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Abstract 

 

In recent decades, there has been immense progress in DNA sequencing technologies. One domain 

where these techniques are undoubtedly transformative is medicine. Understanding the underlying 

genomic and genetic factors in diseases is important in diagnosis, treatment, and identification of 

at-risk family members. In this regard, cancer genome analysis provides a better understanding of 

the underlying tumorigenic mechanisms and gives hope of finding genetic events that contribute 

to metastasis, recurrence, and therapeutic resistance, which are the most common causes of cancer 

fatality. In the first part of this thesis, we focus on uncovering the genetic predisposition factors in 

familial pancreatic cancer. By applying whole exome sequencing (WES) to 109 familial pancreatic 

cases and performing a filter-based candidate gene approach focused on DNA repair genes, we 

propose FAN1, NEK1 and RHNO1 as the strongest candidates.  In the second part, we investigate 

the mechanisms underlying resistance to chemotherapy in Triple-negative breast cancer (TNBC). 

WES- and RNA-seq analysis on serial tumor biopsies during chemotherapy suggests that there are 

two major factors associated with chemotherapy: RAD21 gene amplification and presence of 

immune response. The results of this study suggest that RAD21 may be both a marker and a target 

to overcome drug resistance in TNBCs, and combination of chemotherapy and immunotherapy 

(anti-PD-1/PD-L1 monoclonal antibody therapies) would improve outcomes of TNBC patients, 

especially PD-L1-positive patients with low tumor-infiltrating lymphocytes (TILs) in tumors. 

Furthermore, motivated by accurately identifying pathogenic variants from WES data, I 

developed an improved ensemble machine learning method, ClinPred, to predict in silico and 

select pathogenic variants in large-scale sequencing studies.  Through rigorous testing, while 

avoiding problems common in machine learning, such as overfitting and circularity, I showed that 
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ClinPred outperforms all currently available prediction methods, achieving the highest Area Under 

the Curve (AUC) score and increasing both the specificity and sensitivity in different test datasets. 

It also obtained the best performance according to various other metrics.  

Together, our work demonstrates the value of next generation sequencing techniques as 

powerful tools for understanding the mechanisms of various diseases and their subsequent 

implications for the clinical arena. 
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Résumé 

 

Au cours des dernières décennies, d'immenses progrès ont été réalisés dans les technologies de 

séquençage de l'ADN. Un domaine où ces techniques sont sans aucun doute transformatrices est 

la médecine. Comprendre les facteurs génomiques et génétiques sous-jacents des maladies est 

important dans le diagnostic, le traitement et l'identification des membres de la famille du patient 

à risque. À cet égard, l'analyse de la génomique du cancer permet une meilleure compréhension 

des mécanismes tumorigéniques sous-jacents et nous donne espoir de trouver les événements 

génétiques qui mènent aux métastases, à la réapparition du cancer et à la résistance aux traitements 

thérapeutiques, qui sont les causes les plus fréquentes de décès par le cancer. Dans la première 

partie de cette thèse, nous nous concentrons sur la découverte des facteurs de prédisposition 

génétique au niveau du cancer du pancréas familial. En appliquant le séquençage de l'exome entier 

(WES) à 109 cas pancréatiques familiaux et en utilisant une approche, qui filtre les résultats du 

séquençage, basée sur des gènes candidats de la réparation de l’ADN, nous proposons FAN1, 

NEK1 et RHNO1 comme étant les candidats les plus forts. Dans la deuxième partie, nous étudions 

les mécanismes sous-jacents à la résistance à la chimiothérapie du cancer du sein triple négatif. 

L’analyse du séquençage de l’exome entier et séquençage haut débit d'ARN des biopsies sur la 

tumeur lors de plusieurs étapes de la chimiothérapie, suggère qu’il y a deux facteurs majeurs 

associés à la chimiothérapie : l'amplification du gène RAD21 et la présence d'une réponse 

immunitaire. Les résultats de cette étude suggèrent que RAD21 pourrait être à la fois un indicateur 

et une cible pour vaincre la pharmacorésistance du cancer du sein triple négatif, et qu'une 

combinaison de chimiothérapie et d'immunothérapie (anti-PD-1 / PD-L1) améliorerait les résultats 

des patients atteints du cancer du sein triple négatif, en particulier les patients atteints de tumeurs 

PD-L1-positifs / faibles enTILs. 
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De plus, motivée par l'identification précise des variantes pathogènes obtenus à partir des données 

du séquençage de l’exome entier, j'ai développé une méthode d'apprentissage automatique 

d'ensemble améliorée, ClinPred, pour prédire in silico et sélectionner des variantes pathogènes 

dans des études de séquençage à grande échelle. Grâce à des tests rigoureux dans lesquels sont 

évités les problèmes communs en apprentissage automatique, comme le surapprentissage ou la 

circularité, j'ai démontré que ClinPred surpasse toutes les méthodes de prédiction actuellement 

disponibles, en obtenant le score le plus élevé pour la superficie sous la courbe et en ayant plus de 

spécificité et  sensibilité lors de différentes analyses. ClinPred a obtenu les meilleures 

performances en fonction de divers autres indicateurs. 

Ensemble, nos travaux démontrent la valeur des techniques de séquençage de nouvelle génération 

en tant qu'outils puissants pour comprendre les mécanismes de diverses maladies et leurs 

implications subséquentes pour l'arène clinique. 
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Chapter 1. General Introduction and Literature Reviews 

 

Genetics has advanced our understanding of many disease mechanisms and has had a large impact 

on medicine. Knowledge of the genetic and molecular basis of disorders is helping in diagnosis, 

guiding therapy and developing new drugs. By providing the order of nucleotides within a DNA 

molecule, sequencing technologies have had a great impact in genetics and have enabled us to 

better understand the molecular basis of disorders. 

 Sequencing techniques have a long history. The first success in sequencing was the protein 

sequence of insulin in the early 1950s by Sanger (Sanger 1958). Later in the 1960s Holley et al. 

for the first time determined the complete nucleotide sequence of an alanine transfer RNA 

(Holley, et al. 1965).  However, DNA sequencing was much harder and more complicated than 

expected. Maxam and Gilbert developed a chemical degradation method for DNA sequencing in 

1977 (Gilbert and Maxam 1977). The same year, Sanger and colleagues developed a chain-

termination technique, which has been since optimized and used to obtain the first draft of the 

human genome (Human Genome Project) (Sanger, et al. 1977). 

The main limitations of these two classical DNA sequencing techniques (also known as 

first generation sequencing) are low throughput, problems in detecting low frequency variants (e.g. 

somatic mutation in cancer and mosaic mutation) and cost. Therefore, newer approaches were 

developed to sequence reads in parallel for a faster and more cost-efficient way (Morey, et al. 

2013). Although the first next generation sequencing (NGS) equipment became available in 2004 

after the human genome project, these technologies have rapidly changed genetics, genomics and 

medicine (Morey, et al. 2013).  Comparison between an individual sequence and a normal 

reference genome makes it feasible to identify variants in an individual’s DNA; therefore, likely 
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disease-causing variants can be spotted. Next-generation high-throughput sequencing technologies 

have been widely used in different type of diseases to identify germ-line mutations underlying 

Mendelian disorders, complex diseases and somatic mutations in various cancers.  

Whole genome sequencing (WGS) currently represents the most complete, comprehensive 

strategy for variant detection. However, there is significant variability in sequencing efficiency 

across the genome when we use a genome sequencing approach. Different regions can have 

different coverage and many regions of interest can be missed (Majewski, et al. 2011; Ng, et al. 

2010). Moreover, it is costly when a large sample size is needed. In contrast, exome-sequencing 

targets only protein coding sequences, which enables the analysis of the coding regions of more 

than 20,000 genes.  The human genome comprises approximately 180,000 exons, which is less 

than 2% of the entire genome. Although a whole exome is a small fraction of a genome, it harbors 

most of the known diseases causing DNA changes that lead to genetic disorders (Majewski, et al. 

2011). Whole exome sequencing (WES) produces considerably fewer sequencing reads and a 

smaller, more manageable data set (4–5 GB of sequencing per exome compared to ~90 GB per 

whole genome). However, it produces higher sequence coverage. The cost of WES is also lower 

than WGS. Therefore, through a faster and easier analysis, WES is highly suitable for discovery 

of mutations (Harding and Robertson 2014; Yang, et al. 2014).  

 

 

 

 

 



3 

 

1.1. Application of whole-exome sequencing data in medicine 

 

One of the main common goals of the clinical genetics field is to discover the causes of diseases 

and find the best way to address them both in diagnosis and therapy. In a clinical setting, targeted 

sequencing, which applies a gene panel relevant to the patient’s disease, was the first next-

generation sequencing (NGS) technology to be used. Over the past years, WES has been 

increasingly applied to identify disease-causing genes in medical research areas. The use of exome 

sequencing has been successful in the characterization of many rare diseases (Biesecker 2010). In 

addition, WES has been useful in cancer-genomics and has been helpful in understanding the 

mechanisms underlying specific cancers and identifying new biomarkers and/or drug targets 

(Grossmann, et al. 2011). 

After the significant success of whole exome sequencing in the research area, diagnostic 

and clinical genetics fields started to use this technique to improve medical care and explore 

challenges available in this area in a cost-effective, highly efficient way. This technology is now 

widely accepted in clinical laboratories, and in the near future will change the landscape of clinical 

testing and diagnostics. 

 

1.1.1. Application of WES in Mendelian diseases 

 

Exome sequencing has been applied to find the molecular basis of rare Mendelian disorders in 

many studies. Today clinical WES is implemented in either finding disease genes or diagnosis for 

these patients in some countries. Mendelian diseases are rare diseases that occur at a rate of 40 to 

82 per 1000 live births. Epidemiologic studies suggest approximately 8% of people are identified 

as having a genetic disorder before adulthood when considering all congenital anomalies as part 
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of the genetic load (Yang, et al. 2013). Therefore, rare genetic disorders affect substantial numbers 

of people. This attracts considerable interest in rare diseases in both the research and clinical 

diagnostic fields. 

To date, researchers have identified around 7000 rare inherited disorders, although they 

were successful in characterizing the molecular basis in only almost half of them (Frebourg 2014). 

In recent years, application of WES has made it possible to identify novel disease-causing variants 

and genes for rare diseases. In addition, it has been successful in expanding knowledge about the 

phenotype of known genes.  

One of the problems remaining in rare diseases is the correct diagnosis. Diagnosis is based 

on clinical symptoms, radiographic features, biopsy findings, analysis of metabolites and genomic 

tests such as karyotyping (Yang, et al. 2013), though genetic conditions usually have a wide range 

of clinical features common to different diagnoses. As a result, the majority of patients remain 

undiagnosed or misdiagnosed (Williams and Hegde 2013).  

Undiagnosed patients present various signs and symptoms that are unclear or atypical, and 

consequently no definite diagnosis is made for them (Pinxten and Howard 2014; Soden, et al. 

2014). They usually undergo extensive evaluations, which are time-consuming and costly, before 

a diagnosis is made (Srivastava, et al. 2014). Moreover, some of the rare diseases are clinically 

unrecognizable or have many genes involved in them. For example, cardiomyopathy involves over 

50 genes or polyneuropathies associated with over 70 genes. In some cases, different syndromes 

can explain patients’ symptoms at a younger age. Traditional methods such as Sanger sequencing 

are hard to use for these patients, as it is necessary to know in advance the genes required for 

sequencing (Harding and Robertson 2014). Ultimately, WES has a clear advantage as a diagnostic 

tool in this area since no pre-selection of genes is required and it allows the screening of the genes 
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not suspected to be associated with the disorder and to manage patients at lower cost (Harding and 

Robertson 2014; Williams and Hegde 2013). The lack of a diagnosis can have considerable adverse 

effects, such as failure to identify potential treatments, and failure to recognize the risk of 

recurrence in subsequent pregnancies. Therefore, the NIH Undiagnosed Diseases Program (UDP) 

suggests next generation sequencing as a helpful technique in the diagnosis of complicated and 

challenging medical conditions (Gahl, et al. 2012).  

The first paper that emphasized exact diagnosis by using WES was published in 2009. A 

patient was misdiagnosed as having Bartter syndrome. However, after performing WES, the 

researchers found homozygous missense mutation in SLC26A3, the known congenital chloride 

diarrhea locus. The doctors re-evaluated the patient and found the symptoms could be related to 

this disease. Therefore, the treatment plan was changed to the proper one (Choi, et al. 2009). In 

another study, exome sequencing helped to identify and treat an unknown intestinal disorder in a 

patient who went through prolonged medical examinations and several surgeries, without specific 

disease diagnosis. After exome sequencing and analysis, the physicians were able to develop a 

treatment plan based on the correct diagnosis (X-linked inhibitor of apoptosis deficiency), which 

improved the overall outcome (Worthey, et al. 2011).  

WES has even been able to detect disease variants that were not revealed by previous 

genetic tests—probably because of their lower sensitivity or poor design. For instance, in a study 

published by Landouré et al., WES was applied on a sample from a patient diagnosed as Charcot-

Marie-Tooth type 2 (CMT2). The analysis revealed a mutation in the TRPV4 gene. This mutation 

was missed initially by Sanger sequencing as the SNP was located in the primer (Landoure, et al. 

2012). This study again emphasized applicability of the WES technique in a clinical setting. 
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1.1.2. Application of WES in cancer 

 

Cancers arise as the result of genomic alterations such as point mutations, copy number alterations 

and structural rearrangements in cancer cells (Mardis and Wilson 2009). The identification of the 

Philadelphia chromosome by cytogenetic techniques in chronic myeloid leukemia was the first 

success in finding genetic abnormalities causing cancer (Nowell and Hungerford 1960). In the 

1980s and 1990s, linkage analysis helped to find many cancer susceptibility genes, especially 

tumour suppressors (Foulkes 2008). 

Since cancer is a disease of genes, advancements in DNA sequencing technologies have a 

significant impact on detection, understanding the mechanism underlying cancer pathogenesis, as 

well as the management and treatment of the patients. By sequencing an individual’s genome, we 

are no longer limited to mutations detectable by traditional linkage studies and targeted re-

sequencing of candidate genes, and are able to efficiently detect somatic changes including single 

nucleotide substitutions, deletions, insertions, copy number variants, chromosomal rearrangements 

and microbial infections (Meyerson, et al. 2010). These technologies have enabled national and 

international projects such as The Cancer Genome Atlas (TCGA) and the International Cancer 

Genome Consortium (ICGC) to systematically catalogue mutations in a wide variety of cancers 

and continue to uncover genomic aberrations in cancer (Chmielecki and Meyerson 2014; Wang 

and Wheeler 2014). Whole exome sequencing has led to the understanding of mechanisms 

underlying specific cancers and identifying new biomarkers and/or drug targets, and it provides 

unprecedented opportunities to study inherited and acquired genetic variants in cancer (Wang and 

Wheeler 2014). 

Numerous cancer susceptibility genes associated with high risks of cancer among carriers 

have been identified, for example, BRCA1 and BRCA2 in breast cancer (Foulkes 2008). More 
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recent WES studies have identified new cancer susceptibility genes. The successful identification 

of germline mutations in PALB2, a susceptibility gene for familial pancreatic cancer, has been 

followed by other studies to uncover many other cancer susceptibility genes (Jones, et al. 2009). 

As examples, new studies are leading to the discovery of germ-line mutations in GATA2 in acute 

myeloid leukemia with Emberger syndrome (Ostergaard, et al. 2011), recurrent germline PAX5 

mutations in pre-B cell acute lymphoblastic leukemia (Shah, et al. 2013), NPAT mutation in 

Hodgkin lymphoma (Saarinen, et al. 2011), BAP1 mutations in malignant mesothelioma (Testa, 

et al. 2011) as well as XRCC2 in familial breast cancer (Park, et al. 2012).  Exome sequencing in 

familial pheochromocytoma (PCC) identified mutations in MAX. This gene was then added to the 

panel of other genes (RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2, NF1, and TMEM127) 

linked to familial PCC, to be simultaneously tested in familial PCC (Comino-Mendez, et al. 2011; 

Stadler, et al. 2014). 

Moreover, cancer genome analysis provides a better understanding of the underlying 

tumorigenic mechanisms (Zhang, et al. 2013). The lower cost of exome sequencing makes it 

possible to carry on studies with a large sample size. This opportunity helps to have greater power 

for detecting recurrent somatic mutations. WES studies on gastric cancer identified recurrent 

somatic mutations in the chromatin-remodeling gene ARID1A and alterations in the cell adhesion 

gene FAT4, a member of the cadherin gene family (Wang, et al. 2011; Zang, et al. 2012). A recent 

study by our lab on small cell carcinoma of the ovary hypercalcemic type (SCCOHT) succeeded 

in identifying a mutation in the chromatin-remodeling gene SMARCA4. This finding suggests that 

developing drugs to target this gene might have widespread benefits because this gene has been 

implicated in various primary cancers, such as kidney and pediatric brain tumors (Witkowski, et 

al. 2014). Other examples of these successful somatic mutation discoveries are mutations in 
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isocitrate dehydrogenase 1 in glioblastoma (Parsons, et al. 2008), frequent mutations of the 

SWI/SNF complex gene PBRM1 in primary clear cell renal carcinoma (ccRCC) (Varela, et al. 

2011), somatic mutations in histone H3.3 and chromatin remodelling genes in pediatric 

glioblastoma (Schwartzentruber, et al. 2012). 

One of the biggest potential applications of NGS is in the area of personalized genomic 

medicine. WES is not only helping to find driver mutations, but also gives hope to find genetic 

events leading to metastasis, recurrence and therapeutic resistance, which are the most important 

reasons of the death toll due to cancer (Majewski, et al. 2011). WES can also be used as 

complementary to histopathological analysis to identify subpopulations that may benefit from 

targeting specific mutations, leading to better prognosis (Chmielecki and Meyerson 2014). For 

instance, exome sequencing revealed SF3B1 mutation is associated with better prognosis in 

myelodysplastic syndrome (MDS) with ring sideroblasts (Rabbani, et al. 2014). Another study on 

endometrial cancer patients revealed POLE as a prognostic marker in this type of cancer (Wang 

and Wheeler 2014). The genomic information provided by applying WES on cancer samples helps 

to identify not only cancer-associated genes and risks, but also pharmacogenomics markers. These 

data provide a guide to better treatment choices and designing new therapeutic protocols based on 

the genomic traits of tumours (Ciriello, et al. 2013; Stadler, et al. 2014).   

The next parts of this introduction will first review pancreatic and breast cancers as the 

main two objectives of this thesis, and then I will discuss exome sequencing analysis and its 

challenges.
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1.2. Pancreatic Cancer 

 

The pancreas is a glandular organ in the digestive system with both endocrine and exocrine 

functions. Pancreatic cancer accounts for 2% of all cancer diagnoses, and it affected 367,000 

people in 2015 worldwide. More than 50% of these patients were diagnosed in high-income 

countries (Ferlay, et al. 2015). Although the incidence rate is the tenth most common cancer 

worldwide, it is the fourth ranking cause of death due to cancer (Cotterell 2014; Klein, et al. 2002). 

More recently, it surpassed breast cancer as the third leading cause of death in the United States 

and is projected to become the second in North America by 2020 (Rahib, et al. 2014; Yabar and 

Winter 2016). Pancreatic cancer is one of the most lethal malignancies, with nearly as many deaths 

per year as incidence cases. An important factor in poor prognosis is late diagnosis when the cancer 

is in the advanced stage and has metastasized to other organs. This leads to a poor survival rate, 

with a five-year survival rate of less than 5% in pancreatic cancer, which has not changed in almost 

50 years (Jemal, et al. 2010). Even though surgery is the best treatment option, almost 80% of the 

patients have metastasis, especially to distant organs, at the time of diagnosis, and consequently 

are not candidates for surgery at the time of diagnosis. Unfortunately, palliative therapies such as 

chemotherapy do not offer much increase in survival time for these patients (Cotterell 2014). 

 

1.2.1 Classification of pancreatic cancer 

 

A broad range of pathologically distinct types of neoplasms can originate in the pancreas.  

Recognizing different types of the neoplasms is important because they may have different clinical 

features and prognoses.  Pancreatic tumors can be solid or cystic.  Although cystic tumors are 

common and mostly benign, many will progress to invasive carcinomas without treatment. The 
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four main cystic neoplasms in the pancreas are intraductal papillary mucinous neoplasm (IPMNs), 

solid-psudopapillary tumour, musinous cystic neoplasm (MCNs) and serous cystic neoplasm 

(Wolfgang, et al. 2013). 

Among the solid tumors, pancreatic ductal adenocarcinomas (PDA) are the most common 

and account for >90% of pancreatic cancers (Rustgi 2014). This tumor, as the name suggests, 

forms glands and infiltrates to an intensely desmoplastic stroma.  The invasive ductal 

adenocarcinomas invade nerves, small veins nearby and the lymphatic system. They spread 

beyond the pancreas, preventing the patient from meeting criteria for surgical resection (Kleeff, et 

al. 2016; Wolfgang, et al. 2013).  

Pancreatic neuroendocrine, the second most common solid type, originates in islet cells. It 

is characterized as a slow growing tumor with extensive neuroendocrine differentiation and can be 

treated by surgery with a 10-year survival rate of 45% (Kleeff, et al. 2016; Wolfgang, et al. 2013). 

Colloid carcinomas, another solid type, comprise 2% of pancreatic cancers and always arise in 

association with IPMNs.  This mucin-producing neoplasm has a better prognosis than PDA as it 

is diagnosed at an earlier stage.  

Rare pancreatic tumors include acinar cell carcinoma, pancreatoblastomas, 

adenosquamous, hepatoid, medullary, lypmphomas, sarcomas, giant cell tumors and 

undifferentiated carcinomas. Pathological diagnosis of medullary carcinomas is important for the 

treatment of the patient. Although this type of tumor is poorly differentiated, it has a good 

prognosis and could be sensitive to some immunotherapies (Kleeff, et al. 2016; Wolfgang, et al. 

2013). 
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1.2.2. Hereditary pancreatic cancer 

 

Pancreatic cancer usually affects elderly people.  Most patients are more than 50 years old, with 

median age of 71 at diagnosis (Yabar and Winter 2016). Family history is the greatest risk factor 

for pancreatic ductal adenocarcinoma (PDA). Around 10 percent of PDAs occur in families. In a 

family affected by pancreatic cancer (FPC), at least one pair of first-degree relatives is affected. 

Although some environmental factors or stochastic effects may be the underlying cause in some 

FPCs, many of them are thought to be due to underlying genetic susceptibilities (Shi, et al. 2009; 

Wang, et al. 2007). An autosomal dominant pattern of inheritance was reported in 50-80% of 

families with FPC (Bartsch, et al. 2012). The estimated risk ratio of a person with a positive family 

history is 2.3 to 32 depending on the number and relatedness of affected relatives in a family 

(Hruban, et al. 2010). Estimated lifetime risk of developing pancreatic cancer in a person with one 

affected first degree relative (FDR) is 6%. This risk significantly increases if there are two, three 

or more affected FDR (10% and 40% respectively) (Klein, et al. 2004; Yabar and Winter 2016). 

Familial pancreatic cancer can occur alone (40%) or in association with other tumor spectrums in 

families (60%).  In the German national collection of FPC, the first three associated tumor types 

with PC were breast (30%), colon (21%) and lung cancer (12%) (Schneider, et al. 2011). 

 

1.2.2.1. Genetic risk factors 

 

Several hereditary conditions have been associated with increased risk of pancreatic cancer such 

as hereditary pancreatitis, Peutz–Jeghers syndrome, Familial atypical multiple mole melanoma, 

Lynch syndrome, Cystic fibrosis, Breast and ovarian cancer syndrome, Ataxia telangiectasia, 

and Li–Fraumeni syndrome  (Table 1.1). Besides these high lifetime risk factor conditions, there 
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is increasing evidence of the involvement of ABO blood group with different levels of risk  

(Wolfgang, et al. 2013). 

 

Table 1. 1. Genetic syndromes associated with PC 

(Modified from Wolfgang et al., A Cancer Journal for Clinicians, 2013) 

 

 

Syndrome Affected genes Risk Estimate 

Peutz–Jeghers syndrome STK11 (also known as LKB1) RR=132 

Hereditary pancreatitis PRSS1 RR=58 

Familial atypical multiple 

mole melanoma 

CDKN2A RR=38 

Lynch syndrome MSH2, MLH1, MSH6, PMS 

and PMS2 

RR=9 

Cystic fibrosis CFTR RR=5 

Breast and ovarian cancer 

syndrome 

BRCA1, BRCA2 and PALB2 RR=2–4 

Ataxia telangiectasia ATM Unknown- Elevated 

Li–Fraumeni syndrome TP53 Unknown 

ABO blood group  OR=1.2 

 

RR=relative risk, OR=odds ratio 
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1.2.2.2. Pancreatic cancer susceptibility genes 

 

Although the role of genetics in pancreatic cancer is well known, the genetic basis of most of 

the familial pancreatic cancer patients is still unknown. Linkage analysis on a family with 

multiple FPC with autosomal dominant pattern suggested chromosome 4q32-34 as a potential 

candidate. Eventually PALLD gene, located in that region, was recommended as a causative 

gene, though further studies on other FPC cancers did not confirm this gene as the causative 

one (Bartsch, et al. 2012). 

Currently BRCA2 is the most frequent germline mutated gene in FPC cancers with 

variable prevalence in patients (6-12% in patients with 2 FDR and 16% with 3 FDR affected 

patients in one study). It is also reported in PC without presence of breast cancer. Although the 

role of BRCA2 is well recognized in FPC, there is still debate about BRCA1 role, even though 

2.2 fold increase risk was estimated in some research (Wolfgang, et al. 2013). 

PALB2, another DNA repair gene that binds to BRCA2, is also an important gene with 

recognized role in FPC.   Even though several studies had confirmed PALB2 role in other cancer 

types, its role in PC was first reported by Jones et al. who applied exome-sequencing on 

pancreatic cancer samples (Jones, et al. 2009). 

ATM, a serine/threonine kinase involved in repairing double strand breaks in DNA, is 

another gene detected by whole genome sequencing as a FPC susceptibility gene. Germline 

mutation and loss of heterozygosity of the wild type allele were reported in a family with PC. 

As ATM deleterious variants are seen to be common in the population, further study is needed 

to confirm this role (Roberts, et al. 2012). 

CDKN2A, a tumor suppressor gene, has a significant role in familial multiple melanoma 

as well as lifetime increased risk of pancreatic cancer.  



14 

 

STK11/LKB1 mutation is involved in Peutz–Jeghers syndrome that is inherited with 

autosomal dominant pattern. Patients with this syndrome have increased risk of suffering from 

lung, pancreatic, breast, colon, gastric and ovarian cancer in their lifetimes.  

Beside germline mutations that are mentioned in table 1.1, germline mutation in other 

BRCA2 pathway genes such as FANC-C and FANC-G was identified in early onset pancreatic 

cancers (Roberts, et al. 2012; Wolfgang, et al. 2013). It is believed BRCA2, BRCA1, PALB2, 

ATM and other DNA repair genes’ mutation would interfere in repairing the defective DNA and 

result in accumulation of mutations. Consequently, this genomic instability will be involved in 

cancer development.  

 

Since the genetic basis underlying FPC in 85-90 percent of patients is still unknown, I 

hypothesize that there are other genes involved in FPC. Therefore, in chapter three of this thesis, I 

will explore this hypothesis.  
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1.3. Breast Cancer  

 

Breast cancer is the most common malignancy among women worldwide and accounts for about 

25.9% of all new cancer diagnoses in women with 2.4 million incident cases in 2015 (Miller, et al. 

2016).  It is ranked as the second most common cancer in Canada with more than 25,000 new 

diagnoses every year. Unfortunately, breast cancer occurs at an earlier age than the other type of 

cancers. As examples, the median age in breast cancer is 61 years in comparison to 70 years and 

68 years for lung cancer and colorectal cancer respectively. Unfortunately, about 19% of breast 

cancer patients were diagnosed in between 30 to 49 years old age.  

Although breast cancer burden is increasing globally, the incidence rate varies in different 

parts of the world near 10 fold. For instance, the breast cancer incidence is 27 per 100,000 in 

middle Africa and eastern Asia and is 92 in northern America (Althuis, et al. 2005; Miller, et al. 

2016; Torre, et al. 2016).  Although higher incidence was reported in the more developed parts of 

the world (Torre, et al. 2016), this high incidence is partly because of better screening procedures, 

which helps early detection, rather than genetic background (Chlebowski, et al. 2010).  

Breast cancer is the cause of death in many people and it is the fifth cause of cancer deaths 

for both women and men (523 000 women and 10 000 men death in 2015). It was reported as the 

number one killer in women in 2015 (Miller, et al. 2016). To give a better picture, there is a chance 

of one in 14 women and 1 in 603 men developing breast cancer globally between birth and age 79 

years, and 1 in 30 women dies because of that (Miller, et al. 2016).  

Recurrence is one of the important considerations in breast cancer. Although in many 

cancers risk of recurrence is low if it does not occur in the first five years, in breast cancer, 

recurrences were reported after twenty years or more in some subtypes. Therefore, the breast 

cancer prognosis correlates to primary breast tumor specifications (Global Burden of Disease 
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Cancer, et al. 2017). It is clear that there are still more room for future research in breast cancer to 

improve patient outcomes. 

1.3.1. Breast Cancer classification 

 

Breast cancer is a heterogeneous disease that can be categorized in different ways such as 

histopathological type, grade of the tumor, stage of tumor, and the expression of proteins and 

genes. These classifications are useful in predicting prognosis as well as choosing effective 

treatment in different patients (Cho 2016). 

Based on the microscopic characteristic of the tumor, breast cancer can be categorized 

histhopatologically in different types. The main three subtypes are invasive ductal carcinoma, 

ductal carcinoma in situ and invasive lobular carcinoma (Eheman, et al. 2009).  Further important 

microscopic information is grading of the tumor, which is assessed by tumor cells’ similarity to 

normal cells. This classification grades cancer from low-grade to high-grade (well differentiated 

and poorly differentiated respectively). High-grade tumors have the worst prognoses. 

As a clinical tool, staging categorization is developed to describe the location and extent 

of the primary tumour as well as the magnitude of body involvement. TNM—the most widely used 

cancer-staging system—was recommended by American committee on Cancer (AJCC) and 

the International Union Cancer (UICC) (Amin, et al. 2017). This system is based on three 

indicators: T represents tumor values based on the primary site of breast tumor (ranging from TX 

to T4). N represents lymph node involvement depending on number, size and location of involved 

lymph nodes (ranging from Nx to N3) and M represents metastases to other organs than breast and 

lymph nodes (Ranging from MX to M1)(Amin, et al. 2017). Lower stages have better outcomes 

than higher stages. 

https://en.wikipedia.org/wiki/Invasive_lobular_carcinoma
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The most important classification that provides useful information in predicting prognosis 

and responsiveness to treatment is tumor receptor status.  This classification is based on the 

presence or absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal 

growth factor receptor 2 (HER2) amplification. This information is provided by 

immunohistochemistry (IHC). Tumor receptor status is very important as it determines targeted 

therapy available for that type of cancer. Seventy percent of breast cancer patients are ER+ that 

means breast cancer expresses estrogen receptor. Although ER+ breast cancer has various 

subtypes, these tumors need estrogen to grow. Therefore this type responds to endocrine therapy 

either by reducing the effect of estrogen (tamoxifen) or reducing estrogen levels (aromatase 

inhibitors) (Paik, et al. 2004; van 't Veer, et al. 2002). Another example of the role of tumor 

receptor in treatment is the success in treating patients with trastuzumb in conjugation with 

chemotherapy in HER2 positive patients (Romond, et al. 2005; Slamon, et al. 1987).  

