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Abstract

In the past decade, artificial neural networks have been demonstrated to perform complex image

recognition tasks. This is due to their ability to mathematically distill raw image information

into a representation that encodes higher order concepts. As a result of these successes, neural

networks are being increasingly applied to the analysis of imaging data in the natural sciences.

Here, we present an application of neural networks to diffraction images produced via X-ray photon

correlation spectroscopy (XPCS) experiments. The light collection apparatus for these experiments

is an area detector comprised of an array of charge-coupled devices (CCDs). The CCDs collect

electrons excited by a monochromatic source of X-ray photons. The digital signal returned by the

detector is proportional to the amount of charge collected, and thus proportional to the energy of

the incident photons. Determining the location of each photon allows for calculation of the image

contrast, which is useful for statistical analyses that can elucidate the structural and dynamical

properties of a system being measured. However, the excited electrons have a spatial extent, and

in many cases this can result in one photon activating multiple adjacent CCDs. Multiple photons

incident on the detector array in the same vicinity create a connected region of activated pixels

known as a droplet. A droplet contains additive interference that can further obscure the original

locations of the incident photons. In this thesis, we demonstrate that neural networks can be

used to process raw area detector images and determine the incident locations of the photons to a

satisfactory degree of certainty. A feed-forward neural network classifier was designed and trained

to systematically scan a droplet and determine a discrete probability distribution for the number

of photons that have been incident within the area of each CCD. Bayesian inference was performed

on these predictions to determine the most likely configuration of photons within the droplet as a

whole. Count-rate histograms were determined from artificially generated images containing many

droplets. These histograms were fit to a contrast parameter and were found to be in agreement

with the true underlying values. We have thus demonstrated a promising method for accurately

determining the contrast from experimental XPCS images.



Résumé

Au cours de la dernière décennie, il a été démontré que les réseaux de neurones artificiels peu-

vent accomplir des tâches complexes de reconnaissance d’images du fait de leur capacité à distiller

mathématiquement, à partir de données brutes, des concepts d’ordre supérieur. Par conséquent, les

réseaux de neurones sont de plus en plus appliqués, en sciences naturelles, à l’analyse de données

d’imagerie. Appuyés par la technique des réseaux de neurones, nous présentons une méthode

d’analyse d’images de diffractions produites par des expériences de spectroscopie de corrélation

de photons X (XPCS, pour “X-ray photon correlation spectroscopy”). Dans ces expériences, les

photons sont dénombrés par un détecteur de surface constitué d’un réseau de dispositifs à couplage

de charge (CCD, pour “charge-coupled devices”). Les CCD détectent des électrons excités par une

source monochromatique de photons X; le signal numérique enregistré par chaque CCD est propor-

tionnel à la quantité de charge détectée, et donc proportionnel à l’énergie des photons incidents. À

partir de l’emplacement d’incidence de chaque photon, le contraste de l’image peut être calculé; ce

contraste peut ensuite être utilisé dans des analyses statistiques permettant d’élucider les propriétés

structurelles et dynamiques du système investigué. Cependant, les électrons excités ont une certaine

étendue spatiale, ce qui peut entrâıner l’activation par un seul photon de plusieurs CCD adjacents.

Lorsque plusieurs photons incidents sur le détecteur stimulent un groupe de CCD adjacents, ils

créent une région connectée de pixels activés connue sous le nom de “gouttelette”. Une gouttelette

contient des interférences additives qui peuvent obscurcir davantage les emplacements d’origine des

photons incidents. Dans cette thèse, nous démontrons que les réseaux de neurones peuvent être

utilisés pour analyser des images brutes obtenue par des expériences de XPCS afin de déterminer

les emplacements d’incidence de photons avec un degré de certitude satisfaisant. Un réseau de

neurones en aval supervisé a été conçu et formé pour scanner systématiquement une gouttelette

et déterminer une distribution de probabilité discrète pour le nombre de photons incidents dans

chaque CCD. L’inférence bayésienne a par la suite été utilisée pour déterminer, à partir de ces

prédictions, la configuration la plus probable des photons dans l’ensemble de la gouttelette. Les

histogrammes de taux de comptage ont été déterminés à partir d’images de gouttelettes générées

artificiellement. Ces histogrammes ont été ajustés à un paramètre de contraste et se sont avérés

être en accord avec les véritables valeurs sous-jacentes. Nous avons ainsi démontré une méthode

prometteuse pour déterminer avec précision le contraste d’images obtenues par des expériences de

XPCS.
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Gaussian. This result is used to generate training data for a neural network classifier
algorithm.
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• In Chapter 4.2.2, DA develops a Bayesian inference method that is used to improve
the accuracy of the neural network classifier designed in Chapter 4.2.1.

• In Chapter 4.2.3, DA and NMF design and train a mixture density network that
outputs continuous probability distributions for the spatial coordinates of photons
that are incident within a CCD.

• In Chapter 4.3, DA designs a method for generating a rich and balanced training data
set using Sobol-distributed vectors. This data set is used to train the classifier in
Chapter 4.2.1.

• In Chapter 4.4, DA uses the aggregated predictions of the neural network classifier to
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1 Introduction

Machine learning is a field of computer science and statistics whose aim is to develop problem

solving algorithms that are not explicitly hard-coded. Rather, the algorithms are designed

to improve their performance on a given task by processing a source of data [1]. What is

explicitly programmed is the structure of the machine learning algorithm, and the methods by

which it can process data and adjust its own parameters. Machine learning algorithms enjoy a

particular advantage at performing tasks that cannot be defined formally, such as recognizing

an object in a picture, understanding spoken language, or navigating obstacles [2–4]. The

key insight is that such tasks are relatively easy for humans to perform, and ultimately relate

back to the way information is processed by, and affects the structure of, the brain. This

insight motivated the inception of artificial neural networks, computational systems of nodes

with interconnections that facilitate information flow. This type of structure was historically

inspired by the biological brain, in which the neuron represents a node, and the synapses

that connect neurons represent the connections between nodes [5]. One of the first models

to be constructed with this philosophy was in the 1940s with the McCulloch-Pitts neuron,

a simple binary predictor that would “activate” or output 1, if the weighted sum of a set of

data elements was above a given threshold, and output 0 otherwise [6]:

f(A1, A2, . . . , An;W1,W2, . . . ,Wn) = Θ

([
n∑
i=1

WiAi

]
− φ

)
(1.1)

Here, φ is a chosen threshold value and Θ is the Heaviside function. The input data elements

Ai are known as features, and the values Wi are known as the weights. The model is

linear, and the weights were determined via trial and error [7]. In the late 1950s, the

first trainable neuron known as the perceptron was developed by F. Rosenblatt [8]. The

training of the perceptron used a gradient descent method similar to the ones used today [7].

Due to the inherent linearity of these early models, their inability to learn more complex
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functions caused the field to stagnate until the mid 1980s, when a new philosophy known as

connectionism gained traction. The connectionist approach was to construct learning models

out of multiple artificial neurons, and introduce non-linear elements to lift the restrictions

brought on my purely linear models [9]. It was during this time that the backpropagation

algorithm was developed, which remains the most popular algorithm for training neural

network models [10]. Through the 1990s, the field of machine learning expanded beyond the

biological underpinning of its predecessors. It was at this time that the focus shifted to the

broader goal of developing models with high degrees of freedom, whose structure permitted

optimization from data via an iterative procedure. One such model is the Support Vector

Machine (SVM), which aims to classify data into categories by generating a feature space and

creating distinct regions whose borders are defined by optimized hyperplanes [11]. Neural

networks went through a decline in popularity until a series of breakthroughs in training

methodology in the mid 2000s [12]. The crux of the resurgence centred around representation:

neural networks with many layers could now be reliably trained to take features from a

given layer and combine them to generate new features with higher complexity. Neural

networks that can filter and transform raw data through many representations in this way

are known as deep neural networks [13]. One can illustrate this methodology by considering

a deep neural network that is able to recognize the difference between hand-drawn circles

and squares. The input layer is a 2D matrix of pixel values. The second layer processes

the input image and generates data that represents the positions and angles of pen-strokes

that occur in the original picture. The remaining layers process this information into a

feature space in which data originally corresponding to circles do not overlap with data

corresponding to squares, making it a successful classifier. The use of neural networks to

generate predictive models using a complexity-based hierarchy of representations is known

as deep learning, and is currently a topic of major theoretical interest [7]. In addition to

research interest, deep learning models have empirically demonstrated their usefulness in

fields such as speech and image recognition, language translation, game strategies, fraud
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detection, and finance [14–19].

Machine learning has garnered significant interest in the sciences. It is particularly helpful

in cases where there is an abundance of raw scientific data that contain unknown, implicit

features with predictive power. Examples in medical science include convolutional mod-

els for cancer detection in skin histology images and spinal fracture detection from X-ray

images [20, 21]. In chemistry, machine learning has been used to predict atomization ener-

gies of organic molecules, and map phase diagrams of ternary systems [22, 23]. Biological

applications of deep learning include DNA sequence analysis and prediction of mutation ef-

fects [24, 25]. In physics, machine learning has a wide variety of applications including the

prediction of phase transitions in Ising systems, quantum-mechanics based molecular dy-

namics, classification of galaxy morphologies, band gap prediction for inorganic compounds,

and analysis of diffraction images [26–30]. It is on this last note that we will transition to a

brief overview of diffraction experiments in physics, which are relevant to the project in this

thesis.

Diffraction describes the phenomena of electromagnetic waves interacting with matter and

other waves. The first scientific study of light diffraction was made by Francesco Maria

Grimaldi in the mid 17th century [31]. His studies were made public posthumously in 1665,

and were immediately pondered by influential physicists such as Isaac Newton, Robert Hooke,

and Christiaan Huygens [32]. Despite Hooke and Huygens’ treatment of light as a wave

propagating through a medium known as the aether, Newton advocated for a particle, or

corpuscular, theory of light in his influential treatise Opticks, published in 1704 [33]. Nearly

a century layer, Thomas Young’s famous double-slit experiment presented serious criticisms

of Newton’s corpuscular theory, and gave legitimacy to a wave-like interpretation [34]. In the

late 19th century, Michelson and Morley’s interferometry experiment highlighted the major

deficiencies of aether theories. Einstein’s subsequent work on the photoelectric effect gave

birth to the modern interpretation of light as behaving like a particle and a wave; the details
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of an experiment inform which interpretation is more appropriate to explain the results [35].

The first X-ray diffraction experiment was performed by Max von Laue, Walter Friedrich

and Paul Knipping in 1912 [36]. In that same year, W. H. and W. L. Bragg published their

famous law of diffraction within crystal layers, which earned them a Nobel prize in 1915 [37].

In 1916-17, Peter Debye, Paul Scherrer and Albert Hull developed a way to characterize

crystals in the form of randomly oriented powders via diffraction measurements of incident

X-ray light. This influential method, now known as X-ray powder diffraction, initiated a

wave of experimental and theoretical research over the next 50 years [36]. X-ray diffraction

experiments continue to help determine the structural properties of crystals such as atomic

composition, space group, lattice constants, and degrees of impurity [38].

The invention of the laser in 1960 by Theodore H. Maiman, based on theoretical research by

Charles H. Townes and Arthur L. Schawlow, allowed for a new reliable source of coherent

light that could be widely used in diffraction experiments [39–41]. A diffraction image

produced via the interaction of coherent light with a material produces an intensity profile

known as a speckle pattern. Speckle patterns contain phase information not present in X-ray

powder diffraction data [42]. While the light intensity remains the only measurable quantity

in coherent diffraction experiments, the full phase information can in some circumstances

be extracted, providing a rich structural description of the material being measured [43].

Coherent diffraction imaging was initially restricted to light sources in the visible spectrum

which did not permit the study of materials on length scales smaller that a few hundred

nanometres [44]. In 1991, Mark Sutton et al. demonstrated that coherent diffraction could

be performed using an X-ray light source, opening the door to studies of structure and

dynamics on the atomic scale [42].

