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Abstract 

 

The flow-dependent background error statistics and other uncertainties involved in 

Ensemble Kalman Filter (EnKF), such as model error, initial perturbations, etc., are studied by a 

numerical weather prediction model and a few simple idealized experiments, respectively. 

Following the aforementioned studies, a convective-scale EnKF system is implemented to 

assimilate real radar data of radial velocity provided by the McGill J. S. Marshall Radar 

Observatory. The performance of this system and its impact on short-term ensemble forecasts are 

examined in three summer cases with different precipitation structures. In order to enhance and 

prolong the improvement brought by radar data assimilation on weather prediction, an adaptive 

radar observation method is proposed based on the background error statistics in EnKF. This 

method takes advantage of the phased-array radar technique to adaptively place observations 

where the important and unobserved model variable has more chances of improvement. 

The idealized experiments of EnKF suggest that a better analysis requires sufficient 

ensemble spread in initial perturbation, accurate estimation of model and observation errors, and 

radar data thinning if necessary. The studies on the background error statistics showed that 

homogeneous isotropic background error perturbations can develop into situation-dependent 

features in 15 minutes, and the error structures in the regions with and without precipitation are 

different. Results from the high-resolution EnKF system indicate that the analysis uncertainty 

can be reduced after a 1-h cycling process; and that radial velocity assimilation has an impact on 

the precipitation field. Additionally, the improvement in ensemble forecasts is evident in 

observation space within a 2-hour lead-time. When the adaptive radar observation method is 

applied on radial velocity assimilation, the unobserved vertical velocity can be better improved 

in areas where background error cross-covariances is more significant. Nevertheless, the 

improvement on the unobserved variable is much smaller than for the observed variable. 
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Résumé 

 

Les statistiques d‟erreur de prévisions dépendent de l‟écoulement atmosphérique ainsi 

que d'autres incertitudes associées au Filtre de Kalman d'Ensemble (EnKF), tels que l'erreur de 

modèle, les perturbations initiales, etc.  Ces erreurs sont étudiées à l'aide d'expériences idéalisées 

ainsi que d'un modèle numérique de prévisions météorologiques. À cet effet, un système d‟EnKF 

à l'échelle convective a été développé pour assimiler les données radar de vitesse radiale fournies 

par l'observatoire radar JS Marshall à l'université McGill.  La performance de ce système et son 

impact sur les prévisions d'ensembles sont examinés à partir d'un échantillon de trois situations 

atmosphériques présentant des structures de précipitations différentes. Afin d'améliorer et de 

prolonger l'effet bénéfique apporté par l'assimilation de données, nous proposons une méthode 

adaptative d'observations radar basée sur les statistiques d'erreurs de prévision du système EnKF.  

Cette méthode vise à tirer parti de la rapidité associée au balayage électronique (phased array) 

afin de choisir de manière adaptative les endroits ou de futures observations ont le plus de chance 

d'améliorer l'analyse de variables non observées. 

Les expériences idéalisées à partir de systèmes EnKF suggèrent que des analyses de 

qualité nécessitent des perturbations initiales de magnitude adéquates, des estimations précises 

des erreurs de modèle et d'observations ainsi que l'utilisation d'observations aux erreurs non 

corrélées. L'étude sur les statistiques d'erreur de background a montré que les perturbations 

isotropes et homogènes peuvent se développer suffisamment pour présenter des erreurs dont la 

structure diffère entre les régions avec et sans précipitation. Les résultats provenant du système 

d‟EnKF à haute résolution indiquent que l'incertitude de l'analyse peut être réduite après un 

processus de cyclage pendant une heure. Aussi, il est démontré l'assimilation de la vitesse radiale 

a un impact sur le champ de précipitations.  L'amélioration par rapport aux observations est 

mesurable pour une période de deux heures. Lorsque la méthode d'observation adaptative est 

appliquée, l'estimation de la vitesse verticale peut être améliorée dans les zones où les 

covariances d‟erreurs sont importantes. Toutefois, l'amélioration est faible par rapport aux 

variables observées.  
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Statement of Originality 

 

This thesis contributes to the field of radar data assimilation in the following aspects. 

1. The time evolution of 1-km resolution background error statistics is examined. It is found that 

the error structures evolve differently for different variables, and in different regions (e.g. 

with or without precipitation). Moreover, once the physical parameterization scheme becomes 

active, these error structures change rapidly before the onset of precipitation. 

2. A 1-km resolution EnKF system is implemented for radar data assimilation. Data assimilation 

is performed from global scale to convective-scale. It is verified that the parallel sub-EnKF 

method is helpful for maintaining the ensemble spread for convective-scale data assimilation. 

The performance of EnKF and its impact on forecast are studied for different precipitation 

structures. 

3. This thesis explores for the first time the possibility of using phased-array technique and 

adaptive radar observation method to correct the unobserved model variable, for the purpose 

of producing a better forecast. This method can be considered as another way of using 

phased-array radar to improve weather prediction, from the perspective of radar data 

assimilation. 
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Chapter 1 

Introduction 

 

1.1  Ensemble Kalman Filter for atmospheric data analysis 

Atmospheric data analysis is a process whereby atmospheric observations are diagnosed 

in order to produce a regular, coherent spatial representation of the atmosphere at a given time 

(Daley 1991). This analysis can be adopted as the initial condition for the time integration of a 

numerical weather prediction (NWP) model based on the governing differential equations of the 

atmosphere. The ability to make skilful predictions requires accurate analysis of the initial 

condition (Kalnay 2003). In order to minimize the uncertainty in analysis, data assimilation 

methods, such as variational and ensemble-based approaches (Daley 1991; Kalnay 2003), use 

statistical interpolation scheme to incorporate observations into the background that is usually 

produced by a numerical model.  

Ensemble Kalman Filter (EnKF) is a data assimilation technique (Evensen 1994), which 

applies the Monte-Carlo method on a Bayesian update problem for estimating posterior 

probability distribution (i.e. analysis) from prior information (i.e. background) and observations, 

where the multivariate probability distributions are sampled by a number of model realizations 

(i.e. ensemble members). According to the error statistics estimated from the ensemble members, 

EnKF linearly combines the background and observations so as to produce an optimal analysis 

with minimum error variance. In order to yield this optimal estimate, the assumption that all 

errors follow unbiased Gaussian distributions is required by EnKF. 

Besides the EnKF, another popular approach is the variational method, such as 3D-Var 

and 4D-Var, which obtains the best estimation by minimizing a cost function. A typical cost 

function sums the distance between analysis and background weighted by background error 

covariance matrix, and the distance between analysis and observations weighted by observation 

error covariance matrix (Kalnay 2003). In a 4D-Var system, an adjoint model is usually applied 

for transferring perturbations from analysis time to other times so as to calculate the distance 
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between analysis and observations collected in a time span. Unlike the variational method, EnKF 

uses the Kalman Gain instead of a minimization process, and can work without extra effort on 

the governing equations, which makes it convenient and practical to use. Additionally, while the 

variational method demands a predetermined background error covariance matrix in cost 

function, EnKF uses ensemble members to provide a flow-dependent estimation of the 

background error statistics. 

EnKF has been widely applied on atmospheric data assimilation because of its relatively 

simple implementation and the flow-dependent background error covariance matrix. The 

National Center for Atmospheric Research (NCAR) included EnKF as an analysis tool in the 

Data Assimilation Research Testbed (DART) (Anderson 2001, 2003, 2007, 2009; Anderson et al. 

2009; Raeder et al. 2012). This EnKF system has been used on different models to assimilate a 

variety of observations, for the studies of hurricanes (Chen and Snyder 2006; Davis et al. 2010; 

Torn 2010), convective storms (Zhang et al. 2004; Dowell et al. 2010), carbon monoxide 

(Edwards et al. 2009; Arellano et al. 2010) and Martian atmosphere. In Canada, the Canadian 

Meteorological Center (CMC) implemented a global-scale EnKF system for operational use 

(Houtekamer and Mitchell 1998, 2001; Houtekamer et al. 2005; Mitchell et al. 2002; Mitchell 

and Houtekamer 2009). The comparison between different operational analysis systems at CMC 

suggested that EnKF had a similar performance in improving global forecasts as the 4-D 

variational system (Buehner et al. 2010a, b). Besides the standard EnKFs, other versions of 

EnKF were developed. Ensemble Transform Kalman Filter (ETKF, Bishop et al. 2001) was 

proposed to perform fast calculations for ensemble analyses. Szunyogh et al. (2008) employed 

the Local ETKF (LETKF) algorithm with the National Centers for Environmental Prediction 

(NCEP) global model. They found that the LETKF provided more accurate analyses than the 

spectral statistical interpolation analyses in sparse observation regions. The Italian National 

Meteorological Service also applied the LETKF in regional NWP (Bonavita et al. 2010). It was 

shown that the LETKF generally outperformed their operational 3D-variational system, 

according to the root-mean-square error verification for the forecasts. In addition, Ensemble 

Square Root Kalman Filter (EnSRF, Whitaker and Hamill 2002; Tippett 2003; Evensen 2004) 

was introduced as an alternative method to ETKF and EnKF. 
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Despite its superiority and popularity, one of the most problematic issues with EnKF is 

the violation of its assumption on the Gaussian distributed errors due to the nonlinearity of the 

NWP model. A few approaches, such as Ensemble Adjustment Kalman Filter (EAKF, Anderson 

2001) and EnSRF (Evensen 2004) consider higher-order moments of the prior possibility density 

function and maintain the Gaussian distribution in analysis errors. Additionally, the particle filter 

(Snyder et al. 2008) does not use the first and second moments to parameterize the probability 

density function (pdf), but samples the entire pdf by a large number of ensemble members. Thus 

this scheme relaxes the Gaussian distribution assumption. However, it is impractical because it 

requires a large ensemble size which scales exponentially with the variance of the observation 

log likelihood. 

The practical implementation of an EnKF system usually includes a few specific 

algorithms. Firstly, because of the limited ensemble size, it is difficult to precisely represent the 

complete multivariate probability distribution by ensemble members, which may result in 

underestimated variances and noisy covariances. In order to increase the variance and the 

ensemble spread, inflation methods (Anderson and Anderson 1999; Anderson 2007) are used in 

DART; and multiple parallel sub-EnKFs are applied at CMC (Houtekamer and Mitchell 1998, 

2001). Moreover, the localization methods are used to remove or reduce the noises in covariance 

estimations (Anderson 2007; Bishop and Hodyss 2010; Greybush 2011; Anderson and Lei 2013). 

Secondly, due to the limited computer power, observations are usually assimilated one by one (as 

in DART) or batch by batch (as in the global EnKF at CMC) for reducing the computational cost. 

However, this procedure is only valid when observation errors are uncorrelated in space. Thirdly, 

in order to avoid the reduction of ensemble spread after each analysis step, observations need to 

be perturbed according to their error statistics (Whitaker and Hamill 2002). 

In meso and convective scales, EnKF has been applied on the assimilation of simulated 

radar data. The first attempt was made by Snyder and Zhang (2003) who assimilated simulated 

radial velocities into a perfect cloud-scale model. The study showed that precise analysis could 

be produced after six cycles of assimilation. The research also indicated that flow-dependent 

error covariances are important for reconstructing the storm structure in detail. Tong and Xue 

(2005) applied EnKF on the assimilation of both simulated radial velocity and reflectivity 

observations. They showed that reflectivity data in precipitation areas help to retrieve storm 
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details, and no-reflectivity observations in non-precipitation areas are useful for suppressing false 

alarm storms. Caya et al. (2005) compared EnKF and the variational method. The results of this 

comparison demonstrated that EnKF was slightly better than 4-D variational method after a few 

cycles due to the flow-dependent background ensemble members in EnKF. Xue et al. (2006) 

applied EnSRF for radar data assimilation within the framework of Observing System 

Simulation Experiments (OSSEs). They found that EnSRF is superior to other traditional 

retrieval schemes because the sensitivity of the EnSRF analysis to the volume scan interval is 

less, and frequent update of model state does not hurt the balance in the analysis. Additionally, 

EnSRF can also be applied on radar data assimilation to retrieve microphysical parameters (Tong 

and Xue  2008a, b). 

Compared to simulated observations, assimilating real radar data by EnKF is even more 

challenging due to the imperfect highly non-linear model, phase error of backgrounds, non-

continuous observations, and the limited knowledge of model and observation errors. Dowell et 

al. (2004) tested the feasibility of using EnKF to retrieve wind and temperature fields in an 

isolated convective storm from single radar observations. The results showed that the retrieval 

was sensitive to the initial perturbations, and the low level temperature was difficult to retrieve, 

which was likely caused by observation error and model error near the surface. Aksoy et al. 

(2009) used EnKF to assimilate real radar observations of radial wind and reflectivity collected 

by multiple radars. It is shown that although the amplitude of innovations (i.e. observations 

minus background) in each cycle was consistently reduced, the analysis result was still far from 

optimal, as the ensemble spread was consistently smaller than expected. They also claimed that 

the representation of mesoscale uncertainty in the initial perturbations is critical for the 

assimilation system. In their experiment on EnKF-based forecasts (Aksoy et al. 2010), they 

indicated that while radar data assimilation is able to partially mitigate some of the negative 

effects in some situations, the forecast skill decays on a time scale of tens of minutes. Dowell et 

al. (2011) examined the influences of real reflectivity observations in EnKF data assimilation. 

They demonstrated that storms developed more quickly when both radial velocity and 

reflectivity are assimilated, rather than only velocity. 

Furthermore, the advanced phased-array technology allows radar to adaptively collect 

observations, by electronically steering the radar beam. Such radar provides the new phased-
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array radar data, whose spatial resolution, temporal resolution, accuracy and locations can be 

adjusted in a flexible manner (Heinselman et al. 2011). From the application of EnKF on phased-

array radar data assimilation, Lu and Xu (2009) found that reducing the spatial resolutions and 

enhancing the temporal resolution and/or measurement accuracy can reduce or eliminate 

information redundancy and enhance the information content. Yussouf and Stensrud (2010) 

claimed that assimilating simulated phased-array radar data by EnKF at 1-min intervals over a 

short 15-min period yielded significantly better results than assimilating traditional radar data. 

These studies explored the possibility of improving EnKF analysis by adaptive radar observation.  

 

 

1.2  Motivation and Research Objectives 

In most EnKF applications for real radar data assimilation, the analysis is usually far 

from optimal (Aksoy et al. 2009) and the improvement on forecast is always short-lived (Aksoy 

et al. 2010; Surcel et al. 2014). These weaknesses in EnKF are related to the uncertainties 

involved in the system, such as initial perturbation, ensemble spread and model errors (Dowell et 

al. 2004). Therefore the first objective of this research is to inspect the impact of all the 

uncertainties involved in EnKF data assimilation, in order to better understand the unappealing 

analysis result, and provide advices for implementing a sophisticated EnKF radar data 

assimilation system. While the forecast error statistics can be estimated from ensemble members, 

other uncertainties including the first guess, the initial ensemble perturbations, and the 

estimations of model and observation errors, are related to prior knowledge obtained from 

climatology and experiences. The author would like to examine the evolution of the forecast 

error in a complex model, and investigate the influence of other uncertainties on EnKF by 

idealized simple experiments. 

Based on the studies about the uncertainties in EnKF, the second objective of this 

research is to implement an EnKF system dedicated to real radar data assimilation. Although 

some EnKF studies already dealt with radar observations, most of the focus was on simulated 

observations or real observations collected from isolated convective systems happening within 

the model domain. Consequently, the performance of real radar data assimilation by EnKF under 
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different weather conditions is still not clear. The author would like to build a high resolution 

EnKF for assimilating real radar data; carefully study the performance of EnKF under varying 

weather conditions; and evaluate the advantages and limitations of EnKF from the perspectives 

of both analysis accuracy and forecast precision.  

The third objective of this research is to improve EnKF radar data assimilation by 

adaptive radar observation. Studies about adaptive observation have shown that changing 

observation locations has the potential to reduce analysis and forecast uncertainties (Palmer et al. 

1998, Buizza and Montani 1999, Bishop et al. 2001, Majumdar et al. 2002). In regards to radar 

data, modern radar employing phased-array technique is able to sample the atmosphere 

adaptively in space and time as required by the user, since the radar beam can be electronically 

steered by adjusting the phases of an array of antennas. Given such a powerful device, one needs 

to decide the optimal data collection strategy, so that the uncertainty in analysis and forecast can 

be minimized by data analysis. It is known that the forecast quality relies on some model 

variables that cannot be observed by radar. For example, vertical velocity is important for a 

successful precipitation forecast but can hardly be observed by radar. In order to reconstruct such 

a model field by data assimilation, significant and reliable cross-covariances between errors of 

observed and unobserved variables in the background are required (Snyder and Zhang 2003). 

Given the advanced radar technology, the author would like to explore the possibility of using 

EnKF and adaptive radar observation method to improve forecast based on the background error 

cross-covariances between unobserved and observed variables. 

 

1.3  Thesis structure 

The subsequent chapters are organized in the following manner.  

Chapter 2 studies the influence of EnKF uncertainties and the effectiveness of 

observations on data analysis, in order to give advices on the implementation of EnKF system, 

and the optimal observation collection method. The uncertainties exists in the estimation of 

background error, the estimation of initial guess error, the model error and the representation of 

model and observation errors. Additionally, this chapter will discuss the impact of observation 

density, observation number and observation accuracy on the analysis step of EnKF.  
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Chapter 3 examines the forecast error statistics estimated from a set of ensemble 

members under the framework of a high resolution EnKF system with a focus on the very early 

stage of transition from purely homogeneous isotropic background-error structures to situation-

dependent error correlations. The error structures in the regions with and without precipitations 

are also compared. 

Chapter 4 introduces a high resolution (1-km) EnKF system which assimilates real radial 

velocity observations into a limited area model. Short-term ensemble forecasts are initiated from 

the ensemble analyses after the cycling process is complete. The impact of data analysis on 

forecast is investigated in three summer cases with different precipitation structures. 

Chapter 5 proposes an adaptive radar observation method which aims at improving the 

unobserved field from the assimilation of simulated radar data by EnKF. This method takes 

advantage of hypothetical phased-array radar to adaptively place observations where the 

unobserved variable is most likely to be improved.  

In Chapter 6, conclusions, further discussions and future work are presented. 
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Chapter 2 

Studies on the Influence of Uncertainties and the Effectiveness of 

Observations on Ensemble Kalman Filter by Idealized Experiments 

 

Before the implementation of Ensemble Kalman Filter (EnKF) for real radar data 

assimilation, a few idealized experiments are conducted in this chapter to study the influence of 

uncertainties and the effectiveness of observations on data analysis. The uncertainties about the 

estimation of background error, the estimation of initial guess error, the model error and the 

misrepresentation of model and observation errors are examined. The impact of observation 

density, observation number and observation accuracy will be discussed. Results from this study 

give advices on the implementation of EnKF system, and the optimal observation collection 

method. 

This chapter is based on the following conference articles, presentations and posters. 

Chang, W., and I. Zawadzki, 2011: Targeted observations for radar data assimilation. 18A.2, 

35th Conference on Radar Meteorology, Pittsburgh, PA, USA. 

Chang, W., and I. Zawadzki, 2012: Impact of Ill Estimated Error Structures on Ensemble 

Kalman Filter. 2C1.6, 46th CMOS Congress, Montreal, QC, Canada. 

Chang, W., and I. Zawadzki, 2012: The Value of Accuracy and Density of Radar Observation for 

Data assimilation. The Seventh European Conference on Radar in Meteorology and Hydrology. 

Toulouse, France. 
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Chapter 2 

Studies on the Influence of Uncertainties and the Effectiveness of 

Observations on Ensemble Kalman Filter by Idealized Experiments 

 

2.1 Introduction 

The quality of data analysis relies on the accuracy of three pieces of information: the 

background (i.e. model forecast), observations and their error statistics. One of the most popular 

statistical data analysis schemes, the Ensemble Kalman Filter (EnKF), calculates background 

error statistics from a set of ensemble members and linearly combines the background and 

observations, according to the statistical properties of their errors in order to minimize the 

uncertainties in its analysis of the atmosphere state. Among the three informational components, 

Numerical Weather Prediction (NWP) models are usually used to provide the background. The 

models including the Weather Research and Forecasting (WRF) model and the Global 

Environmental Multiscale (GEM) model are developed and persistently improved for both 

research and operational use. In regards to the observations, radiosondes, aircrafts, ships, 

satellites, ground based radars and other observation platforms collect increasing amount of data, 

and quality control is usually applied so as to reduce observation errors. Given the background 

and observations, the error statistics, including variances and covariances, determine the weights 

assigned to these two parties and decide the analysis uncertainty. Since there are already a vast 

discussion on improving NWP models, this chapter focuses on the impact of the error statistics 

and the observations on data analysis, within the EnKF framework. 

Although EnKF uses ensemble members for forecast error estimation, nevertheless many 

other errors and uncertainties involved in EnKF cannot be estimated in this way. Firstly, 

uncertainty exists in the estimated statistics of forecast (or background) errors, which are 

computed from the differences between ensemble members and the ensemble mean (Evensen 

2003; 2006). Because the ensemble mean is always different from the unknown truth, the 

uncertainty mentioned above cannot be eliminated, but probably can be reduced if ensemble 
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mean is closer to the truth. The second source of uncertainty comes from model error estimation 

which is usually related to climatology and some existing analysis results (Mitchell and 

Houtekamer 1999; Mitchell et al. 2002; Houtekamer et al. 2009). Thirdly, the estimation of 

observation error statistics could be inaccurate. For example, the spatial error correlation of radar 

data is not well known (Fabry 2011), and has to be ignored in EnKF, thus leading to the 

requirement of data thinning (Aksoy et al. 2009; Dowell et al. 2011). Lastly, the initial error 

estimation of the first guess is also imprecise at the beginning of EnKF, because the first guess is 

usually far from the truth, which itself is unknown. This uncertainty may lead to the 

inappropriate generation  of the initial ensemble spread. All the errors and uncertainties 

discussed above have the potential to weaken the data analysis results, and therefore need to be 

investigated for the benefit of a careful EnKF system implementation. 

From the perspective of data collection, a well-designed observation system is also 

beneficial for data analysis. For example, it has been shown that assimilating data from an 

adaptive observation platform is helpful for reducing errors in both analysis and forecast (Palmer 

et al. 1998, Buizza and Montani 1999, Bishop et al. 2001, Majumdar et al. 2002). An adaptive 

radar observation system (e.g. phased-array radar) is able to adaptively adjust temporal 

resolution, spatial resolution, locations and accuracy of the data, but still requires an optimal data 

collection strategy in order to mostly reduce analysis and forecast uncertainties. Although it 

might seem obvious that a larger number of more precise observations would help to better 

understand the atmosphere, their impact on data analysis is not actually that straightforward. For 

example, when radar data become denser in space, the observation errors are strongly correlated 

to contain more mutual information, which results in less benefit to the reduction of analysis 

uncertainty (Lu and Xu et al. 2006). The data from adaptive radar observation platforms also 

face this problem of deciding between observation accuracy and observation number 

(Heinselman et al. 2011). In other words, the improvement of one comes at the sacrifice of the 

other, given a limited radar canning capability. Therefore, in order to decide the optimal 

observation strategy, the effectiveness of both observation accuracy and observation number on 

the analysis must be examined.  
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This chapter will conduct a few idealized experiments about EnKF data assimilation. 

Furthermore, if the system is linear, the Kalman Filter will be used. The uncertainty of analysis is 

used to evaluate the system‟s performance. 

In the next section, the EnKF algorithm is introduced. The third section examines the 

impact of uncertainties on data assimilation system, which includes: the uncertainty in 

background error estimation due to the difference between the ensemble mean and the truth, the 

poor estimation of errors in the first guess, the model error, and the misrepresentation of model 

and observation errors. The fourth section studies the influence of observation information on 

data analysis, including observation spacing, observation number, and observation accuracy. 

Finally, the summary and discussions are presented in the last section. 

 

2.2 The algorithm of the Ensemble Kalman Filter 

EnKF is a sequential data assimilation method that applies an ensemble of model 

integrations to predict error statistics in the forecast, and then uses those error statistics to 

directly update the ensemble of model states when observations are assimilated. Evensen (2003) 

provides the theoretical formulation and practical implementation of EnKF. The Monte-Carlo 

realization of EnKF usually starts from a set of initial ensemble forecasts 
f

jX  ( j = 1, 2 … N, 

indicating the ensemble member index), which are produced by 

j

a

j

f

j  )(XX M  (2.1) 

where M  denotes the nonlinear model equation; j  is the perturbation for model error, which 

follows zero-mean Gaussian distribution with covariance matrix Q ; 
a

jX  is the analysis ensemble 

member from the previous assimilation step. For the first assimilation cycle, where analysis 

members are not available, 
a

jX  indicates the perturbed model initial condition for ensemble 

forecasts. 

