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PREFACE

Contribution of the authors

This thesis is written in manuscript form as permitted by the McGill University. It is
composed of five chapters: an introduction, one published manuscript (Gharat & Baker, 2017),

two manuscripts to be submitted and a final discussion.

Chapter 2 contains a published manuscript: Gharat A and Baker CL (2017) Nonlinear Y-
like receptive fields in the early visual cortex: An intermediate stage for building cue-invariant
receptive fields from subcortical Y cells. The Journal of Neuroscience. 37(4): 998-1013. The
study was designed by me and Dr. Baker. Recording experiments were performed by me with
assistance from Dr. Baker and lab members, Guangxing Li and Vargha Talebi. Guangxing Li
provided analysis software for analyzing plexon data files. Data analysis and model simulations
were performed by me with guidance from Dr. Baker, using modeling software written by him

and 1. Finally, this manuscript was written by me and edited by Dr. Baker.

Chapter 3 contains a manuscript in preparation: Gharat A, Nguyen P and Baker CL.
Estimating subunit receptive field models of thalamic neurons with deep learning. The study was
designed by me and Dr. Baker. Recording experiments were performed by me with assistance
from Dr. Baker and lab members, Guangxing Li and Philippe Nguyen. Philippe Nguyen
provided software for estimation of convolutional models, which I adapted for use with my data,
and helped with initial data analysis. I performed data analysis with guidance from Dr. Baker.

Finally, this manuscript was written by me and edited by Dr. Baker.
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Chapter 4 contains a manuscript in preparation: Gharat A and Baker CL. Separating ON
and OFF pathway inputs to cortical simple cells reveal receptive fields with asymmetric push-
pull. The study was designed by me and Dr. Baker. Recording experiments were performed by
me with assistance from Dr. Baker and lab members, Guangxing Li and Philippe Nguyen.
System identification software provided by Vargha Talebi was modified by me to estimate
subunit receptive fields. I performed data analysis and wrote the manuscript with guidance from

Dr. Baker.

Contributions to Original Knowledge

In Chapter 2 we found nonlinear Y-like receptive fields in the early visual cortex that
could form an intermediate stage between subcortical Y cells and cortical orientation selective
cue-invariant receptive fields. We proposed a novel neural network model that generates cue-
invariant selectivity by combining Y pathway ON and OFF inputs in asymmetric manner.
Through model simulations we demonstrated that its tuning properties to luminance and contrast-

modulation gratings match the previously observed selectivity of cortical neurons.

In Chapter 3 we adapted a deep learning framework to quantitatively estimate receptive
field models of LGN neurons based on known retinal circuitry. To my knowledge, it is the first
study to show that for LGN Y cells, a multi-stage neural network model improves their
predictive performance compared to a linear-nonlinear model on novel naturalistic stimuli. With
this method we are able to infer computations happening at earlier stages than the LGN, since we
could recover biologically interpretable subunit filters and their output nonlinearity. We showed
that convolutional neural networks are powerful in modeling early stages of the visual pathway

with limited neural data.



In Chapter 4 we devised a novel method to quantitatively measure both excitatory and
inhibitory contributions of ON and OFF pathway inputs within individual cortical receptive
fields, using naturalistic visual stimuli, from extracellularly recorded spiking signals. We
recovered novel spatio-temporal asymmetries in the integration of ON and OFF inputs in cortical
simple cells. These results challenge the standard model of a simple cell receptive field as a
linear spatio-temporal filter. These asymmetries found in the inputs to cortical neurons could
provide the neural mechanism for generating cue-invariant receptive fields from Y-pathway

inputs.

In Summary, this thesis provides a new perspective on how spatial nonlinearities
emerging from the retina can influence cortical processing of luminance- and texture-defined
boundaries. These results strengthen the idea that luminance and texture signals are multiplexed

through the early stages of the visual processing.
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ABSTRACT

Our visual system is sensitive to boundaries defined by differences in cues such as
luminance (first-order cue), as well as texture, contrast, or motion (second-order cues). Gradients
in these cues can be utilized to perform tasks such as figure-ground segregation and 3D shape
perception. A significant fraction of neurons in the early visual cortex of cats and monkeys have
been shown to be selective to both first- and second-order boundaries. These neurons are thought
to be the neural correlate for perceptual encoding of such boundaries. They are selective for the
same boundary orientation irrespective of the cue (first- or second-order) that defines it (“form
cue-invariance”), which makes these neurons powerful candidates for the task of segmentation.
However, the neural circuitry that gives rise to this selectivity for the early stages of visual
processing remains unclear. To address this question, I perform neurophysiological recordings at
the early stages of the visual pathway in cats, and then build biologically inspired neural circuit
models that can account for visual response properties of neurons at subcortical as well as early

cortical stages.

In Chapter 2, I use multi-electrode recordings to demonstrate the presence of a significant
fraction of neurons in cat Area 18 with nonlinear receptive fields like those of subcortical Y-type
cells. These neurons have receptive field properties intermediate between subcortical Y cells and
cortical orientation selective cue-invariant neurons. These are strong candidates for building cue-
invariant orientation-selective neurons. Furthermore I present a novel neural circuit model that
pools such Y-like neurons in an unbalanced “push-pull” manner, to generate orientation-selective

cue-invariant receptive fields.
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In Chapter 3, I estimate biologically constrained neural network models of cat LGN
receptive fields using recent machine learning methods (deep learning). The receptive fields are
modeled as arising from a two-stage convolutional neural network model. The first stage,
corresponding to retinal bipolar cell subunits, is modeled as a convolutional filter layer, and the
second stage is modeled as a pooling layer. These two layers are separated by an intermediate
parametric nonlinearity. I train such a neural network model for each recorded LGN neuron,
using its spiking responses to naturalistic texture stimuli. These models are not only better in
comparison to the standard linear-nonlinear models at predicting response to arbitrary stimuli,

but they also recover biologically interpretable subunit models.

In chapter 4, I evaluate the integration of ON- and OFF-pathway inputs by individual
neurons in early cortical areas of the cat (Area 17 and Area 18). In this study, I model receptive
fields of cortical simple cells as a linear weighted sum of rectified inputs from model ON- and
OFF-center LGN afferents, with the weights estimated using a regression framework. The
estimated models reveal significant asymmetries in spatiotemporal integration of ON and OFF
signals within simple cell receptive fields. These observed asymmetries could provide the neural

mechanism for generating cue-invariant receptive fields from Y-pathway inputs.

In summary, I put together our knowledge of retinal as well as early cortical processing to
show how spatial nonlinearities emerging from the retina could provide an essential basis for
cortical visual processing. I further evaluate these neural mechanisms by estimating single
neuron receptive field models, using modern system identification methods. Finally I propose,

and provide supportive evidence for, a novel neural circuit mechanism that could explain the
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cue-invariant processing of luminance- and texture-defined boundaries through a common

pathway.
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RESUME

Notre systéme visuel est sensible aux démarcations définies par des différences entre des
indices tels que la luminance (indices de premier ordre) ainsi que la texture, le contraste ou le
mouvement (indices de second ordre). Les gradients de ces indices peuvent étre utilisés afin
d’accomplir des taches telles que 1’identification d’un objet par rapport a I’arriére-plan et la
perception de formes en 3D. Une proportion significative de neurones dans le cortex visuel
précoce des chats et des singes a été identifiée comme étant sélective a la fois aux démarcations
de premier et de second ordre. Ces neurones sont considérés comme étant le corrélat neuronal de
I’encodage perceptif de ces démarcations. Ils sont sélectifs aux mémes orientations de
démarcation indépendamment de I’indice qui les définit (invariance d’indice de forme), ce qui
fait de ces neurones des candidats compétents aux taches de segmentation. Cependant, les
circuits neuronaux qui générent cette sélectivité aux stages précoces du traitement visuel restent
mal définis. Pour répondre a cette question, j’ai effectué des enregistrements
neurophysiologiques aux stages précoces du systéme visuel chez le chat et ai ensuite construit
des modeles de circuits neuronaux qui peuvent rendre compte des propriétés des réponses

visuelles des neurones au niveau sous-cortical ainsi qu’aux stages corticaux précoces,

Dans le Chapitre 2, J’utilise des enregistrements multi-électrodes pour démontrer la
présence d’une proportion significative de neurones dans 1’aire 18 du chat présentant des champs
récepteurs non-linéaires tels que ceux des cellules Y sous-corticales. Ces neurones ont des
propriétés de champs récepteurs intermédiaires entre les cellules sous-corticales Y et les
neurones corticaux sélectifs a I’orientation indifférents aux indices. Ce sont des candidats

privilégiés pour le faconnement de neurones sélectifs a I’orientation indifférents aux indices. En
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outre, je présente un nouveau modele de circuit neuronal qui groupe ce type neurones de style Y
avec un déséquilibre ‘’pression-traction’’ pour générer des champs récepteurs sélectifs a

I’orientation indifférents aux indices.

Dans le Chapitre 3, j’évalue des modeles de réseaux neuronaux contraints par la biologie
des champs récepteurs du CGL du chat en utilisant des méthodes récentes d’apprentissage de
machine (apprentissage profond). Les champs récepteurs sont modélisés tels qu’émergeant d’un
modele de réseau neuronal convolutionnel a deux niveaux. Le premier niveau, correspondant aux
sous-unités des cellules bipolaires rétiniennes, est modélisé en tant que couche de filtrage
convolutionnel et le second niveau est modélisé en tant que couche de groupement. Ces deux
couches sont séparées par une non-linéarité paramétrique intermédiaire. Nous avons entrainé un
tel modele de réseau neuronal pour chaque neurone du CGL enregistré, en utilisant sa réponse
supraliminaire a des stimuli de textures naturalistiques. Ces modeles ne sont pas seulement
meilleurs en comparaison des modeles linéaires/non-linéaires standards pour la prédiction de la
réponse a des stimuli arbitraires, mais ils expliquent également les modéles de sous-unités qui

peuvent étre interprétés biologiquement.

Dans le Chapitre 4, je planifie I’intégration des entrées des voies ON et OFF par les
neurones individuels des aires corticales précoces du chat (aires 17 et 18). Dans cette étude, je
modélise les champs récepteurs des cellules simples corticales comme une somme lin€aire
pondérée des entrées rectifiées des afférents a centre ON et OFF du CGL, avec des poids estimés
dans le cadre d’une régression. Les modeles estimés révelent des dissymétries significatives dans

I’intégration spatio-temporelle des signaux ON et OFF dans les champs récepteurs des cellules
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simples. Ces dissymétries pourraient sous-tendre les mécanismes neuronaux qui générent des

champs récepteurs indifférents aux indices a partir des entrées des voies Y.

En résumé, j’ai combiné nos connaissances du traitement aussi bien rétinien que cortical
pour montrer comment des non-linéarités spatiales émergeant au niveau de la rétine peuvent
fournir une base essentielle au traitement visuel cortical. J’ai évalué en détails ces mécanismes
neuronaux en estimant des modeles de champs récepteurs de neurones par des méthodes
modernes d’identification de systémes. Finalement, je propose et fournit des arguments en faveur
d’un nouveau mécanisme neuronal qui pourrait expliquer le traitement indifférent aux indices

des démarcations définies par la luminance ou la texture par une voie commune.
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1

In Chapter 1, I briefly explain structure of the thesis, followed by a comprehensive literature
review of the relevant background. Finally, I state the aims of the three data chapters and the

rationales behind them.



CHAPTER 1

General Introduction

1.1 Thesis Structure

This thesis is written and organized in a manuscript based style containing five separate
chapters. The first chapter provides a general overview of the topics pertinent to the three data
chapters (2, 3 & 4) of this thesis which are written as three separate manuscripts. The overall
theme of the thesis is to understand visual processing at the early stages of the visual pathway by
quantitatively studying receptive field properties of single neurons at subcortical and cortical
level. Since all three studies included in this thesis were conducted on cats, the introduction
chapter is heavily focused on cat single-unit neurophysiology literature with some comparison to
primates. In the final discussion chapter, I summarize and link the findings from three data
chapters. Finally, I discuss limitations and caveats about the methodology and approach of these

studies with possible future directions.

1.2 First- and second-order information in visual scenes

Our visual world is cluttered with a variety of objects and is highly dynamic. Despite this
we seem to effortlessly identify objects and form a coherent perception of the world around us.
One of the cues that we use for performing visual tasks is the luminance variation that occurs in
natural scenes. Luminance cues are also referred to as "first-order" cues in the literature. Usually,

different objects differ in their luminance, and this can help us to delineate an object from its



background (“figure-ground segregation”). Changes in luminance can also be used for
interpreting the 3D shape of objects ("shape-from-shading"). However, relying only on
luminance cues can introduce ambiguities. For example, luminance changes could be a result of
material differences between an object and its background, or because of different illumination

or shadows, or perhaps folds in a textured material.

Fortunately, our visual system is also sensitive to "second-order" cues such as texture,
contrast or motion differences. Boundaries arising from second-order cues either occur
independently or co-occur with first-order cues in natural scenes (Johnson and Baker, 2004).
When an object occludes another object, very often the two objects not only have different
luminance but also have different texture or local contrast. However, shadows cast on an object
only generate luminance variations but other cues don’t change. Thus, second-order cues can be
helpful in disambiguating such false boundaries. Furthermore, such second-order cues have also
been shown to help in interpreting 3D shape from shading (Schofield et al., 2010). Thus, second-
order cues independently or in combination with first-order cues can provide vital information to

our visual system.

Boundaries formed by luminance changes, as shown in Figure 1.1 between the tree and
grass, can be detected by Gabor-shaped linear filters. These filters sum luminance within their
subfields linearly and are selective for orientation of boundaries. For example, Gabor-like
receptive fields in the primary visual cortex can encode such boundaries. However, boundaries
formed by purely second-order cues, such as between the grass and its reflection in the water in
Figure 1.1 may not contain any variation in mean luminance. Therefore, spatially linear filters
cannot detect such boundaries. Hence it has been suggested that a specialized mechanism (filter-

rectify-filter or FRF) is required for detecting such boundaries (Zhou and Baker, 1993), in which



a bank of small filters detects fine texture elements in the image, then the outputs of these filters
are rectified and pooled together by a coarse scale filter as shown in Figure 1.2. A similar
mechanism has been suggested by (Karklin and Lewicki, 2003) to efficiently code higher-order

structure in natural images. However, the neural substrate for such processing remains unclear.

1.3 Early visual pathways

Visual signals from the photoreceptors in the retina diverge to generate two major
divisions, i.e. the "ON" and the "OFF" pathways. Neurons in the ON pathway respond to the
relatively bright regions in the visual scene and those in the OFF pathway to the dark regions.
Receptive fields of retinal ganglion cells (RGCs) that form the output of retina are concentric
with antagonistic centre-surround organization. ON-centre RGCs are excited by light stimuli in
the centre of their receptive field and are inhibited by light stimuli in the surround region. On the
other hand, the opposite happens for OFF-centre RGCs. These ON and OFF pathways have little
interaction in the retina and LGN (but see Liang & Freed, 2010) until they are combined in the
primary visual cortex (Schiller, 2010). Usually ON and OFF pathways are thought to be
symmetric to one another in terms of their spatio-temporal receptive field properties. However,
they have some interesting asymmetries that might give rise to some perceptual phenomenon.
For example, visual signals are processed faster in the OFF pathway as compared to the ON
pathway (Jin et al., 2011). This difference might explain why human subjects are faster at

detecting dark regions compared to bright regions (Komban et al., 2014).

Based on receptive field properties, RGCs in the cat are further divided into different
categories. X- and Y-type RGCs form two major fractions of cell types that send visual signals to
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the LGN and the cortex. Cells are classified into these two types by measuring the linearity of
spatial summation within their receptive fields (Enroth-Cugell & Robson, 1966). When tested
with contrast-reversing gratings of high spatial frequencies, Y-type cells respond nonlinearly at a
second harmonic (F2) of a temporally modulated stimulus, but X-type cells do not show such
nonlinearity and respond linearly at the first harmonic. On the other hand, in response to drifting
gratings, Y cells respond at the first harmonic to low spatial frequencies. Thus Y cells show dual
spatial frequency tunings (Figure 1.3), one at low spatial frequencies corresponding to centre-
surround organization of the receptive field and the other at high spatial frequencies
corresponding to subunit structure (will discuss about this in detail in the following section)
within the receptive field. At a given eccentricity Y cells have bigger receptive fields than X
cells, and consequently Y cells are selective for lower spatial frequencies. Further, there is a
close correspondence between functional X- and Y-type cells and morphologically defined -
and a-type retinal ganglion cells (Cleland et al., 1975; Wassle et al . 1975; Rodieck, 1979). B
cells have small cell bodies and thinner axons while a cells have much bigger cell bodies and

thicker axons. Both X- and Y-cells have ON- and OFF-centre receptive fields.

There is also another category of RGCs in the cat, W-type cells (Fukuda and Stone,
1973), which have not been well studied. They form a heterogenous mixture of cells that are not
classified into X- or Y-type. Some of the W cells are direction selective, while some have
receptive fields giving mixed ON/OFF (excitation or inhibition) responses throughout their
receptive field. W cells have large receptive fields like Y cells (Wilson et al., 1976; Dreher and

Sefton, 1979).



1.4 Retinal Circuitry

In the retina, visual signals undergo multiple stages of processing through the cascade of
various retinal cell types. Light is absorbed by the photoreceptors (rods and cones) and
transduced into electrical signals, which are sent to ON- and OFF-type bipolar cells. Horizontal
cells also integrate inputs from multiple photoreceptors and provide inhibition to bipolar cells.
Horizontal cells are thought to be responsible for the surround mechanism of bipolar cell
receptive fields. Then bipolar cells make direct synapses on to the retinal ganglion cells. Bipolar
cells also make synapses with amacrine cells, which pool inputs from many bipolar cells and
then provide inhibition to retinal ganglion cells, thus generating the surround mechanism of the

retinal ganglion cells.

Interestingly, the bipolar cells that synapse onto Y ganglion cells provide half-wave
rectified inputs (Demb et al. 1999, 2001a), and are thought to be the neural substrate for the
nonlinear subunits within the Y cell receptive fields. This rectification is a consequence of a low
spontaneous release rate of glutamate from the bipolar cells' synaptic terminal onto the RGC.
Therefore, these bipolar cells cannot provide a negative output. This mechanism is contrary to
the previously proposed mechanism in which the nonlinearity of the amacrine cells was thought
to give rise to the Y cell spatial subunit nonlinearity (Hochstein and Shapley,1976). Previously it
was thought that Y cells contain two overlapping receptive fields, one with a linear centre-
surround organization and the other with small nonlinear subunits covering both the centre as
well as the surround. Demb et al. (1999) showed that in Guinea pig retina, even when the
amacrine pathway was blocked pharmacologically, the spatial nonlinearity of the Y cells was

preserved. Thus, the linear and nonlinear spatial properties of the Y cells were shown to both



arise from a single pathway due to a half-wave rectification of bipolar outputs rather than from

two separate pathways.

Based on this evidence, receptive fields of Y cells have been modeled as a cascade of
alternating spatially linear filters and simple nonlinearities (“subunit”) model, shown in Figure
1.4. Here the first-stage filters correspond to bipolar cells that are modeled as small linear filters
with centre-surround organization. The outputs of these filters are rectified and then pooled, with
synaptic weights that form the large-scale centre-surround organization of the RGC. A crucial
aspect of the model is that the centre-surround strengths of the first-stage filters are imbalanced,
allowing low spatial frequencies to pass the first stage and generate linear responses in the RGC
(Rosenberg & Issa, 2011). Therefore this model can explain linear responses to low spatial

frequency gratings as well as nonlinear responses to high spatial frequency gratings.

Interesting asymmetries have been demonstrated in the nonlinearities of ON- and OFF-
centre Y cells in various species. For example, an ex vivo study in Guinea pig retina (Demb et al
2001a) showed that rectification of the signals from bipolar cells in the OFF-ganglion cell circuit
is close to a half-wave rectification. However, in ON-centre ganglion cells, rectification was
found to be much weaker. Despite weaker rectification in the ON cells, nonlinear responses in
both types of cells were found to be similar. This discrepancy was later addressed in a study
(Borghuis et al 2013) where they measured glutamate release at the bipolar-ganglion cell
synapse, using 2-photon imaging in the mouse retina. They found that for ON-type cells, even
though release of glutamate varied linearly with contrast of the visual input, the temporal
dynamics for response increments and decrements were different. Hence due to this asymmetry

when the responses of multiple bipolar cells are pooled together, responses to high SF gratings



would not cancel each other out, thus giving a relatively stronger nonlinear response than would

be expected from just the weak rectification.

1.5 Visual signal transmission from retina to cortex

Retinal ganglion cells form the output layer of the retina, and send signals via a bundle of
long axons to the lateral geniculate nucleus (LGN). The LGN in the left hemisphere receives
input only from the right visual field and the LGN in the right hemisphere receives input only
from the left visual field. The signals from the two eyes remain largely segregated in the LGN.
The LGN in the cat has a laminated structure, with layers labelled as A, Al, C, C1, C2, C3.
Neurons in layers A, C, and C2 receive retinal inputs from the contralateral eye, while neurons
layers Al and C1 receive retinal inputs from the ipsilateral eye. Layer C3 does not receive input
from the retina, but from the superior colliculus (SC) (Torrealba e t al., 1981). Unlike primates,
in cat LGN there 1s no segregation of inputs from different retinal ganglion cell types. In
primates, not only do the LGN layers receive inputs from only one eye, but also from one
physiological type of RGC. However, in the cat LGN projections from both X- and Y-type cells
are present in layers A and Al. In C layers inputs are mostly from Y and W cells. Despite
receiving a mixture of inputs within a layer, there is little mixing of inputs from X and Y
pathways within single LGN neurons (Bullier and Norton, 1979). Thus, LGN neurons in layers
A and A1 have functional properties like either X- or Y-type RGCs. Different studies have
reported slightly different proportions of cell types across LGN laminae. In layers A and A1
around 50-67% of neurons are X-type and 23-50% neurons are Y-type, while in layer C around

40-43% of neurons are Y-type and 43-52 % neurons are W-type, with very few X-type neurons



present in layer C. Layers C1-C3 contain only W-type neurons (Wilson et al., 1976; Cleland et

al., 1976).

Some previous studies have compared receptive field properties of the RGC inputs and
the LGN neurons by recording S-potentials. The S-potentials are tiny, slower monophasic spikes
picked up by extracellular electrodes while simultaneously recording action potential spikes from
LGN neurons. These S-potentials are thought to be the extracellularly recorded EPSPs in the
LGN neuron (Kaplan and Shapley, 1984). Thus, S-potentials are a measure of input spikes from
RGC afferents onto LGN neurons. These S-potentials either just precede the LGN spike or are
present in isolation. Thus, not every input spike from a RGC triggers an LGN spike. So and
Shapley (1981) found that spatial frequency tuning properties of both X- and Y-type LGN
neurons were very similar to the receptive field properties of their S-potentials. Furthermore, an
orientation bias observed in some LGN neurons was shown to be inherited from the retinal

inputs rather a result of LGN processing (Soodak et al., 1987).

Even though spatial properties do not change much in the LGN from those in RGCs, the
LGN neurons’ receptive fields do have a "push-pull" arrangement: the principal neurons in the
LGN not only receive direct excitatory inputs from RGCs but also receive feedforward inhibition
via LGN interneurons (Martinez et al., 2014). This inhibition has been shown to drive LGN
neurons in two modes of spiking (tonic firing and bursting) while viewing natural movies (Wang
et al., 2007). This inhibitory mechanism in the LGN is thought to preserve information encoded
in the spike times of RGCs, and effectively transmit information to the cortex (Wang et al.
2011). Thus inhibition in the LGN shapes temporal transmission of signals from retina to cortex,

but does not alter the spatial receptive field properties.



LGN principal cells in cat send axons to the visual cortex, located at the occipital lobe of
the neocortex. LGN cells project not only to the primary visual cortex (Area 17) but also to
Areas 18 and 19 (Stone and Dreher, 1973; Humphrey et al., 1985). This is unlike the visual
pathway of primates, where inputs from LGN project only to primary visual cortex (V1) and not
to higher visual areas. There are interesting differences in the thalamo-cortical projections to
these different visual areas in the cat with respect to their physiological types. Inputs to primary
visual cortex (Area 17) are mainly from X-type LGN neurons, with only a small fraction of input
from Y- and W-type neurons. Interestingly, inputs to secondary visual cortex (Area 18) are
mainly from Y-type LGN neurons, with a small fraction of input from X and W cells. Area 18
also receives projections from Area 17 and vice-versa. Area 19 receives a majority of its input
from the W pathway, and a small fraction from the Y pathway. However in primates, inputs from
parvocellular and magnocellular pathways project to different layers (4Cp and 4Ca respectively)
in the primary visual cortex. Thus there are important differences in the projections of thalamic

inputs to visual cortex in cats and primates.

1.6 Receptive field properties of cortical neurons

Hubel and Wiesel (1959) discovered that receptive fields in the early visual cortex are
very different from receptive fields in the retina and LGN. They found that receptive fields in
primary visual cortex do not have concentric centre-surround receptive fields like subcortical
neurons. Instead they are selective for a specific orientation. One class of cells that they
classified as simple cells have ON and OFF regions like subcortical neurons, but instead of being

concentric they are elongated and located side by side. Such receptive fields could best be
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stimulated with black or white bars whose orientation matched that of the receptive field. The
other type of cell they classified as complex cells, which also have similar orientation selectivity
but do not have distinct ON and OFF regions in their receptive fields. Thus the complex cells are
not sensitive to the position or luminance polarity of stimuli in their receptive fields.
Furthermore, both simple and complex type cortical neurons have bandpass spatial frequency

tuning (Movshon et al., 1978), unlike subcortical neurons that mostly have low pass tuning.

