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Abstract 

 Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer to render poly(vinyl chloride) 

(PVC) soft and malleable. Plasticized PVC is used in hospital equipment, food wrapping, and numerous 

other commercial and industrial products. Unfortunately, plasticizers can migrate within the material and 

leach out of it over time, ending up in the environment and, frequently, the human body. DEHP has come 

under increased scrutiny as its breakdown products are believed to be endocrine disruptors and more toxic 

than DEHP itself. DEHP and its breakdown products have been identified as ubiquitous environmental 

contaminants and daily human exposure is estimated to be in the µg per kg level. 

The objective of this review is to summarize and comment on published sources of DEHP 

exposure. Exposure through bottled water was examined specifically, as this concern is raised frequently, 

yet only little exposure to DEHP occurs through bottled water, and DEHP exposure is unlikely to stem 

from the packaging material itself. Packaged food was also examined and showed higher levels of DEHP 

contamination compared to bottled water. Exposure to DEHP also occurs in hospital environments, where 

DEHP leaches directly into liquids passed through PVC/DEHP tubing and equipment. The latter exposure 

is at considerably higher levels compared to food and bottled water, specifically putting patients with 

chronic illnesses at risk. 
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Overall, levels of DEHP in food and bottled water were below current tolerable daily intake 

(TDI) values. However, our understanding of the risks of DEHP exposure are still evolving. Given the 

prevalence of DEHP in our atmosphere and environment, and the uncertainty revolving around it, the 

precautionary principle would suggest its phase out and replacement. Increased efforts to develop viable 

replacement compounds, which necessarily includes rigorous leaching, toxicity and impact assessment 

studies, is needed before alternative plasticizers can be adopted as viable replacements. 

 

Introduction 

 The use of polymers is increasing on a worldwide scale (PEMRG 2013) and along with it is the 

use of the many compounds added to these polymers to serve a broad variety of functions (Sears and 

Darby 1982). Such additives include plasticizers, coloring agents, flow aids, heat stabilizers and solvents. 

Due to their widespread and growing use, there is an increasing interest and concern as to the impacts that 

these additives have on humans, animals and the environment. This is especially important given that 

most of these additives are not chemically bound to the polymer chains, which means that they can 

migrate within the material and leach out over time. Furthermore, since these additives are usually small 

molecules compared to the large polymer chains, they are more prone to dissolve in the aqueous 

environment, thereby contributing to the risk of exposure of humans, animals and microbes. 

 Plasticizers account for a large fraction of additives to polymers (Murphy 2001) and can represent 

as much as 40 % by weight of such materials (ATSDR 2002). These molecules interact with the polymer 

chains to render the material more flexible and malleable. The most important class of plasticizers in 

widespread use are phthalate diesters and, within these phthalates, DEHP (Fig.1) is the most important 

(Murphy 2001). DEHP has also been the source of the greatest concern. For example, several studies have 

suggested that it is toxic and can disrupt normal endocrine function in humans (see section below 

“Varieties of phthalates: Phthalates and terephthalates”). Furthermore, the US Environmental Protection 

Agency (US EPA) has expressed its concern “about phthalates because of their toxicity and the evidence 

of pervasive human and environmental exposure to them” (US EPA 2012). Due to these concerns and 
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growing evidence of health impacts, certain phthalates have been banned for use in children’s toys in the 

European Union (EU 2005), the United Stated (CPSIA 2008) and Canada (HPA 2010).  

There have been recent reports of phthalates, specifically DEHP, in water bottles made from 

polyethylene terephthalate (PET) (see Table 1 and section below “Bottled Water”). PET is a hard material 

that is used to make containers, especially for use by the beverage industry. However, it does not contain, 

and is not blended, with DEHP. A plasticizers’ role is to soften hard materials. PET also cannot release 

DEHP, as the terephthalate used to make the backbone of the polymer is a different chemical compound, 

while DEHP is a low molecular weight additive to the polymer resin. Contamination from DEHP in water 

bottles must stem from a processing step before bottling, or from the cap liner used. 

There is growing public awareness regarding the human and environmental impacts associated 

with the use of DEHP owing to numerous recent scientific reports and increases in the regulation of this 

compound in various countries around the world. This awareness is also coupled with misconceptions 

about their use. Therefore, this article aims to clarify the risk of exposure to DEHP via liquids stored in 

plastic but also glass containers, including water, beverages and food, and in various types of hospital 

equipment. Measured and estimated levels of DEHP in a variety of samples stored in commercial and 

clinical containers reported in the literature are presented. The article also summarizes levels of phthalates 

present in the environment, resulting in a human “background exposure”.  