The project in this thesis is to use machine learning techniques to determine the speckle

contrast of coherent X-ray scattering images. The images are measured with an area detector,

in this case consisting of an array of charge-coupled devices (CCDs). Each CCD contributes
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one “pixel” to the speckle image. Contrast is a parameter that varies with the timescale of

an XPCS measurement, and can thus be used to determine the dynamical properties of a

system. Speckle contrast can be calculated using a histogram of area detector pixels where

each bin corresponds to the integer number of photons that have been incident on a pixel.

Due to the fact that CCD-based area detectors measure photons indirectly via the collection

of excited charge, multiple photons incident on the area detector in close proximity will

cause interference in the underlying CCD measurements. This interference can conceal the

underlying photon counts of each pixel, and thus conceal the contrast.

The main results of this thesis are, in summary:

• A model was developed to describe the spatial probability distribution of electrons

excited by a photon incident on a CCD. This model was used to generate artificial

speckle images.

• A neural network classifier was designed to read CCD measurements from a subset

of the area detector, and predict the number of photons incident on each pixel. The

neural network was trained on artificial data produced by our model.

• The classifier could reliably determine the number of photon counts per pixel, and

thus produce accurate histograms of photon counts for full speckle images. This in

turn resulted in an accurate determination of the speckle contrast.

• In addition, a mixture density network was trained to determine probability distribu-

tions for the spatial coordinates of the incident photons within the pixels that were

determined by the classifier.

These results will be published in Artificial Neural Networks for the Determination of Speckle

Contrast in Split-Pulse XPCS Measurements by Abarbanel et al. [45].

The remainder of this document will be split into three main chapters: Chapter 2 will provide

an overview of the machine learning techniques that are relevant to the project. Chapter
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3 will describe coherent diffraction imaging techniques in more detail, and provide an in-

depth description of the project. Finally, Chapter 4 will present the machine learning based

research and methodology, and give detailed results.
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2 Review of Machine Learning Techniques

This chapter will provide a cursory overview of the components that go into designing a

machine learning algorithm. There will be an emphasis on the components of neural networks

as they were the main tool used for analysis in Chapter 4.

2.1 Loss Functions

For supervised learning algorithms, a prediction by the algorithm is compared to an available

answer via a measure of success called a loss function, L [46]. The training objective is to

find a set of optimal internal variables θ that minimize the loss function over all the available

data. Here, X denotes a data set of features, and y denotes a data set of labels that are

related to X via a function g(X). Henceforth, a single instance of data from the features X

will be denoted X̃ and similarly for ỹ. Following the convention of Goodfellow et al., a ML

estimator for a relationship y = g(X) + ε will be denoted as f(X;θ). Here, ε represents a

possible noise term in the data labels that the function f will not be trained to predict. If θ

is optimized, then f will reliably approximate g(X) for the full data set X. As an example,

consider the case of a linear least-squares regression algorithm for N ordered pairs (x, y).

The variables to be determined are the slope m and intercept b for a linear function f :

y = (ỹ1, ỹ2, ỹ3, . . . , ỹN)

X = (x̃1, x̃2, x̃3, . . . , x̃N)

θ ≡ (m, b)

f(x;θ) = mx+ b
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In this case, the loss function is given by the average of the squared residuals:

L(θ) =
1

N

N∑
i=1

(ỹi − f(x̃i,θ))2 (2.1)

Denoting θ∗ as the internal variables that minimize L, the objective is to determine:

θ∗ = argminθ

〈
(ỹi − f(x̃i;θ))2

〉
i

(2.2)

or (m∗, b∗) = argminm,b
〈
(ỹi −mx̃i − b)2

〉
i

(2.3)

In general, for a single instance of data (X̃, ỹ), the per-sample loss function is denoted L

and the optimal internal variables are given by the expected value of L over all training

instances:

θ∗ = argminθ

〈
L(X̃, ỹ;θ)

〉
X̃,ỹ∈X,y

(2.4)

The functional form of L depends on the format of the data and the optimization strategy.

For optimization of regression tasks based on mean absolute error, the loss function is given

by:

L(θ) =
〈
||f(X̃;θ)− ỹ||1

〉
X̃,ỹ∈X,y

(2.5)

One can construct a loss function using a combination of mean squared error and mean

absolute error using the Huber loss function [47]. The per-sample version is:

L(θ) =


1
2
||ỹ − f(X̃;θ)||2 ||ỹ − f(X̃;θ)||1 ≤ δ

δ||ỹ − f(X̃;θ)||1 − 1
2
δ2 ||ỹ − f(X̃;θ)||1 > δ

(2.6)

where δ is a tuning parameter that determines on what scale the function transitions from

quadratic to linear. The choice between mean-squared and mean-absolute error is context

dependent. Mean-squared error permits a smooth loss function, which is convenient for
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gradient based optimization, and is more appropriate in the specific case where the errors ε

are Gaussian distributed. Mean-absolute error is not smooth, but more robust to outliers [48].

So far, examples of loss functions for regression tasks have been given. We will conclude

this overview by discussing loss functions that apply to classification tasks and predicting

probability distributions, which are relevant to the project in this thesis.

For classification tasks in a supervised learning paradigm using artificial neural networks,

the individual training features X̃ are coupled with a class label, encoded as an n-vector Ỹ:

Ỹ ≡ (Ỹ1, Ỹ2, . . . , Ỹn) (2.7)

Here, n is the number of classes, and Ỹi corresponds to the probability that X̃ belongs to the

ith class. In most cases, the classes within a training data set are not ambiguous, resulting in

one element in Ỹ being equal to unity, and the rest equal to zero. This is known as one-hot

encoding. For example, in a binary classification problem, the labels will belong to the set

Ỹ ∈ [(1, 0), (0, 1)]. In other cases, the labels can correspond to probabilities of each class,

allowing each element in Ỹ to be a decimal between 0 and 1, subject to the constraint:

n∑
i=1

Ỹi = 1 (2.8)

An ML based classification algorithm will only receive the inputs X, and must generate a

set of values that predict the labels Y. These outputs are called logits, and are encoded with

the same vector form as Y. A logit generated by an ML algorithm for one training instance

will be denoted P̃. The value of P̃ is a function of an input feature X̃, and the function is

defined by the parameters θ of the ML algorithm:

P̃ ≡ P̃(X̃;θ) (2.9)
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In general, the logits P are not one-hot encoded. This is because they represent discrete

probability distributions, and allow an ML algorithm to provide a degree of confidence in

its prediction. By example, one may consider a training set consisting of ill-posed features

and labels. This implies that there is a subset of training instances with identical inputs

Xidentical but with distinct labels Ydistinct. One can further consider the simplest case where

Y encodes binary classes, and the labels Ydistinct are evenly split between (0, 1) and (1, 0)

across the data subset. In such a case, a well trained ML algorithm will output P̃ = (0.5, 0.5)

when given a set of features belonging to Xidentical [49]. In cases where the features have a

one-to-one mapping with the labels, a well trained algorithm will output logits that are close

to one-hot (e.g. P̃ = (0, 0, 0.001, 0.999)). The errors of a sub-optimally trained algorithm

can be “smoothed out” by converting P̃ to a one-hot label under the assumption that the

class prediction corresponds to the maximal element in P̃. For example:

P̃ = (0.1, 0.3, 0.4, 0.1) → P̃one-hot = (0, 0, 1, 0) (2.10)

The ubiquitous loss function used for classification tasks, and the tool of choice for this

thesis, is categorical cross-entropy. For an instance of input features X̃, a class label Ỹ and

a predicted logit P̃(X̃;θ), the per-sample loss function takes the form:

L(θ) = −
n∑
i=1

Ỹi log
(
P̃i(X̃;θ)

)
(2.11)

In the case where Ỹ is one-hot encoded, it is clear that the loss function is minimized for

P̃ = Ỹ. The same holds true in the general case. For ill-posed data, the full loss function

L is minimized when P encodes the probability distribution of classes for a set of identical

or similar inputs. Like mean-squared error loss, the categorical cross-entropy loss function

is smooth, continuous and convex, allowing for gradient based optimization methods to be

employed [7].
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A third family of loss functions exist for neural network architectures that output continuous

probability distributions, rather than discrete ones. This lifts the restriction of regression

tasks, namely, that there must be a one-to-one mapping between the features X and the

output function f . In cases where there is a continuous or discrete range of correct outputs

for one feature vector X̃, the general strategy is to design a density function with enough

degrees of freedom to capture all possible solutions. After training, the probability density

corresponding to the neural network output will reflect the proportion of the class labels in

the training set that have similar feature vectors [50]. In such cases, the neural network is

designed to output a set of parameters φ for a chosen likelihood function G. For example,

if G is chosen to be a 1D normal distribution, then φ is a vector containing the mean µ

and standard deviation σ. The loss function of choice for these problems is called negative

log-likelihood. For a training datum (X̃, ỹ), and a neural network that outputs parameters

φ(X̃) for an arbitrary likelihood function G(ỹ;φ(X̃)), the per-sample loss function is [7]:

L(θ) = − log
(
G(ỹ;φ(X̃;θ))

)
(2.12)

Continuing with the example where G is a 1D normal distribution, the loss function reduces

to weighted least squares, which is consistent with the claim that mean squared loss is

appropriate for training data with Gaussian distributed error [48]:

G(ỹ;µ, σ) =
1√

2πσ2(X̃;θ)
exp

(
−(ỹ − µ(X̃;θ))2

2σ2(X̃;θ)

)
(2.13)

L(θ) =
1

2
log(2π) +

〈
log
(
σ(X̃;θ)

)
+

(ỹ − µ(X̃;θ))2

2σ2(X̃;θ)

〉
X̃,ỹ∈X,y

(2.14)

Negative log-likelihood loss functions will be used to optimize a neural network that outputs

a continuous probability distribution in Chapter 4.2.3.

For neural network architectures, finding the parameters θ∗ that minimize the loss function
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must be done by finding a solution to the minimization equation:

∇θL(θ) = 0 (2.15)

In practice, this minimization is done numerically. Techniques for minimization are discussed

in Chapter 2.3. Additionally, it is important to avoid local minima in the loss function that

correspond to sub-optimal performance. This family of strategies is called regularization [7]

and will be discussed further in Chapter 2.4.

2.2 Feedforward Neural Networks

The main ingredients for a feedforward neural network are:

• An input X̃. While X̃ can be a tensor of any order n, (A1, A2, ...An), it will be

represented here as a vector with A1A2...An elements. For simplicity, we will denote

the total number of input elements a0.

• A series of m weight matrices W1,W2, . . . ,Wm. m is defined as the network depth.

The outer dimension of each weight matrix is chosen by the user, but the inner dimen-

sion must be compatible with the vector that W is multiplied by. For example, W1

must be multiplied by the input X, so its dimension must be (a1, a0), where a0 has

been previously defined, and a1 is chosen. In general, a given weight matrix Wi will

have dimensions (ai, ai−1).

• A series of m bias vectors b1,b2, . . . ,bm. The length of each bias vector is equal to

the chosen outer dimension of the corresponding weight matrix. Thus, bi will have ai

elements.

• A series of m activation functions u1, u2, . . . , um. A given function ui must be a function

of ai variables.
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The internal parameters θ is a vector containing all elements of the weight matrices and bias

vectors. The algorithm that governs the data-flow through this structure is called forward

propagation, and is given below:

Algorithm 1: Forward Propagation

• H0 ← X̃

• for i in (1, 2, ...,m) do:

Hi = ui(bi + WiHi−1)

end for

• f(X̃) ≡ Hm

• Given a training label ỹ, compute per-sample loss function L(ỹ, f(X̃;θ))

The vector denoted H0 is the input layer. The vectors H1 - Hm−1 are called hidden layers

and Hm is the output layer. It is through the use of the functions ui that the feed-forward

neural network acquires its non-linear behaviour. This can be seen by examining the case

where all activations u within a neural network are the identity operator: the calculation

reduces to a series of matrix multiplications, which is a linear system. It has been shown that

introducing non-linear functions allows a neural network with at least two layers to realize

the user’s goal of a universal function approximator [51]. We will examine some common

activation functions, with emphasis on the ones that are used in this thesis. Non-linearity is

an essential ingredient for all activation functions within the hidden layers.
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Figure 2.1: Some common activation functions for feedforward neural networks. (a): Sigmoid
activation function and its derivative. (b): Tanh activation function and its derivative. (c): ReLU
activation function and its derivative.

