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Abstract
Tropospheric and lower-stratospheric motions at mesoscales and larger are a
mixture of waves and two-dimensional (2-D) turbulence. Determining their rel-
ative importance is necessary, since waves are capable of coordinated systematic
momentum transport accompanying the wave propagation, and associated wind
forcing, in ways that 2-D turbulence is not. This can impact weather forecast-
ing. Using a network of ten windprofiler radars in eastern Ontario and western
Quebec in Canada, plus an additional one in the Arctic, the relative roles of inter-
nal gravity (buoyancy) waves and two-dimensional turbulence are examined at
temporal scales from about 3–4 hrs to several tens of hours (horizontal spatial
scales of typically one or two hundred kilometres to a few thousand kilometres),
with the purpose of investigating the respective roles of these two distinct char-
acteristic fluid motions as functions of location, season and year. The emphasis
is on studies of spectral slope variability, rather than absolute spectral magni-
tudes, giving a perspective not previously substantially presented. In particular,
we have found a frequency band in which gravity-wave Doppler shifting pro-
duces distinctly different spectral slopes than those predicted for 2-D turbulence,
and these differences are employed to distinguish the flow fields. The network
used (excluding the Arctic site) covers an area of ∼106 km2 and includes a vari-
ety of different terrains. Radial velocities have been recorded on time scales of
minutes for data lengths covering durations of up to 12 years. Altitude coverage
is from 1 km to typically 14 km, at 500 m resolution. Results suggest a region
from ∼2 to ∼5 km altitude (deeper for some radars) where waves are weaker and
2-D turbulence appears to be generally more significant, but where occasional
bursts of gravity-wave activity can occur, while above typically 6–8 km, gravity
waves increase in significance. There are distinct site-to-site variations.
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1 INTRODUCTION

There has been a long-standing debate about the relative
contributions of internal gravity (buoyancy) waves and 2-D
turbulence in the lower atmosphere in the period range
from a few minutes to several days. While the impor-
tance of waves in the stratosphere and mesosphere is well
established, with strong dominance by planetary waves
in regard to stratospheric motions, and very strong inter-
nal gravity wave (IGW) activity in the mesosphere (e.g.,
Lindzen, 1981; Fritts and Alexander, 2003; Thayaparan
et al., 1995, and references there-in; Hocking et al., 2016),
arguments persist as to the relative importance of IGWs
in the troposphere and lower stratosphere. Some authors
consider them to be important, while others consider them
as largely “noise” (e.g., see discussions in Pisoft et al., 2018;
Minamihara et al., 2018; and Sutherland, 2010, for vari-
ous views). The general exponential growth of gravity wave
amplitudes with increasing height means that an increase
in the dominance of these waves is to be expected at higher
altitudes, while perhaps (though not necessarily) 2-D tur-
bulence might be more important at lower altitudes. Few
studies have been dedicated to a quantitative and exten-
sive evaluation of these different points of view. Some
studies of wave magnitudes and variances (e.g., Nastrom
et al., 1987, using GASP data) have been interpreted as
support for a gravity-wave theory. That work used the fact
that the log of power spectral densities were linear as a
function of the log of the wavenumber, with slopes on the
order of −5/3 to −2, which is indeed supportive of grav-
ity wave models. However, while such slopes do support
gravity wave theory, these slopes are not exclusive to that
proposal, and could possibly be attributed to turbulence
(e.g., Lilly, 1983; 1989; Lindborg, 1999 (hereafter L99),
Tung and Orlando, 2003 (hereafter TO03), and references
there-in).

It is important to note that it is not possible to deter-
mine the relative roles of waves versus non-wave-like
activity by simple pattern recognition; certainly strong
individual waves can appear as distinct wave-like pat-
terns in clouds, for example, but a sufficient number of
weaker waves can appear just like a turbulent regime.
Some more recent papers make an implicit assumption
that the majority of the oscillations with periods between
a few minutes and a significant fraction of a day, and
horizontal wavelengths from tens to many hundreds
of kilometres, are indeed gravity waves. For example,
Minamihara et al. (2018) have shown spectra of oscil-
lations that they associate with gravity wave activity in
Antarctica, and other papers have measured momentum
fluxes in the stratosphere and upper troposphere (e.g.,
Geller et al., 2013; Fritts et al., 2016). In the latter cases,
the non-zero values deduced for momentum fluxes are an

indication that the oscillations observed must be due to
gravity waves, but those studies were in the main strato-
spheric and above. Furthermore, Fritts et al. (2016) specif-
ically sought out gravity wave “hot-spots” for their studies.
The article by Minamihara et al. (2018) contains a list
of recent references pertaining to gravity wave studies in
the troposphere and lower stratosphere. The question that
remains is: what is the lowest altitude above which gravity
wave activity can generally be considered to be stronger in
its impact on the atmosphere than 2-D turbulence?

Before proceeding, it is appropriate that the distinc-
tions between waves and 2-D turbulence are understood.
Waves are well understood by most readers: the most
important feature of waves from our perspective is that
they have a dispersion relation that links the period, wave-
length and wave speed. They are also capable of trans-
porting energy and momentum fluxes large distances. In
regard to 2-D turbulence, we consider it as comprising
“eddies” of different sizes, stratified in layers, which are
two-dimensional in nature (no altitude coordinate). In the
idealized case, they are statistically stationary in time (no
“period” can be associated with them), and comprise dif-
ferent horizontal scales which have (nominally) repeatable
spectral behaviour as a function of spatial wavenumber.
They have no dispersion relation, and cannot transport
momentum or energy in the way that a wave can. In our
case, the 2-D turbulence that is observed covers scales from
quasi-geostrophic (Q-G) turbulence down to mesoscales
and smaller. A variety of mechanisms have been pro-
posed to create these eddies, including down-scale enstro-
phy transport and up-scale energy transport. According to
some authors, baroclinic instability and Ekman damping
are important. Down-scale energy transport, through short
synoptic eddies and on to mesoscales, is also considered in
some models. Relevant theories of creation are discussed
by L99, and TO03.

One feature that will be assumed throughout this work
is that both the IGW spectrum and the 2-D turbulence
spectrum (which we take to include Q-G turbulence) are
isotropic in the horizontal plane. With regard to IGWs, it
is assumed that waves are equally likely to be propagat-
ing in any horizontal direction: while there may be local
variations in this, our data span more than 10 years of
data, at 11 different sites, so such isotropy should be a
reasonable long-term assumption. With regard to 2-D tur-
bulence, isotropy means that any individual “snapshot” of
the eddy structure will look statistically similar if rotated
by an arbitrary angle in the horizontal plane. There will
be no long-term tendency for eddies to appear stretched in
any preferred direction, for example, or for any one direc-
tion to show greater intensity of fluctuation than any other
(after sufficient averaging). This will be verified later in the
text by comparing data recorded in orthogonal directions,
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and will be shown to be generally true irrespective of the
nature of the oscillations (IGWs or 2-D turbulence).

A new approach is needed to discriminate more defini-
tively between gravity waves and 2-D turbulence, since
the estimated mean slopes for 2-D turbulence and the
intrinsic gravity wave spectra (i.e., the gravity wave spectra
seen before Doppler effects are considered) are too simi-
lar in value to be used as a useful discriminator. Studies
of momentum flux help, but in this article an alterna-
tive approach is demonstrated. The new method relies
on the fact that Doppler shifting of wave-like events leads
to profound differences in gravity wave and 2-D turbu-
lence spectra, where such differences are not so apparent
without Doppler shifting. Our procedure relies on mod-
elling studies (introduced in Section 4) which reveal a
frequency band in which real gravity wave spectra (i.e.,
Doppler-shifted rather than intrinsic spectra) and 2-D tur-
bulence spectra do indeed show significantly different
slopes. This band is close to the atmospheric inertial fre-
quency, and our studies will be concentrated there. Impor-
tantly, in our investigations, regions known to have strong
gravity wave activity (hot-spots) have not been sought
out; rather, an area of the world has been chosen which
can be considered topographically and geophysically quite
“average”.

More specifically, the coherent nature of gravity waves
will allow them to be Doppler shifted by the mean wind
to varying degrees, resulting in changes in spectral slopes
(as viewed by a stationary observer on the ground) under
different wind conditions (Scheffler and Liu, 1985; 1986;
Fritts and Van Zandt, 1987 [hereafter FVZ87]; Smith
et al., 1985; 1987), with particular spectral bands show-
ing stronger Doppler-shifting effects. On the other hand,
largely incoherent processes such as 2-D statistically sta-
tionary turbulence will, under equilibrium conditions and
according to common theory (e.g., Gage, 1979; Lilly, 1983,
L99, TO03), produce a well-defined wavenumber spec-
trum with no statistically significant localized wavenum-
ber peaks or dips, and furthermore for radar studies
the wavenumber spectrum will convert directly to a fre-
quency spectrum via the Taylor frozen-in hypothesis (Tay-
lor, 1938).

With regard to 2-D turbulence models, recent propos-
als have been presented by a variety of authors, including
L99, TO03, Koshyk and Hamilton (2001) and Cho and
Lindborg (2001). While differing in details, each proposes
a similar form for the wavenumber spectrum, this being of
the following form (L99, equation [71]):

E1(k) = d1k−𝛾 + d2k−𝜉 . (1)

We will take the values determined by L99 as a reference
for our work, viz. d1 = 9.1× 10−4 and d2 = 3.0× 10−10,

where k is expressed in rad/m (see fig. 1 in L99, upper label,
but note that the lower axis is wrongly labelled in that arti-
cle; it should be “wavelength [km]”). L99 used MOZAIC
data (Marenco et al., 1998) and showed that 𝛾 = 5/3, 𝜉 = 3
for the fitting. However, we emphasize that the reasons
for the two distinct slopes is still under discussion and has
been receiving continuing attention. While no consensus
has yet been reached, for the purposes of this article, our
only requirement is that the model be based on accept-
able physical foundations. TO03 gives a good overview
of the various proposed models; there is general agree-
ment that the dual power-law shown in Equation (1) is
physically valid. We leave it to the reader to pursue these
mechanisms if interested. It is also important to note that
different data sets (e.g., MOZAIC (Marenco et al., 1998),
compared with Nastrom and Gage (1985) give slightly
different values for d1 and d2, but there is a significant
level of universality across the different measurements,
and variations in d1 and d2 between data sets are con-
sidered to be modest. TO03 (among others) discusses this
in some detail. We will allow for such variations in our
analyses.

If a sensor passes through the turbulent medium with
speed u (or equivalently the region passes by a fixed detec-
tor, such as a radar, with speed u), and the medium is
assumed to be statistically stationary and homogeneous,
then the measured angular frequency of a wavenumber
k will be 𝜔 = uk. If the frequency spectrum is written
as F𝜔(𝜔), then applying a standard 1-D Jacobian gives
F𝜔(𝜔) = E1(k)(dk∕d𝜔) = E1∕u. Hence,

F𝜔(𝜔) = d1u(𝛾−1)
𝜔−𝛾 + d2u(𝜉−1)

𝜔−𝜉 (2)

This will be the theoretical function against which data
will be compared when testing for 2-D turbulence-like
behaviour. Further commentary appears in Section 4.2.

