
Uncertainty Quantification and Control in Power
System Security and Operation Via Data-Driven

Polynomial Chaos Expansion Based Methods

Xiaoting Wang

Department of Electrical and Computer Engineering
McGill University
Montreal, Canada

January 2024

A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of
Doctorate of Philosophy in Electrical Engineering.

© 2024 Xiaoting Wang

2024/01/08



i

Abstract

The global energy situation is shifting towards renewable energy sources (RESs) to promote sus-
tainability and reduce fossil fuel reliance. This shift brings uncertainties from volatile RESs and
new forms of loads (e.g., electric vehicles), challenging power system operation and security. Ad-
dressing these challenges, this thesis aims to leverage a surrogate modeling method, namely the
polynomial chaos expansion method, to systematically investigate and mitigate the impacts of un-
certainties on power system transfer capability and economic dispatch (ED). The overarching goal
is to offer vital guidance for ensuring and enhancing the security of power systems while maximiz-
ing the utilization of transmission assets and economic benefits, considering the high uncertainty
level of current and future power grids.

The thesis first studies the impacts of uncertainties brought by volatile RESs, random loads, and
unforeseen equipment outages on power system available transfer capability (ATC), a crucial in-
dex in power system security analysis. By exploiting polynomial chaos theory and moment-based
methods, a data-driven sparse polynomial chaos expansion (DDSPCE) method is developed for
probabilistic total transfer capability (PTTC) and ATC assessment. Notably, without requiring pre-
assumed probability distributions of random inputs, the proposed DDSPCE directly exploits data
for estimating the probabilistic characteristics of PTTC (e.g., mean, variance, probability density
function (PDF), and cumulative distribution function (CDF)), based on which the ATC with a cer-
tain confidence level can be readily calculated. An integrated sparse framework further enhances
its computational efficiency and accuracy. Simulations on the modified IEEE 118-bus system and
the modified PEGASE 1354-bus system validate the DDSPCE method’s efficacy in PTTC evalua-
tion. Furthermore, the results underscore the significance of incorporating discrete uncertainties,
like equipment outages, in both PTTC and ATC assessments.

The thesis then delves into the impacts of uncertainties, especially from wind power, on ED, a
critical aspect of the power system daily operation. A DDSPCE-based surrogate modeling method
is developed to estimate the probabilistic characteristics of ED solutions, including their mean,
variance, and distribution functions. The developed method can handle extensive random inputs
without their predefined probability distributions. Extensive simulation results on an integrated
electricity and gas system (IEGS) using real-life wind power data validate the efficiency and effec-
tiveness of the proposed method in quantifying the impacts of uncertainties on the ED solutions,
even when the ED solutions are multimodal. These results highlight the DDSPCE method’s efficacy
and efficiency in addressing general and complex scenarios.
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After investigating the impacts of uncertainties on power system static security and ED, the
thesis focus turns to mitigating these impacts. To this end, this thesis conducts a global sensitivity
analysis to allocate the dominant random inputs to assist in designing the uncertainty-control mea-
sures. Particularly, different PCE-based models are developed and compared for global sensitivity
analysis within the transfer capability enhancement and ED. Leveraging the insights from the sen-
sitivity information, uncertainty control strategies (e.g., by utilizing energy storage systems) can be
designed, thereby mitigating the impacts of uncertainties. These findings offer invaluable direction
for uncertainty management and control design in real-world power system operations.
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Résumé

La situation énergétique mondiale est en train de s’orienter vers les sources d’énergie renouve-
lable (SER) dans un souci de durabilité et de réduction de la dépendance aux combustibles fossiles.
Cette évolution engendre des incertitudes, notamment à cause des SER volatiles et des charges
aléatoires comme les véhicules électriques, posant ainsi des défis pour la gestion et la sécurité
des systèmes électriques. Dans cette optique, cette thèse se propose d’utiliser une méthode de
modélisation par substitution, spécifiquement l’expansion du chaos polynomial, pour étudier et
atténuer systématiquement les effets des incertitudes sur la capacité de transfert et la distribution
économique (DE) des systèmes électriques. L’ambition majeure est d’apporter des recommanda-
tions essentielles pour assurer et renforcer la sécurité des systèmes électriques, tout en optimisant
l’utilisation des infrastructures de transmission et en maximisant les bénéfices économiques, en
tenant compte des incertitudes croissantes des réseaux électriques actuels et futurs.

La thèse commence par examiner les conséquences des incertitudes introduites par les SER
volatiles, les charges stochastiques et les pannes d’équipement imprévues sur la capacité de transfert
disponible (CTD) des systèmes électriques, un indicateur essentiel pour l’analyse de leur sécurité.
En exploitant la théorie du chaos polynomial et des méthodes basées sur les moments, une méthode
d’expansion du chaos polynomial éparse et orientée données (DDSPCE) est élaborée pour évaluer
la capacité de transfert total probabiliste (PTTC) et la CTD. Notablement, sans nécessiter de dis-
tributions probabilistes préétablies pour les entrées aléatoires, le DDSPCE utilise directement les
données pour estimer les caractéristiques probabilistes du PTTC, telles que la moyenne, la vari-
ance, la fonction de densité de probabilité (FDP) et la fonction de distribution cumulative (FDC).
Ces estimations permettent de calculer aisément la CTD à un niveau de confiance donné. Un cadre
éparse intégré renforce davantage son efficacité computationnelle et sa précision. Des simulations
sur des systèmes modifiés, tels que l’IEEE 118-bus et le PEGASE 1354-bus, confirment l’efficacité
de la méthode DDSPCE pour évaluer le PTTC. De plus, les résultats soulignent l’importance de
prendre en compte des incertitudes discrètes, comme les pannes d’équipement, dans les évaluations
du PTTC et de la CTD.

La thèse explore ensuite les impacts des incertitudes, en particulier celles liées à l’énergie
éolienne, sur la DE, un élément crucial de l’exploitation quotidienne des systèmes électriques. Une
méthode de modélisation substitutive basée sur DDSPCE est mise au point pour estimer les car-
actéristiques probabilistes des solutions DE, y compris leur moyenne, variance et fonctions de dis-
tribution. Cette méthode peut traiter un grand nombre d’entrées aléatoires sans nécessiter de distri-
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butions probabilistes prédéfinies. Des simulations approfondies sur un système intégré d’électricité
et de gaz (IEGS) utilisant des données réelles d’énergie éolienne attestent de l’efficacité et de la per-
tinence de la méthode proposée pour quantifier les effets des incertitudes sur les solutions de DE,
même lorsque ces solutions présentent plusieurs modes. Ces résultats mettent en évidence la per-
tinence et l’efficacité de la méthode DDSPCE pour traiter des scénarios variés et complexes.

Après avoir étudié les effets des incertitudes sur la sécurité statique des systèmes électriques et
sur la DE, la thèse se concentre sur leur atténuation. À cette fin, une analyse de sensibilité globale
est réalisée pour identifier les principales sources d’incertitude et aider à la conception de mesures
de contrôle. Plusieurs modèles basés sur le PCE sont développés et comparés pour cette analyse
de sensibilité, en particulier dans le contexte de l’amélioration de la capacité de transfert et de la
DE. Grâce aux informations obtenues de cette analyse, des stratégies de contrôle des incertitudes,
comme l’utilisation de systèmes de stockage d’énergie, peuvent être élaborées, réduisant ainsi les
effets des incertitudes. Ces découvertes fournissent des orientations précieuses pour la gestion des
incertitudes et la conception de contrôles dans les opérations réelles des systèmes électriques.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Challenges of Modernizing Power Systems

Modern power systems are being driven by the increasing need to promote a sustainable environ-
ment and reduce reliance on fossil fuels [10], [11]. This transition towards a greener and more
renewable energy future is characterized by a shift towards renewable energy sources (RESs) [12],
[13]. These RESs possess several advantages, including reduced greenhouse gas emissions [14],
improved energy security [15], and enhanced power systems resilience [16]. In recent years, the
integration of volatile RESs, such as wind and solar into power systems has experienced remark-
able growth [1], [2]. This is evidenced by the substantial increase in renewable generation capacity
worldwide (see Fig. 1.1 and Fig. 1.2). For instance, in 2022, solar energy continued to expand
capacity with an additional 192 GW [1], followed by wind energy with 75 GW [2]. This signif-
icant growth in renewable capacity reflects the global commitment to achieving net-zero carbon
emissions and transitioning to a more sustainable energy mix.

However, the intermittent and stochastic nature of wind and solar, caused by various factors, in-
cluding weather conditions, geographical location, and technological limitations, impact wind and
solar farms [17]. This stochastic behavior, characterized by fluctuations in wind speed and solar
irradiance, directly affects the power output, leading to volatility and difficulties in accurate pre-
diction and a higher level of uncertainty in power systems [18], [19]. Moreover, the integration of
emerging energy demands (e.g., heat pumps (HPs) [20] and electric vehicles (EVs) [21]) introduces
additional uncertainties in load forecasting, despite advancements in forecasting technologies. Fur-
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Fig. 1.1 Global installed wind and solar
energy: electricity capacity [1]

Fig. 1.2 Renewable share of annual power
capacity expansion [2]

thermore, the aging power infrastructure raises the likelihood of asset outages, further complicating
and adding uncertainty to power systems [22], [23].

The increased uncertainties have posed a myriad of challenges to power systems, particularly
during highly stressed operating conditions when power systems are operating close to their limits
or facing contingencies [24]. These challenges encompass voltage instability [25, 26], transient
stability issues [27], and even system collapse [28]. In such situations, it is crucial to ensure the
security of the power system while considering various sources of uncertainty (such as wind and
solar power fluctuations, load variations, and equipment failures) and economic factors (minimizing
costs, optimizing resource utilization, and maximizing efficiency) [29].

In this regard, the development of accurate and fast uncertainty quantification (UQ) and man-
agement tools and technologies is essential. These tools and technologies should be capable of
providing real-time information, such as security margins, system state estimation, contingency
analysis, and optimization capabilities [30]. By quantitatively measuring the impacts of uncertain-
ties on power systems and mitigating their adverse effects, these tools can furnish system operators
with valuable information. This, in turn, assists them in making well-informed and real-time de-
cisions that strike the right balance between ensuring system security and promoting economic
efficiency.

1.1.2 Power System Security Assessment

Power system security is crucial for the reliable and stable operation of power systems. It is defined
as the ability to maintain power supply and adhere to operational limits, ensuring system safety
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in the face of unforeseen events (e.g., equipment failures, fuel shortages, or demand fluctuations)
[31, 32]. Power system security assessment involves conducting an analysis to evaluate the extent
to which a system is reasonably protected from significant disruptions to its operation [33]. In
a broad sense, the security assessment in power systems can be classified into two types: static
and dynamic [34]. The static security assessment checks for violations of equipment, thermal, and
voltage limits in steady-state conditions following disturbances. On the other hand, the dynamic
security assessment evaluates the system’s ability to reach a new stable equilibrium operating point
after a disturbance.This thesis primarily focuses on static security assessment, thereby not delving
into the research challenges related to dynamic security assessment.

The increasing uncertainties impact power system static security in many aspects, which en-
compass the stochastic optimal power flow [35], stochastic power flow calculations [36], stochas-
tic economic dispatch [37], security margin [38], transfer capability [39]). Therefore, there is a
pressing need for more refined methods for power system static security assessment considering
uncertainties. Specifically, the first part of this thesis considers evaluating the impacts of uncertain-
ties on available transfer capability (ATC). This capability denotes the maximum power that can
be transmitted between two nodes through a subset of transmission lines without compromising
system security limits for further commercial uses beyond existing commitments [4]. The deter-
mination of ATC is closely related to another transfer capability concept, total transfer capability
(TTC), which is defined as the maximum power that can be securely transferred between two nodes
through a subset of transmission line considering all possible contingencies [4].

Conventionally, deterministic approaches have been widely used in power system security as-
sessment [40–44]. These methods generally provided deterministic security criteria, for example,
operational limits of devices (e.g., lines, buses, transformers, and generators) or fixed security mar-
gins after severe contingencies (e.g., equipment outages like lines, transformers, generators). Yet,
the deterministic security assessment shows its inability to comprehensively account for uncer-
tainties, often failing to capture the full spectrum of potential operating conditions, uncertainties
(e.g., from RESs and loads), and contingencies that can impact system security. As a result, it
may provide underestimated or overestimated risks, security margins, and vulnerabilities, poten-
tially leading to suboptimal operational decisions and insufficient mitigation strategies in the face
of unforeseen events. This highlights the limitations of traditional deterministic power security
assessment in power systems [29] , prompting the adoption of probabilistic methods to deal with
challenges brought by uncertainties and contingency with probabilities, which enable security as-
sessment at a predefined confidence level.
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1.1.3 Economic Dispatch

This thesis also addresses another critical aspect, the economic dispatch (ED) problem, which plays
a pivotal role in power system operation. The ED problem involves the allocation of the overall de-
mand among various generating units while minimizing the production costs [32]. Mathematically,
ED is formulated as a constrained optimization problem. The objective function typically aims to
minimize the generation costs, while adhering to various physical and network constraints (e.g.,
power flow constraints, voltage limits, thermal limits, and generator capacity constraints). Unlike
conventional controllable power generations (e.g., thermal and reservoir hydroelectric power), vari-
able RESs (e.g., wind power) are easily affected by environmental weather conditions, exhibiting
highly uncertain properties. See Fig. 1.3 for the wind and solar generation outputs with uncer-
tainty. The power outputs of RESs generation, such as wind and solar power, cannot be controlled
in the same manner as fossil-fueled power generation, which is characterized by high controllability
and dispatchability. Furthermore, the short-term variations of these RESs cannot be predicted with
absolute precision. Uncertainties persist regarding the quantity of power that these sources will
deliver in the upcoming hour or day. [45], [46].

The uncertain power outputs from variable RESs will lead to different dispatch solutions and
operating costs [47] for a power system. The second part of this thesis aims to quantify the impacts
of these uncertainties on the ED problem. More detailed literature reviews will be presented in the
following section.

Fig. 1.3 Uncertainty in wind and solar generations power output [3]



1 Introduction 5

1.2 Literature Review

This section delves into the methods used for quantifying uncertainty in power system static security
assessment in Section 1.2.1 and ED in Section 1.2.2. Additionally, Section 1.2.3 offers a succinct
overview of current strategies to mitigate the effects of uncertainties.

1.2.1 Uncertainty Quantification in Power System Static Security Assessment

As discussed in Section 1.1.2, conventional deterministic static security assessment methods may
struggle with evolving system conditions and increasing uncertainties in power systems. This sec-
tion provides an overview of UQ methods and their associated challenges in power system static
security assessment considering uncertainties.

Monte Carlo Simulations

The Monte Carlo (MC) simulations rely on repeated random sampling, which is the most common
and direct sampling-based method designed to assess uncertainties in power system security assess-
ment [48–50]. The MC simulations frequently serve as a benchmark in evaluating and comparing
alternative probabilistic methods. Intriguingly, while the accuracy of MC simulations remains in-
dependent of the the dimension of random inputs, it hinges critically on the number of stochastic
samples deployed and the complexity level of systems [51]. A typical requirement involves the
execution of tens of thousands of MC simulations to attain high precision. This significant com-
putational demand remains a key limitation of MC simulations, even when advanced sampling
techniques (e.g., Latin hypercube sampling [52, 53] (LHS), Latin supercube sampling (LSS) [54]
and Quasi-MC Sampling (QMC) [55,56]) are employed to enhance computational speed, compro-
mising its applicability in real-time applications.

Analytical Methods

To reduce the computational time, analytical methods have been proposed for power system static
security assessment. The fundamental concept of these methods involves utilizing specific algo-
rithms, such as convolution techniques [57] or cumulant techniques [58] to estimate the probability
density function (PDF) and cumulative distribution function (CDF) of the system response (e.g.,
PPF solutions [59, 60]). Among the analytical techniques, convolution methods involve the con-
volution of all random variables, which can be computationally intensive and require significant
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memory storage. In contrast, cumulant-based methods leverage properties of series expansions,
(e.g., Gram-Charlier [61] and Cornish-Fisher [59]). These methods depend on the probability dis-
tributions of random inputs and are less computationally demanding than MC simulations, yet they
maintain a commendable level of accuracy. However, these methods have some limitations since
they often treat random input variations as minor perturbations around equilibrium points. This
assumption facilitates the linearization of the power system model, while it may not be true in
practical applications and this perspective can limit their applicability in real-world applications,
especially when dealing with large-scale and nonlinear systems [57, 59–61].

Point Estimation Methods

The point estimation method (PEM) offers an alternative to improve computational efficiency com-
pared with MC simulations for uncertainty quantification. PEM addresses uncertainties by deter-
mining the statistics and PDF of stochastic responses through the computation of their statistical
moments [62–64]. As such, PEM has lowered the computation burden caused by MC simulations.
Su et al. proposed the PEM method to solve the probabilistic power flow (PPF) [65] and transfer
capability [66]. Later, a 2PEM (two-point estimation method) was applied to account for uncer-
tainties in the optimal power flow (OPF) problem. However, it might not capture all the nuances of
uncertainties, especially when there is a large dispersion in uncertain variables and with the Gaus-
sian assumption of the distribution of uncertainties [67]. A discrete PEM method was developed by
combining the Gram–Charlier expansion technique [68] to solve the PPF problem, enabling the free
assumption of probability distributions of random inputs. Despite its efficiency, the higher moments
of responses derived using PEM often lack accuracy. This can result in less accurate estimations of
probability distributions and response statistics since the statistics and PDFs are derived based on
estimated input moments [69]. Additionally, it may not be suitable for responses with thick-tailed
distributions, as PEM-based methods may struggle to provide accurate estimates of higher-order
moments, such as kurtosis and skewness [70].

Surrogate Models

In the realm of power system security assessment, surrogate modeling techniques have been intro-
duced as a popular means to alleviate the computational demands associated with MC simulations.
Surrogate models offer many advantages in power system security assessment. They offer superior
computational efficiency compared to MC simulations, especially for systems with a moderate num-
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ber of uncertainties, without sacrificing accuracy. In contrast to the PEM method, surrogate models
provide detailed statistics (e.g., mean and variance) and a full spectrum of probabilistic response
distributions. Moreover, in comparison to the analytical method, they excel in managing systems
with pronounced non-linearities, eliminating the need for linearization of system models. Exam-
ples of these techniques include polynomial chaos expansion (PCE) [38] [71], Gaussian process
regression (GPR) [72,73], and neural network (NN)-based models [74,75], among others. PCE, in
particular, is a prominent example that provides a computationally-efficient approximation. Com-
pared with GPR, it may provide more accurate statistics (e.g., mean and standard deviations) and
the entire shape and the tail of probability distributions. Furthermore, PCE may outperform GPR in
estimating noisier and more multi-modal distributions [76]. PCE is represented as a weighted sum
of orthogonal polynomials of uncertainties, which are regarded as random inputs with predefined
probability distributions [6] [77]. This model can be constructed with a limited number of evalua-
tions, capturing the primary physical model’s input-output mapping. Notably, PCE-based models
allow for the direct extraction of the system response’s sample mean and variance from the weights
of polynomials [78].

Given its benefits, PCE has found applications both within and outside the power commu-
nity (e.g., fields like Civil Engineering [79–82] and Mechanical Engineering [83–85]). Within
the power community, PCE’s applications span across various facets of power system security as-
sessment [23,86–93]. Yet, the computational efficiency may be limited for high dimensional uncer-
tainties due to the “curse of dimensionality” issue and correlation exist between random inputs may
complicate the UQ [23,87,88]. Despite these issues have been alleviated in [89,93] to some extent,
a common limitation among these methods is the assumption that all random variables adhere to
specific parametric distribution functions. In real-world power system applications, the knowledge
of probability distributions of random inputs might be limited or inaccurate, while raw data, like
wind speed and solar radiation, is more readily available.

Overall, as delineated in this section, existing UQ methods for examining the impacts of uncer-
tainties on power system static security, especially the ATC, exhibit several research gaps. These
include:

1. The escalating integration of RESs amplifies the dimensionality of uncertainties, rendering
many UQ techniques computationally intensive.

2. The presence of correlations among uncertainties complicates the achievement of accurate
UQ results.
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3. Dealing with uncertainties that have unknown distributions is a challenging task.

4. Only limited work has considered the impacts of uncertainties brought about by unexpected
equipment outages on power system security assessment.

In essence, there is a lack of a systematic method that can effectively and accurately assess ATC
while addressing the limitations mentioned above. The current landscape necessitates a thorough
exploration of uncertainties brought by RESs, load variations, and unexpected equipment outages
in ATC assessment. To this end, there is a pressing need for the development of a data-driven
UQ method that is both computationally efficient and highly accurate, to reinforce real-time ATC
assessment considering uncertainties.

The first part of this thesis (Chapter 3) addresses the challenges of UQ in power system security
assessment, with a spotlight on available transfer capability evaluation. Chapter 3 also offers an
in-depth literature review on transfer capability assessment.

1.2.2 Uncertainty Quantification in Economic Dispatch

Power system operators employ an OPF to fulfill the power demand at the lowest possible cost, first
involving selecting a subset of generators that can satisfy the demand for a specific time period,
typically ranging from 1 to 2 days. That is the so-called unit commitment (UC). Once the UC
decisions are determined, the ED problem is solved to determine the optimal generation levels for
the committed generators, aiming to meet the expected demand at the lowest economic cost [94].
This thesis considers that the ED problems are solved under a series of future time intervals (e.g.,
a day-ahead window with a one-hour interval), to provide a more proactive solution in the face of
increasing uncertainties (e.g., arising from RESs). In this context, ED refers to the allocation of
generation among different units to fulfill the power demand cost-effectively. It ensures adherence to
physical and network constraints while also accounting for uncertainties. The detailed mathematical
formulation of the ED problem is given in Chapter 4.

Given the significant integration of variable RESs in power systems, the impacts of these un-
certainties in ED have become more pronounced. To address and quantify them, numerous formu-
lations have been proposed in the existing literature. These can be broadly classified into three
categories: 1) deterministic ED formulations; 2) robust-optimization ED formulations; and 3)
stochastic-optimization ED formulations.

Deterministic ED formulations focus on minimizing operational costs based on pre-determined
reserve capacities that account for selected realizations of the uncertainties arising from renewable
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generation power outputs and stochastic loads [95–97]. For instance, Chen et al. [96] proposed a
direct search method (DSM) to coordinate wind and thermal generation dispatch, minimizing the
production cost in ED. This approach uses fixed reserves to address uncertainties from wind power
generation and has demonstrated high efficiency. Liang et al. [97] introduced a genetic algorithm
for the ED utilizing fuzzy sets to represent uncertainties from stochastic loads and RESs. While this
method is effective, it can be computationally intensive, especially for large-scale systems. Further-
more, issues may arise when the number of representations or the spread of potential uncertainties
is insufficient to capture the true possible realizations of the uncertainties.

The robust-optimization formulations can serve as an alternative methodology for ED consid-
ering uncertainties [98–103]. The optimization objective of these formulations is to minimize the
operational cost under the worst-case scenario. Accordingly, system operators can acquire the most
severe consequences brought about by uncertainties within a predefined range. Sasak et al. [101]
and Li et al. [102] developed confidence interval-based robust optimization formulations for ED,
maximizing robustness against uncertainties associated with RESs (e.g., wind), which offered fre-
quent real-time updates of generation schedules. However, the accuracy of these methods heavily
relies on accurate forecasting of wind distributions, and any significant deviation in forecasts can
affect its efficiency. Furthermore, these formulations set bounds on the variability of uncertain-
ties and optimize for the worst-case scenario, resulting in overly conservative outcomes to ensure
risk resilience. To address these issues, Ding et al. [103] proposed a multi-stage distributed robust
optimization model directly using the historical wind data to address the uncertainties in the ED
efficiently, which guaranteed the risk resilience of robust optimization. However, striking a balance
between the economic efficiency and conservatism of dispatch solutions often relies on the personal
experience of the system operators.

Stochastic-optimization ED formulations are designed to minimize the expected value of a loss
function (e.g., operation cost) impacted by decision variables (e.g., generator power outputs) and
by exogenous uncertainties (e.g., wind power) [104]. A prevalent method to address the uncer-
tainties is the scenario-based approach, which relies heavily on multiple scenarios to represent the
uncertainties in renewable generations [105–109]. Advanced methods have also been proposed to
reduce the scenarios. For example, Feng et al. [110] introduced a parallel dual-DQAM to decouple
the multi-scenario ED problem both in terms of scenarios and time periods, which can signifi-
cantly reduce computational burden and enhance solving efficiency. However, these approaches
assume that these uncertainties conform to known/inferred probability distributions. While the
stochastic-optimization formulations offer cost-effectiveness and can provide high-risk resilience
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against uncertainties, they present two challenges. The first challenge is the accuracy and efficiency
trade-off: the accuracy of this method is directly related to the number of scenarios. Employing
a vast number of scenarios can lead to reduced computational efficiency. This poses a dilemma
in achieving a balance between solution accuracy and computational speed, an area that warrants
further exploration. The second challenge arises in practical applications, where obtaining an ac-
curate PDF for renewables is impractical. The distributions assumed or inferred (e.g., wind speed
follows Weibull distribution, solar radiation follows Beta distribution) may not represent the actual
data [111,112], causing inaccurate uncertainty quantification results in ED.

As pinpointed in this section, a comprehensive UQ method for ED that is computationally ef-
fective while maintaining accuracy becomes a critical task considering the increasing penetration
of RESs (e.g., wind power). Key research gaps bypass:

1. Current stochastic-optimization ED formulations typically demand a large number of scenar-
ios to achieve good accuracy, which reduces computational efficiency.

2. The increasing uncertainty dimension further lowers the computation efficiency, hindering
the applications of many UQ techniques.

3. The unknown distribution and correlation information of uncertainties also increase the dif-
ficulty in UQ on ED.

Thus, a comprehensive data-driven UQ method, that is computationally effective and highly accu-
rate, for ED in power systems under high dimensional uncertainties is needed. Therefore, Chapter 4
centers on the impacts of uncertainties on ED, in particular, dedicated to addressing the limitations
on UQ based on stochastic-optimization ED formulations.

1.2.3 Global Sensitivity Analysis-Based Uncertainty Control in Power System Static
Security and Economic Dispatch

As discussed in Section 1.2.1- 1.2.2, rising levels of uncertainties have profound implications for
power systems static security and ED. Several methods have been proposed to mitigate the impacts
of uncertainties, which can be categorized into two types: with and without energy storage units.
For example, direct control methods, such as pitch angle control [113] and inertia control [114]
have been applied to smooth the wind generator power outputs, without the need for energy storage
units. However, these methods can increase system complexity and may not always harness the
maximum wind power [115], decreasing the utilization of RESs.
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To address these issues, energy storage systems (ESSs) have been used as buffers to flatten wind
power fluctuations [116] [117]. Various energy storage technologies have been reviewed for their
efficacy in mitigating the uncertainties of ESSs [118, 119]. However, the renewable uncertainties
(i.e., random inputs) become high-dimensional, and it is not practical to install energy storage units
for every random input factor (e.g., near wind farms). Therefore, how to manage the ESSs to miti-
gate the impacts of uncertainties brought by RESs became a key issue. This leveraged the utilization
of different optimization models for energy scheduling and management [120–122]. For example,
an interval optimization-based dispatch approach has been developed to handle the variability in-
troduced by RESs via managing the system’s flexibility [120]. However, these methods assumed
predetermined distributions of RESs and load variations, which may be not true in practical appli-
cations.

Another uncertainty mitigation approach that has gained popularity stems from sensitivity anal-
ysis [123, 124]. Sensitivity analysis is classified into local and global methods. Local sensitivity
analysis (LSA) examines the impact of variations in a single input parameter on the model out-
put, focusing on a specific point in the input space, which assumes the model is linear around the
point of interest (i.e., small perturbations around stable equilibrium points and determines a lin-
ear relationship between inputs in the local region around the nominal operating points) [125]. In
contrast, global sensitivity analysis (GSA) assesses the effect of one or multiple variables on the
output across the entire input parameter space, accounting for interactions among all inputs. By
conducting a sensitivity analysis of uncertainties, critical inputs that will affect power system se-
curity and ED can be found. Many sensitivity analysis-based approaches have been proposed in
power system applications. For example, LSA-based approaches have been proposed in load mod-
eling for wide-area power systems [126] and drive train parameters identification of a doubly fed
induction generator (DFIG) [127]. However, the LSA evaluates the sensitivity of a model’s output
to variations of its inputs at a specific point (e.g., a nominal value) and assumes a linear relationship
between input and output changes, which may not be true for practical power systems.