2.2.1 Sigmoid

The sigmoid activation function and its derivative are defined by [52]:

σ(x) =
1

1 + e−x
(2.16)

σ′(x) = σ(x)(1− σ(x)) (2.17)
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The sigmoid function produces values bounded by σ(x) ∈ (0, 1), having a “squashing” effect

on inputs with high magnitude. Sigmoid functions are used extensively as the output activa-

tion function for binary classifiers, in which the output is rounded to the nearest integer to

produce a binary outcome of 0 or 1 [53]. The sigmoid function was also used as an activation

for hidden layers in early machine learning research, but has fallen out of favour due to the

fact that its gradient is close to zero in most of its domain, making gradient based train-

ing more difficult [54]. This is known as the vanishing gradient problem. Other saturating

functions exist, such as tanh, given by:

tanh(x) =
ex − e−x

ex + e−x
(2.18)

tanh′(x) = 1− tanh2(x) (2.19)

The overall shape of the tanh function is similar to the sigmoid, but the bounds are instead

given by tanh(x) ∈ (−1, 1), and the gradient is larger for inputs close to 0.

2.2.2 Rectified Linear Unit (ReLU)

The ReLU function and its derivative are defined by:

ReLU(x) = max(0, x) (2.20)

ReLU′(x) =


1, x ≥ 0

0, x < 0

(2.21)

The ReLU function was designed with the biological neuron’s function in mind, namely

one that relays an input signal only under positive bias [55]. It is currently the de facto

standard for hidden layer activations, and is implemented for all ML algorithms designed in

this thesis [7]. The main advantages that justify its widespread use are:
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• Constant gradient: In the active regime of a ReLU activated node x ≥ 0, the gradient

is always 1, preventing saturation problems that occur with other activation functions

such as sigmoid and tanh.

• Sparsity: In the non-active regime x < 0, the ReLU function has zero gradient. This

has the effect of “freezing” a neuron in a state where it always outputs 0. This can

be helpful in cases where it is not known which nodes in an input or hidden layers

are relevant to the task [7]. Upon successful training, the neurons that have been

frozen due to the ReLU activation indicate which components of the architecture are

extraneous. In cases where frozen neurons cause training problems, a similar function

called a leaky ReLU can be employed where the gradient in the x < 0 regime is slightly

positive [56].

• Ease of computation.

2.2.3 SoftMax

The SoftMax activation function is usually applied to an output layer, and is used to generate

a logit. For a non-activated output layer H ≡ (H1, H2, . . . , Hn), the SoftMax function σ is

defined as:

σ(H) =
1∑n

i=1 e
Hi

(eH1 , eH2 , . . . , eHn) (2.22)

Because the exponential function is strictly positive, it is clear that all the vector elements

of σ(H) will be bounded between 0 and 1. The vector elements also sum to unity, fulfilling

a necessary condition of outputting a discrete probability distribution for a finite set of

outcomes.

For all the discussed cases except for SoftMax, the activation functions are applied element-

wise on their inputs. Sigmoid, tanh, and ReLU are plotted in Figure 2.1.
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2.3 Training and Validation

So far, we have defined the architecture of a feed-forward neural network, the main functions

that comprise its structure, and the necessary conditions for it to approximate a desired

function. Here, we will provide an overview of the algorithms that adjust the internal

parameters θ to fulfill the objective of function approximation.

2.3.1 Backpropagation

As discussed in Chapter 2.1, optimizing a neural network comes down to finding a solution

to the equation:

∇θL(θ) = 0 (2.23)

The method of gradient descent is the most common for optimizing θ. The basic algorithm

is [7]:

Algorithm 2: Gradient Descent with Momentum

1. Define learning rate λ

2. Define momentum α

3. Define batch size B

4. Define initial velocity v

5. Randomly sample B instances in the training set (X̃1, X̃2, . . . , X̃B) and their labels

(ỹ1, ỹ2, . . . , ỹB). If B is less than the total number of training instances, this is known

as a minibatch.

6. Calculate loss function over the minibatch, LB = 〈L(f(Xi;θ),yi〉i

7. Compute gradient of loss function g = ∇θLB
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8. Update velocity v← (αv − λg).

9. Update θ via an Euler step: θ ← (θ + v).

10. Repeat steps 5-9 until convergence.

This method is called stochastic gradient descent (SGD) with momentum. The most basic

implementation of this algorithm is to set α = 0, resulting in a constant update for each

parameter at each step. More sophisticated variants of SGD define a variable learning rate

for each individual parameter, and are known as Adaptive Learning Rate (ALR) algorithms.

Popular ALR algorithms include AdaGrad, RMSProp, and AdaM and can be found in

Refs. [57], [58] and [59] respectively.

The backpropagation algorithm concerns Step 7 in Algorithm 2, namely, computing the

gradient of the loss function with respect to the internal parameters. This is done via the

chain rule of calculus:

∂L
∂W

=
∂L
∂u1

∂u1
∂u2

∂u2
∂u3

. . .
dun
dW

(2.24)

In practice, this calculation is performed recursively. A computational class op implements

a forward propagation function f, a gradient function grad and a backpropagation function

backprop. These three functions are outlined more clearly below [7]:

• op.f: A function that computes a tensor H, given a set of inputs θ̃. For example,

a function that propagates the input layer values to the first hidden layer will have

output H1. The inputs are the training vector X̃, the weight matrix W1, and the bias

vector b1.

• op.grad: Computes the gradient of each element of H with respect to θ̃. Each gradient

is indexed by i. This function is simple to implement as op.f defines the functional

relationship between H and θ̃.

• op.backprop: Given the gradient of L with respect to H, indexed by i, computes the
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gradient of L with respect to θ̃ via the chain rule:

op.backprop(∇HL) =
∑
i

(∇HL)iop.gradi (2.25)

Because θ̃ comprises all inputs to a function f, the backprop function will output some

partial derivatives of L with respect to weight and bias parameters. These derivatives are

components of the target ∇θL, and can thus be saved in a table. Other gradients computed

by op.backprop are with respect to node values H′ produced by another class op'. These

gradients can be inputted into the backprop method of op' to produce more components

of ∇θL. This process is repeated until the table is filled, and the gradient of the loss

function with respect to all the weights and biases has been fully computed. The basic

backpropagation algorithm is then [7]:

Algorithm 3: Backpropagation for a Feed Forward Neural Network

• Define: opn, the operation that computes the loss function L from the output layer

Hn. In all other cases, opm.f computes Hm+1, given inputs θ̃m ≡ (Hm,Wm+1,bm+1).

• Define: table, an unpopulated array that will store the terms of the target gradient.

• Initialize gradient: g← opn.backprop(1)

• for k in (n− 1, . . . , 0) do:

g← opk.backprop(g)

Remove elements of g that correspond to partial derivatives of L with

respect to parameters in Wk+1 and bk+1, and insert into table.

• Return table.
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2.3.2 Validation

At this point, the basic structural and algorithmic components of a feed-forward neural

network have been defined. Determining when or if a neural network has been optimized

is known as validation. The most common form of validation is to split the full training

data set into a training set, which usually contains about 90% of the data, and a test set,

which contains the remaining data. The training and test sets are constructed via random

sampling. During training, the neural network is only exposed to instances from the training

set. One pass of the full training set through the neural network during optimization is

called an epoch. The number of updates to θ that occur within an epoch depends on the

size of the minibatch:

training steps per epoch =
size of training set

batch size
(2.26)

After every epoch, the data in the test set is evaluated by the model and the loss function.

Because the neural network is not trained on these instances, a decreasing loss function

over the test set with each epoch indicates that the neural network is learning the correct

rules of inference. If the loss function is decreasing for training instances but increasing

for test instances, it means that the neural network is using its capacity to memorize the

training labels [7, 60]. This is an example of overfitting. Techniques to avoid overfitting are

summarized in Chapter 2.4.

For small training sets, the test set may be too small for it to be certain that the neural

network has learned all the necessary rules of inference. In these cases, a technique known

as k-fold cross-validation is employed: The data set is split into training and test sets k

times. Because the sampling is random, this will result in k distinct training sets and test

sets. The model accuracy is averaged over each training run to provide a better estimate of

the performance as a whole [61].
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2.4 Regularization

Machine learning architectures are often vulnerable to instabilities. An example of this can

be found when the weight parameters Wi and bi of the ith layer in a basic fully connected

feed-forward neural network are unbounded. In such a case, it is possible and sometimes

likely that the back-propagation gradients produced in a training step will continuously drive

these parameters to become larger in magnitude. This can introduce multiple problems. For

example, if the network input has been normalized to small values bounded between 0 and 1,

a succession of sufficiently large weight parameters in the hidden layers can produce output

orders of magnitude higher. Feeding this output into an activation function that utilizes an

exponential can cause numerical overflow resulting in a NaN. Another possibility is that a

network parameter will be driven beyond the maximum floating point value allowed by the

system, resulting in an INF parameter that will corrupt any information passing through.

Evaluation of gradients in the back-propagation algorithm can also produce NaN values if

the architecture has activation functions that are not smooth and continuous. In the case

where the training process is stable, an ML architecture can still find local or global minima

in the loss function that correspond to nonphysical or incorrect predictions. Another type

of instability can arise when minute changes in the input correspond to substantial changes

in the output of the model. Regularization is the practice of augmenting components of the

architecture, such as the weights, gradient values, loss function, training time or the data

set, in order to guide ML algorithms toward stability and accuracy. Common regularization

techniques are discussed in this section.

2.4.1 L1 and L2 Regularization

L2 regularization penalizes ML architectures with large weight variables. The squared Frobe-

nius norm of the weight matrices, i.e. the sum of squares of all matrix elements, is added to
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the loss function L [62]:

L̃ = L+
α

2

m∑
k=1

ak∑
i=1

ak−1∑
j=1

∣∣W ij
k

∣∣2 = L+
α

2

L∑
k=1

||Wk||2F (2.27)

Here, m is the number of layers in the network, (ak, ak−1) is the dimension of the weight

matrix Wk, L̃ is the regularized loss function, and α is an L2 hyperparameter that controls

the effect of the regularization. If α is too large, the architecture will under-perform due to

the strong preference to reduce weights over the bare loss function L. As a result, α is an

additional parameter that must be tuned to maximize the effectiveness of the model on the

training and test data.

L1 regularization is analogous to L2, except the regularization term is the sum of absolute

values of the matrix elements, rather than the Frobenius norm [62]:

L̃ = L+ α
m∑
k=1

ak∑
i=1

ak−1∑
j=1

∣∣∣W jk
i

∣∣∣ (2.28)

The behavioural differences between L1 and L2 regularization are considerable. The main

difference can be seen by examining the loss function near a minimum where the gradient

vanishes. Labelling θ as the set of internal parameters flattened into a vector, and θ∗ as

the set of internal parameters that minimize L, the Taylor expansion of the loss function to

second order is:

L(θ; X,y) ≈ L(θ∗; X,y) +
1

2
(θ − θ∗)THθ(θ∗; X,y)(θ − θ∗) (2.29)

Here, Hθ is the Hessian matrix of L with respect to θ. Following Goodfellow et al. in Ref. [7],

we will assume further that the Hessian is diagonal, i.e. the features in X are uncorrelated.
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In this case, the loss function takes the form:

L(θ; X,y) ≈ L(θ∗; X,y) +
1

2

∑
i

[
Hii(θi − θ∗i )2

]
(2.30)

The minimization condition for L1 and L2 regularization are respectively:

∇θL̃L1 = αsign(θ) + ∇θL = 0 (2.31)

∇θL̃L2 = αθ + ∇θL = 0 (2.32)

The ideal regularized weight parameters θ̃i are thus given by [7]:

θ̃i = sign(θ∗i )max

(
|θ∗i | −

α

Hii

, 0

)
(L1) (2.33)

θ̃i =
Hii

Hii + α
θ∗i (L2) (2.34)

Because the loss function is expanded about a local minimum, the Hessian elements Hii are

positive. This implies that for L2 regularization, if the unregularized optimal parameter

θ∗i is non-zero, the regularized parameter θ̃i will also be non-zero. In L1 regularization, if

the regularization parameter α is sufficiently large, the optimal regularized parameter can be

exactly 0. Thus, L1 regularization encourages a sparse representation of the optimal solution.

