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ABSTRACT

Cumulus entrainment is a complex process that has long challenged conceptual understanding

and atmospheric prediction. To investigate this process observationally, two retrievals are used to

generate multi-year climatologies of shallow-cumulus bulk entrainment (ε) at two Atmospheric

Radiation Measurement cloud observatories, one in the US southern Great Plains (SGP) and the

other in the Azores archipelago in the eastern North Atlantic (ENA). The statistical distributions of

ε thus obtained, as well as certain environmental and cloud-related sensitivities of ε , are consistent

with previous findings from large-eddy simulations. The retrieved ε robustly increases with cloud-

layer relative humidity and decreases in wider clouds and cloud ensembles with larger cloud-base

mass fluxes. While ε also correlates negatively with measures of cloud-layer vigor (e.g., maximum

in-cloud vertical velocity and cloud depth), the extent to which these metrics actually regulate ε

(or vice-versa) is unclear. Novel sensitivities of ε include a robust decrease of ε with increasing

subcloud wind speed in oceanic flows, as well as a decrease of ε with increasing cloud-base mass

flux in individual cumuli. A strong land–ocean contrast in ε is also found, with median values

of 0.5-0.6 km−1 at the continental SGP site and and 1.0-1.1 km−1 at the oceanic ENA site. This

trend is associated with drier and deeper cloud layers, along with larger cloud-base mass fluxes,

at SGP, all of which favor reduced ε . The flow-dependence of retrieved ε implies that its various

sensitivities should be accounted for in cumulus parameterization schemes.
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1. Introduction26

Cumulus entrainment and detrainment involve the ingestion of surrounding air, and the expulsion27

of cloudy air, through the periphery of cumulus clouds. These mixing processes regulate cloud28

mass fluxes and vertical transports, which, in turn, control the life cycle of moist convection and the29

interactions of this convection with the larger-scale environment. Due to the chaotic and turbulent30

nature of cloud mixing processes, the underlying dynamics of entrainment and detrainment, and31

hence the feedbacks of cumulus convection onto the larger scales, remain both poorly understood32

and inadequately represented in modern weather and climate models.33

Although entrainment and detrainment are both critical to cloud life cycles, the focus herein is34

placed on entrainment due to its greater amenability to observational estimation. The primary35

impact of entrainment is to dilute ascending cloud drafts with drier and (generally) cooler air,36

which reduces cloud buoyancy and water content. As a result, entrainment can prevent cumuli37

from reaching their levels of neutral buoyancy (LNB) predicted by adiabatic parcel theory (e.g.,38

Markowski and Richardson 2010). In some cases, entrainment can delay or even inhibit the39

diurnal transition from shallow to deep convection over land (e.g., Khairoutdinov and Randall40

2006). Other, less obvious impacts of entrainment include a broadening of the cloud-droplet size41

spectrum, which may facilitate precipitation formation (e.g., Lasher-trapp et al. 2005).42

Because entrainment influences cloud depth, phase (liquid vs ice), spatial coverage, and precip-43

itation, it indirectly interacts with radiative processes controlling the global climate. The nature44

of these interactions remains uncertain in modern global climate models (GCMs), which cannot45

explicitly resolve most cumuli. Rather, they use cumulus parameterization schemes, which must46

make questionable assumptions about the entrainment (and detrainment) process, to represent the47

effects of moist convection on the resolved flow. Various studies have reported a strong sensitivity48
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of GCM simulations to the representation of cumulus entrainment (e.g., Rougier et al. 2009; Klocke49

et al. 2011; Dirmeyer et al. 2012), which reinforces the global importance of entrainment as well50

as the need to better constrain its magnitude.51

Entrainment can be quantified in multiple ways, including “direct” methods that measure the52

mass flux across the cloud periphery (Romps 2010; Dawe and Austin 2011). Implementation of53

such methods requires full 3D wind fields and cloud boundaries at high spatiotemporal resolution,54

which in general are only available in large-eddy simulations (LES). In contrast, “bulk” methods55

measure not the entrainment itself but the impacts of entrainment on cloud dilution. Although exact56

calculation of bulk entrainment also requires 3D kinematic and thermodynamic data (Siebesma57

and Cuijpers 1995), the widely used “bulk-plume” simplification of Betts (1975) requires only a58

representative sounding and in-cloud measurements of a moist conserved variable. Because only59

bulk calculations are currently feasible observationally, only these methods are considered herein.60

Emphasis will be placed on quantifying the fractional entrainment (or dilution) rate ε = E/Mc,61

where E is the total entrainment flux and Mc is the cloud vertical mass flux.62

Much of the current understanding of ε is based on cloud-resolving simulations (including LES),63

which simulate cumuli at sufficient spatiotemporal resolution to partially resolve entrainment.64

LES studies examining the relation between ε and corresponding kinematic/thermodynamic cloud65

properties have indicated that simulated ε roughly varies with cloud-averaged w−1 or b/w2, where66

w and b are vertical velocity and buoyancy (e.g., Gregory 2001; Neggers et al. 2002; Tian and67

Kuang 2016; Zhang et al. 2016).68

Bulk entrainment also tends to decrease with increasing cloud cross-sectional area (e.g., Mc-69

Carthy 1974; Kirshbaum and Grant 2012; Rieck et al. 2014), likely because larger clouds are less70

diluted by a given entrainment flux across the cloud periphery than smaller clouds. It also tends to71

decrease with increasing subcloud- and cloud-layer depths (e.g., Del Genio and Wu 2010; Stirling72
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and Stratton 2012; Drueke et al. 2020), consistent with both energetic (Grant and Brown 1999)73

and cloud-morphological arguments. In isotropic turbulence, the largest energy-containing eddies74

tend to scale with the layer depth, implying that deeper subcloud or cloud layers support wider,75

and hence less diluted, cumuli.76

Environmental conditions also play a role in governing ε . Although some debate on the impact77

of cloud-layer humidity (RHcld) has prevailed over the years, the emerging LES-based consensus78

is that ε increases strongly and robustly with RHcld (Stirling and Stratton 2012; Bera and Prabha79

2019; Drueke et al. 2020). This trend can be explained by a buoyancy-sorting argument: in drier80

layers, mixtures of cloud and surrounding air are more prone to buoyancy reversal, leading them to81

detrain rather than entrain. Similar logic may explain the tendency for ε to increase with convective82

available potential energy (CAPE) (Stirling and Stratton 2012): in smaller-CAPE flows, less cloud83

buoyancy is generated, and cloud–environmental mixtures are more likely to lose buoyancy and84

detrain.85

The background wind profile may also be expected to influence ε , but its impacts remain unclear.86