Unlike LSA, GSA examines the effects across the entire spectrum of potential variations and in-
corporates the system’s nonlinear characteristics (i.e., the effects of the variation of inputs on whole
uncertain space on the system outputs). While MC simulations are commonly used for GSA, the
high computational time makes it impractical [128]. To address this issue, Ye et al. [129] proposed
a Gaussian process modeling method for GSA to measure the impacts of independent uncertainties
(e.g., load variations) on the changes in voltage magnitude. Xu et al. [130] and Ni et al. [131] pro-
posed a PCE surrogate GSA method to perform a priority ranking of correlated uncertainties from
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RESs that affected power system voltage stability and load flow, respectively. Later, a PCE-based
GSA method was proposed in [132] to rank the impacts of the maximum loadability of an islanded
microgrid (MG). Based on the sensitivity information, an effective uncertainty mitigation measure
has been designed. Nevertheless, the method applied requires accurate probability distributions
of random inputs, which might not always be accessible in real-world scenarios. Additionally, in
practical applications, random inputs (uncertainties) often exhibit correlations, e.g., temporal and
spatial dependence observed between different wind speeds [133]. While some efforts have been
made, conducting global sensitivity analysis of correlated random inputs is still challenging. Over-
all, discussions on uncertainty control related to ATC and ED might be lacking.

As emphasized in this section, discussions on uncertainty control related to power system se-
curity and ED might be lacking. Current uncertainty control methods present some limitations:

1. Current GSA methods often relying on MC simulations, may necessitate a substantial number
of scenarios for accurate estimations.

2. The presence of correlations among uncertainties further complicates GSA.

3. Optimization-based or GSA-based uncertainty control methods require pre-assumed or in-
ferred probability properties of uncertainties.

4. Uncertainty control measures based on GSA require fast and accurate GSA, which is still
challenging.

In this regard, an effective control measure to mitigate the uncertainty impacts, which addresses
the aforementioned limitations is required.

Specially, this thesis emphasizes and addresses the limitations of existing methods that use
global sensitivity analysis as a tool to mitigate the effects of uncertainties on ATC and ED, as
detailed in Chapter 5.

1.3 Research Objectives and Methodology

To effectively address the research questions identified in Section 1.2, it is crucial to establish the
following primary research objectives:

• The first part of this thesis (Chapter 3) aims to address research gaps in power system static
security assessment (see Section 1.2.1), focusing on ATC. It involves the development of a



1 Introduction 13

data-driven PCE-based method that directly utilizes data to assess ATC while considering
various correlated uncertainties from RESs, load variations, and unexpected line outages.

• The second part of this thesis (Chapter 4) intends to fill gaps in research concerning ED
problems under high-dimensional uncertainties (see Section 1.2.2). It involves the practical
application of a data-driven PCE-based method to efficiently evaluate the objective value
of ED problems, even in situations where uncertainty distributions and correlations remain
unknown.

• The third part of this thesis (Chapter 5) is dedicated to the development of effective uncer-
tainty control strategies for power system static security and ED to target research limitations
mentioned in Section 1.2.3. Leveraging PCE-based methods for GSA, they aim to design
uncertainty control measures based on the estimated sensitivity information to mitigate the
impacts of uncertainties and enhance both power system security and economic efficiency.

1.3.1 Methodology

This thesis leverages surrogate modeling techniques, polynomial chaos theory, and global sensitiv-
ity analysis to quantify and mitigate the impacts of uncertainties in the probabilistic assessment of
power system security and ED. A primary focus is the development of data-driven PCE methods to
quantify and mitigate the effects of uncertainties on power systems security and ED.

PCE serves as a powerful tool to approximate stochastic responses of power system models
[38,90]. It establishes statistically-equivalent relationships between uncertainties (inputs) and their
corresponding responses (outputs), requiring only a small number of model evaluations (i.e., input-
output sample pairs used to train models). By employing PCE-based surrogate models, one can
swiftly evaluate the stochastic responses of power system models, such as transfer capabilities and
the objective values of ED problems. The data-driven nature of this approach further enhances the
feasibility of constructing PCE for large-scale power systems in real-world scenarios [38, 134].

Additionally, this thesis proposed tailored PCE-based methods for global sensitivity analysis, a
crucial instrument for measuring the significance of an individual or a group of uncertainties. By
extracting key insights from sensitivity data and harnessing energy storage technologies, effective
control strategies are developed to alleviate the impacts of uncertainties on power system security
and ED.
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1.3.2 Research Tools

In this thesis, simulations were conducted using Matlab scripts, integrated with the Voltage Secu-
rity Assessment Tool (VSAT) [135], a pivotal component of DSATools. DSATools is recognized
as a robust suite of power system analysis tools, with a track record of effectively assessing power
system security. However, current commercial power system analysis tools often dismiss the inte-
gration of uncertainties, particularly those arising from RESs, stochastic loads, and unexpected line
outages. Therefore, an interface between Matlab and VSAT/DSATools was developed, enabling the
integration of uncertainties in VSAT/DSATools. Based on this, VSAT was capable of evaluating
the ATC of the power system accurately. MC simulations based on VSAT/DSATools are conducted
to establish benchmark results.

The simulations of UQ and global sensitivity analysis for the proposed methods in this thesis
were executed using Matlab scripts combined with UQLab Toolbox [136], which aims to make
cutting-edge UQ techniques more universally accessible. The developed Matlab scripts were com-
bined with the Polynomial Chaos Expansions [137] package, and the Sensitivity Analysis pack-
age [138] from UQLab, ensuring the attainment of the research objectives.

1.4 Claims of Originality

This thesis introduces several contributions in the field of data-driven methods for uncertainty quan-
tification in power systems, specifically in the areas of probability transfer capability assessment,
stochastic optimization, and uncertainty-aware control. The originality of these contributions, as
demonstrated in the published papers, can be classified into three key perspectives.

• This thesis proposes a data-driven sparse polynomial chaos expansion (DDSPCE) method,
which leverages available data of random inputs (e.g., RESs, random loads, and unexpected
equipment outages), to study the impacts of uncertainties on power system ATC. The pro-
posed method, requiring no preassumed probability distributions of random inputs, can accu-
rately and effectively estimate the stochastic characteristics (mean, variance, PDF, and CDF)
of probabilistic TTC (PTTC), based on which, the ATC with a certain confidence level can
be readily calculated. An integrated sparse scheme further enhances its computational ef-
ficiency and accuracy. Numerical studies conducted on the modified IEEE 118-bus system
and the modified PEGASE 1354-bus system demonstrate the DDSPCE method’s efficacy in
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PTTC and ATC evaluation. Furthermore, the results highlight the significance of incorpo-
rating discrete random inputs in PTTC and ATC assessment [J1].

• This thesis develops a DDSPCE-based surrogate model to investigate the impacts of uncer-
tainties, particularly from wind power, on the ED during daily power system operations. This
surrogate model is capable of estimating the probabilistic characteristics of ED solutions (e.g.,
the objective values), including their mean, variance, and distribution functions. Moreover,
the proposed method can handle a vast number of random inputs without requiring prede-
fined probability distributions. Extensive simulation results on an Integrated Electricity and
Gas System (IEGS) using real-life wind power data, underscore the method’s efficiency and
effectiveness in quantifying the impacts of uncertainties on ED solutions, even when the ED
solutions exhibit multimodality properties. These findings emphasize the DDSPCE method’s
efficacy and efficiency in tackling both general and intricate scenarios [J2].

• This thesis designs effective global sensitivity analysis-based uncertainty control to mitigate
the impacts of uncertainties on power system security and ED. Particularly, different PCE-
based methods are developed to conduct GSA, enabling to identification of the dominant
random inputs. Leveraging the insights from the sensitivity information, this thesis designs
uncertainty control strategies (e.g., by utilizing ESSs) for transfer capability enhancement
and ED. These findings provide essential guidance for managing uncertainties and designing
controls in practical power system operations [J3].

1.5 Thesis Outline

This thesis is structured as follows.

• Chapter 2 presents the foundational mathematical concepts essential to the thesis. It covers
the PCE method, including the basic concepts of PCE, strategies to build orthogonal polyno-
mial bases, PCE coefficient calculations, providing a comprehensive understanding of these
techniques.

• Chapter 3 proposes a novel DDSPCE method for assessing PTTC and ATC. It begins by
providing definitions of transfer capability and an overview of state-of-the-art probabilistic
transfer capability assessment methods. The mathematical formulation of TTC based on con-
tinuation power flow (CPF) and the modeling of uncertainties (such as wind, solar, loads, and
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unexpected line outages) are presented. The proposed method utilizes a moment-based ap-
proach to construct the polynomial basis, leveraging the available data instead of relying on
the probability distribution of random inputs. An integrated sparse scheme based on the least
angle regression (LAR) and a modified truncation norm is exploited to enhance computa-
tional efficiency while maintaining accuracy. Chapter 3 is closely related to the publication
[J1].

• Chapter 4 extends the DDSPCE method to construct a statistically equivalent surrogate
model for ED problems. It starts with existing surrogate model-based methods for solv-
ing the stochastic-optimization ED problems, followed by the mathematical formulation of
the stochastic optimization ED formulation as a complex-constrained optimization problem.
This chapter then elaborates on the proposed DDSPCE-based surrogate model to estimate
ED solutions (e.g., objective values) by exploiting data directly. Simulation results on an
IEGS using real-world wind power data are presented to validate the efficiency and effective-
ness of the proposed method. The research presented in this chapter is closely linked to the
publication [J2].

• Chapter 5 presents a comprehensive investigation of various PCE-based methods for AN-
COVA (ANalysis of COVAriance) indices-based global sensitivity analysis in power system
security and ED considered correlated random inputs. This chapter begins with a thorough
analysis of the existing literature in this field. Subsequently, a high-dimensional decomposi-
tion representation (HDMR) of power systems under uncertainty is introduced. Two distinct
PCE-based techniques for computing the ANCOVA sensitivity indices are then detailed. Fur-
thermore, this chapter then designs an efficient strategy for uncertainty control by leveraging
the sensitivity information obtained from PCE-based methods to mitigate the impacts of ran-
dom inputs on ATC and ED. The findings of this chapter offer valuable insights and guidance
for the management and control of uncertainty in power system operation and security as-
sessment. The work presented in Chapter 5 is closely related to the publication [J3].

• Chapter 6 serves as a conclusion to the thesis, summarizing the main contributions and
discussing potential areas for future research.
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Chapter 2

Polynomial Chaos Theory

This chapter will introduce the polynomial chaos expansion (PCE) method, a widely recognized
metamodel for uncertainty quantification in power systems and various other fields. The concept
of PCE was initially introduced by Wiener [139], where the stochastic response was approximated
using Hermite polynomials for Gaussian random inputs. This method was later generalized by Xiu
et al. [6] to solve the stochastic differential equations with random inputs that follow some standard
distributions (e.g., Beta, Uniform, and Gamma). Since then, PCE has been advanced by integrating
adaptive sparse scheme [78], moment-based methods [140], response surface methodology [86],
and Bayesian inference [38]. These PCE-based approaches have gained traction in power systems
(e.g., PPF problems [71,89,90,93], ED [37,141], load-margin assessment [38], and dynamic sim-
ulations [142, 143]). These methods offer the dual benefits of reduced computational burdens and
the ability to handle systems with pronounced non-linearities. Capitalizing on the strengths of PCE,
this thesis presents tools for uncertainty quantification and control based on the data-driven PCE
method. The subsequent sections provide the foundational concepts of the PCE method.

2.1 Polynomial Chaos Expansion

2.1.1 The Generalized PCE for Model Response

Consider a stochastic response model Y = G(ζ) with an input vector ζ = [ζ1, ζ2, · · · , ζM] ∈
RM,M ≥ 1, where inputs ζ could be volatile renewables (e.g., wind speed and solar radiations),
load variations, unexpected line outages, etc. Y may be power flow solutions (e.g., bus voltage
magnitudes or angles), PTTC, or the solution to ED problems. Without loss of generality, let’s

2024/01/08
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consider Y as a scalar-valued output equipped with finite second-order moments [78], i.e.,

E[Y 2] =
∫
Ω
G2(ζ)dFζ(ζ) =

∫
Ω
G2(ζ)fζ(ζ)dζ < +∞ (2.1)

where E[·] represents the expectation operator. Ω is the support of ζ ;Fζ(ζ) is the the joint CDF
and fζ(ζ) is the joint PDF of ζ, respectively.

Remark 2.1.1. Hilbert Space: Let Hζ = L2
fζ
(Ω,R) be the real Hilbert space associated with the

probability measure fζ . This space is characterized by following inner product [144, 145]:

⟨u, v⟩Hζ
=

∫
Ω

u(ζ)v(ζ)fζ(ζ)dζ (2.2)

Based on Remark 2.1.1, (2.1) is equivalent to E[G(ζ)2] = ⟨G(ζ), G(ζ)⟩ < +∞, indicating that
stochastic responses with finite second-order moments belong to the Hilbert space Hζ .

As it was shown in [6,139,146], any stochastic response with finite second-order moments can
be represented by a weighted sum of orthogonal polynomial basis functions of random inputs ζ:

Y = G(ζ) = Gpc(ζ) =
+∞∑
k=1

ckΨk(ζ) (2.3)

where Gpc(ζ) represents the PCE-based models, ck are PCE coefficients, and Ψk(ζ) are multidi-
mensional orthogonal polynomial bases, which are orthogonal with respect to the joint PDF fζ(ζ)
of random inputs ζ, i.e., Ψk(ζ) satisfies the following orthogonal condition:∫

Ω

Ψk(ζ)Ψm(ζ)fζ(ζ) = γkmδkm (2.4)

where γkm is a positive constant and δkm is the Kronecker delta, i.e., if k = m, δkm = 1 and if
k ̸= m, δkm = 0. Particularly, if the orthogonal condition in (2.4) is satisfied, Gpc(ζ) converges in
the sense of L2-norm according to the Cameron–Martin theorem [147], i.e.,

lim
L→+∞

(∥∥∥∥∥Y −
L−1∑
k=0

ckΨk(ζ)

∥∥∥∥∥
L2

)2

= lim
L→+∞

E

(Y − L−1∑
k=0

ckΨk(ζ)

)2
 (2.5)

Note that (2.3) is impractical due to the summation of infinite terms. To tackle this issue, the
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PCE in (2.3) is generally truncated with finite expansion terms [78]:

Y = G(ζ) ≈ Gpc(ζ) =
L−1∑
k=0

ckΨk(ζ) (2.6)

where L = (M+H)!
M!H!

, with M the dimension of random inputs and H the order of PCE model,
i.e., the maximum degree of the polynomial basis functions. The key points to building a PCE
model include the construction of polynomial basis functions Ψk(ζ) and the calculation of PCE
coefficients ck, which will be introduced in Section 2.1.2 and 2.1.3, respectively.

2.1.2 The Construction of Polynomial Bases

Independent Random Inputs

If random inputs ζ have mutually independent components, the classical polynomial bases Ψk(ζ)

can be produced by the full tensor product of the one-dimensional orthogonal polynomial bases
ϕ
(αj

k)

j [145]:

Ψk(ζ1, · · · , ζM) =
M∏
j=1

ϕ
(αj

k)

j (ζj) (2.7)

M∑
j=1

αk
j ≤ H, k = {0, 1, · · · , L− 1} (2.8)

where Ψk(ζ produced can easily satisfy the orthogonal condition in (2.4); αj
k denotes the index of

the j-th univariate polynomial basis ϕj at expansion term k, i.e., αk
j is the degree of the univariate

polynomial basis for random input ζj on the expansion term k. Equation (2.8) refers to a standard
truncation scheme typically applied to truncate the PCE in (2.3).

Conventionally, in the generalized PCE, the univariate polynomial bases ϕ(αj
k)

j are chosen based
on the distribution types of random inputs as introduced by Xiu. et al. [6]. If random input ζj
follows some typical distribution types, the univariate polynomial basis ϕ(αj

k)

j (ζj) can be selected
by utilizing the Wiener–Askey polynomials (Table 2.1 [6]), where the optimal convergence rate is
achievable. Particularly, an existing method, SPCE [36] selecting the univariate orthogonal poly-
nomial basis ϕj based on Table 2.1 is used for comparison.

Once the univariate orthogonal polynomial bases ϕj are determined, the multivariate orthogo-
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Table 2.1 Standard forms of continuous distributions and their corresponding
Wiener–Askey polynomials [6]

Distribution Polynomials Support
Gaussian Hermite (−∞,+∞)
Uniform Legendre [−1,+1]

Beta Jacobi [−1,+1]
Gamma Generalized Laguerre [0,+∞]

nal polynomial bases Ψk(ζ) can be constructed through (2.7) and (2.8). An example of the con-
struction of multivariate polynomial bases Ψk(ζ) with selected univariate orthogonal polynomial
bases ϕ(αj

k)

j (ζj) is given below (see Table 2.2). Consider a 3-dimensional random input vector
ζ = {ζ1, ζ2, ζ3}, where ζj, j = 1, 2, 3 follow standard Gaussian distribution. Then, the multivariate
orthogonal polynomial bases Ψk(ζ) with the PCE order H ≤ 3 (i.e., the possible degree of the
polynomial basis functions could be {0, · · · , 3} ) are as follows:

Remark 2.1.2. Note that αk = (α1
k, · · · , αM

k ) ∈ NM denotes the multivariate index of Ψk(ζ),
indicating how the individual polynomial basis ϕ(αj

k)

j (ζj) is combined to form the multivariate poly-
nomial bases Ψk(ζ). The index α can be regarded as a L ×M matrix, where each element (i.e.,
αj
k) indicates the degree of the j-th univariate polynomial basis for expansion term k. E.g., in Table

2.2,M = 3, H = 3, then L = 20 according to (2.8). As such, α ∈ N20×3, with αk corresponding
to each row of α.

Dependent Random Inputs

In the general case, random inputs in the physical space are correlated in practice (e.g., the spatial
and temporal correlation may exist between wind speeds [18, 148]). Several methods have been
proposed to solve the correlation between random inputs. The most common way used in literature
is to convert the correlated random inputs into independent ones using some transformation tech-
niques, such that the salient property described in (2.14) is retained. For linearly correlated inputs,
methods like principal component analysis (PCA) [149] or Karhunen-Loève expansions (KLE) [37]
can be used. Nataf transformation (NT) is effective for decorrelating inputs with correlations mod-
eled by Gaussian Copula [89]. However, NT may not handle uncertainties with highly nonlinear or
thick tail dependence. In such cases, the Rosenblatt transform (RT) offers an alternative approach
to transforming dependent inputs into independent ones, often combined with vine copula to model
the dependence structure of uncertainties [150]. The PCE model built based on data after decor-
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Table 2.2 An example of the multivariate polynomial bases Ψk(ζ) construction

Ψk(ζ)
∏M

j=1 ϕ
(αj

k)

j (ζj) αk = (α1
k, α

2
k, α

3
k) H

Ψ0 (ζ) ϕ1
(010) (ζ1)× ϕ2

(020) (ζ2)× ϕ3
(030) (ζ3) α0 = (0, 0, 0) 0

Ψ1 (ζ) ϕ1
(111) (ζ1)× ϕ2

(021) (ζ2)× ϕ3
(031) (ζ3) α1 = (1, 0, 0) 1

Ψ2 (ζ) ϕ1
(012) (ζ1)× ϕ2

(122) (ζ2)× ϕ3
(032) (ζ3) α2 = (0, 1, 0) 1

Ψ3 (ζ) ϕ1
(013) (ζ1)× ϕ2

(023) (ζ2)× ϕ3
(133) (ζ3) α3 = (0, 0, 1) 1

Ψ4 (ζ) ϕ1
(114) (ζ1)× ϕ2

(124) (ζ2)× ϕ3
(034) (ζ3) α4 = (1, 1, 0) 2

Ψ5 (ζ) ϕ1
(115) (ζ1)× ϕ2

(025) (ζ2)× ϕ3
(135) (ζ3) α5 = (1, 0, 1) 2

Ψ6 (ζ) ϕ1
(016) (ζ1)× ϕ2

(126) (ζ2)× ϕ3
(136) (ζ3) α6 = (0, 1, 1) 2

Ψ7 (ζ) ϕ1
(217) (ζ1)× ϕ2

(027) (ζ2)× ϕ3
(037) (ζ3) α7 = (2, 0, 0) 2

Ψ8 (ζ) ϕ1
(018) (ζ1)× ϕ2

(228) (ζ2)× ϕ3
(038) (ζ3) α8 = (0, 2, 0) 2

Ψ9 (ζ) ϕ1
(019) (ζ1)× ϕ2

(029) (ζ2)× ϕ3
(239) (ζ3) α9 = (0, 0, 2) 2

Ψ10 (ζ) ϕ1
(1110) (ζ1)× ϕ2

(1210) (ζ2)× ϕ3
(1310) (ζ3) α10 = (1, 1, 1) 3

Ψ11 (ζ) ϕ1
(2111) (ζ1)× ϕ2

(1211) (ζ2)× ϕ3
(0311) (ζ3) α11 = (2, 1, 0) 3

Ψ12 (ζ) ϕ1
(2112) (ζ1)× ϕ2

(0212) (ζ2)× ϕ3
(1312) (ζ3) α12 = (2, 0, 1) 3

Ψ13 (ζ) ϕ1
(1113) (ζ1)× ϕ2

(2213) (ζ2)× ϕ3
(0313) (ζ3) α13 = (1, 2, 0) 3

Ψ14 (ζ) ϕ1
(0114) (ζ1)× ϕ2

(2214) (ζ2)× ϕ3
(1314) (ζ3) α14 = (0, 2, 1) 3

Ψ15 (ζ) ϕ1
(1115) (ζ1)× ϕ2

(0215) (ζ2)× ϕ3
(2315) (ζ3) α15 = (1, 0, 2) 3

Ψ16 (ζ) ϕ1
(0116) (ζ1)× ϕ2

(1216) (ζ2)× ϕ3
(2316) (ζ3) α16 = (0, 1, 2) 3

Ψ17 (ζ) ϕ1
(3117) (ζ1)× ϕ2

(0217) (ζ2)× ϕ3
(0317) (ζ3) α17 = (3, 0, 0) 3

Ψ18 (ζ) ϕ1
(0118) (ζ1)× ϕ2

(3218) (ζ2)× ϕ3
(0318) (ζ3) α18 = (0, 3, 0) 3

Ψ19 (ζ) ϕ1
(0119) (ζ1)× ϕ2

(0219) (ζ2)× ϕ3
(3319) (ζ3) α19 = (0, 0, 3) 3
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relation is described in Remark 2.1.3. The literature presents alternative approaches that bypass
the dependence on random inputs. [134, 151]. Wang et al. [134] developed multivariate polyno-
mials Ψk(ζ) by employing Gram-Schmidt-based methods with correlated inputs. However, their
effectiveness in high-dimensional contexts remains unproven. Torre et al. [151] suggested ignoring
the dependence structure and building the multivariate polynomial bases Ψk(ζ) using (2.7) for the
response estimation, reasonable good response estimations can be obtained, yet it failed to provide
the closed-form representations of estimated statistics.

Remark 2.1.3. Assume that correlated random inputs ζ after decorrelation using the transforms
(e.g., NT, RT or PCA technique), denoted by T −1(Z) [37, 89, 149, 150] are independent. As such,
the response Y (e.g., PTTC, objective values of ED) is approximated by the PCE model built with
random inputs after decorrelation:

Y = G(ζ) = G(T −1(Z)) ≈ Gpc(Z) =
L−1∑
k=0

ckΨk(Z) (2.9)

where Ψk(Z) is calculated using (2.7), that is:

Ψk(Z1, · · · , ZM) =
M∏
j=1

ϕ
(αj

k)

j (Zj) (2.10)

Specially, this method was applied in Chapter 3 and Chapter 4 using PCA to decorrelate for
response estimation. The NT and RT are used in Chapter 5. It’s crucial to note that the choice
of a decorrelation method is contingent upon the types of random input distributions and their
underlying dependence structures.

Remark 2.1.4. The detailed introduction of PCA, NT, and RT can be found in Appendix A and
Appendix B.

2.1.3 The Calculation of PCE Coefficients

In this thesis, the least-square regression method is applied to calculate the expansion coefficients
ck. For a given set of sample pairs [ζp,Yp] with random input samples ζp =

{
ζ(1), ζ(2) · · · , ζ(Mp)

}
and the corresponding response Y =

{
Y (1), Y (2), · · · , Y (Mp)

}
, the expansion coefficients ck can
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be computed by minimizing the following cost function [78]:

J(C) = E

Mp∑
s=1

[
Y (s) −

L−1∑
k=0

ckΨk(ζ
(s))

]2
= E

[
(Y −ΨC)T (Y −ΨC)

] (2.11)

where C = [c0, c2, . . . , cL−1]
T with L denotes PCE coefficients in vector form. The matrix Ψ is

formulated by the multivariate polynomials:
Ψ0(ζ

(1)) Ψ1(ζ
(1)) · · · ΨL−1(ζ

(1))

Ψ0(ζ
(2)) Ψ1(ζ

(2)) · · · ΨL−1(ζ
(2))

· · · · · · · · · · · ·
Ψ0(ζ

(Mp)) Ψ1(ζ
(Mp)) · · · ΨL−1(ζ

(Mp))

 (2.12)

Then, the coefficients can be obtained by solving the least-square problem in (2.11) using ordinary
least-square (OLS):

Ĉ =
(
ΨTΨ

)−1
ΨTY (2.13)

2.1.4 Moments of the Model Response

If random inputs ζ are independent, closed-forms of the mean and variance of response (i.e., E[Y ]

and Var[Y ]) can be obtained from the PCE coefficients due to the orthonormality of polynomial
basis Ψk(ζ).

E[Y ] ≈ E

[
L−1∑
k=0

ckΨk(ζ)

]
= c0, Var[Y ] ≈ Var

[
L−1∑
k=0

ckΨk(ζ)

]
=

L−1∑
k=1

γkc
2
k (2.14)

where c0 is the coefficient of the constant term in (2.9).

2.2 Conclusions

In this section, the general form of the PCE method is introduced. Specifically, a generalized PCE-
based model constructed using known input distributions is presented. In subsequent chapters, the
PCE-based methods will be used to assess ATC and PTTC, to solve the stochastic-optimization
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ED problem, and for GSA-based uncertainty control. Moreover, the moment-based method will
be introduced in Chapter 3 to construct the polynomial bases. These bases will also be utilized in
Chapter 4 and Chapter 5. PCE models, constructed using the bases introduced in Table 2.1, will be
used for comparison. Furthermore, different coefficient calculation methods will be introduced in
the following chapters.
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Chapter 3

A Data-Driven Sparse PCE Method for UQ
in ATC Assessment

As introduced in Chapter 1, high penetration of RESs, new loads (e.g., EVs), and unexpected equip-
ment outages bring a high level of uncertainty in power systems. The impacts of these uncertain-
ties on power system static security assessment need to be studied. Specially, this chapter inves-
tigates the impacts of these uncertainties on available transfer capability (ATC). This chapter will
first introduce some power system transfer capability concepts. Besides, this chapter introduces
a data-driven sparse PCE (DDSPCE) method for assessing the probabilistic total transfer capabil-
ity (PTTC), based on which, ATC with a certain confidence interval is evaluated. The ideas and
findings presented in this chapter are predominantly based on previously published research [J1].