This is useful in cases where it is unclear if certain features of the input are important for

approximating a function of interest. The weights that are driven to 0 in an L1 regularized

algorithm will determine which input features can be discarded. This process is called feature

selection [63].
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2.4.2 Bootstrap Aggregating

Bootstrap Aggregating, also known as bagging, is a model averaging technique where mul-

tiple models are trained, and predictions are made by averaging the model responses [64].

Bagging methods enjoy the most success in the case where the individual model errors are

uncorrelated. This can be seen by examining N models with errors εi. The total expected

error 〈E〉 and its square are given by:

〈E〉 =
1

N

N∑
i=1

〈εi〉 (2.35)

〈
E2
〉

=
1

N2

(
N∑
i=1

N∑
j=1

〈εiεj〉

)
(2.36)

=
1

N2

(∑
i

〈
ε2i
〉

+
∑
i

∑
j 6=i

〈εiεj〉

)
(2.37)

Under the assumption that the errors εi are uncorrelated (〈εiεj〉j 6=i = 0) and distributed

about 0 with variance σ2 [7]: 〈
E2
〉

=
σ2

N
(2.38)

If the errors are correlated, this gives:

〈εiεj〉i 6=j ≤ σ2 (2.39)

∴
〈
E2
〉
≤ σ2 (2.40)

This implies that for any ensemble of models with non-perfect error correlation, the predic-

tion accuracy will be improved. The principle method for reducing error correlation between

models is to train them on randomly selected subsets of the training data. In some cases,

it is sufficient to select model hyperparameters randomly (see Chapter 2.5), and train all

the models on the same data set [7]. Bagging is typically performed on models that do
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not require extensive computational effort to train, as many models must be optimized to

construct a bagging ensemble. One common example of a bagging method is performed with

decision trees as the base model, known as a random forest [65, 66].

2.4.3 Dropout

x
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y

Non-Output Units:
(x, h1, h2)

0

0

0

00 00

0

0

0

0 0

Network 
Subsets

µ: (0,0,0)µ: (1,1,1)µ: (0,0,1)
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Figure 2.2: All network subsets for the simple fully connected neural network shown on the left.
At training time, a binary mask µ is multiplied element-wise with the non-output nodes of the
network. A given update is performed on the weights corresponding to the neurons that remain
active in the configuration. At test time, the outputs of each network subset are averaged [7, 60].

When training high-capacity models with large training sets, the standard bagging method

quickly becomes impractical due to the required time and computational resources of training

multiple models. The dropout method, first introduced by Srinistava et al. in 2014, sidesteps
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this issue by instead aggregating subsets of a single model. In the case of an artificial neural

network, a subset can be constructed by forcing a configuration of neurons in the input and

hidden layers to output 0 via a binary dropout mask µ [7,60]. For a neural network with N

non-output units, the amount of unique masks that can be constructed are 2N . Figure 2.2

illustrates this method for a small neural network.

Because of the exponential scaling of the number of neural network subsets with N , an

average over the whole ensemble is usually infeasible to train. For such cases, the number of

binary masks can be limited. This allows for an ensemble method that enjoys the reduced

variance shown in Equation 2.38, and remains computationally tractable.

A stochastic adaptation of dropout regularization which now undergoes common use draws

from the work of Warde-Farley et al. and Hinton et al. [67, 68]. Rather than selecting a

number of binary masks to be used during training, every non-output node in the network

is set to 0 with some chosen probability p. At test time, all the nodes in the network are

active and scaled by a factor of (1 − p). To understand the purpose of this scaling factor,

consider the simple case of a node h in a neural network whose expected value for optimal

performance over the full training set is 1. Assuming a dropout value p = 0.5, the value of

h will be equal to zero for about half of the training steps. To maintain an expected value

of 1 over the course of training, the network will converge such that h has an expected value

of 2 for training steps in which it remains activated. At test time, h is always activated,

and thus has a sub-optimal expected value of 2, which the scaling factor of 1 − p corrects

for. This form of dropout regularization has empirical success despite a lack of a rigourous

theoretical justification [7].

2.4.4 Early Stopping

Early stopping is a simple and effective regularization technique used to prevent overfitting in

a model with excessive capacity [7,69]. During the course of training, the loss is periodically
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Figure 2.3: Typical behaviour of ML algorithm during training. In the underfitting regime, the
loss for both training and test data is not optimal. In the overfitting regime, the loss for the training
set is minimized, but the test loss begins to rise as the algorithm is now memorizing the training
set at the expense of determining the desired function. The epoch given by the red line represents
where training should stop. Figure sourced from Ref. [7] pp. 112.

calculated using the validation set as the model input (see Chapter 2.3), and training is

halted when the test loss begins to rise. This represents the crossover point in training when

the model ceases to approximate the desired function and begins to memorize the training

set. Overfitting is to be avoided unless the training set completely saturates the function

input space. An example of such a training set is given in Chapter 4.2.3. All other training

sets in this thesis sparsely sample the input space and the early stopping regularizer is always

employed. Early stopping is illustrated in Figure 2.3.

2.4.5 Artificial Data

It can often be the case in supervised learning that the data set is too small or imbalanced for

an ML algorithm to effectively train from. Many techniques to grow the data set are available,

but their effectiveness is problem-specific. For example, in image recognition applications,
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new data can be generated by rotating, shifting, reflecting or enlarging images within the

data set [70], but in other cases such transformations are not feasible due to the input data

format.

A related issue for classification problems concerns the percentage of data in the training

set that belong to a particular class. For example, in fraud detection the amount of non-

fraudulent occurrences can outnumber fraudulent ones by 2 orders of magnitude [71,72]. In

such cases, a ML classifier may maximize its accuracy by always predicting the majority

class, rendering it useless [73]. In the case where the data set is sufficiently large, the

ratio of classes can be equalized by generating a data subset where the majority class has

been deliberately undersampled. In cases where the data set is small, an oversampling

method must be employed. One example of a robust oversampling technique is known as

SMOTE, where members of the minority class are used to generate new members via linear

combinations of their features [74].

If possible, one should collect more data to improve ML performance. If this cannot be done

directly, one may develop a model for the data that can be used to generate new examples.

This is especially applicable to cases of function inversion, where production of data given

a set of inputs is trivial, but determining the inputs from the data is not. This is the main

strategy for the project in this thesis, and will be further explored in Chapters 2.4.5 and 4.3.

2.5 Hyperparameter Optimization

Once a ML architecture with internal variables has been constructed, there always remain

external parameters that fully define the optimization process. Examples of these hyper-

parameters include batch size B and learning rate λ. Additional hyperparameters can be

present if regularization techniques are used, such as α in L1 and L2 regularization (see

Chapter 2.4.1), and the dropout parameter p (see Chapter 2.4.3). These hyperparameters

must be optimized via an external method to guarantee success of the ML architecture. In
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principle, any optimization method can be used to tune hyperparameters. Methods that have

been used include global search, gradient descent, Bayesian optimization, genetic algorithms,

and particle swarms [75–78]. Due to the computationally expensive task of training and val-

idating a ML algorithm to determine the performance of a single tuple of hyperparameters,

all hyperparameter optimizations in this thesis were performed using search methods.

2.5.1 Search Methods

Figure 2.4: (a): Grid search vectors for hyperparameters x and y (blue). Individual x and y
components are plotted in red. Space is uniformly filled, but sparse when dimensions are reduced.
(b) Random search vectors. The sample space is not uniformly filled, but has improved coverage
when dimensions are reduced. (c): Sobol search vectors. Both full and reduced sample spaces are
uniformly filled.

The grid search method chooses an immutable set of values from the continuum of each

hyperparameter, generates a set of hyperparameter tuples from the Cartesian product of

the sets, and tests the ML algorithm performance over each tuple [7]. The chosen points

can be distributed linearly, logarithmically or otherwise depending on the hyperparameter,

and should lie within a range considered to provide the highest probability of success. The

main advantage of this method is that it explores the hyperparameter space uniformly, and

is simple to implement. The main disadvantage is that if one or more hyperparameters have

little effect on the outcome in the explored range, the majority of the tested hyperparameter

tuples are redundant. This will result in wasted computational effort. Figure 2.4a shows an
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example of the grid search method.

The random search method draws an integer number of tuples from a random distribution

over a region of interest in the full hyperparameter space [7]. Random search has the main

advantage of avoiding redundancy in the case where some hyperparameters have a minimal

effect. The main disadvantage of random search is that regions of the hyperparameter

space can go unexplored. This disadvantage is compounded as the dimensionality of the

hyperparameter space increases, or if the sample rate is limited. Figure 2.4b shows an

example of the random search method.

To utilize the advantages and avoid the disadvantages of both grid search and random search,

a pseudo-random search using Sobol sequences was implemented for the optimization of

hyperparameters in this thesis. A detailed description of the algorithm that generates Sobol

pseudo-random numbers can be found in Ref. [79]. In brief, Sobol-distributed vectors provide

a uniform filling of the sample space, and maintain a uniform filling when collapsed along a

given dimension. Figure 2.4c shows an example of the Sobol search method.

In this thesis, we will construct a neural network classifier to scan an area detector image, and

classify the number of photons that were incident on each pixel. The training data will be

constructed using an artifical data model, as outlined in Chapter 2.4.5. The neural network

will be trained according to the methods of Chapter 2.3, specifically with the backpropagation

algorithm. Regularization techniques such as dropout and early stopping will be employed.

The network hyperparameters will be optimized according to the search methods discussed in

Chapter 2.5.1, specifically the Sobol search method. The hyperparameters will be optimized

by maximizing the network accuracy via the k-fold cross-validation method. The output

of the classifer will be a series of discrete probability distributions, and will be processed

using Bayesian methods to arrive at a prediction for a full image. Then, large speckle images

with known contrast parameters will be generated and used to determine the efficacy of the

classifier algorithm. In addition, a mixture density network will be designed to determine
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continuous probability distributions for the spatial coordinates of the incident photons. This

algorithm will also be trained and validated using an artificial data model.
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3 X-Ray Photon Correlation Spectroscopy and Ma-

chine Learning

3.1 Background

The main goal of Dynamic Light Scattering (DLS) experiments is to study the structure

and dynamics of a wide range of systems using diffraction patterns produced via their in-

teractions with a coherent source of light. The diffraction image is also known as a speckle

pattern. Examples of such systems include crystalline and non-crystalline solids, liquid crys-

tals, colloid suspensions, DNA and other biological molecules, and foams [80–83]. Depending

on the length and time scales of interest, the optimal wavelength for the light source can

range from near-infrared to X-ray [84,85].

Photon correlation spectroscopy (PCS) describes a family of DLS techniques that measure

the temporal auto-correlation function of a speckle pattern to determine timescales of equi-

librium and non-equilibrium effects such as phase transitions and diffusion, and structural

properties such as particle size. To give a specific example, consider a dilute mono-disperse

suspension of spherical particles with unknown radius r and diffusion coefficient D. A co-

herent source of monochromatic light is incident on the sample and a detector collects the

light-intensity information I(t) at a particular wavevector q, given by:

q =
4πn

λ
sin

(
θ

2

)
(3.1)

where n is the refractive index of the suspension, λ is the wavelength of the incident light

source, and θ is the detector angle. The second order intensity auto-correlation function

g2(q, τ) can be generated by performing the experiment and calculating [80]:

g2(q, τ) =
〈I(q, 0)I(q, τ)〉

〈I〉2
=

1

〈I〉2
lim
T→∞

1

T

∫ T

0

I(q, t)I(q, t+ τ) dt (3.2)
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The second order auto-correlation function g2(q, t) can be related to the intermediate scat-

tering function F (q, t) via the Siegert equation [86]:

g2(q, t) = 1 + γ2 |F (q, t)|2 (3.3)

where γ is a factor that accounts for partial coherence effects due to the incident laser beam.