In particular, cloud-layer vertical shear (Scld) may influence ε through its dynamical impacts on87

moist thermals. In shear flows, ascending thermals develop cloud-scale horizontal circulations88

with strong inflow on the downshear side, which locally enhances ε (e.g., Heymsfield et al. 1978).89

However, shear has also been found to increase cloud width, which tends to decrease ε (Peters et al.90

2019). These competing effects may help to explain a wide variation in ε–Scld trends reported in91

past studies (e.g., Brown 1999; Peters et al. 2019; Drueke et al. 2019a; Yamaguchi et al. 2019).92

Interestingly, Drueke et al. (2020) identified a strong land–ocean contrast in ε ; its value over land93

was less than half that over the ocean. They attributed this finding to stronger sensible heating over94

land, which energizes subcloud turbulence and increases the cloud-base mass flux (mb). Although95
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the total cloud entrainment flux (E) increases in response, it cannot keep pace with mb because it96

is also constrained by CAPE, leading to decreased ε (Kirshbaum and Grant 2012).97

Although numerical simulations, and LES in particular, offer an attractive avenue for studying98

cumulus entrainment, results from these models are inherently uncertain and should be verified99

observationally. Observations are also valuable for sampling a wider range of cumulus environ-100

ments than is possible with LES. However, observational estimation of entrainment remains in its101

infancy. Only bulk estimates are currently feasible, and these have their own set of challenges.102

The most reliable ε estimates arguably come from aircraft, which can provide in situ observations103

within cloud transects at different heights, from which ε can be retrieved using the bulk-plume104

method (e.g., Raga et al. 1989; Gerber et al. 2008). Even so, aircraft cloud sampling is limited by105

large costs and the practical difficulties of safely maneuvering through cloud fields.106

Much greater sampling of cumuli is possible with remote measurements. Unlike research107

aircraft, however, these instruments do not readily provide detailed thermodynamic information108

within clouds, and thus a greater level of approximation is required to estimate ε . Using satellite109

estimates of cloud-top height and temperature, Luo et al. (2010) employed an entraining parcel110

model to estimate the mean ε over the cloud depth. Applying this method to multiple years of111

satellite data, Takahashi et al. (2017) found that deep convection over the west Pacific warm pool112

had smaller cloud widths and larger ε than that over two tropical land masses, consistent with the113

land–ocean ε contrast identified by Drueke et al. (2020) as well as the tendency for wider clouds114

to undergo less dilution.115

The present study focuses on bulk entrainment within shallow cumuli (ShCu), which are globally116

widespread but difficult to represent in GCMs due to their small scales (e.g., Bony and Dufresne117

2005). The Luo et al. (2010) retrieval cannot be used for ShCu because infrared satellites do118

not resolve them. However, such retrievals are possible at ground-based cloud observatories,119
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including US Department of Energy Atmospheric Radiation Measurement (ARM) sites. Jensen120

and Del Genio (2006, or JD06) used soundings and radar-derived cloud-top heights, along with121

an entraining parcel model, to estimate ε over the ARM-instrumented tropical island of Nauru.122

In 67 cumulus congestus clouds, ε was found to increase with both RHcld and CAPE, consistent123

with the buoyancy-sorting arguments above. Other ground-based techniques to retrieve ε in ShCu124

include the sophisticated optimal-estimation method of Wagner et al. (2013) and the analytical125

method based on turbulent kinetic energy (TKE) similarity theory of Drueke et al. (2019b), neither126

of which has yet been deployed on a large set of observed clouds.127

The current study capitalizes on roughly four years of observations collected at theARMSouthern128

Great Plains (SGP) and Eastern North Atlantic (ENA) facilities to (i) generate climatologies of129

ShCu bulk entrainment in continental and oceanic climates and (ii) determine the sensitivity of130

retrieved ε to various relevant parameters. To this end, section 2 describes our treatment of the131

ARM observations, and section 3 details two bulk entrainment retrieval methods used for the132

climatologies. Section 4 presents the climatologies and describes the various sensitivities of the133

retrieved ε . Section 5 discusses underlyingmechanisms behind the observed sensitivities, as well as134

future directions for improvement of ground-based ε retrievals. Section 6 presents the conclusions.135

For ease of reference, all mathematical symbols used herein are defined in Table 1.136

2. Observations137

Observations from two ARM observatories, the Southern Great Plains (SGP; 36.6N, 97.5W) and138

Eastern North Atlantic (ENA; 39.1N, 28.0W) sites, are used to evaluate the impact of continentality139

on midlatitude ShCu. The former, located in north-central Oklahoma, represents the continental140

regime and the latter, located in the Azores archipelago, represents the oceanic regime. Both141
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observatories are equipped with equivalent sets of ground-based remote sensors such that the same142

observational approach can be applied to both.143

The observations are used to construct climatologies of ShCu ε at both sites using two different144

retrievals, the JD06 parcel-based calculation for individual clouds and the D19 TKE-based cloud-145

ensemble calculation. Details on these methods and their applicability is given in section 3. In146

this section, we define and outline the determination of various cloud-related and environmental147

properties involved in the retrieval of bulk entrainment. Additional properties are also estimated148

to evaluate their possible impact on bulk entrainment.149

a. Remotely sensed properties150

ShCu are known to be challenging observational targets. Their small horizontal footprint causes151

wide-beam sensors like microwave radiometers and spaceborne radars to misrepresent their prop-152

erties, an issue known as partial beam filling (Lamer and Kollias 2015; Battaglia et al. 2020).153

Although ground-based radars benefit from a narrower beam width, detection issues persist be-154

cause fair-weather cumuli tend to have small water contents and droplet sizes, making them poor155

reflectors of millimeter-radar signals (Lamer and Kollias 2015). Herein we exploit the synergy156

between a vertically pointing Ka-band ARM Zenith Radar (KAZR), micropulse lidar, ceilometer,157

microwave radiometer (MWR), and vertically pointing Doppler Lidar at ARM observatories to158

estimate the location and properties of shallow cumuli at 30-m vertical and 4-s temporal resolution.159

With the exception of the Doppler Lidar observations, these observations are contained within the160