3.1 Introduction

3.1.1 Transfer Capability Definitions

Power transfer capability quantifies the maximum power that can be transmitted across a network
under specific assumptions and conditions. It is significantly important in safeguarding security and
optimizing the efficiency of power systems, particularly in deregulated environments. According to
the definitions of the North American Electric Reliability Council (NERC) [4], available transfer
capability (ATC), quantifies the remaining transfer capacity within the physical transmission net-
work that can be utilized for future commercial activity over and above already committed uses [4].
It represents the capability available for additional power transfers in the market. The determination

2024/01/08
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of ATC is closely related to total transfer capability (TTC). TTC refers to the maximum amount of
electric power that can be reliably transmitted along a specific path within the transmission network
while satisfying predetermined pre- and post-contingency system conditions, i.e.,TTC is the trans-
fer capability of the transmission network that may be limited by physical and electrical constraints,
including thermal, voltage, and stability limits. Therefore, TTC can be determined by:

TTC = Minimum of {thermal limit, voltage limit, stability limit}

The most restrictive limit on TTC may vary with system operating conditions changing (see Fig.3.1).
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Fig. 3.2 ATC and its related concepts

The determination of TTC and ATC is vital for ensuring secure and reliable power transmission.
The deregulation of the electricity industry aims to foster a sustainable and competitive market for
electricity trading, ensuring fairness and transparency in power system operations. To achieve this
goal, the Federal Energy Regulatory Commission (FERC) mandates the posting of ATC on the
Open Access Same-time Information System (OASIS) [152], which requires accurate and efficient
ATC and TTC assessment.

Mathematically, ATC can be calculated by:

ATC = TTC− TRM− ETC− CBM (3.1)

where TRM is the transmission reliability margin which is the reserve margin for dealing with
uncertainties in system conditions to guarantee the secure operation of the interconnected trans-
mission network. ETC is the existing transmission commitments (base case power flow), including
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retail customer service. CBM is the capacity benefit margin, which guarantees access to generation
from interconnected systems that can meet generation reliability requirements. Generally, the rela-
tion between these concepts is described by a traditional deterministic framework (see Fig.3.2(a)),
where TRM is typically a fixed value or at a certain percentage of TTC (e.g., TTC×5% ), ETC can
be obtained from base power flow, and CBM can be typically specified based on utility’s market
model [153].

3.1.2 The Probabilistic TTC Assessment Problem

After reviewing some basic definitions of transfer capability-related concepts, we now focus on the
challenges required to be addressed in the TTC and ATC evaluation problem. Traditionally, the
assessment of TTC and ATC has been conducted within a deterministic framework. Nevertheless,
the social awareness of a more eco-friendly society and growing load demand have resulted in high
penetration of RESs (e.g., wind and solar farms), which push the system to operate closer to its
limits. The increasing integration of intermittent RESs introduces uncertainties on the generation
side due to the varied power output from renewable generators. Besides, the predictions of loads
are imperfect even with improvements in recent forecasting technology, which further brings un-
certainties to the load side. Furthermore, the rising probability of line outages resulting from aging
transmission networks has also introduced substantial uncertainty into power grids [154].
These uncertainties greatly affect the system’s stability and security, which leads the TTC to be
an uncertain quantity [155]. Consequently, it is more reasonable to consider TTC as a random
variable, referred to as probabilistic TTC (PTTC), rather than a deterministic quantity, as depicted
in Fig. 3.2 (b). Moreover, the determination of TRM becomes crucial to incorporate the increased
randomness arising from intermittent RESs and equipment failures. In other words, it is necessary
to adopt a probabilistic framework to address these uncertainties. As such, the calculation of ATC
relies on evaluating the statistical properties of PTTC, which, in turn, allows for estimating the
TRM (e.g., the difference between the mean value and the 95% confidence interval of the TTC
probability distribution). Based on these estimations, the evaluation of ATC under a probabilistic
framework can be summarized as follows:

ATC = E[PTTC]− TRM− ETC− CBM (3.2)

Besides, in PTTC calculation, the maximum transfer capability considering many scenarios based
onN−1 contingencies will be evaluated. However, due to the unexpected equipment outages, only
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consideringN−1 contingencies may not be sufficient to cover all possible scenarios that will occur
in the future [156], particularly for a large system with a huge amount of equipment. Therefore,
the impact of unexpected outages in PTTC assessment requires more work. Moreover, typical
voltage control devices such as adjustable transformers (e.g., Under-Load Tap Changer (ULTC)
transformer) may significantly change the value of ATC, hence they must be considered in TTC
and ATC computation.

A clear comparison between Fig. 3.2 (a) and Fig. 3.2 (b) reveals that the introduction of in-
creased randomness from RESs and unforeseen outages can lead to larger TRM values and, conse-
quently, smaller ATC values. Achieving accurate estimations of PTTC, TRM, and ATC is crucial
for maintaining the secure operation of the grid while maximizing the utilization of transmission
assets and reaping economic benefits.

3.1.3 Existing Methods

In this section, a literature review of existing methods, including deterministic and probabilistic
approaches for TTC and ATC assessment, will be given.

1) Deterministic Approaches

In previous works, a number of methods have been proposed in the literature for deterministic TTC
and ATC assessment. These methods can be divided into two main types, one is based on the direct
current (DC) flow, and the other is based on alternating current (AC) power flow. Hamoud et al.
proposed a DC load flow-based method to assess ATC with high computation efficiency, while only
the real power flows through lines are modeled [157]. Christie and Ejebe et al. introduced the linear
DC-based distribution factors to calculate ATC quickly, yet only applicable to systems operating
close to the base case [158], [159]. Continuation power flow (CPF) [160–163], repeated power
flow (RPF) [164], optimal power flow (OPF) [165] are categorized in the AC power flow group.
Among these methods, CPF is the most widely used due to its salient property of not encountering
the numerical difficulty of ill-conditioning at or around the critical point, despite RPF being much
easier to implement and having a fast convergence rate. CPF method introduces a load parameter
and determines the solution from the augmented Jacobian matrix, which contributes to its well-
conditioning feature. However, as discussed in Section 3.1.2, uncertainties brought by RES, load
variations, and branch outages turn TTC into a random variable, which requires more work to deal
with the uncertainties. Thus, researchers have focused on the probabilistic approaches, and we will
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briefly introduce these approaches in the following section.

2) Probabilistic Approaches

Besides the deterministic approaches discussed in section 3.1.3, many probabilistic approaches have
been developed to account for the uncertainties discussed in Section 3.2.2. Currently, a traditional
simulation-based method has been the most widely used to deal with the uncertainties in PTTC
evaluation, namely, MC simulations (MCS) [166], [167]. MCS can be implemented through a
straightforward procedure that have been utilized with the deterministic AC power flow approaches
mentioned in Section 3.1.3. However, this method is not practically attractive due to tens of thou-
sands of simulations required to achieve sufficient accuracy for the results, despite some advanced
sampling techniques being integrated such as LHS [52] and LSS [168]. To lower the computation
time, Ramezani et al. [169] combined the clustering method with MCS while the accuracy deterio-
rated. Later on, Chang et al. [170] developed a Bootstrap method that is professional in estimating
the confidence interval of ATC, while the re-sampling procedure results in high computation time.
Therefore, an accurate and efficient PTTC evaluation method is still a prerequisite.

To cut down the computing time while ensuring accuracy, PCE [6], a popular uncertainty quan-
tification method, is adopted in [171], [172]. The PCE model can construct a statistically-equivalent
surrogate model for PTTC evaluation through a small number of model response pairs, from which
the sample mean, sample variance, PDF, and CDF can be obtained from the PCE weights. Particu-
larly, Fei et al. [89] and Hao et al. [93] have further enhanced the PCE-based method by integrating
an adaptive sparse scheme to tackle the “curse of dimensionality” and using the Nataf transforma-
tion to deal with the highly correlated random inputs with various types of marginal distributions.
Likewise, a low-rank approximation method is proposed to assess the available transfer capability
in [173]. More recently, Liu et al. [174] proposed a nonparametric analytic method to evaluate the
dynamic TTC, where the model is built by a group Lasso regression-based training scheme with the
probabilistic distributions of state variables assumed to be Gaussian. However, in all the methods
discussed above, the marginal distributions of random variables are inferred though some paramet-
ric distribution functions (e.g., wind speed follows Weibull distribution [8], solar irradiance follows
Beta distribution [175]), while the real world data may not follow the parametric distributions or
with unknown distributions. Hopefully, the raw data of random inputs such as wind speed and solar
irradiance are more likely to be obtained [176].

To tackle these challenges, researchers are currently focusing on how to exploit data directly
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to assess PTTC. An interval optimization-based model was proposed in [177] to assess ATC,
which only requires the boundaries of random variables. A point estimate method was adopted
in [153] [66] to estimate the standard deviation of PTTC using only data information. However,
the probabilistic distribution of PTTC cannot be estimated in [153] [177] [66], which may result
in an inaccurate estimation of ATC. Zhang et al. [178] and Xu et al. [38] developed PTTC assess-
ment methods with the capability to estimate its probability distribution. However, the probabilistic
distribution approximation procedures in their methods may introduce additional errors in PTTC
estimation. A TTC calculation model based on a deep learning method (stacked denoising autoen-
coder) was proposed in [179], which requires a large number of training data and intractable future
selection. To overcome these difficulties, recently, Wang et al. [180] developed a data-driven based
PCE method to solve the probabilistic power flow, while probability distribution assumption and
approximation are not required, yet this method only considers the continuous random variables.

Furthermore, discrete random variables (e.g., line outages) are required to be carefully handled
in PTTC evaluation. Despite N − 1 contingencies are generally considered in the PTTC assess-
ment according to past blackout reports, it is still not enough to guarantee the systems’ secure
operation [181] since the N − 1 contingencies may not be able to cover all the possible outage sce-
narios, resulting in an overestimated ATC. Besides, the control devices are also not considered in
the aforementioned methods, which may affect the ATC values dramatically, such as the integration
of ULTC [182]. Therefore, situations with more than one line outage (e.g., N − 2 or more) and
control devices are also significant and require to be addressed in the TTC and ATC assessment.

To address the challenges associated with volatile renewables, load variations, and unexpected
branch outages in power systems, this chapter aims to propose a data-driven sparse Polynomial
Chaos Expansion (DDSPCE) method for assessing PTTC and ATC. This method builds a surrogate
model for the CPF-based model, enabling efficient PTTC assessment, based on which, ATC with
certain confidence intervals are evaluated. The main contributions of this chapter are as follows.

• The introduced DDSPCE method directly uses available data to estimate the probabilistic
characteristics of PTTC, such as mean, variance, and probability distribution, without the
need for pre-assumed probability distributions of random inputs.

• DDSPCE is capable of managing a vast array of mixed random inputs, both continuous and
discrete (e.g., wind speed, solar irradiance, imminent line outages) when evaluating PTTC.

• By integrating a sparse PCE scheme, specifically the Least Angle Regression (LAR), DDSPCE
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offers an accurate estimation of PTTC in a fraction of the computational time required by
MCS.

• A numerical study highlights the critical importance of incorporating discrete variables in
ATC assessment, an aspect that has previously been overlooked.

The remainder of this chapter is as follows. Section 3.2 presents the mathematical formulation
of the PTTC problem based on the CPF-based method and uncertainty modeling. Subsequently,
this chapter explores the application of polynomial chaos theory, introduced in Chapter 2, to con-
struct a DDSPCE-based model. The theoretical formulation of the proposed DDSPCE method is
established in Section 3.3, laying the foundation for its practical implementation. Section 3.4 pro-
vides the overall ATC computation procedures. Section 3.5 shows the simulation studies on the
modified IEEE 118-bus system including different scenarios involving continuous random inputs,
mixed random inputs, N − K contingencies, and adjustable transformers. Furthermore, Section
3.6 demonstrates the scalability of the proposed method by extending it to large-scale power sys-
tems, specifically, the PEGASE 1354-bus system with a larger number of random variables. The
simulation results validate the accuracy and efficiency of the proposed method in PTTC and ATC
assessment, even when dealing with numerous renewable sources, stochastic loads, and topological
changes. The results are compared with the benchmark MCS results and those obtained using the
SPCE method presented in [93].

3.2 CPF-Based Mathematical Formulation of the PTTC Assessment

This thesis adopts the CPF to model the PTTC assessment problem due to its salient feature of
well-conditioning at and around the critical point.

3.2.1 The Deterministic CPF Based TTC Formulation

Continuation methods, also known as branch tracing, as discussed in [162,183], can be employed to
determine the steady-state limit of a power system by tracing a solution path of a set of power flow
equations, which is called CPF. This path evolves from a given base point, along with a specified
load-generation pattern. Consider a N -bus transmission system, with deterministic power flow
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equations described as follows (see Chapter 3 [32]).

f (x) =

[
PGi − PLi − PT i(x)

QGi −QLi −QT i(x)

]
= 0, i = {1, 2, · · · , N} (3.3)

where x = [θ,V ]T is the state vector, θ and V are voltage angles and magnitudes for all buses,
respectively; PGi and QGi denote the active and reactive power injections from the traditional gen-
erator; PLi and QLi denote the active and reactive load power at bus i, respectively; PT i (x) and
QT i (x) are the total real and reactive power injections at bus i with the following forms.

PT i (x) = Vi
∑N

j=1 Vj (Gij cos θij +Bij sin θij) , i = {1, · · · , N}
QT i (x) = Vi

∑N
j=1 Vj (Gij sin θij −Bij cos θij) , i = {1, · · · , N}

(3.4)

where (3.4) represents the AC load flow equations, Vi denotes the voltage magnitude at bus i; θij
denotes the angle difference between bus i and bus j; Gij (i.e., the conductance) and Bij (i.e., the
susceptance) are the real and the imaginary part of the element Yij in the bus admittance matrix
Ybus.

To determine the transfer capability, we define the load-generation variation vector to represent
the direction of power transfer:

b =

[
∆PG,i −∆PL,i

−∆QL,i

]
, i = {1, 2, · · · , N} (3.5)

where b specifies the power transaction under considered; ∆PG,i, ∆PL,i, and ∆QL,i denote the
increase of active generation power, active load power, and reactive load power at bus i, respectively.
By introducing a continuation parameter λ into (3.3), we can use the structured CPF to determine
the total power that can be transferred under a specific direction b:

f(x, λ) = f(x)− λb = 0 (3.6)

where λ ∈ R indicates the transfer capability under the specific direction b. In the deterministic
CPF (3.6), TTC can be calculated by starting with an initial value and gradually increasing the
continuation parameter λ until the limit (e.g., thermal, voltage, and stability limits) is reached. At
each step, the algorithm predicts the solution based on the previous solution and then uses the
Newton-Raphson technique to make corrections. This process iterates until the limit is reached,
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at which point the algorithm terminates [162]. As discussed in [184], the maximum value of λ
without violating the physical and electrical characteristics of the systems (e.g., thermal, voltage,
and stability limits) gives TTC.

Conventionally, TTC is calculated in the deterministic CPF method (i.e., a deterministic way),
with a fixed percentage (e.g., 5% by NERC [185]) of TTC reserved as TRM to account for uncer-
tainties in the system. The growing level of uncertainty associated with the expansion of RESs,
load variations, and aging transmission networks which typically result in higher probabilities of
failure (see Chapter 6 [22]), may lead to a larger TRM. A deterministic framework with fixed TRM
may not be sufficient for accounting for the uncertainties. Therefore, it is important to carefully
model and consider these uncertainties in the calculation of PTTC to obtain a more accurate TRM,
and hence a more accurate ATC value. In the following subsection, stochastic modeling of the
uncertainties brought by RESs, load variations, and unexpected outages will be presented.

3.2.2 Modelling Uncertainties in PTTC Problem

In this thesis, the volatile RESs (e.g., wind and solar), load variations, and unexpected branch
outages are regarded as sources of uncertainties. The uncertainty sources are regarded as random
variables, including continuous random variables (wind speed v(m/s), solar irradiance r(W/m2),
and load variations PL), and discrete random variables (branch states ρ). In particular, the random
input variables in this thesis are not limited to any specific probability distributions. They can be
obtained either from measured data or generated using existing probability models.
1) Wind Generation

This thesis assumed that specific buses are connected to wind farms where the wind generator
power output Pw(v) is uncertain and depends on the wind speed v. The wind resource exhibits
significant variability, which fluctuates randomly with time and geographic locations. The wind
generator’s real power output Pw(v) uncertainty can be modeled as follows.

Step 1. Obtain the wind speed data. The wind speed data can either be assessed from his-
torical data [186] or generated by a known probability distribution model. For example,
the wind speed v in many locations around the world can be modeled by Weibull distribu-
tion [8, 18, 133].

Step 2. Determine wind generator’s real output power. Once wind speed data is obtained, the
wind turbine generator’s real output power Pw(v) can be determined using the wind speed-
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power curve [187]:

Pw (v) =


0

v−vin
v−vrated

Prw

Prw

v ≤ vin or v > vout

vin < v ≤ vrated

vrated < v ≤ vout

(3.7)

where vin, vout and vrated are the cut-in, cut-out, and rated wind speed (m/s); Prw is the rated
wind power (MW).

Step 3. Calculate the wind generator’s reactive output power. The reactive power output of
the wind generator can be calculated by modeling the wind turbine as a constant P-Q bus
(e.g., with a power factor 0.85 lagging in Section 3.5 Case II) or a constant P-V bus with a
specified reactive power limit [188].

2) Solar Generation
In recent years, Solar PV plants have been increasingly installed worldwide due to their ability to

produce clean energy and low cost. The power output of the solar generator is highly uncertain due
to the variability of solar irradiance, which depends on various factors, including weather, environ-
mental, and different time conditions. The solar generator’s real power output Ppv(r) uncertainty
modeling is presented below.

Step 1. Obtain the data of solar irradiance. Similarly, the data of solar irradiance can be
either obtained from measurements [189] or generated from an existing probability model
(e.g., Beta distribution [190]).

Step 2. Determine the solar cell generator’s real power output Ppv. Once the solar irradiance
data is obtained, Ppv can be determined according to the radiation–power curve [187,190]

Ppv (r) =


r2

rcrstd
Prs

r
rstd

Prs

Prs

0 ≤ r < rc

rc < r ≤ rstd

r > rstd

(3.8)

where rc denotes the certain radiation at 150W/m2; rstd denotes the standard solar irradiance
at 1000 W/m2; Prs denotes the rated power of PV panel. In accordance with [191], solar
generation is typically injected into the power grid at a unity power factor. Therefore, this
thesis assumes that Qpv is equal to zero.
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3) Load Variation
Indeed, the load is the most noticeable uncertain variable in the power system, fluctuating with

time, weather conditions, and electricity prices, among other factors. Similarly, the load data can be
obtained from historical data [192] or generated from a known probability distribution (e.g., Gaus-
sian distribution [193, 194]). Generally, only the active power is predicted by the load forecaster,
whereas the reactive power is determined under the assumption of constant power factor [153].
4) Unexpected Branch Outages

An outage, which refers to the disconnection of a transmission line from the grid, is one of the
most common faults in power systems. In this thesis, the nth branch outage with probability qn is
modeled by a discrete random variable, which follows a Bernoulli distribution [195]:

P{ρn = 1} = qn = 1− P{ρn = 0} (3.9)

where ρn represents the state of the nth branch. Additionally, credible historical data can also be
used to model the uncertainty of line outages. It is worth noting that equipment failures, such as
generation outages, can also be modeled using the same approach.

3.2.3 The Probabilistic CPF-Based PTTC Formulation

As mentioned above, increasing penetration of RESs, stochastic loads, and unexpected branch out-
ages will affect the transfer capability. To investigate the impacts of these uncertainties, in this
section, we integrate the uncertainties described in Section 3.2.2 into the deterministic power flow
equations (3.3). Let U = [v, r,PL, ρ], then (3.3) becomes a set of probabilistic power flow (PPF)
equations: f (x,U) = 0. Specially, for an N -bus transmission system, the probabilistic AC power
flow equations f(x,U ) have the following form for P-Q type buses:

f (x,U) =

[
PGi + Pwi (vi) + Ppvi (ri)− PLi (PLi)− PTi (x,ρ)

QGi +Qwi (vi)−QLi (PLi)−QT i (x,ρ)

]
= 0, i = {1, · · · , N}(3.10)

and for P-V type buses, the corresponding PPF equations are

f (x,U) =


PGi + Pwi (vi) + Ppvi (ri)− PLi (PLi)− PT i (x,ρ) = 0

Vi = Vi0

QGi = −Qwi (vi) +QLi (PLi) +QT i (x,ρ)

Qmin,i ≤ QGi ≤ Qmax,i

 , i = {1, · · · , N}(3.11)
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where PGi,Pwi (vi),Ppvi (ri) and PLi are the real power injection from the conventional generator,
wind farm, the solar PV power plant and the load at bus i; QGi, Qwi (vi) and QLi are the corre-
sponding reactive power injections. The wind generators are modeled as P-Q type nodes (e.g. the
power factor is 0.85 lagging [187]), while the solar generator is assumed to have a unity power
factor [191]. Note that the transition from P-V to P-Q operation at the terminal bus will be activated
if QGi exceeds its limits at either Qmin,i or Qmax,i, indicating that the corresponding generator is
not able to perform voltage regulation.PT i (x,ρ) and QT i (x,ρ) are given by (3.4). Similarly, by
incorporating the random vector U , the probabilistic CPF equations can be expressed compactly as
follows:

f (x,η, λ,U) = f (x,η,U)− λb = 0 (3.12)

where x denotes the state vector; η denotes a vector of control parameters (e.g., tap ratios of ad-
justable transformers); λ denotes the transfer capability; U is the mixed random vector.

This thesis takes into account the thermal limits, voltage limits, generator active and reactive
power limits [184], as well as a credible contingency list of size Nc when calculating TTC. Using
the preceding notation, the mathematical formulation of the probabilistic TTC calculation based on
the CPF method can be expressed as follows:

max λ(κ)

s.t. f (κ) (x,η,U)− λ(κ)b = 0 (3.13a)

V
(κ)
min,i ≤ Vi

(
x,η, λ(κ),U

)
≤ V

(κ)
max,i, (3.13b)

S
(κ)
ij

(
x,η, λ(κ),U

)
≤ S

(κ)
ij,max, (3.13c)

Pmin,i ≤ PGi

(
x,η, λ(κ),U

)
≤ Pmax,i, (3.13d)

Qmin,i ≤ QGi

(
x,η, λ(κ),U

)
≤ Qmax,i (3.13e)

whereκ = {0, 1, · · · , Nc}withκ = 0 corresponding to the normal operation state (pre-contingency)
and κ = 1, 2, · · · , Nc corresponding to the contingency cases; λ(κ) denotes the transfer capability
in the κ-th case; Constraint (3.13a) denotes the probabilistic CPF and f (κ) (x,η,U) are the PPF
equations with κ = 0 and κ = {1, · · · , Nc} denote the pre-contingency and post-contingency net-
work configuration, respectively; Constraint (3.13b) describes the voltage limits with V (κ)

min,i and
V

(κ)
max,i denoting the lower and the upper limits of voltage magnitude at bus i in normal operating

case (κ = 0) and in emergency cases (κ ̸= 0), respectively; Constraint (3.13c) denotes the thermal
limits with S(κ)

ij,max being the thermal limits of the line between bus i and bus j in the normal oper-
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ating state (κ = 0) and in emergency cases (κ ̸= 0), respectively; Constraints (3.13d) and (3.13e)
are the generation capability constraints, with Pmin,i and Pmax,i denoting the lower and upper active
generation power limits; Qmin,i and Qmax,i are the corresponding reactive power limits.

According to the definitions in [184], TTC is the maximum value of power that can be trans-
ferred without violating any limits (3.13b)-(3.13e) in both the normal operating state and in the
emergency cases, which, in the above formulation, corresponds to the minimum λ among all the
λ(κ) values:

λTTC = min{λ(0), λ(1), · · · , λ(Nc)} (3.14)

Note that λ is regarded as a random variable when the uncertainties (i.e., U ) are integrated, which
turns TTC into PTTC. As discussed in Section 3.1, once the mean and probability distributions of
PTTC have been obtained, ATC can be calculated using (3.2). Conventionally, MC simulations are
used to evaluate the PTTC by deterministic simulation tool (e.g., VSAT/DSATools in this thesis).
However, to obtain accurate estimations of the probability distribution of PTTC, a large number of
MC samples are required and fed into (3.13), resulting in enormous computational costs. Moreover,
PTTC assessment faces significant challenges when random inputs follow arbitrary distributions
(e.g., continuous, discrete, or mixed) and limited information (e.g., only raw data) is available. To
address these challenges, a data-driven sparse PCE (DDSPCE) method is proposed to assess PTTC,
considering the high penetration of RES, load variations, and unexpected branches. Specially, the
DDSPCE method only requires a small number of sample evaluations to construct a surrogate model
for the CPF-based PTTC formulation in (3.13).

3.3 The Proposed DDSPCE Method for PTTC Assessment

This section provides a comprehensive explanation of the data-driven sparse polynomial chaos ex-
pansion (DDSPCE) method used for assessing PTTC. Unlike the conventional generalized PCE
method [6], which requires detailed probability distributions of all random inputs, the DDSPCE
method constructs orthogonal polynomial bases for mixed random inputs (combining continuous
and discrete) solely from data, specifically the moments. Moreover, to enhance computational effi-
ciency while maintaining accurate estimation of the probabilistic characteristics of PTTC, a sparse
PC scheme (such as LAR and a modified truncation scheme) is employed.
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3.3.1 Data-Driven PCE for PTTC assessment

As presented in Chapter 2, a stochastic response Y = G(ζ) with finite second-order moments
can be approximated by a PCE model. Let Y be the PTTC (i.e., λTTC) and the random vector
ζ = [ζ1, · · · , ζM] ∈ RM denote the random vector describing in 3.2.2, where ζj, j = {1, · · · ,M}
can be any random variable in v, r, PL, or ρ (i.e., wind speed, solar irradiance, load variation or
unexpected branch outages). Besides, the following two assumptions are given:

Assumption 3.3.1. It is assumed that random vector ζ has mutually independent counterparts with
random variables ζj ∈ Hζ and response Y ∈ Hζ .

Therefore, the PTTC (i.e., λTTC), regarded as a random variable due to the stochastic char-
acteristic of RESs, load variations, and unexpected branch outages, described by (3.13) can be
approximated by a multi-dimensional PCE model (2.6) of order H [140]:

λTTC = Y = G(ζ) ≈ Gpc(ζ) =
L−1∑
k=0

ckΨk(ζ1, ζ2, · · · , ζM) (3.15)

where ck are the unknown PCE coefficients to be determined, and the multivariate polynomial
bases Ψk(ζ1, ζ2, · · · , ζM) are orthogonal with respect to the joint PDF fζ(ζ) of ζ as shown in (2.4).
Conventionally, Ψk(ζ1, ζ2, · · · , ζM) can be constructed through the tensor product of the univariate
polynomial basesΦj(ζj) using (2.7) and (2.8) directly if random inputs ζ have mutually independent
counterparts. However, in practical applications, it is quite common for random inputs to exhibit
correlations. For instance, U in (3.12) is often dependent in physical space (e.g., wind speed v has
temporal and spatial correlations [18, 133]). In this chapter, random inputs with linear correlation
(spatial correlation) are considered. As introduced in Remark 2.1.3 Chapter 2, different decorre-
lation strategies are suggested for building polynomial bases when random inputs are correlated.
This chapter employs the PCA technique [196] to eliminate the linear correlations between ran-
dom inputs, i.e., the correlated input vector U is transformed to ζ (decorrelated input vector) by:
U = T −1

pca (ζ).
To build the PCE-based model, in the generalized PCE method, as introduced in Section 2.1.1

Chapter 2, the univariate orthogonal polynomial bases Φj(ζj) selected according to Table 2.1 rely
on the probability distribution of each individual continuous random variable ζj . However, as men-
tioned earlier, obtaining data sets instead of probabilistic distributions for random inputs (such as
wind speed) is often more feasible in real-world power systems. Therefore, this thesis is to leverage
the data-driven PCE method [140], which can construct orthonormal polynomial bases described
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in (2.7) solely from moments estimated from data. The detailed procedures for moment-based
polynomials are provided in the following Section 3.3.2.

Remark 3.3.1. As a result, ζj is not limited to a predefined probability distribution and can be
continuous, discrete, characterized by raw data sets, or even represented by a limited number of
moments. Certainly, it can still be described by an arbitrary probability distribution if available.

