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Abstract

As the complezity of VLSI circuils increascs and the Hme to markel requirements beeome
more siringent, the demands on the designer aggrandize while the challenges of achicring
specified performance intensify. The skill of rapidly producing functional circwits for intra-
system lesting and prolotyping is essenlial lo the clectronic markei. Tools which aid the
designer, thereby quickening the design eyele arc indispensable, Howeoer, the methodologics
cmployed by these tools, though maturing, still necessitate amclioralion, as shall be shown

through a conceivable case study.

Rapid prololyping in nwmerous digital application domains ave served by synthesis ad
FPGA technology, Embedded controller systems lowch one application arca. The study of
particular design examples ean provide information on the current status of lools, their al-
gorithms, and available hardware architectures and conscquently furnish o list of deficiencics
and efficacious enhancements towards further, wmuomatically genervated anplementalions,
Juel, subsequent lo in depth research into FPGA architeclures, synthesis algorithins, and dig-
ilal design lechniques, one example application was realized. This particular case study lead
to proposed specifications supporting foundations for an “Application Speeific Design and
Synthesis System?”, and their necessily particularly when design lime is evitical and real-time

responses are in demand.

This thesis formulates, and implements an automolive Anti-lock Brake System (A1S),
reporiing on il’s design simulalion, synthests, and cventual layout steps, from which crlen-
sions are drawn lowards digilal controllers onto FPGA lechuology, und the potentiol mi-
gration of the design onlo ASIC lechnology. Implementation/environment fine-tuning of
embedded controllers us such necessitale quickly protolyped circuil realizalions, Erwnination

of ils functionalily, real-time response, implementation, and lestability is performed in an



allewmpt to wmeasure the nsefulness of higher levcd design entry facilities such as VIIDL in a
rapid protolyping cnvironment. Clonlinuous on-line testing is included using apeviodic sample
fjoetions where the resultand gencrated valucs are comparcd to signafures known a priori,
withou! compromising functionality, The echicvable arca and timing aid in the delermination
of the officieney of the process and provide Juel for an FPGA and/or ASIC migration path
Jor coentual implementation.  Commentarics and gencralized methodologios are assembled
Srom the design’s simulation, synthesis and layout wlilizing VHDL and FPGAs, illustrating
CAD tool capabilitics/requirements /limitations, with respeet lo real-time synthesis and rapid

prototyping of general controller applications involving asynchronous elements.



Résumé

La complexiteé grandissante des cirenils VLST of o réduetion de lears dehéunees de mise vn
marehe fimposen! une productivité croissanle aue concepleurs duns fe but de reneanteer les
eritéres de performance demandés. Lcapertise requise pour la production rapide de eivenits
protolypes complels el de protolypes fonctionnels en guise de substitution anr composantes
non-congues d’un systéme est essentielle ana tests de la phase de dévcloppenient dun produit
du marche de Uélectronique. Des onlils sous forme de logicicls sont devenus indispensables
pour accélérer lc processus de conception. Cependant, bicn que ves owlils aiend alleind un
certain nivean de maturité, ils onl plusicurs défaillances qui doivent étre mndliorées, Cetle

constatation fera Uobjet d'un cas d’élude pratique présenté dans cotie these,

La conception rapide de prololypes dans plusicurs applications du domaine de Uélee-
{ronique numeérique emploienl ln synthése digitale et les lableany de portes logiques pro-
grammnables (FPGA). Les contrdleurs digilaux cncastrés @ leurs sysicmes repriésenlent une
telle application. Lexamen de concepls digitauz praliques fournive des donndes importailes
sur Uefficacité de la synthése, des algorithmes, ot des archileciures digitales disponibles
Pintérieur des oulils en plus d’indiquer des voies menant @ Umndélioration de la performance
de ces mémes oulils. En cffel, @ la suite de recherches approfondies sur les architeclures
FPGA, les algorithmes de symthése and la conception digitale, un exemple application
élé congu. Ce cas d’étude particulier a conduil & la proposition de justificalions supporiant
la buse dans le Domaine d’Application Spéeifigue (CSDAS) En purticulicr, la néecssiled du
CSDAS sera argumentée pour les produils ayanl de courles éehéances de conceplion el les

systémes & reaction lemporelle critique.

Celle thése ulilise la spécification d'un systéme de freins anti-blocage (ABS) pour illus-

trer le processus de simulation, synthése, el la mise en circuil de conlréleurs digilauy sur des

—
—
—



FPCAs Fuouwlee, la dransformation possible de ecs controlears sure des eivewits integres @ ap-
plication spceialisée (ASIC) est diseutde. Les mudliples dtapes de raffincment dans la concep-
tion do conteolours digitane encasteds requicrent ta disponibilite vapide de: cirenits prototypes.
Dans le cas du contrélour ABS, la qualileé des ouwtils de haul nivean dabstraction, cone
VI, est mesarde sclon bes apéralions fonctionnelles de Pimplémentation résullante, la
rencontre des contraintes de performance temporelles, of la capacilé du circwit @ étre verific

pour son bon fonclionnement.

(I méehanisme dawlo-vdrification apériodigue esl inlégre au systéme. Des veelcurs lests
sent injeelés dans le eirenit et les réponses du systéme sonl alors compards avx signatures
oblenues a priovi d'un cirewil sans défauts. Les Lests se produisent de fucon continuelle pen-
dant Vopcration pormale du circuil el ce sans compromellre aucune des ses fonctions. La
strface de silicium requise of la performance temporelle des cirevits synthétisés eontribuent
a Uanalyse de Uefficacilé des outils de synthése. De plus, ces données fournissent un chem-
fnement vers Plmplémentation cventuelle du conlroleur sur un FPGA on un ASIC. Daunlres
resullals, acquis @ partiv d’oulils sur le langage VHDI, et de synthése sur les FPGAs, générent
des observetions additionnelles. Ces résultats provenant de sinmlations, de synthése el de
wise en eirenil démontrend les exigences, les limitations el les capacilés des oulils de coneep-
tion assistée par ordinaleur par rapport & la synthése de coniroleurs ayanl des composantes

asynchrones et la rencontre de leurs conlraintes temporelles.
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Chapter 1

Introduction

It the 1940% the first clectronie, programmable, general-purpose computer, the ENIAC, a
breakelirough in its time, occupied an arca 100 feet long, 8.5 feet high by several feet wide,
Stmple design took weeks, programming was manual, accompanied by cable connections and
setting of switches, a task which took from half an hour to an entire day. Along analogous
lines, in the 1990, automatic design tools are flourishing and programmable hardware exists
which can be reconfigured lor an application in a matter of minutes occupying about 1 square
ineh of area, Hardware has evolved, circuit densities are increasing, permissible prototyping
times have diminished, and tools which aid cirenit realization have correspondingly been
unfolded, From stand alone compilers and schematic entry packages, complete frameworks
exist which take the designer and his/her specifications from design entry to implementation.
But the questions arises, how efficient are they and is their maturity attainable? Addition-
ally, as circnits grew larger and larger, testability became an issue, requiring controllable
and observable in-cirenit viewpoints. Ensuring that the resultant functionality of the hard-
ware meets Lhe original specifications upon fabrication and after in system utilization are
difficult and grow notably with increasing circuit complexities. Conceptualization thus forth

cmbodies testability, alongside design with its ever increasing constraint lists.