Given a set of ensemble members, the error variance and covariance matrix can be 

estimated by 
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where A and B represent state vectors (the elements in the vector represents each model variable 

at each grid point) for different members in model space (e.g.: 
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j HXHX , ); the over bars indicate the mean of the vectors over all ensemble members.  

Given the estimation of the error covariance matrix, the Kalman Gain can be calculated from 
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where H  is the observation operator mapping model space to observation space; R  is the 

observation error covariance matrix; and K is Kalman gain. 

After the Kalman gain is calculated and observation vector O
 
is provided, EnKF is able 

to produce the analysis result for each ensemble member by 
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In order to avoid the underestimation of observation errors, observations O
 
need to be perturbed 

to jO  according to the observation error covariance matrix R (Burgers et al 1998). Observation 

perturbation is a routine process in the EnKF system, because assimilating the same unperturbed 

observations into different ensemble members leads to insufficient analysis ensemble spread. 

Additionally, Whitaker and Hamill (2002) proved that EnKF is equivalent to linear Kalman 

Filter under a necessary condition that the observations are perturbed.  

The forecast and analysis error covariance matrices can be estimated from ensemble 

members by 
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where f
P  and a

P  represent error covariance matrix for forecast and analysis, respectively. If the 

observation operator is linear, and errors follow an unbiased Gaussian distribution, the analysis 

error covariance matrix can be written as 
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After data assimilation, the analysis error represented by the ensemble member should be 

lower than either the forecast error or the observation error. 

2.3 Examination of the uncertainties in EnKF 

In this subsection, simple experiments are performed to examine the influence of forecast 

error estimation with respect to ensemble mean, the error estimation of the first guess, the model 

error, and the misrepresentation of model and observation errors on data analysis, based on an 

EnKF system. In this experiment, the one-dimensional viscid Burgers' equation is used as the 

forecast model, which is 
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where u is the control variable of velocity having an extension of 1000 points in one dimension; 

x is the distance in space; D is the viscosity coefficient which is set to be 0.12 in this experiment; 

and t is time. The leapfrog integration scheme is used for producing numerical solutions. 

 

Fig. 2.1  a) 1-D fields of the truth, the first guess and three ensemble members at cycle 0, before 

data assimilation starts. b) Error covariance matrix used for generating the first guess from the 

truth, and for generating initial ensemble members from the first guess, at cycle 0. Each pixel 

represents an element in the error covariance matrix. The diagonal points represent variances; 

and the off-diagonal points represent spatial covariances. 



14 
 

The experiment starts at cycle 0, when a smoothed 1-D random field serves as the “true” 

initial condition of Eq. (2.8) as shown in Fig. 2.1a. In reality, the truth is not exactly known. 

Instead, a first guess, which could be a model output or an analysis from another assimilation 

system, is used for producing ensemble members. In this study, the first guess is generated via 

adding random errors to the truth (Fig. 2.1a). The initial 64 ensemble members are then produced 

by randomly perturbing the first guess. Both the errors on the first guess (the difference between 

the first guess and the truth) and the random perturbations (the difference between ensemble 

members and the first guess) follow a zero-mean Gaussian distribution with the error covariance 

matrix as presented in Fig. 2.1b. The diagonal element of an error covariance matrix represents 

variance, and the non-diagonal element is the covariance between any two grid points. Both the 

ensemble members and the truth are then used to initialize model integrations. 

Table 1.1 List of experiment setup 

 Exp in a) section Exp in b) section Exp in c) section Exp in d) section 

Model One-dimension viscid Burgers' equation (Eq. 2.8) 

Observation 50 observations, truth + random error (no spatial correlation) 

Bkgd error 

estimation 

With respect to the 

ensemble mean and to 

the truth. 

With respect to 

the ensemble 

mean. 

Same as in b) Same as in b) 

Error 

estimation 

of the first 

guess 

Well estimated. Misrepresented. Same as in a) Same as in a) 

Model error No model error Same as in a) 
Well estimated 

model error 

Misrepresented 

model error. 

Obs error Well estimated Same as in a) Same as in a) Misrepresented 

 

After numerical integration of Eq. (2.8), ensemble forecasts (or background) and the truth 

are yielded at cycle 1. Fifty observations evenly spaced along x are then generated via the 

addition of Gaussian distributed random errors to the truth. The observation errors have a 

standard deviation of 0.06 and are uncorrelated in space. Fig. 2.2a shows the ensemble mean 

forecast, observations, and the truth at cycle 1, based on which, the EnKF equations (2.2) – (2.6) 

are applied, in order to perform data assimilation and estimate error statistics. The ensemble 
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analyses are then used as model initial conditions for the ensemble forecast of the next cycle. 

Such cycling process is applied from cycle 1 to cycle 12. Note that the term „forecast‟ is exactly 

the same as „background‟ in this chapter since the forecast initiated at current time step will be 

used as background for the next time step. 

Based on the above experiment procedure, the following four subsections use several 

experiment setups to perform data assimilation, as summarized in Table 1.1. More details can be 

found in the corresponding subsections. 

 

a. The use of ensemble mean for forecast error estimation 

In practice, the ensemble mean is usually considered to be the reference for the 

computation of error covariance matrix, as expressed in Eq. (2.2). If the truth is known, a more 

precise estimation of error statistics can be given by 
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 (2.9) 

where the subscript t indicates the truth, other notations are the same as in Eq. (2.2) (Evensen 

2003). In reality, however, Eq. (2.9) is not applicable, as the truth is unknown. Therefore, while 

EnKF uses ensemble members and their mean to represent the forecast error statistics, such a 

representation is less reliable if the ensemble mean is far from the truth. 

In order to examine the reliability of forecast error estimation by the ensemble mean, two 

experiments are conducted and compared: the first one uses ensemble mean as the reference to 

calculate the forecast error covariance matrix in EnKF (Eq. 2.2), while the second one uses the 

truth as the reference (Eq. 2.9). Since our focus in on the forecast error statistics represented by 

ensemble members, no model error is considered.  

At cycle 1, before the first analysis step is performed, the truth, 50 observations and the 

ensemble mean forecast (i.e. background) are shown in Fig. 2.2a. Figure 2.2b displays the 

forecast error standard deviations with respect to the truth (blue dashed curve), and with respect 

to the mean (blue solid curve). Figure 2.2 suggests that the forecast ensemble spread is „enough‟ 
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to cover the truth, since the forecast error standard deviations are comparable to or larger than 

the difference between the ensemble mean and the truth. Moreover, the error standard deviation 

estimated from the truth (blue dashed curve in Fig. 2.2b) is much larger than the one estimated 

from the ensemble mean (blue solid curve in Fig. 2.2b), because the former contains the 

difference between the ensemble mean forecast and the truth.  

Two data assimilation experiments are performed at cycle 1 to produce the ensemble 

analyses. While the first experiment calculates the background error covariance matrix with 

respect to the mean, the second experiment computes it with respect to the truth. After data 

assimilation, the standard deviation of the analysis with respect to the truth is plotted for both 

experiments in Fig. 2.2b (red dashed curve for the second experiment, red solid curve for the first 

experiment). Note that the truth is used as reference in both experiments for estimating the 

analysis uncertainty. In addition, the ensemble mean analysis for the first experiment is plotted in 

Fig. 2.2a (red curve).  

 

Fig. 2.2  a) 1-D fields of the truth, the observations, the ensemble mean forecast and the 

ensemble mean analysis at cycle 1. b) Forecast error standard deviations with respect to the truth 

and the mean, analysis error standard deviations with respect to the truth in two experiments (the 

1
st
 experiment uses P

f
 with respect to the mean to calculate Kalman gain; the 2

nd
 experiment uses 

P
f
 with respect to the truth). 

Figure 2.2a shows that after data assimilation, the ensemble mean of the analyses is 

driven closer to the observations, as compared to the ensemble mean of the forecasts. The 
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analysis uncertainties in the two experiments are also generally smaller than the forecast 

uncertainties, as indicated by the error standard deviations plotted in Fig. 2.2b. Moreover, the 

analysis from the first experiment has a slightly larger uncertainty than the second experiment at 

most points, although the estimated forecast uncertainty is smaller in the first experiment. This is 

because the forecast error calculated from the ensemble mean is underestimated in the first 

experiment, while the one estimated with respect to the truth is more reliable (Evensen 2003; 

2006). More explicitly, the forecast error variance calculated with respect to the mean is 

underestimated, or smaller than the variance calculated with respect to the truth. This is because: 

after integrating a nonlinear model, the ensemble mean deviates from the truth even if they are 

identical at the initiation time; and the variance with respect to mean is always minimal.  

When the ensemble mean is closer to the truth, the estimation of error statistics with 

respect to the mean (as in most ensemble-based data analysis systems) is more precise, which in 

turn leads to a more accurate ensemble mean in the analysis. In order to assess the quality of the 

ensemble mean analysis, the root mean square (rms) error with respect to the truth can be 

computed via 

 
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rms
...1

2

,,

1
 (2.10) 

where m represents the location index in the 1-D field; M = 1000 is the 1-D extension; amu ,  is the 

ensemble mean of analysis at location m; tmu ,  is the truth at location m.  

The rms errors of the ensemble mean analyses at each cycle are presented by Fig. 2.3. 

The black curve shows that the EnKF converges after 4 assimilation cycles, as the forecast error 

covariance matrices are precisely estimated from the truth. In contrast, the blue curve implies 

that the EnKF converges much slower when the forecast errors are underestimated from the 

ensemble mean. However, since the ensemble mean is brought closer to the truth after each cycle, 

the error estimation with respect to the mean gradually becomes more reliable, which leads to 

even more precise analysis results. 
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Fig. 2.3  rms errors of ensemble mean analysis with respect to the truth during 12 cycles, for the 

experiments where P
f
 is estimated with respect to the truth and the ensemble mean, and for the 

experiments where the error of the first guess is underestimated / overestimated. 

 

b. The error estimation of the first guess. 

In contrast to the forecast error covariance matrix, which can be estimated from ensemble 

members, the initial error covariance matrix describing the error of the first guess is usually 

obtained from a prior knowledge, such as climatology. Thus it could be incorrectly estimated. In 

this subsection, the errors of the first guess are underestimated and overestimated in two EnKF 

experiments, which affects ensemble spread in the initial members. Other experiment settings are 

shown in Table 1.1. Note that the forecast errors for Kalman gain calculation are estimated from 

the ensemble mean. By the end of each cycle, the rms errors of ensemble mean analyses are 

calculated, as in the previous subsection. 

When the error of the first guess is overestimated by a factor of 2, Fig. 2.3 (pink curve) 

shows that the rms error of the ensemble mean analysis exhibits a similar performance as in the 

other experiment where the error of the initial guess is well estimated (blue curve). At some 

cycles (2 – 9), the analysis uncertainty is obviously larger. 

When the error of the first guess is underestimated by a factor of 0.4, the rms error of the 

ensemble mean analysis converges to the zero line much slower than other experiments, as 
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displayed in Fig. 2.3 (red curve). This is because EnKF falsely gives more credits to the forecast 

and reduces the influence of observations. Consequently, it is difficult to correct the ensemble 

mean of analyses, even after 12 assimilation cycles. 

 

c. The model error. 

The forecast error in EnKF is composed of two parts: the error transferred from the initial 

condition (i.e. the analysis in the previous cycle) and the error caused by the imperfect model (i.e. 

model error). In order to investigate the impact of having model error on data analysis, this 

experiment includes a model error of standard deviation 0.01, and assumes that model error is 

well estimated in EnKF. Such an error is represented by random fields and is added to the 

ensemble members before the analysis steps, as shown in Eq. (2.1). Other experiment settings are 

kept the same as in the previous subsections (see Table 1.1).  

 

Fig. 2.4  rms errors of ensemble mean analysis with respect to the truth during 12 cycles, for the 

experiment where there is no model error; the experiment where model error exists and is well 

estimated; the experiment where model error is misrepresented; and the experiment where 

observation error is misrepresented. 
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The rms errors of ensemble mean analysis with respect to the truth in each cycle are 

plotted in Fig. 2.4. The results from subsection 2.3c (blue curve in Fig. 2.3) is also plotted as a 

reference for comparison. Despite being well known, after model error is included in EnKF 

system, the uncertainty of analysis is larger in each cycle, as compared to the experiment without 

model error (blue curve). This is because the model error adds more uncertainties to the system 

at each model integration step of the cycling process. In the first two cycles, the impact of having 

model error is minor (red curve close to the blue curve), because at the beginning of EnKF, the 

forecast errors are mostly caused by initial conditions rather than model errors. 

 

d. The misrepresentation of model and observation errors 

In reality, model and observation error statistics are not completely known. The former is 

usually estimated from previous model outputs (e.g. adaptive model error estimation scheme) or 

climatology, which is not as precise as in the previous subsection. Knowledge of the latter is also 

sometimes limited. For example, the errors of radar data are spatially correlated, but their 

correlation structure is difficult to estimate. 

In order to examine the impact of misrepresentation of model and observation errors, two 

experiments are performed in this subsection. In the first experiment, the model error is 

underestimated by a fact of 0.4 in terms of its standard deviation, while the observation is well 

estimated. In the second experiment, the model error is well estimated, but the observation error 

standard deviation is underestimated by a factor of 0.4. Other settings are the same as before (see 

Table 1.1). 

The rms errors of ensemble mean analyses are shown in Fig. 2.4. When model error is 

underestimated, EnKF falsely assigns more credits to the forecasts and the corresponding 

analysis has more uncertainty. As shown in the figure, the impact of the ill-estimated model error 

is evident after the fifth cycle (the green curve is above the red one). This is because the forecast 

errors are dominated by model errors. Similarly, if the observation error is underestimated, the 

rms errors of the ensemble mean analysis (pink curve) converge to a much higher value, as 

compared to the other experiments. 
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2.4 The effectiveness of observations on data analysis 

The impacts of observation density, observation number, and observation accuracy on the 

analysis step of EnKF are studied in this chapter. Since we target on the analysis step, the cycling 

process is not performed in the following experiments. Due to the fact there is no nonlinear 

models or nonlinear observation operators in the following experiments, the linear Kalman Filter 

equations can be used. Accordingly, the analysis and its uncertainty can be produced by 

1)(  RHHPHPK
TfTf

 (2.10) 

)( ffa
HXOKXX   (2.11) 
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PKHIP )(   (2.12) 

where the notations are the same as in the EnKF equations. The trace of analysis error covariance 

matrix tr(P
a
) (or the total analysis error variance) is used to indicate the analysis uncertainty.  

 

a. Observation spacing 

Observation spacing describes the closeness between observations, and decides the 

observation error correlations. In this experiment, the spatial correlation of observation errors 

follows 

)exp(
2

2

r

x
  (2.13) 

where x indicates the distance between two observations and r is the observation error 

decorrelation distance; ρ is the spatial correlation between two observation errors. This equation 

shows that an increase in closeness between two observations results in greater correlation 

between their errors. 

In the data assimilation system of this experiment, background is a one-dimensional field, 

the size of which is 200. The initial background error follows an unbiased Gaussian distribution 

with variance being 1, and decorrelation distance being 15, as in Eq. (2.13). The observations are 

available at only two points in the 1-D field, the distance between which is variable. Observation 
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error statistics are the same as the background errors. Given the above information, data 

assimilation can be performed by Eqs. (2.10) - (2.12), which yields the analysis error covariance 

matrix.  

In this experiment, varying the distance between observations is equivalent to modifying 

of the observation operator H. Accordingly, different analysis results are produced. Figure 2.5a 

shows that the error variance is 1 in the background before the performance of data assimilation. 

Assimilating two nearby observations (pink curve in Fig. 2.5a) corrects fewer points than 

assimilating observations that are far away from each other. Therefore the total analysis error 

variance is a function of the distance between two observations, as shown in Fig. 2.5b.  As 

compared to the total background error variance tr(P
f
) of 200, the total analysis error variance 

tr(P
a
) varies from around 186 (when two observations are very close) to around 172 (when two 

observations are far away). Fig. 2.5b also shows that the optimal observation spacing should be 

at least 60 points between the two observations. 

 

Fig. 2.5  a) Background error variances and analysis error variances when two observations are 

far from each other, and when they are close to each other. b) Total analysis error variance tr(P
a
) 

against the distance between two observations. 

 

In fact, the decorrelation distances of background error and observation error affects the 

optimal observation spacing. For example, when the decorrelation distances are 15 points for 

both background errors and observation errors, the „minimum‟ optimal observation distance is 60 



23 
 

points, as discussed above. But when these decorrelation distances vary, the minimum optimal 

observation distance is changed accordingly. Fig. 2.6a shows the minimum optimal distance 

against the background and observation error decorrelation distances (their error variance is fixed 

to be 1). The corresponding total analysis error variance tr(P
a
)  is also presented in Fig. 2.6b. 

Figure 2.6a also shows that when the background error decorrelation distance is large, two 

observations can be placed further away because more points can be updated by background 

error correlation. When the observation error decorrelation distance is large, observations also 

need to be far from each other because too much mutual information is provided if they are close 

together. Figure 2.6b shows that tr(P
a
) is more sensitive to background error decorrelation 

distance than to observation error decorrelation distance. A larger background error decorrelation 

distance leads to smaller analysis uncertainty, as because more points in the background can be 

updated through the background error correlation. 

 

Fig. 2.6  a) The minimum optimal observation distance as a function of the error decorrelation 

distances of background and observation. b) The total analysis error variance tr(P
a
) when the 

minimum optimal observation distance is reached. 

 

In addition, the minimum optimal observation distance is also related to error variances 

of background and observation. In this exercise, the decorrelation distance is 5 grid points for 

both background and observation errors, but with a range of variances. Figure 2.7a shows that 

greater distance between two observations is needed if observation error variance is smaller or if 
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background error variance is larger. Figure 2.7b uses the ratio tr(P
a
)  to tr(P

f
), instead of the 

absolute value of tr(P
a
) , to evaluate the quality of analysis, because the background error 

variances are not fixed. Figure 2.7b shows that a larger observation distance (required by smaller 

observation error variance or larger background error variance as in Fig. 2.7a) leads to a more 

precise analysis. This is because: firstly, smaller observation error variance provides more 

reliable information to the model states and reduces the error; secondly, the larger background 

error variance allows stronger influence from the observations. 

 

Fig. 2.7   a) The minimum optimal observation distance as a function of the error variances of 

background and observation. b) The ratio of tr(P
a
) to tr(P

f
)  when the minimum optimal 

observation distance is reached. 

 

b. The number of observations. 

A larger quantity of observations usually means more information, and is expected to 

more significantly reduce analysis uncertainty. A similar Kalman Filter exercise is performed so 

as to test the impact of observation number on total analysis error variance. In this experiment, 

the error variance for both background and observation is 1; and the error decorrelation distance 

is 5 grid points. Given the fixed error statistics, the number of equally distributed observations 

varies in this exercise.  

As shown in Fig. 2.8a, assimilating a larger number of observations has more impact on 

the state vector as expected (comparison between 8 observations and 16 observations 
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assimilations). When the observation error covariance matrix is well known, assimilating more 

observations leads to smaller total analysis error variance tr(P
a
), as shown in Fig. 2.8b (black 

curve). 

In real data assimilation systems, observation errors are sometimes assumed to be 

uncorrelated in space because of the limited computer power and limited knowledge of the error 

correlation (Houtekamer and Mitchell 2000; Anderson et al. 2009). Accordingly, the off-

diagonal elements in observation error covariance matrix R could be falsely ignored. According 

to Dalay (1991, Eq. 4.9.4) and Eqs. (2.10) – (2.12), the analysis covariance matrix resulted from 

the impact of misrepresenting R can be estimated by: 
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where R
e
 is diagonal, and is the estimated observation error covariance matrix which could be 

different from the real R; other notations are the same as in Eqs. (2.10) – (2.12). If R is well 

represented (R=R
e
), Eq. (2.14) is equivalent to Eq. (2.12).  

From Eq. (2.14), tr(P
a
) can be calculated and plotted in Fig. 2.8b (the green curve). This 

figure shows that the optimal observation number in this experiment is 20 as it leads to the 

minimum tr(P
a
). On the one hand, assimilating fewer observations reduces the amount of 

information, and consequently results in larger analysis uncertainty. On the other hand, when 

more observations are assimilated, their errors are better correlated in space, which increases the 

difference between R and diagonal R
e
 in terms of their off-diagonal elements. This experiment 

suggests that assimilating more observations is not always beneficial to the data assimilation 

system, when the observation errors statistics are not precisely provided. 

Furthermore, the optimal observation number can be a function of the decorrelation 

distances of observation and background, while the estimated observation error covariance 

matrix R
e
 is always set to be diagonal. Figure 2.9a shows that when observation error 

decorrelation distance is larger, the optimal observation number is smaller, because assimilating 

fewer observations can decrease the observation error correlation and thus reduce the difference 

between R and R
e
. Furthermore, when the background error has a longer decorrelation distance 
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in space, fewer observations are needed, since they can update many state variables through 

background error correlation.  

 

Fig. 2.8  a) background error variances and analysis error variances when 8 observation are 

assimilated, and when 16 observations are assimilated. b) Total analysis error variances tr(P
a
) 

against observation number when observation error covariance matrix R is well estimated, and 

when the off-diagonal elements in R are ignored. 

 

Fig. 2.9  a) Optimal observation number as a function of error decorrelation distances of 

background and observation, when covariances of observation error are ignored. b) Optimal 

observation number as a function of error variances of forecast and observation, when 

covariances of observation error are ignored. 
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The variances of background and observation errors can also affect the optimal 

observation number when observation error covariances are ignored. Figure 2.9b shows that 

fewer observations are needed when the observation error variance is larger. This is because 

larger observation error variances amplify the covariances which are the off-diagonal elements in 

the R matrix. Thus fewer observations are required in order to reduce error correlation. While 

background error variance is smaller, fewer observations are required, as reducing background 

error is equivalent to increasing observation error. 

 

c. Comparison between the impacts of observation number and observation accuracy. 

The phased-array technique allows radar to adaptively control observation number and 

observation accuracy. On the one hand, if radar receives more independent echoes from the same 

location, data can be more accurate (over sampling). On the other hand, if more beam positions 

are placed in a certain area, a larger number of observations can be acquired. Within a certain 

time period, the user of such radar has to choose between higher data accuracy and larger 

observation number. Therefore, an inspection of the influence of observation accuracy and 

observation number on data analysis assists in deciding observation strategy. 

The data assimilation system in this study uses a 11 by 11 two dimensional field as the 

background (Fig. 2.10), the errors of which have a variance of 4 and are uncorrelated in space. 

Observations are uniformly distributed in this two-dimensional field. The observation errors are 

modeled by two parts: measurement error without error correlation in space; and representative 

error with strong spatial correlation. Both errors follow Gaussian distribution and are 

independent to each other. Therefore the observation error structure can be modeled by equations 
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where o  is the observation error; L represents the number of independent echoes for each 

observation; Lm /2  is the measurement error variance, which is the error variance of the  mean 

of independent echoes collected for one radar observation. 2

R  is the representative error 

variance; io,  and jo,  are the errors of observations i and j; di,j is the distance between two 

observations; r is observation error decorrelation distance. This observation error structure will 

be used to generate the observation error covariance matrix R for the data analysis system. Given 

the error statistics, the analysis error covariance P
a
 can be computed from the linear Kalman 

filter equations (2.10) – (2.12). Similar to the previous exercises, total analysis error variance 

tr(P
a
) is considered to be the indicator of analysis uncertainty. While L decides the measurement 

accuracy of the diagonal of R, it does not affect the off-diagonal elements of R. If more 

observations are collected, the data will have higher spatial resolution, which affects the off-

diagonal elements of R and the observation operator H. 

 

Fig. 2.10  Example of background grids and observations. a) 10
2
 observations are available, but 

less accurate. b) 5
2
 observations are available, but more accurate. 

 

In order to describe the trade-off between observation number and observation accuracy, 

the „equivalent radar resource‟ can be used, and is defined as the product of the number of 

independent echo on each observation and total observation number. For example, as shown in 
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Fig. 2.10, if the total observation number is 10
2
, and 4 echoes are averaged for each observation, 

then the „equivalent radar resource‟ is 10
2
 × 4. The same radar resource can also be used to 

obtain 5
2
 observations, each of which has 16 independent echoes. 

Figure 2.11 shows tr(P
a
)  as a function of the „equivalent radar resource‟ for five 

observation strategies. Each observation strategy corresponds to a choice of observation number 

and the independent echo number L. Among the five observation strategies shown in both Fig. 

2.11a and b, one of the best ways to use radar resource is to maintain the observation uncertainty 

(averaging 4 echoes for each observation), and increase the observation number. The blue and 

green curves in Fig. 2.11a indicate that as long as more than 21
2
 observations are maintained, 

increasing data accuracy, via averaging more independent echoes, and adding more observations 

have the same impact upon the analysis. If less than 21
2
 observations are available, even though 

they are more precise (e.g. the cyan and red curves in Fig. 2.11a), the analysis uncertainty is 

larger, as compared to other strategies.  