3.3.2 Moment-Based Polynomials

Define the univariate orthogonal polynomial bases ϕ(αj
k)

j (ζj) in (2.7) for the j-th dimensional input
ζj (j = 1, · · · ,M) as follows:

ϕ
(l)
j (ζj) =

l∑
n=0

p
(l)
n,j(ζj)

n (3.16)

For simplicity, αk
j is substituted by l for simplicity. where l = {1, · · · , H}. pn,j is the unknown

coefficient of the univariate polynomial basis ϕ(l)
j (ζj) in the n-th degree.

Given that the formulation of the polynomial basis ϕ(l)
j (ζj) remains consistent for each input

variable ζj , the following polynomial basis formulation can be applied universally to any individ-
ual random input ζj . To construct the multivariate polynomial bases using (2.7), the univariate
polynomial base ϕ(l)

j (ζj) constructed must satisfy the orthogonal condition:∫
Ωj

ϕ
(m)
j (ζj)ϕ

(l)
j (ζj)dFζj(ζj) = 0 ∀m ̸= l (3.17)

where m, l = {0, 1, · · · , H}. To ensure the orthogonality of the polynomial bases, we begin by
defining the coefficients of the leading terms for all polynomials to be 1 for simplicity, i.e.,

p
(l)
l,j = 1, ∀l (3.18)

When l = 0, by (3.18), we have ϕ(0)
j = p

(0)
0,j = 1. This procedure can be continued in a recursive

way. Specifically, if we examine the orthogonality conditions of the polynomial ϕ(l)
j (ζj) with all

lower-order polynomials, they can be described as follows:
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∫
ζj∈Ω

p
(0)
0,j

[
l∑

n=0

p
(l)
n,jζ

n
j

]
dFζj(ζj) = 0

∫
ζj∈Ωj

[
1∑

n=0

p
(1)
n,jζ

n

][
l∑

n=0

p
(l)
n,jζ

n
j

]
dFζj(ζj) = 0

∫
ζj∈Ωj

[
2∑

n=0

p
(2)
n,jζ

n
j

][
l∑

n=0

p
(l)
n,jζ

n
j

]
dFζj(ζj) = 0

...∫
ζj∈Ωj

[
l−1∑
n=0

p
(l−1)
n,j ζnj

][
l∑

n=0

p
(l)
n,jζ

n
j

]
dFζj(ζj) = 0

p
(l)
l = 1

(3.19)

Then by substituting p(0)0,j = 1 into the first equation of (3.19), using the condition (3.18), we obtain
p
(1)
1,j = 1. Continuing this process, substituting the first and second equations into the third equation,

and so on, while maintaining the condition (3.18), we can represent the system of equations in (3.19)
as follows: ∫

ζj∈Ωj

l∑
n=0

p
(l)
n,jζ

n
j dFζj(ζj) = 0

∫
ζj∈Ω

l∑
n=0

p
(l)
n,jζ

n+1
j dFζj(ζj) = 0

∫
ζj∈Ωj

l∑
n=0

p
(l)
n,jζ

n+2
j Fζj(ζj) = 0

...∫
ζj∈Ωj

l∑
n=0

p
(l)
n,jζ

n+l−1
j dFζj(ζj) = 0

p
(l)
l = 1

(3.20)

Remark 3.3.2. Recall that the n-th raw moment of ζj is defined as below:

µn,j =

∫
ζj∈Ωj

ζnj dFζj(ζj) (3.21)
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Integrate µn,j , the n-th raw moment of ζj as defined in Remark (3.3.2), into (3.20), which can
be reformulated as:

l∑
n=0

p
(l)
n,jµn,j = 0

l∑
n=0

p
(l)
n,jµn+1,j = 0

l∑
n=0

p
(l)
n,jµn+2,j0

...
l∑

n=0

p
(l)
n,jµn+l−1,j = 0

p
(l)
l = 1

(3.22)

As a result, the set of equations in (3.22) can be described by the moments of ζj and reconstructed
in the matrix form: 

µ0,j µ1,j . . . µl,j

µ1,j µ2,j . . . µl+1,j

... ... ... ...
µl−1,j µl,j . . . µ2l−1,j

0 0 . . . 1





p
(l)
0,j

p
(l)
1,j
...

p
(l)
l−1,j

p
(l)
l,j


=



0

0
...
0

1


(3.23)

where the nth moment of the jth random input µn,j, n = {0, 1, · · · , 2l − 1} and j = {1, · · · ,M}
can be approximated from the samples by

µn,j =
1

Mp

Mp∑
m=1

ζnm,j (3.24)

where Mp represents the training sample size, and ζm,j denotes the sample points of an arbitrary
input random variable ζj . When the raw data set or distributions of ζj are provided, the raw moment
of ζj can be computed using (3.24) or(3.21).

The importance of moments µ0, µ1, . . . , µ2l−1 for the availability of any l-th order polynomial
chaos expansion is evident from (3.23). These moments are necessary to establish a reliable frame-
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work for the l-th order polynomial chaos expansion. By solving (3.23) for the coefficients p(l)n,j , the
orthogonal polynomial basis ϕ(l)

j (ζj) can be formulated using (3.16). It is worth noting that ϕ(l)
j (ζj)

can be directly utilized for analysis; however, a normalized polynomial basis offers additional use-
ful properties. As a result, a normalization procedure, as described in [140], is performed to ensure
the basis is normalized and enhances its applicability.

ψ
(l)
j (ζj) =

1

∥ϕ(l)
j (ζj)∥

l∑
n=0

p
(l)
n,jζ

n
j , l = {0, · · · , H} (3.25)

where ∥ϕ(l)
j (ζj)∥ is the norm of ϕ(l)

j (ζj). By integrating the n-th raw moment of ζj in Remark 3.3.2,
∥ϕ(l)

j (ζj)∥ can be represented by:

∫
ζj∈Ωj

[
ϕ
(l)
j (ζj)

]2
dFζj(ζj) =

∫
ζj∈Ωj

[
l∑

n=0

p
(l)
n,jζ

k
j

]2
dFζj(ζj)

=
l∑

n=0

l∑
s=0

p
(l)
n,jp

(l)
s,jµn+s,j

(3.26)

Once the one-dimensional orthonormal polynomial basis is established, the determination of multi-
dimensional orthonormal polynomials becomes straightforward by referring to equation (2.7). In
this case, the notation ϕ(αk

j )

j (ζj) is replaced with ψ(l)
j (ζj) to denote the orthonormal polynomials.

Remark 3.3.3. Given (3.26), it can be known that constructing a normalized l-th order orthogonal
polynomial basis requires at least 2l-th order raw moments of ζj . These raw moments are crucial
for ensuring the orthonormality of the basis.

Remark 3.3.4. It is worth emphasizing that the construction of a univariate orthonormal basis
ψ

(0)
j (ζj), . . . , ψ

(l)
j (ζj) (l = 0, . . . , H) is only achievable if and only if the 2l-th order raw moments

(µ0,j, . . . , µ2l,j) exist and the number of support points (distinct values of all sample points) of ζj
is greater than the desired degree H of the basis, in cases where ζj is a discrete random variable
or represented by a data set [140]. These requirements ensure the accuracy and validity of the
orthonormal basis for subsequent analysis.

Remark 3.3.5. It is essential to understand that in practical power system applications, a low PCE
order (e.g., H = 2), is often adequate for static-state assessment [86, 89, 93]. When data on ran-
dom inputs (e.g., wind speed, solar irradiation, and load power) is available, the higher-order raw
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moments for each input typically exist. However, it is important to recognize that some distribu-
tions, particularly those with heavy tails (e.g., the Student’s t-distribution), may lack higher-order
moments. To address this challenge, distribution truncation strategies can be implemented [197].

In the calculation of PTTC, a large number of correlated mixed random variables ζ with sample
size Mp are considered, where Mp is generally much larger than the desired degree H . As such,
the decorrelation strategy is applied and ζ is transformed to Z through PCA typically satisfies the
above condition for a specified degree H , where ζ is replaced by Z in (2.6) (see Remark 2.1.3).

Once the orthogonal polynomial bases are built from the data, the next step to construct a sur-
rogate PCE model (2.6) is to calculate the expansion coefficients ck, k = 1, · · · ,M , which are
presented in the following sections.

3.3.3 The Calculation of the PCE Coefficients with Sparse Adaptive Scheme

In this section, the hybrid LAR, which combines the OLS and LAR algorithms, is applied to calcu-
late the PCE coefficients. In the hybrid LAR algorithm, a basis-adaptive scheme is achieved based
on LAR, where a modified truncation scheme is utilized. The final PCE coefficients are determined
by solving the least-square regression using OLS.

The Adaptive Sparse PCE Scheme: Least Angle Regression (LAR)

1) The Modified Truncation Scheme

The multi-dimensional orthonormal polynomials Ψk(ζ) are generated via a complete tensor prod-
uct, resulting in a large increase in the number of polynomial terms as the number of random inputs
grows. According to the sparsity-of-effects concept, the bases generated by interactions of low-
order input variables are sufficient in most real issues [198]. To minimize computational expense,
the hyperbolic (or q-norm) truncation approach is used [78], [198]:

Ψk(ζ1, · · · , ζM) =
M∏
j=1

ϕ
(αj

k)

j (ζj) (3.27)

(
M∑
j=1

(
αj
k

)q) 1
q

≤ H, k = 1, · · · ,M (3.28)
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where q ∈ (0, 1). k denotes the number of expansion terms. As such, a sparser PCE can be produced
compared to the standard truncation in (2.7).

2) The LAR Algorithm

LAR, a powerful linear regression tool, is utilized for efficient variable selection. It aims to identify
the most relevant predictors (e.g., the polynomial bases Ψk in (2.6)) for the model response Y (e.g.,
the PTTC) from a potentially extensive pool of candidates [199], [5]. The LAR method is employed
by incorporating a penalty term λ∥C∥1 directly into the least-square minimization problem (2.11),
leading to its modification below:

Ĉ = argminE

Mp∑
s=1

[
Y (s) −

L−1∑
k=0

ckΨk(ζ
(s))

]2+ λlar

L−1∑
k=0

ck (3.29)

where λlar is a penalty factor.
∑L−1

k=0 ck = ∥C∥1 denotes the L1 norm. Besides, to reduce the com-
putational burden and mitigate the risk of overfitting, the corrected leave-one-out cross-validation
error (ecloo) is employed as a stop criterion in the LAR algorithm [5]. Particularly, ecloo is more
sensitive to overfitting than eloo (i.e., the leave-one-out cross-validation error), making it a more
effective measure in this context. The ecloo is computed using the following formula:

ecloo = T (L,Mp)eloo (3.30)

with 
eloo =

∑Mp

m=1

[
Y (m)−Ŷ (m))

1−hi

]2
∑Mp

m=1 [Y
(m) − µ̂Y ]

2

T (L,Mp) =
Mp

Mp − L

(
1 + trace

[(
ΨTΨ

)−1
]) (3.31)

where hi is the ith element of h = diag
(
Ψ
(
ΨTΨ

)−1
ΨT
)

; eloo is the leave-one-out cross-

validation error; µ̂Y = 1
Mp

∑Mp

m=1 Y
(m) is the sample average of the response Y ; T (L,Mp) is the

correction factor which will increase with the increase of the number of termsL and T (L,Mp)→ 1

when the size of samples Mp → ∞. As demonstrated in [199], the LAR algorithm requires
O(MpL

2 + L3) computations when L < Mp. The LAR algorithm is described in Algorithm
1 [5], [198]. Specially, this chapter applies the hybrid LAR, combining LAR and OLS, to deter-
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mine the polynomial bases and calculate the PCE coefficients. The description of hybrid LAR and
a flowchart are presented in Appendix D.

Algorithm 1 The LAR algorithm
1: Initialize {c0, c1, · · · , cL−1} = 0 and set the initial residual r0 = Y .
2: Find the basis Ψk(ζ) which is the most relevant to the current residual.
3: Adjust all the coefficients {c0, · · · , cL−1} from 0 toward their least-square values of current

active set {Ψk}. This process continues until some other regressors {Ψk} achieve an equicor-
relation with the residual.

4: Compute and record the estimated error ecloo for the current iteration.
5: Update all the active coefficients ck and adjust the predictors Ψk from the candidate set to the

active set.
6: Continue this process until the number of predictors Ψk reaches Lp = min(L,Mp).

Remark 3.3.6. To efficiently reduce the time consumption of the LAR algorithm, especially in
cases with high-dimensional random inputs or elevated PCE orders, an early stopping criterion is
pragmatically implemented. Specifically, the algorithm terminates the addition of regressors either
upon achieving a predefined accuracy threshold (e.g., 10−8 in the simulations) or when the ecloo
exceeds its minimum by at least 10% of the maximum iteration limit (e.g., 10%× Lp). Moreover,
this early stopping criterion is deactivated for relatively small training sample sizes (e.g.,Mp ≤ 100

in the simulations).

3.4 ATC Computation Approach

This section presents a detailed description of the proposed algorithm for ATC evaluation. The key
point is on utilizing the developed DDSPCE method to estimate the probabilistic characteristics
of PTTC. Subsequently, the ATC is assessed with a specified confidential level using (3.2). The
overall procedures are as follows.

• Step1. Input the network data, contingency list, and details of the transaction of interest.
InputMp samples ofM random inputs (e.g., wind speeds, solar irradiance, active load power,
and the states of branches) Up = (U (1), · · · ,U (Mp)) ∈ RM×Mp , obtained either through
historical data set or generated from assumed probabilistic distributions.

• Step 2. Define the load-generation vector b (3.5) according to the transaction under study
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and evaluate PTTC Yp = (Y (1), · · · ,Y (Mp)) associated with Up by solving (3.12) using the
Voltage Security Assessment Tool (VSAT) of DSATools.

• Step 3. Decorrelate the random variables Up by applying the PCA technique, which trans-
forms Up into independent samples ζp =

(
ζ(1), · · · , ζ(Mp)

)
. The resulting dataset [ζp,Yp] is

then passed to Step 4.

• Step 4. Apply the moment-based method as introduced in section 3.3.2 to build the univariate
orthonormal polynomial bases ψ(l)

j (ζj) for every random input ζj . Specially, define the PCE
order H = (p0, pmax). For each random variable ζj , l = {0, 1, · · · , H}.

4a) Calculate 0 to 2l-th moments;

4b) Determine the univariate polynomial coefficients: p(l)n,j , n = 0, · · · , l by solving (3.23);

4c) Construct the orthogonal univariate polynomial basis ϕ(l)
j (ζj) according to (3.16);

4d) Build the orthonormal polynomials ψ(l)
j (ζj) by normalizing ϕ(l)

j (ζj) by (3.25).

• Step 5. Utilize the adaptive procedure described in Section 3.3.3 to construct the data-driven
sparse PCE model (3.15) for assessing the PTTC. Set the PCE order H = p0 (p0 ≤ H ≤
pmax), set q = q0 (q0 ≤ q ≤ qmax), the PCE model (3.15) can be constructed as follows.

5a) Truncate the multi-index l using (3.28) and build the corresponding multi-dimensional
polynomial bases of degree H to construct the matrix Ψ in (2.11).

5b) Implement the LAR algorithm to find the optimal sparse polynomial bases.

5c) Compute the corrected leave-one-out error ecloo according to (3.30) and (3.31). If the
ecloo reaches a target error or e(H)

cloo,q ≥ e
(H−1)
cloo,q ≥ e

(H−2)
cloo,q , store the polynomial bases Ψk

with the lowest ecloo. Otherwise, increase q and go to Step 5d). If q reaches qmax, set
q = q0, p = p+ 1 and return to Step 5a).

5d) Compute the expansion coefficients ck by (2.13) based on the polynomial bases Ψ(ζ)

with the smallest ecloo and go to Step 6.

• Step 6. If the data-driven sparse PCE model has achieved the desired accuracy (e.g., ecloo <
estop), proceed to Step 7. Otherwise, increase the size of the training set by ∆Mp (e.g., U∆p)
and calculate Y∆p by solving (3.13). Update the variables as follows: Mp ← Mp + ∆p,
Up ← (Up,U∆p), Yp ← (Yp,Y∆p), and return to Step 3.
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• Step 7. Once the PCE model (3.15) is constructed, acquire additional Ms sample points of
ζ from historical data or generated by their assumed probability distributions. Apply the
PCA technique to decorrelate all samples to ζs =

(
ζ(1), · · · , ζ(Ms)

)
and compute the PTTC

Ys =
(
Y (1), · · · , Y (Ms)

)
based on the established PCE model (3.15).

• Step 8. Compute various statistics of the PTTC, such as the mean value, standard deviation,
PDF, and CDF.

• Step 9. Determine the TRM and the associated ATC value based on a specified confidential
level Pcl%, i.e., P(ATCactual ≥ (E[PTTC]−TRM)) = Pcl% and generate the result report.

Remark 3.4.1. The number of Ms in Step 7 is significantly larger than Mp (i.e., the number of
training samples required to build DDSPCE-based model (2.6)) in Step 2, demonstrating that
the computational effort required for PTTC evaluation through (3.13) is substantially reduced in
DDSPCE compared to MCS. It is important to highlight that the majority of the computational
cost in DDSPCE is concentrated in Step 2. As a result, the DDSPCE method exhibits much higher
computational efficiency compared to MCS, particularly due to the fact that Mp ≪Ms.

Remark 3.4.2. In the DDSPCE method, the empirical training sample size (Mp in Steps 3 to 5),
is approximately five times the dimension of random inputs (5M). Therefore, initiating Mp at or
near this value can potentially reduce the number of iterations required in the proposed algorithm’s
execution.

Remark 3.4.3. Control devices such as adjustable transformers and switchable shunts, as well as
N − K contingencies, can be easily integrated into the PTTC formulation and ATC assessment.
Section 3.5.3 provides numerical examples that illustrate the incorporation of these elements.

3.5 Case Study I – The Modified IEEE 118-Bus System

In this section, the modified IEEE 118-bus system has been used to test the effectiveness of the pro-
posed DDSPCE method for PTTC assessment. Specially, three different scenarios are considered.
The first scenario includes only continuous random inputs which are wind speed v, solar irradiance
r and stochastic loads PL. In contrast to the first scenario, both continuous and discrete random
inputs (i.e., line outages) are considered in the second scenario. The necessity of incorporating the
discrete random variables in assessing PTTC will be verified, as these variables will significantly
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affect the stochastic characteristics of PTTC, leading to a reduction of the ATC value. The third sce-
nario further takes into accountN−2 contingency and adjustable transformers ULTC, respectively,
to demonstrate their seamless incorporation into the formulation of PTTC and ATC assessment.

In this case, the probabilistic data used was generated from pre-assumed probability distribu-
tions (see https://github.com/TxiaoWang/DDSPC-TTC.git). Note that only data is used in
the proposed DDSPCE method while the probability distribution information is not used. The pro-
posed DDSPCE method was compared with the SPCE method [93], where the PCE model is built
using the known probability distributions. MCS are performed to verify the accuracy and efficiency
of the proposed DDSPCE method. For practical applications, the PTTC can be easily evaluated by
the proposed DDSPCE method when there is sufficient data for the random inputs.

All simulations have been conducted on the MATLAB R2018b on a PC equipped with Intel
Core i7-8700 (3.20GHz), 16GB RAM. The deterministic simulation tool used to calculate exact
TTC values is the Voltage Security Assessment Tool (VSAT), a core toolset of DSATools; Toolbox
UQLab is adopted to build the DDSPCE scheme [200].

3.5.1 Scenario 1: With Only Continuous Random Inputs

1) Simulation Setup

In this scenario, the IEEE 118-bus system [201], includes 19 generators, 35 synchronous con-
densers, 177 transmission lines, and 91 loads, which has a total load of 4242 MW and 1438 MVar.
It incorporates 111 continuous random variables, including wind speeds v, solar irradiance r, and
load power PL. Specifically, there are six wind farms connected to buses {10, 25, 26, 49, 65, 66},
six solar PV plants connected to buses {12, 59, 61, 80, 89, 100}, and 99 probabilistic loads. The
power transfer under study is from the generators at buses {87, 89, 111} to the loads at buses {88,
90, 91, 92, 103}. The contingency list includes five N − 1 outages: {L88-89, L7-12, L13-15,
L49-54, L91-92}.

2) TTC without Uncertainty

Firstly, the DSATools/VSAT solver is utilized to compute the TTC of the deterministic system,
considering voltage limits, thermal limits, generation capacity, and stability limits. The obtained
deterministic TTC is 139.9 MW. This value represents the TTC without uncertainty. For detailed
information on the deterministic TTC in both normal and contingency cases, please refer to Table
3.1.

https://github.com/TxiaoWang/DDSPC-TTC.git
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Table 3.1 The deterministic TTC in normal and contingency cases in the IEEE 118-
bus system

Case No. Outage Facility Violation type TTC(MW)
0 Base case Max generation violation 299
1 L88-89 Voltage violation 139.9
2 L7-12 Max generation violation 299
3 L13-15 Max generation violation 299
4 L49-54 Max generation violation 299
5 L91-92 Max generation violation 299

3) The Probabilistic Characteristic of PTTC

Subsequently, the proposed DDSPCE method is employed to estimate the probabilistic character-
istics of the PTTC. This includes determining key statistics such as the mean, standard deviation,
PDF, and CDF of the PTTC. Specially, Mp = {278, 417, 556} samples of Up = (v, r,PL) are ap-
plied to the deterministic tool (VSAT/DSATools) and the corresponding PTTC are evaluated. Based
on the evaluated Mp sample-response pairs [Up,Yp], the PCE model (3.15) is constructed in Step
3 to Step 5. In order to illustrate the process of selecting the PCE orderH , and the sample sizeMp,
Table 3.2 provides a comparison of the corrected leave-one-out error (ecloo), the estimated mean
value (µ), the standard deviation (σ) of PTTC, and the normalized estimation errors in percentage
for different combinations. It can be observed from the table that as the value of H increases from
2 to 3, the ecloo also increases. Based on this analysis, we conclude that H = 2 is the preferred
choice for the order of the PCE model. Additionally, the corresponding preferred training sample
size is determined to be Mp = 556. Hence, in the scenarios thereafter, H = 2 and Mp = 556.

Table 3.2 Comparison of estimation accuracy of the DDSPCE method for different
sample sizes Mp and model orders H

Mp

H = 2 H = 3

ecloo µ ∆µ
µMCS

% σ ∆σ
σMCS

% ecloo µ ∆µ
µMCS

% σ ∆σ
σMCS

%
278 0.0264 138.6281 -1.3652 30.9066 4.2371 0.1509 138.6281 -1.3652 26.3000 -11.2994
417 0.0172 139.4681 -0.7675 30.2735 2.1018 0.0554 139.4681 -0.7675 28.0600 -5.3635
556 0.0120 139.8183 -0.5183 29.7303 0.2698 0.0153 139.8183 -0.5183 28.8977 -2.5383
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Remark 3.5.1. Additionally, the curves of ecloo over iterations in the LAR algorithm with PCE order
H = 2 and H = 3 are presented in Fig. 3.3. For example, when H = 2, the ecloo drops sharply at
the beginning and then enters a phase where it gradually increases, indicating that the model starts
to overfit as more iterations are performed. Therefore, in the LAR algorithm, the optimal bases are
adaptively selected with the minimum ecloo. Refer to Section 3.3.3 and Appendix D for details of
the algorithm.
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Fig. 3.3 The curves of the corrected leave-one-out error (ecloo) for H = 2 and H = 3
with the inactivation of the early stopping criteria

The comparison of DDSPCE, SPCE [93], and MCS is presented in Table 5.1, which includes
the mean value (µ), the standard deviation (σ), and their normalized errors in percentage (%). It is
evident that the proposed DDSPCE method provides highly accurate estimation results compared to
the benchmark MCS. Furthermore, Fig. 3.4 displays the comparisons of the estimated probability
density function (PDF) and cumulative distribution function (CDF) of the PTTC obtained from
Ms = 10, 000 samples using the MCS, DDSPCE, and SPCE methods. The results from these
three methods overlap significantly, indicating the good accuracy of the proposed DDSPCE method.
Notably, unlike SPCE, the proposed DDSPCE method does not require any pre-assumed probability
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distributions of the random inputs.

Table 3.3 Comparison of the estimated statistics of the overall TTC by the MCS,
DDSPCE, and SPCE methods

Index MCS DDSPCE (proposed) SPCE [93]
µ 140.5468 139.8183 140.6716
σ 29.6503 29.7303 29.4201

∆µ
µMCS

% – -0.5183 0.0888
∆σ

σMCS
% – 0.2698 -0.7764
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Fig. 3.4 The PDF and CDF of the PTTC calculated by the MCS, DDSPCE and the
SPCE. They are almost overlapped. The TRM for 95% confidence level is 49.7043
MW and the corresponding ATC is 90.8425 MW.

4) Efficiency Comparison

Regarding computational efficiency, Table 3.4 provides a comparison of computation times between
DDSPCE, SPCE, and MCS. The time for generating the data set [ζp,Yp] (Mp = 556) is denoted
by ted, the time for constructing the PCE models (i.e., DDSPCE and SPCE) is represented by tsc,
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and the time for computing the PTTC of Ms = 10, 000 samples is denoted by tes. It is evident that
the DDSPCE method exhibits significantly reduced time consumption compared to MCS, requir-
ing only approximately 1

18
of the time required by MCS. Moreover, the construction time of the

DDSPCE model (tsc) is approximately five times shorter than that of the SPCE method.

Table 3.4 Comparison of Computational Time between DDSPCE, MCS, and SPCE

Method ted(s) tsc(s) tes(s) ttotal(s)

MCS – – 173484.23 173484.23

DDSPCE 9368.61 1.09 0.33 9370.03

SPCE 9368.61 5.46 0.35 9374.42

5) ATC Computation

Once the statistical characteristics of PTTC have been obtained, acceptable TRM values can be
determined by calculating the difference between the mean value of PTTC and the PTTC value at a
specified confidence level. This determination is based on the CDF of PTTC, which allows for the
calculation of ATC values. Table 3.5 presents the estimated TRM values corresponding to specific
confidence levels, along with their corresponding ATC values. For instance, at a desired confidence
level of 95%, where P(ATCactual ≥ (E(PTTC)− TRM)) = 0.95, the calculated TRM is 49.7043
MW, resulting in an ATC value of 90.8425 MW.

Table 3.5 The estimated TRM and resulting ATC (MW) for different confidence lev-
els based on the DDSPCE model

Confid. Level E(PTTC) (MW) TRM (MW) ATC (MW)
99.0% 140.5468 72.0892 68.4576
98.0% 140.5468 62.4110 78.1358
95.0% 140.5468 49.7043 90.8425
90.0% 140.5468 38.2358 102.3110
80.0% 140.5468 25.4402 115.1066
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3.5.2 Scenario 2: With Mixed Random Inputs

1) Simulation Setup

In the second scenario, we extend the analysis to incorporate four line outages as discrete random
variables into the IEEE 118-bus system. This allows us to evaluate the performance of the proposed
method and examine the impacts of these discrete events on PTTC and ATC. The configuration for
the continuous random variables, the transaction under study, and the N − 1 contingency are the
same as those in Scenario 1.

In this scenario, a total of 115 random variables are considered, including the four additional
line outages: {L89-90, L90-91, L89-92, L92-94}. To simplify the analysis, we assume that the
probabilities qn of unavailability for each line are the same and independent. Specifically, we con-
sider two cases: qn = 0.1 and qn = 0.2, representing different levels of line outage probabilities.

2) The Probabilistic Characteristics of PTTC

Similarly, the deterministic TTC of the system under the defined transaction direction, calculated
using VSAT/DSATools, is found to be 139.9MW. To evaluate the probabilistic characteristics of the
PTTC in the presence of discrete events (line outages), we apply the proposed DDSPCE method
for two cases: qn = 0.1 and qn = 0.2, representing different levels of line outage probabilities.
The order of the PCE model H is set to 2 for both cases, ensuring accurate estimation with rea-
sonable model complexity. To construct the DDSPCE model (3.15), a total of 556 simulations are
required (Mp in Step 3-5). We generate 10, 000 samples (Ms in Step 7) to estimate the probabilistic
characteristics of the PTTC using the established DDSPCE model.