For τ = 0, the integral simplifies to 〈I2〉 / 〈I〉2, giving g2(0) = 1+γ2. As τ approaches infinity,

the signals I(t) and I(t + τ) will de-correlate, resulting in an asymptotic auto-correlation

of 1. The behaviour of g2(τ) between these two limits can be shown to be exponentially

decaying (see Ref. [80]):

g2(q, τ) = 1 + γ2e−Dq
2τ (3.4)

The diffusion constant can be retrieved via a straightforward fitting algorithm, and the

particle radius r can be determined from the Einstein-Stokes relation:

r =
kBT

6πηD
(3.5)

where kB is Boltzmann’s constant, T is the temperature of the sample, and η is the known

viscosity of the medium.

3.2 X-Ray Photon Correlation Spectroscopy

The project in this thesis concerns a subset of PCS known as X-ray Photon Correlation

Spectroscopy (XPCS), first introduced by Sutton et al. in 1991 [42]. Prior to the advent of

XPCS, PCS experiments were performed with light in the visible spectrum, permitting study

of low-opacity materials on length scales greater than 200nm [42]. In the 18 years following

the first use of intensity fluctuation spectroscopy using X-rays, it became possible to observe

dynamics in high opacity systems, and on length scales of order ∼ 10nm [85, 87]. This
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Figure 3.1: (a): Numerically simulated speckle pattern for coherent light scattering off a suspension
of spherical colloids. Intensity fluctuations are roughly constant. (b): Simulated area detector
readings of the speckle pattern in (a) for a 35x60 CCD array in the high intensity limit. (c):
Simulated CCD readings of the speckle pattern for a low intensity X-ray pulse.
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occurred in conjunction with the continued development of high-intensity X-ray synchrotron

sources [88]. Observation of atomic scale dynamics using XPCS was first made in a diffusion

study of Cu-Au in 2009 [89].

Figure 3.2: (a) and (c): First photon detected from first X-ray pulse. (b): Second X-ray detected
in the case where the pulse delay is much smaller than the sample correlation time τc. (d): Second
X-ray detected where the pulse delay is large compared to the sample correlation time. The two
figures on the right show the difference in contrast between these two speckle patterns when the
area detector sums both contributions together. On a large scale (> 106 pixels), these differences
are statistically significant, and depend strongly on the sample dynamics.

A key consideration for XPCS studies of atomic scale dynamics is the trade-off between high

and low intensity pulses. High intensity pulses provide rich speckle patterns at the expense

of interference with the dynamics of the system being measured. Low intensity pulses do not

interfere with the sample dynamics but result in a sparse detection of light from the area

detector due to the fact that the probability of a single photon being detected is low [44,90].

35



Figure 3.1 shows an example of sparse light detection from an underlying electromagnetic

intensity profile that exhibits speckle.

The data analyzed in this thesis is produced via an X-ray split-pulse technique, wherein

two weak coherent X-ray pulses separated by a delay time τ are incident on a sample. An

area detector comprised of charge-coupled devices (CCDs) collects the charge excited by the

incident X-ray photons from both pulses. Each CCD outputs an integer number of counts

proportional to the amount of charge collected. These counts are termed analog digital units

(ADUs). This produces a single image corresponding to light scattered by both pulses. A

key insight is that while the speckle pattern is sparsely measured, the delay time τ affects the

statistical distribution of photons on the area detector. For pulse delays much smaller than

the sample correlation time, a high-intensity region in the detector will tend to collect photons

corresponding to both pulses. For delay times larger than the sample correlation time, each

pulse will induce high intensity regions that are independent, resulting in roughly twice as

many “bright spots.” This is illustrated in Figure 3.2. As we will soon show, information on

the dynamics of the sample for intermediate pulse delay times can be meaningfully extracted

from these statistics, provided enough data is collected.

The statistical distribution of photons incident on a detector is derived by Goodman in Ref.

Statistical Optics [91], and will be summarized here. The total energy E collected over time

t within an area A is given by:

E =

∫
I(r, t) dtdA (3.6)

where I(r, t) is the light intensity field. In general, I is a fluctuating quantity, giving rise to

a probability distribution for the fluctuations of E:

P (E) =

(
M

Ē

)M
ĒM−1e−

ME
Ē

Γ(M)
(3.7)

where Γ denotes the Gamma function, Ē is the average energy and M is the number of
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degrees of freedom in the measurement. The parameter M earned its name due to its

limiting cases: For measurement times t exceeding the correlation time of the system τc, M

simplifies to t/τc, the number of coherence intervals in time. In cases where t << τc, M

approaches unity. The explicit behaviour of M in the intermediate cases is given in Ref. [91].

The contrast of a speckle pattern, which is a quantity from which the system dynamics can

be calculated [86], is given by β = 1/M . In the weak field limit, as is relevant to studies of

atomic scale dynamics, one must use Mandel’s formula to convert this continuous distribution

to a discrete one that describes the probability of individual photons being detected within

the area of a CCD [44]:

P (k) =
Γ(k +M)

Γ(M)Γ(k + 1)

(
1 +

M

k̄

)−k (
1 +

k̄

M

)−M
(3.8)

where k denotes the number of photons detected and k̄ is the average count-rate per CCD,

or pixel. Because the intermediate scattering function F (q, t) can be determined by the

contrast factor β = 1/M [86], the system dynamics can be extracted from a histogram of

photon counts via a maximum likelihood fit to Equation 3.8.

3.3 Fitting via Maximum Likelihood

We will define the weak field limit as k̄ < 0.01. This permits us to expand Equation 3.8 to

cubic order:

P0 ≈ 1− k̄ +
(M + 1)k̄2

2M
− (M + 1)(M + 2)k̄3

6M2
(3.9)

P1 ≈ k̄ − (M + 1)k̄2

M
+

(M + 1)(M + 2)k̄3

2M2
(3.10)

P2 ≈
(M + 1)k̄2

2M
− (M + 1)(M + 2)k̄3

2M2
(3.11)

P3 ≈
(M + 1)(M + 2)k̄3

6M2
(3.12)
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For an observed histogram of (n0, n1, n2, n3) counts, the most likely parameters for k̄, β =

1/M can be determined by minimizing a chi-square distribution, conventionally given as [92]:

χ2(k̄, β) =
3∑

k=0

(ni −NPk(k̄, β))2

NPk(k̄, β)
(3.13)

This minimization condition assumes that each nk is Gaussian distributed. However, this

only holds if the counts in each bin are sufficiently high. Due to the fact that n2 and n3

will be small for k̄ < 0.01, it is more appropriate in this case to assume the bin counts are

Poisson distributed if the total number of pixels N is not known. If N is known, as is the

case in this thesis, the bin counts will be multinomial distributed. This gives an alternative

chi-squared statistic [92]:

χ2
p(k̄, β) = −2

3∑
k=0

nk log

(
NPk(k̄, β)

nk

)
(3.14)

If k̄ had already been determined by averaging the total counts, the contrast parameter β

can be determined by minimizing this statistic. The most likely contrast β∗ is thus:

β∗ = argminβ

[
−

3∑
k=0

nk log

(
NPk(β; k̄)

nk

)]
(3.15)

One can estimate the number of pixels required to determine β to a satisfactory degree by

expanding the quantities P2 and P 2
1 to second order:

P2 ≈
(M + 1)k̄2

2M
(3.16)

P 2
1 ≈

(
k̄ − (M + 1)k̄2

M

)2

≈ k̄2 (3.17)

∴
2P2

P 2
1

≈ M + 1

M
= 1 + β (3.18)

β ≈ 2P2

P 2
1

− 1 (3.19)
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We can express the uncertainty in β in terms of the uncertainties in P1 and P2 using the

error propagation formula [93]:

δβ

β
=

√(
P1

β

∂β

∂P1

δP1

P1

)2

+

(
P2

β

∂β

∂P2

δP2

P2

)2

(3.20)

=

√(
−4MP2

P 2
1

δP1

P1

)2

+

(
2MP2

P 2
1

δP2

P2

)2

(3.21)

Assuming near-Poisson statistics, the relative uncertainties in P1, P2 can be expressed as:

δPk
Pk

=
1√
Nk

=
1√
PkN

(3.22)

where N is the total number of pixels. For count rates k̄ < 0.01, P1 is at least two orders of

magnitude larger than P2. Thus, we can approximate the relative uncertainty in β by only

keeping the term corresponding to the relative uncertainty in P2:

δβ

β
≈ 2MP2

P 2
1

1√
P2N

(3.23)

≈ 1

k̄

√
2M(M + 1)

N
(3.24)

To achieve 10% relative uncertainty, the number of pixels that need to be analyzed is:

N =
2M(M + 1)

(0.1k̄)2
(3.25)

To give a numerical example, for M = 2 and k̄ = 0.01, the required number of pixels

measurements is N = 1.2× 107.
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3.4 Machine Learning and XPCS

The application of Machine Learning to this project stems from the fact that CCD area

detectors can obscure the location of incident X-ray photons. This is because the CCDs

indirectly measure photons via the collection of excited electrons. The integer number of

ADUs returned by the detector is proportional to the energy of the incident X-ray. The

distribution of electrons excited by a photon has a spatial dependence, allowing for the

activation of multiple, neighbouring CCDs. A connected collection of activated pixels due

to one or multiple photons is called a droplet [94]. Examples of droplets are shown in Figure

3.2.

ADUs per droplet

Co
un

ts

Figure 3.3: Histogram of of experimental droplet count-rates. First major peak is located at 257
counts. Peaks corresponding to integer multiples of this count-rate are clearly visible. Standard de-
viation in first peak is equal to 31 counts, indicating the incident X-ray count rate I has uncertainty
0.12I. Figure sourced from Ref. [94].

Figure 3.3 shows a histogram of the summed count-rates per droplet for AuAgZn2 scattering

data taken with a Princeton Instruments “deep depletion” CCD array [44]. Strong peaks
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Figure 3.4: Examples of two-photon droplets. For the cases of (a) and (b), the underlying droplet
patterns are identical, but can be produced by distinct photon configurations. For (c) and (d), the
underlying patterns are similar but individually allow for only one photon configuration. It is the
goal of this project to extract meaningful probabilistic information from the droplet in cases such
as (a) and (b), and directly solving droplets for cases such as (c) and (d).

occur regularly at integer multiples of the photon energy measured in ADUs. These corre-

spond to the integer number of X-ray photons in the droplet. For droplets with one X-ray,

in this case corresponding to roughly 260± 30 ADUs, the location of the X-ray is simply the

pixel with the maximum number of counts, and unambiguously contributes one pixel to a

histogram bin corresponding to k = 1. Droplets with two or more photons can be ambiguous.

Figure 3.4 shows several droplets containing two X-rays using a model developed in Chapter

4.1. It can be possible to have two identical droplet patterns whose photon configurations

differ between one pixel with two photons, and two pixels with one photon each. In such a

case, one can only calculate the posterior probabilities of these two configurations given the

area detector measurements. In other cases, droplets with minor differences can individually

admit different, but exclusive configurations. These issues are compounded as the number of
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photons within a droplet increases. Generating posterior probabilities or directly solving for

droplet configurations is in general not a straightforward task, but can have an important

effect on histogram used to fit Equation 3.8 to the contrast factor β. A Machine Learning

technique using feed-forward neural networks has been developed to address this problem,

and will be described in the next chapter.
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4 X-ray Speckle Droplet Analysis

4.1 Data Model

There are several challenges associated with direct use of the experimental droplet data to

train a ML model. First, the experimentally produced droplet patterns do not have labels

corresponding to the true positional coordinates of the X-ray photons. This fails to fulfill

a necessary condition for supervised learning architectures. Second, the limited size of the

data set prevents us from taking advantage of a neural network’s increased performance with

higher data volume. This problem is compounded if the data set is filtered into categories

that further reduce the data volume (e.g. all droplets containing three photons). For these

reasons, an artificial data approach outlined in Chapter 2.4.5 was taken. A model was

developed and calibrated to the statistical attributes of the experimental data set, and used

to produce a sufficiently sized training set. This section provides a description of that model.