The other type of classification was introduced through expression array analysis. Based 

on expression data, breast cancer tumors are classified in four distinct intrinsic molecular subtypes: 

“luminal A,” “luminal B,” “HER2-enriched,” and “basal-like” (Table 1.2) (Cancer Genome Atlas 

2012; Hon, et al. 2016). 
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Table 1. 2. Surrogate definitions of intrinsic subtypes of breast cancer classification from the St. Gallen Consensus 2013.  

Modified from Cho et al. Ultrasonography, 2016. 

 
Intrinsic 

subtype 

Clinicopathologic surrogate definition Type of therapy 

 ER PR HER2 Recurrence   

Luminal A Luminal A-like + + - Low  

Endocrine therapy is often used alone 

Cytotoxic therapy may be added 

Luminal B 

Luminal B-like (HER2-

negative) 

+ - or low - High  

Endocrine therapy for all patients, 

cytotoxic therapy for most 

Luminal B-like (HER2-

positive) 

+ Any 

Over-

expressed or 

amplified 

NA 

Cytotoxics+anti-HER2+endocrine 

therapy 

ErbB-2 

overexpression 

HER2-positive (non-

luminal) 

Absent Absent 

Over-

expressed or 

amplified 

NA Cytotoxics+anti-HER2 

Basal-like Triple negative (ductal) - - - NA Cytotoxic 

 

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; NA, not applicable. 
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Combining information from different classifications that was discussed above assigns 

patients to a high or low risk groups, determines the prognosis and plans specific treatment 

(Sotiriou and Pusztai 2009).  

1.3.2. Triple Negative Breast Cancer 

 

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, characterized by 

minimal or no expression (less than one per cent expression) of estrogen receptors (ER) and 

progesterone receptors (PR), as well as absence of overexpression of human epidermal growth 

factor 2 (HER2). TNBC makes up 15-20% of breast cancers and affects almost 200,000 patients 

each year (Trivers, et al. 2009; Yao, et al. 2017). 

Compared to hormone-positive breast cancer, these tumors tend to occur more in women 

who are young and/or African-American (Dietze, et al. 2015). Additionally, TNBC patients 

usually are diagnosed at later stages than other breast cancer subtypes and are associated with 

poorer prognosis. Due to its aggressive nature, and high rate of visceral and distant relapse, 

mortality rate is higher in TNBC compared with other breast cancer subtypes. Overall, 5-year 

survival in TNBC patients is 64% in comparison to 81% in non-TNBC patients (Liedtke, et al. 

2008). 

 

1.3.2.1. Genomic profile of Triple Negative Breast Cancer 

 

Although it was argued TNBC and basal like are the same subtype of breast cancer, not all of 

TNBC tumors express basal like subtype markers and not all basal like tumors are TNBC (Cho 

2016). About 80% of TNBC cases are basal subtype. These TNBCs are very aggressive and have 
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high rates of metastasis to the visceral and central nervous system (Carey, et al. 2010). Among 

genes, there is high incidence of BRCA1 and in lesser extent BRCA2 mutation in TNBC patients 

(Stevens, et al. 2013).  

Researchers have tried to classify TNBC into different molecular subtypes.  Lehmann et al 

classified TNBCs with the aim to better helping molecular-based therapies and improving 

prognosis (Lehmann, et al. 2011). They categorized TNBC into six subtypes: basal-like 1 (BL1), 

basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL) 

and luminal androgen receptor (LAR), based on gene expression profile. TNBC, as reported by 

Lehmann et al, is a significantly heterogeneous cancer and subtypes can respond to different 

chemotherapies. Basal like TNBCs may respond to cisplatin, as they are DNA-repair deficient and 

LAR subtype can respond to AR antagonists due to its androgen receptor signaling 

characterization. 

More recently, work by Burstein et al on TNBCs reviewed DNA and RNA profile of 

samples and re-categorized TNBCs into 4 categories: LAR, mesenchymal (MES), basal-like 

immunosuppressed (BLIS) and basal-like immune activated (BLIA) (Burstein, et al. 2015). 

Among these, BLIA has the best and BLIS the worst prognosis. 

 

1.3.2.2. Treatment Strategies for TNBC 

 

As mentioned above, TNBCs do not present receptors, thus these tumors do not respond to 

hormonal therapies. As a result these tumors must be treated by chemotherapeutic drugs, usually 

anthracycline- and taxane-based drug regimens.  TNBCs are more sensitive to chemotherapy than 

ER+ tumors because of higher rates of proliferation. Despite better initial response, the prognosis 

is poorer than other BC types even in early stages (Dent, et al. 2007). One of the main factors in 
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the prognosis is the resistance of TNBCs to chemotherapy treatment. Around 30-55% of patients 

respond completely to powerful chemotherapeutic drugs in pre-operative cases (Carey, et al. 2007; 

Loibl, et al. 2015). However, if the TNBC becomes resistant to such treatment, the prognosis is 

very poor (Cortazar, et al. 2014). Approximately 80% of TNBC patients have residual disease and 

consequently are at risk of relapse and metastasis (Dent, et al. 2007). When metastasis happens, 

tumors may at first show some treatment response, but all of them rapidly become resistant to a 

wide variety of chemotherapeutic drugs. Therefore, it will become difficult to treat them due to 

limited therapeutic options, which leads to the high mortality observed in these cases. Tremendous 

research is in progress on recently discovered therapeutic targets for different pathways and many 

pathways are under investigation in clinical trials (Table 1.3). 
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Table 1. 3. Ongoing studies in the clinical trial stage to investigate therapeutic targets for 

TNBC.  

Modified from Shao et al., Oncotarget. 2017 

 

 

Therapeutic 

targets 

Drug Mechanism of action Patient population 

EGFR Afatinib Pan-ErbB dimers inhibitor TNBC 

Gefitinib EGFR TKI TNBC with EGFR positive 

Cetuximab EGFR-mAb Breast Cancer contains 

TNBC 

MM 151 Oligoclonal anti- EGFR 

antibody 

Advanced solid tumor 

contains TNBC 

Lapatinib EGFR/HER2 TKI Metastatic TNBC 

VEGF/VEGFR Bevacizumab VEGF-A inhibitor TNBC 

Cediranib VEGFR inhibitor Solid tumors contain TNBC 

AR GTx-024 Selective androgen 

receptor modulator 

TNBC with AR positive 

Bicalutamide AR inhibitor TNBC with AR positive 

PI3K/AKT/ 

mTOR 

GSK2141795 AKT kinase inhibitor Cancer contains TNBC 

BKM120 PI3K inhibitor TNBC 

AZD5363 AKT kinase inhibitor Cancer contains TNBC 

PARP Iniparib PARP inhibitor TNBC 

Olaparib PARP inhibitor Cancer contains TNBC 

Talazoparib PARP inhibitor Breast cancer patients with 

BRCA mutation 

Notch pathway PF-03084014 Gamma-Secretase 

inhibitor 

TNBC 

RO4929097 Gamma-Secretase 

inhibitor 

Breast cancer contains 

TNBC 

Hedge-hog 

pathway 

LDE225 Smo antagonist TNBC 

PD-1 JS001 anti-PD-1- mAbs TNBC 

Pembrolizumab anti-PD-1- mAbs TNBC 
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1.3.3. Mechanisms of drug resistance  

 

Resistance to chemotherapy is the underlying cause of most cancer fatalities. Cancer cells have the 

ability to escape from chemotherapy and become resistant to traditional anti-cancer drugs. There 

are different known mechanisms involved in resistance (Figure 1.1).  

One of the ways cancer cells escape from chemotherapy is drug inactivation. Tumor cells 

decrease metabolic activation of the drugs in many ways such as alteration in CYP, and elevation 

of GST expression (Manolitsas, et al. 1997; Shen, et al. 2007). As a result, a drug cannot achieve 

its clinical efficacy or will be detoxified. 

 

 

 

 

 

Figure 1. 1. Different mechanisms involved in drug resistance 
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A drug’s efficacy has a close relationship with its molecular targets. Alteration of these 

drug targets such as modifying enzyme expression level or altering signal transduction process can 

lead to resistance. Examples of this type of resistance in breast cancer are resistance to trastuzumab 

in HER2 positive breast cancer and tamoxifen in ER+ type (Dieras, et al. 2007; Shou, et al. 2004).  

Mutation in the target can also develop resistance. As an example, mutation in topoisomerase II 

gene leads to resistance to drugs that target this enzyme (Holohan, et al. 2013; Stavrovskaya 2000). 

Another main anti-cancer drug resistance mechanism is reducing drug accumulation by 

increasing drug efflux. ATP-binding cassette (ABC) transporter family proteins’ over expression 

is involved in increasing efflux.   Three main known transporters involved in drug resistance are 

multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and 

breast cancer resistance protein (BCRP) (Gottesman, et al. 2002; Haber, et al. 2006; Yanase, et al. 

2004).  

In addition to the above mechanisms, DNA damage response (DDR) mechanisms can fix 

the damage induced by chemotherapy.  As examples, DNA repair via O6-methylguanine DNA 

methyltransferase (MGMT) confer resistance to alkylating chemotherapy agents, and resistance to 

cisplatin occurs due to nucleotide excision repair and homologous recombination (Bonanno, et al. 

2014; Esteller, et al. 2000). 

In addition, cancer cells can inhibit cell death by antiapoptotic activity such as 

downregulating proapoptotic molecules Bax /Bad or highly expressing anti-apoptosis proteins 

such as BCL-2 family proteins and Akt.  

Recent studies, which focused on involvement of cancer stem cells in relapse and 

metastasis, showed drug resistance could emerge during the signalling processes of differentiation 

(Byler, et al. 2014). For example increased expression of integrin αvβ1 serves as a survival signal 
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for cancer cells against drugs by increasing TGFβ expression (Bates and Mercurio 2005). In 

addition, there is a hypothesis that due to aberrant DNA repair mechanisms, cancer tumours are 

not homogenes. This hypothesis surveyed by Witz et al who revealed that breast cancer tumors 

may be either monogenomic or multiple genomic (Witz 2008). This heterogeneity can be another 

reason in drug resistance. 

Importantly, recent studies suggest that epigenetic alterations can have further impact in 

the development of drug resistance (Worm, et al. 2001). Although the role of epigenetics in cancer 

development has been shown before, new findings suggest more studies should be done in this 

area. 

 

1.3.3.1. Genetic basis of drug resistance in TNBC 

 

The genomic characterization of primary TNBCs has revealed  few clues about the factors 

underlying drug resistance. Indeed, primary TNBCs are characterized by frequent p53 mutations 

(>70%) and a high degree of genomic instability, but with few other recurrent actionable mutations 

(Cancer Genome Atlas 2012). Unfortunately, the TP53 gene has not been associated with 

therapeutic response in large retrospective analyses and the best biomarkers of response to 

chemotherapy are BRCA1/2 germline mutations (about 15%), which may indicate responsiveness 

to platinum-based chemotherapy and to PARP inhibitors (de Bono, et al. 2017; Fernandez-Cuesta, 

et al. 2012).  

Resistance to taxanes especially paclitaxel was investigated in several studies. Drug target 

alterations such as mutations in beta-tubulin were reported as a cause of resistance to this 

medication in ovarian cancers (Giannakakou, et al. 1997). Increasing the efflux of the paclitaxel 
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by MDR1 and doxorubicin by both ABCG2 and ABCB1 were accounted as drug resistance factors 

to these drugs (Abdullah and Chow 2013; Litman, et al. 2000). 

In reality, pre-clinical studies showed that the causes of drug resistance in TNBC are 

potentially many. In a specific example, overexpression of ABCC3 drug transporter gene was 

proposed for in vitro resistance to paclitaxel and MMAE (O'Brien, et al. 2008).  Moreover Lu et 

al. suggested loss of E-cadherin expression to be the reason of invasion/metastasis in 7/Adr cells 

resistant to drugs in comparison to their parental control (Lu, et al. 2012). Moitra et al. conferred 

ABCC1 and ABCC6 transporter genes are upregulated in MCF7VP cells significantly which leads 

to decreased cellular uptake (Balaji, et al. 2016; Moitra, et al. 2012). Altered signaling pathways 

resulting in dysregulated apoptosis, DNA repair and autophagy, paracrine effects, and changes in 

microRNA expression are other proposed reasons for drug resistance in TNBCs (Amornsupak, et 

al. 2014; Balaji, et al. 2016; Chen, et al. 2014; Guay, et al. 2008; Moitra, et al. 2012; Nair, et al. 

2016; Tan, et al. 2015; Yao, et al. 2015). 

Nevertheless, none of these molecular factors has been validated in clinical studies in drug-

resistant triple negative breast tumors. Indeed, because of the great difficulty of obtaining clinical 

samples from advanced tumors in patients, there is scant information from actual drug resistant 

tumors. Balko et al provided the first look into the molecular and genomic features of drug-resistant 

TNBCs by using targeted next generation sequencing. They investigated residual tumors 

remaining or persisting after neoadjuvant chemotherapy treatment. By looking at a limited panel 

of genes, they reported several potentially actionable mutations enriched for in the residual tumors, 

including alterations involving the JAK2 and MLL3 genes (Balko, et al. 2014). 

Although many researchers have tried to investigate drug resistance in Triple Negative 

Breast Cancer, still, the mechanism underlying resistance in this subtype, which accounts for much 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lu%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23047512
http://www.ncbi.nlm.nih.gov/pubmed?term=Moitra%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23028896
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higher proportion of all breast cancer mortality, is unknown.  We hypothesize that the treatment 

of TNBC tumors with chemotherapy would lead to the enrichment and/or selection of genomic 

alterations that are associated with resistance to the chemotherapy. Therefore, in chapter four, I 

will explore this hypothesis. 
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1.4. Whole-Exome Sequencing analysis and its challenges 

 

Whole exome sequencing was the primary investigating tool used for analyzing both familial 

pancreatic cancer and triple negative breast cancer samples. A typical WES analysis involves 

several steps such as library preparation, base calling, quality control, mapping, variant calling, 

annotation, filtration and prioritization (Figure 1.2). It is important to know how these steps 

function, as any limitation in any phase impacts downstream analyses. 

 

1.4.1. Exome sequencing data analysis  

 

 

1.4.1.1. Library preparation 

 

The first step in WES is library preparation. Although there is a wide range of protocols, they all 

have common steps: 

1- DNA samples are randomly fragmented to construct the library 

2- Platform specific adaptors are attached to both ends of the fragments 

3- Biotinylated DNA or RNA (baits) probes are used to selectively hybridize exonic 

sequences in solution-based WES (in array-base WES, probes are attached to high-density 

microarray). 

4- The rest of DNA that was not targeted is washed and exonic regions are amplified using 

PCR. 
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1.4.1.2. Base Calling 

 

The base calling step, the identification of each nucleotide in sequence, is an important step in 

accurate and powerful variants detection. Sequencing platforms vendors (Illumina, Roche 454, 

ABI SOLiD), provide image analyses and base calling software. Therefore, base calling is 

remained largely a closed subject. This step suffers from systematic errors due to either nucleotide 

misincorporation in sequencing process or error in reading during image processing. There are 

more base-calling errors at the end of the reads, in the high-GC content, and in inverted repeat 

regions in Illumina platforms. (Ledergerber and Dessimoz 2011; Nakamura, et al. 2011) 

Contamination of foreign DNA with the sample also causes some artifact (Flickinger, et al. 2015). 

In the base-calling field, tremendous efforts have been done to develop high performing base 

calling algorithms. As a result, it is currently possible to reach 99.5% accuracy in base-calling 

(Massingham and Goldman 2012). 

 

1.4.1.3. Quality Control 

 

A critical step in NGS data analysis is quality control (QC). Since base-calling errors can affect 

the biological interpretation of the results, it is necessary to assess and eventually correct the raw 

data from sequencers before proceeding to further analysis steps. Most of the tasks carried out at 

the quality control level involve adaptor clipping, trimming and filtering. Tools to perform 

visualization and statistical summary on the raw data are also useful in this step. 

Quality control (QC) has two steps: 

1) Step one is performed before alignment. The intrinsic quality of the raw reads is obtained 

from metrics generated by the sequencing platform. These data include error percent, per-
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base quality scores and duplication percent. Then, reads with insufficient quality would be 

discarded or trimmed. Next, to prevent PCR-generated errors, duplicate reads would be set 

aside.  

2) Step two is performed after mapping. This step uses calculation metrics from the alignment 

process. Generally, FastQC tool(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

and Picard toolkit (http://picard.sourceforge.net/command-line-overview.shtml) are used for 

QC assessment.  Their generated metrics such as proportion of reads aligned to reference 

genome, average depth of coverage, over-represented sequences, error rate, and duplication 

rate is used for QC. If a sequencing run does not pass QC with acceptable result, it should be 

reported in order to be repeated. 

 

1.4.1.4. Sequence alignment 

 

After raw WES data has passed QC stages, the next step is reconstructing the exome. In this 

process, millions of short reads generated from sequencing are aligned to a human reference 

genome. Then mapping quality score will be calculated to measure how confident the read is 

placed to the correct spot. Currently, many alignment programs have been developed to efficiently 

process these short reads.  The most commonly used program is Burrows-Wheeler Aligner 

(BWA)(Li, et al. 2009) . However, this step still suffers from some limitations due to the fact that 

the current human reference genome is still incomplete. Sequencing platform vendors also makes 

assumption on what regions of the genome are exomic. 

At the end of the WES alignment, each base will be represented by approximately 100 

independent sequencing reads. This amount of coverage is needed to filter random sequencing 

errors that may occur in individual reads.  



31 

 

1.4.1.5. Variant identification 

 

After appropriate QC and sequence alignment are complete, the next step is to determine the 

variation between the sample and the reference genome. These variations include single nucleotide 

variants (SNVs), multi-nucleotide variants (MNVs), small insertions or deletions (INDELs; 

generally less than 50bp, larger structural variants (SVs) and copy number variants (CNVs).  

With current tools and within the context of clinical applications, single nucleotide 

variations (SNVs) and small insertion/deletion (sINDELs) are currently easy to detect, but other 

types of variations (multi-nucleotide variants (MNVs) and combination of SNVs and INDELs at 

a single genomic locus) are at times tricky to accurately identify. Many studies are in progress to 

identify other complex class of variants such as structural variants (SVs), large INDELs, inversions 

and translocations. Yet, the success is not sufficient to be considered in clinical setting.  

The Naïve variant detection approach believes that at any given locus, the number of 

occurrences of each distinct nucleotide among the reads aligned at a position can be counted, and 

that the true genotype would be obvious. This assumption will not work as other factors are 

involved in variant detection. Importantly read quality cutoffs, coverage, and errors should be 

considered when identifying true variants for a specific experiment.  

To determine whether a detected variation in an aligned sequence is a true genetic variation, 

various variant calling (heuristic and probabilistic) methods have been developed. During NGS 

technologies evolvement, the probabilistic (based on Bayesian statistical models) methods, such 

as SAMtools (Li, et al. 2009) and Genome Analyzer Tool Kit (GATK)(McKenna, et al. 2010) have 

proved to be much more robust than heuristic approaches. It might be largely due to their statistical 

assumptions on various sequencing errors. It should be noted that the accuracy of these tools differs 

and depends on the average depth of sequencing and variant type of interest.  
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While SAMtools and GATK HaplotypeCaller (HC) results are similar in calling SNVs 

with a True Positive rate of 97.1% (O'Rawe, et al. 2013), their function differs in calling INDELs. 

This discordance (26.8%) brought the question: which one can be more effective? some studies 

showed that GATK HC could be robust in calling INDELs. It is now however proved that none of 

the above tools is unequivocally best and researchers should be cautious when calling INDEL from 

WES data in a clinical setting (O'Rawe, et al. 2013).  

The sensitivity of variant identification (true positive rate) depends more on coverage depth 

than the software. For example, in a typical WES with 100-150X mean exome coverage, 93% of 

all known coding exons are covered at a depth of 20X or more. This would be almost equal to a 

sensitivity of around 93%, exome-wide. However, the specificity (the probability that a given 

identified variant is real) is dependent on the software that has been applied.  Recent studies show 

slightly better result using GATK (O'Rawe, et al. 2013). Although many improvements have been 

achieved and there are more to come, there are still false positives. These errors can be detected 

partially through visual inspection of the data by experienced analysts using visualization tools 

such as Integrated Genomics Viewer (IGV)(Robinson, et al. 2011).
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Figure 1. 2 . WES Analysis workflow in clinical setting for SNVs and small INDELs. 
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1.4.1.6. Variant annotation 

 

One of the major steps in WES analysis is interpreting the data. Variant annotation is the main step 

for interpreting the data. At first, the variant is classified by its functional category (synonymous, 

missense, non-sense, splicing, frameshift, etc.). Any change that directly affects the amino acid 

sequence is considered as disease-related.  

The other important information is obtained from the presence and frequency of a variant 

in public databases. Many laboratories obtain AF for the variants using Minor Allele Frequency 

(MAF) data from major population databases such as dbSNP (Sherry, et al. 2001), The 1000 

Genomes Project Consortium (1000G), NHLBI Exome Sequencing Project (ESP) (Fu, et al. 2013), 

ExAC database (Karczewski, et al. 2017) and  recently devolved database,  gnomAD 

(http://gnomad.broadinstitute.org) .  As allele frequency (AF) is one of the important factors for 

rare diseases, any variant present at a frequency of more than 5% in normal population in the 

aforementioned databases is unlikely to be of relevance to a rare genetic disease.  

Next, information related to the association between human phenotype and causative genes 

will be added.  These data can be obtained from databases such as  the Online Mendelian 

Inheritance in Man (OMIM) (Amberger, et al. 2011), the Human Gene Mutation Database 

(HGMD) (Stenson, et al. 2014),  and ClinVar (Landrum, et al. 2018). 

Finally, information from in silico predictors such as measures of evolutionary sequence 

conservation (namely scores from PhastCons(Margulies, et al. 2003), GERP++ (Davydov, et al. 

2010), Phylop (Pollard, et al. 2010) and SiPhy (Garber, et al. 2009)) or predictions about the 

variant’s effect on the protein (for example CADD (Kircher, et al. 2014), SIFT (Ng and Henikoff 

2003), and PolyPhen2 (Adzhubei, et al. 2010)) are commonly used to predict the deleteriousness 

of the variant. Currently, ANNOVAR (Yang and Wang 2015) and VEP 

http://gnomad.broadinstitute.org/
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(http://bioinformatics.knowledgeblog.org) are the most applicable bioinformatics tools used for 

annotation. 

 

1.4.1.7. Variant filtering and evaluation 

 

The annotated variants will go through a filtration process. The final goal of this step is to reduce 

candidates to the acceptable number and highlight the most significant ones to validate.  

There is a pre-filtering process independent to the disease of interest and its mode of 

inheritance. In this process, only variants in coding regions, which affect the protein sequence, will 

be retained for further processing. Then, low confidence variants such as common variants on 

known variant databases such as dbSNP and population frequency data sources such as ESP, 

1000G and ExAC will be further filtered.  

The next step in filtering depends highly on the type of the disease.  For example, somatic 

mutations are more important in cancer than germline mutations are in rare diseases. The 

inheritance model (dominant, recessive, homozygous or compound heterozygous, or X-linked) 

and the number of samples involved are other factors that play major roles in this step. Family 

information, segregation in families, and the relationship of the gene to the phenotype will also be 

applied for further filtering. For example, in the case of the rare, fully penetrant Mendelian disease, 

combining information from different affected individuals and their family members helps in 

finding the causal mutations.  

In the end, functional impact predictions and conservation scores such as SIFT, PolyPhen, 

GERP and CADD will be used in order to help ranking the remaining variants. However, the cutoff 

for AF and also prediction scores differ from one disease to another and should be set differently. 

For example, inherited SNVs and INDELs predisposing people to complex diseases are expected 

http://bioinformatics.knowledgeblog.org/
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to occur at a greater frequency in the population than rare diseases and fully penetrant autosomal 

dominant disease. Therefore, in the first scenario, a less stringent threshold might be employed in 

comparison to the second scenario.  

As described above, even though next generation sequencing data are generated by 

common sequencing platforms, analyzing and interpreting the data often requires specialized 

methods.  

 

1.4.2. Challenges in variant prioritization 

 

High-throughput DNA sequencing has revolutionized the identification of variants in the human 

genome. Advances in these technologies reduced the price and made them affordable. Despite 

these technologies being very useful in finding new genes responsible for the diseases, the genetic 

causes of more than 60% of suspected mendelian phenotypes cannot be immediately determined 

with the current NGS analysis method (Yang, et al. 2013). 

A serious challenge in using NGS technologies is interpreting the effect of discovered 

variants. Considering enormous amount of data is generated by next generation sequencing 

technologies these days, finding the real causative variant would be like finding a needle in the 

haystack. Distinguishing pathogenic amino acid changes from background polymorphisms is 

important for efficient use of these technologies in genetic discovery, personalized medicine and 

clinic. Accurate prediction of deleteriousness of genomic changes, especially nonsynonymous 

single nucleotide variants (nsSNVs) is a need in the NGS era. 

To understand the scope of the challenge, each person may hold 24,000–40,000 single 

nucleotide variants, as compared with a reference genome, with many never having been  seen 
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before. Although using common filtering criteria such as population allele frequency and mode of 

inheritance may narrow down the list, hundreds of variants may remain for further investigation 

(O'Fallon, et al. 2013). In case of finding a new gene responsible for a specific disease, having 

multiple affected individuals and focusing on genes mutated in all of them may be helpful. 

However, in case of diagnostics especially in rare diseases, multiple cases from the same family 

may not be available and mode of inheritance is not clear. As a result, common filtering yields a 

large variant list. Manual examination of these numbers of variants requires a lot of time. 

Moreover, experimental validation of the pathogenicity of large numbers of variants is not feasible 

as it is expensive and time consuming. Consequently, many algorithms have been developed to 

predict the potential impact of variants on protein structure. Those methods use various 

computational algorithms and different properties of the variant, such as relationship to local 

protein structure, evolutionary conservation and/or physiochemical and biochemical properties of 

amino acids to predict degree of pathogenicity.  

 

1.4.2.1. Pathogenicity prediction methods 

 

In order to assess the pathogenicity of the variants, different prediction methods have been 

developed. Traditional prediction tools are mainly based on sequence homology. They use 

multiple sequence alignments they each build independently to find the conservation information 

(Lopes, et al. 2012).Their estimate of the deleteriousness of a single nucleotide variant (SNV) is 

based on the assumption that highly conserved areas among living organisms are very important 

and these positions are those that have not been removed by natural selection. Therefore, 

individuals with variants in this area did not fit in the population and likely were removed from it. 

Many prediction methods such as likelihood ratio test (LRT), Sorting Intolerant from Tolerant 
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(SIFT), Genomic Evolutionary Rate Profiling (GERP), Protein Variation Effect Analyzer 

(PROVEAN), Siphy, PhastCons, and Mutation Assessor are from this category (Cooper, et al. 

2005a; Garber, et al. 2009; Kumar, et al. 2009; Reva, et al. 2011; Siepel, et al. 2005).  

LRT applies a likelihood ratio and uses the genomics data set of 32 vertebrate species. It 

can identify subsets of deleterious mutations that disrupt highly conserved amino acids within 

protein-coding sequences (Chun and Fay 2009). On the other hand SIFT applies sequence 

homology and performs alignment on the diverse set of homologs selected (Cline and Karchin 

2011; Kumar, et al. 2009). PROVEAN algorithm computes a semi-global pairwise sequence 

alignment score between the given sequence and each of the set of its related protein 

sequences. GERP, PhastCons, phyloP and SiPhy use sequence information to detect functional 

elements conserved over relatively long evolutionary time periods (Cooper, et al. 2005a; Miosge, 

et al. 2015).   Phastcons and phlyloP use phylogenetic methods. PhastCons uses hidden Markov 

model to identify evolutionarily conserved elements based on a phylogenetic tree of 46 different 

species (Siepel, et al. 2005). It not only considers conservation of individual columns, but also the 

effects of the neighbors. On the other hand, phyloP just measures the conservation in an individual 

nucleotide and predicts a fast evolving or conserved nucleotide (Cooper, et al. 2005a). GERP 

identifies constrained elements. It uses a likelihood tree-based method to calculate difference 

between estimated and expected evolution rate to find the slowly evolving regions that are more 

likely enriched for functional elements (Cooper, et al. 2005a). Mutation Assessor differs from 

other conservational methods in its algorithm, which uses evolutionary conservation in protein 

subfamilies (Reva, et al. 2011). 

Although conservational algorithms have had success in predicting pathogenicity, not all 

the deleterious variants are in the constraint region or conserved among multiple sequence 
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alignment.  To overcome this problem other methods were developed to consider protein structure 

and physiochemical properties besides sequence homology. These methods consider polarity, side 

change volume, secondary structures (alpha helix, beta sheet changes) and 3D structures to 

determine deleteriousness of amino acid change (Figure 1.3). As an example, Polymorphism 

Phenotyping v2 (PolyPhen-2) uses protein structure/function and evolutionary conservation 

information, and applies naïve bayes  with entropy-based discretization approach to predict the 

impact of amino acid change on the stability and function of affected proteins (Adzhubei, et al. 

2010). MutationTaster applies naïve bayes method as well but it uses sequence information and 

annotation data to predict the consequence of amino acid substitution (Schwarz, et al. 2010).  

 

Figure 1. 3. Basics of prediction methods algorithms to estimate deleteriousness of 

nonsynonymous single-nucleotide polymorphism for human diseases.  
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Although such methods undoubtedly provide positive predictive power, they have their 

own limitations due to limited available experimental data. Another problem is the prevalence of 

missing data. That means even the most used prediction methods such as PolyPhen-2 and SIFT 

suffer from high rate of missing data (no prediction) when they were unable to find sufficient 

related protein sequences at the position of interest in their respective multiple sequence alignment 

pipelines (Lopes, et al. 2012). Importantly, when applied on real NGS data, pathogenicity scores 

are often in disagreement with each other (Ioannidis, et al. 2016; Li, et al. 2014). This problem 

makes it difficult to form a list of probable causative candidate variants for validation as it is 

difficult to choose which prediction method is the most reliable and generalizes better. 