In regard to gravity waves, changes in spectral slope are
expected due to Doppler shifting, and FVZ87 have deter-
mined expressions for expected changes to the spectral
form under different conditions of mean wind speed and
wave phase speed. Comparisons of the predictions of L99
or TO03 with FVZ87 against our data will form the basis
of this article.

On a related topic, there is also considerable debate
about the relative roles of rotational (geostrophic) motion
and divergent motions in flows on the scales under con-
sideration. While in some senses this is a different issue
when it comes to specific details, it is related to the present
study: high-frequency gravity waves (with periods of less
than a few hours) are primarily divergent, while waves
with periods comparable to the inertial frequency, and 2-D
turbulence, have strong rotational aspects. In this regard,
Bühler et al. (2014) (hereafter BCF14) presented a method
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to use data recorded along extended paths traced out by
aircraft and ships to disentangle divergent and rotational
aspects of 2-D motion. While of interest, there are vari-
ous reason why BCF14 is unsuitable for our radar studies.
First, the BCF14 method applies to wavenumber spectra,
and uses a Helmholtz decomposition, which is inherently
a spatial-scale-dependent decomposition. It is not suitable
to deal with our data. Furthermore, it relies on comparison
of transverse and longitudinal spectra, and intercompares
spectral amplitudes, whereas our method will be based
on comparisons of spectral slopes after consideration of
Doppler shifting. The interested reader is invited to view
BCF14 as perhaps a complementary method, but we will
not discuss it further herein. With these points in mind, we
concentrate on utilizing our Doppler-based method, which
directly utilizes radial velocities and so is better matched
to the radar data.

Our approach, then, will be to search for evidence of
variability in the spectral slopes of log(power density) ver-
sus log(frequency) in a critical frequency band close to the
inertial frequency, as a function of time (on scales from
months to years), altitude and geographic location, using
a network of profiler radars in eastern Ontario and west-
ern Quebec in Canada. This radar network is referred to
as the O-QNet (Ontario-Quebec NETwork). An additional
polar radar at 80◦ N is also used. In Section 2 the radar net-
work is described. In Section 3, a broad overview of the
method is presented, and special features of the O-QNet
that have made this study possible are highlighted. In
Section 4.1, the relevant basics of gravity wave theory are
presented, and the primary parameters that will be stud-
ied are outlined, while pertinent properties pertaining to
2-D and Q-G turbulence are outlined in Section 4.2. In
Section 5, specific details of the analysis will be discussed,
and Section 6 will present results. The main body of the
text is supported by Appendix A and Appendices S1, S2, S3
and S4; the latter gives further information of general inter-
est about the radar network, presents some basic theory
regarding IGWs that is of relevance to the article and shows
some details about the statistical reliability of our results.
Discussion and conclusions are presented as Sections 7
and 8.

2 INSTRUMENTATION

In these studies, wind profilers have been used to anal-
yse atmospheric motions over multiple sites, using time
series with lengths spanning from 5 up to 12 years; the
mean duration per site was 8 years. These radars use nar-
row radar beams pointing at different angles in the sky
to determine along-bore radial velocity components of the
wind, from which vector winds are generally determined.

F I G U R E 1 Map of the radars of the O-QNet. Radars are
indicated by a cross (×)

General discussions about such radars are given in Hock-
ing et al. (2016).

The locations of the O-QNet radars are shown in
Figure 1; an additional polar radar exists at Eureka in
Nunavut, Canada, in the Arctic (80◦ N, 85.9◦ W), but is not
shown on the map. The typical separation between neigh-
bouring radars in the O-QNet was about 200 km, with
some nearest neighbours as close as 100 km. There were 11
radars in all (including Eureka). The radars were installed
in the period from 2002 to 2014, and typically one or two
radars were built per year. Radars began operation as soon
as commissioning was complete.

The O-QNet is discussed by Hocking et al., 2007; 2009,
and a demonstration of the data quality has been given
by Taylor et al. (2016). Extensive comparisons of profiler
winds against radiosonde winds have also been made,
showing good agreement (e.g., see Hocking et al., 2016).
The quality of the data is also verified by the fact that winds
from the O-QNet have been incorporated into CWINDE
worldwide weather forecasts on an hourly basis for many
years (Illingworth et al., 2015).

Typical cross-sections (from Google Maps) across the
O-QNet region are shown in Figure 2, revealing regions
of flat land (near Harrow, Gananoque and Montreal), and
more undulating and hilly regions nearer Negro Creek
and Aumond (both these sites have ski resorts nearby, so
have modest-sized hills). For reference, the highest point
in Ontario is at Ishpatina Ridge, just north of Sudbury,
being 693 m above sea level. There are no peaks in the
region of the O-QNet over 1,000 m ASL (above sea level).
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HOCKING et al. 3739

F I G U R E 2 Cross-sections of the terrain along approximately
straight lines (following the nearest roadways) from (a) Harrow to
Montreal, (b) Harrow to Aumond and (c) Toronto through Egbert
and on to Abitibi canyon (adapted from Google Maps)

The taller hills tend to rise only a few hundred metres
above the surrounding countryside.

The wind profiler radars each had five main beam
directions (one vertical, and four off-vertical at azimuthal
steps of 90◦), and each radar cycled between those beams
on roughly a minute by minute basis throughout the year,
with time intervals varying by ±10 s depending on the
recording mode. On each acquisition, radar spectra were
generated and subject to various tests; acceptable spectra
were then used to determine radial velocities. Acceptance
rates at 2–5 km altitude were above 80%, with slightly
reduced acceptance rates at higher altitudes. These radial
velocities will then form the basis of further spectral anal-
ysis, to be discussed herein.

Appendix S1 gives an overview of some technical
aspects of the radars used, adopting the Abitibi Canyon
radar as an example. Many of the features, such as peak
power, measurement mode, duty cycle, height resolution,
number of beams and ranges covered, are common to all
radars. One point worth noting here is the high level of
ground-signal suppression (−120 dB two-way) built into
the design of the O-QNet radars (Hocking, 1997). The Har-
row radar, for example, is surrounded by several hundred
wind turbines, from 5 to 100 km away, but despite this,
the strong signal rejection for objects along the ground
ensures that the turbines did not contaminate our signal.
This resulted in highly reliable wind data with minimal
contamination (e.g., see Taylor et al., 2016).

3 METHODS

The main building blocks for this study were spectra of
radial velocities, which were examined on log–log plots of
power spectral density versus frequency. The power spec-
tral values under examination can be taken to be linear in
log–log coordinates for the frequency bands of interest, so
straight-line fits are applied. However, rather than look at
mean slopes and determine whether they are on the order
of −1.5 to −2, the focus will be on significant variations
from such values. Significant flattening of these slopes
can be explained by Doppler shifting of IGWs (FVZ87)
( Section 4.1), while significant steepening of the slopes
can be explained by a 2-D turbulence model (L99, TO03)
utilizing Equation (2) (Section 4.2).

While it was noted above that radial velocities are
often used to determine total vector winds by combining
multiple radial velocities from different beams, in these
investigations the radial velocities will be used directly,
since by doing so the number of assumptions made in the
production of the final product will be minimized.

The technique used involves determination of these
radial velocities, then using data-compensated dis-
crete Fourier transform (DCDFT) spectral analysis to
properly compensate for missed data and variable sam-
pling rates (Ferraz-Mello, 1981). This technique uses
a Gram–Schmidt ortho-normalization process (e.g.,
Cheney, 2009) to perform the equivalent of a Fourier
transform, but allows data points to have non-equal tem-
poral spacings. The focus will be on the use of off-vertical
radar beams, following Smith et al. (1985; 1987). This is
partly because this yields the most useable data, and partly
because it gives greater sensitivity in subsequent tests, as
will be explained shortly.

Data were chosen primarily from one beam only, nom-
inally “north” in this work (with some minor exceptions).
Note that, due to local constraints during construction, the
“north” beam may not be true geographic north; never-
theless, the beam’s azimuthal orientation is well known
(±0.5◦) for each radar, and is within ±45◦ of geographic
north. Only one beam is used for any selected radar
because, if data from different beams are mixed, there is
a risk that, by recording in different spatial regions of the
sky, the quality of the data will be degraded. However,
because different sampling strategies were employed at
different times in order to produce optimum coverage of
all heights for weather forecasting applications, the resul-
tant radial velocities are only available in any one mode on
any one beam and at any one height approximately every
4–7 min, at slightly irregular data steps, and sometimes at
even lower data acquisition rates. Nevertheless, there are
compensating circumstances as well. For example, differ-
ent modes may overlap in height, allowing more data at
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some heights. In particular, the data at 4–7 km altitude
are obtained using both “low-altitude” and “high-altitude”
modes, so that these altitudes are sampled more frequently
than altitudes above and below this band.

The net result of using these different modes is that our
accepted radial velocities are quasi-randomly distributed
in time, with spacings between successive points vary-
ing from ∼5 min out to as much as 30 min, depending
on altitude, availability of scatterers and noise/contami-
nant effects. At times, the radars missed data due to power
failures etc., and this also produced temporal gaps.

Generally, it was found that about 1,200–2,000 reliable
points per month per height per beam could be recorded,
with a mean number of points over our entire radar set of
1,632 per height and per month. On some occasions, using
special recording strategies, counts higher than 2,000 per
month were obtained, and on 5% of occasions (during spe-
cial experiments, such as occasions when the system was
run in a three-beam mode instead of a five-beam one), rates
as high as 4,000 radial velocities per beam per month per
height were achieved. To better comprehend the results,
a simple spectral model was developed, which could be
used to ascertain accuracies in the analyses. This model is
described in Appendix A, and will be discussed in greater
detail in Section 5.

4 THEORY OF GRAVITY WAVES
AND 2-D TURBULENCE RELEVANT
TO OUR ANALYSIS

4.1 Gravity waves: Essential
background

The studies presented in this article are based on spec-
tra of radial velocities determined using windprofiler data,
which are then compared with model simulations. In
regard to modelling, previous studies of Doppler shifting of
the intrinsic IGW spectrum will be employed. Such stud-
ies have been performed by, for example, Scheffler and
Liu (1985; 1986), and FVZ87. The work of FVZ87 has
been adopted because their results are presented in ways
that are most amenable to comparisons with our obser-
vational data. Figure 4 from FVZ87 is re-calculated and
re-plotted here (with important adaptations) as Figure 3,
and will be used as a reference throughout the work. Note
the sharp cut-offs on either side: these graphs show only
the gravity waves; evanescent external gravity waves and
possibly planetary waves exist to the left of 𝜔/f = 1 but are
not included in the figure. They will be discussed again
shortly.

Various authors have proposed forms for gravity wave
intrinsic spectra, but all are largely similar, although

presented in different ways. These include gravity wave
spectral forms presented by FVZ87, Walterscheid and
Hocking (1991) and Gardner et al. (1993). The model given
by FVZ87 is simpler but quite appropriate for our purposes,
as it provides for the easiest comparisons with our data.

FVZ87 specified a spectral energy density as a function
of intrinsic frequency and horizontal wavenumber of the
form

Eh(k, 𝜔′) = E0(p − 1)f p−1 (𝜔′)−p (t − 1)

k∗

(
1 + k

k∗

)t . (3)

In this equation, 𝜔′ is the intrinsic angular frequency (i.e.,
as seen by an observer moving with the mean wind), f is
the inertial angular frequency, k is the wavenumber, k* is a
fixed value of k and is referred to as the “characteristic hor-
izontal wavenumber” and t is another constant. (Although
“t” can be confused with time in Equation 3, here it is not
time; the notation of FVZ87 has been followed).

