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Contribution of the authors 

This thesis is written in manuscript form as permitted by the McGill University. It is 

composed of five chapters: an introduction, one published manuscript (Gharat & Baker, 2017), 

two manuscripts to be submitted and a final discussion.  

Chapter 2 contains a published manuscript: Gharat A and Baker CL (2017) Nonlinear Y-

like receptive fields in the early visual cortex:  An intermediate stage for building cue-invariant 

receptive fields from subcortical Y cells. The Journal of Neuroscience. 37(4): 998-1013. The 

study was designed by me and Dr. Baker. Recording experiments were performed by me with 

assistance from Dr. Baker and lab members, Guangxing Li and Vargha Talebi. Guangxing Li 

provided analysis software for analyzing plexon data files. Data analysis and model simulations 

were performed by me with guidance from Dr. Baker, using modeling software written by him 

and I. Finally, this manuscript was written by me and edited by Dr. Baker. 

Chapter 3 contains a manuscript in preparation: Gharat A, Nguyen P and Baker CL. 

Estimating subunit receptive field models of thalamic neurons with deep learning. The study was 

designed by me and Dr. Baker. Recording experiments were performed by me with assistance 

from Dr. Baker and lab members, Guangxing Li and Philippe Nguyen. Philippe Nguyen 

provided software for estimation of convolutional models, which I adapted for use with my data, 

and helped with initial data analysis. I performed data analysis with guidance from Dr. Baker. 

Finally, this manuscript was written by me and edited by Dr. Baker. 
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Chapter 4 contains a manuscript in preparation: Gharat A and Baker CL. Separating ON 

and OFF pathway inputs to cortical simple cells reveal receptive fields with asymmetric push-

pull. The study was designed by me and Dr. Baker. Recording experiments were performed by 

me with assistance from Dr. Baker and lab members, Guangxing Li and Philippe Nguyen. 

System identification software provided by Vargha Talebi was modified by me to estimate 

subunit receptive fields. I performed data analysis and wrote the manuscript with guidance from 

Dr. Baker. 

Contributions to Original Knowledge  

In Chapter 2 we found nonlinear Y-like receptive fields in the early visual cortex that 

could form an intermediate stage between subcortical Y cells and cortical orientation selective 

cue-invariant receptive fields. We proposed a novel neural network model that generates cue-

invariant selectivity by combining Y pathway ON and OFF inputs in asymmetric manner. 

Through model simulations we demonstrated that its tuning properties to luminance and contrast-

modulation gratings match the previously observed selectivity of cortical neurons.  

In Chapter 3 we adapted a deep learning framework to quantitatively estimate receptive 

field models of LGN neurons based on known retinal circuitry. To my knowledge, it is the first 

study to show that for LGN Y cells, a multi-stage neural network model improves their 

predictive performance compared to a linear-nonlinear model on novel naturalistic stimuli. With 

this method we are able to infer computations happening at earlier stages than the LGN, since we 

could recover biologically interpretable subunit filters and their output nonlinearity. We showed 

that convolutional neural networks are powerful in modeling early stages of the visual pathway 

with limited neural data.  
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In Chapter 4 we devised a novel method to quantitatively measure both excitatory and 

inhibitory contributions of ON and OFF pathway inputs within individual cortical receptive 

fields, using naturalistic visual stimuli, from extracellularly recorded spiking signals. We 

recovered novel spatio-temporal asymmetries in the integration of ON and OFF inputs in cortical 

simple cells. These results challenge the standard model of a simple cell receptive field as a 

linear spatio-temporal filter. These asymmetries found in the inputs to cortical neurons could 

provide the neural mechanism for generating cue-invariant receptive fields from Y-pathway 

inputs. 

In Summary, this thesis provides a new perspective on how spatial nonlinearities 

emerging from the retina can influence cortical processing of luminance- and texture-defined 

boundaries. These results strengthen the idea that luminance and texture signals are multiplexed 

through the early stages of the visual processing.  
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ABSTRACT 

Our visual system is sensitive to boundaries defined by differences in cues such as 

luminance (first-order cue), as well as texture, contrast, or motion (second-order cues). Gradients 

in these cues can be utilized to perform tasks such as figure-ground segregation and 3D shape 

perception. A significant fraction of neurons in the early visual cortex of cats and monkeys have 

been shown to be selective to both first- and second-order boundaries. These neurons are thought 

to be the neural correlate for perceptual encoding of such boundaries. They are selective for the 

same boundary orientation irrespective of the cue (first- or second-order) that defines it (“form 

cue-invariance”), which makes these neurons powerful candidates for the task of segmentation. 

However, the neural circuitry that gives rise to this selectivity for the early stages of visual 

processing remains unclear. To address this question, I perform neurophysiological recordings at 

the early stages of the visual pathway in cats, and then build biologically inspired neural circuit 

models that can account for visual response properties of neurons at subcortical as well as early 

cortical stages.  

 In Chapter 2, I use multi-electrode recordings to demonstrate the presence of a significant 

fraction of neurons in cat Area 18 with nonlinear receptive fields like those of subcortical Y-type 

cells. These neurons have receptive field properties intermediate between subcortical Y cells and 

cortical orientation selective cue-invariant neurons. These are strong candidates for building cue-

invariant orientation-selective neurons. Furthermore I present a novel neural circuit model that 

pools such Y-like neurons in an unbalanced “push-pull” manner, to generate orientation-selective 

cue-invariant receptive fields. 
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In Chapter 3, I estimate biologically constrained neural network models of cat LGN 

receptive fields using recent machine learning methods (deep learning). The receptive fields are 

modeled as arising from a two-stage convolutional neural network model. The first stage, 

corresponding to retinal bipolar cell subunits, is modeled as a convolutional filter layer, and the 

second stage is modeled as a pooling layer. These two layers are separated by an intermediate 

parametric nonlinearity. I train such a neural network model for each recorded LGN neuron, 

using its spiking responses to naturalistic texture stimuli. These models are not only better in 

comparison to the standard linear-nonlinear models at predicting response to arbitrary stimuli, 

but they also recover biologically interpretable subunit models. 

 In chapter 4, I evaluate the integration of ON- and OFF-pathway inputs by individual 

neurons in early cortical areas of the cat (Area 17 and Area 18). In this study, I model receptive 

fields of cortical simple cells as a linear weighted sum of rectified inputs from model ON- and 

OFF-center LGN afferents, with the weights estimated using a regression framework. The 

estimated models reveal significant asymmetries in spatiotemporal integration of ON and OFF 

signals within simple cell receptive fields. These observed asymmetries could provide the neural 

mechanism for generating cue-invariant receptive fields from Y-pathway inputs. 

 In summary, I put together our knowledge of retinal as well as early cortical processing to 

show how spatial nonlinearities emerging from the retina could provide an essential basis for 

cortical visual processing. I further evaluate these neural mechanisms by estimating single 

neuron receptive field models, using modern system identification methods. Finally I propose, 

and provide supportive evidence for, a novel neural circuit mechanism that could explain the 
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cue-invariant processing of luminance- and texture-defined boundaries through a common 

pathway. 
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RÉSUMÉ 

Notre système visuel est sensible aux démarcations définies par des différences entre des 

indices tels que la luminance (indices de premier ordre) ainsi que la texture, le contraste ou le 

mouvement (indices de second ordre). Les gradients de ces indices peuvent être utilisés afin 

d’accomplir des tâches telles que l’identification d’un objet par rapport à l’arrière-plan et la 

perception de formes en 3D. Une proportion significative de neurones dans le cortex visuel 

précoce des chats et des singes a été identifiée comme étant sélective à la fois aux démarcations 

de premier et de second ordre. Ces neurones sont considérés comme étant le corrélat neuronal de 

l’encodage perceptif de ces démarcations. Ils sont sélectifs aux mêmes orientations de 

démarcation indépendamment de l’indice qui les définit (invariance d’indice de forme), ce qui 

fait de ces neurones des candidats compétents aux tâches de segmentation. Cependant, les 

circuits neuronaux qui génèrent cette sélectivité aux stages précoces du traitement visuel restent 

mal définis. Pour répondre à cette question, j’ai effectué des enregistrements 

neurophysiologiques aux stages précoces du système visuel chez le chat et ai ensuite construit 

des modèles de circuits neuronaux qui peuvent rendre compte des propriétés des réponses 

visuelles des neurones au niveau sous-cortical ainsi qu’aux stages corticaux précoces, 

 Dans le Chapitre 2, J’utilise des enregistrements multi-électrodes pour démontrer la 

présence d’une proportion significative de neurones dans l’aire 18 du chat présentant des champs 

récepteurs non-linéaires tels que ceux des cellules Y sous-corticales. Ces neurones ont des 

propriétés de champs récepteurs intermédiaires entre les cellules sous-corticales Y et les 

neurones corticaux sélectifs à l’orientation indifférents aux indices. Ce sont des candidats 

privilégiés pour le façonnement de neurones sélectifs à l’orientation indifférents aux indices. En 
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outre, je présente un nouveau modèle de circuit neuronal qui groupe ce type neurones de style Y 

avec un déséquilibre ‘’pression-traction’’ pour générer des champs récepteurs sélectifs à 

l’orientation indifférents aux indices. 

Dans le Chapitre 3, j’évalue des modèles de réseaux neuronaux contraints par la biologie 

des champs récepteurs du CGL du chat en utilisant des méthodes récentes d’apprentissage de 

machine (apprentissage profond). Les champs récepteurs sont modélisés tels qu’émergeant d’un 

modèle de réseau neuronal convolutionnel à deux niveaux. Le premier niveau, correspondant aux 

sous-unités des cellules bipolaires rétiniennes, est modélisé en tant que couche de filtrage 

convolutionnel et le second niveau est modélisé en tant que couche de groupement. Ces deux 

couches sont séparées par une non-linéarité paramétrique intermédiaire. Nous avons entraîné un 

tel modèle de réseau neuronal pour chaque neurone du CGL enregistré, en utilisant sa réponse 

supraliminaire à des stimuli de textures naturalistiques. Ces modèles ne sont pas seulement 

meilleurs en comparaison des modèles linéaires/non-linéaires standards pour la prédiction de la 

réponse à des stimuli arbitraires, mais ils expliquent également les modèles de sous-unités qui 

peuvent être interprétés biologiquement.  

Dans le Chapitre 4, je planifie l’intégration des entrées des voies ON et OFF par les 

neurones individuels des aires corticales précoces du chat (aires 17 et 18). Dans cette étude, je 

modélise les champs récepteurs des cellules simples corticales comme une somme linéaire 

pondérée des entrées rectifiées des afférents à centre ON et OFF du CGL, avec des poids estimés 

dans le cadre d’une régression. Les modèles estimés révèlent des dissymétries significatives dans 

l’intégration spatio-temporelle des signaux ON et OFF dans les champs récepteurs des cellules 
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simples. Ces dissymétries pourraient sous-tendre les mécanismes neuronaux qui générent des 

champs récepteurs indifférents aux indices à partir des entrées des voies Y. 

En résumé, j’ai combiné nos connaissances du traitement aussi bien rétinien que cortical 

pour montrer comment des non-linéarités spatiales émergeant au niveau de la rétine peuvent 

fournir une base essentielle au traitement visuel cortical. J’ai évalué en détails ces mécanismes 

neuronaux en estimant des modèles de champs récepteurs de neurones par des méthodes 

modernes d’identification de systèmes. Finalement, je propose et fournit des arguments en faveur 

d’un nouveau mécanisme neuronal qui pourrait expliquer le traitement indifférent aux indices 

des démarcations définies par la luminance ou la texture par une voie commune. 
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1  
In Chapter 1, I briefly explain structure of the thesis, followed by a comprehensive literature 

review of the relevant background. Finally, I state the aims of the three data chapters and the 

rationales behind them. 
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CHAPTER 1  

General Introduction 

 

1.1  Thesis Structure 

 This thesis is written and organized in a manuscript based style containing five separate 

chapters. The first chapter provides a general overview of the topics pertinent to the three data 

chapters (2, 3 & 4) of this thesis which are written as three separate manuscripts. The overall 

theme of the thesis is to understand visual processing at the early stages of the visual pathway by 

quantitatively studying receptive field properties of single neurons at subcortical and cortical 

level. Since all three studies included in this thesis were conducted on cats, the introduction 

chapter is heavily focused on cat single-unit neurophysiology literature with some comparison to 

primates. In the final discussion chapter, I summarize and link the findings from three data 

chapters. Finally, I discuss limitations and caveats about the methodology and approach of these 

studies with possible future directions.  

 

1.2  First- and second-order information in visual scenes 

Our visual world is cluttered with a variety of objects and is highly dynamic. Despite this 

we seem to effortlessly identify objects and form a coherent perception of the world around us. 

One of the cues that we use for performing visual tasks is the luminance variation that occurs in 

natural scenes. Luminance cues are also referred to as "first-order" cues in the literature. Usually, 

different objects differ in their luminance, and this can help us to delineate an object from its 
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background (“figure-ground segregation”). Changes in luminance can also be used for 

interpreting the 3D shape of objects ("shape-from-shading"). However, relying only on 

luminance cues can introduce ambiguities. For example, luminance changes could be a result of 

material differences between an object and its background, or because of different illumination 

or shadows, or perhaps folds in a textured material.  

Fortunately, our visual system is also sensitive to "second-order" cues such as texture, 

contrast or motion differences. Boundaries arising from second-order cues either occur 

independently or co-occur with first-order cues in natural scenes (Johnson and Baker, 2004). 

When an object occludes another object, very often the two objects not only have different 

luminance but also have different texture or local contrast. However, shadows cast on an object 

only generate luminance variations but other cues don’t change. Thus, second-order cues can be 

helpful in disambiguating such false boundaries. Furthermore, such second-order cues have also 

been shown to help in interpreting 3D shape from shading (Schofield et al., 2010). Thus, second-

order cues independently or in combination with first-order cues can provide vital information to 

our visual system.  

Boundaries formed by luminance changes, as shown in Figure 1.1 between the tree and 

grass, can be detected by Gabor-shaped linear filters. These filters sum luminance within their  

subfields linearly and are selective for orientation of boundaries. For example, Gabor-like 

receptive fields in the primary visual cortex can encode such boundaries. However, boundaries 

formed by purely second-order cues, such as between the grass and its reflection in the water in 

Figure 1.1 may not contain any variation in mean luminance. Therefore, spatially linear filters 

cannot detect such boundaries. Hence it has been suggested that a specialized mechanism (filter-

rectify-filter or FRF) is required for detecting such boundaries (Zhou and Baker, 1993), in which 
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a bank of small filters detects fine texture elements in the image, then the outputs of these filters 

are rectified and pooled together by a coarse scale filter as shown in Figure 1.2. A similar 

mechanism has been suggested by (Karklin and Lewicki, 2003) to efficiently code higher-order 

structure in natural images. However, the neural substrate for such processing remains unclear.  

 

1.3  Early visual pathways  

 Visual signals from the photoreceptors in the retina diverge to generate two major 

divisions, i.e. the "ON" and the "OFF" pathways. Neurons in the ON pathway respond to the 

relatively bright regions in the visual scene and those in the OFF pathway to the dark regions. 

Receptive fields of retinal ganglion cells (RGCs) that form the output of retina are concentric 

with antagonistic centre-surround organization. ON-centre RGCs are excited by light stimuli in 

the centre of their receptive field and are inhibited by light stimuli in the surround region. On the 

other hand, the opposite happens for OFF-centre RGCs. These ON and OFF pathways have little 

interaction in the retina and LGN (but see Liang & Freed, 2010) until they are combined in the 

primary visual cortex (Schiller, 2010). Usually ON and OFF pathways are thought to be 

symmetric to one another in terms of their spatio-temporal receptive field properties. However, 

they have some interesting asymmetries that might give rise to some perceptual phenomenon. 

For example, visual signals are processed faster in the OFF pathway as compared to the ON 

pathway (Jin et al., 2011). This difference might explain why human subjects are faster at 

detecting dark regions compared to bright regions (Komban et al., 2014).  

 Based on receptive field properties, RGCs in the cat are further divided into different 

categories. X- and Y-type RGCs form two major fractions of cell types that send visual signals to 
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the LGN and the cortex. Cells are classified into these two types by measuring the linearity of 

spatial summation within their receptive fields (Enroth-Cugell & Robson, 1966). When tested 

with contrast-reversing gratings of high spatial frequencies, Y-type cells respond nonlinearly at a 

second harmonic (F2) of a temporally modulated stimulus, but X-type cells do not show such 

nonlinearity and respond linearly at the first harmonic. On the other hand, in response to drifting 

gratings, Y cells respond at the first harmonic to low spatial frequencies. Thus Y cells show dual 

spatial frequency tunings (Figure 1.3), one at low spatial frequencies corresponding to centre-

surround organization of the receptive field and the other at high spatial frequencies 

corresponding to subunit structure (will discuss about this in detail in the following section) 

within the receptive field.  At a given eccentricity Y cells have bigger receptive fields than X 

cells, and consequently Y cells are selective for lower spatial frequencies. Further, there is a 

close correspondence between functional X- and Y-type cells and morphologically defined β- 

and α-type retinal ganglion cells (Cleland et al., 1975; Wassle et al . 1975; Rodieck, 1979). β 

cells have small cell bodies and thinner axons while α cells have much bigger cell bodies and 

thicker axons. Both X- and Y-cells have ON- and OFF-centre receptive fields.  

 There is also another category of RGCs in the cat, W-type cells (Fukuda and Stone, 

1973), which have not been well studied. They form a heterogenous mixture of cells that are not 

classified into X- or Y-type. Some of the W cells are direction selective, while some have 

receptive fields giving mixed ON/OFF (excitation or inhibition) responses throughout their 

receptive field. W cells have large receptive fields like Y cells (Wilson et al., 1976; Dreher and 

Sefton, 1979). 
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1.4  Retinal Circuitry 

 In the retina, visual signals undergo multiple stages of processing through the cascade of 

various retinal cell types. Light is absorbed by the photoreceptors (rods and cones) and 

transduced into electrical signals, which are sent to ON- and OFF-type bipolar cells. Horizontal 

cells also integrate inputs from multiple photoreceptors and provide inhibition to bipolar cells. 

Horizontal cells are thought to be responsible for the surround mechanism of bipolar cell 

receptive fields. Then bipolar cells make direct synapses on to the retinal ganglion cells. Bipolar 

cells also make synapses with amacrine cells, which pool inputs from many bipolar cells and 

then provide inhibition to retinal ganglion cells, thus generating the surround mechanism of the 

retinal ganglion cells.    

 Interestingly, the bipolar cells that synapse onto Y ganglion cells provide half-wave 

rectified inputs (Demb et al. 1999, 2001a), and are thought to be the neural substrate for the 

nonlinear subunits within the Y cell receptive fields. This rectification is a consequence of a low 

spontaneous release rate of glutamate from the bipolar cells' synaptic terminal onto the RGC. 

Therefore, these bipolar cells cannot provide a negative output. This mechanism is contrary to 

the previously proposed mechanism in which the nonlinearity of the amacrine cells was thought 

to give rise to the Y cell spatial subunit nonlinearity (Hochstein and Shapley,1976). Previously it 

was thought that Y cells contain two overlapping receptive fields, one with a linear centre-

surround organization and the other with small nonlinear subunits covering both the centre as 

well as the surround. Demb et al. (1999) showed that in Guinea pig retina, even when the 

amacrine pathway was blocked pharmacologically, the spatial nonlinearity of the Y cells was 

preserved. Thus, the linear and nonlinear spatial properties of the Y cells were shown to both 



 7  

 

arise from a single pathway due to a half-wave rectification of bipolar outputs rather than from 

two separate pathways. 

 Based on this evidence, receptive fields of Y cells have been modeled as a cascade of 

alternating spatially linear filters and simple nonlinearities (“subunit”) model, shown in Figure 

1.4. Here the first-stage filters correspond to bipolar cells that are modeled as small linear filters 

with centre-surround organization. The outputs of these filters are rectified and then pooled, with 

synaptic weights that form the large-scale centre-surround organization of the RGC. A crucial 

aspect of the model is that the centre-surround strengths of the first-stage filters are imbalanced, 

allowing low spatial frequencies to pass the first stage and generate linear responses in the RGC 

(Rosenberg & Issa, 2011). Therefore this model can explain linear responses to low spatial 

frequency gratings as well as nonlinear responses to high spatial frequency gratings.  

 Interesting asymmetries have been demonstrated in the nonlinearities of ON- and OFF-

centre Y cells in various species. For example, an ex vivo study in Guinea pig retina (Demb et al 

2001a) showed that rectification of the signals from bipolar cells in the OFF-ganglion cell circuit 

is close to a half-wave rectification. However, in ON-centre ganglion cells, rectification was 

found to be much weaker. Despite weaker rectification in the ON cells, nonlinear responses in 

both types of cells were found to be similar. This discrepancy was later addressed in a study 

(Borghuis et al 2013) where they measured glutamate release at the bipolar-ganglion cell 

synapse, using 2-photon imaging in the mouse retina. They found that for ON-type cells, even 

though release of glutamate varied linearly with contrast of the visual input, the temporal 

dynamics for response increments and decrements were different. Hence due to this asymmetry 

when the responses of multiple bipolar cells are pooled together, responses to high SF gratings 
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would not cancel each other out, thus giving a relatively stronger nonlinear response than would 

be expected from just the weak rectification.  

 

1.5  Visual signal transmission from retina to cortex 

 Retinal ganglion cells form the output layer of the retina, and send signals via a bundle of 

long axons to the lateral geniculate nucleus (LGN). The LGN in the left hemisphere receives 

input only from the right visual field and the LGN in the right hemisphere receives input only 

from the left visual field. The signals from the two eyes remain largely segregated in the LGN. 

The LGN in the cat has a laminated structure, with layers labelled as A, A1, C, C1, C2, C3. 

Neurons in layers A, C, and C2 receive retinal inputs from the contralateral eye, while neurons 

layers A1 and C1 receive retinal inputs from the ipsilateral eye. Layer C3 does not receive input 

from the retina, but from the superior colliculus (SC) (Torrealba e t al., 1981). Unlike primates, 

in cat LGN there is no segregation of inputs from different retinal ganglion cell types. In 

primates, not only do the LGN layers receive inputs from only one eye, but also from one 

physiological type of RGC. However, in the cat LGN projections from both X- and Y-type cells 

are present in layers A and A1. In C layers inputs are mostly from Y and W cells. Despite 

receiving a mixture of inputs within a layer, there is little mixing of inputs from X and Y 

pathways within single LGN neurons (Bullier and Norton, 1979). Thus, LGN neurons in layers 

A and A1 have functional properties like either X- or Y-type RGCs. Different studies have 

reported slightly different proportions of cell types across LGN laminae. In layers A and A1 

around 50-67% of neurons are X-type and 23-50% neurons are Y-type, while in layer C around 

40-43% of neurons are Y-type and 43-52 % neurons are W-type, with very few X-type neurons 
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present in layer C. Layers C1-C3 contain only W-type neurons (Wilson et al., 1976; Cleland et 

al., 1976). 

 Some previous studies have compared receptive field properties of the RGC inputs and 

the LGN neurons by recording S-potentials. The S-potentials are tiny, slower monophasic spikes 

picked up by extracellular electrodes while simultaneously recording action potential spikes from 

LGN neurons. These S-potentials are thought to be the extracellularly recorded EPSPs in the 

LGN neuron (Kaplan and Shapley, 1984). Thus, S-potentials are a measure of input spikes from 

RGC afferents onto LGN neurons. These S-potentials either just precede the LGN spike or are 

present in isolation. Thus, not every input spike from a RGC triggers an LGN spike. So and 

Shapley (1981) found that spatial frequency tuning properties of both X- and Y-type LGN 

neurons were very similar to the receptive field properties of their S-potentials. Furthermore, an 

orientation bias observed in some LGN neurons was shown to be inherited from the retinal 

inputs rather a result of LGN processing (Soodak et al., 1987).  

Even though spatial properties do not change much in the LGN from those in RGCs, the 

LGN neurons’ receptive fields do have a "push-pull" arrangement:  the principal neurons in the 

LGN not only receive direct excitatory inputs from RGCs but also receive feedforward inhibition 

via LGN interneurons (Martinez et al., 2014). This inhibition has been shown to drive LGN 

neurons in two modes of spiking (tonic firing and bursting) while viewing natural movies (Wang 

et al., 2007). This inhibitory mechanism in the LGN is thought to preserve information encoded 

in the spike times of RGCs, and effectively transmit information to the cortex (Wang et al. 

2011). Thus inhibition in the LGN shapes temporal transmission of signals from retina to cortex, 

but does not alter the spatial receptive field properties. 
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LGN principal cells in cat send axons to the visual cortex, located at the occipital lobe of 

the neocortex. LGN cells project not only to the primary visual cortex (Area 17) but also to 

Areas 18 and 19 (Stone and Dreher, 1973; Humphrey et al., 1985). This is unlike the visual 

pathway of primates, where inputs from LGN project only to primary visual cortex (V1) and not 

to higher visual areas. There are interesting differences in the thalamo-cortical projections to 

these different visual areas in the cat with respect to their physiological types. Inputs to primary 

visual cortex (Area 17) are mainly from X-type LGN neurons, with only a small fraction of input 

from Y- and W-type neurons. Interestingly, inputs to secondary visual cortex (Area 18) are 

mainly from Y-type LGN neurons, with a small fraction of input from X and W cells. Area 18 

also receives projections from Area 17 and vice-versa. Area 19 receives a majority of its input 

from the W pathway, and a small fraction from the Y pathway. However in primates, inputs from 

parvocellular and magnocellular pathways project to different layers (4Cβ and 4Cα respectively) 

in the primary visual cortex. Thus there are important differences in the projections of thalamic 

inputs to visual cortex in cats and primates. 

 

1.6  Receptive field properties of cortical neurons 

Hubel and Wiesel (1959) discovered that receptive fields in the early visual cortex are 

very different from receptive fields in the retina and LGN. They found that receptive fields in 

primary visual cortex do not have concentric centre-surround receptive fields like subcortical 

neurons. Instead they are selective for a specific orientation. One class of cells that they 

classified as simple cells have ON and OFF regions like subcortical neurons, but instead of being 

concentric they are elongated and located side by side. Such receptive fields could best be 
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stimulated with black or white bars whose orientation matched that of the receptive field. The 

other type of cell they classified as complex cells, which also have similar orientation selectivity 

but do not have distinct ON and OFF regions in their receptive fields. Thus the complex cells are 

not sensitive to the position or luminance polarity of stimuli in their receptive fields. 