It is believed that individual methods have complementary strengths, depending on their 

specific features and algorithms. Hence, recently, new ensemble predictors have combined 

individual scores in order to achieve higher classification accuracy. These methods were trained 

on different training databases and used different machine learning algorithms (Table 1.4). 

The Combined Annotation Scoring Tool (CAROL) and CONsensus DELeteriousness 

score of missense mutations (Condel) were the first ensemble prediction tools. CAROL used 

weighted Z method to combine the predictions of PolyPhen-2 and SIFT and was trained on data 

from dbSNP, HGMD-PUBLIC and 1000 genome (Lopes, et al. 2012). Condel additionally used 

the score from Mutation Assessor and PANTHER and was trained on humvar (Gonzalez-Perez 

and Lopez-Bigas 2011). One of the most successful methods in this category is Combined 

Annotation-Dependent Depletion (CADD). It integrated a large number of sequence based, 

structure based and genomic attributes data and applied support vector machine algorithm on the 

training data consisted of simulated variants (Kircher, et al. 2014).  
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Most recent ensemble methods such as M-CAP (Mendelian Clinically Applicable 

Pathogenicity) and REVEL (rare exome variant ensemble learner) tried to apply new algorithms 

and train on human variants to increase the accuracy. These tools applied supervised machine 

learning algorithms and trained on disease-causing mutations from Human Gene Mutation 

Database (HGMD) in combination with a large number of neutral variants from ExAC and EVS 

(Ioannidis, et al. 2016; Jagadeesh, et al. 2016) (Table 1.4). 

 

In contrast to the above mentioned ensemble tools, Eigen and GenoCanyon were developed 

using unsupervised machine learning algorithm to overcome the pitfall in using labeled data as the 

training dataset. The authors believed the reliance on the labels of the variants in the training set 

affects the accuracy and imprecise training data affect the prediction score significantly. (Ionita-

Laza, et al. 2016; Lu, et al. 2015).  
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Table 1. 4. Description of the most used prediction methods as well as recently developed 

ones. 

 

Method Method description Features 

 

SIFT Statistical method using PSSM 

with Dirichlet priors 

Sequence based (Evolutionary 

conservation) 

PolyPhen-2 Naïve Bayes approach coupled 

with entropy-based 

discretization trained on 

Uniprot 

Sequence based, structure based 

(Protein structure/function and 

evolutionary conservation) 

LRT Log ratio test Sequence based 

GERP  A “Rejected Substitutions” 

score computation to infer the 

constrained region 

Sequence based (Nucleotide conservation 

prediction) 

CADD Support Vector Machines 

trained on simulated and 

observed substitutions 

Conservation, protein function, Encode, 

DNA structure 

PhastCons  Sequence based (Nucleotide conservation 

prediction) 

Mutation 

assessor 

evolutionary conservation 

patterns in protein family 

multiple sequence alignments 

 

fitCons Probabilistic model and 

trained on in-house data 

Conservation, Encode 

DANN Artificial Neural Network, 

trained on simulated and 

observed substitutions 

Conservation, Encode, PolyPhen 

SiPhy  Sequence based (Nucleotide conservation 

prediction) 

PROVEAN  Multiple sequent alignment 

phyloP 

 

Measures p-values for 

conservation or acceleration 

based on an alignment and a 

model of neutral evolution 

 

GAVIN  

 

pathogenic impact distribution 

was calculated as the relative 

proportion of the generalized 

effect impact categories 

 

AF in Exac, SnpEff ,CADD 

Condel 

 

computes a weighted approach 

of missense mutations from 

the complementary cumulative 

distributions of scores of 

Pfam, MAPP, SIFT, PolyPhen, Mutation 

Assesor 

http://mutationassessor.org/r3/
http://mutationassessor.org/r3/
http://provean.jcvi.org/index.php
http://compgen.cshl.edu/phast/background.php
https://molgenis20.gcc.rug.nl/
http://bbglab.irbbarcelona.org/fannsdb/
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Method Method description Features 

 

deleterious and neutral 

mutations , trained on Uniprot 

CAROL WeightedZ method and 

trained on HGMD, dbSNP, 

1000G 

SIFT, PolyPhen 

REVEL Random forest trained on 

HGMD, ESP 

MutPred, FATHMM, VEST, PolyPhen, 

SIFT, PROVEAN, MutationAssessor, 

MutationTaster, LRT, GERP, SiPhy, 

phyloP, and phastCons. REVEL  

FATHMM Hidden Markov model sequence-based method that associates 

evolutionary conservation in homologous 

sequences with disease-specific weights 

MetaSVM Support Vector Machines 

trained on Uniprot 

SIFT score, PolyPhen-2 HDIV, PolyPhen-

2, LRT, Mutation Assessor, FATHMM, 

GERP++, PhyloP, SiPhy and MMAF 

 

MetaLR Likelihood Ratio , 

trained on Uniprot 

SIFT score, PolyPhen-2 HDIV, PolyPhen-

2, LRT, Mutation Assessor, FATHMM, 

GERP++, PhyloP, SiPhy and MMAF 

 

VEST Random Forests, trained on 

HGMD, ESP 

86 predictors from SNVBox 

MutationTaster Naïve bayes model trained on 

OMIM, HGMD and dbSNP 

Sequence based, annotation 

(Protein structure/function and 

evolutionary conservation) 

 

M-CAP Gradient boosting trees SIFT, PolyPhen-2, FATHMM, CADD, 

MutationTaster, MutationAssessor, LRT, 

MetaLR, MetaSVM, RVIS PhyloP, 

PhastCons, PAM250, BLOSUM62, 

SIPHY, GERP and 298 features derived 

from multiple-sequence alignment  

Eigen Unsupervised spectral 

approach trained on dbSNP 

and 1000G 

Conservation, protein function, Encode, 

AF 

GenoCanyon Unsupervised statistical 

learning 

22 features (2 conservation, 8 histon 

modification and 10 TFBS peaks) based on 

ENCODE 

 

 

 

https://sites.google.com/site/revelgenomics/
http://fathmm.biocompute.org.uk/
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1.4.2.1.1. Data sources used as training data 

 

As discussed, many prediction tools were trained or tested on available mutation databases. The 

most commonly used databases are The Universal Protein Resource (UniProt), The Single 

Nucleotide Polymorphism Database (dbsnp), Human Gene Mutation Database (HGMD), and 

ClinVar. 

Uniprot is the database created by the European Bioinformatics Institute (EBI) in 

collaboration with the Swiss Institute of Bioinformatics (SIB) and the Protein Information 

Resource (PIR). Biological information from the literature has been gathered and computational 

analyses have been performed to annotate protein sequences in this database. Part of this database 

was used as a training data for polyphen, Condel, MetaSVM and MetaLR (Apweiler, et al. 2004) 

. 

The Single Nucleotide Polymorphism Database (dbsnp) is a freely available database that 

archives genetic variation within and across different species and contains variants for 55 

organisms.  The dbSNP contains both neutral polymorphisms and polymorphisms corresponding 

to known phenotypes (Sherry, et al. 2001). Mutation taster and Eigen used this database for training 

their methods.  

HGMD is a collection of germ-line mutations in nuclear genes. This database is built based 

on the variants published in peer-reviewed publications. The developers’ aim is to collect variants 

underlie human inherited disease or variant that is closely associated with it. This database has a 

professional version that comes with a fee and a free public version, which is permanently outdate 

for a minimum of 3.5 years.  Disease-causing mutations (DM) label in this database is based on 

the claims of corresponded publication’s authors. This database does not contain any somatic 

mutations (Stenson, et al. 2017). HGMD policy is to enter a variant into the database even if its 

https://en.wikipedia.org/wiki/Genetic_variation
https://en.wikipedia.org/wiki/Species


45 

 

pathological relevance is questionable. CAROL, VEST, MutationTaster, M-CAP, REVEL were 

trained on DM variants from this database. 

ClinVar is a freely available database that combines different interpretation of the same 

variants and it allows users to see any concordance or conflict between different submissions with 

supporting evidence. Moreover, it applies the standardized method recommended by the American 

College of Medical Genetics and Genomics (ACMG) for clinical interpretation of variants. Since 

its release in 2013, ClinVar has grown rapidly, and became the database best representing current 

understanding of the relationship between genotypes and medically important phenotypes. It 

includes both germline and somatic variants (Landrum, et al. 2016). This database is almost new; 

hence, it was used as testing data in the past rather than training data. 

 

1.4.2.1.2. Drawbacks in pathogenicity prediction methods  

 

Several traditional computational methods are developed to prioritize the variants, but they suffer 

from high false positive or false negatives. To overcome this problem, ensemble prediction tools 

applied machine-learning algorithms and were trained on known pathogenic and neutral nsSNVs 

mostly from HGMD or UNIPROT databases. While those databases provide important 

information about variants associated with diseases, they have known limitations. Dorscher and 

his group re-evaluated 239 unique variants classified as disease causing in HGMD. They founding 

showed only 16 unique autosomal dominant variants and 1 autosomal recessive variant pair were 

consistent with a pathogenic or likely pathogenic category (Dorschner, et al. 2013). In another 

study, Bell et al. re-examined recessive disease causing genes’ labels and found 27% of 

annotations were incorrect or are common polymorphisms (Bell, et al. 2011). These incorrect 

annotations resulted as different submitters applied different criteria. Many genetic laboratories 
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had developed their own criteria and followed in-home criteria to predict any variant clinical 

significance. Since they used varying and inconsistent levels of evidence and methodologies, there 

were many conflicts in the interpretations. 

To overcome this discrepancy, American College of Medical Genetics and Genomics 

(ACMG) in collaboration with Association for Molecular Pathology (AMP) recommended a 

guideline for interpreting the variants in a clinical context (Richards, et al. 2015). ClinVar database 

recommended users to apply this guideline in order to consistent and better variant interpretation. 

Today this database becomes a valuable source that archives relationship of variants with their 

clinical phenotype.  

Even though several programs are designed to predict variants’ impact, further 

improvement is needed, especially concerning prediction of clinical relevance. Having access to 

higher confidence variants make developing these tools more feasible. In Chapter 5 of this thesis, 

I will explore this problem. 
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1.5. Rationale and Objectives of Study  

 

Recent advances in next generation sequencing have been transformative in medicine. Next 

generation high-throughput sequencing technologies have been widely used to identify germ-line 

mutations underlying Mendelian disorders and somatic mutations in various cancers. 

Understanding the underlying genetic factors in diseases is important in diagnosis and treatment 

of patients and identification of at-risk family members.   

Family history plays an important role in risk of development for all cancers. Pancreatic 

ductal adenocarcinoma accounts for more than 90% of pancreatic cancers (PC). Although 10% of 

this type of cancer occurs in families, the genetic basis underlying familial pancreatic cancer in 

85-90% of patients is still unknown. Considering DNA repair genes are widely implicated in 

gastrointestinal malignancies, and most known pancreatic genes are involved in DNA repair 

mechanisms, I hypothesize that additional DNA repair genes are involved in hereditary PC. Since 

application of WES in inherited forms of cancers has proved to be successful in revealing causal 

genetic events in a cost-effective manner, the first objective of this thesis is to identify new 

pancreatic cancer susceptibility genes, using WES as the primary investigative tool. I will 

investigate this hypothesis by applying WES to 109 familial pancreatic cases, performing a filter-

based candidate gene approach focused on DNA repair genes. 

For the second part of the thesis, another cancer type that typically has poor prognoses will 

be studied. Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype and 

resistance to chemotherapy is the underlying cause of death in these patients. Although many 

researchers have tried to investigate drug resistance in Triple Negative Breast Cancer, the 

mechanism underlying resistance in this subtype, which accounts for the large proportion of all 
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breast cancer mortality, is still unknown.  We hypothesize that the treatment of TNBC tumors with 

chemotherapy would lead to the enrichment and/or selection of genomic alterations that are 

associated with resistance to chemotherapy. Therefore, as the second objective of this thesis, we 

will explore drug resistance factors in TNBC tumors using WES, in combination with RNAseq 

and aCGH data. 

Although WES is the primary investigating tool for the first two objectives, a serious 

challenge in using this technology is interpreting the effect of discovered variants.  Several 

traditional computational methods are developed to prioritize the variants, but they suffer from 

high false positive or false negative rates. Therefore, further improvement is needed, especially 

concerning prediction of clinical relevance.  I hypothesize that by having access to higher 

confidence variants and better algorithms, we can develop tools that are more efficient. Given this, 

as my third main objective, I will propose a new method to identify disease-relevant 

nonsynonymous single nucleotide variants. 
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2.1. Whole exome sequencing 

 

2.1.1. Library preparation 

 

We performed exome sequencing on familial pancreatic cancer and triple negative breast cancer 

samples. The samples have different qualities; therefore, library preparation was different in these 

two projects.  

2.1.1.1. Familial pancreatic cancer susceptibility project  

 

Pancreatic cancer (PC) cases enrolled in the Ontario or Quebec Pancreas Cancer Studies (OPCS, 

QPCS) were selected. We performed WES for 109 high-risk PC cases from 93 families.  These 

cases were selected on the basis of the family history. They were not carriers of mutations in known 

PC susceptibility genes such as BRCA2, BRCA1, PALB2, ATM, CDKN2A, PRSS1, SPINK1 and 

mismatch repair genes. The study group consisted of 8 early onset cases (less than 50 years old at 

the time of diagnosis) and 101 cases from 85 families with two or more PC-affected relatives. Of 

the familial cases, WES data were performed for 70 cases with available DNA from a single 

affected family member and on 15 families with available DNA from multiple PC-affected family 

members (Table 2.1). We also performed WES on available matched tumor DNA from cases 32B 

and 72.  In one case, 58B, we used existing tumor whole genome sequencing (WGS) data. WES 

was performed on lymphocyte or white blood cell DNA. 

Library capture varied among samples, as during patient collection sequencing 

technologies evolved rapidly. In this project, exome capture was performed by applying standard 

protocols and using the Illumina TruSeq Exome Enrichment Kit in 69 cases, Agilent SureSelect 

Human All Exon V4 in 14 cases and Roche NimbleGen SeqCap EZ kit v3.0 in 26 cases. The 
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sequencing subsequently performed on Illumina HiSeq2000 platforms with 100 base paired-end 

reads (Illumina Inc., San Diego, CA, USA). We obtained mean read depth of 61.8±39.8 for target 

regions. The average percentage of Consensus Coding Sequence (CCDS) bases covered by at least 

5, 10 and 20 reads were 94.0, 89.4 and 77.5 respectively. It should be mentioned that the coverage 

was higher in samples collected later (sequenced by the newer generation capture kits). The mean 

read depth of sequencing for the tumor samples was 130.8±3.3 with 97.1, 96.1 and 94.5 for average 

percentage of CCDS bases (covered by at least 5, 10 and 20 reads respectively). 

 

2.1.1.2. Triple negative breast cancer project 

 

Samples for the second hypothesis (TNBC) were collected from five hospital centers (4 in 

Montreal, QC and 1 in Chicago, IL). Fifty-nine patients were enrolled in this study (Table 2.2). A 

minimum of 500 ng of DNA was used to generate DNA libraries using Agilent’s SureSelect 

standard protocol. In two samples (Neo42 and Neo28), very low quantities of DNA extracted; 

therefore, in these two cases libraries were generated using the Nextera DNA library protocol 

(Illumina Inc.). DNA from matched lymphocytes, pre-chemotherapy breast tumors, and post-

chemotherapy tumors (if available) were sequenced. In one case (Neo31) we sequenced a normal 

breast tumor instead of matched lymphocyte as a control for germline variants. The tumor cell 

cellularity index or percentage was calculated for each tumor sample based on the report from the 

pathologist. 
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Table 2. 1. Clinical characteristics of the 109 PC cases from 93 families at high-risk for 

hereditary PC that underwent whole exome sequencing.  

Characteristics 

Age at diagnosis, mean±SD (range) 61.3±13.2 (20-93) 

Gender, n (%) 
 

Male 54 (49.5) 
 

Female 55 (50.5) 

# PC affected per kindred (n=93), n (%) 
 

1 (young onset) 8 (8.6) 

  2 51 (54.8) 

  3 22 (23.7) 

  ≥ 4 12 (12.9) 

Stage, n (%) 

  0 1 (0.9) 

  IA 1 (0.9) 

  IB 3 (2.8) 

  IIA 15 (13.8) 

  IIB 36 (33.0) 

  III 14 (12.8) 

  IV 38 (34.9) 

  Unknown 1 (0.9) 

Resected, n (%) 

  Y 50 (45.9) 

  N 58 (53.2) 

  Unknown 1 (0.9) 

Chemotherapy, n (%) 

  Y 73 (67.0) 

  N 15 (13.8) 

  Unknown 21 (19.3) 
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Table 2. 2. Types of chemotherapy and clinical characteristics of TNBC patients 

 
  Age at 

diagnosis 

Clinical 

stage at 

diagnosis 

Grade RCB 

Score 

Neoadjuvant 

therapy 

ER (%) PR 

(%) 

Her2 

NEO-01 42 II 2 0 AT 1-3% <1 0 

NEO-02 51 II 3 3 AT 0 0 0 - 1+ 

NEO-03 59 I 2 1 AT 0 0 0 

NEO-04 32 II 3 2 AT <1 (30% 

after 

revision) 

<1 0 

NEO-05 57 II 3 3 T <1 <1 0 

NEO-06 52 II 3 0 AT 0 <1 0 

NEO-07 57 II 2 2 T 0 0 0 

NEO-08 31 II 3 0 AT 0 <1 2+ 

NEO-09 54 II 3 0 TA 0 0 0 

NEO-10 42 II 3 0 Other <1 <1 2+ 

NEO-11 55 II 3 0 AT 0 0 0 

NEO-12 33 II 3 0 AT 0 0 2+ 

NEO-13 65 III 3   AT <1 0 2+ 

NEO-14 68 III 3 0 AT <1 <1 0 

NEO-15 43 I 3 2 AT <1 <1 1+ 

NEO-16 48 II 3 3 Other <1 1-

10% 

0 

NEO-17 50 III 3 3 AT <1 0 1+ 

NEO-18 43 II 3 0 TA <1 <1 1+ 

NEO-19 28 III 2 2 AT <1 0 0 

NEO-20 57 II 3 2 T 1-2 5 2+ 

NEO-21 39 III 3 1 AT 0 0 1+ 

NEO-22 51 I 3 0 AT 0 0 1+ 

NEO-23 51 II 3 0 TA 0 0 1+ 

NEO-24 63 II 3 3 TA <1 <1 1+ 

NEO-25 45 II 3 3 AT <1 <1 1+ 

NEO-26 36 II 3 1 AT 0 0 1+ 

NEO-27 40 II 2 2 AT 0 0 2+ 

NEO-28 52 II 2 2 AT 5 <1 2+ 

NEO-29 26 II 2 0 AT 0 <1 1+ 

NEO-30 65 II 3   AT 0 0 1+ 

NEO-31 51 II 3 2 AT na na 2+ 

NEO-32 40 II 2 2 AT 0 0 0 

NEO-33 42 II 3 0 Other 0 0 0 

NEO-34 39 III 3 0 Other <1 0 0 
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  Age at 

diagnosis 

Clinical 

stage at 

diagnosis 

Grade RCB 

Score 

Neoadjuvant 

therapy 

ER (%) PR 

(%) 

Her2 

NEO-35 49 II 3 2 AT 0 0 1+ 

NEO-36 63 II 2 3 AT 0 0 1+ 

NEO-37 49 II 3 0 AT 0 <1 0 

NEO-38 49 III 3 3 Other 0 3 1+ 

NEO-39 82 II 3 2 T 0 0 1+ 

NEO-40 41 II 3 0 AT 1 50 1+ 

NEO-41 47 II 3 0 AT 0 0 1+ 

NEO-42 43 III 2 3 Other 0 0 0 

NEO-43 66 II 2 1 T <1 0 0 

NEO-44 47 II 3 2 AT <1 <1 1+ 

NEO-45 78 II 3 2 T 0 0 1+ 

NEO-46 54 II 2   AT 0 0 2+ 

NEO-47 43 III 2 2 AT 3 0 1+ 

NEO-48 54 II 2 0 AT 0 0 1+ 

NEO-49 48 III 3 0 AT <1 0 2+ 

NEO-50 47 II 2 2 T 0 0 2+ 

NEO-51 38 II 3 2 AT 0 0 1+ 

NEO-52 48 II 3 0 TA 0 5 0 

NEO-53 33 III 3 0 AT <1 10 0 or 1 

NEO-54 50 III 3 2 AT 4 0 1+ 

NEO-55 41 II 3 0 TA 0 0 2+ 

NEO-56 34 II 3     0 15 2+ 

NEO-57 32 II 3 1 TA <1 5-10 0 

NEO-58 33 II 3 0 TA 0 0 1+ 

NEO-59 47 II 3 2 TA <1 80 0 

NEO-60 76 II 3 0 TA 0 0 1+ 

Total   Stage I:3   

Stage 

II:45  

StageII:12 

Grade 

2:15    

Grade 

3:45 

RCB 

0:24   

RCB 

1:5  

RCB 

2:18  

RCB 

4:9 

T:7  AT:36 

TA:10  

Other:6 

      

A: Anthracycline, T: Taxane 
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2.1.2. Pipeline of Whole exome sequencing data analysis 

Whole exome sequencing was processed using our pipeline (Figure 2.1). Briefly, the 

following workflow was performed.   

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was performed in order to 

control the quality of generated reads from the sequencer. Then adaptor sequences and low-quality 

bases were removed using the Fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). High-

quality trimmed reads were aligned to the human reference genome (UCSC hg19) using the 

Burrows-Wheeler Alignment tool (BWA 0.5.9)(Li and Durbin 2010). Insertions/deletions (indels) 

were re-aligned using Genome Analysis Tool Kit (GATK)(McKenna, et al. 2010). PCR duplicates 

were marked with Picard (DePristo, et al. 2011).  Capture efficiency and coverage of consensus 

coding sequence (CCDS) bases were assessed by GATK (McKenna, et al. 2010). Single nucleotide 

variants (SNVs) and indels were called by means of the SAMtools mpileup software. At the end, 

variants were annotated with ANNOVAR and custom in-house scripts (Li, et al. 2009; Wang, et 

al. 2010).Variants were annotated for frequency in dbSNP (Database of Single Nucleotide 

Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information), 1000 

Genomes Project (Consortium, et al. 2010), NHLBI Exome Variant Server (Exome Variant 

Server), Exome Aggregation Consortium (ExAC)(Exome Aggregation Consortium (ExAC)), 

COSMIC (Forbes, et al. 2015) and ClinVar (Landrum, et al. 2014), as well as for in silico 

pathogenicity prediction scores, SIFT (Kumar, et al. 2009), PolyPhen 2 (Adzhubei, et al. 2010), 

GERP (Cooper, et al. 2005b) and CADD.(Kircher, et al. 2014)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit/
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Figure 2. 1. Pipeline for whole exome sequencing analysis
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2.1.3. Mutation detection 

Since we were looking for different goals in the first two projects (finding germline susceptibility 

genes in FPC samples and somatic mutations in TNBCs), the criteria that was used for mutation 

detection varied between these two studies.  

2.1.3.1. Variant detection in Pancreatic Cancer 

 

The following criteria were performed to filter variants based on their quality: 

1) Base quality score ≥Q20 

2) Number of reads ≥3, with at least 2 alternate reads 

3) Alternate allele fraction >0.2 for SNVs or >0.15 for indels 

Protein-truncating variants (PTVs) most likely to affect protein function were selected. These 

variants consist of nonsense, frameshift indels and canonical splice-site variants. Since PTVs in 

the genes that cause PC are predicted to be rare, we filtered any variant with minor allele frequency 

(MAF) >0.005 in public control databases ( dbSNP, 1000 Genomes Project, NHLBI Exome 

Variant Server)  as well as in our in-house  database (1,045 exomes from unaffected individuals 

run through the same pipeline) (Consortium, et al. 2010; Database of Single Nucleotide 

Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information ; 

Exome Variant Server). Next, any homozygote variants in our case series, the in-house control 

exomes, or the NHLBI Exome Variant Server were excluded as we hypothesized that those causal 

genes follow an autosomal dominant inheritance pattern. Then, we retained rare PTVs in genes 

implicated in DNA repair genes (set of 513 genes) and in recognized PC susceptibility genes not 

associated with DNA repair (i.e., CDKN2A, PRSS1 and SPINK1).  The list of 513 DNA repair 

gene was compiled from genes identified as DNA repair genes in the Gene Ontology project (via 
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AmiGO browser)(Carbon, et al. 2009), genes included in the REPAIRtoire database (Milanowska, 

et al. 2011), and other genes identified through PUBMED literature search.  The selected variants 

were visualized by Integrative Genomics Viewer (IGV) to exclude any sequencing artifacts 

(Robinson, et al. 2011). The selected list of variants was then validated by Sanger sequencing.  

 

Finally, we searched for any missense and in-frame indel variants in DNA repair genes 

harbouring at least one Sanger-confirmed PTV. We used the same quality and allele frequency 

filtering criteria mentioned before for PTV selection. Only missense variants predicted as 

pathogenic by four in silico prediction algorithms were selected. The criteria were as follow: SIFT 

score <0.05), PolyPhen 2 score >0.909, GERP score >2 and CADD_Phred score >15.  Variants 

annotated in ClinVar (Landrum, et al. 2014) as “benign” or “likely benign” were also excluded. 

Visual inspection by IGV was performed and final selected variants were confirmed by Sanger 

sequencing  

 

 2.1.3.2. Mutation detection in TNBC samples 

 

The following criteria were performed to filter variants in these samples: 

1) Any variants with minimum 10 reads in that location 

2) Mapping Quality (MAPQ) of reads < 40   

3) Any variant present in more than 2 non-cancer samples or ranking of the gene as less than 100th 

in the ranking of common mutated genes  

For further analysis, we included only somatic nonsynonymous SNVs, stopgains, frameshift 

indels, and non-frameshift indels not occurring in repetitive regions. We excluded any UTRs or 
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synonymous single nucleotide variants (SNVs).  To estimate the real allele frequency (AF), final 

AFs were corrected by dividing the allele frequency by tumor cellularity:  

Corrected allele frequency = 

𝐚𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐞 𝐛𝐚𝐬𝐞 𝐫𝐞𝐚𝐝𝐬

𝐓𝐨𝐭𝐚𝐥 𝐫𝐞𝐚𝐝𝐬

𝐭𝐮𝐦𝐨𝐫 𝐜𝐞𝐥𝐥𝐮𝐥𝐚𝐫𝐢𝐭𝐲
 

 

We considered any variant as deleterious if the CADD-PHRED score >10, SIFT < 0.5 or 

Polyphen2 > 0.5. In order to analyze DNA copy number from WES data, the Nexus Copy Number 

software (Illumina) was employed to import BAM files from whole exome sequencing.  

 

2.2. Segregation analysis 

Segregation analysis was performed on families using available WES data from multiple PC-

affected family members. In cases, where archived formalin-fixed paraffin-embedded (FFPE) non-

tumor tissue samples were available from relatives affected with PC, genomic DNA was extracted 

to be tested for segregation using Sanger sequencing. For family without samples from PC-affected 

family members, we used DNA from unaffected family members. 

2.3. Loss of heterozygosity 

In two cases WES tumor data and in one case WGS tumor data were available (52B, 72 and 58B). 

Loss of heterozygosity (LOH) or somatic inactivation was assessed in these samples. In cases 

where archived FFPE tumor blocks were available, Sanger sequencing was performed to assess 

LOH. LOH was determined by visually comparing allelic ratios of tumor and normal tissue DNA. 
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2.4. RNAseq analysis 

 

In TNBC project, we performed RNA-seq of 14 Post-chemotherapy/Pre-chemotherapy pairs. All 

samples were sequenced using Illumina HiSeq 2000, 100 nucleotide paired-end reads, generating 

a sample of approximately 50 million reads. The sequencing data were first trimmed with 

CutAdapt and mapped to the human reference genome RefSeq (hg19) using STAR aligner. The 

STAR-Fusion tool was employed for fusion detection, and only fusions that had at least one 

junction read and six spanning flags were kept for further screening.  

2.5. Array CGH  

 

Dr. Basik group in Jewish general hospital performed array CGH for TNBC project. Briefly, 

sample preparation and hybridization was done based on the manufacturer’s protocol. Copy 

number alterations were identified by array CGH analysis using the 244 000 (244 K) 

oligonucleotide probe microarray slides (Agilent Technologies, Santa Clara, CA, USA).  

Reading, pre-processing, and segmentation of aCGH Agilent FE files were performed using 

“limma”,  “cghMCR” , “CNTools” and “DNAcopy” packages of Bioconductor. 

2.6. Pathogenicity prediction model 

2.6.1 Training dataset 

 

The ClinVar database dated January 2016 was downloaded and nonsynonymous variants 

categorized as (1) benign or likely benign or (2) pathogenic or likely pathogenic, were selected as 

our negative (Benign) and positive (Pathogenic) labels respectively. All variants with conflicting 

interpretations in the clinical significance reports were excluded. We restricted our training data 

to the high confidence variants with review status of “criteria provided” from submitter or 
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“reviewed by expert panel”. As a result, 32,910 variants were picked. Next, the variants added to 

ClinVar prior to January 2013 were eliminated to minimize overlap with training data of the 

component features of our predictors and the tools being compared. Since the training data of 

PolyPhen-2 and CADD overlap with our training set, to prevent type 1 circularity, any variants 

existing in their training data were excluded from our data set. Only missense variants were 

retained, resulting in the 11,082 variants, with 7,059 labeled as Benign and 4,023 labeled as 

Pathogenic.  

2.6.2. Test datasets 

 

We assembled eight test datasets. The first independent test dataset (ClinVarTest) was constructed 

from missense variants that were added to the ClinVar database after January 2016 to minimize 

any overlap with the training data of our features as well as other available deleteriousness 

prediction tools’ training data. Any variant that was evaluated before 2016 was excluded from this 

data. To further investigate generalizability of our model with respect to data collection method, 

we constructed our second and third datasets from different sources.   

The second distinct database comprised pathogenic variants in mutagenetix database 

(http://mutagenetix.utsouthwestern.edu).  This is a database of phenotypes and mutations produced 

through random germline mutagenesis induced with N-ethyl-N-nitrosourea (ENU) in mice. 

Phenotypic mutations responsible for a particular phenotype were obtained from the mutagenetix 

database. The UCSC genome browser LiftOver tool was applied to convert genome coordinates 

and annotation from mouse to human GRCH37. Only variants that cause the same amino acid 

changes in humans and mice were kept. We obtained our neutral SNVs for the second test data 

from the VariSNP database, which is the benchmark database for neutral-SNVs (Schaafsma and 

Vihinen 2015). In order to prevent the type II circularity that arises when all the variants in a gene 

http://mutagenetix.utsouthwestern.edu/
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are labelled either pathogenic or benign (Grimm, et al. 2015), we retained only genes that contained 

both benign (VariSNP) and pathogenic (mutagenetix) variants to create the MouseVariSNP test 

data (Figure 2.2).   