In addition to cortical neurons’ selectivity to luminance changes (first-order boundaries),
many neurons in the early visual cortex (~ one-quarter in Area 17, one-half in 18) of cat have
been shown to also selectively respond to second-order boundaries (Zhou & Baker, 1993). The
response properties of these neurons have been thoroughly characterized with contrast-
modulated (CM) grating stimuli. This is a very simple kind of second-order stimulus in which
the contrast of a high spatial frequency luminance grating (carrier) is modulated by a low spatial
frequency grating (envelope), as shown in Figure 1.5. These "double duty" neurons have three
kinds of spatial frequency tunings (Mareschal & Baker, 1999), as shown in Figure 1.6. Firstly,
like the other cortical neurons they are tuned to the spatial frequency of luminance gratings.
Secondly, these neurons are tuned to the spatial frequency of the carrier of CM gratings, which is
outside the luminance passband (range of tuning to luminance grating) of the neuron. Thirdly,
these neurons are also tuned for the envelope spatial frequency of the CM grating; the optimal
envelope spatial frequency is similar to or slightly less than the optimal luminance spatial

frequency.

Furthermore, these neurons show similar orientation tuning for luminance gratings and

for the envelope of CM gratings ("form-cue invariance" - e.g. Mareschal & Baker, 1998a). On
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the other hand, a significant fraction of these neurons are tuned for carrier orientation, though

with no systematic relationship between optimal envelope and carrier orientation.

In addition, these neurons show three kinds of temporal frequency response. They show
bandpass temporal frequency tuning for LM and the envelope of CM gratings, but the optimal
temporal frequency for luminance gratings is usually slightly higher than for an envelope.
Temporal frequency response for a drifting carrier is quite variable from one neuron to another,
with some neurons preferring a stationary carrier (low pass) while others respond more
vigorously to very high carrier temporal frequencies (Rosenberg and Issa., 2011; Gharat &
Baker, 2012). In addition to responding to CM gratings, these neurons also respond selectively to
other kinds of second-order stimuli such as illusory contours (Song & Baker, 2007) or motion-
defined contours (Gharat & Baker, 2012) in a similarly cue-invariant manner. Neurons with

similar response properties were recently described in monkey V2 as well (Li et al., 2011).

These neurons also respond in a selective manner when luminance and contrast
boundaries are combined, i.e. they respond strongest when LM and CM gratings are
superimposed in a phase-aligned manner, and weakest when they are in opposite phase
(Hutchinson et al, 2016). Human psychophysics studies have shown that when LM and CM are
in-phase they give a percept of corrugated 3D surfaces (Schofield et al 2006). Consequently
these neurons could be suitable for detecting illumination changes over textured surfaces as
luminance and contrast covaries (Schofield et al 2010; Schofield et al 2006), and thus could

contribute to the perception of shape from shading.
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1.7 Neural mechanism for processing first- and second-order boundaries

Responses of these neurons cannot be modeled with a linear receptive field, as a linear
receptive field would fail to respond to second-order stimuli that contain energy outside the
neurons’ luminance passband. Instead a linear-nonlinear-linear (filter-rectify-filter, FRF) cascade
has been proposed to detect second-order stimuli. Two possible neural circuit mechanisms will
be discussed in the following section that could account for first- and second-order responses of

these neurons.

1.7.1 Two-Stream Model

Earlier (Zhou & Baker, 1993; Mareschal & Baker, 1998a), a “two-stream” model, as
shown in Figure 1.7, had been proposed to account for cortical neurons’ responses to first- and
second-order stimuli, based upon their tuning properties. According to this model two separate
signal processing pathways act in parallel to process first- and second-order stimuli, prior to an
Area 17/18 neuron's response. The first stream of the model consists of a linear, coarse-scale
Gabor-like oriented filter (FO). This linear stream can respond to luminance gratings (first-order)
but not to 2nd-order stimuli because the high carrier spatial frequency is outside the passband of
the filter FO. On the other hand, the second stream consists of a bank of small Gabor filters
(F1/early stage filters/ subunits) whose outputs are rectified and pooled by a late-stage large
Gabor filter (F2). Neurons’ tuning to the carrier of CM gratings corresponds to that of the early
filters F1, while the envelope tuning corresponds to that of the late stage filter F2. Tuning of this
late filter F2 is similar to that of the linear filter FO of the first stream, leading to a cue-invariant

response. This second stream can respond to second-order stimuli but not first-order stimuli,
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since early filters (F1) are bandpass tuned for high SFs compared to first-order stimuli. The

outputs of these two independent streams are then summed by a cortical neuron.

The early stage filters (F1) for the second stream were previously assumed to be Gabor
filters because some of the cortical CM-responsive neurons have orientation tuning to the carrier
grating (Mareschal & Baker, 1998a). Since orientation tuning was generally thought to first arise
in the cortex, it appeared most likely that the early filters were high spatial frequency-selective
Area 17 neurons. This model is successfully able to explain the selectivity of these neurons to
luminance- (1st order) as well as contrast-, texture- & motion-defined (2nd order) boundaries
(Zhou & Baker, 1993; Mareschal & Baker, 1999; Song & Baker, 2007; Gharat & Baker, 2012).
However, one of the criticisms of this model is that it requires a set of neurons that are
responsive only to 2"-order stimuli and not responsive to 1st-order stimuli, corresponding to the
late stage filter (F2) of the second stream. But to date such neurons have not been described.
Also, some of CM-responsive neurons can respond to very high carrier temporal frequencies
(Rosenberg & Issa, 2011; Gharat & Baker, 2012), which is inconsistent with the early filters that
detect carrier gratings being cortical neurons (which are unresponsive to high temporal

frequencies). So this raises the question whether the early filters might be subcortical, after all.

1.7.2 Single-Stream Model

Demb et al (2001b) instead suggested a single-stream model that can respond to both
first- and second-order stimuli. According to this model (Figure 1.4), processing of both first-
and second-order stimuli begins in the retina through the nonlinear Y cells. Retinal ganglion Y
cells respond in a nonlinear fashion to contrast-reversing high spatial frequency luminance

gratings, with a frequency-doubled response (Enroth-Cugell & Robson, 1966; Hochstein &
14



Shapley, 1976). This nonlinear receptive field property emerges due to rectified inputs from
retinal bipolar cells, which act as nonlinear subunits (Demb et al 1999). Furthermore, due to
these nonlinear subunits, Y cells also respond to contrast-modulated (CM) gratings (Demb et al
2001b). In addition to responding in a nonlinear fashion, Y cells respond linearly to low spatial
frequency LM gratings (Enroth-Cugell & Robson, 1966; Hochstein & Shapley, 1976). This
linear response can be accounted for by input from the same pool of bipolar cells, if their center-
surround mechanism is not balanced (as discussed earlier). In this manner, a retinal circuit
containing only a single stream can respond to both LM as well as CM gratings. Demb et al
(2001b) proposed that Y cell input from retina to cortex via the LGN provides the basis for

cortical neurons' response to both LM and CM gratings.

Anatomical studies have shown that Area 18 in the cat receives most of its input from
LGN Y cells, while Area 17 receives only a small fraction of input from Y cells and a majority
of its input from X cells. This is consistent with the results that around half of the neurons in
Area 18 respond to 2nd-order stimuli while only about one-fourth of neurons in Area 17 respond
to 2nd-order stimuli (Zhou & Baker, 1993). Furthermore, optimal carrier spatial frequencies of
cortical neurons are in the same spatial frequency range (0.5 to 2 cpd) to which Y cells respond
in a nonlinear manner (So and Shapley, 1981). However, earlier this model was not given a
serious consideration because of CM carrier orientation selectivity in cortical neurons
(Mareschal & Baker, 1998a). It was assumed that subcortical neurons couldn’t show orientation
selectivity. But subsequently it was shown that cat LGN Y cells do in fact show CM carrier
orientation tuning like that of cortical neurons (Rosenberg et al 2010). Also like cortical neurons,
LGN Y cells prefer lower CM envelope temporal frequencies compared to luminance gratings

(Rosenberg and Issa, 2011). In addition, at least some LGN Y cells respond to very high carrier
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temporal frequencies, like cortical neurons (Rosenberg & Issa, 2011). Thus, this model is
biologically more plausible and a more parsimonious explanation of second-order response

properties of cortical neurons.

In addition to cats, other mammalian species (macaque monkey, mouse, rabbit, guinea
pig). have Y (a)-like retinal ganglion cells. In particular, in the macaque monkey all parasol (M)
cells (one of the major retinal ganglion cell types) give a “Y-cell signature” (Figure 1.3) response
(Crook et al, 2008a). Also, another RGC category called upsilon cells/smooth monostratified in
macaque also show Y-cell signature response (Petrusca et al., 2007; Crook et al., 2008b). So this
could be an underlying mechanism for processing 2nd-order stimuli in all mammalian species,

including humans.

1.8 Cortical Push-Pull Model

Simple cells of cat striate cortex have been demonstrated to have a linear spatial
summation. This was earlier shown by stimulating ON and OFF subregions of simple cells with
bar-shaped stimuli while measuring their spiking responses extracellularly (Tolhurst and Dean,
1987). When bars matching the polarity of receptive field subregions were presented (ON region
— white bar, OFF region — black bar), neurons gave strong excitatory responses. However when
pairs of white bars (or black bars) were simultaneously presented in both ON and OFF regions,
neurons would give little or no response. This result showed that subregions not only respond to

stimuli of matching polarity but also provide covert inhibition for opposite polarities.

This phenomenon was directly demonstrated through intracellular recordings in simple

cells, which could measure both excitation (EPSPs) as well as inhibition (IPSPs) along with
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spikes in a recorded neuron. Ferster (1988) demonstrated that presenting a white bar in an ON
subregion or a black bar in an OFF subregion generated a barrage of EPSPs (excitation or
“push”), but the presence of a black bar in an ON subregion or a white bar in an OFF subregion
generated a barrage of IPSPs (inhibition or “pull”). Thus, this study showed that EPSPs and
IPSPs have spatially opponent receptive fields of comparable strength, giving rise to spatial

linearity within the simple cell receptive field due to this "push-pull" arrangement.

Since thalamic inputs to the cortex are excitatory (Alonso et al., 2001), the excitation
within the receptive fields of simple cells in thalamo-recipient layers is thought to arise from
direct LGN afferents while inhibition (“pull”) is thought to arise from intracortical inputs
(Hirsch, 2003). Reid and Alonso (1995) used simultaneous recordings in LGN and cortex to
demonstrate that direct excitation from LGN afferents has the same contrast polarity as the
recipient simple cell subregion - i.e. ON afferents excite ON subregions, and OFF afferents
excite OFF subregions. Inhibition is thought to arise from simple cells with receptive fields
having an opposite spatial polarity but otherwise identical receptive fields (Hirsch et al., 2003).
A population of inhibitory interneurons with simple type receptive fields has been shown in layer
4 of cat striate cortex (Hirsch et al., 2003). Furthermore, simple cell receptive fields have been
shown to have a varying degree of push-pull, but the distribution of a push-pull index has been
shown to be like that of the LGN population (Martinez et al., 2005). This push-pull arrangement
is not just restricted to the spatial domain, but also extends in the temporal domain of a given
receptive field (Priebe and Ferster, 2005). In direction selective simple cells, inhibition as well as
excitation are also tuned (spatiotemporally) for the same direction of motion (Priebe and Ferster,

2005).
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These push-pull studies mentioned so far have been performed in cat striate cortex (Area
17). It remains unclear whether such an arrangement is also present in cat Area 18, which also
receives direct LGN afferent input, and contains both simple and complex type cells. However,
Area 18 receives the majority of its input from Y-type LGN cells (Stone and Dreher, 1973;
Humphrey et al., 1985) that contain interesting spatial nonlinearities as discussed earlier. Hence,
it is important to study the push-pull arrangement in cat Area 18, and see how it might impact

processing of linear and nonlinear signals arising from the Y pathway.

1.9 Quantitative Receptive Field Models

In the early days of receptive field (RF) studies, visual RFs were mapped in the retina,
LGN and primary visual cortex using hand projectors while listening to neural responses on an
audio monitor (e.g. Hubel and Wiesel, 1959). More recently, over the past two decades, various
system identification methods like Spike-Triggered Average (STA) (Chichilnisky, 2001), Spike-
Triggered Covariance (STC) (Schwartz et al., 2006), Generalized Linear Model (GLM) (Wu et
al., 2006), Phase separated Fourier model (David et al., 2004), or Neural network model (Prenger
et al., 2004) have been used to estimate these RFs. These methods have enabled neuroscientists
to not only visualize qualitatively the shape of these RFs but also to quantitatively measure their
properties. Progress has been made to estimate these RFs under visual stimulation with artificial
white noise stimuli as well as natural images (Wu et al., 2006). Receptive fields have usually
been modeled as linear filters - however this approach is only appropriate for receptive fields
with linear spatial summation, such as cortical simple type cells. More recently efforts have

begun to capture nonlinearities arising from hierarchical visual processing, using multi-stage
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models (e.g. Freeman et al., 2015; Mineault et al., 2012). These estimated quantitative models
allow us to summarize receptive field properties across the population of neurons. They give
insights into signal transformation, and allow us to test our understanding of the system by
measuring predictive performance of these models on novel arbitrary visual stimuli. In the
following section I will briefly summarize most common receptive field mapping methods with

their advantages and disadvantages.

1.9.1 Spike-triggered methods

The Spike-Triggered Average (STA), or reverse correlation, has been very popular and
one of the first methods to map complete 3D spatiotemporal (space-space-time) receptive fields
of neurons in the early stages of the visual pathway (e.g. McLean and Palmer, 1989;
Chichilnisky, 2001). This method estimates linear filter models by averaging over stimulus
frames that triggered spiking activity in the neuron. One can add a parametric nonlinearity at the
output of the linear filter to capture the non-negative firing rate of the neuron. However, to
correctly estimate a linear-nonlinear (LN) system, this method requires the visual stimuli to be
uncorrelated in space and time (Ringach and Shapley, 2004). Hence previous studies have
mostly used white noise stimuli for STA estimation of receptive fields. Reverse correlation has
been successfully used in mapping receptive fields of retinal as well as LGN neurons
Chichilnisky, 2001; Alonso et al., 1996). However, it is not so effective in early visual cortex,
where receptive fields often have more elaborate stimulus selectivity than observed in subcortical
neurons. White noise stimuli often do not drive strong neural responses in visual cortex neurons,
so the neural responses have very low signal to noise ratio and the estimated models are noisy

(Touryan et al, 2005; Felsen et al, 2005; Talebi & Baker, 2012). To circumvent this problem,
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sinusoidal gratings drawn from a Hartley basis set (which is an orthogonal and complete basis
for 2D images) have been used to map receptive fields in the visual cortex (Ringach et al., 1997).
This can provide a robust estimate of receptive fields with a limited amount of neural data.
However, this method probes receptive fields only in a limited stimulus space, based on apriori
assumptions that might result in failure to reveal more complex RF properties. Laboratory
stimuli such as gratings might drive neurons in a different manner than during natural
stimulation. Reverse correlation has also been extended to use with natural images, by
compensating for the correlations in the images (Willmore and Smyth, 2003). However, this

compensation is approximate and can induce artifacts in the estimated receptive field models.

STA models receptive fields as linear filters with a rectified output, so it cannot capture
spatial nonlinearities within the receptive field. For example, cortical complex type cells do not
have distinct ON and OFF regions like simple cells, thus they are phase-insensitive. Complex
cells are thought to sum a number of simple cells with similar spatio-temporal properties at
adjacent spatial locations. Consequently the STA method was extended to also incorporate the
covariance structure of stimuli that elicit spikes from a neuron (e.g., Touryan et al, 2005;
Schwartz et al., 2006). This method, Spike-Triggered Covariance (STC), recovers multiple filters
within a receptive field and thus can capture properties such as phase insensitivity of complex
cells. However, STC involves optimization of a much larger number of parameters compared to
STA, and thus requires a large amount of data. Also, the multiple filters recovered with this
method are constrained to be orthogonal, which may not be biologically valid. Finally, classical
STC has the same constraint of a white (uncorrelated) stimulus as previously described for STA.
However, it can be used with natural image stimuli by compensating for the power spectrum

(Touryan et al., 2005)
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1.9.2 Generalized Linear Models (GLM)

More recently, receptive field estimation has been formulated as a regression problem in
a GLM (general linear model) framework (Wu et al. 2006). In the simplest version, pixel
intensities form the "features" of the model that are subjected to a linear weighted summation.
The weights of these pixels can be estimated by minimizing the mean squared error between
actual neuronal response and the model’s predicted response, using iterative methods such as
gradient descent. An important advantage of this regression method over reverse correlation is
that it can be used with any arbitrary stimuli, such as natural images, since it does not introduce

bias in the estimate from spatial correlations in the visual stimulus.

However, the number of model parameters to be learned is often of the same order as the
neural data available to train these models, and in addition, neural data is very noisy. Training a
model with limited and noisy neural data can lead to overfitting of the model, which captures the
noise in the training data in addition to the signal (Wu et al., 2006). In order to avoid overfitting,
various regularization methods are available, such as the "lasso" (Mairal & Yu, 2012), ridge
regression (Hoerl & Kennard, 1970), early stopping (Yao et al., 2007) etc. However, the lasso
and ridge regression methods require optimizing a hyperparameter for the regularization penalty
term, using for example a grid search - that means the model needs to be trained several times at
different values of the hyperparameter, which can be very time-consuming. The early stopping
method does not require optimizing a hyperparameter - with every iteration, the model’s
predictive performance is measured on a separate holdback dataset (here called the regularization
dataset). The training iterations are halted when the predictive performance stops improving.
Usually the performance on the training data keeps improving with successive iterations -

however the performance on the regularization data improves at first, but then starts to decline
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when the model begins to overfit. At this point, model training is halted and model trained up to
that iteration is selected. Finally, predictive performance of the model is measured on a "test"

dataset that was not used for training or regularization.

The GLM framework described so far can be modified to capture multi-stage processing
within receptive fields. Instead of using raw pixel intensities of the visual stimuli as input
features to the model, we can perform a basis set transformation (pre-processing). For example,
Nishimoto and Gallant (2011) modeled receptive fields of neurons in area MT as a linear
weighted sum of rectified inputs from V1-like spatio-temporal filters. For estimating the model,
stimulus images were first filtered with a bank of such spatio-temporal RFs, including many
different combinations of spatial and temporal properties. Then weights of these filters were
estimated through a GLM framework. Similarly Mineault et al. (2012) used the same approach to
model receptive fields of MST neurons, using as a basis set a bank of direction selective models

that mimic MT neurons.

Thus we can estimate more complicated subunit models based on known biological
inputs to the neuron. However, we need to build fairly accurate models of the possible inputs to
the neuron. Also, the more complicated the model for possible inputs, the more it increases the
size of the filter bank and hence the number of weights to learn for the GLM. However for some
situations this is a practical approach. In Chapter 4, I use this preprocessing/GLM approach to
model receptive fields of neurons in cat Area 17 and 18, to the separate contributions of ON- and

OFF-pathway inputs.
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1.9.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) have become popular over the past few years for
previously very difficult machine learning problems, such as pattern recognition in images,
speech understanding, language translation, etc. (LeCun et al., 2015). The availability of fast
GPUs, large datasets and improvements in algorithms have made it possible to train very
complicated CNNs that give a state of the art performance on highly challenging tasks.
Interestingly, the architecture of these CNNss is inspired from the hierarchical nature of the
mammalian visual system. They contain a cascade of spatially localized linear filters convolved
across space, followed by static rectifying nonlinearities. Thus, it is a well-suited framework for
modeling receptive fields of neurons in the visual pathway, and can capture spatial nonlinearities
in receptive fields. A recent study (Yamins et al., 2014) has used the features learned by a CNN
on an object recognition task to model receptive fields of neurons in higher areas in the ventral
stream (V4 and IT). Interestingly, these models could accurately predict responses of single
neurons to randomly selected natural images, thus suggesting that CNNs can capture the

hierarchical processing of a biological visual system.

Neural networks have also been used to model receptive fields of neurons at the early
stages of the visual pathway. Instead of using the features learned by deep CNNs from computer
vision tasks, much simplified neural networks can be trained directly on experimentally recorded
neural responses to visual stimuli. A recent study (Oliver, 2014) used regularized neural
networks to model receptive fields of neurons in Area V1 and V2 in macaque monkeys. A 3-
layer neural network with Dropout regularization (in which a fixed fraction of connections in the
network are randomly removed) and added Poisson noise gave the best predictive performance

and consistent feature selectivity. Unlike the preprocessing method described above, no
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assumptions were made about the feature space, but the method was able to recover clear Gabor-
like or Gaussian-like subunit filters. Also, these models were comparable in their predictive
performance to those from the pre-processing method. Thus neural networks can provide a
strong framework for modeling visual receptive fields and provide insights into the underlying
neural computations with biologically interpretable models. In Chapter 3, I train CNNs to model
the receptive fields of lateral geniculate nucleus (LGN) neurons to capture the subunit structure

within their receptive fields.

1.10 Electrophysiology and spike sorting

Usually with single channel (metal or glass pipette) microelectrodes, neural activity from
single neurons is measured extracellularly, then filtered and displayed on an oscilloscope. The
position of the electrode is adjusted in small steps until spike amplitudes from a visually
responsive single neuron are sufficiently distinct from the background activity to be isolated by a
window discriminator. Then the event times of the detected spikes are saved on a hard drive,
along with time registration information for the visual stimuli. While this method enables
neuroscientists to precisely measure spiking activity of a single neuron even though it is densely
packed together with other neurons in the brain, the yield of data from this method is very
limited as one could measure responses of only a single neuron at a time. Due to the long
durations of some recording protocols and the potential instability of maintaining isolation of
single neurons, in practice useful data from only a handful of neurons can be recorded over the

course of an acute experiment (~ 2-4 days).
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Also, the single channel approach may have a sampling bias for neurons with big spike
amplitudes (large cell bodies). Furthermore, "search stimuli" used to stimulate receptive fields
could also introduce bias, as it can stimulate only receptive fields optimal for those stimuli.
Spikes from other neurons with low spontaneous activity that are poorly responsive to the search
stimulus, might may not be detected. To circumvent these issues, over the past decade, the use of

multi-channel electrodes has become much more popular.

In this thesis, I used a multi-channel recording system (Plexon Recorder) to record
broadband neuronal signals from multi-electrodes. To record from visual cortex, I used 32-
channel NeuroNexus multi-electrodes. For Chapter 2, most of the data from Area 18 was
collected using NeuroNexus (A1x32) linear arrays with 100pm spacing between recording sites.
Thus these electrode sites can span all cortical layers (2.5mm depth) in the cat visual cortex.
With this electrode, signals from a neuron are usually picked up at only single electrode site. For
Chapter 4, data from Area 17 and 18 were collected using either NeuroNexus linear arrays
(A1x32), or NeuroNexus polytrodes (A1x32-Poly2). Unlike with linear arrays, the electrode sites
of polytrodes are more densely packed, with 50um spacing of sites arranged in two parallel
columns. Consequently, these polytrodes can span only 750um depth, but signals from single
neurons often appear on multiple channels. This can help to get a higher yield of neurons with

greater reliability from spike sorting.

Neuronexus probes that [ used to record from cortex have relatively thin substrate (15um)
and cause minimal damage to the cortex as we could record visually responsive neurons from
channels all along the length of these probes (Blanche et al., 2005). However, the longer probes
that can reach much deeper brain structures use thicker substrate (50 pm). From our preliminary

attempts to record from LGN, we noticed that these probes were causing tissue damage and we
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could record visually responsive neurons only from the channels located at the tip of the probe.
So instead we used quartz-coated tungsten tetrodes (Thomas) to collect data from the LGN. Due
to these tetrodes’ conical-shaped tip and thin shaft, they cause minimal tissue damage, but give a

much better yield of isolated neurons from spike sorting compared to single channel electrodes.

With Plexon Recorder, we acquired raw data signals (3 Hz to 8kHz; sampling rate, 40
kHz) from all electrode channels, which were streamed to a hard disk for later analysis. Single
units were isolated from recorded multi-unit signals using SpikeSorter software (Swindale and
Spacek, 2014; Swindale et al., 2017), and only clearly separated units were included in our
analysis. Earlier, datasets were sorted using Plexon Offline Sorter software. But after the
availability of software, SpikeSorter, I used it for sorting the rest of the data used in this thesis.
SpikeSorter requires comparatively much less manual intervention and subjective judgements. It
takes advantage of the geometry of the electrode sites - it accepts user-provided electrode site
maps, and then compares spikes recorded across multiple nearby sites. An issue with longer
recording durations (~1 hour or more) is that the shapes of spike waveforms can change over
time due to relative displacement between neurons and electrode sites, when the electrode slips
slightly though the brain tissue. SpikeSorter has an ability to track these changes over time, and

recommends merging of units that would otherwise be classified as separate units.