Furthermore, both simple and complex type cortical neurons have bandpass spatial frequency 

tuning (Movshon et al., 1978), unlike subcortical neurons that mostly have low pass tuning.  

In addition to cortical neurons’ selectivity to luminance changes (first-order boundaries), 

many neurons in the early visual cortex (~ one-quarter in Area 17, one-half in 18) of cat have 

been shown to also selectively respond to second-order boundaries (Zhou & Baker, 1993). The 

response properties of these neurons have been thoroughly characterized with contrast-

modulated (CM) grating stimuli. This is a very simple kind of second-order stimulus in which 

the contrast of a high spatial frequency luminance grating (carrier) is modulated by a low spatial 

frequency grating (envelope), as shown in Figure 1.5. These "double duty" neurons have three 

kinds of spatial frequency tunings (Mareschal & Baker, 1999), as shown in Figure 1.6. Firstly, 

like the other cortical neurons they are tuned to the spatial frequency of luminance gratings. 

Secondly, these neurons are tuned to the spatial frequency of the carrier of CM gratings, which is 

outside the luminance passband (range of tuning to luminance grating) of the neuron. Thirdly, 

these neurons are also tuned for the envelope spatial frequency of the CM grating;  the optimal 

envelope spatial frequency is similar to or slightly less than the optimal luminance spatial 

frequency.  

Furthermore, these neurons show similar orientation tuning for luminance gratings and 

for the envelope of CM gratings ("form-cue invariance" - e.g. Mareschal & Baker, 1998a). On 
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the other hand, a significant fraction of these neurons are tuned for carrier orientation, though 

with no systematic relationship between optimal envelope and carrier orientation.  

In addition, these neurons show three kinds of temporal frequency response. They show 

bandpass temporal frequency tuning for LM and the envelope of CM gratings, but the optimal 

temporal frequency for luminance gratings is usually slightly higher than for an envelope. 

Temporal frequency response for a drifting carrier is quite variable from one neuron to another, 

with some neurons preferring a stationary carrier (low pass) while others respond more 

vigorously to very high carrier temporal frequencies (Rosenberg and Issa., 2011; Gharat & 

Baker, 2012). In addition to responding to CM gratings, these neurons also respond selectively to 

other kinds of second-order stimuli such as illusory contours (Song & Baker, 2007) or motion-

defined contours (Gharat & Baker, 2012) in a similarly cue-invariant manner. Neurons with 

similar response properties were recently described in monkey V2 as well (Li et al., 2011).  

These neurons also respond in a selective manner when luminance and contrast 

boundaries are combined, i.e. they respond strongest when LM and CM gratings are 

superimposed in a phase-aligned manner, and weakest when they are in opposite phase 

(Hutchinson et al, 2016). Human psychophysics studies have shown that when LM and CM are 

in-phase they give a percept of corrugated 3D surfaces (Schofield et al 2006). Consequently 

these neurons could be suitable for detecting illumination changes over textured surfaces as 

luminance and contrast covaries (Schofield et al 2010; Schofield et al 2006), and thus could 

contribute to the perception of shape from shading. 
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1.7  Neural mechanism for processing first- and second-order boundaries 

Responses of these neurons cannot be modeled with a linear receptive field, as a linear 

receptive field would fail to respond to second-order stimuli that contain energy outside the 

neurons’ luminance passband. Instead a linear-nonlinear-linear (filter-rectify-filter, FRF) cascade 

has been proposed to detect second-order stimuli. Two possible neural circuit mechanisms will 

be discussed in the following section that could account for first- and second-order responses of 

these neurons. 

1.7.1 Two-Stream Model 

Earlier (Zhou & Baker, 1993; Mareschal & Baker, 1998a), a “two-stream” model, as 

shown in Figure 1.7, had been proposed to account for cortical neurons’ responses to first- and 

second-order stimuli, based upon their tuning properties. According to this model two separate 

signal processing pathways act in parallel to process first- and second-order stimuli, prior to an 

Area 17/18 neuron's response. The first stream of the model consists of a linear, coarse-scale 

Gabor-like oriented filter (F0). This linear stream can respond to luminance gratings (first-order) 

but not to 2nd-order stimuli because the high carrier spatial frequency is outside the passband of 

the filter F0. On the other hand, the second stream consists of a bank of small Gabor filters 

(F1/early stage filters/ subunits) whose outputs are rectified and pooled by a late-stage large 

Gabor filter (F2). Neurons’ tuning to the carrier of CM gratings corresponds to that of the early 

filters F1, while the envelope tuning corresponds to that of the late stage filter F2. Tuning of this 

late filter F2 is similar to that of the linear filter F0 of the first stream, leading to a cue-invariant 

response. This second stream can respond to second-order stimuli but not first-order stimuli, 
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since early filters (F1) are bandpass tuned for high SFs compared to first-order stimuli. The 

outputs of these two independent streams are then summed by a cortical neuron. 

The early stage filters (F1) for the second stream were previously assumed to be Gabor 

filters because some of the cortical CM-responsive neurons have orientation tuning to the carrier 

grating (Mareschal & Baker, 1998a). Since orientation tuning was generally thought to first arise 

in the cortex, it appeared most likely that the early filters were high spatial frequency-selective 

Area 17 neurons. This model is successfully able to explain the selectivity of these neurons to 

luminance- (1st order) as well as contrast-, texture- & motion-defined (2nd order) boundaries 

(Zhou & Baker, 1993; Mareschal & Baker, 1999; Song & Baker, 2007; Gharat & Baker, 2012). 

However, one of the criticisms of this model is that it requires a set of neurons that are 

responsive only to 2nd-order stimuli and not responsive to 1st-order stimuli, corresponding to the 

late stage filter (F2) of the second stream. But to date such neurons have not been described. 

Also, some of CM-responsive neurons can respond to very high carrier temporal frequencies 

(Rosenberg & Issa, 2011; Gharat & Baker, 2012), which is inconsistent with the early filters that 

detect carrier gratings being cortical neurons (which are unresponsive to high temporal 

frequencies). So this raises the question whether the early filters might be subcortical, after all. 

 

1.7.2 Single-Stream Model 

Demb et al (2001b) instead suggested a single-stream model that can respond to both 

first- and second-order stimuli. According to this model (Figure 1.4), processing of both first- 

and second-order stimuli begins in the retina through the nonlinear Y cells. Retinal ganglion Y 

cells respond in a nonlinear fashion to contrast-reversing high spatial frequency luminance 

gratings, with a frequency-doubled response (Enroth-Cugell & Robson, 1966; Hochstein & 
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Shapley, 1976). This nonlinear receptive field property emerges due to rectified inputs from 

retinal bipolar cells, which act as nonlinear subunits (Demb et al 1999). Furthermore, due to 

these nonlinear subunits, Y cells also respond to contrast-modulated (CM) gratings (Demb et al 

2001b). In addition to responding in a nonlinear fashion, Y cells respond linearly to low spatial 

frequency LM gratings (Enroth-Cugell & Robson, 1966; Hochstein & Shapley, 1976). This 

linear response can be accounted for by input from the same pool of bipolar cells, if their center-

surround mechanism is not balanced (as discussed earlier). In this manner, a retinal circuit 

containing only a single stream can respond to both LM as well as CM gratings. Demb et al 

(2001b) proposed that Y cell input from retina to cortex via the LGN provides the basis for 

cortical neurons' response to both LM and CM gratings.  

Anatomical studies have shown that Area 18 in the cat receives most of its input from 

LGN Y cells, while Area 17 receives only a small fraction of input from Y cells and a majority 

of its input from X cells. This is consistent with the results that around half of the neurons in 

Area 18 respond to 2nd-order stimuli while only about one-fourth of neurons in Area 17 respond 

to 2nd-order stimuli (Zhou & Baker, 1993). Furthermore, optimal carrier spatial frequencies of 

cortical neurons are in the same spatial frequency range (0.5 to 2 cpd) to which Y cells respond 

in a nonlinear manner (So and Shapley, 1981). However, earlier this model was not given a 

serious consideration because of CM carrier orientation selectivity in cortical neurons 

(Mareschal & Baker, 1998a). It was assumed that subcortical neurons couldn’t show orientation 

selectivity. But subsequently it was shown that cat LGN Y cells do in fact show CM carrier 

orientation tuning like that of cortical neurons (Rosenberg et al 2010). Also like cortical neurons, 

LGN Y cells prefer lower CM envelope temporal frequencies compared to luminance gratings 

(Rosenberg and Issa, 2011). In addition, at least some LGN Y cells respond to very high carrier 
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temporal frequencies, like cortical neurons (Rosenberg & Issa, 2011). Thus, this model is 

biologically more plausible and a more parsimonious explanation of second-order response 

properties of cortical neurons. 

In addition to cats, other mammalian species (macaque monkey, mouse, rabbit, guinea 

pig). have Y (α)-like retinal ganglion cells. In particular, in the macaque monkey all parasol (M) 

cells (one of the major retinal ganglion cell types) give a “Y-cell signature” (Figure 1.3) response 

(Crook et al, 2008a). Also, another RGC category called upsilon cells/smooth monostratified in 

macaque also show Y-cell signature response (Petrusca et al., 2007; Crook et al., 2008b). So this 

could be an underlying mechanism for processing 2nd-order stimuli in all mammalian species, 

including humans. 

 

1.8  Cortical Push-Pull Model 

Simple cells of cat striate cortex have been demonstrated to have a linear spatial 

summation. This was earlier shown by stimulating ON and OFF subregions of simple cells with 

bar-shaped stimuli while measuring their spiking responses extracellularly (Tolhurst and Dean, 

1987). When bars matching the polarity of receptive field subregions were presented (ON region 

– white bar, OFF region – black bar), neurons gave strong excitatory responses. However when 

pairs of white bars (or black bars) were simultaneously presented in both ON and OFF regions, 

neurons would give little or no response. This result showed that subregions not only respond to 

stimuli of matching polarity but also provide covert inhibition for opposite polarities.  

This phenomenon was directly demonstrated through intracellular recordings in simple 

cells, which could measure both excitation (EPSPs) as well as inhibition (IPSPs) along with 
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spikes in a recorded neuron. Ferster (1988) demonstrated that presenting a white bar in an ON 

subregion or a black bar in an OFF subregion generated a barrage of EPSPs (excitation or 

“push”), but the presence of a black bar in an ON subregion or a white bar in an OFF subregion 

generated a barrage of IPSPs (inhibition or “pull”). Thus, this study showed that EPSPs and 

IPSPs have spatially opponent receptive fields of comparable strength, giving rise to spatial 

linearity within the simple cell receptive field due to this "push-pull" arrangement. 

  Since thalamic inputs to the cortex are excitatory (Alonso et al., 2001), the excitation 

within the receptive fields of simple cells in thalamo-recipient layers is thought to arise from 

direct LGN afferents while inhibition (“pull”) is thought to arise from intracortical inputs 

(Hirsch, 2003). Reid and Alonso (1995) used simultaneous recordings in LGN and cortex to 

demonstrate that direct excitation from LGN afferents has the same contrast polarity as the 

recipient simple cell subregion - i.e. ON afferents excite ON subregions, and OFF afferents 

excite OFF subregions. Inhibition is thought to arise from simple cells with receptive fields 

having an opposite spatial polarity but otherwise identical receptive fields (Hirsch et al., 2003). 

A population of inhibitory interneurons with simple type receptive fields has been shown in layer 

4 of cat striate cortex (Hirsch et al., 2003). Furthermore, simple cell receptive fields have been 

shown to have a varying degree of push-pull, but the distribution of a push-pull index has been 

shown to be like that of the LGN population (Martinez et al., 2005). This push-pull arrangement 

is not just restricted to the spatial domain, but also extends in the temporal domain of a given 

receptive field (Priebe and Ferster, 2005). In direction selective simple cells, inhibition as well as 

excitation are also tuned (spatiotemporally) for the same direction of motion (Priebe and Ferster, 

2005).   
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 These push-pull studies mentioned so far have been performed in cat striate cortex (Area 

17). It remains unclear whether such an arrangement is also present in cat Area 18, which also 

receives direct LGN afferent input, and contains both simple and complex type cells. However, 

Area 18 receives the majority of its input from Y-type LGN cells (Stone and Dreher, 1973; 

Humphrey et al., 1985) that contain interesting spatial nonlinearities as discussed earlier. Hence, 

it is important to study the push-pull arrangement in cat Area 18, and see how it might impact 

processing of linear and nonlinear signals arising from the Y pathway.  

 

1.9  Quantitative Receptive Field Models 

In the early days of receptive field (RF) studies, visual RFs were mapped in the retina, 

LGN and primary visual cortex using hand projectors while listening to neural responses on an 

audio monitor (e.g. Hubel and Wiesel, 1959). More recently, over the past two decades, various 

system identification methods like Spike-Triggered Average (STA) (Chichilnisky, 2001), Spike-

Triggered Covariance (STC) (Schwartz et al., 2006), Generalized Linear Model (GLM) (Wu et 

al., 2006), Phase separated Fourier model (David et al., 2004), or Neural network model (Prenger 

et al., 2004) have been used to estimate these RFs. These methods have enabled neuroscientists 

to not only visualize qualitatively the shape of these RFs but also to quantitatively measure their 

properties. Progress has been made to estimate these RFs under visual stimulation with artificial 

white noise stimuli as well as natural images (Wu et al., 2006). Receptive fields have usually 

been modeled as linear filters - however this approach is only appropriate for receptive fields 

with linear spatial summation, such as cortical simple type cells. More recently efforts have 

begun to capture nonlinearities arising from hierarchical visual processing, using multi-stage 
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models (e.g. Freeman  et al., 2015; Mineault et al., 2012). These estimated quantitative models 

allow us to summarize receptive field properties across the population of neurons. They give 

insights into signal transformation, and allow us to test our understanding of the system by 

measuring predictive performance of these models on novel arbitrary visual stimuli. In the 

following section I will briefly summarize most common receptive field mapping methods with 

their advantages and disadvantages. 

 

1.9.1 Spike-triggered methods 

 The Spike-Triggered Average (STA), or reverse correlation, has been very popular and 

one of the first methods to map complete 3D spatiotemporal (space-space-time) receptive fields 

of neurons in the early stages of the visual pathway (e.g. McLean and Palmer, 1989; 

Chichilnisky, 2001). This method estimates linear filter models by averaging over stimulus 

frames that triggered spiking activity in the neuron. One can add a parametric nonlinearity at the 

output of the linear filter to capture the non-negative firing rate of the neuron. However, to 

correctly estimate a linear-nonlinear (LN) system, this method requires the visual stimuli to be 

uncorrelated in space and time (Ringach and Shapley, 2004). Hence previous studies have 

mostly used white noise stimuli for STA estimation of receptive fields. Reverse correlation has 

been successfully used in mapping receptive fields of retinal as well as LGN neurons 

Chichilnisky, 2001; Alonso et al., 1996). However, it is not so effective in early visual cortex, 

where receptive fields often have more elaborate stimulus selectivity than observed in subcortical 

neurons. White noise stimuli often do not drive strong neural responses in visual cortex neurons, 

so the neural responses have very low signal to noise ratio and the estimated models are noisy 

(Touryan et al, 2005;  Felsen et al, 2005; Talebi & Baker, 2012). To circumvent this problem, 
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sinusoidal gratings drawn from a Hartley basis set (which is an orthogonal and complete basis 

for 2D images) have been used to map receptive fields in the visual cortex (Ringach et al., 1997). 

This can provide a robust estimate of receptive fields with a limited amount of neural data. 

However, this method probes receptive fields only in a limited stimulus space, based on apriori 

assumptions that might result in failure to reveal more complex RF properties. Laboratory 

stimuli such as gratings might drive neurons in a different manner than during natural 

stimulation. Reverse correlation has also been extended to use with natural images, by 

compensating for the correlations in the images (Willmore and Smyth, 2003). However, this 

compensation is approximate and can induce artifacts in the estimated receptive field models.  

 STA models receptive fields as linear filters with a rectified output, so it cannot capture 

spatial nonlinearities within the receptive field. For example, cortical complex type cells do not 

have distinct ON and OFF regions like simple cells, thus they are phase-insensitive. Complex 

cells are thought to sum a number of simple cells with similar spatio-temporal properties at 

adjacent spatial locations. Consequently the STA method was extended to also incorporate the 

covariance structure of stimuli that elicit spikes from a neuron (e.g., Touryan et al, 2005; 

Schwartz et al., 2006). This method, Spike-Triggered Covariance (STC), recovers multiple filters 

within a receptive field and thus can capture properties such as phase insensitivity of complex 

cells. However, STC involves optimization of a much larger number of parameters compared to 

STA, and thus requires a large amount of data. Also, the multiple filters recovered with this 

method are constrained to be orthogonal, which may not be biologically valid. Finally, classical 

STC has the same constraint of a white (uncorrelated) stimulus as previously described for STA. 

However, it can be used with natural image stimuli by compensating for the power spectrum 

(Touryan et al., 2005) 
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1.9.2 Generalized Linear Models (GLM) 

 More recently, receptive field estimation has been formulated as a regression problem in 

a GLM (general linear model) framework (Wu et al. 2006). In the simplest version, pixel 

intensities form the "features" of the model that are subjected to a linear weighted summation. 

The weights of these pixels can be estimated by minimizing the mean squared error between 

actual neuronal response and the model’s predicted response, using iterative methods such as 

gradient descent. An important advantage of this regression method over reverse correlation is 

that it can be used with any arbitrary stimuli, such as natural images, since it does not introduce 

bias in the estimate from spatial correlations in the visual stimulus.         

 However, the number of model parameters to be learned is often of the same order as the 

neural data available to train these models, and in addition, neural data is very noisy. Training a 

model with limited and noisy neural data can lead to overfitting of the model, which captures the 

noise in the training data in addition to the signal (Wu et al., 2006). In order to avoid overfitting, 

various regularization methods are available, such as the "lasso" (Mairal & Yu, 2012), ridge 

regression (Hoerl & Kennard, 1970), early stopping (Yao et al., 2007) etc. However, the lasso 

and ridge regression methods require optimizing a hyperparameter for the regularization penalty 

term, using for example a grid search - that means the model needs to be trained several times at 

different values of the hyperparameter, which can be very time-consuming. The early stopping 

method does not require optimizing a hyperparameter - with every iteration, the model’s 

predictive performance is measured on a separate holdback dataset (here called the regularization 

dataset). The training iterations are halted when the predictive performance stops improving. 

Usually the performance on the training data keeps improving with successive iterations - 

however the performance on the regularization data improves at first, but then starts to decline 
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when the model begins to overfit. At this point, model training is halted and model trained up to 

that iteration is selected. Finally, predictive performance of the model is measured on a "test" 

dataset that was not used for training or regularization.  

 The GLM framework described so far can be modified to capture multi-stage processing 

within receptive fields. Instead of using raw pixel intensities of the visual stimuli as input 

features to the model, we can perform a basis set transformation (pre-processing). For example, 

Nishimoto and Gallant (2011) modeled receptive fields of neurons in area MT as a linear 

weighted sum of rectified inputs from V1-like spatio-temporal filters. For estimating the model, 

stimulus images were first filtered with a bank of such spatio-temporal RFs, including many 

different combinations of spatial and temporal properties. Then weights of these filters were 

estimated through a GLM framework. Similarly Mineault et al. (2012) used the same approach to 

model receptive fields of MST neurons, using as a basis set a bank of  direction selective models 

that mimic MT neurons.  

 Thus we can estimate more complicated subunit models based on known biological 

inputs to the neuron. However, we need to build fairly accurate models of the possible inputs to 

the neuron. Also, the more complicated the model for possible inputs, the more it increases the 

size of the filter bank and hence the number of weights to learn for the GLM. However for some 

situations this is a practical approach. In Chapter 4, I use this preprocessing/GLM approach to 

model receptive fields of neurons in cat Area 17 and 18, to the separate contributions of ON- and 

OFF-pathway inputs. 
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1.9.3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) have become popular over the past few years for 

previously very difficult machine learning problems, such as pattern recognition in images, 

speech understanding, language translation, etc. (LeCun et al., 2015). The availability of fast 

GPUs, large datasets and improvements in algorithms have made it possible to train very 

complicated CNNs that give a state of the art performance on highly challenging tasks. 

Interestingly, the architecture of these CNNs is inspired from the hierarchical nature of the 

mammalian visual system. They contain a cascade of spatially localized linear filters convolved 

across space, followed by static rectifying nonlinearities. Thus, it is a well-suited framework for 

modeling receptive fields of neurons in the visual pathway, and can capture spatial nonlinearities 

in receptive fields. A recent study (Yamins et al., 2014) has used the features learned by a CNN 

on an object recognition task to model receptive fields of neurons in higher areas in the ventral 

stream (V4 and IT). Interestingly, these models could accurately predict responses of single 

neurons to randomly selected natural images, thus suggesting that CNNs can capture the 

hierarchical processing of a biological visual system.   

Neural networks have also been used to model receptive fields of neurons at the early 

stages of the visual pathway. Instead of using the features learned by deep CNNs from computer 

vision tasks, much simplified neural networks can be trained directly on experimentally recorded  

neural responses to visual stimuli. A recent study (Oliver, 2014) used regularized neural 

networks to model receptive fields of neurons in Area V1 and V2 in macaque monkeys. A 3-

layer neural network with Dropout regularization (in which a fixed fraction of connections in the 

network are randomly removed) and added Poisson noise gave the best predictive performance 

and consistent feature selectivity. Unlike the preprocessing method described above, no 
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assumptions were made about the feature space, but the method was able to recover clear Gabor-

like or Gaussian-like subunit filters. Also, these models were comparable in their predictive 

performance to those from the pre-processing method. Thus neural networks can provide a 

strong framework for modeling visual receptive fields and provide insights into the underlying 

neural computations with biologically interpretable models. In Chapter 3, I train CNNs to model 

the receptive fields of lateral geniculate nucleus (LGN) neurons to capture the subunit structure 

within their receptive fields.  

 

1.10  Electrophysiology and spike sorting 

Usually with single channel (metal or glass pipette) microelectrodes, neural activity from 

single neurons is measured extracellularly, then filtered and displayed on an oscilloscope. The 

position of the electrode is adjusted in small steps until spike amplitudes from a visually 

responsive single neuron are sufficiently distinct from the background activity to be isolated by a 

window discriminator. Then the event times of the detected spikes are saved on a hard drive, 

along with time registration information for the visual stimuli. While this method enables 

neuroscientists to precisely measure spiking activity of a single neuron even though it is densely 

packed together with other neurons in the brain, the yield of data from this method is very 

limited as one could measure responses of only a single neuron at a time. Due to the long 

durations of some recording protocols and the potential instability of maintaining isolation of 

single neurons, in practice useful data from only a handful of neurons can be recorded over the 

course of an acute experiment (~ 2-4 days).  
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Also, the single channel approach may have a sampling bias for neurons with big spike 

amplitudes (large cell bodies). Furthermore, "search stimuli" used to stimulate receptive fields 

could also introduce bias, as it can stimulate only receptive fields optimal for those stimuli. 

Spikes from other neurons with low spontaneous activity that are poorly responsive to the search 

stimulus, might may not be detected. To circumvent these issues, over the past decade, the use of 

multi-channel electrodes has become much more popular.   

In this thesis, I used a multi-channel recording system (Plexon Recorder) to record 

broadband neuronal signals from multi-electrodes. To record from visual cortex, I used 32-

channel NeuroNexus multi-electrodes. For Chapter 2, most of the data from Area 18 was 

collected using NeuroNexus (A1x32) linear arrays with 100µm spacing between recording sites. 

Thus these electrode sites can span all cortical layers (2.5mm depth) in the cat visual cortex. 

With this electrode, signals from a neuron are usually picked up at only single electrode site. For 

Chapter 4, data from Area 17 and 18 were collected using either NeuroNexus linear arrays 

(A1x32), or NeuroNexus polytrodes (A1x32-Poly2). Unlike with linear arrays, the electrode sites 

of polytrodes are more densely packed, with 50µm spacing of sites arranged in two parallel 

columns. Consequently, these polytrodes can span only 750µm depth, but signals from single 

neurons often appear on multiple channels. This can help to get a higher yield of neurons with 

greater reliability from spike sorting.  

Neuronexus probes that I used to record from cortex have relatively thin substrate (15µm) 

and cause minimal damage to the cortex as we could record visually responsive neurons from 

channels all along the length of these probes (Blanche et al., 2005). However, the longer probes 

that can reach much deeper brain structures use thicker substrate (50 µm). From our preliminary 

attempts to record from LGN, we noticed that these probes were causing tissue damage and we 
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could record visually responsive neurons only from the channels located at the tip of the probe.  

So instead we used quartz-coated tungsten tetrodes (Thomas) to collect data from the LGN. Due 

to these tetrodes’ conical-shaped tip and thin shaft, they cause minimal tissue damage, but give a 

much better yield of isolated neurons from spike sorting compared to single channel electrodes.  

With Plexon Recorder, we acquired raw data signals (3 Hz to 8kHz; sampling rate, 40 

kHz) from all electrode channels, which were streamed to a hard disk for later analysis. Single 

units were isolated from recorded multi-unit signals using SpikeSorter software (Swindale and 

Spacek, 2014; Swindale et al., 2017), and only clearly separated units were included in our 

analysis. Earlier, datasets were sorted using Plexon Offline Sorter software. But after the 

availability of software, SpikeSorter, I used it for sorting the rest of the data used in this thesis. 

SpikeSorter requires comparatively much less manual intervention and subjective judgements. It 

takes advantage of the geometry of the electrode sites - it accepts user-provided electrode site 

maps, and then compares spikes recorded across multiple nearby sites. An issue with longer 

recording durations (~1 hour or more) is that the shapes of spike waveforms can change over 

time due to relative displacement between neurons and electrode sites, when the electrode slips 

slightly though the brain tissue. SpikeSorter has an ability to track these changes over time, and 

recommends merging of units that would otherwise be classified as separate units. 

 

1.11  Thesis Aims 

In this thesis, I address three specific research aims as described in detail in Chapters 2, 3 

and 4. Here I briefly describe these aims and the rationale behind them.  
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The aim of Chapter 2 is to understand how spatial nonlinearities in receptive fields 

emerging at a subcortical level are utilized at early cortical stages. Recent evidence has 

suggested that the nonlinear Y-pathway arising in the retina could contribute to the cortical 

processing of luminance- and texture-defined boundaries (Demb et al., 2001b; Rosenberg et al., 

2010). To understand how these signals from the Y-pathway are pooled together in the cortex, I 

characterize receptive fields of cortical neurons using the same stimuli used to characterize 

subcortical Y-cells. Furthermore, I perform model simulations to test whether a novel neural 

circuit model utilizing cortical Y-like cells could account for known cortical receptive field 

properties for luminance- and texture-defined boundary stimuli. 