ARM Active Remote Sensing of CLouds (ARSCL) product.161

The ARSCL product provides a first estimate of the cloud location within the column in the162

form of a “cloud source flag”. We have developed a set of additional filters designed specifically163

to reduce the possibility of fair-weather cumulus misdetection in the ARSCL product. These are164
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based on independent data from the Doppler Lidars, which are first filtered to remove noisy echoes165

with signal-to-noise ratios below 0.0075. The next filter targets any flagged clouds with maximum166

radar reflectivity below -45 dBZ if the Doppler Lidar did not also detect at least two coincident167

observations of attenuated backscatter γ > γt = 2×10−5 m−1s−1 and if the microwave radiometer168

reported a liquid water path of at least 20 g m−2. We also revise the ARSCL cloud-base-height169

estimates if the Doppler Lidar backscatter at that height is less than γt while the maximum Doppler170

Lidar backscatter in the cloudy column exceeds γt . In those instances, revising the column cloud-171

base-height to be the lowest level at which the backscatter exceeds γt yields improved agreement172

with radar-observed cloud-base height.173

Using the revised ARSCL cloud source flag, we define an individual cloud as a distinct and174

connected (based on a four-neighbor routine) set of cloud observations in time-height space and a175

cloud ensemble as a group of individual clouds observed during a given 1-h time period. Although176

this short time window limits the number of cloud observations within each ensemble, it helps177

to limit the degree of larger-scale and diurnal variability during each cloudy period, so that a178

representative environment can be defined. Using the ARSCL and Doppler Lidar observations,179

the following quantities are computed:180

1. Cloud duration (tcld): Time elapsed between the first and last detection of a given cloud. Only181

defined for individual clouds.182

2. Radar-observed cloud cover (CCFrad): Fraction of radar-observed cloudy columns in an183

hourlong cumulus period. Only defined for cloud ensembles.184

3. Minimum cloud base height (zb): 2nd percentile of revised column cloud-base-height estimate185

within the time limits of each individual cloud or cumulus ensemble.186
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4. Maximum cloud top height (zt): 98th percentile of column cloud-top heights within the time187

limits of each individual cloud or cumulus ensemble.188

5. Maximum cloud layer depth (dcld): zt − zb. Note that this calculation may underestimate the189

true cloud depth when the tallest part of a given cloud, or the tallest cloud of a given cumulus190

ensemble, does not pass over the observatory.191

6. Cloud maximum updraft speed (wmax): MaximumKAZRDoppler velocity over a given cloud192

(JD06) or over all clouds in a cumulus ensemble (D19).193

7. Maximum liquid-water path (LWPmax): Maximum MWR-observed LWP over a given cloud194

(JD06) or over all clouds in a cumulus ensemble (D19).195

8. Subcloud vertical velocity variance (
(
σ2
w

)
sc
): Vertical velocity variance between the surface196

and zb over the hourlong period centered at the temporal midpoint of the individual cloud or197

cumulus ensemble.198

b. Sounding-derived properties199

Because both retrievals are highly sensitive to atmospheric thermodynamics, special care is taken200

to construct a representative sounding at any desired time. Sources of thermodynamic data include201

balloon radiosondes, launched at 3 h to 12 h intervals and interpolated to the time of interest,202

European Centre for Medium-Range Weather Forecasting Diagnostic Analyses interpolated to203

the SGP site (ECMWF-DIAG; ARM data stream “ecmwfvar”), and hourly-averaged water-vapor204

mixing ratio profiles fromRaman Lidar, centered at the time-midpoint of the cloud or cloudy period205

with a vertical resolution of 7.5 m. Because the ECMWF analyses and Raman Lidar profiles cover206

a larger time scale than that of individual clouds, they are likely to better represent the cloud207

environment than the more instantaneous balloon soundings.208
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To ensure that the sounding reasonably represents the cloud environment, we construct four209

different candidate soundings for each retrieval: (i) time-interpolated radiosonde, (ii) ECMWF210

analysis, and (iii)-(iv) modified versions of (i) and (ii) where the low-level water-vapor mixing211

ratio is replaced by corresponding Raman Lidar data. An adiabatic air parcel ascent, initialized212

from mean-layer (0-500 m) properties, is conducted for each sounding to determine the lifting213

condensation level (LCL), level of free convection (LFC), and level of neutral buoyancy (LNB).214

The LFC and LNB are respectively defined as the lowest and highest levels above the LCL where215

the parcel buoyancy b is positive, where b = g(Tvp −Tve)/Tve and Tvp and Tve are the virtual216

temperatures of the parcel and environment. Of these four profiles, the one with its LCL nearest to217

the observed cloud base is taken to be most representative. The various properties computed from218

this sounding include219

1. Convective available potential energy (CAPE): Vertically integrated b between the LFC and220

the LNB.221

2. Cloud-layer CAPE (CAPEcld): Vertically integrated b between the LFC and zt .222

3. Convective Inhibition (CIN): Vertically integrated |b| between the surface and the LFC.223

4. Cloud-layer-averaged relative humidity (RHcld): Vertically averaged relative humidity (with224

respect to liquid) between zb and zt .225

5. Cloud-layer-averaged vertical shear (Scld): Magnitude of vertically averaged (between zb and226

zt) vertical wind shear.227

6. Subcloud-layer-averaged wind speed (Vsc): Magnitude of vertically averaged (between surface228

and zb) wind velocity.229
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7. Cloud-layer-averaged mean wind speed (Vcld): Magnitude of vertically averaged (between zb230

and zt) horizontal wind vector.231

8. Cloud width (Lcld): Given by Vcldtcld, and only defined for individual clouds. Because tcld232

includes overhanging edges of vertically tilted clouds, Lcld may be enhanced by such tilt.233

Moreover, because this estimate assumes that clouds are advected by the mean cloud-bearing-234

layer wind, it is prone to error in cases where cloud motion is governed by other processes.235

9. Cloud-base mass flux (Mb and mb): For individual clouds, Mb (in kg m−1 s−1) represents the236

total cloud upward mass flux over the cloud duration, and is evaluated as237

Mb = ρbLupwup , (1)

where Lup = Vcldtup is the width of the cloud-base updraft(s), tup and wup are the time duration238

and mean ascent rate of the cloud-base updraft, and ρb is the cloud-base density. For cumulus239

ensembles, the density-normalized cloud-base mass flux mb (in m s−1) is240

mb = fupwup , (2)

where fup is the fractional coverage of ascending cloud-base cloudy points during the hourlong241

period (Grant and Lock 2004).242

c. Sensible heat flux243

An additional parameter of interest is surface sensible heat flux H , which may regulate ε through244

its control over mb (Drueke et al. 2020). This quantity is obtained at 30-min intervals from the245

ARMEddy Covariance FluxMeasurement System (ECOR), which uses quality control procedures246

to modify the raw eddy covariances to better close the surface energy balance. Because H may247

exhibit substantial small-scale variability (particularly over heterogeneous surfaces), such point248
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measurements may not represent the averaged surface heating over the cloud life cycle (Zhang and249

