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Abstract

Public transit is crucial for reducing congestion and emissions, improving access to essen-
tial services, and promoting sustainable urban growth. To enhance transit services and
attract ridership, transit agencies must address critical research problems within public
transit systems, such as forecasting bus travel time/passenger occupancy and estimating
origin-destination (OD) matrices. With the advent of automatic data collection in transit
systems, e.g., automated fare collection (AFC) systems, automated vehicle location (AVL)
systems, and automated passenger counts (APC) systems, both practitioners and scholars
are increasingly focusing on data-driven approaches to address the above problems and
enhance transit services. Most previous data-driven approaches for transit studies have
predominantly relied on deterministic models, which only provide point estimation and
fail to offer uncertainty quantification. To fill this gap, this thesis aims to develop proba-
bilistic models based on Bayesian statistics for four important research problems in public
transit systems: (1) link travel time correlation inference, (2) bus travel time forecasting, (3)
bus passenger occupancy forecasting, and (4) transit OD matrices inference.

The proposed Bayesian inference and forecasting models in this thesis correspond to
four published or under-review manuscripts. All the models developed in the thesis are
tested by real-world transit data. Firstly, this thesis develops a Bayesian Gaussian model
to estimate the link travel time correlation matrix of a bus route using smart-card-like data.
This method overcomes the small-sample-size problem in correlation matrix estimation by
borrowing/integrating those incomplete observations (i.e., with missing/ragged values
and overlapped link segments) from other bus routes. Numerical experiments are con-
ducted to evaluate model performance and results show that the proposed method can
make an accurate estimation for travel time correlations with credible intervals. Secondly,
this thesis proposes a Bayesian Gaussian mixture model for probabilistic forecasting of bus
travel time. This approach can naturally capture the interactions between adjacent buses
(e.g., correlated speed and smooth variation of headway), handle missing values in data,

and depict the multimodality in bus travel time distributions. An efficient algorithm is



proposed to obtain the posterior distributions of model parameters and make probabilistic
forecasting. Results show that our approach significantly outperforms baseline models
that overlook bus-to-bus interactions, in terms of both predictive means and distributions.
Thirdly, this thesis develops a Bayesian Markov regime-switching vector autoregressive
model to jointly forecast both bus travel time and passenger occupancy with uncertainty.
The proposed approach naturally captures the intricate interactions among adjacent buses
and adapts to the multimodality and skewness of real-world bus travel time and passenger
occupancy observations. With this framework, the estimation of downstream bus travel
time and passenger occupancy is transformed into a multivariate time series forecasting
problem conditional on partially observed outcomes. Experimental validation using real-
world data demonstrates the superiority of our proposed model in terms of both predictive
means and uncertainty quantification compared to the baseline models. Finally, this thesis
proposes a temporal Bayesian model to estimate transit OD matrices at the individual bus
level using counts of boarding and alighting passengers at each stop. Specifically, the num-
ber of alighting passengers at subsequent bus stops, given a boarding stop, is modeled by
a multinomial distribution. This method uses a latent variable matrix to parameterize the
time-varying multinomial distributions through the softmax transformation and employs
matrix factorization to parameterize it into a mapping factor matrix and a temporal factor
matrix. Gaussian process priors are imposed on the columns of the temporal factor matrix.
The model is validated using real-world data of three bus routes (short, medium, long)
and results demonstrate that the proposed model can achieve accurate estimation and
outperforms the iterative proportional fitting method. Moreover, this model can provide
uncertainty quantification associated with estimation and parameter interpretation.

In summary, this thesis uses Bayesian statistics to develop probabilistic inference and
forecasting models for the above problems in public transit systems. The proposed models
can improve the accuracy of inference/forecasting and provide uncertainty quantification,
which is crucial for transit agencies to optimize the management and operation of transit
systems.
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Résumé

Les transports en commun sont essentiels pour réduire la congestion et les émissions,
améliorer l’acces aux services essentiels et promouvoir une croissance urbaine durable.
Pour améliorer les services de transport et attirer les usagers, les agences de transit doivent
aborder des problemes de recherche critiques au sein des systemes de transport public, tels
que la prévision du temps de trajet / de I'occupation des passagers des bus et 1’estimation
des matrices origine-destination (OD). Avec I’avenement de la collecte automatique des
données dans les systémes de transport, par exemple, les systemes de collecte automatique
des tarifs (AFC), les systemes de localisation automatique des véhicules (AVL) et les
systémes de comptage automatique des passagers (APC), les praticiens et les universitaires
se concentrent de plus en plus sur des approches basées sur les données pour aborder
les problemes ci-dessus et améliorer les services de transport. La plupart des approches
précédentes basées sur les données pour les études de transport ont principalement reposé
sur des modeles déterministes, qui ne fournissent qu’une estimation ponctuelle et échouent
a offrir une quantification de l'incertitude. Pour combler cette lacune, cette these vise
a développer des modeles probabilistes basés sur la statistique bayésienne pour quatre
problemes de recherche importants dans les systemes de transport public : (1) I'inférence
de corrélation du temps de trajet entre les liens, (2) la prévision du temps de trajet des bus,
(3) 1a prévision de I’occupation des passagers des bus, et (4) I'inférence des matrices de
transit OD.

Les modeles bayésiens d’inférence et de prévision proposés dans cette these correspon-
dent & quatre manuscrits publiés ou en cours de révision. Tous les modeles développés
dans la these sont testés par des données de transport réelles. Premierement, cette these
développe un modele gaussien bayésien pour estimer la matrice de corrélation du temps
de trajet entre les liens d’une route de bus en utilisant des données semblables a des
cartes intelligentes. Cette méthode surmonte le probleme de la petite taille d’échantillon
dans l'estimation de la matrice de corrélation en empruntant/intégrant ces observations

incompletes (c’est-a-dire avec des valeurs manquantes/déchirées et des segments de lien
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chevauchants) d’autres routes de bus. Des expériences numériques sont menées pour
évaluer la performance du modele et les résultats montrent que la méthode proposée peut
faire une estimation précise des corrélations de temps de trajet avec des intervalles crédi-
bles. Deuxiemement, cette these propose un modele de mélange gaussien bayésien pour
la prévision probabiliste du temps de trajet des bus. Cette approche peut naturellement
capturer les interactions entre les bus adjacents (par exemple, vitesse corrélée et variation
douce de l'intervalle), gérer les valeurs manquantes dans les données et dépeindre la
multimodalité dans les distributions de temps de trajet des bus. Un algorithme efficace
est proposé pour obtenir les distributions postérieures des parametres du modele et faire
des prévisions probabilistes. Les résultats montrent que notre approche surpasse signi-
ticativement les modeles de base qui négligent les interactions bus a bus, tant en termes
de moyennes prédictives que de distributions. Troisiémement, cette thése développe un
modele autorégressif vectoriel a changement de régime markovien bayésien pour prévoir
conjointement le temps de trajet des bus et I'occupation des passagers avec incertitude.
L’approche proposée capture naturellement les interactions complexes entre les bus adja-
cents et s’adapte a la multimodalité et a I’asymétrie des observations réelles de temps de
trajet des bus et d’occupation des passagers. Avec ce cadre, I'estimation du temps de trajet
des bus en aval et de I'occupation des passagers est transformée en un probleme de prévi-
sion de séries temporelles multivariées conditionné a des résultats partiellement observés.
La validation expérimentale utilisant des données réelles démontre la supériorité de notre
modele proposé en termes de moyennes prédictives et de quantification de l'incertitude
par rapport aux modeles de base. Enfin, cette these propose un modele bayésien tem-
porel pour estimer les matrices OD de transit au niveau des bus individuels en utilisant
les comptages des passagers montant et descendant a chaque arrét. Spécifiquement, le
nombre de passagers descendant aux arréts de bus subséquents, étant donné un arrét de
montée, est modélisé par une distribution multinomiale. Cette méthode utilise une matrice
de variables latentes pour paramétrer les distributions multinomiales variables dans le
temps a travers la transformation softmax et emploie la factorisation matricielle pour la
paramétrer en une matrice de facteur de cartographie et une matrice de facteur temporel.
Des a priori de processus gaussien sont imposés sur les colonnes de la matrice de facteur
temporel. Le modéle est validé en utilisant des données réelles de trois itinéraires de
bus (court, moyen, long) et les résultats démontrent que le modéle proposé peut réaliser
une estimation précise et surpasse la méthode de réglage proportionnel itératif. De plus,
ce modeéle peut fournir une quantification de l'incertitude associée a l'estimation et a

lI'interprétation des parameétres.
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En résumé, cette these utilise la statistique bayésienne pour développer des modeles
d’inférence et de prévision probabilistes pour les problemes ci-dessus dans les systemes de
transport public. Les modeles proposés peuvent améliorer la précision de l'inférence/la
prévision et fournir une quantification de I'incertitude, ce qui est crucial pour les agences

de transit afin d’optimiser la gestion et I'opération des systemes de transport.
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Chapter 1

Introduction

1.1 Research Background

Public transit plays a crucial role in modern urban environments by providing an efficient,
cost-effective, and environmentally friendly alternative to personal vehicles. Its signifi-
cance extends beyond mere transportation; it facilitates greater accessibility to employment,
education, and healthcare for a diverse demographic, including those without access to a
car. By reducing the number of vehicles on the road, public transit helps decrease traffic
congestion, lower greenhouse gas emissions, and reduce the urban carbon footprint. In
the 2030 Agenda for Sustainable Development, the United Nations has emphasized the
critical role of public transportation in shaping a sustainable society (United Nations, 2015).
However, despite the growing investment in infrastructure, North American cities have
not seen rapid growth and even observed a decline in ridership in recent years, even before
the COVID-19 pandemic (Erhardt et al., 2022). Therefore, transit agencies are continually
striving to enhance their services to attract more passengers.

To provide better transit services, transit agencies concentrate on addressing two
primary types of problems: (1) Demand/supply inference and forecasting. It includes
inferring and forecasting passenger flow (demand) and travel time (supply). Accurate
forecasting of passenger flow and travel time can help travelers make informed travel
plans in terms of mode choice, route choice, and even vehicle choice (e.g., waiting for a less
crowded bus or boarding a full vehicle). Furthermore, the insights gained from inferring
and forecasting passenger flow and travel times serve as foundational data for addressing
the subsequent type of problem, demonstrating the integral role in the overall optimiza-
tion of transit services. (2) Transit design and optimization. It involves route/network

design, scheduling (frequency or timetable), and resource allocation. Through employing
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advanced optimization algorithms and simulation techniques, agencies can expand service
coverage, minimize waiting times for passengers, and enhance the reliability of the entire
transit network.

With the advent of automatic data collection in transit systems, both practitioners
and scholars are increasingly focusing on data-driven approaches to address the above
problems and enhance transit services. The data collection systems include automated
tare collection (AFC) systems, automated vehicle location (AVL) systems, and automated
passenger counts (APC) systems. AFC data typically includes passenger boarding times
and locations, which provide valuable insights into passenger travel patterns and help
transit agencies optimize service operations. AVL data records positions and speeds for
all transit vehicles, which is crucial for transit agencies to understand the travel time
variability and provide accurate estimated time of arrivals. APC data includes passenger
boarding/alighting counts at each stop, which can provide crowdedness information for
passengers and help agencies control crowd levels and optimize scheduling.

Most previous data-driven approaches for transit services have predominantly relied
on deterministic models. For example, there are many deterministic forecasting models
for bus travel time, such as Artificial Neural Network (Gurmu and Fan, 2014), Support
Vector Machine (Yu et al., 2011; Kumar et al., 2013), K-nearest neighbors model (Kumar
et al., 2019), Long-Short-Term Memory neural network (He et al., 2018), and various
hybrid models (Yu et al., 2018). However, such deterministic forecasting models only can
provide point estimation and lack the capacity to quantify uncertainty. Transit systems
have complicated operations and suffer serious uncertainty caused by many factors such
as driving behaviors, traffic congestion, accidents, road conditions, weather, special events,
etc. Therefore, it is necessary to develop probabilistic forecasting models for bus travel
time, which provide not only a point estimate but also a forecasted probability distribution.
For other problems, most solutions are also based on deterministic methods and we
should consider revisiting them from a probabilistic perspective. Bayesian statistics have a
long history of development and application across a broad range of domains including
time series forecasting, pattern recognition, causal inference, and even optimization, etc.
By developing Bayesian models for transit problems, researchers and practitioners can
incorporate uncertainty quantification to yield more robust and reliable transit service

optimization.
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1.2 Bayesian Inference and Forecasting

We here introduce two important concepts in Bayesian statistics: Bayesian inference and

Bayesian forecasting.

1.2.1 Bayesian Inference

Bayesian inference is a method of statistical inference that updates the probability for
parameters as more evidence or information becomes available (Gelman et al., 2013). It is
based on Bayes’ theorem, which provides a way to update prior beliefs with available data
to form posterior beliefs. This approach allows for the incorporation of prior knowledge
into the analysis, making it particularly useful in situations where data may be limited.
More importantly, Bayesian inference also provides a powerful framework for quantifying
uncertainty, making it an essential tool in various scientific and practical applications
where understanding uncertainty is critical.

In Bayesian inference, we start with a prior distribution that represents our initial beliefs
about the parameters of interest. Next, we calculate the likelihood of the observed data
given the parameters. By applying Bayes’ theorem, we combine the prior distribution and
the likelihood to obtain the posterior distribution, which represents our updated beliefs
about the parameters after considering the evidence from observations. In general, it is
difficult to derive analytical solutions for the posterior distributions of parameters with
complex priors and likelihood structures. A common solution is Markov chain Monte
Carlo (MCMC) sampling, which can approximate the posterior distribution when it is

computationally infeasible to calculate it directly.

1.2.2 Bayesian Forecasting

Bayesian forecasting is an extension of Bayesian inference that focuses on predicting future
observations or outcomes based on current data and updated beliefs. It involves using the
posterior distribution obtained from Bayesian inference to make probabilistic predictions
about future events. This approach allows for the incorporation of uncertainty in the
forecasts, providing a more comprehensive understanding of potential future scenarios.
In Bayesian forecasting, the posterior predictive distribution is derived by integrating
over the parameters using the posterior distribution. This distribution captures the un-
certainty in the parameter estimates and propagates it into the predictions, resulting in a

range of possible future outcomes with associated probabilities. Bayesian forecasting is



CHAPTER 1 INTRODUCTION

particularly valuable in time series analysis, where it can be used to model and predict
future values of a time series based on historical data.

In this thesis, we aim to develop Bayesian statistical methods for four important re-
search problems in public transit systems: (1) Bayesian inference for link travel time
correlation of a bus route, (2) Bayesian forecasting for bus travel time, (3) Bayesian forecast-
ing for passenger occupancy, and (4) Bayesian inference of time-varying origin-destination

matrices from boarding/alighting counts.

1.3 Research Objectives

This thesis aims to develop Bayesian inference and forecasting methods for the research
problems in public transit systems. The overview of research objectives is shown in

Figure 1.1.
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Figure 1.1: Overview of research objectives

The details of the objectives are summarized as follows:

* Objective 1: Develop a Bayesian model for inferring link travel time correlation
of a bus route. Link travel time correlation of a bus route is important for bus
operation applications, such as scheduling and travel time forecasting. Most previous
studies rely on either independent assumptions or simplified local spatial correlation
structures. In the real world, however, link travel time on a bus route could exhibit

4
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complex correlation structures, such as long-range correlations (e.g., a delayed bus is
more likely to be further delayed due to bus bunching), negative correlations (e.g., a
bus that goes ahead of schedule may intentionally slow down to follow a pre-defined
timetable), and time-varying correlations (e.g., different correlation patterns for peak
and off-peak hours). Therefore, Chapter 3 aims to develop a Bayesian model to infer
the link travel time correlation of a bus route, which could help to understand the
characteristics of link travel time and further provide the foundation for bus travel

time forecasting.

* Objective 2: Develop a Bayesian model for bus travel time forecasting. Accurate
forecasting of bus travel time and its uncertainty is critical to service quality and
operation of transit systems: it can help passengers make informed decisions on
departure time, route choice, and even transport mode choice, and also support
transit operators on tasks such as crew /vehicle scheduling and timetabling. However,
most previous studies on bus travel time forecasting mainly center on making point
estimation (i.e., deterministic forecasting) but ignore the importance of travel time
uncertainty. Chapter 4 thus attempts to develop a Bayesian probabilistic model for
bus travel time forecasting, which can provide predicted distributions of bus travel

time.

¢ Objective 3: Develop a Bayesian model for bus passenger occupancy forecasting.
Accurate occupancy forecasting along with uncertainty is important to travelers to
make informed travel planning in terms of mode choice, route choice, and even
vehicle choice (e.g., waiting for a less crowded bus or boarding a full vehicle). For
transit agencies/operators, probabilistic forecasting could benefit the design of robust
bus management strategies, such as bus route design, bus crowding control, and
timetable design. Previous studies on forecasting bus passenger occupancy have
predominantly employed deterministic approaches and they overlooked the strong
correlations between passenger occupancy and travel time. In response to these
challenges, Chapter 5 focuses on developing a joint Bayesian forecasting model for

bus travel time and passenger occupancy.

* Objective 4: Develop a Bayesian model for inferring time-varying origin-destination
(OD) matrices from boarding/alighting counts. OD demand matrices are crucial
for transit agencies to optimize the management and operation of transit systems.
Estimating OD matrices for transit systems from boarding/alighting counts data
has been a long-standing research question for both practitioners and researchers.
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This problem is quite challenging due to its underdetermined nature. Therefore,
Chapter 6 develops a temporal Bayesian model for inferring transit OD matrices,

which could make full use of prior information in observations.

1.4 Thesis Contributions

The detailed contributions of each model/application are provided individually in each
chapter. The following is the high-level summary of the contributions of this thesis:

* Contribution 1: Most previous studies on transit problems have predominantly
relied on deterministic models, which overlooked the uncertainty of the complex
transit systems caused by stochastic factors such as traffic conditions and passenger
behaviors. This thesis highlights that Bayesian statistics could be applied to model
the uncertainties in transit systems. In other words, the Bayesian models could offer
a more realistic representation of transit systems, enabling a better understanding of
underlying patterns and relationships. This thesis develops Bayesian inference and
forecasting methods for four important problems in transit systems, demonstrating
the strong ability of Bayesian statistics to make probabilistic inference/forecasting
and provide uncertainty quantification.

* Contribution 2: This thesis proposes several Bayesian inference and forecasting
models for transit systems with improved accuracy. Specifically, the proposed time-
dependent Bayesian Gaussian mixture model in Chapter 4 improves the forecasting
accuracy of link and trip travel time. The developed Bayesian Markov Regime-
switching vector autoregression model in Chapter 5 enhances the forecasting accu-
racy of bus travel time and passenger occupancy. The Bayesian inference model
proposed in Chapter 6 achieves an improved performance for OD matrices estima-
tion and provides a good uncertainty quantification. With these better models, this

thesis helps to improve the forecasting and estimation to enhance transit services.

¢ Contribution 3: The proposed Bayesian inference and forecasting methods in this
thesis are validated using real-world data. Besides the improved performance and
uncertainty quantification, results demonstrate that estimated model parameters
have good interpretations, which can help to better understand the latent patterns of
passenger behaviors and transit operations. Specifically, the estimated correlation
matrix of link travel time in Chapter 3 presents the complex characteristics such as
long-range correlations and negative correlations. The patterns of travel time and

6
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passenger occupancy in Chapter 4 and 5 show that the interaction between adjacent
buses like bus bunching has a strong influence on the travel time and passenger
occupancy. The estimated patterns of passenger behaviors in OD matrix estimation

in Chapter 6 present smoothly time-varying characteristics.

1.5 Thesis Organization

This is a manuscript-based thesis with seven chapters, where Chapter 3 to Chapter 6 are
based on articles that were either submitted or published by peer-reviewed journals. The

organization of the thesis is as follows:

¢ Chapter 1 introduces the background, objectives, and contributions of this thesis.

* Chapter 2 summarizes the Bayesian inference and forecasting methods, and their

applications in public transit systems.

¢ Chapter 3 presents a Bayesian Gaussian model to estimate the link travel time corre-
lation matrix of a bus route using smart-card-like data. This method can overcome
the small-sample-size problem in correlation matrix estimation by borrowing those
incomplete observations from other bus routes. This chapter shows that link travel

times of a bus route have both local and long-range correlations.

¢ Chapter 4 proposes a Bayesian Gaussian mixture model for probabilistic forecasting
of bus travel time and estimated time of arrival. This chapter shows that model-
ing the interaction between adjacent buses can significantly improve forecasting

performance.

¢ Chapter 5 presents a Bayesian Markov regime-switching vector autoregressive model
to jointly forecast both bus travel time and passenger occupancy with uncertainty.
This approach can capture the intricate interactions among adjacent buses and adapts
to the multimodality and skewness of real-world bus travel time and passenger
occupancy observations. This chapter shows that the joint forecasting of passenger

occupancy and bus travel time can achieve better performance.

¢ Chapter 6 proposes a temporal Bayesian model to estimate transit OD matrices at
the individual bus level using counts of boarding and alighting passengers at each

stop. This chapter shows that the proposed time-varying model outperforms the
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static estimation model and can provide uncertainty quantification associated with

estimation.

¢ Chapter 7 summarizes the thesis with final conclusions and future directions.



Chapter 2
Literature Review and Preliminary

This thesis aims to develop Bayesian inference and forecasting methods for the research
problems outlined in Section 1.3. Detailed reviews and discussions related to these re-
search problems will be provided in subsequent chapters. The purpose of this chapter is
to summarize the methodological developments in Bayesian inference and forecasting
methods, and their applications in public transit systems. In this chapter, we will review

uncertainty quantification, Bayesian inference methods, and Bayesian forecasting methods.

2.1 Uncertainty Quantification

Uncertainty quantification (UQ) is an interdisciplinary field focused on the systematic
assessment and management of uncertainty in computational models (Sullivan, 2015). UQ
aims to identify the various sources of uncertainty, characterize them mathematically, and
evaluate their impact on model predictions. It plays an important role in ensuring that
models and predictions are reliable and robust, especially in complex systems where vari-
ability and incomplete knowledge are inherent (Abdar et al., 2021). UQ helps researchers
and practitioners understand the limits of their models, identify potential uncertainty, and
make better-informed decisions.

2.1.1 Aleatory and Epistemic Uncertainties

Two primary categories of uncertainty in research problems are aleatory and epistemic
uncertainties, each with distinct characteristics and implications for modeling and decision-
making (Soize, 2017).
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Aleatory Uncertainty

Aleatory uncertainty, also known as stochastic or inherent uncertainty, arises from the
inherent variability and randomness in natural systems and processes. This type of uncer-
tainty is irreducible, meaning that no matter how much additional data we gather or how
sophisticated our models become, the underlying randomness remains. In transportation
systems, aleatory uncertainty arises from the natural fluctuations and unpredictable events
that affect transportation operations and outcomes (Li et al., 2020). Here are some examples

of aleatory uncertainty in public transit systems:

¢ Adverse weather, such as rain and snow, can cause sudden changes in road condi-
tions, leading to slower traffic speeds and higher travel times (Lam et al., 2008). The

occurrence and intensity of rain or snow are inherently random and can vary widely.

e Traffic accidents are random events that can significantly disrupt traffic flow (Bao
et al., 2020). The timing, location, and severity of accidents are unpredictable, leading

to aleatory uncertainty in transit management and operation.

While aleatory uncertainty cannot be eliminated, understanding and managing this
type of uncertainty is crucial for maintaining the efficiency and reliability of public transit
operations. By employing robust design, real-time monitoring, and adaptive manage-
ment strategies, public transportation planners and operators can better deal with the
unpredictable nature of aleatory uncertainties and enhance the overall resilience of transit

systems (Ibarra-Rojas et al., 2015).

Epistemic Uncertainty

Epistemic uncertainty, also known as systematic or reducible uncertainty, stems from a
lack of knowledge or information about the system or process being modeled. This type
of uncertainty can, in principle, be reduced or eliminated through additional research,
better data collection, improved measurement techniques, or enhanced modeling methods.
Epistemic uncertainty in public transit systems arises from a lack of knowledge or incom-
plete information about the system (Li et al., 2020). Here are some examples of epistemic

uncertainty in public transit systems:

* Surveys conducted to understand travel behavior might suffer from low response
rates or biased samples, leading to incomplete data. This uncertainty affects the
accuracy of models that predict route choices and mode preferences.

10



CHAPTER 2 LITERATURE REVIEW

* Models predicting future transit demand might not fully capture the impact of
emerging trends such as telecommuting and ride-sharing services. This limitation

can lead to uncertainties in long-term transit demand forecasting.

Epistemic uncertainty is often addressed through Bayesian methods, which allow
for the updating of probability distributions as new data/knowledge becomes available.
Sensitivity analysis is also used to identify which parameters or assumptions contribute

most to the uncertainty, guiding efforts to reduce these uncertainties (Sullivan, 2015).

2.1.2 Components of Uncertainty Quantification

For a transit system, we often pay more attention to understanding epistemic uncertainty
and aim to provide robust forecasting and operation decisions. In general, the components
of uncertainty quantification are categorized into three types: parameter uncertainty,

model uncertainty, and data uncertainty (Soize, 2017).

Parameter Uncertainty

This type of uncertainty arises from a lack of precise knowledge about the values of the
model parameters. For instance, in a bus demand prediction model, parameters such as
the arrival rate of passengers might be known only approximately. To manage parameter
uncertainty, UQ techniques often involve treating these parameters as random variables
characterized by probability distributions. Bayesian inference methods are particularly
useful here, allowing for the updating of these distributions as new data becomes available,

thus refining the model’s predictions (Kennedy and O'Hagan, 2001).

Model Uncertainty

Different models or modeling approaches could yield varying results when applied to the
same problem (Soize, 2017). This difference is due to simplifications, assumptions, and
inherent limitations within the models. UQ addresses model uncertainty by comparing
multiple models and often using Bayesian methods to integrate the predictions from
different models. This approach provides a more comprehensive prediction by considering
the strengths and weaknesses of each model, thereby offering a more robust understanding

of the uncertainty involved.

11
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Data Uncertainty

Observational data, which is used to calibrate and validate models, is often noisy, incom-
plete, or subject to measurement errors. This data uncertainty can significantly affect model
estimation and predictions (Chatfield, 1995). UQ incorporates this type of uncertainty by
using likelihood functions that describe the probability of observing the data given the
model parameters. This probabilistic approach ensures that the uncertainty inherent in the

data is reflected in the model outputs, leading to more credible and reliable predictions.

2.1.3 Probabilistic Uncertainty Quantification Scores

Several metrics are commonly used to assess the quality of the probabilistic estima-
tions/predictions, including the Continuous Ranked Probability Score (CRPS) (Gneiting
and Raftery, 2007), the logarithmic score (LogS) (Jordan et al., 2017), the interval score
(INT) (Gneiting and Raftery, 2007), and coverage (CVG) (Heaton et al., 2019). Here, we
introduce CRPS and LogS, which are commonly used in the evaluation of probabilistic

models.

Continuous Ranked Probability Score (CRPS)

CRPS is a measure used to evaluate the accuracy of probabilistic forecasts/estimates. It
compares the entire predictive distribution to the actual outcome, providing a single score
that reflects both the sharpness and the reliability of the forecast (Gneiting and Raftery,
2007). CRPS is defined for a single observation as the integral of the squared difference
between the cumulative distribution function (CDF) of the forecast and the CDF of the
observed value. Let X be a random variable, F be the CDF of X (i.e., F (f) = p (X < t)),
and x be the observation, the CRPS between x and F is given by:

Q0

CRPS (F, x) — J F() —1(t > x)]2dy, 2.1)

—0
where 1 (t > x) is the indicator function that equals 1 if t > x and 0 otherwise. A lower
CRPS value indicates a better probabilistic forecast or estimate. CRPS takes into account
both the distance between the predicted and observed values and the spread of the
predictive distribution. It rewards predictions/estimates that are both sharp (narrow
predictive intervals) and well-calibrated (accurate coverage of the observed values).

12
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Logarithmic Score (LogS)

The LogS, also known as the log score or negative log-likelihood, assesses the quality of
probabilistic predictions by evaluating how likely the observed outcomes are under the
predicted probability distribution (Jordan et al., 2017). LogS is defined as the logarithm of
the probability assigned to the observed value by the predictive distribution. It penalizes
forecasts/estimates that assign low probabilities to the observed values. For a predictive
probability density function (PDF) f and an observed value x, the LogS is given by:

LogS (f,x) = —log f (x). (2.2)

A lower LogS value indicates a better probabilistic forecast/estimate. LogS directly eval-
uates the likelihood assigned to the observed value by the model, with lower scores

corresponding to higher assigned probabilities.

2.2 Bayesian Inference Methods

Bayesian inference is a powerful statistical approach that provides a framework for infer-
ring the probability distributions of parameters using available data and prior knowledge
(Gelman et al., 2013). It combines prior beliefs with available data to form a posterior

distribution, offering a coherent method for estimation and uncertainty quantification.

2.2.1 Bayes’ theorem

The core of Bayesian inference lies in Bayes’ theorem, which is expressed as:

p (Dpl((g )P (0) (2.3)

where p (0 | D) is the posterior distribution of the parameters 6 given the data D; p (D | 6)

p(0|D)=

is the likelihood of the data given the parameters; p (6) is the prior distribution of the
parameters; p (D) is the marginal likelihood or evidence, which ensures the posterior

distribution sums to one.

Prior Distribution

The prior distribution p (0) represents the initial beliefs about the parameters before

observing the data. Priors can be informative, incorporating expert knowledge, or non-

13
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informative, reflecting a lack of prior knowledge.

Likelihood

The likelihood p (D | 6) represents the probability of observing the data given the parame-

ters. It encapsulates the relationship between parameters and the observed data.

Posterior Distribution

The posterior distribution p (6 | D) combines the prior distribution and the likelihood,
updating our beliefs about the parameters in light of the data. This distribution is the
cornerstone of Bayesian inference, providing a complete probabilistic description of the

parameters after considering the evidence.

2.2.2 Markov Chain Monte Carlo M CMCQC)

Bayesian inference often involves complex posterior distributions that are not analytically
tractable (Gelman et al., 2013). Therefore, computational methods are essential for ap-
proximating these distributions. Markov Chain Monte Carlo (MCMC) methods, such as
the Metropolis-Hastings algorithm and Gibbs sampling, are widely used to approximate
the posterior distribution by generating samples from it. MCMC methods originated
in the field of physics, specifically in statistical mechanics (Metropolis and Ulam, 1949;
Metropolis et al., 1953), and it was only towards the end of the 1980s that they started to
have a significant impact in the field of statistics (Bishop, 2006).

MCMC methods are utilized to approximate complex posterior distributions, such
as p (0 | D), when deriving these explicitly is challenging or infeasible. These methods
involve sequentially drawing samples from a series of related distributions, with each
new sample adjusted based on the one preceding it. This sequential approach ensures
that the constructed Markov chain’s stationary distribution closely aligns with the target
distribution (Gelman et al., 2013). The term “Markov” in MCMC highlights that each
iteration’s parameter value, 8), depends solely on the value from the previous iteration,
(=), The sampling process at each iteration involves a specific transition distribution
to move towards the target distribution. Here we introduce several important MCMC
methods including the Metropolis-Hastings algorithm, the Gibbs sampling, slice sampling,
and elliptical slice sampling.

14
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is a generalization of the Metropolis
algorithm (Metropolis et al., 1953). It constructs a Markov chain by proposing new states
based on a proposal distribution and accepting or rejecting these states based on an
acceptance probability. In the k-th sampling iteration, the Markov states of 0 is updated
through:

* Propose a new state 6 from a proposal distribution g (6’ | G(k_1)> .

* Calculate the acceptance probability « as:

( p (@ | D)q (601 |9) )
& = min 1,]9 . (2.4)

(0% [ D) q (0" 6%1)

e Accept the new state with probability «. If accepted, set 8K} = ¢'; if rejected, set
g(k) — g(k=1)

A notable challenge with the Metropolis-Hastings method is managing the acceptance rate,
which can be notably low for multidimensional data or parameters. This issue is often
exacerbated by difficulties related to the choice of step size in the proposal distribution.
In the Metropolis-Hastings algorithm, each proposed move must be accepted or rejected
based on the acceptance probability. When dealing with high-dimensional parameters,
the algorithm may struggle to efficiently explore the parameter space. To address the
challenges, several variants of Metropolis-Hasting have been proposed, including the
random walk Metropolis (Gelman et al., 1997), reversible-jump algorithms (Green, 1995;
Richardson and Green, 1997), and delayed-rejection (Green and Mira, 2001). On the
other hand, the step size determines how far a proposed move is likely to be from the
current position, and choosing an appropriate step size can be tricky: If the step size
is too small, the algorithm will explore the parameter space very slowly, making many
incremental moves that are likely to be accepted but do not cover much ground. This
leads to slow convergence and can require many iterations to adequately explore the
distribution. Conversely, if the step size is too large, the algorithm may frequently propose
moves to low-probability areas, resulting in a high rejection rate. This also impedes efficient
exploration of the parameter space, as the chain can become stuck or only make occasional
large jumps (Bishop, 2006). To deal with this challenge, the technique of slice sampling
(Neal, 2003) provides an adaptive step size that is automatically adjusted to match the
distribution, which will be introduced later in this section.

15
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Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984; Tanner and Wong, 1987; Gelfand and Smith,
1990) is a special case of the Metropolis-Hastings algorithm where the proposal distribution
is derived from the full conditional distributions of each parameter. This method simplifies
the sampling process by exploiting the structure of the conditional distributions. Gibbs
sampling iteratively updates each variable in turn, conditioning on the current values of
all other variables. Suppose we have the parameters (61,65, ...,6,). For each iteration,
update each parameter 6; in sequence, sampling from the conditional distribution of 6;
given all other parameters:

o0~ p (60,00, 0, 005, D). @9

This step is repeated for each parameter in the model, cycling through all the parameters
systematically. After many iterations, the distribution of samples converges to the joint
distribution of the parameters. The initial set of samples (known as the “burn-in period”)
is usually discarded to ensure that the samples come from the targeted distribution. Gibbs
sampling is often considered the simplest MCMC method and is typically recommended as
the first option for models that are conditionally conjugate (Bishop, 2006). In conditionally
conjugate models, the parameters can be directly sampled from their conditional posterior
distributions, which simplifies the computation significantly.