 

Fig. 2.11  The ratio of total analysis error variance tr(P
a
)  to the number of grid points, as a 

function of the equivalent radar resource, for five different observation strategies. Experiments 

are conducted when observation error decorrelation distance is set to 1 (a), and when observation 

error decorrelation distance is set to 5 (b). 

 

Observation error structure has an impact on the choice of optimal observation strategy. 

Figure 2.11b shows that if the representative error decorrelation distance increases from 1 to 5, 
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only 11
2
 observations are required for reaching the optimal analysis. This is because, when 

observation errors are better correlated in space, they provide more mutual information; therefore 

fewer observations are needed. 

 

Fig. 2.12  The ratio of total analysis error variance tr(P
a
)  to the number of grid points, as a 

function of the equivalent radar resource, for five different observation strategies. The 

experiments are conducted when the representative error decorrelation distance is underestimated 

(a) and when the measurement error standard deviation is underestimated (b). 

 

In contrast to the above experiment where the error statistics are well estimated, the next 

experiment assumes that the observation errors are poorly estimated, and uses Eq. (2.14) to 

estimate analysis uncertainty. Figures 2.12a and 2.12b are plotted under the conditions that the 

representative error decorrelation distance is underestimated by a factor of 0.3, and the 

measurement error standard deviation is underestimated by a factor of 0.3, respectively. Figure 

2.12a shows that the „optimal‟ strategy among the five choices is to keep 11
2
 observations (red 

curve). This is because fewer observations provide less information; but more observations 

increases the difference between the real and estimated observation error covariance matrices, as 

discussed in the previous subsection (see Fig. 2.8b). Figure 2.12b suggests the existence of an 

„optimal‟ radar resource under the condition that observation error variance is poorly estimated. 

If more radar resources are available than this optimal number, analysis uncertainty increases. 

This is because an increase in observation number (the black curve in Fig. 2.12b) adds more data 
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with inaccurate estimation of their errors to the system, thus leading to a worse analysis result. 

When observations become more accurate (the coloured curves in Fig. 2.12b), they play a more 

important role in the assimilation system. Therefore the misrepresentation of their uncertainties 

strongly influences the analysis error. 

 

2.5 Summary  

Several idealized experiments of the Ensemble Kalman Filter (EnKF) and the linear 

Kalman Filter are performed to examine the influence of uncertainties in EnKF and the 

effectiveness of observations on data analysis. The uncertainties examined in this chapter 

includes forecast uncertainty with respect to the ensemble mean, error estimation of the first 

guess, model error, and the estimation of model and observation errors. The observation 

information inspected in this study includes observation spacing, observation number, and 

observation accuracy.  

The experiments on forecast error estimation show that the difference between the 

ensemble mean forecast and the truth plays an important role in underestimating error statistics. 

The underestimation of forecast error results in larger analysis error. However, this problem 

diminishes when the ensemble mean moves closer to the truth after a few cycles. 

If the initial uncertainty of the first guess is underestimated, the filter needs a much 

longer time to converge, and may affect the final assimilation result. On the other hand, if it is 

overestimated, the problem it causes is evident only in the first a few cycles. Therefore 

underestimating the initial error is more problematic than overestimating it. However, this 

conclusion is drawn based on the assumption that all the assumptions of EnKF are perfectly 

fulfilled. In a real data assimilation system, more complexities, such as the overwhelming model 

error, the data quality and the availability of observations, may weaken this conclusion. 

After model error is taken into consideration, analysis error converges to a higher value, 

even though it is well estimated. If model and observation errors are poorly estimated, the 

analysis uncertainty is even larger, especially after the cycling process. 
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Single-step analysis is applied for examining the influence of observation information on 

analysis. When two observations are available, leaving them far apart is beneficial for the data 

analysis in terms of reducing total analysis error variance. When the background error 

decorrelation distance or the observation error decorrelation distance is larger, the distance 

between two observations should also be larger. 

When the observation error statistics are well known, assimilating more observations is 

always helpful for reducing analysis uncertainty. However, if the observation error covariance is 

falsely ignored, data thinning should be performed. 

The trade-off between observation accuracy and observation number is also considered. 

The experiments prove that a threshold of observation number exists, beyond which increasing 

the observation number and reducing the observation error can improve analysis to the same 

degree. If the threshold cannot be reached, adding more observations is more helpful than 

enhancing data quality. When the observation error statistics are misrepresented, thinning is 

usually required for reducing analysis error. 

There are many limitations in this study. First, a simple model with one control variable 

is used in all the experiments, which excludes any cross-correlation between control variables, 

and ignores the model bias. Secondly, the ensemble members are sufficient for the simple 

experiments, due to the small model extensions. In a real data assimilation system where there 

are more model grids and control variables, limited ensemble members usually introduce more 

uncertainties into the system. Thirdly, the ensemble mean in section 3 is close to the truth, which 

does not require a large ensemble spread. Therefore, the ensemble members are able to represent 

the system errors quite well at the beginning of EnKF. In reality, because the difference between 

the ensemble mean and the truth is large, and the ensemble spread is large, it is more difficult to 

represent the errors statistics by a limited number of members. Lastly, uniform background fields 

in linear systems are used to assimilate observations with simple error structure in section 4, 

which is far from reality. In a real data assimilation system, deciding an observation strategy is 

more complicated than in section 4. 

 

  



33 
 

Chapter 3 

Examination of Situation-Dependent Background Error 

Covariances at the Convective Scale in the Context of the Ensemble 

Kalman Filter 

 

The previous chapter discussed the uncertainties that cannot be estimated by ensemble 

members in Ensemble Kalman Filter (EnKF). As a further step of understanding the uncertainties 

involved in EnKF, this chapter examines the background error statistics represented by ensemble 

members yielded from a complex numerical weather prediction model.  

The background fields are model outputs with a 1-km resolution in space and 5-min 

temporal interval, which are suitable for high resolution radar data assimilation. The spatial 

pattern and time evolution of the background error under different weather situations are studied. 

The results from this chapter will be used for implementing a high resolution EnKF system as 

described in the next chapter. 

This chapter is based on the following journal article. 

Chung, Kao-Shen, Weiguang Chang, Luc Fillion, Monique Tanguay, 2013: Examination of 

Situation-Dependent Background Error Covariances at the Convective Scale in the Context of 

the Ensemble Kalman Filter. Mon. Wea. Rev., 141, 3369–3387. 

The author of this thesis designed most of the high resolution EnKF system described in this 

chapter, generated the initial perturbations for ensemble forecasts and inspected the time 

evolution of horizontal spatial correlation and standard deviations of the background errors. The 

author of this thesis also helped to analyze the results of this study. 
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Chapter 3 

Examination of Situation-Dependent Background Error 

Covariances at the Convective Scale in the Context of the Ensemble 

Kalman Filter 

 

 

Abstract 

 

A High Resolution Ensemble Kalman Filter (HREnKF) system at convective-scale has been 

developed based on the Canadian Meteorological Center‟s operational global Ensemble Kalman 

Filter (EnKF) system. This study focuses on the very early stage of transition from purely 

homogeneous isotropic background-error correlations to situation-dependent correlations. It has 

been found that forecast error structures can develop situation-dependent features in as little as 

15 minutes. Furthermore, the dynamic and thermodynamic variables require different periods of 

time to build up their own forecast error structures. Differences in these structures between 

regions with and without precipitation are also investigated. An examination of temperature 

tendencies revealed that microphysical processes are as important as dynamical forcing in 

determining the structure of convective-scale errors structures, and that once physical processes 

become active, these structures change rapidly before the onset of precipitation. This study is 

intended to be the basis for a systematic exploration in the near future of the usefulness of the 

HREnKF system in assimilating high-density observations such as radar data.  
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3.1  Introduction  

One important goal of the ensemble approach in atmospheric data assimilation is to 

approximate moments of the Probability Distribution Functions (PDFs) of the analyses and 

forecasts using a group of random realizations. The Ensemble Kalman Filter (EnKF) is an 

objective way to obtain a set of analyses and also initialize ensemble forecasts. Furthermore, an 

advantage of using the EnKF algorithm is that it estimates and updates the background error 

covariances with a short-term ensemble forecast in each cycle, thus taking into account situation-

dependent features.  

EnKF algorithms have been developed for a wide range of spatial scales. Designed for large 

scales, Houtekamer and Mitchell (2005) implemented an EnKF system at the Canadian 

Meteorological Center (CMC) to assimilate observations with the Global Environmental 

Multiscale (GEM) model. This EnKF system provides an ensemble of initial conditions for the 

CMC‟s medium-range ensemble prediction system. Their study demonstrated that the EnKF can 

be used successfully for operational atmospheric data assimilation. Szunyogh et al. (2008) 

employed the Local Ensemble Transform Kalman Filter (LETKF) algorithm with the National 

Centers for Environmental Prediction (NCEP) global model. They found that the LETKF 

provides more accurate analyses than the Spectral Statistical Interpolation (SSI) analyses in 

sparse observation regions. Based on the Weather Research and Forecasting model (WRF), a 

limited area EnKF system has been used with conventional data by Torn and Hakim (2008). In 

that study, it was found that upper-tropospheric wind and mid-tropospheric temperature are 

correlated with the water vapor field, which suggests that assimilating cloud motion wind and 

aircraft temperature observations may have a significant impact on the moisture analysis. The 

Italian National Meteorological Service also applied the LETKF in regional numerical weather 

prediction (NWP) (Bonavita et al. 2010). The results showed that the LETKF-based forecasts 

generally outperformed their operational 3D-VAR-based (constant background error covariances) 

counterparts according to a root-mean-square error verification metric. The application of the 

EnKF technique at the storm scale is relatively new and the research is focused on the accuracy 

of EnKF analyses. Using simulated Doppler winds, Snyder and Zhang (2003) first applied the 

EnKF algorithm coupled with a cloud-resolving model. The results demonstrated the potential of 

the EnKF at convective scales. Tong and Xue (2005) examined the impact of assimilating both 
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Doppler and reflectivity data in a series of Observation System Simulation Experiments (OSSEs). 

They concluded that the best results are obtained when both Doppler wind and reflectivity data 

are used. Dowell et al. (2004, 2011) tested the EnKF algorithm with real radar data. All the above 

studies showed that by assimilating Doppler winds and/or reflectivity, realistic storm-scale 

structures can be obtained in the analyses. Recently, several investigations have turned to very 

short-term forecasts and to specific weather phenomena (Zhang et al. 2009, Stensrud and Gao 

2010, Aksoy et al. 2010). Forecast error covariances play a crucial role in data assimilation 

algorithm. However, their structure at convective scales is not well understood. Some studies 

(Bannister et al. 2011; Montmerle and Berre 2010) have shown that instead of using 

climatological synoptic-scale statistics, it is preferable to construct situation-dependent 

background error statistics. In the 3D-Var framework, Brousseau et al. (2012) examined the 

impact of using situation-dependent background error covariances (provided by a six-member 

ensemble) at convective scales. They showed the impact on analysis increments and found 

improvements in short-term forecasts.  

In this study, a High Resolution Ensemble Kalman Filter (HREnKF) system has been 

adapted for the limited area model GEM_LAM from the global EnKF system (Houtekamer and 

Mitchell 2005; Houtekamer et al. 2009) currently operational at the CMC. The goal for the near 

future is to develop a convective-scale data assimilation system which assimilates radar data. 

Before discussing systematic assimilation of real radar observations, this paper presents an 

examination of the transition from homogeneous isotropic forecast error to situation-dependent 

short-term forecast error covariances at cloud-resolving scales. Many studies have shown the 

advantages of propagating the information of flow-dependent forecast errors via cycling 

procedures in EnKF systems. However, forecast errors at the convective scale are not well 

understood. Investigating the complex structure of forecast errors at cloud-resolving scales also 

helps to provide optimal values for various parameters (for instance, localization length) in the 

EnKF system. The paper is structured as follows. In section 2, the HREnKF system is introduced, 

while the configuration of the limited area model and the method used to specify the initial 

perturbation in the HREnKF are presented in section 3. Section 4 describes a case study and the 

performance of the deterministic forecast. The results of background error covariances at the 

mesoscale / convective scale are presented in section 5. The summary and some suggestions for 

future work are given in section 6.  
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3.2  The High Resolution EnKF (HREnKF) system  

There are currently two ways of generating the ensemble analyses in the context of the 

EnKF: 1) Houtekamer and Mitchell (2001) applied a Monte Carlo approach where observations 

are perturbed in order to estimate the uncertainties in the analysis; 2) without perturbing the 

observations, a deterministic method is used to transform an ensemble of background fields into 

an ensemble of analyses (Whitaker and Hamill 2002; Bishop et al. 2001 and Anderson 2001). We 

follow the first approach. The HREnKF system is a modified form of the Canadian EnKF system 

(Houtekamer et al. 2009) adapted for limited area data assimilation and forecasting. Here we 

point out the basic features common to the global and LAM EnKF configurations. The analysis 

and forecast steps constitute the basic parts of the algorithm of the EnKF. The analysis step 

updates the atmospheric state based on the most recent observations. The central equation of the 

EnKF can be written as: 

 )( ffa
HxyKxx    (3.1) 

where a
x  is the analysis (or posterior estimate), f

x  represents the first guess (or prior estimate), 

y is a set of perturbed observations (y= oo y , where 0
y  is the observations and 

o  represents 

the observation errors), H is the forward operator which maps the background fields onto the 

observation space, and 
f

Hxy   is called the innovation. K is the so-called “Kalman gain matrix” 

defined as: 

 
1TT )(  RHHPHPK

ff
  (3.2) 

where f
P  and R represent the background and observational error covariance matrices, 

respectively. The situation-dependent matrix ( f
P ) is updated (forecasted) from the previous 

analysis time nt  to the new analysis time 1nt  through a set of ensemble members.  

The HREnKF assimilation system has the following features:  

a. Sequential processing of batches of observations  

In operational atmospheric data assimilation systems, the typical size of the observation 

vector is at least O(10
6
) or even more (Houtekamer and Mitchell, 2009). To deal with issues of 
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storage and inversion of matrices, the observations are divided into batches that are assimilated 

sequentially. In comparison with assimilating all observations simultaneously, one should notice 

that, the batching process of observations is strictly valid as long as the observations whose 

observation errors are correlated with each other are processed in the same batch (Houtekamer 

and Mitchell, 2001). 

b. Partitioning the ensemble 

In the EnKF algorithm, the same set of prior fields could be used both, to provide initial 

guesses and also to compute the Kalman gain. This double use of the same information may lead 

to an under-estimation of the spread in the ensemble (Houtekamer and Mitchell, 2001). In the 

current system, the ensemble is partitioned into four sub-ensembles, and the gain matrix used for 

each sub-ensemble is computed by using the prior fields from the other sub-ensembles, thus 

improving the correspondence between ensemble spread and the ensemble mean error. The 

disadvantage of such a scheme is that the estimates of covariance are noisier, due to the smaller 

size of the sub-ensembles.  

c. Localization  

Due to the limited number of ensemble members, the estimated correlations can be noisy. 

To deal with this sampling error, a localization procedure is applied to both the horizontal and 

vertical background error covariances. The localized Kalman gain can be defined as:  

 
1]))()][)[(  RHPHHPK

ff T

HV

T

HV     (3.3) 

where H  and V  are the correlation functions applied for horizontal and vertical localization, 

and   denotes the Schur product. Following Houtekamer and Mitchell (2001), when H  and V  

are functions of distance only, the order of the observation operator and the Schur product can be 

interchanged. Therefore, the Kalman gain with model-space localization, as in eq. (3.3), can be 

approximated by the Kalman gain as:  
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T

HV    (3.4) 
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d. Simulation of model errors  

It is important to take into account the model error properly since neglecting model error 

may lead to a very small ensemble spread, and this may cause a convergence problem of the 

filter. Unfortunately, the model error in NWP, especially at the convective scale, is not well 

understood. In a similar way as Houtekamer (2009), the model error component of the HREnKF 

applies a simplified and reduced amplitude form of homogeneous and isotropic background error 

correlations. This is done by adding an ensemble of random perturbation fields with a specified 

covariance structure to the ensemble of background fields.  

The HREnKF system consists of a set of parallel short-term forecast and data assimilation 

steps. Figure 3.1 illustrates the cycling procedure between analysis and forecast steps. In our 

study, the first initial guess is from a previous, unperturbed (deterministic) forecast. By adding 

prescribed random perturbations (based on the aforementioned procedure for dealing with model 

error) to the deterministic forecast, an initial set of ensemble members is obtained. The random 

errors are added to simulate errors of the numerical model. To take into account the uncertainty 

in observations, these are also perturbed according to their estimated errors. Via the data 

assimilation process (analysis step), one is able to update the analyses and launch the model 

(forecast step) to produce very short-term forecasts. The analysis and forecast steps are repeated 

(dashed line) in the system as the cycling proceeds. 

 

Fig. 3.1  Flow chart of the cycling procedure in the HREnKF system. 

 

Initial guess 
Ensemble  
members 

Add random  
perturbations 

Data  
assimilation 

Observations 
Perturbed  
observations 

GEM - LAM 
forecast for all   
members. 

Add random  
perturbations 
(model error) 

(Analysis step) 

(Forecast step) 



40 
 

3.3  Configuration of the experiment 

a. limited area model 

The fully compressible limited area model GEM_LAM is used in our study. The model 

employs an implicit scheme in time and a semi-Lagrangian scheme in space. Detailed 

descriptions of the GEM model dynamics and physics formulations are available in Côté et al. 

(1998) and Mailhot et al. (1998), respectively. 

 

Fig. 3.2  Extent of limited-area model domains for the nested system. Domain A, B (blue box) 

and C (red box) correspond to LAM-15km, LAM-2.5km and LAM-1km, respectively. 

 

A three-level nested domain (Fig. 3.2) is used in the model configuration to obtain a 

deterministic forecast in our experiments. The global grid forecast was run using GEM at a 15-

km resolution (hereafter GLB-15km). The GLB-15km, which used the Sundqvist condensation 

scheme (Sundqvist 1978), was performed from 1200 UTC 21 July to 0300 UTC 22 July 2010. 

These hourly forecasts were used as initial conditions (1200UTC) and lateral boundary 

conditions to launch a limited area model in domain A with a horizontal resolution of 15-km 

(hereafter LAM-15km). The Milbrandt and Yau (2005) double-moment microphysics scheme 

used in LAM-15km predicts the mass mixing ratio and total number concentration of six 

hydrometeor categories (cloud water, rain, ice, now, graupel, and hail). This approach leads to 
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more precise than the Sundqvist condensation scheme for the computation of microphysical 

growth/decay rates and precipitation, and it is expected to shorten the spin-up phase. A second 

nested LAM (domain B) of a forecast is started 6 h later (1800UTC) with a 2.5-km resolution 

(LAM-2.5km) of the model. This domain (564 x 494 grid points) covers the southern part of the 

provinces of Ontario and Québec. A 1-km resolution simulation (domain C, LAM-1km) is 

launched 6 h later at 0000 UTC July 22 2010, with an integration time step of 30s. The LAM-

1km is centered on the Montréal region (300 x 300 grid points) for the purpose of eventually 

assimilating S-band radar data provided by McGill University.  

The limited area simulations are fully non-hydrostatic with 58 hybrid vertical levels and a 

lid at 10 hPa. The land surface scheme called “Interaction between Surface, Biosphere and 

Atmosphere” (ISBA; see Noilhan and Planton 1989) is applied. The Kain-Fritsch convective 

scheme (Kain and Fritsch 1990) is applied in LAM-15km, however no convective 

parameterization is used in either LAM-2.5km or LAM-1km. In addition, in contrast to the 

global EnKF system which uses multi-model option (different versions of physical 

parameterizations), currently we keep fixed all the physical schemes for running the ensemble 

forecasts. We point out that this configuration may cause an underestimation of the error 

covariances. The double-moment version of the Milbrandt and Yau (2005) microphysics scheme 

is used for the grid-scale processes. Note that besides the standard model control variables: 

horizontal wind (u, v), temperature (T), and specific humidity (HU), the mixing ratio and number 

concentration of six hydrometeor variables (cloud water, rain, snow, ice, graupel and hail) are 

also carried from the driving conditions.  

 

b. method of adding initial perturbations for ensemble members 

It is feasible to obtain a set of ensemble initial states from the global EnKF system. 

However, as mentioned previously, in this study the initial states are constructed by generating 

random perturbations and adding them to a deterministic forecast. By providing homogeneous 

and isotropic perturbations to obtain initial states, one is able to examine the transition to 

situation-dependent forecast error covariance structures. In addition, the evolution of situation-

dependent error structures in different locations can be fairly compared.   
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The HREnKF includes a background-error covariance simulator which produces random 

perturbations, from which we sample different fields for different members of the ensemble. The 

random perturbations are generated from the bi-Fourier decomposition in the spectral domain 

(Fillion et. al. 2010). The error simulator considers independent perturbations for streamfunction, 

divergence, temperature, humidity, and surface pressure, which are then transformed into wind, 

temperature, specific humidity and surface pressure background errors. The initial perturbations 

of background errors in the HREnKF system are generated as horizontally homogenous and 

isotropic in the limited area domain. We stress here that no well-tuned mesoscale (or convective-

scale) data assimilation system is available to us at this stage of our study, which could serve as a 

guide. Contrary to the global EnKF, we do not have at hand reliable operational non-separable 

spectral homogeneous and isotropic correlation statistics. We thus used a simple specification of 

correlation scales in the horizontal and vertical using the separability assumption for background 

error correlations. This error specification is obviously an approximation. Nevertheless, we show 

clearly in the following that a rapid transition to situation-dependent structures occurs. The 

standard deviation background errors for the control variables are: 3 ms
-1

 for horizontal wind, 0.5 

degree for temperature, and 0.1 for the logarithm of specific humidity. Those statistics were 

obtained from a 2.5-km National Meteorology Center (NMC, currently known as NCEP) 

approach (e.g. Fillion et al. 2010). We imposed a 10-km horizontal correlation length for stream 

function, velocity potential, temperature and logarithm of specific humidity, and a correlation 

length of 200 hPa in the vertical. No cross-correlations are imposed between different variables. 

In addition, we note that in general, it is important to consider perturbations of lateral boundary 

conditions (Caron 2012). However, for the first step of implementing the Canadian HREnKF 

system, we only added the errors to the fields over the entire analysis domain and did not perturb 

the lateral boundary conditions. 

 

3.4  Description of the case study 

The period selected for the case study was 21-22 July 2010. During this period, a mesoscale 

cyclone developed near the border between the provinces of Québec and Ontario, and 

subsequently moved eastward over Québec around 1300 UTC 21 July 2010. Precipitation was 

observed over the Montréal region from 1800 UTC 21 July to 0600 UTC 22 July. A deterministic 
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model simulation was produced as the control run, and compared to remote sensing observations 

to assess the performance of the forecast. 

a) b) 

  
  

Fig. 3.3 a) Brightness temperature [K] from the 11 micron channel of GOES observations at 

2245 UTC 21 July 2010; b) Precipitation rate [mm hr
-1

] from the LAM-2.5km forecast at 2300 

UTC 21 July 2010. 

Figure 3.3a shows the brightness temperature from the 11 micron channel of 

Geostationary Operational Environment Satellite (GOES) data around 2300 UTC 21 July, and 

Fig. 3.3b shows the model 5-h simulation (2300 UTC) of surface precipitation at 2.5-km 

resolution. The similarity in the pattern of weather systems (I and II) between observations and 

simulation indicates that the driving model provides reasonable initial and lateral boundary 

conditions in this case. The CMC radar composite over southern Québec is shown in Fig. 3.4a. 

The precipitation rate of the 1-km resolution forecast at 0030 UTC 22 July 2010 is depicted in 

Fig. 3.4b. In the surface analysis at 0000 UTC in Fig. 3.4c, a low pressure system and two fronts 

are close to the LAM-lkm domain. Clouds (IR satellite observations in Fig.3.4c) and 

precipitations (ground-based radar observations in Fig. 3.4a) were produced accordingly.  At a 

lead time of 30-min, the LAM-1km forecast predicted precipitation over the Montréal region. 

Two well-structured weather systems are simulated in the analysis domain: one in the north and 

another in the south-east of the domain. In addition, some convective cells are scattered in the 

center and south of the domain. Compared to radar observations, the LAM-1km is able to 

simulate the precipitation over the Montréal domain, but with different structures and locations. 

By examining the time sequence of radar composites over southern Québec, we found that a 
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phase error seems to occur. One should note that this is not an uncommon issue at mesoscale and 

convective scales.  

a) b) 

  
c)  

 
Fig. 3.4 a) Radar reflectivity [dBz] composite over southern Québec at 0030 UTC July 22 2010. 