The third dataset consisted of variants from DoCM, a database of curated mutations in 

cancers derived from the literature (Ainscough, et al. 2016). We retained only missense variants 

labelled as pathogenic and likely pathogenic to form the DoCM test data. Since this database 

contains only pathogenic variants, we used this test set to compare the sensitivity of the different 

methods. 

In order to determine if performance differs between the gain of function and the loss of function 

gene products, we next constructed four distinct subset datasets from ClinVarTest. Oncogene test 

data consists of 242 Benign and 112 Pathogenic variants in genes defined as oncogenes according 

to the ONGene database.(Liu, et al. 2017) The tumor suppressor gene (TSG) dataset consists of 

635 variants (475 Benign and 160 Pathogenic) on the basis of genes defined as TSG in the TSGene 

database. (Zhao, et al. 2016) Gain of function (GOF) and loss of function (LOF) datasets were 

collected according to the gene-disorder relationship as curated by the Orphanet database 

(http://www.orpha.net/). A description of the datasets is given in Table 2.3.Any variants that 

existed in our training data and the training data of our features were discarded from all test 

datasets. 

 

http://www.orpha.net/
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Figure 2. 2. Description of the MouseVariSNP dataset.  

This dataset was compromised of pathogenic variants in mutagenetix database and neutral variants from VariSNP database. 
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Importantly, to test the application of ClinPred in clinically relevant data, the next dataset 

comprised 31 exome cases of rare disease obtained from the FORGE Canada, Care4Rare Canada 

Consortia and collaborators (Beaulieu, et al. 2014). These samples were considered solved if the 

variant under consideration was in a known gene and the referring clinician provided feedback that 

this gene explained the affected individual’s phenotype. Also, in the case of novel disease genes, 

the variant was considered likely causative for the clinical phenotype in the presence of genetic 

validation (multiple families with mutations in the same gene and similar phenotype) and/or strong 

functional evidence. Since all of these data were novel and published after mid-2015, they have 

not been used to train any predictor. 

Finally, to evaluate how ClinPred matches the results of large-scale functional assay data, 

we constructed the BRCA1 dataset from “A Database of Functional Classifications of BRCA1 

Variants based on Saturation Genome Editing “(Findlay, et al. 2018). This test data consists of 437 

missense loss of function (LOF) and 1464 functional variants from genome editing in 13 BRCA1 

exons that encode critical RING and BRCT domains.  
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Table 2. 3. Description of datasets that were used in chapter 5 

 

Data Total 

variants 

Benign Pathogenic 

Training data 11082 7059 4023 

Test data ClinVar Test 5759 4169 1590 

MouseVariSNP  1897 1680 217 

DoCM  1189 0 1189 

LossFunction 1066 776 290 

GainFunction 293 160 133 

Oncogene 354 242 112 

TSG 635 475 160 

BRCA1 1901 437 1464 

 

 

2.6.3. Features 

 

Having collected the high confidence sets of SNVs, we annotated them with the latest version of 

ANNOVAR using dbNSFP version 3.3a to generate the required prediction scores from different 

component tools. Allele frequencies (AF) of each variant in different populations were obtained 

from the gnomAD database (all exome, African/African American [AFR], Latino [AMR], 

Ashkenazi Jewish [ASJ], East Asian [EAS], Finnish [FIN], Non-Finnish European [NFE], South 

Asian [SAS], Other [OTH]). These AFs were assigned zero if the variant was not represented. The 

potential clinical relevance of each variant is predicted by incorporating AFs and 16 individual 
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prediction scores: SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, LRT, MutationAssessor, 

PROVEAN, CADD, GERP++, DANN, phastCons, fitCons, PhyloP, and SiPhy.(Choi, et al. 2012; 

Gulko, et al. 2015; Kircher, et al. 2014; Quang, et al. 2015; Reva, et al. 2011) These features were 

selected as they represent a wide range of orthogonal information; they were not trained on any 

datasets or their training data is publicly available, thus allowing exclusion from our data and 

preventing type-I circularity. 

2.6.4.. Model definition 

 

We applied random forest (cforest) and gradient boosted decision tree (xgboost) models and used 

the default missing value predictions these algorithms provide for cases where individual scores 

for component predictors are not available.  

We trained each model using either balanced or equal weights: 

• Equal weights assign a weight of one to each example in the training set. For highly 

unbalanced datasets (e.g. 90% Pathogenic, 10% Benign), these models may be 

trivial/sub-optimal. 

• Balanced weights assign a weight to each example so that the total weight of each class 

is equal. For example, if there are 900 Pathogenic and 100 Benign variants, we assign 

each Pathogenic variant a weight of 1 (total weight = 1*900=900), and each Benign 

variant a weight of 9 (total weight=9*100=900). 

 As the results from the balanced weight model were not significantly different from the equal 

weight one (data not shown), for simplicity, we show only balanced weight results for our final 

models. The output of each model is a score between zero and one, with zero corresponding to 

Benign and one to Pathogenic variants. In addition, in order to maximize the sensitivity for 
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detecting pathogenic variants, we defined the higher score of either of these two models (xgboost, 

cforest) as the ClinPred score. 

2.6.5. Comparing the Performance of Individual Predictors 

For each input feature and the comparator models, we learned a univariate model based on each 

training set as follows. We learn the sign (-1 if smaller scores are more likely to be pathogenic; 1 

otherwise) and threshold (score *sign <= threshold predicts Benign; otherwise Pathogenic) that 

minimizes the number of incorrect predictions using all non-missing features in the training data. 

This threshold was used to compute evaluation metrics. 

To quantitatively compare our models with individual features and other models, we 

performed 5-fold cross validation on training, ClinVarTest and MouseVariSNP data. Each data set 

was randomly partitioned into five equal sized subsamples.  In each round of cross-validation, our 

models were trained on 80% of training data and tested on 20% of the test data. In order to allow 

for fair comparison with available methods, the thresholds of other models were learned during 

the cross validation to maximize accuracy. Thus, the performance of our models was compared to 

other recent state-of-the-art tools such as VEST3, MetaSVM, MetaLR, M-CAP, fathmm-MKL, 

Eigen, GenoCanyon and REVEL (Carter, et al. 2013; Dong, et al. 2015; Ioannidis, et al. 2016; 

Ionita-Laza, et al. 2016; Jagadeesh, et al. 2016; Lu, et al. 2015; Shihab, et al. 2015). Following the 

guidelines for reporting and using prediction tools, we computed seven evaluation metrics on each 

test based on the learned threshold described above. These metrics include sensitivity (true positive 

rate), specificity (1-false positive rate), accuracy, precision, F1 Score and Matthew correlation 

coefficient (MCC) as well as the area under the test receiver operating characteristic curve (AUC) 

(Niroula and Vihinen 2016; Vihinen 2013). 
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Figure 2. 3. Description of the ClinPred method 
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Chapter 3: Candidate DNA repair susceptibility genes in 

familial pancreatic cancer 
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Borgida, Anita Hall, Thomas Whelan, Spring Holter, Treasa McPherson, Sean Cleary, Gloria M. 
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3.1. Introduction 

 

Pancreatic ductal adenocarcinoma (PC) has a very poor prognosis.  The majority of the affected 

patients are diagnosed late when the tumor is inoperable. Thus, current treatment options are 

limited and largely ineffective. Around 10 percent of PDACs occur in families. In a family affected 

by pancreatic cancer (FPC), at least one pair of first-degree relatives is affected. Although some 

environmental factors or stochastic effects can be the underlying cause in some FPCs, many are 

thought to be due to an underlying genetic susceptibility; hence, programs that help to detect 

individuals at increased risk may improve clinical outcomes (Shi, et al. 2009). Although PC 

develops over a decade following the primary somatic mutation, screening strategies that just 

consider family history were not effective (Al-Sukhni, et al. 2012; Langer, et al. 2009; Yachida, et 

al. 2010). Therefore, full knowledge of causative germline mutations will help to identify high-

risk individuals and allow for more specific screening programs. 

  Hereditary PC occurs either alone or as part of a tumor spectrum in families. In 10 to 15 

percent of FPCs, the increased risk of pancreatic cancer can be ascribed to known FPC 

susceptibility genes such as BRCA1, BRCA2, CDKN2A, MLH1, MSH2, MSH6, PMS2, PRSS1, 

SPINK1, STK11/LB1, PALB2 and ATM (Jones, et al. 2009). The genetic basis underlying this 

disease predisposition in the remaining 85-90 percent of patients is still unknown. Therefore, there 

are other FPC susceptibility genes yet to be discovered. 

Findings from prior researches on FPC patients suggest autosomal dominant inheritance of 

a rare allele(s) with variable penetrance for remaining unknown susceptibility genes (Klein, et al. 

2002). Further linkage and genome-wide association studies were not successful to find novel 

medium or high penetrant PC susceptibility loci (Childs, et al. 2015; Klein 2013). Since DNA 
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repair genes are widely implicated in gastrointestinal malignancies, and account for the majority 

of hereditary PC attributable to known PC predisposition genes (BRCA1, BRCA2, ATM, PALB2, 

mismatch repair genes), we hypothesized that additional DNA repair genes are involved in 

hereditary PC (Bartsch, et al. 2012; Hruban, et al. 2010; Rubinstein and Weissman 2008). 

Therefore, we employed a DNA repair candidate gene approach to interrogate whole exome 

sequencing (WES) data for novel susceptibility genes (Bartsch, et al. 2012; Hruban, et al. 2010). 

 

3.2. Results 

 

 

 

3.2.1. Whole exome sequencing 

 

WES data was performed on 109 high-risk PC cases from 93 families. The list of 513 DNA repair 

gene was compiled from genes identified as DNA repair genes in the Gene Ontology project (via 

AmiGO browser)(Carbon, et al. 2009), genes included in the REPAIRtoire database(Milanowska, 

et al. 2011) and other genes identified through PUBMED literature search (Table 3.1).  Patient 

selection criteria and WES process was explained in method section and the algorithm briefly 

outlined in Figure 3.1. 
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Table 3. 1. List of 513 DNA repair genes compiled from the Gene Ontology project, 

REPAIRtoire database and PUBMED. 

 

DNA Repair Genes 
AATF 

ABL1 

ACTR5 

AKT1 

ALKBH1 

ALKBH2 

ALKBH3 

AP5S1 

AP5Z1 

APEX1 

APEX2 

APITD1 

APLF 

APTX 

ASCC3 

ASF1A 

ASTE1 

ATF2 

ATM 

ATMIN 

ATR 

ATRIP 

ATRX 

ATXN3 

AXIN2 

BABAM1 

BAP1 

BARD1 

BAX 

BAZ1B 

BCCIP 

BLM 

BRAP 

BRCA1 

BRCA2 

BRCC3 

BRE 

BRIP1 

BTG2 

BUB1 

BUB1B 

C11orf30 

C17orf70 

C19orf40 

CASP3 

CCNA1 

CCNA2 

CCNB1 

CCND1 

CCNE1 

CDKN2A 

CDKN2D 

CEBPG 

CEP164 

CEP170 

CETN2 

CHAF1A 

CHAF1B 

CHD1L 

CHD4 

CHEK1 

CHEK2 

CHRNA4 

CIB1 

CINP 

CLSPN 

COPS5 

CRB2 

CREB1 

CREBBP 

CRY1 

CRY2 

CSNK1D 

CSNK1E 

CUL4A 

CUL4B 

CYP19A1 

CYP1A1 

DAPK1 

DBF4 

DCLRE1A 

DCLRE1B 

DCLRE1C 

DDB1 

DDB2 

DDR1 

DDX1 

DEK 

DHX9 

DMAP1 

DMC1 

DNA2 

DOT1L 

DTL 

DTX3L 

DUSP3 

DYRK2 

E2F1 

E2F2 

E2F4 

ERCC8 

ESCO1 

ESCO2 

ESR1 

ETS1 

EXO1 

EXO5 

EYA1 

EYA2 

EYA3 

EYA4 

FAM175A 

FAN1 

FANCA 

FANCB 

FANCC 

FANCD2 

FANCE 

FANCF 

FANCG 

FANCI 

FANCL 

FANCM 

FBXO18 

FBXO6 

FEN1 

FGF10 

FHIT 

FIGN 

FIGNL1 

FOS 

FOXM1 

FTO 

FZR1 

GADD45A 

GADD45G 

GEN1 

GPS1 

GSTP1 

GTF2H1 

GTF2H2 

GTF2H2C 

GTF2H3 

GTF2H4 

GTF2H5 

H2AFX 

HDAC1 

HDAC2 

HELQ 

HERC2 

INO80D 

INO80E 

INTS3 

IRS1 

JMY 

JUN 

KAT5 

KDM2A 

KIAA0101 

KIAA0430 

KIAA2022 

KIF22 

KIN 

KPNA2 

LIG1 

LIG3 

LIG4 

MAD2L2 

MBD4 

MC1R 

MCM9 

MCPH1 

MDC1 

MDM2 

MDM4 

MED17 

MEIOB 

MEN1 

MGME1 

MGMT 

MLH1 

MLH3 

MMS19 

MMS22L 

MNAT1 

MORF4L1 

MORF4L2 

MPG 

MRE11A 

MSH2 

MSH3 

MSH4 

MSH5 

MSH6 

MTA1 

MUM1 

MUS81 

MUTYH 

MYC 

NABP1 

NTHL1 

NUDT1 

OGG1 

OTUB1 

PALB2 

PAPD7 

PARG 

PARP1 

 

PARP2 

PARP3 

PARP4 

PARP9 

PARPBP 

PCNA 

PLK1 

PLK3 

PMS1 

PMS2 

PNKP 

POLA1 

POLB 

POLD1 

POLD2 

POLD3 

POLD4 

POLDIP3 

POLE 

POLE2 

POLE3 

POLE4 

POLG 

POLG2 

POLH 

POLI 

POLK 

POLL 

POLM 

POLN 

POLQ 

POLR2A 

POLR2B 

POLR2C 

POLR2D 

POLR2E 

POLR2F 

POLR2G 

POLR2H 

POLR2I 

POLR2J 

PSMD3 

PTTG1 

RAD1 

RAD17 

RAD18 

RAD21 

RAD23A 

RAD23B 

RAD50 

RAD51 

RAD51AP1 

RAD51B 

RAD51C 

RAD51D 

RAD52 

RAD54B 

RAD54L 

RAD9A 

RAD9B 

RASSF1 

RB1 

RBBP4 

RBBP7 

RBBP8 

RBM14 

RBX1 

RDM1 

REC8 

RECQL 

RECQL4 

RECQL5 

RELA 

REV1 

REV3L 

RFC1 

RFC2 

RFC3 

RFC4 

RFC5 

RFWD2 

RFWD3 

RHNO1 

RNASEH2A 

RNF168 

RNF169 

RNF8 

RPA1 

RPA2 

RPA3 

RPA4 

SIRT1 

SIRT6 

SLC30A9 

SLX1A 

SLX4 

SMAD2 

SMAD3 

SMAD4 

SMAD7 

SMARCA1 

SMARCA2 

SMARCA4 

SMARCA5 

SMARCAD1 

SMARCB1 

SMARCC2 

SMARCD1 

SMARCD2 

SMC1A 

SMC2 

SMC3 

SMC4 

SMC5 

SMC6 

SMG1 

SMUG1 

SMURF2 

SOD1 

SP1 

SPATA22 

SPIDR 

SPO11 

SPP1 

SPRTN 

SSRP1 

STAT1 

STRA13 

SUMO1 

SUPT16H 

SWI5 

SWSAP1 

SYCP1 

TAOK1 

TAOK2 

TAOK3 

TCEA1 

TDG 

TDP1 

TDP2 

TELO2 

TP73 

TREX1 

TREX2 

TRIP12 

TRIP13 

TTC5 

TWIST1 

TYMS 

UBA1 

UBA52 

UBB 

UBC 

UBE2A 

UBE2B 

UBE2D3 

UBE2I 

UBE2N 

UBE2NL 

UBE2T 

UBE2U 

UBE2V2 

UBE4B 

UHRF1 

UIMC1 

UNG 

UPF1 

USP1 

USP28 

USP3 

USP47 

USP7 

UVRAG 

UVSSA 

VCP 

WDR16 

WDR33 

WDR48 

WEE1 

WHSC1 

WRN 

WRNIP1 

WWP1 

WWP2 

XAB2 

XPA 

XPC 

XRCC1 

XRCC2 

XRCC3 

XRCC4 
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DNA Repair Genes 
CCNH 

CCNO 

CDC14B 

CDC25A 

CDC25B 

CDC25C 

CDC45 

CDC6 

CDH13 

CDK1 

CDK2 

CDK4 

CDK7 

CDKN1A 

CDKN1B 

E2F6 

EEPD1 

EGFR 

EME1 

EME2 

ENDOV 

EP300 

EPC2 

ERBB2 

ERCC1 

ERCC2 

ERCC3 

ERCC4 

ERCC5 

ERCC6 

HIC1 

HINFP 

HIST3H2A 

HMGB1 

HMGB2 

HUS1 

HUS1B 

HUWE1 

IFI16 

IGF1 

IGHMBP2 

IKBKG 

INIP 

INO80 

 

NABP2 

NBN 

NCOA6 

NEIL1 

NEIL2 

NEIL3 

NEK1 

NEK11 

NFKB1 

NHEJ1 

NINL 

NME1 

NONO 

NSMCE1 

NSMCE2 

POLR2K 

POLR2L 

PPM1D 

PPP1CA 

PPP2R2A 

PPP2R5A 

PPP2R5B 

PPP2R5C 

PPP2R5D 

PPP2R5E 

PPP4C 

PPP4R2 

PRKDC 

PRMT6 

PRPF19 

RPAIN 

RPS27A 

RPS27L 

RPS3 

RRM2B 

RTEL1 

RUVBL1 

RUVBL2 

SETD2 

SETMAR 

SETX 

SFPQ 

SFR1 

SHFM1 

SHPRH 

TERF1 

TERF2 

TERF2IP 

TEX12 

TEX15 

TICRR 

TMEM161A 

TNP1 

TONSL 

TOP1 

TOP2A 

TOP3A 

TOPBP1 

TP53 

TP53BP1 

XRCC5 

XRCC6 

XRCC6BP1 

YY1 

ZBTB32 

ZFYVE26 

ZNF350 

ZRANB3 

ZSWIM7 
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Figure 3. 1. Schematic of the exome sequencing data analysis in FPC project.  

Variants remaining after each filtering step are indicated. SNV, single nucleotide variant; indel, insertion/deletion; PTV, protein-

truncating variant; MAF, minor allele frequency.  
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3.2.2. Identification of DNA repair gene variants 

 

Variant filtering as described in method section (Figure 3.1) was applied to the germline WES 

from 109 samples. After performing quality filtering, a total of 52,933 nonsynonymous and indel 

variants remained. Only variants that cause protein truncating (PTVs) were kept (n=2569).  We 

then exclude homozygous variants and retained only variants with MAF < 0.005 in our in-house 

control exome database (1045 unaffected samples), the 1000 Genomes Project or the NHLBI 

Exome Variant Server (n=1905 rare PTVs). Any variant that was located in our 513 DNA repair 

gene list or CDKN2A, PRSS1, and SPINK1 genes was picked for further evaluation.  We could 

identify 70 variants in 56 DNA repair genes. Then these variants were visually inspected by IGV 

to exclude any false positive. After excluding 22 false positives variants, remaining variants (48 

variants located in 44 genes) were further evaluated by Sanger sequencing. Among them, 93.8% 

(45 PTVs in 42 DNA repair genes) were validated by Sanger sequencing. Of these variants, 16 

were nonsense, 20 were frameshift indels, and nine were splice-site variants. Description of these 

45 PTVs variants was given in table 3.2.  Forty-one PC cases in 37 families had one or more PTVs 

in a DNA repair gene. One of these variants were located in BRCA2 that is a known PC 

susceptibility gene [BRCA2:c.4691dupC (p.Thr1566Aspfs*9)]. Therefore, we excluded this 

variant. 

Of the remaining 41 novel genes identified in 36 families, four genes (FANCL, MC1R, 

NEK1 and RHNO1) had PTVs in multiple families. Seven individuals were carriers of two PTVs; 

one individual was a carrier of three PTVs, while two families had different affected family 

members carrying different PTVs (Table 3.2). 
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Table 3. 2. Description of the 45 PTVs validated by Sanger sequencing.  

Modified from Smith et al., Cancer Letter, 2016. 

 

Gene Chr. Pos. Variant (HGVS nomenclature) MAF 

IHa 

MAF 

EVS 

MAF 

1000G 

MAF ExAC 

AATF chr17:35307578 c.158_159dup (p.Gly54Trpfs*157) 0 0 0 0 

BARD1 chr2:215595181 c.1935_1954dup (p.Glu652Valfs*69) 0 0 0 0 

BCCIP chr10:127520177 c.599+1G>A 0.00087 0.00038 0 2.36E-04 

BLM chr15:91292792 c.298_299del (p.Gln100Glufs*42) 0 0 0 0 

BRCA2 chr13:32913182 c.4691dupC (p.Thr1566Aspfs*9) 0 7.99E-05 0 0 

C17orf70 chr17:79518071 c.449G>A (p.Trp150*) 0 0 0 0 

CDC6 chr17:38449789 c.743del (p.Gln248Argfs*16) 0 0 0 0 

CEP164 chr11:117282575 c.4228C>T (p.Gln1410*) 0.0017 0.0016 0.0004 7.89E-04 

CHD1L chr1:146742591 c.1086-2A>G 0 0 0 0 

DCLRE1A chr10:115612530 c.C412T (p.Arg138*) 0.0048 0.0024 0.002 0.0027 

DNA2 chr10:70182188 c.2493-2A>G 0 0 0 0 

ENDOV chr17:78395694 c.295C>T (p.Arg99*) 0.00087 7.80E-05 0.0044 0.0012 

ERCC6 chr10:50680423 c.2923C>T (p.Arg975*) 0 0 0 2.44E-05 

FAN1 chr15:31214513 c.2128C>T (p.Arg710*) 0 7.70E-05 0 2.44E-05 

FANCG chr9:35074472 c.1652_1655del (p.Tyr551Phefs*7) 0 0 0 0 

FANCL chr2:58386928 c.1096_1099dup (p.Thr367Asnfs*13) 0.0013 0.0025 0 0 

HUS1 chr7:48018013 c.357+1G>A 0 0 0 2.44E-05 

IGHMBP2 chr11:68701332 c.1488C>A (p.Cys496*) 0 0.00015 0.0002 1.47E-04 

MC1R chr16:89985733 c.67C>T (p.Gln23*) 0 0.00092 0.0014 4.01E-04 

MC1R chr16:89985750 c.86dup (p.Asn29Lysfs*14) 0.0044 0.003 0 0 

MC1R chr16:89986122 c.456C>A (p.Tyr152*) 0 0.00023 0.0002 6.67E-04 

MGMT chr10:131565137 c.593G>A (p.Trp198*) 0.00044 0 0 1.22E-04 

MLH3 chr14:75509094 c.3367C>T (p.Gln1123*) 0 0.00015 0.0004 8.95E-05 

NEIL1 chr15:75641315 c.330_331insAGGC (p.Ala111Argfs*46) 0.0017 0 0 0 
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Gene Chr. Pos. Variant (HGVS nomenclature) MAF 

IHa 

MAF 

EVS 

MAF 

1000G 

MAF ExAC 

NEK1 chr4:170428209 c.1687_1688del (p.Ala563Tyrfs*36) 0 0 0 0 

NEK11 chr3:130828766 c.455+1G>A 0 0 0 1.63E-05 

NINL chr20:25434092 c.4142_4143del (p.Ser1381Cysfs*17) 0.00044 0 0 0 

PARG chr10:51363054 c.1018_1019insG (p.Lys340Argfs*11) 0 0 0 2.66E-05 

PARP3 chr3:51978471 c.401del (p.Lys134Argfs*33) 0 0 0 0 

PMS1 chr2:190719824 c.1826G>A (p.Trp609*) 0 0 0 0 

POLE3 chr9:116172359 c.127del (p.Val43Serfs*15) 0 0 0 0 

POLL chr10:103345072 c.573+1G>A 0 0 0 0 

POLN chr4:2230817 c.133del (p.Thr45Leufs*4) 0 0 0 0 

POLQ chr3:121217455 c.2021dup (p.Lys675Glufs*16) 0.00044 7.99E-05 0 0 

RFC2 chr7:73646495 c.1006C>T (p.Gln336*) 0 0 0 0 

RHNO1 chr12:2997158 c.250C>T (p.Arg84*) 0.0017 0.0016 0.0008 0.0012 

RHNO1 chr12:2997245 c.337C>T (p.Arg113*) 0 0 0 0 

SMC2 chr9:106875703 c.1365_1366del (p.Arg456Thrfs*2) 0 0 0 0 

SPP1 chr4:88901197 c.94-1G>A 0.00087 0.00077 0.000599 8.46E-04 

TEX15 chr8:30700833 c.5699_5700del (p.Arg1900Asnfs*22) 0.0026 0.00072 0 0 

TONSL chr8:145668147 c.490del (p.Leu164Serfs*72) 0 0 0 0 

UBE2U chr1:64707361 c.622C>T (p.Gln208*) 0.00044 0.0032 0.002 9.52E-04 

WDR48 chr3:39125749 c.1278_1279del (p.Gly427Aspfs*8) 0 0 0 2.44E-05 

WRN chr8:30999118 c.3138+2T>G 0 0 0 0 

ZSWIM7 chr17:15897070 c.98+1G>A 0 0 0 8.18E-06 

 

Chr. Pos. chromosomal position; MAF, minor allele frequency; IH, in-house; EVS, NHLBI Exome Variant Server; 1000G, 1000 

Genomes Project; ExAC, Exome Aggregation Consortium;  

a In-house unaffected control exomes (n=1,045) 
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In order to prioritize candidate genes, we then searched for missense and in-frame indel variants 

in the WES data for these 41 DNA repair genes confirmed by Sanger sequencing (Figure 3.1). We 

applied the same quality and control filtering that we used for PTVs. Any variant labeled as 

“benign” in ClinVar was also excluded.  Just missense variants predicted to be pathogenic by four 

in silico prediction tools were retained, resulting 18 missense variants and 2 in-frame indels in 16 

DNA repair genes (Table 3.3). Sanger sequencing confirmed all of these variants. Twenty-two PC 

cases in 19 families had one or more missense variant or in-frame indel. Interestingly, three PC 

cases were carriers of multiple nonsynonymous variants and five cases were carriers of both a PTV 

and one or more nonsynonymous variant (Table 3.4). Five genes (DCLRE1A, FAN1, POLQ, 

TEX15, and TONSL) had a missense variant or in-frame indel in multiple families.
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Table 3. 3. Description of the 20 missense and in-frame indels validated by Sanger sequencing 

Modified from Smith et al., Cancer Letter, 2016. 

 
Gene Chr. Pos. Variant (HGVS 

nomenclature) 

MAF 

IHa 

MAF EVS MAF 

1000G 

MAF 

ExAC 

SIFT PolyPhen

-2 

CADD GERP 

AATF chr17:35311130 c.755A>G 

(p.Asn252Ser) 

0 0 0 0 0.02 0.986 23.8 5.88 

CEP164 chr11:117244534 c.1220C>T 

(p.Ser407Phe) 

0.0004

4 

0.0011 0 8.05E-

04 

0 0.912 18.48 5.18 

CHD1L chr1:146756048 c.1730G>A 

(p.Gly373Asp) 

0 7.70E-05 0 0 0.01 1 22.7 5.65 

DCLRE

1A 

chr10:115602192 c.2575A>T 

(p.Ile859Phe) 

0.0035 0.004 0.0018 0.002

7 

0.02 0.926 24.1 3.66 

ENDOV chr17:78399353 c.647G>T 

(p.Ser171Ile) 

0 0.00024 0 1.97E-

04 

0 0.934 19.78 4.9 

ERCC6 chr10:50690906 c.1996C>T 

(p.Arg666Cys) 

0.0026 0.0015 0.001 0.001

7 

0 0.987 27.1 5.57 

FAN1 chr15:31197015 c.149T>G 

(p.Met50Arg) 

0.0013 0.0027 0.0018 0.002 0.01 0.974 22.8 5.15 

MC1R chr16:89986522 c.862_864del 

(p.Ile288del) 

0 0 0 8.29E-

06 

. . . . 

MLH3 chr14:75514503 c.1856A>T 

(p.Lys619Ile) 

0 0 0 8.13E-

06 

0.01 0.925 16.23 2 

NEK1 chr4:170398474 c.2235T>G 

(p.Asn648Lys) 

0.0031 0.0044 0.0016 0.003

8 

0.01 0.999 21.8 5.57 

POLN chr4:2097622 c.2021G>A 

(p.Arg674Lys) 

0 0 0 0 0 1 16.16 3.68 

POLQ chr3:121151236 c.7688A>G 

(p.Glu2563Gly) 

0.0004

4 

0 0 1.63E-

05 

0 1 22.8 4.81 

POLQ chr3:121155119 c.7393G>A 

(p.Glu2465Lys) 

0.0004

4 

0.00054 0 3.17E-

04 

0 1 32 5.81 

POLQ chr3:121168167 c.7259A>G 

(p.Tyr2420Cys) 

0.0004

4 

0.00046 0.0002 3.01E-

04 

0 0.999 21.2 5.41 
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Gene Chr. Pos. Variant (HGVS 

nomenclature) 

MAF 

IHa 

MAF EVS MAF 

1000G 

MAF 

ExAC 

SIFT PolyPhen

-2 

CADD GERP 

RHNO1 chr12:2994578 c.45_46delinsAG 

(p.Leu16Val) 

0.0048 0 0.0008 0.003

7 

0 0.999 16.25 4.44 

TEX15 chr8:30701070 c.5464T>A 

(p.Leu1822Ile) 

0 7.70E-05 0 1.55E-

04 

0 0.999 17.18 5.54 

TEX15 chr8:30704934 c.1585_1599del 

(p.Ile529_Glu533del) 

0 8.02E-05 0 0 . . . . 

TONSL chr8:145660507 c.2899C>T 

(p.Arg967Cys) 

0 0 0 0 0 0.997 21.2 3.92 

TONSL chr8:145662005 c.1950C>G 

(p.Asp650Glu) 

0.0004

4 

0.0015 0.0004 9.76E-

04 

0.03 0.991 17.41 2.51 

WRN chr8:31012237 c.3785C>G 

(p.Thr1262Arg) 

0.0017 0.0035 0.0008 0.002

749 

0 0.974 19.22 5.48 

 

Chr. Pos. chromosomal position; MAF, minor allele frequency; IH, in-house; EVS, NHLBI Exome Variant Server; 1000G, 1000 Genomes Project; 

ExAC, Exome Aggregation Consortium. a In-house unaffected control exomes (n=1,045) 
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3.2.3. Segregation analyses 

 

In the next step, we performed segregation analysis for all validated variants. We looked at 

available WES sequencing data from affected family members and available DNA from affected 

or unaffected relatives (see method). We should note that we could not find samples for segregation 

analysis for all the variants. Out of 36 variants that we have family samples for segregation 

analysis, 18 variants in 14 genes showed segregation with PC in two or more affected family 

members (Table 3.5). Interestingly, five genes had variants segregated in two families. These genes 

were AATF, CHD1L, FAN1, NEK1 and RHNO1.  Descriptions of these variants are shown in 

table 3.5. 