The comparison between DDSPCE and MCS is presented in Table 3.6, where the case with
qn = 0.0 represents the continuous scenario (Scenario 1) without any line outages. The results
demonstrate a substantial reduction in the mean value of PTTC (4.32% when qn = 0.1, 9.14%
when qn = 0.2) and an increase in the variance (12.84% when qn = 0.1, 25.65% when qn = 0.2)
of PTTC when incorporating the discrete random variables. These findings highlight the necessity
and importance of considering discrete events in the assessment of PTTC and ATC to ensure the
security and reliability of power grids, especially considering the complex and aging transmission
networks we face today.

To assess the performance of the proposed method, Fig. 3.5 compares the results obtained
by DDSPCE and MCS for the case of qn = 0.1. The figure clearly illustrates that the proposed
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Table 3.6 Comparison of the estimated statistics of the overall TTC (MW) by the
MCS and DDSPCE methods for mixed case

qn
MCS DDSPCE

µ σ µ ∆µ
µMCS

% σ ∆σ
σMCS

%

0.0 140.5468 29.6503 139.8183 -0.5183 29.7303 0.2698
0.1 134.4748 33.4574 133.8207 -0.4864 32.8810 -1.7228
0.2 127.6986 37.2558 127.1441 -0.4342 34.9234 -6.2605

DDSPCE method provides accurate estimates for the PTTC with significantly reduced computa-
tional time compared to MCS. In fact, the computational time required by DDSPCE is about 1

18

of that required by MCS. Similar reliable results can be achieved for the case of qn = 0.2 as well.
These findings further highlight the computational efficiency and accuracy of the proposed method
in handling mixed random inputs, making it a favorable choice for practical applications.
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Fig. 3.5 The PDF and CDF of the PTTC calculated by the MCS and DDSPCE with
probability qn = 0.1. They are almost overlapped. The TRM for 95% confidence level
is 56.4333 MW and the corresponding ATC is 78.0415 MW.
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3) ATC Computation

Based on the probabilistic analysis of PTTC, the TRM and the corresponding ATC can be deter-
mined. Table 3.7 presents the calculated TRM values and resulting ATC values at a 95% confidence
level. Notably, considering the presence of discrete random variables, the ATC level is significantly
reduced, with a decrease of 14.09% when qn = 0.1. This emphasizes the crucial importance of in-
corporating discrete events in ATC assessment, as it has a substantial impact on the overall system
reliability and security.

Table 3.7 The estimated TRM and resulting ATC (MW) for confidence level at 95%
based on the DDSPCE model

qn E(PTTC) (MW) TRM (MW) ATC (MW)

0.0 140.5468 49.7043 90.8425

0.1 134.4748 56.4333 78.0415

0.2 127.6986 61.3488 66.3498

3.5.3 Scenario 3: Considering N − 2 Contingency and Adjustable Transformer

1) Simulation Setup

The third scenario demonstrates the capability of incorporatingN−2 contingencies and control de-
vices, such as adjustable transformers (e.g., Under-Load Tap Changer (ULTC) transformers), in the
proposed PTTC formulation and ATC assessment. In the subsequent case studies, the configura-
tion for continuous random variables and the specific transaction being analyzed remains consistent
with Scenario 1. For additional parameters and details, please refer to the previous GitHub link.

2) With N − 2 Contingency Considered

In this case, the contingency list includes fiveN − 2 outages, as shown in Table 3.8. The determin-
istic TTC under the transaction, taking into account the N − 2 contingencies, is determined to be
88.8 MW. This value is significantly lower than the deterministic TTC of 139.9 MW observed in
Scenario 1, where only N − 1 contingency was considered.
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Table 3.8 N − 2 contingency list

Case No. 1 2 3 4 5

Outages
L88-89

L89-92

L7-12

L12-16

L13-15

L94-96

L49-54

L42-49

L91-92

L92-93

Next, the proposed DDSPCE model (2.6) is utilized to calculate the probabilistic characteristics
of PTTC following the same procedures as in the previous scenarios (i.e., H = 2, Mp = 556,
Ms = 10000). The estimated mean, standard deviation, and their normalized errors in%, computed
by the MCS, DDSPCE, and SPCE methods, are provided in Table 3.9. It is evident that when
consideringN−2 contingency, the DDSPCE model can accurately estimate the statistics of PTTC.
Furthermore, the computational time required by the DDSPCE model is only about 1

18
of the time

required by MCS. It can be anticipated that the proposed PTTC formulation can also accommodate
N − K contingency scenarios (K > 2), if necessary, while the DDSPCE method can efficiently
provide accurate estimations for the probabilistic characteristics of PTTC.

Table 3.9 Comparison of the estimated statistics of the overall TTC with N − 2 con-
tingency considered by the MCS, DDSPCE and SPCE methods

Method µ σ ∆µ
µMCS

% ∆σ
σMCS

%

MCS 90.2270 23.3703 – –
DDSPCE 89.6840 23.4123 -0.6018 0.1797

SPCE 90.3824 22.8604 0.1722 -2.1818

3) With ULTC Transformer

In this case, the transformer between Bus 81 and Bus 80 (with a fixed ratio η of 0.935 in per unit)
is replaced by an Under-Load Tap Changer (ULTC) transformer to maintain the voltage magnitude
within a specified range. The ULTC transformer has a lower tap ratio η limit of 0.775 in per unit
and an upper tap ratio limit of 1.185 in per unit. The deterministic TTC value, calculated using
the DSATools/VSAT solver, is found to be 134.6 MW. This value represents a decrease of 5.3 MW
compared to the deterministic TTC value of 139.9 MW in Scenario 1, where no ULTC transformer
was considered (see Fig. 3.6 (b)). This decrease in TTC is expected as a trade-off to maintain the
voltage level within the desired range.
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Next, the proposed DDSPCE model is employed to calculate the statistical properties of PTTC,
following the same procedures as in the previous scenarios (i.e.,H = 2,Mp = 556,Ms = 10, 000).
The estimation results, as well as the comparisons between DDSPCE, SPCE, and MCS, are summa-
rized in Table 3.10. The results demonstrate that even when incorporating the ULTC transformer,
the DDSPCE method can still provide accurate estimations for the probabilistic characteristics of
PTTC. Moreover, similar computational efficiency is observed in this case, with the DDSPCE
method requiring approximately 1

18
of the time consumed by MCS. Likewise, the determination of
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Fig. 3.6 The PDF and CDF of the PTTC calculated by the MCS, DDSPCE, and SPCE
with ULTC transformer at Bus 81-Bus 80. They are almost overlapped. The TRM for
a 95% confidence level is 49.4894 MW, and the corresponding ATC is 85.6214 MW.
The deterministic TTC considering ULTC (the green dash-dot line) is slightly less than
the deterministic TTC without ULTC (the magenta dashed line) obtained in Scenario
1.

the Total Reserve Margin (TRM) and the resulting Available Transfer Capability (ATC) can be de-
rived from the calculated probabilistic characteristics of PTTC. Table 3.11 provides a comparison
of the estimated TRM and the resulting ATC at a 95% confidence level, considering both scenarios
with and without the ULTC. It is observed that the two cases exhibit similar TRM values when con-
sidering the same set of random inputs. However, due to the lower mean value of PTTC obtained
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Table 3.10 Comparison of the estimated statistics of the overall TTC with ULTC
considered by the MCS, DDSPCE, and SPCE methods

Method µ σ ∆µ
µMCS

% ∆σ
σMCS

%

MCS 135.1108 29.4460 – –
DDSPCE 134.4281 29.5267 -0.5053 0.2741

SPCE 135.2722 29.2345 0.1195 -0.7183

after integrating the ULTC, a slightly lower ATC is obtained in this case. The incorporation of the
ULTC transformer affects the TTC by ensuring voltage stability but may lead to a reduced ATC.
These results highlight the significance of considering control devices such as ULTC transformers
in ATC assessment, as it provides valuable information about the available transfer capability under
operational constraints.

Table 3.11 Comparison of the estimated TRM and resulting ATC at 95% confidence
level with and without ULTC by the DDSPCE model

Control device E(PTTC) (MW) TRM (MW) ATC (MW)
Without ULTC 140.5468 49.7043 90.8425

With ULTC 135.1108 49.4894 85.6214

* The results without ULTC are obtained directly from Scenario 1.

3.6 Case Study II – The Modified PEGASE 1354-Bus System

3.6.1 Simulation Setup

This section extends the proposed method to a large-scale power system, the Modified PEGASE
1354-Bus System, to test its performance. This system accurately depicts the magnitude and in-
tricacy found within a segment of the European high-voltage transmission network. This network
has 1,354 buses, 260 generators, and 1,991 branches, operating at voltage levels of 380 and 220 kV.
The power demand of this network amounts to 73,060 MW, accompanied by a reactive power de-
mand of 13,401 Mvar [202], [203]. In order to evaluate the influence of uncertainties on PTTC and
ATC for this network, 6 wind generators, each with a capacity of 100MW, and 6 solar photovoltaic
(PV) systems, each with a capacity of 100MW, have been integrated into the system. There are 236
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total random inputs including 224 stochastic loads. The new transaction under study is provided in
https://github.com/TxiaoWang/DDSPC-TTC.git.

Similarly, The probabilistic data utilized in this study was generated based on predetermined
probability distributions (refer to the Github link for more details). It is important to note that the
proposed DDSPCE method solely relies on the data itself and does not utilize probability distribu-
tion information. To compare its performance, the proposed DDSPCE method was contrasted with
the SPCE method as described in [93], where the PCE model is constructed using known probabil-
ity distributions. The MCS was conducted to validate the accuracy and efficiency of the proposed
DDSPCE method. In practical applications, the proposed DDSPCE method can be employed to
easily evaluate the PTTC when there is an adequate amount of data available for the random inputs.

3.6.2 The Probabilistic Characteristics of PTTC

Initially, the DSATools/VSAT solver is employed to calculate the TTC of the deterministic system,
taking into account factors such as voltage limits, thermal limits, generation capacity, and stability
limits. The resulting deterministic TTC is determined to be 481 MW. This value represents the
TTC in the absence of any uncertainties. For a comprehensive breakdown of the deterministic TTC
in both normal and contingency scenarios, please consult Table 3.12 for detailed information.

Table 3.12 The deterministic TTC in normal and contingency cases in the PEGASE
1354-bus system

Case No. Outage Facility Violation type TTC(MW)
0 Base case overload 1368.4

1 L8030-5837 overload 481
2 L1758-352 overload 1368.3
3 L5837-449 overload 1366.2
4 L5837-1817 overload 1304.2
5 L5837-2458 overload 698.7
6 T7056-9051 overload 1368.3
7 L7438-1526 overload 1368.3
8 L7438-5334 overload 1368.3

Subsequently, the proposed DDSPCE method is employed to determine the statistical properties

https://github.com/TxiaoWang/DDSPC-TTC.git
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of the PTTC using the same procedures as in the previous cases. The parameters used for this
analysis include H = 2 (order of the PCE expansion), Mp = 1180 (number of polynomial terms),
and Ms = 50, 000 (number of samples). The estimation results, along with comparisons between
DDSPCE, SPCE, and MCS, are summarized in Table 3.13 and Fig. 3.7. The results showcase that
when extending to a large-scale system, the DDSPCE method can still provide accurate estimations
for the probabilistic characteristics of PTTC. Moreover, high computational efficiency is observed
in this case, with the DDSPCE method requiring approximately 1

42
of the time consumed by MCS.

Table 3.13 Comparison of the estimated statistics of the overall TTC by the MCS,
DDSPCE, and SPCE methods for the modified PEGASE 1354-bus system

Index MCS DDSPCE (proposed) SPCE [93]
µ 482.9215 483.3158 482.8385
σ 65.7249 63.3901 65.1749

∆µ
µMCS

% – 0.0817 -0.0172
∆σ

σMCS
% – -3.5525 -0.8300

3.6.3 ATC Computation

Once the probabilistic characteristics of PTTC have been assessed, TRM can be easily determined
by specifying certain confidence levels and their corresponding ATC can be calculated. Table 3.14
showcases the calculated TRM values and the resulting ATC values at different confidence levels.
This underscores the crucial importance of integrating discrete events in ATC assessments, as they
have a substantial impact on the overall reliability and security of the system.

Table 3.14 The estimated TRM and resulting ATC (MW) for different confidence
levels based on the DDSPCE model

Confid. Level E(PTTC) (MW) TRM (MW) ATC (MW)
99.0% 482.9215 149.6468 333.2747
98.0% 482.9215 131.5078 351.4137
95.0% 482.9215 105.1758 377.7465
90.0% 482.9215 81.7558 401.1657
80.0% 482.9215 53.2068 429.7147
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Fig. 3.7 The PDF and CDF of the PTTC calculated by the MCS, DDSPCE, and SPCE
for the modified PEGASE 1354-bus system. They are almost overlapped. The TRM
for a 95% confidence level is 105.1758 MW, and the corresponding ATC is 377.7456
MW.

3.7 Conclusions

In this chapter, we present a novel approach called the data-driven sparse Polynomial Chaos Expan-
sion (DDSPCE) method for assessing the probabilistic characteristics of PTTC without the need for
pre-assumed probability distributions of random inputs such as RES, load variation, and line out-
ages. Based on the estimated probability distribution of PTTC, ATC values at certain confidence
intervals are evaluated. The proposed DDSPCE method directly leverages data sets and can effec-
tively handle a large number of mixed random inputs, including continuous and discrete variables.

Furthermore, the sparse PCE scheme is integrated to reduce computational effort while main-
taining accuracy. The simulation results demonstrate that the proposed DDSPCE method accurately
estimates the probabilistic characteristics of PTTC with high efficiency. Finally, we highlight the
significance of incorporating discrete random variables in PTTC and ATC assessment, as they have
a substantial impact on the statistics of PTTC and can significantly reduce the ATC level.
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Chapter 4

A Data-Driven Sparse PCE Method for UQ
in Economic Dispatch

This chapter delves into the impacts of stochastic RESs on the power system economic dispatch
(ED). The previously proposed DDSPCE-based model is further extended to approximate the ob-
jective values for ED problems. This extension considers the randomness introduced by wind power
generators, adding an additional layer of complexity. An integrated electric and gas system is uti-
lized to validate the proposed model, incorporating real-world wind power data. This real-world
dataset adds further challenges to the analysis and evaluation. The ideas and results presented in
this chapter are primarily based on the published work [J2].

4.1 Introduction

As discussed in Section 1.2.2, the growing integration of RESs has underscored the need for accu-
rate quantification of the uncertainties in power system ED. To tackle the challenge of uncertainty in
the ED problem, several techniques have been proposed, including stochastic programming, specifi-
cally stochastic-optimization ED (SED) formulations (e.g., [106]), robust-optimization formulation
(e.g., [98]), chance-constrained optimization (e.g., [204]), and more. However, solving the opti-
mization problem based on the aforementioned formulations typically requires a large number of
MC simulations, resulting in computational tractability issues. This becomes particularly chal-
lenging when uncertainties are significant, as existing approaches based on MC may fail to provide
meaningful information [205], [206].

2024/01/08
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To alleviate the computational burden, various surrogate modeling-based UQ methods have
been employed for SED problems. Safta et al. [37] utilized the PCE method to construct a surrogate
model for the SED problem. Their approach demonstrated the capability to obtain accurate results
efficiently using a reduced number of samples compared to MC-based methods. Li et al. [141]
extended the work by adopting an SPCE method to mitigate the “curse of dimensionality” in the
surrogate modeling of the SED problem. However, both the surrogate models proposed in [37],
and [141] assume that the random inputs follow Gaussian distributions, which may not hold true in
practical scenarios. In a more recent study, Hu et al. [207] proposed a Gaussian process emulator-
based approach for solving the SED problem. Nonetheless, it has been acknowledged by Rajabi
et al. [208] that the PCE method may outperform the Gaussian process emulator-based approach
when the response’s probability distribution, such as the SED solution, exhibits multimodality. This
chapter extends the DDSPCE method to solve the SED problem considering uncertainties modeling
by real-world input data. The main contributions of this chapter are as follows.

• The proposed DDSPCE method constructs a surrogate model directly from raw data of ran-
dom variables, without making any prior assumptions about the marginal distributions of the
variables or the output responses.

• The proposed DDSPCE-based surrogate model enables accurate estimation of statistical in-
formation such as mean, variance, PDF, and CDF of the SED solution. Notably, the DDSPCE
method achieves high computational efficiency, being approximately 33 times faster than
Monte Carlo simulations on an integrated IEEE 118-bus power system and a 20-node gas
system [209].

• The DDSPCE method maintains its accuracy even when faced with multimodal PDFs of the
SED solution.

The remainder of this chapter is organized as follows: Section 4.2 provides the mathematical for-
mulation of the SED problem. Section 4.3 elaborates on the proposed DDSPCE method for ap-
proximating the SED solutions. Section 4.5 presents the numerical study on an integrated IEEE
118-bus power system and a 20-node gas system. Section 4.6 gives the conclusions.
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4.2 Mathematical Formulation of Stochastic-Optimization Economic
Dispatch

A two-stage modeling approach commonly addresses the stochastic UC problem. In this approach,
the problem is divided into two stages: the first stage involves determining the UC decisions in the
day-ahead electric market. In contrast, the second stage focuses on optimizing the dispatch deci-
sions [209]. This two-stage modeling framework allows for better decision-making under uncer-
tainty and enables more efficient utilization of available resources. In this chapter, it is assumed that
the first stage UC decisions for conventional generating units have already been determined using
a day-ahead UC model, as described in previous studies [37], [207], [108]. These pre-determined
UC decisions serve as input for the subsequent stages of the analysis. The goal of this chapter is
to solve the multi-period ED problem with fixed UC decisions while considering the uncertainties
from RES (e.g., wind power output). As discussed in [37], the stochastic renewable generation
power output is modeled as random fields and is represented as functions of a vector of random
variables Pw(v, t), which can be approximated by Karhunen-Loève expansions (KLE). Herein, v
denotes the random sources (e.g., wind speed), and Pw is the corresponding generator active power
output vector (e.g., wind generator power output in this chapter). However, as discussed in Chapter
3, the historical data may be easily assessed, thus, real-world wind power output data is utilized in
this chapter.

The ED problem aims to minimize the operating cost Q(Pg) by allocating the total demand
among generating units, subject to physical and operational constraints [32]. Here, Pg represents
the vector of the optimal power output of conventional generators. Traditionally, the economic
dispatch problem is formulated as a deterministic optimization problem, whereQ(Pg) is considered
to be a fixed value. However, when considering the uncertainties associated with the power output
of renewable generation units, the operating cost becomes a random variable denoted asQ(Pg,Pw).
Define the expected minimum cost as E[Q(Pg,Pw)], which can be reformulated as [37]:

min
Pg

1

|S|
∑
sw∈S

Q(P sw
g ,P sw

w ) (4.1)

where S represents the sets of wind power samples (i.e., scenarios). The vectors P sw
g and P sw

w

correspond to the power outputs from conventional generators and wind power generators, respec-
tively, for a given sample sw. Q(P sw

g ,P sw
w ) is the solution of the multi-period SED problem in
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(4.2)-(4.3), which is obtained under the assumption of fixed UC decisions:

Q(P sw
g ,P sw

w ) = min
Pg

∑
t∈T

∑
g∈G

Cg(P
t,sw
g ) (4.2)

s.t.∑
g∈G

P t,sw
g +

∑
w∈W

P t,sw
w =

∑
d∈D

P t
d ∀t ∈ T, sw ∈ S (4.3a)

Pl ≤
∑
g∈G

klgP
t,sw
g +

∑
w∈W

klwP
t,sw
w −

∑
d∈D

kldP
t
d ≤ Pl ∀t ∈ T, sw ∈ S (4.3b)

Pmin
g xtg ≤ P t,sw

g ≤ Pmax
g xtg ∀g ∈ G, t ∈ T, sw ∈ S (4.3c)

−RRD
g xtg −RSD

g (xt−1
g − xtg)− Pmax

g (1− xt−1
g )

≤ P t,sw
g − P t−1,sw

g ≤ RRU
g xt−1

g +RSU
g (xtg − xt−1

g ) + Pmax
g (1− xtg) ∀g ∈ G, t ∈ T, sw ∈ S

(4.3d)

where (4.2) denotes the objective function, which aims to minimize the total operating cost in the
multi-period SED problem. t is the specified time period considered from the set of time periods
set T = 1, · · · , Tm, representing, for example, a 24-hour period in the simulation study of this
chapter. g denotes the generator index, andG represents the set of generators. The constraints (4.3)
represent the operational and physical constraints based on the DC power flow model. The power
balance constraint (4.3a) ensures that the total demand,

∑
d∈D P

t
d, at time t is met, where P t

d is the
d-th load demand. The power flow limits are defined in constraint (4.3b), where klg, klw, and kld
are the sensitivity coefficients for the l-th transmission line with respect to the traditional generator
g, wind generator w, and load d, respectively [210]. A detailed description of DC power flow can
be found in Appendix E. The lower and upper bounds of thermal limits of transmission line l are
represented by Pl and Pl, respectively. The generation capacity limits are captured by constraint
(4.3c), where xtg represents the pre-determined UC decision for generator g at time t. The ramping
capability constraint of generator g is described by constraint (4.3d), which includes the ramping
down rate RRD

g , ramping up rate RRU
g , shut-down ramp rate RSD

g , and start-up ramp rate RSU
g .

Remark 4.2.1. It should be noted that in this chapter, the gas system is integrated into the power
system for the case study. Additional constraints related to the gas network are considered (refer to
Appendix E for details). However, the essence of the SED problem remains unchanged. For more
comprehensive information, please refer to [209].

The SED problem inherently involves complex constraints and optimization. To evaluate the
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cost associated with load variation, wind generation, and other stochastic factors, MC simulations
are commonly employed. However, these simulations require a large number of realizations and
can be computationally demanding, even with scenario reduction techniques. This chapter extends
the proposed DDSPCE-based surrogate model to serve as a surrogate model, which is capable of
estimating the expected minimum cost, E[Q(Pg,Pw)], with significantly fewer samples compared
to traditional MC-based approaches. By leveraging wind power data, the proposed method can
effectively estimate various statistical measures, including the PDF and CDF of the minimum cost.
By applying the DDSPCE-based surrogate model, an accurate cost estimation while mitigating the
computational burden associated with extensive MC simulations can be achieved.

4.3 A DDSPCE-based Model for SED

This section extends the DDSPCE-based surrogate model to capture the relationship between the
input random variables Pw (representing wind power) and the minimum cost Q(Pg,Pw). By em-
ploying a linear combination of multivariate orthogonal polynomials, the proposed DDSPCE-based
model provides an accurate approximation of the minimum cost while significantly reducing the
computational effort required. By utilizing the DDSPCE-based surrogate model, we can achieve a
comprehensive understanding of how wind power variability impacts the ED problem.

This approach facilitates efficient and reliable decision-making in power system operation by
considering the uncertainties associated with wind power generation. The DDSPCE-based surro-
gate model serves as a valuable tool for effectively analyzing and managing the effects of wind
power uncertainties in power system planning and operation.

4.3.1 The PCE Representation for SED

Consider a model Y = G(ζ) with ζ = {ζ1, · · · , ζM} being a random input vector. As a result,
Y is also a random variable due to the randomness of inputs ζ. In this chapter, the random inputs
under study are wind generator power output Pw, while the minimum cost Q discussed in Section
4.2 is the system response. As introduced in Chapter 2, a stochastic response Y = G(ζ) with finite
second-order moment can be approximated by the orthogonal polynomial bases of ζ (4.4):

Q(ζ) = Y = G(ζ) ≈ Gpc(ζ) =
L−1∑
k=0

ckΨk(ζ) (4.4)
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where ck are unknown PCE coefficients to be calculated; the multivariate orthogonal polynomial
bases Ψ(ζ), as discussed in Chapter 2, are required to be orthogonal with respect to the joint PDF of
ζ. It should be noted that the series in (4.4) converges to Q when L→∞ in the sense of L2-norm.
Typically, Ψ(ζ) is constructed using (2.7) and (2.8) via appropriate truncation schemes for practical
applications.

In this chapter, the proposed DDSPCE-based model is applied to solve the SED problem. Figure
4.1 illustrates the essence of the proposed DDSPCE method and its connection to the original SED
problem (4.2)-(4.3). Instead of conducting extensive MC simulations on the SED problem with
a large number of scenarios, the proposed approach involves evaluating Q(Pg,Pw) using a small
number of Pw samples. These input-response pairs are then utilized to construct a DDSPCE-based
surrogate model (4.4), which is a purely algebraic equation. This surrogate model is capable of
quickly estimating the production costQ(Pg,Pw) for a large number of Pw scenarios by substitut-
ing the corresponding values into the established DDSPCE-based surrogate model (4.4). Compared
to the original SED problem (4.2)-(4.3), the DDSPCE-based surrogate model offers significantly
faster evaluation, resulting in substantial computational savings. Building the DDSPCE-based sur-
rogate model involves two main tasks: constructing the multidimensional polynomial basis Ψk(ζ)

using the available Pw data and computing the coefficients ck in (4.4).

SED model

Response 𝑌
(minimum 

cost 𝑄)

Monte Carlo 

simulations

Small samples into 

the SED model and

get  𝜻ED, 𝒀ED

Build the DDSPCE based model
Acquire large 

samples 𝜻 and 

substitute to 𝐺pc 𝜻

Probabilistic

distribution of QInput Pw

Decorrelate

to 𝜻

𝑄 𝑷𝒈
𝑠w , 𝑷𝒘

𝑠w

= min
𝑷𝒈

σ𝑡∈𝑇σ𝑔∈𝐺 𝐶𝑔(𝑃𝑔
𝑡,𝑠w)

with constraints (4.2)

𝑄 = 𝑌 = 𝐺 𝜻

≈ 𝐺pc 𝜻 =

𝑘=0

𝐿−1

𝑐𝑘Ψ𝑘(𝜻)

Fig. 4.1 Relation between the SED and DDSPCE-based surrogate model
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4.3.2 The Construction of Univariate Orthonormal Polynomial Bases

To build the PCE model, the first step is to construct the multivariate polynomial bases Ψk(ζ),
as discussed in Section 2.1.2, which is generally constructed via the tensor product of univariate
polynomial bases ϕ(αk

j )

j of ζj using (2.7). As such, the focus to build Ψk(ζ) is turned to determine

ϕ
(αk

j )

j . In the SED problem, considering that the distributions of random inputs, such as the wind
power output Pw may be inaccurate or unknown in advance, therefore, the moment-based method
(introduced in Section 3.3.2) is exploited to construct the univariate polynomial bases ϕ(αk

j )

j . In this
method, by utilizing the data directly, without any preassumed probability distribution models, the
coefficients of univariate polynomial basis can be determined by the coefficients matrix equation
(3.23). Once the univariate polynomial bases ϕj(ζ

(αk
j )

j ) have been constructed, the normalization
procedure can be applied by using (3.25) to enhance its applicability.

Remark 4.3.1. In general, there are correlations in Pw, which need to be addressed through decor-
relation techniques such as PCA (see Appendix A), i.e., decorrelated random inputs ζ = Tpca(Pw).
As such, multivariate orthogonal polynomial bases Ψk(ζ1, · · · , ζM) can be directly constructed us-
ing the tensor product of univariate polynomial bases (i.e., (3.27)) together with the q-norm trunca-
tion (3.28). It is important to point out that when dealing with random inputs characterized by thick-
tailed distributions or nonlinear correlations, the use of PCA may yield biased results. To address
this issue, alternative methods such as vine copula and Rosenblatt transform (see Appendix B) can
be employed to model the dependence structure and decouple the input data components [38], [211].