Controller designs were selected for the analysis as they represent a well-known and
largely encompassing npplica}ion domain. Furthermore, conjoining them with FPGA (Field
Programmable Gate Array) technology, offers an alternative solution to the current micro-
controller-software implementations. This additional motivation demands the assurance or

surpassing of previously attained real-time effects while maintaining the ease of design en-



CHAPTER 1. INTRODUCTION 2

coding, re-encoding. compilation and testing lor both faults and line-tuning,

li is proposed in this dissertation that an investigntion ol hardware and software ele-
ments could produce a set of design, svithesis, testing, and implemertation methodologios
and recommendations for the electronics engineer and consequently lacilitate fiture coneep-
tualizations. Enhancements are proposed suggesting favorable evolutionary paths bridging
the methodologies developed today with ones to be used tomorrow. Precluding an exclusive
research-oriented study, an engineering approach to explore such havdware/soltware facili-
ties/limitations was cimployed, ntilizing case studios —speeify it build i, test it, and document
and cvaluate the steps underiaken. Tangible resulls conld then be obtained, re-used, and then
extrapolated to general circuit realizations and systems, and he labeled as application spe-
cific design methodologies forming the groundwork for Application Speeifiec Design, Synthesis

and Layout (ASDSL).

This engineering approach envelops the above methodologies cmploying technology of the
times, which we refer to as Integrated Cirenit (IC) technology, two of which are FPGAs
and Synthesis Lools. A schema, to optimize their exercise by designers in similar, future
design and module undertakings, is developed, the evolution of which is best formulated
through “hands-on™ experimentation. Notwithstanding, the development of FPGA design
and synthesis techniques requires analysis of their architectures and the tools which realize

their eirenits,

1.1 Background to the Real-time Controller Design and Syn-
thesis onto FPGAs

The time-to-market expediency has invigorated the search for rapid cirenit ad system imple
mentations with limited risks. FPGAs serve as excellent prototyping devices and additionally
provide expeditious solutions in selected application areas. The evolution of FIMGAs from
Masked Programmable Gate Arrays (MPGAs) and Programmable Logic Devices (PLDs)
must encompass not only architectural advances but mast incite a proficiency in Electronic
Design Automation, (EDA) tools as well. This thesis examines the above utilizing VDL
for design entry and separate tools for synthesis and layout onto FPGAs. Specification of

timing and area constraints cannot be entered for a design in VDI format, hence real time
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constraints must be entered throngh a synthesis tool. Not all tools address this issue very

well, many of them relying on the design — simulate iterative process.

Real-time implies an ability 1o respond to the fastest rate ol arrival of the inpul events.
Digital controller applications exhibit real-time qualities when their outputs are generated as
soon as possible after the inputs are available within their sampling time interval. Real-time
cannol be quantified in terms of time limits or intervals as individual system response times
are highly application dependent. Furthermore, real-time control systems must be rcliable,
possess error deteetion capabilities and exhibit some kind of fault recovery mechanism such
as an ability to restart or shut itsell down. Traditionally, redundancy must also be built into
the overall control system. Success in its design and implementation hinges on achieving this
real time response utilizing a given technology. One of the motivations of this thesis is to

explore applicability of FPGAs in real-time controller applications.

Some clements from Houpis and Lamont, [2], which receive attention in our design are:
real-time task concurrency, synchronization, coordination and scheduling, response time, sec-
tioning of internal and external timing (sampling), resource allocation, fault/error recovery,
restart and system shutdown, and self testing, Though system controllers require control and
data-path circuits and are most often of a synchronous nature, asynchronous factors do exist
demanding, in some cases, particular treatment. Data-path logic includes operations for
buffering, multiplexing, control, and data processing. Typical circuits require multiplexers,
registers, buffers, FIFOs, counters, accumulators, ALUs, adders/subtracters/comparators,
and are synchronons. The asynchrony emanates from the need to respond to externally

sampled input and to realize the on-line self-testing mechanisms.

An ABS controller is one example of an embedded application class. A vehicle in motion
is & complex, nonlinear and time varying system responding to its asynchronous environment.
An ABS controller requires data from this vehicular system and its environs. Optimal control
techniques and theories can provide suitable strategies for digital design and implementation,
but the on-line computing requirements become excessive and somewhat time prohibitive.
Henee, to obtain “real-time” responses, various assumptions, and simplifications of the ideal
theoretic equations and models must frequently be proposed to reduce the on-line computing

requirements while still retaining correct functionality.
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Part of the implemented design comes from Koo and Yel [8]. who deseribe mathemati-
ally a four-phase brake pressare control loop. No previous hardware implementation onto
IPPGAs for this theory is known 1o date. fueling the motivation for its selection lor realiza-
tion. Preliminary coustraints entail ABS controller response time requiretients which should
surpass the human response time, in the order of milliseconds, while allocating adequate time

to its actuators and tesk circuitry in addition to satisfving FPGA area and size limilations.

Rapid prototyping is one of the virtues resulting from FPGA technology, FPPGAs present
more restrictions to the design automation tool, while oflering more llexibility to the desiguer.
Their Logic block structures exhibit larger granular diversity than present ASICs with their
gate granularity, Low level structures are fixed and a prelaid interconncction sehema lor
routing signals and connecting blocks aiready exist, ready for circuit design or customization
throngh the FPGA programmable capabilities. The resulting overhead suggests a need Tor
circumventious and shortcuts using crafty approximations to achieve eflicient wiilizalion of
the hardware. For an ABS coﬁl.roller, sonie of these include linearizing the tire-read friction
versus slip dynamics about certain operating points and considering a simpler optimization
problem. The veliicle velocity is assiimed constant for short time intervals so Lthal computa-
tions can complete their execution producing valid and current resnlts. To further minintize
the on-line computing time while maintaining precision, external {to the FPGA) hardware
availability is assumed in the form of Reaq Only Memory (ROM). Quick Lo program, they

can store large amounts of precaleulated data, and competently complement the FI'GA.

An additional goal of this thesis is to evaluate the applicability of FPGA technology in
safety critical real-time applications. This study focuses on timing and faultferror detection
in an FPGA environment. In the event of sudden braking and slippage under hazardouns road
conditions, the vehicle must respond quickly cnough to regulate hrake pressure 1o achieve
optimal braking and steering. Should au error in operation occur, the ABS controller should

be disabled to avoid incorrect braking interference and to guarantee safety of the driver.