            

3.2.4. Loss of heterozygosity analyses 

 

LOH was assessed in all cases where tumor WES data were available or in cases where archived 

FFPE tumor blocks were available. We could assess LOH for 27 variants in 29 tumors. Out of 

these variants loss of the wild-type allele observed for three variants [MGMT:c.593G>A 

(p.Trp198*), RHNO1:c.250C>T (p.Arg84*), WDR48:c.1278_1279del (p.Gly427Aspfs*8)] 

(Table 3.6). Twenty-two variants in 24 tumors did not show LOH. Loss of the alternate allele was 

seen in two variants [MLH3:c.1856A>T (p.Lys619Ile) and PMS1:c.1826G>A (p.Trp609*)].  We 

could not find any second somatic mutation in two WES tumor data that was available for 52B 

and 72 patients with germline mutation in MC1R and NINL. Similarly, the WES analysis of 58B 

patient tumor (with germline mutation in FAN1) did not show somatic mutation in this gene (Table 

3.6). 
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Table 3. 4. PC cases with more than one variant in a putative DNA repair gene.  

Modified from Smith et al., Cancer Letter, 2016. 

 

Sample ID Gene Variant 

2 CDC6 c.743del (p.Gln248Argfs*16) 

2 TONSL c.490del (p.Leu164Serfs*72) 

3A HUS1 c.357+1G>A 

3A TONSL c.2899C>T (p.Arg967Cys) 

14 MC1R c.67C>T (p.Gln23*) 

14 UBE2U c.622C>T (p.Gln208*) 

16 CEP164 c.4228C>T (p.Gln1410*) 

16 ENDOV c.647G>T (p.Ser171Ile) 

16 POLN c.2021G>A (p.Arg674Lys) 

24A TEX15 c.5699_5700del (p.Arg1900Asnfs*22) 

24A DCLRE1A c.2575A>T (p.Ile859Phe) 

31B POLL c.573+1G>A 

31B RFC2 c.1006C>T (p.Gln336*) 

43 NEIL1 c.330_331insAGGC (p.Ala111Argfs*46) 

43 RHNO1 c.250C>T (p.Arg84*) 

47 FANCL c.1096_1099dup (p.Thr367Asnfs*13) 

47 PARG c.1018_1019insG (p.Lys340Argfs*11) 

47 POLN c.133del (p.Thr45Leufs*4) 

53A CEP164 c.1220C>T (p.Ser407Phe) 

53A POLQ c.7393G>A (p.Glu2465Lys) 

53B ERCC6 c.2923C>T (p.Arg975*) 

53B CEP164 c.1220C>T (p.Ser407Phe) 

68A POLQ c.7688A>G (p.Glu2563Gly) 

68A TEX15 c.5464T>A (p.Leu1822Ile) 

72 NINL c.4142_4143del (p.Ser1381Cysfs*17) 

72 WDR48 c.1278_1279del (p.Gly427Aspfs*8) 

78A NEK1 c.1687_1688del (p.Ala563Tyrfs*36) 

78A SPP1 c.94-1G>A 

78B BLM c.298_299del (p.Gln100Glufs*42) 

78B SPP1 c.94-1G>A 

81 ZSWIM7 c.98+1G>A 

81 DCLRE1A c.2575A>T (p.Ile859Phe) 

89 MC1R c.862_864del (p.Ile288del) 

89 NEK1 c.2235T>G (p.Asn648Lys) 
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Table 3. 5.  Eighteen variants in 14 genes segregated in families.  

We could performed segregation analysis for 36 variants. Modified from Smith et al., Cancer 

Letter, 2016. 

 

Gene Chr. Pos. Variant (HGVS nomenclature) Samples 

AATF chr17:35307578 c.158_159dup (p.Gly54Trpfs*157) 76A, 76B 

AATF chr17:35311130 c.755A>G (p.Asn252Ser) 32 

BLM chr15:91292792 c.298_299del (p.Gln100Glufs*42) 78B 

CHD1L chr1:146742591 c.1086-2A>G 90 

CHD1L chr1:146756048 c.1730G>A (p.Gly373Asp) 25 

FANCG chr9:35074472 c.1652_1655del (p.Tyr551Phefs*7) 50 

MC1R chr16:89986122 c.456C>A (p.Tyr152*) 52B 

NEIL1 chr15:75641315 c.330_331insAGGC 

(p.Ala111Argfs*46) 

43 

NEK1 chr4:170428209 c.1687_1688del (p.Ala563Tyrfs*36) 17, 78A 

NEK1 chr4:170398474 c.2235T>G (p.Asn648Lys) 89 

NEK11 chr3:130828766 c.455+1G>A 68C, 68B 

RHNO1 chr12:2997245 c.337C>T (p.Arg113*) 18 

RHNO1 chr12:2994578 c.45_46delinsAG (p.Leu16Val) 70A, 70B 

SPP1 chr4:88901197 c.94-1G>A 78A, 78B 

CEP164 chr11:117244534 c.1220C>T (p.Ser407Phe) 53A, 53B 

FAN1 chr15:31197015 c.149T>G (p.Met50Arg) 58A, 58B, 

34 

TONSL chr8:145662005 c.1950C>G (p.Asp650Glu) 86 

WRN chr8:31012237 c.3785C>G (p.Thr1262Arg) 44 
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Table 3. 6. LOH was assessed for 27 variants in 29 tumors. 

Modified from Smith et al., Cancer Letter, 2016. 

 

Gene Chr. Pos. Variant (HGVS nomenclature) Samples LOH 

AATF chr17:35307578 c.158_159dup (p.Gly54Trpfs*157) 76A, 76B N, - 

BARD1 chr2:215595181 c.1935_1954dup (p.Glu652Valfs*69) 62 N 

BRCA2 chr13:32913182 c.4691dupC (p.Thr1566Aspfs*9) 12 N 

C17orf70 chr17:79518071 c.449G>A (p.Trp150*) 74 N 

CDC6 chr17:38449789 c.743del (p.Gln248Argfs*16) 2 N 

DNA2 chr10:70182188 c.2493-2A>G 64 N 

FANCL chr2:58386928 c.1096_1099dup (p.Thr367Asnfs*13) 47, 55B N, -, - 

MC1R chr16:89986122 c.456C>A (p.Tyr152*) 52B Na 

MGMT chr10:131565137 c.593G>A (p.Trp198*) 63A Y 

NEIL1 chr15:75641315 c.330_331insAGGC 

(p.Ala111Argfs*46) 

43 N 

NEK11 chr3:130828766 c.455+1G>A 68C, 68B Nb 

NINL chr20:25434092 c.4142_4143del (p.Ser1381Cysfs*17) 72 Na 

PMS1 chr2:190719824 c.1826G>A (p.Trp609*) 13 Y (alt.) 

RHNO1 chr12:2997158 c.250C>T (p.Arg84*) 43 Y 

RHNO1 chr12:2997245 c.337C>T (p.Arg113*) 18 N 

SMC2 chr9:106875703 c.1365_1366del (p.Arg456Thrfs*2) 73 N 

TEX15 chr8:30700833 c.5699_5700del (p.Arg1900Asnfs*22) 24A N 

TONSL chr8:145668147 c.490del (p.Leu164Serfs*72) 2 N 

WDR48 chr3:39125749 c.1278_1279del (p.Gly427Aspfs*8) 72 Yc 

AATF chr17:35311130 c.755A>G (p.Asn252Ser) 32 N 

CHD1L chr1:146756048 c.1730G>A (p.Gly373Asp) 25 N 

DCLRE1A chr10:115602192 c.2575A>T (p.Ile859Phe) 24A, 81 N, - 

ERCC6 chr10:50690906 c.1996C>T (p.Arg666Cys) 10 N 

FAN1 chr15:31197015 c.149T>G (p.Met50Arg) 58A, 58B, 

34 

-, Nd, N 

MLH3 chr14:75514503 c.1856A>T (p.Lys619Ile) 8 Y (alt.) 

RHNO1 chr12:2994578 c.45_46delinsAG (p.Leu16Val) 70A, 70B N, N 

WRN chr8:31012237 c.3785C>G (p.Thr1262Arg) 44 N 

a Absence of LOH or somatic second hit in tumor exome sequencing data 

b LOH assessed in tumor from PC-affected family member who was found to be a carrier 

c LOH identified in tumor exome 

d Absence of LOH or somatic second hit in tumor whole genome sequencing data    
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3.2.5. Top candidate genes 

 

Next, we prioritized the 41 DNA repair genes with identified PTVs in them based on  

1- If there is more than 1 kindred with a PTV in that gene 

2- If the predicted pathogenic variant in the gene was segregated in at least one kindred  

3- If LOH was found in the corresponding wild-type allele. 

Based on these criteria we believed there are 17 genes with stronger genetic evidence supporting 

their roles as candidate novel PC predisposition genes (Table 3.7). Among these genes, FAN1, 

NEK1 and RHNO1 were our top three candidate genes as they harbor variants presented in three 

kindred and a variant segregated at least in two kindred. (Figures 3.2, 3.3 and 3.4)  
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Table 3. 7. Seventeen top candidate PC susceptibility genes 

Modified from Smith et al., Cancer Letter, 2016. 

 

Gene Chr. Pos. 

Variant (HGVS 

nomenclature) Samples 

>1 

PTV Segregation LOH 

AATF chr17:35307578 c.158_159dup 

(p.Gly54Trpfs*157) 

76A, 

76B 

 
Y 

 

AATF chr17:35311130 c.755A>G 

(p.Asn252Ser) 

32 
 

Y 
 

BLM chr15:91292792 c.298_299del 

(p.Gln100Glufs*42) 

78B 
 

Y 
 

CEP164 chr11:117282575 c.4228C>T 

(p.Gln1410*) 

16 
   

CEP164 chr11:117244534 c.1220C>T 

(p.Ser407Phe) 
53A, 

53B 

 
Y 

 

CHD1L chr1:146742591 c.1086-2A>G 90 
 

Y 
 

CHD1L chr1:146756048 c.1730G>A 

(p.Gly577Asp) 

25 
 

Y 
 

FAN1 chr15:31214513 c.2128C>T 

(p.Arg710*) 

42 
   

FAN1 chr15:31197015 c.149T>G 

(p.Met50Arg) 
58A, 

58B, 34 

 
Yx2 

 

FANCG chr9:35074472 c.1652_1655del 

(p.Tyr551Phefs*7) 

50 
 

Y 
 

FANCL chr2:58386928 c.1096_1099dup 

(p.Thr367Asnfs*13) 

47, 55B Y 
  

MC1R chr16:89985733 c.67C>T 

(p.Gln23*) 

14 Y 
  

MC1R chr16:89985750 c.86dup 

(p.Asn29Lysfs*14) 

69 Y 
  

MC1R chr16:89986122 c.456C>A 

(p.Tyr152*) 

52B Y Y 
 

MC1R chr16:89986522 c.862_864del 

(p.Ile288del) 

89 Y 
  

MGMT chr10:131565137 c.593G>A 

(p.Trp198*) 

63A 
  

Y 

NEIL1 chr15:75641315 c.330_331insAGGC 

(p.Ala111Argfs*46) 

43 
 

Y 
 

NEK1 chr4:170428209 c.1687_1688del 

(p.Ala563Tyrfs*36) 

17, 78 Y Y 
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Gene Chr. Pos. 

Variant (HGVS 

nomenclature) Samples 

>1 

PTV Segregation LOH 

NEK1 chr4:170398474 c.2235T>G 

(p.Asn745Lys) 
89 Y Y 

 

NEK11 chr3:130828766 c.455 + 1G>A 68C, 

68B 

 
Y 

 

RHNO1 chr12:2997158 c.250C>T 

(p.Arg84*) 

43 Y 
 

Y 

RHNO1 chr12:2997245 c.337C>T 

(p.Arg113*) 

18 Y Y 
 

RHNO1 chr12:2994578 c.45_46delinsAG 

(p.Leu16Val) 

70A, 

70B 

Y Y 
 

SPP1 chr4:88901197 c.94-1G>A 78A, 

78B 

 
Y 

 

TONSL chr8:145668147 c.490del 

(p.Leu164Serfs*72) 

2 
   

TONSL chr8:145660507 c.2899C>T 

(p.Arg967Cys) 
3A 

   

TONSL chr8:145662005 c.1950C>G 

(p.Asp650Glu) 

86 
 

Y 
 

WDR48 chr3:39125749 c.1278_1279del 

(p.Gly427Aspfs*8) 

72 
  

Y 

WRN chr8:30999118 c.3138 + 2T>G 51 
   

WRN chr8:31012237 c.3785C>G 

(p.Thr1262Arg) 

44 
 

Y 
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Figure 3. 2. Pedigrees of the families with FAN1 variants.  

We analyzed all the cases in which germline DNA was available to be tested. +/- indicates heterozygous carrier status. +/+ indicates 

wild-type. Probands are indicated with an arrow. Individuals shaded in black are PC individuals, while individuals had other type of 

tumors shaded in grey. Ages of living family members, ages at diagnoses and the ages of death (d.) for deceased individuals are 

indicated in years. Other illnesses with ages in years at diagnosis (if known) are shown. NHL, non-Hodgkin's lymphoma; CLL, 

Chronic lymphocytic leukemia. Adapted from Smith et al., Cancer Letter, 2016. 
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Figure 3. 3. Pedigrees of the families with NEK1 variants.  

+/- indicates heterozygous carrier status. +/+ indicates wild-type. Probands are indicated with an arrow. Black indicates PC 

individuals, while grey indicates other type of tumors. BCC, basal cell carcinoma. Adapted from Smith et al., Cancer Letter, 2016 
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Figure 3. 4. Pedigrees of the families with RHNO1 variants.  

+/- indicates heterozygous carrier status. +/+ indicates wild-type. Probands are indicated with an arrow.  NM, non-melanoma. Adapted 

from Smith et al., Cancer Letter, 2016

https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=26546047
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3.3. Conclusion 

 

In our study, we performed a large-scale NGS to identify novel genetic predisposition factors in 

hereditary PC. We performed WES on 109 selected cases with increased risk of genetic PC 

predisposition from 93 families. As we hypothesized that DNA repair genes can be involved in 

this particular cancer type, we performed a filter-based candidate gene approach to find new genes 

responsible for FPC. We found PTVs in 42 DNA repair genes among 37 families. One of these 

PTVs was in a known FPC susceptibility gene (BRCA2). This variant was missed in the screening 

phase but was detected by WES, showing the ability of our approach to identify causal variants. 

We not only looked for DNA repair genes in our approach but also considered mutations in known 

PC predisposition genes (for example CDKN2A, SPINK1 and PRSS1) that are not involved in 

DNA repair. 

We further looked for the other variants in these 41 genes and performed segregation analysis 

and LOH analysis in order to prioritize our list of 41 candidate PC susceptibility genes. From this 

information, 17 genes ranked at the top of the list according to the following criteria: 

1- genes with more than 1 family with a PTV  

2- genes with segregation of a predicted-pathogenic variant in at least one kin 

3- and/or genes with LOH associated with at least one predicted-pathogenic variant.  

We propose FAN1, NEK1 and RHNO1 as the strongest candidates based on the available data to 

be further investigated and validated by additional families with PC. 

In our study, we also found that rare germline protein-truncating DNA repair gene variants 

are common in PC. This could indicate that double haploinsufficiency may have a role in PC 
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development. There were also other noteworthy variants that can be potentially important in 

pancreatic cancer development. Most of these variants were located in genes implicated in other 

hereditary cancer syndromes. In particular FANCG , FANCL, POLQ, BLM , and BARD1  genes 

In summary, our findings suggest that several novel DNA repair genes may have a role in 

hereditary PC. Previous linkage studies could not identify major causal loci for this disease and to 

date, 12 genes were reported to have role in predisposition to PC. Therefore, the remaining cause 

of familial PC may be due to several genes, with each gene accounting for only a small fraction of 

PC susceptibility. 
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4.1. Introduction 

 

Breast cancer is the second leading cause of cancer-related deaths and the most frequently 

diagnosed cancer among Canadian women. Resistance to chemotherapy is the underlying cause of 

most cancer fatalities. Moreover, administration of ineffective chemotherapeutic agents increases 

the probability of side effects and decreases the quality of life of many cancer patients, which 

further emphasizes the need to develop more efficient drugs and target them appropriately. 

The cause of drug resistance in Triple Negative Breast Cancer (TNBC), which has a much 

higher proportion of all breast cancer mortality, is still unknown. Although some mechanisms, 

such as decreased cellular uptake, alter signaling pathways, dysregulated apoptosis, DNA repair, 

change in autophagy, paracrine effects, and changes in microRNA expression have been reported 

in publications, none of them has been validated in clinical studies. Therefore, we hypothesize that 

by using NGS approaches, we will be able to identify the novel genes associated with resistance. 
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4.2. Results 

4.2.1. Clinical results 

 

From 59 patients enrolled in this study, we were able to obtain pre-chemotherapy tumor samples 

from 54 of them.  Although these patients received different types of chemotherapy (Table 4.1), 

most of them (47/54) were on anthracycline and taxane-based chemotherapy treatment. Seven 

patients received only taxane, while 42 patients received biphasic chemotherapy- either 

anthracycline followed by a taxane or the reverse. We further assessed the residual tumors by 

calculating the Residual Cancer Burden on a scale of 0-3 as described by Symmans et al (RCB-0 

[no residual cancer or pathologic complete response], RCB-I [minimal], RCB-II [moderate], RCB-

III [extensive residual]) (Symmans, et al. 2007)). Twenty-two of 47 patients had pathologic 

complete response (pCR) while 32 patients had residual tumors. Interestingly none of the pCR 

samples received taxane monotherapy. In patients who became resistant to chemotherapy, we tried 

to obtain DNA samples from matched pre-treatment and post-treatment tumors. However, in only 

18 out these 32 patients we had enough pre-treatment tumor DNA and/or RNA extraction and the 

rest we could not obtain DNA because of the small size of the biopsies and the variations in tumor 

content. 

Since the prognosis of RCB1 was shown to be almost identical to patients with RCB scores 

of zero (pCR) (Symmans, et al. 2007), we considered these patients in the same group for our 

analysis. By looking at the quality of the data, we had to exclude four pCR samples from further 

analysis because of low cellularity. We also excluded Neo4 from the resistant group after it was 

re-evaluated as non-TNBC.  
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Table 4. 1. Chemotherapy treatments and response in all samples 

 

Category Treatment RCB0/1 RCB2/3 Total 

1. Anthracycline–based and 

Taxane-based therapies 

AC x 4 - T x (11-

12) 
6 8 14 

AC x 1 - TC x 4 0 1 1 

AC x 4 - T x (3-8) 5 4 9 

TAC x (3-6) 2 3 5 

EC x 4 - T x 12 1 1 2 

  FEC x 3 - D x 3 2 1 3 

FEC x 3 - T x (9-

12) 
0 4 4 

  TC x 4 - EC x 4 1 0 1 

  TC x 3 - AC x 1 1 0 1 

  T x 12 - AC x 4 2 2 4 

  TC x 4 - FEC x (2-

4) 
2 1 3 

Total for each response group 
  

22 (46.8) 
25 

(53.1%) 
47 

2. Taxane-based only T x (9-12) 0 4 4 

  TC x (2-4) 0 3 3 

Total for each response group 
  

0 (0%) 
7 

(100%) 
7 

 

A, Adryamicin; C, Cyclophosphamide; T, Taxol; F, 5-fluouracil; E, Epirubicin; D, dose dense 
 
 

We evaluated tumor size before, at midpoint of the treatment and after therapy before 

surgery in the patients.  The response of the tumor was not the same in all tumors (Figure 4.1). In 

four patients (Neo07, Neo30, Neo27 and Neo50) the tumor did not respond to treatment according 

to RECIST criteria (>25% decrease in tumor size); therefore, these samples were labeled “non-

responders”. In one of these cases (Neo07), the tumors even grew while on paclitaxel 

monotherapy. Seven tumors, labeled “responders”, showed significant response to chemotherapy.  
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Figure 4. 1. Clinical evaluation of tumor size before, at midpoint of the treatment and after 

therapy before surgery 

 

 

 

4.2.2. Whole exome sequencing results 

 

Whole exome sequencing (WES) data was generated on samples from 25 patients.  For our 

analysis, we included only somatic nonsynonymous SNVs, stopgains, frameshift indels, and non-

frameshift indels not occurring in repetitive regions as discussed in method section. There were 11 

pairs of pre- and post-treatment samples. In four pre-treatment samples from RCB2/3 tumors, we 

could not get adequate genomic data from the post-treatment biopsies. In two cases, sufficient 

post-treatment tissue was only available. Seven pre-treatment samples did not have residual tumor 

(RCB0 or RCB1) .We also had four samples from the metastatic lesions in three patients (Table 

4.2). 
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We explored whether there was any shared mutation between samples. Germline BRCA2 

mutations were seen in six patients, while germline BRCA1 mutations were detected in three 

patients. The most commonly mutated gene was TP53 in 21 of 25 tumors. NOTCH1 and MAGI2 

genes mutated in four tumors, and five genes (RB1, PLXNC1, HUWE1, PDZRN4, and IGSF10) 

mutated in three tumors. No other gene mutated in more than two patient samples.  On average, 

there were 80 somatic mutations detected in any tumor.  The chemo-resistant tumors (RCB2/3 

group) had more variants (average 89/tumor) than the chemo-sensitive (RCB0/1 group) tumors 

(average 59/tumor). Less than 5 percent of detected variants were presented in the COSMIC 

database; therefore, most of these variants were novel. These findings emphasize the genomic 

heterogeneity of TNBC tumors. 

 

 

Table 4. 2. Number of remaining samples in each group 

 

 Lymphocyte /normal 

tissue 

Pre - 

chemotherapy 

Post -

chemotherapy 

Metastasis 

pCR 5 5 - - 

I 3 3 - - 

II, III 17 15 14 4 

Total 25 23 14 4 

 

 

 

In the next step, we performed three types of analyses to obtain a complete knowledge of 

tumor resistance mechanisms: an analysis of post- versus pre-treatment matched pairs, an analysis 

of the post-chemotherapy genomic landscape, and an analysis comparing all pre-treatment samples 

from “chemo-resistant” to “chemo-sensitive” tumors.   
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4.2.2.1 WES analysis of pre- and post-chemotherapy samples 

 

We compared post-treatment samples with its respective pre-treatment one to find if possible 

changes had occurred during treatment. In total, 1148 somatic variants were observed in all 11 

pairs of matched tumors.  The number of variants varied in different tumors. Figure 4.2 shows the 

number of somatic variants in pre- and post-chemotherapy and the number of variants present just 

in pre or post or both. The great majority of variants (average 78%) were present in both pre- and 

post-treatment samples, although some variants were just in the pre-treatment samples (12%) and 

others (10%) in the post-treatment tumor samples. 

 

 
 

 

Figure 4. 2. Comparing number of somatic variants in pre and post-chemotherapy samples 
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In four tumors, at least 95% of the variants were conserved, suggesting little genomic 

change from pre- to post-treatment. This trend was in line with the degree of clinical tumor 

response in these four patients; none of them showed any initial response to treatment (non-

responders). In one case (Neo27) a large proportion of variants in pre-chemo was lost, but this 

patient did not have a major response to chemotherapy (Figure 4.3).  

In order to validate these results, we selected 3-5 variants per tumor pair to be tested by 

digital droplet PCR technology in the same tumor DNA sample used for sequencing.  Except in 

one tumor (Neo27), all the tested WES variants were detected by ddPCR with almost similar AF. 

In Neo27, ddPCR did not detect 67% of SNVs (10 of 15 selected variants) in the pre-chemo tumor. 

This finding suggests that the majority of these variants were due to sequence artifacts. Therefore, 

this sample was excluded from further analysis. 

 

 
 

Figure 4. 3. Proportion of variants conserved, only detected in post-chemo sample (gained) 

or only detected in pre-chemo sample (lost) in each matched pre/post samples  
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We then asked if the “gained” or “lost” mutations were acquired in response to 

chemotherapy, or these variants existed in very low frequencies before chemotherapy. To explore 

the answer to this question, we selected seven different variants in four tumor pairs, which showed 

either a “gain” or a “loss” from pre- to post-treatment to be further validated by digital droplet 

PCR technology (Table 4.3). Three of these variants were detected by ddPCR in both pre- and 

post- blood samples. This finding suggests that de novo “gained” mutations or “lost” variants may 

have been present at low frequencies in subclonal tumors and may have not been sampled because 

of intra-tumoral heterogeneity.  

 

 

 

Table 4. 3. Comparison of tumor and plasma variant allele frequencies 

 
Sample 

  

Gene 

  

Variant 

  

Position 

  

Ref 

  

Alt 

  

Protein 

change 

Tumor VAF Plasma VAF (%ctDNA) 

Pre-

chemo 

Post-

chemo 

Pre-

chemo 

Mid-

chemo 

Post-

chemo 

Neo27 ROBO3 non 

synonymous 

SNV 

124744718 G T p.W662C 0 0.69 1.48 1.79 0.27 

Neo27 NOL7 non 

synonymous 

SNV 

13615603 C G p.R5G 0 0.55 0 0 0.78 

Neo02 UTS2R non 

synonymous 

SNV 

80332825 C G p.R209G 0 0.4 5.14 0.51 3.23 

Neo05 TRPM3 non 

synonymous 

SNV 

73168179 G T p.L916M 0 0.99 0 0 0 

Neo05 ROBO2 non 

synonymous 

SNV 

77147279 C T p.T59M 0 0.97 0 0 0 

Neo05 HDAC

9 

frameshift 

deletion 

18788734 AG A p.E670fs 0.7 0 0.68 0.05 3.17 

Neo39 RASA1 non 

synonymous 

SNV 

86633905 G C p.E338D 0.72 0 0 0 0 
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4.2.2.2. Post-chemotherapy genomic landscape 

 

To provide a picture of the mutation landscape of post-chemotherapy samples, we retrieved all the 

mutated genes present in the 14 post-chemotherapy tumor samples with a minimum allele 

frequency of 0.3 (n=588 genes) . This threshold was chosen to favor more clonal variants.  Besides 

TP53 and RB1, only 14 of these genes were mutated in more than one sample (Table 4.4). Among 

16 recurrent somatic mutations in post-chemo, a variant in the ROBO2 gene showed the highest 

gain in AF (0.97), while another variant in the same gene was associated with an AF of 0.55 in the 

post-chemo Neo38 sample (no pre-chemo sample was available for this tumor).  

We performed pathway analysis on these 588 genes to find any pathway enriched in these samples. 