Klein 2010).250

3. Bulk entrainment retrievals251

The two retrieval methods used herein were selected based on the LES Observation System252

Simulation Experiments (OSSEs) of D19, where different pseudo-retrievals of ε were systemati-253

cally compared to corresponding model calculations of ε . In their evaluation, the JD06 and D19254

methods exhibited much smaller mean absolute errors in ε (20-30%) than that of Wagner et al.255

(2013) (50%). Although both the JD06 and D19 methods invoke assumptions that may limit their256

accuracy and applicability (see section 3 for details), the use of multiple retrievals helps to identify257

robust statistical trends despite these limitations.258

a. The JD06 method for individual clouds259

This approach, adapted from JD06, uses an entraining-parcel model to estimate the ε experi-260

enced by individual, surface-based cumuli that breach the LFC. We implement this method on261

selected clouds using the observations discussed above, by drawing a mean-layer parcel from the262

representative sounding and lifting it adiabatically to the LFC. Above the LFC, the parcel en-263

trains environmental air at a constant rate ε until reaching its entraining level of neutral buoyancy264

(ELNB). Bulk entrainment (ε JD06) is retrieved by iteratively varying ε until the parcel ELNB best265

matches the observed zt . Note that we useTv as a buoyancy variable in place of equivalent potential266

temperature θe (as was done in JD06) to account for virtual effects, which tends to give a slightly267

deeper active (buoyant) cloud layer and an associated reduction in retrieved bulk entrainment.268

Several assumptions are made in this retrieval, one being that entrainment is lateral and homo-269

geneous; entrained air is drawn from the environment at the same height as the parcel and mixes270
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instantaneously through the parcel. It also assumes that the observed cloud top is neutrally buoyant,271

which is problematic in growing clouds where cloud-top buoyancy drives continued ascent. Al-272

though this assumption tends to generate systematic positive biases in ε JD06, Drueke et al. (2019b)273

found that the bias could be partly mitigated by setting a minimum cloud depth threshold (250 m).274

This threshold helped to filter out newly initiated and rapidly growing cumuli that most strongly275

violate the assumption of zero cloud-top buoyancy. Nevertheless, a bias toward overly strong ε is276

likely to persist for all remaining clouds that continue to grow after crossing the radar site.277

Another key assumption is a vertically constant ε over the cloud layer, which contrasts with the278

tendency for simulated and observed ε in ShCu to decrease with height (e.g., Brown et al. 2002;279

Siebesma et al. 2003; Gerber et al. 2008). JD06 considered this issue by comparing a fixed ε profile280

to one that depended inversely on b, but did not find any major differences in the retrieved values281

or sensitivities of ε in ShCu. On that basis, we have opted not to include this effect.282

b. The D19 method for cloud ensembles283

D19 proposed a method to estimate the bulk entrainment based on a similarity theory of shallow-284

cumulus transports developed by Grant and Brown (1999). This theory is based on the assumption285

that buoyancy production (∼ mbCAPE/dcld) and dissipation (∼ w∗3/dcld, where w∗ is the turbulent286

vertical velocity scale) dominate the steady-state cloud-layer TKE budget, which gives w∗ =287

(mbCAPE)1/3. Assuming that E ∼ εmbw
∗2 scales with these dominant terms, ε ∼ CAPE/dcldw

∗2,288

or equivalently,289

εD19 = Aε
CAPEcld

1/3

m2/3
b dcld

, (3)

where Aε is a constant representing the fraction of buoyancy production available for entrainment,290

with previously reported values ranging from 0.03-0.06 (Grant and Brown 1999; Kirshbaum and291

Grant 2012;Drueke et al. 2019b). We implement thismethod on the above-mentioned observations,292
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selecting Aε = 0.06 to maximize empirical agreement with the JD06 results. While this choice293

affects the absolute values of εD19, it has no impact on the associated sensitivities.294

To provide some physical insight into (3), we note that dependence of ε on d−1cld (for all else being295

equal) is owing to amplified cloud-layer energetics when the cloud buoyancy production is confined296

to a shallower layer. The sensitivities to CAPE and mb can also be interpreted in energetic terms:297

CAPE/w∗2 effectively represents the efficiency of conversion from subcloud available potential298

energy to cloud-layer kinetic energy. A larger ratio implies a smaller conversion efficiency, which299

is consistent with entrainment more strongly suppressing the cloud-layer updrafts.300

Key assumptions of the D19 method include statistical stationarity, which is more applicable to301

long-lived oceanic cumulus fields than to diurnally forced ShCu over land. This assumption is302

tolerable if the cloud-layer turbulent adjustment time scale (i.e. the eddy turnover time) is much303

shorter than the diurnal or synoptic time scales, which is usually the case (Kirshbaum and Grant304

2012). It also assumes that cloud buoyancy production is the dominant TKE source term, which305

does not necessarily hold in strongly sheared flows. Thus, D19 is most applicable to statistically306

steady, nonprecipitating, and unsheared ShCu fields. Nevertheless, it will be applied to all cloud307

ensembles that satisfy similar eligibility criteria to the JD06 method, regardless of their degree of308

steadiness or shear.309

c. Case selection based on retrieval limitations310

The ShCu bulk-entrainment climatologies presented herein cover a 4+ yr period (10 November311

2015 to 19 December 2019), over which many ShCu clouds and cloud ensembles were observed312

at both ARM sites. However, due to the various assumptions behind each retrieval, as well as313

inherent difficulties in observing ShCu via ground-based radars, the number of clouds for which314

entrainment is actually retrieved is much less. To respect the assumptions of the two retrieval315
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methods, we focus on daytime (surface-based), nonprecipitating, and active (buoyant) fair-weather316

cumuli, which we identify using the following criteria.317

1. Daytime criteria. Because both ARM sites are on land, nocturnal radiative cooling can cause318

the subcloud layer to decouple from the surface. As both retrievals apply to surface-based319

cumuli, we restrict consideration to daytimes (06:00-18:00 local solar time, or LST).320

2. Observable criteria. To avoid misrepresentation of cloud-top height, clutter and insect-321

contaminated 1-h periods are removed following the method of Lamer and Kollias (2015).322

3. Cumulus criteria. All 1-h periods with cloud tops below 5 km, CCFrad between 6-60%, and323

no clouds lasting longer than 20 min are labeled as cumulus ensembles. A total of 477 (1,432)324

such ensembles were identified at SGP (ENA). On days containing one or more ensembles,325

all clouds below 5 km detected for more than 1 min but less than 20 minutes are labeled as326

individual cumuli. A total of 4,480 (18,877) such clouds were identified at SGP (ENA).327