Slice Sampling

Slice sampling (Neal, 2003) can address the challenge that the Metropolis-Hastings al-
gorithm is sensitive to step size. Slice sampling operates by defining a region or “slice”
where the probability density of the target distribution is above a certain threshold. It
then samples uniformly from this region. This method can effectively explore the target
distribution without the need for a finely tuned proposal distribution. For the parameter 0,

the basic steps of slice sampling are as follows:

e The slice is defined for a current parameter value 6 by u < p (0), where u is is a
vertical level uniformly chosen below the curve p (0) (the target density function).
This defines a horizontal “slice”: S = {6 : u < p(0)}.

* Find an interval around 6 that contains a significant portion of the slice and sample

6’ uniformly from this interval. If the new point 6’ falls within the slice (1 < p(0")),
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it is accepted as the new sample. If not, the interval is shrunk, and the process is
repeated until a valid sample is drawn.

Elliptical Slice Sampling

Elliptical Slice Sampling (Murray et al., 2010) is a variant of the slice sampling method
designed specifically to sample from distributions that can be expressed as a Gaussian
“prior” multiplied by a likelihood that is expensive or difficult to compute. This method
is particularly useful for Bayesian inference problems in which the likelihood can be
computed for a given parameter vector, but where the parameter vector itself is correlated
and is modeled using a Gaussian process (Williams and Rasmussen, 2006). Elliptical
Slice Sampling combines the benefits of slice sampling with the properties of elliptical
distributions (i.e., multivariate Gaussian distributions) to efficiently explore parameter
spaces that have strong correlations. For the parameter vector 8, the process of elliptical
slice sampling is as follows:

¢ Draw an auxiliary variable 3 from the Gaussian prior.

* Choose a slice level u similar to slice sampling for the current parameter 8, u ~
U (0,p(0)), where p(0) is the likelihood function times the prior evaluated at 6.

¢ Construct an ellipse using 8 and 3 such that any point on the ellipse can be written

as:

0 (¢) =0cos(¢p)+ Bsin(¢), (2.6)

where ¢ is the angel parameter. Randomly select an angle ¢ and define a bracket of

angles around this angle. This bracket will shrink in subsequent steps.

e If the new point 6(¢) does not satisfy p (6 (¢)) > u, adjust the bracket to exclude
¢ and sample a new ¢ from the remaining bracket. This step is repeated until a
satisfactory 0 (¢) is found.

This sampling method can significantly simplify the computation and improve the effi-
ciency of the sampling process in complex Bayesian inference tasks involving correlated
parameters and computationally intensive likelihood evaluations.

In real-world applications, it is often the case that models incorporate a mix of parame-
ter types—some with conditional posterior distributions that are easily sampled directly and
others that are not. To address these varied sampling requirements efficiently, combining
Gibbs sampling with other methods like Metropolis-Hastings, slice sampling, and elliptical
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slice sampling provides a powerful framework for handling complex Bayesian models,

enhancing both the efficiency and effectiveness of the sampling process (Bishop, 2006).

2.2.3 Applications in Public Transit

Bayesian inference has been applied to various research problems in public transit systems
and this section will review the related previous literature. There are some existing works
focusing on using Bayesian inference to estimate transit OD matrix based on counts of
the passengers boarding and alighting at each stop. Li (2009) applied the Markov chain
model to capture the relationships between the entries of the transit route OD matrix, and
to reduce the total number of unknown parameters. Bayesian inference was performed to
estimate the unknown parameters of the Markov model and this method derived a closed-
form solution, which is computationally efficient. Hazelton (2010) introduced a novel
Bayesian model for OD matrix estimation and developed a two-stage sampling algorithm
for Bayesian inference using the MCMC method. The first stage samples latent OD matrices
using the Markov model by Li (2009) as the proposal distribution. The second stage
samples model parameters conditional on the OD matrices in the first stage. Blume et al.
(2022) developed a Bayesian inference approach to estimate the static OD matrix in large-
scale networked transit systems but considering elements as continuous random variables.
This problem is approached as an inverse linear regression, and the posterior distributions
of OD matrix entries are estimated using Hamiltonian Monte Carlo. Another important
topic is using Bayesian inference for transit passenger assignment problems. Sun et al.
(2015) proposed an integrated Bayesian statistical inference framework to characterize the
transit assignment model. To estimate the high-dimensional parameters, they developed
the variable-at-a-time Metropolis sampling algorithm to make Bayesian inference. Rahbar
etal. (2018) proposed a Bayesian hierarchical model to estimate travel time components and
to calibrate a transit assignment model. Route choices are represented by a multinomial
logit model, and the parameters are estimated through the MCMC method. Besides the
above research problems, Zhu et al. (2018) proposed a model for inferring the probability
distribution of the number of times a passenger is left behind at stations in congested
metro systems. They applied Bayesian inference methods to estimate the left-behind
probability for a given station and period. Sun et al. (2021) proposed a Bayesian framework
to infer the passenger demand profile conditional on the observed bus dwell times. They
applied Hamiltonian Monte Carlo sampling to approximate the posterior distribution for
the model parameters. Cheng et al. (2021) proposed a Bayesian topic model to infer trip
destination in smart card data with only tap-in records. They applied Gibbs sampling to
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approximate the posterior distributions of model parameters.

2.3 Bayesian Forecasting Methods

2.3.1 Bayesian Forecasting

Bayesian forecasting involves using Bayesian methods to predict future data points based
on existing data (Gelman et al., 2013). It incorporates prior distributions, likelihoods,
and posterior distributions to make predictions. In forecasting problems, train data and
test data play crucial roles: the train data is used to fit the Bayesian model and learn the
parameters, while the test data is used to evaluate the model’s predictive performance.

Bayesian Forecasting Process

* Model specification: Develop a probabilistic model that describes the relationship
between the train data D and parameters 6. Specify the likelihood function p(D | 0),
which describes the probability of the observed data given the model parameters.
Common forecasting models include linear regression, time series models, and
state-space models.

* Prior specification: Specify prior distribution p(0) for the model parameters. The

prior represents prior beliefs about the parameters before observing the data.

* Bayesian inference: Use Bayes’ theorem and Bayesian inference methods to update
the prior distribution with the train data to obtain the posterior distribution p(6 | D)
of the model parameters using Eq. (2.3).

* Bayesian forecasting: Integrate over the posterior distribution of the model param-
eters to obtain the predictive distribution of future observations. The posterior

predictive distribution of a future data point y* can be expressed as:
py* D) pr(y*IG)P(GID)d& 2.7)

Common Bayesian Forecasting Models

* Bayesian linear regression: Bayesian linear regression (Mitchell and Beauchamp,
1988) is a statistical method that combines linear regression with Bayesian inference,
which can be applied to make probabilistic forecasting. It provides a probabilistic
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approach to linear regression, incorporating prior knowledge and updating this

knowledge with observed data.

* Bayesian vector autoregression (VAR): Bayesian VAR (Baribura et al., 2010) is a
powerful extension of the traditional VAR model for probabilistic forecasting. It
incorporates Bayesian inference to improve the estimation of the model parameters,
especially when dealing with small sample sizes or highly parameterized models.

* Bayesian state-space model: Bayesian state-space models (Triantafyllopoulos et al.,
2021), such as hidden Markov model (Scott, 2002) and linear dynamic systems
(Linderman et al., 2017), are powerful tools for modeling time series data, especially
when dealing with hidden or latent variables that evolve over time. These models
combine state-space representation with Bayesian inference, allowing for robust
estimation and prediction while accounting for uncertainty in model parameters and

state variables.

* Bayesian neural network (BNN): BNN (Kononenko, 1989) incorporates Bayesian
inference to estimate the distribution of the network’s parameters. Unlike tradi-
tional neural networks, which provide point estimates of the parameters, BNNs
provide a distribution over the parameters, allowing for uncertainty quantification

in predictions.

Bayesian framework is highly flexible, allowing for the integration of Bayesian inference
with various forecasting models to produce probabilistic forecasts. By treating model
parameters as random variables with associated probability distributions, the Bayesian
approach provides a comprehensive measure of uncertainty in forecasts. This probabilistic
perspective not only enhances the interpretability of the predictions but also improves

decision-making processes by quantifying the confidence in different outcomes.

2.3.2 Applications in Public Transit

Bayesian forecasting methods have been effectively applied in public transit systems to
enhance various aspects of their operations. They can provide probabilistic predictions
that account for uncertainty and improve decision-making. Transit demand prediction
is a very important research problem, which is fundamental and critical to public transit
planning and management. Li et al. (2020) proposed a Bayesian graph convolution model
to provide probabilistic forecasting of transit OD demand. Roos et al. (2017) proposed

a dynamic Bayesian network approach for short-term passenger flow forecasting. Zhao
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et al. (2018) developed a method for predicting daily individual mobility represented as
a chain of trips and they proposed a Bayesian n-gram model to predict trip attributes.
There are some existing works using Bayesian forecasting methods for transit travel time
prediction. Ma et al. (2017) proposed a generalized Markov chain approach for estimating
the probability distribution of bus trip travel times. Huang et al. (2021) proposed a
Bayesian Support Vector Regression to forecast the distribution of bus travel time. Biichel
and Corman (2022b) proposed a hidden Markov chain framework to forecast bus travel
time distribution. More reviews and discussions on Bayesian forecasting of transit travel
time are detailed in Chapter 4.3. Overall, probabilistic/Bayesian forecasting for transit
systems has received significant attention in recent years due to its potential to enhance
the efficiency and reliability of public transportation.
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Chapter 3

Bayesian Inference for Link Travel Time

Correlation

This chapter is a research article submitted to Transportmetrica B: Transport Dynamics:

¢ Chen, X., Cheng, Z., Sun, L., 2022. Bayesian inference for link travel time correlation

of a bus route. arXiv preprint arXiv:2202.09485.

This chapter corresponds to the Bayesian inference method for the link travel time correla-
tion of a bus route. The understanding of the link travel time correlation is important for

bus travel time forecasting in the subsequent chapters.
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3.1 Abstract

Estimation of link travel time correlation of a bus route is essential to many bus operation
applications, such as timetable scheduling, travel time forecasting and transit service
assessment/improvement. Most previous studies rely on either independent assumptions
or simplified local spatial correlation structures. In the real world, however, link travel
time on a bus route could exhibit complex correlation structures, such as long-range
correlations (e.g., a delayed bus is more likely to be further delayed due to bus bunching),
negative correlations (e.g., a bus that goes ahead of schedule may intentionally slow
down to follow a pre-defined timetable), and time-varying correlations (e.g., different
correlation patterns for peak and off-peak hours). Therefore, before introducing strong
assumptions, it is essential to empirically quantify and examine the correlation structure
of link travel time from real-world bus operation data. To this end, this paper develops
a Bayesian Gaussian model to estimate the link travel time correlation matrix of a bus
route using smart-card-like data. Our method overcomes the small-sample-size problem
in correlation matrix estimation by borrowing/integrating those incomplete observations
(i.e., with missing/ragged values and overlapped link segments) from other bus routes.
Next, we propose an efficient Gibbs sampling framework to marginalize over the missing
and ragged values and obtain the posterior distribution of the correlation matrix. Three
numerical experiments are conducted to evaluate model performance. We first conduct
a synthetic experiment and our results show that the proposed method produces an
accurate estimation for travel time correlations with credible intervals. Next, we perform
experiments on a real-world bus route with in-out-stop record data; our results show that
both local and long-range correlations exist on this bus route. Finally, we demonstrate an
application of using the estimated covariance matrix to make probabilistic forecasting of

link and trip travel time.

3.2 Introduction

Understanding travel time characteristics of buses is not only vital in providing better
services for passengers (e.g., better travel time estimation), but also essential for transit
agencies to design efficient and economical operation strategies (e.g., better route and
timetable optimization) (Liao et al., 2020). A bus route can be viewed as a directed chain
network, where each node represents a bus stop and each link represents the road section

between two adjacent bus stops. Link travel time correlation of a bus route is essential to
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understanding the characteristics of the bus route and improving bus travel time estimation
(Dai et al., 2019).

However, most existing studies on estimating link travel time and the corresponding
correlation structure mainly centers on passenger car traffic, while such analysis is often
inappropriate for bus systems due to the unique operational properties of bus services. A
major limitation that prevents us from using existing link travel time analysis models is
that an accurate estimation of link travel time correlation matrices requires a large number
of complete observations, while buses are essentially sparse in general road traffic and
incomplete trip observations are pretty normal from bus operations, particularly for a long
route with many links. As a result, the scale of many studies is confined to only a few links
(e.g., Gajewski and Rilett, 2005). To better utilize the limited data, another approach is to
use simplified /parsimonious correlation structure to model link travel time. For instance,
many statistical models assume only the travel times of adjacent/near links are correlated
(e.g., Chen et al., 2012; Jenelius and Koutsopoulos, 2013; Srinivasan et al., 2014). Although
this is an intuitively reasonable assumption, it is inappropriate for bus travel time since
link travel time correlations of a bus route have much more complex spatiotemporal
characteristics. First, the link travel time of a bus route may have long-range correlations
due to factors such as bus bunching (e.g., a delayed bus tends to be further delayed).
Second, the correlation might be negative; for example, a bus that goes ahead of schedule
may intentionally slow down to follow a pre-defined timetable. Moreover, link travel
time correlations vary in different periods; the correlations of peak hours and the off-peak
period could be completely different due to the time-varying service frequency and road
traffic. This further limits the available sample size to conduct link travel time analysis for
a bus route over a pre-defined time window. In summary, it is difficult to adapt existing
link travel time analysis for car traffic to bus operation due to (1) small sample size: the
limited number of complete observations are usually insufficient to estimate the link travel
time correlation accurately; (2) oversimplified assumptions on the correlation structure:
assuming only local spatial correlation is insufficient to capture the complex characteristics
of actual link travel time for bus operation.

If having access to a large amount of bus operation data (e.g., automatic vehicle location
data, smart card data), we can infer the arrival time of a bus at a bus stop. Then, we can
build a vector of link travel time using such in-out-stop records for each service run (from
the first stop to the last stop), and then estimate the mean and covariance from samples
for multiple service runs in a similar way as for car traffic. However, such data in practice

is often not readily available due to the following issues. First, the arrival time at a stop
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becomes inaccessible when there is no boarding/alighting passenger or when the stop is
skipped by a bus, bringing many unknown values in arrival time (and thus link travel
time). A unique property in bus operation is that, for the stop-skipping case we still can
obtain the sum of travel time of several adjacent links from the arrival time of upstream
and downstream stops; we refer to this special type of missing values as ragged values.
Ragged values are quite common in bus systems and contain valuable information for
enhancing link travel time correlation estimation. Secondly, buses are essentially sparse in
traffic, and the number of operational buses per bus route per day is usually very small.
For instance, a high-frequency bus route with a 10-min headway will only generate a
sample size of 6/hour (if fully observed), which is much smaller than that of general car
traffic. The small sample size and the ragged pattern prevent us from having a robust
estimation of link travel time correlation, especially when quantifying link travel time
correlations of a specific period (such as morning peak).

To address the above issues, in this paper we develop a Bayesian probabilistic model to
estimate the link travel time correlations in a bus route. In particular, we aim to address
the missing/ragged value problem and limited sample size problem for a target bus route
by incorporating data from other bus routes that have overlapped links/stops. We assume
the travel time of links in a bus route follows a multivariate Gaussian distribution. The
task is to estimate the covariance matrix and the Bayesian credible interval of each entry in
the matrix (correlation matrix can be obtained from the covariance matrix). In particular,
our method makes use of incomplete observations with missing, ragged values and
route segments from multiple bus routes. We point out that the conditional distribution
of missing and ragged values can be viewed as a multivariate Gaussian distribution
truncated on the intersection with a hyperplane. Next, we develop an efficient Markov
chain Monte Carlo (MCMC) sampling algorithm to marginalize over the missing and
ragged values and obtain the posterior distribution of the covariance matrix. In a test with
synthetic data, we found our method produces accurate estimation for link travel time
covariance. The MCMC scheme also allows us to exploit the posterior distribution of each
entry in the covariance/correlation matrix. In addition, the incorporation of incomplete
data substantially improves the estimation. Moreover, we use our model to empirically
quantify the link travel time correlations of a twenty-link bus route in Guangzhou, China;
results reveal strong local and long-range correlation patterns in link travel time of the bus
route. Finally, we demonstrate an example of probabilistic forecasting of link/trip travel
time in a bus route using the estimated covariance matrix; our forecasting method is more

accurate than the historical average.
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The contribution of this paper is twofold. First, we propose a Bayesian model that can
use incomplete/corrupted vectors of link travel time from multiple bus routes to estimate
the link travel time correlations of a target bus route. This model overcomes the small
sample size of a single bus route by integrating incomplete data that are unusable in other
models. A Gibbs sampling algorithm is developed to obtain the posterior distribution of
the covariance/correlation matrix. Second, we verify the robustness and applicability of
the proposed model by a synthetic example and a real-world case study. Results show our
model can accurately estimate the link travel time correlations with incomplete observa-
tions, and the model applies to problems at a practical scale. The estimated correlations are
beneficial to system understanding/evaluation and bus travel time estimation/forecasting.

The remainder of this paper is organized as follows. In Section 3.3, we review previous
studies on link travel time correlation. In Section 3.4, we describe the problem of the link
travel time correlation estimation in a bus route and introduce notations. In Section 3.5, we
present the Bayesian probabilistic model and the inference method based on MCMC. Next,
in Section 3.6, we demonstrate the capability of our model through three experiments.
Finally, we conclude our study, summarize our main findings, and discuss future research

directions in Section 3.7.

3.3 Related Work

Most previous studies have concentrated on link travel time correlation or covariance
matrix estimation for car trips. During the 1990s, Advanced Traveler Information System
(ATIS) was deployed rapidly, which aims to provide information to assist surface trans-
portation travelers in moving from a starting location (origin) to their desired destination
(Schofer et al., 1993). This system collects data from probe automobiles, prompting the
emerging research in travel time estimation and forecasting. Sen et al. (1999) pointed out
the covariance of link travel times which are close together, may not be zero, and they
proposed estimating the correlation matrix of link travel time as an open problem for future
research. A straightforward solution is to infer the correlation matrix using asymptotic
theory (i.e., correlation formula), which is the traditional estimation of correlation. Bernard
et al. (2006) used the straight method to estimate link travel speed correlations, which are
similar to link travel time correlations. Nevertheless, Gajewski and Rilett (2005) figured
out that the classical estimation method lacks interpretability and is complicated due to
the nonparametric nature of the estimator and the covariance between links. Then they
adopted a Bayesian approach to estimate link travel time correlation, which had benefits
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in terms of interpretation and ease of use. The authors only experimented on three links
because they could collect many full observations of the three links. However, for one road
network with many links, the number of full observations dramatically decreases, and this
simple Bayesian model can not estimate the correlation matrix accurately.

Link travel time correlation is essential to the stochastic routing problem, as it helps to
consider the reliability of travel time. Many early studies (Cheung, 1998; Miller-Hooks,
2001; Seshadri and Srinivasan, 2010) ignored link travel time correlation because of the
low computational efficiency for large networks. Some studies use origin-destination trip
data to estimate link travel times and they usually make the independent link travel time
assumptions (e.g., Hunter et al., 2009; Zhan et al., 2013, 2016; Sun et al., 2015). Many
studies focus on estimating the distribution of route travel time, but their methods do not
model link travel time correlations (e.g., Rakha et al., 2006; Jenelius and Koutsopoulos,
2017; Woodard et al., 2017; Huang et al., 2021). Next, correlations between link travel
times are explored in Waller and Ziliaskopoulos (2002) and Fan and Nie (2006). Both of
them consider local spatial correlations between adjacent links. Many studies followed
this assumption that only the adjacent link travel times are correlated. Although the local
spatial correlation assumption is strong, it seems reasonable because we would expect
the impact of a link on another decreases with the increase of distance, and it becomes
a popular choice in the literature (Chen et al., 2012; Srinivasan et al., 2014) partially due
to the model simplicity and the lack of empirical evidence. Rachtan et al. (2013) adopted
three regression models to estimate the correlation by considering various combinations
of variables, including spatial distance, temporal distance, traffic state, and the number
of lanes, and they found that the primary factor in correlation is spatial distance. Zeng
et al. (2015) also incorporated the spatial correlation of link travel time in finding the
reliable path of stochastic networks. Geroliminis and Skabardonis (2006) estimated the
variance of route travel time; they used full observations of six links to directly compute
the covariance and correlation. Ramezani and Geroliminis (2012) applied Markov chains to
estimate the route travel time distribution considering the correlation between successive
links. They first established a two-dimensional (2D) diagram with data points representing
travel times of two consecutive links; then used a heuristic grid clustering method to
cluster the 2D diagram to different spaces (states). With a Markov chain procedure, they
can integrate the correlation between states of 2D diagrams for successive links. Jenelius
and Koutsopoulos (2013) incorporated the spatial link travel time correlation into travel
time estimation for urban road networks; they used a spatial moving average (SMA)

structure to model link correlation by assuming that the stochastic component of each
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link is expressed as an independent term with zero mean and variance, plus a linear
combination of the independent terms of the other links. Westgate et al. (2016) proposed
the method for estimating large-network travel time distribution; they model travel time
at the trip level instead of the link level, but they consider the dependency between
links by incorporating explanatory factors like the road class, speed limit, one-way road.
Rodriguez et al. (2017) used the multi-output Gaussian Processes to estimate network-wide
travel time distribution. They considered the squared exponential (SE) kernel to capture
correlations between any pair of time points and they applied Graph/Laplacian kernel
to model correlations between two link travel times. Copula functions can describe the
dependence between random variables. Chen et al. (2017) and Chen et al. (2019) developed
a copula-based approach to model the link travel time correlation. The approach applied a
two-dimensional Gaussian copula function to fit the link travel time distribution of two
adjacent links. Qin et al. (2020) proposed a pair-copula mixture model for estimating urban
arterial travel time distribution, and it can reduce the computational complexity. The
copula-based models are limited to expensive computations, especially for many links;
thus, they are applied on a few links and only consider the correlation between adjacent
links.

In summary, most studies about link travel time correlation are for car travel time
estimation. There are only a few studies for bus travel time estimation with link travel
time correlation being considered. Uno et al. (2009) estimated the variance of individual
path travel time by aggregating the covariance between link travel time; thus, the travel
time distribution of one path can be estimated by summing up directly observed multiple
links mean travel time with their covariance based on bus probe data. Dai et al. (2019)
attempted to estimate the bus path travel time distribution using GPS probe and smart card
data. They considered that path travel time distribution could be estimated by statistically
summarizing link travel time distributions and dwell-time distributions at bus stops.
Therefore, both studies need to obtain the correlation or covariance matrices, but they only
compute the correlation matrix directly using many full observations without considering
the temporal difference. In fact, the correlation matrix should be time-varying due to the
temporal variations in bus operation and road traffic. To the best of our knowledge, little

attention was paid to quantifying time-varying link travel time correlation in the literature.
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3.4 Problem Description

For a bus route with 7 links (i.e., n + 1 bus stops), we define a bus link as the directional
road segment between two adjacent bus stops. For conciseness, we often omit the word
“bus” and simply use “route” and “link” in the following. Denote a random variable x;
to be the travel time of the i-th link in the route, whose value is observed by the time
difference between the arrival of a bus at the two adjacent bus stops. Next, the travel
time of all the links of the route can be represented by multivariate random variable
x = [x1,x2, - ,xn]T.

This study uses the data from in-out-stop record systems. When a bus arrives at or
leaves a bus stop, the system registers vehicle ID, route ID, action type (arrival /departure),
together with a timestamp. We can thus calculate the link travel time from the bus
in-out-stop data. Each bus has a vector for its link travel times on the route. Besides bus in-
out-stop record data, smart card data—a more common type of data—can be equivalently
used to obtain the link travel time. However, in practice, the link travel time vector x
from a bus run on the target route or on a related route is often incomplete due to several
reasons. Figure 3.1 uses a simple bus network to illustrate the issue of missing and ragged
values in the data. Route 1 is a bus route of interest with seven links. We assume all buses
go through the same bus link (during the same period of the day) have the same link travel
time distribution, regardless of which route they belong; this allows us to use the data from
Route 2 and Route 3 to improve the estimation of link travel time correlations in Route 1.
An ideal observation for Route 1 is Figure 3.1 (a), where the travel times of all links are
obtained. However, we cannot obtain the travel time of both link #3 and link #4 if a bus of
Route 1 skipped stop D; we can instead observe the total travel time (x3+x4) from stop C to
stop E, and this is the case of ragged value shown in Figure 3.1 (b). Moreover, Route 2 goes
through six out of seven links, resulting in observations with missing values as shown in
Figure 3.1 (c). The last example is Route 3, which goes through six links (B to H) and has
no stop at F, bringing incomplete observations with both missing and ragged values as
shown in Figure 3.1 (d). Essentially, data from other relevant bus routes can be considered
as a general type of incomplete observations with both missing or ragged values.

We denote x; = [x;1,Xi2, -, xiln]T, which is a sample of the random variable x, to
be the link travel time of the i-th bus during the study period. Since not all entries of x;
are always available from data, we denote r; = G;x; € R" to be a vector of observed
information attached with x;, where G; € {0,1}""*" is a binary matrix encodes the missing
and ragged positions of the i-th bus. We call a r; a recording vector and G; an alignment

matrix. For example, we have x; = r; and G; being an identity matrix for a bus with a
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does not stop at D

#1

Route 2
(@) | T1| X2 | X3 | 4 | 5 | T6 | 27 b) [z | 22| 23+24 | @5 | T6 | T7
(¢) | @1 | @2 | T3 | 4 | T5 | X6 | T7 (d) | x1|x2| X3 | X4 | X5+ X6 | X7

Figure 3.1: Graphical illustration of full observations and incomplete observations. (a) a
complete observation of Route 1; (b) an observation of Route 1 with ragged values; (c) an
observation of Route 2, where x7 is inaccessible (missing); (d) an observation of Route 3,
where x; is inaccessible (missing), x5 and x¢ are ragged.

complete observation; for a bus i in the case of Figure 3.1 (d), the link travel time and its

missing and ragged values can be represented as

o
010000 0] |x0o [ xip] [7i1]
001000 0| [x3 Xi3 rin
000100 0| [|xg4 = Xig = |na| 3.1)
00001 10| [x5 Xi5+ Xig Tia
000000 1] x5 x| 75
X7
G; x; T

In the real world, the number of incomplete samples can be even greater than that of
complete samples. However, such “incomplete” observations should not be discarded as
they also encode valuable information in estimating link travel time correlations. Assuming
there are m buses that went through a target bus route during a study period, the goal of
this research is to incorporate all recording vectors {r;};" ; and alignment matrices {G;};",
to quantify the link travel time correlation matrix C = Corr [x]. Note that the correlation
matrix could vary for different periods. Therefore, we divide a day into several periods

and estimate a correlation matrix for each period separately.
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3.5 Methodology

3.5.1 Multivariate Gaussian Model

Gaussian distribution offers numerous analytical and computational advantages and has
been extensively used in modeling travel time distribution (e.g., Smeed and Jeffcoate, 1971;
Li, 2004; Seshadri and Srinivasan, 2010). In this paper, we assume the joint probability
of link travel times in a bus route follows a multivariate Gaussian distribution with the
probability density function

-1 (@—p) 2 (@—p)|, (3.2)

1
p(x|wmX)= T exp |~

where pp = E [z] € R" is a mean vector, and £ = Cov [z] is an 1 x n covariance matrix,
and |Z| is the determinant of . The covariance matrix X and its relationship with the
correlation matrix C are shown in Eq. (3.3) and Eq. (3.4), respectively.

V [x1] Cov [x1,x2] -+ Cov [x1, xy]
Cov [x, x1] V [x7] - Cov [x2, xy]
E=E|(z-Efa])(z-Ela) | = | o P
Cov [xy, x1] Cov [xp,x2] -+ V[x,]
(3.3)
r 1 Cov|[x1,x7] o Cov[xy,xn] 7]
V V1] Vix)] Vx|V xy]
) : Cov|xp,x1] 1 ~_Cov|xp,xn]
C = (diag ()} £ (diag (£)) * = | VVEal ViV | 3.)
Cov[;cn,xﬂ Cov[;cn,xﬂ o 1
LA/ V] V] A/ V] Vix] .

where Cov [x;,xj] = E [(x; —E[x;]) (xj — E [xj])], V [x;] = Cov [x;,%;], and diag (Z) is
the diagonal elements of X. Each element in the correlation matrix C is essentially a
Pearson correlation coefficient. However, this naive approach that directly calculates
sample variance and covariance using Eq. (3.3) and Eq. (3.4) fails with the presence of
incomplete observations.

Figure 3.2 shows the overall graphical representation of our Bayesian model that can
handle missing and ragged values. For a collection of m ragged observations R = {r;}?",
over a pre-defined time window, we have r; = G;z; fori = 1,...,m. Next, we assume
x; is a “latent” realization/sample from a multivariate Gaussian distribution N (u, X)

following Eq. (3.2). In a Bayesian setting, we further use a conjugate Gaussian-inverse-
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© D
\_ 1=1,2,---,m )

Figure 3.2: The graphical illustration of Bayesian Gaussian model.

Wishart distribution on 4 and X (Gelman et al., 2013) for efficient inference. The overall

data generation process is summarized as:

X~ W (Yo, ), (3.5)
1

p A (03 E) (6)
0

x; ~N (u,X), fori=1,...,m, (3.7)

r, =Gz, fori=1,...,m, (3.8)

where W~ (¥, 1) is the inverse-Wishart distribution with v degrees of freedom (v > n),
and an n x n scale matrix ¥o; g is the prior mean. The probability density function of the

inverse-Wishart distribution is
W HE | ¥o,10) =C |):‘.|_(V0+”+1)/2 exp [—% Tr (‘I’OZ_1>} , (3.9)

where C is a normalizing constant and Tr(-) is the trace of a matrix.

Based on the graphical structure presented in Figure 3.2, we can derive an efficient
MCMC scheme using Gibbs sampling. For simplicity, we denote by G = {G;}!"; the set
of alignment matrices corresponding to observations R = {r;};",, by X = {x;};’, the
set of “full” link travel time for the m bus runs, and by ® = {u, Ao, Yo, o} the set of
hyperparameters for the Gaussian-inverse-Wishart prior distribution in Egs. (3.5) and (3.6).
We start the Gibbs sampling with randomly initialized values for all variables and then

iteratively sample each variable from its conditional distribution on other variable:

e Sample (p, X) from p (u, X | X, ®). Because of the conjugate prior distribution, the
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conditional distribution of the mean vector and the covariance matrix p (u, X | X', ®)

is a Gaussian-inverse-Wishard distribution:
1 _ .
P21 2,0)~ A (| g, 22 ) W E ] F5,00), (3.10)
0

where

NOZWr A =Ao+m, vy=wvy+m, w=ai§$i,

(3.11)

m

(@ —po) (B—po)', S=D (xi—&) (zi—a) .
i=1

)\Om

Y5 =% +S
0 0+ +/\o+m

e Sample X from p (X | u, X, R, G). For this step, we no longer have a simple analytical
formulation to sample X" due to the linear constraints in Eq. (3.8). We next introduce

an effective solution to sample x; from its conditional distribution in Section 3.5.2.

3.5.2 Sampling Link Travel Time

Assuming the link travel times of different buses are independent. Next, we can factorize

the conditional distribution of link travel time as

m
p(X | wZ,R,G) =[]p(@|mEr,G). (3.12)
i=1

Therefore, we can draw sample of the bus-specific link travel time vector x; independently.
The conditional distribution of x; in Eq. (3.12) can be viewed as a multivariate Gaussian

distribution truncated on the intersection with a hyperplane, i.e.,
€r; ~ NS:‘ ([_L, Z) ’ Si = {wi : GZ'CBZ' = 'rl-} . (313)

The probability density function of the hyperplane-truncated multivariate Gaussian is

1 1 _
plz; | p, X, 7, Gi) = - exXp —5(501' — )2z — )| 6(Giz; = 1y), (3.14)
1

where Z; is a normalizing constant; §(x) is a function whose value is 1 only if the condition
+ holds, and 0 otherwise.
There are several available algorithms for efficient sampling over hyperplane-truncated
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Gaussian distributions (e.g., Cong et al., 2017; Botev, 2017). We apply a fast sampling
algorithm developed by Cong et al. (2017) for this problem. For a given mean vector and
covariance matrix, the algorithm for sampling the link travel time vector of the i-th bus is

described in Algorithm 1.

Algorithm 1 Sampling from a hyperplane-truncated multivariate Gaussian distribution
Cong et al. (2017).
1: Sampley ~ N (u, X);
2 Retum z; = y + LG, (G,ZG/) - (r; — Gyy), which can be more efficiently and accu-
rately calculated by

* Solve a such that (G;ZG]) a = r — Gy;

¢ Returnz; =y + ZGiTa.

3.5.3 Overall Gibbs Sampling Algorithm

Having obtained the two conditional distributions in Egs. (3.10) and (3.12), we summarize
the overall Gibbs sampling procedure for estimating the correlation matrix in Algorithm 2.
We drop the first k; iterations as burn-in and estimate the correlation matrix C as the aver-
age of samples from the last k; iterations. Besides, we store samples of correlation matrices

(c }I-(2 , and covariance matrices 0 }fi 1» which are critical ingredients for deriving the

Bayesian credible interval for each entry in the correlation matrix and performing proba-
bilistic forecasting of bus travel time. For hyperparameters ©, we set pgp = 0,, Ag = 10,

®) = I, v) = n + 2, where n is number of links.

3.6 Case Study

This section provides three numerical case studies using both synthetic data and real-world
data. First, we use a synthetic experiment to test the accuracy of the proposed correlation
estimation method and the improvement brought by incorporating missing /ragged values.
Next, we apply our model on bus in-out-stop record data to quantify link travel time
correlation in a transit corridor in Guangzhou. Finally, we demonstrate an application of

using our model in probabilistic forecasting of bus link/trip travel time.
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Algorithm 2 Gibbs sampling for correlation estimation.

Input: Recording vectors R, alignment matrices G, initial values for hyperparameters ©,
the number of iterations kq, k.