1.11 Thesis Aims

In this thesis, I address three specific research aims as described in detail in Chapters 2, 3

and 4. Here I briefly describe these aims and the rationale behind them.
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The aim of Chapter 2 is to understand how spatial nonlinearities in receptive fields
emerging at a subcortical level are utilized at early cortical stages. Recent evidence has
suggested that the nonlinear Y-pathway arising in the retina could contribute to the cortical
processing of luminance- and texture-defined boundaries (Demb et al., 2001b; Rosenberg et al.,
2010). To understand how these signals from the Y-pathway are pooled together in the cortex, I
characterize receptive fields of cortical neurons using the same stimuli used to characterize
subcortical Y-cells. Furthermore, I perform model simulations to test whether a novel neural
circuit model utilizing cortical Y-like cells could account for known cortical receptive field

properties for luminance- and texture-defined boundary stimuli.

In Chapter 3, I estimate biologically interpretable quantitative models of LGN (lateral
geniculate nucleus) neuronal receptive fields that can predict responses to novel stimuli. Visual
signals undergo multi-stage processing in the retina before reaching the LGN. In particular, the
rectifying nonlinearity between bipolar cells and ganglion cells enables Y-type cells to encode
both texture and luminance information in the visual scene. However, most previous studies
modeled subcortical receptive fields as linear filters, and hence could not capture this important
spatial nonlinearity. Therefore in this study, I model receptive fields as multi-stage convolutional

neural networks.

In Chapter 4, I quantify the contributions of ON and OFF subcortical pathway inputs to
cortical simple cell receptive fields. ON and OFF pathways emerge in parallel in the retina, with
very little interaction between them until they reach visual cortex. These pathways are combined
in cortical simple cells to build receptive fields that are selective for boundary orientation.
Relative contributions of these complementary signals to individual receptive fields could affect

functional properties of simple cells, such as selectivity for texture and motion. Here I estimate
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subunit receptive field models of simple cells using a GLM approach with ON and OFF
preprocessing inputs, to measure how ON and OFF signals are integrated within receptive fields

over space and time.
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Figure 1.1 : First-order and second-order boundaries in visual scenes.

Natural scene where the boundary between the tree and grass is formed by luminance (first-
order) as well as texture (second-order) change, while the boundary between the grass and its
reflection in the water is formed by only a difference in texture contrast (second-order). (Adapted

from Li et al, 2014)
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Figure 1.2 : Filter-Rectify-Filter (FRF) model for detecting second-order boundaries.

Two-stage FRF model for detecting second-order boundaries formed by changes in texture, or
contrast. The first-stage filters detect fine texture elements in the image. The outputs of these
filters are rectified and then summed by a second-stage filter of much coarser scale, that can
detect changes in texture properties. This model can detect texture boundaries with vertical

orientation corresponding to the second-stage filter. (Adapted from Li et al, 2014.)
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Figure 1.3 : Spatial frequency tuning for typical X- and Y-type cells measured with

luminance gratings.

X-type cells respond linearly at all spatial frequencies, with 1% harmonic response much greater
than 2" harmonic response. The 2™ harmonic response for X cells arises from their final output
rectification. Y-type cells respond linearly at low spatial frequencies with 1°* harmonic response
greater than 2™ harmonic. However, at high spatial frequencies, outside the luminance passband,
Y cells respond nonlinearly at 2" harmonic, with no 1** harmonic response. (Adapted from So

and Shapley, 1981).
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Figure 1.4 : Subunit receptive field model of a Y-type retinal ganglion cell.

Responses of Y cells are modeled as a two-stage filter model. The first stage consists of a bank
of small circular subunit filters, corresponding to bipolar cells. Subunit outputs are half-wave

rectified and then pooled in a centre-surround spatial layout.
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Figure 1.5 : Luminance Modulation and Contrast Modulation gratings
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Two types of grating stimuli used for characterising receptive field properties of neurons. A
luminance grating is constructed by sinusoidal modulation of luminance along one orientation.
Contrast modulation gratings are constructed by modulating contrast of a high spatial frequency

carrier grating by a low spatial frequency envelope grating.
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Figure 1.6: Spatial frequency tuning of a model cortical neuron.

A significant fraction of neurons in early visual cortex are selective for spatial frequency of
luminance gratings (LM) as well as the carrier and envelope of contrast modulation (CM)
gratings, as shown in this model simulation. Neurons are tuned for similar spatial frequencies for
luminance and envelope of CM gratings, but very high spatial frequencies for carrier gratings.

(Adapted from Gharat and Baker, 2017).
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Figure 1.7 : Two-stream processing model for first- and second-order boundaries.

A Linear stream processes luminance with a linear filter FO. A non-linear stream processes 2"-
order stimuli with two-stage filtering. A first-stage filter bank F1 detects high spatial frequency
texture and then the output of each filter is rectified and pooled by a late filter F2. The outputs of
filters FO and F2 are summed linearly by an Area 18 neuron. (Adapted from Mareschal and

Baker, 1998a).
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In Chapter 2, using multi-electrode recordings and sinewave grating stimuli, I characterize
receptive fields in early visual cortex to understand how cue-invariant receptive fields are built
from subcortical inputs. Here I demonstrate the presence of a significant fraction of neurons in
cat Area 18 with nonlinear receptive fields like those of subcortical Y-type cells. These neurons
have receptive field properties intermediate between subcortical Y cells and cortical orientation
selective neurons that respond in a cue-invariant manner to luminance- and contrast-defined
boundaries. These Y-like cells are strong candidates for building cue-invariant orientation-
selective neurons. Furthermore, I present a novel neural circuit model that pools such ON- and
OFF-center Y-like neurons in an unbalanced “push-pull” manner, to generate orientation-
selective cue-invariant receptive fields. This chapter has been adapted from Gharat A and Baker
CL (2017) Nonlinear Y-like receptive fields in the early visual cortex: An intermediate stage for
building cue-invariant receptive fields from subcortical Y cells. The Journal of Neuroscience.

37(4): 998-1013.
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CHAPTER 2
Nonlinear Y-like receptive fields in the early visual cortex:
An intermediate stage for building cue-invariant receptive fields from

subcortical Y cells

2.1 Abstract

Many of the neurons in early visual cortex are selective for orientation of boundaries
defined by first-order (luminance) as well as second-order (contrast, texture) cues. The neural
circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that
it emerges from spatial nonlinearities of subcortical Y cells. In order to understand how inputs
from the Y cell pathway might be pooled to generate cue-invariant receptive fields, we recorded
visual responses from single neurons in cat Area 18 using linear multi-electrode arrays. We
measured responses to drifting and contrast-reversing luminance gratings as well as contrast-
modulation gratings. We found that a large fraction of these neurons have non-oriented responses
to gratings, similar to those of subcortical Y cells - they respond at the second harmonic (F2) to
high spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low spatial
frequency drifting gratings (“Y-cell signature”). For a given neuron, spatial frequency tuning for
linear (F1) and nonlinear (F2) response is quite distinct, similar to orientation-selective cue-
invariant neurons. Also, these neurons respond to contrast modulation (CM) gratings with
selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their
receptive field properties suggest that they could serve as building blocks for orientation

selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-centre
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cortical Y-like cells in an unbalanced push-pull manner, to generate orientation selective cue-

invariant receptive fields.

2.2 Introduction

A substantial fraction of neurons in the early visual cortex (Area 18) of cats respond in a
cue-invariant manner to boundaries formed by first-order (luminance) or second-order (contrast,
texture, motion) differences (Zhou & Baker, 1993; Tanaka & Ohzawa, 2006; Song & Baker,
2007; Gharat & Baker, 2012). Recently, neurons in the early visual cortex (V2) of nonhuman
primates were also shown to respond cue-invariantly to luminance- and contrast-defined
boundaries (Li et al., 2014), with spatial selectivity to the carrier (texture) and envelope
(modulator) of contrast boundaries very similar to previous findings in cat Area 18 (Mareschal &
Baker, 1998a, Mareschal & Baker, 1999). Comparison of these primate V2 results with human
psychophysics (Sutter et al., 1995; Dakin & Mareschal, 2000) suggests that these neurons could

be the neural substrate for perception of 2™ order boundaries.

However the neural circuit underlying these highly specialized receptive fields, with cue-
invariant selectivity for first- and second-order cues early in the visual pathway, is still unclear.
The demonstration of carrier orientation-selectivity in cat Area 18 cells suggested a cortical
substrate for carrier processing (Mareschal & Baker, 1998a). More recent evidence suggests that
cortical neurons could achieve such receptive field properties by pooling inputs from the
subcortical Y-pathway (Demb et al., 2001a, Rosenberg et al 2010; Rosenberg & Issa, 2011). Due
to spatial nonlinearities, Y cells respond to first-order as well as second-order cues with
selectivity for carrier (texture) spatial frequency and orientation similar to cortical neurons

(Rosenberg et al 2010). Thus carrier processing for encoding 2™ order cues could take place in
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the retina, with the cue-invariant envelope selectivity arising in the cortex from the Y-cell input
to the cortical neurons. A similar mechanism is also plausible in the primate visual system, since
the parasol and upsilon cells in the retina also have Y-like receptive field properties (Crook et al.,
2008a,b; Petrusca et al., 2007). This challenges previous ideas that 1% and 2" order cues are
processed independently (Smith & Ledgeway, 1997) and that 2™ order cues are encoded in
higher extrastriate areas (El-Shamayleh & Movshon, 2011; Smith et al., 1998; Pan et al., 2012;
An et al., 2014). Previous studies have extensively analyzed the pooling of subcortical X-
pathway inputs in cat Area 17 to generate simple cell (linear, Gabor-like) receptive fields with a
"push-pull" combination of On- and Off-centre cells (Ferster, 1988; Hirsch et al., 1998; Martinez
et al., 2005). However Area 18 receives a majority of its LGN input from the nonlinear Y-
pathway, and it is unclear how these inputs are combined to generate receptive fields with

precise selectivity for 1% as well as 2™ order cues.

In order to understand the cortical circuitry for second-order processing in the early
visual pathway, we recorded single-unit activity from cat Area 18 using multi-electrode arrays
that can span all cortical layers. To reduce possible sampling biases due to manual searching
with bar-shaped stimuli, we employed a battery of grating measurements together with post-hoc
spike sorting. We found that a significant fraction of Area 18 neurons have receptive field
properties similar to LGN Y cells, suggesting that these neurons form an intermediate stage
between subcortical Y cells and orientation selective cue-invariant neurons. Finally, we propose
a cortical neural circuit model that combines signals from the ON and OFF cortical Y-like cells
to generate receptive fields selective for orientation of both 1*' and 2" order boundaries in a cue-

invariant manner. Unlike the balanced push-pull model proposed for Area 17 neurons, this model
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has imbalanced push-pull, for example with ON inputs exerting a stronger effect than OFF

inputs.

2.3 Materials & Methods

2.3.1 Animal Preparation

Our experimental procedures are explained in detail in our previous study (Gharat &
Baker, 2012), and here are described briefly. Anesthesia was induced in adult cats of either sex
with isoflurane/oxygen (3-5%) inhalation. Following intravenous cannulation, subsequent
surgical anesthesia was obtained with i.v. propofol. A craniotomy and duratomy were performed
(H-C A3/LA4) for electrode placement in Area 18 (Tusa et al., 1979). During recording the animal
was anesthetized and paralyzed with infusion of propofol (5.3mg - kg ! - h '), fentanyl (7.4pg -
kg ' - h ') and gallamine triethiodide (10mg - kg ! - h "), and a mixture of Oz and N>O (30:70
ratio) was delivered through a ventilator. Heart rate, EEG, body temperature, end-tidal CO,,
blood oxygen, and airway pressure were monitored, with adjustments in ventilator stroke volume
and anesthesia level as indicated. Neutral contact lenses and artificial pupils were positioned, and
spectacle lenses of appropriate power were selected using a slit retinoscope to bring visual
stimuli in focus. Back-projection of the optic discs onto a tangent screen allowed estimation of
area centralis positions. All of these procedures were approved by the Animal Care Committee
of McGill University and are in accordance with the guidelines of the Canadian Council on

Animal Care.
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2.3.2 Visual Stimuli

Visual stimuli were presented on a gamma-corrected CRT monitor (NEC FP1350, 207,
640x480 pixels, 75 Hz, 36 cd/m?) at a viewing distance of 57 cm. Stimuli were generated with a
Macintosh computer (MacPro, 2.66 GHz, 6 GB, MacOSX 10.6.8) using custom Matlab software
with the Psychophysics Toolbox (Brainard 1997; Kleiner et al, 2007). Drifting sinusoidal
luminance gratings with a Michaelson contrast of 30% were used to measure neurons' linear

spatial frequency and orientation tuning.

Neurons were classified as X- or Y-like (see below) using contrast-reversing gratings,
with a higher contrast (70%) since nonlinear responses are often lower in amplitude. These
gratings were also used to measure spatial frequency and orientation tuning, and spatial phase
dependence, of nonlinear responses. In some cases responses were also obtained to contrast
modulation (CM) stimuli, composed from a stationary high spatial frequency sinusoidal grating
(carrier, 70% contrast) whose contrast was modulated by a drifting low spatial frequency

sinusoidal grating (envelope, 100% modulation depth).

2.3.3 Extracellular recording

Recordings were performed using multielectrodes (NeuroNexus), in most cases 32
channel (A1x32) linear arrays, but also sometimes 16 channel (A1x16) linear arrays and 16
channel (A4x4) tetrodes. Raw data signals were acquired with a Plexon Recorder (3Hz-8kHz,
sampling rate 40kHz). Signals from a selected channel with visually responsive single- or multi-
unit activity was used to guide the recording protocol. Spike times detected on this channel with

a window discriminator were collected through a lab interface (ITC-18, Instrutech) and analyzed
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online to get tuning curves and PSTHs (peristimulus time histograms). Signals recorded from a
small photocell placed over one corner of the CRT were used for temporal registration of stimuli

and spikes, and to verify the absence of dropped frames.

Manually controlled visual stimuli (bars, spots) were used to determine the approximate
receptive field location for multi-unit activity on the monitored channel, so as to position the
stimulus display to activate cells driven by the dominant eye (the non-dominant eye was
occluded) - this procedure, rather than searching for single cells with bar-shaped stimuli, helped
ensure a less biased sample including neurons lacking orientation selectivity. We attempted to
insert multielectrodes perpendicular to the brain surface, so usually receptive field locations of
neurons recorded on the other channels also fell on the display, enabling the simultaneous
recording of useful visual responses of neurons on most channels. Drifting sinusoidal luminance
gratings were presented to measure spatial frequency and orientation tuning. Each stimulus
condition was interleaved with other conditions randomly, and repeated 5-10 times. Contrast-
reversing luminance gratings were then presented to measure nonlinear spatial summation. For
all the spatial frequencies tested, either grating spatial phase or orientation was also varied. In
some cases we also measured responses to contrast modulation (CM) gratings. Multi-unit
activity across all channels during the experiment was analyzed to check if recording sites were
visually responsive. Once the recording protocol was finished, sometimes it was repeated on the

non-dominant eye depending upon quality of spike amplitude across channels.

2.3.4 Analysis

Spike waveforms were carefully classified from the recorded data to isolate signals from

single units, using Offline Sorter (version 3.3.3, Plexon) in earlier experiments, and later,
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Spikesorter (Swindale & Spacek, 2014) for sorting multichannel electrode data. On some
datasets sorting was done with both types of software and the results obtained were very similar.

Only clearly sorted units were used for further analysis.

Responses of neurons to grating stimuli were accumulated as PSTHs (bin width 13.3 ms,
duration of each frame), which were used to calculate first and second harmonic responses.
Neurons were classified as simple or complex type cells by measuring the ratio of first harmonic
modulation amplitude to mean, in response to the neuron's optimal drifting luminance grating
(Skottun et al. 1991). For orientation and spatial frequency tuning curves, first harmonic
response rate was used for simple type cells while mean response rate was used for complex type

cells.

Neurons' orientation selectivity was characterized with an “Orientation Bias” (OB) index

(Leventhal et al 2003):

> R, exp(i26,)

k
2R,
k

OB =

where R, represents spontaneous-subtracted neuronal response at orientation @,. Orientation bias

values range from zero (isotropic tuning) to unity (sharp tuning).

The degree to which neurons exhibited a binocular vs monocular response was
summarized with a “binocularity index”, defined as the ratio of average response to optimal
drifting gratings in the non-dominant eye to that in the dominant eye. The binocularity index

ranges from zero (perfectly monocular) to unity (perfectly binocular).
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To classify a neuron as X-like or Y-like we used a “nonlinearity index” (Hochstein &
Shapley, 1976), defined as the maximum of the ratio of second-harmonic (F2) to first harmonic
(F1) response. If at any spatial frequency, a neuron's second-harmonic response was significantly
greater than its first harmonic component, it was classified as Y-like, otherwise as X-like. Note
that only simple cells (AC/DC > 1) were further classified as X-like or Y-like, since complex
cells respond nonlinearly (F2) within their luminance passband and their first harmonic (F1) is
very weak or absent. Spatial frequency tuning curves of linear (F1) and nonlinear (F2) responses

were fit with a Gaussian function (DeAngelis et al 1994):
R(Sf) — ke_((sf_SFOpt)/a)z + RO

where k, SF

oo @ are free parameters, R is spontaneous activity and R is neuronal response at

spatial frequency sf', with SF,, , taken as the optimal spatial frequency.

Pearson’s correlation coefficient between optimal linear and nonlinear spatial frequency
was employed to assess any relationship between a neuron’s spatial tuning for linear and
nonlinear responses. The circular correlation (Berens, 2009) coefficient was used to assess the

relationship between neurons’ optimal orientation for drifting and contrast reversing gratings.

2.4 Results

2.4.1 Non-oriented receptive fields in cat Area 18.

Previous single-unit studies of cat Area 18, including those in our lab, have primarily
reported orientation-selective neurons. However more recently, using multi-channel
microelectrodes with which we simultaneously record spikes from multiple neurons and analyze
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the data post hoc (see Methods), a significant fraction of neurons were found to have non-

oriented receptive fields (Talebi & Baker, 2016).

Fig 2.1A shows example tuning curves of orientation-selective (left) and isotropic
neurons (right), measured with drifting luminance gratings at each neuron's optimal spatial
frequency - these two neurons were simultaneously recorded from the same site on a
multielectrode. We quantified each neuron's orientation selectivity with an “Orientation Bias”
(OB) index (see Methods) which ranged from zero (isotropy) to unity (perfect selectivity).
Neurons were classified as "non-ori" cells if OB < 0.2, which is the range found for LGN

neurons (Rosenberg et al, 2010). The tuning curves in Fig 2.1A show examples of neurons

classified as orientation-selective (left, OB 0.54) and non-ori (right, OB 0.11).

Fig 2.1B shows an example of orientation tuning curves of neurons recorded
simultaneously from a 32-channel linear array with recording sites separated by 100 um. The
array was inserted approximately perpendicular to the surface of the dura and lowered until most
of the channels had spiking activity, so as to encompass all the cortical layers and to be
approximately aligned with the columnar architecture. However due to curvature of the brain
beneath the dura, such electrode penetrations were not necessarily confined within an orientation
column. The penetration shown in Fig 2.1B is an example of an evidently somewhat oblique
penetration, traversing different orientation columns. Note the span of depths with sorted neurons
is 2.7 mm (28 channels), exceeding the anatomical thickness of grey matter in Area 18 (ca 2 mm
- Tusa et al., 1979). Note that non-ori neurons (labeled with asterisks in Fig 2.1B) do not appear
to be confined to particular layers, but rather are present at various depths spanning the gray
matter, and are intermixed with orientation-selective neurons. This is consistent with Talebi &

Baker (2016), who found neurons with non-oriented receptive field maps dispersed across all
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depths of Area 18. Fig 2.1C shows the distribution of orientation selectivity (OB values) of all
the neurons that were recorded - more than one-third (84 out of 208) were classified as non-ori.
This histogram does not show a bimodal distribution indicating non-ori neurons as a separate
class, which might seem in contradiction to the bimodal distribution seen in the similar
histogram in Talebi and Baker (2016) of OB values of Area 18 simple cells (their Fig. 6A).
However note that here we calculated OB values from orientation tuning curves constructed by
measuring responses at only 13 discrete orientations (separated by 30 degrees), while Talebi &
Baker (2016) measured OB values based on responses at a much larger number of orientations,
simulated on a spatiotemporal receptive field map estimated by system identification. Their
approach leads to much smoother tuning curves (see Fig 2D in Talebi & Baker, 2016) and much
lower OB values. However the classical method of using responses to gratings can give high OB
values due to limited sampling. So there is a strong possibility that even in our data non-ori cells
might form a separate class from oriented receptive fields, but we fail to see it due to the limited

sampling of orientations.

To assess whether these non-ori neurons behave like classical simple or complex type
cells, we measured their AC/DC (modulated/mean response) ratio (Skottun et al, 1991 - see
Methods) for responses to optimized drifting gratings. The distribution of AC/DC ratios of non-
ori neurons (Fig. 2.2B) shows that most (75/84) are simple type (ratios greater than unity). This
suggests that most non-ori neurons have isotropic receptive fields with distinct concentric ON
and OFF regions similar to lateral geniculate nucleus (LGN) X and Y cells. We also find a few
complex-like non-ori neurons (AC/DC ratios less than unity) - these could be receiving input
from the W pathway, some of whose neurons have mixed On- and Off-responding receptive

fields (Stone et al., 1979).
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In some cases (n = 38) we also assessed the degree of binocular response of the non-ori
neurons, by separately measuring responses to each eye and taking their ratio as a “binocularity
index” (see Methods). A purely monocular neuron should have an index close to zero while a
perfectly binocular neuron would have an index of unity. A histogram of these indices (Fig 2.2D)
shows that most of the non-ori neurons are monocular (25/38), but about one-third are binocular
with index values as high as 0.93. A scatterplot (Fig. 2.2C) comparing binocularity indices and
AC/DC ratios shows that there is no relationship between these two parameters (R = 0.0249, p =

0.882, n = 38).

One might wonder if these non-ori neurons are actually terminals of LGN afferent fibers.
However this is unlikely because we find them across all cortical depths (e.g. Fig.2.1B), whereas
LGN inputs terminate in layers 4 and 6 (LeVay and Gilbert, 1976). In addition, some of the non-
ori cells are binocular (Fig. 2.2), which is characteristic of visual cortex (Hubel and Wiesel,
1962). Another potential concern is that poor spike sorting might inadvertently combine signals
from several neurons with differing preferred orientations, giving an apparent lack of orientation
tuning. Fig 2.1D shows sorted raw spike waveforms of six example non-ori neurons recorded in
the penetration shown in Fig 2.1B. These sorted waveforms are clearly from single-units, and
hence the broad orientation tuning of these non-ori neurons is not due to contamination from
multi-unit activity. Furthermore, most of these cells give simple type (modulated) responses (Fig.
2.2A), whereas a mixture of neurons tuned to different orientations would give complex-like

(unmodulated) responses.
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2.4.2 Y-like spatial nonlinearities of non-ori receptive fields

Area 18 in the cat receives a strong direct input from the LGN, predominantly from Y
cells, with much less input from X and W cells (Dreher et al 1980; Stone & Dreher, 1973). Since
these cortical non-ori neurons have orientation tuning similar to LGN cells, it seems likely that
most of them receive direct or indirect input from LGN Y cells. Hence we hypothesized that
most cortical non-ori neurons should show the nonlinear spatial summation that is characteristic
of LGN (and retinal) Y cells. Similar to previous studies of Y type cells (Hochstein & Shapley,
1976; Demb et al., 2001a; Rosenberg et al 2010; Crook et al 2008a), we measured spatial

properties of these neurons (n =44) using drifting and contrast-reversing gratings.

Both X and Y type cells respond to drifting sinusoidal gratings at their fundamental
temporal frequency (F1), indicative of linear processing. With contrast-reversing gratings, X
cells also respond linearly (F1), but Y cells give second harmonic (F2) responses (indicative of
strong nonlinearity) at high spatial frequencies. We classified a neuron as Y-like if its second
harmonic response component was significantly greater than the first harmonic to a contrast-
reversing grating at any of the series of spatial frequencies tested (formalized as “nonlinearity

index”, see Methods) - otherwise it was classified as X-like (Hochstein & Shapley, 1976).

Spatial frequency responses for a typical Y-like non-ori neuron are shown in Fig 2.3A.
This neuron responded linearly (F1, black) to drifting gratings, with tuning for low spatial
frequencies. But to contrast-reversing gratings the neuron responded nonlinearly (F2, blue), at
high spatial frequencies outside the linear SF tuning range. This combination of results is the

classic "Y-cell signature" (Hochstein & Shapley, 1976) for retinal and LGN Y cells.

Fig 2.3B shows PSTH responses of this neuron to contrast-reversing gratings at two

spatial frequencies, one within the linear SF range and the other in the nonlinear range. At a low
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SF (0.1 cpd, left) the neuron responded at the same temporal frequency as the grating (4Hz), and
this response depended on the spatial phase of the grating relative to neuron’s receptive field,
with a minimum ("null") phase - all indicative of linear spatial summation. But at a higher SF
(0.53 cpd, right) the neuron gave a frequency-doubled response (8 Hz) that was phase-
independent, indicating nonlinear spatial summation. Fig 2.3C plots the first and second
harmonic values calculated from the PSTHs in Fig 2.3B. The first harmonic values depend on
spatial phase, with a clear null phase repeated in 180° intervals, but the second harmonic values
are approximately constant with phase. Thus this neuron showed all the spatial characteristics of
a typical Y cell (Hochstein & Shapley, 1976). The distribution of spatial nonlinearity indices for
the simple type non-ori neurons (Fig 2.3D) were predominantly Y-like (36/44), but there were a

few (8/44) X-like cells as well.