 

Varieties of phthalates: Phthalates and terephthalates 

Because of a worldwide increase in the consumption of bottled water (Beverage Marketing Corporation 

2011), the materials used to make these water bottles have come under increased scrutiny. Polymers such 

as polyethylene (PE; Recycling code #2) and polyethylene terephthalate (PET, also known as PETE; 

Recycling code #1; see Fig.1) are used in lieu of glass, mainly due to their low density and durability. The 

2011 Beverage Market Report reported that “plastic packaging is preferred over glass in almost every 

country” and that “PET is the most dynamic and rapidly growing segment” (Beverage Marketing 

Corporation 2011). PET is a polyester that is produced either from the esterification reaction of 
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terephthalic acid with ethylene glycol (see Fig.1) and subsequent polymerization or, alternatively, by the 

transesterification of dimethyl terephthalate with ethylene glycol and subsequent polymerization. Once 

polymerized, the resulting polyester is a hard and rather brittle material. The only means by which some 

terephthalic acid, or an ester of it, could leach from it is by gradual depolymerization of the polymer 

chains forming the material. Fig.1 shows that the two carbonyl functions of terephthalic acid are in para-

position to one another, on opposite ends of the aromatic ring. Terephthalic acid was originally reported 

to be non-toxic (Hoshi et al. 1968), but later studies involving higher levels of exposure to this compound 

suggested that it may impair testicular functions (Cui et al. 2004). An extensive review on terephthalic 

acid has been recently published (Ball et al. 2011). Although terephthalic acid has a certain resemblance 

in terms of molecular structure to DEHP, it cannot leach out of the final product and is chemically distinct 

from DEHP. Hence, it will not be dealt with further in this review article. 

 Phthalate plasticizers such as DEHP are synthesised from phthalic acid, in which the two 

carbonyl groups are in ortho-position to one another; i.e. on neighbouring carbon atoms in the aromatic 

ring (Fig.1). Phthalic acid is esterified with various alcohols, but most commonly with 2-ethyl hexanol, to 

form liquid DEHP (Fig.1). This is the final form and it is not further polymerized as PET, but it remains 

as a small molecule additive. Of all DEHP produced globally, 95% is used as a plasticizer to render hard 

and brittle polymers more flexible and malleable (ATSDR 2002). Poly(vinyl chloride) (PVC; Recycling 

code #3) is the most important of these brittle polymers, where an estimated 80% of all plasticizers 

produced are used to plasticize PVC (Murphy 2001; Stevens 1999). Of these plasticizers, the most 

common is DEHP, which accounts for approximately 50% of all plasticizers used in PVC (Murphy 2001). 

Its production was estimated to be about 2 million metric tons per year in 2004 (AgPU 2006). Some 

typical applications of plasticized PVC include medical equipment such as hospital tubing and blood 

bags, food wrapping, wire and cable insulation, and automobile parts (AgPU 2006; Rahman and Brazel 

2004).  

Plasticization (i.e. the functional effect of plasticizers) is caused by various interactions between 

the small plasticizer and the polymer (Wypych 2012). The interaction of the polar carbonyl functionalities 
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in DEHP with the polar carbon-chloride bonds in the polymer chains of PVC makes the two compounds 

compatible, but it is countered by the lack of interaction between the non-polar parts of the DEHP. As a 

result, in the presence of plasticizers, the long PVC chains interact less with each other and the material is 

rendered more flexible and malleable (Wypych 2012). To achieve this, a large quantity of DEHP is 

usually needed. For instance, plasticized PVC can contain up to 40% of plasticizer by weight (ATSDR 

2002). It is important to recognize that the plasticizer is not chemically bound to the PVC, resulting in the 

possibility of DEHP migrating within the material and reaching the surface of the blend, where it can 

ultimately leach out of the material (Kastner et al. 2012). Ultimately, due to this behaviour, DEHP has 

been labelled a ubiquitous environmental contaminant as far back as 27 years ago (Wams 1987). 

 DEHP is particularly well studied because of concerns about its wide range of toxic effects 

(Akingbemi et al. 2004; Akingbemi et al. 2001; Foster et al. 2001; Gazouli et al. 2002; Horn et al. 2004). 

The US EPA has expressed its concern about phthalates “because of their toxicity and the evidence of 

pervasive human and environmental exposure to them” (US EPA 2012).  The breakdown pattern of 

DEHP is very important, because stable metabolites are produced, such as 2-ethyl hexanol, 2-ethyl 

hexanoic acid, and its monoester, mono (2-ethylhexyl) phthalate (MEHP), each of which have been 

shown to be more toxic than DEHP itself (Horn et al. 2004; Nalli et al. 2006a; Nalli et al. 2006b; Nalli et 

al. 2006c). Special attention has been given to MEHP, as it is believed to be an endocrine disruptor and 

has been linked to antiandrogenic activities in humans (Fan et al. 2010; Pant et al. 2008; Piche et al. 2012; 

Richburg and Boekelheide 1996; Swan et al. 2005). Such findings eventually led to its ban in applications 

such as children’s toys in much of the Western world (CPSIA 2008; EU 2005; HPA 2010). An extensive 

overview of DEHP has been provided in reports from the U.S. Department of Health and Human Services 

(ATSDR 2002) and the European Union (EU 2008).  