Output: Estimated correlation matrix C, a set of samples for correlation matrices {C(i) }k2

i=1’
a set of samples for covariance matrices (z }:(il

1: foriter = 1to ki + k, do

Draw X and p according to Eq. (3.5) and Eq. (3.6).

if iter > kq then
Calculate C by Eq. (3.4), collect C and X to the output sets.

end if

fori=1tomdo
Draw x; by Algorithm 1.

end for

9:  Update the parameters © = {19, Ao, ¥o, 10} by Eq. (3.11).
10: end for ,
11: Compute C as the average of samples in {C()}

12: return C, {C(i)}i-cil, {Z(i)}fir

ko
=1

3.6.1 Case 1: Synthetic Data

We design a simple bus network with 18 links as shown in Figure 3.3 to test the performance
of the proposed correlation estimation method. In this bus network, The target Route 1 has
18 links; Route 2 shares 12 links with Route 1 (from link #1 to link #12); Route 3 shares 14
links with Route 1 (from link #5 to link #18). We use a multivariate Gaussian model with
pre-defined mean and covariance to synthesize a link-travel-time data set. We set the mean
vector to be p = [14,15,18,13,17,15,10,24,15,11,12,15,9,13,17,15,19,21]. We use the
Graph kernel to set the covariance matrix by the following steps: (1) The route’s structure
has local correlations, and we assume the following link pairs are virtually adjacent: (link
#4, link #13), (link #5, link #12), (link #7, link #15) to simulate long-range correlations. (2)
From the structure, we can obtain the degree matrix D and the adjacency matrix A, then
we can get the symmetrically normalized Laplacian matrix L = D : (D—A) D 2. (3)
Next, we can compute the kernel matrix K using the kernel function K = exp (BL). (4)
Finally, we can get the correlation matrix Corr = (diag (K))f% K (diag (K))f%, and the
covariance matrix X = ¢Corr. Here, we set B = 3,0 = 10 to generate the covariance
shown in Figure 3.4.

We draw 240 samples of link travel time vectors from the multivariate Gaussian dis-
tribution with the above parameters {p, Z}. Next, we assign 160 samples to Route 1, 80
samples to Route 2, and 80 samples to Route 3. The travel time values for links that do not
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Route 2

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

Figure 3.3: The bus network of synthetic data.

#1410]9.5/6.5/2.4/0.6/0.1 0 | 0 | 0| 0| 0 |0.2/0.6/0.1| O 0
#249.5/10/8.2/3.8/1.1/0.3/0.1 0 | 0 | 0 |0.1/0.5|1.1|0.3|0.1| O 0
#346.5/8.2/10/7.1 3 |1.1/0.3/0.1| 0 |0.1|0.5|1.7| 3 |1.1]|0.3/0.1/ 0 | O
0
0

#442.4/3.8/7.1/10(6.9(3.3|1.3/0.4/0.2|0.6|1.7|4.9/6.9|3.3|1.3|0.3/0.1
#5-0.6/1.1| 3 6.9/ 10(7.4/3.4/1.4/0.8/1.3/|3.2/6.9| 5 |2.1/1.5|0.4/0.1
#640.1/0.3/1.1/3.3|7.4/10|7.4/3.8|1.6/0.9|1.3/3.4/12.2|1.8(3.2/1.1/0.3/0.1

#7- 0 10.1|0.3|1.3/3.4/7.4/10|7.2/3.9|1.8|0.9|1.4/1.5]3.2|6.2|2.9|1.1/0.6
#8- 0] 0/0.10.4/1.4/3.8/7.2/10/8.2/4.812.3| 1 |0.5[1.2| 3 | 1 |0.3/0.1
9 #9100/ 00.20.8/1.6/3.98.2/108.2/4.9/1.8/0.5/0.5/1.2(0.3|0.1| 0
E #1040 |0 |0.1/0.6/1.3/0.9/1.8/4.8/8.2/108.2| 4 |1.2/0.5/0.5[0.1] 0 | O
#1140 10.10.5/1.7/3.2/1.3/0.9/2.3/4.9|8.2| 10|7.2|3.1|1.2|0.5|0.1| 0 | O
#1240.2/0.5/1.7/4.96.93.4/1.4| 1 |1.8| 4 [7.2/10/6.9/3.31.3/0.3/0.1 O

#13-0.6/1.1) 3 6.9 5 |2.2/1.5/0.5/0.51.23.16.9/10|7.4/3.4/1.2/0.3/0.2
#14-40.1/0.3/1.1/3.3/12.1/1.8|3.2/1.2/0.5/0.51.2/3.3|7.4/10|7.4/3.6/1.4/0.7

#154 0 |0.1]0.3/1.3|1.5/3.2|6.2| 3 |1.2/0.5/0.51.3|3.4|7.4/10|7.1/3.7|12.4

#16-4 0| 0 |0.1/0.3/0.4/1.1|2.9| 1 |0.3|0.1]0.1|0.3|1.2|3.6/7.1/10|8.2|6.5

#1740 0| 0 0.1/0.10.3|1.1|0.3/0.1| 0 | 0 |0.1|0.3|1.4/3.7/8.2/10|9.5

#1840/0|0|0|0|0.10.6/0.11 0|0 | 0|0 |0.2/0.7|2.4/6.5/9.5/10

sesisereecyygisens
Link ID

Figure 3.4: Generated covariance matrix X.

belong to Route 2 or Route 3 are dropped and regarded as missing values. Among the 160
samples for Route 1, we keep 80 samples as full observations, and set ragged values to the
rest 80 samples by adding the travel time of link #5 and link #6.

We applied Algorithm 2 to estimate the correlation matrix from the above synthetic
data. For convenience, we refer to incomplete observations with missing values (not
including ragged values) as “missing observations” and incomplete observations with
ragged values as “ragged observation”. Three experiments are designed to compare the

estimation accuracy with different types of observations: (1) only uses full observations;
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(2) uses full and missing observations; (3) uses all observations. The numbers of MCMC
iterations are k; = 10000 and k, = 5000.

With samples drawn in the last k; iterations, the posterior mean of mean vectors
estimated with different types of observations are shown in Table 3.1, and the posterior
mean of covariance matrices are shown in Figure 3.5.

Next, we use Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) to measure
how our estimated distribution q (z) = N (1, L) is different from the true distribution
p (x) = N (p, X). Specifically, the KL divergence from g(x) to p(x) is defined as:

Dk (p () || q (= JP () dw- (3.15)

JJ

A smaller KL divergence indicates that the distribution g (x) is closer to the reference
distribution p (x). In the experiment, both p (z) and g (x) are multivariate Gaussian
distributions. We can derive the KL divergence formulation for multivariate Gaussian

distributions as:
a1 . P
Dic (p (@) | 4 (@) = 5 |In 5 = N+ Tr{E 2} + (A - p)' L (a—p)|. (16

The KL divergences for the distributions estimated with different observations are shown
in Table 3.2. We can see the KL divergence of using all observations is the lowest, indicating

that using missing/ragged values can improve the accuracy of the estimated distribution.

Table 3.1: Posterior mean of mean vectors estimated with different types of observations.

‘ Mean vector

(1) | [14.1,15.2,18.5,13.6,17.6,15.3,9.9,23.8,15.2,11.5,12.4,15.5,9.6,13.4,17.1,15.0,19.1,21.3]
(2) | [14.2,15.2,18.3,13.2,17.2,15.2,10.0,24.0,15.1,11.1,12.0,15.0,9.3,13.3,17.1,14.7,18.7,20.8]
3) | [14.1,15.1,18.2,13.3,17.1,15.0,10.0,24.1,15.1,11.1,12.0,15.0,9.2,13.2,17.2,14.9, 18.8, 20.8]

Table 3.2: KL divergence of distributions estimated with different types of observations.

O C)
Dkr | 0.2502 | 0.0748 | 0.0565

Bayesian approach has the advantage that we can estimate the posterior distributions
over covariance/correlation matrices. We use credible intervals (CI) to measures the
uncertainty of parameters. A Cl is an interval with a particular probability to contain an

unknown parameter value, and throughout this paper use 95% equal-tailed interval as CI
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#117.26.8] 5 [3.112.1]0.4 0 [0.7]0.8[1.9[2.8[3.1[2.3[0.9] 0 [0.50.40.2 #118.9[8.3[5.8[2.6] 2 [1.1]0.1f0.50. 0 [1.1[2.2[1.4[0.50.1}1.41.51.1
#216.87.2[6.1| 4 [2.2[0.50.2/0.7|0.6[1.7[2.6[2.9[2.6[0.8/0.1}0.30.10.2 #218.3[8.6| 7 [3.7[2.4[1.50.5/0.30.70.1]0.9[2.11.7[0.5[0.2}1.11.10.7
#3415 6.1(7.7]6.9]4.1[1.4/0.81.3]0.9]1.7[2.6[3.5[3.9]1.1]0.4[0.2]0.6/0.9 #315.8| 7 [8.5[7.1/4.4[2.50.9] 0 [0.90.3[1.1[2.8[3.5[1.1)0.9[ -0 [0.20.3
#4.13.1] 4 [6.9]11[8.7[4.7[2.62.6[2.2[2.3[3.4[6.5[7.9[3.5]1.7[1.5 2 [2.1 #4 12.63.7[7.1]11[8.4]4.4/1.9[0.9]0.8[1.3[2.3] 6 [7.8[3.7]2.2[1.8]1.3[1.2
#512.1[2.2/4.1[8.7[12[8.8]5.1] 4 [2.9]2.4| 4 [8.5/6.6[3.4]2.2]1.9]2.2] 2 #5 2 [2.4/4.4]8.4[11]8.3[4.5[2.4[1.5[1.3] 3 7.3 6 [2.92.5[1.6/0.9]0.5
#610.4/0.5/1.4]4.7(8.8[ 11[7.8[4.1|1.6[0.3 -0[3.3[2.8[2.5[3.4[1.5[1.1]0.7 #611.1/1.5/2.5/4.4[8.3[10(7.83.7| 1 [0.5-0[2.71.9]1.8[3.6[1.20.3] -0
#710(0.2/0.8[2.6[5.1[7.8 10[7.2[3.4/0.6/0.11.81.7[3.4]6.3[3.51.7[0.9 #710.1]0.50.9[1.9[4.5[7.8[ 11]7.1 3 [0.3[0.2 1 ]0.9] 3 [6.63.2 1 [0.1
#810.7/0.7[1.3[2.6| 4 [4.1]7.2/0.6[7.3]4.4[3.3[3.4[1.9]1.7[3.8[2.7[1.6/0.9 #810.50.3 0 [0.9[2.4[3.7[7.1/0.3[7.3[4.1[2.3[1.7]0.8|1.4[3.6 2 [0.9]0.4

2 4#90.8/0.60.9[2.2[2.91.63.4/7.38.87.5/6.14.217/0215/191207 2 #910.8070308[1.5/ 1|3 [7.3]9.48.1/5.4]2.8 1 [0.2[1.2[1.3)0.80.7

£ #10{1.9[1.7[1.7/2.3[2.4/040.6(4.47.5[9.6/0.6/6.1/2.8/0.6/0.7[1.9/1.4] 1 € #1010 [0.1)0.3/1.31.3[0.50.3]4.18.1[ 10[8.9/4.7/2.1]0.3]0.4[1 3[0.9]0.8

#1112.82.6]2.6[3.4) 4 [-0[0.13.3]6.1/9.6/12/9.4] 5 [2.3]0.9]2.32.2[ 2 #1141.1)0.9[1.112.3] 3 [-0[0.92.3[5.4[8.9[ 11| 8 [4.2[1.5[0.6[1.6]1.1] 1
#12 {3.12.9[3.5(6.5[8.5[3.3|1.8[3.4/4.2]6.1/9.4[ 12[8.5[5.1[2.2[ 3 [3.43.3 #122.22.12.8) 6 [7.3[2.7] 1 [1.7]2.84.7[ 8 [11] 8 [4.1[1.72.2[1.7[1.5

#13 12.3[2.6[3.9(7.9]6.62.8/1.7[1.9[1.7|2.8 5 [8.5[ 11]8.1[3.4 3 [3.13.3 #13 {1.4[1.7[3.57.8] 6 [1.9[0.9/0.8 1 [2.1]4.2 8 [10[7.2[3.1]2.8]2.1] 2
#14 10.9[0.8[1.1[3.5[3.4]2.53.4[1.7/0.2|0.6]2.3[5.1[8.1] 11| 7 [4.6[3.1]2.7 #14 10.5(0.51.1[3.7|2.0[1.8] 3 [1.4/0.2/0.3[1.5[4.1]7.2/0.3]6.6[3.9]1.8[1 2
#1540 [0.1/0.4[1.7[2.2[3.4/6.3[3.8]1.50.7]0.9[2.2[3.4| 7 [8.9]6.9[3.8]2.5 #1540.1/0.2/0.9[2.2|2.5[3.6/6.6[3.6(1.2/0.4(0.6[1.7[3.1]6.6/0.1]6.5]2.8/1.3
#16 10.50.30.21.5[1.9[1.5[3.5[2.7[1.9]1.9[2.3 3 | 3 [4.6/6.9[9.6[7.9]6.2 #16 11.41.1-0[1.81.6[1.2[3.2] 2 [1.3[1.3[1.6]2.2[2.8[3.9)6.5[0.4]7.35.3
#17 10.40.10.6 2 [2.2[1.1]1.7[1.6[1.2[1.42.2[3.43.1[3.1[3.8[7.9[9.7]9.3 #17 11.51.10.21.3)0.9(0.3] 1 [0.9]0.8/0.9[1.1[1.7[2.1]1.8[2.8[7.3]9.1/8.6
#18 10.20.2/0.9[2.1] 2 [0.7]0.9[0.9]0.7] 1 | 2 [3.3[3.3]2.7]2.5]6.2[9.3 10 #18 +1.10.70.31.2/0.5[ -0 [0.1]0.4/0.7[0.8] 1 [1.5] 2 [1.2[1.3]5.3[8.6/9.3

ieifésescivcoiesrs A e e ey

H OH O OH OH OH OH OB B H OH OH OH OB R H H R

Link ID Link ID
(a) Estimated with full observations. (b) Estimated with full, missing observations.

#149.2/8.6|5.8(2.2{1.2|1.2|0.7+-0.6-1.3-0.7/0.1/0.9/0.8|0.6|0.310.6-0.5-0.4
#2 48.6|8.9/7.1(3.4/1.6/1.4/0.9+0.2-0.8-0.30.1|0.9/1.3|0.7|0.4+0.4-0.2 O
#345.8/7.1/8.8/6.8/3.5/1.9 1 |10.3| 0 |0.5/0.8| 2 |3.3|1.4/0.7| 0 |0.1/0.4
#4 42.2|3.4/6.8/10(7.2/13.3|1.1/0.5/0.8/1.5|2.3|5.3|7.1|3.3|1.5(1.4|1.1| 1
#51.2|1.6/3.5|7.2/11|7.9/3.9/1.7|11.1/1.6|3.3|7.1|5.2|2.6|2.4|1.8/|1.2/0.7
#641.2|1.4/1.9(3.3/7.9/107.4/3.2|0.7-0.20.3|2.7(1.6|1.7|3.6|1.4|0.5/0.1
#740.7/0.9| 1 (1.1|3.9/7.4/10(6.7|2.9/0.7|0.1/0.9/0.7|2.8|6.1|2.5|0.4-0.3
#8 +0.6-:0.20.3/0.5/1.7/3.2/16.7|19.1|7.3|14.4|12.5/1.5/|0.8|1.2|2.9|0.9/0.1-0.2
#9 +1.30.8 0 |0.81.1/0.7|2.9/7.3/19.6/8.4|5.7|2.8/1.2|0.4(0.8/0.3| 0 | O
#10 +0.7-0.30.5/1.5|1.6+0.20.7|4.4/8.4| 11/9.1| 5 |2.2/0.6/0.2|0.3| 0 0.1
#1140.1/0.1/0.8|2.3/3.3/0.3|0.1/12.5/5.7|19.1{11| 8 | 4 [1.5|0.3|0.5(0.3|0.3
#1240.9|0.9] 2 |5.3/7.112.7/0.9/1.52.8| 5 7.3|3.7|11.5|1.5[1.2] 1
#1340.8/1.3|3.3|7.1|5.2(1.6(0.7|0.8|1.2|2.2| 4 |7.3/9.8/6.92.7| 2 |1.4/1.3
#14 -0.6|0.7|1.4/3.3|2.6(1.7|2.8/1.2|0.4|0.6/1.5/3.7/6.9/9.2| 6 |3.3|1.4/0.8
#15+0.3]|0.4/0.7|1.5|2.4(3.6(6.1|2.9|0.8|0.2|0.3|1.5|2.7| 6 |8.4/5.9|12.6/1.1
#16 +0.6:0.4 0 |1.4/1.8(1.4/2.5/0.9|0.3/0.3/0.5/1.5| 2 |3.3/5.9|9.2|7.3/5.3
#17 +0.50.20.1/1.11.2/0.5/0.4/0.1) 0 | 0 |0.3|1.2/1.4/1.4/2.6|7.3/9.1]8.5
#1804 0 |0 0.70.1:0.3-0.2 0

Link ID

[eo]
N
o

(c) Estimated with all observations.

Figure 3.5: Posterior mean of covariance matrices estimated with different types of observa-
tions.

unless stated otherwise. Moreover, we want to determine whether a particular correlation
value is equivalent to a “null” value for practical purposes. For making decisions about
the null value, we can use the equivalence test based on the full posterior distribution and
region of practical equivalence (ROPE) (Kruschke and Liddell, 2018). The equivalence
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(a) Markov sampling with full observations.
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(b) Markov sampling with full and missing observations.
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(c) Markov sampling with full, missing, and ragged observations.

Figure 3.6: The estimated posterior distributions over two entries of the covariance matrix
with different observations.

test checks the percentage of full posterior that falls inside the ROPE. The null value is
declared to be rejected when the percentage is sufficiently low; the null value is considered
to be accepted if the percentage is sufficiently high. Throughout this paper, we set the
ROPE range with (—0.05,0.05) and the rejected-threshold with 5%. Figure 3.6 presents
the estimated posterior distributions over two entries (Corr(2,11) and Corr(3,12)) of
correlation matrices with different observations. The true value of Corr(2,11) is zero. From
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Figure 3.6 (a), we can see the posterior mean of Corr(2,11) estimated with full observations
is 0.27 (CI: [0.07,0.46]), and the posterior distribution shows that the estimated Corr(2,11)
is much larger than zero, and the Bayesian credible interval is largely outside the ROPE.
From Figure 3.6 (b), we can see the posterior mean of Corr(2,11) estimated with full and
missing observations is 0.09 (CI: [—0.05,0.24]), which is more accurate than only using
only full observations and we fail to reject the value zero. In Figure 3.6 (c), the posterior
mean of Corr(2,11) estimated by using all observations is 0.01 (CI: [-0.11,0.14]), and the
percentage of the credible interval that falls in the ROPE is larger than 5%, meaning that we
cannot reject the value zero. The true value of Corr(3,12) is 0.17, and the posterior mean
values estimated with full observations, full and missing observations, and all observations
are 0.31 (CI: [0.17,0.54]), 0.24 (CI: [0.16,0.42]), and 0.19 (CI: [0.09, 0.31]), respectively. All
the credible intervals of Corr(3,12) largely fall outside the ROPE, indicating that we can
reject the value zero. With the use of missing/ragged observations, the posterior mean of
covariance becomes more accurate, and the posterior probability density becomes thinner,
indicating a smaller standard deviation.

Finally, we do the equivalence tests for entries of estimated correlation matrices and we
set zero for correlations that fail to reject the value zero for better visualization. Moreover,
we set zeros for the true correlations which are lower than 0.05 for convenient comparison
considering that we use the ROPE with (—0.05,0.05). The estimated and true correlation
matrices are shown in Figure 3.7. Figure 3.7 (a) presents the true correlation matrix.
Figure 3.7 (b)-(c) show the correlation matrices estimated with full observations, full and
missing observations, all observations, respectively. We can see that using all observations
can obtain the most accurate estimated correlation matrix, which agrees with the evaluation

using KL divergences.

3.6.2 Case 2: Guangzhou Bus Data

In this section, we apply the proposed Bayesian model to real-world data to empirically
quantify the link travel time correlation of a bus route. The data used in this paper are the
bus in-out-stop record data collected in Guangzhou, China, during the weekdays from
December 8, 2016 to December 15, 2016. The information of the data is outlined in Table 3.3.
These data were collected by the bus in-out-stop record system, i.e., the automatic bus
announcing system. When a bus enters or exits a bus stop, the system reports the arrival or
departure information and records the time stamp accordingly. Thus we can easily obtain
the link travel times from the data. We take bus route No. 60 as a case and aim to quantify
this bus route’s link travel time correlation. First, we select the other three bus routes
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(c) Estimated with full and missing observations.  (d) Estimated correlation with all observations.

Figure 3.7: The true correlation matrix and estimated correlation matrices.

related to route No. 60. All the studied bus routes are displayed in Figure 3.8, and they are
in the CBD of Guangzhou. Route No. 60 has 20 links; route No. 257 shares 7 links with
route No. 60 (from link #2 to link #8); route No. B18 shares 10 links with route No. 60 (from
link #6 to link #15); route No. 210 shares 17 links with route No. 60, but the buses of route
No. 210 do not stop after entering link #3 until leaving link #11. As our defined link travel
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time considers the dwell time, these long-ragged data may have a negative impact on
the estimation; we thus only used the 8 shared links (link #2, #3, #12-#17). We divide one
day into four periods: morning peak (7 : 00 — 10 : 00), normal period (10 : 00 — 17 : 00),
afternoon peak (17 : 00 — 20 : 00), and night period (20 : 00 — 7 : 00). The overview of all
used data is shown in Figure 3.9. We can see that all the bus routes have many missing
and ragged values.

Table 3.3: Description of Data.

Variable | Description | Example

ID Identity for bus data record 1612020547101390
OBUID Identity for bus 911721

TRIP_ID Identity for bus trip 1612012250030880
ROUTE_ID Identity for bus route 201
ROUTE_NAME | Bus route name No. 24
ROUTESUBL_ID | Identity of bus route direction 502669
ROUTE_STA_ID | Identity of bus stop 84279
STOP_NAME Bus stop name Dunhe Stop
AD_FLAG Bus state: arrival (1) or departure (0) 1

AD_TIME The time bus reported arriving at/leaving a bus stop | 20161202, 05:47:08

= NO.60 —— NO.210 —— NO. 257 NO. B18

Figure 3.8: Bus route No. 60 and the related routes in Guangzhou bus network.

The numbers of MCMC iterations are k; = 10000 and k, = 5000, respectively. Fig-
ure 3.10 presents the estimated posterior distributions over two entries (Corr(11,12) and
Corr(11,16)) of correlations matrices for different periods. We can find that the distribu-
tions over a correlation are distinct for different periods. For example, the posterior mean
values of Corr(11,16) are 0.05 (CIL: [-0.08,0.18]), 0.19 (CI: [0.07,0.31]), 0.59 (CI: [0.46,0.7)),
0.65 (CI: [0.52,0.75]) for morning peak, normal period, afternoon peak, night period, re-
spectively. The equivalence test of Corr(11,16) for the morning peak fails to reject the
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Figure 3.9: Data overview.

value zero, while all the 95% CI of Corr(11,16) for the other periods largely fall outside
ROPE, indicating that travel times on these two links are positively correlated.

We calculate credible intervals for entries of estimated correlation matrices using
drawn samples and we set zero for correlations that cannot reject the value zero for better
visualization. Figure 3.11 shows the estimated correlation matrices for four different
periods. Each cell in the correlation matrix shows the correlation between two variables.
Essentially, this kind of correlation matrix is Pearson’s Product-Moment Correlation. The
cell number can help to understand how strong a relationship is between two variables.
The further away the cell value is from zero, the stronger the relationship between the
two variables. Generally, when the cell’s absolute value of correlation matrix is zero, the
relationship between the corresponding variables will be considered as no relationship;
when the absolute value is lower than 0.25, the relationship will be considered as a weak
correlation; when the absolute value is between 0.25 and 0.5, the relationship will be
regarded as a medium relationship; when the absolute value is larger than 0.5, it indicates
these two variables are strongly correlated. Furthermore, the sign of the cell value also

means a different correlation. A positive value indicates the positive correlation between
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(d) Markov sampling for night period.

Figure 3.10: The estimated posterior distributions over two entries of the correlation matrices.
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two variables, while a negative value represents the negative correlation. For the positive
correlation, when the value of one variable increases, the value of the other variable
increases in a similar way. For the negative correlation, when the value of one variable
increases, the value of the other variable tends to decrease.

Figure 3.11 reveals some characteristics of link travel time correlation of the bus route.
First, we can find that the estimated correlation matrices vary for four periods, indicating
that the link travel time correlation is time-varying. Overall, more correlated link pairs
exist during the afternoon peak and the night period, while fewer correlated link pairs
exist during the morning peak. The directional bus route stretches from urban business
districts to suburban areas; thus, the traffic conditions/passenger flows are different for
the morning and afternoon peaks. The better traffic condition and the small passenger
flow exist in the morning because few people go to suburban areas on weekday morning.
On the contrary, traffic congestions and large passenger flow happen in the afternoon
peak as more people go home from urban to suburban areas. Traffic congestion and large
passenger flow can cause the bus bunching phenomenon: a lagging bus must collect more
passengers and, therefore, needs more travel time; on the other hand, a subsequent bus of
the lagging bus will have fewer passengers, and its travel time will be shorter. We conclude
that during the afternoon peak, bus bunching can make more link pairs correlated. Second,
most link pairs do not have strong correlations as most cell values are lower than 0.5
for these four time periods. Meanwhile, the values of cells with strong correlations are
positive, which means link travel time variables of a bus route are more likely to have a
positive correlation if they have a strong relationship. A possible reason for these positive
correlations is the bus bunching phenomenon. Few negative correlations exist in link pairs
though they are weak or medium correlation. Third, both local and long-range correlations
exist on the bus route. Many strong correlations exist in local link pairs. For example,
adjacent link pairs (link #5, link #6), (link #6, link #7), (link #7, link #8) during the morning
peak have strong correlations. Apart from the adjacent link pairs, strong correlations exist
in link pairs with long distances. In Figure 3.11 (c), (link #5, link #11), (link #5, link #13),
(link #6, link #11) are long-range correlations.

Finally, we clarify that the link travel time correlation in other transportation modes
may differ from the bus. Bus bunching is a critical reason that affects link travel time
correlation. The link travel time correlation may not be as significant as the bus for modes

without the bus bunching phenomenon, such as car and truck.
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Figure 3.11: The estimated correlation matrix for different periods.

3.6.3 Case 3: Link/Trip Travel Time Forecasting

In this section, we show that covariance matrices can be used for probabilistic forecasting
of bus link/trip travel time. The proposed Bayesian model can estimate the posterior mean
vectors and covariance matrices for different periods; we thus can obtain the conditional
posterior distribution over forecasting links conditioned on observed links. Note that here
we do not aim to propose a sophisticated forecasting model to compete with state-of-the-art
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models; instead, the aim is to present a basic model under a simple scenario to illustrate
the effectiveness of using covariance matrices in travel time forecasting. The experiment
uses the following five weekdays’ full observations of route No. 60 from December 16 to
December 22, 2016 to test the forecasting performance. As a simple experiment, the task is
to forecast the link travel times of the last nine links (from link #12 to link #20) given the
link travel times of the first eleven links (from link #1 to link #11).

We select the historical average (HA) as the benchmark model. For the link travel
time at a certain period of the day, HA uses the average link travel time at that period
in the training set as the forecast value. Then we compare the performance of these
two methods, which are evaluated by the root mean square error (RMSE) and the mean
absolute percentage error (MAPE):

1 & .
RMSE = - Z(yi — 17,2,
i=1 (3.17)
1 Gy
MAPE = - 2

i=1

4

Yi

where y;,7;,i = 1,...,n are the true values and forecasts, respectively. Table 3.4 presents
the forecasting performance using the Bayesian model and historical average. We can find

Bayesian model performs better than the historical average method for all periods.

Table 3.4: The forecasting performance of two methods for different periods.

| Morning peak | Normal period | Afternoon peak | Night period

rRMSE | Bayesian model | 27.74 35.45 61.20 | 2095
| Historical average | 32.54 | 36.07 | 67.13 | 25.86
MApE | Bayesianmodel | 01193 | 0.1186 | 0.1638 | 0.0885
| Historical average | 0.1563 | 0.1188 | 0.1742 | 0.1116

This model can make probabilistic forecasting for bus trip travel time. As an example,
we use two piece of test data in the afternoon peak to show probabilistic forecasting.
Assume we have observed the first ten links’ travel times, and the goal is to forecast the
trip travel time distributions. Figure 3.12 shows the probabilistic forecasting results. In
the left panel, the blue points are the true trip travel times, and the green points are the
predictive mean values. We can see that the predictive mean values fit the actual values,
indicating the Bayesian model can make good forecasting. Moreover, the red bell curves

are the trip travel time distributions, and we can see that the red bell curves are fatter
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with the increasing number of links in a trip, indicating the variance is increasing. The
right panels present the mean corrected estimation, and the purple points (we refer to
them as corrected mean values) are computed by posterior conditional mean values minus
model mean values; the orange points are the difference between true values and model
mean values. We can find that the posterior conditional mean can make a more accurate
prediction than the model mean. If we do not use the information of the observed link
travel times, the forecasting mean vectors should be equivalent to the model mean vectors.
As we can see, the corrected mean values for observation 1 shown in Figure 3.12 (a) are
larger than zero, while the corrected mean values for observation 2 shown in Figure 3.12
(b) are lower than zero, indicating the link travel time observations from link #1 to #10
indeed help update the forecasting values for the following links.
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(b) Forecasting for observation 2.

Figure 3.12: The probabilistic forecasting for trip travel time.

We have to clarify that the posterior predictive distribution of the current model is only
a rough reference. As shown in Figure 3.12, the variance of the predictive distribution is

too high for a practical application. This could be improved by using a more appropriate
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probability distribution for link travel time (e.g., the Gaussian mixture model). Besides,
measures should be taken to avoid the negative part of link travel time distribution. Despite
the above limitation, using the covariance matrices produces probabilistic forecasting of
link travel time and the predictive mean is more accurate than the historical average, which

verifies the effectiveness of using covariance matrices for link/trip travel time forecasting.

3.7 Conclusion

In this paper, we have proposed a Bayesian Gaussian model to quantify the link travel
time correlation of a bus route. The approach overcomes the issue of small sample sizes
on a single bus route by incorporating data from other relevant bus routes. The proposed
model can also impute those missing and ragged values in an incomplete link travel time
vector. Three experiments are conducted in this paper. The first experiment is conducted
on synthetic data with known covariance, and our result shows that the proposed Bayesian
model can accurately recover the underlying mean and covariance from corrupted link
travel time observations. In the second empirical experiment, we used real-world bus in-
out-stop record data to quantify link travel time correlation. Our empirical analysis shows
that (1) link travel times are clearly not independent on a bus route, and the estimated
correlations vary substantially for different time periods of a day; (2) most link pairs are
not strongly correlated, and most correlations are positive while negative correlations also
exist; (3) both local and long-range correlations could exist on a bus route. Our results also
suggest that simplified covariance assumptions (e.g., local spatial correlation) might be
inappropriate for modeling travel time on a bus route. Finally, we applied the estimated
covariance matrices to forecast link/trip travel time. An additional test data set during
five weekdays is used to verify the forecasting performance, and the results show that the
proposed model clearly outperforms a historical average baseline.

Our approach has potential implications for both practice and research. First, the
proposed Bayesian model can estimate the covariance matrices essential to performing
probabilistic forecasting of bus travel time. Second, the imputation method can also handle
ragged values in other fields, such as economics, medicine, and social sciences. The ragged
definition can be used to model link travel time from origin-destination-based trip travel
time observations; in this case, G; becomes a row vector encoding the linear transformation
to obtain the total travel time for (a single) trip i. Third, this approach can be used in
estimating automobile’s link travel time correlation in a small network.

Our proposed Bayesian Gaussian model has several limitations. First, it is challenging
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to infer the high-dimensional covariance structure (e.g., n > 100) for automobile road
network or bus network. When the dimension of the covariance is large, the computation
is highly expensive, and small-size observations constrain the estimation accuracy. Second,
this model does not consider the influence of dwell time from multiple bus routes. Our
defined link travel time includes dwelling time. However, different bus routes have
distinct characteristics of dwell time due to factors including passenger flow/demand,
bus schedule, and bus types. For example, bus routes with lower passengers flow will
have shorter link travel times, while a larger passenger flow will cause longer travel
times. In this case, our assumption that related bus routes share the same link travel time
distribution may no longer hold. The influence of dwell time from multiple bus routes
could be studied in further research. Third, the way we model the covariance structure
of different time periods is by dividing samples into several periods and estimating the
proposed model independently. Although simple, this approach ignores the temporal
dynamic of the covariance structure—the covariance structure may vary smoothly and
continuously over time. Our further research is to develop new models to characterize
time-varying link travel time correlation. Last, this model relies on the assumption that
the joint link travel times follow multivariate Gaussian distribution. This assumption
comes in handy for quantifying correlation while it is too general for link travel time
forecasting. Real-world link travel time is non-negative and the distribution of it could be
skewed and multimodal. We could try to overcome this limitation by using more accurate
distributions (e.g., truncated distribution, log-normal distribution and Gaussian mixture

model) in future studies.
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Chapter 4

Bayesian Forecasting of Bus Travel Time

This chapter is an article published in Transportation Science:

¢ Chen, X,, Cheng, Z,, Jin, J. G., Trépanier, M., Sun, L. 2023. Probabilistic forecasting
of bus travel time with a Bayesian Gaussian mixture model. Transportation Science,
57(6), 1516-1535.

This chapter corresponds to the probabilistic forecasting of bus travel time with a Bayesian
Gaussian mixture model. This chapter is based on the important findings of link travel

time correlations in the previous Chapter 3.

51



CHAPTER 4 BUS TRAVEL TIME FORECASTING

4,1 Abstract

Accurate forecasting of bus travel time and its uncertainty is critical to service quality
and operation of transit systems: it can help passengers make informed decisions on
departure time, route choice, and even transport mode choice, and also support transit
operators on tasks such as crew/vehicle scheduling and timetabling. However, most
existing approaches in bus travel time forecasting are based on deterministic models
that provide only point estimation. To this end, we develop in this paper a Bayesian
probabilistic model for forecasting bus travel time and estimated time of arrival (ETA).
To characterize the strong dependencies/interactions between consecutive buses, we
concatenate the link travel time vectors and the headway vector from a pair of two
adjacent buses as a new augmented variable and model it with a mixture of constrained
multivariate Gaussian distributions. This approach can naturally capture the interactions
between adjacent buses (e.g., correlated speed and smooth variation of headway), handle
missing values in data, and depict the multimodality in bus travel time distributions. Next,
we assume different periods in a day share the same set of Gaussian components, and
use time-varying mixing coefficients to characterize the systematic temporal variations
in bus operation. For model inference, we develop an efficient Markov chain Monte
Carlo (MCMC) algorithm to obtain the posterior distributions of model parameters and
make probabilistic forecasting. We test the proposed model using the data from two bus
lines in Guangzhou, China. Results show that our approach significantly outperforms
baseline models that overlook bus-to-bus interactions, in terms of both predictive means
and distributions. Besides forecasting, the parameters of the proposed model contain
rich information for understanding/improving the bus service, e.g., analyzing link travel
time and headway correlation using covariance matrices and understanding time-varying

patterns of bus fleet operation from the mixing coefficients.