2.4.3 Linear and nonlinear spatial frequency relationships of Y-like cortical neurons

As shown in the previous section most of the cortical non-ori neurons have distinct linear
and nonlinear SF tuning similar to those of retinal and LGN Y cells. Consequently it seems a
likely possibility that Area 18 non-ori neurons may be involved in cortical processing of second-
order as well as first-order (luminance) stimuli. To further explore this possibility we measured
spatial tuning properties of non-ori neurons, to compare with previously studied orientation-
selective CM-responsive cortical neurons (Mareschal & Baker, 1999). Fig 2.4A-F shows linear
and nonlinear SF tuning plots of six non-ori cells - each has bandpass tuned nonlinear response
(F2, blue) outside, and well above, the luminance passband (F1, black). We fitted the data points
with Gaussian functions (see Methods) to derive optimal SF values for linear (F1) and for

nonlinear (F2) tuning. A scatterplot of optimal SFs for linear vs. nonlinear responses (Fig 2.4G)
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shows that optimal SFs for F2 are always substantially higher than for F1, with most of the
neurons' values scattered around a 10:1 ratio line, and a weak correlation (r = 0.34) between
optimal SFs for F1 and F2 for a given neuron. The distribution of F2/F1 ratios of optimal SFs

(Fig 2.4H) shows ratios ranging from 4.6 to 28, with mean value of 11.3 (median = 8.7).

A previous study (Mareschal & Baker, 1999) of orientation-selective neurons in Area 18
with contrast modulation gratings found similar results for linear and nonlinear spatial tuning. In
that study, the ratio of optimal SF for the carrier of CM gratings (nonlinear) and drifting
luminance gratings (linear) varied from 5 to 30, with mean around 10. Similar ratios were also
observed for CM response tunings in macaque V2 neurons (Li et al, 2014). Thus cortical non-ori
neurons have a similar relationship between linear and nonlinear SF tuning to that of orientation-

selective, CM-responsive neurons.

2.4.4 Orientation tuning of linear and nonlinear responses of Y-like cortical neurons

Some Area 18 neurons show pronounced orientation tuning for the high SF carrier of
contrast modulation gratings (Mareschal & Baker, 1998a), which is independent of their
orientation tuning for drifting luminance gratings. Hence it was previously thought that receptive
field subunits that detect the carrier are cortical, for example orientation-selective Area 17
neurons having high SF selectivity. However Rosenberg et al (2010) showed that even though
LGN 'Y cells exhibit little or no selectivity for orientation of drifting gratings, some of them
show pronounced orientation tuning for the carrier of CM gratings as well as for the nonlinear
response to contrast-reversing high SF gratings. Thus carrier orientation selectivity of CM-
responsive Area 18 neurons might be inherited from afferent LGN Y cells. Therefore we

measured orientation tuning of nonlinear (F2) responses of Y-like cortical non-ori neurons to see
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whether some of them exhibit similar narrow tuning as found for cortical oriented CM-

responsive cells (Mareschal & Baker, 1998a; Rosenberg et al 2010).

Fig 2.5A-B shows orientation tuning curves for the linear (F1, black) and nonlinear (F2,
blue) responses of two non-ori Y-like neurons. The nonlinear (blue) tuning curves are symmetric
because responses were collected for orientations from 0 to 180 deg, and the responses were then
mirrored about the origin. For the neuron in Fig 2.5A the nonlinear response (blue) is not tuned
(OB = 0.12) for orientation of contrast reversing gratings. For comparison, the same neuron's
responses to drifting gratings (black) are also shown - note that these linear responses have very
small orientation bias (OB = 0.02), and are not direction selective. On the other hand, for the
neuron in Fig 2.5B the nonlinear response (blue) is sharply tuned (OB =0.47) for orientation
while the linear response is not tuned (OB =0.02). The scatterplot in Fig 2.5C shows the
orientation bias (OB) values of neurons’ nonlinear against linear responses in this sample (n =
16). The linear responses (abscissa) all have OB values less than 0.2, as expected for non-ori
neurons. However for the nonlinear responses (ordinate), some of these neurons (6/16) have
substantial orientation selectivity (OB values greater than 0.2). We assessed the possibility of a
systematic relationship between optimal orientation for linear (F1) responses and nonlinear (F2)
responses. There was no significant circular correlation (Berens, 2009) between these optimal
orientations for a given neuron (R = 0.0075, p =0.9719, n =16). The histogram in Fig 2.5D
shows differences in preferred orientation for linear and nonlinear responses. The difference in
preferred orientation for most (14/16) neurons was greater than 30 degrees. Thus in this regard
orientation tuning for nonlinear responses of cortical Y-like non-ori neurons is similar to that for
LGN Y cells (Rosenberg et al., 2010) and for CM carrier tuning of cortical orientation-selective

neurons (Mareschal & Baker, 1998a).
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2.4.5 Responses of Y-like cortical neurons to second-order stimuli

Previous studies (Demb et al 2001b; Rosenberg et al., 2010) demonstrated that retinal and
LGN Y cells respond to contrast modulation (CM) gratings in addition to conventional
luminance modulation gratings, suggesting that the Y-like non-ori cortical neurons might also be
CM-responsive. Fig 2.6 A-B shows example snapshot images of contrast modulation (CM)
gratings with a vertically oriented low spatial frequency envelope that modulates the contrast of
horizontal carrier gratings, the latter set at a lower carrier spatial frequency on the left (A), and
higher on the right (B). For measuring responses to CM gratings we fixed the spatial frequency
of the envelope at or near the optimal luminance SF (F1), and tested a series of carrier spatial

frequencies outside the neuron's luminance passband.

Fig 2.6C-H shows six non-ori neurons’ responses to CM gratings (orange) at a series of
carrier SFs outside their luminance passbands (F1, black). These neurons show bandpass
selectivity for the carrier of contrast modulation gratings (orange), which is similar to their
nonlinear SF tuning (F2, blue). The scatterplot Fig 2.61 shows that optimal spatial frequency for
the carrier is very similar to that for nonlinear (F2) tuning (R =0.9266, p = 0.0079, n = 6). As
shown in the scatterplot Fig 2.6J, the spatial frequency bandwidth for the carrier is often
narrower than for nonlinear (F2) tuning. Furthermore, the optimal carrier spatial frequencies of
these Y-like neurons fall within the same range, ca 0.5 to 2.0 cpd, as those of cortical ori-
selective CM-responsive neurons (Zhou & Baker, 1993; Mareschal & Baker, 1999; Rosenberg et
al., 2010). These results suggest that responses to CM gratings and nonlinear responses to

contrast-reversing gratings are elicited by a common nonlinear mechanism.
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2.4.6 A possible cortical circuit utilizing Y-pathway inputs to build cue-invariant receptive

fields

We propose a cortical neural circuit model (Fig. 2.7B) that could generate cue-invariant
orientation selective receptive fields from responses of cortical Y-like cells. In this model the
responses of both ON- and OFF-centre cortical neurons are combined in a "push-pull" manner
(Ferster, 1988; Hirsch et al., 1998; Martinez et al., 2005): the ON-subregions of an oriented
receptive field receive excitatory input from ON-centre cells and also inhibitory input from OFF-
centre cells, and vice versa for the OFF-subregions. It is straightforward to see that this receptive
field would be selective for orientation of a luminance boundary. The centers of both ON- and
OFF-type Y-cells contain subunits (Demb et al., 2001a) that are excited by increases in texture
contrast (i.e. give ON-responses to contrast). Thus if the push-pull between ON- and OFF-
pathways is balanced, then the nonlinear responses to texture contrast will cancel out, and the
neuron will be unresponsive to contrast boundaries. However an imbalance of the ON- and OFF-
pathways (won not equal to worr in Fig. 2.7B) would enable a contrast boundary response. For
example if the ON-pathway is stronger than the OFF-pathway, then in the ON-subregion
excitation from ON-subunits will be stronger than inhibition from OFF-subunits, and in the OFF-
subregion inhibition from ON-subunits will outweigh excitation from OFF-subunits. Thus the
ON-region would respond to an increase in texture contrast while the OFF-region would respond
to a decrease in texture contrast - thus the receptive field as a whole would respond well to an

oriented, periodic modulation of texture contrast.

In order to demonstrate the tuning properties of this unbalanced neural circuit model, we
constructed a computer simulation using a cascade of spatial filters. We modeled Y-cells as

summing rectified bipolar cell subunits (Enroth-Cugell and Robson, 1966; Demb et al., 2001a),
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as shown in Fig. 2.7A. Outputs of ON- and OFF-type Y-cells were combined in a push-pull
manner as shown in Fig. 2.7B. Thus this simulated model contains three filter stages
corresponding to bipolar cells (ON- and OFF-centre), Y-cells (ON- and OFF-centre) and a
cortical orientation selective simple cell, with half-wave rectification of each stage's responses.
We implicitly assume that receptive field properties of Y-type retinal ganglion cells (RGC), LGN
neurons and cortical Y-like cells are not significantly different in their spatial receptive field
properties. Bipolar cells were modeled as Difference-of-Gaussian (DoG) filters with much wider
surrounds compared to their centres, and with centre strengths outweighing surrounds (Dacey et
al., 2000). Note that it is crucial for bipolar cell centres to be stronger than their surrounds, to
enable a linear response to low spatial frequencies (Dacey et al., 2000; Rosenberg and Issa,
2011). Outputs of these bipolar cell filters were rectified and pooled with DoG weighting,
corresponding to retinal ganglion cell (RGC) receptive fields. The centre size of this DoG was
set to be several times (x10) larger than the centres of the bipolar cell filters. ON-centre Y-cells
were built by pooling ON-centre bipolar cells, and OFF-centre Y-cells by pooling OFF-centre
bipolar cells (Demb et al., 1999). Finally, outputs of ON- and OFF-centre Y-cells were summed

in a push-pull manner to build a cortical orientation-selective simple cell.

We measured responses of this model with balanced as well as unbalanced push-pull, to
luminance-modulation (LM) and contrast-modulation (CM) gratings, in order to compare the
model’s spatial selectivity to known cortical neurons’ selectivity (e.g. Mareschal and Baker,
1998b, Mareschal and Baker, 1999, Li et al., 2014). As shown in Fig. 2.8A, B, C, the model with
balanced push-pull responds selectively (spatial frequency and orientation) to LM gratings, but
fails to respond to CM gratings having a higher carrier spatial frequency (matched to the bipolar

cells' centre size). On the other hand, the model with unbalanced push-pull (Fig. 2.8D, E, F) not
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only responds selectively to LM gratings but also to CM gratings. Spatial frequency tuning (Fig.
2.8D, red) for the envelope of CM gratings is similar (though not identical) to that for LM
gratings, and the carrier spatial frequency tuning (blue) is well above the luminance passband. In
addition, this unbalanced model is also selective for similar orientation of LM gratings (Fig.
2.8E) and the envelope of CM gratings (Fig. 2.8F) - i.e. form cue-invariance. Note that in this
scheme carrier selectivity arises from retinal stage (bipolar cell) filters, while the envelope

selectivity emerges from cortical stage circuitry.

Many CM-responsive neurons in cat Area 18 have broader envelope orientation tuning,
and preference for lower envelope spatial frequencies, compared to their corresponding LM
responses (Mareschal & Baker, 1999). In this model scheme these differences arise from the very
wide surrounds of the bipolar stage filters compared to their centers (Dacey et al., 2000). These
surrounds make Y cells’ luminance spatial frequency tuning narrower by dampening responses
to low spatial frequencies, thereby shifting the optimal spatial frequency slightly higher.
However, for CM gratings at their optimal carrier spatial frequency (scale of bipolar cells'
centers), the surrounds of bipolar cells are too wide to detect the carrier. So unlike the case with
LM gratings, bipolar surrounds do not contribute to the selectivity for the envelope of CM
gratings. This can result in subtle differences in spatial frequency tuning to LM gratings and
envelopes of CM gratings in Y-cells, with preference for lower spatial frequencies of CM
envelopes compared to LM gratings. These differences can be further increased by nonlinearities
(expansive power-law) at the outputs of Y-cells and cortical ori cells, and thus can give a
difference in selectivity for luminance gratings and envelopes of CM gratings as shown in Fig.

28D,E,F.
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Interestingly, CM-responsive Area 18 neurons show a pronounced selectivity for relative
spatial phase between an LM grating and the envelope of a CM grating in a compound LM+CM
stimulus (Hutchinson et al., 2016). Therefore we measured model responses to LM+CM stimuli
(Fig. 2.9A) for comparison. In the compound stimuli, the spatial frequencies of the LM gratings,
and envelope and carrier of the CM gratings, were set to optimal values, and the contrasts of the
individual LM and CM gratings were adjusted such that model’s responses to them were of equal
strength - as in the experimental measurements of Hutchinson et al (2016). Then the model’s
responses were measured to LM+CM gratings that were added at varying relative phases. When
the model is made unbalanced, with won > worr, its response (Fig. 2.9B) is selective for relative
phase in the compound stimuli, with strongest response when the LM and CM are in phase (i.e.
high luminance of LM aligned with high contrast of CM), in agreement with the results of
Hutchinson et al (2016). This behavior arises because in the Y-driven push-pull model, ON- and
OFF-subregions for contrast detection are phase-aligned with ON and OFF subregions for

luminance detection.

2.5 Discussion

Our results have demonstrated that a large fraction of the sampled population of cat Area
18 neurons have non-oriented Y-like receptive fields, which are present at different cortical
depths intermixed with orientation-selective neurons and not evidently clustered in particular
layers. These Y-like cortical neurons respond at the second harmonic (F2) to high spatial
frequency contrast-reversing gratings and at the first harmonic (F1) to low spatial frequency

drifting gratings ("Y-cell signature", Enroth-Cugell and Robson, 1966; Hochstein and Shapley,
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1976). A given neuron's SF tunings for linear and nonlinear responses are quite distinct, with on
average about an 11-fold greater optimal SF for F2 than for F1. Furthermore, due to these

neurons’ nonlinearity at high spatial frequencies, they also respond to contrast modulation (CM)
patterns (second-order stimuli), with high selectivity for the spatial frequency of the CM carrier

grating (texture).

2.5.1 Non-ori cells in cat Area 18

Early visual cortical areas are conventionally described as characteristically comprised of
orientation selective receptive fields. However there have been some reports also finding a
substantial fraction of LGN-like non-oriented receptive fields in the early mammalian visual
cortex. For example, non-ori neurons have been found in primary visual cortex of macaque
(Livingston & Hubel, 1984; Ringach, Shapley, Hawken, 2002; Ringach, 2002), mouse (Bonin et
al., 2011) and ferret (Chapman & Stryker, 1993), as well as in cat Area 17 (Dragoi et al., 2001;
Hirsch et al., 2003). Earlier studies using single channel electrodes and bar-shaped search stimuli
in cat Area 18 (Tanaka and Ohzawa, 2006; Ferster and Jagadeesh, 1991; Mareschal and Baker,
1998a) did not report non-oriented receptive fields. But a recent study (Talebi and Baker, 2016)
in cat Area 18 using multi-channel electrodes, in conjunction with post hoc data analysis (spike
sorting) similar to ours, has reported a large proportion of non-oriented receptive fields estimated
using system identification methods. We believe that using multi-electrode arrays with post hoc
spike sorting leads to less sampling bias compared to earlier approaches of sampling one neuron
at a time with a single channel electrode. Furthermore, with earlier approaches, visual
responsiveness of the neuron was typically assessed with moving bars. However we have noticed

that a moving bar is not a good stimulus for driving responses from these non-ori neurons — they
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are much better driven by flashing spots centered on their receptive fields, due to their
comparatively strong surrounds. Thus previous studies might have rarely found such neurons or

failed to recognize their visual responsivity.

2.5.2 Nonlinear Y-like spatial summation

Here we have demonstrated that a significant fraction of neurons in early visual cortex of
the cat have spatial receptive field properties similar to those of subcortical Y cells. These
cortical neurons exhibit both linear and nonlinear spatial response properties, which are tuned for
quite distinct spatial frequencies ("Y cell signature" - Hochstein & Shapley, 1976). Optimal
spatial frequencies of our non-ori cortical neurons for linear and nonlinear responses (Fig. 2.4)
are similar to those reported for retinal and LGN Y cells (Hochstein & Shapley, 1976; So &

Shapley, 1979).

Ferster & Jagadeesh (1991) also described harmonic responses of orientation selective
simple cells in cat Area 18 to contrast-reversing gratings, and found around half of their neuronal
population to have Y-like spatial nonlinearities. However they did not report the presence of
non-ori Y-like cells. Spatial selectivity, such as the ratio of preferred spatial frequency of linear
and nonlinear responses, of their cell population is similar to the non-ori cells reported here.

However, orientation selectivity was not reported for their sample of neurons.

2.5.3 Neural mechanism for building cue-invariant receptive fields

A significant fraction of Area 18 orientation-selective neurons are responsive to both

first- and second-order visual stimuli, with the same preferred orientation to both (Zhou & Baker,
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1993; Song & Baker, 2006; Gharat & Baker, 2012) - i.e. they are "form cue-invariant" (Albright,
1992). Due to the additional selectivity of some of these neurons to carrier (texture) orientation,
it was proposed that the neural substrate for subunits of Area 18 neurons was cortical in origin
(Mareschal & Baker, 1998a). However more recent evidence suggests that subcortical Y cells
could provide a substrate for the carrier selectivity of cortical neurons (Demb et al 2001;
Rosenberg et al, 2010), with the envelope selectivity arising from cortical circuitry. The cortical
Y-like neurons that we have described are probably driven by LGN Y cells, and could provide an
intermediate stage for building cue-invariant orientation selective receptive fields. Firstly, they
have carrier selectivity like cue-invariant neurons, but no orientation selectivity for drifting
gratings, like Y cells. Unlike LGN cells, a significant fraction is binocular, which is also the case
for some oriented CM-responsive cells (Tanaka & Ohzawa, 2006). Also, these Y-like neurons
could provide both excitatory as well as inhibitory inputs to orientation selective neurons - since
input from the LGN to the cortex is only excitatory (Alonso et al., 2001), some sort of inhibitory
interneuron would be necessary to construct a push-pull architecture for cortical receptive fields.
Furthermore, the presence of some of these Y-like neurons in the top cortical layers suggests that
they could also be projecting to higher-tier cortical areas along with the orientation selective

neurons.

Our model simulations predict that cortical neurons with unbalanced push-pull
summation of Y-pathway inputs will be selective for orientation of both luminance and texture
boundaries, while the neurons that sum Y-pathway inputs with conventional balanced push-pull
will only be selective for luminance boundaries. Furthermore, the unbalanced push-pull model is

able to predict previously shown (Mareschal and Baker, 1998b; Mareschal and Baker, 1999; Li
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et al, 2014) spatial tuning properties of cortical neurons to LM and CM gratings, including

systematic differences in tuning for LM gratings and envelopes of CM gratings.

This unbalanced push-pull model with a Y-pathway input is fundamentally different from
the two-stream model proposed earlier (Zhou and Baker, 1993; Mareschal and Baker, 1998a) to
explain cortical neurons’ tuning properties. In the two-stream model, selectivity for luminance
and contrast processing arises separately, and only at the final stage are the outputs from these
two streams were summed. However in this Y-pathway model, luminance and contrast cues are
processed together all along the visual pathway beginning at the retina. In the two-stream model,
the neural substrate for subunits that detect fine texture within contrast envelopes was thought to
be Area 17 neurons (Mareschal & Baker, 1998a), but in this model it is retinal bipolar cells with
rectified outputs. In Area 18, only about half of the orientation selective neurons are responsive
to both LM and CM gratings, while the remainder are only responsive to LM but not CM
gratings (Zhou and Baker, 1993). This has been accounted for in the previous scheme by the
presence or absence of input from a second stream for processing contrast boundaries. However
in this scheme a lack of response to contrast modulation would arise from a symmetrical push-
pull, or from X- rather than Y-pathway inputs. Future studies could test this idea by assessing
whether cortical neurons' CM responsiveness is correlated with their push-pull imbalance of Y-

type inputs.

2.5.4 Implications for second-order processing in other mammals

While Y-type retinal ganglion cells were classically described in the cat, they have also
been demonstrated in other mammals including mouse (Schwartz et al., 2012) and guinea pig

(Demb et al., 2001a). There have been doubts about the presence of a cell type homologous to Y
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cells in primates, as previous studies failed to clearly demonstrate “Y-cell signature” responses in
retinal parasol cells (Petrusca et al., 2007). However Crook et al. (2008a) clearly demonstrated
that macaque retinal parasol cells have Y-like spatial nonlinearities. In view of our results, it
seems likely that many of the non-ori neurons in area V1 of both mouse (Bonin et al., 2011) and
monkey (Livingston & Hubel, 1984; Ringach, Shapley, Hawken, 2002) might also have Y-like
spatial nonlinearities inherited from subcortical Y pathway inputs - this would be a future avenue

of investigation.

Li et al (2014) demonstrated that about one-third of neurons in macaque V2 respond to
2™ order stimuli in a form cue-invariant manner. Spatial tuning properties of these neurons to
carriers and envelopes of CM gratings were qualitatively very similar to those in cat Area 18
neurons, differing principally in spatial scale. In addition, spatial frequency selectivity of V2
neurons (Li et al, 2014) for drifting luminance gratings and carriers of CM gratings is in a similar
range to the spatial selectivity of retinal parasol cells (Crook et al, 2008a) to drifting (F1) and
contrast-reversing (F2) gratings, respectively. So it is likely that, similar to cats, Y-like cortical
cells are pooled to generate cue-invariant receptive fields in the early visual cortex of primates.
Contrary to the view that 2" order processing takes place in higher visual areas (El-Shamayleh
& Movshon, 2011; Smith et al., 1998) and separate from 1% order processing (Larsson et al.,
2006; Smith & Ledgeway, 1997), it seems possible that all mammals including primates might
have a common mechanism for processing 2" order stimuli, involving the Y-cell pathway
providing an early substrate for carrier-tuning, and cortical circuitry with imbalanced push-pull

for cue-invariant envelope tuning.
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Figure 2.1 : Orientation tuning to drifting luminance gratings recorded with multielectrode

arrays.

(A) Example tuning curves of an orientation-selective neuron (left) and a non-selective neuron
(right), recorded simultaneously from the same site on a multielectrode. (B) Orientation tuning
curves of neurons recorded simultaneously with a 32-channel linear array inserted almost
orthogonal to, and spanning, the cortical layers. Neurons showed varying degrees of orientation
selectivity, with a large fraction lacking significant orientation selectivity (denoted by asterisks).
Dotted box indicates pair of neurons in (A). (C) Orientation selectivity of neurons is measured
with an orientation bias (OB) index, with higher values indicating greater orientation-selectivity.
Histogram shows distribution of OB values of all 208 neurons in our Area 18 sample. Neurons
with OB < 0.2 are classified as non-orientation selective (LGN-like). More than one third
(84/208) of these neurons are non-orientation selective. (D) Sorted spike waveforms for six

example non-orientation selective neurons recorded simultaneously.
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Figure 2.2 : Receptive field properties of non-orientation selective neurons.

(A) Histogram showing distribution of AC/DC (modulated/mean response) values of all 208
neurons in our Area 18 sample. (B) Histogram showing distribution of AC/DC (modulated/mean
response) values for non-orientation selective neurons' responses to drifting gratings. The
majority of these neurons are simple type (AC/DC > unity). (C) Scatterplot of binocularity index
versus AC/DC ratio for non-orientation selective neurons. There is no clear relationship between
these two parameters. (D) Histogram showing distribution of binocularity indices for non-
orientation selective neurons. Most of these cells are monocular (index < 0.1), but about one-

third are binocular.
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Figure 2.3 : Y-like non-orientation selective neurons in Area 18.

(A) Spatial frequency responses of a typical non-orientation selective neuron. First harmonic
response to drifting gratings (F1, red) is bandpass to low spatial frequencies. Similar to
subcortical Y cells, this neuron responds nonlinearly at the second harmonic (F2, blue) to
contrast-reversing high spatial frequency gratings. (B) PSTHs (peristimulus time histograms) of
the same neuron to contrast-reversing gratings (4Hz) of low (0.1cpd, left) and high (0.53cpd,
right) spatial frequencies. At low spatial frequency the neuron responds at the first harmonic (4
Hz) with periodic phase dependence, while at high spatial frequency it exhibits a second
harmonic (8 Hz) across the full range of phases. (C) Harmonic responses calculated from PSTHs
in (B) as a function of spatial phase. First harmonic response (F1, red) is phase-dependent with a
clear null phase repeated every 180°, while second harmonic response (F2, blue) is phase-
independent. (D) Distribution of nonlinearity indices of non-orientation selective neurons. Most

neurons are Y-like (nonlinearity index > 1.0).
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Figure 2.4 : Linear and nonlinear spatial frequency tuning of cortical Y-like neurons.

(A-F) Spatial frequency tuning for six cortical Y-like neurons. First harmonic (F1, red) responses
of these neurons are band-pass tuned with selectivity for low spatial frequencies. Second
harmonic (F2, blue) responses are band-pass tuned with selectivity for high spatial frequencies
outside the luminance passband. (G) Scatterplot of optimal spatial frequency for second
harmonic responses (F2) versus that for first harmonic responses (F1). All the points lie well
above the 1:1 ratio line, indicating that a given neuron’s optimal spatial frequency for F2 is
substantially higher than for F1. (H) Histogram showing ratios of optimal spatial frequency for

F2 vs. F1 (mean ratio = 11.3, median = 8.68).
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Figure 2.5 : Linear and nonlinear orientation responses of Y-like non-ori neurons.