Integrating all these elements through a case study, is an all-encompassing, difficult 1ask.
The specification and design of real-time systems not only requires extensive analysis, but
also relies on modeling and simulation in order to develop the desired confidence in achieving
system performance requirements before circuit realization. Even so, it is impossible Lo

validate that the system performance requirements are achieved for all possible inputs given
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Lhe system resonrces. This applies to all of pre- and post-layout, and in-system rendilions of
the controller. Hence the need for intelligent designer controlled testing and validation are
still necossary. Additionally, the shortents and design approximations which are required in
the implementation phases must also be justilied and aceepted, a task which ean be done

Lhromgh “special” simulations and mathematical analysis.

High level design langnages provide a standard medium for communicating design data.
VHDI, was sclected lor design entry based on its ease of implementation, general acceptance
and standardization, and its capability of allowing a designer to specify circuits at varying
levels of abstraction. VHDL possesses traditional hierarchical level descriptions yet adds
hehavioral descriptions and user deflined attributes. Though currently not the best for syn-
thesis, as il was originally written for simulation purposes, VIIDL is a good refinement of a
hardware specification language which carries a potential for ax efficient design entry method
to evolving synthesis tools. Occasionally misleading in simulation, a clear understanding of

the event-driven VIIDL simulator will result in proper interpretation of resuits.

For vehicles with ABS, it is estimated that the quantity of some models will easily surpass
1000 units so that eventual migration to ASICs is feasible and thus considered in addition to
FPGA implementation. The results of VHDL synthesis are judged on how well the timing
requirements are et, testability, and the FPGA chip count required to implement the

design, all of which aflfect the choice for possible migration to a smaller ASIC die.

1.2 Design Issues, Models, and Tools

Modeling a system’s dynamics for eventual hardware implementation is analogous to writing
a film seript based on an existing novel. The director/designer must be able produce the
hest possible movie/design given the script/specifications and the actors/tools available. The
actors/tools are interchangeable and replaceable while the script/specification provides the

biueprints and fuels the strategy.

Circuit design embodies four main tasks: modeling, implementation encompassing both
hardware and software elements, modification, and validation. Constraints are inherent to
each task initially directing the synthesis process and ultimately to check correctness of the

circuits realization. Modeling from initial specification consists of three elements: structur-
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ing, encoding, and constraining. Structuring reflers to the subdivision or organization ol a
design fapplication into smaller sub-blocks for design entry /delinition. 1t also incorporates
hierarchical organization. the number of levels of which depend on the original description.
Encoding specilies how a design is entered into a Computer Design Alded(CAD) tool, lor
further processing such as simulation or synthesis.  Constraining relers to the individual
goals associated with cach block or groups of blocks, Fucoding and constraining depend
on the choice of modeling language or library block representations and the implementation

facilities whereby a subset of these elements, some general, some customized, are used,

An original description of a system for eventual modeling can come in several [ormalts.
Textual, pictorial, programming-oriented, mathematical, and petri-unet or FSM type deserip-
tions, to name a few, are common. The eventual modeling of the system deseribed in this
thesis was developed [rom textual deseriptions and mathematical equations. "T'he design
platform for the realization of the above specification, focnses on VIIDL deseriptions and
models as the avenne for design entry. The availability of hardware and soltware in the
university environment rendered Xilinx XC4010 FGPAs as the chosen technology for cirenit.

implementation, and Synopsys as the chosen tool for “automaled circuit creation”,

Accepting that there exist numerous paths from mathematical formulations to synthesis
and eventual FPGA layout, we embarked on a search lor mathematical formulas, or control
dynamics which are better suited for FPGA implementation. Some nseful approximations,
optimizations, and implementation short-cuts have been unearthed through the construction

of an ABS controller, and can be applicable to general controller applications,

In perspective, the focus of this dissertation resis on the exploration of VDI, design
issues for FPGA synthesis of controller type applications using CAD lools, Constraint spec-
ifications, which are an integral constituent ol any design tasks, can be used to direct synthesis
and ultimately to check correctness of the circuits realization. Capabilities and limitations
of the many facets in a design cycle, were sought to ultimately propose improvements in
the areas of FPGA architecture, design entry, simulation, synthesis, and ronting. 'These can
then be formulated into a methodology for design and synthesis onto FPGA technology with
particular emphasis on controller type applications, in attempt to parallel the functions of
the traditional designer via automation. Producing & high performance and area efficient

design meeting all counstraints is an aspiration of designer and hence automation process
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as well. Additionally, the analysis of testability procedures and their usefulness in FPGA

itplementations shall be performed.

1.3 Motivation and Research Goals

With the advent of programmable hardware, FPGA technology has since emerged. Avoiding
cosls and risks of traditional gate array design methodologies is one avenne towards which
FPGAs ean be directed. Exploration of the capabilities of such a hardware implementa-
tion is best. performed through a design example, realized onto the technology, after which
verification of timing and arca can be done by the designer. T'he example chosen for realiza-
tion, is that ol an ABS Controller, which exhibits the desired application features, such as
IF'ShE control, synchronons amd asynchronous functionality, datapath calculations, and em-
bedded system circuit. Additionally, sueh an exercise will verify FPGA technology real-time

capabilities in a safety critical control environment.

From a design entry and tool interpretation point of view, traditional schematic entry is
less ambiguous thay HDL encoding, as direct library-component matching during synthesis
is puossible and somewhat explicit. However, a fair amount of research remains to be done
in order Lo resolve and produce an optimized and synthesized design with respect to VHDL
and FPGAs, especially with commercial tools and the ever evolving FPGA architectures.
Particularly, much work remains in exploiting technology specific FPGA architectures and
pre-designed blocks (hard mmacros), and exploring synthesis, and design methodologies. Syn-
thesis reguires extensive design space exploration schemes and itself is an NP-hard problem.
Creating an optimal implementation is, consequently, not a certainty and heuristics shall

continuously be sought.

FPGAs are vendor and family specific possessing distinct architectures better adapted
to certain design styles, or “niches™. This thesis reports on one such niche by documenting

the design process from specification to technology mapping.

Before embarking with background material, let us reiterate our goals:

¢ To explore ViDL design issues for FPGA synthesis of controller type applications
using CAD tools. This embraces scrutiny of limitations and observance of features and
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capabilitics.
o To evaluate the suitability of CAD toals for such a design.,

o To gauge the applicability of FPGA technology in salety eritical real-time applications.,
Likewise, our achievements can be sunmmarized as follows:

¢ The development of a methodology lor design and syuthesis onte FIPGA technology
with particular emphasis on data-path/controller type applications, These applications
revolve around processing externally received datain a controlled and ordered wmanner.

o Aunalysis of testability procedures, their [easibility and theiv vseluluess in FPOA teeh-
nology.
¢ List of limitations/capabilities of commercial synthesis tools,

¢ The implementation of a self-testing ABS controller onto FI'GAs, based on recent. four
phase control loop theory and self-designed, complementary surrounding blocks
connecting logic.

¢ Realization ol a controller onto programmable technology so that prototyping and
. in-system testing can be achieved with minimal cost.

e Presentation of an alternative solution to the traditional implementation ol controller
applications onto microprocessors and program memory ( RAM:random aceessible nren-
ory).