4.2 Introduction

Cities are now facing severe traffic congestion and air pollution due to the over-reliance on
cars. Promoting public transportation is one of the most effective and strategic ways to
achieve sustainable urban transportation. However, there are various factors preventing
people from using public transit, such as low reliability of travel time, uncomfortable riding
experience, and inaccessible stops far away from home. Survey studies have shown that
passengers highly care about the accurate forecasting of bus travel time and the estimated
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time of arrival (ETA) and its reliability (uncertainty) (Lam and Small, 2001). Probabilistic
forecasting of bus travel time provides both the expected value and the uncertainty, which
not only helps bus agencies design robust bus management strategies (e.g., bus priority
signal control, bus bunching control, dynamic bus holding control (Xuan et al., 2011)) to
enhance bus services, but also helps travelers make better travel plans regarding departure
time, route choice, and even transport mode choice (Cats and Gkioulou, 2017).

Most existing studies on bus travel time forecasting mainly center on making point esti-
mation (i.e., deterministic forecasting) but ignore the importance of travel time uncertainty
(Ricard et al., 2022). There exist many deterministic bus travel time forecasting methods,
including historical average (HA) (Farhan et al., 2002), Autoregressive Integrated Moving
Average (ARIMA) (Madzlan et al., 2010), Artificial Neural Network (ANN) (Chien et al.,
2002; Gurmu and Fan, 2014), Support Vector Machine (SVM) (Bin et al., 2006; Yu et al,,
2011; Kumar et al., 2013; Bachu et al., 2021), Kalman Filter (KF) (Cathey and Dailey, 2003),
K-nearest neighbors model (KNN) (Liu et al., 2012; Kumar et al., 2019), deep learning
models such as Long Short-Term Memory (LSTM) (Osman et al., 2021; Alam et al., 2021),
and various hybrid models (Yu et al., 2018; Zhang et al., 2021), to name just a few. Despite
its popularity and simplicity, a major limitation of the deterministic approach is that they
cannot give the uncertainty of the forecasting. In practice, probabilistic forecasting (i.e.,
forecast the distribution of bus travel time) is often favored over deterministic forecasting
(Yetiskul and Senbil, 2012). For passengers, knowing the distribution of ETA is more useful
than a single point estimation, as they may prefer a bus route with the smallest travel
time variance among bus routes with similar expected ETA. This “reliability ” information
of ETA can improve the overall travel experience (Lam and Small, 2001). For operators,
forecasting the probabilistic distribution of bus arrival times can be used to enhance sched-
ule reliability. For example, dynamic bus holding strategies (Xuan et al., 2011) have been
proposed to prevent bus bunching, where the model requires knowledge of the variance in
trip time between stations; forecasting the real-time probabilistic distribution of trip travel
time, therefore, allows for more precise control.

A critical step in probabilistic bus travel time forecasting is to construct an appropriate
probabilistic distribution for bus travel time, which is very challenging due to the following
difficulties: 1) there exit complex correlations among different links within a bus route, 2)
there exist strong interactions between two adjacent buses (e.g., bus bunching), and 3) bus
travel time distributions are usually not normal and exhibit long-tailed and multimodal
characteristics (Ma et al., 2016). A recent study (Chen et al., 2022) demonstrated that link

travel times in a bus route exhibit complex local and long-range correlations, and bus
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travel times on different links are often positively correlated because of factors like bus
bunching. However, the very limited existing research on probabilistic bus travel time
forecasting often overlooks the complex link travel time correlation. For example, Huang
et al. (2021) and Ricard et al. (2022) did not model the link travel time correlation; Ma et al.
(2017) and Btichel and Corman (2022a) only considered the (local) correlation between
adjacent links; some studies applied a unimodal Gaussian assumption (Taylor, 1982; May
et al., 1989; Dai et al., 2019; Chen et al., 2022), which failed to capture the bus travel time
realistically. In terms of the interactions among vehicles, only a few works have considered
its effects on travel time forecasting with simplified assumptions (e.g., Dai et al., 2019); the
potential of leveraging the information from neighboring buses to improve the forecasting
remains unknown.

To address the above issues, in this paper we develop a Bayesian probabilistic model
for bus travel time and ETA forecasting. Specifically, we concatenate the link travel time
vectors and the headway vector of each two adjacent buses (i.e., a pair) as a new augmented
random variable. By incorporating the inherent relationship (linear equality constraints)
between link travel times and headways, our approach naturally captures the interactions
between a bus and its leading bus and handles missing values in the data. To capture the
multimodality of bus travel time distribution, we model the augmented random variable
with multivariate Gaussian mixture distributions truncated by the hyperplane defined by
the headway constraints. Moreover, we borrow the idea of Bayesian hierarchical model to
capture temporal differences in bus travel time: different periods in a day share the same
set of Gaussian components but different mixing coefficients. Next, we develop an efficient
Markov chain Monte Carlo (MCMC) algorithm to obtain the posterior distribution of
model parameters. Based on the estimated probabilistic model, we could make conditional
probabilistic forecasting for bus travel time in an autoregressive way (the forecasting of
a bus relies on the forecasting of the its leading bus). We test the proposed probabilistic
forecasting model using a dataset from two bus lines in Guangzhou, China. Results show
our approach that considers the dependencies between adjacent buses and the headway
relationships significantly outperforms baseline models that overlook these factors, in
terms of both predictive means and distributions. Besides forecasting, the parameters of the
proposed model contain rich information for understanding/improving the bus service,
e.g., analyzing link travel time correlation using correlation matrices and understanding
temporal patterns of the bus route from mixing coefficients.

The contributions of this work include three aspects. First, we propose a forecasting

model that takes into account and handles various difficulties in modeling bus travel
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time, including correlations between link travel time on a bus route, interactions between
adjacent buses, and missing values in data. These parameters are embedded in tailored
augmented random variables. Second, we integrate Gaussian mixture models into a
Bayesian hierarchical model framework as the distribution for the augmented random
variable. The Gaussian mixture models can depict the multimodality in bus travel time
distributions, and the hierarchical structure can reflect different mixing patterns in bus
travel time at different periods of a day. Third, we develop a Gibbs sampling algorithm to
obtain the posterior distributions of model parameters and enable probabilistic forecasting.
Experiments in a real-world dataset show the proposed model can accurately forecast the
bus travel time distributions and discover patterns in link travel time correlations.

The remainder of this paper is organized as follows. In Section 4.3, we review previous
studies on bus travel time forecasting. In Section 4.4, we describe the problem and present
the Bayesian Gaussian mixture model. Next, in Section 4.5, we demonstrate the capability
of the proposed model by numerical experiments using real-world data. Finally, we
conclude our study, summarize our main findings, and discuss future research directions

in Section 4.6.

4.3 Related Work

There exists a large body of studies in the literature on bus travel time forecasting, of
which most concentrate on providing point estimation the travel time values instead of
forecasting the travel time distribution. In this literature review, we categorize bus travel
time forecasting models into deterministic forecasting models and probabilistic forecasting
models. After the introduction of deterministic forecasting models, we pay more attention
on the studies related to probabilistic forecasting models for bus travel time.

4.3.1 Deterministic Forecasting Model

Deterministic forecasting model for bus travel time includes time series models and
machine learning approaches. Time series models often consider bus travel time as a
function of its past observations, and one important step is to construct a standard time
series of bus travel time from bus data. Farhan et al. (2002) used HA model to forecast the
bus travel time. Madzlan et al. (2010) applied ARIMA model to forecast bus route travel
time. The forecasting accuracy of time series model highly depends on the characteristics
of historical travel time data. If a time series has a stationary pattern or mixture of patterns,
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time series models can perform well. However, bus travel time is often more complicated
due to the factors like road congestion, dynamic passenger flow, traffic accidents, etc.
Therefore, the performance of time series models is often limited for bus travel time
forecasting.

On the other hand, machine learning approaches can characterize complex patterns
and learn non-linear relationships from data. Existing machine learning models to bus
travel time forecasting include ANN, SVM, KF, KNN, and hybrid models. Chien et al.
(2002) developed two ANN-based models to forecast bus arrival time under link-based
and stop-based route constructions; results show that these two ANN-based models have
good performance. Similarly, the studies by Gurmu and Fan (2014), Jeong and Rilett (2004)
indicate that ANN-based models outperform HA and regression models for bus travel
time forecasting. SVM has been applied as a useful method for forecasting bus travel time.
Some studies (Bin et al., 2006; Yu et al., 2011; Yang et al., 2016; Xu and Ying, 2017; Ma et al.,
2019) have shown SVM outperforms linear regression and time series models. KF is an
efficient learning algorithm as it has the ability to update the time-dependent state when
new observations become available continuously. Cathey and Dailey (2003) proposed
KF model for bus travel time forecasting using real-time and historical data, while this
work did not compare KF model with other developed machine learning models. Achar
et al. (2019) developed a data-driven method to forecast bus travel time; first, they learned
the spatial and temporal correlations/patterns of traffic; then, they used KF to complete
the forecasting task. The authors compared their proposed model with HA and Random
Forest (RF) and found that their method performed better. Building on this work, Achar
et al. (2022) transformed travel time forecasting into a hidden-state estimation problem
using a related non-linear dynamical system model. They proposed a solution based on KF
and Particle Filter. Liu et al. (2012) adopted KNN to make the bus travel time forecasting
using historical bus GPS data, and the results indicated that KNN outperformed ANN
in terms of accuracy. Some hybrid methods are developed to combine the advantages
of these machine learning models. For example, Yu et al. (2018) proposed an approach
combining KNN and RF and found that the hybrid model outperformed KNN, SVM, and
RF; however, this method has the problem of low computational efficiency. Zhang et al.
(2021) developed a hybrid method to combine SVM with KF, RF and ARIMA, respectively;
results show that SVM-KF outperforms other hybrid models. Chen et al. (2004) combined
ANN and KF algorithm to forecast the arrival time. Based on this research, Bai et al. (2015)
replaced ANN with SVM, and results show that SVM-KF performs better than ANN-KFE.
Kumar et al. (2018) used KNN algorithm to identify significant input variables, and then

56



CHAPTER 4 BUS TRAVEL TIME FORECASTING

combining exponential smoothing technique with recursive estimation scheme based
on Kalman Filtering method to forecast bus travel time. Kumar et al. (2017) proposed a
method for forecasting bus travel time that considered both temporal and spatial variations.
They used traffic stream models to rewrite the conservation of vehicles equation in terms
of flow and density, and then transformed it to a partial differential equation in terms
of speed. To make the forecasts and updates, they combined the Godunov scheme and
Kalman filter. The proposed method outperformed historical average, regression, and
ANN methods.

Deep learning models, especially the LSTM module, has been widely used in bus travel
time forecasting. Liu et al. (2023) developed a KF-LSTM deep learning method to make
bus travel time forecasting, and they found that the KF-LSTM model outperforms the
ensemble learning methods to forecast travel time. Recent studies by Osman et al. (2021)
and Alam et al. (2021) also used LSTM for bus travel time forecasting, and found that
LSTM outperformed ANN, SVR, ARIMA, and HA methods. Similarly, He et al. (2020)
applied LSTM for bus travel time prediction but took into consideration the impact of
heterogeneous traffic patterns. Petersen et al. (2019) proposed a deep neural network
with the combination of convolutional and LSTM layers for bus travel time prediction.
Li et al. (2023a) proposed a novel deep-learning model based on sequence and graph
embedding to forecast bus travel time. First, they used the sequence embedding part to
extract the complex and potential sequence patterns from many trajectory sequences. Then,
the network embedding part is to capture the spatial correlation among bus stops. Finally,
a fusion prediction part is to combine sequence and network embedding vectors to make
the forecasting. Li et al. (2023b) utilized the Interaction Networks to model the interactions
between transit speed, dwell time, and traffic speed for arrival time prediction. Results
showed that the proposed model outperformed LSTM, RNN, RF, and ensemble methods.

4.3.2 Probabilistic Forecasting Model

There are only a few studies on probabilistic forecasting for bus travel time. Dai et al. (2019)
proposed a probabilistic model to estimate bus travel time considering the link running
time and dwell time. The authors assumed that: the link travel time is composed of the link
running time and the dwell time, and they are independent; the link running time follows
shifted log-normal distribution; the stop dwell time is the sum of the queueing time, the
passengers boarding/alighting time, and the merging time (the bus merges into the main
road traffic). They did not model the correlations between link running time and dwell
time, despite their importance for bus travel time forecasting. Yu et al. (2017) proposed
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an accelerated failure time survival model which could simultaneously estimate expected
travel times and travel time uncertainty. In this model, the arrival of a bus to a downstream
stop could be regarded as the event; they have considered using the independent variables
including headway deviation, scheduled headway, onboard passenger, weather, travel
time of the previous bus, and day/time period. However, this model ignores using the
local and long-range correlations in bus link travel time. Ma et al. (2017) proposed a
generalized Markov chain approach for estimating the probability distribution of bus
trip travel times from link travel time distributions, taking the correlations in time and
space into consideration. This approach first uses clustering methods to cluster the link
travel time observations, and then uses a logit model to estimate the transition probability;
tinally, using a Markov chain procedure, the probability distribution of the trip travel
time can be estimated. However, the Markov chain in this framework only models the
correlation between adjacent link travel times but ignores the long-range correlation.
Huang et al. (2021) proposed two data-driven methods based on Functional Data Analysis
(FDA) and Bayesian Support Vector Regression (BSVR) to forecast the distribution of bus
travel time. Both FDA and BSVR are essentially kernel methods. FDA approach is a
well-proven mathematical way to describe the stochastic process of link travel time and
can provide continuous-time link travel time forecasting, while BSVR can provide discrete-
time link travel time forecasting with a prescribed discretization interval. The authors
utilize the FDA and BSVR for each specific link and then add up relevant link travel
times. Again, they ignore the link travel time correlation. Biichel and Corman (2022a)
proposed a hidden Markov chain framework to estimate bus travel time distribution,
which can capture the dependency structure of consecutive links and include conditional
correlations. Moreover, it also captures the dependency of consecutive link dwell times.
However, long-range correlations cannot be easily modeled in this framework. Ricard et al.
(2022) proposed two types of probabilistic models: similarity-based density estimation
models and a smoothed logistic regression for probabilistic classification. Similarity-based
density estimation models first find the set of similar trips and then estimate the density
of the particular set by fitting a parametric, semi-parametric, or non-parametric model.
Multinomial logistic regression is used for probabilistic classification and its generated
probability mass function can be smoothed into a probability density function. The authors
developed these two methods in order to make a long-term forecast for bus travel time,
thus they did not consider using the feature of link travel time. Biichel and Corman (2022b)
proposed a Bayesian network approach to forecast bus travel time distribution. They

assumed that: the dwell time of a given bus at a given stop depends on the dwell time of
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the same bus at the previous stop, dwell time of the previous bus at the same stop, and
the headway from the previous bus; the running time depends on the running time of the
same bus in the previous link and the running time of the previous bus in the same link.
This Bayesian framework provides a nice solution to characterize the dependency between
adjacent links; however, it also ignores the long-range correlations in bus link travel time.
Rodriguez-Deniz and Villani (2022) developed a probabilistic real-time forecasting model
for bus delay. The core of this model is the feature construction; they considered the short-
term and long-term component: the short-term effect is modeled as a linear combination of
several previous delays of recent buses; the long-term effect is modeled by using Gaussian
process prior on parameters. This model has considered the interactions between buses
as well as local correlations, but it also fails to model the long-range correlations of bus
delays.

Although work on probabilistic forecasting for bus travel time is scarce, there are some
studies on modeling bus travel time distributions, mostly with the objective of quantifying
the bus travel time reliability (Biichel and Corman, 2020). Bus travel time distribution
modeling can provide a foundation for probabilistic forecasting. Taylor (1982) collected
bus data and pointed out that bus link travel time follows a normal distribution. Mazloumi
et al. (2010) explored the travel time distributions for different departure time windows
at different times of the day; results show that in narrower departure time windows,
bus travel time distributions are best characterized by normal distributions. For wider
departure time windows, peak-hour travel times follow normal distributions, while off-
peak travel times follow log-normal distributions. Similarly, Rahman et al. (2018) analyzed
the bus travel time distributions for different spatial horizons; results show that log-normal
distribution is more appropriate for short-term horizon, while normal distribution is more
suitable for long-term horizon. Uno et al. (2009) revealed that bus link travel time on
arterial roadway is positively skewed and generally follows a log-normal distribution. Kieu
et al. (2015) also recommended a log-normal distribution as the best fit for bus travel time
on urban roads. Dhivya Bharathi et al. (2020) assumed bus travel time follows log-normal
distribution and they proposed a log-normal autoregressive model to make the forecasting
for bus travel time. Biichel and Corman (2018) compared the unimodal distributions
including normal, Weibull, log-normal, Gamma, cauchy, and logistic distribution; results
show that the log-normal probability distribution is a good fit for bus travel times at peak
and off-peak conditions. Chepuri et al. (2020) compared the Burr, generalized extreme
value (GEV), and log-normal distributions for bus travel time, and the results show

that GEV is supervior over others. Similarly, Harsha and Mulangi (2021) considered
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seven travel time distributions (including Burr, GEV, Gamma, log-logistic, log-normal,
normal and Weibull distributions) and evaluated their performance; results show that GEV
distribution performs the best. Ma et al. (2016) compared both unimodal distributions and
multimodal distributions for bus link travel time, and found that the normal, log-normal,
logistic, log-logistic, and Gamma distributions have a relatively similar performance, and
the Gaussian mixture model performs much better in terms of accuracy, robustness, and
interpretability.

In summary, existing studies are mainly concerned with deterministic forecasting
instead of probabilistic forecasting for bus travel time. Although a few studies have
developed probabilistic forecasting for bus travel time, there are some limitations: (1) they
ignored the complex link travel time correlation/covariance (Dai et al., 2019; Yu et al., 2017;
Ma et al,, 2017; Huang et al., 2021; Biichel and Corman, 2022a,b; Rodriguez-Deniz and
Villani, 2022); (2) they overlooked the strong interactions between consecutive buses (Dai
etal., 2019; Yu et al.,, 2017; Ma et al., 2017; Huang et al., 2021; Biichel and Corman, 2022a).

4.4 Methodology

4.4.1 Problem Description

A bus link (or simply a link) is the directional road segment connecting two adjacent bus
stops on a bus route. In this paper, the bus travel time on the m-th link is defined as
the time difference between the arrival of a bus at the m-th and the (m + 1)-th bus stop,
including the dwell time at the m-th bus stop. Link travel time of buses can be obtained
from various types of data sources, such as smart card data, automatic vehicle location
(AVL) data, and automatic bus announcing systems. We denote by ¢; ,, the link travel time
of the i-th bus on the m-th link. With these definitions, the trip travel time of the i-th bus
from stop m to stop m1; can be readily calculated by > 72, £i -

This paper focuses on forecasting the travel time of a bus on its upcoming links and
trips and also providing ETA distribution. A previous work (Chen et al., 2022) has shown
that link travel time within a single bus trip can be significantly correlated, and using such
correlation can improve bus travel time forecasting. A limitation of this work is that the
dependencies of the travel time among different buses are ignored. Considering the close
spatiotemporal distance and similar traffic conditions of two adjacent buses, it is tempting
to use the travel time information of a leading bus to forecast the travel time of the next

(following) bus. In bus systems, buses on a given route often exhibit strong interactions
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due to effects like bus bunching, leading to strong correlations between them. When
forecasting the travel time of a single bus, we can only use information from the observed
links along its path. However, by modeling adjacent buses on the same route, we can also
incorporate information about upcoming links based on the leading bus. This additional
information can be highly valuable for improving the accuracy of travel time forecasts.
Inspired by this and on top of the previous work, in this paper we further leverage the

travel time correlation between a pair of buses to improve bus travel time forecasting.

4.4.2 Augmented Random Variable

The link travel time of bus i on a bus route with 7 links (1 4 1 bus stops) can be aggregated
into a vector £; = [{;1,%;n,- - ,Ei,n]T. We define an augmented random variable x to
capture the link travel time between two adjacent buses from the same bus line. The link
travel time and the headway of each two adjacent buses (the subject bus i and its leading
bus i — 1) produce a sample of x:

Ty = ’ei—l = [gi,llgi,ZI t /gi,n/ gl‘*l,llgifl,ZI Tty gi*l,n/ hi,l/ hi,Z/ Tty hi,n]T € IR3n/ (41)

where the headway #; ,, is the time interval between the arrival of the (i — 1)-th bus and
the i-th bus at the m-th bus stop (we do not count the headway at the last bus stop—stop
(n+1)). Note that /; . will become negative if overtaking happens. and there is an inherent

relationship between the link travel time and the headway:
hi,m+1 — hi,m + Eifl,m — Ei,m =0, m=1,...,n—1. 4.2)

Therefore, the 3n dimensional random variable  has only 21 4- 1 degrees of freedom. The
inclusion of headway explicitly bonds ¢; with £;_;.

Missing and ragged values are unavoidable in real-world link travel time data. Using
the relationship between adjacent buses can enhance the accuracy of the missing value
imputation. We use the method proposed by Chen et al. (2022) to jointly formulate the
missing/ragged values and the headway constraints from Eq. (4.2). Consider the example
in Figure 4.1 where the arrival time of bus i at stop #3 is not observed, headway #; 3
becomes a missing value. Although individual values of ¢;,, ¢; 3 are missing, the sum of
the link travel time (¢;, + ¢; 3) can be inferred from the bus arrival time at the upstream
and the downstream stops, which is a case of ragged value. Overall, the missing/ragged
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Stop ID busi—1 bus i
#5

#4

#3

#2

# Time

Figure 4.1: Trajectories of two adjacent buses. Solid dots: observed arrival time at a bus stop.
Circle: unknown arrival time at the bus stop.

values and headway constraints can be summarized into a linear equation:

1000 0 0 0O O 0O 0 O lir ri1
01100 0 0O0OO0O O OO0 lio+ 03 rio
0001 0 O 0 OO0 O 0 O iy ri3
00001 0 0O0OO0O O OO li1q rid
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00000 O 1 00 0 0 Ox= lii13 = |Ti6
0000 0O O 01 0 0 0O li14 riz|’
0000 0 O OOT1 0 0O hiq rig
1000 -1 0 0 0-11 0 0 hin—hi1+0li1—{i 11 0
01000 -1 00 0 -1 10 hiz—hio+Llin—"{i 17 0
0010 O 0O -1 0 O 0 -1 1] _hi,4_hi,3+€i,3_€i—1,3_ | 0 ]
N — v ——
G; T
(4.3)

where we call G; the alignment matrix and r; the recording vector for bus i. An alignment
matrix is a matrix with elements in {—1, 0,1} that encodes missing/ragged positions and
headway constraints. The recording vector r; records all observed information attached
with ;. The hyperplane defined by Eq. (4.3) is the support of random variable x.
Alignment matrices and recording vectors can be directly accessed from the source data,
but the values of x; are not always available because of the missing data problem. Next,
the main task is to estimate the probability distribution (a Gaussian mixture model) of
the augmented random variable x using historical alignment matrices {G;} and recording

vectors {r;}. Once obtaining the probabilistic distribution of x, we can forecast the bus
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travel time on upcoming links by calculating the conditional probability given the travel
time of the leading buses and upstream links. The detailed forecasting procedure will be
described in Section 4.4.5.

4.4.3 Bayesian Multivariate Gaussian Mixture Model

The distributions of bus link travel times are often positively skewed, heavy-tailed, and
sometimes multimodal. Ma et al. (2016) compared several unimodal distributions (includ-
ing normal, log-normal, logistic, log-logistic, and Gamma distributions) and multimodal
distributions for bus travel time, and suggested using Gaussian mixture models for bus
link travel times. In this paper, we also use multivariate Gaussian mixture distributions
to model the augmented random variable x. There are four advantages of the Bayesian
Gaussian mixture model: 1) the Gaussian mixture distribution is well-suited for modeling
multi-modality and can approximate complex distributions. Figure 4.12 shows the empiri-
cal distribution of link travel time. We observed that while many links exhibit positively
skewed and unimodal distributions, such as link #11 and link #20, have bimodal distribu-
tions. This justifies the use of the Gaussian mixture model to approximate the skewed and
multi-modal distributions. 2) The Gaussian distribution has conjugate prior distributions,
which is convenient for us to derive the posterior distribution analytically. 3) The bus travel
time problem has many missing/ragged values. However, by using the sampling scheme
from hyper-plane truncated Gaussian distribution, we can convert the data imputation
problem to a Gaussian distribution problem, which has a nice property that enables us to
handle missing/ragged values in the data. 4) We want to make conditional forecasting for
bus travel time, and Gaussian distribution has an excellent property that the unobserved
part conditional on the observed part is also Gaussian distribution. Moreover, we divide a
day into T periods and assume the mixing coefficients are different for each period and
use a hierarchical framework to capture the temporal differences.

When not considering the headway constraints in Eq. (4.3), the augmented random

variable at the t-th period follows a multivariate Gaussian mixture model:

K
pt(=') = > mN (o' | e ), (4.4)

k=1

where we use a superscript (-) to denote the time period, K is the number of components,
i, > 0 is a mixing coefficient with K i = 1, and each of the K components follows a

multivariate Gaussian distribution with a mean vector p; € R¥ and a 3n x 3n covariance
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matrix ;. When considering the linear constraints in Eq. (4.3), the distribution of z' in

Eq. (4.4) becomes a hyperplane-truncated multivariate Gaussian mixture (Cong et al., 2017;
Chen et al., 2022).

o) o

F7\:[l07 o

. J

Figure 4.2: The graphical illustration of Bayesian Gaussian mixture model.

The augmented link travel time of each period is characterized by a mixture of several
shared Gaussian distributions. Figure 4.2 shows the overall graphical representation of our
hierarchical Bayesian multivariate Gaussian mixture model. Assume there are M' buses at
period t, we have {zczt}tT:Al/Ii:l to be a set of “latent” realizations/samples drawn from the
multivariate Gaussian mixture distributions truncated on the hyperplanes from Eq. (4.3).

. T .
We need to estimate parameters {n! = [}, b, .-, 7h]T},_, {me}k_q, and {Z}p_ using
T/Mt T/Mt
t=1,i=1 t=1,i=1"
the graphical model, z! is a component label, indicating the component ! belongs to.

the alignment matrices G = {G!} and the recording vectors R = {r!} In
In a Bayesian setting, we use a conjugate Gaussian-inverse-Wishart prior on p; and Xy
and a Dirichlet prior on =’ for efficient inference (Gelman et al., 2013). The overall data

generation process is summarized as:

w! ~ Dirichlet (a), (4.5)
I ~ W (Yo, ), (4.6)
px ~ N (uo, %Ozk) , (4.7)
z} ~ Categorical (7'), (4.8)
xi | zf =k~ N (e Zk), (4.9)
rl = Glz!, (4.10)

where a is the concentration parameter of the Dirichlet distribution; W1 (¥, vp) is the

64



CHAPTER 4 BUS TRAVEL TIME FORECASTING

inverse-Wishart distribution with a scale matrix ¥ and vy degrees of freedom; pp and Ag

are parameters for the Gaussian prior.

44.4 Model Inference

Based on the graphical model illustrated in Figure 4.2, we can derive an efficient MCMC
scheme using Gibbs sampling. For simplicity, we let X = {mf}tT:Afizl denote the full set
of the “latent” augmented variable for the Zthl M" bus pairs, and let © = {pg, Ao, Yo, v0}
denote the set of hyperparameters for the Gaussian-inverse-Wishart prior distribution
in Egs. (4.6) and (4.7). In addition, we denote by th the set of data vectors at period
t belonging to mixture component k and by A} the set of all data vectors belonging to
mixture k. We start the Gibbs sampling with random initialization for all variables and

then iteratively sample each variable from its conditional distribution on other variables:

* Sample 7; from p (w' | 2!, ). The conditional distribution is

p(rt| 2, a)up (n'|a)p (2| nh). (4.11)

The prior distribution p (7! | @) = Dirichlet (7 | &) o [ [5_; n,t(ak_l, and p (2! | «')

can be seen as a multinomial distribution

K
p (2" | ©") = Multinomialg (' | N, x) o H n,t(M’t‘ (4.12)
k=1

t
, Where M]tc is the number of {zf}f\il assigned to class k. Therefore, the conditional
posterior distribution is a Dirichlet distribution:

p (m'| 2!, @) ~ Dirichlet (M} + a3, My +ap, - -+, My + ag) . (4.13)

 Sample z! from p (z! | 7!, u, &, @!). The conditional distribution of assignment for
each observation is given by p (z! =k |« u, X, z!) ocp (2 =k | «') p (2! | p, Z) =
N (2} | pi, Zi). Then we can do the normalization to obtain the categorical condi-
tional distribution over z! by

_ N (=} | b, i)
St TN (@} | o, Zm)

p (Zf =k| X, a:f) (4.14)

e Sample (pg, Zg) from p (p, X | Xy, ©). Thanks to the conjugate prior distribution, the
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conditional distribution of the mean vector and the covariance matrix p (g, Zg | X, ©)

is a Gaussian-inverse-Wishart distribution:
1 - *
P (p'k/ z'k | Xk1®) ~N (/J'k | H’SI sz) 4% ! (Zk ‘ IIIO/VE;) ’ (415)
0

where

« _ Aopo + Mz

— , )\*:/\ +M, V*:V +M/
o o+ M, 0 0 k 0 0 k
T M T T M
:_sz M=YM, s=XY (zl-2)(al-2z), (416
kt 1i=1 t=1 t=1i=1
AoMy _ T
Y=Y S+ 2t _ _
0 0+ +)\O+Mk (Z — po) (T — po)

e Sample X from p (X | u, X, 2, R, G). At this step, we no longer have a simple ana-
lytical formulation to sample X due to the linear constraints in Eq. (4.10). Here, the

conditional distribution can be factorized as

T M!

p(X | 1Z2R0) =][1r (2} myEar! G, (4.17)

t=1i=1

Consequently, we can draw sample of the bus-pair vector ! independently. The
conditional distribution of «! in Eq. (4.17) can be regarded as a multivariate Gaussian

distribution truncated on the intersection with a hyperplane, i.e.,

xh |z =k~ NS} (pr, Z) = {z!| Glz| =r}}. (4.18)
The probability density function of the hyperplane-truncated multivariate Gaussian
is

1 1
—rexp |~ 5 (T~ py )Tz Yzt — py) | 6(Glal =7l), (4.19)

P(-’Df | Nk/z'k/r Gt) Z

where Z! is a normalizing constant; §(x) is a function whose value is 1 if the condition
+ holds, and 0 otherwise. Similar to Chen et al. (2022), we adopt a fast sampling
scheme (Algorithm 3) developed by Cong et al. (2017) for this problem.

Finally, we summarize the Gibbs sampling procedure for estimating the parameters in

Algorithm 4. We drop the first d; iterations as burn-in and then store samples of parameters
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Algorithm 3 Sampling from a hyperplane-truncated multivariate Gaussian distribution
(Cong et al., 2017).

1: Sample u ~ N (uzf,):#);

-1
2 Return ! = u+ X ,G!' (Gf):ngf-) (r! — Glu), which can be more efficiently and
accurately calculated by

e Solve 3 such that (GfZ‘.ZthU B8 =r!— Gl

e Return ! = u + Z‘.ZfoT,B.

w!, p, Ty from the following d, iterations. In particular, these stored samples mixing
coefficients {ﬂ't(p ) } Y mean vectors { p,,(cp )} Y and covariance matrices {Z,(Cp )} )
p= p= p=

critical ingredients for deriving the posterior distribution of the parameters and performing

are

probabilistic forecasting of bus travel time. For hyperparameters, we set pg = 03,,, Ag = 10,
&) = I3, 1) = 3n+ 2, and a = 0.2k, where n is the number of bus links. It should be
noted that model training is in fact offline based on historical data, and only the Markov

chains (i.e., samples) of the parameters are used in the forecasting task.

4.4.5 Probabilistic Forecasting

We divide the links of each bus into observed and upcoming links at the time of making
forecasting. Observed links are passed links with known travel times, and upcoming links
are the links that the bus is yet to pass and for which we need to forecast travel times.
Because of the Gaussian assumption in each mixture component, we can easily forecast
the bus travel time on upcoming links by calculating the conditional distribution given
observed link travel times and headways. Generally, there are upcoming links for both
the following bus j and the leading bus (j — 1); although it is possible to make forecasting
conditioning on only the observed links, we adopt an autoregressive approach that also
uses the forecasting of the leading bus’s upcoming links to forecast the bus travel time
of the following bus, because this autoregressive approach uses the information of bus
(j — 2)—the leading bus of (j — 1)—to reinforce the forecasting. For the first bus (without a
leading bus) of a day, we only use observed links to forecast the upcoming links (like the
method proposed by Chen et al. (2022)).

We use Figure 4.3 to illustrate the forecasting process. In Figure 4.3(a), bus j — 1 has
just finished the run; bus j has passed the first two links and arrived at stop #3; bus j + 1
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Algorithm 4 Gibbs sampling for parameter estimation.

Input: Recording vectors R, alignment matrices G, hyperparameters ® and ¢, iterations

dy, dy.

d d
Output: Samples of mixture weights {ﬂ't(p)} il, samples of mean vectors {,U,]((p )} * ,and

do
samples of covariance matrices {Zk } .