The black square indicates the analysis domain of the LAM-1km; b) surface precipitation rate 

[mm hr
-1

] and horizontal wind vectors [knots] at 800 hPa from the LAM-1km forecast at 0030 

UTC 22 July 2010. The rectangular box is within no-precipitation areas and arrow line is the 

location of cross-section for further examination in section 3.5; c) synoptic scale surface analysis 

and IR composite of North America produced by NOAA at 0000 UTC July 22 2010. The black 

square indicates the analysis domain of the LAM-1km. 
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3.5  Results of the forecast error at the mesoscale/convective scale 

Adaptation of the global EnKF data assimilation system for convective scales required a 

large number of modifications. It is imperative for the new code to pass basic validation tests, 

which we describe in Appendix A.  

a)  

 

 

b) c) 

  

Fig. 3.5 Error correlation of 00-min forecast at 800 hPa. a) u-wind; b) temperature and c) 

humidity. The analysis domain is divided into 25 sub-domains, and the error correlation is 

computed with respect to the center of each sub-domain. 

 

All the ensemble forecasts are integrated for 30 minutes with no data assimilation. Model 

errors have not been taken into account in the current study, therefore any forecast differences 

which arise are due to different initial conditions only. The ensemble forecast errors are 
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estimated by calculating the difference between each ensemble member and the ensemble mean 

as defined by:  

 
 T
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T
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 (3.5) 

where tbb xxε   is the difference between the background and the truth field. ix  stands for 

each ensemble member, x  is the ensemble mean valid at the same forecasting time, and < > is 

the ensemble average.  

a)  

 

 

b) c) 

  
Fig. 3.6  Same as Fig. 3.5, but the error correlation of 5-min forecast. 

 

The following results are based on the perturbations method introduced in section 3.3. By 

using the same random perturbation method for a range of correlation lengths appropriate for 

convective scales (from 10 to 20 km), sensitivity tests showed that one can obtain qualitatively 

similar error structures. Our study and discussions focus on the transition to situation-dependent 
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background error covariances, and how the error structures vary in different regions, both in the 

horizontal and the vertical.   

 

a. Horizontal error structure  

Figure 3.5 shows the horizontal error correlations (at 800 hPa) of u-wind, temperature and 

humidity based on an 80-member forecast ensemble at the initial time (t = 0 min.). For 

visualization purposes, the analysis domain is divided into 25 sub-domains, and the error 

correlation is computed with respect to the center of each sub-domain. In general, the error 

structure reflects the use of homogenous isotropic initial perturbations except for the specific 

humidity field. This is because humidity perturbations are generated from the logarithm of 

specific humidity, ln(q), therefore the error structure depends on the mean state of the field. Due 

to sampling error, the discrepancy in each sub-domain is discernable in areas of weak 

correlations. The accuracy of the correlations is estimated by (Kendall et al. 1986):   
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where   stands for the real correlation, ̂  is an estimate of   based on a set of n ensemble 

members. Substituting n = 80 and the value 6.0ˆ  (0.3), the root-mean-square error in the 

estimated correlation   ˆ  is approximately 0.072 (0.1). Equation (3.6) explains why the 

violet and black colors in Fig. 3.5 have much less noise than other colors. Moreover, according 

to (3.6), the correlation would become less reliable if smaller ensemble size were used. 

Figure 3.6 shows the forecast error structures that develop after 5 minutes of integration of 

GEM_LAM. The deformation of the forecast error of u-wind (same as v-wind, not shown) is 

manifest in each sub-domain (Fig. 3.6a) as compared to forecast error of the temperature (Fig. 

3.6b) and humidity (Fig. 3.6c). The deformation of horizontal wind appears similar in all sub-

domains and has longer correlation lengths compared to the error structure we specified at the 

initial time. Daley (1985, Fig. 1) shows error correlations of the u-wind which are similar to 

those in Fig. 3.6a. His study shows that when the flow has both rotational and divergent 

components, the error structures tend toward an oval shape (positive correlation) with negative 
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correlation lobes in the sides, but the direction of deformation is no longer along the east-west 

direction for u-wind. This indicates that dynamic processes quickly affect and dominate the error 

structures of the u-wind in the very early stage of model integration. After 10 minutes of model 

integration, the errors of u-wind (Fig. 3.7a) evolve into various structures in each sub-domain, 

and the development of forecast error of temperature and specific humidity is more significant 

(Fig. 3.7b and 3.7c) than the errors at t = 5 min. (Fig. 3.6b and 3.6c). Furthermore, there is a 

strong resemblance between the temperature and humidity error structures. At 15 minutes, all the 

control variables exhibit the transition from purely homogeneous isotropic background-error 

correlations to situation-dependent correlations (not shown). The evolution of forecast errors in 

the first 15 minutes indicates that as the model is integrated in time, the control variables rapidly 

build up their own error structures based on dynamic, thermodynamic and microphysical 

processes. The u-wind error structure is established rapidly, but error structures of 

thermodynamic variables (temperature and humidity) evolve on a longer timescale.  

a)  

 

 

b) c) 

  
Fig. 3.7  Same as Fig. 3.5, but the error correlation of 10-min forecast. 
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a)  

 

 

b) c) 

  
Fig. 3.8  Same as Fig. 3.5, but the error correlation of 30-min forecast. 

 

After 30 minutes of model integration, significant heterogeneous error structure develops in 

the analysis domain (Fig. 3.8). The situation-dependent error structure (in each sub-domain) is 

present clearly in all variables. One can see that the error structures of all variables are aligned 

along the lateral boundaries, and that the mean flow (see Fig. 3.4b, wind vectors) affects the error 

structures of the wind component (Fig. 3.8a). In addition, it is evident that the correlation lengths 

are shorter in some of the sub-domains and longer in others. For instance, the sub-region at 

x=119-179, and y=0-59 shows that the error structure can be extremely localized. This is 

associated with tiny convection cells appearing in the southern domain of Fig. 3.4b and it 

suggests that this microphysical process is isolated and de-correlates quickly with other 

processes occurring in the surrounding environment. Moreover, the spatial deformation of the 
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errors has different orientations in each sub-domain. Compared with the surface precipitation 

from the deterministic forecast in Fig. 3.4b, one can see that, in general, the error correlation 

length is much smaller surrounding the precipitation area and larger in the non-precipitating 

regions. For instance, the error correlation length in the south west of the domain (non-

precipitating) is much longer than in the center and south east of the domain (precipitating).  

a) b) 

  
c) d) 

  
Fig. 3.9  Ensemble spread (800 hPa) of 30-min forecast. (a) u-wind [knots]; (b) v -wind [knots]; 

(c) vertical velocity [Pa s
-1

]; (d) temperature [K]. 

 

Next, we examined the performance of short-term forecasts. Compared with the control run, 

the 80 ensemble members exhibit a variety of intensities and locations of precipitation. However, 

none of the forecasted precipitation patterns resemble the radar observations at 0030 UTC July 

22 2010 (not shown). The ensemble spread in the horizontal illustrates the uncertainty in 
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numerical forecasts in space. The ensemble spread for horizontal wind (u,v), vertical velocity (w) 

and temperature (T) at 800 hPa corresponding to the 30-min forecast is plotted in Fig. 3.9. The 

very small values of spread, visible near the boundaries in all variables, are a result of the lack of 

perturbations in the lateral boundary conditions. Larger values of spread occur near the two main 

weather systems and in the southern part of the analysis domain. In addition, relatively small 

ensemble spread is visible in the south-west portion of the domain, which is a region without 

precipitation in most of the ensemble forecasts. The ensemble forecasts exhibit very little 

precipitation in the south-west of the domain because the atmosphere is relatively stable over that 

area, and therefore the uncertainty is small. Furthermore, localized convective storms occur in 

the southern part of the domain. The intensity and the location of the storms vary from one 

member to another, so the uncertainty is large over that area. Moreover, the ensemble spread 

reveals that the precipitation system in the south-east corresponds to higher uncertainty 

compared to the system in the north of the domain. 

 

Fig. 3.10  Vertical error correlation of temperature applied in the entire domain at initial time 

(t=0-min forecast). 

 

b. Vertical error structure 

Figure 3.10 shows the vertical correlation structure obtained from the background-error 

simulator which used to generate the initial ensemble of perturbations. Correlations shown are 
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relative to the 600 hPa pressure surface. As we have already shown for the horizontal structure of 

forecast error, the vertical structure also develops situation-dependent features rapidly, i.e. within 

the first 15 minutes of the forecast. Vertical profiles of the error correlation for temperature 

corresponding to the 30-min forecast are presented in Fig. 3.11 with 25 sub-domains (as before, 

the error correlation is computed with respect to the center of each sub-domain). The temperature 

vertical error correlation exhibits different structures in different sub-domains. It is recognizable 

that the vertical profiles are quite different in non-precipitating (south-west of the domain) and 

precipitating areas. We select three areas (see Fig. 3.11) in the analysis domain for further 

examination of the vertical error structure: sub-domain #7 (no-precipitation), #24 (precipitation), 

and #10 (precipitation). All members forecasted precipitation in sub-domain #10 and #24, 

although with different intensities and patterns.   

 

Fig. 3.11  Vertical error correlation of temperature at t=30-min forecast. The y-axis corresponds 

to pressure level [hPa]. The error correlation is computed with respect to the center of each sub-

domain at approximately 600 hPa. The numbers indicate the sub-domains to be examined in Fig. 

3.12. 

The vertical error structure is computed in each sub-domain and averaged over the area of 

the sub-domain (3600 grid points). Figure 3.12a presents the vertical error structure in sub-

domain #7, which is the non-precipitating sub-domain. The error in the vertical is nearly a 

symmetric structure and the correlation length is slightly shorter than 200 hPa (initial correlation). 

7 10 

24 
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In addition, negative error correlations occur at high and low levels of the profile. This is the 

typical temperature vertical error correlation structure observed in large-scale data assimilation 

systems related to the hydrostatic balance over non-precipitating areas (see Fig. 13 in Gustafsson 

et al 1999). We emphasize that the original random perturbations prescribed have a Gaussian 

vertical structure without negative lobes. However, as the 30-min forecast indicates, once the 

model is launched, the temperature rapidly develops error structures with such negative lobes 

over non-precipitating regions. On the other hand, the vertical profiles in sub-domain #24 (Fig. 

3.12b) and sub-domain #10 (Fig. 3.12c) exhibit shorter correlation lengths in the vertical and the 

correlation structure is no longer close to symmetric as in sub-domain #7 (Fig. 3.12a), but rather 

more correlated above the reference level (600hPa).  

a) b) 

  

c)  

 

 

Fig. 3.12  Vertical error correlation of temperature of 30-min forecast in a) sub-domain #7; b) 

sub-domain #24; c) sub-domain #10. The vertical error structure is computed at approximately 

600 hPa and averaged in each sub-domain (3600 pixels). 
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Since microphysical processes are the main difference between the precipitation and no-

precipitation areas, we suspect that these processes play an important role in determining the 

vertical error structure of temperature. To examine the details of the vertical error structure in 

precipitating regions, the temperature tendencies are computed, being careful to discriminate 

between dynamics and physics contributions. Figure 3.13 shows the ratio of temperature 

tendencies due to physics and dynamics (
dynamics-T

physics-T

F

F
Ratio   ) at 600 hPa for the ensemble mean.  

dynamics-TF  is defined as )]
c

RT
-

T
(-TV[-

p pp


 


 , where V


 is horizontal wind vector; T is 

temperature; ω is vertical motion in pressure coordinate; p is pressure; R is dry air gas constant; 

cp is heat capacity at constant pressure. physics-TF  is the temperature tendency from the physical 

parameterizations (radiation, condensation, etc). When the ratio is equal to or larger than 1, it 

indicates that the physical tendency is as important as the dynamical tendency. The plot 

illustrates the fact that the dynamics dominates in non-precipitating regions (white color means 

negligible or zero tendency due to physics); Around precipitating areas, it is quite common to see 

the value of the ratio larger than 1. In some locations, microphysical processes can even 

dominate (red and purple colors), which shows the importance of physical processes in 

precipitation regions. 

 
Fig. 3.13  Ratio of temperature tendencies due to physics and dynamics at 600 hPa for the 

ensemble mean. The cross indicates the location of imposed observation in Fig. 3.14a. 
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a) b) 

 
 

c) d) 

  
Fig. 3.14  The cross-section of a) temperature increments in sub-domain #24 from a single 

observation test of 30-min forecast (contour interval: 0.05 degree; the white cross indicates the 

location of imposed single observation and shadow near surface is the topography); b) ensemble 

mean of total temperature tendency [K s
-1

] of 30-min forecast due to physics in sub-domain #24. 

The y-axis corresponds to pressure level [hPa].  Error correlation of temperature of 30-min 

forecast at: c) 800 hPa; d) 600 hPa. The error correlation is computed with respect to the location 

of single observation test (x=198, y=258).  

 

To examine this issue further, we imposed a simulated temperature observation near 600 

hPa at x=198, y=258 in sub-domain #24 (see the cross in Fig. 3.13). Figure 3.14a shows the 

vertical increment of temperature cross-section at point A (158<x<238 and y=258). This single-

observation test showed that the increment is of significant (positive) amplitude between 650 hPa 

and 400 hPa. This feature matches the average of vertical error structures in sub-domain #24 (Fig. 
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3.12b). Furthermore, the ensemble mean of total temperature tendency due to the physics is 

plotted in Fig. 3.14b. The vertical-cross section shows that most of the heating is localized 

between 700 hPa and 400 hPa, and has a vertical spread corresponding to the vertical increment 

in Fig. 3.14a. We have confirmed that most of the contribution to the physics temperature 

tendency comes from condensation (not shown), which suggests that localized diabatic heating 

contributes to such a narrow vertical error structure. The horizontal error correlations of 

temperature at t = 30 min. at the location of the imposed observation are plotted in Fig. 3.14c and 

3.14d. The correlations are much shorter at mid-levels (Fig. 3.14d) compared to those at low 

levels (Fig. 3.14c), suggesting that the error horizontal length scales tend to be larger at low 

levels, where dynamics plays a dominant role, whereas the correlations are relatively localized in 

the horizontal and vertical at levels where microphysical processes are more active.  

Our study clearly demonstrates that the error structures are quite different in non-

precipitating and precipitating regions. Similar conclusions were found in other studies (e.g. 

Caron and Fillion 2010, Montmerle and Berre 2010). As part of their 3D-VAR assimilation 

system, Montmerle and Berre (2010) used a strategy for modeling background error correlations 

based on discrimination between precipitating and non-precipitating regions as indicated by 

radar observations. The HREnKF data assimilation system indicates that care should to be taken 

when attempting such an approach. To illustrate this point, in Fig. 3.15a we show the area- 

averaged (1800 grid points) vertical error structure in the region defined by the black box in Fig. 

3.4b, where no surface precipitation occurs in any of the 15-min. ensemble forecasts. The 

temperature error correlation, computed at approximately 600 hPa, resembles the characteristic 

correlation for precipitating regions (with a narrow and asymmetric error correlation) as in Fig. 

3.12b and 3.12c. Figure 3.15b shows an example of a cross-section (east-west, see the arrow in 

Fig. 3.4b) of the cloud mixing ratio from one ensemble member. Even though there is no 

precipitation at the surface over this area, clouds have developed. This means that once physical 

parameterization processes become active, the vertical error structures change rapidly before the 

onset of precipitation. 
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a) 

 
b) 

 
Fig. 3.15  a) Averaged vertical error correlation of temperature over the “non- precipitating” 

region of 15-min ensemble forecast (the error correlation is computed at approximately 600 hPa 

over 1800 pixels, see black box in Fig. 3.4b); b) East-west (arrow line in Fig. 3.4b) cross-section 

of cloud mixing ratio [g kg-1] from one ensemble member. The shadow near surface is the 

topography.  
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3.6  Summary  

For the purposes of data assimilation at cloud-resolving scales, as well as the future 

assimilation of radar data, the global EnKF system at the Canadian Meteorological Center has 

been modified for a high-resolution LAM grid. This system is called HREnKF.  

This study focused on investigating the forecast error at the convective scale with a summer 

case valid on July 22
nd

 2010. With an 80-member ensemble, the forecast error correlation 

structures evolve and exhibit a “situation dependence” rapidly after launching the GEM_LAM, 

typically within 15 minutes. In addition, we found that the situation-dependent error structures 

for different control variables tend to develop on different time scales. Dynamic variables such as 

horizontal wind evolve faster than the thermodynamic variables (temperature and humidity), and 

the humidity error typically resembles the temperature error. The error variances derived from 

ensemble forecasts (e.g. from 30-min. integrations), illustrate the uncertainty of weather 

forecasts at cloud-resolving scales. Larger error variances tend to be found inside and around 

regions of precipitation (both embedded storm cells and mesoscale systems forced by large scale 

motions), while the error variance usually remains small in non-precipitating areas where the 

atmosphere is stable. Furthermore, an examination of the forecast error in the horizontal and the 

vertical plane demonstrates that the error structures are characteristically different in 

precipitating and non-precipitating regions. By computing the temperature tendencies due to 

dynamics and physics, we have shown that microphysical processes are as important as 

dynamics at convective scales. The ensemble mean of the temperature tendency due to physics 

confirmed that diabatic heating is the major factor which modifies the temperature error structure. 

This indicates that the error structures both in the horizontal and vertical need to be addressed 

carefully at convective scales. Furthermore, our study shows that once microphysical processes 

are active, the error structures change rapidly before precipitation occurs.  

The next step following this study is to assimilate McGill S-band radar data in the system. 

We plan to examine and report on the impact of assimilating radar data using a set of summer 

and winter cases.  
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APPENDIX A 

Validation of the HREnKF system 

A single-observation experiment is performed for validation of the HREnKF analysis 

procedure. This experiment also allows us to examine the actual analysis response based on 

forecast error structures provided by the HREnKF system.  

 

a. Validation experiments and sampling errors 

The experiment is performed with 80 ensemble members, and we impose the single test 

observation at the center of the analysis domain (x=150, y=150). A simulated temperature 

innovation of 1 degree with a standard deviation error of 1 degree is imposed at 850 hPa. The 

horizontal localization distance is 60-km, and the vertical localization is configured to force the 

covariances to zero at a distance of 2 scale heights.  

a) b) 

  
Fig. 3.16  Single observation experiment based on the 80-ensemble member of the HREnKF of 

initial time: a) temperature increment at 850 hPa; b) increment of temperature and horizontal 

wind vectors (zoom-in of the analysis domain centered at the observation). The contour interval 

is 0.05 degree and vectors are in units of knots. The single observation is at the center of the 

analysis domain (x=150, y=150). 
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Figure 3.16a shows the temperature analysis increment for the HREnKF analysis. The 

increment is nearly isotropic in space, which reflects the prescribed error structure. The 

amplitude of the horizontal analysis increment decreases to zero at about 60-km from the 

imposed observation (heavy solid contour line), which is consistent with the prescribed 

localization distance. The maximum increment of 0.25 degree is at the observation location. This 

is precisely consistent with Eqs. (3.1), (3.2) when use is made of the ensemble estimated forecast 

error variance at the observation point (estimated as 0.57 degree). 

a) b) 

  
Fig. 3.17  Error cross-correlation based on 80-member ensemble of the HREnKF of initial time. 

a) u and T; b) v and T (zoom-in of the analysis domain as Fig. 3.16b). 

 

To provide an estimate of the side effect of error sampling, we illustrate the impact of the 

simulated temperature observation on wind analysis increments. Figure 3.16b zooms in on the 

center of the increment area, and the increment of the horizontal wind (vectors) and temperature 

(contours) are plotted. Note that in principle, the cross-correlation of temperature and winds 

should be zero due to our original correlation modeling assumptions. However, when the 

multivariate probability density function is sampled by a limited number of ensemble members, 

noises or non-zero values in the cross-correlation are introduced as shown in Fig. 3.17. Figures 

3.17a and 3.17b present the error cross-correlations between temperature and u (v) components 

respectively, based on 80 ensemble members. The correlation between temperature and wind 

explains clearly the horizontal wind increments due to the temperature observation. Based on the 

cross-correlation values in Fig. 3.17 (between -0.3 to 0.3), we see that according to Fig. 3.16b, 
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perceptible, random divergent circulations can be induced by our algorithm due to the finite 

sample size. We speculate that this phenomenon can potentially trigger fictitious deep convection 

in circumstances where poor ensemble size and/or too permissive innovation data (i.e. poor data 

quality control) are present. The strong nonlinearity of convective scale flow thus requires 

special care regarding error sampling issues. 

 

Fig. 3.18  Single observation experiment based on the 80-member ensemble of the HREnKF of 

30-min forecast: temperature and horizontal wind increment at 850 hPa. (zoom-in of the analysis 

domain as Fig. 3.16b). The contour interval is 0.05 degree and the vectors are in units of knots. 

The single observation is at the center of the analysis domain (x=150, y=150). 

 

b. Transition to situation-dependent covariances   

In this experiment, we examine a single-observation result based on the ensemble of 

forecast in HREnKF. The prescribed innovation and observation error are the same as before, and 

the location is again at the center of the analysis domain (x=150 and y=150).  

Figure 3.18 shows increments of the temperature and wind after the model was integrated in 

time with the HREnKF. The temperature increment clearly exhibits the situation-dependent 

structure of the forecast error built up from ensemble members. In the vertical plane, the 
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temperature increments (Figs. 3.19 a and b) exhibits a tilted structure which may play a role at 

mesoscales and convective scales. 

a) 

 
b) 

 
Fig. 3.19  Cross-sections of the temperature increment at the location of the imposed 

observation: a) west-east direction; b) south-north direction. (y-axis is pressure [hPa], the cross 

indicates the location of single observation) 

 

To examine how the wind changes in response to the single temperature observation, the 

error cross-correlation between u (v) and temperature (T) is plotted in Fig. 3.20a (b). The error 

cross-correlations between winds and temperature are stronger than the ones in Fig. 3.17, and the 

background error structure is a result of the dynamical and microphysical processes inherent in 

the model forecast. 
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a) b) 

  
Fig. 3.20  Error cross-correlation for the same domain as in Fig. 3.17 based on 80-member 

ensemble of the HREnKF of 30-min forecast. a) u and T; b) v and T. 
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Chapter 4 

Radar Data Assimilation in the Canadian High Resolution 

Ensemble Kalman Filter System: Performance and Verification 

with Real Summer Cases 

 

The results in chapter 1 give some advices for the implementation of Ensemble Kalman 

Filter (EnKF) system, such as sufficient initial ensemble spread and data thinning. Chapter 2 

provides information about the background error statistics which can be used to setup the 

localization scheme in EnKF. 

Based on the studies in the previous chapters, a high resolution (1-km) EnKF system is 

developed for radar data assimilation. Similar to the operational global EnKF system at the 

Canadian Meteorological Center, this high resolution EnKF includes parallel sub-EnKFs to 

maintain a sufficient ensemble spread during the cycling process. After the implementation, this 

system is applied on different summer cases with different precipitation structures in order to 

investigate its performance. Short-term ensemble forecasts are initialized from the analysis 

results of the EnKF system for the purpose of verifying the impact of EnKF on short-term 

forecast.  

This chapter is based on the following journal article. 

Chang, Weiguang, Kao-Shen Chung, Luc Fillion, and Seung-Jong Baek, 2014: Radar Data 

Assimilation in the Canadian High Resolution Ensemble Kalman Filter System: Performance 

and Verification with Real Summer Cases. Mon. Wea. Rev., In press. 
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Chapter 4 

Radar Data Assimilation in the Canadian High Resolution 

Ensemble Kalman Filter System: Performance and Verification 

with Real Summer Cases 

 

Abstract 

An 80-member High Resolution Ensemble Kalman Filter (HREnKF) is implemented for 

assimilating radar observations with the Canadian Meteorological Center (CMC)‟s Global 

Environmental Multiscale Limited Area Model (GEM-LAM). This system covers the Montréal 

region and assimilates radar data from the McGill Radar Observatory with 4-km data thinning. 

The GEM-LAM operates in fully non-hydrostatic mode with 58 hybrid vertical levels and 1-km 

horizontal grid spacing. As a first step towards full radar data assimilation, only radial velocities 

are directly assimilated in this study. The HREnKF is applied on three 2011 summer cases 

having different precipitation structures; i.e. squall line structure; isolated small-scale structures; 

and wide spread stratiform precipitation. The short-term (< 2h) accuracy of the HREnKF 

analyses and forecasts is examined. 

In HREnKF, the ensemble spread is sufficient to cover the estimated error from 

innovations and lead to filter convergence. It results in part from a realistic initiation of HREnKF 

data assimilation cycle by using a Canadian Regional EnKF system (itself coupled to a global 

EnKF) working at meso and synoptic scales. The filter convergence is confirmed by the 

HREnKF background fields gradually approaching to radar observations as the assimilation 

cycling proceeds. At each analysis step, it is clearly shown that unobserved variables are 

significantly modified through HREnKF cross-correlation of errors from the ensemble. Radar 

reflectivity observations are used to verify the improvements in analyses and short-term forecasts 

achievable by assimilating only radial velocities. Further developments of the analysis system 

are discussed. 
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4.1  Introduction 

Since introduced by Evensen (1994), the Ensemble Kalman Filter (EnKF) has been 

widely used for atmospheric data assimilation (e.g. Houtekamer and Mitchell 1998; Anderson 

and Anderson 1999; Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002; Tippett et al. 