 

Bottled Water 

Although DEHP is not used to make water bottles, DEHP has been detected in many samples 

from water bottles regardless of its material, including PET, PE and glass (Table 1). This is unexpected 
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and suggests other potential routes of contamination. The quantities of DEHP found in bottled water have 

been reported in the range of 0 to 1 µg/L, with the exception of two studies: Bošnir et al. (2007) found an 

average of 8.78 µg/L and Keresztes et al. (2013) reported values of up to 1.7 µg/L. The variability in the 

concentrations of DEHP found in the different bottled waters shown in Table 1 could possibly be due to 

regional differences in the prevalence of contaminants such as DEHP. 

 Some of the studies shown in Table 1 looked directly at the content of DEHP of the water stored 

in PET, PE and glass containers. Given that DEHP is not used in the manufacturing of these bottles, the 

type of material of the bottle is obviously not as important as the source of the water. The water bottles 

were bought in local stores, so that a certain shelf life already had passed, and the DEHP content of the 

water was analyzed immediately thereafter (Bošnir et al. 2007; Cao 2008; Martine et al. 2013). Other 

studies involved the purchase of the bottles in local stores, but then monitored the concentration of DEHP 

in the water over time. Overall, the results have been very variable from study to study and no clear trend 

can be seen.  

When examining the levels of DEHP in the bottled water over time, some studies report 

increasing concentrations (Casajuana and Lacorte 2003; Guart et al. 2014; Keresztes et al. 2013; 

Leivadara et al. 2008) and others report constant or even decreasing levels of DEHP (Al-Saleh et al. 2011; 

Diana and Dimitra 2011; Guart et al. 2014; Keresztes et al. 2013). A decrease of DEHP concentration 

would mean that some kind of breakdown had occurred, which seems very unlikely. Even within 

individual studies, both increases and decreases of DEHP concentration have been reported over time 

(Guart et al. 2014; Keresztes et al. 2013).  

 Some of the studies on bottled water also dealt with the effect of storage location and condition 

on DEHP concentrations in bottled water. These parameters compared storage inside or outside a 

building, with the main difference being storage temperature and exposure to direct sun light. No clear or 

consistent trends regarding the effects of storage condition on DEHP concentration have been produced, 

with contradictory observations of increasing concentrations (Al-Saleh et al. 2011; Diana and Dimitra 
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2011; Keresztes et al. 2013) and decreasing concentrations of DEHP (Leivadara et al. 2008) having been 

reported. 

 Finally, some studies reported higher concentrations of DEHP in distilled water compared to 

carbonated water (Keresztes et al. 2013), while others reported an opposite trend (Leivadara et al. 2008; 

Martine et al. 2013).  

From these highly variable results, it can be seen that there was no overall trend of leaching of 

DEHP from the water bottles to the water contained therein. Furthermore, no standard protocol have been 

established for these kinds of measurements and the experimental setups were quite different throughout 

the presented studies, making it difficult to compare studies and draw substantiated conclusions. Some 

studies also lack supporting statistical analyses. 

It is noteworthy to mention that three of the studies presented in Table 1 also included glass 

bottles. The study by Leivadara et al. (2008) reported that the contents of two of ten glass bottles 

contained DEHP above the limit of quantification (LOQ), with values between 0.1 µg/L and 1.5 µg/L, 

depending on storage conditions of the carbonated water. Similarly, Cao (2008) reported DEHP in the 

carbonated water contained in three tested glass bottles, at levels between 0.15 µg/L and 0.24 µg/L. The 

third study involving glass bottles is a recent and vast study in Spain by Guart et al. (2014), which looked 

at a large number of different bottle materials. It found that water bottled in glass with a metal cap 

(including a liner inside the cap) was most likely to contain detectable levels of DEHP, with 39% of all 

samples after one year of storage (Guart et al. 2014) yielding positive results. The liner within the metal 

cap is a soft material and would thus likely contain a plasticizer which could be the source of 

contamination. This is discussed in greater detail in the following section. Overall, these results 

demonstrate that the bottle material is not the important factor, but that the DEHP was more likely in the 

water prior to bottling, or in the liner of the cap. 

 

Potential sources of contamination with DEHP 
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 DEHP has been a contaminant of concern for almost three decades (Wams 1987) and 

contamination, if not from the liner of the cap, could stem from any step in the production and bottling 

process (Diana and Dimitra 2011; Keresztes et al. 2013; Leivadara et al. 2008). To start with, the source 

of water could be contaminated as suggested by studies that revealed the presence of DEHP in rain water, 

surface waters, and tap water. For instance, several studies summarized in Table 2 showed that rain water 

samples contained DEHP in levels up to 39 µg/L (Berge et al. 2013; Björklund et al. 2009; Cole et al. 