4. Active (i.e., buoyant and surface-based) cloud criteria. Both the JD06 and the D19 retrievals328

assume that entrainment is confined to the layer between the LFC and cloud top. Thus, only329

“active” clouds that breach the LFC are considered, which are identified by requiring that330

CAPEcld > 0, zt > LFC, and [mb,Mb] > 0. Elevated clouds are also eliminated by filtering331

out clouds with zb > 3 km or zb > LFC+ 250 m, as well as cumulus ensembles with large332

(> 200 m) standard deviations of cloud-base height.333

5. Neutrally buoyant cloud-top criteria. To mitigate the biases associated with the assumption of334

neutrally buoyant cloud tops in the JD06 retrieval, we follow Drueke et al. (2019b) by filtering335

out very shallow clouds with dcld < 250 m.336
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6. Nonprecipitating cloud criteria. The D19 and, to a lesser extent, the JD06 formulations apply337

more readily to nonprecipitating cumuli. To remove precipitating clouds, we eliminate clouds338

exhibiting an in-cloud maximum reflectivity exceeding −5 dBZ and the maximum reflectivity339

at 90 m below cloud base exceeding −20 dBZ.340

7. Unrepresentative environment criteria. To avoid soundings that pass directly through clouds341

and are thus unrepresentative of the surrounding environment, retrievals are omitted when the342

sounding-derived RHcld exceeds 99%.343

8. Retrieval convergence. The JD06 retrieval uses an iterative loop to determine ε JD06. If, at344

the end of the iterations, the absolute difference between the ELNB and zt exceeds 500 m or345

dcld/2, the retrieval is omitted.346

Application of the above criteria allow for the retrieval of bulk entrainment in 887 (3,724)347

individual clouds and 175 (631) cloud ensembles at SGP (ENA).348

4. Bulk entrainment349

In this section, we present the JD06 and D19 climatologies of ShCu bulk entrainment at SGP and350

ENA and analyze the sensitivities of the retrieved ε to environmental and cloud-related parameters.351

a. The land–ocean contrast in ε352

Probability density functions (PDFs) of bulk entrainment are shown for the JD06 and D19353

retrievals in Fig. 1. At both SGP and ENA, the probability peaks at the smallest values (ε ≤354

0.5 km−1), and generally declines with increasing ε . Because of its longer tail, the median ε JD06355

at ENA (1.03 km−1) exceeds that at SGP (0.62 km−1) by approximately 66%. Similar findings are356

obtained with εD19, with the median value at ENA (1.06 km−1) about 88% larger than that at SGP357
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(0.56 km−1). These median values for both continental and oceanic entrainment rates are consistent358

with previous LES and observational studies (e.g., Brown et al. 2002; Siebesma et al. 2003; Gerber359

et al. 2008; Drueke et al. 2020). Thus, both retrievals give a consistent and robust result that bulk360

entrainment is larger in the oceanic ENA climate than in the continental SGP climate.361

The above finding is consistent with the LES experiments of Drueke et al. (2020), where ε in362

oceanic clouds was found to be much larger than that over land. However, their ratio of land to363

ocean entrainment (2.2) was slightly larger than found here (1.6-1.9). This weaker land–ocean364

entrainment contrast may stem from the fact that the ENA site, while surrounded by oceanic flow,365

is located on land and thus not fully representative of flow over the open ocean. The likely drivers366

of this land–ocean ε contrast will be discussed in section 5a.367

b. Sensitivities of ε368

The relationship between retrieved ε and various environmental parameters (causal or not) is369

assessed by evaluating statistics of ε within eight bins covering the observed ranges for each370

parameter (Figs. 2-5). In each bin, the 25th percentile, median, and 75th percentile of ε are shown.371

The presence of a statistically significant monotonic (but not necessarily linear) relation between372

the control parameter and the median ε is assessed based on the Spearman correlation p-value.373

For p-values below 0.05, the null hypothesis of no monotonic relation can be rejected at the 95%374

confidence level. If the relation is deemed “significant” by this metric, the line connecting the375

medians is drawn as solid; otherwise, the line is dashed. The strength of a given correlation is376

indicated by the Spearman correlation coefficient R.377
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1) Environmental parameters378

Arguably the strongest and most robust sensitivity of ε is to RHcld, with the median ε increasing379

from around 0.5 km−1 to over 1 km−1 as RHcld increases from 50% to 100% (Figs. 2h and 3h). This380

positive trend is significant for both retrievals, with R ranging from 0.79 to unity, and is consistent381

with recent LES studies (Stirling and Stratton 2012; Drueke et al. 2020) as well as observations382

(JD06, Lamer et al. 2015; Lu et al. 2018). As noted in section 1, it may be explained by a greater383

tendency for cloud-environmental mixing to lead to buoyancy reversal, and hence detrainment (at384

the expense of entrainment), in drier cloud layers (Drueke et al. 2020).385

A positive and strong correlation between ε and CAPE is found at ENA (R ≥ 0.88), but this386

trend weakens and loses significance at SGP (Figs. 2a and 3a). Moreover, the correlation between387

ε and CAPEcld is weak at SGP and variable at ENA (Figs. 2b and 3b). These trends generally388

differ from the strong positive sensitivity of ε to low-level CAPE in JD06. However, because JD06389

studied a single maritime location (the tropical island Nauru) and did not evaluate CAPEcld, their390

results are most comparable to the CAPE trend at ENA in Fig. 2a, which is positive and statistically391

significant.392

The generally stronger sensitivity of ε to CAPE than to CAPEcld may relate to our ShCu sampling393

criterion that zt ≤ 5 km. Formoist-unstable layer (and CAPE) depths of 5 km and higher, the cumuli394

that satisfy this condition become increasingly diluted. If deeper clouds were also considered, their395

tendency to be less diluted would likely weaken this correlation. In contrast, CAPEcld is more396

representative of the cloud’s immediate environment, but its estimates depend on cloud top height,397

and hence may capture other effects (some offsetting) that control ε .398

A significant and strong (R < −0.88) negative sensitivity of ε to Vsc is found at ENA (Figs. 2e399

and 3e). Although this interesting relationship requires further investigation to properly interpret,400
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the tendency for stronger marine flows to generate deeper clouds (Nuijens and Stevens 2012),401

combined with the negative sensitivity of ε to dcld (as will be shown shortly), provides a potential402

explanation. Also, the general insensitivity of ε to H in Figs. 2f and 3f disagrees with the hypothesis403

of Drueke et al. (2020) that larger H , by virtue of its control over mb in (3), leads to reduced ε .404