4.3.3 The Calculation of PCE coefficients ck

Once the polynomial bases Ψk(ζ) have been constructed, the orthogonal matching pursuit (OMP)
method is applied to calculate the PCE coefficients ck. The OMP algorithm is an iterative approach
used to select regressors that exhibit the highest correlation with the current approximation residual.
In each iteration, the algorithm adds these regressors to the active set of basis functions and updates
the coefficients ck for all active regressors using the OLS method (see Section 2.1.3). To determine
the model order H and the sparse candidate basis, the OMP algorithm employs the leave-one-out
cross-validation error eloo error estimator, as described in (3.31). A detailed explanation of the
OMP procedure can be found in Algorithm 2 [198]. By leveraging the OMP algorithm, a sparse
PCE-based surrogate model can be achieved, which significantly reduces computational effort while
ensuring accuracy.
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Algorithm 2 The OMP algorithm [198]
1: Initialize {c0, c1, · · · , cL−1} = 0 and set the initial residual r0 = Y . Define the candidate and

active sets as Ψ(0)
C = Ψk and Ψ

(0)
A = ∅. m ≥ 1 indicates the current iteration.

2: Find the basis Ψ(m)
k (ζ) which is the most relevant to the current residual.

3: Include the polynomial Ψ(m)
k into the current active set Ψ(m)

A .
4: Adjust and update the PCE coefficients c(m)

k using OLS in (2.13) based on the active set Ψ(m)
A .

5: Update the residual rm = Y −Ψ
(m)
A C(m).

6: Update and save the current error eeloo calculated using (3.31).
7: Continue this process until the number of predictors Ψk reaches Lp = min(L,Mp).

4.4 Evaluation of the Minimum Cost Q of SED

This section provides a detailed description of the proposed algorithm for solving the SED problem,
particularly for the minimum cost Q. Specially, the developed DDSPCE is used to estimate the
probabilistic characteristics of the minimum cost Q.

• Step 1. Input the network data, and the Mp samples of random inputs (e.g., wind generator
power output Pwp ∈ RMp×M.

• Step 2. Solve the stochastic-optimization ED in (4.2) and (4.3) to obtain the response Yp =

(Y (1), · · · , Y (Mp)) (e.g., the minimum cost Q).

• Step 3. Decorrelate random inputs Pwp using the PCA technique (see Remark 2.1.3 and
Appendix A), which converts Pwp to independent samples ζp =

(
ζ(1), · · · , ζ(Mp)

)
. Pass the

data set [ζp,Yp] to Step 4.

• Step 4. Apply the moment-based method discussed in Section 3.3.2 to construct the uni-
variate orthonormal polynomial bases ϕ(αk

j )

j for each ζj . Specially, define the PCE order
H = (p0, pmax). For each random variable ζj , (αk

j = {0, 1, · · · , H}.

• Step 5. Apply the algorithms described in Section 4.3.3 to build the DDSPCE-based model
(4.4).

5a) Truncate the index αk
j using (3.28) and construct the corresponding multivariate poly-

nomial base of degree H to build the matrix Ψ in (2.11).

5b) Apply the OMP algorithm to find the optimal sparse polynomial base and compute the
PCE coefficients ck by (2.13).
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5c) Compute the leave-one-out error eloo according to (3.31). Go to Step 6.

• Step 6. If the DDSPCE-based model has reached the prescribed accuracy (e.g., eloo < estop),
go to Step 7. Otherwise, enlarge the size of training set by ∆Mp (e.g. Pw,∆p) and calculate
Y∆p by solving (4.2) and (4.3), then let Mp ← Mp + ∆p, Pwp ← (Pwp ,Pwp,∆p),Yp ←
(Yp,Y∆p) and go back to Step 3.

• Step 7. After constructing the PCE model, obtainMs sample points ofPw from raw data. Use
the PCA technique to convert these samples into ζs =

(
ζ(1), · · · , ζ(Ms)

)
. Then, determine

the PTTC values Ys =
(
Y (1), · · · , Y (Ms)

)
utilizing the defined PCE model (4.4).

• Step 8. Determine the statistical properties of the minimum cost Q, such as the mean, stan-
dard deviation, PDF, and CDF.

4.5 Case Study - The Integrated Electricity and Gas System

4.5.1 Simulation Setup

This section evaluates the performance of the proposed DDSPCE method on an integrated elec-
tricity and gas system (IEGS), specifically the IEEE 118-bus system combined with a 20-node
gas system. To incorporate wind power generation, 5 wind farms are integrated into the sys-
tem located at buses {2, 33, 51, 81, 108}. The wind power data utilized in the analysis is ob-
tained from the NREL’s Western Wind Data Set [212]. The simulation is conducted over a 24-
hour period, encompassing time periods T = 1, · · · , 24. Consequently, the wind generator out-
put Pw constitutes a random vector of dimension 120, comprising the wind power data for each
time period and wind farm. For detailed information regarding the configuration of the IEGS,
including the power and gas network data, wind power data, and load profile, please refer to:
https://github.com/TxiaoWang/DDSPCE-based-Stochastic-ED.git.

4.5.2 The Probabilistic Characteristics of the Minimum Cost Q

To evaluate the performance of the proposed DDSPCE-based surrogate model, this chapter com-
pares the probabilistic characteristics of the minimum cost Q estimated from the DDSPCE-based
surrogate model with those obtained using the SPCE method [93] and the benchmark 10, 000-
sample MCS. Specially, 1100 training samples (i.e., Mp = 1100) are used to build the DDSPCE

https://github.com/TxiaoWang/DDSPCE-based-Stochastic-ED.git
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model, and the PCE order H is set as 2. We compare the mean µ, standard deviation σ, PDF,
and CDF of Q. It can be clearly observed from Table 4.1 and Fig. 4.2 that the DDSPCE and the
SPCE methods can provide good estimations for the probabilistic characteristics (including mean,
variance, PDF, and CDF) of the minimum cost Q.

Table 4.1 Comparison of the estimated statistics of the minimum cost Q by the MCS,
the DDSPCE, and the SPCE methods with Mp = 1100.

Index MCS DDSPCE SPCE
µ 7.3276× 106 7.3276× 106 7.3277× 106

σ 4.7069× 104 4.7159× 104 4.8600× 104

∆µ
µMC

% −− 2.0739× 10−5 1.8503× 10−3

∆σ
σMC

% −− 1.9218× 10−1 3.2529
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Fig. 4.2 Comparison of the PDF and CDF of the minimum cost Q by the MCS, the
DDSPCE, and the SPCE methods with Mp = 1100.

Remark 4.5.1. It is worth noting that the SPCE-based model in this simulation is constructed based
on the PDF inferred from the available data. In contrast, the proposed DDSPCE-based surrogate
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model is built directly from the data without relying on prior assumptions or inferred PDFs. This
allows us to assess the performance of the DDSPCE-based surrogate model in capturing the prob-
abilistic characteristics of Q accurately and efficiently.

4.5.3 Efficiency Test

The DDSPCE-based surrogate model (4.4) is constructed using a relatively small number of sam-
ples, specifically 1, 100 samples for training (Mp = 1100). The advantage of the DDSPCE method
is its significantly reduced computational time compared to MCS. In fact, the time consumption of
the DDSPCE method is only about 1

9
of the time required by MCS.

However, suppose only the mean and variance of the minimum cost are of interest, and the
detailed PDF and CDF are unnecessary. In that case, accurate estimations can be achieved with as
few as 300 samples (Mp ≈ 2.5M), which represents approximately 1

33
of the time needed for MCS.

Table 4.2 shows the estimated statistics of the minimum cost Q from the proposed DDSPCE, the
SPCE, and the MCS methods with Mp = 300. The detailed computational time comparison can
be seen in Table 4.3. This demonstrates the efficiency of the DDSPCE-based surrogate model in
providing accurate results with a significantly reduced computational burden. In comparison, the
SPCE method requires additional time for the PDF inferring procedure, resulting in a total time
consumption of 8.83s more than the proposed DDSPCE method. Overall, the DDSPCE method
offers a computationally efficient solution for estimating the mean, variance, and detailed PDF of the
minimum cost, providing a significant improvement over traditional MCS and even outperforming
the SPCE method in terms of computational efficiency.

Table 4.2 Comparison of the estimated statistics of Q by the MC simulations, the
DDSPCE, and the SPCE methods with N = 300.

Index MC DDSPCE SPCE
µ 7.3276× 106 7.3276× 106 7.3277× 106

σ 4.7069× 104 4.7228× 104 5.0379× 104

∆µ
µMC

% −− 4.8945× 10−4 1.7092× 10−3

∆σ
σMC

% −− 3.3939× 10−1 7.0318

Remark 4.5.2. Based on my simulation experience, it can be observed that a sample size of ap-
proximately 2.5M is generally sufficient to achieve accurate estimations of the mean and variance.
However, when it comes to accurately estimating the PDF of a unimodal system response, a larger
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Table 4.3 Comparison of Computational Time by the MC simulations, the DDSPCE,
and the SPCE with Mp = 300 for the SED problem

Method ted(s) tsc(s) tes(s) ttotal(s)

MC – – 5280 5280

DDSPCE 158.88 1.06 0.33 160.27

SPCE 158.88 9.91 0.31 169.10

* ted: time for evaluating the training samples; tsc: time for constructing
the PCE models; tes: time for evaluating Q of 10, 000 samples.

sample size of around 5M is typically required. For multimodal system responses, even more
samples are needed to ensure accurate PDF estimation, with approximately 9M samples being
necessary for the context of this study. These findings highlight the importance of adapting the
sample size based on the specific characteristics of the system under investigation.

4.6 Conclusions

This chapter applies the DDSPCE-based surrogate model for the SED problem. The DDSPCE-
based surrogate model allows for the approximation of the probability characteristics of the SED
solution, such as the mean, variance, PDF, and CDF, without assuming a pre-defined probability
distribution for the random inputs. Simulation results on an Integrated Electricity and Gas System
(IEGS), specifically the IEEE 118-bus system integrated with a 20-node gas system, validate the
effectiveness of the proposed DDSPCE method in accurately and efficiently estimating the proba-
bilistic properties of the SED solution. Notably, the proposed method demonstrates its capability to
handle multimodal probability distributions of the SED solution, further highlighting its accuracy
and efficiency in handling more generalized scenarios compared to previous methods such as the
one described in Chapter 3 [213].

Moreover, this chapter introduces the use of OMP as a coefficient-finding technique within
the DDSPCE method. This approach offers faster convergence compared to the method presented
in Chapter 3 [213]. Additionally, unlike the situation in Chapter 3 [213] where both the random
inputs and the model response (Total Transfer Capability) were assumed to be unimodal, this chapter
considers multimodal random inputs derived from real-world data and the model response, which
is the minimum cost Q. The successful handling of multimodal situations further demonstrates the
accuracy and efficiency of the DDSPCE method in more general contexts.
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Chapter 5

The PCE-based Global Sensitivity Analysis
for Uncertainty Control in Power System
Static Security and Economic Dispatch

Chapter 3 and Chapter 4 show the impacts of volatile RESs on the transfer capability and the ED
cost (e.g., increasing penetration of RESs may result in a reduction of ATC). This chapter focuses on
measuring the importance of the system’s uncertain inputs to the system output. This chapter aims
to design effective uncertainty control measures to mitigate these impacts (e.g., enhance the transfer
capability). To achieve this goal, the PCE theory in Chapter 2 is exploited and extended, where two
PCE-based methods are applied to global sensitivity analysis (GSA) for correlated random inputs
in two power system applications. The ideas and results of this chapter are based on the submitted
work [J3].

5.1 Introduction

Modern power systems are subjected to various types of random sources. Specially, the uncertainty
level of power systems has increased with the growing penetration of volatile renewable generations
(e.g., wind power and solar PV power) due to their output intermittency and variability. Therefore,
sensitivity analysis of uncertainties as discussed in Section 1.2.3 has become a vital tool for design-
ing effective uncertainty control measures in power systems.

Sensitivity analysis of uncertainties includes three fundamental steps, i.e., uncertainty model-

2024/01/08
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ing, uncertainty propagation, and sensitivity analysis. In the previous two chapters [J1, J2], novel
data-driven PCE methods have been proposed for UQ in the probabilistic transfer capability as-
sessment and the ED problem. This chapter focuses on sensitivity analysis, specially, the GSA,
for power systems, which aims to quantify the importance of an individual or a group of random
variables on the system model responses (e.g., voltage variation, probabilistic load margin, PTTC,
objective values of ED).

The GSA methods mainly contain the Morris method [214], Sobol’ indices [215], ANCOVA in-
dices [216] and Kucherenko indices [217]. Among them, variance-based sensitivity analysis meth-
ods, particularly, the Sobol’ indices are widely adopted for sensitivity analysis, which are usually
conducted through the MC simulations, yet these methods are impractical due to their high compu-
tational cost. Spectral methods, as referenced in [218,219], have been employed for GSA. However,
these methods might be suitable only for low-dimensional problems, such as the Fourier amplitude
sensitivity test [218], or for independent random inputs, like the random balance design [219].

To tackle these issues, surrogate model-based sensitivity analysis has been explored to measure
the importance of an individual or a group of random variables on the system model responses
efficiently to design effective controls. Ye et al. [129] proposed a kriging-based model to calculate
Sobol’ indices and to quantify the impact of independent stochastic power injections on voltage
variations, which does not consider the correlation between random inputs was not considered.
Another popular surrogate model, PCE, has been widely applied to cope with uncertainties in power
systems for response estimations, e.g., Muhlpfordt et al. [88] have solved the stochastic optimal
power flow using the PCE method, and Xu et al. [38] proposed a data-driven nonparametric method,
which combined the Bayesian inference and PCE method, to assess the probabilistic load margin.
In literature, many works tended to build a PCE model from independent random inputs (e.g., [213,
220]) in order to obtain closed forms of mean and variance of model response, and Sobol’ indices.
Liu et al. [221] (in the context of structural reliability) applied popular decorrelation techniques,
e.g., the Nataf transform or the Rosenblatt transform, in constructing PCE-based models for global
sensitivity indices of correlated random variables. Particularly, Ni et al. developed a model based
on PCE in [131] to calculate global sensitivity indices for correlated random inputs in power flow
solutions, but without discussing the PCE-based model was built with or without decorrelation,
even though both approaches might lead to errors in the derived GSA.

Yet, limited investigations or comparisons regarding the use of PCE-based models in estimat-
ing global sensitivity indices for dependent random inputs in power systems, which nevertheless
are crucial for effective uncertainty control as discussed in Section 1.2.3 (Chapter 1). In previous
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studies, Mara et al. [222] derived two sensitivity indices using ANOVA (ANalysis of VAriance)
techniques for dependent inputs. However, these methods may not be practical for high-dimensional
problems. Two alternative PCE-based methods have been proposed to address correlated random
inputs in GSA using ANCOVA (ANalysis of COVAriance). The first method constructs a PCE
model from independent random inputs, which ensures the orthogonality of polynomial bases and
the convergence of the PCE model in theL2 norm [221,223]. This method addresses correlated ran-
dom inputs through decorrelations, employing techniques like the Nataf transform or the Rosenblatt
transform (e.g., within civil engineering contexts [223]). However, such decorrelation may lead to
inaccuracies in estimating ANCOVA indices. The second method, as indicated in [151], overlooks
dependencies during the PCE model construction, which might offer satisfactory accuracy, though
a theoretical justification was not presented.

This chapter compares three different PCE-based models (without decorrelation and with decor-
relation using different nonlinear transforms) in ANCOVA indices-based GSA for uncertainty con-
trol in power system security and ED considering correlated inputs. The contributions of this chap-
ter are as follows.

• This chapter compares and demonstrates the accuracy of ANCOVA-based global sensitivity
indices estimated from three different PCE-based models in two power system applications.

• The proposed methods are time-inexpensive compared with the conventional MC simulations
for GSA in power systems.

• Simulation results demonstrate that the PCE model, constructed by directly employing cor-
related random inputs (neglecting the dependency), produces the most accurate ANCOVA
indices for both applications.

• Leveraging the acquired sensitivity information, efficacious mitigation strategies are devised
to minimize the variance of system responses and enhance system efficacy.

The remainder of this chapter is organized as follows. Section 5.2 introduces the covariance-
based global sensitivity indices for dependent random inputs. The PCE method and PCE-based
ANCOVA indices calculation are elaborated in Section 5.3. Applications of the proposed PCE-
based sensitivity analysis methods in ATC enhancement and ED problem are provided in Section
5.4 and Section 5.5, respectively. Conclusions are discussed in Section 5.7.
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5.2 The GSA for Dependent Random Inputs

This section focuses on GSA for power systems with correlated random inputs (e.g., spatial or tem-
poral correlations may exist among different wind speeds). Based on this, the dominant random
inputs that affect the variance of model response most significantly will be identified. To this end,
a covariance-based method referred to as ANCOVA is introduced to decompose the variance of
stochastic response as a summation of contributions of each random input. ANCOVA is general-
ized from Sobol’ indices by Xu et al. [224] and Li et al. [216] for correlated inputs. The Sobol’
indices are widely used in global sensitivity analysis for independent random inputs, which allow
representing the model response of the sum of contributions of each random input in an interpretable
and understandable way [215, 225]. The Sobol’ decomposition is derived via a High Dimensional
Model Representation (HDMR) of the stochastic model, first formulated in [215] only for inde-
pendent input variables. To tackle this issue, Xu et al. [224] extended the Sobol’ decomposition
to a more generic case considering dependent random inputs. To clearly present the relationship
between correlated inputs with the stochastic response, the HDMR decomposition for a generic
power system model is provided in Section 5.2.1 and the corresponding ANCOVA-based global
sensitivity indices are derived in Section 5.2.2.

5.2.1 The HDMR Decomposition

Consider a stochastic response model Y = G(ζ) with an input vector ζ = {ζ1, · · · , ζM} ∈ RM,
where ζ could be volatile renewables (e.g., wind speed and solar radiations), load variations, unex-
pected line outages, etc. Assuming input variables ζ and the response Y are equipped with finite
second-order moments, i.e., E[ζ2j ] < +∞ for j ∈ {1, · · · ,M} and E[Y 2] < +∞. No assumptions
are required for the dependence structure of the inputs. Based on the original idea of Sobol’ de-
composition, the stochastic model Y = G(ζ) with correlated input variables can be decomposed
via HDMR [216,224]:

Y = G(ζ) = G0 +
∑

1≤j≤M

Gj(ζj) +
∑

1≤j<d≤M

Gj,d(ζj, ζd) + · · ·

+
∑

1≤j1<···<jm≤M

Gj1,··· ,jm(ζj1 , · · · , ζjm) + · · ·G1,··· ,M(ζ1, · · · , ζM)
(5.1)

where G0 is a constant, generally, the mean value of Y , i.e., E[Y ]; Gj(ζj) represents the effect of a
single random input ζj on Y ;Gj,d(ζj, ζd) describes the effect of the combined random inputs ζj and
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ζd to Y , etc. For a simple example, Y = ζ1 + ζ1ζ2 + ζ2 + ζ22 , the functions representing the effects
of each input variable on Y are: G1(ζ1) = ζ1, G2(ζ2) = ζ2 + ζ22 and the function representing the
interaction of random inputs is G1,2(ζ1, ζ2) = ζ1ζ2.

Let A = {1, · · · ,M} and β be non empty subsets of A, then (5.1) can be rewritten as

Y = G0 +
∑

β⊆A,β ̸=∅

Gβ(ζβ) (5.2)

where Gβ(ζβ) represent the combined contribution of random inputs ζβ on Y .

Remark 5.2.1. Note that when random inputs ζ are independent, the decomposition in (5.1) is
unique ifG0 is a constant and the integral of each component functionGj1,··· ,jm with respect to any
of their own variables are zero [215], i.e.,

∫
Ωk
Gj1,··· ,jm(ζj1 , · · · , ζjm)dζjk = 0, with 1 ≤ j1 < · · · <

jm ≤M and jk ∈ {j1, · · · , jm}.

5.2.2 The ANCOVA-based Global Sensitivity Indices

Based on the model decomposition in (5.2), let us write the variance of model response Y as:

Var[Y ] = E
[
(Y − E[Y ])2

]
= E

(Y −G0)

G0 +
∑

β⊆A,β ̸=∅

Gβ(ζβ)−G0


= Cov

Y,G0 +
∑

β⊆A,β ̸=∅

Gβ(ζβ)

 = Cov

Y, ∑
β⊆A,β ̸=∅

Gβ(ζβ)

 (5.3)

Note that the second to the last equality is based on the definition of covariance: Cov[X1, X2] :=

E[(X1 − E[X1])(X2 − E[X2])]. According to the distributive property of covariance, (5.3) can be
further derived as:

Var[Y ] = Cov

Y, ∑
β⊆A,β ̸=∅

Gβ(ζβ)

 =
∑

β⊆A,β ̸=∅

Cov [Y,Gβ(ζβ)] (5.4)
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Substituting the expression of Y in (5.2) to (5.4), we have:

Var[Y ] =
∑

β⊆A,β ̸=∅

Cov

G0 +
∑

β⊆A,β ̸=∅

Gβ(ζβ), Gβ(ζβ)


=

∑
β⊆A,β ̸=∅

Cov

Gβ(ζβ) +
∑

v⊆A,v ̸=∅,v ̸=β

Gv(ζv), Gβ(ζβ)


=

∑
β⊆A,β ̸=∅

Var [Gβ(ζβ)] +
∑

β⊆A,β ̸=∅

Cov
Gβ(ζβ),

∑
v⊆A,v ̸=∅,v ̸=β

Gv(ζv)


=

∑
β⊆A,β ̸=∅

Var [Gβ(ζβ)] + Cov

Gβ(ζβ),
∑

v⊆A,v ̸=∅,v ̸=β

Gv(ζv)



(5.5)

The above technique to decompose Var[Y ] is referred to as the ANCOVA decomposition, also
named Structural and Correlated Sensitivity Analysis [216, 220, 224]. The decomposition in (5.4)
indicates that the variance of Y can be represented by the summation of the covariance between
Gβ(ββ) and the response Y for all β ⊆ A,β ̸= ∅. Therefore, according to the above decomposi-
tion, the importance of ζj to Y is defined as the covariance betweenGj(ζj) and Y and the ANCOVA
index for an individual random input ζj, j ∈ β can be defined as Sj =

Cov[Y,Gj(Zj)]

Var[Y]
, which depicts

the total effect of ζj on the variation of response Y . Due to the correlation between random input
samples, the covariance between different terms does not equal zero (i.e., Cov[Gj(ζj), Gv(ζv)] ̸= 0

for v ⊆ A.v ̸= j,v ̸= ∅). Using (5.5), Sj can be further divided into the uncorrelated and corre-
lated effects of ζj on Var[Y ].

Sj =
Cov [Y,Gj(ζj)]

Var[Y]
= S

(U)
j + S

(C)
j (5.6)

with
S
(U)
j =

Var[Gj(ζj)]

Var[Y ]

S
(C)
j =

Cov

[
Gj(ζj),

∑
v⊆A
v ̸={j}

Gv(ζv)

]
Var[Y ]

(5.7)
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where S(U)
j is the uncorrelated effect of ζj on Var[Y ] (i.e., the physical role of ζj on the model

response variance Var[Y ]); S(C)
j is the correlated effect of ζj to Var[Y ] (i.e., the effect of the corre-

lation between ζj and other ζv on Var[Y ]). For instance, ζj, j = 1, 2 represent the wind speeds at
two distinct wind farm locations. If the objective is to analyze the influence of variations in these
wind speeds on the model response variance Y , such as the TTC, then S(U)

1 delineates the impact of
ζ1 alone on TTC Y . Conversely, S(C)

1 indicates the effect of the correlation between the two wind
speeds on Y . The metric S1 encapsulates the cumulative influence of the variation of wind speed
ζ1 on Y . Consequently, any ζj with the largest Sj value is deemed as the dominant random input.
Reducing the variance of these dominant inputs (by smoothing them) can most effectively reduce
Var[Y ]. Specially, S(C) can be further interpreted by two parts:

S
(C)
j =

Cov

[
Gj(ζj),

∑
w⊆A
{j}∈w

Gw(ζw)

]
Var[Y ]

+

Cov

[
Gj(ζj),

∑
u⊆A
{j}/∈u

Gu(ζu)

]
Var[Y ]

(5.8)

whereGw depends on ζj and other input variables inA and the first part of (5.8) indicates the inter-
active and correlative effect of ζj with other input variables. Gu depends on inputs in A excluding
ζj , and the second part of (5.8) indicates only the correlative effect of ζj with other inputs.

Sj is used to characterize the importance of Zj on Var[Y ], which can be positive, negative, or
zero. Random inputs ζj with the largest Sj are considered dominant because smoothing them out
(i.e., reducing their variance to zero) can most effectively reduceVar[Y ]. A highSj might arise from
the structural contributions of ζj to Var[Y ] or its significant correlations with other variables. By
definition, S(U)

j ≥ 0 for all j. Correlations between random inputs can either increase, decrease,
or not affect a variable’s contribution. Consequently, S(C)

j can be positive, negative, or zero. A
notably small |S(C)

j | suggests S(U)
j ≈ Sj , indicating a minimal impact of the correlation on ζj’s

contribution to Var[Y ]. Conversely, a significantly high |S(C)
j |, implying S(C)

j ≈ Sj , denotes a
substantial correlation impact on the contribution of ζj to Var[Y ] [138].

The essence of designing an effective uncertainty control measure lies in accurate estimations
of Sj . Once Sj are calculated and ranked, the critical random inputs ζj can be identified with
the largest Sj values. Based on this, the control measure is designed to reduce the variance most
effectively by smoothing out the critical random inputs ζj .

In order to calculate the ANCOVA indices Sj , MC simulations, the most simple and widely
used method, can be carried out to identify Y and the termsGj(ζj), Gj,d(ζj, ζd), · · · in (5.1) as dis-
cussed in [220]. However, a massive number of MC samples are required to guarantee the accurate
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estimations of Y and the terms (5.1), which is computationally expensive, leading to its impracti-
cal applications. To address this issue, we introduce a PCE-based surrogate model to calculate the
ANCOVA indices efficiently in Section 5.3.

5.3 The Proposed PCE-based Global Sensitivity Analysis Method

In this section, we will introduce two different methods for constructing the PCE-based models as
surrogate models of Y = G(ζ). Based on the built PCE models, the ANCOVA indices can be
estimated efficiently. The PCE-based ANCOVA indices will be elaborated in Section 5.3.1.

5.3.1 The PCE-based ANCOVA indices

Given a random input vector ζand the stochastic response Y = G(ζ) with finite second-order mo-
ments can be approximated by PCE (2.6) as introduced in Chapter 2 [78]. Let α = {α1

k, · · · , αM
k }

be the multi-indices for the multivariate orthogonal polynomials basis Ψk. Using the multi-index
notation, the PCE-based model (2.6) can be rewritten as:

Y = G(ζ) ≈ Gpc(ζ) =
∑

α∈NM

cαΨα(ζ) = CTΨ(ζ) (5.9)

where c0 is the constant term with the multi-index α = {α1
0 = 0, · · · , αM

0 = 0}. cα = are the L
unknown coefficients to be determined. C = {cα0 , · · · , cαL−1

}T and the polynomials Ψα(ζ) =

{Ψα0(ζ), · · · ,ΨαL−1
(ζ)}T . Particularly, Ψα(ζ) required to satisfy the orthogonal condition that∫

Ω
Ψk(ζ)Ψm(ζ)fζ(ζ) = 0, k ̸= m, with Ω being the support of ζ and fζ(ζ) the joint PDF of ζ,

such that the L2 convergence (2.5) is satisfied.
Similarly, write the PCE-based model (5.9) in terms of the HDMR (5.1), and it can be obtained

that:
Ŷ = Gpc(ζ) = Gpc

0 +
∑

1≤j≤M

Gpc
j (ζj) +

∑
1≤j<d≤M

Gpc
j,d(ζj, ζd)

+ · · ·+Gpc
1,··· ,M(ζ1, · · · , ζM)

(5.10)

where Gpc
0 is the constant term. Substituting (2.7) into (5.9), and comparing (5.9) and (5.10), we
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have

Gpc
0 = c0

Gpc
j (ζj) =

H∑
αj
k=1

cαj
k
Ψαj

k
(ζj) =

H∑
αj
k=1

cαj
k
ϕ
(αj

k)

j (ζj)

Gpc
j,d(ζj, ζd) =

H∑
αj
k=1

H∑
αd
k=1

cαj,d
k
Ψαj,d

k
(ζj, ζd) =

H∑
αj
k=1

H∑
αd
k=1

cαj,d
k
ϕ
(αj

k)

j (ζj)ϕ
(αd

k)

d (ζd)

· · ·

(5.11)

where c0 is the constant term, and H denotes the order of PCE-based models, which can be deter-
mined by the stopping criteria in (3.30)-(3.31). Gpc

j (ζj) includes the terms Ψαj
k

only depend on a
single input variable ζj and Gpc

j,d(ζj, ζd) includes the terms Ψαj,d
k

relying on inputs ζj and ζd, etc.
According to the decomposition in (5.10) and (5.11), the ANCOVA indices (5.3) can be calcu-

lated through the built PCE-based model (5.9). Given Ms samples of ζ(s), s = {1, · · · ,Ms}, then
the model response Ŷ (s) and each term in (5.10) can be evaluated efficiently from the PCE-based
model (5.9), i.e., Ŷ (s) = Gpc(ζ(s)), Ĝj(ζ

(s)
j ) = Gpc

j (ζ
(s)
j ), Ĝj,d(ζ

(s)
j , ζ

(s)
d ) = Ĝpc

j,d(ζ
(s)
j , ζ

(s)
d ), etc.