1984; Ligocki et al. 1985; Teil et al. 2006; Thuren and Larsson 1990; Vethaak et al. 2005). Such rain 

water will end up in the watershed and carry with it the DEHP contamination. Treated wastewaters from 

municipal or industrial sources that is released into rivers and streams would also add to this 

contamination burden (Barnabe et al. 2008; Beauchesne et al. 2008). Such contamination by DEHP has 

been found in surface water (Vethaak et al. 2005), water from public fountains (Casajuana and Lacorte 

2003), and river or creek water and melted snow (Horn et al. 2004). A portion of this contamination can 

end up in treated drinking water such as tap water (Horn et al. 2004; Martine et al. 2013) used as the 

source of bottled water. Such water may also be a source of contamination during the washing of water 

bottles prior to their being filled. Also, the use of PVC piping to bring water to the bottling plant and 

subsequently to fill the bottle could also be a source of contamination, thus exposing the water to DEHP – 

although PVC pipes are a hard material and would consequently only contain low concentrations of 

plasticizer. Further studies would be needed to examine this, where it would need to be established 

whether the mass transport of DEHP from the pipes into the water carried in them would be significant 

enough to account for such contamination. Later in the process, bottles are capped with a lid with a liner. 

The liner must be a softer material and, therefore, DEHP contamination could stem from it, as was found 

by Guart et al. (2014) and in a study on bottled beer in China by Ye et al. (2009).  The German Federal 

Institute for Risk Assessment released two advisory opinions stating that a substantial amount of DEHP 

can migrate from such liners of containers to the food contained in them (BfR Stellungnahme 10/2005 ; 

BfR Stellungnahme 25/2007). 
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 Another important factor to consider is the possibility of DEHP contamination arising from the 

materials and solvents used in the laboratory conducting the analyses, especially during the preparation 

and analysis of the samples. Contamination from the use of plastic sampling bottles, caps with liners, 

filters, tubing et cetera must be accounted for during the sampling, preparation and analytical processes 

and eliminated, otherwise this would result in background levels of DEHP (Fankhauser-Noti and Grob 

2007). The role that these factors play in sample contamination, especially for sensitive bio-assays, was 

demonstrated by Olivieri et al. (2012). 

 

Food containers 

 Studies on DEHP found in food containers (Table 1) report a broad range of contamination, 

showing again the ubiquity of DEHP. DEHP concentrations measured in food are generally higher than in 

water. Again, glass bottles are not immune to DEHP contamination as revealed in studies where it has 

been reported in significant amounts in wine (Carrillo et al. 2007; Del Carlo et al. 2008; Russo et al. 

2012). Overall, the results suggest contamination occurs during the preparation and filling of water, food-

stuff or food at the source. 

The concentrations of DEHP found in milk products that were stored in various containers 

(Sørensen 2006) were higher than those found in other liquids such as water, wine or beer placed in 

similar containers. This can be explained by the higher lipid content of the milk in which DEHP would 

have a higher solubility (ATSDR 2002). Part I of the study by Heinemeyer et al. (2012a) for the German 

Federal Environmental Agency (UBA) used literature data to show a correlation between increased 

DEHP content of milk and milk products with increasing fat content (R2 = 0.79). Extensive reviews on 

phthalate esters in foods in Canada (Cao 2010) and Europe (Heinemeyer et al. 2012a; Heinemeyer et al. 

2012b; Martine et al. 2013; Wormuth et al. 2006) are available and consistently report that the highest 

DEHP loads are found in the fattiest foods, such as citrus essential oils, fresh meat, fish terrine, chicken 

and mayonnaise (Cao 2010; Heinemeyer et al. 2012a; Heinemeyer et al. 2012b; Martine et al. 2013; 

Wormuth et al. 2006). 
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For the general population, the most important route of exposure to DEHP and phthalates is via 

foods, which has been reported to account for 80% (Heinemeyer et al. 2012a) or more than 90% 

(Wormuth et al. 2006) of the daily intake of DEHP in adults. The estimated levels reported, however, are 

below the tolerable daily intake (TDI) or reference dose (RfD), both based on non-cancer effects, used in 

various jurisdictions: i.e. 50 µg/kg of bodyweight (kg bw) in the EU (EFSA 2005), 44 µg/kg bw in 

Canada (Health Canada 1996), and 22 µg/kg bw in the USA (EPA 1997). An uncertainty factor, which is 

used to translate the TDI to a no-observed-adverse-effect level (ANOEL; i.e., the dose at which no 

adverse effect of DEHP is expected), is also provided by each governing body. The uncertainty factors is 

100 in the case of the EU and 1000 for both Canada and the USA, and translates to ANOELs of 5 mg/kg 

bw, 44 mg/kg bw and 22 mg/kg bw for the EU, Canada and the USA, respectively. An overview of how 

these levels are established is provided by the US Food and Drug Administration (US FDA 2001). The 

USA also defines a specific maximum limit for DEHP for bottled water, which is set at 6 µg/L (US EPA 

2013). When comparing exposure to DEHP through food and through bottled water specifically, levels 

found in food can be as much three orders of magnitude higher (Cao 2010; Martine et al. 2013). 