FVZ87 integrated Equation (3) over all k to give a
function which depends only on 𝜔, and we refer to that
spectrum as Eh(𝜔). In this work, the frequency depen-
dence is most important, so the term (𝜔′)−p is paramount.
The value of p, which represents the negative of the slope
of the intrinsic log10 spectral density as a function of log10
frequency, is sometimes taken as 5/3, but is also taken as
2 at other times; FVZ87 recommended a value of 2, since
it is mathematically convenient (see just prior to equation
[23] in their article); the exact value can be considered as
unknown but probably lies between 5/3 and 2. A value
of t= 3 is recommended. FVZ87 integrated this function
over the k-spectrum for different mean winds, and in the
end produced their equations (30) to (35), which show
the frequency dependence of the wavenumber-integrated
Doppler-shifted spectrum. These equations will not be
reproduced here; rather, Figure 3 in this article will be the
main source of reference.

It is important to note that Figure 3 does not make any
estimates of expected wave amplitudes that can be used
here. The graphs are scaled relative to a quantity E0 which
equals the total kinetic and potential energy per unit mass
in the system, but the value of E0 is left as arbitrary. For the
purposes of this article, the ratios of the energy densities in
Figure 4a,b can be compared in an absolute sense.

Of primary importance is the grey shaded area in
Figure 3a,b, which represents the region of best experi-
mental response of the radars, for reasons related to sam-
pling efficiencies, as discussed in Section 2 and Appendix
S1. The inset box labelled “S” shows qualitatively the
slopes in the region of the graphs outlined by the larger box
with dashed borders in Figure 3a. It can be seen that, while
the shaded region is our most experimentally sensitive
region, it is also the most sensitive region for the model, as
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HOCKING et al. 3741

F I G U R E 3 Doppler-shifted IGW spectra as viewed by a stationary observer for various degrees of Doppler shifting, plotted using the
formulas of FVZ87: (a) spectra of horizontal velocities, and (b) spectra of vertical velocities. Here, 𝛽 is the ratio of mean wind speed divided by
typical wave phase speed, while 𝜔 is the wave frequency, f is the inertial frequency, and N is the Brunt–Väisälä frequency. All frequency units
may be considered as radians per second in this graph, but have been normalized relative to the inertial frequency throughout. The inertial
frequency has a corresponding period of 17.0 hr, which is the value at the approximate midpoint of the O-QNet (actually 16.97 hr at 45◦ N).
The units of Eh and Ev are m2 s−1 and are scaled using a quantity denoted as E0 by FVZ87 (see text for details). The inserted box labelled “S”
in (a) shows approximate mean slopes in the region denoted by the larger box with broken borders. The grey shaded region shows the
spectral range of our best data

the mean slopes of the model show the greatest variability
as a function of 𝛽 in this region (𝛽 = u∕c∗, where c∗ is the
representative phase velocity of waves travelling in some
prescribed direction and u is the component of the mean
wind in that direction).

The model presented by FVZ87 assumes that the
gravity waves passing over the radar are essentially dis-
tributed isotropically. Sources are assumed to occur in
all directions, and to radiate isotropically (e.g., see Piani
et al., 2000, Figures 4, 5 and 8, which show general (though
not complete) isotropy). This means that, in any part of the
spectrum, waves are Doppler shifted on average equally in
the positive and negative directions.

In addition to Figure 3, some extra information needs
to be considered. First, it needs to be recognized that the
waves obey a dispersion relation. These have various levels
of complexity, depending on the assumptions used in solv-
ing the Navier–Stokes equations. Here, equation (43) from
Walterscheid and Hocking (1991), has been chosen. This
is quite general and describes non-hydrostatic compress-
ible flow on an f -plane with Rayleigh drag. The equation
of most importance is

m̃
(

m̃ + i
H

)
= 𝜔R

𝜔
⋅
(N

2
− 𝜔2)

(𝜔2
R − f 2)

k2 + 𝜔2

c2
s

(4)

where m̃ = m − 2i
H
,m being the vertical wavenumber, H is

the scale height of the atmosphere, and of course i =
√
−1.

The term 𝜔R is equal to 𝜔+ i𝛼, where 𝛼 is the Rayleigh
drag coefficient. All angular frequencies in this equation

are intrinsic ones (no Doppler shifting). Finally, cs is the
speed of sound. Equation (4) will be revisited shortly.

Two final points need to be recognized in regard to
Figure 3. The first point arises in regard to an assumption
usually made with windprofiler radars. In many appli-
cations, the vertical wind component is set artificially to
zero, and all of the radial velocity measured by the radar
is ascribed to the horizontal wind. The approximation gets
better for lower frequencies. However, since the effect is
frequency dependent, it does lead to modest biases when
slope fitting to the spectra. Using the relative energies
between Eh and Ev shown in Figure 3, it is shown in
Appendix S2 (following Van Zandt, 1985) that this will
lead to a systematic bias, and our measured slopes will
be too shallow relative to the true Eh slopes by about 3%.
This correction will be applied later to compensate for such
systematic errors.

Secondly, the FVZ model assumes a sharp cut-off in
the intrinsic spectrum at the inertial frequency (𝜔/f = 1
in Figure 3). In a realistic wave model, the region 𝜔< f
will be occupied partly with waves which decay exponen-
tially with distance from their source (m will be imagi-
nary in Equation (4); see Appendix S2). These are called
“external gravity waves”. The region will also contain
Doppler-shifted IGWs and possibly even Doppler-shifted
planetary waves. The spectral behaviour in this region is
unknown; non-linear effects and wave saturation may be
important in defining it (e.g., Fritts and Alexander, 2003),
and it is possible that some aspects of planetary-wave gen-
eration (usually reserved for periods of 2 days and more)
may also apply even at 𝜔 = f . The behaviour in this
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3742 HOCKING et al.

frequency region is therefore best left to observation, and
this will be revealed in Section 5.2.1.

4.2 Relevant 2-D turbulence theory

We now turn to examine the effect of a mean wind on
a 2-D turbulence spectrum which is carried with the
mean motion; the possibility of IGWs will be temporar-
ily ignored. The spectral form expected for an atmospheric
region drifting over a radar at speed u, in which 2-D tubu-
lence dominates the internal motions, was presented in
Equation (2). Figure 4 shows the spectra measured in fre-
quency space (as seen by a radar) for various drift speeds
ranging from 1 to 30 m s−1. Typically, weather systems drift
at speeds of ∼5–20 m s−1; for example, knowledge of Cana-
dian weather from the O-QNet assists with 7-day forecasts
in Europe (an 8,000 km distance), as Canadian weather
systems reach Europe (changed in form but not com-
pletely degraded) in about 7–10 days. Other evidence sup-
porting these estimates is presented in figure 7 of Chang
et al. (2002) and Hoskins and Hodges (2018).

The curves are dominated by a −3 power law to the
left and −5/3 power law to the right. The approximate
intersection points of the two laws are indicated by grey
squares.

The values for d1 and d2 assumed in Equations (1) and
(2) have been taken from L99, which use MOZAIC data
(Marenco et al., 1998), and these values also produce a
reasonable fit to Nastrom and Gage (1985). It is prudent

F I G U R E 4 Graphs of k-spectra due to 2-D turbulence (see
Equation (2)) as seen in the frequency domain by a profiler radar,
for different drift speeds of the overlying weather system, and using
Taylor’s frozen-in hypothesis. Values of u are indicated on the left.
Grey squares show approximate points of intersection of the k−3

and k−5/3 portions of the spectral field; the error bars are discussed
in the text. Vertical dash-dot lines define the approximate spectral
range in which our analysis was applied. The inertial frequency
(Hz) is also shown

for us to test whether our results are sensitive to the val-
ues of these parameters. We will examine the impact of
variations in the ratio d1/d2 of a factor of 10 (i.e., vary-
ing from [

√
(10)]−1 to

√
(10) times the currently assumed

value). Such a range gives allowance for different data sets
to have different values of d1 and d2, although as discussed
by TO03, there is a general belief that there is some degree
of universality about the values. Allowing for variations of
a factor of 10 allows us to consider a reasonable level of
natural variability but still maintains some possibility of
universality.

In log–log space, the limiting cases of Equation (1)
at very low and very high wavenumbers comprise
two straight lines (asymptotic limits) of the type
log10[E1(k)] = aL x+ bL and log10[E1(k)] = aH x + bH,
where x = log10(k), with “L” referring to the lowest
wavenumbers and “H” referring to the highest wavenum-
bers. Hence, aL = −5/3 and bL = log10(d1), while aH = −3
and bL = log10(d2). These two lines intersect at a value
xint = (bL−bH)/(aH−aL), so in our case the value of k at
the intersection satisfies log10(kint) = −3/4 log10(d1/d2).
Converting to the frequency domain to prepare us better
for the experimental result later, we denote the fre-
quency in Hz as 𝜈, then assume that the scales drift over
the radar with speed u. Then the measured frequency
is 𝜈 = ω∕(2𝜋) = uk∕(2𝜋), so the point of intersection
of the two asymptotic curves occurs where log10(𝜈int)
= −3∕4 log10(d1∕d2) − log10(2𝜋∕u). These points have
been plotted in Figure 4 for the given values of d1 and
d2, but in addition cases where d1/d2 is multiplied by
1/
√

(10) and
√

(10) times, as discussed in the previous
paragraph, have been discussed. These two cases represent
the extremities of the “error bars” shown in Figure 4.

The actual graphs shown in Figure 4 show only the
cases for d1 and d2 as prescribed following Equation (1);
the graphs for d1/d2 when multiplied by 1/

√
(10) or

√
(10)

have not been added, in order to reduce clutter. They look
similar to the ones shown, but transition from the −5/3
power law to the −3 power law at different points; for
example, when d1/d2 is smaller, the k−3 portion becomes
significant at higher frequencies, so the transition point
occurs more to the right in the figure. For the modified
cases of d1/d2, the correct frequency values of the transi-
tion points are shown as the end-points of the error bars:
since it is only the transition frequencies that are most
important, the correct vertical positioning is not given,
again to avoid clutter.

The vertical dash-dot lines show upper and lower
limits to the region of the graphs that will be analysed
later. The slope changes in this region, but only modestly,
so in order to be able to compare this model with our
results, slopes of best-fit straight lines across this spec-
tral band for different values of u have been determined.
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HOCKING et al. 3743

For speeds of 1, 3, 5, 10 and 30 m s−1, the slopes were
−1.82± 0.01, −2.09± 0.02, −2.30± 0.02, −2.55± 0.02 and
−2.83± 0.01, respectively, for the cases where we used d1
and d2 as described after Equation (1). Multiplying the
ratio (d1/d2) by

√
(10) or 1/

√
(10), as discussed above, did

not change the range of values of the slopes; they were still
in the approximate range from −1.7 to −2.8, and (not sur-
prisingly) never became greater than −1.67 or less than
−3.0.