Two models for the spatial probability distribution of the cloud of electrons excited by an

incident X-ray photon were tested. The first was a normal distribution given by:

PN(x, y) =
1√

2πσ2
exp

(
−(x− µx)2 + (y − µy)2

2σ2

)
(4.1)

where (x, y) denotes the spatial coordinate of the detector array, (µx, µy) is the coordinate

of the photon, and σ is the standard deviation of the spatial probability distribution. The

signal returned by a detector, measured in ADUs, is proportional to the number of electrons

collected by that detector. Thus, the detector signal Sd is given by the integral of Eq. (4.1)
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Figure 4.1: (a): Fraction of droplets consisting of one, two, three or four live pixels for experimental
data, the Gaussian model with optimal σ, and the Hard Circle model with optimal r. (b): Residual
Sum of Squares (RSS) of Monte Carlo generated histograms vs. experimental histogram for varying
σ, r.

over the spatial extent of the detector:

Sd = A

∫ xmax

xmin

∫ ymax

ymin

PN(x, y) dydx (4.2)

=
A

4

[
erf

(
xmax − µx√

2σ

)
− erf

(
xmin − µx√

2σ

)][
erf

(
ymax − µy√

2σ

)
− erf

(
ymin − µy√

2σ

)]
(4.3)
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Here, (x, y)min, max denote the boundary coordinates of the square pixels. The constant of

proportionality A is equal to the expected value of a photodetector measurement of one X-

ray photon. For convenience, the constant of proportionality is normalized to unity in this

thesis. In post-processing of the experimental data, pixels returning a value less than 0.1A

are set to zero for noise reduction. Additionally, A can vary as much as 12% according to

Figure 3.3. Both of these effects are accounted for in the model that generates the training

data.

The second model tested was a uniform “hard circle” distribution given by:

PU(x, y) =
1

πr2

 1
√

(x− µx)2 + (y − µy)2 ≤ r

0
√

(x− µx)2 + (y − µy)2 > r
(4.4)

where r is the radius of the circle. The detector value is given by a straightforward area

integral of the segment of the circle that overlaps with the detector:

Sd = A

∫ xmax

xmin

∫ ymax

ymin

PU(x, y) dydx (4.5)

The spatial standard deviation σ and hard circle radius r are the only free parameters in

the respective models subject to optimization. This was done by generating histograms

corresponding to the number of live pixels in a single-photon droplet with varying σ and r.

Each histogram was compared to a histogram of the experimental single-photon droplets via

least squares optimization. The results are summarized in Fig. 4.1. The optimal model is

Gaussian with σ = 0.17± 0.01 pixel widths (PW). The concavity of the RSS dependence on

σ indicates this the only optimal value. The exceptionally low RSS value, both in absolute

value and compared to the hard circle model, indicates that a Gaussian distribution is the

best model for the spatial dependence of the cloud of excited electrons. This thesis henceforth

uses the Gaussian model as a de facto standard.
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4.2 Description of Machine Learning Models

4.2.1 Blind Classifier

H1 = ReLU(W1X + b1)

H2 = ReLU(W2H1 + b2)

H3 = SoftMax(W3H2 + b3)

...

...

{
{

20 Nodes

20 Nodes

Flattening

P0 P1 P2 P3{Output Logit

Scanning Window

}Input (25 Nodes)

Output logit predicts N here

2-Layer Fully Connected 
Neural Network Classifier

Figure 4.2: Illustration of NNC data-flow. Input is drawn directly from the droplet image (green),
fed through two fully connected layers (red), and output as a discrete probability distribution
(blue).

The Neural Network Classifier (NNC) is used to estimate a probability distribution over

predictions of discrete variables [95]. In this case, the discrete variable is the number of X-
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Figure 4.3: Average loss per sample using the categorical cross-entropy loss function. Solid lines
denote training loss and dotted lines denote test loss. Each color corresponds to a Sobol distributed
combination of batch size B, learning rate λ and dropout p. Inset graph is magnified to show that
the best combination of hyperparameters corresponds to 6% dropout, learning rate ∼ 1e-5 and
batch size ∼ 50.

rays N that are incident within the bounds of a single pixel. In principle, N can be arbitrarily

large, but for the count rates we were considering (k̄ < 0.01), the approximation P (N >

3) = 0 was employed. Thus, the standard output of the NNC is a 4-vector corresponding to

the class probabilities for N ∈ [0− 3]:

P̃ = (P0, P1, P2, P3),
4∑
i=0

Pi = 1 (4.6)
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Figure 4.4: Overall classification of NNC accuracy for varying batch size B, learning rate λ and
dropout p. The highest performer achieves ∼ 91% accuracy. Accuracy remains consistent when
stratified by class.

The total amount of information that can be supplied to the NNC as input is the image

of the entire droplet. Because the input image can vary greatly in size (1-200 pixels), an

NNC that is capable of processing an arbitrary droplet image would require a high amount

of layer nodes, training data, and training time. To manage the overall size and complexity

of the NNC, a scanning method was employed. The architecture consists of a feed-forward

NNC with 25 input nodes coupled with a 5x5 scanning window that selects pixel values from

the droplet image. The 25 input nodes are fed through 2 fully connected, ReLU activated

hidden layers H1 and H2 with weights W1,W2 and biases b1,b2 respectively. The NNC was
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trained to predict the number of X-rays that lie in the central pixel of the 5x5 grid. Thus,

the final layer H3 with weights W3 and biases b3 produces 4 raw values given by:

H3 ≡ (PR
0 , P

R
1 , P

R
2 , P

R
3 ) (4.7)

The final output logit transforms H3 via the SoftMax function:

Pi =
eP

R
i∑3

i=0 e
PR
i

(4.8)

By scanning the grid over the image, the NNC makes a series of predictions that are then

combined to determine the solution for the whole droplet. This architecture is illustrated in

Figure 4.2. The NNC is blind in that it does not take into account previous predictions, nor

is it given droplet image values that lie beyond the extent of the 5x5 grid. Several methods

that address these shortcomings are discussed in Chapter 4.2.2.

The NNC evaluates its loss via categorical cross-entropy:

L = −
3∑
i=0

Ỹi log
(
P̃i

)
(4.9)

where Ỹ ≡ (Ỹ0, Ỹ1, Ỹ2, Ỹ3) corresponds to a one-hot class supplied by the training set. The

NNC was trained using an AdaM gradient descent optimizer. AdaM is an adaptive learning

rate algorithm with three hyperparameters: A main learning rate λ, and two decay param-

eters ρ1, ρ2 [59]. A detailed description of the training set methodology is given in Chapter

4.3. Hyperparameter optimization was performed over minibatch size B, main learning rate

λ, and dropout probability p. The decay parameters were held constant at TensorFlow

default values of ρ1 = 0.9, ρ2 = 0.999. The optimization technique was a pseudo-random

search. Rather than sampling hyperparameter values from a uniformly random distribution,

a pseudo-random Sobol sequence was employed. This exploited the advantages of random
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search over grid search, and mitigated the risk of missing large regions of parameter space

due to a low sample rate (See Chapter 2.5). Figures 4.3-4.4 show a summary of the network

performances over 12 architectures. Accuracy was tested by comparing the class corre-

sponding to the maximum logit value maxi (P̃i) with the class label in the training set. The

best performing NNC achieved ∼ 91.2% accuracy over the full training and test sets. The

corresponding hyperparameters were:

Batch size: B = 49 (4.10)

Learning rate: λ = 1.24× 10−5 (4.11)

Dropout probability: p = 0.06 (4.12)

Accuracy was not significantly affected by class label. 10-fold cross-validation was imple-

mented, resulting in a normalized accuracy of 0.912±0.001. It should be noted that because

some droplets are ambiguous, the accuracy cannot be arbitrarily close to 1. Post-processing

techniques for the raw NNC data are discussed in Chapter 4.2.2.

4.2.2 Classifier Boosters

The structure of the NNC is simple and effective, but suffers several shortcomings when

applied to a droplet image. The first is that the NNC has no built-in constraints to ensure

the number of photons in the droplet is correct. For example, if a given droplet whose total

counts add up to 3 is processed through the NNC, the series of predictions given by maxi (P̃i)

could result in a total X-ray count of 4 which is incorrect by observation. The other main

shortcoming is that accuracy over multiple predictions is diminished. For example, if a given

droplet contains 6 activated pixels, the chance that the NNC predicts every pixel correctly

is approximately 0.916 ∼ 57%. These issues are loosely related: An incorrect prediction due

to bad accuracy over the whole droplet can also miscount the number of photons.
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[0.9, 0.1, 0.0, 0.0]
[0.1, 0.8, 0.1, 0.0]
[0.0, 0.4, 0.5, 0.1]

Pixel 1
Pixel 2
Pixel 3

P0 P1 P2 P3

C2
1 = (0, 1, 1)  → 

C2
2 = (1, 0, 1)  → 

C2
3 = (0, 0, 2)  → 

P(C2
1) = 0.9 · 0.8 · 0.4 = 0.288 

P(C2
2) = 0.1 · 0.1 · 0.4 = 0.004 

P(C2
3) = 0.9 · 0.1 · 0.5 = 0.045 

N = 2

P(C21 | Z = 2) = 77% 
P(C22 | Z = 2) = 1% 
P(C23 | Z = 2) = 12% 

} Output 
Logits

P(Z = 2) = 0.373
Conditional Probability

Bayesian Boost

Figure 4.5: Bayesian boost procedure example for a 3-pixel droplet with 2 X-rays. Probability
products for different feasible configurations are color coded. Without the boost, maximum like-
lihood predicts C3 = (0, 1, 2) as the most likely X-ray configuration within the droplet. With the
added constraint that N = 2, C2 = (0, 1, 1) is promoted to most likely.

Several post-processing techniques or boosters were developed to overcome these shortcom-

ings. The first was a procedural invocation of Bayes theorem. Defining CZ as a unique

configuration of Z X-rays within a droplet and N as the total X-ray count, Bayes theorem

takes the form:

P (CZ |N) =
P (N |CZ)P (CZ)

P (N)
(4.13)
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More information on the format of CZ can be found in Chapter 4.3. It is clear that P (N 6=

Z|CZ) = 0 and P (N = Z|CZ) = 1. Thus, for a droplet containing a total of Z X-rays,

Bayes theorem simplifies to:

P (CZ |Z) =
P (CZ)

P (Z)
(4.14)

=
P (CZ)∑
i P (Ci

Z)
(4.15)

where i indexes every unique configuration containing Z X-rays. To estimate Equation

4.15, the probabilities provided by the output logits of the NNC were used. First, the

probabilities of every configuration Ci
Z are calculated for a given Z by multiplying the

appropriate probabilities from each logit. The sum of these probabilities is P (Z), and is

used to re-normalize the result. Figure 4.5 shows an example of this calculation in detail.

The Bayesian boost is effective for small droplets (less than 10 pixels), but the complexity

of enumerating P (Ci
Z) for all i goes as O(n2) where n is the number of pixels. To solve

this issue, a set of conditional lock-in and peeling boosters were implemented. A lock-in

booster assesses the confidence of an NNC output logit, and locks its predicted class if the

confidence is sufficiently high (> 98%). For example, if an output logit for an N = 3 X-ray

droplet reads [P0 = 0, P1 = 0.99, P2 = 0.01, P3 = 0], the associated pixel will be assumed

to have 1 X-ray, and the Bayesian booster will be run on the remaining logits with N = 2.