 

Hospital equipment 

  Over the past 10 years, DEHP has been banned for use in children’s toys throughout the Western 

world (CPSIA 2008; EU 2005; HPA 2010), yet it is still heavily used in hospital equipment due to its 

very low cost (Blass 2001). DEHP also seems to have a certain stabilizing effect on blood platelets stored 

in PVC/DEHP blood storage bags (Horowitz et al. 1985). This heavy use is an important consideration 

given the extensive amounts of one-time use materials that are consumed in hospitals. As such, Table 1 

provides data on the leaching of DEHP from some commonly used hospital equipment, such as infusion 

sets (Bagel et al. 2011; Rose et al. 2012), tubing (Takehisa et al. 2005), PVC storage bags (Demore et al. 

2002; Veiga et al. 2012), and PVC blood bags (Buchta et al. 2005; Inoue et al. 2005; Jaeger and Rubin 

1972; Peck et al. 1979; Rock et al. 1978). Concentrations of DEHP in leachates from such equipment are 

significantly greater than what has been reported in water and foods, as was discussed above. These 
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differences range from three to six orders of magnitude higher than DEHP levels found in water and food, 

as shown in Table 1; for example, 50,000 – 70,000 µg/L in whole blood from blood bags (Inoue et al. 

2005), 17,000 to 25,000 µg/L in aqueous solutions stored in PVC bags (Demore et al. 2002), and 

1,700,000 to 3,100,000 µg/L in pure oils and 19,400 to 65,800 µg/L in lipid emulsions in infusion sets 

(Bagel et al. 2011). Consistent with what has been observed for food containers, the more lipophilic the 

solution used in the container, the higher the amount of DEHP observed in the content, mostly due to 

higher solubility of DEHP under such conditions (ATSDR 2002). Another study supporting this trend 

shows that in patients undergoing dialysis a higher total amount of leached DEHP was retained in the 

patients’ blood with increasing plasma lipid (cholesterol and triglycerides) concentration of these patients 

(Faouzi et al. 1999).  

 

Discussion 

 Based on the results presented above, it is clear that the major route of exposure of the general 

population to DEHP is via food. DEHP is present in bottled water, but bottled water does not pose a 

major threat of exposure to DEHP (Diana and Dimitra 2011; Fromme et al. 2007; Montuori et al. 2008; 

Schmid et al. 2008). Several studies show that the ingestion of DEHP from food is far greater than from 

any other source (Heinemeyer et al. 2012b) and, in the general population, can be as much as 1000 times 

higher than from water (Martine et al. 2013). Nonetheless, levels found even in food are below what is 

considered safe by the European Union and the US EPA (see section “Food containers” above). Given the 

omnipresent prevalence of DEHP in the environment, another way for human uptake is through a general 

environmental exposure (Bauer and Herrmann 1997; EU 2008; Guo et al. 2011; Martine et al. 2013; 

Staples et al. 1997; Wams 1987). Routes of exposure include, but are not limited to, house dust (Becker et 

al. 2004; Butte et al. 2001), indoor air (Butte and Heinzow 2002), soil (Cartwright et al. 2000), and 

watersheds (see Table 2). However, the study by (Heinemeyer et al. 2012b) suggests that these routes are 

minor compared to the uptake through food and only young infants are likely to be at increased risk 

through a combination of house dust and mouthing of toys. 
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The most intense degree of exposure of individuals to DEHP occurs in hospital patients.  Table 1 

shows a difference of three to six orders of magnitudes between the amounts of DEHP found in water and 

food samples compared to in liquids passed through hospital equipment. This is the only case where 

leaching can be observed directly from the container and linked to the specific hospital equipment. This is 

not surprising given that hospital equipment plastics such as tubing and IV bags are soft and frequently 

made using PVC and a plasticizer. However, the exposure experienced by an individual in a hospital 

environment is most likely to be of a short-term nature (i.e., acute exposure). Thus, it is difficult to 

compare to exposure through food and water, which would be more continuous and long-term over the 

life of the individual (i.e., chronic exposure). One also has to take into account the fact that DEHP is 

rapidly eliminated from the body, with between 65 and 70% of it being secreted in the first 24 hours after 

exposure (Koch et al. 2005). This means that the general population would likely not be at risk from 

infrequent hospital visits. However, people with certain medical conditions requiring regular treatment 

(i.e. neonates, dialysis patients, et cetera) would be at higher risk due to their more frequent exposure to 

high levels of DEHP. 

From the data presented, it is clear that one cannot avoid contact with DEHP due to its 

omnipresence. However, it is be expected that regional differences in the amounts of DEHP present in the 

environment will result in different exposure risks. In fact, such a correlation has been observed for 

another contaminant, bisphenol A (BPA), which is a monomer used to make polyester and polycarbonate, 

hard plastics. Teuten et al. (2009) reported a correlation between the amount BPA in leachates from waste 

disposal sites with the Gross Domestic Product (GDP) of the country where this leachate was collected: 

i.e. the higher the GDP, the more BPA was found in the leachates (Teuten et al. 2009). BPA is a very 

different compound with different impacts altogether but, considering that production and use of plastics 

is expected to be different in developed countries producing more plastic waste, we can reasonably 

hypothesize that there is a higher risk of DEHP contamination in specific regions of the world. This is 

supported by a direct correlation between the industrial production of DEHP in Germany and the daily 
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intake of DEHP by German university students (Helm 2007). This also suggests that there are likely many 

more routes of exposure than we can account for at present. 