2003; Anderson and Collins 2007; Anderson et al. 2009). The most problematic issues addressed 

by these studies involve calculation efficiency and insufficient ensemble spread that could lead 

to filter divergence. The EnKF scheme proposed by Houtekamer and Mitchell (1998, 2001) is 

able to reasonably increase ensemble spread by computing more than one Kalman gain, is 

relatively easy to implement and parallelizes well. Hence a global EnKF based on this scheme is 

in operational use at the Canadian Meteorological Center (CMC). The operational global EnKF 

provides the theoretical and practical basis for our high resolution kilometric scale EnKF 

(hereafter referred to as HREnKF), details of which will be elaborated in the next section.  

After its success for large scale data assimilation, the technique of EnKF was adopted for 

research purposes to assimilate radar data at mesoscale and convective scale. Snyder and Zhang 

(2003) explored for the first time the possibility of using EnKF to assimilate radar observations. 

By assimilating simulated radial velocity into a perfect cloud-scale model, their study showed 

that accurate analysis can be produced after six radar-scans in thirty minutes. They also indicated 

that flow-dependent error covariances are important for reconstructing the unobserved fields. 

Furthermore, a study using simulated radial velocity and reflectivity observations showed that 

reflectivity data in precipitation areas help to retrieve storm details, and no-reflectivity 

observations in non-precipitation areas are useful for suppressing false alarm storms (Tong and 

Xue 2005).  

Compared to data assimilation of simulated observations in the context of a perfect 

forecast model, assimilating real radar data by EnKF is even more challenging due to the 

imperfect highly non-linear model, and the limited knowledge of model and observation errors. 

Despite those problems, results from many studies demonstrated notable improvement in both 

analysis and forecast from assimilating real radar data (Aksoy et al. 2009, 2010; Dowell 2004, 

2011). In those studies, amplitude of innovations (i.e. observations minus background) in each 

cycle was consistently reduced during EnKF cycling. Short-term forecasts after EnKF cycling 
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were improved in a few cases in terms of root mean square (rms) errors of reflectivity and radial 

velocity with respect to real observations.  

Although some EnKF studies already dealt with real radar data, most of them focused on 

isolated convective systems happening within the model domain. The HREnKF in this article is 

carefully studied under varying weather conditions. Its impact on analyses and short-term 

forecasts is addressed, and the advantages and limitations of applying HREnKF for radar data 

assimilation are discussed. This study is an extension of Chung et al. (2013) and benefits from 

one more year of development work. Radar observations are provided here by McGill J. S. 

Marshall Radar Observatory. Experiments are performed in the context of the Global 

Environmental Multiscale Limited Area Model (GEM-LAM) with l-km horizontal grid spacing. 

For the moment, we focus on radial velocity assimilation strictly, leaving reflectivity data for the 

next stage of our program.  

The remainder of the article is organized as follows. In the second section, the design of 

HREnKF is introduced including the GEM-LAM configurations, the pre-processing of 

observations and the observation operator used. The third section shows the setup of HREnKF 

experiments, introducing three summer cases, and the evaluation methodologies. Results for 

these three summer cases are presented in the fourth section. Finally, this article closes with a 

summary and discussions in the last section. 

 

4.2  Description of HREnKF for radar data assimilation 

a. The HREnKF scheme 

The HREnKF inherits from the global EnKF scheme implemented operationally at CMC 

(Houtekamer and Mitchell 1998, 2001; Mitchell et al. 2002; Houtekamer et al. 2005; Mitchell 

and Houtekamer 2009). In the following discussion, the term „global EnKF‟ refers specifically to 

this Canadian operational global EnKF. The basic equations of HREnKF are similar to the 

equations in Evensen (1994) and Houtekamer and Mitchell (1998). Given a number of ensemble 

members equally divided into a few subgroups, the fundamental HREnKF algorithm can be 

described by the following set of equations 
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where i =1, 2, …, is a subgroup index; j and j’ represent the indices of ensemble members within 

and outside the subgroup i respectively. The matrix iK is the Kalman gain used in subgroup i, and 

calculated from all the ensemble members other than the ones in i. Superscripts a and f represent 

analysis and forecast (i.e. background) respectively; X is the model state vector; jO represents 

perturbed observation vector (Whitaker and Hamill, 2002); H stands for the observation operator; 

R is the observation error covariance matrix; M is the nonlinear forecast model; j represents 

random perturbations added onto each analysis member to simulate model errors. The error 

covariance matrices in Eq. (4.2) are estimated from 
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where A and B represent state vectors for different members in model space or in observation 

space (e.g. 
f

jX  or 
f

jHX in Eq. 4.2);  j is an ensemble member index;   represents the 

localization function which will be explained later and  means a Schur product with the 

localization function (Houtekamer and Mitchell 2001).  

Brief descriptions of HREnKF features are given in following, while the details can be 

found in Houtekamer and Mitchell (2001) and Chung et al. (2013).  

Because of the huge size of state vector (~10
7
) in model space, limited number of 

ensemble members (~10
2
) in EnKF can hardly precisely estimate the first moment (mean) and 

the second moment (variances and covariances) of the multivariate background error probability 

density function. As a result, the problems of insufficient ensemble spread and noisy covariances 

usually exist in the estimation of background error statistics. Dividing ensemble members into 

subgroups and localization are two approaches to solve those problems. 
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Dividing ensemble members into several subgroups in HREnKF alleviates the problem 

of ensemble spread reduction caused by limited ensemble size (Mitchell and Houtekamer 2009).  

Otherwise, the filter could reject observations due to the underestimation of background 

uncertainties and result in filter divergence. 

Three-dimensional localization works on top of the calculation of background error 

covariance matrices as shown in Eq. (4.4) in order to reduce noise effects in the estimation of 

covariances (Houtekamer and Mitchell 2001). The algorithm of both horizontal and vertical 

localizations follows Eq. (4.10) in Gaspari and Cohn (1999). According to some other studies in 

radar data assimilation (Dowell et al. 2004; Tong and Xue 2005; Aksoy et al. 2009), and the 

error correlation analysis in Chung et al. (2013), 10-km and 1 scale height (on the coordinate of 

natural logarithm of pressure) are realistic scale parameters in the above mentioned localization 

equation for horizontal localization and vertical localization respectively. The cut-off distances 

are twice as large as the above scale parameters. Moreover, due to the filtering mechanisms in 

NWP model, the effective model resolution is usually 5-10 times of model resolution in 

mesoscale (Skamarock 2004). In order to prevent the increments from being removed by the 

filtering effect of model integration, the localization cut-off distance (20 km) is set to be much 

larger than the effective resolution (5-10 km). 

Sequential processing allows HREnKF to assimilate observations sequentially in batches 

for reducing the calculation burden (Houtekamer and Mitchell 2001). The validation of such 

algorithms is subject to the condition that observation errors in different batches should be 

uncorrelated. In our study, data thinning will be done on radar observations in order to meet this 

requirement, details of which will be given in subsection 4.2c. 

Another feature of HREnKF is the background check procedure which eliminates 

observations that are far from the background fields (i.e. a short-term forecast). The criterion can 

be expressed by  

 
222)( fo

fHxo  
 

(4.5)    

where o represents each single unperturbed observation; fHx is the ensemble mean forecast (i.e. 

background) mapped to the observation space for the corresponding observation; 2

o
 
is the fixed 
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observation error variance; 
2

f
 
is the flow-dependent background error variance estimated from 

ensemble members in observation space. Observations satisfying the inequality (4.5) are rejected 

by the background check. This procedure also prevents the model from being shocked by an 

occasional extreme update on a particular model state variable. 

The above features and algorithms of HREnKF are shared with the global EnKF 

developed by Houtekamer and Mitchell (1998, 2001), besides which, HREnKF has its own 

specials. Firstly, in addition to the control variables (temperature, specific humidity, and 

horizontal wind components) in the global EnKF (Houtekamer et al. 2005), HREnKF has 

vertical velocity W as an additional control variable which contributes to the radial velocity (see 

Eq. 4.6) and is crucial for small scale convection. The microphysical variables are not updated 

directly in the analysis step, but are adjusted through model integration in the forecast step. 

Secondly, the time interval for analysis cycling is set as short as five minutes (as compared to 6h 

for the global EnKF), which is the same as the output frequency of McGill radar observations. 

Lastly, 80 ensemble members are employed, which are fewer than the global EnKF‟s 192 

members, but enough to produce reliable background error structures (Chung et al. 2013). 

 

Fig. 4.1  Flow chart of HREnKF. 

 

The HREnKF operates as shown in Fig. 4.1 and starts from 80 initial ensemble members. 

The approaches for providing those initial ensemble members will be given in subsection 4.3a. 

During the forecast step, random perturbations representing model errors are applied to ensemble 

members to prevent ensemble spread reduction (Eq. 4.1). Since model errors at the convective 

scale are not well understood, they are simply simulated here by homogenous and isotropic 
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Gaussian distributed random fields (Chung et al. 2013). The perturbed variables include 

temperature, horizontal wind components and specific humidity (standard deviations of 

perturbations are respectively 0.5 degree, 3 m s
-1

 and 0.1 on natural logarithm of humidity). In 

our experiments, following the global EnKF, perturbations are applied everywhere on the model 

grid, although according to Snyder and Zhang (2003), localized perturbations may be useful for 

preventing the spurious convective cells. Given the 80 perturbed members as initial conditions, 

the high resolution GEM-LAM is integrated for five minutes to yield 80 ensemble forecasts that 

are considered as 80 background fields ready for the analysis step. In the analysis step, 80 sets of 

observations are generated by perturbing real observations (Whitaker and Hamill 2002; Evensen 

2003) according to their error structures modeled by Gaussian distribution and observation error 

standard deviation (see subsection 4.2c). The perturbed observations are then statistically 

combined with the background fields using the EnKF equations (Eqs. 4.2 and 4.3) to produce 80-

member ensemble analysis, from which another ensemble forecasts can be performed. The above 

process repeats until a final analysis is produced. 

 

b. GEM-LAM configurations 

The fully compressible GEM-LAM is used in our study. The model employs an implicit 

scheme in time and a semi-Lagrangian advection scheme. Detailed descriptions of the GEM 

model dynamics and physics formulations are available in Côté et al. (1998) and Mailhot et al. 

(1998), respectively. As shown in Fig. 4.2, a three-level nested domain is used in the model 

configuration to finally drive the 1-km model. The hourly forecasts from the global grid, which 

used the Sundqvist condensation scheme (Sundqvist 1978), were used as initial and lateral 

boundary conditions to launch a limited area model in domain A with horizontal resolution of 

15-km (hereafter LAM-15km). A second nested LAM forecast (domain B) starts 6 hours later 

than LAM-15km and runs at 2.5-km horizontal resolution (LAM-2.5km). This domain (729 x 

540 grid points) covers the southern part of the provinces of Ontario and Québec. The LAM at 1-

km horizontal resolution (domain C, LAM-1km) is launched 6 hours later than LAM-2.5km with 

integration time step of 30 s. The LAM-1km is centered over the Montréal region (300 x 300 

grid points) to assimilate radar observations from McGill J. S. Marshall Radar Observatory.  
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The limited area simulations are fully non-hydrostatic with 58 hybrid vertical levels and a 

lid at 10 hPa. The land surface scheme called “Interaction between Surface, Biosphere and 

Atmosphere” (ISBA; see Noilhan and Planton 1989) is applied. The Kain-Fritsch moist 

convective parameterization scheme (Kain and Fritsch 1990) is employed in LAM-15km; 

however no convective parameterization is used in either LAM-2.5km or LAM-1km. As opposed 

to the multi-model option (different versions of physical parameterizations for different 

ensemble members) used in the global EnKF system, the HREnKF system currently keeps all the 

physical schemes fixed for model integration. The double-moment version of the Milbrandt and 

Yau (2005) microphysics scheme is used for the grid-scale processes. The model control 

variables include horizontal winds, temperature, specific humidity, vertical velocity, mixing ratio 

and number concentration of six hydrometeor variables (cloud water, rain, snow, ice, graupel and 

hail). 

 

Fig. 4.2 The 1 km grid spacing GEM-LAM covering the Montréal region and its parental 

models. A: LAM 15 km grid spacing; B: LAM 2.5 km grid spacing; C: LAM 1 km grid spacing. 

 

c. McGill Radar observations  

The radar observations assimilated by the HREnKF are provided from the S-band dual-

polarized Doppler radar at J. S. Marshall Radar Observatory operated by McGill University. The 
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McGill radar collects data every five minutes at 24 angles (from 0.5° to 34.4°) in elevation and 

360 angles (from 1° to 360°) in azimuth. The coverage of the radar is 240 km in radius.  

Before radar data are brought to the HREnKF system, J. S. Marshall Radar Observatory 

uses dual-polarization information such as the standard deviations of ZDR (differential 

reflectivity, defined as the difference between the horizontal and vertical reflectivity factors) and 

PhiDP (differential propagation phase shift, defined as the phase difference between the 

horizontally and vertically polarized echoes) to identify the ground clutters (Cho et al. 2006). 

Mathematical algorithms are also used to remove data contaminations including blockage effect, 

Doppler ambiguity and range folding (Doviak and Zrnic 1984). The measurement error of radial 

velocity is estimated to have a standard deviation of 1 m s
-1

 (Keeler and Ellis 2000). This value is 

taken in HREnKF as observation error. To keep radar data quality, the Plan Position Indicator 

(PPI) data are used for assimilation.  

 

 

Fig. 4.3  Three-dimensional data thinning scheme for 4 km radius. Solid straight lines are radar 

beams. Red points are observations kept after data thinning. Green points are observations 

removed by data thinning. 

 

After quality control, data thinning is applied to ensure uncorrelated observation errors, 

which is required for two reasons. Firstly, errors of raw radial velocity data are correlated 

between neighboring range gates and between neighboring beams (Xu et al. 2007; Keeler and 

Ellis 2000). On the other hand, their correlation structures are not fully known. Therefore, it is 

convenient to thin the data and ensure observation errors are uncorrelated after thinning. 



74 
 

Secondly, the sequential assimilation process of HREnKF is only valid under the condition that 

the observation errors in different batches are independent. Due to the notable observation error 

correlation, especially in the radar far field (Fabry 2011), we assume that errors of two 

observations more than 4 km away from each other are not correlated. Thus, a 4-km data 

thinning is applied in three dimensions on the radar data in this study (Fig. 4.3). Moreover, 

thinning is performed at lower elevation angles first, and then at higher elevation angles, in order 

to keep more observations at lower elevations, since low level winds are important for 

convergence and convection initiation. After data thinning, around 1/3 observations are kept 

from raw data. 

 

d. Observation operator for radial velocity 

Radial velocities, the only type of observation directly assimilated in the current HREnKF, can 

be written as a function of three wind components as shown in Eq. (4.6). 

 
)sin()()cos()cos()cos()sin(  tr VWVUV 

 
(4.6) 

where U, V and  W are three wind components from model output; tV
 is terminal velocity for 

raindrops;   and   are azimuth and elevation angles respectively. The terminal velocity can be 

calculated either from model output or from reflectivity observations. In our study, similar to 

other studies in the literature (e.g. Sun and Crook 1997; Chung et al. 2009; Wang et al. 2013), 

reflectivity observations are used to calculate tV . The relationship between tV and reflectivity can 

be described by Eqs. (4.7) and (4.8). 

 )log(5.171.43 MZ   (4.7) 

 
)

2
exp(94.5 8/1

h

l
MVt   (4.8) 

where Z is reflectivity; M is precipitation concentration (g m
-3

); l is altitude (m); h is a 10
3
m scale 

height. Although reflectivity data are not assimilated directly by HREnKF, they are used in the 

observation operator for the calculation of radial velocity.  
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4.3  Experimental setup  

a. Experiment design 

 

Fig. 4.4  Experiment procedure. Time 0000 indicates the start of the experiment, not the real 

time. Time 0230 indicates 2 hours and 30 minutes after the start of the experiments. 

The experiment procedure consists of 1-h HREnKF cycling and 1.5-h short-term 

ensemble forecasts, which are synchronous with a 2.5-h control run (Fig. 4.4). The HREnKF 

cycling process begins with 5-min model integration of the 80 initial ensemble members; then 

assimilates observations of radial velocity every 5 minutes for 12 cycles; and finally produces an 

ensemble of analysis. The short-term 80-member ensemble forecasts are initiated from the final 

analysis ensemble and lasts for 90 min. To investigate the impact of radial velocity assimilation 

by HREnKF on analysis and forecast, a control run is established during the same entire 

experimental period. 

In the experiments to follow, two different approaches are intercompared to provide 80 

initial ensemble members for HREnKF and lateral boundary conditions for the high resolution 

GEM-LAM. In the first approach, following the preceding study (Chung et al. 2013), a 

deterministic forecast (as describe in subsection 4.2b) provides the initial guess at the start point 

of HREnKF, on which Gaussian distributed random errors are added to yield 80 initial ensemble 

members. The statistical properties of initial perturbations are similar to model error 

perturbations described in subsection 4.2a, except for their standard deviation being multiplied 

by a factor of two. The driving field of the deterministic forecast also provides the same lateral 

boundary conditions for all ensemble members in both HREnKF cycling process and short-term 
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forecast. The control run corresponding to this approach is a model integration initiated from the 

initial guess. In the following text, this approach will be referred to as EXP1. 

 

Fig. 4.5  Flow chart of HREnKF experiments with the application of the regional EnKF for 

capturing mesoscale circulation and providing initial and lateral boundary conditions for 

HREnKF data assimilation and forecasting experiments. 

 

It is now better documented in the literature (e.g. Nutter et al. 2004a, b; Saito et al. 2012; 

Caron 2013) that perturbing lateral boundary conditions in ensemble forecast systems is 

important. Therefore, since a regional EnKF-15km system (referred to as REnKF) is currently 

available in research mode at CMC, the second approach assigns each member of HREnKF 

different initial and lateral boundary conditions from the members of the REnKF. As shown in 

Fig. 4.5, The REnKF takes information from the operational global ensemble analysis and then 

assimilates conventional observations (same types as the global EnKF) every 6 h for two cycles. 

Presently, results coming from extensive validation tests of REnKF demonstrate that it scores as 

good as the global EnKF against radiosonde observations after one month cycling (results not 

shown). Similar to EXP1, the second approach consists of a downscaling procedure down to 1-

km horizontal grid spacing. The model configurations in LAM-2.5km and LAM-1km are exactly 

the same as described in subsection 4.2b. In this approach, the 80-ensemble forecasts at 2.5-km 

grid spacing provide the lateral boundary conditions for each member at 1-km grid spacing. We 
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emphasize the fact that REnKF, generally better capture mesoscale circulations as compared to 

global EnKF, and provide larger ensemble spread for both initial ensemble members and the 

ensemble lateral boundary conditions. Further details on this impact on ensemble spread will be 

given in subsection 4.4a. Note that the control run in this context takes the ensemble mean of the 

80 analysis members of 15-km resolution REnKF and then use downscaling to 1-km grid spacing. 

This approach is given the name „EXP2‟ for simplicity in the following discussion. 

In the case studies, only the first case exploits both EXP1 and EXP2, while the other two 

use only the second approach. The rationale for doing this will be elaborated in the next section 

along with the results of experiments. 

 

b. Description of three cases 

On 29 June 2011, a squall line appeared on McGill radar image and moved eastward 

(Figs. 4.6a and 4.6b). The HREnKF performs twelve data assimilation cycles from 0000 UTC to 

0100 UTC, and the following short-term ensemble forecast is from 0100 UTC to 0230 UTC. The 

radial velocities in Fig. 4.6b show how observations look like and where they appear with 

respect to the radar location (black dot). By comparing Figs. 4.6a and 4.6b, one may notice that 

the colored area of radial velocity image is slightly larger than that of reflectivity. This is due to 

the fact that reflectivities smaller than 7 dBZ are considered insignificant compared to the noise, 

and therefore are not colored in the figure. The radial velocities at the same locations, however, 

are significant. When radial velocity observations are provided, but reflectivities are unobserved 

or insignificant, terminal velocity cannot be obtained by Eqs. (4.7) and (4.8) and does not 

contribute to the observation operator. We emphasize that the reflectivity contains more 

information than the radial velocity does in Fig. 4.6, because the former contains both 

precipitation and non-precipitation data, which is crucial for correcting position errors in data 

assimilation. 

As discussed before, two different experiments, EXP1 and EXP2 are performed for this 

case, where the control runs are different. By comparing between observations (Fig. 4.6a) and 

the control runs for both experiments (Figs. 4.6c and 4.6d) at time 0000 UTC before the 

experiment starts, one can tell that the precipitation in EXP2 is more precisely located. This is a 
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result of the ability of REnKF to track mesoscale circulations in EXP2, which reduces the error 

of the control run at the beginning of HREnKF. Because of the improvement brought by REnKF 

on better positioning the mesoscale flow in general, the next two cases will rely on REnKF for 

providing the initial ensemble and the driving ensemble fields. HREnKF will rather focus on 

improving the convective scales. 

 

 

Fig. 4.6  The case of 29 June 2011. All figures are snapshots at 0000 UTC. a) Reflectivity 

observation at the 4
th
 elevation angle (0.9 degree). b) Radial velocity observation at the 4

th
 

elevation angle. c) Model output of reflectivity for the control run of EXP1, interpolated to the 

4
th
 elevation angle. d) Model output of reflectivity for the control run of EXP2, interpolated to 

the 4
th

 elevation angle. The black dots near the centers of figures denote radar location. 
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Fig. 4.7  The case on 12 June 2011 at 1600UTC. a) Reflectivity observations at the 4
th
 elevation 

angle (0.9 degree). b) Model output of reflectivity for the control run, interpolated to the 4
th

 

elevation angle. The black dots near the centers of figures denote radar location. 

 

The second case happened on 12 June 2011 where severe storms stroke the Montréal area 

in the afternoon, and delayed the “Grand Prix de Formule Un” car racing for more than two 

hours. As seen in the radar image (Fig. 4.7a), many storms near the center of the domain were 

small-scale, isolated and strong. Those storms moved from southwest to northeast and lasted for 

many hours. On the southern portion of the domain, a well organized stratiform weather system 

already existed and gradually decayed. HREnKF is performed from 1600 UTC to 1700 UTC. 

The short-term forecasts are from 1700 UTC to 1830 UTC. The reflectivity output of the control 

run (Fig. 4.7b) shows clear location errors at the initial time, which challenges the HREnKF 

system. 

In the third case, around 2100 UTC on 23 June 2011, strong convections were observed 

to the south of the radar, and some light precipitation extends to the northeast of the domain (Fig. 

4.8a). This mesoscale weather system developed and moved very slowly towards east-northeast. 

In this case study, HREnKF is performed from 2100 UTC to 2200 UTC, and short-term forecasts 

are from 2200 UTC to 2330 UTC. The reflectivity field of the control run (Fig. 4.8b) is similar to 

the observation in terms of the stratiform structure, but the location error is quite large.  
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Fig. 4.8  As in Fig. 4.7 but for the case on 23 June 2011 at 2100 UTC. 

 

c. Evaluation methodologies 

The behavior of HREnKF and its impact on analysis and forecast are evaluated by several 

indicators. Firstly, indicators in observation-space are calculated during the cycling process of 

HREnKF in order to examine the ensemble spread and filter convergence. Secondly, the final 

analysis produced by HREnKF and the following short-term ensemble forecast are compared to 

the control run and the observations to demonstrate the improvement brought by HREnKF. We 

will call the 5-min forecast in cycling process „background‟ in the following discussion, because 

they serve as the background for the analysis step. The 1.5-h forecast is referred to as „short-term 

forecast‟. In this way, we are able to literally differentiate the 5-min forecast in HREnKF and the 

1.5-h forecast after HREnKF. 

We now introduce observation-space diagnostic indicators for the HREnKF cycling 

process. By the end of each 5-min cycle, given the background and ensemble analysis calculated 

from equations (4.1) and (4.3) respectively, the observation-space ensemble means of 

background and analysis can be obtained by projecting variables from model-space to 

observation-space and averaging over all members. Then, two indicators are computed: root-

mean-square (rms) error of ensemble mean background with respect to observations (referred to 

as „background rms‟ hereafter), and rms error of ensemble mean analysis with respect to 

observations (referred to as „analysis rms‟ hereafter). The computation of rms error is given by 
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where M is the number of observations used for the current analysis step; mo  is the mth 

observation; mHX is the model state in observation space for the mth observation, and its average 

is taken over all the ensemble members. When f
XX  , representing the background state vector, 

Eq. (4.9) calculates the background rms. When a
XX  , representing the analysis state vector, Eq.  

(4,9) calculates the analysis rms.  