In Chapter 3, I estimate biologically interpretable quantitative models of LGN (lateral 

geniculate nucleus) neuronal receptive fields that can predict responses to novel stimuli. Visual 

signals undergo multi-stage processing in the retina before reaching the LGN. In particular, the 

rectifying nonlinearity between bipolar cells and ganglion cells enables Y-type cells to encode 

both texture and luminance information in the visual scene. However, most previous studies 

modeled subcortical receptive fields as linear filters, and hence could not capture this important 

spatial nonlinearity. Therefore in this study, I model receptive fields as multi-stage convolutional 

neural networks. 

In Chapter 4, I quantify the contributions of ON and OFF subcortical pathway inputs to 

cortical simple cell receptive fields. ON and OFF pathways emerge in parallel in the retina, with 

very little interaction between them until they reach visual cortex. These pathways are combined 

in cortical simple cells to build receptive fields that are selective for boundary orientation. 

Relative contributions of these complementary signals to individual receptive fields could affect 

functional properties of simple cells, such as selectivity for texture and motion. Here I estimate 
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subunit receptive field models of simple cells using a GLM approach with ON and OFF 

preprocessing inputs, to measure how ON and OFF signals are integrated within receptive fields 

over space and time.  
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Figure 1.1 : First-order and second-order boundaries in visual scenes. 

Natural scene where the boundary between the tree and grass is formed by luminance (first-

order) as well as texture (second-order) change, while the boundary between the grass and its 

reflection in the water is formed by only a difference in texture contrast (second-order). (Adapted 

from Li et al, 2014) 
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Figure 1.2 : Filter-Rectify-Filter (FRF) model for detecting second-order boundaries. 

Two-stage FRF model for detecting second-order boundaries formed by changes in texture, or 

contrast. The first-stage filters detect fine texture elements in the image. The outputs of these 

filters are rectified and then summed by a second-stage filter of much coarser scale, that can 

detect changes in texture properties. This model can detect texture boundaries with vertical 

orientation corresponding to the second-stage filter. (Adapted from Li et al, 2014.) 
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Figure 1.3 : Spatial frequency tuning for typical X- and Y-type cells measured with 

luminance gratings. 

X-type cells respond linearly at all spatial frequencies, with 1st harmonic response much greater 

than 2nd  harmonic response. The 2nd  harmonic response for X cells arises from their final output 

rectification. Y-type cells respond linearly at low spatial frequencies with 1st harmonic response 

greater than 2nd harmonic. However, at high spatial frequencies, outside the luminance passband, 

Y cells respond nonlinearly at 2nd harmonic, with no 1st harmonic response.   (Adapted from So 

and Shapley, 1981). 
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Figure 1.4 : Subunit receptive field model of a Y-type retinal ganglion cell. 

Responses of Y cells are modeled as a two-stage filter model. The first stage consists of a bank 

of small circular subunit filters, corresponding to bipolar cells. Subunit outputs are half-wave 

rectified and then pooled in a centre-surround spatial layout.   
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Figure 1.5 : Luminance Modulation and Contrast Modulation gratings 

Two types of grating stimuli used for characterising receptive field properties of neurons. A 

luminance grating is constructed by sinusoidal modulation of luminance along one orientation. 

Contrast modulation gratings are constructed by modulating contrast of a high spatial frequency 

carrier grating by a low spatial frequency envelope grating.  

 

 

 

 

 

 

 



 34  

 

                                         

Figure 1.6: Spatial frequency tuning of a model cortical neuron. 

A significant fraction of neurons in early visual cortex are selective for spatial frequency of 

luminance gratings (LM) as well as the carrier and envelope of contrast modulation (CM) 

gratings, as shown in this model simulation. Neurons are tuned for similar spatial frequencies for 

luminance and envelope of CM gratings, but very high spatial frequencies for carrier gratings. 

(Adapted from Gharat and Baker, 2017). 
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Figure 1.7 : Two-stream processing model for first- and second-order boundaries.  

A  Linear stream processes luminance with a linear filter F0. A non-linear stream processes 2nd-

order stimuli with two-stage filtering. A first-stage filter bank F1 detects high spatial frequency 

texture and then the output of each filter is rectified and pooled by a late filter F2. The outputs of 

filters F0 and F2 are summed linearly by an Area 18 neuron. (Adapted from Mareschal and 

Baker, 1998a). 
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2  
In Chapter 2, using multi-electrode recordings and sinewave grating stimuli, I characterize 

receptive fields in early visual cortex to understand how cue-invariant receptive fields are built 

from subcortical inputs. Here I demonstrate the presence of a significant fraction of neurons in 

cat Area 18 with nonlinear receptive fields like those of subcortical Y-type cells. These neurons 

have receptive field properties intermediate between subcortical Y cells and cortical orientation 

selective neurons that respond in a cue-invariant manner to luminance- and contrast-defined 

boundaries. These Y-like cells are strong candidates for building cue-invariant orientation-

selective neurons. Furthermore, I present a novel neural circuit model that pools such ON- and 

OFF-center Y-like neurons in an unbalanced “push-pull” manner, to generate orientation-

selective cue-invariant receptive fields. This chapter has been adapted from Gharat A and Baker 

CL (2017) Nonlinear Y-like receptive fields in the early visual cortex:  An intermediate stage for 

building cue-invariant receptive fields from subcortical Y cells. The Journal of Neuroscience. 

37(4): 998-1013. 
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CHAPTER 2 

Nonlinear Y-like receptive fields in the early visual cortex:   

An intermediate stage for building cue-invariant receptive fields from 

subcortical Y cells 

2.1  Abstract 

Many of the neurons in early visual cortex are selective for orientation of boundaries 

defined by first-order (luminance) as well as second-order (contrast, texture) cues. The neural 

circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that 

it emerges from spatial nonlinearities of subcortical Y cells. In order to understand how inputs 

from the Y cell pathway might be pooled to generate cue-invariant receptive fields, we recorded 

visual responses from single neurons in cat Area 18 using linear multi-electrode arrays. We 

measured responses to drifting and contrast-reversing luminance gratings as well as contrast-

modulation gratings. We found that a large fraction of these neurons have non-oriented responses 

to gratings, similar to those of subcortical Y cells - they respond at the second harmonic (F2) to 

high spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low spatial 

frequency drifting gratings (“Y-cell signature”). For a given neuron, spatial frequency tuning for 

linear (F1) and nonlinear (F2) response is quite distinct, similar to orientation-selective cue-

invariant neurons. Also, these neurons respond to contrast modulation (CM) gratings with 

selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their 

receptive field properties suggest that they could serve as building blocks for orientation 

selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-centre 
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cortical Y-like cells in an unbalanced push-pull manner, to generate orientation selective cue-

invariant receptive fields. 

2.2  Introduction    

A substantial fraction of neurons in the early visual cortex (Area 18) of cats respond in a 

cue-invariant manner to boundaries formed by first-order (luminance) or second-order (contrast, 

texture, motion) differences (Zhou & Baker, 1993; Tanaka & Ohzawa, 2006; Song & Baker, 

2007; Gharat & Baker, 2012). Recently, neurons in the early visual cortex (V2) of nonhuman 

primates were also shown to respond cue-invariantly to luminance- and contrast-defined 

boundaries (Li et al., 2014), with spatial selectivity to the carrier (texture) and envelope 

(modulator) of contrast boundaries very similar to previous findings in cat Area 18 (Mareschal & 

Baker, 1998a, Mareschal & Baker, 1999). Comparison of these primate V2 results with human 

psychophysics (Sutter et al., 1995; Dakin & Mareschal, 2000) suggests that these neurons could 

be the neural substrate for perception of 2nd order boundaries.  

However the neural circuit underlying these highly specialized receptive fields, with cue-

invariant selectivity for first- and second-order cues early in the visual pathway, is still unclear. 

The demonstration of carrier orientation-selectivity in cat Area 18 cells suggested a cortical 

substrate for carrier processing (Mareschal & Baker, 1998a). More recent evidence suggests that 

cortical neurons could achieve such receptive field properties by pooling inputs from the 

subcortical Y-pathway (Demb et al., 2001a, Rosenberg et al 2010; Rosenberg & Issa, 2011). Due 

to spatial nonlinearities, Y cells respond to first-order as well as second-order cues with 

selectivity for carrier (texture) spatial frequency and orientation similar to cortical neurons 

(Rosenberg et al 2010). Thus carrier processing for encoding 2nd order cues could take place in 
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the retina, with the cue-invariant envelope selectivity arising in the cortex from the Y-cell input 

to the cortical neurons. A similar mechanism is also plausible in the primate visual system, since 

the parasol and upsilon cells in the retina also have Y-like receptive field properties (Crook et al., 

2008a,b; Petrusca et al., 2007). This challenges previous ideas that 1st and 2nd order cues are 

processed independently (Smith & Ledgeway, 1997) and that 2nd order cues are encoded in 

higher extrastriate areas (El-Shamayleh & Movshon, 2011; Smith et al., 1998; Pan et al., 2012; 

An et al., 2014). Previous studies have extensively analyzed the pooling of subcortical X-

pathway inputs in cat Area 17 to generate simple cell (linear, Gabor-like) receptive fields with a 

"push-pull" combination of On- and Off-centre cells (Ferster, 1988; Hirsch et al., 1998; Martinez 

et al., 2005). However Area 18 receives a majority of its LGN input from the nonlinear Y-

pathway, and it is unclear how these inputs are combined to generate receptive fields with 

precise selectivity for 1st as well as 2nd order cues.       

 In order to understand the cortical circuitry for second-order processing in the early 

visual pathway, we recorded single-unit activity from cat Area 18 using multi-electrode arrays 

that can span all cortical layers. To reduce possible sampling biases due to manual searching 

with bar-shaped stimuli, we employed a battery of grating measurements together with post-hoc 

spike sorting. We found that a significant fraction of Area 18 neurons have receptive field 

properties similar to LGN Y cells, suggesting that these neurons form an intermediate stage 

between subcortical Y cells and orientation selective cue-invariant neurons. Finally, we propose 

a cortical neural circuit model that combines signals from the ON and OFF cortical Y-like cells 

to generate receptive fields selective for orientation of both 1st and 2nd order boundaries in a cue-

invariant manner. Unlike the balanced push-pull model proposed for Area 17 neurons, this model 
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has imbalanced push-pull, for example with ON inputs exerting a stronger effect than OFF 

inputs. 

  

2.3  Materials & Methods 

2.3.1 Animal Preparation 

 Our experimental procedures are explained in detail in our previous study (Gharat & 

Baker, 2012), and here are described briefly. Anesthesia was induced in adult cats of either sex 

with isoflurane/oxygen (3-5%) inhalation. Following intravenous cannulation, subsequent 

surgical anesthesia was obtained with i.v. propofol. A craniotomy and duratomy were performed 

(H-C A3/L4) for electrode placement in Area 18 (Tusa et al., 1979). During recording the animal 

was anesthetized and paralyzed with infusion of propofol (5.3mg · kg -1 · h -1), fentanyl (7.4μg · 

kg -1 · h -1) and gallamine triethiodide (10mg · kg -1 · h -1), and a mixture of O2 and N2O (30:70 

ratio) was delivered through a ventilator. Heart rate, EEG, body temperature, end-tidal CO2, 

blood oxygen, and airway pressure were monitored, with adjustments in ventilator stroke volume 

and anesthesia level as indicated. Neutral contact lenses and artificial pupils were positioned, and 

spectacle lenses of appropriate power were selected using a slit retinoscope to bring visual 

stimuli in focus. Back-projection of the optic discs onto a tangent screen allowed estimation of 

area centralis positions. All of these procedures were approved by the Animal Care Committee 

of McGill University and are in accordance with the guidelines of the Canadian Council on 

Animal Care. 
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2.3.2 Visual Stimuli 

 Visual stimuli were presented on a gamma-corrected CRT monitor (NEC FP1350, 20”, 

640×480 pixels, 75 Hz, 36 cd/m2) at a viewing distance of 57 cm. Stimuli were generated with a 

Macintosh computer (MacPro, 2.66 GHz, 6 GB, MacOSX 10.6.8) using custom Matlab software 

with the Psychophysics Toolbox (Brainard 1997; Kleiner et al, 2007). Drifting sinusoidal 

luminance gratings with a Michaelson contrast of 30% were used to measure neurons' linear 

spatial frequency and orientation tuning.  

 Neurons were classified as X- or Y-like (see below) using contrast-reversing gratings, 

with a higher contrast (70%) since nonlinear responses are often lower in amplitude. These 

gratings were also used to measure spatial frequency and orientation tuning, and spatial phase 

dependence, of nonlinear responses. In some cases responses were also obtained to contrast 

modulation (CM) stimuli, composed from a stationary high spatial frequency sinusoidal grating 

(carrier, 70% contrast) whose contrast was modulated by a drifting low spatial frequency 

sinusoidal grating (envelope, 100% modulation depth).  

 

2.3.3 Extracellular recording 

 Recordings were performed using multielectrodes (NeuroNexus), in most cases 32 

channel (A1x32) linear arrays, but also sometimes 16 channel (A1x16) linear arrays and 16 

channel (A4x4) tetrodes. Raw data signals were acquired with a Plexon Recorder (3Hz-8kHz, 

sampling rate 40kHz). Signals from a selected channel with visually responsive single- or multi-

unit activity was used to guide the recording protocol. Spike times detected on this channel with 

a window discriminator were collected through a lab interface (ITC-18, Instrutech) and analyzed 
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online to get tuning curves and PSTHs (peristimulus time histograms). Signals recorded from a 

small photocell placed over one corner of the CRT were used for temporal registration of stimuli 

and spikes, and to verify the absence of dropped frames. 

 Manually controlled visual stimuli (bars, spots) were used to determine the approximate 

receptive field location for multi-unit activity on the monitored channel, so as  to position the 

stimulus display to activate cells driven by the dominant eye (the non-dominant eye was 

occluded) - this procedure, rather than searching for single cells with bar-shaped stimuli, helped 

ensure a less biased sample including neurons lacking orientation selectivity. We attempted to 

insert multielectrodes perpendicular to the brain surface, so usually receptive field locations of 

neurons recorded on the other channels also fell on the display, enabling the simultaneous 

recording of useful visual responses of neurons on most channels. Drifting sinusoidal luminance 

gratings were presented to measure spatial frequency and orientation tuning. Each stimulus 

condition was interleaved with other conditions randomly, and repeated 5-10 times. Contrast-

reversing luminance gratings were then presented to measure nonlinear spatial summation. For 

all the spatial frequencies tested, either grating spatial phase or orientation was also varied. In 

some cases we also measured responses to contrast modulation (CM) gratings. Multi-unit 

activity across all channels during the experiment was analyzed to check if recording sites were 

visually responsive. Once the recording protocol was finished, sometimes it was repeated on the 

non-dominant eye depending upon quality of spike amplitude across channels. 

 

2.3.4 Analysis 

 Spike waveforms were carefully classified from the recorded data to isolate signals from 

single units, using Offline Sorter (version 3.3.3, Plexon) in earlier experiments, and later, 
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Spikesorter (Swindale & Spacek, 2014) for sorting multichannel electrode data. On some 

datasets sorting was done with both types of software and the results obtained were very similar. 

Only clearly sorted units were used for further analysis. 

  Responses of neurons to grating stimuli were accumulated as PSTHs (bin width 13.3 ms, 

duration of each frame), which were used to calculate first and second harmonic responses. 

Neurons were classified as simple or complex type cells by measuring the ratio of first harmonic 

modulation amplitude to mean, in response to the neuron's optimal drifting luminance grating 

(Skottun et al. 1991). For orientation and spatial frequency tuning curves, first harmonic 

response rate was used for simple type cells while mean response rate was used for complex type 

cells. 

Neurons' orientation selectivity was characterized with an “Orientation Bias” (OB) index 

(Leventhal et al 2003): 
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Rkrepresents spontaneous-subtracted neuronal response at orientation 
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values range from zero (isotropic tuning) to unity (sharp tuning).  

 The degree to which neurons exhibited a binocular vs monocular response was 

summarized with a “binocularity index”, defined as the ratio of average response to optimal 

drifting gratings in the non-dominant eye to that in the dominant eye. The binocularity index 

ranges from zero (perfectly monocular) to unity (perfectly binocular).  
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 To classify a neuron as X-like or Y-like we used a “nonlinearity index” (Hochstein & 

Shapley, 1976), defined as the maximum of the ratio of second-harmonic (F2) to first harmonic 

(F1) response. If at any spatial frequency, a neuron's second-harmonic response was significantly 

greater than its first harmonic component, it was classified as Y-like, otherwise as X-like. Note 

that only simple cells (AC/DC > 1) were further classified as X-like or Y-like, since complex 

cells respond nonlinearly (F2) within their luminance passband and their first harmonic (F1) is 

very weak or absent. Spatial frequency tuning curves of linear (F1) and nonlinear (F2) responses 

were fit with a Gaussian function (DeAngelis et al 1994):  

𝑅(𝑠𝑓) = 𝑘𝑒−((𝑠𝑓−𝑆𝐹𝑜𝑝𝑡)/𝛼)2
+  𝑅𝑜 

where k, ,  are free parameters,  is spontaneous activity and R is neuronal response at 

spatial frequency sf , with  taken as the optimal spatial frequency.     

 Pearson’s correlation coefficient between optimal linear and nonlinear spatial frequency 

was employed to assess any relationship between a neuron’s spatial tuning for linear and 

nonlinear responses. The circular correlation (Berens, 2009) coefficient was used to assess the 

relationship between neurons’ optimal orientation for drifting and contrast reversing gratings.  

 

2.4  Results 

2.4.1 Non-oriented receptive fields in cat Area 18. 

Previous single-unit studies of cat Area 18, including those in our lab, have primarily 

reported orientation-selective neurons. However more recently, using multi-channel 

microelectrodes with which we simultaneously record spikes from multiple neurons and analyze 
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the data post hoc (see Methods), a significant fraction of neurons were found to have non-

oriented receptive fields (Talebi & Baker, 2016).  

Fig 2.1A shows example tuning curves of orientation-selective (left) and isotropic 

neurons (right), measured with drifting luminance gratings at each neuron's optimal spatial 

frequency - these two neurons were simultaneously recorded from the same site on a 

multielectrode. We quantified each neuron's orientation selectivity with an “Orientation Bias” 

(OB) index (see Methods) which ranged from zero (isotropy) to unity (perfect selectivity). 

Neurons were classified as "non-ori" cells if OB < 0.2, which is the range found for LGN 

neurons (Rosenberg et al, 2010). The tuning curves in Fig 2.1A show examples of neurons 

classified as orientation-selective (left, OB 0.54) and non-ori (right, OB 0.11).  

Fig 2.1B shows an example of orientation tuning curves of neurons recorded 

simultaneously from a 32-channel linear array with recording sites separated by 100 μm. The 

array was inserted approximately perpendicular to the surface of the dura and lowered until most 

of the channels had spiking activity, so as to encompass all the cortical layers and to be 

approximately aligned with the columnar architecture. However due to curvature of the brain 

beneath the dura, such electrode penetrations were not necessarily confined within an orientation 

column. The penetration shown in Fig 2.1B is an example of an evidently somewhat oblique 

penetration, traversing different orientation columns. Note the span of depths with sorted neurons 

is 2.7 mm (28 channels), exceeding the anatomical thickness of grey matter in Area 18 (ca 2 mm 

- Tusa et al., 1979). Note that non-ori neurons (labeled with asterisks in Fig 2.1B) do not appear 

to be confined to particular layers, but rather are present at various depths spanning the gray 

matter, and are intermixed with orientation-selective neurons. This is consistent with Talebi & 

Baker (2016), who found neurons with non-oriented receptive field maps dispersed across all 
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depths of Area 18. Fig 2.1C shows the distribution of orientation selectivity (OB values) of all 

the neurons that were recorded - more than one-third (84 out of 208) were classified as non-ori. 

This histogram does not show a bimodal distribution indicating non-ori neurons as a separate 

class, which might seem in contradiction to the bimodal distribution seen in the similar 

histogram in Talebi and Baker (2016) of OB values of Area 18 simple cells (their Fig. 6A). 

However note that here we calculated OB values from orientation tuning curves constructed by 

measuring responses at only 13 discrete orientations (separated by 30 degrees), while Talebi & 

Baker (2016) measured OB values based on responses at a much larger number of orientations, 

simulated on a spatiotemporal receptive field map estimated by system identification. Their 

approach leads to much smoother tuning curves (see Fig 2D in Talebi & Baker, 2016) and much 

lower OB values. However the classical method of using responses to gratings can give high OB 

values due to limited sampling. So there is a strong possibility that even in our data non-ori cells 

might form a separate class from oriented receptive fields, but we fail to see it due to the limited 

sampling of orientations.    

To assess whether these non-ori neurons behave like classical simple or complex type 

cells, we measured their AC/DC (modulated/mean response) ratio (Skottun et al, 1991 - see 

Methods) for responses to optimized drifting gratings. The distribution of AC/DC ratios of non-

ori neurons (Fig. 2.2B) shows that most (75/84) are simple type (ratios greater than unity). This 

suggests that most non-ori neurons have isotropic receptive fields with distinct concentric ON 

and OFF regions similar to lateral geniculate nucleus (LGN) X and Y cells. We also find a few 

complex-like non-ori neurons (AC/DC ratios less than unity) - these could be receiving input 

from the W pathway, some of whose neurons have mixed On- and Off-responding receptive 

fields (Stone et al., 1979). 
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In some cases (n = 38) we also assessed the degree of binocular response of the non-ori 

neurons, by separately measuring responses to each eye and taking their ratio as a “binocularity 

index” (see Methods). A purely monocular neuron should have an index close to zero while a 

perfectly binocular neuron would have an index of unity. A histogram of these indices (Fig 2.2D) 

shows that most of the non-ori neurons are monocular (25/38), but about one-third are binocular 

with index values as high as 0.93. A scatterplot (Fig. 2.2C) comparing binocularity indices and 

AC/DC ratios shows that there is no relationship between these two parameters (R = 0.0249, p = 

0.882, n = 38).  

One might wonder if these non-ori neurons are actually terminals of LGN afferent fibers. 

However this is unlikely because we find them across all cortical depths (e.g. Fig.2.1B), whereas 

LGN inputs terminate in layers 4 and 6 (LeVay and Gilbert, 1976). In addition, some of the non-

ori cells are binocular (Fig. 2.2), which is characteristic of visual cortex (Hubel and Wiesel, 

1962). Another potential concern is that poor spike sorting might inadvertently combine signals 

from several neurons with differing preferred orientations, giving an apparent lack of orientation 

tuning. Fig 2.1D shows sorted raw spike waveforms of six example non-ori neurons recorded in 

the penetration shown in Fig 2.1B. These sorted waveforms are clearly from single-units, and 

hence the broad orientation tuning of these non-ori neurons is not due to contamination from 

multi-unit activity. Furthermore, most of these cells give simple type (modulated) responses (Fig. 

2.2A), whereas a mixture of neurons tuned to different orientations would give complex-like 

(unmodulated) responses.   
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2.4.2 Y-like spatial nonlinearities of non-ori receptive fields  

 Area 18 in the cat receives a strong direct input from the LGN, predominantly from Y 

cells, with much less input from X and W cells (Dreher et al 1980; Stone & Dreher, 1973). Since 

these cortical non-ori neurons have orientation tuning similar to LGN cells, it seems likely that 

most of them receive direct or indirect input from LGN Y cells. Hence we hypothesized that 

most cortical non-ori neurons should show the nonlinear spatial summation that is characteristic 

of LGN (and retinal) Y cells. Similar to previous studies of Y type cells (Hochstein & Shapley, 

1976; Demb et al., 2001a; Rosenberg et al 2010; Crook et al 2008a), we measured spatial 

properties of these neurons (n =44) using drifting and contrast-reversing gratings.  

 Both X and Y type cells respond to drifting sinusoidal gratings at their fundamental 

temporal frequency (F1), indicative of linear processing. With contrast-reversing gratings, X 

cells also respond linearly (F1), but Y cells give second harmonic (F2) responses (indicative of 

strong nonlinearity) at high spatial frequencies. We classified a neuron as Y-like if its second 

harmonic response component was significantly greater than the first harmonic to a contrast-

reversing grating at any of the series of spatial frequencies tested (formalized as “nonlinearity 

index”, see Methods) - otherwise it was classified as X-like (Hochstein & Shapley, 1976).  

  Spatial frequency responses for a typical Y-like non-ori neuron are shown in Fig 2.3A. 

This neuron responded linearly (F1, black) to drifting gratings, with tuning for low spatial 

frequencies. But to contrast-reversing gratings the neuron responded nonlinearly (F2, blue), at 

high spatial frequencies outside the linear SF tuning range. This combination of results is the 

classic "Y-cell signature" (Hochstein & Shapley, 1976) for retinal and LGN Y cells.  

 Fig 2.3B shows PSTH responses of this neuron to contrast-reversing gratings at two 

spatial frequencies, one within the linear SF range and the other in the nonlinear range. At a low 
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SF (0.1 cpd, left) the neuron responded at the same temporal frequency as the grating (4Hz), and 

this response depended on the spatial phase of the grating relative to neuron’s receptive field, 

with a minimum ("null") phase - all indicative of linear spatial summation. But at a higher SF 

(0.53 cpd, right) the neuron gave a frequency-doubled response (8 Hz) that was phase-

independent, indicating nonlinear spatial summation. Fig 2.3C plots the first and second 

harmonic values calculated from the PSTHs in Fig 2.3B. The first harmonic values depend on 

spatial phase, with a clear null phase repeated in 180° intervals, but the second harmonic values 

are approximately constant with phase. Thus this neuron showed all the spatial characteristics of 

a typical Y cell (Hochstein & Shapley, 1976). The distribution of spatial nonlinearity indices for 

the simple type non-ori neurons (Fig 2.3D) were predominantly Y-like (36/44), but there were a 

few (8/44) X-like cells as well.    