It could be argued that these drift speeds are too
small to allow the application of Taylor’s frozen turbulence
hypothesis. This assertion will be checked using a scheme
proposed by Lin (1953) and Lumley (1965). In Lum-
ley (1965), it is proposed that, for a turbulent wavenumber
k†, the wavenumber can be considered to be amenable to
application of Taylor’s “frozen turbulence” hypothesis if
the integrated kinetic energy in the spectrum between 1

2
k†

and 3
2

k† (which will be referred to as [u′
†]

2) is substantially
less than u2 (Lumley’s equation (4)). The anti-derivative of
Equation (1) is

IE(k) = −3
2

d1k−2∕3 − 1
2

d2k−2 + c,

(c being an arbitrary constant), which will now be
employed. A representative value of the frequency close to
the left-hand vertical dash-dot line of Figure 4 was cho-
sen; in this case, we chose 𝜈† = 1.5× 10−5 Hz. Then, for a
chosen value of u, the associated wavenumber k† = 𝜈† ×
2π∕u was found. Lumley (1965) recommended determin-
ing k† ×E1(k†) as the “kinetic energy” associated with the
band around k†, but here the energy was found by inte-
grating between 1

2
k† and 3

2
k†, which gives better accuracy.

Of course this is just the kinetic energy per unit mass in
the parallel spectrum, rather than the total energy den-
sity due to all three components of the velocity vector, but
here Lumley (1965) is followed; we only seek a suitable test
parameter.

Evaluating IE(k) at k1 = 1
2

k† and k2 = 3
2

k† and taking
the difference (using values of d1 and d2 from Equation (1))
gives the integrated energy [u′

†]
2 over the band between k1

and k2.
The quantity [u′

†]
2∕u2 was then found. For values of

u between 30 and 5 m s−1, the ratio varied only mod-
estly from 0.06 to 0.12. For u < 5 m s−1, the ratio became
noticeably larger, being 0.18 for u = 3 m s−1 and 0.67 for
u = 1 m s−1. If 𝜈† was taken to be in the region around
the transition from a −5/3 to −3 power law, where k† was
greater, the ratios were typically 0.05 and less.

Lumley (1965) did not give numerical values for accept-
able ratios, but Wyngaard and Clifford (1977) did. Using
boundary-layer anemometer data, these authors exam-
ined cases with [u′

†]
2∕u2 ≈ 0.01 to 0.1 (their table 1 and

underlying text). They then determined the degree to
which spectra were distorted for the various cases in their
table 2. Distortions of the longitudinal spectra were deter-
mined to be on the order of 1% to 11%, with largest
distortions occurring for largest values of [u′

†]
2∕u2. It is

unclear whether these distortions affected the magnitudes,
or slopes, or both. However, even if the slopes were affected
by 10% (worst-case scenario), this will alter slopes around
−3 by at most 0.3 (i.e., between −2.7 and −3.3), and gener-
ally by less. In regard to the−5/3 law, the distortions would
be less than 5%. For our level of interest, this is sufficiently
small for us to develop guidelines that will help distinguish
2-D turbulence from IGWs.

As a point of interest, the analysis was extended to
lower values of 𝜈† (down to values of 5× 10−6 Hz and
lower, corresponding to periods longer than 2 days). In
these cases, the ratio [u′

†]
2∕u2 became rapidly larger, often

being 50–100% and climbing as 𝜈† decreased. This suggests
that, for lower frequencies outside our band of interest, the
Taylor hypothesis may collapse, a result that experimental
data will later partly corroborate.

It is therefore concluded that, for weather system drift
speeds of ∼5–20 m s−1, and for a system purely comprising
2-D (and/or possibly 3-D) turbulence, and for spectra anal-
ysed in the band indicated in Figure 4, slopes of approxi-
mately −1.8 to −2.7 are to be expected. The primary cause
of these steep slopes is the k−3 part of the 2-D turbulence
k-spectrum; without it, slopes steeper than −2 cannot be
obtained. To account for fitting errors, we will set the limit
at −2.1. Then, slopes less than −2.1 are proposed to repre-
sent 2-D turbulence, either in the k−3 part of the spectrum
or in both the k−5/3 and k−3 portions.

4.3 Mixed spectra

In Sections 4.1 and 4.2, the frequency spectra expected due
to IGWs (4.1) and 2-D turbulence (4.2) were considered
separately. Limits were set on allowed ranges of slopes;
purely IGWs lead to shallow spectra in our region of inter-
est, while purely 2-D turbulence leads to steeper slopes
(negative in all cases). Here, we wish to make some com-
ments in regard to the possibility of a mixture of the two
mechanisms.

First, it is important to note also that, when purely
k-spectra are examined, both the 2-D turbulence model
and the IGW model include a k−3 component (see
Equations (1) and (3)), but they manifest in very differ-
ent ways: in the 2-D case they map according to the Taylor
frozen turbulence hypothesis over a wide range of fre-
quencies, producing some 𝜔−3 spectral portion, while in
the IGW case the k−3 component is masked by the effects
of the IGW dispersion relations and the measured IGW
frequency spectrum shows no 𝜔−3 component.
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3744 HOCKING et al.

The 2-D spectrum should always be present, but will
often be overpowered by the IGW spectrum when IGWs
are present: as the spectral amplitude of the IGW portion
increases, the intercept with the 𝜔−3 portion moves to the
left in Figure 4, and the spectral interval between this inter-
cept and the “Taylor frozen turbulence breakdown point”
(discussed in the last section, i.e., 𝜈† ∼ 5× 10−6 Hz) nar-
rows. Consequently, a distinctive 2-D turbulence 𝜔−3 por-
tion is often not visible, although it does exist to sufficient
degree that it impacts the fitting of linear slopes to the
spectra.

If, in addition, a realistic case comprising a mixture
of 2-D eddies and IGWs (possibly with Doppler shifting
incorporated) is considered, the radar spectra may get
complicated: if, for example, the nominal 𝜔−5/3 portion of
the spectrum were dominated by IGW and the 𝜔−3 por-
tion by Q-G turbulence, a measured power law of around
𝜔−5/3 could send mixed messages about the relative con-
tributions of the two phenomena; a flattened slope due to
the IGW, coupled with a𝜔−3 Q-G turbulence contribution,
could even average out around−5/3, for example. Further-
more, in the absence of Doppler shifting, a 𝜔−5/3 or 𝜔−2

spectrum due to IGWs may be hard to separate from a 2-D
turbulence model with a 𝜔−5/3 power law. So clearly there
will be cases where a distinction between the causes of the
oscillations may not be possible, but we have found some
criteria which will enable significant distinction between
the models in a valuable range of situations.

Specifically, it can safely be proposed that (a) slopes
less than −2.1 in the log–log spectral frequency space
are strongly suggestive of 2-D turbulence (including Q-G

turbulence), (b) slopes greater than −1.5 are strongly
suggestive of Doppler-shifted IGWs and (c) intermediate
values will need additional investigation to resolve their
cause. If results show both categories (a) and (b) at dif-
ferent sites and/or times, then it will be apparent that the
atmosphere comprises both 2−D turbulence and IGWs,
though not necessarily at the same time. It will be seen in
the following analyses, with the use of 11 different stations,
that there is more than adequate room for a wide range
of revealing scenarios. At times, some pattern recognition
can be used to help resolve the models (see later).

5 ANALYSIS DETAILS

The details of the experimental technique will now be
presented.

5.1 Analysis: Basic procedure

Data were divided into monthly segments, and DCDFT
analysis of these monthly time series of radial velocities
was implemented for the nominal “north” beam, for all
sites and all altitudes.

Examples of DCDFTs of our radial velocities produced
using Ferraz–Mello decomposition are shown in Figure 5
(black solid lines). The spectra were taken at (a) Negro
Creek in June 2010, at 8 km altitude, and (b) Eureka in
February 2017 at 2 km. These spectra were not chosen
because they are particularly good or bad, but were simply

F I G U R E 5 DCDFTs overlain with fitting procedures. Each graph represents real data. (a) A sample spectrum using some real data for
the case in which the power spectral densities (PSD) become flat at small frequencies (<5× 10−6 Hz), and where the PSD enter the noise at a
frequency of ∼4× 10−5 Hz. (b) Another real data set, this time with the PSD maximizing on the left and then generally decreasing as the
frequency increases to the right; the PSD enters the noise in this case at a frequency of around 6× 10−5 Hz. In each case the DCDFT is given
by the black solid line. The so-called Fermi–Dirac fits are shown as dash-dot lines. The cut-offs (bounds) used for straight-line fits are shown
by vertical broken lines, and the actual straight line fit is shown by the sloping dashed line

 1477870x, 2021, 740, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4152 by C
ochrane C

anada Provision, W
iley O

nline L
ibrary on [27/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HOCKING et al. 3745

selected randomly. The apparent “straight-line” sections
are statistically significant, with values of the Pearson
regression coefficient of 0.42 and 0.64, respectively; more
details about the statistical significance will be discussed
in Section 5.2.2.

Each spectrum is different, so care is needed in isolat-
ing and fitting the relevant straight line. In creating the
power spectra, a Hamming window was generally used
for all transforms, although a Hann window (Bendat and
Piersol, 2000; Wright, 2014) was also tested. Of particu-
lar note is the region between the two vertical broken
lines in each graph, where an approximate straight-line
behaviour is seen, as illustrated by the sloping dashed
lines. These regions correspond approximately to the grey
regions shown in Figure 3, but intrude somewhat more to
the left of the inertial frequency. Visually, one can notice
a break in the behaviour at a frequency of order 10–4.4

Hz (a period of 7 hrs) in 5(a), and a frequency of 10–4.2

Hz (period of about 4 hrs) in 5(b). Note that frequencies
are given in Hertz here and in subsequent discussions, as
these were the outputs of the analysis (used for reasons
of computational efficiency); previous theoretical discus-
sions used radians per second. Break-points on the right
often occurred at frequencies up to ∼10−4 Hz, correspond-
ing to a period of 2.8 hrs.

To the right of the right-hand break-points, the spec-
tra are highly fluctuating, on average flat and dominated
by noise. This is not just a limitation associated with the
radial velocities, but also a noise limitation associated with
the Ferraz–Mello algorithm and the irregularity of the data
points. This will be discussed in connection with Appendix
A, but at this stage, it is noted that the radar itself is capa-
ble of measuring to much higher frequencies if a different
data acquisition cycle is used. For example, if only one
beam were used continuously, a data rate of one point
per minute would be achieved and the analysis could eas-
ily resolve periods as short as 5 min. However, because
the radar was set up for multiple different applications
including weather prediction, a more complex set of acqui-
sition cycles which was not optimum for this particular
experiment was necessary. Nevertheless, as will be shown,
the data are adequate in their current form for analysis
purposes.

Our procedure comprised two main steps: first, it was
necessary to identify the frequency band of interest, and
the second step was to apply a standard least-squares
straight-line fit to the data within that frequency band. As
seen by looking at Figure 5a,b, there are essentially two
break-points: one on the right, where the signal meets the
noise (discussed above), and another on the left, where
the spectrum tends to flatten out at frequencies below the
inertial frequency. The flattening always happens to the
left of the inertial frequency, though the break-point can

in some cases be a factor of 3 or 4 times below the iner-
tial frequency. (The reason for this flattening on the left
could be in part related to the breakdown of the Taylor
“frozen-turbulence” hypothesis, which was seen to occur
at frequencies below ∼5× 10−6 Hz; see the discussion fol-
lowing Figure 4, towards the end of Section 4.2. Regard-
less, it does not affect our analysis of the spectral band of
interest.)