Then the sample mean Ê[Y ] and the sample variance V̂ar[Y ] can be calculated by:

Ê[Y ] =
1

Ms

Ms∑
s=1

Gpc(ζ(s))

V̂ar[Y ] =
1

Ms − 1

MS∑
s=1

[
Gpc(ζ(s))− Ê[Y ]

]2 (5.12)

Furthermore, the sample covariance between Y and Gj(ζj) can be estimated by:

Ĉov [Y,Gj(ζj)] =
1

Ms − 1

MS∑
s=1

[
Ŷ (s) − Ê[Y ]

] [
Gpc

j (ζ
(s)
j )− Ê[Gpc

j (ζj)]
]

(5.13)

where the sample mean of Gpc
j (ζj) is:

Ê[Gpc
j (ζj)] =

1

Ms

Ms∑
s=1

Gpc(ζ
(s)
j ) (5.14)



5 The PCE-based Global Sensitivity Analysis for Uncertainty Control in Power System
Static Security and Economic Dispatch 83

Lastly, the sample variance of Gpc
j (ζj) is:

V̂ar[Gpc
j (ζj)] =

1

Ms − 1

MS∑
s=1

[
Gpc

j (ζ
(s)
j )− Ê[Gpc

j (ζj)]
]2

(5.15)

Then, based on (5.12)-(5.15), the ANCOVA indices in (5.6) are determined:

Sj =
Ĉov

[
Ŷ , Gpc

j (ζj)
]

V̂ar[Y ]
=

1
Ms−1

∑MS

s=1

[
Ŷ (s) − Ê[Y ]

] [
Gpc

j (ζ
(s)
j )− Ê[Gpc

j (ζj)]
]

1
Ms−1

∑MS

s=1

[
Gpc(ζ(s))− Ê[Y ]

]2
S
(U)
j =

V̂ar[Gpc
j (ζj)]

V̂ar[Y ]
=

1
Ms−1

∑MS

s=1

[
Gpc

j (ζ
(s)
j )− Ê[Gpc

j (ζj)]
]2

1
Ms−1

∑MS

s=1

[
Gpc(ζ(s))− Ê[Y ]

]2
S
(C)
j = Sj − S(U)

j

(5.16)

Remark 5.3.1. Note that random inputs ζ have mutually independent counterparts which is a spe-
cial case for the ANCOVA index calculation. In this case, E[Y ] and Var[Y ] can be easily calculated
using (2.14). Besides, Cov

[
Gj(ζj),

∑
u⊆A,{j}/∈uGu(ζu)

]
= 0, which indicates there is no correl-

ative contribution in the variation of Y , and the ANCOVA index is identical to Sobol’ index [215].

Calculation of Sj for Independent Random Inputs ζ

To compute Sj according to (5.16), definitely, the first step is to establish the PCE model (5.9).
When the random inputs ζ are mutually independent, the polynomial Ψα(ζ) can be formulated
through the tensor product of univariate orthogonal polynomial bases ϕ(αj

k)

j (ζj), which guarantees
the orthogonality ofΨk(ζ). Specifically, this can be constructed using (2.7) withΨα(ζ1, · · · , ζM) =∏M

j=1 ϕ
(αj

k)

j (ζj). The polynomial ϕ(αj
k)

j (ζj) can be initially derived from raw data or a presumed
probabilistic model of ζj , with αj

k denoting the corresponding degree of ϕj . Notably, this cor-
respondence employs the moment-based method (refer to Section 3.3.2) to construct univariate
polynomial bases ϕj . Once Ψα(ζ) is established, the coefficients cα can be determined using the
regression methods (e.g., the OLS (see Section 2.1.3), the LAR (refer to Section 3.3.3), and the
hybrid LAR (see Appendix D)), using Mp number of sample evaluations (Mp is a small number).
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Calculation of Sj for Correlated Random Inputs ζ

As discussed above, it is clear that the key point to calculating the ANCOVA index is to build an
accurate PCE model to approximate the response Y . If random inputs ζ are independent, it is
straightforward to construct a PCE model. However, it is common that random inputs ζ (e.g., wind
speed and solar radiation) are correlated in practical power system applications [226–228], which
poses challenges to the PCE construction for the ANCOVA index calculation. If ζ are correlated,
the multivariate polynomial basis Ψα(ζ), as stated in [145], cannot be constructed purely through
the tensor product of the univariate polynomial basis ϕ(αj

k)

j (ζj) since the joint PDF fζ(ζ) is not the
product of the marginal PDF of ζj and the orthogonal condition (2.4) does not hold. In previous
work, two methods have been suggested for estimating ANCOVA indices, yet without theoretical
proof: 1) building a PCE model by ignoring the input correlations, as shown in [151], a reasonably
accurate approximation of Y from the PCE model can be achieved; 2) building a PCE model with
decorrelated random inputs as claimed in [220, 229] claimed that a PCE model built with inde-
pendent random inputs still holds for correlated inputs following the same marginal distributions.
Therefore, two alternative PCE-based methods are investigated and compared in this chapter.
i) Method 1: the first method, denoted as PCE correlate, as suggested by [151], the PCE model
(5.9) is constructed directly through a set of sample-response pairs [ζp,Yp] by ignoring the in-
put dependencies and building multivariate polynomials basis Ψα(ζ) orthogonal with respect to∏M

j=1 fζj(ζj), where fζj(ζj) is the marginal PDF of ζj .
ii) Method 2: the second method, as suggested by [220, 229], building a PCE model from decor-
related inputs, which includes: 1) decorrelating correlated samples modeling the dependencies of
inputs by Gaussian (or vine) copula and then converting correlated samples ζp into independent
samples Zp; 2) constructing the PCE model (5.9) using the sample-response pairs [Zp,Yp]. For
convenience, this method applies the Nataf and the Rosenblatt transform for decorrelation, and are
denoted by PCE NT and PCE RT, respectively.

Remark 5.3.2. Note that the Nataf transform is employed for ζ with a Gaussian copula. Conversely,
the Rosenblatt transform is utilized when ζ exhibits a more intricate correlation, such as nonlinear
or tail dependence [223]. See Appendix B for the details of the two transforms.

Once the PCE-based model (5.9) is constructed using the above two methods, acquire a corre-
lated sample set ζ(s), s = {1, · · · ,Ms}with sample sizeMs (Ms ≫Mp), and evaluate the response
Ŷ and each term in (5.10) by substituting ζ(s) into the constructed PCE-based models efficiently.
Then the ANCOVA indices Sj for each random input ζj can be estimated by (5.16) with the help of
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(5.12)-(5.15). Next, rank Sj and identify the dominant inputs which are with the highest Sj values.
After that, the control measure is designed by smoothing the dominant random inputs (i.e., reducing
the variance of dominant inputs to zero, e.g., by energy storage systems(ESSs)) to reduce Var[Y ]

in the most effective way.

Remark 5.3.3. Note that to guarantee the number of samples used for the response Y estimation
and ANCOVA indices calculation is sufficient, MS is typically set as a large number (e.g., Ms =

10, 000).

Procedures for the PCE-based methods in ANCOVA indices estimation and uncertainty con-
trol for power systems

The detailed steps of the implementation of the PCE-based methods in ANCOVA indices estimation
and uncertainty control for power systems are presented below.

Method 1 PCE correlate-based ANCOVA indices estimation and uncertainty control
1: Step 1. Input network data, and generate a set of input samples ζp ∈ RMp×M samples ofM

random inputs ζ (e.g., wind speeds).
2: Step 2. Fed input samples ζp into the deterministic power system analysis tools to calculate

the system responses Yp ∈ RMp . Pass the sample-response pairs [ζp,Yp] to Step 3.
3: Step 3.Construct the PCE correlate-based model in (5.9):

a) Build the univariate polynomials ϕ(αj
k)

j (ζj) using the moment-based method (3.23);

b) Construct the multivariate polynomials Ψα(ζ) through the tensor product of ϕ(αj
k)

j (ζj)
using (2.7);

c) Calculate the unknown coefficients cα using hybrid LAR (refer to Appendix D) based on
the Mp sample pairs.

4: Step 4. Derive the termsGpc
j (ζj),Gpc

j,d(ζj, Zd), ..., in the HDMR (5.11) from the PCE correlate
model constructed in Step 3.

5: Step 5. Acquire a large number of MS input samples ζ(s), evaluate Ŷ (s) = Gpc(ζ(s)) based
on the constructed PCE model, and Ê[Y ], V̂ar[Y ], Gj(ζj), Ê[Gpc

j (ζj)], V̂ar[Gpc
j (ζ

(s)
j )], and

Ĉov
[
Y,Gpc

j (ζj)
]

using (5.12)-(5.15).
6: Step 6. Calculate the ANCOVA indices Sj based on the (5.16). Identify the critical random

inputs with the highest Sj values.
7: Step 7. Uncertainty control: design control measures by smoothing the critical random inputs

identified in Step 6, i.e., reducing the variance of the critical random inputs to zero.
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Method 2 PCE NT or PCE RT -based ANCOVA indices estimation and uncertainty control
1: Step 1. Input network data, and generate a set of input samples ζp ∈ RMp×M samples ofM

random inputs ζ (e.g., wind speeds);
2: Step 2. Fed input samples ζp into the deterministic power system analysis tools to calculate

the system responses Yp ∈ RMp . Pass the sample-response pairs [ζp,Yp] to Step 3;
3: Step 3. Construct the PCE NT and PCE RT -based models in (5.9):

a) Decorrelate the input samples ζp to Zp using the Nataf or Rosenblatt transform; Pass data
set [Zp,Yp] to Step 3 b);

b) Build the univariate polynomials ϕ(αj
k)

j (Zj) using the moment-based method (3.23);

c) Construct the multivariate polynomials Ψα(Z) through the tensor product of ϕ(αj
k)

j (Zj)
using (2.7);

d) Calculate the unknown coefficients cα using hybrid LAR (refer to Appendix D) based on
the Mp sample pairs obtained in Step 3 a);

4: Step 4. Derive the terms Gpc
j (ζj), Gpc

j,d(ζj, Zd), ..., in the HDMR (5.11) from the PCE NT and
PCE RT model constructed in Step 3.

5: Step 5. Acquire a large number of MS input samples ζ(s), evaluate Ŷ (s) = Gpc(ζ(s)) based
on the constructed PCE model, and Ê[Y ], V̂ar[Y ], Gj(ζj), Ê[Gpc

j (ζj)], V̂ar[Gpc
j (ζ

(s)
j )], and

Ĉov
[
Y,Gpc

j (ζj)
]

using (5.12)-(5.15).
6: Step 6. Calculate the ANCOVA indices Sj based on the (5.16). Identify the critical random

inputs with the highest Sj values.
7: Step 7. Uncertainty control: design control measures by smoothing the critical random inputs

identified in Step 6, i.e., reducing the variance of the critical random inputs to zero.
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Remark 5.3.4. In these two methods, Step 1,2,4,5,6,7 are the same and the only difference is in
Step 3, where for Method 2, correlated samples ζp are converted to independent samples first
before building the PCE model. Besides, the main time consumption of the proposed two PCE-
based methods is in Step 2 for generating the sample-response pairs [ζp,Yp].

5.4 Case Study I - Available Transfer Capability Enhancement

This section applies the PCE correlate (Method 1), PCE NT and PCE RT (Method 2) to estimate
the ANCOVA indices for the power system ATC enhancement. This application first estimates the
ANCOVA indices in the PTTC assessment, aiming to find the critical random inputs ζj dominating
the variance of PTTC. Next, the control measure is designed by smoothing the dominant random
inputs ζj (i.e., reduce the variance of ζj to zero) to reduce the variance of PTTC in an effective way,
thus enhancing ATC, which is further demonstrated by the MC simulations.

5.4.1 System Configurations

In this case, simulations are performed on the modified IEEE 24-bus reliability test system to test
the proposed two PCE-based methods. There are six random variables ζj, j = {1, · · · , 6} including
three wind speeds and three solar radiations, i.e., ζ = [v, r] with 3 wind speeds v = [v1, v2, v3]

and 3 solar radiations r = [r1, r2, r3]. To be specific, there are three wind farms added into bus
{1,2,15} and three solar PV plants added into bus {16,18,21}. The response Y considered in this
case is the PTTC defined from generators at bus 7 to loads at bus {3,4,9}.

In this case, the probabilistic data of random inputs are generated from assumed probabilistic
distribution (see Appendix C) and detailed random parameter configurations can be found in Ap-
pendix F. Note that only the data information is utilized in PCE correlate, while the information of
the probability distributions is also used in PCE NT and PCE RT for decorrelation.

5.4.2 The PCE-based Models Accuracy Test

Firstly, sixty sample response pairs (Mp = 60) are generated ([ζp,Y p] for Method 1 and [Zp,Yp]

for Method 2) to construct the three PCE-based models, as detailed in Steps 1-3 of both Method
1 and Method 2. The order H for these models is selected as 2 according to (3.30)-(3.31). Then,
Ms = 10, 000 samples of correlated random inputs are evaluated using the three PCE-based mod-
els, as described in Step 5. The estimated statistics from these three PCE-based models are then



5 The PCE-based Global Sensitivity Analysis for Uncertainty Control in Power System
Static Security and Economic Dispatch 88

compared with the benchmark results from LHS-based MC simulations, and the findings are sum-
marized in Table 5.1. As illustrated in Fig. 5.1 and Fig. 5.2, the PCE correlate model (depicted
in blue) provides results that align most closely with the benchmark LHS-based MC simulations
(shown in black), in the estimation of the PDF and CDF of PTTC.

Table 5.1 Comparisons of the estimated statistics of the overall TTC by the MC sim-
ulations, PCE correlate, PCE NT and PCE RT

Index MC PCE correlate PCE NT PCE RT

E[PTTC] 283.2862 283.2451 283.1519 283.1759
σ̂[PTTC] 0.9702 0.9494 1.1192 1.1336
∆E[PTTC]

E[Y ]
% – −1.4503× 10−2 −4.7417× 10−2 −3.8930× 10−2

σ̂[PTTC]
σ̂[Y ]

% – −2.1434 15.3560 16.8375

* σ̂[·] denotes the estimated standard deviation.
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Fig. 5.1 The PDFs of PTTC from PCE correlate, PCE NT, PCE RT and the MC
simulations.

5.4.3 The ANCOVA Indices Estimation

Subsequently, the ANCOVA indices Sj are calculated in Step 6, and the results and presented in
Table 5.2. It can be seen that the three PCE-based models show different ANCOVA estimations. Sj

estimated from PCE correlate shows that ζ4, ζ5 and ζ6 share similar contributions on the variance



5 The PCE-based Global Sensitivity Analysis for Uncertainty Control in Power System
Static Security and Economic Dispatch 89

279 280 281 282 283 284 285 286 287

TTC(MW)

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 F

u
n
c
ti

o
n

283 283.6

0.5
0.55
0.6

Fig. 5.2 The CDFs of PTTC from PCE correlate, PCE NT, PCE RT and the MC
simulations.

of PTTC, which gives the first three dominant random inputs. ζ4 and ζ6 are the dominant inputs
according to Sj estimated from PCE NT and PCE RT, respectively.

Table 5.2 ANCOVA indices Sj for PTTC from the three PCE-based models
Input ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

PCE correlate 0.0257 0.0000 0.1887 0.2610 0.2512 0.2735

PCE NT 0.0437 0.0000 0.1548 0.4499 0.1896 0.1620
PCE RT 0.0179 0.0000 0.1205 0.2586 0.1523 0.3419

5.4.4 The PTTC variation Control

From the estimated ANCOVA indices presented in Section 5.4.3, the dominant random inputs are
identified from the three PCE-based models. Particularly, S2 = 0 signifies that fluctuations in ζ2
remain inconsequential to the variance of PTTC. To validate these findings, smooth out ζ4, ζ5, and
ζ6 (e.g., reduce their variance to zero) in Step 7 one by one to observe how Var[PTTC] changes
across the PCE-based models and MC simulations. As evidenced by Table 5.3, the PCE correlate
model aligns most closely with the MC simulations. Clearly, smoothing ζ4, ζ5, and ζ6 exerts similar
impacts on Var[PTTC]. However, smoothing ζ6 is slightly more effective in reducing Var[PTTC]

(e.g., leading to an approximate 20% reduction in the standard deviation of PTTC, i.e., σ̂[Y ]), thus
enhancing the ATC. Such outcomes validate the accuracy of the sensitivity indices estimated by
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PCE correlate, as presented in Table 5.2.

Table 5.3 Case I: Statistics of PTTC before and after smoothing ζj by the benchmark
MC simulations and the three PCE-based models

Methods ζ4 ζ5 ζ6 Before
σ̂[Y ]σ̂[Y ] ∆σrr% σ̂[Y ] ∆σrr% σ̂[Y ] ∆σrr%

PCE correlate 0.7706 −2.11 0.7785 −1.73 0.7572 −2.17 0.9494
PCE NT 0.7692 −2.29 0.9605 21.24 0.9764 26.15 1.1192
PCE RT 0.9147 16.20 1.0052 26.89 0.7491 −3.22 1.1336

MC 0.7872 – 0.7922 – 0.7740 – 0.9702

* ∆σrr = (σ̂[Ypc]− σ̂[Ymc])/σ̂[Ymc] denotes the normalized standard deviation estimation error
by the three PCE models.
* The reduction of estimated standard deviation is calculated by: σ̂[after]−σ̂[before]

σ̂[before]
%, e.g., For the

MC simulations σ̂mc[after]−σ̂mc[before]
σ̂mc[before]

% ≈ 20%.

5.4.5 Efficiency Comparison

Regarding efficiency, It is worth noting that most of the computational cost of PCE-based models
lies in generating the Mp sample pairs [ζp,Yp], i.e., ted ≫ tsc and ted ≫ tancova. As can be seen
from Table 5.4, the three PCE-based models share similar computational time, and PCE correlate
requires 421.4s for the ANCOVA indices estimation and is slightly faster (≈ 2s) than the other two
PCE-based models.

Table 5.4 Comparison of computational time by the PCE correlate, PCE NT,
PCE RT with the size training sample pairs Mp = 60 for Case I.

Method ted(s) tsc(s) tancova(s) ttotal(s)

PCE correlate 420.6080 0.6180 0.1810 421.4070

PCE NT 420.6080 2.8504 0.1085 423.5669

PCE RT 420.6080 2.6499 0.1172 423.3751

* ted: time for evaluating the training samples; tsc: time for constructing
the PCE models; tancova: time for evaluating the sensitivity indices Sj of 10, 000 samples.
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5.5 Case Study II - Economic Dispatch Problem

To verify the proposed methods in a more complicated system, the second case presents the AN-
COVA indices estimation for the economic dispatch (ED) problem considered in Chapter 4. In
contrast to the first case, the second case uses real-world data from NREL’s Western Wind Data
Set [212], which exhibits unknown distribution types and potentially complicated correlations. To
make matters more challenging, Y (the ED cost) is multimodal. The UQLab toolbox is adopted to
build the PCE-based models and the ANCOVA indices calculation [137] [138].

5.5.1 System Configurations

This case tests the proposed PCE-based methods on the IEEE 118-bus system integrated with a 20-
node gas system, namely, an integrated electricity and gas system (IEGS). 5 wind farms are added
into the system at bus {2, 33, 51, 81, 108} using the NREL’s Western Wind Data Set [212]. The
time period considered is 24 hours. Thus, there are 120 random inputs (24 time periods for each
wind farm) and the response Y is the ED cost. The detailed configurations can be found in Section
4.5, Chapter 4.

5.5.2 The PCE-based Models Accuracy Test

Firstly, the three PCE-based models are constructed using Mp = 1100 sample-response pairs, as
detailed in Steps 1-3. Similarly, the order H for all three models is chosen as 2, based on the
hybrid LAR algorithm (refer to Section 3.3.3 and Appendix D). Then, Ms = 10, 000 correlated
input samples are fed to each model during Step 5. The estimated statistics for model accuracy
comparison, are presented in Table 5.5. Additionally, the PDF and CDF derived from the three
PCE-based models and MC simulations are illustrated in Fig. 5.3 and Fig. 5.4, respectively. A
comparative analysis of these estimated statistics and probability distributions underscores that the
PCE correlate model aligns most closely with the benchmark MC simulations.

5.5.3 The ANCOVA Indices Estimation

Subsequently, the ANCOVA indices Sj are computed and ordered by significance in Step 7. The
top 40 dominant random inputs identified by the three PCE-based models constitute a third of all
inputs, which are depicted in Fig. 5.5. Notably, there are distinct differences in the top 40 dominant
random inputs across the three PCE-based models.
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Table 5.5 Comparison of the estimated statistics of the ED cost by the MC simula-
tions, PCE correlate, PCE NT and PCE RT

Index MC PCE correlate PCE NT PCE RT

E[Y ] 7.3276× 106 7.3275× 106 7.3275× 106 7.3379× 106

σ̂[Y ] 4.7069× 104 4.7090× 104 5.9115× 104 4.7920× 104

∆E[Y ]
E[Y ]

% – −3.6935× 10−4 0.1349 0.1412
∆σ̂[Y ]
σ̂[Y ]

% – 0.0449 25.5927 1.8083
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Fig. 5.3 The PDFs of the ED cost from PCE correlate, PCE NT, PCE RT and the
MC simulations.

5.5.4 Impacts of Smoothing Dominant Random Inputs on the ED cost

To validate the estimated ANCOVA indices, the top 40 inputs identified by each of the three PCE-
based models are individually smoothed (i.e., meaning their variances are set to zero), and the
results are then compared with MC simulations as outlined in Step 7. The statistical comparisons
of the ED cost, both before and after smoothing the dominant inputs, are presented in Table 5.6.
Additionally, Fig. 5.6 presents the CDFs before and after smoothing the top 40 dominant inputs
through the MC simulations. Table 5.6 and Fig. 5.6 demonstrate that the PCE correlate model
is the most effective in reducing the variance of Y , achieving an approximate reduction of 95.9%
in the standard deviation of Y . The PCE RT model also produces commendably accurate results
when benchmarked against MC simulations.
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Fig. 5.4 The CDFs of the ED cost from the three PCE-based models and the MC
simulations.

ANCOVA Indices
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Fig. 5.5 Sj estimated by the three PCE-based models for the ED cost

5.5.5 Efficiency Comparison

Regarding efficiency, as shown in Table 5.7, PCE RT requires 714.9s for ANCOVA indices estima-
tion, which is much slower than PCE correlate (≈ 88s) and PCE NT (≈ 70s). For this case, due to
the high dimension of the random inputs, the PCE-based models with decorrelated inputs requiring
additional transform (the NT or the RT) share much more computation time.
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Table 5.6 Case II: Comparison of the standard deviation of the ED cost before and
after smoothing the three sets of top 40 dominant inputs by the benchmark MC simu-
lations, and the three PCE-based models.

Methods Set 1: Top 40s Set 2: Top 40s Set 3: Top 40s Before
σ̂[Y ]σ̂[Y ] ∆σ[Y ]% ∆σre% σ̂[Y ] ∆σ[Y ]% ∆σre% σ̂[Y ] ∆σ[Y ]% ∆σre%

PCE correlate 1.4925× 103 −96.83 −0.0093 6.0660× 103 −87.12 −0.0020 1.0652× 103 −97.74 −0.0190 4.7090× 104

PCE NT 1.0467× 104 −82.98 −0.1422 1.1919× 103 −97.98 0.1270 1.0586× 104 −82.09 −0.1442 5.9115× 104

PCE RT 6.9201× 102 −98.56 0.1194 5.1244× 102 −98.93 0.1379 9.2717× 102 −98.07 0.0224 4.7920× 104

MC 1.9115× 103 −95.94 – 6.1449× 103 −86.94 – 1.9205× 103 −95.92 – 4.7069× 104

* Set 1, Set 2, and Set 3 are the three sets of top 40 inputs from PCE correlate, PCE NT and PCE RT, respectively.
∆σ[Y ] = (σ̂[Yafter] − σ̂[Ybefore])/σ̂[Ybefore]; σ̂[Ybefore] and σ̂[Yafter] denote the estimated standard deviation of
Y before and after smoothing, respectively; ∆σre = (∆σ[Ypc]−∆σ[Ymc])/∆σ[Ymc], describing how close the
standard deviation reduction by the PCE-based model is to the one by the benchmark MC simulation.
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Fig. 5.6 The CDFs of the ED cost after smoothing the three sets of top 40 inputs by
MC simulations.

Table 5.7 Comparison of computational time by the PCE correlate, PCE NT ,
PCE RT with the size training sample pairs Mp = 1100 for case 2.

Method ted(s) tsc(s) tancova(s) ttotal(s)

PCE correlate 582.5600 31.0738 13.2071 626.8409

PCE NT 582.5600 48.2677 13.6878 644.5155

PCE RT 582.5600 123.6416 8.6962 714.8978

* ted: time for evaluating the training samples; tsc: time for constructing
the PCE models; tancova: time for evaluating the sensitivity indices Sj of 10, 000 samples.

5.6 Discussions of the Results

In this section, the performance differences between the first and second methods are discussed.
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The first method: For dependent random inputs, ensuring the orthogonality of polynomial bases
requires the multivariate orthogonal polynomial bases Ψα to be constructed as (see Appendix G)

Ψα(ζ) =

(
M∏
j=1

fζj(ζj)

fζ(ζ)

) 1
2 M∏
j=1

ϕ
(αj

k)

j (ζj)

where fζ(ζ) and fζj(ζj) denote the joint PDF of ζ and marginal PDF of ζj , respectively. This en-
sures the convergence of the PCE model to the response Y in theL2 norm. However, PCE correlate

omits the density term
[∏M

j=1

fζj (ζj)

fζ(ζ)

] 1
2 and uses only

∏M
j=1 ϕ

(αj
k)

j (ζj) as the bases Ψα. This is be-
cause obtaining an accurate joint PDF fζ(ζ) can be challenging, and the density term might be
highly nonlinear. Despite this omission, the calculation of cα (as in Step 3 c) of Method 1) may
compensate for the errors, resulting in a model with satisfactory accuracy, i.e., Y ≈ Gpc(ζ).
The second method: The methods PCE NT and PCE RT initiate by transforming the random in-
puts ζp into Zp using: ζp = T −1(Zp). Following this transform, PCE-based models are formulated
using the sample pairs [Zp,Yp], which can be expressed as:

Y = G(ζ) ≈ Gpc(Z) =
∑

α∈NM

ckΨα(Z).

However, during the computation of ANCOVA indices in Step 6 of Method 2, the PCE-based
models replace Z with ζ. This implies that the model is approximated as Y ≈ Gpc(ζ), even though
the PCE-based model formulated in Step 3 is designed to ensure Y ≈ Gpc(Z) = Gpc(T (ζ)). The
transform T inherently introduces errors, and these cannot be compensated since the PCE-based
models are solidified by Step 3. Consequently, the performance of the second method may not
achieve the same level of performance as the first method.