 

2.4.3 Linear and nonlinear spatial frequency relationships of Y-like cortical neurons   

 As shown in the previous section most of the cortical non-ori neurons have distinct linear 

and nonlinear SF tuning similar to those of retinal and LGN Y cells. Consequently it seems a 

likely possibility that Area 18 non-ori neurons may be involved in cortical processing of second-

order as well as first-order (luminance) stimuli. To further explore this possibility we measured 

spatial tuning properties of non-ori neurons, to compare with previously studied orientation-

selective CM-responsive cortical neurons (Mareschal & Baker, 1999). Fig 2.4A-F shows linear 

and nonlinear SF tuning plots of six non-ori cells - each has bandpass tuned nonlinear response 

(F2, blue) outside, and well above, the luminance passband (F1, black). We fitted the data points 

with Gaussian functions (see Methods) to derive optimal SF values for linear (F1) and for 

nonlinear (F2) tuning. A scatterplot of optimal SFs for linear vs. nonlinear responses (Fig 2.4G) 
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shows that optimal SFs for F2 are always substantially higher than for F1, with most of the 

neurons' values scattered around a 10:1 ratio line, and a weak correlation (r = 0.34) between 

optimal SFs for F1 and F2 for a given neuron. The distribution of F2/F1 ratios of optimal SFs 

(Fig 2.4H) shows ratios ranging from 4.6 to 28, with mean value of 11.3 (median = 8.7).  

A previous study (Mareschal & Baker, 1999) of orientation-selective neurons in Area 18 

with contrast modulation gratings found similar results for linear and nonlinear spatial tuning. In 

that study, the ratio of optimal SF for the carrier of CM gratings (nonlinear) and drifting 

luminance gratings (linear) varied from 5 to 30, with mean around 10. Similar ratios were also 

observed for CM response tunings in macaque V2 neurons (Li et al, 2014). Thus cortical non-ori 

neurons have a similar relationship between linear and nonlinear SF tuning to that of orientation-

selective, CM-responsive neurons. 

 

2.4.4 Orientation tuning of linear and nonlinear responses of Y-like cortical neurons  

 Some Area 18 neurons show pronounced orientation tuning for the high SF carrier of 

contrast modulation gratings (Mareschal & Baker, 1998a), which is independent of their 

orientation tuning for drifting luminance gratings. Hence it was previously thought that receptive 

field subunits that detect the carrier are cortical, for example orientation-selective Area 17 

neurons having high SF selectivity. However Rosenberg et al (2010) showed that even though 

LGN Y cells exhibit little or no selectivity for orientation of drifting gratings, some of them 

show pronounced orientation tuning for the carrier of CM gratings as well as for the nonlinear 

response to contrast-reversing high SF gratings. Thus carrier orientation selectivity of CM-

responsive Area 18 neurons might be inherited from afferent LGN Y cells. Therefore we 

measured orientation tuning of nonlinear (F2) responses of Y-like cortical non-ori neurons to see 
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whether some of them exhibit similar narrow tuning as found for cortical oriented CM-

responsive cells (Mareschal & Baker, 1998a; Rosenberg et al 2010).  

 Fig 2.5A-B shows orientation tuning curves for the linear (F1, black) and nonlinear (F2, 

blue) responses of two non-ori Y-like neurons. The nonlinear (blue) tuning curves are symmetric 

because responses were collected for orientations from 0 to 180 deg, and the responses were then 

mirrored about the origin. For the neuron in Fig 2.5A the nonlinear response (blue) is not tuned 

(OB = 0.12) for orientation of contrast reversing gratings. For comparison, the same neuron's 

responses to drifting gratings (black) are also shown - note that these linear responses have very 

small orientation bias (OB = 0.02), and are not direction selective. On the other hand, for the 

neuron in Fig 2.5B the nonlinear response (blue) is sharply tuned (OB =0.47) for orientation 

while the linear response is not tuned (OB =0.02).  The scatterplot in Fig 2.5C shows the 

orientation bias (OB) values of neurons’ nonlinear against linear responses in this sample (n = 

16). The linear responses (abscissa) all have OB values less than 0.2, as expected for non-ori 

neurons. However for the nonlinear responses (ordinate), some of these neurons (6/16) have 

substantial orientation selectivity (OB values greater than 0.2). We assessed the possibility of a 

systematic relationship between optimal orientation for linear (F1) responses and nonlinear (F2) 

responses. There was no significant circular correlation (Berens, 2009) between these optimal 

orientations for a given neuron (R = 0.0075, p = 0.9719, n =16). The histogram in Fig 2.5D 

shows differences in preferred orientation for linear and nonlinear responses. The difference in 

preferred orientation for most (14/16) neurons was greater than 30 degrees. Thus in this regard 

orientation tuning for nonlinear responses of cortical Y-like non-ori neurons is similar to that for 

LGN Y cells (Rosenberg et al., 2010) and for CM carrier tuning of cortical orientation-selective 

neurons (Mareschal & Baker, 1998a).  
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2.4.5 Responses of Y-like cortical neurons to second-order stimuli  

Previous studies (Demb et al 2001b; Rosenberg et al., 2010) demonstrated that retinal and 

LGN Y cells respond to contrast modulation (CM) gratings in addition to conventional 

luminance modulation gratings, suggesting that the Y-like non-ori cortical neurons might also be 

CM-responsive. Fig 2.6A-B shows example snapshot images of contrast modulation (CM) 

gratings with a vertically oriented low spatial frequency envelope that modulates the contrast of 

horizontal carrier gratings, the latter set at a lower carrier spatial frequency on the left (A), and 

higher on the right (B). For measuring responses to CM gratings we fixed the spatial frequency 

of the envelope at or near the optimal luminance SF (F1), and tested a series of carrier spatial 

frequencies outside the neuron's luminance passband.   

Fig 2.6C-H shows six non-ori neurons’ responses to CM gratings (orange) at a series of 

carrier SFs outside their luminance passbands (F1, black). These neurons show bandpass 

selectivity for the carrier of contrast modulation gratings (orange), which is similar to their 

nonlinear SF tuning (F2, blue). The scatterplot Fig 2.6I shows that optimal spatial frequency for 

the carrier is very similar to that for nonlinear (F2) tuning (R = 0.9266, p = 0.0079, n = 6). As 

shown in the scatterplot Fig 2.6J, the spatial frequency bandwidth for the carrier is often 

narrower than for nonlinear (F2) tuning. Furthermore, the optimal carrier spatial frequencies of 

these Y-like neurons fall within the same range, ca 0.5 to 2.0 cpd, as those of cortical ori-

selective CM-responsive neurons (Zhou & Baker, 1993; Mareschal & Baker, 1999; Rosenberg et 

al., 2010). These results suggest that responses to CM gratings and nonlinear responses to 

contrast-reversing gratings are elicited by a common nonlinear mechanism. 
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2.4.6 A possible cortical circuit utilizing Y-pathway inputs to build cue-invariant receptive 

fields 

We propose a cortical neural circuit model (Fig. 2.7B) that could generate cue-invariant 

orientation selective receptive fields from responses of cortical Y-like cells. In this model the 

responses of both ON- and OFF-centre cortical neurons are combined in a "push-pull" manner 

(Ferster, 1988; Hirsch et al., 1998; Martinez et al., 2005):  the ON-subregions of an oriented 

receptive field receive excitatory input from ON-centre cells and also inhibitory input from OFF-

centre cells, and vice versa for the OFF-subregions. It is straightforward to see that this receptive 

field would be selective for orientation of a luminance boundary. The centers of both ON- and 

OFF-type Y-cells contain subunits (Demb et al., 2001a) that are excited by increases in texture 

contrast (i.e. give ON-responses to contrast). Thus if the push-pull between ON- and OFF-

pathways is balanced, then the nonlinear responses to texture contrast will cancel out, and the 

neuron will be unresponsive to contrast boundaries. However an imbalance of the ON- and OFF-

pathways (wON not equal to wOFF in Fig. 2.7B) would enable a contrast boundary response. For 

example if the ON-pathway is stronger than the OFF-pathway, then in the ON-subregion 

excitation from ON-subunits will be stronger than inhibition from OFF-subunits, and in the OFF-

subregion inhibition from ON-subunits will outweigh excitation from OFF-subunits. Thus the 

ON-region would respond to an increase in texture contrast while the OFF-region would respond 

to a decrease in texture contrast - thus the receptive field as a whole would respond well to an 

oriented, periodic modulation of texture contrast.  

In order to demonstrate the tuning properties of this unbalanced neural circuit model, we 

constructed a computer simulation using a cascade of spatial filters. We modeled Y-cells as 

summing rectified bipolar cell subunits (Enroth-Cugell and Robson, 1966; Demb et al., 2001a), 
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as shown in Fig. 2.7A. Outputs of ON- and OFF-type Y-cells were combined in a push-pull 

manner as shown in Fig. 2.7B. Thus this simulated model contains three filter stages 

corresponding to bipolar cells (ON- and OFF-centre), Y-cells (ON- and OFF-centre) and a 

cortical orientation selective simple cell, with half-wave rectification of each stage's responses. 

We implicitly assume that receptive field properties of Y-type retinal ganglion cells (RGC), LGN 

neurons and cortical Y-like cells are not significantly different in their spatial receptive field 

properties. Bipolar cells were modeled as Difference-of-Gaussian (DoG) filters with much wider 

surrounds compared to their centres, and with centre strengths outweighing surrounds (Dacey et 

al., 2000). Note that it is crucial for bipolar cell centres to be stronger than their surrounds, to 

enable a linear response to low spatial frequencies (Dacey et al., 2000; Rosenberg and Issa, 

2011). Outputs of these bipolar cell filters were rectified and pooled with DoG weighting, 

corresponding to retinal ganglion cell (RGC) receptive fields. The centre size of this DoG was 

set to be several times (x10) larger than the centres of the bipolar cell filters. ON-centre Y-cells 

were built by pooling ON-centre bipolar cells, and OFF-centre Y-cells by pooling OFF-centre 

bipolar cells (Demb et al., 1999). Finally, outputs of ON- and OFF-centre Y-cells were summed 

in a push-pull manner to build a cortical orientation-selective simple cell. 

We measured responses of this model with balanced as well as unbalanced push-pull, to 

luminance-modulation (LM) and contrast-modulation (CM) gratings, in order to compare the 

model’s spatial selectivity to known cortical neurons’ selectivity (e.g. Mareschal and Baker, 

1998b, Mareschal and Baker, 1999, Li et al., 2014). As shown in Fig. 2.8A, B, C, the model with 

balanced push-pull responds selectively (spatial frequency and orientation) to LM gratings, but 

fails to respond to CM gratings having a higher carrier spatial frequency (matched to the bipolar 

cells' centre size). On the other hand, the model with unbalanced push-pull (Fig. 2.8D, E, F) not 
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only responds selectively to LM gratings but also to CM gratings. Spatial frequency tuning (Fig. 

2.8D, red) for the envelope of CM gratings is similar (though not identical) to that for LM 

gratings, and the carrier spatial frequency tuning (blue) is well above the luminance passband. In 

addition, this unbalanced model is also selective for similar orientation of LM gratings (Fig. 

2.8E) and the envelope of CM gratings (Fig. 2.8F) - i.e. form cue-invariance. Note that in this 

scheme carrier selectivity arises from retinal stage (bipolar cell) filters, while the envelope 

selectivity emerges from cortical stage circuitry.  

Many CM-responsive neurons in cat Area 18 have broader envelope orientation tuning, 

and preference for lower envelope spatial frequencies, compared to their corresponding LM 

responses (Mareschal & Baker, 1999). In this model scheme these differences arise from the very 

wide surrounds of the bipolar stage filters compared to their centers (Dacey et al., 2000). These 

surrounds make Y cells’ luminance spatial frequency tuning narrower by dampening responses 

to low spatial frequencies, thereby shifting the optimal spatial frequency slightly higher. 

However, for CM gratings at their optimal carrier spatial frequency (scale of bipolar cells' 

centers), the surrounds of bipolar cells are too wide to detect the carrier. So unlike the case with 

LM gratings, bipolar surrounds do not contribute to the selectivity for the envelope of CM 

gratings. This can result in subtle differences in spatial frequency tuning to LM gratings and 

envelopes of CM gratings in Y-cells, with preference for lower spatial frequencies of CM 

envelopes compared to LM gratings. These differences can be further increased by nonlinearities 

(expansive power-law) at the outputs of Y-cells and cortical ori cells, and thus can give a 

difference in selectivity for luminance gratings and envelopes of CM gratings as shown in Fig. 

2.8 D, E, F.    
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Interestingly, CM-responsive Area 18 neurons show a pronounced selectivity for relative 

spatial phase between an LM grating and the envelope of a CM grating in a compound LM+CM 

stimulus (Hutchinson et al., 2016). Therefore we measured model responses to LM+CM stimuli 

(Fig. 2.9A) for comparison. In the compound stimuli, the spatial frequencies of the LM gratings, 

and envelope and carrier of the CM gratings, were set to optimal values, and the contrasts of the 

individual LM and CM gratings were adjusted such that model’s responses to them were of equal 

strength - as in the experimental measurements of Hutchinson et al (2016). Then the model’s 

responses were measured to LM+CM gratings that were added at varying relative phases. When 

the model is made unbalanced, with wON > wOFF, its response (Fig. 2.9B) is selective for relative 

phase in the compound stimuli, with strongest response when the LM and CM are in phase (i.e. 

high luminance of LM aligned with high contrast of CM), in agreement with the results of 

Hutchinson et al (2016). This behavior arises because in the Y-driven push-pull model, ON- and 

OFF-subregions for contrast detection are phase-aligned with ON and OFF subregions for 

luminance detection. 

 

2.5  Discussion 

Our results have demonstrated that a large fraction of the sampled population of cat Area 

18 neurons have non-oriented Y-like receptive fields, which are present at different cortical 

depths intermixed with orientation-selective neurons and not evidently clustered in particular 

layers. These Y-like cortical neurons respond at the second harmonic (F2) to high spatial 

frequency contrast-reversing gratings and at the first harmonic (F1) to low spatial frequency 

drifting gratings ("Y-cell signature", Enroth-Cugell and Robson, 1966; Hochstein and Shapley, 
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1976). A given neuron's SF tunings for linear and nonlinear responses are quite distinct, with on 

average about an 11-fold greater optimal SF for F2 than for F1. Furthermore, due to these 

neurons’ nonlinearity at high spatial frequencies, they also respond to contrast modulation (CM) 

patterns (second-order stimuli), with high selectivity for the spatial frequency of the CM carrier 

grating (texture). 

 

2.5.1 Non-ori cells in cat Area 18  

Early visual cortical areas are conventionally described as characteristically comprised of 

orientation selective receptive fields. However there have been some reports also finding a 

substantial fraction of LGN-like non-oriented receptive fields in the early mammalian visual 

cortex. For example, non-ori neurons have been found in primary visual cortex of macaque 

(Livingston & Hubel, 1984; Ringach, Shapley, Hawken, 2002; Ringach, 2002), mouse (Bonin et 

al., 2011) and ferret (Chapman & Stryker, 1993), as well as in cat Area 17 (Dragoi et al., 2001; 

Hirsch et al., 2003). Earlier studies using single channel electrodes and bar-shaped search stimuli 

in cat Area 18 (Tanaka and Ohzawa, 2006; Ferster and Jagadeesh, 1991; Mareschal and Baker, 

1998a) did not report non-oriented receptive fields. But a recent study (Talebi and Baker, 2016) 

in cat Area 18 using multi-channel electrodes, in conjunction with post hoc data analysis (spike 

sorting) similar to ours, has reported a large proportion of non-oriented receptive fields estimated 

using system identification methods. We believe that using multi-electrode arrays with post hoc 

spike sorting leads to less sampling bias compared to earlier approaches of sampling one neuron 

at a time with a single channel electrode.  Furthermore, with earlier approaches, visual 

responsiveness of the neuron was typically assessed with moving bars. However we have noticed 

that a moving bar is not a good stimulus for driving responses from these non-ori neurons – they 
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are much better driven by flashing spots centered on their receptive fields, due to their 

comparatively strong surrounds. Thus previous studies might have rarely found such neurons or 

failed to recognize their visual responsivity.  

 

2.5.2 Nonlinear Y-like spatial summation 

Here we have demonstrated that a significant fraction of neurons in early visual cortex of 

the cat have spatial receptive field properties similar to those of subcortical Y cells. These 

cortical neurons exhibit both linear and nonlinear spatial response properties, which are tuned for 

quite distinct spatial frequencies ("Y cell signature" - Hochstein & Shapley, 1976). Optimal 

spatial frequencies of our non-ori cortical neurons for linear and nonlinear responses (Fig. 2.4) 

are similar to those reported for retinal and LGN Y cells (Hochstein & Shapley, 1976; So & 

Shapley, 1979).  

Ferster & Jagadeesh (1991) also described harmonic responses of orientation selective 

simple cells in cat Area 18 to contrast-reversing gratings, and found around half of their neuronal 

population to have Y-like spatial nonlinearities. However they did not report the presence of 

non-ori Y-like cells. Spatial selectivity, such as the ratio of preferred spatial frequency of linear 

and nonlinear responses, of their cell population is similar to the non-ori cells reported here. 

However, orientation selectivity was not reported for their sample of neurons.  

 

2.5.3 Neural mechanism for building cue-invariant receptive fields 

A significant fraction of Area 18 orientation-selective neurons are responsive to both 

first- and second-order visual stimuli, with the same preferred orientation to both (Zhou & Baker, 
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1993; Song & Baker, 2006; Gharat & Baker, 2012) - i.e. they are "form cue-invariant" (Albright, 

1992). Due to the additional selectivity of some of these neurons to carrier (texture) orientation, 

it was proposed that the neural substrate for subunits of Area 18 neurons was cortical in origin 

(Mareschal & Baker, 1998a). However more recent evidence suggests that subcortical Y cells 

could provide a substrate for the carrier selectivity of cortical neurons (Demb et al 2001; 

Rosenberg et al, 2010), with the envelope selectivity arising from cortical circuitry. The cortical 

Y-like neurons that we have described are probably driven by LGN Y cells, and could provide an 

intermediate stage for building cue-invariant orientation selective receptive fields. Firstly, they 

have carrier selectivity like cue-invariant neurons, but no orientation selectivity for drifting 

gratings, like Y cells. Unlike LGN cells, a significant fraction is binocular, which is also the case 

for some oriented CM-responsive cells (Tanaka & Ohzawa, 2006). Also, these Y-like neurons 

could provide both excitatory as well as inhibitory inputs to orientation selective neurons - since 

input from the LGN to the cortex is only excitatory (Alonso et al., 2001), some sort of inhibitory 

interneuron would be necessary to construct a push-pull architecture for cortical receptive fields. 

Furthermore, the presence of some of these Y-like neurons in the top cortical layers suggests that 

they could also be projecting to higher-tier cortical areas along with the orientation selective 

neurons. 

Our model simulations predict that cortical neurons with unbalanced push-pull 

summation of Y-pathway inputs will be selective for orientation of both luminance and texture 

boundaries, while the neurons that sum Y-pathway inputs with conventional balanced push-pull 

will only be selective for luminance boundaries. Furthermore, the unbalanced push-pull model is 

able to predict previously shown (Mareschal and Baker, 1998b; Mareschal and Baker, 1999; Li 
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et al, 2014) spatial tuning properties of cortical neurons to LM and CM gratings, including 

systematic differences in tuning for LM gratings and envelopes of CM gratings.  

This unbalanced push-pull model with a Y-pathway input is fundamentally different from 

the two-stream model proposed earlier (Zhou and Baker, 1993; Mareschal and Baker, 1998a) to 

explain cortical neurons’ tuning properties. In the two-stream model, selectivity for luminance 

and contrast processing arises separately, and only at the final stage are the outputs from these 

two streams were summed. However in this Y-pathway model, luminance and contrast cues are 

processed together all along the visual pathway beginning at the retina. In the two-stream model, 

the neural substrate for subunits that detect fine texture within contrast envelopes was thought to 

be Area 17 neurons (Mareschal & Baker, 1998a), but in this model it is retinal bipolar cells with 

rectified outputs. In Area 18, only about half of the orientation selective neurons are responsive 

to both LM and CM gratings, while the remainder are only responsive to LM but not CM 

gratings (Zhou and Baker, 1993). This has been accounted for in the previous scheme by the 

presence or absence of input from a second stream for processing contrast boundaries. However 

in this scheme a lack of response to contrast modulation would arise from a symmetrical push-

pull, or from X- rather than Y-pathway inputs. Future studies could test this idea by assessing 

whether cortical neurons' CM responsiveness is correlated with their push-pull imbalance of Y-

type inputs. 

 

2.5.4 Implications for second-order processing in other mammals 

 While Y-type retinal ganglion cells were classically described in the cat, they have also 

been demonstrated in other mammals including mouse (Schwartz et al., 2012) and guinea pig 

(Demb et al., 2001a). There have been doubts about the presence of a cell type homologous to Y 
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cells in primates, as previous studies failed to clearly demonstrate “Y-cell signature” responses in 

retinal parasol cells (Petrusca et al., 2007). However Crook et al. (2008a) clearly demonstrated 

that macaque retinal parasol cells have Y-like spatial nonlinearities. In view of our results, it 

seems likely that many of the non-ori neurons in area V1 of both mouse (Bonin et al., 2011) and 

monkey (Livingston & Hubel, 1984; Ringach, Shapley, Hawken, 2002) might also have Y-like 

spatial nonlinearities inherited from subcortical Y pathway inputs - this would be a future avenue 

of investigation.  

Li et al (2014) demonstrated that about one-third of neurons in macaque V2 respond to 

2nd order stimuli in a form cue-invariant manner. Spatial tuning properties of these neurons to 

carriers and envelopes of CM gratings were qualitatively very similar to those in cat Area 18 

neurons, differing principally in spatial scale. In addition, spatial frequency selectivity of V2 

neurons (Li et al, 2014) for drifting luminance gratings and carriers of CM gratings is in a similar 

range to the spatial selectivity of retinal parasol cells (Crook et al, 2008a) to drifting (F1) and 

contrast-reversing (F2) gratings, respectively. So it is likely that, similar to cats, Y-like cortical 

cells are pooled to generate cue-invariant receptive fields in the early visual cortex of primates. 

Contrary to the view that 2nd order processing takes place in higher visual areas (El-Shamayleh 

& Movshon, 2011; Smith et al., 1998) and separate from 1st order processing (Larsson et al., 

2006; Smith & Ledgeway, 1997), it seems possible that all mammals including primates might 

have a common mechanism for processing 2nd order stimuli, involving the Y-cell pathway 

providing an early substrate for carrier-tuning, and cortical circuitry with imbalanced push-pull 

for cue-invariant envelope tuning. 
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Figure 2.1 : Orientation tuning to drifting luminance gratings recorded with multielectrode 

arrays. 

(A) Example tuning curves of an orientation-selective neuron (left) and a non-selective neuron 

(right), recorded simultaneously from the same site on a multielectrode. (B) Orientation tuning 

curves of neurons recorded simultaneously with a 32-channel linear array inserted almost 

orthogonal to, and spanning, the cortical layers. Neurons showed varying degrees of orientation 

selectivity, with a large fraction lacking significant orientation selectivity (denoted by asterisks). 

Dotted box indicates pair of neurons in (A).  (C) Orientation selectivity of neurons is measured 

with an orientation bias (OB) index, with higher values indicating greater orientation-selectivity. 

Histogram shows distribution of OB values of all 208 neurons in our Area 18 sample. Neurons 

with OB < 0.2 are classified as non-orientation selective (LGN-like). More than one third 

(84/208) of these neurons are non-orientation selective. (D) Sorted spike waveforms for six 

example non-orientation selective neurons recorded simultaneously. 
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Figure 2.2 : Receptive field properties of non-orientation selective neurons. 

(A) Histogram showing distribution of AC/DC (modulated/mean response) values of all 208 

neurons in our Area 18 sample. (B) Histogram showing distribution of AC/DC (modulated/mean 

response) values for non-orientation selective neurons' responses to drifting gratings. The 

majority of these neurons are simple type (AC/DC > unity). (C) Scatterplot of binocularity index 

versus AC/DC ratio for non-orientation selective neurons. There is no clear relationship between 

these two parameters. (D) Histogram showing distribution of binocularity indices for non-

orientation selective neurons. Most of these cells are monocular (index < 0.1), but about one-

third are binocular. 
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Figure 2.3 : Y-like non-orientation selective neurons in Area 18. 

(A) Spatial frequency responses of a typical non-orientation selective neuron. First harmonic 

response to drifting gratings (F1, red) is bandpass to low spatial frequencies. Similar to 

subcortical Y cells, this neuron responds nonlinearly at the second harmonic (F2, blue) to 

contrast-reversing high spatial frequency gratings. (B) PSTHs (peristimulus time histograms) of 

the same neuron to contrast-reversing gratings (4Hz) of low (0.1cpd, left) and high (0.53cpd, 

right) spatial frequencies. At low spatial frequency the neuron responds at the first harmonic (4 

Hz) with periodic phase dependence, while at high spatial frequency it exhibits a second 

harmonic (8 Hz) across the full range of phases. (C) Harmonic responses calculated from PSTHs 

in (B) as a function of spatial phase. First harmonic response (F1, red) is phase-dependent with a 

clear null phase repeated every 180°, while second harmonic response (F2, blue)  is phase-

independent. (D) Distribution of nonlinearity indices of non-orientation selective neurons. Most 

neurons are Y-like (nonlinearity index > 1.0).  
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Figure 2.4 : Linear and nonlinear spatial frequency tuning of cortical Y-like neurons. 

(A-F) Spatial frequency tuning for six cortical Y-like neurons. First harmonic (F1, red) responses 

of these neurons are band-pass tuned with selectivity for low spatial frequencies. Second 

harmonic (F2, blue) responses are band-pass tuned with selectivity for high spatial frequencies 

outside the luminance passband. (G) Scatterplot of optimal spatial frequency for second 

harmonic responses (F2) versus that for first harmonic responses (F1). All the points lie well 

above the 1:1 ratio line, indicating that a given neuron’s optimal spatial frequency for F2 is 

substantially higher than for F1.  (H) Histogram showing ratios of optimal spatial frequency for 

F2 vs. F1 (mean ratio = 11.3, median = 8.68). 
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Figure 2.5 : Linear and nonlinear orientation responses of Y-like non-ori neurons. 