1.4 Author’s Specific Contribution

The originality of this thesis stems not from an individual specific coutribution bt from an
embodiment of diverse contributions fueling strategios and suggesting approaches and amelio-
ration in [uture design and synthesis nndertakings. Synthesis issues and aigorithms from all
levels -system level down to logic and boolean levels— were researched along with the numer-
ous tools, both commercial and non-commercial, Considerable time was spent researching
all available FPGA architectures, their construction blocks, special leatures and their syn-
thesis tools, as well ei;s implicit basics such as digital design techniques, programmable logic,
synchronous and asynchronous systems, and Moore and Mealy machines. In addition, the
extrinsic area of automotive mechanics and clectronics was investigated to arrive at an im-
plementable specification of an ABS Controller. A briel mention of all rescarched elements

' is included, and further details can be found from the extensive reference list locited in Lhe
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bibliography., Subsequent to the research phase, the experimental phase ensaed. The ABS
Controller was specified and relined, suceceded by ils encoding, simulation, synthesis, and
eventual ronting and layont. Resulls were then accumulated and interpreted, followed by

the formulation of design methodologies and their documentation.

Briolly, the thesis is organized as follows: Chapter 2 presents background inforimation and
inelndes past work in Lhe area of application specific synthesis. Chapler 3 introduces design
and experimental methodologies and evalnation eriteria. The Anti-lock Brake System (ABS)
dynamies, the hardware specilications encompassing the sell-testing features, are recited in
Chapter 4, whereas implementation details, synthesis aud layout results along with FPGA
design slrategies are Jocated in Chapler 5. Ensuite, Chapter 6 summarizes and generalizes
the approaches and methodologies used throughout the design and synthesis case study,
wilh regard to VIIDL controller design onuto FPGA technology. Finally, concluding remarks
are presented in Chapter 7. Additional ABS definitions, derivations and explanations are
given in Appendis A, while sample VIIDL code is available in Appendix B describing some
interesting encoding styles lor datapath/controller implementations. Lastly Appendix C
touches briefly on synthesis needs, tools and supporting libraries and their structures as
related Lo PPGAs, which is an timportant area of study encompassing entire new domains of

reseatel.,



Chapter 2

Controller Implementation
Fundamentals

The ideal synthesis tool will explore the lrrgest design space and build an ellicient design
conforming to all user constraints. A comprehensive and complote design space ceplovation,
or the study of various possible designs from a cost-performance trade-oll’ perspeetive he.
comes more difficult at higher levels of design abstraction. Fixed hardware Toatures uselul
for timely realizations may add proportionate limitations further complicating the synthesis
process. Application-specifie synihesis techniques or methodologios, provide nierent, advan-
tages, [48], and researchers have in the past investigated specilic classes of cirenits sueh as
microprocessors, DSP Systems and control/datapath hased methodologies. "This Lhesis [o-
cuses on controller systems, yet. many of the methodologies presented are applicable or can

he extended to other application domains.

2.1 Theory behind the Controller Design and Implementa-
tion

Control system design characeeristics, entry methods and implementation technology merit
some introduction. For synthesis to be acceptable in tightly constrained systems, these
three clements must be well understood by the designer and intelligently administered and

processed by the tool; as will be seen in Chapters 5 and 6.

10
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2.1.1 System Dynamics Definitions

A systenis a synergistic combination of components which perform a specilic objective. A
component is a single fietioning, atomic, unit of this system. A dynamic system is one
where the present ontput depends on the past input, and as a result, the ontput changes
with Lime [1]. A realetime systemis one where the present ontput depends on the past inpui,
and as a result, the output changes quickly enough so as to effect correct responses in the
surrounding system, within the specilied time. Modeling time and translating cvents and
durations in titne Lo hardware are difficult problems to address in synthesis, yeu happen to
be essential in the calenlations of several real-time controller systems. lence, having tools

that correctly model sueh behavior on the chosen technology is imperative.

System design beging with a prediction ol its performance and behavior. Such prediction
is based on o mathematical description of the system’s dynamic characteristics, called a math-
ematical model, For physical systems, differential equations are used for these mathematical
models, System dynamics deals with the mathematical modeling and response analysis of
dynamic systems. Linear and non-linear systems are modeled by linear and non-lincar dif-
ferential cquations respectively. Due to the mathematical difficulty involved with non-linear
systems, they are often linearized about the operating point. Many hydraulic and pneumatic

systems exhibit non-linear relationships amongst their variables.

2.1.2 Asynchronous vs Synchronous Design and their Synthesis

Sequential cirenits are composed of gates, {flip-flops and latches interconnected in some cotn-
plex confignration. A synchronous cirenit employs an independent, periodic clock signal to
svanchronize its internal changes of state, whereas an asynchronous circuit does not. Set,
reset, and interrupt signals occurring sporadically characterize such asynchronous circuits.
State changes oceur in direct response Lo signal changes on primary input lines, and different
memory elements can change state at different times. This can give rise to critical race con-
ditions which must be avoided. Asynchronous circuits offer substantial benefits in the design
ol digital control units or sequencers, particularly when many of the actions of the control
units are hased on externally generated signals that are not guaranteed to be correlated to

an available clock signal [41].
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The development of asynchronouws design techniques for svothests are benelivial in von-
trol systems where input events ocenr haphazardly, and in interfacing components where
handshaking oceurs or the individual bloeks are not synchronized to s common elock, Asyn-
chronous methods are also exercised for module or system interfacing. Request-acknowledge
{negative acknowledge) protocol of the four-cyele or two-cyele type communications requires
asynchronous procedures and careful circuit realization. Starting from as early as [12] and
[11]. where a “one-hot™ row assignment and one feedback varinble restriction was suggested
for circuit, synthesis, asynchronouns control unit implementations were being analyzed, Sim-
ulation of asynchronous systems using HDLs is commonplace, [34]. however the research
invested in its implementation has not yet reached commercial tool levels. Control applica-
tions in complex embedded systems, such as the ADS realization, would henelit from sueh o

lLool.

The approach to partition the specification and then employ dillerent synthesis tools
for algorithmic and interface parts [44] is leasible, but vot the integrated solution sought
after. It assumes clock availability, a synchronous design and focuses solely on hawdshiaking,
omitting sampling and response time issues which are vital for asynchronous designs. An
ideal synthesis tool would permit modularization at a lunctional rather than at a-timing
level, so that a language such as VHDL could specily order and time of events with simple
sequential and “if ... then .7 statements, However, as advances in asynchronous synthesis
currently undergoing research are not yet readily available in commercial synthesis tools,
designers are forced to either & mannai approach or a synchronous approach!. I the timing
issues can be solved with the switching speed of the technology, then clocks cin be used
and an asynchronous design can and is most ofien transformed into a synchronous design.
Alternatively, a synthesis tool and particular designer encoding can resull in asynclironous
cirenits. The Design Compiler™ by Synopsys can process VIIDL which tosults in asyn-
chronous type components, however, their realized behavior is not guaranteed to work as
simulated. Certain clements are notl allowed, and others are processed withoul guarantiecing
correctness or itmmunity from hazards or race conditions. Designer discretion is advised and

the antomatic synthesis may not provide any advantage. Ultimately, more flexibility and

Yappend a fast-cnough clock to the circuit and synchronize the entire desige, inputs, bandshaking anc
actuator control signal generation to the clock
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maore refined synthesis are expected in newer tool versions, while it is still understood that

manal synthesis options must remain.