Based on the information of ensemble members and ensemble mean of background, the 

ensemble spread of background can be calculated as well. In order to be comparable to the 

background rms, the ensemble spread is computed also in observation-space as 
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where M is the number of observations used for the current analysis step; N is the number of 

ensemble members; 
f

mn,HX  is the ensemble background of member n in observation space for 

the mth observation. Sufficient ensemble spread is a necessary condition of successful operation 

of EnKF. The ensemble spread is usually generated at the beginning of EnKF and should be 

maintained during the cycling process. For example, Dowell and Wicker (2009) discussed the 

use of additive noise for producing and maintaining ensemble spread for storm scale ensemble 

data assimilation. In our HREnKF, the ensemble spread is maintained by dividing ensemble 

members into subgroups (Houtekamer and Mitchell 1998). Two different approaches of 

obtaining initial ensemble members (see subsection 4.3a) will also be examined. Another 

possible method of keeping sufficient ensemble spread is inflation (e.g. Anderson 2007). In the 

results section of this article, we will show that ensemble spread is supposed to meet the 

requirement that (spread
2
+observation error variance) is greater than or comparable to 

(background rms)
2
. 

Another diagnostic indicator for the HREnKF cycling process is proposed here to test the 

convergence between background and truth implying filter convergence. In our real data study, 
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since the truth is unknown, observations which are closely related to the truth are considered as 

references to judge the convergence. For the purpose of measuring the difference between 

background and observations, „observation-pass-ratio‟ is defined as the ratio of the number of 

observations which pass the background check to the total observation number available for each 

cycling step. As explained in subsection 4.2a, the background check aims at excluding the 

observations greatly differing from the background (Eq. 4.5). Accordingly, a larger observation-

pass-ratio implies model states being closer to observations, since larger proportion of 

observations are able to pass the background check. A gradually growing observation-pass-ratio 

suggests filter convergence. Note that a greater observation-pass-ratio does not necessarily 

suggest that more data are assimilated because the absolute number of assimilated observations 

depends also on the total observation number before background check. 

Besides the above indicators exploring the performance of HREnKF, two other scores are 

used for verifying the accuracy of final analysis and short-term ensemble forecast, given 

observations as reference. The first score is the „bias‟ defined as the spatial average of the 

differences between observations and ensemble forecast or analysis (zero-time lead forecast) at 

each radar elevation angle for each ensemble member. A score closer to zero implies better 

quality of the analysis or the forecast. The score is given by 

 

 






Mm

f

mnmnl o
M

bias
...1

,,

1
HX   (4.11) 

where l means the lth elevation angle; n denotes the nth member; M   is the number of 

observations at the lth elevation angle. The second score is the „rms‟ of ensemble forecast with 

respect to observations at each elevation angle for each member. If the forecast is closer to the 

observation, the rms is expected to be smaller.  The rms is calculated by 
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where nlrms , is the forecast rms at the lth elevation angle for ensemble member n. It is important 

to realize that this score is different from Eq. (4.9) which calculates the rms of the ensemble 
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mean. Given the bias and rms for 80 ensemble members, the ensemble mean and ensemble 

standard deviation of the „bias‟ and „rms‟ are calculated from the scores of each member.  

For the control run, similar scores can be calculated from Eqs. (4.11) and (4.12), where 

f
X  means the model state vector of the control run that has only one member. 

 

4.4  Results 

a. Results of the case on 29 June 2011 

The results of two experiments for the first case study will be shown in this section. The 

first experiment (CASE1_EXP1 hereafter) and the second experiment (CASE1_EXP2 hereafter) 

take the schemes of EXP1 and EXP2 respectively as defined in subsection 4.3a.  

The first results we present are the indicators of rms errors and ensemble spread over the 

HREnKF cycling period, which can be used to examine the sufficiency of ensemble spread. The 

ensemble spread and rms errors are presented in Vr observation space, including only the 

observations that pass the background check. In CASE1_EXP1 (Fig. 4.9a), the ensemble spread 

is smaller than the background rms for all cycles, thus puts the HREnKF in danger of 

underestimation of the background uncertainty. This problem is due to the fact that the initial 

ensemble spread of CASE1_EXP1 is decided by the set of random perturbations applied in the 

beginning of HREnKF, whose variances are not large enough. Nevertheless, we do not want to 

amplify the initial perturbations because, it could perturb too severely the model dynamical and 

physical balance. Therefore, the relatively small amplitude of random perturbations results in the 

insufficiency of ensemble spread. Another important reason for the small ensemble spread in 

CASE1_EXP1 is its fixed lateral boundary conditions, which gradually influence the inner 

domain through the model integration and reduce the ensemble spread near the boundaries. 

Similar discussions about rms errors and ensemble spread can also be found in Aksoy et al. 

(2009, 2010) and Dowell (2011). Our results focus on the improvement of sufficiency of 

ensemble spread brought by implementation of the regional EnKF. 
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Fig. 4.9  Results of cycling process for the case on 29 June 2011. Each cycle takes five minutes. 

a) and b): CASE1_EXP1. c) and d): CASE1_EXP2. a) and c): ensemble spread in observation 

space (Vr) (dashed line), background rms of Vr (12 upper points on the solid line) and analysis 

rms of Vr (12 lower points on the solid line) during the cycling process.  b) and d): observation-

pass-ratio. 

 

Different from CASE1_EXP1, the initial ensemble members in CASE1_EXP2 are 

derived from the REnKF, which guarantees large ensemble spread (Fig. 4.9c) as well as realistic 

balanced model fields. Moreover, since each member has its own lateral boundary conditions, 

the ensemble spread near the boundary does not shrink as in CASE1_EXP1. Quantitatively 

speaking, the ensemble spread for CASE1_EXP2 is around 2.5 m s
-1

 (Fig. 4.9c), while the 

ensemble spread for CASE1_EXP1 is no more than 2 m s
-1

 (Fig. 4.9a). Correspondingly, the 
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total spread squared (ensemble spread squared + observation error variance) is (2.5
2
+1

2
) for 

CASE1_EXP2 and (2
2
+1

2
) for CASE1_EXP1. Given the background rms staying around 2.3 - 

2.5 m s
-1

 for both CASE1_EXP1 and CASE1_EXP2, by applying the criterion for deciding the 

ensemble spread sufficiency as described in subsection 4.3c, one can tell that the ensemble 

spread is sufficient in CASE1_EXP2 but insufficient in CASE1_EXP1. 

The second set of results we now discuss are the observation-pass-ratios that indicate the 

convergence of background to observations during HREnKF cycling process. The observation-

pass-ratio for CASE1_EXP2 increases from about 74% to almost 80% after the 4
th
 cycle (Fig. 

4.9d), while the ratio for CASE1_EXP1 generally remains around 57% after cycle 3 (Fig. 4.9b). 

This infers first that the background gradually converges to observations during the cycling 

process in CASE1_EXP2, and second, the HREnKF in CASE1_EXP2 incorporates a larger 

proportion of observations than CASE1_EXP1 because of its larger ensemble spread (Fig. 4.9c). 

Although the increasing observation-pass-ratio after the 4
th
 cycle in CASE1_EXP2 suggests filter 

convergence, it drops from 80% to 74% in the first 3 cycles. This is because the observation-

pass-ratio decreases when ensemble mean deviates from observations, or ensemble spread 

reduces. The ensemble spread is large at the beginning (before any assimilation proceeds), and 

therefore allows many observations to pass the background check. After the first assimilation 

step, however, all ensemble members are constrained by observations, and the resulting smaller 

ensemble spread leads to the reduction of observation-pass-ratio. For the following cycles, 

although the ensemble spread reduces (see Fig. 4.9c), the ensemble mean becomes closer to the 

observations. Consequently, fewer observations are rejected and the observation-pass-ratio 

increases. 

After showing diagnostic indicators exhibiting the quality of the HREnKF cycling 

process, we now verify the impact of radial wind assimilation on analysis and short-term forecast 

by comparing them to the control run. Note that control runs for CASE1_EXP1 and 

CASE1_EXP2 are different (see subsection 4.3a). 

The third results we show are scores of „bias‟, „rms‟, their ensemble mean and ensemble 

standard deviation computed at analysis time 0100 UTC on different radar elevation angles (Figs. 

4.10a and 4.11a), which are similar to results presented by Aksoy et al. (2010). Although „radar 

beam elevation index‟ is used as y-axis in the figures, it is still able to generally describe 
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different altitudes in the atmosphere. While both „bias‟ and „rms‟ describe the accuracy of 

analysis and forecast, „rms‟ is a more direct measure of errors. As shown in Eq. (4.12), „rms‟ 

does not allow errors to cancel each other as the „bias‟ does in Eq. (4.11). On the other hand, 

„bias‟ is helpful to detect whether errors happens in small scale or is caused by the large-scale 

flow. When the radial velocity of analysis has significant errors, small bias is still possible when 

the inaccuracy is caused by large-scale flow. This is because large-scale errors (the entire wind 

field is overestimated/underestimated to the same direction at large scale) have opposite signs on 

opposite sides of the radar. 

Figures 4.10a and 4.11a show the improvement of the analysis over the control run for 

both experiments, with observations used as reference. Note that all evaluations against radar 

data are done without data thinning. The total number of data used for verifications as a function 

of elevation angles appears on the right hand side of each panel. For CASE1_EXP1 at analysis 

time 0100 UTC (Fig. 4.10a), the red curves being closer to the zero lines than the blue curves 

indicates that the analysis has smaller bias and rms than the control run on almost all elevation 

angles. Similar results can also be observed in Fig. 4.11a for CASE1_EXP2. In addition, the 

entire error bars representing ensemble standard deviations in Figs. 4.10a and 4.11a are mostly 

closer to the zero line than the blue curve, which demonstrates that the improvement is not 

limited to the ensemble mean, but for most ensemble members.  
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Fig. 4.10  Verification scores (bias and rms) of analysis and short-term ensemble forecast against 

the control run at different time periods for experiment CASE1_EXP1. Radar elevation indexes 

on y-axis from 1 to 15 correspond to radar beam elevation angle: 0.3, 0.5, 0.7, 0.9, 1.1, 1.4, 1.7, 

2.0, 2.4, 2.9, 3.4, 4.1, 4.8, 5.6, 6.6 deg. Total number of radar data used (without data thinning) at 

each elevation angle appears on the right of each panel. 

 

The fourth results for this case study include the scores of bias and rms in short-term 

forecasts. The curves in Figs. 4.10b, 4.10c, and 4.10d show that the bias and rms scores of short-

term forecast gradually approach the scores of the control run over the forecast period in 

CASE1_EXP1.  At time 0230 UTC, 90 min after initiation of the ensemble forecast, the rms 
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curves of forecast and control run are almost identical especially in the lower elevations, but the 

bias of forecast is still generally smaller than control run. This means the impact of HREnKF still 

exists in forecast after 90-min model integration. Different from CASE1_EXP1, the accuracy of 

analysis in observation space in CASE1_EXP2 does not guarantee a precise forecast. The scores 

for CASE1_EXP2 illustrate that at time 0130 UTC, just 30 min after the start of short-term 

forecast, it is already difficult to tell whether the forecast or the control run is better, especially 

when the error bars are taken into consideration. In other words, the impact of assimilating radial 

velocities in CASE1_EXP2 does not last as long as in CASE1_EXP1. 

Given the above results of short-term forecast, one can tell that the HREnKF has much 

more influence on the forecast in CASE1_EXP1 than in CASE1_EXP2. This can be explained 

by the role of REnKF which is to provide more precise mesoscale initial ensemble members for 

CASE1_EXP2. Because the entire system is a double step EnKF procedure, we expect to have a 

more precise analysis after REnKF assimilates conventional observations, which provide the 

initial ensemble members for the HREnKF. REnKF is expected to correct large-scale flows, and 

directly update more model variables other than only wind components. Consequently, the 

improved large-scale circulation, which strongly affects the prediction in this case study, 

removes many errors at the beginning of HREnKF in CASE1_EXP2. The evidence can be found 

in Fig. 4.6 as the control run at the initial time in EXP2 has much less errors than in EXP1. After 

HREnKF cycling process starts in CASE1_EXP2, errors are further corrected by radial velocity 

assimilation. However, most corrections happen at small-scales because large-scale errors are 

already reduced by the use of REnKF. Therefore when large-scale errors dominate the short-term 

forecast, the impact of HREnKF quickly diminishes in CASE1_EXP2 (Fig. 4.11). The effect of 

REnKF can be verified by comparing the blue curves of control runs in Figs. 4.10 and 4.11. For 

example, at 0130 UTC, the rms of control run in CASE1_EXP1 (Fig. 4.10b) is around 6 m s
-1

, 

while the control run in CASE1_EXP2 (Fig. 4.11b) has smaller rms values around 5 m s
-1

. Hence 

the relatively limited and short-lived impact of HREnKF on short-term forecast in CASE1_EXP2 

is more likely due to the accuracy of its control run, rather than a defect of HREnKF. 

The last results discuss the ensemble standard deviation of bias and rms in Figs. 4.10 and 

4.11. By comparing the red error bars in Fig. 4.10 and 4.11 at the same time period (e.g. 

comparing Figs. 4.10b and 4.11b), we find that the ensemble standard deviations of bias and rms 
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in CASE1_EXP2 are generally larger than those in CASE1_EXP1, which is consistent with the 

previous result of ensemble spread being larger in CASE1_EXP2. The ensemble standard 

deviation also changes with observation numbers. For example, at 0230 UTC in CASE1_EXP2 

(Fig. 4.11d), the ensemble standard deviation of bias on the 12
th
 elevation angle is much greater 

than those on lower elevation angles. This results from a poor sampling; i.e. having only 505 

observations at that elevation.  

 

Fig. 4.11  As in Fig. 4.10 but for experiment CASE1_EXP2. 

 

The difference between results of CASE1_EXP1 and CASE1_EXP2 suggests that 

applying REnKF before HREnKF has many benefits, such as providing the sufficient ensemble 
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spread, and correcting larger scale circulation. Accordingly, the following two case studies will 

follow only the experimental procedure of CASE1_EXP2. 

 

b. Results of the case on 12 June 2011 

This case study is named CASE2 hereafter. Note that CASE2 allows REnKF to provide 

the initial ensemble members, and ensemble boundary conditions for the 1-km model used in 

HREnKF. The ensemble spread and rms errors of analysis and background during the cycling 

process are shown in Fig. 4.12a, where no severe ensemble spread insufficiency appears. The 

observation-pass-ratios plotted in Fig. 4.12b prove that larger proportion of observations pass the 

background check as more cycles are involved, indicating that background fields tend to 

gradually converge to observations. 

 

Fig. 4.12  Results of cycling process for CASE2 on 12 June 2011. Each cycle takes five minutes. 

a) ensemble spread in observation space (Vr) (dashed line), background rms of Vr (12 upper 

points on the solid line) and analysis rms of Vr (12 lower points on the solid line) during the 

cycling process.  b) observation-pass-ratio. 

 

Fig. 4.13 shows the one-step increments (analysis minus forecast) of V-component of the 

wind and humidity in the third cycling step at 1615 UTC. As directly involved in the observation 

operator (Eq. 4.6), the V-component is partly observed by the radar, and thus can be directly 
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updated by assimilating radial velocities. The maximum change of the V-component can reach 

more than 2.1 m s
-1

 (Fig. 4.13a). On the other hand, the humidity field does not appear in the 

observation operator equation, and therefore requires cross-correlation between errors of 

humidity and observed variables (e.g. U, V components) to be updated (Snyder and Zhang 2003). 

The increment of humidity is up to 0.5 g Kg
-1

 at some locations in Fig. 4.13b (e.g. to the 

southwest of the radar), a value big enough to trigger convection under certain conditions 

(evidence of this in a parameterized convection context is given in Fillion and Bélair 2004).  

 

Fig. 4.13 The analysis increments (difference between ensemble mean background and ensemble 

mean analysis) of V-component of wind and specific humidity close to the surface (around 

800hPa), for the third cycle at 1615 UTC, for CASE2 on 12 June 2011. The black dots near the 

centers of figures denote radar location. 

 

In addition, although the unobserved variables can be updated by HREnKF, we still need 

to verify that the entire model state approaches the truth. Despite the truth being unknown, 

reflectivity observations provided by the same radar used in the assimilation system can 

reasonably be considered as a reference for examining the impact of radial velocity assimilation 

on precipitation. As an example, shown in Fig. 4.14 are snapshots of reflectivity fields of the 8
th

 

analysis member and the control run together with the reflectivity observations at 1700 UTC 

when all cycles are completed. We choose to show single ensemble members instead of 

ensemble mean because the ensemble mean could smooth the field and wipe out small-scale 

information. Figure 4.14d shows at each pixel, the percentage of ensemble members producing 
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precipitation stronger than 30 dBZ with respect to the total 80 ensemble members. For example, 

20% in Fig. 4.14d indicates 16 out of 80 members produce precipitation stronger than 30 dBZ. In 

general, given reflectivity observations as reference, Figs. 4.14c and 4.14d exhibit relatively 

more accurate storm locations near the center („west-east distance‟ between 150 km and 200 km, 

and „south-north distance‟ between 100 km and 150 km) and in the north of the domain („south-

north distance‟ greater than 150 km), compared to the control run (Fig. 4.14b). It infers that the 

HREnKF is able to correct the storm location error to some extent. However, some precipitation 

in the southeastern area is observed by the radar, but is missed by both the analysis members and 

the control run. Additionally, some spurious storms, around which radial velocity observations 

are unavailable, are difficult to be eliminated. Assimilating reflectivity data, especially the non-

precipitation observations will be helpful for removing false alarms in a future development of 

our HREnKF system. 

To have a deeper view, the Convective Available Potential Energy (CAPE) fields for the 

control run and the 8
th
 member of ensemble analysis are investigated (Fig. 4.15). The CAPE 

values are calculated based on the model levels within the lowest 50hPa. CAPE describes the 

convective instability present in model and we stress that its computation involves unobserved 

variables. Near the center of the domain and to the east of the radar („west-east distance‟ around 

220 km, and „south-north distance‟ around 150 km), the CAPE values in #8 analysis are much 

greater than in the control run, which demonstrates that the assimilation of radial velocity greatly 

increases the instability. In the west of domain, the CAPE values for #8 analysis are smaller than 

the control run. Although no data are available in this region (see Fig. 4.14a), the CAPE are 

probably reduced by the perturbations or by assimilating the nearby observations which 

gradually modify the environment through the twelve assimilation cycles. In the southeast part of 

the domain, both analysis and control run give small CAPE values, even though plenty of 

observations are available over that region. One plausible reason explaining this fact is that the 

cross-correlation between wind components and other variables is too weak, and the background 

is too far from the reality. 
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Fig. 4.14  Reflectivity fields of observations, control run and final analysis at 1700 UTC, 12 June 

2011. a) reflectivity observations at the 4
th
 elevation angle (0.9 degree). b) reflectivity output of 

the control run, interpolated to the 4
th

 elevation angle. c) reflectivity output of the 8
th
 analysis 

member, interpolated to the 4
th
 elevation angle. d) the percentage of analysis members producing 

reflectivity higher than 30dBZ, out of the total analysis members, at the 4
th
 elevation angle. The 

black dots near the centers of figures denote radar location. 
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Fig. 4.15  CASE2 CAPE field near the surface (lowest 50hPa) at 1700 UTC for: (a) the control, 

(b) the 8
th
 analysis member. The black dots near the centers of figures denote radar location.  

 

Lastly, the effect of HREnKF on analysis and short-term forecast is shown by scores of 

radial wind bias and rms in Fig. 4.16. At 1700 UTC, the values of rms for analyses are generally 

much smaller than those for the control run (right panel of Fig. 4.16a), and such patterns last 

until 1830 UTC for 90 min (right panels of Figs. 4.16b, 4.16c, and 4.16d) during short-term 

forecasts. These forecast results are consistent with many other studies about EnKF systems 

working with simulated radar data (Tong and Xue 2005) and real radar data (Aksoy et al. 2009, 

2010; Dowell 2011). Although the REnKF is applied on both CASE2 and CASE1_EXP2, the 

superiority of short-term forecasts over the control run is more evident in CASE2 than in 

CASE1_EXP2 (Fig. 4.11). As opposed to the squall line precipitation structure in CASE1_EXP2, 

convections in CASE2 are localized at small scale, and are less influenced by large-scale flow. 

Consequently, most of the correction made on small scale errors is done by HREnKF itself rather 

than from the REnKF.  In brief, HREnKF plays a more important role in CASE2 than in 

CASE1_EXP2 due to the precipitation happening at small scales in CASE2.  
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Fig.  4.16 As in Fig. 4.10 but for experiment CASE2 on 12 June 2011. 

 

c. Results of the case on 23 June 2011 

This case study is referred to as CASE3 in the following discussion. The analysis 

performance indicators for CASE3 shown in Fig. 4.17 exhibit large ensemble spread and 

increasing observation-pass-ratio, which are similar to the previous two cases, except for the 

growing ensemble spread during the cycling process (Fig. 4.17a). In fact, while the ensemble 

spread slightly increases, so does the observation-pass-ratio. It is difficult to determine whether 

the rise of observation-pass-ratio is caused by the convergence between background and 

observations as discussed in subsection 4.4a, or by the slightly growing ensemble spread that 
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gradually allows larger portion of observations to pass the background check. We noted however 

that for CASE1_EXP2, the ensemble spread decreases when observation-pass-ratio increases 

(Figs. 4.9c and 4.9d), which suggests that the better agreement between background and 

observations is the only reason for the rising of observation-pass-ratio. Therefore, CASE1_EXP2 

is more convincing than CASE3 in terms of convergence of model states to observations. On the 

other hand, although the ensemble spread rises slightly here, the analysis rms shows a tendency 

of decrease in CASE3 (Fig. 4.17a), implying that the ensemble mean analysis contains smaller 

errors with respect to observations as more cycles are conducted. 

 

Fig. 4.17 As in Fig. 4.12 but for experiment CASE3 on 23 June 2011. 

 

The verification scores of bias in Fig. 4.18a show that at time 2200 UTC, the 

improvement of analysis over the control run is insignificant. The control run is even better in 

terms of bias, probably because it happens to be very accurate at that time. After the forecast 

starts, however, the control run scores begins to deviate from the zero line at the lowest eight 

elevation angles, while the bias values of ensemble forecast remain smaller (Fig. 4.18b). This 

situation holds until 2330 UTC. This tells that even though the impact of HREnKF on analysis is 

not clear in observation space, the forecast is still under its influence because the entire model 

state is improved and able to produce more accurate prediction. 
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Fig. 4.18  As in Fig. 4.10 but for experiment CASE3 on June 23, 2011. 

 

The verification scores of rms in Fig. 4.18 indicate that the analyses are better than 

control run below elevation angle #11 at 2200 UTC. Similarly, the superiority of forecasts can be 

seen below angle #7 at 2230 UTC, and is also evident below angle #5 at 2300 UTC. At 2330 

UTC, the end of ensemble forecast, the impact of HREnKF on forecast vanishes. Therefore, for 

this stratiform precipitation case, the improvement on forecasts lasts longer at lower elevation 

angles than at higher elevation angles. 
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4.5  Summary and discussion 

This study introduces a High Resolution Ensemble Kalman Filter (HREnKF) system 

designed in particular for convective-scale radar data assimilation. The key features of HREnKF 

include: a set of 80 ensemble members divided into four subgroups; three-dimensional error 

correlation localization; sequential assimilation; background check of observations. The 

observations assimilated by the HREnKF in current experiments are radial velocities from 

McGill Radar Observatory and covering the Montréal region. Radial velocity observations are 

incorporated by HREnKF every 5 min cycle for twelve cycles during the 1-h assimilation 

process, by the end of which, final analyses are produced and a 1.5-h 80-member ensemble 

forecast is launched.  

Three summer cases in 2011 are studied including the first case with squall line 

precipitation structure on 29
 
June 2011; the second one with isolated strong small-scale storms 

on 12
 
June 2011; and the third case of widely distributed stratiform on 23 June 2011. Studies of 

all three cases involve the Canadian Regional EnKF (REnKF) for generating the initial ensemble 

members and ensemble lateral boundary conditions for HREnKF. In addition, another 

experiment is done for the first case study, where a deterministic forecast provides initial guess 

and fixed lateral boundary conditions for the experiment. 

The indicators of ensemble spread, analysis rms and background rms exhibited sufficient 

ensemble spread during the cycling process in all three cases, as long as REnKF are implemented 

to provide ensemble initial and lateral boundary conditions. In contrast, if a deterministic 

forecast is used as initial guess for HREnKF and if lateral boundary conditions are the same for 

all ensemble members (as in the first experiment of the first case), this results in insufficient 

ensemble spread and underestimation of forecast uncertainty. 

We also systematically measured the difference between background and observations by 

the observation-pass-ratio defined as the ratio of the number of observations passing the 

background check to the total observation number. As the cycling procedure proceeds, the 

portion of observations kept by the background check gradually increases for all three cases. 

Given that the ensemble spread reduces (the first case) or not significantly increases (the second 
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and the third cases), one can conclude that the model state in HREnKF gradually converges to 

the observations during the cycling process. 