(A-B) Linear (F1, red) and nonlinear (F2, blue) orientation tuning plots of two Y-like non-ori 

neurons. One (A) is isotropic for orientation of nonlinear (F2) responses, while the other (B) has 

pronounced orientation tuning (OB > 0.2). (C) Scatterplot showing comparison of orientation 

tuning for low spatial frequency drifting grating (F1) and high spatial frequency contrast-

reversing grating (F2). Higher OB values indicate greater selectivity. Open circles in the 

scatterplot correspond to the neurons in panel (A) & (B). (D) Histogram showing difference in 

optimal orientation for linear (F1) response and nonlinear (F2) response.  
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Figure 2.6 : Responses of Y-like non-ori neurons to contrast modulation (CM) gratings . 

(A-B) Two examples of contrast modulation stimuli with vertically oriented low spatial 

frequency envelope that modulates contrast of horizontal carrier grating at low (A) or high (B) 

frequency. (C-H) Spatial frequency tuning plots of six neurons to contrast modulation and 

luminance gratings. For a given neuron, the CM envelope spatial frequency was fixed at a low 

value within the luminance passband (F1, red), and carrier spatial frequency was varied outside 

the luminance passband. Neurons show bandpass tuning to CM gratings (orange), similar to their 

second harmonic (F2) response to contrast-reversing gratings (blue). (I) Scatterplot of optimal 

spatial frequency of contrast reversing luminance gratings for second harmonic (F2) responses 

versus optimal spatial frequency of CM carrier grating. (J) Scatterplot showing spatial frequency 

bandwidth of second harmonic (F2) response versus bandwidth of CM carrier grating. 
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Figure 2.7 : Neural circuit model for cue-invariant receptive fields constructed from Y-

pathway. 

(A) The receptive field of a Y cell is modeled as a filter-rectify-filter (FRF) cascade. The first 

filter stage is comprised of a bank of small DoG (difference of Gaussian) receptive fields 

corresponding to bipolar cells. The rectified outputs of these subunits are linearly pooled with 

DoG weighting, at a much larger spatial scale (Demb et al., 2001a). (B) Receptive field of a cue-

invariant cortical simple cell can be thought of as a pair of overlapping phase-aligned receptive 

fields, one constructed from summation of ON-  and the other from OFF-center inputs. ON- and 

OFF-centre Y-like cortical neurons are combined in a push-pull arrangement, such that the ON 

region of the cortical neuron receives excitatory input from ON-centre cells and inhibitory input 

from OFF-centre cells, and vice-versa for the OFF region. This model will respond selectively to 

an oblique oriented luminance edge. But since the Y cells contain small nonlinear subunits, both 

ON and OFF types will be excited by the presence of texture, resulting in no net response. When 

the push-pull from ON- and OFF-pathways are unbalanced (e.g. stronger input from ON 

pathway), the nonlinear responses to texture no longer cancel, thereby enabling envelope 

orientation-selective responses to CM stimuli. 
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Figure 2.8 : Spatial tuning of balanced and unbalanced push-pull model with Y-pathway 

inputs. 

(A) Spatial frequency response of the model with balanced push-pull. Responses to luminance 

gratings (black) are band-pass tuned to low spatial frequencies, but the model does not respond 

to CM gratings (red, blue) with carrier spatial frequencies outside the luminance pass-band. (B) 

Balanced push-pull model shows orientation selectivity to drifting luminance gratings. (C) 

Balanced push-pull model does not respond to CM gratings of any envelope orientation. (D) 

Spatial frequency response of the model with unbalanced push-pull. Responses to luminance 

gratings are band-pass tuned to low spatial frequencies as in A, but the model also responds to 

CM gratings with carrier spatial frequency selectivity (blue) outside luminance passband and 

envelope selectivity (red) similar to that for LM gratings. (E) Orientation tuning of the 

unbalanced push-pull model to drifting luminance gratings shows similar selectivity as B. (F) 

Similar orientation tuning of the unbalanced push-pull model to envelope of CM gratings. 
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Figure 2.9 : Selectivity of the unbalanced push-pull model for relative spatial phase of 

luminance and contrast boundary. 

(A). LM+CM compound gratings were constructed by linearly adding LM and CM gratings 

having identical spatial frequency and orientation. Compound stimuli are illustrated for "in-

phase" condition (upper), where high luminance of LM grating is phase-aligned with high 

contrast of CM grating, and "anti-phase" (lower), where high luminance of LM grating is phase-

aligned with low contrast of CM grating.  (B). Responses of the unbalanced push-pull model to 

compound LM+CM gratings with varying relative spatial phase. The model, with wON > WOFF, 

responds strongest when LM and CM gratings are phase-aligned and weakest when they are in 

anti-phase. 
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3  
The previous chapter provided evidence supporting the role of the nonlinear Y pathway as an 

input for processing second-order stimuli in the visual cortex. Hence it is important to build 

quantitative receptive field models of subcortical Y cells that can account for their signal 

processing. So in this chapter, I estimate biologically plausible neural network models of cat 

LGN receptive fields, using recent machine learning methods (deep learning). I train 

convolutional neural network models for each recorded LGN neuron, using its spiking responses 

to naturalistic texture stimuli. I demonstrate that, these models are not only better in comparison 

to the standard linear-nonlinear models at predicting response to arbitrary stimuli, but they also 

recover biologically interpretable subunit models. This chapter is under preparation for 

submission to a peer reviewed journal. 
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CHAPTER 3 

Estimating Subunit Receptive Field Models of Thalamic Neurons 

with Deep Learning. 

 

3.1  Abstract 

Spatial nonlinearities emerging at the level of the retina are thought to be important for 

processing texture boundaries in the visual cortex. However, previous studies have modeled 

receptive fields of subcortical neurons as linear filters with a static output nonlinearity. Although 

such "LN" models are relatively easy to estimate with reverse-correlation they cannot capture 

spatial nonlinearities within receptive fields. Here we model retinorecipient receptive fields of 

cat lateral geniculate nucleus (LGN) neurons as a two-layer convolutional neural network model 

with an intermediate parametric nonlinearity (pReLU). We train such a neural network model for 

each neuron, using its spiking responses to naturalistic texture stimuli.  The convolutional filter is 

initialized with random weights, and no constraints are imposed on its shape. The learned models 

converge on to filters with clear Gaussian or DoG (Difference of Gaussians) like shapes, and 

often exhibit a high predictive performance on test datasets. The trained models of Y-type LGN 

neurons have a higher degree of nonlinearity compared to those for X-type neurons. In 

conclusion, a nonlinear two-layer convolutional model that is based on retinal neurobiology is 

better at predicting responses of Y-type neurons to novel test stimuli compared to an LN model. 
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3.2  Introduction 

Our visual system utilizes both changes in luminance as well as higher order texture 

statistics for segmenting an object from its background. Even though processing of luminance 

signals is well understood at the early stages of the visual pathway, neural mechanisms for 

processing texture remain unclear. Recent studies (Rosenberg et al., 2010) have suggested that 

the subcortical Y pathway could be the neural substrate for joint processing of luminance as well 

as texture information. Y-type (alpha) ganglion cells in the mammalian retina have been 

classically distinguished from other retinal ganglion cell (RGC) types by the fine-scale spatial 

nonlinearities in their receptive fields (Enroth-Cugell and Robson, 1966; Hochstein and Shapley, 

1976; Borghuis et al 2013; Gollisch, 2013; Crook et al., 2008a). The presence of a rectifying 

nonlinearity at the bipolar-ganglion cell synapse enables Y cells to detect fine scale textures as 

well as coarse-scale luminance changes (Demb et al, 1999; Demb et al., 2001a; Demb et al., 

2001b). The resultant signals are relayed to the cortex via Y-type cells in the lateral geniculate 

nucleus (LGN), where recent evidence suggests they are utilized for building receptive fields that 

can encode orientation of boundaries formed by texture (second-order) as well as luminance 

(first-order) changes in a cue-invariant manner (Rosenberg et al., 2010; Rosenberg and Issa, 

2011; Gharat & Baker, 2017).  

A rigorous way to gauge our understanding of visual signal processing by a receptive 

field is to build quantitative models and test their ability to predicting responses to random 

stimuli. However, most previous efforts to fit quantitative receptive field models to RGC and 

LGN neural responses have assumed a linear filter followed by a static output nonlinearity (LN 

model) (Reid et al., 1997; Pillow et al., 2005, Wang et al., 2011). Obviously such linear filter 

models cannot capture selectivity to texture stimuli arising from multi-stage nonlinear processing 
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within the Y cell receptive fields. Recent studies have begun to incorporate these spatial 

nonlinearities by modeling receptive fields as multi-stage “subunit" models (Schwartz et al., 

2012; Freeman et al., 2015; Turner and Rieke, 2016; Bolinger and Gollisch, 2012). However, it 

has been a challenge to develop a framework that can estimate parameters of robust and 

biologically interpretable models, using limited and noisy neural data (Vintch et al., 2011).   

In this study, we use a deep learning framework to train multi-layer convolutional neural 

networks (CNNs) to model receptive fields of LGN neurons. Interestingly, the architecture of 

CNNs is inspired from the mammalian visual system, particularly its hierarchical multi-stage 

processing, containing a cascade of spatially localized linear filters convolved across space, 

separated by static rectifying nonlinearities (LeCun et al., 2015). Thus, CNNs are a well-suited 

framework for capturing spatial nonlinearities in Y cell receptive fields. Furthermore, a recent 

study (Yamins et al., 2014) obtained very promising results, in which they showed that deep 

CCNs trained on an object recognition task could accurately predict visual responses of neurons 

in higher visual areas of the ventral stream.    

 Here we estimate predictive receptive field models of single neurons in the cat LGN from 

their responses to high-resolution naturalistic synthetic textures. We train convolutional neural 

network models from responses of each neuron using backpropagation gradient descent methods. 

The architecture of the model (Figure 3.2) consists of a spatiotemporal convolutional filter layer,  

(“subunit filters”) followed by a parametric rectifying nonlinearity (pReLU). The rectified 

outputs of this layer are pooled by a densely-connected layer, and passed through a final output 

nonlinearity. We find that for Y-type cells, the convolutional model with intermediate 

nonlinearities performs significantly better than a conventional linear-nonlinear (LN) model at 

predicting neuronal responses to a holdback dataset not used for training the models. But for the 
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X-type (linear) cells, both models performed equally well. The learned convolutional filters 

resemble the receptive fields of retinal bipolar cells, having fine-scale, isotropic shapes. For a 

subset of neurons, adding a separate pathway to capture feedforward inhibition provided a big 

improvement in the model’s predictive ability. 

 

3.3  Methods 

3.3.1 Animal Preparation and Electrophysiological Recordings 

 Animal procedures were as described in our previous study (Gharat & Baker, 2012). 

Briefly, intravenous cannulation was performed on adult cats of either sex under anaesthesia 

induced with isoflurane/oxygen. To record single-unit responses from lateral geniculate nucleus 

(LGN), a craniotomy and durotomy (HC A6/L9) were performed under anaesthesia with 

intravenous propofol. During electrophysiological recordings, the animal was anesthetised and 

paralyzed with infusions of propofol, remifentanil, and gallamine triethiodide, and inhalation of 

N2O/O2. Vital signs (expired CO2, blood O2, heart rate, EEG, temperature) were monitored and 

maintained at appropriate levels throughout the experiment. Neutral contact lenses were provided 

for corneal protection, spectacle lenses for refraction, and artificial pupils for improved optical 

quality. Animal procedures were approved by the Animal Care committee of McGill University 

and are in accordance with the guidelines of the Canadian Council on Animal Care. 

 Neurons’ responses in the LGN were recorded in most cases using quartz-coated tungsten 

tetrodes (Thomas Recording), and occasionally with single-channel glass-coated tungsten 

electrodes (Alpha Omega). The LGN was identified by strong monocular multi-unit responses to 

flashing light at around 13 mm depth, that switched with increased depth from the contralateral 
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eye (layer A) to ipsilateral (layer A1) and back to contralateral (layer C). All the single-units in 

this study were recorded in layers A and A1. Raw data signals were acquired with a Plexon 

Recorder (3 Hz to 8kHz; sampling rate, 40 kHz) and streamed to a hard disk for later analysis. A 

small photocell placed on a corner of the display screen provided signals for temporal 

registration of stimuli and spike times. 

 

3.3.2 Visual Stimuli and Recording Protocol 

Visual stimuli were generated with an Apple Macintosh computer (MacPro 4.1, 2.66 

GHz/4 core, 6Gb, MacOSX 10.6.8, NVIDIA GeForce GT120) using custom MATLAB software 

with Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al. 2007) and presented on 

a gamma-corrected CRT monitor (NEC FP1350, 20 inches, 640 x 480 pixels, 150 Hz, 36 cd/m2 ) 

at a viewing distance of 57 cm. The display screen was roughly centred on the receptive field of 

multi-units, using manually controlled, drifting or flashing white or black bar or spot stimuli on a 

grey background. During recording, multi-unit signals from a single channel were used to guide 

the recording protocol. Responses of neurons were first recorded with conventional sinusoidal 

drifting gratings of varying spatial frequencies to measure spatial frequency tuning. Then 

contrast-reversing gratings were presented to assess spatial nonlinearities and classify neurons as 

X- and Y-type (see below).  

 After measuring responses to gratings, image sequences of naturalistic texture patterns 

(Kingdom et al, 2001; Zavitz and Baker, 2013) were presented to map receptive fields of neurons 

(Figure 3.1). Y cells respond linearly to low spatial frequencies, and the nonlinear subunit 

responses only become evident when presented with high spatial frequencies (Hochstein and 

Shapley, 1976). These spatial nonlinearities can enable responses to contrast-modulated texture 



 85  

 

boundaries (Demb et al.,2001b). Our aim in this study was to map subunit structure within the 

receptive field using system identification, and hence we need a large set of independent images 

(~10,000) that can nonlinearly activate receptive fields - i.e. images rich in high spatial frequency 

textures. Instead of trying to manually select natural images with fine textures, we generated 

synthetic textures with naturalistic image statistics (Kingdom et al, 2001; Zavitz and Baker, 

2013). These images were generated by modulating the contrast of a texture pattern (“carrier”) 

by an “envelope” as shown in Figure 3.1. Carrier images (Fig. 3.1A) were constructed with 

randomly positioned, high-density Gabors with high spatial frequencies (λ = 0.25°, 0.5°, 1°, 2°), 

with four different sizes and six different orientations (0°, 30°, 60°, 90°, 120°, 150°). The sizes 

of the Gabors were chosen to cover the range of spatial frequencies (0.5cpd to 3cpd) that have 

been previously shown to activate Y cells nonlinearly (So and Shapley, 1979). The relative 

proportions of Gabors of various sizes was set such that the constructed image had a power 

spectrum with an approximately 1/f fall-off as in natural images (Field, 1987; Kingdom et al, 

2001). Envelope images (Fig. 1B) were independently constructed in a similar manner but with 

coarse scale Gabors (λ = 4°, 8°, 16°, 32°). Then a carrier image and an envelope image were 

pixel-wise multiplied to generate a final modulated texture image (Fig. 1C) of 480 x 480 pixels 

(30o x 30o).  Stimulus movies were presented as 5-second sequences of 375 such images, 

refreshed every two CRT frames (i.e. at 75Hz), with the movie preceded and followed by a grey 

blank screen of the same mean luminance. 

 Three separate datasets were measured for training, regularization and testing of the 

receptive field models:  the training dataset contains 20 movies repeated 5 times, the 

regularization and testing datasets each contain 5 movies repeated 20 times. Movies for training, 
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regularization and testing were randomly interleaved to minimize effects of slow changes in 

responsivity. Total recording time for the entire set of movies was around 40 minutes.  

 Single-units were isolated from recorded multi-unit signals offline using SpikeSorter 

software (Swindale and Spacek, 2014) and only clearly separated units were included in our 

analysis. After offline sorting, spike times of single neurons were binned in PSTHs (using bin 

width 13.33 ms, the duration of each frame), which were used to calculate first-harmonic (F1) 

and second-harmonic (F2) responses. Neurons were classified as Y-type if responses to contrast-

reversing gratings of high spatial frequencies elicited significantly stronger F2 than F1 response, 

otherwise as X-type neurons (Hochstein and Shapley, 1976). 

 

3.3.3 Receptive Field Model 

 The parameters of a convolutional neural network (CNN) model (LeCun et al., 2015) 

were optimized to fit naturalistic image responses of each neuron. The architecture of the CNN 

model used here (Figure 3.2) consists of a spatio-temporal convolutional filter layer, which 

models identical subunits tiled spatially on a square grid, followed by a spatially uniform static 

nonlinearity (PReLU, Parametric Rectified Linear Unit - He et al, 2015). Then these rectified 

filter outputs are linearly summed by a pooling layer (“Dense Layer”). Finally, the output of the 

pooling layer is passed through a pSoftplus (parametric softplus) nonlinearity. This pSoftplus 

nonlinearity has a shape similar to a ReLU (half-wave rectification) except that this function 

does not pass through the origin, and the output of the function is positive for both positive and 

negative inputs. This output nonlinearity was used to ensure that the final output of the neuron 

model never goes to exactly zero, because the Poisson loss function (see below) used for training 

the model takes the log of the output. 
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 The PReLU nonlinearity is defined as: 

𝑓(𝑥) =  𝛼 ∗ 𝑥   for x < 0  

𝑓(𝑥) = 𝑥    for x >= 0  

where α is a learned parameter. 

 The pSoftplus nonlinearity is defined as: 

𝑓(𝑥) =
1

𝑘
log (1 +  𝑒𝑘𝑥) ,  

where k is a learned parameter. 

 The Poisson loss function is: 

𝐿 = 𝑟̂ − 𝑟 ∗ log(𝑟̂)  

where r is the actual firing rate and r̂ is the predicted firing rate. 

 

3.3.4 Model Training and Performance 

 Before training CNN models for each neuron, a Linear-Nonlinear (LN) model (Talebi & 

Baker, 2012) was estimated, to facilitate manually setting a cropping window to encompass the 

centre and surround of the receptive field. Then the cropped stimuli were downsampled to 40x40 

pixels. The CNN models were trained using the Python Deep Learning library, Keras (Chollet, 

2015), with the Theano (Bergstra et al, 2010) backend. The models were trained by minimizing a 

Poisson loss function with the Adam optimizer (Kingma & Ba, 2014). The weights of the 

convolutional filters and dense layer were randomly initialized using a Glorot normal 

initialization (where weights are drawn from a truncated normal distribution centred on zero), as 

it leads to faster convergence of neural networks (Glorot and Bengio, 2010). To avoid 
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overfitting, we used L2 weight regularization along with dropout (p=0.5) for both layers, and 

Poisson noise was applied to the input (Oliver MD, 2014; Lane et al, 2016). Poisson noise was 

used instead of Gaussian noise traditionally used for training neural networks, since a previous 

study (Oliver, 2014) found it to estimate more robust and less noisy subunit filters as well as 

improve the models' predictive performance. Each neural network model was trained for 1000 

epochs with early stopping ("patience" parameter in Keras, set to 50).  

 Regularization datasets were used to optimize hyperparameters related to L2 

regularization as well as architectural parameters (filter sizes). One of the challenges with 

training neural networks is the optimization of multiple hyperparameters. This was especially 

problematic here because we trained separate neural networks for >100 neurons. Consequently, 

instead of testing all possible combinations of all the hyperparameters on the datasets for every 

neuron, we used data from a small group of representative neurons (10) to test hyperparameters 

over a wider range. The results from these assessments indicated the relevant ranges over which 

to do more restricted grid searches for optimal hyperparameter values, for all the other datasets.  

 A separate holdback Test dataset, not used for training or regularization, was reserved for 

testing predictive performance of the model. Performance of each fitted model was quantified as 

percent variance accounted for (% VAF), calculated as the square of the correlation coefficient 

(r2) between actual neuronal response and predicted response.    

 We also estimated a linear-nonlinear model (LN model) for comparison of predictive 

performance with that of the convolutional model. To be comparable, we used the exact same 

model architecture with the same number of parameters, except that the intermediate pReLU 

nonlinearity was removed, making it essentially an LN model. Furthermore we also used the 

same method (eg: optimizer, regularization etc) as used earlier for training the nonlinear model. 
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3.4  Results 

3.4.1 Mapping nonlinear subunit receptive field models with deep learning 

For this study, we recorded from 93 neurons (41 Y cells and 52 X cells) in 4 cats. For 

each neuron, a separate neural network model was trained using the neuron's responses to movies 

of naturalistic texture stimuli - see Methods for details of the model training. We constrained the 

weights in the pooling layer to be positive, which should capture the center mechanism of the 

receptive field. From here on we will refer to this architecture as a "1-branch" model, as it has 

only a single convolutional filter. (In a later section, we also estimate a "2-branch" model, i.e. 

having two distinct convolutional filters acting in parallel, one with positive pooling weights and 

the other with negative weights, that could potentially capture center as well as surround 

mechanisms of the receptive field.) No constraints are imposed on the shapes of the 

convolutional filter or the pooling layer weight map. In this framework, we can simultaneously 

learn the convolutional filter weights, the parameter of the PReLU nonlinearity, and the weight 

map of the pooling layer.  

Figure 3.3 shows an example of a trained neural network for one of the neurons in our 

sample. The model optimization recovers a subunit filter (upper left) that is spatially isotropic 

with a strong OFF-center (blue) and weak excitatory surround (red), and with a biphasic 

temporal filtering. The  parameter that corresponds to the degree of nonlinearity is 0.15, which 

is close to half-wave rectification. The 2D map of the pooling weights shows the spatial locations 

at which the subunits act, and their corresponding weights - note that pooling weights were 

constrained to be positive. The linear reconstruction map shown at the bottom is obtained by 

convolving the subunit spatial filter with the pooling weights.  
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Figure 3.4 shows trained neural networks of four additional example neurons. The neuron 

in panel A has an ON-center subunit spatial filter with a possible antagonistic surround 

organization, a monophasic temporal filter, and pooling layer weights whose layout does not 

appear to be clearly isotropic. The neuron in Figure 3.4B has a subunit that is OFF-center with 

little or no surround, and a biphasic temporal response, and a pooling layer that appears slightly 

oriented. Figure 3.4C shows a neuron whose subunit has an ON-center and surround inhibition, 

with an isotropic map layer. The neuron in Figure 3.4D shows a clear ON-center, OFF-surround 

for the subunit, with a biphasic temporal filter. The map layer is isotropic and substantially 

smaller than the other examples - taken together with the nearly linear  parameter for the 

PReLU. The  parameter of the nonlinearity is close to zero (half-wave rectification for the other 

examples (Fig. 3.4A,B,C). 

 

3.4.2 Predictive performance for novel stimuli 

After estimating subunit receptive field models for each neuron, we tested their predictive 

ability for responses to novel test stimuli. This test dataset was not used for training or validating 

the model, so it gives a sense of how well the model generalizes to novel stimuli. The 

performance of the model was measured as the percentage of the neuronal response variance 

accounted for (VAF) - see Methods. For comparison, we also estimated a linear receptive field 

model for each neuron - for comparability we used exactly same model architecture and method 

of training, except that the intermediate nonlinearity (pReLU) was removed, making the model 

essentially a linear-nonlinear (LN) architecture.  

Figure 3.5 shows scatterplots comparing neurons’ VAF values for the 1-branch subunit 

model to those for a linear model, with each point denoting results from a single neuron. For Y-
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type cells shown in Figure 3.5A, most of the points lie above the 1:1 line, suggesting that the 

subunit model performs better than the linear model at predicting responses of these neurons to 

novel stimuli. A Wilcoxon-signed rank test confirms that VAFs for the subunit model are 

significantly greater than for the linear model (p= 1.4995e-04, N=41). On the other hand, for X-

type cells shown in Figure 3.5B most of the points lie close to the 1:1 line, suggesting that the 

subunit and linear models perform equally well at predicting responses to novel stimuli. A 

Wilcoxon-signed rank test confirms that the VAF values for the subunit model and for the linear 

model are not significantly different (p= 0.5, N=52). Thus having a spatial nonlinearity within 

the receptive field model improves its performance for the Y- but not X-type cells.  

 

3.4.3 Intermediate nonlinearity () 

One of the advantages of the deep neural network learning framework is that in some 

cases it can learn the intermediate nonlinearity between the subunit filter and pooling weights. 

We employ the PReLU nonlinearity (He et al., 2015), a simple piecewise-linear function having 

only one parameter –  – that denotes the slope of the negative half of the nonlinearity. It can 

vary from +1 (linear) to -1 (full-wave rectification). Thus the  parameter controls the degree of 

spatial nonlinearity within the receptive field. Neurons in our population were classified as X- or 

Y-type depending upon their responses to contrast-reversing gratings. Neurons that gave 

frequency-doubled nonlinear response to contrast-reversing gratings were classified as Y-type 

cells. So we wanted to examine whether there was a correspondence between neurons'  values 

and their cell type.     
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Figure 3.6 shows the distributions of  values for the Y- and X-type cells. For all the 

neurons in our sample, the  value ranged from 0 (half-wave rectification) to 1 (linearity). For 

large fraction of the Y-type cells (24/41, 59 %)  was less than 0.5, while  was greater than 0.5 

for 39/52 (75 %) of X-type cells. The  values for Y-type cells were significantly less than for 

X-type cells (p= 2.6335e-06, Mann-Whitney U test). Thus with this modeling approach we could 

capture the varying degree of spatial nonlinearity within the receptive fields of different neurons, 

with trained models of Y-type cells having a higher nonlinearity than X-type cells.  

Previous ex vivo retinal studies in guinea pigs (Demb et al., 2001a) and mice (Borghuis 

et al., 2013) have shown that OFF-type Y cells have a higher degree of rectification than ON-

type cells. However in our sample, Y-type cells’  values were not significantly different 

between ON-type cells (mean = 0.45, N = 28) and OFF- type cells (mean = 0.52, N =13) (rank 

sum test: p = 0.4085).   

We wanted to test if the improvement seen in the predictive power of subunit models 

compared to linear models could be related to the  parameter of the nonlinearity. To examine 

whether there is any systematic relationship, we constructed scatterplots (Figure 3.7) comparing 

 values of the estimated models to their improvement in predictive performance. Improvement 

was calculated as the ratio of subunit VAF to linear VAF. For Y-type cells shown in Figure 

3.7A, neurons with  greater than 0.5 (towards linearity) did not show significant improvement 

in performance. But for neurons with  less than 0.5, performance of the neurons increased with 

decreasing  (increasing nonlinearity). This trend was statistically significant (Pearsons 

correlation coefficient R = -0.7165, p = 1.3780e-07, N=41). However, for X-type cells shown in 
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Figure 3.7B there was no significant correlation between neurons’  and improvement in 

performance (R = -0.1278, p =0.3667, N=52).  