2.1.3 Control System Commonalities with Respect to Synthesis

Control systems can be divided into datapath and control logic blocks, the latter of which is
often realized in the form of finite state machines (FSMs). FSMs prevail, due to the facility
ol depicting states of operation for tasks such as data processing or response gencration and
their Lransitions which effectually sequences the sub-tasks and applies order to them. FSMs
comprise sequential clements lor current (past) state storage and combinational logic for
the determination of the next state. Datapath reflects the flow of data in a system under
the management of control units such as sequencers or FSMs. Datapath infers a chain of
operations which will be executed on one or several words of data of some pre-defined length.

Again, both combinational and sequential logic are required for circuit materialization.

Typical control-type applications involve tasks such as sampling, data-processing, buffer-
ing, multiplexing, ordering and decision-making, and response generation. Functionality
al. the periphery is associated with analog circuits whereas data processing is often associ-
ated with digital circuits. Sampling often requires an analog-digital (A/D) interface, just
as response generation will implicate digital-analog conversion. Data-processing leads to
datapath/register-ALU-mux based hardware while decision making encompasses straight-
{forward boolean type logic and combinational gate level logic. Typical datapath and control
cirenits are transformed into components such as: adders, subtracters, accumulators, coun-

ters, nwltiplexers, register files, FIFO buffers, three-state buffers, and busses.

Several facets exist within a digital control system; control laws (algorithms), hardware
implementation, the conversion between analog and digital signal domains, the system per-
formance, and the sampling process [2]. In continuous control systems, all system variables
are continnous signals, regardless of whether the system is linear or not. The generation of a
control model to be realized as a digital information processing device is of primary impor-
tance [2], and it is why much time was alloted to develop these models and why Chapter 4

is devoted to the specification of the example control system selected and employed.

Previously proposed techniques for synthesis of control systems involving FSM and dat-
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apath structures [38]. [-+1], {10] assume a similar succession of steps: the compilation of the
input behavior into an intermediate graph representation? followed by synthesis tasks such
as scheduling. unit selection, Munctional, storage and interconnection binding, and control
generation. From an HDL starting point, such as VIIDL, many lack specilic guidelines in
the use of timing constructs for synthesis, such as affer and wait statements, since they have
simulation semantics for scheduling future events or for suspending simulation excention. In

synthesis these construets have ambiguous semantics, without specilic guidelines,

Control logic aclivates functional units, component blocks in a schematic and entity
blocks in VHDL, in the datapath according to a given schedule. Synthesis of control logic
is important because it affects the control flow of operations and hence directly impacts the
overall performance of the resuiting hardware [10]. Control logic can be implementad s
microcode sequences (software solution) or finite state machines (hardware solution). With
VHDL this would implicate explicitly encoding FSMs via process statements, as shown in

Appendix B, or via wait statement sequences, Section 3.3,

Due to the common nature of control applications, their decomposition and subsequent
realization leads to a communal set of logic and cireuit elements. Typical datapath compo-
nents such as adders, ALUs, registers, and interconnection units are nsed to realize aperations
such as +,-,*,/.>,<,=,&,—, to retrieve and store their operands, and to conneet them via
multiplexors. FSMs, which control the multiplexers, registers, bus drivers, ALUs, cle., ma-
terialize themselves through registers and combinational logie. Figure 2.1 illustrates simple
datapath components with a bus-mux interconnection system., Due to the inherent nature
of the four phase conirol loop which dominates the ABS controller design, notably complex
calculations were required in short times. It was determined that they conld be best realized
through look up tables (LUTs) implemented in a ROM. Hence a ROM is inclnded in addition

to RAM and registers as datapath memory elements.

Efficient VHDL synthesis elicits a proximate coupling of VHDL to these components,
which in turn must evoke an adroit maepping between them and F'PGA inherent structures,

Further discussion of VHDL design issues appears in Chapter 3, Section 3.3,

2aften a dataflow graph (DFG) and a data structure, or control flow graph {(CFG} for control flow
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2.2 Automated and FPGA Specific Synthesis

The realm of synthesis embodies four main elements, the available hardware, a set of design
styles or mechanisms, tools and designer. An FPGA architecture base can be multiplexor,
gate, LUT, or PLA oriented. Design styles such as pipe-lined, data-path and FSM, random
logic, or highly memory dependent, will have their corresponding components implemented
with varying levels of efficiency on the uniquely structured FPGAs. Subsequently some
FPGA types Trom different vendors or families better suit certain applications. Software
tools link the designer to the hardware and attempt to perform automatic synthesis and
tmap a supposedly generically entered design to the FPGA technology. Yet just as different
design types will, and should, be diversely implemented on FPGAs, they also tend to adjust
themselves to different design compilers and methaods of encoding. Accommodation to the
tools and hardware can be equated to maenual synthesis, and results in customizations, which
is often disadvantageous. By and large, there will always remain a certain amount of designer

synthesis with its level dependent on the available tool suites and on the quality of final

implementation specified by the design constraints,

In addition to the above, it is viewed that further classifications reside in the design
and tool analysis; the fron! end, the design constraini specification capabilities, the synthesis
algorithms and heuristics, the layoul tools and their tool specific constraint inclusion ca-
pabilities, the available lechnology libraries for simulation and synthesis, and the testability
Jeatures., While we capture the FPGA Design flow in Figure 2.2, a technology specific design

flow shall be deseribed in Chapter 3, Section 3.2, Certain simulation phases are optional
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Figure 2.2: FPGA design flow chart for VIHDL design and imp.lcmcnl.a‘t.iml

such as the block which appears after the synthesis step. Decision {m(lcs are present in the
design flow indicating that a step was performed and requires a positive confirmation belore
procecding to the next step. Without confirmation re-conceptualization must he done. ‘I'wo
such tests are those for validation of correct functionality, and verification for correct timing
and acceptable area. The remaining steps involve design partitioning and mapping to logic
blocks, actual placement or selection of on chip blocks, and routing, collectively referred Lo
as PPR(Partition, Place and Route). The layout version includes more accurate delay values
permitting more precise validations of the implemented cirenit, As soon as the layout version
is acceptable, it can be transformed into a bit file specifically encoded for the technology

chosen, and then downloaded onto the programmable gate array.
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2.2.1 Synthesis Fundamentals

A taxonomy for design automation, the Y-chart, introduced by Gajski {38] consists of three
different domains: the behavioradd domain, Lhe stractural domain, and the physical domain.,
Each dowmain embodies numerous fevels from the transistor level Lo the system level de-
seription which manages iteins such as CPUs and memory elements. The altimate goal ol
design automation is to antomate the translormation ol a specification given at the highest
level of abstraction in the behavioral domain into a description at the lowest level in the
physical domain [38]. Software systems which provide this transformation are called sili-
con eampilers, Contingent to the level of design entry, & corresponding synthesis procedure
will be employed. Qur ultimate locus was on high-level synthesis where a behavioral de-
seription at the algorithmic level would serve as the starting point. In effect, encoding and
implementation began with higher level specifications but terminated with the inclusion of
register-transfer level synthesis where initial design descriptions were in terms of clements
snch as ALUs, registers, multiplexers, ete. VHDL, the choice for design entry is applicable

to all these levels of description.