This contradiction will be revisited in section 5a.405

No clear correlations are found between ε and CIN (Figs. 2c and 3c) or Scld (Figs. 2d and 3d).406

The latter contrasts with a strong positive trend in ε found in simulated trade-wind ShCu (Drueke407

et al. 2019a) as well as a negative trend found in simulated supercells (Peters et al. 2019). It is408

more in line with the weak relations between Scld and ε reported by Brown (1999) and Yamaguchi409

et al. (2019), and suggests that multiple offsetting effects of Scld may combine to yield minimal410

net ε sensitivity. Also, while ε tends to vary inversely with
(
σ2
w

)
sc
(Figs. 2g and 3g), this trend is411

neither robust nor statistically significant.412

2) Cloud-related parameters413

The retrieved ε variesmore stronglywith cloud-related parameters thanwith the above-mentioned414

environmental parameters. It varies inversely, and to varying degrees, with all measures of cloud415

vigor, including dcld (Figs. 4b and 5b), LWPmax (Figs. 4c and 5c), and wmax (Figs. 4f and 5e). Of416

these relationships, the strongest is between ε and dcld, which uniformly exhibits R ≤ −0.75 but is417

not always statistically significant.418

It is fair to questionwhether the abovemeasures of cloud vigor causally control ε , are controlled by419

ε , or only correlate with ε due to cross-correlations with other controlling parameters. For example,420

while Neggers et al. (2002) considered wmax to be a controlling parameter for ε , Rousseau-Rizzi421

et al. (2017) argued that the relationship between these two variables was reversed. Similarly,422

although an inverse sensitivity of ε to dcld is expected given (3), this trend may also stem in part423
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from the strong sensitivity of cloud vertical development to ε (e.g., Khairoutdinov and Randall424

2006). Thus, the relationships between ε and the measures of cloud vigor (wmax, LWPmax, and425

dcld) are likely interactive and not a simple matter of one parameter controlling the other.426

The two retrievals give inconsistent results on the relationship between zb and ε (Figs. 4a and427

Figs. 5a). For this parameter, only one correlation proved statistically significant: a decrease in428

ε JD06 with increasing zb in the continental SGP climate. While a similar, though not significant,429

negative trend is also found at ENA in both retrievals, the D19 retrieval indicates a weakly positive430

relationship between εD19 and zb at SGP. The JD06 retrieval also shows a negative relationship431

between ε and Lcld, with a stronger (R = −0.79) and significant trend at ENA and a weaker432

(R = −0.57) and not significant trend at SGP (Figs. 4d).433

The higher end of Lcld values in Fig. 4d (5-10 km) is on the large side for ShCu, which are434

often characterized by widths of O(1 km) or less. While some large values may be associated with435

elongated cloud streets, the assumption that clouds propagate with the cloud-bearing layer winds436

may also tend to overestimate their width. Consideration of velocities from the surface to cloud437

top, thus encompassing the full boundary-layer circulation supporting the cloud, may be required438

to more accurately estimate Lcld.439

Because both zb and Lcld are partially governed by subcloud processes, their relationships with440

ε may reflect more causal sensitivities than those involving cloud-layer vigor. The zb sensitivity is441

stronger at ENA (R = −1) than at SGP (R = −0.89) but is only significant at SGP, while the Lcld442

sensitivity is significant and stronger at ENA. These two parameters are physically linked because443

the scale of subcloud eddies, and hence the cloud-base width, tends to increase with subcloud-layer444

depth (Drueke et al. 2020). The negative relationship between ε and Lcld likely reflects that, by445

virtue of their larger cross-sectional areas, wider clouds are less diluted by a given entrainment446
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flux across cloud perimeter. This mechanism apparently overcomes the tendency for entrainment447

to widen clouds by increasing their upward mass flux (Drueke et al. 2020).448

In addition, ε correlates negatively with cloud-base mass flux, both for individual clouds and449

cloud ensembles (Mb in Fig. 4e and mb in Fig. 5d, respectively). Although the Mb correlation is450

not significant and relatively weak (R = −0.62) in the JD06 retrieval at SGP, the consistent negative451

trend in both retrievals, and at both locations, may indicate physically meaningful relationships.452

Because these trends largely depend on subcloud, rather than cloud-layer, forcing, they may have a453

more causal impact on ε than cloud-layer parameters. While the negative trend in the D19 retrieval454

follows from the inverse sensitivity of εD19 to m2/3
b in (3), the negative ε–Mb trend for individual455

clouds is novel and less obvious. We speculate that it relates to a transition from more thermal-like456

to more plume-like cloud circulations, the latter corresponding to stronger and more sustained457

subcloud updrafts, as Mb increases. Such sustained subcloud inflow may induce less dilution than458

that in thermal-like updrafts that detach from the subcloud layer (e.g., Squires and Turner 1962).459

5. Discussion460

a. On the role of continentality461

Although several parameters appear to be important for regulating bulk entrainment, not all of462

these are relevant to the robust land–ocean ε contrast in Fig. 1. To help identify the key parameters463

underlying this contrast, we present climatological distributions of relevant environmental and464

cloud-related parameters for the JD06 (Figs. 6 and 8) and D19 (Figs. 7 and 9) climatologies, over465

similar parameter ranges as those shown in the sensitivity analyses of Figs. 2-5.466

Notable climatological environmental differences between SGP and ENA include larger
(
σ2
w

)
sc

467

and smaller RHcld at SGP (Figs. 6 and 7), and notable cloud-related differences include larger zb,468
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dcld, wmax, and cloud-base mass fluxes at SGP (Figs. 8 and 9). Of these parameters, RHcld, mb and469

Mb, and dcld may be expected to be the most important for regulating cloud-layer ε (as discussed470

in section 4b). All of the climatological differences in these four parameters favor larger ε at ENA,471

including its moister and shallower cloud layers and its smaller cloud-base mass fluxes.472

To our knowledge, the only other study to hypothesize a mechanism for the land–ocean contrast473

was Drueke et al. (2020), who argued that increased H over land enhances subcloud turbulence,474

which increases mb and thus decreases ε via (3). While the land–ocean contrast in εD19 may indeed475

stem in part from increased mb at SGP (Figs. 8f and 9f), the climatological distributions of H are476

very similar at SGP and ENA (Figs. 6e and 7e), which, at face value, appears to contradict the477

hypothesis of Drueke et al. (2020).478

The above contradiction may stem from the ENA flux measurements being taken on land, which479

helps to explain the similarity of the H distributions at SGP and ENA. However, like mb itself,480 (
σ2
w