 

3.4.4 Two-branch model  

 As mentioned earlier we further extended the 1-branch model to have a second branch 

with its own convolutional filter, PReLU and pooling layer, that could potentially capture the 

inhibition within the receptive field from the amacrine cell pathway. This was modeled by 

adding a second convolutional filter as shown in Figure 3.8. Outputs of this filter were also 

passed through a pReLU nonlinearity, combined in a separate Pooling Layer, and then passed 

through a half-wave rectification (ReLU). Pooling weights of the second branch were 

constrained to be negative to capture the feedforward inhibition. Half-wave rectification was 

included with this filter to capture the rectification introduced from the spiking responses of 

amacrine cells (Demb et al., 1999). Figure 3.9 shows the 2-filter receptive field model estimated 

for the example neuron previously shown in Figure 3.3. The spatial and temporal filters 

recovered for the excitatory filter in this framework is very similar to those recovered in the 1-

branch analysis of Figure 3.3. Interestingly, for the inhibitory filter, the temporal filter has 

delayed dynamics compared to the excitatory filter. Also, the linear reconstruction for the 

inhibitory filter covers a wider spatial region. Consequently when the linear reconstructions for 

the two filters are summed, we get a centre-surround antagonistic organization as shown on the 

right. Adding the second filter improves predictive performance for this neuron, with the VAF 

increasing from 40.8% to 52.6%.  

 Figure 3.10A compares predictive performance of 2-branch versus 1-branch models for 

Y-type neurons. For a subset of neurons there is a clear improvement in VAF for the 2-branch 
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model. However for X-type neurons (Figure 3.10B) there was not a substantial improvement in 

VAF. Finally, Figure 3.10C compares the best subunit model (between 1- and 2-branch) versus 

the linear model for Y-type neurons. Clearly, the nonlinear subunit model performs better at 

predicting responses of Y-type neurons. This is confirmed by a Wilcoxon-signed rank test, which 

shows the VAF for the subunit model is significantly greater than for the linear model (p= 

7.1601e-08, N=41). However for X-type neurons (Figure 3.10D) there is only a modest 

improvement with the subunit model, which is still significant (Wilcoxon-signed rank test, p 

=3.5165e-05, N=52). 

 

3.5  Discussion 

We have demonstrated that convolutional neural network (CNN) models, fit to spiking responses 

from single LGN neurons, recover biologically plausible nonlinear subunit filters with Gaussian 

or Difference of Gaussian (DoG) shapes. CNN models of Y-type neurons show a higher degree 

of spatial nonlinearity within their receptive field compared to X-type neurons, and significantly 

improve predictive performance in comparison to linear-nonlinear models for Y-type neurons.  

 

3.5.1 Relationship of receptive fields for LGN neurons vs. retinal ganglion cells 

Recent studies have suggested that the subcortical Y pathway input to the cortex forms 

the basis for first- and second-order selectivity of early cortical neurons (Demb et al., 2001a; 

Rosenberg et al., 2010). In this study our aim was to capture, within an estimated model, the 

retinal nonlinear processing that makes Y-type subcortical neurons selective for texture as well 

as luminance changes. To model the signal processing in the Y-pathway neural circuit we 
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measured spiking responses from Y-type lateral geniculate nucleus (LGN) neurons, which are . 

comparatively much easier to record from than RGCs, in vivo. Although there are multiple ways 

of measuring RGC responses in vivo, for example intraretinally (Fukuda and Stone, 1974), from 

the optic tract (Bullier and Norton, 1979), or as LGN S-potentials (Kaplan and Shapley, 1984), 

all these methods are challenging, and give relatively low yields of data. However in the LGN 

we were able to use tetrodes with subsequent spike sorting, to simultaneously record from 

multiple neurons, substantially increasing our yield of neurons. Furthermore, in the LGN we 

could get good stability of recordings, enabling data collections for the long durations (~ one 

hour) needed for system identification. 

The signals in the LGN do however reflect additional processing beyond that in the 

retina. For example, LGN neurons pool inputs from multiple RGC afferents (Martinez et al., 

2014). Furthermore, there is feedforward inhibition within the LGN through inhibitory 

interneurons (Wang et al., 2011). In addition, the LGN also receives feedback from the visual 

cortex (Murphy & Sillito, 1996). However despite this additional processing, previous studies 

have shown there is little or no mixing of inputs between the X and the Y pathways, and most 

LGN cells, despite receiving convergent retinal inputs (Martinez et al., 2014), get predominant 

excitatory drive from single RGCs (Bullier and Norton, 1979; Mastronarde, 1992). Spatial 

receptive field properties of RGCs and neurons in the LGN are very similar (So and Shapley, 

1981). 

 

3.5.2 Visual stimuli for system identification  

     Receptive field properties of neurons can be stimulus dependent (David et al., 2004), so 

it is desirable to study receptive fields under the most naturalistic conditions in order for the 
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results to be most widely relevant (Touryan and Dan, 2005; Wu et al., 2006). However, Y cells 

give strong linear responses to the low spatial frequency content in natural images, even though 

there is a spatial nonlinearity present within their receptive fields. It is only when they are 

stimulated with high spatial frequencies in the range of the subunit size, that their spatial 

nonlinearity becomes evident (Enroth-Cugell and Robson, 1966). High spatial frequencies can 

differentially activate subunits within the receptive field, and the responses of subunits to 

opposite contrast polarity do not cancel out (Demb et al., 2001a). Here we wanted to resolve 

subunit structure within the receptive field using system identification, and hence we needed a 

large set of independent images that could nonlinearly activate the receptive fields. But at the 

same time, we wanted the visual stimuli to be naturalistic, since artificial stimuli may drive 

neurons in a non-ecological operating range.  

 To address the conflicting requirements, we generated random synthetic textures (Figure 

3.1) having naturalistic image statistics (Kingdom et al, 2001; Zavitz and Baker, 2013). These 

textures contained high densities of randomly placed Gabor micropatterns, with their contrast 

modulated by randomly placed coarse-scale Gabors. An important advantage of these textures 

was that we could control the spatial frequency content in the images - the size of the texture 

elements was set to be within the expected range of nonlinear subunit selectivity for the Y-type 

cell population (So and Shapley, 1981). However, note that we did not customize these images 

for each neuron based on its spatial frequency selectivity - consequently for some of our sampled 

neurons these images could still activate relatively strong linear responses. Also, unlike 

sinusoidal gratings that contain energy only at one spatial frequency, these texture stimuli are 

broadband, containing texture elements of multiple sizes, so nonlinear responses will not be as 

strong, and consequently might not stand out from the noise in the estimated filters due to trial-
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wise neuronal variability (Faisal et al, 2008; Harris & Thiele, 2011). In such cases our system 

identification method might fail to resolve the spatial nonlinearity in the receptive field and 

recover only a linear receptive field.    

 In this study, new images were presented at 75Hz, so there was no correlation between 

consecutive images. However during natural viewing the temporal structure of visual stimuli on 

the retina is controlled by eye, head and body movement as well as object motion. This 

stimulation is strongly correlated over time, unlike the stimuli here - therefore the temporal 

dynamics of the receptive fields might be different under natural stimulation. Kording et al 

(2001) generated natural movies by attaching a camera on a cat’s head while the cat explored an 

outdoor environment. Even though this movie captures the cat’s head and body movement, it 

cannot capture the eye movements. Baudot et al. (2013) used cats' eye movement statistics from 

the oculomotor literature, and simulated eye movements over static natural scenes to generate 

movies. They found neuronal responses to be sparse and highly precise. However such 

temporally correlated stimuli pose difficulties for system identification. Our preliminary attempts 

using such stimuli recovered receptive fields that were temporally "smeared", as if subjected to a 

temporal low-pass filter. The reason for this kind of biased estimate using simulated eye 

movement stimuli is that with temporally correlated image frames, the machine learning 

algorithm does not get responses to enough novel stimuli. Consequently much longer recording 

times would be needed to make effective use of such stimuli for experiments of this kind. 

 

3.5.3 Convolutional Neural Networks 

 Convolutional neural networks with several layers and many filters have been very 

successful at tasks such as object recognition (LeCunn et al., 2015). These deep neural networks, 
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typically with millions of parameters, are trained using millions of labeled images of different 

object categories. However it is not practical to collect neural responses to millions of images in 

these kinds of experiments. Yamins et al. (2014) instead used the features of a neural network 

already trained on an object classification task to model receptive fields of neurons in the ventral 

stream. Neural data from individual neurons were used to learn pooling weights of these features. 

Interestingly, such models could predict responses of single neurons in area V4 and IT, 

suggesting that features encoded by artificial neural networks for a classification task might have 

a high similarity to encoding in the primate ventral stream. A recent study measured selectivity 

of hidden units in a deep CNN model using stimuli previously used in neurophysiological 

experiments to characterize shape-tuning, and found that tuning properties of a small number of 

units were similar to V4 neurons (Pospisil et al., 2016). However, it remains unclear to what 

extent the encoding at successive layers of these neural networks has any correspondence with 

hierarchical stages of the primate visual system. 

Here we used a highly simplified convolutional neural network with only two layers and 

one or two filters to model receptive fields of LGN neurons. Instead of using features of a pre-

trained neural network, we constructed a neural network architecture based on known biology, 

and used neuronal data to learn all the model parameters. Despite initializing the weights of the 

convolutional filters and pooling layers randomly, training always converged onto filters with 

clear structure, e.g. Gaussian or DoG shapes. Even though optimizing a neural network is not a 

convex problem (i.e. having multiple local minima), using various regularization methods to 

avoid overfitting (L2 weight, Poisson noise and Dropout) and the Adam optimizer, these models 

always converged on very similar filter shapes despite different random initializations.   
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An important aspect of our model architecture is the use of a parametric rectifier 

nonlinearity (He et al., 2015). The single parameter, , of this "pReLU" nonlinearity, enabled us 

to model receptive fields of different cell types (X and Y) with the same model architecture. This 

approach is like that used to model simple and complex type visual cortex neurons (Nguyen, 

2016). Thus convolutional neural networks are a promising candidate for modeling receptive 

fields of neurons at early stages of the visual pathway, by building model architectures with 

biological constraints and training with limited amounts of neural data.  

 

3.5.4 Future directions    

 Qualitatively we observed that the spatial size of the recovered subunit filters is bigger 

than expected from the spatial frequency tuning (nonlinear F2-response) to contrast-reversing 

gratings. This discrepancy could be a result of using texture stimuli with a 1/f fall-off in spatial 

frequency, in which (as discussed earlier), due to the broadband nature of the stimuli, nonlinear 

responses to high spatial frequencies might be obscured by stronger responses to the low spatial 

frequencies and the neuronal noise. One way to improve this would be to collect data for longer 

durations with a larger number of images, and a higher number of repetitions. Such larger 

datasets might also enable satisfactory estimation of 2-filter models for a larger percentage of the 

neurons. 

 In vitro studies of the mouse retina have demonstrated that the intermediate nonlinearity 

for ON-type Y cells is temporally asymmetric (Borghuis et al., 2013). However, in this study we 

modeled this nonlinearity with the pReLU, a static nonlinearity. Future studies could attempt to 

model this dynamic nonlinearity, to better capture the processing in ON-type cells and improve 

model performance. We made preliminary attempts to capture additional processing at the LGN 
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stage (e.g. feedforward inhibition, Martinez et al., 2014) by adding an additional convolutional 

layer to the model (3-layer model). However we did not see any improvement in the predictive 

performance using this model compared to the 2-layer model. Larger datasets might help in 

capturing additional processing at the LGN stage.    
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Figure 3.1 : Construction of naturalistic texture stimuli. 

(A) Carrier texture patterns were constructed with a high density of randomly positioned Gabor 

micropatterns, to span all orientations with four different sizes to cover the range of spatial 

frequencies (0.5cpd to 3cpd) that have been previously shown to activate Y cells nonlinearly. 

The proportions of Gabors of various sizes was set so that the constructed image had a power 

spectrum with an approximately 1/f fall-off as in natural images. (B) Envelope patterns were 

constructed in a similar manner with coarse-scale Gabors (0.03 to 0.25 cpd). (C) Finally, the 

envelope pattern was applied to the carrier pattern to modulate the contrast of the texture.  

Ensembles of such contrast-modulated texture patterns, each independently constructed, were 

employed as frames of movie stimuli for system identification experiments.  
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Figure 3.2 : Model architecture of 1-filter convolutional neural network to model LGN 

receptive fields. 

Receptive fields are modeled as a two-stage convolutional neural network, with the first layer 

consisting of a space-time convolutional filter followed by a parametric rectifier (pReLU) 

nonlinearity. Outputs from all spatial locations are combined by a Pooling layer (dense layer) 

and passed through a final output nonlinearity (pSoftplus). Such a neural network was trained on 

each neuron's spiking responses to naturalistic texture stimuli. 
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Figure 3.3 : Receptive field model of an example Y cell. 

For the subunit filter (top left), the algorithm recovers an OFF-center isotropic spatial filter for 

the subunit, with a biphasic temporal filter. The  parameter that corresponds to degree of 

nonlinearity for this model is 0.15, which is close to half-wave rectification. Pooling weights 

show the spatial location of the subunits, with intensity of pixels indicating their corresponding 

weights. Since pooling weights were constrained to be positive they are all red in color. Linear 

reconstruction map (bottom), obtained by convolving subunit spatial filter with pooling weights. 
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Figure 3.4 : Trained neural networks for four example Y cells. 

Recovered subunit spatial filters have a clear isotropic structure, despite no algorithmic 

constraint on their shape. Some subunits have weak surrounds as in C. Temporal filters for the 

subunit are usually biphasic (B, C, D), but sometimes monophasic (A). The intermediate 

nonlinearity parameter  is close to half-wave rectification for some neurons (A, B, C), while for 

others it is close to linearity (D). VAFs for prediction of Test datasets, 44.44 % for (A), 37 % for 

(B), 28.5 % for (C), 41.23 % for (D). 

  



 105  

 

 

Figure 3.5 : Comparing predictive power of subunit models to linear models in predicting 

neural responses. 

Scatterplots comparing neurons’ VAF values for the subunit model and the linear model. (A) For 

Y-type cells most of the points lie above the 1:1 line (N=41), indicating that the subunit model 

performs better than the linear model at predicting responses to novel stimuli. (B) For X-type 

cells most of the points lie close to the 1:1 line (N=52), suggesting that subunit and linear models 

perform equally well at predicting responses to novel stimuli. 
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Figure 3.6 : Degree of spatial nonlinearity within receptive fields of X- and Y-type neurons. 

Distributions of  values of parametric rectifier nonlinearity (pReLU) for Y- and X-type cells. 

For all the neurons in our sample (N=93),  values fell between zero, corresponding to half-wave 

rectification, and a value close to one, indicating linearity. (A) For most of the Y-type cells,  

was less than 0.5. (B) For X-type cells  was usually greater than 0.5. The  values for Y-type 

cells (mean = 0.5, SD = 0.19) were significantly less than for X-type cells (mean = 0.69, SD = 

0.17) (p= 2.6335e-06, Mann-Whitney U test).  
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Figure 3.7 : Relationship between model performance improvement and nonlinearity. 

Scatterplots comparing  values of the subunit models and their improvement in predictive 

performance compared to linear models. (A) For Y-type neurons there is a negative correlation 

between  and VAF improvement. Models with  closer to zero (more rectification) have higher 

improvement in their predictive performance. (B) For X-type neurons there is no such systematic 

relationship. 
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Figure 3.8 : Model architecture of a 2-filter convolutional neural network to model LGN 

receptive fields. 

This model has an additional convolutional filter, with a distinct PReLU nonlinearity and pooling 

layer, acting in parallel with those of the model shown in Figure 3.2. Both filters are identical 

except one filter provides excitation and other provides inhibition. This model is based on known 

retinal circuitry, in which ganglion cells receive direct excitatory inputs from bipolar cells and 

indirect inhibitory inputs via spiking amacrine cells. Half-wave rectification (ReLU) in the 

inhibitory filter captures the rectification at the output of amacrine cells. 
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Figure 3.9 : 2-filter receptive field model for example neuron of Figure 3.3. 

The spatial and temporal subunit filters recovered for the excitatory filter are very similar to 

those recovered in the 1-stream model for this neuron (Figure 3.3). Interestingly, for the 

inhibitory filter (#2) the temporal subunit filter has delayed dynamics compared to the excitatory 

filter. In addition, the linear reconstruction for the inhibitory filter covers a wider spatial region, 

so that the combined linear reconstruction (rightmost plot) shows an OFF-centre, ON-surround 

organization. 
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Figure 3.10 : Comparison of predictive performance across different receptive field models. 

(A) Comparison of predictive performance of 2-filter versus 1-filter models for Y-type neurons 

(N=41). For a subset of these neurons there is a significant improvement in the VAF for the 2-

filter model. (B) For X-type neurons (N=52) there is not a substantial improvement in VAF with 

the 2-filter model. (C) VAF values for best subunit model (between 1- and 2-filter) vs. linear 

model for Y-type neurons (N=41). Clearly, the nonlinear subunit model performs better at 

predicting responses of Y-type neurons. (D) For X-type neurons (N=52) there is only a slight 

improvement with the subunit model compared to the linear model. 
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4  
Model simulations from Chapter 2 demonstrated that if inputs from ON and OFF-center Y cells 

are pooled in an unbalanced push-pull manner, then cortical receptive fields can have cue-

invariant orientation selectivity. So in this chapter, I evaluate the integration of ON- and OFF-

pathway inputs by individual neurons in early cortical areas of the cat (Area 17 and Area 18) 

using novel system identification method. The estimated models reveal spatial arrangements of 

ON and OFF inputs that are consistent with a push-pull model, but significant asymmetries in the 

relative strengths of ON and OFF signals, within simple cell receptive fields. These observed 

asymmetries could provide the neural mechanism for generating cue-invariant receptive fields 

from Y-pathway inputs. This chapter is under preparation for submission to a peer reviewed 

journal.  
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CHAPTER 4 

Separating ON and OFF pathway inputs to cortical simple cells 

reveals receptive fields with asymmetric push-pull. 

4.1  Abstract 

Simple cells in the early visual cortex are conventionally thought of as linear Gabor-like spatial 

filters with an output nonlinearity. This linearity across the receptive field is thought to arise 

from a symmetric "push-pull" arrangement of inputs from ON and OFF pathways. However the 

generality of this finding to a wider sample of neurons, and to other early cortical areas, remains 

unclear. We used 32-channel multielectrodes (polytrodes and linear arrays) to record 

extracellular single-unit responses of cat Area 17 & 18 simple cells to natural image sequences. 

We estimated a two-stage (LNLN) receptive field model of individual simple cells using 

regularized gradient descent optimization. In this model, first stage filters correspond to receptive 

fields of ON- and OFF-center lateral geniculate nucleus afferents, while the second stage (weight 

map) corresponds to the spatial layout of their summation by the cortical neuron. This model 

enabled us to visualize the spatial arrangement of excitatory and inhibitory inputs from ON and 

OFF subcortical pathways to individual receptive fields. The estimated models reveal significant 

asymmetries in spatiotemporal integration of ON and OFF signals within simple cell receptive 

fields. These observed asymmetries could provide the neural mechanism for generating cue-

invariant receptive fields from Y-pathway inputs. 
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4.2  Introduction 

Light and dark parts of visual images are encoded separately in the retina by distinct 

populations of neurons having ON- and OFF-center receptive fields. These ON and OFF 

pathways that are thought to have very little interaction until they reach primary visual cortex, 

V1 (Schiller, 2010), where they are combined to build receptive fields selective for features such 

as orientation and spatial frequency. Simple cells in V1 are conventionally thought to combine 

inputs from these two pathways in a "push-pull" manner, i.e. at each spatial location in the 

receptive field, excitatory input from one pathway is complemented, or balanced, by inhibitory 

input from the other pathway (Ferster, 1988; Hirsch et al. 1998; Martinez et al, 2005). This 

arrangement allows simple cells to have spatially linear receptive fields despite integrating inputs 

from spiking neurons that have rectified outputs.  

However, there exist spatial and temporal asymmetries between the ON and OFF 

pathways. For example, OFF pathway signals reach cortex approximately 3-6 ms before the ON 

pathway signals (Jin et al., 2011). ON ganglion cells have receptive fields with 20% larger 

diameter than those of OFF cells (Chichilnisky and Kalmar, 2002). OFF-dominated simple cells 

tend to have faster dynamics (Komban et al., 2014), and are in higher proportion in the 

superficial layers of V1 (Yeh and Shapley, 2009), than ON-dominant neurons. Most previous 

studies of ON/OFF pathways used white noise stimuli to map receptive fields with reverse-

correlation. However natural scenes contain very different image statistics (Field, 1987; 

Thomson, 2001) that may drive visual neurons differently (Felsen et al., 2005).  

Further it remains unclear whether these asymmetries in processing dark and light are 

present within individual receptive fields of cortical simple cells after integration of ON and OFF 
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inputs, or if these asymmetries are compensated by cortical mechanisms. Shariati & Freeman 

(2012) have suggested that ON/OFF temporal asymmetry within a receptive field could provide 

a mechanism for direction selectivity in cortical neurons. Gharat & Baker (2017) proposed that if 

ON and OFF inputs from subcortical Y-cells are combined in an unbalanced push-pull manner, it 

could result in receptive fields that have cue-invariant orientation selectivity for luminance as 

well as texture boundaries.  

 Here we separate the contributions of ON and OFF pathway inputs to cat Area 17 and 18 

simple cells, while viewing natural images. We model a simple cell's receptive field as a 

weighted linear sum of simulated ON and OFF inputs, tiled across visual space. A gradient 

descent optimization method with regularization (to avoid overfitting) is used to estimate 

separate spatiotemporal maps of each simple cell's summation weights for these ON and OFF 

inputs, from its responses to natural images. With this method, we can map both excitatory as 

well as inhibitory contributions of the ON and OFF pathways within individual receptive fields. 

We find that for many neurons, maps of ON and OFF weights are approximately identical in 

spatial layout and magnitude, but are of opposite polarity (“push-pull”). However, there is a large 

diversity in the ratio of ON vs. OFF strengths, and a large subset of neurons have unbalanced 

push-pull. We also find asymmetries between temporal dynamics of ON and OFF weight maps. 

These results demonstrate spatiotemporal asymmetries in how visual cortex neurons integrate 

signals from light and dark regions within natural scenes, which might contribute to receptive 

field properties such as direction selectivity and cue-invariant second-order processing.  
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4.3  Methods 

4.3.1 Animal Preparation and Electrophysiological Recordings 

All the animal procedures for this study were approved by the Animal Care Committee of 

McGill University and are in accordance with the guidelines of the Canadian Council on Animal 

Care. Animal setup and electrophysiological recordings were identical to those of our previous 

study (Gharat & Baker, 2017). A craniotomy and durotomy were performed on cats for electrode 

placement in Area 17 (H-C P3-L1) and Area 18 (H-C A3/L4). Electrophysiological recordings 

were performed using 32-channel multielectrodes (NeuroNexus), either linear arrays (A1x32) 

with 100µm spacing or polytrodes (A1x32 poly2) with 50µm spacing, using Plexon Recorder for 

data acquisition (3 Hz to 8kHz; sampling rate, 40 kHz). Broadband signals from all 32 channels, 

along with the photocell data, were streamed to the hard drive and saved for later analysis. For 

this study we recorded from 97 simple cells (44 cells in Area 17 and 53 cells in Area 18) in 19 

cats. On these cats data collection was also performed by other lab members for their projects. 

 

4.3.2 Visual Stimuli and Recording Protocol 

Visual stimuli were generated and presented as previously described (Gharat & Baker, 

2017). Multi-electrodes were inserted perpendicular to the brain surface so that spatial locations 

of neuronal receptive fields at different channels were similar. Multi-unit spikes from one of the 

visually responsive channels of the electrode were used to guide the recording protocol. First, 

manually controlled flashing and drifting black or white bars were displayed on a grey-

background CRT monitor (NEC FP1350, 20 inches, 640 x 480 pixels, 150 Hz, 36 cd/m2 , 57 cm 

viewing distance)  to roughly map the spatial location of the multi-unit receptive field. The 
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dominant eye was identified, and the other eye then occluded. Subsequent stimuli were presented 

under computer control, centered on the location of the receptive field. 

Greyscale natural images were presented on the CRT monitor. These images covered 30° 

of visual angle with a resolution of 480x480 pixels. These images were extracted from 

photographs in the McGill Calibrated Color Image Database (Olmos & Kingdom, 2004) and 

converted to greyscale. The mean intensity of each image was equated, and the images were 

normalized to have the same standard deviation. An ensemble of 375 randomly selected images 

was used to form a single movie clip, presented at 75 Hz for a 5 sec trial. Note that there was no 

temporal correlation between the consecutive frames of each movie clip. 30 such movie clips 

were generated, as previously (Talebi and Baker, 2016). 20 of these movies were repeated 5 

times and responses to these movies were used for training the model. Responses to the other 

two sets of 5 movies, each repeated 20 times, were used for regularization and for testing of the 

model. Presentations of movies to be used for training, regularization and test datasets were all 

randomly interleaved, to minimize effects of neuronal gain change over time. It took around 45 

minutes to collect these datasets  

 

4.3.3 Receptive Field Model Estimation 

 Spike waveforms were carefully classified from these datasets to isolate responses from 

single neurons, using SpikeSorter software (Swindale & Spacek, 2014). Spike times were binned 

(using bin width equal to the duration of each image, i.e. 13.3 ms) to calculate spike rate of 

neurons. The training dataset was used for optimizing the model parameters by minimizing the 

mean-squared-error (MSE) between the actual neuronal response and the predicted response of 

the model, using gradient descent optimization. The regularization dataset was used to decide the 
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number of training iterations, using early stopping - i.e. the training was stopped when its 

predictive performance ceased to improve on the regularization dataset. The test dataset was used 

to evaluate the predictive performance of the estimated model. The MATLAB toolbox STRFlab 

(http://strflab.berkeley.edu) was used for performing optimization of the model. 

 

4.3.4 Linear-nonlinear receptive field model 

 First a linear-nonlinear (LN) model was estimated, as described in Talebi & Baker 

(2012). Here the receptive field is modeled as a space-space-time linear spatiotemporal filter, 

followed by a static output nonlinearity. Since the measured neural responses were obtained to 

natural images, this model was estimated using a regression framework to avoid bias from the 

stimulus autocorrelation (Wu et al., 2006). To estimate the model, stimulus images were first 

down-sampled to 30x30 pixels. The linear filter part of the model was estimated for 8 time lags 

spaced by 13.3 msec (75Hz) - thus the estimated filter model had 30x30x8 (7200) parameters. 