= p:l

(p)
=1

1: foriter =1tod; +d, do

22 fort=1toTdo
3: Draw =’ according to Eq. (4.5).
4: if iter > d; then
5: Collect 7! to the output set.
6: end if
7:  end for
8: fork=1toKdo
9: Draw Xj and py according to Eq. (4.6) and Eq. (4.7).
10: if iter > d; then
11: Collect px and X to the output sets.
12: end if
13:  end for
14: fort=1toT do
15: fors = 1to M; do
16: Calculate p(z!) according to Eq. (4.14).
17: Draw z! according to Eq. (4.8).
18: Draw z! by Algorithm 3.
19: end for
20:  end for
21: fork=1toKdo
22: Update the parameters ® = {uo, Ao, Yo, vo} by Eq. (4.16).
23:  end for
24:  Update the parameters a by Eq. (4.13).
25: end for

26: return {ﬂ't(p)}dz /{Ni(cp)}dz {Z’(fp)}tb

p=1 p=1" p=1
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has departed from the origin stop but does not arrive at stop #2. We would like to use
the observed links/headways to make forecasting for the upcoming links of bus j and
bus j + 1. For bus j, we can make forecasting by using its upstream links (the first two
links), all the observed link travel times of the leading bus j — 1, and the corresponding
observed headways (the first three headways). In terms of bus j 4+ 1, we could use the
observed upstream link travel times of bus j, the forecasts of the upcoming link travel
times of bus j, and the observed headway. As time passes by, related buses could update
the forecasting once having new observed links. At the time point shown in Figure 4.3(b),
bus j + 1 gets a new observed link; thus we could update the forecasting of bus j + 1.
At the next time point shown in Figure 4.3(c), bus j gets a new observed link, allowing
itself to update the forecasting. Note that in this case, although bus j 4+ 1 does not have
any additionally observed links, the updated information of its leading bus (i.e., bus j)
could reinforce/enhance its forecasting. In addition, we can see a new bus j + 2 begins
to run on the route; with the observed headway, we could make forecasting for bus j 4 2.
In Figure 4.3(d), bus j has finished the run; bus j 4+ 1 and j 4 2 get a new observed link,
respectively. In this case, we could make forecasting for bus j + 1 and j + 2 following the
same aforementioned procedure. In this paper, our model will concentrate on providing
probabilistic forecasting for the upcoming travel times of links for buses that have already
commenced their journeys. While our model does possess the capability to forecast the
travel times of upcoming links for buses that have not yet embarked on their journeys, we
will not be evaluating its performance for such trips in this study since those trips have no
observed information.

For the j-th bus pair with a following bus started at the {-th period in a day, assume at
current time point t* we can observe the first p links of the leading bus, the first g links
of the following bus, and the corresponding headways, then we aim to forecast :ﬁ;’t* for
the upcoming links of the following bus. Apart from the observed information, we also

*
combine the forecasts z?:;l; tl of the leading bus to construct the recording vector r]t-’t* and

alignment matrix G]t.'t*. The posterior predictive distribution of the augmented random
e

variable x [

tt* tt* tEFN

xr
]
¥ to bt bt | ot t t gt (4:20)
P | E, 2, G ) p(i, T | @)p(z! | w)p(xt | ) dudLdz! dr'
From the joint distribution, we can easily obtain the posterior predictive distribution

p (:ic]” *) over the upcoming (1 — q) links by conditional sampling. Since we have gathered
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Figure 4.3: Illustration of travel time forecasting. Solid dots: observed arrival time at bus
stops. The hollow dot: unknown arrival time at the bus stop. Solid red dots: new observed
arrival time at bus stops. Each sub-figure is a new round of forecasting triggered by a
new observation of bus arrival. For each adjacent bus pair, we forecast the following bus’s
upcoming link travel time (dashed green lines) based on observed and previously forecast
link travel times (green lines covered by a red arrow area).

a large number of parameter samples in model inference/training, we could directly use
the stored samples to make probabilistic forecasting without retraining. We summarize

the procedure of probabilistic forecasting in Algorithm 5.

4.5 Experiments

4.5.1 Data and Experimental Settings

In this section, we evaluate the proposed probabilistic forecasting model on real-world data.
The data used in this paper are the bus in-out-stop record data collected by the automatic
bus announcing system in Guangzhou, China, during the weekdays from December 1st,
2016 to December 31st, 2016. When a bus enters or exits a bus stop, the announcing system
reports the arrival or departure information and records the timestamp accordingly. Thus
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Algorithm 5 Gibbs sampling for probabilistic forecasting.

Input: Observed vector r;’t*, alignment matrices G;’t*, samples of mixture weights

Ko ‘ . (o))"
{71' } , samples of covariance matrices {Zk } Y samples of mean vectors
p:

.
'

Output: A set of samples for the forecast :%;t*
: forp =1tod, do
Compute p(zp) according to Eq. (4.14).

t
P

1

2

3:  Draw z

4 Draw m;’t* by Algorithm 3.
5

6

according to Eq. (4.8).

Collect ;ﬁ;ff*

: end for ;
~ t t* (P) 2
return < & ].’

p=1

to the output set.

N

o]

do
. . .. C . o px(0)
: Get the posterior predictive distributions from samples {w;t* } .
p=1

we can easily obtain the link travel times/headways from the data. We take the bus route
No. 60 as a case study and aim to make probabilistic forecasting for travel time of this
route. This bus route is in the urban area of Guangzhou and it has 21 stops and 20 links,
as shown in Figure 4.4. The overview of data is shown in Figure 4.5. We can see that
the bus route has many missing and ragged values. Moreover, Figure 4.12 shows the
empirical distributions of link travel times of route No. 60. We can see that many link
travel times exhibit positively skewed and unimodal distributions while some links such
as link #11 and link #20 have bimodal distributions, which further justifies the use the
Gaussian mixture model to approximate the skewed and multimodal distributions.

As the measurements have different units, we first perform data standardization (z-
score normalization) so that all variables are centered around 0 with a standard deviation
of 1. By doing so, we can better model and learn the covariance matrix. For example, ¢; ,,
(the m-th link travel time of the i-th bus) can be rescaled /standardized with

gi/m o yém
s

Zz' m —
’ T,

(4.21)

where i, is the mean of travel time at the m-th link; ¢,  is the standard deviation of
travel time at the m-th link. Note that the constraints in Eq. (4.2) no longer hold after the
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Route No.60

Figure 4.4: Bus route No. 60 in Guangzhou bus network.
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Figure 4.5: Data overview.

standardization (e.g., zi,z + Zilg # 1i2, flilg — fzi,z + Zi,z — Zi—l,Z # 0). Therefore, we need to
perform a linear transform on the constraints to ensure the equality.

As we estimate the model parameters by using standardized data, the forecasts could
be recovered by an inverse transformation ﬁl m = El m0r,, + W, where El m 1s the forecast of
standardizing data. We use the first sixteen weekdays (December 1st to December 23rd) for
model estimation/training, and the following five weekdays (December 26th to December
30th) to test the forecasting model. In this experiment, we make probabilistic forecasting for
the link /trip travel time to evaluate the proposed model. The numbers of MCMC iterations
are d; = 9000 (burn-in iterations) and d, = 1000 (sampling iterations), respectively. In our
experiments, the offline training process (Algorithm 4) takes approximately thirty minutes

on a personal computer, while the forecasting time (Algorithm 5) for a single bus trip is
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less than one second, which is acceptable for real-time applications.

4.5.2 Performance Metrics

We use the root mean squared error (RMSE) and the mean absolute percentage error
(MAPE) to evaluate the performance for point estimation based on the mean. We use the
logarithmic score (LogS) and the continuous rank probability score (CRPS) as the metrics

to evaluate the performance of probabilistic forecasting.

e RMSE and MAPE are defined as:

1 n
— _ . 0.)2
RMSE = J . Z(yZ 7i)?,
i=1 (4.22)
Yi— Vi

Yi

1 n
MAPE = ~

7

where y;,7;,i = 1,...,n are the true values and forecasts, respectively.

* The logarithmic score refers to likelihood and is formally defined as

LogS(fx,y) = —log fx(v), (4.23)

where fx is the forecasting probability density function (PDF), and y is the ob-
servation. LogS is equivalent to the log-likelihood of the forecasting probability
distribution and it captures all possible information about the observations related

the model. Here, we use the average LogS of all observations to evaluate the model.

¢ The continuous rank probability score is often used as a quantitative measure of prob-
abilistic forecasting; it is defined as the quadratic measure of discrepancy between
the forecasting cumulative distribution function (CDF), noted Fx, and I(x > y), the
empirical CDF of the observation y

0

CRPS(Fy, ) = | (F(x) ~1(x

—0a0

A\
<
~—
~—

N

U

g

(4.24)

where I(-) is the indicator function. We use the average CRPS of all observations as
one metric.
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4.5.3 Models in Comparison

We compare the following models to demonstrate the effect of the leading bus and headway

on probabilistic forecasting for bus travel time.

* Model A: all buses are independent. In this case, variable x; only contains link travel
time of bus i, i.e., ; = [l;]. For a particular bus, the model only uses observed links

of itself to make conditional probabilistic forecasting.

* Model B: adjacent buses are considered but without explicitly modeling headway
o £i
variation, 1.e., x; = .
i
* Model C: the proposed model that characterizes the joint behavior of a pair of
adjacent buses. Variable z; is in its full version as in Eq. (4.1).

In addition, we compare our proposed method with two benchmark methods: Bayesian
neural networks and Kalman Filter. Given the presence of missing or ragged data, we
perform data imputation using linear interpolation before training the models and making

forecasts.

* Bayesian neural networks (BNN): To make probabilistic forecasting, we use a Bayesian
version of a neural network, as proposed by Liang (2005). We consider the interac-
tions between adjacent buses to make a fair comparison. The input features include
the link travel times of the leading and following bus up to the current time, as well as
the observed headway. The output is a vector that corresponds to the travel times of
the following bus on all future links. Note that the input and output dimensions of a
neural network are fixed. Thus, for each bus line, we train three neural networks, one
for each scenario, to achieve the best performance. The input and output dimensions
of the neural network in each scenario depend on the number of observed and future
links, which are detailed in Section 4.5.4.

¢ Kalman Filter (KF): To account for the influence of link length on travel time, we
begin by detrending the data, i.e., subtracting the mean travel time for each link
from the raw data. We then apply a KF to the detrended data, which models the
residuals and provides a way to make short-term trip travel time forecasts using
an autoregressive approach. However, the long-range forecasting with KF is not
well-suited to our needs. Here, the term “short-term trip travel time forecasts" refers

to the ability of the KF to provide relatively accurate travel time predictions for
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the next a few upcoming links. In other words, it excels at forecasting travel times
for trips in the immediate future. On the other hand, the “long-range forecasting"
refers to predicting the trip travel times when many upcoming links are involved.
This type of forecasting becomes more difficult as the number of upcoming links
increases. Additionally, the KF approach is limited in that it does not fully account
for interactions between adjacent buses, which are important factors affecting travel
time.

4.54 Forecasting Results

We apply Algorithm 4 to estimate model parameters and Algorithm 5 to make probabilistic
forecasting for bus travel time. In addition to bus route No. 60, we also consider forecasting
bus travel time for route No. 527, which has more stops/links (34 stops). For bus route No.
60, we test models with 1, 2, and 5 classes, and for bus route No. 527, we test models with
1,2,5, and 8 classes. To evaluate the impact of the number of observed links on travel time
forecasting, we test route No. 60 with 5, 10, and 15 observed links, and route No. 527 with
5, 15, and 25 observed links.

The tables displaying the forecasting performance of different models are divided into
two parts. The first part shows the performance for forecasting link travel time; the results
for No. 60 and No. 527 are shown in Table 4.1 and Table 4.3, respectively. The second
part shows the performance for forecasting trip travel time (i.e., estimated time of arrival
at the final stop n + 1), which are shown in Table 4.2 and Table 4.4. We observe that the
forecasting performance of each model significantly improves with an increase in the
number of observed links. In particular, the proposed model (Model C) outperforms both
Model A and Model B, which demonstrates the importance of information on the leading
bus and headways (i.e., interactions). This finding shows that travel time and headways of
the bus pair can reinforce the probabilistic forecasting for bus travel time. We demonstrate
the importance of the mixture model in characterizing bus travel time by observing the
models with different numbers of classes in the Gaussian mixture model. Furthermore,
our proposed Model C outperforms BNN and KF, showing its superior performance over
these baseline models.

4.5.5 Interpreting Mixture Components/Classes

In this part, we use route No. 60 to show the interpretability of the model. After the above
analysis, we use K = 2 to show the practical implication of the probabilistic forecasting
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Table 4.1: Performance of different models for link travel time forecasting of route No. 60.

Observed links

5 links ‘ 10 links ‘ 15 links

RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS

BNN | 352 | 01491 | 1628 | -4.548 | 31.8 | 01278 | 14.33 | -4.411 | 27.7 | 0.1157 | 11.93 | -4.252

KF | 415 | 01772 | 19.74 | -4781 | 359 | 01397 | 16.60 | -4.575 | 32.0 | 0.1275 | 14.43 | -4.427
K=1]| 339 |0.1439 | 1548 | -4.495 | 31.8 | 0.1274 | 14.54 | -4413 | 27.9 | 0.1151 | 13.03 | -4.367

Model A | K=2| 33.8 | 0.1436 | 14.90 |-4.553 | 321 | 01275 | 1413 | -4.698 | 27.9 | 0.1175 | 12.55 | -4.418
K=5| 341 |0.1430 | 1451 | -4.456 | 32.6 | 0.1252 | 13.53 | -4.855 | 29.6 | 0.1200 | 11.79 | -4.288

K=1| 335 | 01369 | 15.02 | -4.451 | 29.7 | 0.1142 | 1326 | -4.342 | 303 |0.1179 | 13.32 | -4.344

Model B | K=2| 337 | 0.1442 | 14.86 | 4434 | 293 | 0.1171 | 12.89 | -4.303 | 31.1 | 01233 | 13.07 | -4.297
K=5| 345 | 01387 | 1451 | -4411| 297 | 0.1148 | 1234 | -4.261 | 319 | 0.1245 | 12.12 | -4.220

K=1| 33.0 |0.1341 | 1449 | -4422| 293 | 0.1139 | 12.62 | -4.306 | 31.9 | 0.1187 | 12.78 | -4.273

Model C [ K=2| 297 | 01252 | 13.11 | -4.334 | 22.0 | 0.0989 | 1026 | -4.164 | 17.0 | 0.0918 | 7.93 | -3.970
K=5| 303 | 01253 | 13.19 | -4341 | 22.1 | 0.0986 | 10.22 | -4.171 | 17.1 | 0.0874 | 7.97 | -3.990

Best results are highlighted in bold fonts.

Table 4.2: Performance of different models for trip travel time forecasting of route No. 60.

Observed links

5 links ‘ 10 links ‘ 15 links
RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS
BNN | 1984 | 0.0814 | 117.57 | -7.056 | 1453 | 0.0926 | 85.85 |-6.578 | 75.3 | 0.0881 | 46.50 | -5.942
KF | 233.1 | 0.0910 | 141.52 | -7.483 | 177.3 | 0.1076 | 106.39 | -6.954 | 91.4 | 0.0992 | 57.51 | -6.358
K=1| 1878 | 0.0789 | 110.23 | -6.921 | 1322 | 0.0860 | 77.42 | -6.411 | 715 | 0.0863 | 43.87 | -5.845
Model A | K=2| 1884 | 0.0790 | 105.97 | -6.751 | 136.3 | 0.0877 | 76.14 |-6.492 | 70.4 | 0.0855 | 41.70 | -5.764
K=5| 190.1 | 0.0790 | 106.96 | -6.712 | 137.2 | 0.0876 | 73.86 |-6.320 | 72.9 | 0.0878 | 37.24 | -5.544
K=1| 1774 | 0.0760 | 102.13 | -6.696 | 119.9 | 0.0762 | 68.51 | -6.272 | 70.9 | 0.0884 | 42.10 | -5.780
Model B | K =2 | 182.1 | 0.0801 | 105.01 | -6.709 | 117.7 | 0.0770 | 67.24 |-6.254 | 73.6 | 0.0911 | 41.71 | -5.720
K=5] 1851 | 0.0786 | 102.37 | -6.704 | 117.0 | 0.0740 | 63.98 | -6.180 | 74.0 | 0.0908 | 36.45 | -5.584
K=1] 1716 | 0.0713 | 96.51 |-6.594 | 1159 | 0.0729 | 64.17 | -6.151 | 75.6 | 0.0909 | 40.41 | -5.647
Model C | K=2 | 149.5 | 0.0686 | 83.79 | -6.443 | 87.2 | 0.0651 | 48.46 |-5.865 | 36.0 | 0.0619 | 19.42 | -4.943
K=5] 151.6 | 0.0694 | 8477 |-6.502 | 86.1 | 0.0641 | 47.83 | -5.850 | 35.8 | 0.0625 | 19.38 | -4.931

Best results are highlighted in bold fonts.
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Table 4.3: Performance of different models for link travel time forecasting of route No. 527.

Observed links
5 links ‘ 15 links ‘ 25 links
RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS
BNN | 534 |0.1988 | 20.83 | -10.970 | 49.7 | 0.1852 | 16.94 | -9.477 | 49.1 | 0.1938 | 15.65 | -9.137
KF | 581 | 02155 | 24.26 | -12.702 | 52.5 | 0.1985 | 18.02 | -10.331 | 529 | 0.2158 | 16.77 | -10.240
K=1| 524 ]0.1960 | 20.08 | -10.617 | 50.7 | 0.1881 | 18.82 | 9.977 | 49.3 | 0.1832 | 17.80 | -9.441
Model A | K=2 505 | 01882 | 1864 | -9.893 | 489 | 01826 | 17.51 | -9.289 | 47.8 | 0.1781 | 16.61 | -8.874
ode K=5| 513 | 01911 | 19.25 | -10.191 | 49.1 | 0.1832 | 17.67 | -9.361 | 48.6 | 0.1811 | 17.27 | 9.178
K=8| 51.6 | 01927 | 19.44 |-10.317 | 50.7 | 0.1881 | 18.86 | -9.974 | 49.1 | 0.1837 | 17.65 | -9.361
K=1| 516 |0.1921 | 1943 |-10.315| 484 | 0.1801 | 17.14 | -9.103 | 47.0 | 0.1753 | 16.11 | -8.572
Modelp | K=2| 493 | 01839 | 17.73 | -9.444 | 431 | 01617 | 1327 | -7.095 | 445 | 0.1664 | 1424 | -7.627
ode K=5| 482 | 01791 | 1692 | 9.029 | 445 | 0.1668 | 1424 | -7.621 | 43.7 | 0.1635 | 13.69 | -7.323
K=8| 488 | 0.1827 | 17.46 | 9251 | 457 | 0.1703 | 15.11 | -8.072 | 443 | 0.1658 | 14.12 | -7.545
K=1| 491 ]0.1832 | 17.65 | -9.365 | 46.6 | 0.1171 | 15.76 | -8.530 | 43.3 | 0.1604 | 13.97 | -7.468
ModelC | K=2| 469 01711 | 1587 | -8534 | 403 | 01432 | 13.00 | -6.563 | 40.7 | 0.1487 | 1324 | -6.835
9 I K=5| 446 | 01648 | 14.35 | -7.684 | 382 | 0.1354 | 12.67 | -6.026 | 37.8 | 0.1303 | 12.43 | -5.924
K=8| 447 | 01674 | 1441 | -7.700 | 37.8 | 0.1287 | 12.42 | -5.843 | 38.1 | 0.1305 | 12.45 | -5.970

Best results are highlighted in bold fonts.

Table 4.4: Performance of different models for trip travel time forecasting of route No. 527.

Observed links

5 links ‘ 15 links ‘ 25 links

RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS | RMSE | MAPE | CRPS | LogS

BNN | 3857 | 0.1254 | 236.82 | -11.765 | 204.0 | 0.1161 | 108.15 | -9.323 | 116.7 | 0.1042 | 46.57 | -8.512

KF | 4015 | 0.1321 | 241.58 | -11.781 | 216.6 | 0.1277 | 11525 | -9.970 | 130.3 | 0.1197 | 52.66 | -8.984
K=1| 3835 | 0.1205 | 233.92 | -11.029 | 2054 | 0.1187 | 109.21 | -9.339 | 121.0 | 0.1107 | 50.14 | -8.733

Model A | K=2 3801 | 01200 | 23155 | -10.991 | 2037 | 0.1164 | 108.03 | -9.317 | 118.3 | 0.1101 | 4825 | 8515
R K =5 3817 | 0.1202 | 232.69 | -11.003 | 204.2 | 0.1167 | 108.39 | -9.328 | 120.7 | 0.1106 | 49.93 | -8.537
K =8| 381.8 | 0.1204 | 232.70 | -11.001 | 204.6 | 0.1169 | 108.67 | -9.325 | 120.5 | 0.1106 | 49.76 | -8.532

K=1| 3724 | 0.1198 | 226.16 | -10.910 | 197.6 | 0.1062 | 103.71 | -9.263 | 113.8 | 0.1001 | 45.06 | -8.471

Model g | K=2| 3682 | 01190 | 22328 | 10872 | 1925 | 0.106 | 10015 | -9.210 | 109.9 | 0.0998 | 42.38 | -8.436
9P K =5 3634 | 0.1188 | 21991 | -10.837 | 193.8 | 0.1061 | 101.01 | -9.229 | 113.4 | 0.1000 | 44.71 | -8.469
K =8| 367.9 | 0.1195 | 223.00 | -10.868 | 193.9 | 0.1061 | 101.19 | -9.222 | 1127 | 0.0999 | 44.25 | -8.452

K=1| 3643 | 0.1189 | 220.41 | -10.849 | 195.1 | 0.1065 | 101.91 | -9.235 | 111.5 | 0.0997 | 43.43 | -8.441

ModelC | K=2 3591 | 0.1181 | 216.88 | -10795 | 1915 | 0.1058 | 99.42 | -9213 | 109.6 | 0.0994 | 42.14 | -8.404
09~ | k=5 3527 | 0.1180 | 212.37 | -10.732 | 188.7 | 0.1056 | 97.58 | -9.174 | 1083 | 0.0995 | 41.21 | -8.316
K =8| 3534 | 0.1183 | 212.83 | -10.741 | 1863 | 0.1055 | 95.80 | -9.156 | 109.2 | 0.0995 | 41.85 | -8.423

Best results are highlighted in bold fonts.
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for bus travel time. Figure 4.13 demonstrates that Markov chains are close to their steady
state distribution. Figure 4.6 shows the estimated mean vectors (standardization) for both
classes/patterns. We can see that the mean vectors demonstrate significant differences in
some link travel times (e.g., link #11, #12, #13, #14, #15) and many headways. To better
tind the difference of classes in terms of link travel time/headway, Figure 4.7 visualize the
trajectory plots by using the sampling link travel times and headways. By comparing the
estimated trajectories of class 1 and class 2, we can find that: class 1 has longer link/trip
travel times than class 2; class 1 has shorter headways than class 2; class 1 has larger
variances for link travel times. Overall, the mixture components implicitly capture the
operational patterns (e.g., demand/frequency/traffic state) of the bus route: class 1 seems
more like the operation in congested traffic and rush hours—higher frequency but slower
speed, while class 2 may represents the operation in a free traffic state and off-peak hours.
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Figure 4.6: Mean vectors for different classes.

To interpret the classes, Figure 4.8 depicts the clear time-evolving patterns of each
component. This further confirms our interpretation on classes 1 and 2. We can see that
class 1is dominant for afternoon peak hours while it is inferior to class 2 for off-peak hours
and morning peak hours. Generally, morning peak and afternoon peak have similar traffic
characteristics while in this case morning peak has similar characteristics to off-peak hours.
This is because the studied directional bus route stretches from urban business districts
to suburban areas. The better traffic condition and the small passenger flow exist in the
morning because few people go to suburban areas on weekday mornings. On the contrary,
traffic congestion and large passenger flow happen in the afternoon peak as more people
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Figure 4.7: Distribution of the estimated trajectory for different classes.

go home from urban to suburban areas. Therefore, class 1 (afternoon peak) exhibits a
longer travel time, shorter headway (higher frequency), and larger uncertainty than class 2
(morning peak, off-peak hours).
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Figure 4.8: Component distribution for different intervals.

Figure 4.9 depicts the correlation matrices for different classes/patterns. Both of the
correlation matrices show the complex characteristics of the correlations between link
travel times/headways: 1) long-range correlations, 2) negative correlations, and 3) different
patterns. On the other hand, the two components also show substantial differences. The
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most significant difference is that the leading bus and the following bus for class 1 could
be more correlated than that for class 2, which is reasonable since class 1 represents the

scenarios in which the services are slower but more frequent.

4.5.6 Distribution of the forecast Bus Travel Time

We show the application of the probabilistic forecasting model for bus route No. 60 of a
selected day in Figure 4.10. The left panel intuitively illustrates the probabilistic forecasting
for bus travel time at 4:50 p.m., while the right panel corresponds to the forecasting at
5:10 p.m. All actual bus operations are shown by green lines in the time-space diagram.
Assume that past operation of buses (i.e., before 4:50 p.m. and before 5:10 p.m.) are
observed and we use the observed information to forecast the future time-space position
of buses. The variability of the probabilistic forecasting is shown with the 10th, 25th,
40th, 60th, 75th, and 90th percentile values. Note that determining the best percentile to
reflect reliability for decision-making by operations and riders is not a simple task and
requires further investigation, such as studying passengers’ risk aversion towards travel
time reliability. Our model can output any percentile according to practical needs, and we
use the 10th to 90th percentiles to visually examine the prediction performance. We can
see that the proposed model can make a good probabilistic forecasting for bus arrival time.
By comparing the two figures, we can also find that for a bus trip, more observed links can
help improve forecasting accuracy and reduce forecasting variability.

Finally, we use the two bus trips to show the forecasting distributions. Figure 4.11
shows the probabilistic forecasting results. In this experiment, we assume that we have
observed the first eleven link travel times of the following bus and the corresponding
link travel times/headways of the leading bus, then we intend to make probabilistic
forecasting for the trip travel times of the last several links. In the left panel, the brown
points are the trip travel times of the leading bus; the blue points are the true trip travel
times of the following bus, and the green points are the predictive mean values. We can
see that the predictive mean values fit the actual values quite well, demonstrating the
proposed probabilistic model can achieve accurate forecasts. Moreover, as the number
of links in a trip increases, we observe that the red bell curves become more spread out,
indicating an increased variance of the trip travel time. The right panels show the mean
corrected estimation, and the purple points (we refer to them as corrected mean values)
are computed by posterior conditional mean values minus model mean values; the orange
points are computed by the difference between true values and model mean values. We
can find that the posterior conditional mean can make a more accurate forecasting than the
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Figure 4.9: Correlation matrices for different components.

model mean. If we do not use the information of the observed link travel times/headways,
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Figure 4.10: Samples of probabilistic forecasting of route No. 60.

the forecasting mean vectors should be the model mean vectors. As can be seen, the
corrected mean values for observation 1 as shown in Figure 4.11 (a) are larger than zero,
while the corrected mean values for observation 2 as shown in Figure 4.11 (b) are lower
than zero, demonstrating the observed information indeed reinforces the forecasting for
the upcoming links.

4.6 Conclusion

In this paper, we propose a new representation that combines bus link travel time and
headway from a pair of adjacent buses, and model it with Multivariate Gaussian mixture
distributions for probabilistic bus travel time forecasting. Our approach naturally cap-
tures/handles the link travel time correlations of a bus route, the interactions between
adjacent buses, the multimodality of bus travel time distribution, and missing values
in data. We also integrate the Gaussian mixture model with a Bayesian hierarchical
framework to capture bus travel time patterns in different periods of a day. We conduct
numerical experiments on a real-world dataset to evaluate the proposed model and our
results confirms the superiority of the proposed model. It should be also noted that the
training of this model is actually performed in an offline manner based on historical data,
and conditional forecasting is very efficient based on stored Markov chains of model
parameters. The model can be also retrained every a few days/weeks to accommodate
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Figure 4.11: The probabilistic forecasting for trip travel time.

temporal variation in the system.

Besides making probabilistic forecasting, our approach has other potential practice and
research implications. First, the parameters of the proposed model contain rich information
for bus agencies to build better timetables and schedules and to evaluate the resilience
and reliability of timetables/schedules. For example, analyzing link travel time corre-
lations and delay propagation using correlation matrices, and understanding temporal
patterns of the bus route from mixing coefficients. Second, with sufficient training data,
we can also use the proposed model to make probabilistic simulations about train/bus
operation and delay propagation. Third, our proposed framework can incorporate further
information, such as passenger demand, onboard passengers/occupancy, to reinforce the
probabilistic forecasting for bus travel time. This will allow us to characterize how travel
time, headway/delay, boarding demand and onboard occupancy interact with each other
in a data-driven way and help operators achieve additional real-time occupancy/load

forecasting along the bus route, which is important to travelers under the pandemic (see
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e.g., Pasini et al. (2019); Jenelius (2019, 2020)).

Our proposed probabilistic forecasting model for bus travel time only considers using
one leading bus. In practice, a subject bus of interest could be correlated with more
than one leading buses; therefore, we can incorporate more leading buses to reinforce
the probabilistic travel time forecasting for the following bus. In the extreme case, we
can take into account all the buses in operation along the route (e.g., 6 buses at 5:10 pm
in Figure 4.10(b)) and make conditional forecasting for them simultaneously without
using the autoregressive approach. However, the increasing number of leading buses will
result in a significant increase in dimensionality (e.g., vector size > 100). This will not
only lead to increased computational cost as the covariance matrix will be large but also
require a much larger set of training data. To address this issue, we will consider using
a mixture of probabilistic principal component analysis (PCA) to reduce dimensionality.
Our further research will utilize the mixture of probabilistic PCA to model the following
bus with more leading buses. With this idea, it is also possible to build a much larger
model than can generate probabilistic forecasting for all buses (i.e., the whole fleet) on the
road when we have sufficient amount of training data. Furthermore, investigating the
links between bus travel time and physical operation conditions would be a compelling
tuture direction. For instance, from Figure 4.12, we observe that link #8, which has two
intersections, has a larger travel time with greater variance than link #6, which has no
intersections. Although our current focus is on developing a data-driven model for bus
travel time forecasting, we are keen on exploring the relationship between bus travel time
and various physical operation conditions in future studies. Another potential direction
is to employ probabilistic forecasting for bus travel time across the bus network. In this
study, we assume that all bus lines are independent and only examine interactions among
buses on the same bus line. However, buses from different bus lines may have correlations
or interactions, especially when they share many common road segments. Hence, future
research could explore the correlations among buses on the bus network and leverage

them to improve travel time forecasting.
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Figure 4.12: Empirical distribution of link travel time of bus route No. 60.
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Chapter 5

Bayesian Forecasting of Bus Passenger
Occupancy

This chapter is a research article submitted to Transportation Research Part B: Methodological:

¢ Chen, X., Cheng, Z., Schmidt, A. M., Sun, L. 2024. Conditional forecasting of bus
travel time and passenger occupancy with Bayesian Markov regime-switching vector
autoregression. arXiv preprint arXiv:2401.17387.

This chapter corresponds to the probabilistic forecasting of bus travel time and passenger
occupancy with a Bayesian Markov regime-switching vector autoregression model. This
chapter focuses on the probabilistic forecasting of passenger occupancy while it is the
extension of the previous Chapter 4.
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5.1 Abstract

Accurately forecasting bus travel time and passenger occupancy with uncertainty is es-
sential for both travelers and transit agencies/operators. However, existing approaches
to forecasting bus travel time and passenger occupancy mainly rely on deterministic
models, providing only point estimates. In this paper, we develop a Bayesian Markov
regime-switching vector autoregressive model to jointly forecast both bus travel time and
passenger occupancy with uncertainty. The proposed approach naturally captures the in-
tricate interactions among adjacent buses and adapts to the multimodality and skewness of
real-world bus travel time and passenger occupancy observations. We develop an efficient
Markov chain Monte Carlo (MCMC) sampling algorithm to approximate the resultant
joint posterior distribution of the parameter vector. With this framework, the estimation of
downstream bus travel time and passenger occupancy is transformed into a multivariate
time series forecasting problem conditional on partially observed outcomes. Experimental
validation using real-world data demonstrates the superiority of our proposed model in
terms of both predictive means and uncertainty quantification compared to the Bayesian

Gaussian mixture model.

5.2 Introduction

The rapid progress of urbanization has brought increasing population and economic
agglomeration in large cities. Urban transportation problems such as increased traffic
congestion and pollution, high energy consumption and greenhouse gas emissions, and
growing safety and accessibility concerns, have been persistently challenging the develop-
ment of sustainable cities and communities. In the 2030 Agenda for Sustainable Development,
the United Nations has emphasized the critical role of public transportation in shaping
a sustainable society (United Nations, 2015). However, despite the growing investment
in infrastructure, North American cities have not seen rapid growth and even observed a
decline in ridership in recent years, even before the COVID-19 pandemic (Erhardt et al.,
2022). One of the key reasons is that the operation of transit services suffers from reliabil-
ity issues. Bus operation is a highly challenging problem due to the inherent instability
of the system—a slightly delayed bus will be further delayed as it will encounter more
waiting passengers and experience longer dwell time. Unreliability in travel time and
overcrowdedness resulting from unstable operations (e.g., “bus bunching”, see Daganzo,
2009; Bartholdi III and Eisenstein, 2012) have been the main factors preventing travelers
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from using public transportation (Carrel et al., 2013). Having access to accurate travel
time and occupancy forecasting along with uncertainty becomes important to travelers to
make informed travel planning in terms of mode choice, route choice, and even vehicle
choice (e.g., waiting for a less crowded bus or boarding a full vehicle) (Yu et al., 2017). For
transit agencies/operators, probabilistic forecasting could benefit the design of robust bus
management strategies, such as bus route design (e.g., Zheng et al., 2016), bus crowding
control (e.g., Wang et al., 2021b), timetable design (e.g., Jiang et al., 2021), and bus bunching
control (e.g., Xuan et al., 2011; Bartholdi III and Eisenstein, 2012).

In general, a bus link refers to the one-way segment that connects two adjacent bus
stops along a bus route. Link travel time of a bus is defined as the time difference between
the arrivals at two adjacent bus stops associated with the bus link. Therefore, the trip travel
time of the bus from one stop to another can be calculated by summing up all link travel
times between these two stops. The passenger occupancy of a bus on the link is defined as
the total number of passengers onboard while the bus is traversing that particular link.
The main goal of this paper is to provide real-time predictions of downstream travel time
and passenger occupancy of a bus along a given route.

Previous studies on forecasting bus travel time have predominantly employed de-
terministic approaches, based on techniques such as Artificial Neural Network (Gurmu
and Fan, 2014), Support Vector Machine (Yu et al., 2011; Kumar et al., 2013), K-nearest
neighbors model (Kumar et al., 2019), Long-Short-Term Memory neural network (He et al.,
2018), and various hybrid models (Yu et al., 2018). In addition, deterministic passenger oc-
cupancy forecasting models have also been developed, including Lasso regularized linear
regression model (Jenelius, 2019), partial least squares regression (Jenelius, 2020), Random
Forest (Wood et al., 2023), and deep learning model (Bapaume et al., 2023). Despite the
widespread use and simplicity of these deterministic models, a significant drawback is that
they only provide point estimates, overlooking the randomness and uncertainty associated
with the prediction.