)
sc
is clearly larger at SGP than at ENA (Figs. 6g and 7g), suggesting much stronger subcloud481

turbulence at the continental location. To explain this difference, we consider the Deardorff velocity482

w∗ =

(
g

Tv
ziw′θ

′
v

)1/3
, (4)

where zi ≈ zb is themixed-layer depth andw′θ′v is the surface buoyancy flux. With the aid of Figs. 7f483

and 9a, we estimate characteristic values of the above parameters at ENA (Tv = 290 K, zi = 1 km,484

ρscpw′θ
′
v ≈ H = 200Wm−2, where ρs = 1.2 kg m−3 is surface density and cp is the specific heat of485

dry air), and obtain w∗ = 1.7 m s−1 and an eddy turnover time of τeddy = zi/w
∗ = 565 s. Assuming486

Vsc = 10 m s−1 (Fig. 6e), an onshore fetch of 5.6 km would be required to complete a single eddy487

turnover. Given that ENA is < 1 km from the nearest coastline to its north, and the entire island area488

is only about 60 km2, many ENA flows may indeed lack sufficient time to adjust to the increased489

H over land.490
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To probe the above argument more deeply, we examine the relationships between H ,
(
σ2
w

)
sc
, and491

mb for the D19 climatology. Although H and
(
σ2
w

)
sc
are positively correlated at both sites, the492

trend is stronger at SGP (Fig. 10a), particularly for the majority of cases for which H < 300 Wm−2493

(Fig. 7f). This difference implies that the local turbulence spinup issue is much more of a factor494

at ENA than at SGP. The small values of
(
σ2
w

)
sc

at ENA, and their relative insensitivity to H ,495

reinforce the notion of under-developed turbulence over the small island. Given the strong positive496

correlation between
(
σ2
w

)
sc
and mb in Fig. 10b, the smaller

(
σ2
w

)
sc
at ENA implies smaller mb and,497

as a result, larger ε via (3). Thus, despite the similarities in H at SGP and ENA, the large impact498

of mb on the land–ocean ε contrast hypothesized by Drueke et al. (2020) still appears to hold.499

b. Directions for improvement500

Both bulk retrievals contain assumptions that may impact the accuracy of the ε climatologies.501

Furthermore, cloud radar information is only obtained through cloud chords, which do not nec-502

essarily represent the cloud entity as a whole. Our use of two retrievals helps to overcome these503

limitations by identifying some robust trends common to both climatologies, and our sampling of504

many clouds over a long time period helps to obtain meaningful correlations despite a large degree505

of spread. However, a more attractive approach would be to develop a single ShCu ε retrieval with506

less uncertainty than the ones considered herein. The method of Wagner et al. (2013) is one such507

candidate, but it was found to be much less accurate than the D19 or JD06methods in the numerical508

verification exercise of D19. Moreover, this method is very computationally demanding, which509

makes it impractical for climatologies over several thousands of clouds.510

One potential area of improvement would be to account for the effects of vertical wind shear in511

the D19 retrieval. Although neither climatology indicated a strong sensitivity of ε to Scld, recent512

LES experiments suggest a positive sensitivity, at least in oceanic ShCu (Drueke et al. 2019a). For513
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D19 to potentially capture this effect, the shear production termmust be retained in the TKE budget,514

and the budget must be rescaled accordingly. Moreover, the JD06 retrieval would benefit from515

additional thermodynamic information to better constrain ε . If in-cloud or cloud-top temperatures516

were available from MWRs, satellites, or aircraft, these could be used to relax the zero cloud-top517

buoyancy assumption. Furthermore, more realistic (and likely stochastic) entraining parcel models518

(e.g., Romps 2016) could replace the simplified model used in JD06.519

Our analysis may also suffer from the fact that it is based on point observations and thus520

does not capture clouds as a whole or the path they covered over their life cycle. A more521

comprehensive 3D view of clouds could be achieved using scanning cloud radar observations522

guided by frameworks such as the Multisensor Agile Adaptive Sampling (MAAS; Kollias et al.523

2020) or alternatively by cloud stereogrammatic techniques (e.g., Romps and Öktem 2019). As524

for surface fluxes, observations from multiple surface-flux instruments deployed in a mesoscale525

network, or complementing the observations with reanalysis data, would be superior to single point526

measurements.527

6. Conclusions528

This study has generated climatologies of retrieved bulk entrainment (ε) in active, fair-weather529

shallow cumuli (ShCu) at two Department of Energy (DoE) Atmospheric Radiation Measurement530

(ARM) observatories, the continental Southern Great Plains site (SGP; south-central US) and531

oceanic Eastern North Atlantic site (ENA; Azores islands). Two ground-based ε retrievals are532

deployed, one applying to individual cumuli and the other applying to cumulus ensembles. The533

former uses an entraining parcel model to match the parcel entraining level of neutral buoyancy to534

the radar-observed cloud top (Jensen and Del Genio 2006, or JD06) and the latter uses an analytical535

formulation based on a scaling of the equilibrium TKE budget (Drueke et al. 2019b, or D19). The536
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climatologies cover an equivalent, roughly 4-year period (October 2015 to December 2019) and537

are limited to daytime, surface-based, and active (buoyant) cumuli. Altogether, 175 (631) cloud538

ensembles and 887 (3,724) individual clouds are analyzed at SGP (ENA).539

While each retrieval makes important assumptions about highly complex cloud processes, the540

use of two independent methods helps to identify robust sensitivities of ε in the face of such541

uncertainties. The two retrievals yield consistent magnitudes of ε at both sites as well as a large542

degree of consistency in the various environmental and cloud-related sensitivities of ε . This543

consistency implies that the simple formula used for cloud-ensemble ε in the D19 method may be544

applied to aid physical interpretation. In this formula (shown in equation (3)), ε depends directly545

on CAPE1/3 and inversely on cloud-base mass flux (m2/3
b ) and cloud-layer depth (dcld).546