The procedure for determining these break-points in a
non-subjective manner will now be discussed.

5.2 Fermi–Dirac fits and slope
determination

5.2.1 Identification of the spectral band

In earlier studies, the two break-points were determined
visually (Wright, 2014). This makes the task subjective,
which is undesirable, but was nevertheless of value. By
viewing many hundreds of such spectra (Wright, 2014),
it was possible to determine the behaviour in the region
immediately to the left of the inertial frequency (loosely
referred to as the “external wave region”, though this is
used as a descriptor and does not infer that this region
is dominated by such waves). In Section 4.1, it was rec-
ognized that Figure 3 does not consider this region at
all, but it was noted that it is likely to be inhabited by
evanescent waves as well as Doppler down-shifted IGW
and up-shifted planetary waves. A key finding from these
visual studies was that the approximately constant slopes
close to and above the inertial frequency f I (the iner-
tial frequency in Hz, while f is used for units of rad/s)
continue on into the frequencies below the inertial fre-
quency, typically down to f I/2 or even f I/3: Figure 5a
shows a case where the straight-line behaviour is evident
down to f I/3, then the curve flattens at smaller frequen-
cies. In Figure 5b, the mean slope persists even down
to f I/10, although this is exceptional and may be due
to the low altitude of 2 km. Indeed Figure 5b does not
even appear to flatten at all; however, by repeating the
DCDFT using an even longer data set, well in excess of
1 month (and even up to 1 year), it was possible to demon-
strate that even this extreme example did indeed flatten
at f < 5× 10−7 Hz: the flattening was ubiquitous to some
degree throughout our data set. As noted, it is possible
that this flattening may be partly a result of the breakdown
of Taylor’s “frozen turbulence” hypothesis, as discussed
towards the end of Section 4.2 (possibly coupled with the
natural Eulerian decorrelation [rather than Lagrangian
decorrelation] of weather systems over periods of 2 and
more days).
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3746 HOCKING et al.

The reasons for this extension of the linear slope to
the left of f I are unclear and might involve saturation,
non-linear processes and other complications. We have
no obligation to explain this behaviour here: we simply
need to confirm that the linearity exists. Such a contin-
uous behaviour is of course expected for 2-D turbulence
(Figure 4), but in that case these slopes will still need to
be steep, with values less than −1.8 (see Section 4.2). It
must be noted that this frequency region is the most reli-
able of the radar data; experimental error is not a cause of
these effects. For our purposes, the extended linear region
does allow extension of our zone of study, and in defin-
ing our analysis band, frequencies as low as f I/3 will be
allowed (after verification). Further evidence of the suit-
ability of these limits will be provided retrospectively later
in Section 6.4.

Following these earlier visual studies, a second and
more robust method was developed for determining the
break-points. A function was developed of the type shown
by the dash-dot lines, labelled “Fermi–Dirac fit” (F–D fit)
in Figure 5a,b. This function is essentially a hyperbolic
tangent profile with an offset, but will be referred to as a
Fermi–Dirac function following its use in specifying elec-
tron density occupancy in quantum mechanics (and it
will also be used here in the context of an “occupancy”
diagnostic). It has the form

FD(fr) =
a

1 + exp
(

fr−fc
c

) + d (5)

where f r is the frequency in Hz, f c is a central frequency of
the curve, a is an “amplitude term”, c is a measure of the
width of the step and d is an offset: f c, a, c and d are all fit-
ting parameters and are varied to optimize the fit. Such a
fit was applied to our spectra, then the break-points were
found as follows: The F–D fits are vertically limited on
the left and right, and the limiting ordinate values will be
denoted as PL (on the left) and PR (on the right). The quan-
tity 𝜁 = 0.1× (PL − PR) is then found, and subsequently the
frequencies at which the fitted curve attains values of PL −
𝜁 and PR + 𝜁 are determined. These are the points marked
in the figures by the vertical broken lines.

It would have been possible at this time to use the slope
of the Fermi–Dirac fit at the midpoint as a measure of
the slope, but it was found to be more practical to isolate
the spectrum between the two vertical broken lines and
then fit a straight line afterwards, since with this approach
the impact of frequencies outside of the chosen region is
minimized. It is this slope which was used for subsequent
analysis. These slopes were stored as a function of time and
height for all radars. It is important to note that, after the
F–D process was used to identify the region to be fitted, the
F–D function played no further role in our analysis.

5.2.2 Slope fitting and associated statistics

Since our frequencies were known without appreciable
error, slope fitting was achieved using standard Pearson
regression. Typical regression coefficients were on the
order of 0.3–0.5, and the overall average was 0.39. Fit-
ting errors 𝜎a were produced for each Pearson-fitted slope
“a”, and the average error across all the slopes was 0.23,
with a standard deviation of 0.12. This will be even further
verified in the next sub-section, where modelling studies
which revealed a mean error of 0.25 are discussed. The
interested reader is referred to Appendix S3 for further
details.

The p-value, which is the probability that the data are
really noise, was also determined. Across all of the radars,
and out of 13,952 slopes, only 9 cases showed a p value
greater than 0.05, so 99.94% of all slopes were statistically
significant at the 95% acceptance level. At even higher
significance levels, 97.3% of all slopes were statistically sig-
nificant at the 99.9% level (p< 0.001), which represents a
very high level of significance.

All calculations were carried out using Python soft-
ware. Using Figure 5 as an example, Figure 5a had a
slope of −1.84± 0.3, a regression coefficient of R2 = 0.42
and a p-value of 1.07× 10−9, so is highly significant, while
Figure 5b had a slope of −1.63± 0.09, R2 = 0.64 and
p = 3.9× 10−40. Modest alterations of these slopes will
be necessary following Section 5.2.3, but the significance
levels will not change appreciably.

More specific details about the statistical accuracy of
our fits are given in Appendix S3, which includes probabil-
ity density functions of R2 and p across all samples. In addi-
tion, Figure S3.5 shows comparisons between fixing the
low-frequency cut-off at half of the inertial frequency f I,
as distinct from using our standard low-frequency cut-off
deduced from the F–D procedure (which usually produced
a frequency less than f I/2). This agreement demonstrates
even further that the results are robust.

5.2.3 Modelling tests of statistical accuracy

To make best use of these data, it was necessary to be
aware of any distortions and errors which might arise from
the technique. To this end, a computer model simulating
the horizontal velocities was developed, then the com-
bined DCDFT/Fermi fitting procedure described above
was applied to the model data. This model is discussed in
Appendix A and Appendix S4. It provides the ability to
determine systematic and random errors associated with
the procedures employed (regardless of whether the spec-
tra were due to waves or 2-D turbulence).
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HOCKING et al. 3747

An ensemble of 38 representative gravity waves was
generated, and the waves were added with random phase
combinations. DCDFT spectra were generated from the
resultant time series with the intent of producing spectra
similar in form to those shown in Figure 5 (also see Figure
A1). Having produced such spectra, experimental data sets
could be modelled. This included the ability to have ran-
domly sampled data, just as with real data, and to simulate
extended periods of missing data. It was also possible to
experiment with different percentages (“occupancies”) of
data acquisition.

Occupancy rates were defined in terms of the num-
ber of time steps with which an experimental data set
was recorded, divided by the number of useful points that
could potentially have been recorded under optimal cir-
cumstances. However, the latter term was not calculated
based on the fastest radar acquisition rates; rather, the
optimum number of points was set to the number that
would be needed to properly simulate all the features
that the spectrum might produce, including waves with
periods equal to the Brunt–Väisälä period (10 min in the
troposphere).

Taking the nominal highest frequency as a gravity wave
of period 10 min (at least before Doppler shifting), 5 min
can be considered as an optimal sampling (to avoid most
aliasing effects). Therefore, 5 min sampling was consid-
ered as being a “100% data rate”, and other data rates were
represented as a fraction of this rate. This will be referred
to as the “occupancy”. Data acquired every 5 min over the
period of a 30-day month would result in 8,640 points. Due
to the sampling issues discussed in Sections 2 and 3 and
the need to provide data for weather forecasting, an aver-
age of about 1,632 points per month per height per beam
was found, or a 19% occupancy. At some heights where dif-
ferent acquisition strategies overlapped, it could be more
than this, and during three-beam applications this could
rise to 25% and more, but in general the occupancy can
be considered to be around 20%. Extensive tests have ver-
ified that all radar acquisition modes (mono-pulse, short
pulse, long-pulse, pulse-coded, etc.) produce equally reli-
able radial velocities, and it is suitable to mix such data.
An example of such mixed data is shown in figure 12.8 of
Hocking et al. (2016), where it may be seen that the data
blend cleanly into each other.

The model presented in Appendix A was applied using
different occupancy rates from 100% down to 5% (addi-
tional specific details are given in Appendix S4). Occu-
pancy of 100% corresponded to points regularly spaced
at 5 min intervals, and showed the same results with the
DCDFT as could be achieved with a standard FFT. Lesser
percentages corresponded to cases with more data gaps,
where the gaps were randomly chosen or even selected as
windows of missing data.

In this paragraph, the focus will be on cases with ∼20%
occupancy. Two main effects were apparent in the mod-
elling studies. The first was that the slope deduced from
the model was slightly flattened relative to the true slope,
and the second was that the noise level increased as the
occupancy was reduced. Appendices A and Appendix S4
discuss these effects in greater detail. The change in slope
is expected due to some degree of frequency aliasing, but is
not too severe, since the spectrum gets weaker towards the
higher frequencies, reducing the impact of high-frequency
aliasing; any aliased frequencies are generally moved into
regions of higher power and have only modest effect on
the overall spectrum. The alteration in slope for the “20%
occupancy” case was a decrease (flattening) of ∼12% rel-
ative to the true value. Recall from Section 4.1 that using
radial velocities as distinct from true horizontal velocities
produced a further 3% flattening, so the correction from
the modelling combined with the correction due to the use
of radial velocities is about 1.12× 1.03, or close to 1.15. In
calculations presented in the following pages, all measured
slopes will be rescaled by 1.15, so as to compensate for
these effects, with an estimated error of 0.05. A measured
slope of −1.7, for example, corresponds to a geophysical
slope (i.e., a true slope of the Eh curve in Figure 4a) of
−1.95± 0.08. So the expression

scorr = (1.15 ± 0.05) smeas, (6)

will be used, where scorr is the corrected slope and smeas is
the measured slope determined from the fits to the spectra
of radial velocities.

The model also showed a significant increase in noise
as the occupancy decreased. This is not surprising, but the
model allowed quantification of this effect, and showed a
20 dB increase in noise in moving from 90% to 20% occu-
pancy. While significant, this does not inhibit subsequent
analysis, provided that the fitting procedures described
above are employed.