There are only a few studies on probabilistic forecasting for bus travel time and passen-
ger occupancy (e.g., Ma et al., 2017; Dai et al., 2019; Biichel and Corman, 2022a,b; Chen
et al., 2023). However, these studies often adopt oversimplified assumptions and ignore

important operational characteristics of bus systems, including:

¢ Strong interactions/correlations between travel time and passenger occupancy. Pre-
vious studies on probabilistic prediction for bus travel time (Ma et al., 2017; Dai
et al., 2019; Biichel and Corman, 2022a,b) and passenger occupancy (Wang et al.,
2021a) have typically treated these variables independently. However, the intricate
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interactions and correlations between bus travel time and passenger occupancy are
not adequately considered. For example, the boarding and alighting processes take
longer for a crowded bus compared to an empty one (Sun et al., 2014b). Incorporating
these interactions through a joint modeling approach could significantly enhance the

accuracy of probabilistic forecasting.

¢ Complex link correlations of both travel time and passenger occupancy. Chen et al.
(2022) demonstrated that link travel times on a bus route exhibit complex local and
long-range correlations. In Section 5.3, we also find that link passenger occupancy
on a bus route exhibits local and long-range correlations. However, existing studies
often focus only on local correlations while neglecting long-range correlations in
probabilistic forecasting for both bus travel time (Ma et al., 2017; Biichel and Corman,
2022a,b) and passenger occupancy (Wang et al., 2021a).

* Interactions/correlations between adjacent buses along a bus route. Adjacent buses
often have strong interactions that lead to system instability and bus bunching (Da-
ganzo, 2009; Bartholdi III and Eisenstein, 2012); for instance, due to the increase in
headway (i.e., duration between two arrivals), a delayed bus could see more passen-
gers waiting at the bus stop and get further delayed. To our knowledge, only Biichel
and Corman (2022b) and Chen et al. (2023) considered the interactions/correlations
between adjacent buses along a bus route in their proposed models for bus travel
time forecasting, while most studies (Ma et al., 2017; Btichel and Corman, 2022a)
focused on modeling the correlations between adjacent links along a bus route.

The recent contribution by Chen et al. (2023) develops a time-dependent Gaussian
mixture model, which treats the concatenation of link travel time data from two consecutive
buses as a random variable. The estimated model can then be used to perform conditional
forecasting for the travel times of all downstream links. The study demonstrates that
incorporating information from neighboring buses significantly improves forecasting
accuracy. However, a notable limitation of this model is that two consecutive observations
are assumed to be conditionally independent given their latent states, thus neglecting
the temporal /dynamic relationships among multiple buses. This paper addresses the
aforementioned challenges by developing a joint Bayesian model for bus travel time and
passenger occupancy, building upon the foundation laid by Chen et al. (2023). To model
the correlations between travel time and passenger occupancy, we construct a variable that
combines the link travel time vector, the passenger occupancy vector, and the departure

headway. More importantly, we employ a Bayesian Markov regime-switching vector
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autoregressive model to characterize the dynamic relationship among multiple buses.
This new approach effectively captures essential interactions between adjacent buses,
along with the multimodality and skewness of bus travel time and passenger occupancy
distributions. Furthermore, it adeptly models intricate state transitions, particularly crucial
when forecasting bus travel time and passenger occupancy with limited observations for
the following bus. For model estimation, we develop an efficient Markov chain Monte
Carlo (MCMC) algorithm to draw samples from the resulting posterior distribution of the
model parameters. As we follow the Bayesian paradigm to estimate the parameters of the
model, predictions are obtained by approximating the posterior predictive distribution.
We fit the proposed model to the smart card data of one bus route in an anonymous
city. The experimental results confirm that the proposed Markov regime-switching vector
autoregressive model outperforms existing methods in terms of both point estimates
and uncertainty quantification. This holistic approach contributes to a more robust and
nuanced understanding of bus travel time and passenger occupancy dynamics, offering
improved forecasting capabilities in real-world scenarios.

The remainder of this paper is organized as follows. In Section 5.3, we perform an
empirical analysis of bus travel time and passenger occupancy using real-world data. In
Section 5.4, we present the proposed Bayesian Markov regime-switching vector autoregres-
sive model. The forecasting process and the probabilistic forecasting model are described
in Section 5.5. We then showcase the capabilities of our proposed model by analyzing
real-world data in Section 5.6. Finally, we conclude the study and summarize our key
findings in Section 5.7.

5.3 Data Description and Analysis

Smart card data, a prevalent data source in public transit studies, is collected from electronic
fare payment systems—transactions are created when passengers use smart cards (e.g.,
contactless cards or mobile payment apps) to pay for their bus trips (Pelletier et al., 2011).
These data sets capture information about boarding and alighting, including time, location,
fare paid, and card ID. In this paper, we use the smart card data for one bus route (32
stops and 31 links) in an anonymous city to prepare the bus travel time and passenger
occupancy data.

Figure 5.1 shows bus trajectories with passenger occupancy in one day. We can see
that some adjacent buses have strong interactions like bus bunching, especially during

morning peak hours. Bus bunching typically arises due to various factors, including traffic
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Figure 5.1: Bus time-space trajectories with passenger occupancy. The horizontal axis
represents the “Time of day” (from 5:00 to 24:00) and the vertical axis represents “Stop ID”
(from the starting stop to the final stop, 32 stops in total). Each curve contains 31 segments,
and it depicts the trajectory of a bus traveling from the departure stop to the final stop. The

color of a segment shows the passenger occupancy of the bus.

congestion, unpredictable passenger boarding and alighting times, variations in travel
speeds, and delays caused by external factors such as road conditions, traffic signals, and
accidents. When a bus falls behind schedule, it tends to experience increased passenger
occupancy at subsequent stops and becomes further delayed. As a result, bus travel time
and passenger occupancy have strong correlations, and adjacent buses on the same route
often demonstrate complex interactions.

Figure 5.2 shows some example empirical distributions of travel time, passenger oc-
cupancy, and headway on three links. We observe clear characteristics such as positive
skewness, heavy tails, and multimodality. Therefore, it is essential to develop a model that
can effectively characterize such complex distributions to ensure the quality of probabilistic
forecasting.

We empirically compute the correlation and cross-correlation matrices among the asso-
ciate variables, which are shown in Figure 5.3. The first panel presents the link travel time
correlation matrix, which reveals that link travel times have both local and long-range
correlations. It is worth noting that the label / in this matrix refers to the headway at
the departure/originating stop, which enables us to capture the relationship between
the link travel times and departure headway. Therefore, we could use observed link
travel times and the headway to forecast downstream link travel times. The second
panel presents the passenger occupancy correlation matrix, which indicates that passen-

ger occupancy also has strong local and long-range correlations. Similarly, passenger
occupancy is also correlated with departure headway. In the third panel, we observe the
cross-correlation matrix between link travel time and passenger occupancy, and we can
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Figure 5.2: Examples of empirical distributions of link travel time (first row), passenger
occupancy (second row), and headway (third row). The red lines represent kernel density
estimates of the empirical distributions across the links.

see that they have strong correlations. Consequently, jointly modeling link travel time
and passenger occupancy could make more accurate forecasting. The last two panels
show the cross-correlation matrix between the leading bus and the following bus in terms
of link travel time and passenger occupancy, respectively. We can see that two adjacent
buses are strongly correlated in link travel time and passenger occupancy. Therefore,
it is also crucial to take into account the interaction between two adjacent buses to im-
prove prediction performance. In summary, our empirical findings demonstrate three
key observations: i) strong interactions/correlations between travel time and passenger
occupancy, ii) complex link correlations in travel time and passenger occupancy, and
iii) strong interactions/correlations between adjacent buses along a bus route. Thus, we
contend that, in constructing a forecasting model, bus travel time and occupancy should be
jointly modeled, with explicit consideration given to the interactions between two adjacent
buses. By doing so, the model will provide a more accurate representation of the dynamic
and interconnected nature of bus travel time and passenger occupancy, thus improving

the predictive performance of the model.
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Figure 5.3: Correlation and cross-correlation matrices of associated variables.
5.4 Proposed Model and Bayesian Inference

5.4.1 Notations of Variables

Let E% represent the travel time of the i-th bus on the m-th link on the d-th day. The trip
travel time of the i-th bus from stop m1; to stop m; is given by 72" 1 ¢ @) We denote by

m=my “1,m"
fl(i) the passenger occupancy of the i-th bus on the m-th link on the d-th day. The link travel

time and occupancy of bus i on a bus route with 7 links (i.e., n 4- 1 bus stops) can be stacked
T T

into Efd) = [ffj), ﬁg), ey, Zf’?] € R" and fi(d) = [ fi(j), fig), ey fi(,i)] e R", respectively.

Note that here we define both travel time and occupancy to be real numbers for simplicity,

whereas real-world travel time data should be strictly positive, and occupancy data should

(d)

be in the form of counts. We define the departure headway hid as the time interval
between the arrival of the (i — 1)-th bus and the i-th bus at the originating bus stop on

the d-th day. Figure 5.4 shows the representation of the variables in bus trajectories. We
(d)

introduce a multivariate random variable, y;"’, as the concatenation of link travel time,

the occupancy of the passengers and the departure progress for the bus i on the d-th day:

T
y" = {BE‘”T, fl-(”’)T,h?d)} e R, (5.)
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Figure 5.4: Representation of bus trajectories with passenger occupancy.

In doing so, we create a concise representation that allows us to analyze and model the

relationship among these variables more effectively. Therefore, from historical smart

1,,D
card data, we could collect the observations {yi(d) } .d L denoted by ), where 1; is the
1=1,d=

total number of bus runs we have in the training/historical data on the d-th day and D

represents the number of days in the data set.

5.4.2 Bayesian Markov Regime-Switching Vector Autoregressive Model

To model the random variable, Chen et al. (2023) developed a Bayesian time-dependent
Gaussian mixture model for probabilistic forecasting. This model assumes that each pair
of buses has a latent class (i.e., hidden state), and the core idea is to use the observed
information to infer the hidden state. In Figure 5.4, we can observe two successive bus
pairs: the first pair i (with bus i — 1 and bus 7) and the second pair i 4 1 (with bus i and
i + 1). In the Bayesian Gaussian mixture model, the relationship between hidden states
of adjacent bus pairs (e.g., pair i and pair i + 1) is not modeled directly. In other words,
the state of bus pair i + 1 has no direct relationship with the state of bus pair i except that
they likely come from the same time window. Consequently, when estimating the hidden
state of a bus, the accuracy of the estimation heavily relies on the amount of observed
information available for that bus. However, as mentioned in Section 5.3, the interactions
between adjacent buses, particularly in scenarios where bus bunching occurs, reveal a
clear interdependence between adjacent states. By accurately modeling the relationships
between the states of adjacent buses, we can leverage more information to infer the state
of the current bus and improve the estimation. For instance, in Figure 5.4, when we
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want to estimate the hidden state of bus i + 1, even if we have limited observed links
for the current bus i 4- 1, we can accurately estimate the state of bus i because this bus
could have more observed information. Using the modeled relationship between adjacent
states and the observed links of bus i + 1, we can enhance the estimation of the state of
bus i 4 1. Therefore, considering the modeling of relationships between adjacent hidden
states becomes crucial for accurate probabilistic forecasting. To address this issue, we
propose employing a Bayesian regime-switching Markov model to capture the dependency
between adjacent hidden states and to capture the relationship between two adjacent buses.

Markov regime-switching models are designed to analyze and forecast time series
data that may shift between different states or regimes over time. These models have
gained significant popularity in econometrics and time series analysis since the work of
Hamilton (1989). Regime-switching models have been applied to many tasks such as
speech recognition (Kim and Nelson, 2017) and motion recognition (Fox et al., 2014).

In our Bayesian Markov regime-switching vector autoregressive model, we assume

@)
1

,is described by

that the conditional distribution of the vector y

Y l.(f)l and the current hidden state zl(d)

, given the preceding observed vector

U 102" =k~ N (A + i), (5:2)

i

(d)

where yi(d) | yz.(i)l,zi = k follows a multivariate Gaussian distribution. This model is

commonly used to capture complex and heterogeneous relationships among variables
in multivariate time series analysis (Krolzig, 2013). In this equation, Ay is a coefficient
matrix that characterizes the influence of the preceding bus on the current bus under
the regime of the hidden state k. The mean vector p; and the covariance matrix Xy are

parameters specific to the hidden state k, allowing the model to capture the varying
(d)

dynamics of the bus system under different operational conditions. The hidden state z;

represents the latent regime or condition of the i-th bus on the d-th day. These hidden states

encapsulate unobserved factors that influence the bus’s operational characteristics, such as

(d)

traffic conditions, weather, or other variables. By modeling y,” as a function of both its

preceding observation yl(f)l and the hidden state zfd), the model can capture the complex

and dynamic interactions within the bus route, thus improving the predictive accuracy of
bus travel time and passenger occupancy over nonstationary operational conditions.

Another critical aspect of our proposed model is the transition of hidden states, repre-

@) (d)

sented by probability p <zi ) | zl-_l). This probability is modeled as a categorical distribu-

tion dependent on the state transition matrix 7. We use 7y = (713, .. ., 7'c1<)T to denote a
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vector representing the transition probabilities from state k to other states, i.e.,, 0 < 71 < 1

fork=1,...,Kand Z,Ile T, =1,and w = [TrlT e .,WI—H T represents the state transition
(d) (d)

matrix. Specifically, the probability of transition from state z;”"; to state z;"’ is given by
T (@) (@) which follows a categorical distribution parameterized by T (@)
i—17%i i—1
d d .
zg ) | Zz(f)l ~ Categorical (wzl@) . (5.3)

This formulation captures the Markov property of the model, where the probability of bus
i being in a particular state is dependent solely on the state of its preceding bus i — 1. This
structure is critical in modeling how the state of each bus is influenced by its immediate

predecessor. For the initial state, we assume

ng) ~ Categorical (7*), (5.4)

where 7* is the probability distribution of the initial state, which is the marginal distribu-

tion calculated from the state transition matrix .

5.4.3 Prior Specification

In general, we assume the following conjugate prior distributions for Xy, ., and Ay,

X~ W_l (To, 1/0) , (5.5)
1

M ~ N (IJ’O/ )\_OZk) ’ (56)

Ap ~ MN (Mo, Zk,‘/o) , (5.7)

where W1 (¥, 1p) is the inverse-Wishart distribution with a scale matrix ¥y and v
degrees of freedom; pg and A are parameters for the Gaussian prior; MN (M, Zi, Vo) is
the matrix Gaussian distribution with parameters M, X, and V;. These prior distributions
are fundamental to our Bayesian framework, allowing the model to incorporate prior
knowledge and uncertainty effectively. In addition, we use a Dirichlet prior distribution

for each transition probability:

m | o ~ Dirichlet (a), (5.8)

97



CHAPTER 5 BUS PASSENGER OCCUPANCY FORECASTING

0

o~ : =w \
\z(d)\ w\‘zw
1 2 3

IJ’Oa)\O — Mk ]
E/t ot g
[ Ek‘ \ f /v/ D / J

W, 1o

M,,Vy **

Figure 5.5: Graphical representation of a Bayesian Markov regime-switching vector autore-
gressive model.

where a is the concentration parameter of the Dirichlet distribution. The Dirichlet distri-
bution is a natural choice for modeling probability vectors 7 because it ensures that the
probabilities are non-negative and sum up to one, which are essential properties for any

set of transition probabilities.

5.4.4 Model Overview

Figure 5.5 provides the overall graphical representation of the proposed model. Consider-
ing the vector autoregressive model and the Markov regime-switching model as separate
dimensions, we can think of the proposed combination as a spatial-temporal model. The
overall model specification is summarized as follows:
(1) Draw model parameters of state k from 1 to K:
(a) Draw the state transition probability 7 | o ~ Dirichlet ().
(b) Draw the covariance matrix £ ~ W~ (¥o, vp).
(c) Draw the mean vector p; ~ N (uo, %OZ;{ .
(d) Draw the coefficient matrix Ay ~ MN (M, L, Vo).
(2) For each sequence of d-th day from 1 to D:
(a) Draw the initial state ng) ~ Categorical (7).
(b) For each bus i from 2 to I;:
l(d) | Zz@l ~ Categorical (71-2@ )

-1

(i) Draw state sequence z

1

(ii) Draw observations yi(d) | yi(f)l,z(d) =k~N (Akyiz)l + g, Zk).
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5.4.5 MCMC Algorithm to Approximate Posterior Distribution

For any k = 1,...,K, we define M = {(i,d) |z§d> :k,dzl,...,D,izl,...,Id} as
(d)

the set of bus indices with state z;' = k; we use |M| to denote the number of el-
ements in M. Similarly, for any k = 1,...,Kand ¥ = 1,...,K, we define My =

{(i,d) | zl(d) = k,z(d) =kK,i=1,...,D,i=1,...,1; — 1} as the set of indices of buses that

i+1
have zl(d) = k with its follower having zgi)l = k'. We define A = {Ay|k=1,...,K}
as the set of coefficient matrices. Define p = {u; |k =1,...,K} as the set of mean
vectors and ¥ = {X; |k =1,...,K} as the set of covariance matrices. For simplicity,

we let @ = {pp, Ao, Yo, vo} denote the set of hyperparameters for the Gaussian-inverse-
Wishart prior distribution in Eq. (5.5) and (5.6). In addition, we let yf?}d and ziiill de-
note the observations and states of the bus sequence on the d-th day; we denote by
Vi = {yi(d) | zgd) =kd=1,...,D,i=1,..., Id} the set of data vectors belonging to state
k.Let Z = {zfd) |ld=1,...,D,i=1,..., Id} to be the set of states of observations. We use
I' = {A, pn, X, Z} to denote a parameter set. The likelihood of A, i, X, Z given observations

Y is given by
ST (@ @ L@
L(YT) = }—[ [1r (yi | Y2102 ,Azlgdwuzlgdwzzlgd)) p (Azl(d) | Mofzzl(d),%)
=1i=2
1 D @ T (@@
p (e Loy 2w ) o (2w [ @00 ) [T o (57 1) [ [ (253127 7) p (L ).
’ ' ’ d=1 i=2

(5.9)

Due to the large number of observations, it is impossible to marginalize out Z from
Eq. (5.9). Therefore, based on the graphical model illustrated in Figure 5.5, we derive
an efficient MCMC scheme using Gibbs sampling. We start the Gibbs sampling with
random initialization for all parameters, and then iteratively sample each parameter from
its conditional distribution on other parameters. Posterior full conditional distributions of

the parameters are derived as follows:

* Sampling state transition probability m; from p (. | 2X, &). We use 2* to denote
the vector containing latent variables whose values are k. The conditional distri-
bution is p (m; | 25, @) ocp (my | @) p (2% | w¢). The prior distribution p (7 | @) =
Dirichlet (7 | «) oc [[F—_; 7% and p (2% | ) can be seen as a multinomial distri-

k k!
| M|

bution p (2* | m) = Multinomialg (2" | N, ;) o [T5_4 m; " where |[Mj| is the

number of elements in M ;. Therefore, the conditional posterior distribution is a
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Dirichlet distribution:

). (5.10)

p (Wk | zk,a> = Dirichlet (|My 1| + a1, [Myo| + a2, -+,

(d)

* Sampling state sequence z;. I, from p <zfl)d | yifll)d,ﬂ', wx, A). For each bus se-
quence, we sample the entire hidden discrete state sequence zfl)d all at once given

the sequence observations yg‘:j}d and parameters m, u, X, A. For the Markov chain

model, the forward-backward algorithm is often used to sample the state sequence

(Scott, 2002). In this sampling algorithm, we are interested in finding the posterior
distribution p (z | Y. I) , T, 10, X, A) of z( ) given the sequence observations yfl)d

and parameters 7, p, X, A. With Bayes’ theorem, we have

p (yﬁ)d 2%, x, A) p (ng) | 77)

(5.11)
p (yﬁ)d K Z,A)

p (ZZ@ | yfﬁ,/ L A) =

Using the conditional independence property in Figure 5.5, we obtain

5 A i, )
p (v, |7 m % A)

P (Zz(d) Yy, N,Z,A> _ p(

@Y g (@
ot lﬁ,ﬁf;,l)f
where we define a (2{"') and § (2{") as follows
«(5”) =p (v 2" \w,u,z,A), 5.13)
p(a”) =p (w127 mE A). (5.14)
We then derive recursive relationships that allow & (z”') and § (2"} to be eval-

uated efficiently. The relationship between « (z@) and « (zl(i)l) can be derived
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w (") = p (i 1o 2" A) Y (w1 25w 4) p (57 125) p (2

= (5%, 4) T (29) p (271 44)

d
=N (yl( ) ‘ Azl(d)yi(f)l + legd),):. (d)) o <Zl(i)1> nZ@l (zl(d)> . (5.15)

We can similarly derive the recursive relationship for the quantities (z@) as

follows

() = X (ks 1 8% %, ) (5 5%, 00, 4) p (29,1 49)

Zit1

=B (Zgi)l) p ( yiy |y =, A) P <Z§i)1 | Zl(d))

_ (d) (d) ( ) (d)

= Z ‘B <Zi+1> N (yH_l | AZZ@ + [J, 1+1 ZZ;+>1> 7'[25,1) (Zi—|—1) . (5.16)
Considering that the left-hand side in Eq. (5.12) is a normalized distribution, the
quantity p (yf}d | 7,1, X, A) can be obtained as follows:

p <y§iil)d | 7,1, X, A> = Z ! (z@) B (z@) ) (5.17)

N

After running the recursion fromi =1,..., I; to obtain « (ng)) PR (z%?) and the

recursion from i = I,...,1 to obtain (ng) ) ,oo B (zf) ) , then we could evaluate

p (Zzgd) | yfl)d' ™, L, A) and sample the state sequence z%)d.

Sampling mean and covariance (p, Zx) from p (pr, Z | Vi, ©, Ag). Thanks to the
conjugate prior distribution, the conditional distribution of the mean vector and the
covariance matrix p (p, g | Vi, ©, Ay ) is a Gaussian-inverse-Wishart distribution:

* 1 — k *
p (i Zk | Vi ©, Ap) = N (Mk | “O’A_gzk> W (k| Y5, 5) (5.18)
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where

. Aopo+ [My|é
Py =

/\SZAO—F‘MH, V8=V0+|Mk‘,

Ao+ My 7
1 (d) (d) . Ao | M| T
6= — WAy ), wE =8+ IR (5 5 — ,
|M’<|i,d§<4k (yz ky1_> 5= Yo Ao+|Mk|( o) (6 — po)
d d d d T
s= Y (v - aw" -5) (v” - Al - 5) .
i,dEMk

(5.19)

e Sampling coefficient matrix Ay from p (Ay | Vk, px, Zx). As we use the conjugate
prior distribution, the conditional distribution of the coefficient matrix p (Ay | Yk, tx, Zk)

is a matrix Gaussian distribution:

p (Ak | yk/ 1357 Z'k) = MN (Ak | M(;:/ Z“k/ ‘/E]*) s (520)
where
-1

« _ d) T

Vi= vyt Dy , (5.21)
i,dEMk

« _ d a T «

Mg = (Movo Y (0 ) uh ) Vi (5.22)
i,dEMk

Finally, we summarize the Gibbs sampling procedure to estimate the parameters in
Algorithm 6 seen in Appendix A. We drop the first n; = 9000 iterations as burn-in and
then store samples of parameters 7y, py, Ly, A from the following n, = 1000 iterations.
For hyperparameters, we set pg = 02,41, Ag = 2, @9 = Ipyy1, Vo = Ipyy1, vo = 2n+ 3,
and o = 0.2 x Ix, where n is the number of bus links. Note that model training is in fact
offline based on historical data, and only Markov chains (i.e. samples) of the parameters
are used in the forecasting task. We code the MCMC algorithm using Python with Numpy
and Scipy packages.

5.5 Probabilistic Forecasting

We categorize the links of each bus into two groups: observed links and upcoming links,
during the forecasting process. Observed links refer to the links that the bus has already tra-
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versed, and we know their respective travel times and passenger occupancies. On the other
hand, upcoming links are the links that the bus is yet to traverse, and we need to forecast
their travel times and passenger occupancies. The crucial step of the forecasting process
is to determine the hidden states of the buses using the available observed information.
Once hidden states are identified, it becomes convenient to make probabilistic forecasts
for travel time and occupancy for downstream links conditional on observed information.
Through the model training process, we have obtained a sample from the posterior distri-
bution of the parameters. Using sampling techniques, we can make estimations about the
hidden states of buses using the information that is currently observed. Forecasting can be
achieved by approximating the distribution of unobserved/future variables conditional on
the observed link travel time and passenger occupancy. Typically, there are upcoming links
for both the following bus (bus j) and the leading bus (bus (j — 1)). While it is possible to
make forecasts solely based on the observed links, we adopt an autoregressive approach.
This approach incorporates the forecasting of the upcoming links of the leading bus to
forecast the travel time and passenger occupancy of the following bus. When considering
the interdependence among buses, our forecasting method offers a more comprehensive
and accurate estimation.

We use Figure 5.6 to illustrate the forecasting process. Figure 5.6 (a) presents the
scenario where bus j — 1 has completed its run, bus j has traversed the initial two links
and arrived at stop #3, and bus j + 1 has left the origin stop but has not yet arrived at
stop #2. Our initial task is to estimate the hidden states of these buses (from bus 1 to bus
j + 1) based on the observed link travel times and passenger occupancies. Similarly, we
used observed link information and headway to forecast the subsequent links for bus
j and bus j + 1 based on the estimated states. For bus j, we can make predictions by
using its upstream links (the first two links), all the observed link travel times/passenger
occupancies of the leading bus j — 1, and the starting headway of the bus j. Concerning
bus j 4 1, the observed upstream link travel times/passenger occupancies of bus j are
used, along with the forecasts of the upcoming link travel times/passenger occupancies of
bus j, and the observed headway. As time passes, the forecasting of relevant buses can be
updated upon receiving new observed links. At the time point illustrated in Figure 5.6 (b),
bus j 4 1 obtains a new observed link, enabling us to update the hidden states and perform
prediction. In this example, the states of all buses remain unchanged, but with additional
observed links, the forecasting could become more accurate. At the subsequent time point
depicted in Figure 5.6 (c), bus j acquires a new observed link, which requires an update

of the bus states. With more observed information, it is possible for the states of certain
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Figure 5.6: Representation of probabilistic forecasting. Solid blue circles: observed link
travel time and passenger occupancy at bus stops. The hollow circles: unknown arrival time
and passenger occupancy at the bus stop. Solid red circles: new observed arrival time and
passenger occupancy at bus stops. Solid green, orange, and purple circles represent different
hidden states. Each sub-figure is a new round of forecasting triggered by a new observation
of bus arrival. For each bus, we forecast the bus’s upcoming link travel times and passenger
occupancies (dashed blue lines) based on observed and previously forecast link travel times
and passenger occupancies (blue lines covered by a red arrow area).

buses to change, resulting in improved accuracy. In this case, the state of bus j changes
from green to purple, and consequently we can update the forecast. It should be noted that
even though bus j 4 1 does not have any additional observed links, updated information
about its leading bus (i.e., bus j) can reinforce/enhance its forecasting. Furthermore, we
can see that a new bus j + 2 starts its trip on the route; with the observed headway, we
could make forecasting for bus j 4- 2. Figure 5.6 (d) demonstrates the scenario where bus j
has completed its run, and bus j + 1 and j + 2 each obtain a new observed link. In this case,
we can generate forecasts for bus j 4 1 and j 4 2 following the aforementioned procedure.

Consider a specific bus j, and the observed links (travel time, passenger occupancy,
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headway) can be organized into a vector denoted as y]‘?, representing partial observations.

Our goal is to forecast the unobserved links of bus j, and we denote the vector we want to

a

.

forecast as yf . Therefore, the full variable of bus jisy; = |y? ", y.f . For most time-series
j 18 Yj i Y

problems, the Markov regime vector autoregressive model often makes forecasting based
f

only on previous observations. For example, forecasts of y ; are derived solely from its
immediate predecessor y; 1. This conventional approach relies on the dynamics inherent
in the vector autoregressive structure and the probabilistic transitions between the hidden
states. At any time, in additional to the observation Yj-1, We also have partial observations

yf and y](.’ 1. Our proposed forecasting approach will incorporate all observations (that

is, yj_1, y;-’, y;? 1) to enhance the forecast for the unobserved part y]f of bus j. With the

n
collected n, samples {B(P)} of parameters during the model estimation stage, we

can utilize the Gibbs sampling method to obtain the predicted distribution (probabilistic
forecasting) for unobserved variables. The predictive distribution over the unobserved

art yf of bus j given the observed data can be approximated by Monte Carlo estimation:
p i 8 PP y

p (y}f | yl:j—ll y]O, y;')+1>

- Hﬂ p(u)1-) P (221 |9 91509010, 7,0) p () p (6) ey dmdd
n

1 2
~ le (y]f | y}’,y]’_l,y]‘-’ﬂ,z](-p),z](-ﬂ)l,u(P),Z(P),A(P)) : (5.23)
o=

Figure 5.7 shows the overall graphical representation of probabilistic forecasting. The
sampling scheme for probabilistic forecasting is as follows.

For the sequence state inference, we use the same forward-backward sampling method
as in Section 5.4.5. Next, we need to sample yf from p <y]f | y]‘?, Yi-1, y;?H, Zj, Zj11, 4 B, A) .

Note that in sampling y]f we build the conditional distribution on y](-’ 1 instead of y;1 for

efficient sampling. Here, by using the characteristics of Gaussian linear systems, we can

easily obtain the joint distribution of y; and y; 1 as

([

yj—llzjlzj+1l M, L, A> ~ N(m/ L)/ (524)
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Figure 5.7: Graphical representation of probabilistic forecasting. Each bus has the partial
observations represented by a vector y7. Our goal is to forecast the unobserved links of the

f

buses, and the vector we want to forecast is represented by Y;-

where
-
m— [ Az yj1+ bz L= [ xz; szﬁzm ] . (5.25)
Asz(Azjyj—l + sz) + Kz AZj+1ZZj Azj+1ZZfAZj+1 + ZZ]’H

-
In this joint distribution, we have partial observations y° = [y]‘?T, y;’ +1T} . Based on

the joint distribution, we can directly derive the conditional distribution of unobserved
f.
i
v/ m
p (7] ~ N f . (5.26)
y° my

vectors y
Lyg Lfo
f
p (y]f | y](')lyjflly;?-‘rllzj/ Zit1, 4, B, A) =p (y{ | y0> =N (y}f | mﬂo,Lﬂo) ,  (56.27)

Lo,f Lo,o

4

The conditional distribution of Y; given y° is:

where my|, and Ly, are the conditional mean and covariance matrix, respectively, given
by:

my, = mys + Lf,OL;/(} (y° —my,), (5.28)
Lpo=Lss—LsoLy Ly (5.29)

By collecting forecasting samples from all parameter groups, we can approximate poste-
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rior predictive distributions for travel times and passenger occupancies of upcoming links.

We summarize the Gibbs sampling algorithm for probabilistic forecasting in Appendix B.

5.6 Experiments

In this section, we conduct a comprehensive evaluation of our proposed model using real-
world datasets. We also undertake a comparative analysis with existing models to highlight
the superior performance of our approach. In addition, we explore an examination
of parameter patterns to further substantiate our findings. The source code used for
these experiments can be accessed from https://github.com/xiaoxuchen/Markov-Regime-

switching-Model.

5.6.1 Experiment Settings

As the measurements have different units, we first perform data standardization (z-score
normalization) so that all variables are centered at 0 with a standard deviation of 1. By
doing so, we can better model and learn the covariance matrix. For example, ¢; ,, (the m-th

link travel time of the i-th bus) can be rescaled /standardized with

gi,m — W,

7=
im 7

(5.30)
where 1y, is the mean of travel time at the m-th link; ¢, is the standard deviation of
travel time at the m-th link. The dataset encompasses a period of four consecutive weeks,
specifically focusing on weekdays (Monday to Friday), which amounts to a total of 20
days. We use the first 15 days for model inference, and the remaining 5 days to validate
the model forecasting. In the inference, we can estimate the parameters of the model and
understand the underlying structure or process that generates the observed data. The
forecasting validation is crucial for evaluating how well our proposed model performs
on unseen data. It helps in assessing the model’s predictive accuracy and generalizability.
In this experiment, we make probabilistic forecasting for bus travel time and passenger
occupancy to evaluate the proposed model.

5.6.2 Performance Metrics

We use the root mean squared error (RMSE) and the mean absolute error (MAE) to evaluate

the performance for point estimation based on the mean. We use the continuous rank
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probability score (CRPS) to evaluate the performance of probabilistic forecasting.

¢ RMSE and MAE are defined as:

RMSE—$

1< .
MAE = ;Z i — il
i-1

S|

D=9
i=1 (5.31)

where y;,7;,i = 1,...,n are the true values and forecasts, respectively.

* The continuous rank probability score is often used as a quantitative measure of
probabilistic forecasting; it is defined as the quadratic measure of the discrepancy
between the predicted cumulative distribution function (CDF, denoted by Fx) and
I(x = y), the empirical CDF of the observation y:

CRPS(Fx,y) = f N (Fx(x) —L(x > y))* dx, (5.32)

—00
where I(+) is the indicator function, which is defined as follows: If the condition
inside the parentheses is true, then I(-) equals 1. We use the average CRPS of
all observations as one metric. Essentially, the CRPS calculates the mean squared
difference between the predicted probabilities and the observed outcome, integrated
over all possible threshold values. Lower CRPS values indicate better forecast

accuracy.

5.6.3 Model Comparison

In this paper, we compare the performance of our proposed model with the Bayesian
time-dependent Gaussian mixture model developed in Chen et al. (2023). Here, we detail
the method outlined in Section 5.2. Figure 5.8 shows the overall graphical representation
of the time-dependent Bayesian Gaussian mixture model. The random variable at the t-th

period follows a multivariate Gaussian mixture model:
K

P (') = D N (v | i), (5.33)
k=1
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Figure 5.8: Graphical representation of Bayesian time-dependent Gaussian mixture model.

where the superscript (-)! denotes the time period, K is the number of components, 0 <
7t < 11is a mixing coefficient with Yf_; 7t = 1, and each of the K components follows a
multivariate Gaussian distribution.