(A-B) Linear (F1, red) and nonlinear (F2, blue) orientation tuning plots of two Y-like non-ori
neurons. One (A) is isotropic for orientation of nonlinear (F2) responses, while the other (B) has
pronounced orientation tuning (OB > 0.2). (C) Scatterplot showing comparison of orientation
tuning for low spatial frequency drifting grating (F1) and high spatial frequency contrast-
reversing grating (F2). Higher OB values indicate greater selectivity. Open circles in the
scatterplot correspond to the neurons in panel (A) & (B). (D) Histogram showing difference in

optimal orientation for linear (F1) response and nonlinear (F2) response.
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Figure 2.6 : Responses of Y-like non-ori neurons to contrast modulation (CM) gratings .

(A-B) Two examples of contrast modulation stimuli with vertically oriented low spatial
frequency envelope that modulates contrast of horizontal carrier grating at low (A) or high (B)
frequency. (C-H) Spatial frequency tuning plots of six neurons to contrast modulation and
luminance gratings. For a given neuron, the CM envelope spatial frequency was fixed at a low
value within the luminance passband (F1, red), and carrier spatial frequency was varied outside
the luminance passband. Neurons show bandpass tuning to CM gratings (orange), similar to their
second harmonic (F2) response to contrast-reversing gratings (blue). (I) Scatterplot of optimal
spatial frequency of contrast reversing luminance gratings for second harmonic (F2) responses
versus optimal spatial frequency of CM carrier grating. (J) Scatterplot showing spatial frequency

bandwidth of second harmonic (F2) response versus bandwidth of CM carrier grating.
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Figure 2.7 : Neural circuit model for cue-invariant receptive fields constructed from Y-

pathway.

(A) The receptive field of a Y cell is modeled as a filter-rectify-filter (FRF) cascade. The first
filter stage is comprised of a bank of small DoG (difference of Gaussian) receptive fields
corresponding to bipolar cells. The rectified outputs of these subunits are linearly pooled with
DoG weighting, at a much larger spatial scale (Demb et al., 2001a). (B) Receptive field of a cue-
invariant cortical simple cell can be thought of as a pair of overlapping phase-aligned receptive
fields, one constructed from summation of ON- and the other from OFF-center inputs. ON- and
OFF-centre Y-like cortical neurons are combined in a push-pull arrangement, such that the ON
region of the cortical neuron receives excitatory input from ON-centre cells and inhibitory input
from OFF-centre cells, and vice-versa for the OFF region. This model will respond selectively to
an oblique oriented luminance edge. But since the Y cells contain small nonlinear subunits, both
ON and OFF types will be excited by the presence of texture, resulting in no net response. When
the push-pull from ON- and OFF-pathways are unbalanced (e.g. stronger input from ON
pathway), the nonlinear responses to texture no longer cancel, thereby enabling envelope

orientation-selective responses to CM stimuli.
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Figure 2.8 : Spatial tuning of balanced and unbalanced push-pull model with Y-pathway

inputs.

(A) Spatial frequency response of the model with balanced push-pull. Responses to luminance
gratings (black) are band-pass tuned to low spatial frequencies, but the model does not respond
to CM gratings (red, blue) with carrier spatial frequencies outside the luminance pass-band. (B)
Balanced push-pull model shows orientation selectivity to drifting luminance gratings. (C)
Balanced push-pull model does not respond to CM gratings of any envelope orientation. (D)
Spatial frequency response of the model with unbalanced push-pull. Responses to luminance
gratings are band-pass tuned to low spatial frequencies as in 4, but the model also responds to
CM gratings with carrier spatial frequency selectivity (blue) outside luminance passband and
envelope selectivity (red) similar to that for LM gratings. (E) Orientation tuning of the
unbalanced push-pull model to drifting luminance gratings shows similar selectivity as B. (F)

Similar orientation tuning of the unbalanced push-pull model to envelope of CM gratings.
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Figure 2.9 : Selectivity of the unbalanced push-pull model for relative spatial phase of

luminance and contrast boundary.

(A). LM+CM compound gratings were constructed by linearly adding LM and CM gratings
having identical spatial frequency and orientation. Compound stimuli are illustrated for "in-
phase" condition (upper), where high luminance of LM grating is phase-aligned with high
contrast of CM grating, and "anti-phase" (lower), where high luminance of LM grating is phase-
aligned with low contrast of CM grating. (B). Responses of the unbalanced push-pull model to
compound LM+CM gratings with varying relative spatial phase. The model, with won > Worr,
responds strongest when LM and CM gratings are phase-aligned and weakest when they are in

anti-phase.
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The previous chapter provided evidence supporting the role of the nonlinear Y pathway as an
input for processing second-order stimuli in the visual cortex. Hence it is important to build
quantitative receptive field models of subcortical Y cells that can account for their signal
processing. So in this chapter, I estimate biologically plausible neural network models of cat
LGN receptive fields, using recent machine learning methods (deep learning). I train
convolutional neural network models for each recorded LGN neuron, using its spiking responses
to naturalistic texture stimuli. I demonstrate that, these models are not only better in comparison
to the standard linear-nonlinear models at predicting response to arbitrary stimuli, but they also
recover biologically interpretable subunit models. This chapter is under preparation for

submission to a peer reviewed journal.
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CHAPTER 3

Estimating Subunit Receptive Field Models of Thalamic Neurons

with Deep Learning.

3.1 Abstract

Spatial nonlinearities emerging at the level of the retina are thought to be important for
processing texture boundaries in the visual cortex. However, previous studies have modeled
receptive fields of subcortical neurons as linear filters with a static output nonlinearity. Although
such "LN" models are relatively easy to estimate with reverse-correlation they cannot capture
spatial nonlinearities within receptive fields. Here we model retinorecipient receptive fields of
cat lateral geniculate nucleus (LGN) neurons as a two-layer convolutional neural network model
with an intermediate parametric nonlinearity (pReLU). We train such a neural network model for
each neuron, using its spiking responses to naturalistic texture stimuli. The convolutional filter is
initialized with random weights, and no constraints are imposed on its shape. The learned models
converge on to filters with clear Gaussian or DoG (Difference of Gaussians) like shapes, and
often exhibit a high predictive performance on test datasets. The trained models of Y-type LGN
neurons have a higher degree of nonlinearity compared to those for X-type neurons. In
conclusion, a nonlinear two-layer convolutional model that is based on retinal neurobiology is

better at predicting responses of Y-type neurons to novel test stimuli compared to an LN model.
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3.2 Introduction

Our visual system utilizes both changes in luminance as well as higher order texture
statistics for segmenting an object from its background. Even though processing of luminance
signals is well understood at the early stages of the visual pathway, neural mechanisms for
processing texture remain unclear. Recent studies (Rosenberg et al., 2010) have suggested that
the subcortical Y pathway could be the neural substrate for joint processing of luminance as well
as texture information. Y-type (alpha) ganglion cells in the mammalian retina have been
classically distinguished from other retinal ganglion cell (RGC) types by the fine-scale spatial
nonlinearities in their receptive fields (Enroth-Cugell and Robson, 1966; Hochstein and Shapley,
1976; Borghuis et al 2013; Gollisch, 2013; Crook et al., 2008a). The presence of a rectifying
nonlinearity at the bipolar-ganglion cell synapse enables Y cells to detect fine scale textures as
well as coarse-scale luminance changes (Demb et al, 1999; Demb et al., 2001a; Demb et al.,
2001b). The resultant signals are relayed to the cortex via Y-type cells in the lateral geniculate
nucleus (LGN), where recent evidence suggests they are utilized for building receptive fields that
can encode orientation of boundaries formed by texture (second-order) as well as luminance
(first-order) changes in a cue-invariant manner (Rosenberg et al., 2010; Rosenberg and Issa,

2011; Gharat & Baker, 2017).

A rigorous way to gauge our understanding of visual signal processing by a receptive
field is to build quantitative models and test their ability to predicting responses to random
stimuli. However, most previous efforts to fit quantitative receptive field models to RGC and
LGN neural responses have assumed a linear filter followed by a static output nonlinearity (LN
model) (Reid et al., 1997; Pillow et al., 2005, Wang et al., 2011). Obviously such linear filter

models cannot capture selectivity to texture stimuli arising from multi-stage nonlinear processing
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within the Y cell receptive fields. Recent studies have begun to incorporate these spatial
nonlinearities by modeling receptive fields as multi-stage “subunit" models (Schwartz et al.,
2012; Freeman et al., 2015; Turner and Rieke, 2016; Bolinger and Gollisch, 2012). However, it
has been a challenge to develop a framework that can estimate parameters of robust and

biologically interpretable models, using limited and noisy neural data (Vintch et al., 2011).

In this study, we use a deep learning framework to train multi-layer convolutional neural
networks (CNNs) to model receptive fields of LGN neurons. Interestingly, the architecture of
CNN:s is inspired from the mammalian visual system, particularly its hierarchical multi-stage
processing, containing a cascade of spatially localized linear filters convolved across space,
separated by static rectifying nonlinearities (LeCun et al., 2015). Thus, CNNs are a well-suited
framework for capturing spatial nonlinearities in Y cell receptive fields. Furthermore, a recent
study (Yamins et al., 2014) obtained very promising results, in which they showed that deep
CCNss trained on an object recognition task could accurately predict visual responses of neurons

in higher visual areas of the ventral stream.

Here we estimate predictive receptive field models of single neurons in the cat LGN from
their responses to high-resolution naturalistic synthetic textures. We train convolutional neural
network models from responses of each neuron using backpropagation gradient descent methods.
The architecture of the model (Figure 3.2) consists of a spatiotemporal convolutional filter layer,
(“subunit filters”) followed by a parametric rectifying nonlinearity (pReLU). The rectified
outputs of this layer are pooled by a densely-connected layer, and passed through a final output
nonlinearity. We find that for Y-type cells, the convolutional model with intermediate
nonlinearities performs significantly better than a conventional linear-nonlinear (LN) model at

predicting neuronal responses to a holdback dataset not used for training the models. But for the
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X-type (linear) cells, both models performed equally well. The learned convolutional filters
resemble the receptive fields of retinal bipolar cells, having fine-scale, isotropic shapes. For a
subset of neurons, adding a separate pathway to capture feedforward inhibition provided a big

improvement in the model’s predictive ability.

3.3 Methods

3.3.1 Animal Preparation and Electrophysiological Recordings

Animal procedures were as described in our previous study (Gharat & Baker, 2012).
Briefly, intravenous cannulation was performed on adult cats of either sex under anaesthesia
induced with isoflurane/oxygen. To record single-unit responses from lateral geniculate nucleus
(LGN), a craniotomy and durotomy (HC A6/L9) were performed under anaesthesia with
intravenous propofol. During electrophysiological recordings, the animal was anesthetised and
paralyzed with infusions of propofol, remifentanil, and gallamine triethiodide, and inhalation of
N20/0z. Vital signs (expired CO2, blood O2, heart rate, EEG, temperature) were monitored and
maintained at appropriate levels throughout the experiment. Neutral contact lenses were provided
for corneal protection, spectacle lenses for refraction, and artificial pupils for improved optical
quality. Animal procedures were approved by the Animal Care committee of McGill University

and are in accordance with the guidelines of the Canadian Council on Animal Care.

Neurons’ responses in the LGN were recorded in most cases using quartz-coated tungsten
tetrodes (Thomas Recording), and occasionally with single-channel glass-coated tungsten
electrodes (Alpha Omega). The LGN was identified by strong monocular multi-unit responses to

flashing light at around 13 mm depth, that switched with increased depth from the contralateral
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eye (layer A) to ipsilateral (layer A1) and back to contralateral (layer C). All the single-units in
this study were recorded in layers A and Al. Raw data signals were acquired with a Plexon
Recorder (3 Hz to 8kHz; sampling rate, 40 kHz) and streamed to a hard disk for later analysis. A
small photocell placed on a corner of the display screen provided signals for temporal

registration of stimuli and spike times.

3.3.2 Visual Stimuli and Recording Protocol

Visual stimuli were generated with an Apple Macintosh computer (MacPro 4.1, 2.66
GHz/4 core, 6Gb, MacOSX 10.6.8, NVIDIA GeForce GT120) using custom MATLAB software
with Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al. 2007) and presented on
a gamma-corrected CRT monitor (NEC FP1350, 20 inches, 640 x 480 pixels, 150 Hz, 36 cd/m?)
at a viewing distance of 57 cm. The display screen was roughly centred on the receptive field of
multi-units, using manually controlled, drifting or flashing white or black bar or spot stimuli on a
grey background. During recording, multi-unit signals from a single channel were used to guide
the recording protocol. Responses of neurons were first recorded with conventional sinusoidal
drifting gratings of varying spatial frequencies to measure spatial frequency tuning. Then
contrast-reversing gratings were presented to assess spatial nonlinearities and classify neurons as

X- and Y-type (see below).

After measuring responses to gratings, image sequences of naturalistic texture patterns
(Kingdom et al, 2001; Zavitz and Baker, 2013) were presented to map receptive fields of neurons
(Figure 3.1). Y cells respond linearly to low spatial frequencies, and the nonlinear subunit
responses only become evident when presented with high spatial frequencies (Hochstein and

Shapley, 1976). These spatial nonlinearities can enable responses to contrast-modulated texture
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boundaries (Demb et al.,2001b). Our aim in this study was to map subunit structure within the
receptive field using system identification, and hence we need a large set of independent images
(~10,000) that can nonlinearly activate receptive fields - i.e. images rich in high spatial frequency
textures. Instead of trying to manually select natural images with fine textures, we generated
synthetic textures with naturalistic image statistics (Kingdom et al, 2001; Zavitz and Baker,
2013). These images were generated by modulating the contrast of a texture pattern (“carrier”
by an “envelope” as shown in Figure 3.1. Carrier images (Fig. 3.1A) were constructed with
randomly positioned, high-density Gabors with high spatial frequencies (A = 0.25°, 0.5°, 1°, 2°),
with four different sizes and six different orientations (0°, 30°, 60°, 90°, 120°, 150°). The sizes
of the Gabors were chosen to cover the range of spatial frequencies (0.5cpd to 3cpd) that have
been previously shown to activate Y cells nonlinearly (So and Shapley, 1979). The relative
proportions of Gabors of various sizes was set such that the constructed image had a power
spectrum with an approximately 1/f fall-off as in natural images (Field, 1987; Kingdom et al,
2001). Envelope images (Fig. 1B) were independently constructed in a similar manner but with
coarse scale Gabors (A =4°, 8°, 16°, 32°). Then a carrier image and an envelope image were
pixel-wise multiplied to generate a final modulated texture image (Fig. 1C) of 480 x 480 pixels
(30°x 30°). Stimulus movies were presented as 5-second sequences of 375 such images,
refreshed every two CRT frames (i.e. at 75Hz), with the movie preceded and followed by a grey

blank screen of the same mean luminance.

Three separate datasets were measured for training, regularization and testing of the
receptive field models: the training dataset contains 20 movies repeated 5 times, the

regularization and testing datasets each contain 5 movies repeated 20 times. Movies for training,
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regularization and testing were randomly interleaved to minimize effects of slow changes in

responsivity. Total recording time for the entire set of movies was around 40 minutes.

Single-units were isolated from recorded multi-unit signals offline using SpikeSorter
software (Swindale and Spacek, 2014) and only clearly separated units were included in our
analysis. After offline sorting, spike times of single neurons were binned in PSTHs (using bin
width 13.33 ms, the duration of each frame), which were used to calculate first-harmonic (F1)
and second-harmonic (F2) responses. Neurons were classified as Y-type if responses to contrast-
reversing gratings of high spatial frequencies elicited significantly stronger F2 than F1 response,

otherwise as X-type neurons (Hochstein and Shapley, 1976).

3.3.3 Receptive Field Model

The parameters of a convolutional neural network (CNN) model (LeCun et al., 2015)
were optimized to fit naturalistic image responses of each neuron. The architecture of the CNN
model used here (Figure 3.2) consists of a spatio-temporal convolutional filter layer, which
models identical subunits tiled spatially on a square grid, followed by a spatially uniform static
nonlinearity (PReLU, Parametric Rectified Linear Unit - He et al, 2015). Then these rectified
filter outputs are linearly summed by a pooling layer (“Dense Layer”). Finally, the output of the
pooling layer is passed through a pSoftplus (parametric softplus) nonlinearity. This pSoftplus
nonlinearity has a shape similar to a ReLU (half-wave rectification) except that this function
does not pass through the origin, and the output of the function is positive for both positive and
negative inputs. This output nonlinearity was used to ensure that the final output of the neuron
model never goes to exactly zero, because the Poisson loss function (see below) used for training

the model takes the log of the output.
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The PReLU nonlinearity is defined as:
f(x) = a*xx forx<0
f(x)=x forx>=0
where a is a learned parameter.

The pSoftplus nonlinearity is defined as:
f(x) = -log(1 + ey,
where k is a learned parameter.
The Poisson loss function is:
L =71 —rxlog(?)

where r is the actual firing rate and 7 is the predicted firing rate.

3.3.4 Model Training and Performance

Before training CNN models for each neuron, a Linear-Nonlinear (LN) model (Talebi &
Baker, 2012) was estimated, to facilitate manually setting a cropping window to encompass the
centre and surround of the receptive field. Then the cropped stimuli were downsampled to 40x40
pixels. The CNN models were trained using the Python Deep Learning library, Keras (Chollet,
2015), with the Theano (Bergstra et al, 2010) backend. The models were trained by minimizing a
Poisson loss function with the Adam optimizer (Kingma & Ba, 2014). The weights of the
convolutional filters and dense layer were randomly initialized using a Glorot normal
initialization (where weights are drawn from a truncated normal distribution centred on zero), as

it leads to faster convergence of neural networks (Glorot and Bengio, 2010). To avoid
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overfitting, we used L2 weight regularization along with dropout (p=0.5) for both layers, and
Poisson noise was applied to the input (Oliver MD, 2014; Lane et al, 2016). Poisson noise was
used instead of Gaussian noise traditionally used for training neural networks, since a previous
study (Oliver, 2014) found it to estimate more robust and less noisy subunit filters as well as
improve the models' predictive performance. Each neural network model was trained for 1000

epochs with early stopping ("patience" parameter in Keras, set to 50).

Regularization datasets were used to optimize hyperparameters related to L2
regularization as well as architectural parameters (filter sizes). One of the challenges with
training neural networks is the optimization of multiple hyperparameters. This was especially
problematic here because we trained separate neural networks for >100 neurons. Consequently,
instead of testing all possible combinations of all the hyperparameters on the datasets for every
neuron, we used data from a small group of representative neurons (10) to test hyperparameters
over a wider range. The results from these assessments indicated the relevant ranges over which

to do more restricted grid searches for optimal hyperparameter values, for all the other datasets.

A separate holdback Test dataset, not used for training or regularization, was reserved for
testing predictive performance of the model. Performance of each fitted model was quantified as
percent variance accounted for (% VAF), calculated as the square of the correlation coefficient

(%) between actual neuronal response and predicted response.

We also estimated a linear-nonlinear model (LN model) for comparison of predictive
performance with that of the convolutional model. To be comparable, we used the exact same
model architecture with the same number of parameters, except that the intermediate pReLU
nonlinearity was removed, making it essentially an LN model. Furthermore we also used the

same method (eg: optimizer, regularization etc) as used earlier for training the nonlinear model.
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3.4 Results

3.4.1 Mapping nonlinear subunit receptive field models with deep learning

For this study, we recorded from 93 neurons (41 Y cells and 52 X cells) in 4 cats. For
each neuron, a separate neural network model was trained using the neuron's responses to movies
of naturalistic texture stimuli - see Methods for details of the model training. We constrained the
weights in the pooling layer to be positive, which should capture the center mechanism of the
receptive field. From here on we will refer to this architecture as a "1-branch" model, as it has
only a single convolutional filter. (In a later section, we also estimate a "2-branch" model, i.e.
having two distinct convolutional filters acting in parallel, one with positive pooling weights and
the other with negative weights, that could potentially capture center as well as surround
mechanisms of the receptive field.) No constraints are imposed on the shapes of the
convolutional filter or the pooling layer weight map. In this framework, we can simultaneously
learn the convolutional filter weights, the o parameter of the PReLU nonlinearity, and the weight

map of the pooling layer.

Figure 3.3 shows an example of a trained neural network for one of the neurons in our
sample. The model optimization recovers a subunit filter (upper left) that is spatially isotropic
with a strong OFF-center (blue) and weak excitatory surround (red), and with a biphasic
temporal filtering. The o parameter that corresponds to the degree of nonlinearity is 0.15, which
is close to half-wave rectification. The 2D map of the pooling weights shows the spatial locations
at which the subunits act, and their corresponding weights - note that pooling weights were
constrained to be positive. The linear reconstruction map shown at the bottom is obtained by

convolving the subunit spatial filter with the pooling weights.
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Figure 3.4 shows trained neural networks of four additional example neurons. The neuron
in panel A has an ON-center subunit spatial filter with a possible antagonistic surround
organization, a monophasic temporal filter, and pooling layer weights whose layout does not
appear to be clearly isotropic. The neuron in Figure 3.4B has a subunit that is OFF-center with
little or no surround, and a biphasic temporal response, and a pooling layer that appears slightly
oriented. Figure 3.4C shows a neuron whose subunit has an ON-center and surround inhibition,
with an isotropic map layer. The neuron in Figure 3.4D shows a clear ON-center, OFF-surround
for the subunit, with a biphasic temporal filter. The map layer is isotropic and substantially

smaller than the other examples - taken together with the nearly linear o parameter for the

PReLU. The a parameter of the nonlinearity is close to zero (half-wave rectification for the other

examples (Fig. 3.4A,B,C).

3.4.2 Predictive performance for novel stimuli

After estimating subunit receptive field models for each neuron, we tested their predictive
ability for responses to novel test stimuli. This test dataset was not used for training or validating
the model, so it gives a sense of how well the model generalizes to novel stimuli. The
performance of the model was measured as the percentage of the neuronal response variance
accounted for (VAF) - see Methods. For comparison, we also estimated a linear receptive field
model for each neuron - for comparability we used exactly same model architecture and method
of training, except that the intermediate nonlinearity (pReLU) was removed, making the model

essentially a linear-nonlinear (LN) architecture.

Figure 3.5 shows scatterplots comparing neurons’ VAF values for the 1-branch subunit

model to those for a linear model, with each point denoting results from a single neuron. For Y-
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type cells shown in Figure 3.5A, most of the points lie above the 1:1 line, suggesting that the
subunit model performs better than the linear model at predicting responses of these neurons to
novel stimuli. A Wilcoxon-signed rank test confirms that VAFs for the subunit model are
significantly greater than for the linear model (p= 1.4995e-04, N=41). On the other hand, for X-
type cells shown in Figure 3.5B most of the points lie close to the 1:1 line, suggesting that the
subunit and linear models perform equally well at predicting responses to novel stimuli. A
Wilcoxon-signed rank test confirms that the VAF values for the subunit model and for the linear
model are not significantly different (p= 0.5, N=52). Thus having a spatial nonlinearity within

the receptive field model improves its performance for the Y- but not X-type cells.

3.4.3 Intermediate nonlinearity (o)

One of the advantages of the deep neural network learning framework is that in some
cases it can learn the intermediate nonlinearity between the subunit filter and pooling weights.
We employ the PReLLU nonlinearity (He et al., 2015), a simple piecewise-linear function having
only one parameter — o — that denotes the slope of the negative half of the nonlinearity. It can
vary from +1 (linear) to -1 (full-wave rectification). Thus the o parameter controls the degree of
spatial nonlinearity within the receptive field. Neurons in our population were classified as X- or
Y-type depending upon their responses to contrast-reversing gratings. Neurons that gave
frequency-doubled nonlinear response to contrast-reversing gratings were classified as Y-type
cells. So we wanted to examine whether there was a correspondence between neurons' a values

and their cell type.
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Figure 3.6 shows the distributions of o values for the Y- and X-type cells. For all the
neurons in our sample, the a value ranged from 0 (half-wave rectification) to 1 (linearity). For
large fraction of the Y-type cells (24/41, 59 %) o was less than 0.5, while o was greater than 0.5
for 39/52 (75 %) of X-type cells. The a values for Y-type cells were significantly less than for
X-type cells (p=2.6335¢-06, Mann-Whitney U test). Thus with this modeling approach we could
capture the varying degree of spatial nonlinearity within the receptive fields of different neurons,

with trained models of Y-type cells having a higher nonlinearity than X-type cells.

Previous ex vivo retinal studies in guinea pigs (Demb et al., 2001a) and mice (Borghuis
et al., 2013) have shown that OFF-type Y cells have a higher degree of rectification than ON-
type cells. However in our sample, Y-type cells’ a values were not significantly different
between ON-type cells (mean = 0.45, N = 28) and OFF- type cells (mean = 0.52, N =13) (rank

sum test: p = 0.4085).

We wanted to test if the improvement seen in the predictive power of subunit models
compared to linear models could be related to the o parameter of the nonlinearity. To examine
whether there is any systematic relationship, we constructed scatterplots (Figure 3.7) comparing
o values of the estimated models to their improvement in predictive performance. Improvement
was calculated as the ratio of subunit VAF to linear VAF. For Y-type cells shown in Figure
3.7A, neurons with a greater than 0.5 (towards linearity) did not show significant improvement
in performance. But for neurons with o less than 0.5, performance of the neurons increased with
decreasing a (increasing nonlinearity). This trend was statistically significant (Pearsons

correlation coefficient R = -0.7165, p = 1.3780e-07, N=41). However, for X-type cells shown in
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Figure 3.7B there was no significant correlation between neurons’ a and improvement in

performance (R =-0.1278, p =0.3667, N=52).