Besides the observed wind components, unobserved variables are also updated by the 

HREnKF through the error cross-correlation between observed and unobserved variables. For 

example, the results of the second case study showed notable increment of the humidity field in 

one cycle although humidity is not observed by the radar. Moreover, images of reflectivity and 

CAPE for the second case show that the model convective instability in a manner is consistent 

with radar observations. In the areas devoid of observations, although the spurious storms are 

different to be directed removed, the surrounding data are able to modify the environment to 

some extent. 

After the cycling process completes, the analysis and the short-term forecast are still 

under the influence of radial velocity assimilation. The first case showed that for the weather 

system controlled by large-scale flows, error corrections by the REnKF has more effect than 

HREnKF. The second case demonstrated that when localized convection happens, the HREnKF 

accounts for most of the corrections and is able to improve the location of the storms in the 

resulting analyses. In addition, the ensemble forecast is much better than the control run with 

respect to radial velocity observations, and lasts up to 90 min after forecast initiation. The third 

case showed that for this wide spread and stationary stratiform case, the improvement lasts 

longer at lower elevation angles than at higher elevation angles. 

Some limitations exist in our current experiments. Firstly, although HREnKF improves 

short-term forecasts, the improvement unfortunately does not survive for more than 90 min. This 

can be explained by the growing errors of ensemble forecasts due to the use of an imperfect 

model and the invasion of inaccurate lateral boundary conditions. Secondly, observations of 

radial velocity only provide information of one wind component, and therefore have difficulty in 

efficiently improving 3-D wind field and unobserved variables. The update of unobserved fields 

relies on the cross-correlation between errors of observed and unobserved variables, which could 

occasionally be too weak to accomplish all necessary corrections. For example, results of the 

second case show that the assimilation of radial velocity in the southeast of the domain is unable 

to generate CAPE values large enough to trigger convections. Thirdly, the homogenous model 

error applied at every cycle and the fixed localization algorithm are not most favorable for the 
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HREnKF. In fact, model error is not homogenous but difficult to estimate. The localization 

algorithm should be made consistent with the spatial correlation distance of background errors, 

which is shorter in precipitation area and longer otherwise. 

For a consistent incremental development of our HREnKF analysis system, we 

deliberately limited our study to the assimilation of radial velocity data. As a further step towards 

full exploitation of available radar observations, reflectivity data will be considered in addition to 

radial velocities in the near future. Actually, including reflectivity data will probably contribute 

much more to the analysis and forecast in terms of correction of storm location and intensity, 

since it directly relates to the microphysical variables. Hence the next step of HREnKF 

implementation is to assimilate in addition reflectivity observations and examine its impacts. 
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Chapter 5 

Adaptive Radar Observation for  

Better Ensemble-Based Data Analysis 

 

The previous chapter shows that although Ensemble Kalman Filter can improve the short-

term forecast, the improvement cannot last for more than 2 hours. In order to enhance this 

improvement, this chapter will propose an adaptive radar observation method to improve the 

unobserved vertical velocity by assimilating only radial velocity in to a high resolution model.  

This idealized adaptive radar observation method works under the condition that the phased-

array technique or fast scanning mechanical radar is available for adaptive data collection. 

 This chapter is based on the following article. 

Chang, W. and I. Zawadzki, 2014: Adaptive Radar Observation for Better Ensemble-based Data 

Analysis. Monthly Weather Review. Submitted. 
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Chapter 5 

Adaptive Radar Observation for  

Better Ensemble-Based Data Analysis 

 

 

Abstract 

An analysis produced from mesoscale radar data assimilation usually has a short-lived 

improvement on numerical forecast (maximum 2~3 hours) because assimilating only the radar 

data of reflectivity and radial velocity leads to difficulty in correcting other important and 

unobserved model variables. The degree to which unobserved variables can be improved 

depends on background error statistics, including the cross-covariance between errors of 

observed and unobserved variables, which varies in space. The method of adaptive radar 

observation is introduced for modern radar employing phased-array technique to focus on the 

areas where the greatest potential improvement is possible for the important unobserved 

variables. 

In this study, radial velocity and vertical motion are considered to be the observed and 

unobserved state variables respectively. The adaptive observation strategy is decided according 

to background error statistics calculated from ensemble forecasts. Observations simulated under 

different strategies are assimilated by Ensemble Kalman Filter. 

Results from data assimilation show that the unobserved variable can be better improved 

when the background error variance of the observed variable and the background error cross-

covariance between the observed and unobserved variables are larger. Spreading observations 

over the assimilation time window can also increase chances of correcting the unobserved 

variable. However, the improvement in the unobserved variable is minor, if the ensemble mean 

differs from the true atmosphere state.  
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5.1  Introduction 

The improvement brought by radar data assimilation to mesoscale numerical forecast is 

always short-lived (less than 2~3 hours, Aksoy et al. 2009, 2010; Chang et al. 2014; Surcel et al. 

2014).  One plausible explanation for this is that some influential model state variables in the 

initial condition are still inaccurate even after data analysis. It is challenging to correct those 

variables by assimilating radar observations alone as only reflectivity and radial velocity 

observations are available in radar data. Nevertheless, many unobserved state variables are 

crucial for numerical prediction. For example, a successful precipitation forecast requires 

supporting vertical velocity in model initial condition. However, only a small component of 

vertical velocity is contained in the observed radar radial velocity.  In order to reconstruct such a 

model field by data assimilation, significant and reliable flow-dependant cross-covariances 

between errors of observed and unobserved variables in the background are needed (Snyder and 

Zhang 2003). For this reason, ensemble-based data assimilation systems (e.g. Ensemble Kalman 

Filter and Ensemble-Variational method), using ensemble members to estimate background error 

statistics, are appropriate for radar data assimilation. However, those ensemble-based systems 

cannot improve the unobserved variables everywhere. For instance, in the areas where error 

cross-covariances are weak, there is low chance of updating unobserved variables. Since 

traditional mechanical radar scans the atmosphere without spatial preference, data from it do not 

guarantee to be placed at the locations where the unobserved variables can be greatly influenced. 

Consequently, under such circumstance, it is difficult to improve the numerical forecasts. 

In contrast to traditional radar, modern radar employing phased-array technique is able to 

sample the atmosphere adaptively in space and time as required by the user, since the radar beam 

can be electronically steered by adjusting the phases of an array of antennas. Many studies and 

research projects were performed to demonstrate the benefits brought by phased-array radar data 

to weather forecast, such as higher temporal resolution (Lu and Xu. 2009, Yussouf and Stensrud 

2010) and adaptive scanning (Heinselman et al. 2011). Adaptive radar scanning directs radar to 

target on the user-defined areas of interest, which increases the observation accuracy and 

temporal resolution without losing useful information in the important regions. From the 

perspective of radar data assimilation, this adaptive scanning can be used to focus on the areas 
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„rich‟ in background error cross-covariances in order to increase the chance of improving 

unobserved model variables. 

The presented study introduces an idealized adaptive radar observation method, which 

takes advantage of hypothetical fast scanning radar to adaptively collect observations in space 

and time according to the background error statistics calculated from a set of ensemble model 

simulations. The purpose of this adaptive observation is to efficiently correct unobserved fields 

in the analysis step of data assimilation, ideally so as to improve the precipitation forecast 

accordingly. In the following experiments, simulated radial velocity is the only observation, and 

is assimilated by Ensemble Kalman Filter (EnKF) to correct the vertical velocity in the model. 

Background error cross-covariances, as well as other error statistics, provide the criterion for 

deciding adaptive observation strategies. Several observation strategies are proposed and 

compared in terms of their impact on the analysis uncertainty of unobserved vertical velocity. 

The remainder of the article is organized as follows. In the next section, the experiment 

numerical setup is presented, including model configuration, observation simulation and data 

assimilation scheme. Section 5.3 provides the theoretical explanation of how an unobserved 

variable is corrected via observation by data assimilation during the analysis step. Section 5.4 

introduces and compares different radar observation strategies. In Section 5.5, the simulated truth 

is used to evaluate different observation methods. In addition, this section discusses the problem 

of data assimilation caused by the difference between ensemble-mean and the truth. Finally, this 

article closes with a summary and some discussions in the last section. 

 

5.2  Experiment setup 

The experiment conduced in this study consists of ensemble numerical forecasts, adaptive 

observation strategy, data assimilation and verification. As shown in Fig. 5.1, the Global 

Environmental Multiscale Limited Area Model (GEM-LAM) is applied to yield 80 members of 

ensemble forecast. The first member is considered to be the true atmosphere state (henceforth to 

be referred as „truth‟), while the other 79 ensemble members compose the background for data 

assimilation.  Error statistics estimated from background ensemble members are used to decide 

the adaptive observation strategy, according to which the simulated radial velocity observations 
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are generated from the truth. Finally, observations and the background are combined statistically 

by the EnKF analysis scheme.  Although vertical velocity is not completely observed, it can be 

updated through the background error cross-covariance matrix by EnKF. After data assimilation, 

the impacts of different observation strategies on data assimilation are evaluated by analysis 

uncertainties estimation. 

 

Fig. 5.1  Flowchart for the experiment of adaptive radar observation. 

 

a. Model configuration and ensemble forecasts 

Ensemble forecasts in this study are produced by a fully compressible GEM-LAM 

covering the Montréal region with 1-km horizontal grid spacing and 300 km by 300 km 

extension.  As shown in Fig. 5.2, a global-driven three-level nested domain is configured to 

finally drive the 1-km model.  The operational global EnKF system at the Canadian 

Meteorological Center provides initial and lateral boundary conditions for the ensemble limited-

area simulations in domain A with horizontal grid spacing of 15-km. Conventional data 

assimilation is performed on LAM-15km by EnKF method every 6 h for two cycles. A second 

nested LAM (domain B) located around southern Québec is then driven by the parental LAM-

15km and runs at 2.5-km horizontal grid spacing so as to produce 80 members of ensemble 

forecast.  The LAM at 1-km horizontal grid spacing (domain C) is launched 6 hours later than 
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the initiation of LAM-2.5km forecasts, with integration time step of 30 s.  The 80 ensemble 1-km 

LAM simulations are then integrated for 30 minutes until the observation strategy is decided.  

Radar data assimilation is then performed on the 1-km LAM. The 80 ensemble members, 

originating from operational global EnKF system, ensure large ensemble spread, and therefore 

provide reasonable background error statistics for adaptive observation and data assimilation. 

 

Fig. 5.2   The 1-km grid spacing GEM-LAM covering the Montréal region and its 

parental models. A: LAM 15-km grid spacing; B: LAM 2.5-km grid spacing; C: LAM 1-

km grid spacing. 

 

The limited-area simulations are fully non-hydrostatic with 58 hybrid vertical levels and a 

lid at 10 hPa.  The “Interaction between Surface, Biosphere and Atmosphere” (ISBA; see 

Noilhan and Planton 1989) land surface scheme is applied.  The Kain-Fritsch moist convective 

parameterization scheme (Kain and Fritsch 1990) is employed in LAM-15km; however no 

convective parameterization is used in either LAM-2.5km or LAM-1km. The double-moment 

version of the Milbrandt and Yau (2005) microphysics scheme is used for the grid-scale 

processes. In ensemble forecasts, physical schemes are the same for different members. Detailed 

descriptions of the dynamics and physics formulations can be found in Côté et al. (1998) and 

Mailhot et al. (1998), respectively. 

The same model configuration described above was also used for assimilation of real 

radar data (Chang et al. 2014). 
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b. The truth and simulated observations 

The first of the 80 ensemble forecasts is used as the truth. The truth fields include the 

model outputs of three wind components, temperature, humidity, rain mixing ratio and 

reflectivity. Although model does not directly produce radar radial velocity, it can be easily 

calculated from wind components by: 

 )sin()cos()cos()cos()sin(  WVUVr   (5.1) 

where U, V and  W are three wind components;   and   are azimuth and elevation angles 

respectively, which are related to the radar location depicted in Fig. 5.3. In this study, radial 

velocity Vr is also considered to be the model state variable. The reflectivity, radial velocity and 

vertical velocity fields on the model level around 800hPa are shown in Fig. 5.3, from which one 

can tell that strong precipitation is usually associated with noisy vertical velocity and radial 

velocity.  

Given the truth, Vr observations are here generated by simply adding Gaussian 

distributed random noise onto the true Vr field (Fig. 5.3a). The observation errors are 

independent in space and have a standard deviation of 12  smo . The simulated radial 

velocity observations are shown in Fig. 5.3d. In contrast the truth, Vr observations are not 

available in the entire model domain as they can only be sampled by radar where precipitation 

exists.  Thus simulated Vr observations have the same spatial coverage as the true reflectivity 

field (Fig. 5.3c).  

In Fig. 5.3d, the simulated radar observations in this study are located on model grids, 

and differ from the real radar data distributed in radar geometry.  Although this setup is not 

realistic, it is convenient for computing and analyzing the background error statistics on model 

grids.  Adaptive radar observation methods proposed in section 5.4 will use the grid-wise error 

statistics to select a number of observations from Fig. 5.3d.  

 

 



108 
 

  

  

Fig. 5.3  The radial velocity (a), vertical velocity (b) and reflectivity (c) fields of the truth, and 

simulated radial velocity observations (d). The radar locations are denoted by black dots. 

 

c. EnKF data assimilation scheme 

An EnKF data analysis system is used to assimilate the simulated observations selected 

by the adaptive observation strategy.  Similar to the equations presented in Evensen (1994), the 

basic EnKF algorithm is described as: 

 
1)(  RHHPHPK

TfTf

 (5.2) 

 
)( f

jj

f

j

a

j HXOKXX 
 

(5.3) 

where subscript j represents the ensemble member index; K is the Kalman gain; superscripts a 

and f represent analysis and background (i.e. forecast) respectively; X is the model state vector; 
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jO represents perturbed observation vector (Whitaker and Hamill, 2002); H stands for the 

observation operator; R is the observation error covariance matrix; 
f

P is the background error 

covariance matrix.  The error covariance matrices for both analysis and forecast can be estimated 

from the ensemble members by: 
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where P can be error covariance matrices for analysis ( f
P ) or forecast ( a

P ); 
jX  is the ensemble 

member of analysis or forecast; X  is the ensemble mean.  

In addition to this basic analysis scheme, two-dimensional localization works on top of 

the calculation of background error covariance matrices in Eq. (5.4) in order to reduce noise in 

cross-covariances (Houtekamer and Mitchell 2001).  The localization algorithm follows Eq. 

(4.10) in Gaspari and Cohn (1999), where 10-km is used as the scale parameter.  Accordingly, 

the cut-off distance is twice as large as the above scale parameters. 

In order to simplify the experiment, only radial velocity Vr and vertical velocity W on one 

model level around 800hPa are updated in analysis, the former of which can be directly observed 

by radar.  Although the latter partially contributes to radial velocity, its contribution is small 

especially at low elevation angles (Eq. 5.1). Therefore in the following discussions, while radial 

velocity Vr is the „observed‟ variable, vertical velocity W is called the „unobserved‟ variable. 

 

5.3  Theoretical influence of observation on unobserved variable 

Snyder and Zhang (2003) stressed the importance of background error covariances for 

reconstructing the unobserved fields. In this section, the update of unobserved variable through 

background error covariances is examined in a theoretical and much simpler manner. 

Suppose that the model state vector contains two elements 
TWVr ][X . Since only the 

first variable is observable, the observation operator can be written as ]01[H . The 

observation and background error covariance matrices are then expressed as 2

OR  and 
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P  respectively, where 

O  is observation error standard deviation; 

Vr  and 
W  are background error standard deviations of radial velocity and vertical wind in the 

background; ),( WVrCov  represents the background error cross-covariance between Vr and W. 

After substituting the above matrices into (5.2) and (5.3), the increments (defined as analysis - 

forecast) of Vr and W for each ensemble member are 
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where )(VrInnov j
 is the innovation of Vr, which is defined as observation minus background of 

Vr for the jth ensemble member.  Note that the unobserved W is updated by innovation of Vr.  

Theoretically, the update of W leads to the reduction of analysis error variance of W, as 

compared to its background error variance.  Under the assumption of linear observation operator 

and approximation between ensemble mean and the truth, analysis error covariance matrix is 

computed by 
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where 
a

P  indicates analysis error covariance matrix; other notations are the same as before. 

From Eq. (5.7), the difference between analysis and background error covariance matrix is 

written as 
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Consequently, the estimated reduction of error variance of W can be expressed as: 
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where ),( WVr  is the cross-correlation between two variables.  Equation (5.9) suggests that in 

order to appreciably reduce the error variance of unobserved W, 
OVr  /  and ),(22 WVrW have 

to be sufficiently large.  This is reasonable, as a large 
OVr  /  value indicates that observation is 

more reliable than the background, and therefore ensures the significant influence of 

observations on the observed variable.  The large value of ),(22 WVrW  can in turn efficiently 

transfer information from the observed variable Vr to unobserved variable W because their errors 

are much cross-correlated. 

In Eq. (5.9), since observation error standard deviation 
O  is usually a constant (2 m s

-1
 

in this study), the effect of assimilating Vr observation on the state variable W depends only on 

the flow-dependant background error statistics including 
Vr ,

W  and ),( WVr , which can be 

estimated from ensemble members. Such a property allows observation strategy to be decided 

according to ensemble forecasts, and before observations are collected. 

Note that (5.9) provides only a rough estimation because it neglects spatial correlation 

and cross-covariances among other variables.  Moreover, (5.9) estimates the error variance 

reduction under the same assumptions as in EnKF, such as the ensemble mean being equal or 

close to the truth. 

 

5.4  Adaptive observation strategies 

This section proposes the methods of adaptive radar observation that increases the 

possibility of correct the unobserved vertical velocity through radar data assimilation.  When 

only radial velocity Vr is observed and assimilated, (5.9) proves that the reduction of vertical 

velocity error standard deviation ( 2

W ) is determined by background error cross-covariance 

between Vr and W, as well as the background error variance of Vr.  In the following subsections, 

background error statistics will be exhibited first, followed by four experiments about 

observation strategies and data assimilation.  The uncertainty reduction of the unobserved W 

field is then computed for evaluating the effectiveness of adaptive radar observation. 
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As stated in the subsection 5.2b, simulated observations are placed on model grids for all 

the following experiments.  This is not realistic because radar samples the atmosphere along the 

path of the beam; the user of phased-array radar can only specify the pointing direction of radar 

beam, instead of the desired model grid. Nevertheless, our experiment setup is helpful for 

analyzing the background error statistics. 

 

a. background error statistics 

Given 79 ensemble background members, statistical properties including ensemble mean, 

standard deviation and cross-correlation of errors can be calculated for each model grid, as 

shown in Fig. 5.4.  One must note that the error statistics are computed with respect to the 

ensemble mean (5.4), which is consistent with most ensemble-based real data assimilation 

systems where the truth is unknown.  The error statistics with respect to the truth will be 

discussed in the next section. Figures 5.4a, 5.4b and 5.4c exhibit great spatial variation. 

According to the discussions in section 5.3, if observation is placed where 
Vr  is large, Vr at that 

location is largely corrected. On the other hand, significant improvement of W is possible only at 

the grids where background error standard deviations 
Vr , 

W  and error cross-correlation 

),( WVr  are large. Note that ),( WVr  is close to zero at many grid points (Fig. 5.4c), which 

inhibits the correction of unobserved W.  Adaptive observation in this study is supposed to avoid 

those areas and target the locations where W can be corrected more efficiently. 

In addition, Fig. 5.4d provides the ensemble mean of rain mixing ratio, from which one 

can tell that the precipitation area is correlated with large 
Vr  and 

W  values in space.  In 

addition, the location difference between the ensemble mean precipitation (Fig. 5.4d) and the 

truth (Fig. 5.3c) is usually considered as background phase error.  Such an error is common for 

real radar data assimilation.  However, phase error may affect the adaptive observation because 

some of the areas where W has a greater chance to be improved, which could be the same areas 

of strong precipitations in background, may not be observable. 
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Fig. 5.4   Background error statistics. a) Standard deviation of Vr error. b) Standard deviation of 

W error. c) Cross-correlation between errors of Vr and W. d) Ensemble mean of rain mixing 

ratio. 

 

b. Uniformly distributed observations 

Let us first apply traditional uniformly distributed observations in order to provide a 

reference for the evaluation of adaptive observations in the next subsection.  Two types of 

uniformly distributed observations are simulated in this section.  The first spreads observations in 

the entire 2-D model domain, so as to mimic the observation strategy of traditional mechanical 

radar which scans the entire atmosphere regardless precipitation coverage.  The second places 

the same number of observations only in precipitation regions, which simulates the „focused scan‟ 

performed by phased-array radar (Heinselman et al. 2011).  However, neither of these methods 
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uses background error statistics to choose observation locations for improvement of the 

unobservable variable. 

In the first experiment, 900 „potential‟ observations are uniformly distributed in the 300 

km by 300 km 2-D domain (observations are located every 10 km), as shown in Fig. 5.5. They 

are called „potential‟ observations because many of them, although placed in the domain, cannot 

be observed by radar if they are not covered by detectable precipitation. Under precipitation 

coverage, 325 Vr observations can be assimilated by the EnKF data analysis system described in 

subsection 5.2c.  

  

Fig. 5.5   Locations of uniformly distributed observations. a) 900 observations distributed in the 

entire domain. b) 900 observations distributed only in the precipitation region. 

 

Given the ensemble analysis produced by data assimilation, analysis error standard 

deviations are calculated with respect to the ensemble mean.  The reductions of error standard 

deviations in percentage (defined as „background error standard deviation – analysis error 

standard deviation‟ divided by „background error standard deviation‟) are shown in Figs. 5.6a 

and 5.6b for Vr and W respectively.  Significant Vr error reduction is usually associated with a 

large 
Vr  value in background. In other words, the observed variable is corrected more when its 

uncertainty in background error is larger.  The reduction of W error standard deviation is quite 

small (5%-10% in Fig. 5.6b), as compared to the Vr error reduction (40%-50% in Fig. 5.6a). 

Updating the unobserved variable is more challenging partly due to the weak error cross-

correlation (Fig. 5.4c). 
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Fig. 5.6   Reduction of error standard deviation for Vr (a) and W (b) in percentage, when 900 

observations are uniformly distributed in the entire two-dimensional model domain. 

 

In the second experiment, 900 observations are uniformly placed every 6 km, but only in 

precipitation regions as shown in Fig. 5.5b.  After data assimilation, the reduction of error 

standard deviation is shown in Fig. 5.7.  The error reduction for Vr is around 60% almost 

everywhere within and around observation area (Fig. 5.7a). Moreover, the error reduction for W 

can reach 15%-20% in many areas. The differences between Figs. 5.7 and 5.6 indicate that the 

second experiment is superior in term of reducing Vr and W uncertainties. 

  

Fig. 5.7   Reduction of error standard deviation for Vr (a) and W (b) in percentage, when 900 

observations are uniformly distributed in the precipitation region. 
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The difference between the results of the above two experiments is mainly caused by the 

different amount of assimilated observations.  Since the first experiment assimilates much less 

information than the second experiment does, the analysis uncertainty in the first one is much 

higher for both Vr and W. 

 

c. Adaptive radar observation based on background error statistics.  

Previous experiment results demonstrate the limited influence of assimilating Vr for 

correcting the unobserved model state variable W.  To amplify this influence, the experiment 

presented in this subsection applies an adaptive observation method which places more 

observations in the areas where uncertainties of W are more likely to be reduced while keeping 

the same total dwell time.  Given the background error statistics presented in Fig. 5.4, the 

reduction of W error variance (background error variance – analysis error variance for W) can be 

estimated by Eq. (5.9) on every model grid in a rough but fast manner before collecting and 

assimilating Vr observations.  The estimated 2

W  are shown in Fig. 5.8, where greater values 

indicate the greater potential for producing a more precise W analysis on the corresponding grid 

points.  The figure shows that many locations with large values cannot be observed by radar 

because they are not covered by precipitation, such as in the west area of the domain.  On the 

other hand, since the values in the northern part of the domain are close to zero, collecting 

observations there may have little contribution to the W correction, although those areas can be 

observed. 

The spatial variability of 2

W  implies the importance of selecting proper observation 

locations for the improvement of W.  Thus, the observation locations in this adaptive observation 

strategy are chosen according to the 2

W  value in Fig. 5.8 from high to low, until all 900 

observations are gathered.  The final observation locations decided by this process are displayed 

in Fig. 5.9a.  Compared to the uniformly distributed observations in Fig. 5.5b, the new 

observation strategy removes many observations in the north and the southeast corner of the 

domain, and adds more observations near the center and to the west of the domain. 
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Fig. 5.8  Reduction of W error variance estimated by Eq. (5.9).  Black contour indicates the true 

precipitation region. 