In the end, it was concluded that data with occupancy
as low as 15% produced reliable slopes once rescaled as
above, and in some cases, where the spectral noise was
low and the break-points in Figure 5 were at frequencies
up to log10 values of −4, reliable slope estimates could
be achieved down to 12% occupancy. In some cases, data
might be good for a period shorter than 1 month, such as
in cases where data were continuous for perhaps 25 days
but missing for the last 5 or 6 days due to some system
failure that required a visit to the radar to restart it. In
such cases, occupancy was calculated based on the num-
ber of available days of data. To be conservative, real-life
cases with less than 15% occupancy will be ignored for
detailed analyses, but may at times be displayed for visual
purposes.
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3748 HOCKING et al.

Finally, Appendix A (and Appendix S4) consider the
random errors associated with the technique, and it can
be seen there that individual random errors in slope are
typically ±0.25 (Figure S4.1); this value is consistent with
the value of ±0.23 discussed in Section 5.2.2, which was
derived by a quite different process.

In up-coming contour graphs, a three point by three
point running mean (averaging over three height bins and
three successive time steps, then sliding on to the next
bin and repeating, etc.) is used, which will further reduce
errors. By using the central limit theorem, and assuming
that adjacent bins can be considered as quasi-independent,
the subsequent error for the mean is ∼0.25/

√
9, or about

0.08. Hence the errors in subsequent slopes will be consid-
ered to be about±0.10, with 0.08 coming from this random
effect and <0.05 coming from errors in the slope correc-
tion equation; that is, a reasonable estimate of the error is
then (0.082 + 0.052)1∕2 ≈ 0.10 at the one-sigma error level,
which may well be an overestimate. The two-sigma error
would therefore be 0.20, with a one-sided probability of
a random occurrence in excess of the “mean plus 2σ” of
2.3% (as can be obtained from any normal distribution
table).

6 RESULTS

6.1 Some interesting structures

To begin, some specific cases of annual and long-term
behaviour will be presented. Figure 6 shows examples of
density plots (contours) of the slopes produced by the pre-
viously described fitting procedures as a function of height
and time. As discussed above, nine-point running means
(three time steps and three heights) have been applied
to the original month-by-month data. Examples of the
procedure as applied to the Wilberforce, Harrow and Wals-
ingham radar data for the years of 2010–2013 are shown
in Figure 6. As discussed in Section 4.3, slopes greater
than −1.5 indicate dominance of gravity waves, whereas
slopes less than about −2.1 are suggestive of 2−D turbu-
lence. So in Figure 6, red colours suggest gravity wave
dominance. Yellow colours suggest either gravity waves
with no Doppler shift, or a mixture of 2-D turbulence
and Doppler-shifted gravity waves in roughly equal pro-
portion. The likelihood that there are no Doppler-shifted
waves is small, so the second explanation is more
likely.

As can be seen, there are many red-coloured cases (cor-
responding to flat slopes, and high 𝛽 values in Figure 3),
especially for Harrow and Walsingham, particularly above
4–5 km altitude. About 38% of the Harrow graph, and 42%
of the Walsingham graph, shows slopes in excess of −1.5,

F I G U R E 6 Slopes deduced for the Wilberforce, Harrow and
Walsingham radars for the period 2010–2013. Dark-blue areas
correspond to missing data

while for Wilberforce the percentage was only 1%. The
graphs also show quite repeatable systematic behaviour in
the red and yellow colouring for all radars. Despite the
fact that the mean slope at Wilberforce is lower, being
close to −1.7, the pattern of reds and yellows is not ran-
dom but shows some clear structure between 5 and 11 km
altitude. Yellow and light-reddish colouring (flatter slopes
relative to the surrounding green colouring) appears in
midsummer centred at 9 km altitude in 2011, then shows
a gradual decrease in height through the following sea-
sons until the beginning of the summer of 2012, when
the centroid height reaches 7 km. After this, there is a
jump back to 9 km altitude in mid-summer, and the pro-
cess repeats into 2013. Some evidence of slightly flattened
slopes centred at 7–9 km in 2010 is also evident. These
results are consistent with a background of 2-D turbu-
lence (green and lighter-yellow colours) with additional
gravity wave production (with associated Doppler shifting)
being embedded in the yellow–red regions. Such patterns
in behaviour are most likely due to IGWs, so patterned
structures like this can be an extra discriminator of waves
from turbulence, in addition to the criteria discussed at the
end of Section 4.2.

The two other graphs (Harrow and Walsingham) show
substantial red colouring, indicating substantially flat-
tened slopes. These are both sites close to the shores
of Lake Erie, where lake breezes can be quite strong.
These could indicate lake-breeze-induced IGWs propa-
gating up into a larger-scale synoptic-scale wind pattern
above, resulting in substantial Doppler shifting.
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HOCKING et al. 3749

F I G U R E 7 Contour plots of
slopes for all sites included in the
study, from 2005 to 2019. Sites are
ranked according to latitude, highest
at the top. From the top, these are
Eureka (EU), Abitibi (AB), Aumond
(AU), Markstay (MA), McGill (MG),
Wilberforce (WI), Negro Creek (NC),
Gananoque (GA), Egbert (EG),
Walsingham (WA) and Harrow (HA).
The black step-like lines across the
graphs are discussed in the text.
Dark-blue colouring represents
missing data

Further discussion in regard to these graphs will be
given shortly. For now, however, comparisons between all
sites and across all years recorded will be considered.

6.2 Annual observations
and site-by-site analysis

Figure 7 shows plots like those in Figure 6, but cover-
ing all available data for all radars. Note that Figure 7
uses a different colour palette than Figure 6. The black
stepped lines need some discussion. These show demar-
cations between areas where we have great confidence in
our slopes (below the black line) and regions where our
confidence is more moderate, but not negligible (above
the line). In the former case, even modest structural pat-
terns can be taken to be real, whereas in the latter case
small details might be questioned, but bulk features (such
as the persistence of shallow slopes around and above the
tropopause for several radars) are believable. Also see the
discussions following Equation (6) for more details.

Examination of Figure 7 reveals several key items. Each
site shows some patterns in behaviour, rather than a ran-
dom distribution. Flatter slopes (yellows and reds) tend to
occur in summer, and some enhancement occurs at some
sites at altitudes of 7–11 km (i.e., around and below the

typical tropopause height). Of particular note are flatten-
ing of slopes at Walsingham, Harrow and McGill at the
upper-tropospheric height, and indeed all radars except
Abitibi, Markstay, Wilberforce and Egbert show significant
reddening at 12–14 km.

Both Walsingham and Harrow are less than 10 km
from the northern shore of Lake Erie. This region is par-
ticularly active in regard to lake breezes, which occur here
on over 80% of all days in summer (e.g., Sills et al., 2011;
Alexander et al., 2018). Over 500 wind turbines which ben-
efit from the breeze have been built in the area for wind
power generation. These same lake breezes have been
associated with storms and tornado activity, and can even
initiate storms (Alexander et al., 2018; Sills et al., 2011;
King et al., 2003; Hastie et al., 1999: King et al., 1999). The
breezes also have a breeze front, and convergence at lake
breeze fronts can trigger vertical motion, release of latent
heat and storm development, which can in turn initiate
gravity wave activity at the 2 km level and above. The over-
all flow pattern is helical as a function of height, involving
significant shear (Sills et al., 2011). Furthermore, summer-
time lake breeze flow near the surface is generally from
the south-west, while at ∼850 hPa (∼1.2–1.5 km altitude),
where the overlying synoptic flow occurs, winds are more
often from the NW (Sills et al., 2011, Figure 5) adding more
shear at the top of the breeze.
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3750 HOCKING et al.

Importantly for our work here, these variations in flow
directions with height will lead to substantial Doppler
shifting of any IGW that pass through them, which
accounts for the slope flattening discussed above for Wals-
ingham and Harrow. Other studies have also recognized
lake and sea breezes as generators of Kelvin–Helmholtz
billows, IGW and also acoustic waves (Burrows et al., 2002;
Miller et al., 2003).

It is important to note here that Harrow has its “north”
beam aligned at 41◦ west of north, while the “north” beam
at Walsingham is aligned at 14◦ west of north, so the some-
what common behaviour at each site is not due to beam
alignment; the main common feature is their proximity to
the lake shore.

Mariani et al. (2018) observed that lake breezes at
Lake Ontario seem a little shallower in height, rising
to only ∼300 m. The only site that was close to Lake
Ontario was north of Gananoque, and that is north-east
of the eastern end of the lake, where the impact of lake
breezes is weaker. Gananoque subsequently shows less
Doppler-shifting impact.

Negro Creek is another site within reasonable dis-
tance of a lakeshore, being about 40–50 km from at least
two distinct shorelines to the west and north-east. This is
approximately the inland distance to which lake breezes
can typically have an impact (e.g., Miller et al., 2003).
Negro Creek shows some evidence of the same behaviour
as Harrow and Walsingham at times, but not always; the
effect is strongest in 2014–2017. Negro Creek also shows
an interesting change in behaviour in the years 2013–2017
compared with 2008–2012. At this site, the lake breezes off
Lake Huron and the upper synoptic flow are both from the
west, so the helical structure and directional shear seen
at Lake Erie are less likely: however, modest inter-annual
changes in synoptic flow direction could significantly alter
the development of shearing and subsequent IGW creation
and Doppler shifting, so the changes may not be surpris-
ing. (It should also be noted here that there was a break
in recording from September 2012 into early 2013, and it
is tempting to believe that this may be associated with the
change in apparent behaviour, perhaps due to an instru-
mental change? However, the radar was inactive due to a
failed mother-board in the controlling computer; this was
replaced with an identical motherboard while no other
changes to the system were made, so the changes are real
and not instrumental).

McGill (Montreal) is an interesting case. While it has
no lake breezes of note, it does have some large rivers with
associated topography (Ottawa River and St. Lawrence
River), plus a complex of mountains in the surrounding
area. The Appalachians to the south and east, Canadian
Shield to the north and west, the St Lawrence Valley
and the Ottawa River Valley all tend to channel winds in

preferred directions. (In this regard, Figure 2a is a little
misleading: while the direct line of travel from Harrow to
Montreal is somewhat flat, the region to the North of Mon-
treal is quite hilly/mountainous and is better described by
Figure 2b in the region closer to Aumond.) When these
local low-altitude flows exist underneath synoptic-scale
flows (the latter being produced by larger weather sys-
tems), waves generated in the lower levels may experience
significant Doppler shifting on moving into the synoptic
flow above. It is important throughout these considera-
tions to recall that these plots are not necessarily about
the intensity of the waves, but rather about the degree of
Doppler shifting, since that is what distinguishes waves
from turbulence.

Aumond shows some upper-tropospheric activity, but
only modest Doppler shifting effects. However, some red
is present, suggesting modest amounts of Doppler shifting:
this may not be a complete surprise as the area is modestly
hilly. Wilberforce, Markstay, Egbert and Abitibi Canyon
show even less Doppler shifting impact.

Eureka, in the Arctic, is close to sea water, but is mainly
surrounded by fjords (Slidre Fjord and Eureka Sound), and
is over 100 km from open sea. The sea is frozen for much of
the year. Local wave generation is therefore expected to be
largely orographic in nature. Nevertheless, there seems to
be frequent Doppler shifting below 5 km altitude at times,
with considerable year to year variability. Summertime
data show more serious effects, and 2019 seems to have
been especially active.