Certain correlations between the retrieved ε and environmental and cloud-related parameters are547

consistent with previously reported experimental trends. A strong positive correlation with cloud-548

layer relative humidity was found, which may stem from the tendency of cloud-environmental549

mixtures in drier layers to undergo buoyancy reversal and detrain rather than entrain (e.g., Drueke550

et al. 2020). Also, a negative relationship between ε and cloud width (Lcld) reinforces that wider551

clouds are prone to less dilution than narrower clouds (e.g., Rousseau-Rizzi et al. 2017). The552

retrieved ε also correlated negatively with measures of cloud-related vigor (e.g., cloud depth and553

maximum vertical velocity), but these should be interpreted with caution because these parameters554

may depend on ε more than they exert control over it.555

Some novel sensitivities of ε were also found, one being a robust decrease with increasing556

subcloud winds at the oceanic ENA site. This trend may stem from the tendency for cumuli to557

deepen in stronger oceanic flows (Nuijens and Stevens 2012), combined with the tendency of ε to558

vary inversely with cloud-layer depth. Secondly, the D19- and JD06-retrieved ε varied inversely559

with ensemble (mb) and individual-cloud (Mb) cloud-base mass fluxes, respectively. The former560
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trend is consistent with the underlying TKE similarity theory (Grant and Brown 1999), but the561

latter is novel and merits explanation. While it may simply relate to the aforementioned sensitivity562

of retrieved ε to Lcld, it may also reflect a transition from ephemeral subcloud thermals to more563

sustained, plume-like, and less diluted updrafts as Mb increases.564

Another key finding was a strong land–ocean contrast in retrieved ε , with median values nearly565

doubling from 0.5-0.6 km−1 at the continental SGP site to 1.0-1.1 km−1 at the oceanic ENA site.566

This sharp contrast is consistent with corresponding trends found in large-eddy simulations (Drueke567

et al. 2020). It is associated with several environmental and cloud-related parameters that all favor568

smaller ε over land, including larger cloud-base mass fluxes and deeper and drier cloud layers.569

The trends in retrieved bulk entrainment identified herein may be useful for improving cumulus570

parameterization schemes. For example, the strong positive sensitivity to cloud-layer relative571

humidity found herein contrasts with the negative sensitivity incorporated in the parameterization572

of Bechtold et al. (2008). Such discrepancies merit resolution, which may lead to an improved573

parameterization of interactions between updraft plumes and their environment. The sensitivity574

of ε to continentality, and to low-level winds over the oceans, may also warrant inclusion in these575

parameterizations. Similar land–ocean ε contrasts have been included in certain parameterization576

schemes (e.g., Zhao et al. 2009; McTaggart-Cowan et al. 2019), mainly as a tuning exercise to577

improve model skill. The current results provide empirical support for such contrasts.578

Finally, we caution that the effort to retrieve ε is still in its infancy. Both of the ε retrievals used579

in this study are highly simplified and could be improved by adding additional observational con-580

straints to relax certain assumptions. Future work will aim to improve these retrievals accordingly,581

as well as to design numerical experiments to help interpret statistical relationships between ε and582

various environmental and cloud-related parameters.583
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Table 1: List of mathematical symbols and abbreviations used in the text.

Symbol Definition Symbol Definition

ε Fractional bulk entrainment rate E Bulk entrainment rate

εJD06 ε from JD06 retrieval εD19 ε from the D19 retrieval

Aε Fraction of buoyancy production available for entrainment θe Equivalent potential temperature

Tv Virtual temperature θv Virtual potential temperature

ρb Cloud-base air density ρs Surface air density

tup Time-duration of cloud-base updraft fup Fraction of cloud-base points undergoing ascent

wup Mean ascent rate of cloud-base updraft Lup Width of cloud-base updraft

w Vertical velocity b Buoyancy

zb Cloud-base height zt Cloud-top height

g Gravitational acceleration zi Mixed-layer depth

w∗ Deardorff velocity τeddy Eddy turnover time

LCL Lifting condensation layer LFC Level of free convection

(E)LNB (Entraining) level of neutral buoyancy CIN Convective inhibition

CAPE Full convective available potential energy CAPEcld Cloud-layer convective available potential energy

mb Cloud-base mass flux for cloud ensemble Mb Cloud-base mass flux for individual cloud

Mc Cloud upward mass flux H Sensible heat flux

tcld Cloud duration RHcld Cloud-layer-averaged relative humidity

dcld Cloud or cloud-layer depth Lcld Cloud width

Scld Magnitude of cloud-layer-averaged vertical shear Vcld Magnitude of cloud-layer-averaged horizontal wind

Vsc Magnitude of subcloud-layer-averaged horizontal wind
(
σ2

w

)
sc

Subcloud w variance

wmax Maximum in-cloud updraft speed LWPmax Maximum cloud liquid-water path

CCFrad Cloud-cover fraction for cumulus ensemble TKE Turbulent kinetic energy

γ Doppler Lidar attenuated backscatter R Spearman correlation coefficient
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Fig. 1: Histograms of retrieved bulk entrainment using the (a) JD06 and (b) D19 methods. All quantities are defined in the text.
The mean values of the distributions are shown in the plot annotation. For both panels, the null hypothesis of equal sample means
for JDG and D19 is rejected at the 95% confidence interval using the two-sample t-test.
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Fig. 2: Sensitivity of JD06-retrieved ε (εJD06) to selected environmental parameters. Six bins are defined for each parameter, the
first five spanning the range of values shown on the abscissa and the sixth extending from the maximum value to infinity. Curves
connect the bin medians (the latter denoted by circles), and error bars show the 25th to 75th percentiles within that bin. Solid
curves represent correlations with Spearman correlation coefficient p-values below 0.05; dashed lines have p-values above 0.05.
The corresponding Spearman R-values are also provided at the top of each panel. Data is only shown for bins containing at least
five data points. All abbreviations are defined in the text.
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Fig. 3: As in Fig. 2, but for the D19 ε retrieval (εD19).
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Fig. 4: As in Fig. 2, but for the sensitivity of JD06-retrieved ε (εJD06) to selected cloud-related parameters.

42



Fig. 5: As in Fig. 3, but for the sensitivity of D19-retrieved ε (εD19) to selected cloud-related parameters.
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Fig. 6: Histograms of selected environmental parameters at SGP and ENA associated with cumulus ε retrievals using the JD06
method. All quantities are defined in the text.

44



Fig. 7: Histograms of selected environmental parameters at SGP and ENA associated with cumulus ε retrievals using the D19
method. All quantities are defined in the text.
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Fig. 8: Histograms of selected cloud-related parameters at SGP and ENA associated with cumulus ε retrievals using the JD06
method. All quantities are defined in the text.
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Fig. 9: Histograms of selected cloud-related parameters at SGP and ENA associated with cumulus ε retrievals using the D19
method. All quantities are defined in the text.
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Fig. 10: Evaluation of relationships between different variables of interest. The statistical analysis behind each relationship is
identical to that described in Fig. 3.
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