 

   

After assimilating these selected observations by EnKF, the error standard deviations are 

more significantly reduced for both Vr and W (Figs. 5.9b and 5.9c), compared to the previous 

experiment (Figs. 5.7a and 5.7b). The reduction of W uncertainty is higher than 20% in many 

regions. Fig. 5.9d shows the difference between the analysis error standard deviations of W for 

the current experiment and the previous experiment where observations are uniformly distributed 

in precipitation areas (i.e. analysis error standard deviation for the previous experiment – 

analysis error standard deviation for the current experiment).  Although many observations are 

removed from the north and the southeast corner of the domain, the values shown in Fig. 5.9d in 

these regions are not very negative.  This suggests that the removal of observations in those 

regions has little impact on W analysis.  In fact, W in those regions can hardly be updated no 

matter how many observations are placed there because the background error statistics cannot 

efficiently transfer observation information to the unobserved variable.  On the other hand, 

placing more observations near the center, to the west and south of the domain helps to better 

improve the W field (e.g. the dark red colors in Fig. 5.9d). 
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Fig. 5.9  a) Observation locations for the adaptive radar observation strategy. Black contour 

indicates the true precipitation region.  Dark red points indicate the selected observation 

locations. b) Reduction of error standard deviation for Vr in percentage.  c) Reduction of error 

standard deviation for W in percentage.  d) Difference between analysis error standard deviations 

of W for the uniform observation strategy and the adaptive observation strategy. 

 

d. Observations adaptively distributed in space and time 

Radar employed phased-array technique can sample the atmosphere adaptively in both 

space and time.  For example, radar can focus on some section in the first minute and then 

immediately steer the beam towards another direction in the next minute.  Therefore, in addition 

to adaptively placing observations in space as described in the previous subsection, observations 

can also be spread adaptively over time.  
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In fact, assimilating Vr observations collected at different times is probably more 

beneficial for improving W if the time-lagged background error cross-correlation is more 

significant.  Time-lagged background error cross-correlation is the correlation between errors of 

two variables produced at two different time steps.  This experiment seeks to improve W at time 

T (analysis time), by assimilating Vr observations collected at T and 5 minutes before T (denoted 

as T-5).  

The adaptive observation method considering both space and time is also practical in 

reality.  For example, at time T-5, one can have ensemble forecasts for both T-5 and T. Both the 

time-lagged error statistics, and the same-time error statistics can be calculated and used for 

deciding temporal observation distribution for T-5 and T.  According to the adaptive observation 

strategy decided at T-5, data can be collected at T-5 and T.  After data assimilation, analysis is 

produced at T. 

In addition, it is common for an ensemble-based system to assimilate observations 

produced at times differing from the analysis time.  For example, the assimilation window in the 

operational global EnKF at the Canadian Meteorological Center is 6 hours (+/- 3 hours with 

respect to the analysis time), within which all data are assimilated to produce analysis at the 

central time (Houtekamer et al. 2005).  The configuration of the assimilation window is also 

available in the Data Assimilation Research Testbed (Anderson et al. 2009) and the ensemble-

based variational system (Mark Buehner et al. 2012). 

Given Vr observations available at time T-5, their potential influence on improving W at 

T needs to be estimated.  Similar to (5.9), the error variance reduction for W at T can be written 

as 
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(5.10) 

where TW  is the background vertical velocity at T; 5TVr  denotes the background radial velocity  

at T-5. Equation (5.10) shows that the estimated error variance reduction depends on the 

background error variance of Vr at T-5, as well as the time-lagged background error cross-

covariance between Vr at T-5 and W at T. Figures 5.10a and 5.10b show 5, TVr and ),( 5 TT WVr 
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respectively.  Comparison between Figs. 5.10a and 5.4a implies that the general Vr error 

structures do not change much after 5 min‟s model integration. However, small differences can 

still be identified.  The time-lagged cross-correlation ),( 5 TT WVr  , although is quite week in 

most areas (Fig. 5.10b), has spatial patterns slightly different from ),( TT WVr  in Fig. 5.4c.  

These minor differences may increase the chance of better improving W by putting some Vr 

observations at times T-5. 

  

Fig. 5.10   a) Background error standard deviation of Vr at time T. b) Time-lagged error cross-

correlation between Vr at T-5 and W at T. 

 

Given these time-lagged error statistics, 
2

5,  TW  is calculated from Eq. (5.10) and is 

plotted in Fig. 5.11a.  The observation locations are selected according to 
2

5,  TW  values (Fig. 

5.11a) and 2

W  values at each grid point (Fig. 5.8) from high to low, until 900 observations are 

gathered. When the locations of observations are selected because of the greater values of 

2

5,  TW , those observations should be collected at time T-5.  Other observations should be 

collected at the analysis time T.  This observation strategy is called here „time-space adaptive 

observation‟ in the following discussion, while the observation strategy in the previous 

subsection is called „space-only adaptive observation‟. 

The final observation locations selected by the time-space adaptive observation are 

shown in Fig. 5.11b.  Note that one observation location is not selected repeatedly at T-5 and at 

T in the current strategy.  Figure 5.11b indicates that collecting some Vr observations 5 minutes 
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before the analysis time can improve W more efficiently. Additionally, since the precipitation at 

T-5 and T covers slightly different areas due to its movement, assimilating observations 

generated at both times may impact larger areas. 

  

  

Fig. 5.11  a) Reduction of W error variance estimated by Eq. (5.10). b) Observation locations for 

the adaptive radar observation considering both time T-5 and time T. Black and blue contours 

indicate the true precipitation region at time T and T-5 respectively. Dark red points and orange 

points indicate the observation location at time T and T-5 respectively. c) Reduction of error 

standard deviation for W resulted from time-space adaptive observation in percentage.  d) 

Difference between analysis error standard deviations of W for the space-only adaptive 

observation strategy and the time-space adaptive observation strategy. 

 

After assimilating the observations adaptively collected in space and time, the error 

standard deviation of W is reduced, as shown in Fig. 5.11c. The difference between analysis error 

standard deviations of W for the experiments of time-space adaptive observation and space-only 
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adaptive observation (i.e. analysis error standard deviation for the space-only adaptive 

observation – analysis error standard deviation for the time-space adaptive observation) is 

demonstrated in Fig. 5.11d. The proposed time-space adaptive observation strategy reduces more 

W uncertainties than the previous space-only adaptive observation strategy, especially around the 

location of (x=170, y=30~50) where many observations are collected at T-5 (Fig. 5.11b). More 

quantitative comparison of different observation strategies can be found in Fig. 5.14. 

 

5.5  Verification by ‘truth’ 

In the adaptive observation experiments presented above, error statistics calculated with 

respect to the ensemble mean are used to evaluate observation strategies.  This evaluation 

method may underestimate the errors of the ensemble members because it does not include the 

difference between the ensemble mean and the truth.  Consequently, the effect of adaptive 

observation could be misjudged.  Therefore, the truth is used in this subsection to estimate 

uncertainties in the ensemble members before and after data assimilation, and re-evaluate the 

benefit brought by adaptive radar observation. 

The differences between the background ensemble mean and the truth are shown in Figs. 

5.12a and 5.12b for Vr and W respectively. Since the truth and the background members are from 

the same ensemble, most values in Fig. 5.12 are smaller than or comparable to the „mean-based‟ 

error standard deviations (Figs. 5.4a and 5.4b), except for some areas to the south and the west of 

the domain. The fact that the spatial pattern in Fig. 5.12 is similar to the truth fields (Figs. 5.3a 

and 5.3b) implies that the ensemble mean is small, which is due to the average over largely 

spread members. Given the truth as reference, the error variance can be written as 

 
222 )()()( tmt xxxx 
 

(5.11) 

where x is a state variable representing Vr or W in this case; )(2 xt  is the error variance of x with 

respect to truth; )(2 xm  is the error variance of x with respect to ensemble mean; txx   is the 

error of the ensemble mean with respect to the truth.  Equation (5.11) suggests that the truth-

based variance can better describe the uncertainties in ensemble members since the error of 
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ensemble mean is considered.  Figures 5.12c and 5.12d show that the truth-based background 

error standard deviations are much greater than the mean-based background error standard 

deviations in Fig. 5.4a and 5.4b. 

  

  

Fig. 5.12   Background ensemble mean minus the truth for Vr (a) and W (b). Background error 

standard deviation of Vr (c) and W (d), with respected to the truth. 

 

Since error statistics with respect to the ensemble mean may underestimate the 

uncertainties, the evaluation results based on them in the previous section could be misleading. 

For example, the conclusion that adaptive observation is better than uniform observation in terms 

of error reduction of W (Figs. 5.9b, 5.9c and 5.9d) becomes less convincing when the ensemble 

mean differs from the truth.  

Given the knowledge of the true atmosphere state in this study, the error reduction is 

recalculated based on the truth-based error variances (Eq. 5.11) as presented by Fig. 5.13. The 
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positive and negative values in Fig. 5.13 respectively represent improvement and degradation of 

analysis in the experiment of adaptive observation (subsection 5.4c; Fig. 5.9b and 5.9c).  The 

large positive values in Fig. 5.13a spatially correspond to the truth-based error standard 

deviations in Fig. 5.12c within the adaptive observation areas, due to the fact that data 

assimilation can reduce the uncertainty of the observed variable by correcting its ensemble mean.  

This correction can be proved by averaging (5.5) over all ensemble members, which is  
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where rV  is the ensemble mean increment (i.e. analysis mean – background mean) for Vr;  

)( rVO   is the ensemble mean innovation (i.e. observation –background mean) for Vr; 2

Vr is the 

mean-based background error variance. Equation (5.12) shows that when the background 

ensemble mean of Vr (i.e. rV ) is smaller than observation O , rV  is increased in the analysis.  

In this way, the ensemble mean of the observed Vr is driven towards observations which 

represent the truth with small errors ( smo /2  compared to 
Vr  in Fig. 5.12c).  

On the other hand, reducing the difference between the ensemble mean and the truth is 

much more difficult for the unobserved W field.  For example, there are more and stronger 

negative values in Fig. 5.13b, as compared to Fig. 5.13a.  The degradation of W can be explained 

by the update of ensemble mean of W, as expressed by 
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where W  is the ensemble mean increment (i.e. analysis mean – background mean) for W; 

),( WVrCov  is the mean-based background error cross-covariance between Vr and W. Equation 

(5.13) tells that the ensemble mean of W can be corrected by the innovation of Vr, that is  

)( rVO  , under the condition that ),( WVrCov  precisely relates the errors of Vr and W.  

However, since ),( WVrCov  is calculated from ensemble mean that differs from the truth, it is 

not able to correctly describe the relationship between errors (with respect to truth).  As a result, 

the observations of Vr may drive W further away from the truth and increase its uncertainty, as 

shown by the negative values in Fig. 5.13b.  Similarly, negative values can also be found in Fig. 
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5.13a in the areas close to but not covered by observations, due to the poorly estimated spatial 

error covariance. 

  

Fig. 5.13  Reduction of truth-based error standard deviation for Vr (a) and W (b) in 

percentage. 

 

We stress that the negative effect on data analysis is not caused by the application of 

adaptive observation.  Traditional uniform observation and adaptive radar observation have the 

same possibility of degrading the analysis results, if the truth is unknown and differs from the 

ensemble mean.  Therefore adaptive observation could still be superior to traditional uniformly 

distributed observation, even though the truth is used for evaluation. 

In order to assess different observation strategies properly, both the ensemble mean and 

the truth are used as reference for computing error variances of background and analysis. The 

percentage of error variance reduction is computed by [„total background error variance‟ minus 

„total analysis error variance‟] divided by „total background error variance‟ for both observed Vr 

and unobserved W, where „total variance‟ means the sum of variances for a certain variable over 

the entire domain.  The results of the four observation strategies discussed in section 5.4 are 

presented in Fig. 5.14.  Note that the truth-based error statistics are used only for evaluation.  In 

the data assimilation scheme and the observation strategy decision process, the mean-based error 

statistics are used so that the experiments can stay close to the real data assimilation system 

where the truth is unknown. 
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In the upper panel, Vr uncertainty is reduced by 30% to 50%, as compared to the 

uncertainty reduction of the unobserved W being less than 8% in the lower panel, which suggests 

that the observed variable is improved much more than the unobserved variable. When 

observations are redistributed from the entire domain to the areas covered by precipitation 

(comparing the left two observation strategies in Fig. 5.14), improvements in both Vr and W are 

significantly increased, particularly because more observations are assimilated, as discussed in 

subsection 5.4b.  When the observation strategy becomes more sophisticated (comparing the 

right three observation strategies in Fig. 5.14), the improvement in Vr is slightly reduced, but the 

error reduction in W is significantly increased.  This is because the adaptive observation in this 

study is dedicated to reduce only W uncertainty.  The benefit brought by adaptive observation is 

evident whether the ensemble mean (blue bars in Fig. 5.14) or the truth (red bars in Fig. 5.14) is 

used for evaluation. 

 

Fig. 5.14  Percentage of error reduction ([„total background error variance‟ minus „total 

analysis error variance‟] divided by „total background error variance‟) for Vr (upper 

panel) and W (lower panel).  Four observation strategies are considered, as in section 5.4. 

 

In the upper panel of Fig. 5.14, red bars are always higher than the neighbouring blue 

bars because the red bars include the correction of ensemble mean, since Vr is observed. In 
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contrast, the red bars in the lower panel of Fig. 5.14 are much shorter than the corresponding 

blue bars.  This is because while the truth-based total background error variance contains the 

error of ensemble mean of W, such an error is difficult to be corrected by data assimilation when 

the ensemble mean differs from the truth, and W is unobserved.  In other words, if the ensemble 

mean differs from the truth, the improvement in unobserved variable is small because its 

ensemble mean cannot be corrected through error cross-covariances estimated with respect to the 

ensemble mean. 

 

5.6  Summary and discussion 

In order to improve the effectiveness of radar data assimilation in numerical forecast or in 

a heuristic nowcasting approach, some important unobserved variables, such as vertical velocity 

W, must be better assessed. For this reason, methods of adaptive radar observation are proposed 

in this article, for the purpose of improving the unobserved W more efficiently in the analysis 

step of data assimilation. 

The transfer of observation information to the unobserved state variable is studied 

theoretically.  It is demonstrated that the uncertainty of unobserved variable can be reduced 

significantly when the background error variance of observed variable and the background error 

cross-covariance between observed and unobserved variables are large. The former ensures that 

the observations are able to correct the observed state variable; and the latter brings the 

correction to the unobserved variable. 

In order to decide on observation strategy and perform data assimilation, flow-dependent 

error statistics are needed.  The Global Environmental Multiscale Limited Area Model (GEM-

LAM) is used to yield 80 members of ensemble forecast.  Simulated truth and radial velocity 

observations are generated from the first member, while the other 79 ensemble members are 

considered to be the background for data assimilation.  The error statistics computed from the 

background ensemble members are used to decide observation strategy.  

Four radar observation strategies are discussed and compared.  The first is similar to the 

traditional mechanical radar observation strategy that uniformly scans the entire atmosphere.  
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The second strategy mimics the „focused scan‟ possible in phased-array and some mechanical 

fast scanning radars, which uniformly places observations only in the precipitation region.  The 

third strategy is an adaptive observation strategy that, according to background error statistics, 

determines the locations where the unobserved variable is more likely to be corrected.  The 

fourth strategy is similar to the third one, but distributes observations in both space and time.  

After EnKF is applied, background and analysis error statistics are analyzed to evaluate the 

adaptive observation strategies.  Quantitative analysis based on the total error variance shows 

that a greater portion of uncertainties is removed from the unobserved variable when a more 

sophisticated observation strategy is used. 

The difference between the ensemble mean and the truth causes inaccurate uncertainty 

estimation.  While observations are able to correct the ensemble mean for the observed variable, 

it is difficult to correct it for the unobserved variable, no matter which observation strategy is 

applied. 

There are some limitations in this exploratory study.  Firstly, the simulated observations 

are placed on model grids instead of radar coordinates.  A more realistic adaptive radar 

observation strategy should consider how to decide radar azimuth and elevation angles. Secondly, 

simulated observations are used in this study, which limits the errors in background. However, in 

a real radar data assimilation system, much larger background errors may reduce the effect of 

adaptive observation.  Thirdly, the improvement in unobserved variable is much smaller than the 

observed variable, although adaptive observation is applied (Fig. 5.14).  Lastly, this article does 

not discuss the correction of the unobserved variable during model integration in the cycling 

process of data assimilation, which is possible when the observed variables are corrected in the 

analysis step. 
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Chapter 6 

Conclusions 

 

The research presented in this thesis aims at implementing and analyzing the Ensemble 

Kalman Filter (EnKF) system for radar data assimilation at convective-scale, and improving the 

EnKF for a better weather prediction by means of adaptive radar data observation. In order to 

achieve this goal, the flow-dependent background error statistics and other uncertainties involved 

in EnKF, including model error, initial ensemble spread, representations of model and 

observation errors, are studied. An 80-member high resolution (1-km) EnKF is then implemented 

to assimilate radial velocity observations provided by the McGill J. S. Marshall Radar 

Observatory into the Canadian Meteorological Center (CMC)‟s Global Environmental 

Multiscale Limited Area Model (GEM-LAM). Finally, an adaptive radar observation method is 

proposed in order to more efficiently correct the unobserved variable at the analysis step of 

EnKF, and furthermore better improve the subsequent weather prediction. 

Before implementing the complex data analysis system, several simple experiments of 

the EnKF and the linear Kalman Filter are performed to examine the influence of uncertainties in 

EnKF and the effectiveness of observations on data analysis. The results from the experiments of 

initial ensemble spread suggest that underestimating the error of the first guess is more 

problematic than overestimating it, because EnKF could falsely reject observations and 

consequently increase the analysis uncertainty. The experiments also show that the ensemble 

mean gradually converge to the truth when there is no model error. If model error exists, the 

difference between the ensemble mean analysis and the truth does not converge to zero, even 

though the model error is well estimated. If the model error or the observation error is poorly 

estimated, the analysis error is even larger, as compared to other experiments where the error 

statistics are well represented.  However, the above conclusions are limited. Since the first guess 

is not far from the truth, the ensemble members are able to represent the background errors quite 

well with a small ensemble spread, which is different from a real data assimilation system. 

Moreover, there is no model bias, or error cross-covariance between different control variables, 

because of the use of one-dimensional viscid Burgers' equation as forecast model. 



130 
 

Additionally, a number of simple experiments are conducted to examine the effectiveness 

of observations on the analysis step of EnKF. It is shown that when the background error 

decorrelation distance is large, high spatial resolution of data is not required, because the 

background error correlation can spread observation information from the observed location to 

many nearly model grids. Similarly, when observation error decorrelation distance is large, 

EnKF does not need „dense‟ observations because it will increase information redundancy. 

Furthermore, if the observation error covariances have to be ignored because of the limited 

knowledge of error structure or the restriction of the EnKF system, data „thinning‟ should be 

performed. Additionally, under a hypothetical condition that the phased-array technique is 

available for radar data collection, the trade-off between observation accuracy and observation 

number is examined. It is indicated that a threshold of observation number exists, beyond which 

increasing observation quantity and enhancing observation quality can improve data analysis to 

the same degree. If this threshold cannot be reached, observation number is more important than 

observation accuracy. When the observation error statistics are misrepresented, increasing 

observation number or reducing observation error may have an negative effect on the EnKF. 

After these simple excises, this research examines the flow-dependent background error 

variances and 3-dementional spatial correlations computed from 80 ensemble members produced 

by a 1-km grid spacing GEM-LAM. After the initial homogeneous and isotropic perturbations 

are added onto the first guess, the „situation dependence‟ of background error structures appears 

after a lead-time of 15 minutes, the time evolution of which is different for different control 

variables. Moreover, error variances tend to grow faster inside and near the precipitation regions, 

compared to those in non-precipitating areas where the atmosphere is stable. The study also 

indicates that once microphysical processes are active, the error structures evolve rapidly, even 

before the occurrence of precipitations. 

Based on the same numerical weather prediction model and the studies above, the 80-

member high resolution (1-km) EnKF is implemented to assimilate real radial velocity 

observations provided by the McGill J. S. Marshall Radar Observatory. This system is derived 

from the operational global EnKF at Canadian Meteorological Center (CMC), with the features 

of four parallel EnKF subgroups, three-dimensional error correlation localization, sequential 

batching process and background check for observations. The parallel EnKF subgroups are used 
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in order to prevent the insufficiency of ensemble spread. The initial ensemble members and 

model boundary conditions are provided by a regional EnKF system working at a larger scale. 

Observations with a 4-km thinning are incorporated into the 1-km grid spacing model every 5 

min for 12 cycles within a 1-h cycling process, after which a 1.5-h 80-member ensemble forecast 

is launched. Such a system is applied on three summer cases with different precipitation 

structures. The indicators of ensemble spread, analysis rms and background rms exhibited 

sufficient ensemble spread during the cycling process in all three cases, as long as the parental 

regional EnKF system is applied. At the same time, the difference between background and 

observations gradually reduces, which indicates that the model state becomes accurate after data 

assimilation, at least in the observation space. In the model space, unobserved variables, such as 

humidity and CAPE values, can also be updated through the error cross-correlations, although 

such update is not enough to correct the entire precipitation field. 

After the EnKF performance, the short-term forecasts are still under the influence of 

radial velocity assimilation for up to 90-min lead-time. For the weather system controlled by 

large-scale flows, the corrections made by parental regional EnKF are more important than this 

convective-scale EnKF. But when localized convections happen, the HREnKF accounts for most 

of the corrections and is able to improve the location of the storms in the analyses. Moreover, for 

the wide spread and stationary stratiform, the improvement lasts longer at lower elevations than 

higher elevations. Unfortunately, the improvement brought by the EnKF system does not survive 

for more than 90 min for all the three cases. 

 In order to allow the EnKF system to better improve the forecast, we want the 

unobserved vertical velocity to be more corrected at the analysis step by assimilating only radial 

velocity observations, which will be helpful for maintaining or triggering precipitations in NWP. 

Several adaptive radar observation methods are proposed, which takes advantage of hypothetical 

phased-array radar to adaptively collect observations. It is demonstrated that if observations can 

be placed where and when the background error variance of observed variable and the 

background error cross-covariance between observed and unobserved variables are large, the 

uncertainty of unobserved variable can be significantly reduced. Based on this idea, four radar 

observation strategies are applied on the previous EnKF system to assimilate simulated radial 

velocity observations. The first is similar to the traditional mechanical radar observation strategy 
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which uniformly scans the entire atmosphere. The second strategy mimics the „focused scan‟ 

used by phased-array radar, which uniformly places observations only in the precipitation region. 

The third strategy is an adaptive observation strategy that, according to background error 

statistics, determines the locations where the unobserved variable is more likely to be corrected. 

The fourth strategy is similar to the third one, but distributes observations in both space and time. 

Quantitative analysis based on the total analysis error variance of the unobserved variable shows 

that a greater portion of uncertainties can be removed from the unobserved variable when a more 

sophisticated adaptive observation strategy is used. However, when the analysis results are 

compared to the truth, the improvement of the unobserved variable is not significant, because of 

the difference between the ensemble mean and the truth. While observations are able to correct 

the ensemble mean for the observed variable, it is difficult to correct for the unobserved variable, 

no matter which observation strategy is applied. 

 The estimation of background error statistics from ensemble members is reliable only 

when the background ensemble mean is close to the reality. At the beginning of EnKF, the 

ensemble mean (or the first guess) and the resulting error statistics are usually inaccurate. As the 

cycling process proceeds, the ensemble mean of observed variable becomes closer to the reality. 

However, the ensemble mean of unobserved variable cannot be corrected because of the poor 

error correlation estimation resulted from inaccurate first guess. Since updating unobserved 

variables in radar data assimilation system requires reliable error correlation, it is worth 

examining the impact of first guess accuracy on the analysis quality. 

 In order to prepare an accurate first guess for radar data assimilation in a high-resolution 

model at convective scale, conventional observations (e.g. radiosonde) should be assimilated 

gradually from synoptic scale to mesoscale to ensure that all state variables are close to the 

reality. Such a first guess is able to produce reliable error statistics, and yield analysis results 

with less uncertainty for both observed and unobserved variables. An example of such a system 

is given in Chapter 4 where a regional EnKF was performed to assimilate conventional 

observations before radar data assimilation. However, the first guess provided by this system was 

apparently not precise enough for generating reliable error statistics. 

 Besides the first guess, the data assimilation quality is also strongly affected by the 

localization method. Chapter 3 shows that the spatial correlation of background error (Fig. 3.8) is 
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not homogenous and isotropic; and the maximum spatial cross-correlation (Fig. 3.20) does not 

correspond to the center of the localization function. Therefore, the localization methods 

described in Chapter 4 and 5 probably damaged the spatial and cross- correlations. This problem 

can be solved by increasing ensemble size or applying adaptive localization method, which 

requires further exploration. 

 In addition, the assimilation of reflectivity observations can benefit the data analysis by 

updating more model variables such as rain mixing ratio and humidity, suppressing the false 

alarms, and correcting the phase errors. A better estimation of the observation and model error 

statistics would also be helpful. 
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