After estimation of the linear filter, the output nonlinearity was estimated by fitting a half-

rectified power law, which contained only one free parameter (Talebi & Baker, 2012). This 

estimated linear filter was further refined by defining a square cropping window around the filter 

and re-estimating the linear filter by repeating the above-mentioned procedure.  

 Only neurons whose estimated linear filter showed clear, orientated receptive fields with 

segregated positive (ON) and negative (OFF) regions in their receptive fields were classified as 

simple cells and included in further analysis. An optimal spatial frequency value was obtained 

for each estimated filter at the optimal temporal lag, from its Fourier transform (Talebi & Baker, 

2016).  

http://strflab.berkeley.edu/
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4.3.5 ON-OFF subunit model 

 Receptive fields of simple cells in the visual cortex are thought to have a "push-pull" 

arrangement of ON- and OFF-pathway inputs in their receptive fields, as shown in Figure 4.1. In 

such an arrangement, spatial locations in the receptive field with ON-pathway excitation are 

balanced by equal inhibition from OFF-pathway inputs, and vice-versa - thus generating linear 

receptive fields from nonlinear (i.e. rectified) ON- and OFF-pathway inputs (Ferster, 1988). 

Here, we test this balance between ON- and OFF-pathway inputs across both the space and time 

dimensions of the receptive field. The simple cell receptive fields were modeled as a linear 

weighted sum of ON- and OFF-centre LGN afferents as shown in Figure 4.2. The receptive 

fields of these afferents were modeled as 2D spatial Gaussian filters, whose outputs were half-

wave rectified - the antagonistic surrounds were neglected, to simplify the model parameter 

estimation, since LGN cells typically have weaker surrounds in comparison to their centres (So 

and Shapley, 1981). Also, the spatial nonlinearity of the Y pathway was not included in the 

models of afferents. The size parameter of the Gaussian (σ) was set separately for each neuron, 

based on its estimated linear filter in the LN model, estimated as described earlier - the Gaussian 

σ was inversely proportional to the optimal spatial frequency, such that the subunit size was well 

within individual ON or OFF regions (Reid & Alonso, 1995). The banks of such simulated ON 

and OFF subunits were uniformly tiled on a square grid with spacing of 2σ (Chichilinisky, 2001; 

Ringach and Shapley, 2004, Anishchenko et al., 2010).  

 The weights of the ON and OFF subunits across space and time were estimated within a 

regression framework as described in the earlier section, with a Generalized Linear Model. The 

weights in this model were estimated by minimizing the mean square error between actual 

neuronal response and predicted response, on the training dataset. These estimated weights could 
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be positive (excitatory) or negative (inhibitory). Early stopping regularization was used to avoid 

overfitting. These estimated models were then evaluated on a separate holdback test dataset, 

which was not used for training or regularizing the model parameters. Performance of each fitted 

model was quantified as percent variance accounted for (% VAF), calculated as the square of the 

correlation coefficient (R2) between actual neuronal response and predicted response.  

 

4.3.6 Receptive Field Analysis 

 Figure 4.3 shows an example ON-OFF subunit receptive field estimated for a typical 

simple type cell. These colormaps indicate spatial maps of ON and OFF subunit weights across 

successive temporal lags, with each pixel denoting the weight of a Gaussian subunit centred at 

the pixel location. The colormaps in the top row indicate weights of ON subunits, whereas the 

bottom row indicates weights of OFF subunits - red indicates positive weights and blue indicates 

negative weights.  

 To assess spatial properties and conformity to the push-pull scheme, 2D spatial weight 

maps ("wMaps") were extracted for the ON and OFF inputs at optimal time lags in the space-

space-time dependence. The chosen time lags were the ones with maximum variance. For only 

15 out of 97 neurons optimal time lags for ON and OFF wMaps differed by more than one lag. In 

the example of Figure 4.3, this was the third lag (denoted by dotted squares) for both the ON and 

the OFF inputs.   

 For each neuron, the wMaps at these optimal lags were used to measure the strength of 

ON and OFF inputs. We defined an ON-OFF strength index ‘S’ to measure relative contribution 

of ON- and OFF-pathway inputs to a given neuron's estimated receptive field model: 
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  S = 
𝑉𝑎𝑟(𝑂𝑁)−𝑉𝑎𝑟(𝑂𝐹𝐹)

𝑉𝑎𝑟(𝑂𝑁)+𝑉𝑎𝑟(𝑂𝐹𝐹)
 

where Var(ON) is the variance of the ON wMap at the optimal time lag for ON inputs, and 

Var(OFF) is variance of the OFF wMap at optimal time lag for OFF inputs. Note that this index 

takes into account both excitation as well as inhibition from each pathway.  

 To evaluate the relative spatial arrangement of excitation and inhibition of ON and OFF 

inputs within the receptive field, we calculated the Pearson’s correlation (R) between ON and 

OFF wMaps at their respective optimal lags.   

 We also compared the temporal dynamics of ON and OFF inputs within individual 

neurons' receptive fields. To do this we decomposed the spatio-temporal (3D) weight maps into a 

2D spatial map and 1D temporal filter, using singular value decomposition (SVD) (Mazer et al., 

2002). For the example neuron in Figure 4.3, the extracted temporal dynamics for ON (red) and 

OFF (blue) inputs are shown on the right side. These plots were fitted with cubic spline 

interpolation using MATLAB’s csapi function (Yeh et al., 2009). From these temporal functions, 

we obtained the peak times for the ON and OFF pathway inputs. To quantify the 

monophasic/biphasic nature of these temporal functions, we calculated an Amplitude Ratio and 

an Integral Ratio (Komban et al., 2014). The Amplitude Ratio is calculated by dividing the 

suppression amplitude by the peak amplitude. The Integral Ratio is calculated by dividing the 

suppression integral by the peak integral.  
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4.4  Results 

4.4.1 ON-OFF subunit model 

Receptive fields of oriented simple type cells were modeled as weighted linear sums of 

rectified ON- and OFF-centre LGN afferents. For each neuron, the weights of these afferent 

inputs were estimated using regularized linear regression. Spiking responses of each neuron to 

natural image sequences were used to optimize the model through gradient descent (see Methods 

section). This algorithm estimates space-space-time weights for both ON and OFF inputs, 

allowing us to compare spatiotemporal integration of ON and OFF signals within individual 

simple cell receptive fields.  

 Figure 4.3 shows spatial weight maps of ON and OFF inputs across eight time lags for an 

example simple cell receptive field. The color of each pixel in the spatial maps denotes the 

estimated weight of a subunit at that spatial location and time lag. Red colored pixels denote 

positive weights (excitation) and blue denotes negative weights (inhibition) - note that the model 

recovers both excitation as well as inhibition of both ON and OFF inputs within the receptive 

field. In this example, the weight maps show near-horizontally oriented regions for both the ON 

and OFF inputs. The two dotted squares highlight the spatial weight maps at their respective 

optimal time lags. Note that optimal lag for ON and OFF inputs was separately determined even 

though in this example the same (3rd) lag was optimal for both. For only 15 out of 97 neurons 

optimal lag differed for ON and OFF inputs by more than one. In this example, for ON inputs the 

elongated excitatory region is above the inhibitory regions - but for OFF inputs the symetrically 

opposite pattern is evident, with the  inhibitory region above the excitatory. Thus the ON and 

OFF inputs form a push-pull spatial arrangement within this receptive field.  
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 From the spatio-temporal weight maps we also extracted temporal dynamics of the ON 

and OFF inputs using singular value decomposition (SVD) (Mazer et al., 2002). The graph on 

the right side in Figure 4.3 shows the temporal dynamics for ON and OFF inputs in red and blue, 

respectively. Temporal filters for both ON and OFF inputs in this example are quite similar, 

though the delay was clearly longer for ON (red) compared to OFF (blue) inputs. Both ON and 

OFF inputs have small undershoots, slightly more pronounced for the ON. Thus this model 

framework allows us to visualize the push-pull arrangement of ON and OFF inputs in the 

temporal dimension as well.  

 

4.4.2 ON-OFF spatial arrangement 

 Spatial weight maps for ON and OFF inputs at their optimal time lags were used to 

compare spatial relationships and relative strengths of ON and OFF inputs. Figure 4.4 shows 

examples of ON and OFF spatial weight maps for six example simple cells. Like the example in 

Figure 4.3, these neurons also have similar shapes for ON and OFF weight maps, with opposite 

polarity (“push-pull”). However the relative strengths of ON and OFF inputs varies across these 

examples. To summarize the similarity in the spatial arrangement of ON and OFF subunits, we 

estimated a correlation index (r) between the two weight maps. Correlation (r) values for these 

examples are generally close to -1, indicating a strong negative correlation between ON and OFF 

weight maps as expected from a push-pull arrangement.  

To summarize the relative strengths of ON and OFF inputs within a receptive field, we 

defined an index, the ON-OFF strength (S), having values ranging from -1 (OFF-dominated) to 

+1 (ON-dominated).  The neurons in Figure 4.4A and 4B have strength index (S) values close to 

zero, suggesting equal contributions from ON and OFF inputs to their receptive fields. However, 
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the neurons in panels 4C and 4D have S values less than zero, suggesting stronger contributions 

from OFF inputs compared to ON inputs.  On the other hand, the neurons in panels 4E and 4F 

have S values greater than zero suggesting stronger contributions of ON compared to OFF 

inputs.  

 In Figure 4.5, values for the r and S indices are summarized for the sample of neurons 

from Area 17 (N=44) and Area 18 (N= 53). Panel A shows the distribution of correlation values 

(r) between ON and OFF weight maps. Most of the neurons in our sample have strong negative 

correlation, consistent with a push-pull spatial arrangement. However, a minority of neurons 

(14/97) have a positive correlation between ON and OFF weight maps. This group of neurons 

also had a large difference between the temporal dynamics for ON and OFF inputs and will be 

discussed in the following section. The mean r value for the Area 17 sample is -0.53 and for Area 

18, -0.36, but the difference between the means is not significantly different (two-sampled t-test, 

p =0.1).  

The distribution of ON-OFF strength (S) values is shown in the histogram of Figure 4.5B. 

S is broadly distributed with both positive and negative values across our sample of neurons. The 

mean S values for the Area 17 and 18 samples (-0.07 and -0.09 respectively) are not significantly 

different (two sample t-test, p = 0.8). The mean S value for the total sample is -0.08, with a broad 

distribution of S values (SD=0.35). The mean value of S is significantly less than zero (one-

tailed t-test, p =0.016, N=97), suggesting a slight dominance of OFF inputs at the population 

level. These results indicate that even though most of the simple cells have a push-pull spatial 

arrangement (negative r values), the relative strength of ON and OFF inputs is highly variable 

across individual neurons.  
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Conceivably the observed imbalance in ON and OFF inputs could result from variance in 

the estimates of the receptive field models. One way to evaluate an estimated model is to 

measure its predictive ability on a test dataset not used for training - if a model has low 

predictive ability then its estimated parameters might be noisy. Figure 4.5C shows a scatterplot 

of ON-OFF strength (S) of each neuron and its predictive performance measured as Variance 

Accounted For (VAF). As can be seen in the scatterplot there was no systematic relationship 

between S and VAF (r=0.06, p=0.6, N=97) - neurons with high as well as low VAF have unequal 

ON-OFF strength, suggesting that the observed imbalance between ON and OFF inputs was not 

a result of noisy model estimates.  

 

4.4.3 ON-OFF temporal dynamics 

 The above analysis described spatial asymmetries between ON and OFF inputs within 

simple cell receptive fields, but from the example already seen in Figure 4.3, some neurons also 

exhibit asymmetries between temporal dynamics of ON and OFF inputs. Figure 4.6 shows 

temporal profiles for four example neurons, extracted using singular value decomposition (SVD) 

on the space-space-time weight maps. The neuron in panel A has very similar temporal dynamics 

for both ON (red) and OFF (blue) inputs, although the OFF peaks slightly earlier than ON. The 

neuron in panel B has similar dynamics for the initial positive part, but a much greater 

subsequent undershoot for OFF than for ON inputs. The neuron in panel C has faster dynamics 

for OFF inputs, which are monophasic for OFF inputs but biphasic for ON inputs. A minority of 

neurons in our sample show large differences in peak times of the ON and OFF inputs, as shown 

in panel (D). This group of neurons are the ones pointed out earlier, that show positive 
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correlation between spatial weight maps for ON and OFF inputs - i.e. they do not show a push-

pull arrangement.  

 The above examples show prominent differences between ON and OFF dynamics in two 

respects:  different latencies and the degree of the undershoot.  To summarize these differences 

in temporal dynamics of ON and OFF inputs across our sample we estimated three indices from 

these temporal profiles – peak time, amplitude ratio and integral ratio (see Methods). The peak 

time captures the latency to peak and the degree of the undershoot is captured by the amplitude 

and integral ratios. Neurons’ sustained or transient response to step stimuli depends upon the 

integral of undershoot in comparison to the integral of peak (Schmid AM et al., 2009). Figure 

4.7A compares peak times for ON and OFF inputs. Most of the points lie close to the 1:1 line, 

suggesting very similar peak times for ON and OFF. However a small number of neurons show 

large differences between their peak times, as pointed earlier for the neuron in Figure 4.6D. The 

sample means of ON and OFF peak times (38.99 and 36.33, respectively) are not significantly 

different (paired two-tail t-test, p=0.35, N=97).  

 Figure 4.7B shows a scatterplot comparing amplitude ratios for ON and OFF temporal 

profiles. An amplitude ratio close to zero indicates a small undershoot amplitude compared to the 

peak amplitude, while a ratio close to one indicates equal undershoot and peak amplitude. ON 

and OFF amplitude ratios for most of the neurons are less than 0.5 - i.e. the peak amplitude is 

substantially greater than the undershoot amplitude. There is a large scatter between ON and 

OFF amplitude ratios, and most points lie away from the 1:1 line. However, there is no 

systematic trend between ON vs OFF ratios. The sample means of the ON and OFF amplitude 

ratios (0.44 and 0.36, respectively) are not significantly different (paired two-tailed t-test, p = 

0.76, N=97).  
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 We also estimated an integral ratio, based on the areas of the initial positive vs 

subsequent negative parts of the temporal dynamics. The scatterplot in Figure 4.7C of integral 

ratios shows similar scatter to that in Figure 4.7B. These results suggest that even though peak 

times for ON and OFF inputs are similar, they often differ in subsequent undershoots within 

individual receptive fields. Thus most simple cells have substantial push-pull imbalance from the 

undershoots of their temporal profiles. 

 

4.5  Discussion 

 In this study, we modeled receptive fields of simple cells in cat Area 17 and 18 as a linear 

weighted sum of simulated ON and OFF pathway afferents, to evaluate the extent to which they 

conform to a push-pull arrangement. Using the GLM framework, we could recover both 

excitation as well as inhibition within receptive fields from extracellularly recorded visual 

responses to natural scenes. We demonstrated that a majority of the simple cells have very 

similar spatial arrangement of ON and OFF pathway inputs, in a push-pull manner. However 

there was considerable diversity among neurons in terms of the relative strength of ON and OFF 

inputs within their receptive fields, with a slight bias for OFF inputs in our sample. In addition, 

we also found significant asymmetries in the temporal integration of ON and OFF inputs within 

receptive fields, especially during the undershoot of the temporal response.     

 

4.5.1 Limitations      

  Here we modeled each simple cell as a linear weighted sum of simulated ON and OFF 

afferent inputs. However, there is a growing evidence that inputs might not be linearly integrated 
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in cortical neurons, for example due to dendritic nonlinearities (Wilson et al., 2016). Synaptic 

inputs clustered together on nearby parts of the dendrites tend to interact nonlinearly. For 

example, spatial clustering of synaptic inputs with similar orientation selectivity on the dendrites 

have been shown to nonlinearly affect a neuron's orientation selectivity (Wilson et al., 2016). In 

addition, dendritic spikes have been shown to make a significant contribution towards enhancing 

orientation selectivity of neurons (Smith et al., 2013). Such phenomena can lead to nonlinear 

interactions between synaptic inputs, and our assumption of linearity of summation will not hold. 

However it remains unclear how best to incorporate such nonlinearities in a model framework 

whose parameters can readily be estimated, for example with machine learning.  

 We modeled ON and OFF afferent inputs as Gaussian spatial filters, ignoring their 

surrounds to simplify parameter optimization. Therefore a part of the inhibition measured in the 

weight maps is presumably arising from the subcortical surround mechanisms, and in the 

approach used here we could not separate out these two sources of inhibition. Although, 

contribution of the surrounds may be somewhat limited as surrounds are typically weaker than 

the centers. 

 Instead of white noise stimuli often used in previous studies, here we used a rapid 

sequence of static natural images, which can better activate a wider range of neurons and yield 

models with more robust predictive power (Touryan et al., 2005; Talebi & Baker, 2012). 

However in the real world visual scenes are dynamic in more complex ways, due to motion of 

objects, eye movements, and the observer's movement through the world. So it is possible that 

the estimated temporal dynamics of the neurons and how they integrate ON and OFF signals 

might differ under such conditions. In addition, due to the lack of continuous motion in our 

stimuli, we might have undersampled neurons that are motion-selective. Future efforts might 
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benefit from providing more naturalistic visual stimuli to drive neurons in a more appropriate 

manner. 

In this study, we separately evaluated push-pull along spatial and temporal dimensions by 

using spatial maps at optimal time lags and temporal filters extracted with SVD analysis. The 

SVD method decomposes a spatiotemporal receptive field matrix into multiple orthogonal 

components each containing 2D spatial filter and 1D temporal filter. For space-time separable 

RFs, the first principal component of SVD accounts for the majority of the power of the RF 

matrix. But for space-time inseparable RFs, higher-order components also contain a significant 

fraction of the power (Wolfe and Palmer, 1998). Here in this study, we compared temporal 

profiles from only the first component of ON and OFF weight maps. This comparison could be 

problematic for neurons that do not have space-time separable weight maps (e.g., direction 

selective neurons - Valois et al., 2000). On average in our sample neurons, the fraction of power 

accounted by the first component was 58 ± 16 % (mean ± SD) for ON weight maps and 64 ± 13 

% for OFF weight maps. Along with nonseparability, noisy estimates of the weight maps also 

leads to less than 100% of power accounted. OFF maps were significantly more separable than 

ON maps (one tailed t-test, p = 0.0012). Since there is no clear way to extract a spatial and a 

temporal profile for inseparable weight maps, another possible way of evaluating push-pull 

between ON and OFF inputs could be to collapse 2D spatial weight maps along the optimal RF 

orientation at each time lag and generate 2D space-time maps (Valois et al., 2000). This method 

would be able to effectively handle neurons with space-time separable as well as inseparable 

weight maps.  
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4.5.2 Comparison to previous findings on ON-OFF integration by cortical neurons 

 Ringach and Mata (2005) estimated separate ON and OFF maps for receptive fields of 

neurons in macaque V1, to evaluate the simple vs. complex cell dichotomy. These ON and OFF 

maps were estimated from visual responses to sparse random white and black dots using reverse 

correlation, by separately correlating responses with white and black parts of the stimuli. From 

these maps, they were able to visualize a push-pull arrangement within the receptive fields of 

simple cells, and found a negative correlation between ON and OFF maps as also demonstrated 

by our method. The approach used here goes beyond this earlier work by comparing the relative 

strength of ON and OFF inputs, as well as their temporal dynamics. In addition, the ON and OFF 

maps recovered with this method were estimated from responses to natural images, which may 

be more effective in driving cortical neurons as well as producing estimated models that are 

more robust in predicting responses to other stimuli (Talebi & Baker, 2012).  

Yeh et al. (2009) reported the presence of OFF-dominated neurons in layer 2-3 of 

macaque V1. They used reverse correlation with sparse noise stimuli containing only a single 

white or black square on each frame. However, with their method, they could not recover 

inhibition within the receptive fields, and the estimated temporal functions did not have an 

undershoot. In addition, they did not distinguish simple vs. complex cells in their sample. 

Nevertheless, they found neurons with ON or OFF dominance in equal numbers in layer 4, but 

strong OFF dominance in layer 2-3. Also, they found the imbalance to be stimulus dependent - 

the imbalance changed when measured with sinusoidal gratings. Thus it remains unclear if this 

OFF dominance observed with sparse noise or gratings holds true when measured with natural 

images. We do not have laminar analysis information to check if the imbalance we observe when 

viewing natural scenes is layer dependent.  
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 The subcortical OFF pathway has been demonstrated to have faster temporal dynamics 

than the ON pathway in the cat (Jin et al., 2011). This temporal difference is thought to arise 

from different kinds of glutamate receptors in ON and OFF types of retinal bipolar cells 

(Nakajima et al., 1993). Komban et al. (2014) compared temporal dynamics between populations 

of ON-dominated and OFF-dominated cortical neurons, and found faster dynamics for OFF-

dominated cortical neurons. However, they performed their ON/OFF dominance classification 

based on the sign of a single maximum-amplitude pixel in the receptive field. A neuron with a 

stronger ON region is not necessarily driven by stronger ON pathway inputs. The ON subregion 

of a receptive field receives both excitation from the ON and inhibition from the OFF pathway, 

consistent with a push-pull arrangement. Therefore it remains unclear if this difference in 

temporal dynamics is present after the integration of ON and OFF pathway signals within 

individual simple cells. The ON and OFF maps estimated in this study allowed us to disentangle 

the excitatory and inhibitory contributions of ON and OFF pathways within individual receptive 

fields. We did not see any bias towards faster integration of OFF signals compared to ON. There 

might be compensating mechanisms in the cortex to remove temporal latency differences 

emerging from the retina. One possible mechanism could be the distinct localization of ON and 

OFF afferent inputs on the dendrites (Lee et al., 2016). For example, localizing faster inputs on 

distal parts of the dendrites could delay their propagation to the soma.  

 We noticed a significant asymmetry in the undershoots of ON and OFF temporal 

dynamics. This imbalance in push-pull along the time dimension challenges models based on 

linearity of temporal summation (Priebe and Ferster, 2005), and might have implications for 

motion selectivity of cortical receptive fields (Shariati and Freeman, 2012). In future, it would be 
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worthwhile to check if the ON and OFF input dominant neurons observed here are segregated in 

separate domains in the cortex as shown previously for geniculate afferents (Jin et al., 2008). 

        

4.5.3 Implications for second-order processing 

 In Chapter 2 (Gharat and Baker, 2017), I suggested that imbalance between "push" and 

"pull" in neurons that pool ON and OFF Y-pathway inputs could be the neural mechanism for 

building cue-invariant selectivity for edge detection. A previous study (Hutchinson et al., 2016) 

reported neurons in cat A18 with phase-dependent selectivity for compound stimuli containing 

luminance and contrast-modulated gratings, with maximum response for the phase-aligned 

condition. The unbalanced push-pull model could account for this specific phase selectivity if it 

contained stronger excitation as well as inhibition from the ON compared to the OFF pathway 

(Gharat and Baker, 2017). 

In this study when we evaluated the push-pull within simple cell receptive fields we saw 

an imbalance of varying degree, but there was no systematic preference for the ON pathway 

inputs. Our sample contained neurons with both ON- as well as OFF-dominance, with a slight 

bias for OFF-dominance. Area 18 in particular, which receives a majority of its inputs from the 

Y pathway, contained neurons dominated by both ON as well as OFF inputs. So our results from 

this study would seem to predict that around half of the cue-invariant neurons (ON-dominant) 

should prefer in-phase combination of luminance and contrast modulated gratings and other half 

(OFF-dominant) should prefer anti-phase combination. However it seems very unlikely that 

Hutchinson et al. (2016) selectively sampled only ON-dominant neurons and missed the OFF-

dominant neurons.  



 132  

 

One possibility that might bear on this discrepancy is the asymmetry between ON and 

OFF Y cells in their rectification at the bipolar-ganglion cell synapse (Borghouis et al., 2013).  In 

the Y cell model of Demb et al. (2001b), the amount of rectification controls the strength of a Y 

cell’s response to CM gratings compared to LM gratings. In the model simulations from Chapter 

2, I made a simplifying assumption that ON and OFF pathways contain equal amounts of 

rectification, and modeled the nonlinearity as a simple half-wave rectification (ReLU) for both. 

However it is possible that the CM responsiveness and CM-LM phase dependence of a cortical 

neuron might depend upon both imbalance in push-pull at the cortical level as well as 

asymmetric rectification in the retina. Results from Chapter 3 showed that estimated models of 

LGN Y cells contain varying degrees of rectification (alpha values). However, the studies 

presented in this thesis do not address whether there is any systematic relation between the push-

pull arrangement in a simple cell and rectification in the ON and OFF Y pathway inputs to that 

cell. Future studies could address this question by training a convolutional model from cortical 

simple cell responses that can learn both retinal level rectification as well as cortical level push-

pull. The model architecture described in Chapter 2 (Figure 2.7) could be used by replacing the 

ReLU nonlinearity in the Y cell model with a pReLU nonlinearity, then the fitted alpha values of 

the ON and OFF inputs could capture some of the asymmetry. However, given the complexity of 

this model architecture and its larger number of parameters, training such a model would require 

much larger datasets than used in Chapter 3. 
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Figure 4.1 : Push-pull arrangement of ON and OFF pathway inputs within a simple cell 

receptive field. 

Schematic model of how an obliquely oriented receptive field of simple cell is thought to be 

constructed from isotropic ON- and OFF-pathway inputs, with summation weights wON and 

wOFF, respectively. At each spatial location an excitatory input (“push”) from one pathway is 

complemented by an inhibitory input (“pull”) of equal magnitude from the other pathway. In this 

manner, nonlinear (rectified) inputs can be combined to build a linear receptive field.  
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Figure 4.2 : Subunit model architecture for simple type cells. 

Cortical neuron receptive field is modeled as a weighted linear sum of rectified outputs of 

simulated ON- and OFF-pathway inputs. Weights of these inputs are estimated from spiking 

responses of individual neurons to sequences of natural images. The sets of weights (WON and 

WOFF) are estimated using regularized gradient descent optimization.  
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Figure 4.3 : Estimated ON-OFF subunit receptive field model for an example simple cell. 

Space-space-time weight maps of ON- and OFF-pathway inputs to a simple cell (VAF for 

prediction of Test dataset, 44.6 %). Red and blue colors in the map denote positive weights 

(excitation) and negative weights (inhibition), respectively. At optimal time lag (3rd column) both 

weight maps have similar horizontal orientation but opposite polarity. Singular value 

decomposition was used to extract temporal dynamics of the ON and OFF weight maps. Plot on 

the right side shows temporal dynamics of the ON pathway in red and OFF pathway in blue. 
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Figure 4.4 : Spatial ON-OFF weight maps for six example simple cells. 