Although most studies suggest that levels of DEHP due to chronic exposure are below what is 

considered safe by the several governmental agencies (see end of section “Food Containers”), our 

understanding of the toxic effects of DEHP are still evolving (Fan et al. 2010; Martinez-Arguelles et al. 

2013; Piche et al. 2012). Yet, there are arguments for the replacement of DEHP. Most of the established 

levels for daily intake are based on estimations and weighted risk factors, rendering these estimation 

prone to error. On the other hand, the levels established by the governmental agencies are based mainly 

on extrapolation of data acquired in experiments with high concentrations of DEHP in animals. There are 

reports of non-monotonic dose responses of endocrine-disrupting compounds, meaning that an 

extrapolation of these results at high concentrations of DEHP is not necessarily valid (Vandenberg et al. 

2012). This of course adds to the uncertainty of what safe levels might be. Furthermore, there is little 

work looking at synergistic effects DEHP might have with other contaminants or compounds found in the 

environment and the human body.   

Despite this uncertainty, given the widespread use of DEHP in common materials and 

commercial products coupled with its established ubiquity in the environment, the accumulating evidence 

of negative impacts associated with this compounds – both on the environment and health – and 

especially given the multiple routes of exposure of humans to this compound through water, food, indoor 

air and other avenues, it is suggested that, as per the precautionary principle, the replacement of DEHP 

with less problematic compounds should strongly be considered. Under this principle, there is a duty to 

take anticipatory action to prevent harm and for government, industry and the general public to share in 

this responsibility. At present, there is a growing awareness of industry and government about the 

potential impacts of DEHP based on scientific findings. Furthermore, the general public is now 

expressing concerns over exposure to this compound and many are seeking ways to avoid such exposure 

in their day to day activities and purchases.  Consumers also have a right to know about the potential 

impacts associated with the use of products and the burden to provide this information lies with the 
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producer. In the case of DEHP, exposure of the public comes via many routes, most of which are 

unknown to the average consumer and are involuntary. The knowledge is in the hands of the producer to 

act upon and limit these routes of exposure. It is also in their hands to demonstrate that their products are 

safe to use.   

Another critical element of the precautionary principle is the importance of examining 

alternatives to the compound of concern and the selection of alternatives that have the least potential 

impact on human health and the environment. In many instances, the application of the principle is 

confounded by a lack of alternatives. However, in the case of DEHP, alternative materials are available 

and can be engineered to be less harmful.  When evaluating potential alternatives to DEHP, it is essential 

that consideration be given to all foreseeable costs and life cycle, including raw materials, the 

manufacturing, transportation, use, environmental remediation and eventual disposal of created products, 

as well as health costs, even when such costs are not reflected in the price of the material/product itself.  

Therefore, replacement compounds for DEHP must be well designed and thoroughly studied 

prior to widespread commercialization to avoid the types of problems observed with DEHP, such as its 

persistence in the environment and accumulation of toxic metabolites. DEHP has especially been shown 

to be rather resistant to biodegradation by microbes, likely due to the positioning of the two ester groups 

to one another, as well as the branching on the side chains (Erythropel et al. 2013; Erythropel et al. 2012; 

Gartshore et al. 2003; Nalli et al. 2002; Sauvageau et al. 2009). Similarly, its most problematic metabolite 

MEHP is also rather recalcitrant due to the same reasons as its parent compound (Amir et al. 2005; 

Erythropel et al. 2012; Jonsson et al. 2003). 

To tackle this, recent research aims at producing equally effective plasticizers that are more 

biodegradable and less toxic than DEHP and would thus be eliminated more quickly in the environment, 

an idea that can also be extended to the metabolites of this plasticizer (Erythropel et al. 2013; Erythropel 

et al. 2012; Firlotte et al. 2009; Pour et al. 2009a; Pour et al. 2009b; Shi et al. 2011; Stuart et al. 2010). 

There also exist many commercial efforts to create plasticizers that are less toxic and recalcitrant, 

however formulations of these compounds are often unknown. Among the proposed alternatives are 
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vegetable-oil based plasticizers, citrate and succinate diesters, as well as hydrogenated DEHP-resembling 

compounds (DINCH®) (Lanxess AG 2011; Markarian 2010; Rahman and Brazel 2004). Much more 

testing is needed to validate these replacement compounds to not only ensure their utility as plasticizers 

but also to provide sufficient evidence that will either drive industry to adopt them or regulatory agencies 

to ban the use of DEHP to favour of these replacements. 