One implementation of a lock-in booster reduces the amount of pixels in the Bayesian boost

algorithm by one. In practice, the lock-in booster can be used multiple times on the same

droplet. A peeling booster looks for specific patterns on the edges of the droplets from

which 1-ray droplets can be successively subtracted or “peeled” off. A single application of

a peeling booster can remove between one and four pixels depending on the configuration of

pixels and the pixel counts within the droplet. Figure 4.6 illustrates the peeling algorithm.

The final booster that was implemented concerns logits for M -ray droplets with non-zero
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Figure 4.6: Example of a peeling booster applied to a 6-pixel droplet. A single X-ray photon has
contributed to the counts in section (c). To leave behind an integer number of photons in section
(a), 0.2 counts must be “peeled” away from pixel (b). The resulting extraction gives a 1-ray droplet
in section (e) that can be processed via a Mixture Density Network (see Chapter 4.2.3). Section
(d) shows the remainder of the droplet, now with 2 fewer pixels. The extracted droplet has 0.9
counts, but this is acceptable given the variance in the X-ray intensity, and the fact that detectors
below a 10% threshold are set to zero.

values for P (N > M). This can occur for pixels with high count rates, but results in an

underestimation for P (M = N), and to a lesser extent P (M < N). To illustrate this,

consider a 2-ray droplet in which one pixel has an activation of 1.7. Evaluating the pixel

and its neighbours with the classifier may result in a logit such as [0, 0.1, 0.8, 0.1]. The

Bayesian booster will discard the value corresponding to P = 3, resulting in a normalized

logit of [0, 1/9, 8/9, 0]. It is likely in this case that P = 2 is underestimated, as the relative

probability P (2)/P (1) is unchanged. Better results are achieved in this case by simply

adding the value of P (3) to P (2), and setting P (3) to zero. Because the output logit can

only output probabilities for N ≤ 3, this booster is only implemented for 2-ray droplets.
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4.2.3 Mixture Density Network

The Mixture Density Network (MDN) is used to estimate a conditional probability distribu-

tion over predictions of continuous variables [50]. In this case, the continuous variable R is

the vector of 2 values corresponding to the coordinates of the X-ray in a 1-photon droplet,

given an input droplet pattern X̃. Previously, X̃ represented a 5x5 subset of a droplet image

with multiple X-rays. Here, X̃ is a 3x3 matrix of detector values, and encompasses the entire

droplet.

R(X̃) = (x, y) (4.16)

R represents not just the incident pixel coordinate, but the precise location of the incident

photon within that pixel. Rather than predicting R directly, the MDN is trained to predict

Pφ(R; X̃,θ), where φ(X̃;θ) are the output variables of the ML architecture with internal

variables θ corresponding to the parameters of the probability distribution P . In this ML

model, the parameters φ correspond to the means µ, scale parameters σ, shape parameters

β and weights Π of a set of M scalar basis functions with 2-dimensional input:

Pφ(R; X̃) =
M∑
i=1

Πi(X̃;θ)G(R;µi(X̃;θ),σi(X̃;θ),βi(X̃;θ)) (4.17)

Here, the choice of basis function G is the 2-dimensional separable generalized normal dis-

tribution defined by:

G(R;θ) =
βxβy

4σxσyΓ(1/βx)Γ(1/βy)
exp

{
−
(
|x− µx|
σx

)βx
−
(
|y − µy|
σy

)βy}
(4.18)

To ensure that P is normalized, Π is subject to an additional constraint:

M∑
i=1

Πi(X̃;θ) = 1 (4.19)
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Figure 4.7: 1-D generalized normal distributionG(x). β = 2 corresponds to a Gaussian distribution
with standard deviation σ/

√
2. Increasing β drives the distribution toward uniform in the region

−σ < x < σ.

Examples of the generalized normal distribution in one dimension for varying β values are

given in Figure 4.7. A more general form of the multivariate generalized normal distribution

promotes σ to a full covariance matrix Σ, allowing for correlations between the coordinate

variables x and y [96]. However, training an MDN to learn a full covariance matrix Σ is

difficult, in part due to the numerical instability risk and computational cost of inverting it.

As a result, it is common to enforce Σ to be diagonal [7], allowing for a representation in the

form of Equation 4.18. Furthermore, this simplification is suitable for droplet decomposition:

Figure 4.8 shows the detector reading Sd as a function of the incident photon coordinate

and the gradient magnitude |∇RSd|. The eigenvectors of Σ are expected to point in the

high symmetry directions of Figure 4.8b as Sd(R) remains constant. Because x̂ and ŷ
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Figure 4.8: (a): Detector reading Sd(R) for incident photon with I = 1.0 and R ≡ (x, y). (b):
Gradient magnitude |∇RSd(R)|. Directions of high symmetry point along x̂ and ŷ. This figure
shows that the digital readings of the CCD are sensitive to photons that are incident on its edges.

correspond to the directions of symmetry, the off diagonal elements of Σ will be driven

to 0 during training and are thus unnecessary to include as parameters. The structure

of the ML architecture is a feed forward neural network with 9 inputs corresponding to the

detector measurements in a 3x3 grid, 2 ReLU activated hidden layers H1 and H2 with weight

matrices and bias vectors W1,b1 and W2,b2 respectively, and 6 sigmoid activated outputs

corresponding to the position, scale and shape parameters. The raw, non-activated output

vector H3 has weights W3 and biases b3 and produces raw output values given by:

H3 ≡ (µRx , µ
R
y , σ

R
x , σ

R
y , β

R
x , β

R
y ) (4.20)

The weight parameters Π were omitted from the architecture, as the output corresponds to

the parameters of a single distribution (a homogeneous mixture). The sigmoid activations
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that produce the final output are:

µx,y = 1 + σ(µRx,y) ∈ (1, 2) (4.21)

σx,y = 0.01 + σ(σRx,y) ∈ (0.01, 1.01) (4.22)

βx,y = 2 + 100σ(βRx,y) ∈ (2, 102) (4.23)

where σ denotes the sigmoid function. Figure 4.9 visualizes and summarizes the data-flow of

this structure. The input data for the training process consisted of 100000 1-photon droplets

X and corresponding photon coordinates R split into a 9:1 ratio for training and test data

respectively. The random values for R were uniformly distributed within the bounds of the

central pixel in the 3x3 input grid. The intensity of a given X-ray was Gaussian distributed

with µ = 1 and σ = 0.05. Examples of training data are given in Figure 4.10. For a

given training datum, the loss function was the negative log likelihood of the output MDN

(Equations 4.17-4.18) evaluated at R̃:

L(θ; R̃,φ) = − log

[
βxβy

4σxσyΓ(1/βx)Γ(1/βy)
exp

{
−
(
|x̃− µx|
σx

)βx
−
(
|ỹ − µy|
σy

)βy}]
(4.24)

The choice of bounds for µx,y in Equation 4.21 limit the photon location to within the central

pixel of the input image. The calculation of the inverse of σx,y in Equation 4.24 introduces

risk of an exploding gradient instability if σx,y approaches 0. Equation 4.22 includes a lower

bound on σx,y to avoid this. The bounds on βx,y (Equation 4.23) give the MDN architecture

full ability to choose a shape distribution between Gaussian (β = 2) and uniform with steep

drop-off at σ (β >> 2).

The MDN neural network was trained using an AdaM gradient descent optimizer [59] with

default moment parameters. The network performance did not vary significantly with batch

size and initial learning rate; the chosen values were 100 and 1e−4 respectively. Dropout

regularization was not employed. Figure 4.11 shows the average loss and variance per datum
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Input Layer X

Hidden Layer 1 (H1)

Hidden Layer 2 (H2)

Raw Output (H3)

H1 = ReLU(W1X + b1)

H2 = ReLU(W2H1 + b2)

H3 = W3H2 + b3

Sigmoid Activations

µx µy σx σy βx βy Transformed Output

Figure 4.9: Structure of 1-photon droplet MDN. 3x3 droplet pattern is fed into input layer (green),
then processed through two fully connected hidden layers (red) and returned as MDN parameters
(blue). The sigmoid activations that transform the raw output are given in Equations 4.21-4.23.

for the training and test sets. The optimal state of the neural network was chosen to be at

the 800th epoch to optimize the trade-off between reduced loss and increased test variance.

Examples of the neural network output are shown in Figure 4.12. In all cases, the value of

shape parameter was of order β ∼ 10, implying a uniform distribution within the bounds

given by σx,y. Cross-validation was not necessary, as the data in the training and tests sets
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Figure 4.10: Three examples of supervised training vectors. The values in the 3x3 grid are the
MDN input values, and the coordinates R corresponding to the positions of the red dots are used
to evaluate the loss function (Equation 4.24).

Figure 4.11: Mean loss and variance for training and test data of 1-photon droplet MDN.

spanned the entire input space.
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Figure 4.12: Examples of output distributions for 1-photon droplet MDN (red). The incident
location of an X-ray that activates a single pixel can be anywhere within the red region shown in
(a). Two pixel droplets have low uncertainty in the X-ray position along the axis of the activated
pixels as shown in (b). Three or four pixel droplets allow the neural network to determine the
incident photon coordinate with high certainty as shown in (c). In general, the shape and position
of the predicted probability distribution for a given input will lie in a region of Figure 4.8b in which
the gradient magnitude is constant.

4.3 Production of Training Data

In cases where a machine learning algorithm is applied to the inversion of an injective function

(i.e. one-to-one mapping), training data should be produced such that the input space is

widely and uniformly sampled. However, multiple sets of X-ray coordinates can give rise to

similar droplet patterns, due to the ambiguities discussed in Chapter 3. In this non-injective

paradigm, a successfully trained feed-forward neural network classifier with sufficient capacity

will produce class probabilities that approximate the underlying statistical properties of

the training set. However, it is not sufficient to generate training data from a statistical

distribution given by Equation 3.8. For values of the average count rate k̄ < 0.01 and contrast

0 < β ≤ 1, P0 is considerably greater than P1,2,3. Thus, a training set produced directly

from this distribution will be highly imbalanced. A neural network trained to maximize its

accuracy will be biased to predict a class corresponding to the majority of the training set

(N = 0 in this case). Furthermore, the classifier is only used to solve droplets of sufficient

size (Ntot ≥ 2). This indicates that high count rate samples should be over-represented in

the training set.
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(a) (N1, N2, N3) (b) Permutations (P ) (c) CZ Example (d) Training Samples

(0, 0, 0) 1 (0, 0, 0, 0, 0, 0, 0, 0) 691
(1, 0, 0) 8 (0, 0, 0, 0, 1, 0, 0, 0) 7,360
(2, 0, 0) 28 (0, 0, 1, 0, 0, 1, 0, 0) 51,520
(3, 0, 0) 56 (0, 1, 1, 0, 0, 1, 0, 0) 154,560
(4, 0, 0) 70 (0, 0, 0, 0, 1, 1, 1, 1) 257,600
(5, 0, 0) 56 (0, 1, 0, 1, 0, 1, 1, 1) 257,600
(0, 1, 0) 8 (0, 0, 2, 0, 0, 0, 0, 0) 14,720
(1, 1, 0) 56 (0, 1, 0, 0, 2, 0, 0, 0) 154,560
(2, 1, 0) 168 (0, 0, 0, 1, 2, 1, 0, 0) 618,240
(0, 2, 0) 28 (0, 0, 2, 0, 0, 0, 0, 2) 103,040
(3, 1, 0) 280 (0, 1, 2, 1, 0, 0, 0, 1) 1,288,000
(1, 2, 0) 168 (1, 0, 0, 2, 0, 2, 0, 0) 722,800
(0, 0, 1) 8 (0, 0, 0, 3, 0, 0, 0, 0) 22,080
(1, 0, 1) 56 (0, 1, 0, 0, 0, 3, 0, 0) 206,080
(2, 0, 1) 168 (1, 1, 0, 0, 0, 0, 0, 3) 772,800
(0, 1, 1) 56 (0, 0, 3, 2, 0, 0, 0, 0) 257,600

Total: 4,889,251

Table 4.1: (a) Number of 1-photon pixels N1, 2-photon pixels N2 and 3-photon pixels N3 in the
surrounding ring. (b) Total number of distinct configurations within family. (c) One example of
CZ within the family of configurations given in (b). (d) Total number of samples generated from
family.