Estimated ON and OFF weight maps, shown at their optimal temporal lags. Comparison between 

ON and OFF maps is summarized with two indices – correlation (r) and ON-OFF strength (S). 

Neurons have negative correlation between ON and OFF wMaps with r close to -1, suggesting 

similar shapes but opposite polarity. Relative strengths of weight magnitudes for ON and OFF 

maps varied across neurons. Neurons in panel (A) and (B) have equal strength of ON and OFF 

inputs, with S close to 0. However, neurons in panel (C) and (D) have stronger OFF inputs 

compared to ON inputs, with S less than 0, while neurons in panel (E) and (F) have stronger ON 

than OFF inputs, with S greater than 0. VAFs for prediction of Test datasets, 12.3 % for (A), 14 

% for (B), 32.5 % for (C), 26.7 % for (D), 21.9 % for (E), 39.84 % for (F). 
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Figure 4.5 : Spatial arrangements of ON and OFF inputs within simple cell receptive fields 

of Area 17 and 18. 

(A) Histogram showing distribution of correlation coefficients between spatial maps of ON and 

OFF inputs at optimal temporal lags. A majority of the sample neurons have a negative 

correlation, with r-values approaching -1. This suggests that wMaps for ON and OFF inputs have 

similar shapes but opposite polarity. However note that a small fraction of neurons have a 

positive correlation between wMaps for ON and OFF inputs.  (B) Histogram showing 

distribution of ON-OFF strength (S), which quantifies the magnitude of ON versus OFF inputs. 

Neurons in our sample show a broad distribution for ON-OFF strengths (mean = -0.08, SD 

=0.35, N=97). The mean of the ON-OFF distribution is significantly less than zero (one tailed t-

test: p=0.016) suggesting an OFF dominance across the population. However, there was no 

significant difference between mean S indices for Area 17 (N=44) vs. 18 (N=53) neurons (two 

tailed t-test: p=0.8).  (C) To see whether the observed imbalance between ON and OFF pathways 

within receptive fields was due to noisy estimates of the model, we compared ON-OFF strength 
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with predictive performance (VAF %) of the estimated model on test datasets. Scatterplot shows 

that there is no clear relationship between VAF and ON-OFF strength of neurons (r = 0.056, p = 

0.6). 
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Figure 4.6 : Temporal dynamics of ON and OFF inputs within receptive fields of four 

example simple cells. 

Neuron in panel A has very similar temporal dynamics for both ON (red) and OFF (blue) inputs. 

Note neuron in panel B has similar dynamics for positive half but a much greater undershoot for 

OFF inputs compared to ON.  Neuron in panel C has faster dynamics for OFF inputs, and also 

the impulse function is monophasic for OFF inputs but biphasic for ON inputs. A minority of 

neurons in our sample show large differences in peak times of the ON and OFF impulse 

functions, as shown in panel (D). VAFs for prediction of Test datasets, 47.88 % for (A), 23.06 % 

for (B), 20.7 % for (C), 9.2 % for (D). 
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Figure 4.7 : Temporal dynamics of ON and OFF inputs within receptive fields of simple 

cells in Area 17 and 18. 

(A) Scatterplot comparing peak times for ON vs. OFF inputs. Most of the points lie close to the 

1:1 line, suggesting that both pathways have similar peak times within individual neurons. 

Across the sample, these peak times are not significantly different (paired t-test: p =0.35).  (B) 

Scatterplot comparing Amplitude Ratios for ON vs. OFF inputs. Most of the points lie away 

from the 1:1 line, suggesting that the two pathways have different Amplitude Ratios. However 

across the sample, the mean values of Amplitude Ratios for ON and OFF were not significantly 

different (paired t-test: p=0.76).  (C) Scatterplot comparing Integral Ratios for ON vs. OFF 

inputs. Most of the points lie away from the 1:1 line suggesting that the two pathways have 

different Integral Ratios. However across the sample the means of the Integral Ratios for ON and 

OFF were not significantly different (paired t-test: p=0.36).  
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5  
In this final chapter, I summarize the findings of three data chapters collectively. I discuss 

limitations and caveats of the overall approach, particularly in relation to the techniques used in 

these studies. I also present and discuss potential improvements or extensions of these studies 

that might be considered in future. Finally, I discuss implications of the results from this thesis 

on the models of second-order processing.  
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CHAPTER 5 

General Discussion 

5.1  Summary of findings 

The aim of the thesis was to further understand how early stages of the visual system 

encode low level visual features like luminance and texture boundaries at a single neuronal level. 

Here the focus was on spatial nonlinearities emerging from the retina and their influence on 

processing different kinds of boundaries in the cortex. I employed an interdisciplinary approach 

using multielectrode recordings in different visual areas along the visual pathway, synthetic and 

naturalistic visual stimuli, model simulations of multi-layer convolutional neural networks and 

modern system identification methods including deep learning to study hierarchical processing at 

the early stages of the visual pathway. 

In Chapter 2, to investigate how nonlinear Y pathway inputs could be pooled in cat Area 

18 to build cue-invariant receptive fields, I performed multi-electrode recordings while 

stimulating receptive fields with grating stimuli. Using a relatively unbiased recording method, I 

found a large fraction of neurons in the early visual cortex with receptive fields not selective for 

orientation, that have spatial nonlinearities like those of subcortical Y cells. Such neurons 

responded to contrast-modulated (second-order) gratings with selectivity for their texture 

elements. This population of neurons form a strong candidate pool for building cue-invariant 

orientation selective neurons reported previously in the cortex. Finally, I proposed a novel neural 

circuit mechanism and showed through model simulations that pooling ON- and OFF-center Y-

like cortical neurons in an unbalanced “push-pull” manner generates orientation-selective cue-
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invariant receptive fields that can account for previously observed selectivity to luminance- and 

contrast-modulation gratings. According to this model, luminance (first-order) and texture 

(second-order) boundaries are processed jointly through a single pathway. This model is 

fundamentally different from the previously proposed model (Mareschal & Baker, 1998) that 

assumed processing of luminance and texture stimuli in two separate, parallel pathways with 

later summation of these signals in cortical neurons.  

Results from Chapter 2 further supported the idea that spatial nonlinearities in the 

receptive fields of subcortical Y pathway neurons are important for texture processing in the 

cortex. So in Chapter 3, I estimated biologically interpretable quantitative receptive field models 

of LGN neurons that can account for their spatial nonlinearities. I trained a two-layer 

convolutional neural network model, based on previously known retinal circuitry, with 

extracellularly recorded spiking responses of individual neurons to naturalistic texture movies. 

Despite initializing convolutional filters’ weights randomly without any shape constraints, the 

learned models converged to filters with clear Gaussian or DoG (Difference of Gaussians)-like 

shapes. The trained models of Y-type LGN neurons had a higher degree of rectifying 

nonlinearity compared to those of X-type neurons. Finally, this nonlinear two-layer 

convolutional model was better at predicting responses of Y-type neurons to novel test stimuli 

compared to a standard linear-nonlinear model without an intermediate nonlinearity. These 

results suggest that simplified convolutional networks with biologically interpretable 

components can be a powerful technique for modeling early stages of the visual pathway using 

limited and noisy neural data. 

In Chapter 4, I separated the contributions of subcortical ON and OFF pathway inputs to 

receptive fields of cat Area 17 and 18 simple cells, when stimulated with natural scenes. I 
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modeled each simple cell receptive field as a weighted linear sum of simulated ON and OFF 

inputs, tiled across visual space. Regularized gradient descent regression was used to estimate 

separate spatiotemporal maps of each simple cell's summation weights for these ON and OFF 

inputs, from its responses to natural images. This method provided a way to measure both 

excitatory as well as inhibitory contributions of the ON and OFF pathways within individual 

receptive fields. I demonstrated that for most neurons, maps of ON and OFF weights are 

approximately identical in spatial layout and magnitude, but are of opposite polarity (“push-

pull”). However, there was a large diversity in the ratio of strengths of ON vs. OFF inputs, and a 

large subset of neurons had unbalanced push-pull. In addition, I also demonstrated asymmetries 

between temporal dynamics of ON and OFF weight maps. These results show spatiotemporal 

asymmetries in how visual cortex neurons integrate signals from light and dark regions within 

natural scenes, challenging the model of simple cells as linear filters. This asymmetry in simple 

cell inputs could potentially contribute towards building cue-invariant receptive fields from Y-

pathway inputs as suggested in Chapter 2. 

 

5.2  Limitations and caveats 

5.2.1 Anesthesia and brain state 

 All the experiments in this thesis were carried out on anesthetized and paralyzed cats. 

Anesthesia is known to have significant effects on visual processing both at the single neuron 

level (Lamme et al., 1998; Pack et al., 2001) as well as network levels (Sellers et al., 2015). 

Anesthesia and other sources of noise in the brain introduce trial-to-trial variability, such that 

repeated presentations of the same visual stimuli generate different neuronal responses (Faisal et 
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al., 2008; Harris et al., 2011). This neuronal variability increases in strength along the visual 

pathway (Goris et al., 2014). For example, the primary visual cortex of anesthetized cats has 

been shown to alternate between synchronous and asynchronous states while viewing natural 

scene movies, thus affecting spiking reliability of neurons (Spacek and Swindale, 2015). This 

neuronal variability due to brain state changes poses a significant challenge for receptive field 

estimation, since the neurons’ visual responses can be obscured by the noise, and overfitting to 

the noise in neural data becomes a greater challenge for the training algorithm. 

In order to minimize the effects of neuronal noise and slow state changes on receptive 

field model estimation, we repeated the stimuli multiple times, and randomized the presentation 

order of the stimulus movies. Repeating the stimulus and averaging the neuronal response for 

these repetitions helped to greatly reduce the noisiness in the neural data. This in turn helped to 

reduce over-fitting of the model to the noise in the data. Randomly intermixing the training and 

test data sets minimized any systematic difference in state while measuring training and test data, 

and helped to average out the effects of slow gain changes over the time of a recording session 

lasting around 45 minutes.  

Another approach to accommodate cortical state-dependent effects on neuronal firing rate 

is to include signals from different LFP bands and multi-unit activity (MUA) recorded at other 

sites on the multi-electrode into the model architecture (Cui et al., 2016). Such a model is better 

able to predict neurons’ responses across different trials. One concern, however, with such a 

model architecture, is that the recorded LFP and MUA signals are not independent of the 

stimulus, and thus can lead to the problem of collinearity (Wold et al., 1984). In that case, the 

estimated parameters of the model can be unstable.    
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It is conceivable that anesthesia might have differential effects on neuronal responses to 

first-order compared to second-order stimuli. According to the Y cell model from Demb et al. 

(2001a), rectification at the bipolar-ganglion cell synapse in the retina controls the strength of 

nonlinear second-order response compared to first-order response in Y cells. This rectification 

depends upon the spontaneous glutamate release rate from the bipolar cell's synaptic terminals. A 

lower release rate would result in a higher degree of rectification and thus stronger second-order 

response. It is possible that glutamate release rate depends upon type and depth of anesthesia 

used during the experiments.  

To date all the studies looking at nonlinear responses in Y cells (Rosenberg et al., 2010) 

and cortical neurons (Zhou and Baker, 1993; Tanaka and Ohzawa, 2006; Rosenberg and Issa, 

2011) have been performed under anesthesia, or in ex vivo retina (Demb et al., 2001b, Borghuis 

et al., 2013). But it remains unclear whether the nature of nonlinearity and second-order 

responsiveness of neurons is similar in awake behaving animals. One of the challenges in 

studying second-order processing in awake animals would be the necessity to monitor eye 

movements with high precision, since the second-order stimuli are at a very high spatial scale. 

This problem could be solved by synchronizing stimulus position on the screen with eye 

movements using high precision eye tracking. Such a retinal stabilization approach has been 

applied in human psychophysics to study the role of minute eye movements such as 

microsaccades (Poletti M et al. 2013; Rucci et al 2007). In the future, such methodology could be 

used to study the spatial nonlinearity of LGN and cortical neurons in awake and behaving 

monkeys.  
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5.2.2 Laminar organization  

The cortex has a laminar structure with six layers, having specific arrangements of 

different cell types forming microcircuits. Furthermore, there are specific patterns of connections 

between neurons within a cortical area according to their locations in the laminae. Projections to, 

as well as inputs from, other cortical areas are also lamina-dependent. For example, in cat Area 

17, the majority of the input from the LGN terminates in layer 4, while feedforward projection to 

higher areas originates from layers 2-3 and feedback to the LGN is from layer 6. Signal 

processing across these laminae and the functional roles of each layer mostly remains unknown.  

Previous intracellular studies have tried to relate receptive field properties of neurons to 

their laminar location, by dye-filling and histological reconstructions (e.g. Martinez et al., 2005). 

However, making a connection between receptive field properties of extracellularly recorded 

neurons and their laminar location has been challenging. Recent studies have begun to take 

advantage of multi-electrodes that can span all the cortical layers, and to use current source 

density (CSD) analysis to localize the positions of electrode sites across laminae (e.g. Jin et al., 

2011; Hansen et al., 2012). Even though most data in Chapter 2 and part of that in Chapter 4 was 

recorded with NeuroNexus linear arrays that can span the entire cortical grey matter depth, we 

were not able to obtain good enough CSD results to localize laminae. The small pad size (177 

µm2) of the multi-electrodes used in these studies is good for isolating single units but not ideal 

for recording low frequency LFPs important for estimating CSD profiles. Preliminary attempts in 

our lab using larger pad size electrodes have provided improvements in the estimated CSD 

profiles. So it would be interesting to see in future if there is any systematic laminar dependency 

for the kind of ON-OFF input imbalance observed in Chapter 4, for example like that observed 

previously for black dominance in monkey V1 (Yeh et al., 2009). 
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5.2.3 Sampling bias 

 Using multi-electrodes, spike sorting and random naturalistic stimuli may help to greatly 

reduce sampling biases in the recorded neurons compared to single-channel electrode recordings 

with a search stimuli like bars (Talebi and Baker, 2016). Nevertheless, it is still difficult to know 

if we sampled from all types of neurons present in the LGN and cortex. It is thought that only 

around 10 % of neurons in the vicinity of a multi-electrode recording site are usually sampled 

(Shoham et al., 2006). For example, very small spike amplitudes originating from anatomically 

small neurons would be difficult to isolate with spike sorting. In addition, there is a possibility 

that these multi-electrodes with wider shanks might damage neurons’ cell bodies or their 

processes (Blanche et al., 2005), and that some cell types might be more vulnerable to such 

damage than others. However, it is unlikely that the higher proportion of non-ori cells observed 

in Chapter 2 is a result of electrode damage to the neurons’ dendrites. If that were the case, we 

would have seen a variety of receptive field maps with missing parts of receptive field 

subregions or with holes within receptive fields. In addition, a previous study from our lab 

(Talebi & Baker, 2016) as well as results from Chapter 4 did not reveal such damaged receptive 

fields.  

 2-photon calcium imaging provides a complementary way of measuring neural activity at 

single neuron resolution. In this method, activity from neurons in a small volume of neural tissue 

can be measured by imaging fluorescence signals from activity-related Calcium concentration. 

Since this method allows direct visualization of the neuronal cell bodies, one can ideally measure 

activity from all the neurons in a given block of neural tissue (Stosiek et al., 2003). However, 2-

photon imaging lacks the temporal resolution of extracellular recording. Also, with this method 
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neural activity from only superficial cortical layers can be recorded. Currently, efforts are 

underway to measure activity from deeper layers (Na, 2017), multiple brain areas (Stirman et al., 

2016), and deep brain structures (Bocarsly et al., 2015).  

Ohki et al., 2006 with 2-photon imaging in cat Area 18 reported presence of only around 

1 % neurons non-selective for orientation. Their results might look contradictory to our results in 

chapter 2, where close to one-third of the neurons were classified as non-Ori neurons. However, 

this discrepancy seems to arise from differences in the criteria used by Ohki et al. compared to 

ours for classifying the neurons. In our study, we used a vector based approach (Leventhal et al., 

2003) to calculate Orientation Bias (OB) index and classified neurons with selectivity similar to 

cat LGN neurons (OB < 0.2) (Rosenberg et al., 2010) as non-Ori. But, Ohki et al. used ANOVA 

on neuronal responses at different orientation of gratings to classify neurons. So it is conceivable 

that most of our non-Ori would be classified as Ori-selective according to their criteria.  

 

5.2.4 Visual stimuli 

 In this thesis, we have employed synthetic gratings in Chapter 2, synthetic textures with 

naturalistic properties in Chapter 3 and grayscale natural images in Chapter 4 as visual stimuli to 

study receptive field properties. However, ideally, we should be studying visual processing under 

completely natural stimulation, since receptive field properties of neurons can be stimulus-

dependent (David et al., 2005). Even though I used natural images for estimating receptive field 

models in Chapter 4, the overall spatiotemporal stimuli were not truly natural - different 

randomly selected natural images were presented at 75Hz, with no correlation between images 

over time. But during natural stimulation, images formed on the retina are temporally correlated, 

with the temporal dynamics depending on head and body movements, eye movements, and 
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object motion. These dynamics add richness to the visual stimulation by providing important 

relative and global motion cues that can help in object segmentation, depth perception, guiding 

self-motion etc. However, a major challenge when using such data for system identification 

would be that the stimuli would be similar for a large number of frames, so the algorithm might 

not have enough novel information to fit the model parameters. Hence to utilize such temporally 

correlated stimuli, we would need much longer recording durations. 

 The visual stimuli used in this thesis were also unnatural in various other ways. Given the 

difficulty of eye alignment under anesthesia and paralysis, receptive fields were studied with 

monocular viewing, even though most of the cortical neurons could respond binocularly. Thus 

our model does not account for summation of inputs from the two eyes and the role of binocular 

disparity. In addition, the natural images used here were processed to remove color information, 

and mean luminance and r.m.s. contrast of the images was kept constant.  

 In future studies, efforts should be made to more closely mimic natural stimulation. This 

approach could lead to discovery of new kinds of feature selectivity within receptive fields.  

 

5.2.5 Model architecture and training 

 In Chapters 3 and 4, I modeled receptive fields of LGN neurons and cortical simple cells 

as a two-stage feedforward subunit model with an intermediate nonlinearity. However, this 

model is an over-simplification of known neural circuits and cannot account for some of the 

known receptive field properties. For example, the LGN receives a majority of its input as a 

feedback connection from visual cortex, which was not included in our model architecture.. 
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Similarly, in Chapter 4 the model architecture used for simple cell receptive fields did not 

include any feedback, even though cortical neurons receive feedback from higher visual areas.  

 In these models an important assumption is that rectified outputs of subunits are linearly 

summed by the receptive field. However, in the retina, amacrine cells not only provide inhibitory 

input to the ganglion cells but also control the gain of bipolar cells, thus giving a multiplicative 

interaction between excitatory and inhibitory inputs within the retinal circuit (Demb, 2008). 

Finally, nonlinearities between the subunit and pooling layers were modeled here as static 

nonlinearities (pReLU or ReLU). However, the nature of this nonlinearity has been demonstrated 

to be much more complicated within the retinal circuit of ON-type Y cells (Borghuis et al., 

2013). Such a kind of dynamic nonlinearity is not captured with the currently used model 

framework. Nevertheless, despite using simplified version of the model we could account for a 

large fraction (up to 80 %, as shown in Figure 3.10) of neural response variance. Also, it remains 

a challenge to incorporate such complex models in a framework whose parameters can be readily 

estimated. 

 In Chapters 3 and 4, estimation of the receptive field models was framed as a supervised 

learning problem, with visual stimuli as input and spiking neural responses as output. The 

training algorithms acted to minimize an error function by updating the model parameters in an 

iterative manner using gradient descent back-propagation. Even though this method of model 

training has been very successful in the field of machine learning, it is not biologically plausible. 

Recently efforts have begun to develop algorithms that update synaptic weights in a manner 

inspired from spike timing-dependent plasticity (Bengio et al., 2016). It is possible that such 

training algorithms might improve model performance as well as require smaller amounts of 

neural data.    
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5.3  Future directions 

5.3.1 Multi-stage convolutional model 

 In Chapter 3, I used a two stage convolutional model consisting of a convolutional filter 

layer and a pooling layer separated by a static nonlinearity to model LGN receptive fields. The 

advantages of this simplified model are that the parameters are easily interpretable, and the 

model requires relatively modest amounts of data for training. However, to model receptive 

fields of cortical neurons such that they account for both first- and second-order responses, we 

would need to use a much more complicated model architecture with at least 3 layers. But it is an 

open question whether such models trained on neural data from visual cortex neurons would 

have any correspondence with the biological neural circuitry. For example, the visual system has 

separate ON and OFF subcortical pathways that process visual information separately and only 

at the cortical stage these signals are mixed - but it is unclear whether an artificial neural network 

would be able to learn to have separate ON and OFF pathways from cortical neurons' data. Also, 

the deeper the neural network, the more it difficult it becomes to interpret computations across 

the layers. It is unclear how to visualize receptive fields for neurons other than the first layer, due 

to the intermediate nonlinearities. One approach could be to have known biological constraints 

on the model architecture itself before training it. For example, front-end filters could be 

constrained to be circularly symmetric like retinal receptive fields. A model could be designed to 

have two separate pathways that are summed only at the final stage. Such a model would be easy 

interpret and might be able to infer signal processing at the level of the retina (including 

nonlinear subunits) as well as the cortex (e.g. push-pull).  
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 If the approach of training deeper neural networks is taken, it will require much larger 

datasets than used in this thesis. While recording with multi-electrodes over such long recording 

sessions, spike amplitudes of neurons often disappear from one channel and appear on other 

nearby channels, due to electrode slippage. Tracking movement of neuronal spike signals across 

multi-electrode channels could allow us to record visual responses for longer durations. In 

addition to tracking spike waveform shapes, visual responses to a repeated presentation of the 

same movie at different time intervals could be used to ascertain that we are measuring responses 

from same neuron over the recording session.  

 A very different approach could be to estimate a common neural network model for 

multiple neurons that are simultaneously recorded with multi-electrodes (McIntosh et al., 2016), 

as they probably share a majority of their inputs from lower stages of the visual pathway. This 

framework will have multiple outputs corresponding to each neuron recorded in the session, 

unlike the models in this thesis with only one output. It would be important to have the electrode 

penetrations perpendicular to the cortical surface so that the recorded neurons have large 

receptive field overlap, and therefore a higher proportion of shared inputs. This approach might 

require shorter recording times, and enable training deeper neural networks. One implicit 

assumption with this framework is that all the recorded neurons are at same stage of the visual 

hierarchy. This might not be true if the sample contains neurons across multiple laminae. 

Nevertheless, this might be a fruitful framework to explore, that could give novel insights into 

network level computations from multi-electrode recordings.  
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5.3.2 Two-photon imaging and neural network models 

 Previous studies as well as those in this thesis have modeled receptive fields of neurons 

in visual pathway as linear weighted sums of model subunits from the previous stage in the 

visual hierarchy. For example, receptive fields of MT have been modeled as a linear sum of 

direction selective V1-like receptive fields (Nishimoto and Gallant, 2011). Similarly, receptive 

fields of area MST neurons were modeled as a linear sum of model MT units (Mineault et al., 

2012). However, integration of synaptic inputs by cortical neurons remains poorly understood. 

This question can be addressed in future by combining advancements in the methodologies of 

two-photon imaging and deep learning. It is now possible to simultaneously record visual 

responses across multiple visual areas using two-photon imaging (Stirman et al., 2016; Smith et 

al., 2017). Datasets collected with such a setup could be used to estimate transfer functions 

between two visual areas. In the neural network framework, responses of the neurons in the 

lower area could be used as the inputs and responses from the higher area neurons as the outputs 

of the neural network model.  

 Subunit integration can also be studied at the level of a single cortical neuron and its 

synaptic inputs, by performing two-photon imaging with sparse labeling (Wilson et al., 2016). 

With this method, it is possible to simultaneously measure activity of a neuron and its dendritic 

spines. Data from this experimental setup could also be used to train a neural network model that 

could predict responses of the neuron given its synaptic inputs. However, it should be noted that 

activity of only a small fraction of the synaptic boutons can be measured. Nevertheless, such 

neural network models could elucidate rules of connectivity between neurons in the visual 

hierarchy and provide a better understanding of how subunits are integrated within cortical 

receptive fields. 
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5.3.3 Second-order processing 

In this thesis, I have proposed a novel neural computation that takes advantage of 

asymmetry between subcortical ON and OFF Y pathways for encoding texture stimuli 

simultaneously with luminance. This idea is contrary to the previous idea that texture/second-

order stimuli are processed separately from luminance, in two independent parallel pathways 

(Baker, 1999). Several human psychophysical studies have supported the idea of separate 

processing of first- and second-order stimuli (e.g. Smith and Ledgeway, 1998; Schofield and 

Georgeson, 1999; Nishida et al.,1997). Furthermore, studies on patients with brain injuries to 

extrastriate cortex have demonstrated that processing of first- or second-order stimuli can be 

selectively impaired depending upon the damaged area (Vaina and Cowey, 1996; Vaina et al., 

1998; Vaina et al.,1999). So how might we reconcile these seemingly conflicting findings from 

neurophysiology and psychophysics?  

One possibility is that at the early stages of the visual pathway, first- and second-order 

signals are multiplexed, and only later in the extrastriate cortex might these signals be separately 

processed in distinct cortical areas. A similar idea has also been suggested for processing of color 

and luminance signals in the primate visual pathway (Bushnell et al., 2011; Gheiratmand M et 

al., 2013). However, there has been no neurophysiological evidence for the existence of "second-

order only" responsive neurons in early cortical areas. Future studies should look for such 

second-order neurons in higher visual areas that might be only selective for purely texture 

stimuli. However, it is challenging to search for such neurons with conventional search stimuli 

such as simple bars or spots as these neurons would be unresponsive to such stimuli. System 

identification methods like the ones used in this thesis, with random naturalistic stimuli, could be 

a viable approach since it makes minimal prior assumptions about the receptive field properties. 
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At the population level, using intrinsic optical imaging it has been shown that second-order 

response strength is greater in higher visual area V4 than in V1 or V2 (Pan et al., 2012). Thus it 

would be worthwhile to test for the presence of purely second-order neurons in such brain areas.  
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