The random variable of each period is characterized by a mixture of several shared
Gaussian distributions. In the graphical model, z! is a component label, indicating which
component y! belongs to. In a Bayesian setting, they use a conjugate Gaussian-inverse-
Wishart prior on p; and Xy and a Dirichlet prior on 7! for efficient inference. The overall

data generation process is summarized as:

7! ~ Dirichlet (o), (5.34)
e ~ W (Yo, v0), (5.35)
b~ A (10,3 %) (5.36)
zt ~ Categorical (7'), (5.37)
yi |zt =k~ N (e Zy), (5.38)

where a is the concentration parameter of the Dirichlet distribution; W1 (¥, vp) is the
inverse-Wishart distribution with a scale matrix ¥ and vy degrees of freedom; 1o and Ag
are parameters for the Gaussian prior.

Next, we design the following models to demonstrate the effect of interactions between
bus travel time and passenger occupancy and dependencies between hidden states on
probabilistic forecasting for bus travel time and passenger occupancy.

* BGMM-S: Apply Bayesian time-dependent Gaussian mixture model to make bus
travel time and passenger occupancy forecasting separately. We develop two inde-
pendent models: one model for bus travel time and the other model for passenger

occupancy. These independent models are the particular cases where the correlation
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between travel time and passenger occupancy is not considered.

* BGMM-J: Apply a Bayesian time-dependent Gaussian mixture model to make bus
travel time and passenger occupancy forecasting jointly. We model the bus travel
time and passenger occupancy as a random variable and therefore could consider

the interactions between them.

* MSAR-S: Apply Bayesian Markov regime-switching vector autoregressive model
to make bus travel time and passenger occupancy forecasting separately. Similarly,
there are two independent models: one model for bus travel time and the other
model for passenger occupancy.

* MSAR-]: This is our proposed model, and we utilize the Bayesian Markov regime-
switching vector autoregressive model to jointly forecast bus travel time and passen-

ger occupancy.

5.6.4 Forecast Performance

We apply Algorithm 6 to estimate model parameters and Algorithm 7 to make probabilistic
forecasting for bus travel time and passenger occupancy. We test models with different
numbers of clusters/states (K = 1,5, 10, 20, 30,40, 50) to select an optimal state number.
For each model, we start with an initial value K = 1 and evaluate performance. When
performance improves, we will select a larger K to evaluate the model again and continue
this process until there is no substantial improvement in performance. Table 5.1 shows the
performance of probabilistic forecasting for bus travel time and passenger occupancy with
different models. First, we can see that all models show improved performance as the num-
ber of clusters/states (K) increases, indicating that they are significant in forecasting bus
travel time and passenger occupancy. Second, we can observe that RSMM-] and BGMM-]J
outperform MSAR-S and MSAR-S, which demonstrates the importance of joint modeling
of bus travel time and passenger occupancy. This finding shows that considering the
interactions between bus travel time and passenger occupancy can significantly improve
probabilistic forecast performance for bus travel time and passenger occupancy. Third,
we can see that MSAR-S/] outperforms BGMM-S/], which indicates that modeling states
transition/connection could help make better probabilistic forecasting for bus travel time

and passenger occupancy.
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Table 5.1: Performance of probabilistic forecasting of link travel time, passenger occupancy,
and trip travel time.

Link travel time (sec) ‘ Passenger occupancy (pax) ‘ Trip travel time (sec)

RMSE \ MAE \ CRPS \ RMSE \ MAE \ CRPS \ RMSE \ MAE \ CRPS

K=1 | 6431 | 51.32 | 3244 | 10.05 | 8.13 6.20 258.83 | 215.61 | 175.18

K=5 | 5451 | 42.67 | 29.60 | 9.16 7.34 5.87 246.89 | 201.36 | 157.85

BGMML-S K=10 | 4741 | 36.82 | 27.44 8.00 6.89 5.21 236.14 | 189.39 | 144.83
K=20| 4573 | 3554 | 2591 7.81 6.70 5.43 218.65 | 176.94 | 132.44

K=30| 4053 | 31.49 | 20.59 7.67 6.60 5.37 199.49 | 161.29 | 115.78

K=40| 4396 | 3397 | 22.28 6.94 5.95 4.95 212.09 | 172.35 | 125.93

K=1 | 4723 | 35.71 | 27.25 8.97 7.01 5.45 221.09 | 184.14 | 135.29

K=5 | 4463 | 3435 | 25.69 8.64 6.92 5.28 213.53 | 174.15 | 131.21

K=10 | 3894 | 30.28 | 19.96 6.46 5.27 4.26 183.32 | 149.51 | 106.41

BGMM-] | K=20 | 36.87 | 28.32 | 19.65 6.16 5.04 3.96 180.88 | 143.22 | 103.60
K=30| 2416 | 17.28 | 17.63 5.76 4.69 3.84 170.43 | 112.47 | 79.89

K=40| 1825 | 13.02 | 14.35 | 4.53 3.60 3.57 164.22 | 102.23 | 72.36

K=50| 1841 | 13.06 | 14.64 | 4.60 3.74 3.75 166.80 | 105.52 | 73.99

K=1 | 6287 | 4948 | 31.15 | 10.23 | 853 6.32 257.11 | 214.04 | 174.87

K=5 | 51.86 | 40.46 | 25.32 7.65 6.46 5.25 235.50 | 194.67 | 143.99

MSAR-S | K=10 | 42.61 | 32.73 | 21.74 6.89 5.87 4.73 205.99 | 169.55 | 120.36
K=20| 3445 | 25.96 | 19.59 6.35 5.39 4.27 195.90 | 156.32 | 109.32

K=30 | 39.09 | 30.28 | 20.01 6.58 5.61 4.53 205.60 | 157.92 | 112.60

K=1 | 4832 | 3599 | 27.45 9.20 7.03 5.48 222.28 | 184.37 | 135.60

K=5 | 39.38 | 30.36 | 20.39 6.43 5.45 4.82 197.60 | 157.43 | 114.00

MSAR-] K=10 | 30.16 | 2257 | 18.25 5.27 441 3.90 190.47 | 141.01 | 105.90
K=20| 1835 | 13.38 | 14.36 | 4.86 4.07 3.79 164.47 | 103.55 | 72.60

K=30| 1611 | 11.66 | 12.14 3.48 2.92 3.07 137.13 | 83.48 | 57.98

K=140 | 17.02 | 1257 | 13.37 | 4.50 3.98 3.71 153.35 | 95.72 | 63.06

Best results are highlighted in bold fonts.

5.6.5 Interpreting Analysis

Bayesian models are powerful tools for interpreting parameters and uncovering patterns
in probabilistic forecasting of bus travel time and passenger occupancy. In our study, as
depicted in Figure 5.9, we showcase the estimated transition matrix, a cornerstone of the
Markov regime-switching model. Each element of this matrix provides insight into the
probability of transitioning from one state to another. The structure and values within
this matrix are instrumental in understanding how frequently and likely certain state
transitions occur, which in turn, can be linked to specific conditions or patterns in bus
travel time and occupancy. We can see that most buses would like to keep or transit to
state 2. Furthermore, Figure 5.10 presents the estimated coefficient matrices of different
states and we can find that they have different patterns, indicating that different states

show different relationships between adjacent buses. Figure 5.11 and Figure 5.12 illustrate

111



CHAPTER 5 BUS PASSENGER OCCUPANCY FORECASTING

the estimated mean vectors and covariance matrices of the random error term. The
visual representation of mean vectors gives us an understanding of the central tendencies
of errors across different states. The covariance matrices, on the other hand, unravel
the relationships between errors of different variables. These visualizations reveal clear

distinctions among different states in both mean values and covariance matrices.
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Figure 5.10: Estimated coefficient matrices.
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Figure 5.11: Estimated mean vectors of the random error term.
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Figure 5.12: Estimated covariance matrices of the random error term.

5.6.6 Forecast Distribution

Figure 5.13 shows that the last bus has arrived at stop #14 and the goal is to provide
predicted distributions for travel time and passenger occupancy of downstream links
(that is, from stop 14 to 32), and provide trip travel time/arrival time distributions. In
this figure, we plot the predicted trajectories with passenger occupancy. In particular,
the model generates multiple outcomes for each bus run, depicted by the spread of five
sampled trajectories, which collectively offer a distribution that encapsulates the possible
variance in travel times and occupancy. This spread of predictions signifies the model’s

robust approach to capturing the uncertainties inherent in the bus systems.
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Figure 5.13: Trajectory plot to show the bus travel time and occupancy forecasting. The
vertical line represents the current time that separates past and future. Each colored curve
shows the trajectory of one bus run, with color indicating the number of passengers onboard
(i.e., occupancy). For each bus, we plot five samples of the predicted downstream travel time
and passenger occupancy based on the proposed model.

We present visualizations of predicted probability distributions for a specific bus at
a particular time point. Using a sampling method, obtaining the predicted trip travel
time for the bus becomes straightforward. The visualization encompasses forecasting
probability distributions for link travel time, passenger occupancy, and trip travel time,
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as demonstrated in Figure 5.14. In this figure, the bus has already traversed the first
17 links and our goal is to forecast the next 14 links (from #18 to #31). The blue points
represent the true values, while the green points represent the predictive mean values.
The first two panels show the predicted probability distributions for link travel times
and passenger occupancy. Evidently, the predictive means closely align with the true
values, which confirms the good accuracy of our forecasting for both bus link travel
time and passenger occupancy. Furthermore, we observe that link travel times with
larger values tend to exhibit larger variances, indicated by the larger variance in those
red density functions. Additionally, upcoming links situated near the current links have
smaller variances, suggesting that more precise predictions. The bottom panel shows
the forecasting probability distributions for trip travel times. As the number of links in
a trip increases, we notice that the red bell curves become more spread out, reflecting an
increased variance in trip travel time. This is because longer trips inherently introduce

more uncertainty in travel time predictions.

5.7 Discussion

In this paper, we propose a Bayesian Markov regime-switching vector autoregressive
model for probabilistic forecasting of bus travel time and passenger occupancy. Our
approach can effectively capture and address several critical factors: the correlations
between travel time and passenger occupancy, the relationship between adjacent buses,
and the multimodality /skewness of bus travel time and passenger occupancy distributions.
To validate our proposed model, we conduct extensive numerical experiments on a real-
world dataset. Our results demonstrate the superiority of the proposed approach compared
to benchmark models and its effectiveness in providing accurate forecasts for bus travel
time and passenger occupancy.

Our approach has implications for both practice and research. First, the proposed
Bayesian Markov regime-switching vector autoregressive model could forecast trip travel
time (i.e., estimated time of arrival) and passenger occupancy distributions, which could be
incorporated into real-time bus information systems to help passengers and bus agencies
make better decisions. Second, the proposed Bayesian model is also an interpretable tool
for bus agencies to better understand bus operation patterns with uncertainty. For example,
if one has access to enormous historical bus operation data (including some special events
such as extreme weather, sporting events, large-scale concerts, etc.), we could also learn
the pattern of special events, which would be helpful for bus agencies to provide better
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Figure 5.14: Probability distributions of forecasting travel time and passenger occupancy.

and robust management and operations. Third, our model can also be used to model other
transport systems with interactions between adjacent vehicles. For instance, we can use the
same model to model train/metro operation in a network and study how delay propagates.
The proposed Bayesian Markov regime-switching vector autoregressive model can offer
valuable insights into understanding and mitigating the delays that frequently affect train
systems. Last, the proposed Bayesian Markov regime-switching vector autoregressive
model could be utilized to perform imputation for series data with missing values.
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5.8 Appendix

Algorithm 6 Gibbs sampling for parameter estimation.

(@)

I;,D
Input: Sequential observations {yi } it hyperparameters ® and «, random initial-
1=1,d=

1,D
ization of sequential states {zl(d) } , iterations 14, ns.
i=1,d=
K,le
Output: Samples of transition matrix {ﬂ'k(P)}k - samples of mean vectors
= ,p:

Kn Kn
{ u}(f’ )} ’ , and samples of covariance matrices {Z,(cp)} ’

k=1,0=1 k=1,0=1"
1: foriter = 1 to n; + np do

2. fork=1toKdo
3: Draw X; and py according to Eq. (5.5) and Eq. (5.6).
4: Draw Ay according to Eq. (5.7).
5: if iter > ny then
6: Collect py, Ly, and Ay to the output sets.
7: end if
8: end for
9: fork=1toKdo
10: Draw 7y according to Eq. (5.8).
11: if iter > ny then
12: Collect 7 to the output set.
13: end if
14:  end for
15:  Conduct the forward-backward algorithm to obtain a () and j ().
16: ford=1toT do
17: Calculate #* and draw ng) according to Eq. (5.4).
18: fori =2tol; do
19: Calculate p (z@) according to Eq. (5.12).
20: Draw zl@ according to Eq. (5.3).
21: end for
22:  end for

23: fork=1toKdo
24: Update the parameters ® = {po, Ao, Yo, vo} by Eq. (5.19).

25:  end for
26:  Update the parameters a by Eq. (5.10).
27: end for

Kn Kn Kn Kn
28: return {ﬂk(P)} ’ I{N;((p)} o {):]((P)} o {AI({P)} 2
k:l,p:l k:l/p:l k:Lpzl k:1,,0:1
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Algorithm 7 Gibbs sampling for probabilistic forecasting.

Input: Sequential observations {yl, ce Yic y]C-’ , y;’ LY yj’}, samples of transition ma-
K,le .
, samples of covariance

- (0) 2
trix {ﬂ-k(P)} , samples of mean vectors {p,k }k .
= /p:
, () K2 . , () K2
matrices {Zk } , and samples of coefficient matrices {Ak } .
k=1,0=1 k=1,0=1
. (k) ()™
Output: Forecasting sample set {y{ PR y{ }pl.

1: forp =1tony do
forj' =jto ] do
Draw y]].: as the forecasting sample.

f

Collect y i to the forecasting sample set.

Calculate #* and draw z; according to Eq. (5.4).
Conduct the forward-backward algorithm to obtain « (-) and B (-).
forj=2to ] do

2
3
4
5:  end for
6
7
8
9 Calculate p (z;) according to Eq. (5.12).

10: Draw z; according to Eq. (5.3).
11:  end for
12: end for s
13: return {yf(m, .. .,y{(p)} .
p=1
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Chapter 6

Bayesian Inference for Time-varying

Transit Origin-Destination Matrices

This chapter is a research article submitted to Transportation Science:

¢ Chen, X., Cheng, Z., Sun, L. 2024. Bayesian Inference of Time-varying Origin-
Destination Matrices from Boarding/Alighting Counts for Transit Services.

This chapter corresponds to the Bayesian inference model for transit origin-destination

demand matrices.
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6.1 Abstract

Origin-destination (OD) demand matrices are crucial for transit agencies to optimize the
management and operation of transit systems. This paper introduces a temporal Bayesian
model to estimate transit OD matrices at the individual bus level using counts of boarding
and alighting passengers at each stop. Specifically, we model the number of alighting
passengers at subsequent bus stops, given a boarding stop, by a multinomial distribution.
Next, we assume that the parameters (i.e., assignment probabilities) of the multinomial
distribution smoothly vary over time. Directly modeling the temporal dependencies
among the parameters is difficult due to the constraint of parameters (e.g., the sum of
a vector of assignment probabilities is one). To address this challenge, we introduce a
latent variable matrix to parameterize the time-varying multinomial distributions through
the softmax transformation. As the latent matrix contains a large number of elements,
we employ matrix factorization to parameterize it into a mapping factor matrix and a
temporal factor matrix, which substantially reduces the number of parameters. To encode
a temporally smooth structure in the matrix, we impose Gaussian process priors on
the columns of the temporal factor matrix, which ensures the alighting probabilities are
smoothly time-varying. For model inference, we develop a two-stage algorithm with a
Markov Chain Monte Carlo approach. In the first stage, we sample latent OD matrices
conditional on parameters using a Metropolis-Hastings sampling algorithm with a Markov
model-based proposal distribution. In the second stage, we sample parameters conditional
on latent OD matrices using slice and elliptical slice sampling algorithms. We validate
our model using real-world data of three bus routes (short, medium, long) and results
demonstrate that our model can achieve accurate estimation and outperforms the iterative
proportional fitting method. Moreover, our model can provide uncertainty quantification

associated with estimation and parameter interpretation.

6.2 Introduction

The origin-destination (OD) matrix for a bus route captures passenger flows from one
stop to another, serving as a comprehensive representation of passenger demand. These
matrices can be defined either in an aggregated manner (e.g., overall demand during
morning rush hours) or in detail for each bus journey. An accurate estimation of the OD
matrices and a good understanding of how these matrices evolve over time are critical for

transit agencies in making planning and operational decisions, such as route design (Ahern

119



CHAPTER 6 TRANSIT OD MATRIX INFERENCE

et al., 2022), service scheduling (Martinez et al., 2014), timetabling (Sun et al., 2014a), and
fleet allocation (Gkiotsalitis et al., 2019).

Estimating OD matrices for transit systems from available operational data has been an
important application and a long-standing research question for both practitioners and
researchers (Hussain et al., 2021; Mohammed and Oke, 2023). A traditional approach to
collecting transit OD matrices is through onboard surveys. This approach, as expected,
is time-consuming and labor-intensive (Agrawal et al., 2017). More importantly, there
could be systematic bias when using the OD matrix obtained from a specific bus journey
as the base to estimate the overall demand profile due to the inherent randomness in
bus operations. For example, the OD matrices of two consecutive bus journeys could
be substantially different when bus bunching occurs. The emergence of advanced data
collection techniques has offered alternative solutions to collect/estimate OD data. For
example, automated fare collection (AFC) systems in cities such as Beijing and Singapore
can register both the boarding and alighting transactions of passenger trips (Sun et al.,
2014b). For such cases, the AFC data contains the complete information of the OD matrices.
However, most cities around the world adopt a “tap-in-only” AFC system with no alighting
information recorded, which no longer supports direct inference of OD matrices. Although
there exists a large body of literature on inferring passenger alighting stops from “tap-in-
only” AFC data based on the trip chain continuity assumption (see e.g., Trépanier et al.,
2007; Assemi et al., 2020; Hussain et al., 2021; Mohammed and Oke, 2023), these methods
are often inaccurate for infrequent transit users (Cheng et al., 2021). A more prevalent data
collection technique is the Automated Passenger Counting (APC) system, which registers
the boarding and alighting counts when the bus arrives at a bus stop. APC systems have
been widely used by transit agencies and allow one to estimate the number of passengers
onboard during the trip in real time. However, because boarding/alighting counts are in
fact column/row sums of an OD matrix, we cannot directly infer the OD matrices from
APC data.

The focus of our study is to infer time-varying OD matrices from boarding/alighting
counts with high temporal resolution. The iterative proportional fitting (IPF) method
has long been the primary solution adopted by transit agencies to estimate OD matrices
from APC data. IPF estimates OD matrices by adjusting a reference/seed matrix derived
from additional data sources such as onboard surveys (Ben-Akiva et al., 1985; Ji et al,,
2014). Using the observed counts (i.e., row/column sums), the OD matrix is adjusted
through an iterative process: For each row in the matrix, each entry is multiplied by a

constant, ensuring that the sum of the row is in accordance with the actual count. Then,
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this adjustment is applied to each column. This process is repeated iteratively for both
rows and columns until the matrix entries converge (Lamond and Stewart, 1981). There
are several major issues associated with the IPF method. First, the accuracy of IPF is highly
dependent on the quality of the seed matrix, while in practice creating a good seed matrix
is not an easy task—it has the same number of variables as in the OD matrix. In general,
these seed matrices come from onboard surveys. However, as mentioned above, the seed
matrix obtained could be biased to represent and reproduce the true demand patterns of
OD, and thus the quality of the seed matrix becomes very important for IPF. Second, IPF
often struggles with the issue of zeros in the seed matrix (Ben-Akiva et al., 1985), which
will remain zero in all iterations. In cases where the reference matrix contains an entire
row or column of zeros but the corresponding actual boarding or alighting counts are
not zeros, IPF will fail to find a feasible solution. Third, from a statistical perspective,
the estimated matrix after convengency is no longer a “count” matrix, thus violating the
underlying “count” nature of passenger demand. This solution is acceptable when we
have a large number of passengers; however, at the journey level, the true OD matrix is
likely to be a sparse count matrix, and modeling it using continuous values will result in
biased estimation.

Bayesian statistical solutions are developed to combine prior information with observed
boarding and alighting counts to achieve accurate inference (Li, 2009; Hazelton, 2010;
Blume et al., 2022). In contrast to deterministic IPF, Bayesian statistical models have
the capability to generate posterior distributions for the elements in the OD matrix, thus
providing estimates along with their associated uncertainties. In general, these models treat
OD matrix estimation as a linear inverse problem and focus on estimating the alighting
probabilities instead of the counts (see e.g., Li and Cassidy, 2007; Ji et al., 2015). A landmark
work in probabilistic inference is the Bayesian approach proposed by Li (2009), which
incorporates a Markov model to describe the relationships between the entries of a transit
OD matrix. This approach assumes that the probability of an onboard passenger alighting
at the next approaching stop is independent of his/her boarding stop. In other words,
the onboard passengers are assumed to be memoryless. While this innovative approach
reduces the model parameters significantly and enables elegant likelihood construction, the
Markov assumption is too restrictive and unrealistic for practical applications. To address
this limitation, Hazelton (2010) introduced a novel Bayesian method for static OD matrix
inference. A key challenge in building the statistical model is that the calculation of the
likelihood of observed counts requires an enumeration of all possible OD matrices (with

elements being counts) that match the marginal counts. To tackle this challenge, Hazelton
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(2010) developed a two-stage sampling algorithm for model inference using the Markov
chain Monte Carlo (MCMC) method. The first stage samples latent OD matrices using the
Markov model by Li (2009) as the proposal distribution. The second stage samples model
parameters conditional on the OD matrices in the first stage. Blume et al. (2022) developed
a Bayesian inference approach to estimate the static OD matrix in large-scale networked
transit systems but considering elements as continuous random variables. This problem is
approached as an inverse linear regression, and the posterior distributions of OD matrix
entries are estimated using Hamiltonian Monte Carlo. Overall, the statistical methods
summarized above are essentially designed for static OD inference, and they generally
require many observed bus journeys to estimate one single OD matrix. As a result, it is
infeasible to apply these methods directly to infer time-varying OD matrices. It should be
noted that although Hazelton (2010) presented results for time-varying OD demand, the
estimation is achieved by fitting several static models over a day.

The challenges in inferring time-varying OD matrices from APC data are summarized
as follows: (1) Transit OD flows need to rely on discrete count models and the likelihood
structures are more complicated than continuous models. (2) The distributions of OD
matrices are not static, and time-varying models are needed to characterize how demand
evolves over time. For example, we expect the OD demand matrices in two consecutive
hours to be similar, while the matrix during the morning rush hour should be substantially
different from the one during the evening rush hour. When considering individual buses,
the variability in OD matrices between adjacent bus journeys can depend on the reliability
and uniformity of the operation. In scenarios where services are regular and consistent,
the OD matrices observed from two consecutive journeys are likely to be similar. However,
in cases of service interruptions or irregularities, such as bus bunching or delays, the OD
matrices can differ significantly from one journey to the next. (3) A model that takes entries
in the OD matrix as parameters will involve a larger number of parameters and become
difficult to estimate, not to mention when estimating time-varying OD matrices. (4) Due
to the underdetermined nature of the linear inverse problem, the set of feasible solutions
for OD matrices is extraordinarily large. The application of likelihood-based methods for
discrete count data in this context would involve an exhaustive enumeration of all possible
OD matrices and therefore will face practical computational limitations, especially when
considering bus routes with a large number of stops. For a given set of boarding/alighting
counts along a bus journey, Figure 6.1 shows the real OD matrix together with potential
solutions estimated with different assumptions. We can observe that these solutions could

be substantially different from each other. (5) When making operational and planning
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Figure 6.1: Illustration of the uncertainty of OD solution. There are two rows: the top row
presents the OD matrices and the bottom row shows the passenger occupancy. The first OD
matrix is the real OD matrix of a specific bus trip. The last three OD matrices are estimated
with different methods. The second matrix is estimated using the “First on first off” principle
which assumes that passengers who board first will alight first. The third matrix is estimated
with the “Last on first off” principle which assumes that the last passengers to board are
the first ones to alight at subsequent stops. The last matrix is estimated from our proposed
method and it shows a similar pattern to the real OD matrix.

decisions, we are more interested in the distribution of the underlying OD demand, rather
than a point estimate.

To address these challenges, in this paper, we extend the work of Hazelton (2010) and
develop a temporal Bayesian model for inferring transit OD matrices at the individual bus
level. To model the discrete count data, we assume that the number of alighting passen-
gers at subsequent bus stops, given a boarding stop, follows a multinomial distribution.
To better characterize the temporal patterns in passenger demand, we assume that the
parameters (i.e., assignment probabilities) of the multinomial distribution vary smoothly
over time, thus allowing for building a time-varying model using counts observed from a
limited number of bus journeys. We introduce a latent variable matrix and use it to param-
eterize the time-varying multinomial distributions through the softmax transformation.
In addition, we propose using matrix factorization to parameterize the latent matrix as
the product of a mapping factor matrix and a temporal factor matrix, which substantially
reduces the number of parameters. To encode a temporally smooth structure in the matrix,

we impose Gaussian process priors on the columns of the temporal factor matrix, which
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consequently ensure that the assignment probabilities vary smoothly over time. For model
inference, we follow Hazelton (2010) and also develop a two-stage algorithm based on
MCMC. In the first stage, we sample latent OD matrices conditional on parameters using
the Metropolis-Hastings sampling algorithm with the proposal distribution proposed by
Hazelton (2010), which efficiently bypasses the need to enumerate the large number of
feasible OD matrices that align with observed boarding and alighting counts for each bus
trip. In the second stage, we sample model parameters conditional on latent OD matrices
obtained from the first stage. The key challenge in this step is to efficiently sample latent
Gaussian processes with non-Gaussian likelihood, where the posterior no longer has an
analytical formulation. To address this issue, we use the efficient elliptical slice sampling
(ESS) algorithms developed by Murray et al. (2010) to sample the temporal factor matrix.
We evaluate our proposed model using real-world APC data and true OD matrices from
three bus routes in an anonymous city. We compare the performance of the proposed
temporal model to a non-temporal variant, and the results show that the temporal Bayesian
model outperforms the non-temporal variant, confirming the importance and value of
developing a time-varying model. In addition, we also compare our model with the widely
used IPF method, and the results show that our model can achieve superior performance
in deterministic estimation.

The remainder of this paper is organized as follows. In Section 6.3, we define the
problem and introduce the notation used throughout the paper. In Section 6.4, we introduce
the proposed temporal Bayesian model. We elaborate on the theoretical underpinnings of
our approach and explain how it addresses those identified challenges. Section 6.5 develops
an efficient inference algorithm based on MCMC, in which elliptical slice sampling is used
to sample the temporal factor matrix. We then evaluate the effectiveness and performance
of our proposed model based on real-world data in Section 6.6. Finally, Section 6.7

summarizes our key findings and discusses future research directions.

6.3 Problem Definition

We follow Hazelton (2010) to define the OD matrix inference problem using board-
ing/alighting counts. Consider a bus route comprising S stops at which passengers
can board and alight. Let u; and v; denote the numbers of boarding passengers and alight-
ing passenger at stop i, respectively, fori = 1,2, ..., S. Such boarding/alighting counts are
available from the APC systems. In general, we will see neither alighting passengers at
stop 1 nor boarding passengers at stop S, so we can fix v; = ug = 0.
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Figure 6.2: A graphical representation of notations in a bus route. There is a bus route with
S stops. u; and v; are boarding and alighting counts of passengers at stop i, respectively;
y;j is the number of passengers boarding at stop i and alighting at stop j; w; is the number
of passengers on the bus immediately after leaving stop i; z; ; is the number of passengers
boarded at stop i and are on the bus as it approaches stop j.

For a bus journey (i.e., a trip from stop 1 to stop S), we denote by y; ; the number of
passengers who board at stop i and alight at stop j, which cannot be observed directly. We
define w; as the number of passengers on the bus immediately after leaving stop i. This
can be expressed recursively as

W; = W;_1+U;j —0; (iZl,Z,...,S), (6.1)

with the initial condition wy = 0. Let z; ; represent the unobserved number of passengers
who board at stop i and remain on the bus as it approaches stop j. The relationships among
these variables are given by

Z]',]'_,_l = le]‘, (6.2)

Zij+1 = Zij — Yijj (i=12,...,j—1), (6.3)
j

wj = Z Zi,j- (6.4)
i=1

These notations of a bus route are graphically represented in Figure 6.2. Letu = (uq,uy, ..., us) T

and v = (v1,0y,..., Us)T be the vectors of boarding and alighting counts at the stops, re-
spectively; we then denote by x = (uT,vT)T = (ul,uz,...,us,vl,vz,...,vs)T as the
aggregation of observed counts for a bus trip.

Our study aims to infer the OD matrix Y = (yi,j) Sxs" For a bus route/service, it is
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clear that passengers can only travel to downstream stops. Thus, we fix y; ; = 0 for all
cases where i > j, and focus exclusively on the upper-triangular part of Y. Following
Hazelton (2010), we denote by y; the number of passengers traveling from the i-th stop
to the subsequent stops along the bus route. For instance, y1 = (y12,¥13,-- .,ylls)T
denotes the passenger counts from the initial stop to all subsequent stops along the route.
This definition continues to ys_1 = (ys—_1,5), which represents the number of passengers
traveling from the second-to-last stop to the last stop. Next, we stack these passenger
counts into a single OD vector y = (le , yzT e, yg_l)T e R5(5-1)/2, Although y is not
directly observable, its relationship with the observed boarding and alighting counts can
be expressed as follows:

S
Z yl!]:ul (i:]_,Z,..-,S_]-)I (6.5)
j=i+1
and
j—1
MNyii=v  (i=2...,5-1). (6.6)
i=1

This relationship can be encapsulated as
x = Ay, (6.7)

where both x and y are count-valued vectors, and A is a 25 x M binary routing matrix
defined by

r

1, ifi=1,...,Sand

j=S@E-1)—i(i+1)/2+k

fork=i+1,...,S,
a;jj =141, ifi=5+1,...,25and (6.8)
j=Sk-2)—k(k+1)/2+1i
fork=1,...,i—5-1,

0, otherwise.

\

Notably, the S-th and (S + 1)-th rows of A contain only zero elements, corresponding to the
non-existent boarding and alighting counts at the terminal and initial stops, respectively.
Although these two rows of A are redundant, they can maintain a direct correspondence
between the row indices of the matrix and the bus stop numbers. Using a bus route with

126



CHAPTER 6 TRANSIT OD MATRIX INFERENCE

six stops as an example, the linear relationship between the observation & and the OD

vector y can be expressed as

-
] [t1 111000000000 0]}
1o 000001111000000|]|"
03 0000000001 11000|]|"
Uy 0000000000O0O0T1T1 o0|]|7"®
s 00000000000O0O0GOT1|]|"
ug| 0000000000000 0 0|
ol " looooooo0oo0000000 o0fl[Y (6.9)
o 1000000000000 O0O|][Y
03 0100010000000 0 0|7
4 0010001001 00000|]|?
05 000100010010710 0|
Vg 000010001001011|]|"
—_— = ~ — (Y46
T A
| Y556
——
Yy

To account for multiple bus journeys, we extend the notation to include a bus index n,
T T
which represents the n-th bus journey, with " = (u”T, U"T> and y" = (ylnT, el y?_f) .

To effectively model the dynamic/time-varying nature of OD matrices/vectors, our model
incorporates temporal information. Specifically, we denote by t" the departure time at the
initial stop for the n-th bus trip/journey. For a total of N bus journeys over a studied period,
we define X = {&" | n = 1,2,..., N} as the set of observed boarding and alighting counts
and t = (t,,#2,...,tN) " as the vector of observed departure time. The primary objective
is to estimate the set of OD vectors, denoted as V = {y" | n = 1,2,..., N}, using observed
data set X and t. This problem is challenging because the number of unknown quantities
(OD vector) is much larger than the number of observations (boarding and alighting counts)
in the linear system expressed by Eq. (6.7), resulting in a challenging statistical linear in-
verse problem (Vardi, 1996; Hazelton, 2010). We denote by H (z") = {y" | " = Ay"} the
solution space that encompasses all feasible OD vectors consistent with the observation =".
In general, the solution space could be very large even for a route with a modest number
of stops.
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6.4 Bayesian Model Formulation

6.4.1 Likelihood for Static and Time-varying Models

Hazelton (2010) provides two general parameterizations for the static OD inference prob-
lem. The first approach models the entries in the OD matrix using Poisson distributions
and introduces a set of intensity parameters. The second approach considers each row in
the OD matrix as a realization from a multinomial distribution, and treats the alighting
probabilities for each bus stop as model parameters. In this paper, we follow the second
approach due to the reasons discussed in Section 6.2. For example, the exact OD entries in
two consecutive matrices (e.g., v y and Yij 1) could vary substantially due to operational
randomness and factors such as bus bunchmg, and it becomes problematic to use a fixed
Poisson intensity to model both observations. On the other hand, we can safely assume
that the alighting probabilities are universal for both journeys, and the variation in y; ; is
due to the variation in the boarding counts u;.

In terms of notation, let A7; be the probability that a passenger boarding at stop i will
T
alight at stop j during the n-th bus trip. Furthermore, let A} = </\Zi 1ree )‘ZS) be the

alighting probabilities of downstream stops for a passenger boarding at stop 7, and the

h
sum of these probabilities is one, i.e., Z] i1 )\” = 1. Next, let \" = <XfT, .. .,)\g_lT>
denote probabilities for all the corresponding OD entries of the n-th bus trip. Assuming
that passengers make decisions independently, y' follows a multinomial distribution
y!" ~ Multinomial (1}, A"). Specifically, it can be represented as

S /\n yz]
( |u1/An —un' 1_[ n' ’ (610)
j=i+1 1/]
and the likelihood of observing =" becomes
L") =p" | A) ZP " |y", A p(y" | AT)
= 2 p@ A
yeH (xh)
S A?.yzf

- % I

yreM(xn) i=1  j=i+1 Yij

(6.11)

Clearly, such a model is not identifiable if we have only one bus journey. Hazelton (2010)
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assumes that over a certain period of time we have access to repeated and independent
observations of x following the same distribution with parameters A. Under such an
assumption, A becomes identifiable. For modeling multiple bus journeys in a day, we
expect A" to vary smoothly from one bus to the next (or over time). In this case, we need an
effective parameterization that produces time-varying multinomial probabilities. Since A;
is the parameter of a multinomial distribution, Hazelton (2010) suggested using conjugate
Dirichlet priors for A;, which can model the uncertainty about A;. However, in practice, it
becomes challenging to adapt the Dirichlet distribution and encode temporal dynamics to

generate time-varying samples of {\’}.