Syuthesis embodies a diverse set of algorithms, many of which are NP hard. The purpose
of utilizing high level methods of desigh entry are manifold: the reduction of design effort
and design time, the creation of circuits which are correct the first time, correciness by
constriction, thus eliminating the need for thme consuming engincering changes and redesign.
Design specification and synthesis tools should be uniform so that VIDL sections which
are behaviorally described, structurally written or asynchronously encoded can be compiled
as o conglomerate with at most different algorithms heing applied automatically to their
synthesis.  Aside from the type and level of the systems description, constraints on the
design behavior weigh heavily in importance during the synthesis process. They serve to
guide the synthesis algorithins toward feasible realizations in terms of performance, costs,

testability, reliability, and other physical restrictions [38).

Controller VHDL synthesis issues and datapath synthesis algorithms are addressed in
[, [16], [38], [43], [40], and [48], to list a few. Interface behavior specification where
synchronization and handshaking, and inter-process timing issues were addressed through

“special™ VIIDL subsets, is discussed in {45] and [44] with a more thorough discussion of
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svnthesis algorithms found in [16]. "Uheir liest step generates a data low graph (DICG) and
a data structure for the control flow lor a cohereut intermediate representation on which
to perform the destgn transformation to realization.  Along similar lines, an algorithm for
the allecation ol funetional units from RT component libraries for the abstract operations
within a behavioral deseription is preseuted in [13]. The synthesis steps flow Trom LD inpnt
parsed to a CDFG, to an RT Data Flow Graply, and linally to the R stroctures sl instanti-
ations. Purther mention of a variety ol interface representations, and strategios for allocation
of libeary components and scheduling of operations are given comprelicusive narrations by
Gajski, Michel, and DeMicheli, in [38], [39], and [10] where they cover an extensive range of
synthesis algorithms, A common element with these algorithms is that they are well devel-
oped in theory, somelimes implemented, but their integration in conmereial FPGA synthesis
tools from a VIIDL entry point, is not readily advanced nor well-docamented. To exemplify
such a situation, Synopsys, a leading edge synthesis tool, cannot yet manipulate high levdd
behavioral descriptions, cannot guarantee functional timing with behavioral encoded process
statements, contains a strict VDL subset and still requires RTL level deseriptions including
planned register inferences and explicit elock circuitry encoding, I does however contain an
"SM Compiler™ 1o create highly optimized FSM structures and encodings, whereas no

snch design specilic tool exists for datapath/control type circuit implementations,

In an FPGA environment, an automatic desigh tool, will similarly transcend levels of
cireuit representations during its synthesis algorithms, the number of which depends on
the design entry format. Higher levels of input desceriptions abstract the nser from low
level FPGA component considerations, and produce correct®, but not so efficient cirenit
realizations. Low level synthesis, which requires FPGA block structure knowledge, can
process register transfer level blocks via algorithms in closer proximity to the hardware, and
will produce more efficient FPGA realizations, Regardless of the front end, the final ohjective
is to minimize the number of Logic Blocks {LBs) and 1/0 Blocks (10Bs) in the linal circuit

when cither area or timing constraints, or both, are under regard,

Descending the FPGA synthesis ladder, ultimately yields a technology mapping end-
point where the design deseription, which has been reduced to logic level equation formad, is

mapped to the arrays of equal blocks and special feature elements. Specifically, boolean logic

%as per vendor/designer measure and criteria, not as per verification
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equations are transformed inta programmed logie blocks, A munber of such LUT technology
mappers exist including: Chortle [26], mis-pga [27]. [28]. Asly, Hydra, Xmap, and VISMAP,
Al of these map a Boolean network into a cirenit of K-tnput LUTs, attempting to minimize
either the total number of LUTSs or the number of levels of LUTs in the linal circuit, Re-
conl. work by Murgai, [29], has included mention of FPGA mapping of sequential circuits.
Two approaches are discussed: (i) mapping combinational logic and {lip-llops together or
(i) mapping combinational logic and (lip-flops separately. Ascending the synthesis ladder
towards higher levels of design entry demands additional algorithms and better strategies at

oach lovel to produce a Tavorable FPGA implementation.

2.2.2 Controller Synthesis Techniques

As i precedent, control systems have often been implemented on various computing engine
hased machines such as microcontrollers/microprocessors, transputers, and larger computing
systems. Soltware was written, compiled and then executed and tested on the hardware. Al-
gorithmic modifications inducing implementation alterations could be performed casily and
repeatedly. The lack of speed and the difficulty with ensuring testability and reliability arc
two disadvantages which accompany this approach. Room for performance enhancements
always exists, and correct operation was often assured through multiplicity of microproces-
sor and its associated RAM. ASIC implementation offers a hardware solution and increased
exceution speeds but lack in the ecase of design alterations, improvements, and upgrades.
FPGAs, on the other hand, present a favorable alternative in offering both the speed of
hardware and the re-programmability of software. Much has been written about software
approaches to controller applications [2], and many sofltware packages exist to simulate con-
troller type applications. Performance can be measured, operation can be tested in-system,
but testability and reliability are difficult to build into a single processor. Qur aim was to
approach controller applications from a hardware viewpoint, analyze the feasibility of de-
sign refinement and performance attainment, and introduce a form of concurrent testability

cmploying FPGAs as the hardware solution for circuit materialization.

Rao and Kurdahi [47] proposed a synthesis method which exploits inherent characteristics
of a particular class of VLSI systems, to build efficient models or abstractions which simplify

the synthesis process. Modeling or abstracting the problem dowmain is unlike alternative tech-
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niques which concentrate on the development of complicated heuristics for decision making
in the various synthesis stages. We suggest analogous modeling at the design entry stape,
such that additional effort is spent with design specification and entry, and present a case
stiudy to support our proposals and excmplily the extraction of common leatures and design
stages in the desigh process ol a class of applications, We define elass reqularity crtraction
as the exception ol templates to serve as library elements, synthesis and design How steps, or
aggregated design constructs for applications which exhibit particular mniformity and com-
parableness. This tnherent regnlarity in description and in design methodology should be

exploited in FPGA synthesis to [urnish better implementations and reduce design time.