A given training sample consists of a 5x5 grid of detector values, and a class value given by

the number of X-rays N in the central pixel. Because the sample is meant to represent a

portion of a droplet image, a training sample with label N can have more than N photons,

as long as the additional photons are not in the central pixel. The training set was generated

via a set of hierarchical categories. The first category was the number of X-rays in the

central pixel, N ∈ [0, 3]. The training samples were split evenly among these four classes to

prevent bias in the classifier due to over-representation. Within these classes, the training

samples were subdivided into categories defined by the total number of X-rays in the 8

surrounding detectors, Z ∈ [0, 5]. The number of training samples in these subcategories

were made proportional to Z, ensuring high count-rate droplets have more representation in

the training set. The final set of subcategories were defined by the distinct configurations of

Z X-rays within the 8 surrounding detectors. A given category can be defined by (N,CZ)
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Figure 4.13: (a): Labelling convention for training data categories. (b): Example of training data.
The features of the data are the pixel values in the underlying droplet. The red dots show the
X-ray coordinates that were used to generate the pattern. The training label N and sub-category
CZ for this training datum are given according to the convention in (a). The specific class a droplet
belongs to only takes into account the number of photons in the central pixel. The training features
are the 25 detector values given in the grid, and the corresponding class label is the value of N .

where CZ represents an 8-vector (nZ1 , n
Z
2 , . . . , n

Z
8 ) corresponding to the number of X-rays in

pixels 1-8. CZ is further constrained such that:

8∑
i=1

nZi = Z (4.25)

For each unique configuration (N,CZ), 230Z distinct samples were generated by selecting

pixel coordinates R̃ for each X-ray from a uniform distribution bounded by the edges of the

selected pixels. The value of 230Z was chosen to bring the total count of training samples

close to 5,000,000. The configurations and training samples are summarized in Table 4.1.

For each X-ray configuration enumerated in Table 4.1, between 1 and 3 additional X-rays

were randomly added to the 16 pixels in the outermost ring of the training sample with

empirically chosen probabilities P (1) = 0.4, P (2) = 0.5, and P (3) = 0.1. This was done to

account for the fact that many experimentally generated droplets will have spatial extent

beyond 3 pixels. Figure 4.13 illustrates the categorization method and shows an example of
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the training data.

4.4 Model Performance

Figure 4.14: Posterior distributions for P (N) for the case of all 2-ray, 2-pixel droplets defined by
A, calculated using Monte-Carlo and the ML classifier.

A given droplet pattern defines a posterior probability distribution of possible pixel counts.

These distributions can found via Monte-Carlo simulations, and compared to the ML classi-

fier to verify that the classifier approximates the probability of a given X-ray configuration

within the droplet. It is infeasible to generate all posterior distributions, as the amount

of unique droplets is innumerable, so we restrict this analysis to the case of 2-ray, 2-pixel

droplets. For low-count rate images, these are the most commonly found droplets that re-

quire careful analysis. Examples of droplets that fit into this category are shown in Figures

3.4a and 3.4b. A 2-ray, 2-pixel droplet contains two adjacent pixels with activation values

S and 2 − S. For a given value of S, the discrete posterior is defined as P (N ;S), with

N ∈ {0, 1, 2}. Figure 4.14 shows the Monte-Carlo and classifier results for P (N ;S) as a

63



(a) Number of pixels in data set k̄ (c) βtrue (d) βpredicted

6.0× 109 1× 10−3 0.209 0.21± 0.02
1.9× 109 1.8× 10−3 0.254 0.24± 0.03
1.8× 109 1× 10−3 1 1.0± 0.1
8.9× 108 1× 10−3 1 1.0± 0.1
6.0× 108 3.2× 10−3 0.210 0.21± 0.02
5.6× 108 1× 10−3 1 1.0± 0.1
5.5× 108 1.8× 10−3 0.327 0.29± 0.03
4.0× 108 1× 10−3 1 1.0± 0.1
2.8× 108 1.8× 10−3 1 1.0± 0.1
1.9× 108 5.6× 10−3 0.170 0.16± 0.02
1.8× 108 1.8× 10−3 0.866 0.82± 0.08
1.7× 108 3.2× 10−3 0.437 0.38± 0.04
1.3× 108 1.8× 10−3 0.777 0.74± 0.07
8.8× 107 3.2× 10−3 0.565 0.50± 0.05
6.0× 107 1× 10−2 0.170 0.17± 0.02
5.6× 107 3.2× 10−3 1 1.0± 0.1
5.5× 107 5.6× 10−3 0.481 0.46± 0.04
4.0× 107 3.2× 10−3 1 1.0± 0.1
2.8× 107 5.6× 10−3 0.594 0.56± 0.06
1.7× 107 5.6× 10−3 0.835 0.68± 0.07
1.7× 107 1× 10−2 0.352 0.35± 0.04
1.2× 107 5.6× 10−3 1 0.93± 0.09
8.0× 106 1× 10−2 0.0.535 0.45± 0.05
5.0× 106 1× 10−2 0.0.636 0.53± 0.05
4.0× 106 1× 10−2 1 0.96± 0.09

Table 4.2: Contrast factor βpredicted determined from data sets generated using the model in
Chapter 4.1. The histogram corresponding to the true class labels gives a value of βtrue that agrees
with βpredicted within uncertainty. Data is presented graphically in Figure 4.17.
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Figure 4.15: Portion of artificial speckle image processed with the blind classifier, the boosters and
the MDN. Previously, we have presented the X-ray positions using a continuous probability density
function (PDF). Here we use error bars along x̂ and ŷ to represent the extent σ of the probability
distribution outputted by the MDN. The uncertainties for X-ray positions vary depending on the
droplet configurations. In all cases, the shape parameter β is high, meaning that the uncertainties
are “hard” and not Gaussian.

function of S for N = 0, 1, 2. The graphs are in good agreement, implying the classifier has

learned to approximate the correct posterior distributions for this case.

Figure 4.15 shows the full capability of the system consisting of the blind classifier, the clas-

sifier boosters, and the mixture density network. The statistical parameters of the artificially

generated speckle pattern were k̄ = 0.05, β = 0.3. The uncertainties on the X-ray positions
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Figure 4.16: Large experimentally measured droplets processed with the full ML system. In the
regime of k̄ ≤ 0.01, these droplets are uncommon and represent the most challenging to decompose.

vary depending on the posterior probability distributions defined by the droplet. Figure 4.16

shows the same system applied to some experimentally measured droplets on the large end

of the spectrum (> 5 pixels, > 2 X-rays).

With respect to the objective of determining a histogram that can be fit to Equation 3.8, the

mixture density network is unnecessary, as the histogram only tabulates the X-ray counts

within the bounds of a pixel, and not their exact incident location. Determining the average

count rate k̄ is straightforward: One can sum the total pixel counts and divide by the number

of pixels. However, due to the pixel cutoff value typically around 10% of an average X-ray

activation, this will systematically underestimate the true count rate. In this analysis, the

average count rate was calculated by determining the integer number of photons in each

droplet, and dividing the sum of those results by the total number of pixels. Table 4.2 and
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Figure 4.17: Comparison of βpredicted and βtrue by plotting in ascending order. The values of k̄
vary between 1e-3 and 1e-2.

Figure 4.17 show the NNC predictions for the speckle contrast β from 25 data sets generated

using the model in Chapter 4.1. The values of k̄ and β that were used to generate the data

sets were within the range defined by:

k̄ ∈ (10−3, 10−2)

β ∈ (0.2, 1.0)

The range of k̄ defines the weak field limit, and the range of β was chosen to correspond to

two full coherence intervals in time. The training labels were used to generate histograms of

the true pixel counts, and the contrast factor βtrue was fit to these via maximum likelihood.

The training features were processed by the NNC and used to generate predicted histograms

of pixel counts, and the contrast factor βpredicted was fit to these histograms. The uncertain-

ties in βpredicted were determined using Equation 3.25. The values for βpredicted show good
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agreement with βtrue within uncertainty, indicating the NNC is approximating the contrast

to a satisfactory degree.
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5 Conclusion

In this thesis, we have developed a model for producing speckle patterns that would be

typically measured in a CCD-based area detector for X-ray synchrotron sources. Our model

incorporates the statistical parameters of average count rate k̄, contrast β, average intensity

I, and electron cloud spatial standard deviation σ. With this model, we were able to pro-

duce a rich training set for a neural network classifier. This enabled it to approximate the

probabilities of distinct photon configurations given raw droplet data. The neural network

classifier provided an accurate estimation of speckle contrast for area detector images that

obscured the underlying counting statistics due to additive interference.

In general, the physical attributes of an X-ray source and an area detector can vary from

system to system, as can the experimental methodology. The ML architectures designed in

this thesis correspond to only one such case. To extend this algorithm to fit the needs of an

arbitrary system, the following steps must be taken:

• Normalize the XPCS data by determining the average count-rate of a single photon

via a histogram fit of droplet counts (See Chapter 3.4 and Figure 3.3).

• Determine the pixel cutoff value corresponding to the user’s desired level of noise

reduction.

• Determine the spatial standard deviation of the electrons excited by an incident photon.

This can be done by fitting a histogram of the number of live pixels in a 1-ray droplet

(See Chapter 4.1).

• Generate a droplet training set using the methods in Chapter 4.3.

• Train the neural network using the ideal hyperparameters found in Chapter 4.2.1. If

the provided hyperparameters result in bad performance, retrain with a set of Sobol

distributed hyperparameters to find the optimal algorithm.
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With this done, the general algorithm to process an area detector and determine a histogram

of photon counts is as follows:

1. Require average count-rate Sd.

2. Require detector image A.

3. A← A/Sd.

4. Initialize histogram for (0, 1, 2, 3) photon counts: H = [0, 0, 0, 0].

5. Define Np as the number of pixels in the detector image.

6. Use an image labelling algorithm to isolate each droplet and the coordinates of its

pixels. Define D as a tensor containing all the droplet subsets of A. Because the

droplets form a subset of the total detector image A, the remaining pixels will be

processed later.

7. for D̃ in D do:

• Initialize a matrix of zeros C with the same shape as D̃. This matrix will store

the predicted integer number of X-rays in each pixel.

• Use peeling booster to draw a droplet D̃peel out of D̃. Add 1 to C[argmax(D̃peel)].

Repeat this step until no more droplets can be peeled from D̃.

• Generate a list of logits P̃ by calling the NNC on every live pixel in D̃. The NNC

will also read the 24 surrounding pixels.

• Process P̃ with the Bayesian booster. This will produce a series of n candidate

configurations Ci and corresponding probabilities Pi.

• C← C + Cm where m = argmax(P1, P2, . . . , Pn).

• Take a histogram H̃ of C.

• H← H + H̃
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8. H[0] ← H[0] + Np − size(D). This ensures that all the remaining pixels in the image

contribute to the histogram.

We have thus demonstrated that this method shows promise for accurately determining

speckle contrast from experimental XPCS images, allowing for a more precise studies of the

dynamical and structural properties of a wide range of systems.
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Appendix

The computational programs designed in the preparation of this thesis were written in the

Python 3 programming language [97]. The machine learning algorithms were designed and

trained within Google’s TensorFlow API [98].

The work in this thesis was performed using three computational packages developed by

Daniel Abarbanel that have been made publicly available. They are:

• produce training data: This package contains the routines that produce training data

according to the methods in Chapter 4.3

• train neural net: This package contains the neural network classes and training rou-

tines that were used in this thesis.

• speckle data analysis: This package contains the routines for generating artificial

speckle images, and determining the corresponding histograms of photon counts using

a pre-trained classifier.

In each of these computational packages, there is a notebook that demonstrates how to

operate the software. The notebook is written using the Jupyter Notebook format. This

requires the installation of the python-jupyter package, which can be found at:

http://www.jupyter.org/

The packages are publicly available at:

https://abarbadan@bitbucket.org/abarbadan/speckle ml.git
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