6.4.2 Parametrization of Time-varying Assignment Probabilities

As mentioned, although the Dirichlet distribution is a natural prior for modeling J;, it
is difficult to adapt it to dynamic/time-varying processes. To address this issue and
effectively characterize the time-varying nature of A?, we employ a natural softmax

parameterization:

exp(0Gis1)
LS exp (pGE)
xp(0Gis)
LES exp (oGl
Al = Softmax (pG}) = : , (6.12)
exp(pGi’fs_l)
1+2?;i}-1 exp (pG;fj)
1

1+2?;i}-1 exp (pG?’j)

Li+17 2,427
which can help to learn good sharpness/smoothness of the probability distribution. Next,

T .
where G = (G’.1 G ., Gfs_1> e R5~-1 and p > 0 is the temperature parameter,

we denote the collection of G over N bus journeys by the matrix

G, — [G},G?,...,GN} . (6.13)

1

Now we can see that G; contains (S —i — 1) x N parameters to be estimated. It should
also be noted that there is no need to introduce G's_; as there is only one possible alighting
stop, i.e., stop S, and we always have /\g_l s = 1. For dynamic models, a general approach
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in the literature is to impose a state-space model with Gaussian noise, for instance:
Gl G~ N (G0 (6.14)

This parameterization of time-varying multinomial probabilities has been used in dynamic
topic models (Blei and Lafferty, 2006). However, for the entire bus route, we have to create
a dynamic model for each bus stopi = 1,...,S — 2, and the number of variables in the
latent state for each bus becomes (S — 1) (S —2) /2. Despite having a simple formulation,
this parameterization shows several critical issues. First, we have a non-Gaussian state-
space model in which the likelihood of observing «" is computationally intractable (see
Eq. (6.11)). Although the likelihood of y" can be computed, estimating G requires filtering
based on the non-Gaussian likelihood, which becomes computationally prohibitive given
the large dimensionality of the latent state. Second, the state transition model in Eq. (6.14)
assumes that the (S —1)(S —2)/2 latent states vary independently over time, which
ignores potential structures over space and time. For example, in transportation systems,
it is likely that the probabilities A;  and A (i # j) share similar temporal patterns, which
is determined by the land-use profile of stop k.

To address these issues, we next introduce an alternative parameterization for Gj.

Specifially, we assume G| has a low-rank structure:
D
Gi=®Y =) by, (6.15)
d=1

where ®@; ¢ RS—-D)xD ¢, ¢ RN*D and ¢; 4 and 1, are the d-th column of ®; and ¥,
respectively. Stacking Eq. (6.15) for bus stopsi = 1,...,S — 2 together, we have

G, O]
G=| : |=] : | x¥ =&Y, (6.16)
Gs > D5,

where we refer to @ as the mapping factor matrix and ¥ as the temporal factor matrix. The
low-rank assumption posits that D « N and D « (S —2)(S —1)/2, so that the factorization
of G substantially reduces the number of parameters.

In order to encode temporal smoothness in G, we assume that each column 1, in ¥ is
generated from a latent Gaussian process by taking values at bus departure times ¢ with

kernel/covariance function k; (t,t';m;) where n; is the vector of kernel hyperparameters.
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For example, a widely used kernel function that can produce smooth functions is the
squared-exponential kernel:

AV
k (t, t l,az> =2 exp (— (t 21; ) ) , (6.17)

with two hyperparamters—lengthscale | and variance ¢?>. We further assume the mean of
the Gaussian process to be zero, and this gives ford =1,...,D

Vg ~ N (0N, Ky), [Kalij = ka(ti tj;ma). (6.18)

The Gaussian process factor model specified in Egs. (6.16) and (6.18) provides an
effective framework to model high-dimensional processes with a temporal structure, and
it has been extensively used to model high-dimensional spatial and temporal data (see
e.g., in Lopes et al., 2008; Luttinen and Ilin, 2009; Lei et al., 2022). The specification of 1, in
Eq. (6.18) facilitates temporally-smooth variations of G;. Consequently, the multinomial
probability A; also exhibits smooth temporal variations. This specification assumes that
Al ~ }\?“, which corresponds to a homogeneous assumption between the two groups
of passengers who board bus 1 and bus n + 1, respectively, at stop i. This assumption is
reasonable, considering that both groups of passengers essentially arrive at stop i at the

same time.

6.4.3 Prior Specification

In our numerical experiment, for simplicity, we assume that all columns in ¥ are generated
independently from the same Gaussian process with a squared-exponential kernel, n; =
{o,1}, with ¢ = 1 and I = 3600 sec. We set ¢ = 1 because ®¥' = c® x %‘I’T so it is not
necessary to introduce the variance hyperparameter. For lengthscale /, we can further put
a prior distribution on it to make the model fully Bayesian; however, learning covariance
hyperparameters in latent Gaussian process models is known to be a challenging task with
convergence issues (Murray and Adams, 2010). For model simplicity, we fix [ = 1 hour
based on prior knowledge.

For factor matrix ®; (i = 1,...,S — 2), we simply put an independent univariate
Gaussian prior for each entry. Alternatively, we have the column ¢; 5 to be independent
and identically distributed following a zero-mean isotropic Gaussian distribution:

pig~N <05_i_1,¢75I> . d=1,...,D, (6.19)
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where we set hyperparameter 3 = 1.
As the temperature parameter has to be positive, we use Gaussian prior on the log-

transformed p:

log (0) ~ N (:”pra'p2>/ (6.20)

where we set hyperparameters y, = In(0.1) and o = 1.

6.5 Bayesian Inference

In this section, we focus on performing Bayesian inference for the proposed model using
MCMC. Let © = {®, ¥, p} be the set of model parameters. Given X’ and ¢, our aim is to
infer the posterior distributions of ® and ). The joint posterior of ® and ) can be specified

by

pOYV[Xt)=p@[Vt)p(V]X)

xp(@[t)p(V[O)p(YV|X)
N
ap@t)[[p(y" | ©)(y" e H (")), (6.21)

n=1

where I (E) is the indicator variable for the event E. The factorization of the posterior
distribution in Eq. (6.21) naturally provides a two-stage iterative sampling algorithm: (1)
draw ) conditional on ® and &', and (2) draw © conditional on ) and ¢.

There are two critical challenges in the sampling process. First, for the sampling of OD
vector y", computing the likelihood of observing " in Eq. (6.11) involves the enumeration
of all solutions in A (z"), which becomes computationally intractable. Second, columns
in the temporal ¥ are in fact latent Gaussian processes with strong dependencies, which
require careful consideration when designing the MCMC method.

For the first challenge, Hazelton (2010) has provided an effective Metropolis-Hastings
sampling solution to generate a candidate OD vector y" from # (") rather than trying to
enumerate it. This Metropolis-Hastings sampling strategy can be directly integrated into
our time-varying model without much adaptation. We briefly illustrate this approach in
Section 6.5.1.
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6.5.1 Conditional Sampling of OD Vectors

The subsection gives a brief summary of the method to sample the OD vector y" conditional
on parameters © and boarding/alighting counts " developed by Hazelton (2010). The

conditional distribution of } is given by

N
p(V1O,X)c[[p@"0©)I(y"eH (z")). (6.22)

n=1
The Metropolis-Hastings approach for sampling y" is summarized as follows.

* Sample candidate y* from proposal distribution g": Let 27 = (Z‘T,j' . .,z;f‘_llj)T,
where z7; be the candidate number of passengers who boarded at stop i and are cur-
rently on the bus as it approaches stop j. This approach assumes that the passengers
on board have the same alighting probability at any stop. Consequently, one can
randomly sample (yi]., ceey y;f‘_l,]) at stop j from z]’-" with the constraint Zf: i i =0
Then z;‘ ., can be updated with Eq. (6.2) and Eq. (6.3), which can be used for the

sampling at stop j + 1. The Markov chain {z]*} has transition probability given by

_1 ]'_1 "
T4 =P(2* *) = J v 6.23
i+1 (z]+1 | z]) {( 0, >} 5 (yf]) (6.23)

Through the process, we can sample y* and calculate the probability density by
7" (v') = 15" 7
¢ Update the OD vector: Accept y* with probability min (1, W) . If candidate

p(y"10)q" (y*)
y* is accepted, then y" is updated to equal y*. If the candidate is not accepted, y"

remains unchanged.

6.5.2 Conditional Sampling of Model Parameters

The second stage is to sample the model parameters, including the temperature parameter
p, the mapping factor matrix ® and the temporal factor matrix ¥, conditional on ). For
these three parameters, a straightforward solution is to use Gibbs sampling to sequentially

sample from:
*r(@[¥00)
*p(¥l@0))
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Algorithm 8 Elliptical slice sampling for each column ); of factor matrix ¥.

Input: Current state 1), covariance matrix K, likelihood function L(1),)
Output: a new state ¢/
1: Choose ellipse: v ~ N (0y, K;)
2: Log-likelihood threshold: v ~ Uniform [0,1],logc = log L (¢4) + logy
3: Draw an initial sampling range: 6 ~ Uniform [0, 27t] , Omin = 60 — 277, Omax = 0
4 Y, = pgcos0 +vsinf
5 iflog L (¢);) > logc then
6:  return
7: else
8:  Shrink the sampling range and try a new point:
9: if 0 < 0 then: O, = 0 else: Opax = 0
10: 6 ~ Uniform [0min, Omax]
11:  GoTo Step 4.
12: end if

*plo| Y, ®)).

However, as mentioned, since the likelihood is multinomial, we can no longer derive the
analytical posterior distributions for ® and ¥. We next introduce in detail the solution for
sampling ¥.

Given the independent assumption for the columns in ¥, we can sample the whole
matrix in a column-based manner. Taking the column ; as an example, we can update
14 conditional on ¥, .4, which represents the matrix obtained by removing the d-th
column vector from ¥. The posterior distribution p (¢ | J, ®, Y. 5 heds p) is proportional
to the product of the multinomial likelihood L(v;) = p (Y | ¥4, Y. j nza, P, p) and the
Gaussian process prior specified by AN (14;0n, K;). The problem becomes sampling a
latent Gaussian process in a non-conjugate setting. For such problems, Murray et al. (2010)
has developed an ESS method that can efficiently explore the parameter space without
the need for manually tuning of step sizes or the proposal distributions. This efficiency is
achieved by proposing new samples in a manner that directly leverages the underlying
correlation structure of the Gaussian process, and ESS has shown superior performance
over other methods. Therefore, we use ESS to update p (¢;) and summarize the procedure
in Algorithm 8. The calculation of likelihood L(1),) is straightforward following Eq. (6.10):

N
L(a) =pV|®Y0)=]]r@ N, (6.24)
n=1

where A" are computed using the current values of all parameters.
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Algorithm 9 Slice sampling for temperature parameter p.

Input: Current state p, likelihood function L (p), slice sampling scale €
Output: a new state p’
Log-likelihood threshold: y ~ Uniform [0,1],logc = log L (p) 4+ log p(p) + logy
Draw an initial sampling range: ¥ ~ Uniform [0, €], pmin = 0 — &, Pmax = Pmin + €
p" ~ Uniform [Pmin, Pmax]
iflogL (') +log p(p’) > logc then
return p’
else
Shrink the sampling range:
if o' < p then: ppin = P’ else: pmax = 0’
GoTo Step 3.
end if

—_
<

For sampling ®, a straightforward approach is to use an element-wise Metropolis-
Hasting algorithm given the independent prior. However, as ® contains a large number of
entries, entry-by-entry sampling is computationally too expensive due to the considerable
cost of likelihood evaluation. For efficiency, we sample @ in a block-based manner, i.e.,
updating ®; one by one fori =1,...,5 — 2. For a given block ¢;, we can once again use
elliptical slice sampling to update each column ¢; ; in ®;. The likelihood term can be
computed in the same way, and the key difference from the procedure for 1, is that the
prior distribution becomes A (¢i,d ;05 i1, U&I )

For the temperature parameter p, the posterior distributionisp (o | ®, Y, Y) xcp (Y | ®, ¥, p) p (p)-
We propose using slice sampling for p and the algorithm is summarized in Algorithm 9.
The likelihood L (p) has the same formulation as in Eq. (6.24).

6.5.3 Approximating Posterior Distribution of OD Vectors

In the Bayesian framework, the posterior distribution of an OD vector y" conditional on
observed counts and departure times is obtained by integrating out the model parameters:

P 2,8 = [p(s"|2",0)p (O] X,1)do

1 M
S <yn | wn,@(m)), (6.25)

m=1

where M is the number of samples used for posterior approximation, and @) denotes
the m-th sample in the stationary Markov chain. Therefore, the posterior distributions
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M
of OD vectors are approximated by the set of samples {y (m)} . during the sampling
m=

process, where Y (m) denotes the m-th sample in the Markov chain.

6.6 Experiments

Here we conduct numerical experiments using real-world data to evaluate the performance

of our proposed model.

6.6.1 Data and Experiment Settings

To evaluate our approach, we use high-quality AFC data from three distinct bus routes in
a city—a short route with 22 stops, a medium route with 40 stops, and a long route with
72 stops. These bus routes are in operation daily between 6:00 AM and 11:00 PM. The
short route operates 103 bus runs daily with a peak frequency of 8.5 buses/hour and an
off-peak frequency of 5.5 buses/hour; the medium route operates 85 bus runs daily with a
peak frequency of 7.0 buses/hour and an off-peak frequency of 4.5 buses/hour; the long
route operates 68 bus runs daily with a peak frequency of 6.0 buses/hour and an off-peak
frequency of 4.0 buses/hour. For each bus journey, the AFC data allows us to reconstruct
the true OD matrices, serving as the ground truth. We obtain boarding/alighting counts
based on the true OD matrices and then apply the proposed model to infer/estimate OD
matrices based on the counts. This enables us to directly evaluate the performance of
our proposed model alongside other baseline methods by comparing the estimated OD
matrices with the ground truth. Figure 6.3 visualizes the boarding/alighting counts at
all stops over one week (from Monday to Friday). Notably, the data reveals significant
fluctuations in passenger counts within a day, delineating distinct peak and off-peak hours.
Furthermore, a clear daily periodicity is evident over the course of the week. Figure 6.4
presents the one-week OD vectors/flows. These passenger counts exhibit similar temporal
patterns as observed in the boarding/alighting counts. Both figures demonstrate the time-
varying structure of passenger demand and OD matrices, highlighting the importance of

considering temporal dynamics in the estimation of OD matrices.

6.6.2 Iterative Proportional Fitting (IPF)

We first compare the performance of our model with the widely used IPF method (Ben-
Akiva et al., 1985). Here, we briefly describe the IPF algorithm as follows:
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Figure 6.3: One-week boarding and alighting passenger flows of buses at stops. There are
two panels: the left shows the boarding counts and the right presents the alighting counts.
The x-axis represents different bus IDs and the y-axis represents the stop IDs. The color
indicates the volume of passenger flows.
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Figure 6.4: One-week OD vectors/flows of all buses. The x-axis represents different bus IDs
and the y-axis represents the OD pair IDs. The color indicates the volume of flows.

* Reference/seed matrix: We divide one day into four periods, i.e., morning peak,
midday off-peak, afternoon peak, and evening off-peak hours. For each period, we
randomly select three true OD matrices and calculate the average OD matrix as the

reference matrix. The reference matrices are initial estimates of OD matrices.

¢ Scaling rows and columns: The IPF algorithm iteratively scales the rows and columns
of the reference matrix to match the observed boarding and alighting counts for each
bus journey. Let Y be the initial reference matrix. In each iteration, the rows of Y are
scaled so that their sums match the elements of u, and then the columns of Y are
scaled to match the elements of v. This row and column scaling can be represented

as follows:
(new) Ui ;
y. ) = y','— (I'OW Scallng) P (626)
i KDWY
(new) U]' :
\new) _ . column scaling) . (6.27)
yz,] yl,]} ]1' yi,j ( g)
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Figure 6.5: Posterior samples of ¥ with rank D = 4. We show 100 samples of ¥. Samples of
different columns are plotted in different colors.

¢ Convergence: The process iterates until convergence, i.e., when the change between

two iterations is below a predetermined threshold.

We apply this IPF method to estimate all OD matrices for different periods, and then

compare the performance to our proposed model.

6.6.3 Estimation Results

We implement the developed MCMC algorithm and run a total of 100,000 iterations to
sample the model parameters. We use the first 95,000 iterations as “burn-in” and the last
M = 5,000 iterations to approximate the posterior distributions. As an example, Figure 6.5
shows the 100 randomly selected samples of ¥ with rank D = 4. Although we use a simple
squared-exponential kernel function in the prior, the posterior samples of ¥ still show a
clear daily periodic pattern, which confirms the consistent time-dependent characteristics
of travel demand.

To demonstrate the importance of integrating temporal dynamics in OD matrix estima-
tion, we compare the performance of the temporal Bayesian model with a non-temporal
variant. The non-temporal approach assumes static parameters and is derived from our
model withrank D = 1 and ¥ = 1y1. This ensures that the N journeys share the same
alighting probabilities. We evaluate the log-likelihood of true OD matrices given the
estimated multinomial parameters. A larger log-likelihood value signifies a better model.
Table 6.1 presents the log-likelihood of different models for the estimation of OD matrices.
For the temporal Bayesian model, we implement four variants with different ranks (1, 2, 4
and 6). First, we compare the static model with the temporal model with D = 1. The key
difference between these two models is the assumption of ¥—the static model defines ¥ as
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Table 6.1: Log-likelihood of different models for OD matrices estimation.

‘ Static model ‘

Temporal Bayesian model

| D=1 | D=2 | D=4 | D=6
Short route -35328.77 -34829.07 | -33728.49 | -33064.69 | -32874.45
Standard deviation 98.63 86.65 79.14 86.75 85.54
Medium route -63599.00 -62915.15 | -62141.88 | -61652.34 | -61539.26
Standard deviation 165.46 150.24 134.89 156.80 123.00
Lone rout -47449.85 -47078.95 | -46179.38 | -45722.42 | -45722.37
Ongroute | giandard deviation 158.43 139.10 134.59 134.88 124.12
Our model RMSE: 0.45 Our model RMSE: 0.35 Our model RMSE: 0.18
e IPF method RMSE: 0.65 IPF method RMSE: 0.47 e IPF method RMSE: 0.31
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Figure 6.6: True and estimated OD flow of IPF and our proposed model for different routes.
These three scatter plots show the actual and estimated OD flow of the short, medium, and
long routes. Red scatters are estimated from our model and blue scatters are from the IPF
model. The top texts show the RMSE of different methods.

a column vector of ones, while the temporal model treats ¥ as a random vector generated
from a Gaussian process. From the results, we can see that having a temporal component
(even with D = 1) can greatly enhance the quality of the model, confirming the importance
of designing a model with time-varying parameters for OD estimation. In addtion, we can
see that the log-likelihood evalutions increase with the rank for all the three bus routes.
However, while more factors can enhance model performance, the improvement becomes
rather marginal when D > 4. We use the results from models with rank D = 4 in the
following analysis.

Figure 6.6 presents true and estimated OD flows at the journey level derived from the
IPF method and our model for the three routes. Because IPF is a deterministic method,
for the Bayesian method, we use the posterior mean as the estimated demand for model
evaluation. The diagonal line of each plot presents the reference line of perfect estimation
where estimated flows would align exactly with the true flows. The method with the dots
closer to the reference line has the more accurate estimation. We can observe that the dots
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Figure 6.7: True and estimated OD vectors of all buses on the short bus route. There are
three panels displaying the OD vectors/flows of all buses: the first is the true OD flows, the
second is estimated with the IPF method, and the last is derived from our proposed model.
The x-axis represents different bus IDs and the y-axis represents the OD pair IDs. The color
represents the volume of passenger flows.

obtained from our model are closer to the reference line for all bus routes, indicating that
our model outperforms the IPF method. Moreover, we use the root mean square error
(RMSE) to compare the performance of our Bayesian model and the IPF method. The
proposed model gives much smaller RMSE values than those obtained from IPFE. Figure 6.7
shows the estimated OD vectors of all buses with the IPF method and our model on the
short route. The results of the medium and long routes are shown in Appendix 6.8.1. Upon
inspection, the OD vectors estimated by our model exhibit a closer resemblance to the true
OD vectors compared to those generated by the IPF method. This observation underscores
the superior performance of our model over the IPF method in accurately capturing and
representing the OD flows.

In Figure 6.8, we visualize how the posterior mean of {A]}, i.e., the vector of alighting
probabilities for the first stop, varies with the sequence of journeys. As can be seen, the pa-
rameters show clear time-varying characteristics with substantial differences from morning
to evening. Moreover, we can observe that while there are slight day-to-day variations in
the parameters, the temporal patterns of the parameters exhibit clear similarity /periodicity
across days, which is consistent with the estimate of ¥ (see Figure 6.5).

In addition to journey-level analysis, transit agencies often use aggregated OD matrices
during a certain time period as a proxy for travel demand, serving as input for downstream
operational tasks such as timetabling and fleet allocation. To get temporally aggregated
OD matrices, we can simply aggregate those OD matrices derived from each bus journey
over a defined time window. In practice, the period/window of interest by operators
typically includes morning peak (commuting for work/school trips), midday off-peak,
afternoon peak (commuting for home trips), and evening off-peak. Specifically, we define
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Figure 6.8: Temporal patterns of A; for different bus routes. There are three panels for differ-
ent bus routes. Each panel presents the alighting probabilities of downstream stops (from 2
to S) for a passenger boarding at the initial stop. The cumulative alighting probabilities of
the stops are shown in order (i.e., stop 2 to stop S) from the bottom to the top.

the periods/windows as morning peak (7:00-9:00 AM), midday off-peak (9:00 AM-5:00
PM), afternoon peak (5:00-7:00 PM), and evening off-peak (7:00-11:00 PM). We aggregate
the estimated OD matrices of all buses into OD matrices of the four periods and further
calculate the average hourly OD matrices of the periods to validate the performance of
our model. For aggregated OD matrices, the journey-based IPF model is expected to
perform poorly due to overfitting. A more appropriate benchmark is to fit a single IPF
model for each period using aggregated marginal counts. We refer to this approach as
“aggregated IPF”. Figure 6.9 provides aggregated hourly OD matrices for different periods
for all bus routes. These scatter plots present the hourly variability in performance and
reveal temporal patterns in the estimation accuracy of our model. We can see that our
model outperforms aggregated IPF and achieves accurate estimations of different periods
for all bus routes.

A unique advantage of Bayesian inference is that we can get the posterior distributions
associated with each entry in the journey-level OD matrix. Figure 6.10 presents estimations
with uncertainties (95% credible interval) of all buses on the short route. The results of
the medium and long routes are shown in Appendix 6.8.2. As can be seen, the presented
entries indeed vary substantially over the sequence of journeys. This further supports our
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Figure 6.9: True and estimated average hourly OD flow of IPF and our model for different
routes. The panels are shown in three rows (represent the short, medium, and long routes,
respectively) and four columns (represent the period of morning peak, midday off-peak,
afternoon peak, and evening off-peak, respectively). Each panel shows the actual and
estimated average hourly OD flow of a route during a specific period. Red scatters are
estimated from our proposed model, blue scatters are from the IPF method, and green
scatters are from the aggregated IPF method.

choice of using the alighting probability instead of demand intensity to build the time-
varying model. We can see that the performance of the estimations varies across different
buses and OD pairs. In most cases, we observe good uncertainty quantification where the
true values align closely with the mean estimates and fall within the 95% credible intervals.
Overall, the model demonstrates robust estimation results with high-quality uncertainty
quantification.
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Figure 6.10: Estimation with the uncertainty of some OD pairs on the short bus route. There
are four panels and each panel is for a specific OD pair. The x-axis represents the bus IDs and
the y-axis represents the OD flow. The blue dots represent the true OD flows of buses, the
black line represents the estimated mean of the OD flows, and the red shade areas represent
the estimated 95% confidence intervals.

6.7 Conclusion

In this paper, we propose a novel temporal Bayesian model for inferring transit OD matri-
ces at the individual bus journey level based on boarding/alighting counts at each stop.
Given a boarding stop, we model the number of alighting passengers at subsequent bus
stops with a multinomial distribution parameterized by a vector of alighting probabilities,
and we assume that these probabilities vary smoothly over time. Given the scale of the
problem, we design an efficient and effective parameterization using a matrix factorization
model with a mapping factor matrix and a temporal factor matrix. In particular, we use
a Gaussian process prior to model the temporal factor matrix, thus ensuring temporal
smoothness in the estimated alighting probabilities. For model inference, we develop an
efficient two-stage algorithm based on the MCMC method. Our approach can effectively
capture the dynamic nature of OD matrices and bypass the exhaustive enumeration of
teasible OD matrices which aligns with observed boarding and alighting counts. We eval-
uate the proposed model using real-world data, and the results confirm its effectiveness in
terms of accurate OD matrix estimation and robust uncertainty quantification.
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Our approach has potential implications for both practice and research. First, the
proposed temporal Bayesian model can produce posterior distributions for transit OD
matrices. It is important to highlight that distributions are more valuable than point
estimates. This is because the associated uncertainty in travel demand distributions
could benefit many downstream operational tasks, such as network design and service
scheduling, where it is important to make decisions for a range of possible scenarios.
Second, we find that the inferred model parameters are highly interpretable. The learned
patterns could help agencies better understand how travel demand varies spatially and
temporally and further improve the design of transit networks.

Our proposed model has a limitation on the assumption that multinomial probability
parameters vary smoothly over time. While this assumption is generally valid for recurrent
travel demand, it cannot characterize sudden changes in travel patterns resulted from
special or unexpected events, where one could observed abrupt chanages in passenger
demand. Therefore, in future work, we could focus on developing estimation models
tailored for abnormal scenarios. Moreover, we could extend the proposed model to
incorporate more prior information from additional data sources such as AFC data, which

might improve the accuracy of OD matrices inference.
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6.8 Appendix

6.8.1 True and estimated OD vectors of all buses.
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Figure 6.11: True and estimated OD vectors of all buses on the medium bus route.
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Figure 6.12: True and estimated OD vectors of all buses on the long bus route.
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6.8.2 Estimation with uncertainty of some OD pairs.
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Figure 6.13: Estimation with the uncertainty of some OD pairs on the medium bus route.
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Figure 6.14: Estimation with the uncertainty of some OD pairs on the long bus route.
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Chapter 7

Final Conclusion & Future Work

7.1 Summary of Results

With the increased availability of data within public transit systems, extensive research has
focused on developing data-driven inference and forecasting approaches specific to these
systems. However, most previous studies on transit problems have predominantly relied
on deterministic models, which overlooked the uncertainty of the complex transit systems
caused by stochastic factors such as traffic conditions and passenger behaviors. This thesis
proposes Bayesian inference and forecasting methods tailored to address the research
problems inherent to transit systems, which not only provide the point estimation but
also offer the estimated probability distribution. Results demonstrate that the developed
Bayesian model not only enhances forecasting accuracy but also offers robust uncertainty
quantification. In the following, we summarize the results of this research in four parts:
In Chapter 3, a Bayesian probabilistic model is proposed to estimate the link travel time
correlations in a bus route. The travel time of links in a bus route is assumed to follow a
multivariate Gaussian distribution. This method makes use of incomplete observations
with missing, ragged values and route segments from multiple bus routes. The conditional
distribution of missing and ragged values can be viewed as a multivariate Gaussian
distribution truncated on the intersection with a hyperplane. Next, an efficient MCMC
sampling algorithm is developed to marginalize the missing and ragged values and obtain
the posterior distribution of the covariance matrix. In a test with synthetic data, results
show that our method produces an accurate estimation of link travel time covariance and
the incorporation of incomplete data substantially improves the estimation. Moreover, the
model is used to empirically quantify the link travel time correlations of a twenty-link
bus route in Guangzhou, China; results reveal strong local and long-range correlation
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patterns in link travel time of the bus route. Finally, this chapter demonstrates an example
of probabilistic forecasting of link/trip travel time in a bus route using the estimated
covariance matrix; the forecasting method is more accurate than the historical average.

Chapter 4 focuses on developing a Bayesian probabilistic model for bus travel time.
This model uses a new representation that combines bus link travel time and headway from
a pair of adjacent buses and assumes it follows Multivariate Gaussian mixture distributions
for probabilistic bus travel time forecasting. The approach naturally captures/handles
the link travel time correlations of a bus route, the interactions between adjacent buses,
the multimodality of bus travel time distribution, and missing values in data. Moreover,
it also integrates the Gaussian mixture model with a Bayesian hierarchical framework
to capture bus travel time patterns in different periods of a day. We test the proposed
probabilistic forecasting model using a dataset from two bus lines in Guangzhou, China.
Results show our approach that considers the dependencies between adjacent buses and
the headway relationships significantly outperforms baseline models that overlook these
factors, in terms of both predictive means and distributions. Besides forecasting, the
parameters of the proposed model contain rich information for understanding/improving
the bus service, e.g., analyzing link travel time correlation using correlation matrices and
understanding temporal patterns of the bus route from mixing coefficients.

Chapter 5 continues the probabilistic forecasting of bus travel time and passenger
occupancy. We develop a joint Bayesian model for bus travel time and passenger occu-
pancy, building upon the foundation of Chapter 4. To model the correlations between
travel time and passenger occupancy, we construct a variable that combines the link travel
time vector, the passenger occupancy vector, and the departure headway. We employ
a Bayesian Markov regime-switching vector autoregressive model to characterize the
dynamic relationship among multiple buses. This new approach effectively captures
essential interactions between adjacent buses, along with the multimodality and skew-
ness of bus travel time and passenger occupancy distributions. Furthermore, it adeptly
models intricate state transitions, particularly crucial when forecasting bus travel time
and passenger occupancy with limited observations for the following bus. As we follow
the Bayesian paradigm to estimate the parameters of the model, predictions are obtained
by approximating the posterior predictive distribution. We fit the proposed model to the
smart card data of one bus route in an anonymous city. The experimental results confirm
that the proposed Markov regime-switching vector autoregressive model outperforms
existing methods in terms of both point estimates and uncertainty quantification. This

holistic approach contributes to a more robust and nuanced understanding of bus travel
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time and passenger occupancy dynamics, offering improved forecasting capabilities in
real-world scenarios.

Chapter 6 develops a temporal Bayesian model for inferring transit OD matrices at
the individual bus level. To model the discrete count data, we assume that the number of
alighting passengers at subsequent bus stops, given a boarding stop, follows a multinomial
distribution. To better characterize the temporal patterns in passenger demand, we assume
that the parameters (i.e., assignment probabilities) of the multinomial distribution vary
smoothly over time. We introduce a latent variable matrix and use it to parameterize the
time-varying multinomial distributions through the softmax transformation. In addition,
we propose using matrix factorization to parameterize the latent matrix as the product
of a mapping factor matrix and a temporal factor matrix, which substantially reduces
the number of parameters. To encode a temporally smooth structure in the matrix, we
impose Gaussian process priors on the columns of the temporal factor matrix, which
consequently ensure that the assignment probabilities vary smoothly over time. We
evaluate our proposed model using real-world APC data and true OD matrices from three
bus routes in an anonymous city. We compare the performance of the proposed temporal
model to a non-temporal variant, and the results show that the temporal Bayesian model
outperforms the non-temporal variant, confirming the importance and value of developing
a time-varying model. In addition, we also compare our model with the widely used
IPF method, and the results show that our model can achieve superior performance in

deterministic estimation.

7.2 Limitations and Future Research

This thesis has explored and demonstrated the effectiveness of Bayesian statistical models
for research problems in public transit systems. In this section, we aim to summarize the

identified limitations and outline potential directions for future research.

* The proposed Bayesian model for inferring link travel time correlation has two
limitations. First, our defined link travel time includes dwelling time. However,
different bus routes have distinct characteristics of dwell time due to factors including
passenger demand, bus schedule, and bus types. For example, bus routes with lower
passengers flow will have shorter link travel times, while a larger passenger flow will
cause longer travel times. In this case, our assumption that related bus routes share
the same link travel time distribution may no longer hold. The influence of dwell

time from multiple bus routes could be studied in further research. Second, the way
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we model the covariance structure of different time periods is by dividing samples
into several periods and estimating the proposed model independently. Although
simple, this approach ignores the temporal dynamic of the covariance structure—the
covariance structure may vary smoothly and continuously over time. We could
consider using generalized Wishart process proposed by Wilson and Ghahramani
(2010) to model the time-varying covariance matrices.

¢ This thesis has made significant contributions in advancing the accuracy of forecast-
ing bus travel time and passenger occupancy. By leveraging data on travel time,
passenger occupancy, and headway, the models demonstrate excellent predictive per-
formance. However, one limitation lies in its narrowed focus on internal operational
factors, while external influences, such as weather conditions are not incorporated
into the model. The weather has an impact on both travel times and passenger
behaviors (Tao et al., 2018; Ricard et al., 2022); for example, rain, snow, and extreme
temperatures can significantly alter traffic conditions and passenger demand. The
exclusion of these external variables means that the model may not fully capture the
complexities of real-world operations, potentially limiting its applicability in diverse
environmental conditions. Future research could integrate external factors into the
Bayesian forecasting models to enhance their predictive accuracy. Specifically, incor-
porating weather-related variables such as precipitation, temperature, and visibility
could offer more comprehensive insights into their effects on bus travel times and
passenger occupancy rates. Additionally, future studies could explore the inclusion
of other external factors, such as special events, road constructions, and changes in

urban infrastructure, which could also impact public transportation dynamics.

* The proposed Bayesian temporal model for inferring time-varying OD matrices
demonstrates the ability to provide accurate estimation with uncertainty quantifica-
tion. The assumption that multinomial probability parameters evolve smoothly over
time is typically applicable to recurrent travel demand scenarios but falls short in
capturing abrupt shifts in travel patterns that arise from extraordinary or unforeseen
events, leading to sudden changes in passenger demand. Recognizing this limitation,
future studies could develop estimation models specifically designed to address
these abnormal scenarios. Additionally, there is potential to enhance the proposed
model by integrating prior information from supplementary data sources, such as
AFC data. This integration could significantly improve the accuracy of OD matrix

inference.
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