− μ)2

2σ2
)

When a random variable X is distributed by a normal distribution with mean μ and

variance σ2 we write

X ∼ N (μ, σ2)

In the case that x̃ is an N -dimensional random vector1 characterized by the multidimen-

sional mean μ = E(x̃) and covariance matrix Σ = E((x̃−μ)(x̃−μ)T ) then the probability

of obtaining a realization x is given by

((2π)N |Σ|)−1/2 exp(−1
2
(x− μ)TΣ−1(x− μ))

|Σ| means the determinant of Σ. Similar to above, when a random vector is distributed

by a normal distribution, we write

x̃ ∼ N (μ,Σ)

1We write x̃ because X would be a matrix.
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The normal distribution, also called the Gaussian distribution, arises often in statistics and

signal processing due to the Central Limit Theorem [10] and its relationship to least-squares

estimation [26].
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