2.3 FPGAs: Technology of the Times

An engineering approach in research demands implementation in addition to pure research.
One known implementation of and ABS controller was by BOSCII [9] where o microcontroller
was used in conjunction with some RAM, supporting a datapath, and this precision of
10 bits of data. In our case, the technology of the times encnmbers FPGAs, VDL and
commercially available synthesis and layout tools. Constanl evolution of the tools must
follow the architectural changes for them to remain useful. One of the intents of this thesis
is to recommend some refinements to the tools, It is also accepted that at publishing date,
wany of the suggestions may already he implemented, newer hardware structures will exist

and new tool versions will be released.

FPGAs are changing the world of ASIC design by providing fast tarnaround and negligi-
ble non-recurring enginecering costs. But they suffer from lower logic density and speed com-
pared to Masked Programmable Gate Arrays (MPGAs) because the programmable switches
nsed for logic configuration and routing take up more space and produce higher resistances

and capacitances than metal wires.

At present, FPGAs have emerged as the prevailing solution to the traditional time-
to-market and risk problems in the clectronics industry, because they pmviddimnu_-diin.u
manufacturing and very low-cost prototypes. The final structure can be directly conligured
by the end user without the need for IC fabrication facilitics. FPGAs combine the user

programmability of a Programmable Logic Device (PLD) and the scalable and flexible inter-
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connection structure of an MPGAL These atiributes complement the design environment, by
allowing on-site implementation and immediate testing in either a workbench test-jig or the
destination emheddod systeny. Synthesis tools can accommodate design changes for explo-
ration ol alternatives rather quickly so that altered cirenits can be downloaded in minutes,

and minltiple implementations can be tested without any additional hardware costs.

Similar to ASICs, FPGAs can be used for some higher density circuit needs such as:
random logic, glue logic, interface units, embedded controller systems ol varying levels of
granularity, small to medium sized computing machines, and flor decoder or sequencer logic,

10 list . fow,

2.3.1 TFPGA Classification and Architectures

An FPGA consists of an array of uncommitied elements that can be interconnected in a
general way. Bach vendor assumes a proprietary name for their two-dimensional array com-
ponents, but they all possess similar features: they contain a programmable routing struc-
ture, they implement multi-level logic, and they are user-programinable, which characterizes
them as FPGAs. Logie circuits are designed and realized onto FPGAs by partitioning the
logic into individual logic blocks and then interconnecting the blocks through a network of
switches and muoliiplexers. The structure and configuration mechanism of the logic blocks

and the interconncetion resources vary greatly amongst the individual modern day vendors
of FPGAs.

FPGA Taxonomies

Four major architecture classifications exist for FPGAs. They are: (i) symmetrical array,
(i} row-based, (iil) hierarchical PLD, and (iv) sea-of-gates [21]. FPGAs can additionally
be grouped according to their granularity and programmability. Commonly used structural
classifications are: (i) minute-grained such as those with transistor-level programmability,
(ii)(a) fine-grained: LUT based, (ii)(b) fine-grained: MUX based, (iii) coarse-grained: Logic
Block Based (LUT AND MUX) with higher logic densities, and (iv) large-grained: PLD

Based FPGAs. FPGA families of the above types can be found from respective commercial
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vendors such as: (i) Crosspoint Solutions, (it) Nilinx INc.. Quick Logie, Actel fne., Conenr-

rent Logic. (1i1}Xilinx Inc.. and (iv) Altera.

Fine-grained PPGA architectures have a large nnmber of small logic cells. Due 1o the
higher density of these logic cells on one chip. larger routing channels are uecessary o handle
a massive amount of inter-cell connections. Consequently, a higher percentage of the total
arca is conswined by routing lines than with a large-grained architeeture,  Large-grained
FPGAs architectures have a smaller number of logie blocks and thus have a less dense and
more manageable routing channels per chip. Consider the infamouns design tradeolls: for
each advantage created, a disadvantage of some sort will result, The above archileetures
are not optimal since a lixed large grain structure cannot be fully utilized by the mapping
soltware. The more strict/complicated a design, the less ease Tor full utilization of the block,

but the [ess need for routing resources and cluttering of interconnection resorces.

Floorplans and routing interconnections

Numerons floorplan types exist for the layout of the logic blocks, the 1/O Mocks, the extra
features and the interconnection networks. Some specific features of some major FPGA
manufacturers are shown in Figure 2.3. Both horizontal and vertical, as well as hierarchi-
cal routing facilities exist, and vary amongst vendors. Logic blocks can contain say simple
2-input NAND gates, some are complex, and contain multiplexer, LUT or PLA type strue-
tures, and most contain flip-flop elements Lo aid in the implementation of sequentiad design,
The diversity amongst a collection of logic block configurations is iltnstrated in Figure 2.4,
Repeated logic blocks of type (a), (¢), (e), and () fit into the numerous floorplan varieties,
Larger blocks of type (b) and (d) contain smaller blocks and are characterized by hierar-
chical routing networks such as those in figures 2.3(e) and (h). Located near the periphery
and connecting to the routing network are 1/0 blocks. Varying their internal structures
and contents, they can be analogously diverse amongst the numerous FPGA vendors. Their
uniqueness arises from the individual bidirectional, register, slew rate, boundary .L:'L:'n.n, and
tristate capabilities of the blocks. Additional detatls can be found in the corresponding
FPGA data books. '

The routing architecture of an FPGA, encompassing both the structure and conteni of
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Figure 2.3: Floorplans and Interconnects: (a) Xilinx’s Double-Length Lines, (b) Xilinx’s
Adjacent Single-Length Lines, (c) Actel’s Generalized Floor Plan of ACT 3 Device, (d)
Atmel’s Cell-to-Cell and Bus-to-Bus Connections, {(e¢) AT&T’s Interquad Routing, (f)
Motorola’s MPA1036, (g) AT&T’s Single PLC View of Inter-PLC R-Nodes and (h)
Altera’s FLEX 8000 Device Interconnect Resources
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Figure 2.4: FPGA Logic block architectures: (a) Xilinx’x XCA000 Configurable Logic
Block, (b) AT&T’s Simplified FPU Diagram, (¢) Actel’s S-Module & C-Module Diagram
. (top), Motorola’s Core celi (bottom) (d) Altera’s Logic Array Block (LAB), (¢) Altera’s
FLEX 8000 Logic Element {LE) and (f) Atmel’s Cell Structure
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the interconuection, incorpotiates both the wire segments and the programmable switches.
Comnercially available programmable switehes curcently in use fail into the following forms:
(i} static RAAL colls, (1) anti-Mises, (iii) EPROM vransistors, and (iv) EEPROM trausistors.
Fach shares comymon property two-stale conligurability: on and off. In (i). programmable
conpeclions are made using pass-Lransistors, transmission gates, or multiplexors which are
controlled by SRAM cells. These types of FPGAs nmst be configured on power-up and
exhibit o volatile programming technology.  As a consequence, some kind ol permanent
storage moechanism must exist in the system to charge up the RAM cells. Compared to
other techniques, the chip area required by the SRAM approach is relatively large. On
the other hand, here is an FPGA which can be re-conlignred in circuit very quickly. In
(i1). the anti-fuse normally resides in a high-impedance state but can be fused into a low-
impedance state when programmed by a high-voltage. Less area is occupied but these
are only one-time programnable and require larger current and voltage driving cireuits to
program them. Both (iit) and (iv) exhibit programmable capabilities with {iv) oflering in-

circnuit re-programmability.