 

Conclusion 

 Due to its widespread use and ubiquitous presence in the environment, DEHP ultimately finds its 

way into humans. It has been shown in this review that there is a broad consensus that this exposure is 

mainly due to ingestion through food and that bottled water in PET bottles only plays a very minor role in 

this exposure. In the latter case, it is highly unlikely that the contamination of the water stems from the 

container material itself, but it was more likely contaminated in an earlier production step or in the water 

source. However, there is one area of application in which the leaching of DEHP from a container to a 

liquid in contact with it does occur to a significant extent and that is in hospital equipment, which can 

result in a high acute exposure. This is especially problematic for those that need regular medical 

attention.  

 Although is it difficult to accurately estimate the total chronic exposure of the general population 

to DEHP, the general consensus seems to be that this chronic exposure is below what government 

agencies judge as safe. However, given the prevalence of DEHP as contaminant worldwide, the 

uncertainty concerning what is considered a safe level of exposure, the possibility of synergistic effects 

with other compounds, and the possibility to engineer more biodegradable plasticizers, we suggest, 

following the precautionary principle, that DEHP be replaced with more suitable compounds. This would 

result in reduced human exposure to DEHP. However, before this can be achieved, a replacement 

plasticizer must be designed very carefully and tested thoroughly to ensure that its implementation avoids 

effects such as those observed with DEHP.  
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Table 1: Quantities of DEHP found in various 

liquids stored in plastic and glass containers (LOQ = 

limit of quantification). 

 

    

Type of samples Concentration of 

DEHP (µg/L or 

µg/kg) 

Number 
of 

replicates  

(n) 

Country of origin Source 

Bottled water     

Water in PET bottle, non-carbonated 0.02 – 1.7 3 Hungary (Keresztes et al. 2013) 

Water in PET bottles, carbonated < 0.02 3 Hungary (Keresztes et al. 2013) 

Water in recycled PET bottles 0.1 – 0.7 15 Honduras, Nepal, 

Switzerland 

(Schmid et al. 2008) 

Water in PET bottles 0.12 ± 0.1 7 Canada (Cao 2008) 

Water in polycarbonate bottle 0.22 1 Canada (Cao 2008) 

Water in glass bottle 0.17 ± 0.05 3 Canada (Cao 2008) 

Water in PET bottles, non-carbonated 0.125 ± 0.09 11 Paris, France (Martine et al. 2013) 

Water in PET bottles, carbonated 0.15 ± 0.07 4 Paris, France (Martine et al. 2013) 
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Water in PET bottles 0.35 – 0.48 30 Thessaloniki, Greece (Diana and Dimitra 2011) 

Water in PET bottles < 0.7 – 1.07 150 Riyadh, S-A (Al-Saleh et al. 2011) 

Water PET and glass bottles, carbonated < 0.02 – 6.8 12 Mytilene, Greece (Leivadara et al. 2008) 

Water PET and glass bottles, non-carbonated < 0.02 – 0.2 14 Mytilene, Greece (Leivadara et al. 2008) 

RO water stored in PET and glass bottles < 0.02 – 0.06 5 Mytilene, Greece (Leivadara et al. 2008) 

Water in PET bottles 0 – 0.19 4 Catalunya, Spain (Casajuana and Lacorte 

2003) 

Water in PE bottles 0.15 – 0.33 3 Catalunya, Spain (Casajuana and Lacorte 

2003) 

Still and carbonated water in glass bottles with 

metallic crown 

< LOQ – 11.9 170 Spain (Guart et al. 2014) 

Still and carbonated water in PET bottles < LOQ – 13 448 Spain (Guart et al. 2014) 

Water in PET bottles 8.78 9 Croatia (Bošnir et al. 2007) 

     

Food-containers     

Wine in glass bottle 2.4 – 16 6 Italy (Russo et al. 2012) 
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Wine in glass bottle < 24 – 242 52 Italy (Del Carlo et al. 2008) 

Wine in PE box 25 - 276 10 Italy (Del Carlo et al. 2008) 

Wine in glass bottle < 2 3 La Rioja, Spain (Carrillo et al. 2007) 

Beer in glass bottle 4.7 3 China (Ye et al. 2009) 

Soft drinks 18.9 36 Croatia (Bošnir et al. 2007) 

RO water in vegetable cans (121°C) 0 – 0.66 24 Mexico (Gonzalez-Castro et al. 

2011) 

RO water in plastic containers (121°C) 0 – 0.23 22 Mexico (Gonzalez-Castro et al. 