Our results did not show any pathway enriched with a p-value and a q-value less than 0.05.  Of 

these 588 gene variants, we identified 67 genes with stopgain or frameshift indel variants, 

including frameshifts affecting TP53, RB1 and PTEN (Table 4.5). Pathway analysis by DAVID 

for these 67 genes showed enrichment in “regulation of cell cycle” (FDR = 0.034).  The following 

genes are in this group: TP53, RB1, TACC3, PTEN, MOV10L1, HERC2, INSR, ZZEF1 and 

CDK13.  Interestingly, three genes of the dynein family of microtubule-associated motor proteins 

(DNAH2, DNAH3, and DNAH5) showed stopgain mutations in different post-chemotherapy 

residual tumor samples. 
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Table 4. 4. Recurrently mutated genes in post-chemo tumors 

Gene Position Variation Protein 

Change 

Tumor Post chemo 

AFs 

GAPVD1 Chr9:128061231 nonsynonymous SNV p.H11D Neo05 0.92 

GAPVD1 Chr9:128092405 nonsynonymous SNV p.S673L Neo38 0.51 

GPR158 Chr10:25839971 nonsynonymous SNV p.G491S Neo39 0.70 

GPR158 Chr10:25887599 nonsynonymous SNV p.T1015I Neo50 0.50 

HIVEP1 Chr6:12123407 stopgain p.Q1127X Neo27 0.33 

HIVEP1 Chr6:12122228 stopgain p.Q734X Neo39 0.30 

MAGI2 Chr7:78256520 nonsynonymous SNV p.G152R Neo05 0.40 

MAGI2 Chr7:79082626 nonsynonymous SNV p.S4N Neo30 0.39 

MCM3AP Chr21:47685317 nonsynonymous SNV p.P1051Q Neo05 0.66 

MCM3AP Chr21:47692523 nonsynonymous SNV p.F806Y Neo39 0.35 

MEF2D Chr1:156446983 nonsynonymous SNV p.V226I Neo25 0.80 

MEF2D Chr1:156449594 splicing-extended NA Neo50 0.44 

NOTCH1 Chr9:139410015 nonsynonymous SNV p.S608C Neo07 0.96 

NOTCH1 Chr9:139399537 nonsynonymous SNV p.C1536R Neo24 0.50 

OSBPL9 Chr1:52238388 nonsynonymous SNV p.L210P Neo05 0.47 

OSBPL9 Chr1:52253122 stopgain p.R522X Neo31 0.40 

PBXIP1 Chr1:154919168 nonsynonymous SNV p.E328Q Neo05 0.44 

PBXIP1 Chr1:154920756 nonsynonymous SNV p.E166K Neo24 0.39 

PHF21B Chr22:45312350 nonsynonymous SNV p.A113G Neo05 0.72 

PHF21B Chr22:45279150 nonsynonymous SNV p.R417H Neo17 0.64 

PLXNC1 Chr21:94543548 nonsynonymous SNV p.I267M Neo05 0.50 

PLXNC1 Chr21:94543039 nonsynonymous SNV p.R98W Neo30 0.34 

ROBO2 Chr3:77612365 nonsynonymous SNV p.G523R Neo05 0.97 

ROBO2 Chr3:77147279 nonsynonymous SNV p.T59M Neo38 0.55 

SPTBN1 Chr2:54858620 nonsynonymous SNV p.A1133S Neo07 0.42 

SPTBN1 Chr2:54853291 nonsynonymous SNV p.Q509K Neo39 0.36 

WDR90 Chr16:711894 nonsynonymous SNV p.R1290C Neo31 0.44 

WDR90 Chr16:711414 nonsynonymous SNV p.G1196S Neo17 0.33 
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Table 4. 5. Stopgains and frameshift indels in post-chemo samples 

 

 

 Variation Protein Change Position Ref Alt Sample AF 

ACO1 stopgain p.Y759X 32440492 C A Neo27 0.51 

ACSM1 stopgain p.Y461X 20638555 G T Neo30 0.37 

ADD1 frameshift 

deletion 

p.E281fs 2900008 AAGAGGAAAAAGTTTTG

ATTCAGA 

AAGA Neo39 0.54 

AKAP6 stopgain p.E1877X 33292648 G T Neo05 0.95 

ANKLE1 frameshift 

insertion 

p.X652delinsX 17397522 T TGA Neo25 0.48 

ARHGAP22 stopgain p.W4X 49701523 C T Neo05 0.62 

ARMC9 stopgain p.G543X 2.32E+08 G T Neo05 0.85 

ATG7 frameshift 

deletion 

p.I565fs 11406143 ATTGC A Neo39 0.31 

BBS1 frameshift 

deletion 

p.P61fs 66281895 GGCCCTGGTGGGCAGCA

GCCC 

GGCCC Neo27 0.34 

CCR5 frameshift 

insertion 

p.V154fs 46414853 GT GTT Neo30 0.32 

CD2AP stopgain p.Y548X 47576870 C A Neo07 0.49 

CDK13 stopgain p.R626X 40037097 C T Neo31 0.59 

CHD1 frameshift 

deletion 

p.K1502fs 98195690 GTTTTTT GTTTTT Neo39 0.54 

CPA6 stopgain p.R184X 68419108 G A Neo31 0.32 
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 Variation Protein Change Position Ref Alt Sample AF 

CR2 frameshift 

deletion 

p.N239fs 2.08E+08 AC A Neo07 0.96 

DDX51 frameshift 

deletion 

p.R67fs 1.33E+08 GCCGTC GC Neo39 0.40 

DENND4

B 

frameshift 

deletion 

p.L1065fs 1.54E+08 GGGAGTGGCGGGAAGGA

GTG 

GGGAGTG Neo05 0.70 

DHDH frameshift 

deletion 

p.F329fs 49448167 ACCTTCCC ACC Neo07 0.97 

DHX36 stopgain p.Y66X 1.54E+08 G T Neo05 0.47 

DHX37 stopgain p.S177X 1.25E+08 G T Neo30 0.89 

DNAH2 stopgain p.R3387X 7721017 C T Neo39 0.44 

DNAH3 stopgain p.E1216X 21073877 C A Neo17 0.32 

DNAH5 stopgain p.Y3465X 13758979 A C Neo07 0.38 

DOCK9 frameshift 

deletion 

p.L1209fs 99512732 CA C Neo30 0.40 

ETV3 frameshift 

deletion 

p.E402fs 1.57E+08 AGTGCCCTCTTCTTGAGT

GTGC 

AGTGC Neo05 0.75 

FAM111A frameshift 

insertion 

p.Y263fs 58919923 GCAGAT GCAGATT

CTTTCAG

AT 

Neo39 1.00 

FLT3 frameshift 

deletion 

p.V36fs 28644682 TAAAA TAAA Neo31 0.32 

FMN2 frameshift 

deletion 

p.P991fs 2.4E+08 TCCCCC TCCCC Neo05 0.43 

GNA13 stopgain p.R165X 63010731 G A Neo07 0.97 

GON4L stopgain p.R1639X 1.56E+08 G A Neo28 0.49 
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 Variation Protein Change Position Ref Alt Sample AF 

GPRASP1 frameshift 

deletion 

p.R330fs 1.02E+08 CAG C Neo39 0.48 

GPRASP2 frameshift 

deletion 

p.G622fs 1.02E+08 TGGG TGG Neo39 0.50 

HCLS1 stopgain p.E326delinsX 1.21E+08 C CAGGCCC

AGGCTA 

Neo07 0.78 

HEATR3 stopgain p.R11X 50100073 C T Neo31 0.41 

HERC2 stopgain p.Q4424X 28366494 G A Neo07 0.44 

HIVEP1 stopgain p.Q1127X 12123407 C T Neo27 0.33 

HIVEP1 stopgain p.Q734X 12122228 C T Neo39 0.30 

HSPB1 stopgain p.E108X 75932351 G T Neo24 0.34 

INSR stopgain p.Y319X 7184344 G T Neo05 0.56 

KCNA2 stopgain p.R65X 1.11E+08 G A Neo07 0.46 

KCNF1 stopgain p.E213X 11053189 G T Neo39 0.33 

KDM5A stopgain p.G474X 443477 C A Neo05 0.45 

KIAA2022 stopgain p.E300X 73963494 C A Neo39 0.47 

MGA stopgain p.R618X 41989060 C T Neo38 0.56 

MOV10L1 frameshift 

deletion 

p.T39fs 50530443 GAAAA GAAA Neo39 0.37 

NAA40 stoploss p.X217W 63721951 A G Neo38 0.36 

ORMDL1 stopgain p.E73X 1.91E+08 C A Neo39 0.49 

OSBPL9 stopgain p.R522X 52253122 C T Neo31 0.40 

PARD3 stopgain p.W735X 34630588 C T Neo07 0.46 

PHKG1 frameshift 

deletion 

p.G101fs 56151394 TCCCC TCCC Neo05 0.50 
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 Variation Protein Change Position Ref Alt Sample AF 

PKP3 stopgain p.E551X 400619 G T Neo17 0.67 

PTEN frameshift 

deletion 

p.C71fs 89690802 GTT GT Neo31 0.48 

PTPRD stopgain p.E538X 8507336 C A Neo05 0.37 

RAB8A frameshift 

deletion 

p.Q183fs 16243037 CA C Neo17 0.34 

RB1 stopgain p.G442X 48951162 G T Neo07 0.92 

RB1 stopgain p.R358X 48942685 C T Neo38 0.83 

SH2D4A stopgain p.R209X 19221636 C T Neo31 0.52 

SMAD9 frameshift 

deletion 

p.P333fs 37427678 AGCCGCTGGGGATCTTG

CAGACGGTAGCTG 

AG Neo50 0.37 

SMTN stopgain p.E82X 31483975 G T Neo07 0.88 

TACC3 frameshift 

insertion 

p.G219fs 1729786 A AGCCGAG

GAGGAAT 

Neo25 0.37 

TCEAL3 frameshift 

deletion 

p.P101fs 1.03E+08 GCCC GCC Neo31 0.33 

TP53 stopgain p.R81X 7578212 G A Neo02 0.81 

TP53 stopgain p.R81X 7578212 G A Neo25 0.40 

TP53 frameshift 

deletion 

p.I200fs 7574029 CGG CG Neo30 0.99 

TP53 stopgain p.W14X 7579528 C T Neo50 0.63 
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 Variation Protein Change Position Ref Alt Sample AF 

TP53 frameshift 

deletion 

NA 7578505 GGGCAGGTCTTGGCCAG

TTGGCAAAACATCTTGT 

G Neo17 0.97 

TRIM46 frameshift 

deletion 

p.T399fs 1.55E+08 GCACAC GCAC Neo05 0.87 

TRIM5 stopgain p.C55X 5701243 G T Neo17 0.40 

TTBK1 frameshift 

deletion 

p.R1003fs 43251479 GCCCCCC GCCCCC Neo31 0.31 

USP49 frameshift 

insertion 

p.C632fs 41766440 CCAC CCACCAC

AC 

Neo28 0.68 

ZCCHC2 stopgain p.R429X 60217665 C T Neo31 0.34 

ZZEF1 frameshift 

deletion 

p.G558fs 4005596 AGACCCACCACTCACC A Neo25 0.34 
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4.2.2.3: Mutated genes associated with response to chemotherapy  

 

In the next step, to determine if mutations in the pre-chemotherapy samples could predict 

pathological complete response to chemotherapy, we compared somatic mutations in pre-

chemotherapy samples of chemo-sensitive tumors with chemo-resistant one. We picked all 

potentially deleterious variants detected at >0.3 MAF in 15 pre-treatment chemo-resistant tumor 

samples (RCB2/3), that none of these genes showed somatic variants in the chemo-sensitive 

tumors (RCB0/1) (675 variants). Only 15 genes had variants in more than one tumor and none was 

mutated in more than two tumors (Table 4.6). Somatic variants in BRCA1 (in Neo32), and in 

Tubulins (TUBE1, TUA1B, TUBA3E) were among those 675 variants. These data indicate the 

genomic heterogeneity of TNBCs.  

We also compiled a list of “chemo-sensitivity-associated gene variants” from the genes 

mutated at AF>0.3 uniquely in the eight pre-treatment tumors (n=263 genes) in RCB0/1 group and 

never mutated in resistant tumors. COL1A2 and PRDM15 were the only two recurrent genes in 

this list. 
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Table 4. 6. Recurrently mutated genes in pre-chemotherapy samples of non-responsive 

tumors 

 

Gene Position Variation Ref Alt Tumor PreC AF 

BRD3 136918572 frameshift deletion CGGGG

G 

CGGGG Neo31 0.48 

BRD3 136905238 nonsynonymous SNV C G Neo05 0.55 

CHD5 6206925 nonsynonymous SNV G C Neo27 0.71 

CHD5 6195354 nonsynonymous SNV C T Neo31 0.37 

DLEC1 38139341 nonsynonymous SNV C G Neo50 0.47 

DLEC1 38081073 nonsynonymous SNV G C Neo44 0.69 

GPR158 25839971 nonsynonymous SNV G A Neo39 0.85 

GPR158 25887599 nonsynonymous SNV C T Neo50 0.49 

HCN1 45262787 nonsynonymous SNV C T Neo30 0.46 

HCN1 45696113 nonsynonymous SNV G A Neo44 0.42 

HOXD11 176972330 nonsynonymous SNV A G Neo31 0.45 

HOXD11 176973661 nonsynonymous SNV C T Neo44 0.41 

MEF2D 156446983 nonsynonymous SNV C T Neo25 0.68 

MEF2D 156449594 splicing-extended C T Neo50 0.39 

NPAP1 24921477 nonsynonymous SNV G A Neo05 0.45 

NPAP1 24923722 nonsynonymous SNV C A Neo39 0.32 

ROBO1 78656056 nonsynonymous SNV C A Neo39 0.37 

ROBO1 78656003 nonsynonymous SNV C T Neo32 0.36 

SAAL1 18127567 nonframeshift insertion G GCGC Neo24 0.65 

SAAL1 18127572 nonframeshift insertion G GGCC Neo32 0.64 

SCAF4 33074214 nonsynonymous SNV C T Neo39 0.33 

SCAF4 33064738 nonsynonymous SNV C G Neo32 0.31 

SLC16A2 73744409 nonsynonymous SNV A C Neo39 0.52 

SLC16A2 73751248 nonsynonymous SNV C T Neo42 .42 

SMARCA

2 

2116002 nonsynonymous SNV C T Neo28 0.55 

SMARCA

2 

2073595 nonsynonymous SNV A G Neo44 0.48 

SPTBN1 54858620 nonsynonymous SNV G T Neo07 0.46 

SPTBN1 54853291 nonsynonymous SNV C A Neo39 0.46 

TTC3 38538213 nonsynonymous SNV G C Neo05 0.49 

TTC3 38533166 splicing-extended G C Neo25 0.32 

 

 

PreC  AF, pre-chemotherapy allele frequency 
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4.2.2.4. Analysis of metastasis samples 

 

In four patients, we obtained frozen tumor samples from metastatic lesions (regional lymph nodes, 

skin, and liver). Somatic mutations detected in the metastatic lesions were compared with its 

respective pre-chemotherapy and post-chemotherapy samples (Figure 4.4). We found that the post-

chemotherapy samples contained an average of 89% (79-97%) of the variants observed in the 

metastatic samples, compared to 62% (58-86%) of the pre- chemotherapy samples. Moreover, 

91% of variants present in the metastatic tumors were detected in the post-chemotherapy tumor 

samples, compared with 85% in the pre-chemotherapy samples. Even though the sample size was 

limited, these findings suggest that the post-chemotherapy sample is a better indicator of the 

metastatic genotype than the pre-chemotherapy sample. 

 

  

 d  

Figure 4. 4. Number of somatic variants shared between pre, post and metastatic samples 

in each patient. 
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4.2.3. Copy number alterations 

 

To find changes in DNA copy number variation during chemotherapy, we performed array CGH 

on DNA extracted from the pre-treatment and post-treatment biopsies. After applying array CGH 

in 9 pairs of matched pre and post-treatment tumor samples, we found a region on chromosome 

8q (9116962735 – 117887105) that was highly amplified (>2 fold), in both pre and post sample of 

5 “drug-resistant” tumors. Three of these five tumors were responded very poorly to chemotherapy 

(Neo07, Neo27 and Neo50). This region contains three genes: RAD21, UTP23 and EIF3. MYC 

was also amplified >2-fold in two of nine tumors and there was no other region that amplified in 

more than two tumors.  

In order to find if these copy number changes were functional or not, we combined these 

data with gene expression changes detected by RNAseq on the nine pairs. We found the mean 

RNA levels of the 3 genes mentioned above (RAD21, UTP23 and EIF3H) were at least 3 fold 

higher in the 5 tumors with amplified segments in both pre-chemotherapy and post-chemotherapy 

samples compared to the 4 tumors in which it was not. This finding indicates the functionality of 

this amplicon in these tumors.  

 

We then performed copy number variations analysis on our whole exome data (7 patients 

with RCB0/1 and 15 patients with RCB2/3). Five regions with at least 1 MB size were 

differentially amplified between RCB0/1 and RCB2/3 tumors (Table4.7). The above-mentioned 

chromosome (8q23) was the only differentially amplified region in RCB2/3 tumors and was 

amplified in eight of 15 RCB2/3 and none of RCB0/1 tumors (Figure 4.5). We also found other 

regions (on chromosomes 1, 3 and 6) that were amplified only in RCB0/1 tumors (Table4.7). 
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Table 4. 7. Differentially amplified fragments in RCB0/1 vs RCB2/3 tumors by WES of 22 tumors 

 

Chromosome Genomic 

Location 

Event Freq. in 

RCB2/3 

(%) 

Freq. in 

RCB0/1 

(%) 

p-

value 

No. 

Genes 

Gene Symbols 

chr1 242,342,625-

243,504,302 

CN 

Gain 

0 43 0.023 4 PLD5, CEP170, SDCCAG8 

chr1 244,473,418-

247,420,078 

CN 

Gain 

0 43 0.023 26 C1orf100, ADSS, CATSPERE, DESI2, COX20, 

HNRNPU, EFCAB2, KIF26B, SMYD3, 

TFB2M, CNST, SCCPDH,  AHCTF1, ZNF695, 

ZNF670-ZNF695, ZNF670, ZNF669, FLJ39095, 

C1orf229, ZNF124, MIR3916, VN1R5 

chr3 170,723,073-

172,852,274 

CN 

Gain 

0 43 0.023 13 SLC2A2, MIR569, TNIK, PLD1, TMEM212, 

TMEM212-AS1, FNDC3B, GHSR, TNFSF10,  

NCEH1, ECT2, SPATA16 

chr6 46,374,581-

47,851,579 

CN 

Gain 

0 43 0.023 18 RCAN2, CYP39A1, SLC25A27,  TDRD6, 

PLA2G7, ANKRD66, MEP1A, ADGRF5, , 

ADGRF1, TNFRSF21, CD2AP, ADGRF2, 

ADGRF4, OPN5, PTCHD4 

chr8 117,514,050-

119,774,352 

CN 

Gain 

53 0 0.022 13 EIF3H, UTP23, RAD21, MIR3610, RAD21-

AS1, AARD, SLC30A8, MED30, EXT1, 

SAMD12, SAMD12-AS1 
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Figure 4. 5. RAD21 Amplification 

A. DNA copy number data of chromosome 8 in Neo07 based on whole exome sequencing data using NEXUS software. Vertical line 

at 118MB indicates location of RAD21 gene and at 128MB, MYC gene. B. Differential DNA copy number changes in RBC0/1 versus 

RCB2/3 tumors. The Y-scale represents the % of tumors carrying the amplification. There is amplifications in RCB2/3 at chr8q and in 

RCB0/1 at chr1q.
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We further looked at other available RNAseq data in 19 patients and found that mean 

RAD21 expression was 2.6 fold higher in the chr8 amplified tumors than in the non amplified 

tumors (p=0.037) in the whole group of 28 tumors (similar results for the EIF3H and UTP23 

genes). Association of RAD21 with chemo-resistance was demonstrated before in the MDA-MB-

231 triple negative breast cancer cell line (Xu, et al. 2011). There was no significant correlation 

between gene expression and other amplified chromosomal fragments (chr 1, 3 and 6).   

When comparing the DNA copy number changes from pre to post-chemo tumors, there 

were two functional amplicons (9p, 1p) with significant increase gene expression. An amplicon on 

chromosome 9p in Neo27 was functional in nine genes, including NFIB, CNTLN and FREM1 

(Table 4.8). NFIB has been reported to be involved in resistance to cisplatin in ovarian cancer 

(Kashiwagi, et al. 2011). The other novel amplicon on Chr1p showed increase in copy number and 

gene expression for two genes, CRYZ (6.5 fold change in RNA) and TYW3 (3.5 fold change in 

RNA).  
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Table 4. 8. RNA expression of genes on chr9 amplicon in Neo-27 

 
 

 

 

4.2.4. Gene expression analysis 

 

We performed RNAseq on available 28 pre-chemo and 14 post-chemotherapy samples. We 

analyzed samples in two different ways to provide comprehensive picture of the changes in tumor 

that became resistant to chemotherapy 

1: RCB0/1 versus RCB2/3 pre-chemotherapy samples to identify genes whose expression could 

predict complete tumor response 

2: post-chemo versus pre-chemo in matched tumors in resistant tumors to identify novel gene 

expression profiles associated with chemotherapy resistance.  

 

There were 160 genes with significant gene expression change between RCB0/1 vs. 

RCB2/3 tumors (p<0.05). Gene ontology analyses on these 160 genes showed a very strong 

enrichment for genes related to the immune response (Table 4.9).   
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Involvement of immune response genes in chemo resistance was previously reported by Denkert 

et al. Their group had published a suggested immune response gene list to predict chemotherapy 

response to the neoadjuvant therapy (Denkert, et al. 2015). On the other hand, TNBC has different 

subtypes including immunomodulatory. Therefore, we looked at our samples based on Vanderbilt 

TNBC subtypes (Lehmann, et al. 2011) to find what portion of the samples is in 

immunomodulatory sub-group. We found six of 12 RCB0/1 tumors were immunomodulatory sub-

type compared to three of 16 RCB2/3 samples (p = .11). When we looked at the gene list that was 

published by Denkert et al, we found high expression of them (above mean of all tumors) in the 

immunomodulatory genotype (Figure 4.6).  

To find genes whose expression was associated with chemotherapy resistance, we removed 

the nine strongly immune modulated tumors from further analysis and compared the remaining 

RCB0/1 tumors to the remaining RCB2/3 tumors. There were 40 significantly differentially 

expressed genes between these groups (p<0.05) with MYB and ABCA8 among the top five (Figure 

4.6).  
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Table 4. 9. Gene ontology analysis of the 160 genes whose expression was significantly (p<0.05) different in RCB0/1 vs RCB2/3 

tumors 

 
Term Count PValue Genes FDR 

GO:0050853~B cell receptor 

signaling pathway 

10 2.60E-10 IGHG1, CD38, IGHG3, KLHL6, IGHV3-23, IGHA1, ZAP70, 

NFAM1, IGLC2, IGLC3 

4.10E-07 

GO:0050776~regulation of 

immune response 

13 1.13E-08 ICAM1, ITGAL, CD96, SH2D1A, TRAC, CD3E, CD247, IGHV3-

23, SLAMF6, SLAMF7, IGLC2, IGLV3-1, IGLC3 

1.78E-05 

GO:0042110~T cell activation 8 6.19E-08 PIK3CG, ITK, NLRC3, CD3E, ZAP70, TNFSF14, IRF4, CD7 9.75E-05 

GO:0045087~innate immune 

response 

17 1.75E-07 PIK3CG, IGHG1, ITK, IGHG3, S100A9, SLAMF6, LY9, 

CLEC10A, CD180, SH2D1A, IGHV3-23, ZAP70, IGHA1, 

PSTPIP1, IGLC2, CD6, IGLC3 

2.76E-04 

GO:0050871~positive 

regulation of B cell activation 

6 1.38E-06 IGHG1, IGHG3, IGHV3-23, IGHA1, IGLC2, IGLC3 0.002168607 

GO:0006910~phagocytosis, 

recognition 

6 2.03E-06 IGHG1, IGHG3, IGHV3-23, IGHA1, IGLC2, IGLC3 0.003200698 

GO:0006955~immune 

response 

15 4.04E-06 TNFSF14, IGLV3-1, IGSF6, CD96, CXCL14, CST7, LAX1, 

S1PR4, CCR2, IGHV3-23, ZAP70, IGHA1, IL2RG, SPN, CD7 

0.006363967 

GO:0006911~phagocytosis, 

engulfment 

6 6.43E-06 IGHG1, IGHG3, IGHV3-23, IGHA1, IGLC2, IGLC3 0.010129771 

GO:0002250~adaptive 

immune response 

9 1.77E-05 PIK3CG, ITK, SH2D1A, LAX1, ZAP70, SLAMF7, CD6, 

CLEC10A, CD7 

0.027811031 

GO:0031295~T cell 

costimulation 

7 2.86E-05 TRAC, CD3E, CD247, TNFSF14, GRAP2, CD5, SPN 0.045037197 

GO:0006958~complement 

activation, classical pathway 

7 1.09E-04 IGHG1, IGHG3, IGHV3-23, IGHA1, IGLC2, IGLV3-1, IGLC3 0.172370846 

GO:0042742~defense response 

to bacterium 

8 1.23E-04 IGHG1, IGHG3, IGHV3-23, S100A9, IGLC2, S100A14, SPN, 

IGLC3 

0.192882539 

GO:0007165~signal 

transduction 

22 1.79E-04 ITGAL, ZNF831, ITK, IL2RB, MPP2, RHPN2, CRABP2, 

S100A9, TNFSF14, RCAN1, NFAM1, CD38, RAC2, CXCL14, 

RASAL3, PSTPIP1, CSF2RB, CSF3R, PDE9A, IL2RG, FGF2, 

SPN 

0.282036649 
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Term Count PValue Genes FDR 

GO:0038096~Fc-gamma 

receptor signaling pathway 

involved in phagocytosis 

7 4.25E-04 IGHG1, IGHG3, CD247, IGHV3-23, IGLC2, IGLV3-1, IGLC3 0.667122872 

GO:0006956~complement 

activation 

6 5.33E-04 IGHG1, IGHG3, IGHV3-23, IGLC2, IGLV3-1, IGLC3 0.837215067 

GO:0072540~T-helper 17 cell 

lineage commitment 

3 5.68E-04 SLAMF6, LY9, IRF4 0.891047895 

GO:0050852~T cell receptor 

signaling pathway 

7 9.51E-04 ITK, PRKCQ, TRAC, CD3E, CD247, ZAP70, GRAP2 1.487412247 

GO:0042113~B cell activation 4 0.001367591 IKZF3, LAX1, ZAP70, BANK1 2.133023801 

GO:0046641~positive 

regulation of alpha-beta T cell 

proliferation 

3 0.002004087 CD3E, CCR2, ZAP70 3.111164147 

GO:0038095~Fc-epsilon 

receptor signaling pathway 

7 0.00243433 ITK, PRKCQ, IGHV3-23, GRAP2, IGLC2, IGLV3-1, IGLC3 3.767149836 

GO:0006954~inflammatory 

response 

10 0.002492988 PIK3CG, ITGAL, PRKCQ, CCR2, S100A9, PSTPIP1, ZAP70, 

IL17RE, NFAM1, CD180 

3.856262395 

GO:0006898~receptor-

mediated endocytosis 

7 0.003028293 IGHV3-23, IGHA1, CD6, IGLC2, CD5, IGLV3-1, IGLC3 4.665923483 

GO:0045060~negative thymic 

T cell selection 

3 0.003031374 CD3E, ZAP70, SPN 4.670564679 

GO:0045086~positive 

regulation of interleukin-2 

biosynthetic process 

3 0.003619545 PRKCQ, CD3E, IRF4 5.552783712 

GO:0032740~positive 

regulation of interleukin-17 

production 

3 0.004256369 PRKCQ, SLAMF6, LY9 6.499353486 

GO:0042102~positive 

regulation of T cell 

proliferation 

4 0.010792635 PRKCQ, CD3E, CD6, SPN 15.71457498 

GO:0006968~cellular defense 

response 

4 0.011797806 ITK, SH2D1A, CCR2, SPN 17.05384518 

GO:0030593~neutrophil 

chemotaxis 

4 0.013964993 PIK3CG, S100A9, CSF3R, TGFB2 19.8738515 
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Term Count PValue Genes FDR 

GO:0006935~chemotaxis 5 0.014183461 RAC2, CXCL14, CCR2, FGF2, SPN 20.15309019 

GO:0001816~cytokine 

production 

3 0.015423483 PIK3CG, ITK, S100A9 21.72085716 

GO:0097190~apoptotic 

signaling pathway 

4 0.016971589 CD38, CD3E, CD5, SPN 23.63768279 

GO:0007204~positive 

regulation of cytosolic calcium 

ion concentration 

5 0.019349653 PIK3CG, EDNRB, CD38, S1PR4, CCR2 26.49671124 

GO:0060412~ventricular 

septum morphogenesis 

3 0.020464503 HEY2, PROX1, TGFB2 27.80223982 

GO:0010621~negative 

regulation of transcription by 

transcription factor localization 

2 0.022695501 ID1, HEY2 30.34986847 

GO:0002291~T cell activation 

via T cell receptor contact with 

antigen bound to MHC 

molecule on antigen presenting 

cell 

2 0.022695501 ICAM1, ITGAL 30.34986847 

GO:0030888~regulation of B 

cell proliferation 

2 0.022695501 IKZF3, MZB1 30.34986847 

GO:0043547~positive 

regulation of GTPase activity 

10 0.028967731 ICAM1, IL2RB, ACAP1, RASAL3, CSF2RB, IL2RG, DENND5B, 

FGF2, RAPGEFL1, DENND1C 

37.06858481 

GO:0035910~ascending aorta 

morphogenesis 

2 0.030146509 HEY2, TGFB2 38.26146402 

GO:0038110~interleukin-2-

mediated signaling pathway 

2 0.030146509 IL2RB, IL2RG 38.26146402 

GO:0032496~response to 

lipopolysaccharide 

5 0.036860392 CD96, CSF2RB, ACP5, CD6, S100A14 44.66174092 

GO:0007169~transmembrane 

receptor protein tyrosine kinase 

signaling pathway 

4 0.037029159 ITK, CD3E, ZAP70, CD7 44.81431372 

GO:0001895~retina 

homeostasis 

3 0.037244934 AZGP1, IGHG3, IGHA1 45.00881071 
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Term Count PValue Genes FDR 

GO:0090330~regulation of 

platelet aggregation 

2 0.044879849 PRKCQ, ZAP70 51.49173914 

GO:0045577~regulation of B 

cell differentiation 

2 0.044879849 IKZF3, NFAM1 51.49173914 

GO:0070374~positive 

regulation of ERK1 and ERK2 

cascade 

5 0.044990022 ICAM1, NDRG4, SERPINF2, NPNT, FGF2 51.57981883 

GO:0032729~positive 

regulation of interferon-gamma 

production 

3 0.047991166 CD3E, CCR2, SLAMF6 53.92232758 
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Figure 4. 6. Genomic alterations in pre-chemotherapy tumor samples from 32 Q-CROC-3 TNBC patients.  

TP53 ,BRCA1/2 status was shown with filled boxes  

RAD21/MYC : filled box: RNAseq reads for that gene in that tumor is above mean for all samples 
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In the next step, RNAseq of the 14 post-chemo tumors was compared to corresponding 

matched pre-chemo. Six genes were significantly expressed in post-chemo in comparison to pre-

chemo samples. DUSP1 and RGS were increased and GREM1, MMP11, IGHG4 and IGLV1-51 

were decreased in the post-chemo samples.  

As long as the previous study that was done by Dr. Basik group on resistant TNBC cell 

lines revealed ABC gene fusion as the main cause of resistance in those samples, we next looked 

at possible gene fusions to see if the same pattern is happening in patient samples. After removing 

all fusions involving immunoglobulin genes, we identified 134 gene fusions in these samples. 

Thirty-five of the fusions represented inter-chromosomal translocations. There were 52 gene 

fusions in post-chemotherapy samples and in seven of them, RNA expression increase (>4-fold) 

was detected in at least one of the two genes involved (Table 4.10). Importantly we found fusions 

that involves the ABCB1 gene, which is associated with chemo resistance in cancer.
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Table 4. 10. Highly expressed post-chemotherapy Gene Fusions 

 

Fusion Name 

(Gene1--Gene2) 

Sample Left 

Chr 

Left Chr BP Right 

Chr 

Right Chr BP Gene1 

PostC/PreC 

Expression 

Ratio 

Gene2 

PostC/PreC 

Expression 

Ratio 

SH3GL3--

TM6SF1 

Neo_05_PostChemo 15 84159654 15 83781549 8.6 2.5 

TFG--GPR128 Neo_25_PostChemo 3 100438902 3 100348442 1.6 8.1 

DSP--CALCR Neo_25_PostChemo 6 7563013 7 93116319 1.1 18.1 

IL23R--INADL Neo_25_PostChemo 1 67672738 1 62586853 15.5 0.9 

LINGO1--TNNC2 Neo_27_PostChemo 15 78088281 20 44461967 4.1 5.8 

SMCO3--

C12orf60 

Neo_42_PostChemo 12 14967060 12 14975846 32.1 38.5 

KIAA1430--

ABCB1 

Neo_50_PostChemo 4 186124939 7 87230394 0.64 28.2 
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4.3. Conclusion 

 

In this study, we performed extensive molecular analysis of pre- and post-chemotherapy tumor 

samples in response to neoadjuvant chemotherapy treatment. Here, we presented the results of 

array CGH, RNAseq and whole exome sequencing (WES) analysis of tumor samples obtained 

from 29 patients (array CGH on 9 matched pre/post tumors pairs, RNAseq on 28 pre-chemo 

samples and 14 matched pre/post pairs and WES on 25 patients). The response of the tumor to 

chemotherapy was not the same in all tumors and varied from pCR to even growing during 

chemotherapy. 

  Our findings suggest that there are two major driving factors in chemotherapy response in 

the neoadjuvant setting in TNBCs.  First one is the role of immune response (PD-L1 expression) 

and second one is the amplification of chromosome 8q23 particularly RAD21, EIF3H and 

UTP23genes. We also found a novel focal amplification on chromosome 9 involving the NFIB 

gene in Neo27 post-chemo sample. This amplification was validated to be functional by RNAseq 

data and gene expression of nine genes located there was increased in the post chemotherapy 

sample compared with the pre-chemotherapy one. NFIB role in chemo-resistance to cisplatin was 

previously reported in ovarian cancer (Kashiwagi, et al. 2011).  