Several sites show noticeable slope flattening at the
upper heights, around the tropopause, especially Eureka,
Aumond, McGill, Gananoque and Harrow: an increase in
wave effects at the troposphere would not be surprising,
and would be consistent with these observations.

Here some of the important features that stand out in
the graphs have been discussed; more detailed considera-
tions will be dealt with in Section 7.

6.3 Variability of spectral slopes

An important way to look at the waves versus 2-D turbu-
lence argument is by using probability density functions
(PDFs) of distributions of the slopes. Figure 8 shows PDFs
of the slopes for the Egbert site and for Harrow. Both
graphs show generally Gaussian shapes. However, there
is clearly a difference in the means. The means, standard
deviations and number of slopes used in each case for
each site are (−2.054, 0.224, 1,189) and (−1.529, 0.271,
472) respectively. Evaluating the test statistic Z for a nor-
mal fit using the pooled standard errors gives a value of
Z of 40.0, so the probability that these two graphs were
derived from the same underlying distribution is well
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HOCKING et al. 3751

F I G U R E 8 PDFs of slopes for Egbert, and Wilberforce,
2010–2013. Months with occupancies less than 15% are excluded.
The ordinate is probability per unit slope, and the area under each
curve is unity

F I G U R E 9 Fitted Gaussians showing the PDFs of the slope
distributions for each site. Areas under each curve are unity, so
curves with greater width have smaller peak values. Data with
occupancies in excess of 15% have been used. A colour version of
this figure appears in the graphical abstract

below 10−4%; that is, the distributions are certainly statis-
tically distinct.

Following the recognition that the Egbert and Harrow
sites have statistically different mean slopes, PDFs for all
sites were determined. These are shown in Figure 9, in
this case using Gaussian fits to the PDFs to allow a cleaner
presentation. All real PDFs are quite close to real Gaus-
sians, as demonstrated in Figure 8, so use of Gaussians
here is suitable.

As seen in Section 5.2.3, the errors due solely to the
radar measurements are ∼±0.1 (±0.2 at the two-sigma

level), and when using averages, the errors for the mean
will be even less (though not by

√
N times, since the cen-

tral limit theorem cannot be used with regard to the radar
measurement errors, whereas it can be used in limited
form in regard to (somewhat uncorrelated) geophysical
errors). The standard deviations of each of the spectra pre-
sented in Figure 9 substantially exceed our experimental
error, so most of the spread is in fact geophysical. How-
ever, is the spread across the means of the different sites
significant statistically?

As a partial answer to this question, an analysis of vari-
ance (ANOVA) has been performed on the data from the
11 sites. While the standard deviations of the sites do differ
somewhat, the variation is less than ±20%, which is close
enough to warrant such a test.

The ANOVA produced the following clusters as hav-
ing common means, with increasing values: (a) Abitibi
(−2.11), (b) Egbert (−2.05), (c) Wilberforce and Markstay
(−1.94), (d) Negro Creek, Gananoque and Eureka (−1.86),
(e) Aumond (−1.74) and (f) McGill and Harrow (−1.58),
and Walsingham (−1.54).

The conclusion is that the differences between sites are
statistically real. The slopes vary over precisely the range
of values suggested at the end of Section 4.2, with values
as low as −2.5 (and even down to −3) being strongly sug-
gestive of 2-D turbulence and values as high as −1 being
indicative of strong Doppler shifting of IGWs.

Although our focus has been on the nominal north
beam, the east beam was briefly analysed as well, as a
check of the accuracy of the procedure. Both the IGW
model and the 2-D turbulence model demonstrated in
Figures 3 and 4 assume broad isotropy, so if this is true,
results on the nominal “north” and “east” beams should
be generally similar. A comparison between the north and
east beams for Eureka (from 2015 to 2018 inclusive) is
shown in the graphical abstract of this article, and general
trends are similar, verifying the robustness of our work.
Quantitatively, the cross-correlation coefficient between
the two beams for Eureka over all years was 0.69, the range
of N–E cross-correlation coefficients across all sites was
from 0.44 to 0.88, while the mean across all sites was 0.69
with a standard deviation between sites of 0.15.

A larger comparison of north and east beams is pre-
sented in Appendix S3 (Figure S3.4). Detailed comparisons
will be left to a later article.

6.4 Retrospective examination
of spectral linearity

At the end of the first paragraph of Section 5.2.1, it
was mentioned that the general linearity of the spectra
in the frequency band of interest would be revisited
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3752 HOCKING et al.

F I G U R E 10 (a) PDFs of slopes for all sites over all years. For reference, the Gaussian fits to PDFs for each of the sites individually are
shown on the same scaling as the main graph (as taken from Figure 9). The area under each of the Gaussians is unity; the area under the
larger histogram is set to 11 (sum of areas of all sites). (b) Combined PDFs of slopes for nominal summer and non-summer months from
Harrow and Walsingham for altitudes between 2 and 4.5 km for all years

retrospectively. To this end, please refer to Appendix S3, at
the end of which we carry out two tests. First, values of the
lower cut-off frequency were chosen at (i) f I/2 then (ii) f I,
and height–time matrices of the slopes were produced for
each cut-off. These were each then cross-correlated with
the height–time matrices produced by the F–D selection,
and the cross-correlation coefficients were 0.91 and 0.66,
respectively, for the example displayed in S3. Other sites
behaved similarly. Such good correlations between slopes
determined using different bandwidths can only occur if
the general behaviour across the band is approximately
linear.

Secondly, quadratics were fitted to all spectra like
Figure 5a,b. Samples are shown in S3. Significant devia-
tions from linearity in our band of interest would produce
noticeable curvature in these fits. Two different formats are
presented, and it is seen there that, in a random sampling
of data, individual quadratic plots are very linear in the
critical band between log10(frequency) of −5.1 and −4.5.
When looking at overall averages, the average quadratic
plots are very linear between −5.4 and −4.25. As discussed
in S3, these numbers are all supportive of a quite recogniz-
able linear portion of the spectrum which extends well to
the left of f I. The region we have called the “external wave
region” is in fact filled with other waves and turbulence,
and no “hole” appears here after Doppler shifting effects
are considered.

6.5 The overall picture

In Figure 10a, the distribution of slopes from all radars
is plotted for data with occupancy above 15%. The over-
all PDF is a sum of these multiple individual graphs.

The mean for the combined graph is −1.847, the num-
ber of contributing slopes is 13,952, and the result-
ing standard deviation is 0.308. Taking the instrumen-
tal error as ∼0.1, the geophysical standard deviation is√

(0.3082–0.12) = 0.291, so the geophysical variability well
exceeds the measurement error.

Some additional features in Figure 7 deserve attention.
The first is the tendency for many shallow slopes in sum-
mer (red colouring), even at the lowest heights. The second
is a tendency for slopes as steep as −2.5 in many of the con-
tour maps, especially at heights below ∼5–8 km. The third
is a tendency (less discernible from Figure 7 but evident
nevertheless), for the slopes in the non-summer months
at 2–4.5 km altitude for all sites to be concentrated in the
range of values from −1.5 to −2. This can be seen some-
what more clearly in Figure 6, where a band of green/cyan
colouring can be seen at 2–5 km at all three sites in the
non-summer months (remember that a different colour
palette is used in Figure 6 than in Figure 7).

These items will be further discussed in the “Discus-
sion” section, but here some pertinent statistics will be
summarized. First we consider summer and non-summer
months.

The “summer” will be especially discussed in relation
to convection, so the months from May to August will be
included (tornadoes occur as early as April in southern
Ontario, so the effects of convection are certainly evident
by May). “Non-summer” months (loosely referred to as
“winter”) will be considered as October to March inclu-
sive. September and April are considered as transitional
months and will be ignored.

Figure 10b shows PDFs of the slopes between 2.0 and
4.5 km altitude for Walsingham and Harrow (these being
the cases with the shallowest slopes of all the sites) for
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T A B L E 1 Mean slopes, standard deviations and numbers of contributing slopes for Harrow, Walsingham
and McGill at 2–4.5 km altitude, as well as for all sites with and without Harrow, Walsingham and McGill

Sites →
(2.0–4.5 km)

Harrow
+ Wals

Harrow
+ Wals + McGill

Non Harrow/
Wals.

Non-Harrow/
Wals/McGill

All sites
included

Summer −1.542 −1.536 −1.750 −1.785 −1.716

0.227 0.198 0.251 0.245 0.258

288 486 1,454 1,256 1,742

Non-summer −1.735 −1.721 −1.944 −1.977 −1.909

0.220 0.204 0.258 0.249 0.264

354 562 1,763 1,555 2,117

both “summer” and “non-summer”. The two PDFs are
distinctly offset from each other, and the means for the
summer and non-summer (“winter”) months are −1.542
and −1.735, respectively. These are statistically different.

For comparison, PDFs of slopes for summer and
non-summer months at 2–4.5 km altitude for all sites com-
bined have been prepared, covering all years, and results
are presented in Table 1. This shows means, standard
deviations and numbers of slopes used for various com-
binations of sites and months. In particular, we examine
the three most active sites (i.e., those showing greatest evi-
dence of Doppler shifting effects, viz. Harrow, Walsingham
and McGill), and consider these cases combined, all cases
without these three sites and all sites collectively.

It is clear that, in all cases, the summer-time slopes
exceed the non-summer values at 2–4.5 km altitude, with
the three “active sites” having very flat slopes in summer
(all close to −1.54). All standard deviations are ∼0.20 to
0.25, somewhat less than the standard deviations for all
heights, which are ∼0.3. Hence there seems to be a general
tendency for gravity waves to be more common in summer,
since slopes are flatter then. This could be expected due to
the increased convective activity expected at that time of
year.

7 DISCUSSION

7.1 Distinctive low-level flows

McGill, Harrow and Walsingham all showed a tendency
towards flatter (less negative) slopes over much of the
year, but especially in summer. It was noted in Section 6.2
that each of these sites often have quite different flows
at low and mid-altitudes, with flows at low levels influ-
enced by orography (McGill) and lake breezes (Walsing-
ham and Harrow), and flows at higher altitudes dominated
by larger-scale synoptic flows. This set of circumstances
can lead to gravity wave generation (through shearing

effects) with subsequent Doppler shifting as the waves
move upward into the synoptic flow.

The activity at 7–11 km may also be related to the
above effects. Waves generated by the shearing and local-
ized convective processes discussed above may propagate
upward and reach the tropopause, whereupon they may be
reflected back down and create a standing wave which may
amplify, leading to stronger gravity-wave oscillations than
normal. In the presence of stronger upper-tropospheric
winds, this may explain the flattening of the slopes here.
This proposal is somewhat similar to the proposal by
Peltier and Scinocca (1990), which used a similar “res-
onant standing wave” model to explain the production
of the Chinook winds. Regardless of the mechanism of
generation, our results suggest that IGWs, and associ-
ated Doppler shifting, are important contributors to the
spectra at lake-side locations at mid to high tropospheric
altitudes.