2011) 

Raw milk Ca. 7-30 18 Denmark (Sørensen 2006) 

Pasteurized and homogenised milk Ca. 13-27 4 Denmark (Sørensen 2006) 

     

Leaching from PVC tubing (Terufusion® IV set, 

1m) 

    

Into a Tween80 solution (2mg/ml) – dynamic testing 

66-1125 ml/h 

100 – 1,000 3 Japan (Takehisa et al. 2005) 
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Leaching from infusion sets (Mediplus Dual 

TIVA infusion sets, PVC/DEHP 2m) 

    

Into Diprivan© 1% solution – dynamic testing 12 

ml/h 

4,200 3 UK (Rose et al. 2012) 

Into Propoven© 1% solution – dynamic testing 12 

ml/h 

4,900 3 UK (Rose et al. 2012) 

Into Intralipid© 10% solution – dynamic testing 12 

ml/h 

7,600 3 UK (Rose et al. 2012) 

     

Leaching from infusion sets (Extension Set, 

Laboratoire Cair, PVC/DEHP/PE 1.5m) 

    

Into six lipid emulsions, all 20% Intralipid©, 

Medialipid©, Structolipid©, Lipidem©, Clinoleic©, 

Omegaven© - static 

19,400 – 65,800 6 France (Bagel et al. 2011) 

Into pure oils (olive, soybean, coconut, cod liver) - 

static 

1,700,000 – 

3,100,000 

6 France (Bagel et al. 2011) 

     

Leaching from 5 different brands of PVC bags 

for injections (France) 
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Into 0.9% NaCl + 0.4mg/ml etoposide sol’n 17,000 – 25,000 8 France (Demore et al. 2002) 

Into 5% dextrose + 0.4mg/ml etoposide sol’n 17,000 – 25,000 8 France (Demore et al. 2002) 

     

Leaching from PVC bag (500ml) with aq. 

Solutions (Brazil, Baxter bags) 

    

Into 10% Glucose sol’n 1900 2 Brazil (Veiga et al. 2012) 

Into 0.5 % (m/v) amino acid sol’n (Leu, His, Thr) 800 – 900 2 Brazil (Veiga et al. 2012) 

Into 0.9% NaCl sol’n 300 2 Brazil (Veiga et al. 2012) 

Into purified water 100 2 Brazil (Veiga et al. 2012) 

     

Leaching from PVC/DEHP blood bags, 

containing CPD (citrate-phosphate-dextrose) 

    

Into human blood 4°C (Fenwal) 50,000 – 65,000 3 Baltimore, US (Jaeger and Rubin 1972) 

Into whole blood 4°C (Fenwal) 80,000 ± 10,000  3 Ottawa, Canada (Rock et al. 1978) 

Into whole blood 4°C (Fenwal, adenine-enriched 

CPD) 

152,000 ± 4,500 4 US (Peck et al. 1979) 
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Into whole blood 4°C (McGaw adenine-enriched 

CPD) 

123,000 ± 22,400 4 US (Peck et al. 1979) 

Into whole blood 50,000 – 70,000 18 Japan (Inoue et al. 2005) 

Into pure plateletpheresis concentrate   2,090-10,670 5 Austria (Buchta et al. 2005) 

Into pure 35% plateletpheresis concentrate + 65% T-

Sol (Baxter Healthcare) 

500 – 3,250 4 Austria (Buchta et al. 2005) 

     

PVC/29 wt-% DEHP     

Into RO water 8 – 20 3 Canada (Kastner et al. 2012) 

 

  0 
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Table 2: Environmental concentrations of DEHP reported in various countries in different environmental compartments (LOQ = limit of 1 

quantification). 2 

Type of samples Concentration of 

DEHP (µg/L or 

µg/kg) 

Number 
of 

replicates 

(n) 

Country of origin Source 

In public fountains  0 – 0.33 7 Catalunya, Spain (Casajuana and Lacorte 2003) 

Tap water 0.06 3 Paris, France (Martine et al. 2013) 

Tap water 4.6 1 Montréal, Canada (Horn et al. 2004) 

Surface water < 0.9 – 5 81 Netherlands (Vethaak et al. 2005) 

Rainwater 0.02 – 0.1 7 Portland, OR, USA (Ligocki et al. 1985) 

Rainwater 0  – 0.43 56 Sweden (Thuren and Larsson 1990) 

Rainwater 0.69 – 1.7 3 Amsterdam, 

Netherlands 

(Vethaak et al. 2005) 

Rain water 0.42 72 Paris, France (Teil et al. 2006) 

Rain water < LOQ – 3.25 92 France (Dargnat 2008) 

Storm water < LOQ - 39 86 USA (Cole et al. 1984) 
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Storm water < 1 – 5 39 Stockholm, Sweden 

Göteborg, Sweden 

(Björklund et al. 2009) 

River water 180 1 Montréal, Canada (Horn et al. 2004) 

Melted snow 

200 ml samples transferred to 10L bottle. All same 

area though… 1 or 50 samples? 

130 1 Montréal, Canada (Horn et al. 2004) 

Creek water  47 1 Montréal, Canada (Horn et al. 2004) 

Landfill leachate 62 1 Montréal, Canada (Horn et al. 2004) 

Wastewater treatment plant influent 

3.5L collected in 1h, 2 different influents 

70 2 Montréal, Canada (Barnabe et al. 2008) 

Wastewater treatment plant effluent 

3.5L collected in 1h, 2 different influents 

54 1 Montréal, Canada (Barnabe et al. 2008) 
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