WES results showed great genomic heterogeneity of TNBC tumors and any of the samples 

was almost unique with TP53 somatic mutation as the only shared somatic mutation. In 

comparison between pre and post samples, 65-95% of the variants were conserved. When limited 

“gained” or “lost” variants were evaluated by ddPCR, they were mostly detected in plasma of both 

pre- and post-chemo samples. This finding suggests little genomic change from pre to post-
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treatment and the possible role of tumor heterogeneity for some of the changes in AF in detected 

variants.  

In the recent NGS study on 74 post-chemotherapy residual TNBCs after neoadjuvant 

chemotherapy, TP53 was the most mutated gene and JAK2 and MCL-1 (amplified in 11% and 

54% of samples respectively) was proposed as two actionable candidate genes (Balko, et al. 2014). 

Although our results were similar in TP53 mutations incident to them (89% vs 84%), we just found 

JAK2 and MCL1 genes amplification in two different tumors. One of the reasons of this 

discrepancy is usage of formalin-fixed paraffin embedded tumor in their study versus frozen 

biopsies in ours. In addition, they only used 164 gene panel and RAD21 was not evaluated by 

them. We also could not reject the role of heterogeneity of TNBCs for these differences. Therefore, 

evaluation of these genes in larger scale data will help to uncover the drug resistance problem. 

Finally, in four patients, we analyzed WES data from matched lymph nodes and metastatic 

tumor sample. Our findings showed that 91% of variants present in the metastatic tumors were 

detected in the post-chemotherapy tumor samples, compared with 85% in the pre-chemotherapy 

samples. Even though the sample size was limited, these findings suggest that the post-

chemotherapy sample is a better indicator of the metastatic genotype than the pre-chemotherapy 

sample. Further genomic and transcriptomic analysis of large scale of metastatic lesions may lead 

to novel therapeutic approaches to overcome drug resistant TNBC patients.  
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Chapter 5: ClinPred – A Prediction method to identify 

clinically relevant nonsynonymous single nucleotide 

variants. 
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5.1. Introduction 

 

Immense progress in high throughput sequencing technologies provides new opportunities for 

identifying genetic determinants of disease. “Next Generation” sequencing is now firmly 

established in diagnostic and research laboratories. Although recent advances in these technologies 

make them affordable, interpreting the effect of discovered variants remains a serious challenge. 

Since the human exome on average contains around 20,000 single nucleotide variants, as compared 

with the reference,(Shihab, et al. 2014) it is crucial to accurately predict deleteriousness of genomic 

changes, especially nonsynonymous single nucleotide variants (nsSNVs).  Distinguishing 

pathogenic amino acid changes from background polymorphisms is essential for efficient use of 

these technologies in personalized medicine. Experimental validation of the pathogenicity of large 

numbers of variants is not feasible as it is expensive and time consuming. Consequently, many 

algorithms have been developed to predict the potential impact of a variant on protein structure 

and/or function. These methods use different properties of the variant, such as relationship to local 

protein structure, evolutionary conservation and/or physiochemical and biochemical properties of 

amino acids. 

While the current programs provide positive predictive power, their results are often in 

disagreement with each other, (Ioannidis, et al. 2016; Li, et al. 2014) and there are currently no 

guidelines as to which predictions are the most reliable. It is believed that individual methods have 

complementary strengths, depending on their specific features and computational algorithms.   

(Gonzalez-Perez and Lopez-Bigas 2011; Ioannidis, et al. 2016; Liu, et al. 2011) Hence, recently, 

new “ensemble” predictors have combined individual predictors in order to achieve higher 

classification accuracy. 
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Existing ensemble prediction tools apply machine learning algorithms and have been 

trained on known pathogenic and neutral nsSNVs mostly from HGMD or UNIPROT databases. 

While those databases provide important information about variants associated with diseases, they 

have known limitations. To improve functional annotation of human variation, the more recently 

developed  ClinVar (Landrum, et al. 2018) database recommends that submitters use American 

College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology 

(AMP) guidelines (Richards, et al. 2015) for clinical interpretation of variants. Since its release in 

2013, ClinVar has grown rapidly and has become the powerful resource representing current 

understanding of the relationship between genotypes and medically important 

phenotypes.(Harrison, et al. 2016)  

In this chapter, we hypothesized that by developing a machine learning approach trained 

on the most up to date and highest quality data, we will facilitate more accurate and reliable 

prediction of variants’ relevance to genetic disease.  
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5.2. Results 

 

The full description of the model is available in the method chapter. Briefly, our classifier, 

ClinPred, combined random forest and gradient boosting models. As predictive features, we 

combined commonly used and recently developed individual prediction tool scores, as well as 

allele frequencies (AF) of the variant in different populations from gnomAD database. Our model 

is the first to train on variants from the ClinVar database. Moreover, we used AFs in different 

populations as features, rather than filtering variants based on arbitrary AF cutoffs, as is the case 

with most currently used approaches. We also assembled large independent test sets to evaluate 

ClinPred on cancer and rare disease data, and to compare its performance with other existing 

methods.  

 

5.2.1. Performance comparison of our models and individual component features 

 

Our two models (cforest and xgboost) were superior to all their constituent features and 

discriminated well between pathogenic and benign variants in ClinVarTest with AUC equal to 

0.97 ± 0.004 (mean ± standard deviation in 5-fold CV) for xgboost and cforest (Figure 5.1). They 

also showed superior performance in MouseVariSNP with respective AUCs of 0.96 ± 0.01 and 

0.96 ± 0.02. Although most features and our models demonstrated little change in AUC score 

between MouseVariSNP and ClinVarTest, DANN and Siphy24-way attained 11% lower AUC in 

MouseVariSNP compared to ClinVarTest. Overall, the single features with the highest AUC were 

AF (gnomAD_exome_ALL), followed by PROVEAN, Polyphen-HVAR and CADD (Figure 5.1).  

Consistent with other research findings, conservation scores (GERP++, phastCons, PhyloP and 

SiPhy) almost all have lower AUC than functional scores (SIFT, MutationAssessor, PROVEAN, 

PolyPhen-2 HDIV and HVAR).(Dong, et al. 2015) We further investigated the effect of 
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excluding/including AF as a feature in the models and found that the inclusion of AF significantly 

increases AUC as well as increasing sensitivity and specificity (Figure 5.2).  

Finally, we found that combining our models by selecting the higher of the two probability scores 

improved the AUC to 0.98 ± 0.004 and 0.96 ± 0.01 in ClinVarTest and MouseVariSNP 

respectively, while also achieving the best specificity at 95% sensitivity. Hence, we defined this 

combined model as ClinPred and used it in subsequent tests. 
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Figure 5. 1. The performance of our models was compared against their constituting 

features and other available tools in ClinVarTest and MouseVariSNP.  

Analysis is based on the raw scores and was calculated for 5-fold cross validation. Adapted from 

Alirezaie et al., The American Journal of Human Genetics, 2017. 
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Figure 5. 2. AF boost sensitivity and AUC score when applied as a feature in our models. 

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 
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5.2.2. ClinPred in comparison to other ensemble tools  

 

Using the ClinVarTest dataset, ClinPred outperformed other classifiers with the best AUC (0.98 ± 

0.004) (Figure 5.3), sensitivity (93.1 ± 3 %) and specificity (94.2±0.04%). It had the lowest error 

rate (6.04%) - the sum of false positives and false negatives over total number of labeled variants 

- in comparison to other tools (Figure 5.4 and Table 5.1) where the error rate ranged from 13.2% 

(REVEL) to 50.3% (M-CAP).  

 

Figure 5. 3. AUC was compared between our models and seven recently developed tools 

using in ClinVarTest data.   

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 
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Table 5. 1. Overview of performance of ClinPred in comparison to raw scores of other tools 

in ClinVarTest 

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 

  
sensitivity specificity FPR accuracy precision Error 

Percent 

F1 

score 

MCC 

ClinPred 0.94 0.94 0.06 0.94 0.86 6.04 0.90 0.85 

xgboost 0.91 0.95 0.05 0.94 0.87 6.42 0.89 0.84 

cforest 0.89 0.97 0.03 0.95 0.91 5.49 0.90 0.86 

VEST3_score 0.83 0.84 0.16 0.84 0.66 16.48 0.73 0.62 

MetaSVM_score 0.78 0.85 0.15 0.83 0.67 16.84 0.72 0.60 

MetaLR_score 0.80 0.80 0.20 0.80 0.60 20.18 0.69 0.55 

M-CAP_score 0.84 0.36 0.64 0.50 0.34 50.36 0.48 0.20 

fathmm-

MKL_score 

0.84 0.69 0.31 0.73 0.51 26.53 0.64 0.48 

Eigen-raw 0.76 0.74 0.26 0.74 0.53 25.58 0.62 0.45 

REVEL 0.82 0.89 0.11 0.87 0.74 13.20 0.77 0.68 

  FPR: False positive rate 

  MCC: Matthews correlation coefficient 

 

 

When used on MouseVariSNP, ClinPred again outcompeted other available methods 

(Table 5.2). VEST3 was the closest competitor with an AUC of 0.88± 0.03. All methods were less 

accurate in MouseVariSNP than in ClinVarTest; the method with the largest AUC decrease was 

FATHMM (from 0.78±0.1 to 0.58±0.07) (Figure 5.1). Although ClinPred achieved the highest 

specificity in MouseVariSNP, it was followed closely by REVEL. This might be due to type I 

circularity, considering that VariSNP has overlap with the training set of other tools. On the other 

hand, as pathogenic variants in MouseVariSNP have the least overlap with the training data used 

by other tools, sensitivity score is the least biased comparator. ClinPred had the highest sensitivity 

among tools, detecting 92.79±3.04% of pathogenic variants and VEST3 was the next, achieving 

85.26±3.34% sensitivity.  
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Figure 5. 4. The performance of our models were compared to seven recently developed 

tools using ClinVarTest data.   

Our models had the best specificity at the cut off required to achieve 95% sensitivity. Adapted 

from Alirezaie et al., The American Journal of Human Genetics, 2017. 

 

 

 

In order to visualize the distribution of scores of recently developed ensemble tools, we 

plotted raw scores for pathogenic and benign variants in different data sets. As demonstrated in 

Figure 5.5, ClinPred scores were highly concentrated near 1 for pathogenic and 0 in the benign 

variants across datasets. This analysis provides another way to illustrate the ability of ClinPred to 

differentiate well between benign and pathogenic variants in comparison to other methods. 
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Table 5. 2. Overview of performance of ClinPred in comparison to raw scores of other 

models in MouseVariSNP test 

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 

 
Model Sensitivity Specificity FPR Accuracy Precision Error 

Percent 

F1 

score 

MCC 

ClinPred 0.93 0.88 0.12 0.89 0.50 11.44 0.65 0.63 

xgboost 0.91 0.89 0.11 0.89 0.51 11.02 0.65 0.63 

cforest 0.88 0.92 0.08 0.92 0.60 8.07 0.72 0.69 

VEST3_score 0.86 0.78 0.22 0.79 0.34 20.98 0.48 0.45 

MetaSVM_score 0.58 0.81 0.19 0.79 0.29 21.24 0.38 0.30 

MetaLR_score 0.58 0.75 0.25 0.73 0.23 26.73 0.33 0.23 

M-CAP_score 0.66 0.61 0.39 0.62 0.18 37.95 0.29 0.18 

fathmm-

MKL_score 

0.75 0.68 0.32 0.69 0.23 31.15 0.36 0.28 

Eigen-raw 0.76 0.73 0.27 0.73 0.27 26.67 0.40 0.34 

REVEL 0.71 0.87 0.13 0.86 0.42 14.50 0.53 0.47 

 
FPR: False positive rate 

MCC: Matthews correlation coefficient 
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Figure 5. 5. Comparison of raw scores of ClinPred, M-CAP, REVEL, and MetaLR.  

Violin plots represent the full distribution of scores for Pathogenic (Pink color) and Benign 

(Green color) variants in different test data.  Adapted from Alirezaie et al., The American Journal 

of Human Genetics, 2017. 
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5.2.3. Using set allele frequency cutoffs versus allele frequency as a predictor variable 

 

In most laboratories tasked with analyzing exome data, hard allele frequency cutoffs are used to 

filter lists of detected variants, and prediction scores are assessed for the remaining variants as part 

of variant interpretation. As a result, allele frequency has generally not been used explicitly to 

predict clinical relevance of mutations in previous approaches. This is a sensible approach, since 

a reasonable estimate of the maximum AF can be based on the mode of inheritance and population 

frequency of the phenotype. Moreover, this approach is supported by the current ACMG 

guidelines, where AF is given a higher evidence value than computational predictions (Richards, 

et al. 2015). However, in many cases, the mode of inheritance may not be evident – for example 

distinguishing recessive from de novo dominant cases – and population prevalence may not be 

obvious for non-specific phenotypes. Moreover, our analysis above suggested that population 

allele frequency is one of the most informative features in our model, and it is likely that it can 

acquire additional value when used in the machine learning setting alongside other predictor 

variables. Hence, we investigated whether AF remains an important predictor when the models are 

used in typical research approaches. We tested our models on datasets filtered according to various 

AF cutoffs: lower than 0.01, lower than 0.005 and lower than 0.001. In all conditions, ClinPred 

was superior to other tools, achieving highest AUC, sensitivity and specificity (Figure 5.6 and 5.7). 

Thus, even when using datasets that are likely to be seen in the research or clinical setting – i.e. 

filtered using typically applied allele frequency cutoffs – there is still valuable information to be 

learned from population AF.  
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Figure 5. 6.  AUC was compared to recently developed and commonly used tools using 

various AF cutoffs. 

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 
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Figure 5. 7. Performance of ClinPred was compared to recently developed ensemble tools 

in different AFs. 

  Models were trained on the training data and tested on ClinVarTest using various AF cutoffs: all 

data set regardless of AF, AF less than 0.01, less than 0.005 and less than 0.001. Adapted from 

Alirezaie et al., The American Journal of Human Genetics, 2017. 

 

5.2.4. Comparing categorical scores across different tools 

 

Many current tools provide categorical predictions – pathogenic/damaging versus benign/tolerant 

– according to the authors' recommended pathogenicity thresholds. Hence, we compared the 

categorical predictions across various ensemble tools. As REVEL does not provide categorical 

scores, any variant with a raw score lower than 0.5 in REVEL was classified as benign while scores 

greater than or equal to 0.5 were classified as pathogenic. We used the same threshold for ClinPred. 

We restricted the comparison to variants where scores were available for any tool (excluding 

missing values). In ClinVarTest, M-CAP had the highest sensitivity, successfully classifying 

95.8% pathogenic variants as damaging. However, this came at the cost of very low specificity, 

with 58% of benign variants misclassified as damaging. ClinPred achieved the second highest 

sensitivity (93.6 %), while maintaining a low false positive rate of 6% (Figure 5.8 and Table 5.3). 
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When tested on MouseVariSNP, ClinPred had the best performance according to both sensitivity 

and specificity (Figure 5.8, Table 5.4).  

 

Table 5. 3.Overview of performance of ClinPred in comparison to categorical scores of 

other tools in ClinVarTest.  

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 

 
 Sensitivity 

% 

Specificity 

% 

FPR Accuracy Precision Error 

Percent 

F1 

Score 

MCC 

ClinPred 93.58 94.10 0.06 0.94 0.86 6.04 0.90 0.85 

xgboost 90.75 94.65 0.05 0.94 0.87 6.42 0.89 0.84 

cforest 89.06 96.59 0.03 0.95 0.91 5.49 0.90 0.86 

REVEL 82.55 89.27 0.11 0.87 0.75 12.60 0.78 0.70 

M-CAP 95.79 41.62 0.58 0.64 0.54 35.79 0.69 0.42 

MetaLR 77.93 83.87 0.16 0.82 0.65 17.79 0.71 0.59 

Fathmm_mkl 96.48 43.70 0.56 0.58 0.40 41.65 0.56 0.38 

 

FPR: False positive rate 

MCC:  Matthews correlation coefficient 
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Figure 5. 8. Comparison of ClinPred with categorical predictions available from M-CAP, 

REVEL, and MetaLR.  

REVEL and ClinPred scores lower than 0.5 are defined as tolerant and greater than 0.5 as 

damaging. We show proportions of benign and pathogenic variants that were classified as 

Tolerated (T, Green) and Damaging (D, Pink). ClinPred had the best performance in finding as 

many pathogenic variants possible while minimizing the number of benign variants that are 

predicted as damaging both in ClinVarTest (A) and MouseVariSNP (B). Adapted from Alirezaie 

et al., The American Journal of Human Genetics, 2017. 
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Table 5. 4. Overview of performance of ClinPred in comparison to categorical scores of other 

tools in MouseVariSNP test. 

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 

 

  Sensitivity 

% 

Specificity 

% 

FPR Accuracy Precision Error 

Percent 

F1 

Score 

MCC 

ClinPred 92.63 88.04 0.12 0.89 0.50 11.44 0.65 0.63 

xgboost 91.24 88.69 0.11 0.89 0.51 11.02 0.65 0.63 

cforest 88.48 92.38 0.08 0.92 0.60 8.07 0.72 0.69 

REVEL 71.43 86.65 0.13 0.85 0.41 15.09 0.52 0.46 

M-CAP 88.73 47.20 0.53 0.53 0.21 47.16 0.34 0.25 

MetaLR 56.28 79.25 0.21 0.77 0.26 23.36 0.35 0.26 

Fathmm 

_mkl 

91.16 38.92 0.61 0.45 0.16 55.15 0.27 0.20 

 

 

 

FPR: False positive rate 

MCC: Matthews correlation coefficient 

 

 

 

Subsequently we investigated the performance of our models on the rare variants that are 

likely to be considered in current clinical testing. As M-CAP scores only rare variants (≤ 1% allele 

frequency), we restricted our analysis to the same cutoff. ClinPred maintained its performance as 

a classifier with lowest error rate in both ClinVarTest and MouseVariSNP restricted to AF≤ 1% 

(Figure 5.9).  
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Figure 5. 9. Comparison of ClinPred with categorical predictions available from M-CAP, 

REVEL, and MetaLR in AF<0.01.  

REVEL and ClinPred scores lower than 0.5 are defined as tolerant and greater than 0.5 as 

damaging. We show proportions of benign and pathogenic variants that were classified as 

Tolerated (T, Green) and Damaging (D, Pink). ClinPred had the best performance in finding as 

many pathogenic variants possible while minimizing the number of benign variants that are 

predicted as damaging both in ClinVarTest with AF<0.01 (A) and MouseVariSNP with AF<0.01 

(B). Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 
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5.2.5. Investigating generalizability of ClinPred to different disease mechanisms 

 

Further, we examined if our algorithm’s performance differs between mutations resulting in gain 

or loss of function, in either rare disease or cancer. Similarly, to the first and second test datasets, 

we calculated AUC and sensitivity for GainFunction, LossFunction, TSG and Oncogene test data. 

As demonstrated in Figure 5.10, ClinPred performance remained robust across all four test-

datasets.  Moreover, ClinPred retains the highest sensitivity to predict pathogenic variants among 

other tools (Figure 5.10).   

Since the DoCM database consists of only pathogenic variants, we could only compile 

sensitivity scores based on the categorical predictions provided by the tools. (Table 5.5). ClinPred 

could successfully predict pathogenic variants in cancer, achieving a sensitivity score equal to 

94.02 percent.  

Table 5. 5. Overview of performance of ClinPred in comparison to categorical scores of 

other tools in DoCM test.  

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 

 

  
NA/Pathogenic  TPR 

sensitivity  

FNR 

cforest 0 0.89 0.10 

xgboost 0 0.91 0.08 

ClinPred 0 0.94 0.05 

REVEL 0 0.83 0.16 

M-CAP 12 0.95 0.04 

MetaLR 0 0.67 0.32 

Fathmm_mkl 0 0.97 0.02 

       

        NA/pathogenic: Number of pathogenic variants with missing data 

        TPR: True positive rate 

         FNR: False negative rate 
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Figure 5. 10.  AUC and sensitivity score were compared in five datasets.  

Error bars show data for 5-fold cross validation.  We observed that AUC is in agreement for all 

these datasets regardless of type of the variants. Our method yield state of the art sensitivity in 

most of the datasets we analyzed. Adapted from Alirezaie et al., The American Journal of 

Human Genetics, 2017. 
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5.2.6. Application of ClinPred to patient data 

 

Finally we evaluated the performance of ClinPred in comparison to commonly used predictors, 

SIFT, Polyphen2, CADD as well as the recent ensemble predictors, MetaSVM, MetaLR, REVEL, 

M-CAP and VAAST Variant Prioritizer (VVP) (Flygare, et al. 2018) in 31 exomes from the 

FORGE Canada and Care4Rare Canada projects. To compare categorical scores, variants were 

categorized as pathogenic if they were predicted as pathogenic/probably pathogenic (Polyphen2) 

or damaging (SIFT, MetaSVM, MetaLR, M-CAP).  Since CADD authors did not provide a 

categorical score, we defined pathogenic variants according to different CADD_PHRED score 

cutoffs (more than 10, 15 and 20). We considered any score higher than 0.5 as pathogenic in 

ClinPred and REVEL, and any score higher than 50 as pathogenic in VVP.  

After typical quality filtering (Beaulieu, et al. 2014) a patient’s exome on average harbored 433 

non-synonymous variants (AF<0.05 in ExAC). There were 25 different nonsynonymous variants 

with strong supporting evidence for being causative in these samples. All studies have been 

published in peer-reviewed journals or are in press. In this analysis, we defined the sensitivity of 

a predictor as the number of known causative variants that were predicted as pathogenic, divided 

by 25 (the total number of known causative variants). Although each exome likely contains other 

pathogenic variants, in addition to those that cause the disease, we aimed to identify the prediction 

tools that selected the highest number of the 25 known disease variants, while discarding the 

highest proportion of the remaining variants. 

As demonstrated in Figure 5.11, sensitivity scores among tools ranged from 44 to 100 

percent, with the highest achieved by CADD and VVP for homozygous genotype (hom-VVP). 

Although CADD and hom-VVP identified all the causative variants as pathogenic, this came with 

the cost of low specificity: on average 94, 75, 60 and 50% of non-synonymous variants per exome 
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were predicted as pathogenic using different hom-VVP and CADD_PHRED cutoffs (more than 

10, 15 and 20 respectively). While hom-VVP predicted all pathogenic variants as deleterious, VVP 

for heterozygous genotype (het-VVP) missed three heterozygote variants. ClinPred predicted 

24/25=96% of the causative variants as pathogenic (Figure 5.12). The only variant missed by 

ClinPred had a marginal score of 0.449 and was found in late onset patients with compound 

heterozygote variants in the same gene - one frameshift and the other nonsynonymous.(Hoch, et 

al. 2017)  

Further, we ranked the variants based on their ClinPred scores in any of these clinical exomes to 

investigate application of ClinPred in the filtering process. The median ranking of causative 

variants was 10 with the causative variant ranked as the first one in three cases.   34.5%, 52%, 

66%, 83% of true positives were ranked on the top 5, 10, 15 and 25 variant ranks respectively. 

Only 18% of the causative variants ranked over 25; these variants were mostly in compound-

heterozygote condition with other frameshift variant or top ranked heterozygote one. 



150 

 

 

Figure 5. 11. Illustration of performance of ClinPred as compared to other tools on 

Care4Rare Canada project samples.  

ClinPred reduced the number of nonsynonymous variants predicted as pathogenic and retained 

high sensitivity. Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 
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Figure 5. 12. Comparison of raw scores of MetaLR, M-CAP, REVEL and ClinPred for 

FORGE Canada and Care4Rare Canada projects cases  

Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 

 

 

5.2.7. Assessing concordance between functional assay and computational prediction scores 

 

Since ACMG guideline suggest the result of well-established in vitro or in vivo functional study 

as evidence for variant interpretation, we examined how our algorithm and other computational 

prediction methods’ performance matches functional assay data. A recent study on large-scale 

functional classification of BRCA1 variants provides an excellent opportunity for such 

comparison. (Findlay, et al. 2018) While most of the computational methods had the ability to 

predict LOF variants in the BRCA1 dataset as pathogenic/deleterious (sensitivity ranged from 92.6 

to 100 %), their performance was poor in predicting functional variants as benign (specificity 

ranged from 0.1 to 46% with the lowest in M-CAP and the best in MetaSVM).  ClinPred predicted 

97.5% of LOF variants as pathogenic and 32% of functional variants as benign (Figure 5.13).  
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Figure 5. 13. Illustration of performance of ClinPred in comparison to other tools in 

BRCA1 dataset.  

Sensitivity and specificity of each tool were compared based on the categorical scores of each 

tool. Adapted from Alirezaie et al., The American Journal of Human Genetics, 2017. 
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5.3. Conclusion 

 

In this study, we used an improved supervised machine learning approach to create ClinPred, a 

method to efficiently distinguish clinically pathogenic from neutral variants. The first 

improvement concerns the choice of the most accurate training dataset: we train our predictor on 

clinically significant variants based on the joint consensus recommendation for the interpretation 

of sequence variants by the American College of Medical Genetics and Genomics (ACMG) and 

the Association for Molecular Pathology (AMP). Secondly, we apply two different machine-

learning algorithms and include a wide range of recent supervised and unsupervised methods as 

predictive features. Finally, we identify allele frequency as one of our key predictive features, 

which improves performance both in the presence and in absence of a predetermined frequency 

threshold for inclusion of variants in the analysis.  

Compared to other methods, ClinPred showed highest sensitivity, improved specificity, 

and obtained the best performance according to various performance metrics. We also found that 

our predictor maintains consistently superior performance across different genetic models and 

pathogenic mechanisms – for example dominant versus recessive or oncogene versus tumor 

suppressor classifications.  

In our illustration of real-life utility with respect to clinical data, the FORGE Canada and 

Care4Rare Canada cases were selected from studies published after mid-2015 to avoid overlap 

with any of the training data. Applying our predictor as one of the selection criteria for 

pathogenicity would reduce the list of an average 443 non-synonymous in individual’s exome to 

an average of 70 variants to be further manually followed up. In most cases, the entire list of 

selected variants - prioritized by prediction scores - would not have to be examined, as 83% of 

causative variants ranked within the top 25 candidates. Out of the 25 distinct disease-causing 
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variants, ClinPred misclassified only 1 causative variant as benign. This variant had a marginal 

score of 0.449 and was found in late onset case with compound heterozygote variants in the same 

gene - one frameshift and the other nonsynonymous (Hoch, et al. 2017). While this illustrates the 

pitfall of using classifiers such as ClinPred for purely automated filtering, it also suggests to a 

possible alternative multi-stage protocol, where patients can first be scanned using the currently 

optimized strict score cutoff and, if no definite disease cause is identified, the criteria can be 

relaxed and re-applied. The only approaches that succeeded in identifying all of the 25 pathogenic 

variants in this dataset were CADD and hom-VVP, but this came at the cost of specificity, and as 

a result, their application could only narrow down the candidate list to an average of 216 and 409 

variants per case for CADD and hom-VVP respectively. While increasing the threshold of any 

predictor score results in higher sensitivity, it will jeopardize specificity. In the clinical domain, a 

test achieving 95% sensitivity with high specificity is generally favorable. Across our test data, 

ClinPred was able to achieve 95% sensitivity with the best specificity among other tools. 

The relatively low specificity of computational predictions in the BRCA1 dataset may be 

at least partly due to the limited sensitivity of the in vitro assays used in that study. Functional 

scores in the BRCA1 dataset were measured based on cellular fitness in a haploid human cell line, 

which may not fully reflect the function in the complete organism. Such discrepancy between in 

vitro and in vivo BRCA1 mutant homologous recombination activity has previously been 

demonstrated (Drost, et al. 2011; Millot, et al. 2012). Conversely, computational predictions may 

be overestimating pathogenicity. At this point, we conclude that the relative strengths of 

computational predictions and in vitro functional assays warrant further investigation.  

Our results also demonstrate the value of combining different methods that likely provide 

complementary information as a result of their divergent algorithms and training datasets. The 
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importance of diversifying training datasets is illustrated by comparing Polyphen2 HVAR and 

HDIV scores, where their difference in performance owes to the fact they applied different training 

dataset in spite of the same algorithm. On the other hand, illustrating difference in methodologies, 

DANN and CADD shared the same training data with different algorithm resulting in disjoint 

performance. 

In our design, we took great care to avoid type-I circularity, (Grimm, et al. 2015) a problem 

that occurs in supervised machine learning when the training data directly or indirectly overlap 

with test data. Although in our model we eliminate any such overlap to prevent over-fitting, 

comparison against other tools is not completely free of bias. First, it is practically impossible to 

remove from our dataset the neutral variants that were used to train other ensemble tools, such as 

large number of variants present in the ExAC database. Second, M-CAP, VEST 3 and REVEL 

were trained on private pathogenic datasets which we were unable to access, and which may 

influence comparison of performance in their favor.  

Finally, we provide pre-computed ClinPred scores for all possible human variants through 

our website (http://hubs.hpc.mcgill.ca/~alirezai/ClinPred) to facilitate its use in general practice.   
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Chapter 6: General discussion 

 

In the past years, exome sequencing has become one of the most commonly used next‐generation 

sequencing technique. After significant success of whole exome sequencing in the research area 

and identifying ∼160 new disease genes annually, diagnostic and clinical genetics fields started to 

use this technique (Boycott, et al. 2017).  

In this thesis, I first reported a large-scale NGS study on FPC patients and demonstrated 

how using WES as the primary investigative tool led to discovery of novel candidate genes in this 

lethal disease. Identifying germline mutations in pancreatic cancer patients not only will facilitate 

management of patients with a positive family history, but also help to screen them at an early 

stage. Knowledge of predisposition genes can also predict response to specific therapies and guide 

to better treatment. In Chapter 4, by performing WES in multiple TNBC tumors, I showed how 

WES in combination with other sequencing techniques, identified  more than two-fold 

amplification in  RAD21 gene on chr8q in drug-resistant TNBCs. This finding suggests that 

amplified RAD21 may be both a marker and a target to overcome drug resistance in TNBCs. 

While WES is successful in both research and clinics, the significant challenge, which is 

clinical translation of exome sequencing and efficient variant interpretation, remains. In chapter 

five, I addressed this important problem in clinical genomics—how to identify the most likely 

pathogenic variant(s) responsible for a disease phenotype when analyzing variant data obtained by 

whole exome sequencing for diagnostics.   I developed ClinPred, a method to predict clinically 

related variants. ClinPred showed superior accuracy for predicting pathogenicity, achieving the 

highest area under the curve (AUC) score and increasing both the specificity and sensitivity in 

different test datasets. It also obtained the best performance according to various other metrics. 
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Moreover, ClinPred performance remained robust with respect to disease type (cancer or rare 

disease) and mechanism (gain or loss of function).  I provide pre-computed ClinPred scores for all 

possible human missense variants in the exome to facilitate its use by the community.  
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6.1. New pancreatic cancer genes 

6.1.1. NEK1  

 

NEK1 [NIMA (Never in Mitosis Gene A)-Related Kinase 1] is involved in DNA damage 

checkpoint control.  Its protein product is a dual serine-threonine and tyrosine kinase required for 

proper DNA damage repair. Dysfunctional NEK1 fails to activate Chk1 and Chk2 kinases, and 

consequently G1/S or M-phase checkpoints fail to stop in response to DNA damage, resulting in 

unstable chromosomes (Chen, et al. 2011b).  Besides its role in DNA damage checkpoint control, 

NEK1 is involved in centrosomal function and is suggested to be a tumor suppressor (Chen, et al. 