3.4.4 Two-branch model

As mentioned earlier we further extended the 1-branch model to have a second branch
with its own convolutional filter, PReLU and pooling layer, that could potentially capture the
inhibition within the receptive field from the amacrine cell pathway. This was modeled by
adding a second convolutional filter as shown in Figure 3.8. Outputs of this filter were also
passed through a pReLU nonlinearity, combined in a separate Pooling Layer, and then passed
through a half-wave rectification (ReLU). Pooling weights of the second branch were
constrained to be negative to capture the feedforward inhibition. Half-wave rectification was
included with this filter to capture the rectification introduced from the spiking responses of
amacrine cells (Demb et al., 1999). Figure 3.9 shows the 2-filter receptive field model estimated
for the example neuron previously shown in Figure 3.3. The spatial and temporal filters
recovered for the excitatory filter in this framework is very similar to those recovered in the 1-
branch analysis of Figure 3.3. Interestingly, for the inhibitory filter, the temporal filter has
delayed dynamics compared to the excitatory filter. Also, the linear reconstruction for the
inhibitory filter covers a wider spatial region. Consequently when the linear reconstructions for
the two filters are summed, we get a centre-surround antagonistic organization as shown on the
right. Adding the second filter improves predictive performance for this neuron, with the VAF

increasing from 40.8% to 52.6%.

Figure 3.10A compares predictive performance of 2-branch versus 1-branch models for

Y-type neurons. For a subset of neurons there is a clear improvement in VAF for the 2-branch
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model. However for X-type neurons (Figure 3.10B) there was not a substantial improvement in
VAF. Finally, Figure 3.10C compares the best subunit model (between 1- and 2-branch) versus
the linear model for Y-type neurons. Clearly, the nonlinear subunit model performs better at
predicting responses of Y-type neurons. This is confirmed by a Wilcoxon-signed rank test, which
shows the VAF for the subunit model is significantly greater than for the linear model (p=
7.1601e-08, N=41). However for X-type neurons (Figure 3.10D) there is only a modest
improvement with the subunit model, which is still significant (Wilcoxon-signed rank test, p

=3.5165¢-05, N=52).

3.5 Discussion

We have demonstrated that convolutional neural network (CNN) models, fit to spiking responses
from single LGN neurons, recover biologically plausible nonlinear subunit filters with Gaussian
or Difference of Gaussian (DoG) shapes. CNN models of Y-type neurons show a higher degree
of spatial nonlinearity within their receptive field compared to X-type neurons, and significantly

improve predictive performance in comparison to linear-nonlinear models for Y-type neurons.

3.5.1 Relationship of receptive fields for LGN neurons vs. retinal ganglion cells

Recent studies have suggested that the subcortical Y pathway input to the cortex forms
the basis for first- and second-order selectivity of early cortical neurons (Demb et al., 2001a;
Rosenberg et al., 2010). In this study our aim was to capture, within an estimated model, the
retinal nonlinear processing that makes Y-type subcortical neurons selective for texture as well

as luminance changes. To model the signal processing in the Y-pathway neural circuit we
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measured spiking responses from Y-type lateral geniculate nucleus (LGN) neurons, which are .
comparatively much easier to record from than RGCs, in vivo. Although there are multiple ways
of measuring RGC responses in vivo, for example intraretinally (Fukuda and Stone, 1974), from
the optic tract (Bullier and Norton, 1979), or as LGN S-potentials (Kaplan and Shapley, 1984),
all these methods are challenging, and give relatively low yields of data. However in the LGN
we were able to use tetrodes with subsequent spike sorting, to simultaneously record from
multiple neurons, substantially increasing our yield of neurons. Furthermore, in the LGN we
could get good stability of recordings, enabling data collections for the long durations (~ one

hour) needed for system identification.

The signals in the LGN do however reflect additional processing beyond that in the
retina. For example, LGN neurons pool inputs from multiple RGC afferents (Martinez et al.,
2014). Furthermore, there is feedforward inhibition within the LGN through inhibitory
interneurons (Wang et al., 2011). In addition, the LGN also receives feedback from the visual
cortex (Murphy & Sillito, 1996). However despite this additional processing, previous studies
have shown there is little or no mixing of inputs between the X and the Y pathways, and most
LGN cells, despite receiving convergent retinal inputs (Martinez et al., 2014), get predominant
excitatory drive from single RGCs (Bullier and Norton, 1979; Mastronarde, 1992). Spatial
receptive field properties of RGCs and neurons in the LGN are very similar (So and Shapley,

1981).

3.5.2 Visual stimuli for system identification

Receptive field properties of neurons can be stimulus dependent (David et al., 2004), so

it is desirable to study receptive fields under the most naturalistic conditions in order for the
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results to be most widely relevant (Touryan and Dan, 2005; Wu et al., 2006). However, Y cells
give strong linear responses to the low spatial frequency content in natural images, even though
there is a spatial nonlinearity present within their receptive fields. It is only when they are
stimulated with high spatial frequencies in the range of the subunit size, that their spatial
nonlinearity becomes evident (Enroth-Cugell and Robson, 1966). High spatial frequencies can
differentially activate subunits within the receptive field, and the responses of subunits to
opposite contrast polarity do not cancel out (Demb et al., 2001a). Here we wanted to resolve
subunit structure within the receptive field using system identification, and hence we needed a
large set of independent images that could nonlinearly activate the receptive fields. But at the
same time, we wanted the visual stimuli to be naturalistic, since artificial stimuli may drive

neurons in a non-ecological operating range.

To address the conflicting requirements, we generated random synthetic textures (Figure
3.1) having naturalistic image statistics (Kingdom et al, 2001; Zavitz and Baker, 2013). These
textures contained high densities of randomly placed Gabor micropatterns, with their contrast
modulated by randomly placed coarse-scale Gabors. An important advantage of these textures
was that we could control the spatial frequency content in the images - the size of the texture
elements was set to be within the expected range of nonlinear subunit selectivity for the Y-type
cell population (So and Shapley, 1981). However, note that we did not customize these images
for each neuron based on its spatial frequency selectivity - consequently for some of our sampled
neurons these images could still activate relatively strong linear responses. Also, unlike
sinusoidal gratings that contain energy only at one spatial frequency, these texture stimuli are
broadband, containing texture elements of multiple sizes, so nonlinear responses will not be as

strong, and consequently might not stand out from the noise in the estimated filters due to trial-
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wise neuronal variability (Faisal et al, 2008; Harris & Thiele, 2011). In such cases our system
identification method might fail to resolve the spatial nonlinearity in the receptive field and

recover only a linear receptive field.

In this study, new images were presented at 75Hz, so there was no correlation between
consecutive images. However during natural viewing the temporal structure of visual stimuli on
the retina is controlled by eye, head and body movement as well as object motion. This
stimulation is strongly correlated over time, unlike the stimuli here - therefore the temporal
dynamics of the receptive fields might be different under natural stimulation. Kording et al
(2001) generated natural movies by attaching a camera on a cat’s head while the cat explored an
outdoor environment. Even though this movie captures the cat’s head and body movement, it
cannot capture the eye movements. Baudot et al. (2013) used cats' eye movement statistics from
the oculomotor literature, and simulated eye movements over static natural scenes to generate
movies. They found neuronal responses to be sparse and highly precise. However such
temporally correlated stimuli pose difficulties for system identification. Our preliminary attempts
using such stimuli recovered receptive fields that were temporally "smeared", as if subjected to a
temporal low-pass filter. The reason for this kind of biased estimate using simulated eye
movement stimuli is that with temporally correlated image frames, the machine learning
algorithm does not get responses to enough novel stimuli. Consequently much longer recording

times would be needed to make effective use of such stimuli for experiments of this kind.

3.5.3 Convolutional Neural Networks

Convolutional neural networks with several layers and many filters have been very

successful at tasks such as object recognition (LeCunn et al., 2015). These deep neural networks,
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typically with millions of parameters, are trained using millions of labeled images of different
object categories. However it is not practical to collect neural responses to millions of images in
these kinds of experiments. Yamins et al. (2014) instead used the features of a neural network
already trained on an object classification task to model receptive fields of neurons in the ventral
stream. Neural data from individual neurons were used to learn pooling weights of these features.
Interestingly, such models could predict responses of single neurons in area V4 and IT,
suggesting that features encoded by artificial neural networks for a classification task might have
a high similarity to encoding in the primate ventral stream. A recent study measured selectivity
of hidden units in a deep CNN model using stimuli previously used in neurophysiological
experiments to characterize shape-tuning, and found that tuning properties of a small number of
units were similar to V4 neurons (Pospisil et al., 2016). However, it remains unclear to what
extent the encoding at successive layers of these neural networks has any correspondence with

hierarchical stages of the primate visual system.

Here we used a highly simplified convolutional neural network with only two layers and
one or two filters to model receptive fields of LGN neurons. Instead of using features of a pre-
trained neural network, we constructed a neural network architecture based on known biology,
and used neuronal data to learn all the model parameters. Despite initializing the weights of the
convolutional filters and pooling layers randomly, training always converged onto filters with
clear structure, e.g. Gaussian or DoG shapes. Even though optimizing a neural network is not a
convex problem (i.e. having multiple local minima), using various regularization methods to
avoid overfitting (L2 weight, Poisson noise and Dropout) and the Adam optimizer, these models

always converged on very similar filter shapes despite different random initializations.
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An important aspect of our model architecture is the use of a parametric rectifier
nonlinearity (He et al., 2015). The single parameter, a, of this "pReLU" nonlinearity, enabled us
to model receptive fields of different cell types (X and Y) with the same model architecture. This
approach is like that used to model simple and complex type visual cortex neurons (Nguyen,
2016). Thus convolutional neural networks are a promising candidate for modeling receptive
fields of neurons at early stages of the visual pathway, by building model architectures with

biological constraints and training with limited amounts of neural data.

3.5.4 Future directions

Qualitatively we observed that the spatial size of the recovered subunit filters is bigger
than expected from the spatial frequency tuning (nonlinear F2-response) to contrast-reversing
gratings. This discrepancy could be a result of using texture stimuli with a 1/f fall-off in spatial
frequency, in which (as discussed earlier), due to the broadband nature of the stimuli, nonlinear
responses to high spatial frequencies might be obscured by stronger responses to the low spatial
frequencies and the neuronal noise. One way to improve this would be to collect data for longer
durations with a larger number of images, and a higher number of repetitions. Such larger
datasets might also enable satisfactory estimation of 2-filter models for a larger percentage of the

neurons.

In vitro studies of the mouse retina have demonstrated that the intermediate nonlinearity
for ON-type Y cells is temporally asymmetric (Borghuis et al., 2013). However, in this study we
modeled this nonlinearity with the pReLU, a static nonlinearity. Future studies could attempt to
model this dynamic nonlinearity, to better capture the processing in ON-type cells and improve

model performance. We made preliminary attempts to capture additional processing at the LGN
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stage (e.g. feedforward inhibition, Martinez et al., 2014) by adding an additional convolutional
layer to the model (3-layer model). However we did not see any improvement in the predictive
performance using this model compared to the 2-layer model. Larger datasets might help in

capturing additional processing at the LGN stage.
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Figure 3.1 : Construction of naturalistic texture stimuli.

(A) Carrier texture patterns were constructed with a high density of randomly positioned Gabor
micropatterns, to span all orientations with four different sizes to cover the range of spatial
frequencies (0.5¢cpd to 3cpd) that have been previously shown to activate Y cells nonlinearly.
The proportions of Gabors of various sizes was set so that the constructed image had a power
spectrum with an approximately 1/f fall-off as in natural images. (B) Envelope patterns were
constructed in a similar manner with coarse-scale Gabors (0.03 to 0.25 cpd). (C) Finally, the
envelope pattern was applied to the carrier pattern to modulate the contrast of the texture.
Ensembles of such contrast-modulated texture patterns, each independently constructed, were

employed as frames of movie stimuli for system identification experiments.
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Figure 3.2 : Model architecture of 1-filter convolutional neural network to model LGN

receptive fields.

Receptive fields are modeled as a two-stage convolutional neural network, with the first layer
consisting of a space-time convolutional filter followed by a parametric rectifier (pReLU)
nonlinearity. Outputs from all spatial locations are combined by a Pooling layer (dense layer)
and passed through a final output nonlinearity (pSoftplus). Such a neural network was trained on

each neuron's spiking responses to naturalistic texture stimuli.
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Figure 3.3 : Receptive field model of an example Y cell.

For the subunit filter (top left), the algorithm recovers an OFF-center isotropic spatial filter for
the subunit, with a biphasic temporal filter. The a parameter that corresponds to degree of
nonlinearity for this model is 0.15, which is close to half-wave rectification. Pooling weights
show the spatial location of the subunits, with intensity of pixels indicating their corresponding
weights. Since pooling weights were constrained to be positive they are all red in color. Linear

reconstruction map (bottom), obtained by convolving subunit spatial filter with pooling weights.
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Figure 3.4 : Trained neural networks for four example Y cells.

Recovered subunit spatial filters have a clear isotropic structure, despite no algorithmic
constraint on their shape. Some subunits have weak surrounds as in C. Temporal filters for the
subunit are usually biphasic (B, C, D), but sometimes monophasic (A). The intermediate
nonlinearity parameter a is close to half-wave rectification for some neurons (A, B, C), while for
others it is close to linearity (D). VAFs for prediction of Test datasets, 44.44 % for (A), 37 % for

(B), 28.5 % for (C), 41.23 % for (D).
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Figure 3.5 : Comparing predictive power of subunit models to linear models in predicting

neural responses.

Scatterplots comparing neurons’ VAF values for the subunit model and the linear model. (A) For
Y-type cells most of the points lie above the 1:1 line (N=41), indicating that the subunit model
performs better than the linear model at predicting responses to novel stimuli. (B) For X-type
cells most of the points lie close to the 1:1 line (N=52), suggesting that subunit and linear models

perform equally well at predicting responses to novel stimuli.
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Figure 3.6 : Degree of spatial nonlinearity within receptive fields of X- and Y-type neurons.

Distributions of a values of parametric rectifier nonlinearity (pReLU) for Y- and X-type cells.
For all the neurons in our sample (N=93), a values fell between zero, corresponding to half-wave
rectification, and a value close to one, indicating linearity. (A) For most of the Y-type cells, a
was less than 0.5. (B) For X-type cells a was usually greater than 0.5. The a values for Y-type
cells (mean = 0.5, SD = 0.19) were significantly less than for X-type cells (mean = 0.69, SD =

0.17) (p=2.6335e-06, Mann-Whitney U test).
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Figure 3.7 : Relationship between model performance improvement and nonlinearity.

Scatterplots comparing o values of the subunit models and their improvement in predictive
performance compared to linear models. (A) For Y-type neurons there is a negative correlation
between o and VAF improvement. Models with a closer to zero (more rectification) have higher

improvement in their predictive performance. (B) For X-type neurons there is no such systematic

relationship.
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Figure 3.8 : Model architecture of a 2-filter convolutional neural network to model LGN

receptive fields.

This model has an additional convolutional filter, with a distinct PReLU nonlinearity and pooling
layer, acting in parallel with those of the model shown in Figure 3.2. Both filters are identical
except one filter provides excitation and other provides inhibition. This model is based on known
retinal circuitry, in which ganglion cells receive direct excitatory inputs from bipolar cells and
indirect inhibitory inputs via spiking amacrine cells. Half-wave rectification (ReLU) in the

inhibitory filter captures the rectification at the output of amacrine cells.
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Figure 3.9 : 2-filter receptive field model for example neuron of Figure 3.3.

The spatial and temporal subunit filters recovered for the excitatory filter are very similar to
those recovered in the 1-stream model for this neuron (Figure 3.3). Interestingly, for the
inhibitory filter (#2) the temporal subunit filter has delayed dynamics compared to the excitatory
filter. In addition, the linear reconstruction for the inhibitory filter covers a wider spatial region,
so that the combined linear reconstruction (rightmost plot) shows an OFF-centre, ON-surround

organization.
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Figure 3.10 : Comparison of predictive performance across different receptive field models.

(A) Comparison of predictive performance of 2-filter versus 1-filter models for Y-type neurons
(N=41). For a subset of these neurons there is a significant improvement in the VAF for the 2-
filter model. (B) For X-type neurons (N=52) there is not a substantial improvement in VAF with
the 2-filter model. (C) VAF values for best subunit model (between 1- and 2-filter) vs. linear
model for Y-type neurons (N=41). Clearly, the nonlinear subunit model performs better at
predicting responses of Y-type neurons. (D) For X-type neurons (N=52) there is only a slight

improvement with the subunit model compared to the linear model.
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Model simulations from Chapter 2 demonstrated that if inputs from ON and OFF-center Y cells
are pooled in an unbalanced push-pull manner, then cortical receptive fields can have cue-
invariant orientation selectivity. So in this chapter, I evaluate the integration of ON- and OFF-
pathway inputs by individual neurons in early cortical areas of the cat (Area 17 and Area 18)
using novel system identification method. The estimated models reveal spatial arrangements of
ON and OFF inputs that are consistent with a push-pull model, but significant asymmetries in the
relative strengths of ON and OFF signals, within simple cell receptive fields. These observed
asymmetries could provide the neural mechanism for generating cue-invariant receptive fields
from Y-pathway inputs. This chapter is under preparation for submission to a peer reviewed

journal.
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CHAPTER 4

Separating ON and OFF pathway inputs to cortical simple cells

reveals receptive fields with asymmetric push-pull.

4.1 Abstract

Simple cells in the early visual cortex are conventionally thought of as linear Gabor-like spatial
filters with an output nonlinearity. This linearity across the receptive field is thought to arise
from a symmetric "push-pull" arrangement of inputs from ON and OFF pathways. However the
generality of this finding to a wider sample of neurons, and to other early cortical areas, remains
unclear. We used 32-channel multielectrodes (polytrodes and linear arrays) to record
extracellular single-unit responses of cat Area 17 & 18 simple cells to natural image sequences.
We estimated a two-stage (LNLN) receptive field model of individual simple cells using
regularized gradient descent optimization. In this model, first stage filters correspond to receptive
fields of ON- and OFF-center lateral geniculate nucleus afferents, while the second stage (weight
map) corresponds to the spatial layout of their summation by the cortical neuron. This model
enabled us to visualize the spatial arrangement of excitatory and inhibitory inputs from ON and
OFF subcortical pathways to individual receptive fields. The estimated models reveal significant
asymmetries in spatiotemporal integration of ON and OFF signals within simple cell receptive
fields. These observed asymmetries could provide the neural mechanism for generating cue-

invariant receptive fields from Y-pathway inputs.

112



4.2 Introduction

Light and dark parts of visual images are encoded separately in the retina by distinct
populations of neurons having ON- and OFF-center receptive fields. These ON and OFF
pathways that are thought to have very little interaction until they reach primary visual cortex,
V1 (Schiller, 2010), where they are combined to build receptive fields selective for features such
as orientation and spatial frequency. Simple cells in V1 are conventionally thought to combine
inputs from these two pathways in a "push-pull" manner, i.e. at each spatial location in the
receptive field, excitatory input from one pathway is complemented, or balanced, by inhibitory
input from the other pathway (Ferster, 1988; Hirsch et al. 1998; Martinez et al, 2005). This
arrangement allows simple cells to have spatially linear receptive fields despite integrating inputs

from spiking neurons that have rectified outputs.

However, there exist spatial and temporal asymmetries between the ON and OFF
pathways. For example, OFF pathway signals reach cortex approximately 3-6 ms before the ON
pathway signals (Jin et al., 2011). ON ganglion cells have receptive fields with 20% larger
diameter than those of OFF cells (Chichilnisky and Kalmar, 2002). OFF-dominated simple cells
tend to have faster dynamics (Komban et al., 2014), and are in higher proportion in the
superficial layers of V1 (Yeh and Shapley, 2009), than ON-dominant neurons. Most previous
studies of ON/OFF pathways used white noise stimuli to map receptive fields with reverse-
correlation. However natural scenes contain very different image statistics (Field, 1987;

Thomson, 2001) that may drive visual neurons differently (Felsen et al., 2005).

Further it remains unclear whether these asymmetries in processing dark and light are

present within individual receptive fields of cortical simple cells after integration of ON and OFF
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inputs, or if these asymmetries are compensated by cortical mechanisms. Shariati & Freeman
(2012) have suggested that ON/OFF temporal asymmetry within a receptive field could provide
a mechanism for direction selectivity in cortical neurons. Gharat & Baker (2017) proposed that if
ON and OFF inputs from subcortical Y-cells are combined in an unbalanced push-pull manner, it
could result in receptive fields that have cue-invariant orientation selectivity for luminance as

well as texture boundaries.

Here we separate the contributions of ON and OFF pathway inputs to cat Area 17 and 18
simple cells, while viewing natural images. We model a simple cell's receptive field as a
weighted linear sum of simulated ON and OFF inputs, tiled across visual space. A gradient
descent optimization method with regularization (to avoid overfitting) is used to estimate
separate spatiotemporal maps of each simple cell's summation weights for these ON and OFF
inputs, from its responses to natural images. With this method, we can map both excitatory as
well as inhibitory contributions of the ON and OFF pathways within individual receptive fields.
We find that for many neurons, maps of ON and OFF weights are approximately identical in
spatial layout and magnitude, but are of opposite polarity (“push-pull”). However, there is a large
diversity in the ratio of ON vs. OFF strengths, and a large subset of neurons have unbalanced
push-pull. We also find asymmetries between temporal dynamics of ON and OFF weight maps.
These results demonstrate spatiotemporal asymmetries in how visual cortex neurons integrate
signals from light and dark regions within natural scenes, which might contribute to receptive

field properties such as direction selectivity and cue-invariant second-order processing.
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4.3 Methods

4.3.1 Animal Preparation and Electrophysiological Recordings

All the animal procedures for this study were approved by the Animal Care Committee of
McGill University and are in accordance with the guidelines of the Canadian Council on Animal
Care. Animal setup and electrophysiological recordings were identical to those of our previous
study (Gharat & Baker, 2017). A craniotomy and durotomy were performed on cats for electrode
placement in Area 17 (H-C P3-L1) and Area 18 (H-C A3/L4). Electrophysiological recordings
were performed using 32-channel multielectrodes (NeuroNexus), either linear arrays (A1x32)
with 100um spacing or polytrodes (A1x32 poly2) with 50um spacing, using Plexon Recorder for
data acquisition (3 Hz to 8kHz; sampling rate, 40 kHz). Broadband signals from all 32 channels,
along with the photocell data, were streamed to the hard drive and saved for later analysis. For
this study we recorded from 97 simple cells (44 cells in Area 17 and 53 cells in Area 18) in 19

cats. On these cats data collection was also performed by other lab members for their projects.

4.3.2 Visual Stimuli and Recording Protocol

Visual stimuli were generated and presented as previously described (Gharat & Baker,
2017). Multi-electrodes were inserted perpendicular to the brain surface so that spatial locations
of neuronal receptive fields at different channels were similar. Multi-unit spikes from one of the
visually responsive channels of the electrode were used to guide the recording protocol. First,
manually controlled flashing and drifting black or white bars were displayed on a grey-
background CRT monitor (NEC FP1350, 20 inches, 640 x 480 pixels, 150 Hz, 36 cd/m?, 57 cm

viewing distance) to roughly map the spatial location of the multi-unit receptive field. The
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dominant eye was identified, and the other eye then occluded. Subsequent stimuli were presented

under computer control, centered on the location of the receptive field.

Greyscale natural images were presented on the CRT monitor. These images covered 30°
of visual angle with a resolution of 480x480 pixels. These images were extracted from
photographs in the McGill Calibrated Color Image Database (Olmos & Kingdom, 2004) and
converted to greyscale. The mean intensity of each image was equated, and the images were
normalized to have the same standard deviation. An ensemble of 375 randomly selected images
was used to form a single movie clip, presented at 75 Hz for a 5 sec trial. Note that there was no
temporal correlation between the consecutive frames of each movie clip. 30 such movie clips
were generated, as previously (Talebi and Baker, 2016). 20 of these movies were repeated 5
times and responses to these movies were used for training the model. Responses to the other
two sets of 5 movies, each repeated 20 times, were used for regularization and for testing of the
model. Presentations of movies to be used for training, regularization and test datasets were all
randomly interleaved, to minimize effects of neuronal gain change over time. It took around 45

minutes to collect these datasets

4.3.3 Receptive Field Model Estimation

Spike waveforms were carefully classified from these datasets to isolate responses from
single neurons, using SpikeSorter software (Swindale & Spacek, 2014). Spike times were binned
(using bin width equal to the duration of each image, i.e. 13.3 ms) to calculate spike rate of
neurons. The training dataset was used for optimizing the model parameters by minimizing the
mean-squared-error (MSE) between the actual neuronal response and the predicted response of

the model, using gradient descent optimization. The regularization dataset was used to decide the
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number of training iterations, using early stopping - i.e. the training was stopped when its
predictive performance ceased to improve on the regularization dataset. The test dataset was used
to evaluate the predictive performance of the estimated model. The MATLAB toolbox STRFlab

(http://strflab.berkeley.edu) was used for performing optimization of the model.