5.7 Conclusions

This chapter compares three different PCE-based models for estimating ANCOVA indices-based
GSA of two power system applications considering correlated random inputs. Simulation results
demonstrate that PCE correlate, ignoring the input dependencies, which provides the most accurate
response and ANCOVA indices estimations in the two power system applications, compared with
PCE models built after decorrelation using the Nataf or the Rosenblatt transform, i.e., PCE NT or
PCE RT. Based on the ANCOVA indices determined by PCE correlate, effective control measures
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for uncertainty management can be developed to reduce the system response variance and improve
overall system performance.
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Chapter 6

Summary and Conclusions

6.1 Thesis Summary

This thesis primarily contributed to the development of data-driven sparse PCE-based models, de-
signed to quantify uncertainties in the probabilistic assessment of power system static security and
ED. Through the development of data-driven PCE-based methods, this thesis facilitates the model-
ing of uncertainty, thereby enabling a comprehensive probabilistic static security assessment, ED,
and a GSA-based approach for uncertainty control in power systems.

This thesis first focused on quantifying the impacts of uncertainties on ATC. Uncertainties are
characterized as mixed random inputs (e.g., continuous random inputs include RESs and stochastic
loads, and discrete random inputs like unexpected equipment outages). A subsequent introduction
of a probabilistic CPF-based mathematical framework paved the way for PTTC assessment. After
that, the DDSPCE method was devised for estimating the probability distributions of PTTC, based
on which, ATC at a certain confidence interval was determined. A statistically-equivalent surrogate
model was developed based on the DDSPCE method, to enhance the computational efficiency of
the traditional PTTC calculation method, MC simulations. The proposed DDSPCE method, which
directly utilized raw data, could handle a large number of mixed random inputs without the need for
predefined probability distributions. The integration of the sparse PCE scheme further optimizes
computational burden. Simulation studies on the IEEE 118-bus system and the IEEE 1354-bus
system demonstrated the efficiency and efficacy of the proposed DDSPCE method in determining
the probabilistic characteristics (e.g., mean, variance, PDF, and CDF) of PTTC. Furthermore, the
integration of discrete random variables (e.g., equipment outages) in PTTC and ATC assessments
was validated by their pronounced impacts on PTTC statistics and ATC levels.

2024/01/08



6 Summary and Conclusions 98

Later on, the DDSPCE method was employed to study the impacts of uncertainties, particularly
wind power, on ED. The surrogate model, built based on the DDSPCE method, accurately approx-
imates the statistic information (e.g., mean, variance, PDF, and CDF) of the objective values of the
ED problem. This method exploited data directly, without knowing any presupposed probability
distributions. Simulation results, particularly on the integrated IEEE 118-bus power system and
20-node gas system, demonstrated the efficiency of the proposed method 33 times faster than MC
simulations, even when confronted with a multimodal PDF of the SED solution.

Driven by the impacts of uncertainty on probabilistic transfer capability and ED in power sys-
tem operations, this thesis also aspired to mitigate the impacts of uncertainties brought by volatile
RES, to enhance system security and economic efficiency. To this end, the PCE methods were de-
veloped to perform GSA using the ANCOVA indices, such that the dominant random inputs were
identified to assist in designing uncertainty control strategies. Specially, different PCE-based mod-
els for estimating ANCOVA indices of correlated inputs are designed and compared within power
system transfer capability enhancement and ED. Simulation results showed that PCE correlate,
which ignores input factor dependencies, provided the most accurate ANCOVA indices compared
with PCE-based models built after decorrelation using the NT or the RT. Effective uncertainty con-
trol measures were designed by leveraging the ANCOVA indices calculated by PCE correlate to
mitigate the impacts of uncertainties. This reduced the variance of system response and enhanced
the system performance. These findings offered invaluable insights for uncertainty management
and control design in real-world power system operations.

6.2 Conclusions

The primary research outcomes and contributions of this thesis are encapsulated as follows:

1. The introduction of a DDSPCE method, utilizing available random input data, is adept at
accurately quantifying the impacts of uncertainties (e.g., arising from RESs, load fluctua-
tions, and unexpected equipment outages) on ATC. The proposed method, without requiring
any preassumed probabilistic distributions for random inputs, can efficiently and accurately
estimate the probabilistic characteristics (mean, variance, PDF, and CDF) of PTTC, based
on which, ATC with a certain confidence interval can be determined. An integrated sparse
scheme further enhances its computational efficiency and accuracy. Additionally, the simula-
tion results highlight the significance of integrating discrete variables (unexpected equipment
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outages) in the PTTC and ATC evaluation. Control devices (e.g., adjustable transformers)
and N − K contingency can be readily incorporated into the PTTC formulation and ATC
assessment.

2. This thesis develops a DDSPCE-based surrogate model for addressing the uncertainties of
the ED during daily power system operations. This surrogate model developed directly from
the raw data set of random variables, operates without preassumed distributions of random
inputs. The DDSPCE-based surrogate model stands out in its accurate estimation of the
statistical information (mean, variance, PDF, and CDF) of the ED solutions (e.g., objective
function). Moreover, this proposed model can manage a vast number of random inputs with
high efficiency. Extensive simulation studies conducted on an IEGS, utilizing real-world wind
power data, highlight the efficacy and effectiveness of the proposed method in quantifying
the impacts of uncertainties on ED solutions (e.g., the objective function). Notably, this
method proves high accuracy even in scenarios where the ED solutions exhibit multimodality
properties. These empirical findings accentuate the remarkable efficacy and efficiency of the
proposed DDSPCE method in addressing a broad range of complex scenarios.

3. This thesis undertakes a detailed comparative analysis, evaluating different PCE-based mod-
els (both with and without decorrelation random inputs and incorporating diverse nonlinear
transforms) for GSA in uncertainty control for power system security and ED. The derived
ANCOVA-based global sensitivity indices from PCE correlate enable to allocation of the
dominant random inputs, based on which, the effective uncertainty control measures can be
designed to mitigate the uncertainty impacts. The results drawn from this analysis provide
important guidance for uncertainty management and control in enhancing power system se-
curity and economic efficiency.

6.3 Recommendations for Future Work

Based on the proposed methods, the contributions of this thesis, and its conclusions, the subsequent
research avenues are suggested for future exploration:

• This thesis studied the impacts of unforeseen equipment failures (with certain probabilities),
such as line and generator outages, on power system transfer capability. It is essential to also
consider equipment outages resulting from real extreme events (e.g., typhoons, snowstorms,
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and wildfires). Subsequent research will delve into the impacts of extreme weather conditions
on power system security. The proposed DDSPCE method will be further employed, lever-
aging real-world data from extreme events (e.g., considering the probability of line outages
related to different wind speeds during windstorms).

• This thesis proposes a data-driven PCE-based surrogate model to quantify the uncertainties
on ATC and PTTC in power systems, particularly focusing on the relationship between uncer-
tainties and TTC for individual tasks. As discussed in [230], it is essential to consider causal
relevance when assessing TTC across different transmission tasks to optimize the efficacy of
data-driven approaches. Consequently, future research endeavors will delve deeper into the
interplay between various transmission tasks when evaluating both ATC and TTC.

• This thesis proposed the DDSPCE method to estimate the probabilistic characteristics of
PTTC and ED solutions (e.g., objective functions). The proposed PCE-based method, how-
ever, presumed that system response distributions are smooth. In contrast, certain response
distributions (e.g., like the generator outputs in the ED problem), might exhibit nonsmooth
characteristics. Additionally, in practical scenarios, only an extremely small number of eval-
uations might be available for training models. To address these challenges, future research
will explore the integration of PCE methods with other metamodels (e.g., GPR).

• The quality of data used to build DDSPCE-based models is important to the performance of
response (e.g., in PTTC or ED solutions) estimations. Nevertheless, as highlighted in [112],
the performance of the proposed model may be degraded if outliers of the training dataset
are not considered. To this end, future research will consider and address the outliers in the
training dataset to improve the robustness of the proposed method.

• Regarding GSA-based uncertainty control, further analytical investigation will be carried out
to comprehensively analyze and compare the performance of the three PCE-based models in
GSA while considering different global sensitivity indices.

• This thesis designed uncertainty control measures based on the estimated ANCOVA global
sensitivity indices, which aim to mitigate the impacts of uncertainties by smoothing the dom-
inant random inputs (e.g., wind power fluctuations) utilizing ESSs. Future work involves
designing ESSs control and optimization policies to improve system security [231].
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Appendix A

Principal Component Analysis (PCA)

This appendix introduces the singular value decomposition (SVD)-based method for PCA [149,
232]. PCA is a statistical procedure that uses orthogonal transformations to convert correlated
variables into a set of linearly uncorrelated variables called principal components. The SVD-based
algorithm is one of the mathematical techniques to achieve this. Given random inputs ξ ∈ Rn×m,
it is not a prerequisite for the variables in ξ to exhibit a multivariate Gaussian distribution for the
formulation of principal components [233]. However, it assumes that ξ are with mean 0. Besides,
the different scales of realizations of ξ may affect the principal components. To this end, a stan-
dardization procedure is conducted before applying the SVD-based method for PCA:

X =
ξ − µξ

σξ

(A.1)

where X ∈ Rn×m is the data after standardization. A SVD of X is:

X = UΣV T (A.2)

where U ∈ Rn×n and V ∈ Rm×m are orthogonal. The columns of U and V are formed by
eigenvectors of XXT and XTX , respectively. Σ ∈ Rn×m is a rectangular diagonal matrix with
non-negative diagonal entries σi be the singular values of X , i.e., the square roots of nonzero
eigenvalues of XTX . These singular values are in descending order with the largest σ1 in the first
diagonal entry of Σ (i.e., the position (1, 1)).
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The above SVD procedure can be linked to PCA by:

ζ = XV (A.3)

where V contains the principal component coefficients, with each column of V representing the
coefficients for one principal component, which are the eigenvectors of the covariance matrix of
X , and the rows are in descending order of component variance. Therefore, after PCA, X is
decorrelated to ζ ∈ Rn×m. Note that, in this thesis, the dimension of random inputs X after
PCA remains the same, while PCA can also be used for dimension reduction. Readers may refer
to [149,232] for more details about SVD and PCA.
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Appendix B

Copula Theory and Transforms

Sklar’s theorem establishes a fundamental relationship between joint distributions and marginal dis-
tributions of random variables. It states that if random variables ξ ∈ Rn have a joint distribution de-
noted as Fξ1...ξn (ξ1, . . . , ξn) and corresponding marginal distributions Fξ1 (ξ1) , · · · , Fξn (ξn), there
exists a unique n-dimensional copula C such that [234]:

Fξ1...ξn (ξ1, . . . , ξn) = C (Fξ1 (ξ1) , . . . , Fξn (ξn)) (B.1)

Note that if Fξi , i ∈ Rn are continuous, copula C is unique. Let Fξi(ξi) = Ui, i ∈ Rn, then the joint
PDF of ξ can be obtained by:

fξ(ξ) =
n∏

i=1

fξi(ξi) · c(Fξ1(ξ1), · · · , Fξn(ξn)) (B.2)

with c be the copula density function being defined by c(U1, · · · , Un) =
∂nC(U1,··· ,n)
∂U1,··· ,∂Un

.

B.1 Gaussian Copula and Nataf Transform

The Nataf transform is a powerful tool to convert correlated random inputs ξ modeled by Gaussian
copula dependence structure, to independent standard Gaussian random inputs Z. Considering
random inputs ξ with the correlation being modeled by Gaussian copula, which is characterized by
its correlation matrix R. The Nataf transform denoted as TNT(ξ), is expressed as [93]:

Z = TNT(ξ) = T3 ◦ T2 ◦ T1(ξ) (B.3)
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where the transform (B.3) convert correlated inputs ξ into standard Gaussian inputs Z. Specially,
the trio of transform T1, T2, and T3 can be represented by:

T1 : ξ 7→ U = [Fξ1(ξ1), . . . , Fξn(ξn)]
T

T2 : U 7→ V = [Φ−1(U1), . . . ,Φ
−1(Un)]

T

T3 : V 7→ Z = Γ−1V

where U is a sample derived from a Gaussian copula with the linear correlation matrix R. Φ

denotes the marginal CDF of a single standard Gaussian random input Ui, i ∈ Rn. Γ is the distinct
lower triangular matrix resulting from the Cholesky decomposition of R, such that R = ΓΓT . The
non-diagonal element Rij can be deduced using:

ρij =

∫∫
R2

(
ξi − µi

σi

)(
ξj − µj

σj

)
Φi,j(Vi, Vj, Rij) dVi dVj

with µi and σi being the mean and variance of ξi. Φi,j(Vi, Vj, Rij) be the joint PDF of random
inputs ξi and ξj following standard Gaussian distribution with zero mean and correlation matrix R.

B.2 Vine Copula and Rosenblatt Transform

Given random inputs ξ with highly nonlinear correlation or thick-tailed dependence, vine copula
can be used to model the dependence structure. In this thesis, C-vine copula is applied [91]:

c(ξ) =
n−1∏
j=1

n−j∏
i=1

cj,j+i|{1,...,j−1}
(
ξj|{1,...,j−1}, ξj+i|{1,...,j−1}

)
(B.4)

where cj,j+i|{1,...,j−1}
(
ξj|{1,...,j−1}, ξj+i|{1,...,j−1}

)
denotes the pair copula between ξj and ξj+1 con-

ditioned on ξ1, · · · , ξj−1. The Rosenblatt transform is a powerful tool, mapping ξ with copula
structure in (B.4) into independent random inputs Z by [91]:

Z = TRT(ξ) = TRT1 ◦ TPIT(ξ) (B.5)

with

TPIT : U = [Fξ1(ξ1), . . . , Fξn(ξn)] (B.6)
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TRT1 :


Z1 = Fξ1 (ξ1)

Z2 = Fξ2|ξ1 (ξ2 | ξ1)
...

Zn = Fξn|ξ1,...,ξn−1 (ξn | ξ1, . . . , ξn−1)

. (B.7)

where (B.6) indicates the probability integral transform and Fj|1,··· ,n−1 are the CDFs of conditioned
random inputs. Note that if the dependence structure of random inputs ξ is modeled by Gaussian
copula, the Rosenblatt transform simplifies to the Nataf transform.

Readers may refer to [91, 93, 234] for more details about copula and the nonlinear transforms.
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Appendix C

Uncertainty Modeling – Typical Probability
Distributions

C.1 Uncertainty Modeling – Wind Speed

Typically, the wind speed in many locations around the world can be modeled by Weibull distribu-
tion, where v follows the following probability density function (PDF) [8, 18, 133]:

fw (v) =
γw
cw

(
v

cw

)γw−1

exp
[
−
(
v

cw

)γw]
(C.1)

where v is the wind speed, γw is the equivalent shape parameter and cw is the scale parameter,
respectively.

C.2 Uncertainty Modeling – Solar Irradiance

As discussed in [190], solar irradiance can be represented by a Beta distribution, with the following
PDF:

fR (r) =
Γ (αR + βR)

ΓR (αR) ΓR (βR)

(
r

rmax

)αR−1(
1− r

rmax

)βR−1

(C.2)

where αR and βR are the shape parameters of the distribution, ΓR denotes the Gamma function, r
and rmax(W/m2) are the respective actual and maximum solar irradiance.
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C.3 Uncertainty Modeling – Load Variation

As discussed in [193,194], the load uncertainty can be modeled by a Gaussian distribution, where
the active load power PL follows the PDF given below:

f (PL) =
1(√
2πσP

)exp

(
−(PL − µP )

2

2σ2
P

)
(C.3)

where µP and σP denote the mean value and the forecasting error (i.e., the standard deviation) of
PL, respectively, which can be provided by the load forecaster or historical data. Typically, σP is
assumed to be 2% − 10% of the mean value of PL. Generally, only the active power is predicted
by the load forecaster, whereas the reactive power is determined under the assumption of constant
power factor [153].
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Appendix D

The Hybrid LAR Algorithm

The hybrid LAR is a modified version of the LAR in Algorithm 1 [5], which is applied to achieve a
basis adaptive (both q-norm and degree adaptive). At the end of each LAR iteration, Lp predictors
Ψk(ζ) are obtained. Instead of using the coefficients ck calculated by the LAR algorithm, the
preferred coefficients ck are recalculated by OLS based on the current predictors Ψk(ζ).The sparse
PCE scheme based on hybrid LAR with the proposed stop criteria (i.e., ecloo) offers several notable
advantages over the conventional leave-one-out error eloo-based stop criteria [198]:

• Improved computational efficiency: The sparse PCE scheme requires running the LAR pro-
cedure only once for all Mp samples, whereas the conventional approach requires Mp + 1

iterations. This significantly reduces the computational burden.

• Enhanced resistance to overfitting: The proposed stop criteria effectively address the overfit-
ting problem commonly encountered in PCE. By utilizing the corrected leave-one-out cross-
validation error, the sparse PCE scheme provides better control over model complexity and
prevents overfitting, resulting in more accurate and reliable predictions.

• Robustness with small training sample size: The proposed stop criteria exhibit excellent per-
formance even with a limited number of training samples. This is particularly valuable in
scenarios where obtaining a large dataset for training the PCE model may be challenging or
costly.

Overall, the sparse PCE scheme with the suggested stop criteria offers a more computationally ef-
ficient and robust approach to probabilistic modeling, mitigating overfitting issues and accommo-
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dating small training sample sizes. A flowchart describing the hybrid LAR algorithm is provided
in Fig. D.1.

Initialization  

• Input sample-response pairs 𝜻𝑝, 𝒀𝑝

Selection of an optimal PC basis 𝚿∗

• Apply LAR to the candidate basis 𝚿 =

{𝚿 𝟏 , ⋯ ,𝚿 𝓝 } which contains all those 
terms with 𝑞-norm ≤ 𝐻

• Define 𝚿(𝐻)be the optimal basis 
obtained by LAR and 𝑒cloo

(𝐻) be the 
corresponding error estimate

• Store 𝑒cloo,min
∗ ≡ min(ecloo

(𝐻)) and the 

associated basis 𝚿min

For 𝐻 = 2,… , 𝑝max:

For 𝑞 = 𝑞min: 0.05: 1:

Stop if either 𝑒cloo,min
∗ is less than a prescribed 

error (e. g. , 10−8) or 𝑒cloo,min
∗ increases twice 

(overfitting)

Compute the corresponding PCE coefficients on 
basis 𝚿min by least-square regression

Fig. D.1 The hybrid LAR flowchart [5].
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Appendix E

The Stochastic-Optimization ED
formulations for IEGS

The mathematical formulation of the stochastic-optimization ED (SED) problem for IEGS is as
follows.

Q(P sw
g ,P sw

w ) = min
Pg

∑
t∈T

(∑
g∈G

Cg(P
t,sw
g ) +

∑
s∈S

Cs(g
t,sw
s )

)
(E.1)

where (E.1) is the objective function, i.e., to minimize the total production cost; t is the specific
time period in the time periods set T = {1, · · · , Tm} (e.g., 24-hour period in the simulation study);
g is the generator index and G is the generator set. Power network constraints are as follows.

s.t.∑
g∈G

P t,sw
g +

∑
w∈W

P t,sw
w =

∑
d∈D

P t
d ∀t ∈ T, sw ∈ S (E.2a)

Pl ≤
∑
g∈G

klgP
t,sw
g +

∑
w∈W

klwP
t,sw
w −

∑
d∈D

kldP
t
d ≤ Pl ∀t ∈ T, sw ∈ S (E.2b)

Pmin
g xtg ≤ P t,sw

g ≤ Pmax
g xtg ∀g ∈ G, t ∈ T, sw ∈ S (E.2c)

−RRD
g xtg −RSD

g (xt−1
g − xtg)− Pmax

g (1− xt−1
g ) (E.2d)

≤ P t,sw
g − P t−1,sw

g ≤ RRU
g xt−1

g +RSU
g (xtg − xt−1

g )

+ Pmax
g (1− xtg) ∀g ∈ G, t ∈ T, sw ∈ S
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The operational and physical constraints are given in (E.2a)-(E.2d) based on the direct current (DC)
power flow model. Equation (E.2a) is the power balance constraint, where P t

d is the d-th load
demand at time t. Constraint (E.2b) denotes the power flow limits, where klg, klw and kld are
the sensitivity coefficients for the l-th transmission line with respect to the traditional generator g,
wind generator w and load d, respectively [209]. Pl and Pl are thermal limits of transmission line
l. Constraint (E.2c) denotes the generation capacity limits with xtg being the pre-determined UC
decision for generator g at time t. Constraint (E.2d) describes the ramping capability constraint of
generator g, where RRD

g and RRU
g denote the ramping down and up rate; RSD

g and RSU
g denote the

shut-down and start-up ramp rate. Cs(�) is the cost of gas well.
The gas network constraints given in (E.3).

Gmin
s ≤ gt,sws ≤ Gmax

s ∀s ∈ S, t ∈ T, sw ∈ S (E.3a)

Gmin
a ≤ πt,sw

a ≤ Gmax
a ∀a ∈ Ga, t ∈ T, sw ∈ S (E.3b)

gt,swb = Wb

√
((πt,sw

e(b) )
2 − (πt,sw

a(b))
2) ∀b ∈ Gb, t ∈ T, sw ∈ S (E.3c)

πt,sw
e(c) ≤ αcπ

t,sw
a(c) ∀c ∈ Gc, t ∈ T, sw ∈ S (E.3d)

0 ≤ gt,swb ≤ Gb ∀b ∈ Gb, t ∈ T, sw ∈ S (E.3e)

0 ≤ gt,swc ≤ Gc ∀c ∈ Gc, t ∈ T, sw ∈ S (E.3f)∑
s∈Gs

gt,sws(a) +
∑
b1∈Gb

gt,swb1(a)
−
∑
b2∈Gb

gt,swb2(a)
+
∑
c1∈Gc

gt,swc1(a)

−
∑
c2∈Gc

gt,swc2(a)
=
∑
d∈Gd

Gt
d(a) +

∑
g∈G

ΘgP
t,sw
g(a) t ∈ T, sw ∈ S (E.3g)

where (E.3a) denotes the output capacity limits of a gas well; constraint (E.3b) denotes the nodal
pressure range; constraint (E.3c) describes the gas flow gt,swb in gas passive pipeline b; constraint
(E.3d) is the simplified gas compressor model; constraints (E.3e)-(E.3f) denote the gas flow trans-
mission capacity limits in a gas passive pipeline and gas compressor, respectively; constraint (E.3g)
denotes the gas nodal balance. The detailed notations can be found in [209]. Note that in formu-
lation (4.3)-(E.3), constraint (E.2b) is based on the direct current (DC) power flow model, which
states the power transmission line capacity. Detailed explanations are given below. The DC power
flow is with the assumption that relates the real power injection to bus voltage angles δ by neglecting
line resistances and voltage magnitudes at all buses are assumed to be 1 per unit [235]. The flow of
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active power Pij is given by:

Pij = B′
ijδij or δij = A′

ijPij (E.4)

where B′
ij = − 1

xij
for i ̸= reference bus and j ̸= reference bus, which is the element of the bus

susceptance matrix B′ and A′ is the power system transmission network incidence matrix. Let ai
and aj be the ith and jth rows of A′. kln indicates the sensitivity factor of line l flow with respect
to unit n can be represented by:

kln = kij =
ain − ajn

xij
(E.5)

Then we separate system buses as generation and load buses, the transmission line capacity
constraints can be expressed by:

Pl =
∑
g∈G

klgP
t,sw
g +

∑
w∈W

klwP
t,sw
w −

∑
d∈D

kldP
t
d (E.6)

where klg, klw and kld are the sensitivity coefficients for line l flow with respect to the power output
of generators g, wind farms w, and power loads d.

Remark E.0.1. It should be noted that the coupling effect of the gas system and its impact on the
uncertainty analysis of the power system have not been addressed within the scope of this thesis.
These aspects present potential avenues for future research endeavors.
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Appendix F

Random Inputs Parameter Configurations:
Chapter 5 Case Study I - Available Transfer
Capability Enhancement

This appendix presents the random parameter configurations of the case study in Section 5.4 Chap-
ter 5.

Parameter Configurations of Wind Speed Distributions

It is assumed that the probability distributions and corresponding parameters of all random inputs
are available. The probabilistic data of all random inputs are generated from assumed probability
distributions. Specially, the wind speed empirical distribution is characterized by a Weibull distri-
bution [7,8]. A detailed description of wind speed distribution can be found in Appendix C. Table
F.1 provides the parameters of wind speed. Once the wind speed data is obtained, the wind turbine
generator’s real output power is calculated through the wind speed-power curve through (3.7).

Table F.1 Wind speed and wind turbine parameters [7, 8]
Bus cw γ Pr Vr Vin Vout PF
1 11.5762 2.7022 150.00 13.50 3.50 25.00 0.95
2 11.5762 2.7022 150.00 13.50 3.50 25.00 0.95
15 11.5762 2.7022 150.00 13.50 3.50 25.00 0.95
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Parameter Configurations of Solar Radiation Distributions

This section presents the parameter configurations of solar radiations. it is assumed that solar radi-
ation is characterized by Beta distribution [9], with a detailed description in Appendix C. Table F.2
provides the parameters of the solar radiation. Once the solar radiation data is obtained, the solar
generator’s real output power is calculated through the radiation-power curve through (3.8).

Table F.2 Solar radiation and solar PV parameters [9]
Bus αR βR rmin rmax Pr Rc Rstd PF
16 1.110 0.730 0.0 1000.0 150.00 150.0 1000.0 1.0
18 1.110 0.730 0.0 1000.0 150.00 150.0 1000.0 1.0
21 1.110 0.730 0.0 1000.0 150.00 150.0 1000.0 1.0

Correlation Matrix of Random Inputs

The case study in Section 5.4 Chapter 5 assumes linear correlations between random inputs with
the following correlation matrix R:

R =



1 0.2 0.3 0 0 0

0.2 1 0.1 0 0 0

0.3 0.1 1 −0.2 0 0

0 0 −0.2 1 0.28 0.35

0 0 0 0.28 1 0.1

0 0 0 0.35 0.1 1
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Appendix G

Construction of Multivariate Orthogonal
Polynomial Basis – Dependent Random
Inputs

For dependent random inputs, Soize et al. [145] (see Lemma 1) suggested another method for con-
structing the PCE model considering dependent random inputs with the following set of functions
for the multivariate orthogonal polynomial bases:

Ψα(ζ) =

(
M∏
j=1

fζj(ζj)

fζ(ζ)

) 1
2 M∏
j=1

ϕ
(αj

k)

j (ζj) (G.1)

where fζ(ζ) and fζj(ζj) denote the joint PDF of ζ and marginal PDF of ζj , respectively. Instead of
directly forming the multivariate polynomial bases Ψk(ζ) through the tensor product of univariate

polynomial bases using (2.7), a density term
(∏M

j=1

fζj (ζj)

fζ(ζ)

) 1
2 was further added in constructing

Ψα(ζ), where the orthogonality of Ψα(ζ) has been demonstrated [145].
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[35] T. Mühlpfordt, L. Roald, V. Hagenmeyer, T. Faulwasser, and S. Misra, “Chance-constrained
ac optimal power flow: A polynomial chaos approach,” IEEE Transactions on Power Systems,
vol. 34, no. 6, pp. 4806–4816, 2019.

[36] H. Sheng and X. Wang, “Probabilistic power flow calculation using non-intrusive low-rank
approximation method,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3014–3025,
2019.

[37] C. Safta, R. L.-Y. Chen, H. N. Najm, A. Pinar, and J.-P. Watson, “Efficient uncertainty quan-
tification in stochastic economic dispatch,” IEEE Transactions on Power Systems, vol. 32,
no. 4, pp. 2535–2546, 2016.

[38] Y. Xu, L. Mili, M. Korkali, K. Karra, Z. Zheng, and X. Chen, “A data-driven nonparamet-
ric approach for probabilistic load-margin assessment considering wind power penetration,”
IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4756–4768, 2020.

[39] X. Kou and F. Li, “Interval optimization for available transfer capability evaluation consid-
ering wind power uncertainty,” IEEE Transactions on Sustainable Energy, vol. 11, no. 1,
pp. 250–259, 2020.

[40] R. Marceau, J. Endrenyi, R. Allan, F. Alvarado, G. Bloemhof, T. Carlsen, G. Couto, E. Dia-
lynas, N. Hatziargyriou, D. Holmberg, et al., “Power system security assessment: A position
paper,” Electra, vol. 175, 1997.
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