2011a). 

  In my findings, two of 93 high-risk PC families had a novel NEK1:p.Ala563Tyrfs*36 

variant, which was not seen either in public databases such as gnomAD or in our in-house control 

database. Interestingly one of the families had Greek origin (family 17) and the other one was of 

English and Scottish descent (family 78). As a result, it is unlikely that this variant is ethnic-

specific. It was concluded that this mutation is most likely a “hot spot” in NEK1. Segregation of 

the variant was observed in the English-Scottish family, but segregation analysis showed only 

partial segregation in the Greek family. Since the only affected patient with the wild-type 

NEK1 variant was the oldest diagnosed in this family (75 years of age), phenocopy is most likely 

the cause of PC in this patient. In the third family (89), the p.Asn648Lys variant segregated in the 

two PC-affected siblings.  

One of the interesting facts about NEK1 that makes it more appealing is its chromosomal 

location. NEK1 maps to chromosomal region 4q33. Previous linkage analysis findings on a study 

of a family with 9 PC-affected members suggested locus (4q32-34) as the PC susceptibility 
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chromosomal region (Eberle, et al. 2002). Further, Pogue-Geile et al. sequenced candidate genes 

in this region and identified PALLD (P239S) as the causative mutation in this family (Pogue-Geile, 

et al. 2006). Further studies could not confirm the role of PALLD in other families with pancreatic 

cancer, suggesting it cannot be a common PC susceptibility gene (Klein, et al. 2009; Salaria, et al. 

2007). 

Even though Pogue-Geile et al did not detect a NEK1 variant in the aforementioned family, 

the role of NEK1 cannot be ruled out, as they could not detect large genomic structural changes at 

this locus. Therefore, there is a possibility that NEK1 was the true underlying PC predisposition 

gene even in that family.  

 

 

Figure 6. 1. Chromosomal location of PALLD and NEK1 

 

 



160 

 

6.1.2. FAN1  

 

FAN1 (FANCD2/FANCI-associated nuclease 1) is the next strongest candidate gene. FAN1 plays 

a role in DNA interstrand cross-link repair and acts as a tumor suppressor by preventing genomic 

instability. Interestingly, recent research on more than 176 families with hereditary colorectal 

cancer reported germline mutations in the FAN1 gene as a putative colon cancer susceptibility 

gene (Segui, et al. 2015). 

In our study, I found FAN1 mutation in three families: a PTV in FAN1 (p.Arg710*) in 

Family 42 as well as a missense variant (p.Met50Arg) in two other families. The missense variant 

(p.Met50Arg) was located in a very conserved region within the RAD18-like ubiquitin-binding 

(UBZ) domain. This area is essential for FAN1 localization to sites of DNA damage. This variant 

also showed complete co-segregation with pancreatic cancer in tested family members. Although 

I could not find LOH in the analysis of the two tumors from carriers of this variant, this finding is 

consistent with Segui et al.’s report, in which somatic inactivation of the wild-type allele was not 

detected in carriers of germline FAN1 mutations with colon cancer (Segui, et al. 2015). 

Unfortunately, DNA from other family members was not available to determine segregation or 

LOH of the p.Arg710* variant. 

 

6.1.3. RHNO1 

 

The third top ranking candidate gene is RHNO1 (Rad9-Hus1-Rad1 Interacting Nuclear Orphan 1). 

RHNO1 plays an important role in DNA damage response (DDR) signalling in S phase (Cotta-

Ramusino, et al. 2011). In this study, I observed two different PTVs in RHNO1: the p.Arg84* 

variant in family 43   and the p.Arg113* variant in family 18. 
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Although we did not see segregation of the p.Arg84* variant in the second family member, 

we found LOH of the wild-type allele in the proband tumor. Segregation of the p.Arg113* variant 

was observed in both PC-affected family members. A third family with RHINO1 mutation was a 

carrier of the p.Leu16Val variant. This variant was predicted to be pathogenic by multiple in silico 

software methods and segregated in the family. This variant was previously reported in COSMIC 

database in thyroid cancer (COSM4146987).  

6.1.4. Other Candidates 

 

In this study, I found other noteworthy variants that can be potentially important in pancreatic 

cancer development. Most of these variants were located in genes implicated in other hereditary 

cancer syndromes. In particular, FANCG and FANCL genes (Fanconi Anemia genes) are 

important since HDR gene association with PC was reported in several studies (Couch, et al. 2005; 

Slavin, et al. 2018; van der Heijden, et al. 2004). Roberts et al also found multiple Fanconi anemia 

PTVs in analysing 638 WGS familial pancreatic cancer patients. In their study, they found four 

FANCG carriers besides PALB2 (FANCN), FANCC, and FANCM (Roberts, et al. 2016). 

Another publication by Witkiewicz et al. surveyed 109 micro-dissected pancreatic ductal 

adenocarcinoma cases; reported multiple Fanconi anemia genes were mutated or deleted in 

relatively high frequency in these samples (Witkiewicz, et al. 2015). A non-synonymous variant 

previously associated with Fanconi Anemia in FANCG was previously described in a cell line 

derived from early onset PC and demonstrated LOH (van der Heijden, et al. 2003). Therefore, I 

propose further investigation of the role of Fanconi anemia genes as pancreatic cancer 

susceptibility genes. 
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The other noteworthy gene is POLQ. This gene plays a key role in the microhomology-

mediated end-joining of double stranded DNA breaks and has been suggested as a potential target 

for synthetic lethality in HDR-deficient tumors (Ceccaldi, et al. 2015; Mateos-Gomez, et al. 2015). 

In this study, one PTV and three predicted-pathogenic missense variants in five samples were 

found. However, the variants did not segregate with PC in the four families that were tested. 

BLM (involved in hereditary breast cancer), and BARD1 (involved in hereditary breast 

and ovarian cancers) are other mutated genes worth mentioning and following up in larger-scale 

studies. 

 

6.1.5. Limitations of this study 

 

 

One of the main limitations of the study is the application of the filter-based candidate gene 

approach with special consideration on DNA repair genes, although other genes not in the DNA 

repair list may be involved in PC. In addition, large genomic deletions and rearrangements were 

not detected; therefore, the possibility of such variants in known and candidate PC predisposition 

genes cannot be excluded. Importantly, I had to create fixed criteria for defining pathogenic 

variants based on three available pathogenicity prediction methods, therefore some candidates that 

were not followed these criteria might be missed.  

Another challenge in identifying genetic predisposition factors in hereditary PC is the 

phenomenon of phenocopies. Indeed most of the FPC patients were of the same age at onset as the 

sporadic ones (Brune, et al. 2010). Lack of segregation of the PALB2:c.3256C>T 

(p.Arg1086*) and ATM:c.1931C>A (p.Ser644*) PTVs with PC-affected relatives was reported in 
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previous studies. Therefore, I did not exclude any candidate gene due to partial segregation (Grant, 

et al. 2013).  

Since there are other mechanisms of somatic loss of the wild-type allele, similarly to 

segregation, LOH was used as a criterion for prioritization rather than exclusion. I did not even 

observe LOH in the BRCA2 (p.Thr1566Aspfs*9), which is a known FPC susceptibility gene, in 

one sample with BRCA2 germline mutation, suggesting other mechanisms of wild-type allele 

silencing in the tumour. In addition, there is a possibility that haploinsufficiency is sufficient for 

tumorigenesis.   

The other challenges in identifying causative genes in hereditary PC are genetic 

heterogeneity and variable penetrance of disease-causing alleles. In the study, multiple predicted-

pathogenic variants in DNA repair genes in a single individual were observed. This indicates the 

possibility of their “additive” haploinsufficiency effect as well as variable penetrance of disease-

causing alleles. This double heterozygosity of pathogenic variants in different cancer 

predisposition genes has been reported before in breast cancer (Bell, et al. 2002; Sokolenko, et al. 

2014).  

Although confirmatory evidence for the candidate genes could not be provided, based on 

available family information, segregation and LOH analysis, I suggest 

FAN1, NEK1 and RHNO1 as the strongest candidates for further validation using additional FPC 

samples.  
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6.2. Resistance to neoadjuvant therapy in TNBC 

 

Triple negative breast cancer (TNBC) is one of the more aggressive types of breast cancers. 

Unfortunately, there is no specific molecular target therapy available for patients diagnosed with 

this type of disease. Therefore, cytotoxic chemotherapy is the only standard and effective treatment 

for these patients. Prognosis in TNBC patients is highly correlated to the response to 

chemotherapy. In order to provide better treatment to TNBC patients, the molecular mechanisms 

of response and resistance to chemotherapy should first be understood. Therefore, in our study, 

extensive molecular analysis of pre- and post-chemotherapy tumor samples was performed to 

identify mechanisms or markers of resistance and/or sensitivity to chemotherapy.  

The underlying hypothesis of the TNBC project was that chemotherapy either would 

induce chemo-resistance or lead to selection of a subclone that was already resistant to 

chemotherapy. Detailed analysis of array CGH, RNAseq and whole exome sequencing (WES) was 

performed on tumor samples obtained from 29 patients. The results suggested that there are two 

major driving factors involved in response to chemotherapy.  1: Immune response 2:  the 

amplification of chromosome 8q23, specifically a segment containing 3 genes (RAD21, EIF3H 

and UTP23) whose expression strongly correlates with gene amplification.  In particular, RAD21 

has been previously reported to be associated with chemo-resistance in the MDA-MB-231 triple 

negative breast-cancer cell line (Xu, et al. 2011). Interestingly chemo-resistant tumors without 

chromosome 8 amplification were strongly enriched for high RNA levels of immune response 

genes.  

WES analysis in these samples emphasized the genomic heterogeneity of TNBC tumors. 

In fact, the only truly shared somatic mutation was in TP53. This finding is concordant with a 

recently published article (Kim, et al. 2018). I observed shifts in somatic variants, with a minority 
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of variants being gained or lost during chemotherapy, but with no specific pattern. The presence 

of the “gained” / “lost” variants in the plasma samples detected by ddPCR suggests heterogeneity 

may be responsible for some of the changes in AF in detected variants. Similarly, in a study by 

Balko et al., who performed NGS sequencing using a 196-gene panel in 74 post-chemotherapy 

residual TNBCs, no significant increase in somatic mutations after chemotherapy was reported 

(Balko, et al. 2014). 

Together with the array CGH data, the whole exome sequencing data suggests that the DNA of 

TNBCs remains stable during chemotherapy when the response to chemotherapy is incomplete. 

These findings are similar to those of a recent article that investigated chemo-resistance in TNBC 

by single-cell sequencing, indicating that chemo resistance exists in non-responders and is 

adaptively selected during chemotherapy (Kim, et al. 2018) 

 

6.2.1. Is RAD21 the key? 

 

 

Rad21 (double-strand-break repair protein rad21 homolog, also known as SCC1) is involved in 

homologous recombination–mediated double-strand break (DSB) repair and chromosome 

cohesion during the cell cycle. As well, it plays a role in cell cycle regulation and apoptosis (Ahn, 

et al. 2017). Together with SMC3, SMC1 and SCC3/SA, RAD21/SCC1 is one of the four subunits 

of the cohesion complex which is responsible for the cohesion of sister chromatids following DNA 

replication.  Over the last decade, new roles for the cohesion complex have emerged. Multiple 

studies have shown cohesion-associated genes play roles in tissue-specific gene transcription 

(Rhodes, et al. 2011), cell proliferation and maintenance of pluripotency and act as potential 

drivers in tumors’ genomic instability and progression (Yadav, et al. 2013). Ahn et al. suggested 

Rad21 interacts with mutant p53 to promote growth in ovarian cancer cells (Ahn, et al. 2017). 
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Schmidt et al reported that Rad21 co-localizes with estrogen receptors and suggested cohesion 

participates as an integral component of transcriptional regulatory networks and is required for 

efficient estrogen-dependent G0/G1–S phase transition in breast cancer cells (Schmidt, et al. 

2010). Moreover, cohesion-associated genes’ overexpression has been reported in multiple 

cancers and cancer cell lines (Deb, et al. 2014; Yadav, et al. 2013). In a study by Yadav et al., 

SMC1 was overexpressed in TNBC cell lines as compared to normal epithelial cancer cells.  

 Emerging evidence has also shown the involvement of RAD21 in chemo-resistance or 

response to chemotherapy. Nakashima et al. proposed the role of RAD21 in chemo-resistance to 

gemcitabine in biliary tract cancer (Nakashima, et al. 2015).  Overexpression of RAD21 is also 

associated with aggressive colorectal carcinomas, especially in KRAS mutant tumors (Deb, et 

al. 2014).  

In breast cancer, RAD21 has also been studied in multiple reports. Overexpression of both 

SMC1 and RAD21 was reported in the MDA-MB-453 cell line, and Atienza et al. showed RAD21 

suppression increased cytotoxicity of etoposide and bleomycin in human breast cancer cells (Atienza, et 

al. 2005; Jeong, et al. 2012). 

In this study, RAD21 located on chromosome 8q was amplified more than two fold in five 

of nine drug-resistant TNBCs, both in pre- and post-chemotherapy samples based on aCGH data. 

This gene was also amplified in 16-28% of breast cancer cases in TCGA. 

In light of the above facts, I conclude that amplified RAD21 may be both a marker and a 

target to overcome drug resistance in TNBCs. This finding raises the possibility of developing 

novel cancer therapeutic strategies to overcome chemo-resistance. 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Schmidt%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20219941
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nakashima%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25736055
https://www.ncbi.nlm.nih.gov/pubmed/?term=Atienza%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=15767545
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6.2.2. Immune response and resistance 

 

 

One of the factors that help cancer cells to relapse is their ability to escape from the immune 

system. Several studies have shown the role of the immune system in promoting death and 

response to therapies. In TNBCs, a study on the effect of four different chemotherapy drugs on 

TNBC cell lines showed inhibitory effects of chemotherapy on anti-tumor immunity (Samanta, et 

al. 2018).  

Expression of programmed death-ligand 1 (PD-L1) is frequently reported in cancer cells 

and correlated with a poor clinical outcome (Powles, et al. 2014). Prior studies indicate the 

particular therapeutic effectiveness of anti-PD1 and anti-PDL1 antibodies in some types of 

cancers, such as melanoma and renal carcinoma. However, immunotherapy was not effective in 

all types of cancers (Samanta, et al. 2018). PD-L1 is a ligand of PD-1 (programmed cell death-1) 

and is commonly expressed on the surface of dendritic cells or macrophages. PD-1/PD-L1 plays a 

role in suppressing the immune system by inhibiting cytotoxic T cells and deactivating them (Chen 

and Mellman 2013). Although several studies associate PD-L1 with drug resistance and poor 

prognosis (Mori, et al. 2017; Zhang, et al. 2016), the value of PD-L1 as a biomarker in TNBC has 

been controversial. For example, a high level of PD-L1 has been correlated with tumor-infiltrating 

lymphocytes (TILs) and better response to neoadjuvant chemotherapy (Mittendorf, et al. 2014; 

Schalper, et al. 2014; Wimberly, et al. 2015). 

TILs have been identified as predictors of response to neoadjuvant chemotherapy in all 

breast cancer subtypes (Denkert, et al. 2018), and their relation to pathological complete response 

in patients with TNBC has been reported in many studies (Herrero-Vicent, et al. 2017).  

Indeed, in our study’s results, overexpressed PD-L1 tumors that have high TILs had a good 

prognosis, while high PD-L1 and low TILs were associated with poor prognosis. This result agrees 

https://www.sciencedirect.com/topics/medicine-and-dentistry/neoadjuvant-therapy
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with a recent study by Mori et al, who analyzed 248 TNBC patients and reported a strong 

correlation of PD-L1 expression with TILs, whereas PD-L1 expression and TILs were not 

independent prognostic factors. In their result PD-L1-positive/TILs-low tumors were associated 

with a poor prognosis although PD-L1-positive/TILs-high tumors had the best prognosis (Mori, et 

al. 2017). The same trend was reported in non-small-cell lung cancer patients treated with 

neoadjuvanct chemotherapy (Zhang, et al. 2016). The only sample with high PD-L1+TILS and 

poor prognosis in our samples was Neo31. Interestingly, this sample has RAD21 amplification.  

The results of this study suggest combination of chemotherapy and immunotherapy (anti-

PD-1/PD-L1 monoclonal antibody therapies) may improve outcomes of TNBC patients, especially 

patients with PD-L1-positive/TILs-low tumors. 

 

6.2.3. Limitations of this study 

 

 

There are several limitations in this study. First, we could not have matched pre- and post- 

chemotherapy samples for all patients, and the sample size was limited. Second, patients received 

different types of chemotherapy; therefore, we could not differentiate the genomic changes related 

to different drugs and the impact of genomic changes on sensitivity to the different drugs. Third, 

whole genome sequencing or epigenetic studies were not performed; therefore, the role of 

epigenetic and non-exonic regions cannot be ruled out. Finally, TNBC has different subtypes that 

might respond to chemotherapy differently. Due to the small sample size, different responses in 

different TNBC subtypes could not be investigated. 
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6.3. New insight in pathogenicity prediction 

 

 

One of the important problems in clinical genomics is how to identify the most likely pathogenic 

variant(s) responsible for a disease phenotype when analyzing variant data obtained by whole-

genome or exome sequencing for diagnostics, specially the effect of non-synonymous variants.  In 

this endeavor, clinicians typically examine a subset of the patient genome/exome variants that have 

been filtered by several criteria and/or prioritized by algorithms that aim to predict pathogenicity 

of the variant with respect to patient phenotypes. Prior clinical information (e.g. from databases 

where curated variants can be accessed, such as ClinVar) is commonly used as evidence. However, 

lacking this prior knowledge, previously unassessed variants need to be classified as of either 

benign, likely pathogenic, or unknown significance, with the aid of methods that predict the 

deleteriousness of variants. This process can be time consuming, and existing predictive measures 

of non-synonymous variant pathogenicity are not powerful enough alone to inform diagnostic 

decisions. Therefore, tools with a higher ability to distinguish between pathogenic and neutral 

variants will be beneficial for future precision medicine, and intense research is needed to increase 

these tools’ reliability and utility. 

In this study, I used an improved supervised machine learning approach to create ClinPred, 

a method to efficiently distinguish clinically pathogenic from neutral variants. I showed that 

choosing the most accurate training dataset, such as ClinVar, improves the ability of the predictor. 

In addition, I identified allele frequency as one of the key predictive features, which improves 

performance both in the presence and in absence of a predetermined frequency threshold for 

inclusion of variants in the analysis.  
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Although, traditionally, AF is employed to discard benign variants, it is unclear what 

threshold should be selected at which a variant is considered benign. Many investigators use a 

cutoff of 5%, which is the upper bound for carrier frequency of most common Mendelian diseases, 

such as cystic fibrosis. However, in view of rarity of many other phenotypes, researchers often 

select lower AF cutoffs (Kobayashi, et al. 2017). In designing ClinPred, I did not set any 

restrictions regarding the AFs of either pathogenic or benign variants, and I allowed the algorithms 

to learn the best use of this feature as a predictor.  This contrasts with other methods, where the 

benign variants are often selected on the basis of certain AFs (Ioannidis, et al. 2016; Jagadeesh, et 

al. 2016). As examples, M-CAP considers any variant with a mean allele frequency ≤ 1% in ExAC 

and 1000 Genomes as benign, while REVEL selects variants with AFs between 0.1% and 1% 

across the seven study populations for their benign label. In my approach, I utilized AFs from the 

largest database available, gnomAD, as one of the predictor variables and allowed the model to 

learn the optimal parameters, without using a specific threshold.  Some other existing methods 

have also incorporated AF in their approach. For example, MetaLR, MetaSVM and Eigen applied 

AF from 1000 Genome database in their model. M-CAP indirectly benefits from AF by using 

MetaLR, MetaSVM as their feature. The relatively lower level of success in using AF in those 

methods may be due to high missing values for AF in the smaller, less representative databases. 

As far as I know, Gavin and VVP are the only methods that use AFs from a large database; 

however, my method is different from theirs. Gavin applied AFs equal to 0.00346 in ExAC and 

CADD>15 as the fixed thresholds for defining variants as pathogenic (van der Velde, et al. 2017). 

VVP incorporated population variant frequencies from the WGS portion of gnomAD (15,496 

whole genomes), but I incorporated not only gnomAD all exome AFs (123,136 exome sequences), 

but also AFs in 8 different populations available in gnomAD: African/African American, Latino, 
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Ashkenazi Jewish, East Asian, Finnish, Non-Finnish European, South Asian, and other ethnicities.  

A large part of the increase in performance of ClinPred is attributed to allowing the classifier to 

learn and optimize the use of AFs in making the distinction between pathogenic and benign 

variants.   

I also found that our predictor maintains consistently superior performance across different 

genetic models and pathogenic mechanisms—for example, dominant versus recessive or oncogene 

versus tumor suppressor classifications. However, it should be noted that this outcome is highly 

dependent on the types and proportions of variants that are currently present in the disease 

databases. The currently catalogued pathogenic variants are predominantly highly penetrant 

monogenic or oncogenic mutations, generally with severe disease phenotypes that are strongly 

selected against in human populations.  

In applying our predictor to real samples (the FORGE Canada and Care4Rare Canada), our 

predictor reduced the list of an average 443 non-synonymous in patient exome to an average of 70 

variants, to be further manually followed up. It is important that the prediction method that ranks 

the causative variant on the top level is the most favorable. To address this, we ranked the variants 

according to their ClinPred scores for 25 causative variants in the 31 clinical exomes available. 

The median of ranking of causative variants was 10. In most cases, the entire list of selected 

variants  prioritized by prediction scores would not have to be examined, as 83% of causative 

variants ranked within the top 25 candidates.  

In summary, we systematically compared both categorical prediction and raw scores of 

different commonly used methods under different AF cutoffs that might typically be used by 

researchers and clinicians to narrow down lists of variants. ClinPred outperformed all existing 

ensemble classifiers in distinguishing between disease-relevant pathogenic from neutral variants. 
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Our model generalizes well when applied to variants from various sources not included in its 

training dataset. It also has high performance both in rare diseases and in cancer. I provide pre-

computed prediction scores for all possible variants in the human exome to facilitate interpretation 

of high throughput sequencing results.  
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Chapter 7: Conclusions and future directions 

 

In the first part of this thesis, we undertook a large-scale WES study focused on germline variants 

in putative DNA repair genes aimed at identifying novel genetic causes of hereditary PC in 109 

selected cases with increased risk of genetic PC predisposition from 93 families. By applying a 

filter-based candidate gene approach focused on 513 DNA repair genes, we found PTVs in 41 

putative DNA repair genes among 36 families. We then prioritized our list of 41 candidate genes 

based on the evidence obtained from segregation analysis and LOH. Our top 17 candidate genes 

were those with more than one family with a PTV in that gene, genes with segregation of a 

predicted-pathogenic variant (PTV or nonsynonymous variant) in at least one family, and/or genes 

with LOH associated with at least one predicted-pathogenic variant. Our findings suggest that 

several novel DNA repair genes may have a role in hereditary PC and that genetic susceptibility 

of hereditary PC is highly heterogeneous. Amongst the set of 17 candidates, 

FAN1, NEK1 and RHNO1 were considered as the top ranked candidates, having variants present 

in three families and at least partial co-segregation of the variants with PC in two or more families. 

We propose these three genes for further validation using additional families with PC. 

In the second part of this thesis, we investigated the mechanisms underlying resistance to 

chemotherapy in triple-negative breast cancer (TNBC), which accounts for a large proportion of 

all breast cancer mortality. Fresh frozen biopsies prior to and after standard anthracycline/taxane-

based chemotherapy treatment were taken for whole exome sequencing, RNAseq and array CGH 

analysis. WES identified multiple single nucleotide variants (SNVs) in the samples, with few 

variants that were commonly shared apart from TP53 gene mutations. Although the degree of 

response to chemotherapy in RCB2/3 tumors was associated with more changes in somatic variants 



174 

 

in post-chemo compared to pre-chemo samples, no variant was associated with tumor response. 

We found amplification of the RAD21 gene on chromosome 8q23 on chemo-resistant tumors 

through copy number alteration analysis. RNA-seq analysis detected novel gene fusions in post-

chemotherapy samples, including one involving the ABCB1 gene. Moreover, RNAseq analysis 

and pathological analysis of pre-chemotherapy tumors showed that the presence of immune-

response genes was strongly associated with RCB0/1. We concluded that RAD21 gene 

amplification as well as immune response genes are predictive of response to chemotherapy in 

TNBCs in the neoadjuvant setting. 

Furthermore, motivated by accurately identifying pathogenic variants from WES data, in 

the third part of the thesis, I addressed the current problems with pathogenicity prediction tools, 

especially the need for improved methods to predict clinically relevant variants. I developed an 

ensemble classifier called ClinPred for predicting disease relevance of missense SNVs, using a 

combination of two different machine learning algorithms and incorporating several popular 

pathogenicity predictors, along with population allele frequencies, as component features.  

Through rigorous testing, while avoiding problems common in machine learning, such as 

overfitting and circularity, I showed that ClinPred outperforms all existing ensemble classifiers in 

distinguishing between disease-relevant pathogenic variants and neutral variants. Our model can 

be applied to a range of diseases and has high performance both in rare disease and in cancer. We 

provide pre-computed prediction scores for all possible variants in the human exome to facilitate 

interpretation of high throughput sequencing results.  
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7.1. Challenges and future direction 

 

Although whole-exome sequencing is a powerful tool for identifying disease-causing variants, 

some problems remain. WES is successful in detecting SNVs and small INDELs; however, it has 

difficulty identifying large INDELs. There are different approaches to detect genomic 

rearrangements, such as read depth (RD), allele frequency (AF), paired-end mapping, de novo 

assembly and split read (Alkodsi, et al. 2015; Tan, et al. 2014).  WES CNV detection tools usually 

use the first two approaches, but RD-based approaches are not able to detect copy-neutral genomic 

rearrangements. In addition, WES is limited to finding rearrangements in exonic regions; therefore, 

whole genome sequencing is more reliable than WES in detecting CNVs. 

In addition to its difficulty in detecting CNVs, WES analysis has limitations when it comes 

to variant detection in cancer tumours. Some cancer samples are heterogeneous and have subclonal 

structures (Navin, et al. 2010); therefore, detecting low frequency variants responsible for a 

specific subclone is challenging. Moreover, the molecular background of tumour samples in 

different patients with the same diagnosis can be very different. In our TNBC study, we noticed 

these samples were quite heterogeneous. Even though combining WES data, RNAseq data and 

aCGH increased our ability to explore drug resistance in these samples—emphasizing the power 

of using different tools to look at the data in different ways—access to more samples will provide 

the opportunity to investigate different subtypes individually and will definitely improve the 

results of the research.  

Another problem in cancer research is that DNA extracted from cancer specimens is not 

pure and is contaminated with non-cancerous cells. Most studies in cancer genomics are limited 

by the availability of fresh tumor samples; however, formalin-fixed and paraffin-embedded 

(FFPE) specimens that are used routinely for diagnosis can be a source for more samples. The 
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problem in using FFPE samples is that they are often low quality (Gilbert, et al. 2007). 

Bioinformatics tools were developed to address this challenge and to detect low frequency 

variants; however, they still need to be improved. Analyzing FFPE data in an efficient way will 

provide more opportunities to draft large-scale studies and consequently will improve cancer 

research.  In our study of identifying novel pancreatic cancer variants, WES data from tumor 

samples was helpful in prioritizing genes. Access to more cancer samples will enable setting up 

larger-scale studies and significantly benefit cancer research. 

In both of our cancer studies, we were limited to coding regions, but some non-coding 

variants or epigenetic changes could have an impact on cancer development. A considerable 

number of cancer-related mutations have been identified in non-coding regions; however, these 

mutations can only be detected by WGS. As the technology continues to improve, the cost of WGS 

will drop. With further advancement in computing, WGS will become cheaper and more 

convenient. Therefore, it is expected that WGS will replace WES in the near future. In addition, 

by developing better CNV calling algorithms, WGS may eventually replace CNV tests (such as 

aCGH) currently being used. The lessons learned from analysis of WES data will directly apply to 

future NGS approaches, especially WGS. 

In fact, for a long time, cancer was considered a disease of the genome. Although genetic 

mutations or indels were demonstrated as the main cause of hereditary cancers, a growing body of 

evidence indicated the role of epigenetics in many cancers. Genetic mutations that change 

epigenetic regulatory alterations have been linked to many types of cancers (Baylin and Jones 

2011). DNA hypermethylation in tumor suppressor genes, which results in the silencing of these 

genes, and DNA hypomethylation in oncogenes were suggested as tumorigenic factors (Jiang, et 

al. 2009; van Doorn, et al. 2005). Our group determined that mutations in histone gene H3F3A 
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result in a defect in chromatin and causes pediatric glioblastoma multiforme (Schwartzentruber, et 

al. 2012). Besides the epigenetic changes involved in cancer development, a large number of 

resistance mechanisms are linked to the epigenetic domain. Therefore, epigenetics can be a 

predictor of treatment outcome (Hu and Baeg 2017).  Although over the years, the technology has 

rapidly improved and the sequencing platforms have changed dramatically, we are still far from 

understanding the full picture of how genetic alterations interact with epigenetic regulations and 

lead to cancer development and resistance. Future improvement in next generation sequencing 

techniques and bioinformatics tools will help us understand this process better. In our TNBC study, 

we did not have enough DNA for epigenetic analysis. Therefore, we cannot rule out the effect of 

epigenetics in chemo-resistance.  

Although the decrease in sequencing technology cost makes developing large-scale studies 

possible, analyzing and interpreting DNA-sequence data is still challenging. Generating data is 

only one part of the job, but interpreting the data and finding the causative variants still requires 

efficient algorithms. ClinPred is specifically designed to predict pathogenicity of variants that are 

causative for Mendelian diseases. As we begin to identify the variants responsible for less severe, 

polygenic, and complex traits, clinically relevant predictors will likely benefit from training on 

relevant subsets of disease databases. In particular, the use of allele frequency as a feature – even 

though we found it to be universally beneficial across the currently catalogued disease variants – 

should ideally be trained on sets of variants most relevant to different inheritance models and 

severity of diseases. In future developments, the predictive power of prediction models like 

ClinPred may be further enhanced by incorporating more components, such as specific population 

genotype frequency, penetrance, disease prevalence and human phenotype ontology (HPO) terms. 

Furthermore, progress in whole genome sequencing data will create the need to accurately predict 
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the effect of non-coding variants.  The framework outlined here can help design future predictors 

for non-coding variants when appropriately large and reliable sources of pathogenic and benign 

variants become available. 
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