4.3.4 Linear-nonlinear receptive field model

First a linear-nonlinear (LN) model was estimated, as described in Talebi & Baker
(2012). Here the receptive field is modeled as a space-space-time linear spatiotemporal filter,
followed by a static output nonlinearity. Since the measured neural responses were obtained to
natural images, this model was estimated using a regression framework to avoid bias from the
stimulus autocorrelation (Wu et al., 2006). To estimate the model, stimulus images were first
down-sampled to 30x30 pixels. The linear filter part of the model was estimated for 8 time lags
spaced by 13.3 msec (75Hz) - thus the estimated filter model had 30x30x8 (7200) parameters.
After estimation of the linear filter, the output nonlinearity was estimated by fitting a half-
rectified power law, which contained only one free parameter (Talebi & Baker, 2012). This
estimated linear filter was further refined by defining a square cropping window around the filter

and re-estimating the linear filter by repeating the above-mentioned procedure.

Only neurons whose estimated linear filter showed clear, orientated receptive fields with
segregated positive (ON) and negative (OFF) regions in their receptive fields were classified as
simple cells and included in further analysis. An optimal spatial frequency value was obtained
for each estimated filter at the optimal temporal lag, from its Fourier transform (Talebi & Baker,

2016).
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4.3.5 ON-OFF subunit model

Receptive fields of simple cells in the visual cortex are thought to have a "push-pull"
arrangement of ON- and OFF-pathway inputs in their receptive fields, as shown in Figure 4.1. In
such an arrangement, spatial locations in the receptive field with ON-pathway excitation are
balanced by equal inhibition from OFF-pathway inputs, and vice-versa - thus generating linear
receptive fields from nonlinear (i.e. rectified) ON- and OFF-pathway inputs (Ferster, 1988).
Here, we test this balance between ON- and OFF-pathway inputs across both the space and time
dimensions of the receptive field. The simple cell receptive fields were modeled as a linear
weighted sum of ON- and OFF-centre LGN afferents as shown in Figure 4.2. The receptive
fields of these afferents were modeled as 2D spatial Gaussian filters, whose outputs were half-
wave rectified - the antagonistic surrounds were neglected, to simplify the model parameter
estimation, since LGN cells typically have weaker surrounds in comparison to their centres (So
and Shapley, 1981). Also, the spatial nonlinearity of the Y pathway was not included in the
models of afferents. The size parameter of the Gaussian (o) was set separately for each neuron,
based on its estimated linear filter in the LN model, estimated as described earlier - the Gaussian
o was inversely proportional to the optimal spatial frequency, such that the subunit size was well
within individual ON or OFF regions (Reid & Alonso, 1995). The banks of such simulated ON
and OFF subunits were uniformly tiled on a square grid with spacing of 2¢ (Chichilinisky, 2001;

Ringach and Shapley, 2004, Anishchenko et al., 2010).

The weights of the ON and OFF subunits across space and time were estimated within a
regression framework as described in the earlier section, with a Generalized Linear Model. The
weights in this model were estimated by minimizing the mean square error between actual

neuronal response and predicted response, on the training dataset. These estimated weights could
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be positive (excitatory) or negative (inhibitory). Early stopping regularization was used to avoid
overfitting. These estimated models were then evaluated on a separate holdback test dataset,
which was not used for training or regularizing the model parameters. Performance of each fitted
model was quantified as percent variance accounted for (% VAF), calculated as the square of the

correlation coefficient (R?) between actual neuronal response and predicted response.

4.3.6 Receptive Field Analysis

Figure 4.3 shows an example ON-OFF subunit receptive field estimated for a typical
simple type cell. These colormaps indicate spatial maps of ON and OFF subunit weights across
successive temporal lags, with each pixel denoting the weight of a Gaussian subunit centred at
the pixel location. The colormaps in the top row indicate weights of ON subunits, whereas the
bottom row indicates weights of OFF subunits - red indicates positive weights and blue indicates

negative weights.

To assess spatial properties and conformity to the push-pull scheme, 2D spatial weight
maps ("wMaps") were extracted for the ON and OFF inputs at optimal time lags in the space-
space-time dependence. The chosen time lags were the ones with maximum variance. For only
15 out of 97 neurons optimal time lags for ON and OFF wMaps differed by more than one lag. In
the example of Figure 4.3, this was the third lag (denoted by dotted squares) for both the ON and

the OFF inputs.

For each neuron, the wMaps at these optimal lags were used to measure the strength of
ON and OFF inputs. We defined an ON-OFF strength index ‘S’ to measure relative contribution

of ON- and OFF-pathway inputs to a given neuron's estimated receptive field model:
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Var(ON)—-Var(OFF)
S =
Var(ON)+Var(OFF)

where Var(ON) is the variance of the ON wMap at the optimal time lag for ON inputs, and
Var(OFF) is variance of the OFF wMap at optimal time lag for OFF inputs. Note that this index

takes into account both excitation as well as inhibition from each pathway.

To evaluate the relative spatial arrangement of excitation and inhibition of ON and OFF
inputs within the receptive field, we calculated the Pearson’s correlation (R) between ON and

OFF wMaps at their respective optimal lags.

We also compared the temporal dynamics of ON and OFF inputs within individual
neurons' receptive fields. To do this we decomposed the spatio-temporal (3D) weight maps into a
2D spatial map and 1D temporal filter, using singular value decomposition (SVD) (Mazer et al.,
2002). For the example neuron in Figure 4.3, the extracted temporal dynamics for ON (red) and
OFF (blue) inputs are shown on the right side. These plots were fitted with cubic spline
interpolation using MATLAB’s csapi function (Yeh et al., 2009). From these temporal functions,
we obtained the peak times for the ON and OFF pathway inputs. To quantify the
monophasic/biphasic nature of these temporal functions, we calculated an Amplitude Ratio and
an Integral Ratio (Komban et al., 2014). The Amplitude Ratio is calculated by dividing the
suppression amplitude by the peak amplitude. The Integral Ratio is calculated by dividing the

suppression integral by the peak integral.

120



4.4 Results

4.4.1 ON-OFF subunit model

Receptive fields of oriented simple type cells were modeled as weighted linear sums of
rectified ON- and OFF-centre LGN afferents. For each neuron, the weights of these afferent
inputs were estimated using regularized linear regression. Spiking responses of each neuron to
natural image sequences were used to optimize the model through gradient descent (see Methods
section). This algorithm estimates space-space-time weights for both ON and OFF inputs,
allowing us to compare spatiotemporal integration of ON and OFF signals within individual

simple cell receptive fields.

Figure 4.3 shows spatial weight maps of ON and OFF inputs across eight time lags for an
example simple cell receptive field. The color of each pixel in the spatial maps denotes the
estimated weight of a subunit at that spatial location and time lag. Red colored pixels denote
positive weights (excitation) and blue denotes negative weights (inhibition) - note that the model
recovers both excitation as well as inhibition of both ON and OFF inputs within the receptive
field. In this example, the weight maps show near-horizontally oriented regions for both the ON
and OFF inputs. The two dotted squares highlight the spatial weight maps at their respective
optimal time lags. Note that optimal lag for ON and OFF inputs was separately determined even
though in this example the same (3'%) lag was optimal for both. For only 15 out of 97 neurons
optimal lag differed for ON and OFF inputs by more than one. In this example, for ON inputs the
elongated excitatory region is above the inhibitory regions - but for OFF inputs the symetrically
opposite pattern is evident, with the inhibitory region above the excitatory. Thus the ON and

OFF inputs form a push-pull spatial arrangement within this receptive field.
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From the spatio-temporal weight maps we also extracted temporal dynamics of the ON
and OFF inputs using singular value decomposition (SVD) (Mazer et al., 2002). The graph on
the right side in Figure 4.3 shows the temporal dynamics for ON and OFF inputs in red and blue,
respectively. Temporal filters for both ON and OFF inputs in this example are quite similar,
though the delay was clearly longer for ON (red) compared to OFF (blue) inputs. Both ON and
OFF inputs have small undershoots, slightly more pronounced for the ON. Thus this model
framework allows us to visualize the push-pull arrangement of ON and OFF inputs in the

temporal dimension as well.

4.4.2 ON-OFF spatial arrangement

Spatial weight maps for ON and OFF inputs at their optimal time lags were used to
compare spatial relationships and relative strengths of ON and OFF inputs. Figure 4.4 shows
examples of ON and OFF spatial weight maps for six example simple cells. Like the example in
Figure 4.3, these neurons also have similar shapes for ON and OFF weight maps, with opposite
polarity (“push-pull”’). However the relative strengths of ON and OFF inputs varies across these
examples. To summarize the similarity in the spatial arrangement of ON and OFF subunits, we
estimated a correlation index (r) between the two weight maps. Correlation (r) values for these
examples are generally close to -1, indicating a strong negative correlation between ON and OFF

weight maps as expected from a push-pull arrangement.

To summarize the relative strengths of ON and OFF inputs within a receptive field, we
defined an index, the ON-OFF strength (S), having values ranging from -1 (OFF-dominated) to
+1 (ON-dominated). The neurons in Figure 4.4A and 4B have strength index (S) values close to

zero, suggesting equal contributions from ON and OFF inputs to their receptive fields. However,
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the neurons in panels 4C and 4D have S values less than zero, suggesting stronger contributions
from OFF inputs compared to ON inputs. On the other hand, the neurons in panels 4E and 4F
have S values greater than zero suggesting stronger contributions of ON compared to OFF

inputs.

In Figure 4.5, values for the r and S indices are summarized for the sample of neurons
from Area 17 (N=44) and Area 18 (N=53). Panel A shows the distribution of correlation values
(r) between ON and OFF weight maps. Most of the neurons in our sample have strong negative
correlation, consistent with a push-pull spatial arrangement. However, a minority of neurons
(14/97) have a positive correlation between ON and OFF weight maps. This group of neurons
also had a large difference between the temporal dynamics for ON and OFF inputs and will be
discussed in the following section. The mean r value for the Area 17 sample is -0.53 and for Area

18, -0.36, but the difference between the means is not significantly different (two-sampled t-test,
p=0.1).

The distribution of ON-OFF strength (S) values is shown in the histogram of Figure 4.5B.
S is broadly distributed with both positive and negative values across our sample of neurons. The
mean S values for the Area 17 and 18 samples (-0.07 and -0.09 respectively) are not significantly
different (two sample t-test, p = 0.8). The mean S value for the total sample is -0.08, with a broad
distribution of S values (SD=0.35). The mean value of S is significantly less than zero (one-
tailed t-test, p =0.016, N=97), suggesting a slight dominance of OFF inputs at the population
level. These results indicate that even though most of the simple cells have a push-pull spatial
arrangement (negative r values), the relative strength of ON and OFF inputs is highly variable

across individual neurons.
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Conceivably the observed imbalance in ON and OFF inputs could result from variance in
the estimates of the receptive field models. One way to evaluate an estimated model is to
measure its predictive ability on a test dataset not used for training - if a model has low
predictive ability then its estimated parameters might be noisy. Figure 4.5C shows a scatterplot
of ON-OFF strength (S) of each neuron and its predictive performance measured as Variance
Accounted For (VAF). As can be seen in the scatterplot there was no systematic relationship
between S and VAF (r=0.06, p=0.6, N=97) - neurons with high as well as low VAF have unequal
ON-OFF strength, suggesting that the observed imbalance between ON and OFF inputs was not

a result of noisy model estimates.

4.4.3 ON-OFF temporal dynamics

The above analysis described spatial asymmetries between ON and OFF inputs within
simple cell receptive fields, but from the example already seen in Figure 4.3, some neurons also
exhibit asymmetries between temporal dynamics of ON and OFF inputs. Figure 4.6 shows
temporal profiles for four example neurons, extracted using singular value decomposition (SVD)
on the space-space-time weight maps. The neuron in panel A has very similar temporal dynamics
for both ON (red) and OFF (blue) inputs, although the OFF peaks slightly earlier than ON. The
neuron in panel B has similar dynamics for the initial positive part, but a much greater
subsequent undershoot for OFF than for ON inputs. The neuron in panel C has faster dynamics
for OFF inputs, which are monophasic for OFF inputs but biphasic for ON inputs. A minority of
neurons in our sample show large differences in peak times of the ON and OFF inputs, as shown

in panel (D). This group of neurons are the ones pointed out earlier, that show positive
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correlation between spatial weight maps for ON and OFF inputs - i.e. they do not show a push-

pull arrangement.

The above examples show prominent differences between ON and OFF dynamics in two
respects: different latencies and the degree of the undershoot. To summarize these differences
in temporal dynamics of ON and OFF inputs across our sample we estimated three indices from
these temporal profiles — peak time, amplitude ratio and integral ratio (see Methods). The peak
time captures the latency to peak and the degree of the undershoot is captured by the amplitude
and integral ratios. Neurons’ sustained or transient response to step stimuli depends upon the
integral of undershoot in comparison to the integral of peak (Schmid AM et al., 2009). Figure
4.7A compares peak times for ON and OFF inputs. Most of the points lie close to the 1:1 line,
suggesting very similar peak times for ON and OFF. However a small number of neurons show
large differences between their peak times, as pointed earlier for the neuron in Figure 4.6D. The
sample means of ON and OFF peak times (38.99 and 36.33, respectively) are not significantly

different (paired two-tail t-test, p=0.35, N=97).

Figure 4.7B shows a scatterplot comparing amplitude ratios for ON and OFF temporal
profiles. An amplitude ratio close to zero indicates a small undershoot amplitude compared to the
peak amplitude, while a ratio close to one indicates equal undershoot and peak amplitude. ON
and OFF amplitude ratios for most of the neurons are less than 0.5 - i.e. the peak amplitude is
substantially greater than the undershoot amplitude. There is a large scatter between ON and
OFF amplitude ratios, and most points lie away from the 1:1 line. However, there is no
systematic trend between ON vs OFF ratios. The sample means of the ON and OFF amplitude
ratios (0.44 and 0.36, respectively) are not significantly different (paired two-tailed t-test, p =

0.76, N=97).
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We also estimated an integral ratio, based on the areas of the initial positive vs
subsequent negative parts of the temporal dynamics. The scatterplot in Figure 4.7C of integral
ratios shows similar scatter to that in Figure 4.7B. These results suggest that even though peak
times for ON and OFF inputs are similar, they often differ in subsequent undershoots within
individual receptive fields. Thus most simple cells have substantial push-pull imbalance from the

undershoots of their temporal profiles.

4.5 Discussion

In this study, we modeled receptive fields of simple cells in cat Area 17 and 18 as a linear
weighted sum of simulated ON and OFF pathway afferents, to evaluate the extent to which they
conform to a push-pull arrangement. Using the GLM framework, we could recover both
excitation as well as inhibition within receptive fields from extracellularly recorded visual
responses to natural scenes. We demonstrated that a majority of the simple cells have very
similar spatial arrangement of ON and OFF pathway inputs, in a push-pull manner. However
there was considerable diversity among neurons in terms of the relative strength of ON and OFF
inputs within their receptive fields, with a slight bias for OFF inputs in our sample. In addition,
we also found significant asymmetries in the temporal integration of ON and OFF inputs within

receptive fields, especially during the undershoot of the temporal response.

4.5.1 Limitations

Here we modeled each simple cell as a linear weighted sum of simulated ON and OFF

afferent inputs. However, there is a growing evidence that inputs might not be linearly integrated
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in cortical neurons, for example due to dendritic nonlinearities (Wilson et al., 2016). Synaptic
inputs clustered together on nearby parts of the dendrites tend to interact nonlinearly. For
example, spatial clustering of synaptic inputs with similar orientation selectivity on the dendrites
have been shown to nonlinearly affect a neuron's orientation selectivity (Wilson et al., 2016). In
addition, dendritic spikes have been shown to make a significant contribution towards enhancing
orientation selectivity of neurons (Smith et al., 2013). Such phenomena can lead to nonlinear
interactions between synaptic inputs, and our assumption of linearity of summation will not hold.
However it remains unclear how best to incorporate such nonlinearities in a model framework

whose parameters can readily be estimated, for example with machine learning.

We modeled ON and OFF afferent inputs as Gaussian spatial filters, ignoring their
surrounds to simplify parameter optimization. Therefore a part of the inhibition measured in the
weight maps is presumably arising from the subcortical surround mechanisms, and in the
approach used here we could not separate out these two sources of inhibition. Although,
contribution of the surrounds may be somewhat limited as surrounds are typically weaker than

the centers.

Instead of white noise stimuli often used in previous studies, here we used a rapid
sequence of static natural images, which can better activate a wider range of neurons and yield
models with more robust predictive power (Touryan et al., 2005; Talebi & Baker, 2012).
However in the real world visual scenes are dynamic in more complex ways, due to motion of
objects, eye movements, and the observer's movement through the world. So it is possible that
the estimated temporal dynamics of the neurons and how they integrate ON and OFF signals
might differ under such conditions. In addition, due to the lack of continuous motion in our

stimuli, we might have undersampled neurons that are motion-selective. Future efforts might
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benefit from providing more naturalistic visual stimuli to drive neurons in a more appropriate

manner.

In this study, we separately evaluated push-pull along spatial and temporal dimensions by
using spatial maps at optimal time lags and temporal filters extracted with SVD analysis. The
SVD method decomposes a spatiotemporal receptive field matrix into multiple orthogonal
components each containing 2D spatial filter and 1D temporal filter. For space-time separable
RFs, the first principal component of SVD accounts for the majority of the power of the RF
matrix. But for space-time inseparable RFs, higher-order components also contain a significant
fraction of the power (Wolfe and Palmer, 1998). Here in this study, we compared temporal
profiles from only the first component of ON and OFF weight maps. This comparison could be
problematic for neurons that do not have space-time separable weight maps (e.g., direction
selective neurons - Valois et al., 2000). On average in our sample neurons, the fraction of power
accounted by the first component was 58 + 16 % (mean = SD) for ON weight maps and 64 + 13
% for OFF weight maps. Along with nonseparability, noisy estimates of the weight maps also
leads to less than 100% of power accounted. OFF maps were significantly more separable than
ON maps (one tailed t-test, p = 0.0012). Since there is no clear way to extract a spatial and a
temporal profile for inseparable weight maps, another possible way of evaluating push-pull
between ON and OFF inputs could be to collapse 2D spatial weight maps along the optimal RF
orientation at each time lag and generate 2D space-time maps (Valois et al., 2000). This method
would be able to effectively handle neurons with space-time separable as well as inseparable

weight maps.

128



4.5.2 Comparison to previous findings on ON-OFF integration by cortical neurons

Ringach and Mata (2005) estimated separate ON and OFF maps for receptive fields of
neurons in macaque V1, to evaluate the simple vs. complex cell dichotomy. These ON and OFF
maps were estimated from visual responses to sparse random white and black dots using reverse
correlation, by separately correlating responses with white and black parts of the stimuli. From
these maps, they were able to visualize a push-pull arrangement within the receptive fields of
simple cells, and found a negative correlation between ON and OFF maps as also demonstrated
by our method. The approach used here goes beyond this earlier work by comparing the relative
strength of ON and OFF inputs, as well as their temporal dynamics. In addition, the ON and OFF
maps recovered with this method were estimated from responses to natural images, which may
be more effective in driving cortical neurons as well as producing estimated models that are

more robust in predicting responses to other stimuli (Talebi & Baker, 2012).

Yeh et al. (2009) reported the presence of OFF-dominated neurons in layer 2-3 of
macaque V1. They used reverse correlation with sparse noise stimuli containing only a single
white or black square on each frame. However, with their method, they could not recover
inhibition within the receptive fields, and the estimated temporal functions did not have an
undershoot. In addition, they did not distinguish simple vs. complex cells in their sample.
Nevertheless, they found neurons with ON or OFF dominance in equal numbers in layer 4, but
strong OFF dominance in layer 2-3. Also, they found the imbalance to be stimulus dependent -
the imbalance changed when measured with sinusoidal gratings. Thus it remains unclear if this
OFF dominance observed with sparse noise or gratings holds true when measured with natural
images. We do not have laminar analysis information to check if the imbalance we observe when

viewing natural scenes is layer dependent.
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The subcortical OFF pathway has been demonstrated to have faster temporal dynamics
than the ON pathway in the cat (Jin et al., 2011). This temporal difference is thought to arise
from different kinds of glutamate receptors in ON and OFF types of retinal bipolar cells
(Nakajima et al., 1993). Komban et al. (2014) compared temporal dynamics between populations
of ON-dominated and OFF-dominated cortical neurons, and found faster dynamics for OFF-
dominated cortical neurons. However, they performed their ON/OFF dominance classification
based on the sign of a single maximum-amplitude pixel in the receptive field. A neuron with a
stronger ON region is not necessarily driven by stronger ON pathway inputs. The ON subregion
of a receptive field receives both excitation from the ON and inhibition from the OFF pathway,
consistent with a push-pull arrangement. Therefore it remains unclear if this difference in
temporal dynamics is present after the integration of ON and OFF pathway signals within
individual simple cells. The ON and OFF maps estimated in this study allowed us to disentangle
the excitatory and inhibitory contributions of ON and OFF pathways within individual receptive
fields. We did not see any bias towards faster integration of OFF signals compared to ON. There
might be compensating mechanisms in the cortex to remove temporal latency differences
emerging from the retina. One possible mechanism could be the distinct localization of ON and
OFF afferent inputs on the dendrites (Lee et al., 2016). For example, localizing faster inputs on

distal parts of the dendrites could delay their propagation to the soma.

We noticed a significant asymmetry in the undershoots of ON and OFF temporal
dynamics. This imbalance in push-pull along the time dimension challenges models based on
linearity of temporal summation (Priebe and Ferster, 2005), and might have implications for

motion selectivity of cortical receptive fields (Shariati and Freeman, 2012). In future, it would be
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worthwhile to check if the ON and OFF input dominant neurons observed here are segregated in

separate domains in the cortex as shown previously for geniculate afferents (Jin et al., 2008).

4.5.3 Implications for second-order processing

In Chapter 2 (Gharat and Baker, 2017), I suggested that imbalance between "push" and
"pull" in neurons that pool ON and OFF Y -pathway inputs could be the neural mechanism for
building cue-invariant selectivity for edge detection. A previous study (Hutchinson et al., 2016)
reported neurons in cat A18 with phase-dependent selectivity for compound stimuli containing
luminance and contrast-modulated gratings, with maximum response for the phase-aligned
condition. The unbalanced push-pull model could account for this specific phase selectivity if it
contained stronger excitation as well as inhibition from the ON compared to the OFF pathway

(Gharat and Baker, 2017).

In this study when we evaluated the push-pull within simple cell receptive fields we saw
an imbalance of varying degree, but there was no systematic preference for the ON pathway
inputs. Our sample contained neurons with both ON- as well as OFF-dominance, with a slight
bias for OFF-dominance. Area 18 in particular, which receives a majority of its inputs from the
Y pathway, contained neurons dominated by both ON as well as OFF inputs. So our results from
this study would seem to predict that around half of the cue-invariant neurons (ON-dominant)
should prefer in-phase combination of luminance and contrast modulated gratings and other half
(OFF-dominant) should prefer anti-phase combination. However it seems very unlikely that
Hutchinson et al. (2016) selectively sampled only ON-dominant neurons and missed the OFF-

dominant neurons.
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One possibility that might bear on this discrepancy is the asymmetry between ON and
OFF Y cells in their rectification at the bipolar-ganglion cell synapse (Borghouis et al., 2013). In
the Y cell model of Demb et al. (2001b), the amount of rectification controls the strength of a Y
cell’s response to CM gratings compared to LM gratings. In the model simulations from Chapter
2, I made a simplifying assumption that ON and OFF pathways contain equal amounts of
rectification, and modeled the nonlinearity as a simple half-wave rectification (ReLU) for both.
However it is possible that the CM responsiveness and CM-LM phase dependence of a cortical
neuron might depend upon both imbalance in push-pull at the cortical level as well as
asymmetric rectification in the retina. Results from Chapter 3 showed that estimated models of
LGN Y cells contain varying degrees of rectification (alpha values). However, the studies
presented in this thesis do not address whether there is any systematic relation between the push-
pull arrangement in a simple cell and rectification in the ON and OFF Y pathway inputs to that
cell. Future studies could address this question by training a convolutional model from cortical
simple cell responses that can learn both retinal level rectification as well as cortical level push-
pull. The model architecture described in Chapter 2 (Figure 2.7) could be used by replacing the
ReLU nonlinearity in the Y cell model with a pReLU nonlinearity, then the fitted alpha values of
the ON and OFF inputs could capture some of the asymmetry. However, given the complexity of
this model architecture and its larger number of parameters, training such a model would require

much larger datasets than used in Chapter 3.
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Figure 4.1 : Push-pull arrangement of ON and OFF pathway inputs within a simple cell

receptive field.

Schematic model of how an obliquely oriented receptive field of simple cell is thought to be
constructed from isotropic ON- and OFF-pathway inputs, with summation weights won and
WOFF, respectively. At each spatial location an excitatory input (“push”) from one pathway is
complemented by an inhibitory input (“pull”) of equal magnitude from the other pathway. In this

manner, nonlinear (rectified) inputs can be combined to build a linear receptive field.
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Figure 4.2 : Subunit model architecture for simple type cells.

Cortical neuron receptive field is modeled as a weighted linear sum of rectified outputs of
simulated ON- and OFF-pathway inputs. Weights of these inputs are estimated from spiking
responses of individual neurons to sequences of natural images. The sets of weights (Won and

Worr) are estimated using regularized gradient descent optimization.
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Figure 4.3 : Estimated ON-OFF subunit receptive field model for an example simple cell.

Space-space-time weight maps of ON- and OFF-pathway inputs to a simple cell (VAF for
prediction of Test dataset, 44.6 %). Red and blue colors in the map denote positive weights
(excitation) and negative weights (inhibition), respectively. At optimal time lag (3™ column) both
weight maps have similar horizontal orientation but opposite polarity. Singular value
decomposition was used to extract temporal dynamics of the ON and OFF weight maps. Plot on

the right side shows temporal dynamics of the ON pathway in red and OFF pathway in blue.
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Figure 4.4 : Spatial ON-OFF weight maps for six example simple cells.