Another point is evident from Figure 7. This is the fact
that, at the lowest altitudes (<2 km), the slopes are shal-
low (red in colour) at many sites. This region is close to
the boundary layer, where dynamics can be quite differ-
ent from the upper altitudes. The assumptions of statisti-
cal stationarity and homogeneity may break down here.
Importantly, this will be a region dominated by convec-
tion, where vertical velocities can be relatively large, often
considerably larger than those predicted by either 2-D tur-
bulence (i.e., zero) or wave theory. The vertical winds will
contribute significantly to our measured radial velocities,
and since our spectra are determined assuming small verti-
cal winds, the impact of unusually large vertical velocities
at periods of a few hours may substantially flatten the
curves. Frequent storms could also enhance the vertical
winds. The most important parameter is not the vertical
velocities per se, but the ratio of vertical velocities to hor-
izontal velocities, which can be quite large at the lowest
altitudes. Although contamination from strong convective
vertical motions is a reasonable explanation for the flat-
ter curves below 2 km, it is unproven at this time, and we
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therefore choose not to formally interpret these results for
the lowest 2 km.

7.2 Final remarks

This study has focused on examination of slopes. Many
other parameters can be measured, such as integrated
spectral power. This has not been done here, since others
have already demonstrated the large natural variability of
mean square fluctuations (e.g., Nastrom and Gage, 1985:
Nastrom et al., 1987), but the proof that these effects were
due to gravity waves and not 2-D turbulence, while sig-
nificant, was not fully conclusive. Indeed, Nastrom and
Gage (1985) initially ascribed their k-spectra as due to
2-D turbulence. We therefore looked for a more robust
parameter, and used the O-QNet radar network to do this.

Future studies will use the other beams, and ways to
integrate multiple beams will be investigated, to increase
our data rates. It may be of value to also incorporate verti-
cal beam data. Future studies may even include full vector
treatments, but that may require refinement to the theory
of FVZ87. Total spectral content will also be determined.
Momentum flux measurements may also be of value. For
now, however, this new tool will allow better studies of the
relative effects of contributions of gravity waves and 2-D
turbulence in the atmosphere.

8 CONCLUSIONS

By measuring the geographic and temporal distribution
of the slopes of log10 power spectral densities versus
log10 frequency of radial wind components measured
with wind profiler radars in Canada, it has been shown
that the values of these slopes can be used to discrim-
inate regions dominated by waves from regions domi-
nated by 2-D turbulence. Steep negative slopes (<−2.1) are
strongly indicative of 2D turbulence, while shallow slopes
of −1.5 down to −1.0 or so can only really be explained
by a predominantly IGW-driven regime. Site-to-site vari-
ations are evident. Nevertheless, the loose similarity of
sites physically separated by thousands of kilometres,
such as lower Canada and the Arctic (Eureka), shows
that a “quasi-universal” law does seem to apply (e.g.,
see Figure 9, where different sites show statistically dif-
ferent distributions, yet Eureka fits comfortably into the
mix). Our results reinforce the idea that wind motions
at temporal scales from 3–4 hrs to 15–20 hrs periodic-
ity receive significant, and often dominant, contributions
from Doppler-shifted buoyancy waves, especially in the
upper troposphere and lower stratosphere, but that a sig-
nificant background of 2-D turbulence exists. Lake breezes

seem to be a good example of wave generation with
subsequent Doppler shifting, as shown by the sites at
Harrow and Walsingham. The ability of waves to carry
momentum and energy long distances makes them very
different from 2-D turbulence, as waves generated at
one location have the potential to affect events consid-
erable distances away. Strong enhancements in spectral
flattening around and above the tropopause (11–14 km)
are evident for most radars, demonstrating that IGWs
become increasingly significant as the stratosphere is
approached. In some cases, seasonal effects are seen, such
as summer–winter differences and annually repetitive pat-
terns (Figure 6). At lower altitudes, especially between
2 and 5 km, 2-D turbulence appears to make a signif-
icant (often dominant) contribution to the spectra. The
results below 2 km altitude require further analysis and
interpretation.

An interesting side note of our studies arose in regard to
the behaviour of spectra at very low frequencies, especially
below 10−5 Hz, around periods of 1–2 days and longer. The
spectra at times become quite flat in this frequency region;
this may be a quasi-instrumental effect due to a collapse of
the Taylor frozen-in turbulence hypothesis, coupled with
the natural decorrelation of weather system on time scales
of days, as discussed towards the end of Section 4.2 and
also in regard to Figure 5.
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APPENDIX A: MODELLING THE SIGNAL

To verify the accuracy of our data and better interpret
them, a spectral model of wave motions in the atmosphere
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was developed. While empirical analytic models are avail-
able for this purpose, such as Van Zandt (1985), FVZ87 and
Gardner et al. (1993) (among others), such average spec-
tral representations are inadequate. To properly represent
our data, phase variations, and the fact that waves often
come in packets, needed to be incorporated. Therefore
the approach used in Walterscheid and Hocking (1991)
was applied to develop a realistic spectrum, including the
effects of phase variations. This procedure is explained
below.

An example of a realistic spectrum from the Eureka
site is shown in Figure A1a. For the model, a collec-
tion of waves with different periods and horizontal wave-
lengths was assembled (for an example, see Table S4.1 in
Appendix S4), where the amplitudes followed a spectral
form similar to that of Walterscheid and Hocking (1991).
Our intent was to find spectra similar in some detail
to Figure A1a. Vertical wavelengths have been calcu-
lated using the gravity wave dispersion relations pre-
sented by Walterscheid and Hocking (1991), equation
(43) (also see the main text of this article, Equation (4)).
These are quite general and describe non-hydrostatic com-
pressible flow on an f -plane with Rayleigh drag. Ampli-
tudes have then been ascribed according to the spectral
laws shown in the above-mentioned articles, and random
phases have been ascribed to each of these waves. The
periods cover values associated with the Brunt–Väisälä
oscillations to inertial-scale oscillations (and even slightly
into the external-wave and planetary-wave domains), and
horizontal wavenumbers from a few tens of kilometres
up to several thousand kilometres have been used. Wal-
terscheid and Hocking (1991) used 21 waves, which was
adequate for their work on Stokes diffusion, but here 38
waves were needed for a reasonable representation. Once
the velocity amplitudes were found, each wave was repre-
sented as v(t) =A(k, m, 𝜔) × exp{i(kx+mz−𝜔t+𝜙)}, then
all the waves were added together for a chosen (x, z) coor-
dinate, giving the complex velocity field as a function of
time. From this, the spectrum is found.

To make the spectra even more realistic, the waves were
not represented as continuous waves, but made into the
form of wave packets, with envelopes varying from a few
wavelengths to many tens of wavelengths. The waves were
turned on and off using growth and decay functions that
took the form of a cosine structure covering one half of a
period of some suitably chosen growth/decay time TG. The
growth followed a formula as a function of time step j of the
form AG = 0.5 [−cos(2𝜋j/2T)+ 1], evaluated from j= 0 to
j = T, after which it stayed fixed at AG = 1.0. Hence it grew
smoothly from 0 to 1.0. The product of the growth term
and the sinusoidal wave term was then used as the start of
the wave packet. Likewise, a smooth decay was added at
the end, of the form AD = 0.5[cos(2𝜋[j−Tdelay]/2TD)+ 1],

where TD is the time over which the decay occurs, and
Tdelay is the time from the start at which the decay
starts.

Thus, the amplitudes grew from zero amplitude to
some peak value, then remained constant, and then
decayed. Growth periods for the envelope were generally
much longer than for the periods of the waves themselves,
and less than the duration of the steady-state portion of
the wave. Other forms of modulation were tried such as
exponential decays, but in general the functional forms
in the growth and decay phases were not of great conse-
quence; the duration was more important. The key pur-
pose was to smear the spectra out so as to produce a
relatively smooth average spectrum (plus noise) with no
particularly dominant peaks. The use of modulation in this
way also represents realistic behaviour, since waves in the
real atmosphere have finite lifetimes. This combination
of wave packets with randomly chosen growth and decay
times, random start times and random phases represented
our real data in an excellent way.

The phases were randomized on each run, and the
amplitudes followed the universal gravity wave spectrum.
The parameters used in Table S4.1 led to a slope of approxi-
mately −1.4. Adjustments to the wave amplitudes could be
made to achieve other slopes, such as −5/3. The results for
a− 5/3 law are seen in Figure A1b, and are quite typical.

Figure A1b shows that the artificial spectrum gener-
ated in this way compares well visually with a real spec-
trum. It may be noted that modest spectral peaks can be
seen in figure (b) at log10(frequency) = −4.5 and −4.2 rad
s−1, which might be considered as incorrect. However, they
are in fact suitable. Modest dominant spectral lines like
this also occurred in real spectra, and the model spectra
also showed no such lines on other occasions. Many differ-
ent spectral representation had small peaks, just as real-life
applications show similar behaviour. In real life, this is
largely due to statistical variations, and fortuitous effects
related to the random selection of phases, which can lead
to artificial occurrence of wave peaks. Such fortuitous sum-
mations can be deceptive, but are quite real, as discussed
by Eckermann and Hocking (1989).

Note that no Doppler shifting was included in our
model. This could be done, but was not the purpose here.
While we have tried to keep the model quite general, its
main purpose here was to determine the magnitudes of
systematic and random errors in our fitting, nothing more.
This also allows the same model to be used to represent
2-D turbulence, a point that will be discussed shortly.

Once the spectra had been developed in a theoreti-
cal way, it was possible to test the model. Data could be
chosen at time steps matching real analyses, including
allowing missing data points, adding some level of error
in each “data point” measurement and adding some level
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F I G U R E A1 Representative real and simulated power spectral densities: (a) a real-life spectrum determined from the Eureka radar
and (b) a simulated spectrum determined using the procedure discussed in the text. Note that the units of frequency are Hz. The inertial
frequency is at log10(f [Hz]) = −4.8. A value of log10(frequency in Hz) equal to −4.0 (where the signal starts to become higher than the noise
to the left, and the noise to the right of this point is relatively flat in [a]) corresponds to a period of 10,000 s or about 2.7 hrs. This matches the
right-hand edge of the grey region shown in Figure 3. The exact transition point (or “break-point”) between the wave spectrum and the noise
varies from data set to data set, but is typically around this point. The method used to determine the true break-point is discussed in more
detail in the main body of the text

of randomness to our sampling times. Periods of extended
data loss could also be simulated. Simulations were per-
formed using DCDFT, just as for the real data.

Note that, while this spectral approach is based on
waves, it is equally valid for representation of 2-D turbu-
lence. The primary purpose is to use the model to deter-
mine any systematic and random errors in the slopes for
any spectrum, regardless of its physical cause. While verti-
cal wavelengths are included in the model, at any one given
height the mz term in exp{i(kx+mz−𝜔t+𝜙)} is really
just a number, and can be simply considered as an extra
phase term. So the representation is just a random sum

of weighted exp{i(kx−𝜔t+𝜓)} terms, where 𝜓 is a new
random phase. Furthermore, our simulations were done
at fixed (x, z), so even the kx term is another constant for
each wave, and exp{i(kx+mz−𝜔t+𝜙)} can be written as
exp{i(−𝜔t+𝜓2)}, where𝜓2 is another random phase term.
Both x and z can be chosen as zero if desired. Spectra from
two-dimensional turbulence could equally be represented
in this way, except in that case the ratio 𝜔/k would be sim-
ply the mean velocity of drift of the turbulence rather than
a wave phase speed. In the end, both waves and 2-D tur-
bulence can be suitably modelled in this way, and would
have the same statistical characteristics.
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