Estimated ON and OFF weight maps, shown at their optimal temporal lags. Comparison between
ON and OFF maps is summarized with two indices — correlation (r) and ON-OFF strength (S).
Neurons have negative correlation between ON and OFF wMaps with r close to -1, suggesting
similar shapes but opposite polarity. Relative strengths of weight magnitudes for ON and OFF
maps varied across neurons. Neurons in panel (A) and (B) have equal strength of ON and OFF
inputs, with S close to 0. However, neurons in panel (C) and (D) have stronger OFF inputs
compared to ON inputs, with S less than 0, while neurons in panel (E) and (F) have stronger ON
than OFF inputs, with S greater than 0. VAFs for prediction of Test datasets, 12.3 % for (A), 14

% for (B), 32.5 % for (C), 26.7 % for (D), 21.9 % for (E), 39.84 % for (F).
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Figure 4.5 : Spatial arrangements of ON and OFF inputs within simple cell receptive fields

of Area 17 and 18.

(A) Histogram showing distribution of correlation coefficients between spatial maps of ON and
OFF inputs at optimal temporal lags. A majority of the sample neurons have a negative
correlation, with r-values approaching -1. This suggests that wMaps for ON and OFF inputs have
similar shapes but opposite polarity. However note that a small fraction of neurons have a
positive correlation between wMaps for ON and OFF inputs. (B) Histogram showing
distribution of ON-OFF strength (S), which quantifies the magnitude of ON versus OFF inputs.
Neurons in our sample show a broad distribution for ON-OFF strengths (mean = -0.08, SD
=0.35, N=97). The mean of the ON-OFF distribution is significantly less than zero (one tailed t-
test: p=0.016) suggesting an OFF dominance across the population. However, there was no
significant difference between mean S indices for Area 17 (N=44) vs. 18 (N=53) neurons (two
tailed t-test: p=0.8). (C) To see whether the observed imbalance between ON and OFF pathways

within receptive fields was due to noisy estimates of the model, we compared ON-OFF strength
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with predictive performance (VAF %) of the estimated model on test datasets. Scatterplot shows
that there is no clear relationship between VAF and ON-OFF strength of neurons (r = 0.056, p =

0.6).
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Figure 4.6 : Temporal dynamics of ON and OFF inputs within receptive fields of four

example simple cells.

Neuron in panel A has very similar temporal dynamics for both ON (red) and OFF (blue) inputs.
Note neuron in panel B has similar dynamics for positive half but a much greater undershoot for
OFF inputs compared to ON. Neuron in panel C has faster dynamics for OFF inputs, and also
the impulse function is monophasic for OFF inputs but biphasic for ON inputs. A minority of
neurons in our sample show large differences in peak times of the ON and OFF impulse
functions, as shown in panel (D). VAFs for prediction of Test datasets, 47.88 % for (A), 23.06 %

for (B), 20.7 % for (C), 9.2 % for (D).
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Figure 4.7 : Temporal dynamics of ON and OFF inputs within receptive fields of simple

cells in Area 17 and 18.

(A) Scatterplot comparing peak times for ON vs. OFF inputs. Most of the points lie close to the
1:1 line, suggesting that both pathways have similar peak times within individual neurons.
Across the sample, these peak times are not significantly different (paired t-test: p =0.35). (B)
Scatterplot comparing Amplitude Ratios for ON vs. OFF inputs. Most of the points lie away
from the 1:1 line, suggesting that the two pathways have different Amplitude Ratios. However
across the sample, the mean values of Amplitude Ratios for ON and OFF were not significantly
different (paired t-test: p=0.76). (C) Scatterplot comparing Integral Ratios for ON vs. OFF
inputs. Most of the points lie away from the 1:1 line suggesting that the two pathways have
different Integral Ratios. However across the sample the means of the Integral Ratios for ON and

OFF were not significantly different (paired t-test: p=0.36).
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In this final chapter, I summarize the findings of three data chapters collectively. I discuss
limitations and caveats of the overall approach, particularly in relation to the techniques used in
these studies. I also present and discuss potential improvements or extensions of these studies
that might be considered in future. Finally, I discuss implications of the results from this thesis

on the models of second-order processing.
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CHAPTER 5

General Discussion

5.1 Summary of findings

The aim of the thesis was to further understand how early stages of the visual system
encode low level visual features like luminance and texture boundaries at a single neuronal level.
Here the focus was on spatial nonlinearities emerging from the retina and their influence on
processing different kinds of boundaries in the cortex. I employed an interdisciplinary approach
using multielectrode recordings in different visual areas along the visual pathway, synthetic and
naturalistic visual stimuli, model simulations of multi-layer convolutional neural networks and
modern system identification methods including deep learning to study hierarchical processing at

the early stages of the visual pathway.

In Chapter 2, to investigate how nonlinear Y pathway inputs could be pooled in cat Area
18 to build cue-invariant receptive fields, I performed multi-electrode recordings while
stimulating receptive fields with grating stimuli. Using a relatively unbiased recording method, I
found a large fraction of neurons in the early visual cortex with receptive fields not selective for
orientation, that have spatial nonlinearities like those of subcortical Y cells. Such neurons
responded to contrast-modulated (second-order) gratings with selectivity for their texture
elements. This population of neurons form a strong candidate pool for building cue-invariant
orientation selective neurons reported previously in the cortex. Finally, I proposed a novel neural
circuit mechanism and showed through model simulations that pooling ON- and OFF-center Y-

like cortical neurons in an unbalanced “push-pull” manner generates orientation-selective cue-
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invariant receptive fields that can account for previously observed selectivity to luminance- and
contrast-modulation gratings. According to this model, luminance (first-order) and texture
(second-order) boundaries are processed jointly through a single pathway. This model is
fundamentally different from the previously proposed model (Mareschal & Baker, 1998) that
assumed processing of luminance and texture stimuli in two separate, parallel pathways with

later summation of these signals in cortical neurons.

Results from Chapter 2 further supported the idea that spatial nonlinearities in the
receptive fields of subcortical Y pathway neurons are important for texture processing in the
cortex. So in Chapter 3, I estimated biologically interpretable quantitative receptive field models
of LGN neurons that can account for their spatial nonlinearities. I trained a two-layer
convolutional neural network model, based on previously known retinal circuitry, with
extracellularly recorded spiking responses of individual neurons to naturalistic texture movies.
Despite initializing convolutional filters” weights randomly without any shape constraints, the
learned models converged to filters with clear Gaussian or DoG (Difference of Gaussians)-like
shapes. The trained models of Y-type LGN neurons had a higher degree of rectifying
nonlinearity compared to those of X-type neurons. Finally, this nonlinear two-layer
convolutional model was better at predicting responses of Y-type neurons to novel test stimuli
compared to a standard linear-nonlinear model without an intermediate nonlinearity. These
results suggest that simplified convolutional networks with biologically interpretable
components can be a powerful technique for modeling early stages of the visual pathway using

limited and noisy neural data.

In Chapter 4, I separated the contributions of subcortical ON and OFF pathway inputs to

receptive fields of cat Area 17 and 18 simple cells, when stimulated with natural scenes. I
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modeled each simple cell receptive field as a weighted linear sum of simulated ON and OFF
inputs, tiled across visual space. Regularized gradient descent regression was used to estimate
separate spatiotemporal maps of each simple cell's summation weights for these ON and OFF
inputs, from its responses to natural images. This method provided a way to measure both
excitatory as well as inhibitory contributions of the ON and OFF pathways within individual
receptive fields. I demonstrated that for most neurons, maps of ON and OFF weights are
approximately identical in spatial layout and magnitude, but are of opposite polarity (“push-
pull”). However, there was a large diversity in the ratio of strengths of ON vs. OFF inputs, and a
large subset of neurons had unbalanced push-pull. In addition, I also demonstrated asymmetries
between temporal dynamics of ON and OFF weight maps. These results show spatiotemporal
asymmetries in how visual cortex neurons integrate signals from light and dark regions within
natural scenes, challenging the model of simple cells as linear filters. This asymmetry in simple
cell inputs could potentially contribute towards building cue-invariant receptive fields from Y-

pathway inputs as suggested in Chapter 2.

5.2 Limitations and caveats

5.2.1 Anesthesia and brain state

All the experiments in this thesis were carried out on anesthetized and paralyzed cats.
Anesthesia is known to have significant effects on visual processing both at the single neuron
level (Lamme et al., 1998; Pack et al., 2001) as well as network levels (Sellers et al., 2015).
Anesthesia and other sources of noise in the brain introduce trial-to-trial variability, such that
repeated presentations of the same visual stimuli generate different neuronal responses (Faisal et
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al., 2008; Harris et al., 2011). This neuronal variability increases in strength along the visual
pathway (Goris et al., 2014). For example, the primary visual cortex of anesthetized cats has
been shown to alternate between synchronous and asynchronous states while viewing natural
scene movies, thus affecting spiking reliability of neurons (Spacek and Swindale, 2015). This
neuronal variability due to brain state changes poses a significant challenge for receptive field
estimation, since the neurons’ visual responses can be obscured by the noise, and overfitting to

the noise in neural data becomes a greater challenge for the training algorithm.

In order to minimize the effects of neuronal noise and slow state changes on receptive
field model estimation, we repeated the stimuli multiple times, and randomized the presentation
order of the stimulus movies. Repeating the stimulus and averaging the neuronal response for
these repetitions helped to greatly reduce the noisiness in the neural data. This in turn helped to
reduce over-fitting of the model to the noise in the data. Randomly intermixing the training and
test data sets minimized any systematic difference in state while measuring training and test data,
and helped to average out the effects of slow gain changes over the time of a recording session

lasting around 45 minutes.

Another approach to accommodate cortical state-dependent effects on neuronal firing rate
is to include signals from different LFP bands and multi-unit activity (MUA) recorded at other
sites on the multi-electrode into the model architecture (Cui et al., 2016). Such a model is better
able to predict neurons’ responses across different trials. One concern, however, with such a
model architecture, is that the recorded LFP and MUA signals are not independent of the
stimulus, and thus can lead to the problem of collinearity (Wold et al., 1984). In that case, the

estimated parameters of the model can be unstable.
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It is conceivable that anesthesia might have differential effects on neuronal responses to
first-order compared to second-order stimuli. According to the Y cell model from Demb et al.
(2001a), rectification at the bipolar-ganglion cell synapse in the retina controls the strength of
nonlinear second-order response compared to first-order response in Y cells. This rectification
depends upon the spontaneous glutamate release rate from the bipolar cell's synaptic terminals. A
lower release rate would result in a higher degree of rectification and thus stronger second-order
response. It is possible that glutamate release rate depends upon type and depth of anesthesia

used during the experiments.

To date all the studies looking at nonlinear responses in Y cells (Rosenberg et al., 2010)
and cortical neurons (Zhou and Baker, 1993; Tanaka and Ohzawa, 2006; Rosenberg and Issa,
2011) have been performed under anesthesia, or in ex vivo retina (Demb et al., 2001b, Borghuis
et al., 2013). But it remains unclear whether the nature of nonlinearity and second-order
responsiveness of neurons is similar in awake behaving animals. One of the challenges in
studying second-order processing in awake animals would be the necessity to monitor eye
movements with high precision, since the second-order stimuli are at a very high spatial scale.
This problem could be solved by synchronizing stimulus position on the screen with eye
movements using high precision eye tracking. Such a retinal stabilization approach has been
applied in human psychophysics to study the role of minute eye movements such as
microsaccades (Poletti M et al. 2013; Rucci et al 2007). In the future, such methodology could be
used to study the spatial nonlinearity of LGN and cortical neurons in awake and behaving

monkeys.
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5.2.2 Laminar organization

The cortex has a laminar structure with six layers, having specific arrangements of
different cell types forming microcircuits. Furthermore, there are specific patterns of connections
between neurons within a cortical area according to their locations in the laminae. Projections to,
as well as inputs from, other cortical areas are also lamina-dependent. For example, in cat Area
17, the majority of the input from the LGN terminates in layer 4, while feedforward projection to
higher areas originates from layers 2-3 and feedback to the LGN is from layer 6. Signal

processing across these laminae and the functional roles of each layer mostly remains unknown.

Previous intracellular studies have tried to relate receptive field properties of neurons to
their laminar location, by dye-filling and histological reconstructions (e.g. Martinez et al., 2005).
However, making a connection between receptive field properties of extracellularly recorded
neurons and their laminar location has been challenging. Recent studies have begun to take
advantage of multi-electrodes that can span all the cortical layers, and to use current source
density (CSD) analysis to localize the positions of electrode sites across laminae (e.g. Jin et al.,
2011; Hansen et al., 2012). Even though most data in Chapter 2 and part of that in Chapter 4 was
recorded with NeuroNexus linear arrays that can span the entire cortical grey matter depth, we
were not able to obtain good enough CSD results to localize laminae. The small pad size (177
um?) of the multi-electrodes used in these studies is good for isolating single units but not ideal
for recording low frequency LFPs important for estimating CSD profiles. Preliminary attempts in
our lab using larger pad size electrodes have provided improvements in the estimated CSD
profiles. So it would be interesting to see in future if there is any systematic laminar dependency
for the kind of ON-OFF input imbalance observed in Chapter 4, for example like that observed

previously for black dominance in monkey V1 (Yeh et al., 2009).
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5.2.3 Sampling bias

Using multi-electrodes, spike sorting and random naturalistic stimuli may help to greatly
reduce sampling biases in the recorded neurons compared to single-channel electrode recordings
with a search stimuli like bars (Talebi and Baker, 2016). Nevertheless, it is still difficult to know
if we sampled from all types of neurons present in the LGN and cortex. It is thought that only
around 10 % of neurons in the vicinity of a multi-electrode recording site are usually sampled
(Shoham et al., 2006). For example, very small spike amplitudes originating from anatomically
small neurons would be difficult to isolate with spike sorting. In addition, there is a possibility
that these multi-electrodes with wider shanks might damage neurons’ cell bodies or their
processes (Blanche et al., 2005), and that some cell types might be more vulnerable to such
damage than others. However, it is unlikely that the higher proportion of non-ori cells observed
in Chapter 2 is a result of electrode damage to the neurons’ dendrites. If that were the case, we
would have seen a variety of receptive field maps with missing parts of receptive field
subregions or with holes within receptive fields. In addition, a previous study from our lab
(Talebi & Baker, 2016) as well as results from Chapter 4 did not reveal such damaged receptive

fields.

2-photon calcium imaging provides a complementary way of measuring neural activity at
single neuron resolution. In this method, activity from neurons in a small volume of neural tissue
can be measured by imaging fluorescence signals from activity-related Calcium concentration.
Since this method allows direct visualization of the neuronal cell bodies, one can ideally measure
activity from all the neurons in a given block of neural tissue (Stosiek et al., 2003). However, 2-

photon imaging lacks the temporal resolution of extracellular recording. Also, with this method

148



neural activity from only superficial cortical layers can be recorded. Currently, efforts are
underway to measure activity from deeper layers (Na, 2017), multiple brain areas (Stirman et al.,

2016), and deep brain structures (Bocarsly et al., 2015).

Ohki et al., 2006 with 2-photon imaging in cat Area 18 reported presence of only around
1 % neurons non-selective for orientation. Their results might look contradictory to our results in
chapter 2, where close to one-third of the neurons were classified as non-Ori neurons. However,
this discrepancy seems to arise from differences in the criteria used by Ohki et al. compared to
ours for classifying the neurons. In our study, we used a vector based approach (Leventhal et al.,
2003) to calculate Orientation Bias (OB) index and classified neurons with selectivity similar to
cat LGN neurons (OB < 0.2) (Rosenberg et al., 2010) as non-Ori. But, Ohki et al. used ANOVA
on neuronal responses at different orientation of gratings to classify neurons. So it is conceivable

that most of our non-Ori would be classified as Ori-selective according to their criteria.

5.2.4 Visual stimuli

In this thesis, we have employed synthetic gratings in Chapter 2, synthetic textures with
naturalistic properties in Chapter 3 and grayscale natural images in Chapter 4 as visual stimuli to
study receptive field properties. However, ideally, we should be studying visual processing under
completely natural stimulation, since receptive field properties of neurons can be stimulus-
dependent (David et al., 2005). Even though I used natural images for estimating receptive field
models in Chapter 4, the overall spatiotemporal stimuli were not truly natural - different
randomly selected natural images were presented at 75Hz, with no correlation between images
over time. But during natural stimulation, images formed on the retina are temporally correlated,

with the temporal dynamics depending on head and body movements, eye movements, and
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object motion. These dynamics add richness to the visual stimulation by providing important
relative and global motion cues that can help in object segmentation, depth perception, guiding
self-motion etc. However, a major challenge when using such data for system identification
would be that the stimuli would be similar for a large number of frames, so the algorithm might
not have enough novel information to fit the model parameters. Hence to utilize such temporally

correlated stimuli, we would need much longer recording durations.

The visual stimuli used in this thesis were also unnatural in various other ways. Given the
difficulty of eye alignment under anesthesia and paralysis, receptive fields were studied with
monocular viewing, even though most of the cortical neurons could respond binocularly. Thus
our model does not account for summation of inputs from the two eyes and the role of binocular
disparity. In addition, the natural images used here were processed to remove color information,

and mean luminance and r.m.s. contrast of the images was kept constant.

In future studies, efforts should be made to more closely mimic natural stimulation. This

approach could lead to discovery of new kinds of feature selectivity within receptive fields.

5.2.5 Model architecture and training

In Chapters 3 and 4, I modeled receptive fields of LGN neurons and cortical simple cells
as a two-stage feedforward subunit model with an intermediate nonlinearity. However, this
model is an over-simplification of known neural circuits and cannot account for some of the
known receptive field properties. For example, the LGN receives a majority of its input as a

feedback connection from visual cortex, which was not included in our model architecture..
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Similarly, in Chapter 4 the model architecture used for simple cell receptive fields did not

include any feedback, even though cortical neurons receive feedback from higher visual areas.

In these models an important assumption is that rectified outputs of subunits are linearly
summed by the receptive field. However, in the retina, amacrine cells not only provide inhibitory
input to the ganglion cells but also control the gain of bipolar cells, thus giving a multiplicative
interaction between excitatory and inhibitory inputs within the retinal circuit (Demb, 2008).
Finally, nonlinearities between the subunit and pooling layers were modeled here as static
nonlinearities (pReLU or ReLU). However, the nature of this nonlinearity has been demonstrated
to be much more complicated within the retinal circuit of ON-type Y cells (Borghuis et al.,
2013). Such a kind of dynamic nonlinearity is not captured with the currently used model
framework. Nevertheless, despite using simplified version of the model we could account for a
large fraction (up to 80 %, as shown in Figure 3.10) of neural response variance. Also, it remains
a challenge to incorporate such complex models in a framework whose parameters can be readily

estimated.

In Chapters 3 and 4, estimation of the receptive field models was framed as a supervised
learning problem, with visual stimuli as input and spiking neural responses as output. The
training algorithms acted to minimize an error function by updating the model parameters in an
iterative manner using gradient descent back-propagation. Even though this method of model
training has been very successful in the field of machine learning, it is not biologically plausible.
Recently efforts have begun to develop algorithms that update synaptic weights in a manner
inspired from spike timing-dependent plasticity (Bengio et al., 2016). It is possible that such
training algorithms might improve model performance as well as require smaller amounts of

neural data.
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5.3 Future directions

5.3.1 Multi-stage convolutional model

In Chapter 3, [ used a two stage convolutional model consisting of a convolutional filter
layer and a pooling layer separated by a static nonlinearity to model LGN receptive fields. The
advantages of this simplified model are that the parameters are easily interpretable, and the
model requires relatively modest amounts of data for training. However, to model receptive
fields of cortical neurons such that they account for both first- and second-order responses, we
would need to use a much more complicated model architecture with at least 3 layers. But it is an
open question whether such models trained on neural data from visual cortex neurons would
have any correspondence with the biological neural circuitry. For example, the visual system has
separate ON and OFF subcortical pathways that process visual information separately and only
at the cortical stage these signals are mixed - but it is unclear whether an artificial neural network
would be able to learn to have separate ON and OFF pathways from cortical neurons' data. Also,
the deeper the neural network, the more it difficult it becomes to interpret computations across
the layers. It is unclear how to visualize receptive fields for neurons other than the first layer, due
to the intermediate nonlinearities. One approach could be to have known biological constraints
on the model architecture itself before training it. For example, front-end filters could be
constrained to be circularly symmetric like retinal receptive fields. A model could be designed to
have two separate pathways that are summed only at the final stage. Such a model would be easy
interpret and might be able to infer signal processing at the level of the retina (including

nonlinear subunits) as well as the cortex (e.g. push-pull).

152



If the approach of training deeper neural networks is taken, it will require much larger
datasets than used in this thesis. While recording with multi-electrodes over such long recording
sessions, spike amplitudes of neurons often disappear from one channel and appear on other
nearby channels, due to electrode slippage. Tracking movement of neuronal spike signals across
multi-electrode channels could allow us to record visual responses for longer durations. In
addition to tracking spike waveform shapes, visual responses to a repeated presentation of the
same movie at different time intervals could be used to ascertain that we are measuring responses

from same neuron over the recording session.

A very different approach could be to estimate a common neural network model for
multiple neurons that are simultaneously recorded with multi-electrodes (McIntosh et al., 2016),
as they probably share a majority of their inputs from lower stages of the visual pathway. This
framework will have multiple outputs corresponding to each neuron recorded in the session,
unlike the models in this thesis with only one output. It would be important to have the electrode
penetrations perpendicular to the cortical surface so that the recorded neurons have large
receptive field overlap, and therefore a higher proportion of shared inputs. This approach might
require shorter recording times, and enable training deeper neural networks. One implicit
assumption with this framework is that all the recorded neurons are at same stage of the visual
hierarchy. This might not be true if the sample contains neurons across multiple laminae.
Nevertheless, this might be a fruitful framework to explore, that could give novel insights into

network level computations from multi-electrode recordings.
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5.3.2 Two-photon imaging and neural network models

Previous studies as well as those in this thesis have modeled receptive fields of neurons
in visual pathway as linear weighted sums of model subunits from the previous stage in the
visual hierarchy. For example, receptive fields of MT have been modeled as a linear sum of
direction selective V1-like receptive fields (Nishimoto and Gallant, 2011). Similarly, receptive
fields of area MST neurons were modeled as a linear sum of model MT units (Mineault et al.,
2012). However, integration of synaptic inputs by cortical neurons remains poorly understood.
This question can be addressed in future by combining advancements in the methodologies of
two-photon imaging and deep learning. It is now possible to simultaneously record visual
responses across multiple visual areas using two-photon imaging (Stirman et al., 2016; Smith et
al., 2017). Datasets collected with such a setup could be used to estimate transfer functions
between two visual areas. In the neural network framework, responses of the neurons in the
lower area could be used as the inputs and responses from the higher area neurons as the outputs

of the neural network model.

Subunit integration can also be studied at the level of a single cortical neuron and its
synaptic inputs, by performing two-photon imaging with sparse labeling (Wilson et al., 2016).
With this method, it is possible to simultaneously measure activity of a neuron and its dendritic
spines. Data from this experimental setup could also be used to train a neural network model that
could predict responses of the neuron given its synaptic inputs. However, it should be noted that
activity of only a small fraction of the synaptic boutons can be measured. Nevertheless, such
neural network models could elucidate rules of connectivity between neurons in the visual
hierarchy and provide a better understanding of how subunits are integrated within cortical

receptive fields.
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5.3.3 Second-order processing

In this thesis, I have proposed a novel neural computation that takes advantage of
asymmetry between subcortical ON and OFF Y pathways for encoding texture stimuli
simultaneously with luminance. This idea is contrary to the previous idea that texture/second-
order stimuli are processed separately from luminance, in two independent parallel pathways
(Baker, 1999). Several human psychophysical studies have supported the idea of separate
processing of first- and second-order stimuli (e.g. Smith and Ledgeway, 1998; Schofield and
Georgeson, 1999; Nishida et al.,1997). Furthermore, studies on patients with brain injuries to
extrastriate cortex have demonstrated that processing of first- or second-order stimuli can be
selectively impaired depending upon the damaged area (Vaina and Cowey, 1996; Vaina et al.,
1998; Vaina et al.,1999). So how might we reconcile these seemingly conflicting findings from

neurophysiology and psychophysics?

One possibility is that at the early stages of the visual pathway, first- and second-order
signals are multiplexed, and only later in the extrastriate cortex might these signals be separately
processed in distinct cortical areas. A similar idea has also been suggested for processing of color
and luminance signals in the primate visual pathway (Bushnell et al., 2011; Gheiratmand M et
al., 2013). However, there has been no neurophysiological evidence for the existence of "second-
order only" responsive neurons in early cortical areas. Future studies should look for such
second-order neurons in higher visual areas that might be only selective for purely texture
stimuli. However, it is challenging to search for such neurons with conventional search stimuli
such as simple bars or spots as these neurons would be unresponsive to such stimuli. System
identification methods like the ones used in this thesis, with random naturalistic stimuli, could be

a viable approach since it makes minimal prior assumptions about the receptive field properties.
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At the population level, using intrinsic optical imaging it has been shown that second-order
response strength is greater in higher visual area V4 than in V1 or V2 (Pan et al., 2012). Thus it

would be worthwhile to test for the presence of purely second-order neurons in such brain areas.
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