Xilinx Architecture

Nilinx FPGAs, our chosen medium for implementation, also known as Logic Cell Arrays
(LCAs), consist of an interior matrix of logic blocks and a surronnding ring of /0 interface
hlocks. Interconneet resources occupy the channels between the rows and columns of logic
blocks and between the logic blocks and the 1/O blocks. The core of the LCA device is a
matrix of identical configurable logic blocks (CLBs). Each CLB contains programmable com-
binational logic and storage registers, permitting the implementation of both combinational
logic and sequential logic. The combinational section of the block is capable of implementing
any Boolean lunction of its input variables, explainable in terms of its LUT-filled structure.
Three Tunction generators, several multiplexors, two {lip-flops with clock enable circuitry
and asynchronous set/reset capabilities, and carry logic for fast arithmetic operations are
all housed in the CLBs as can be seen in Figure 2.4{a). Interconnect network containing
neighboring, short, and long (global) routing capabilities are illustrated in Figures 2.3(a) and
(1), The functions of the LCA configurable logic blocks, and 1/0 blocks, and their intercon-

nections are defined by a configuration program stored in a on-chip memory, which must be
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loaded on power-up. LCA performance is determined by the logie speed, storage elemeats,
and progratumable interconneets. These theee features are commonly used to characterize

the individual FPGA types,

2.3.2 FPGA Propitious Technology-specific Features

FPGA architectures are tailored for synchronous applications. with their clock distribution
networks and multiplicity of registers. In most FPGAs, dedicated global networks distribute
low-skew clocks and control signals throughout the areay.  Many data path applications
require multiple clocks. so multiple global networks often arve provided Lo distribe multiple
clocks without consuming other routing resources or introducing clock skew. Additionally,
with register rich capabilities in FPGAs, 1-hot encoding® would scem to, and did in et

produce very efficient I"SM realizations for the controller example.

Similarly, global set and reset nets usually are provided 1o easily foree all registers into a
known starting state. FPGA logic blocks typically include a (lip-flop and some combinational
logic. This provides lor fast and convenient registering of logie siguals. Many 'PGAs also
include dedicated clock-enable inputs for the lip-fops in the logic colls. These dedicaled
cnable signals permit clock control withoutl constuming valuable logic or routing resonrees or
introducing additional delay into the cirenit. Clock polarity controls in these deviees allow
registers to be independently configured to trigger on the rising or falling edges of the clock,

again without consuming other logic resources.

Weighing the above, suceess in the domain of FPGA synthesis requires clover modeling of
the eleinents. Two domains of hurdles classified in [47] were applied to FPGAs materializing
to: (i) the incorporation of realistic physical design details into the synthesis process most,
particularly routing delays and LB structure, and (i) the ability 1o conquer the complexity
of the synthesis problem itself, often resulting in heuristic technigues producing suboptimal

solutions or exhaustive search techniques which are expensive and time consuming.

10ne register or fip-flop is dedicated to a single state of a finile state machine, o terms of encoding, this
method is the least register efficient, however the logic delermining state transitions is often simplified.
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2.3.3 Delay Modeling and Estimation

A liming madel, presents a methodology Lo calculate propagation delays from inputs to out-
puts, of single logic blocks, aggregates of blocks, and clusters of aggregates in the respective
FPCGAs, Fxact or near exact, timing values cannot be generated without post-layout back-
annotation. However, conservative estimates can be c:x.lcuIa.@cl given the regular structure
and configurability of the ¥PGAs. With modular library support systems, vendor-specific
Liming models can be included. Be it synthesis tool or FPGA vendor who designs them,
concerted efforts are vital as is highlighted in Chapter 5, where one caters to algorithms and
database management and specification while the latter knows the hardware. Combining
the two js useful to accurately model the time delays, connectivity, and density of all the
huilding blocks in order to calculated the final, overall time delays resulting from and due
to the programmable nature of the FPGA. Development of these models is a rescarch topic

of its own.

FPGAs operate at circuit speeds where a complete operation, including data set-up and
computation times, can be executed in one clock cycle, unlike with microprocessors where an
operation traditionally takes several clock cycles of assembler generated code. Hence, FPGAs
compitte much faster than pure software functions but wiring and logic delays make them
slower than equivalent masked gate arrays, or ASICs. However, timing is quite predictable
due to the fixed hardware so that a conservative estimates can be made, simulated and
ultimately reflected in the resulting circuitry. feveral models exist {or measuring the delay of
a cirenit, each of which is heavily dependent on blocks affiliated with the FPGA architecture.
Singh et all, [32], suggest the speed of a circuit implemented in an FPGA with given logic
block structures is a function of the combinational delay of the Logic block, the number of
logic blocks in the critical path, and the delay incurred in the routing between logic blocks. A
reasonable assumption where each stage of block incurs one logic block delay and one routing
delay, [21], vesults in a total delay of Dror = Ny, x (Drg + Dp). The number of levels of
logic blocks Ny, can be determined for each circuit after the technology mapping step, the
logic block delays (D) are readily available since the chip is already fabricated, but the
routing delays (Dg) are more difficult to estimate. It depends on routing architecture, fanout

(capacitive loads), length of connections which are determined by the placement and routing
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of the circuit. the process technology. and the programming technology. The Xiling FPGA

is one example belitting such timing predictions and analyses.

Alternatively, [30] and [16} ofler timing models based on stricter routing structures, the
former on the row-based architecture ol Actel, and the latter on the hierarchical LA fermat
of Altera. It is claimed in [16] that device-wide routing provides predictable performance
even in complex designs, while segmented routing requires switeh matrices to connect a
ariable number of routing paths, increasing the delays between logic resources and veducing
performance. Longer routing delays with respective RC time constants versus switeh delays
is one trade-off to consider. Other models, [18], [33], and [21] locus on the diverse logic block
architecture types and sizes. Each method of delay measurement seems to model the logic
blocks and interconnect capabilities very well and leads to a high level of confidence in the
resulting timing analyses from simulations and synthesis, yet is not a determining factor in

the selection of the FPCGA type for implementation.

2.3.4 Technology Considerations

Space limitations and performance demands require integrated circuil technology such as
ASIC and FPGA. Due to its many advantages, FPGAs are excellent for rapid-prototyping
and serve as a logical starting point. lHence the goal of the case study materialized to
initially realizing controllers with asynchronous features onto progranimable hardware while
reserving the option to migrate to the denser ASICs. Real-time constraints would still have
to be satisfied while maintaining the above flexibility. Depending on the technology and
the manufacturing process, the gate logic and routing delays will vary across ASIC-ASIC
boundaries, and FPGA-FPGA boundaries as scen above. Furthermore, cireuit timings across

different implementation technologies, FPGA-ASIC, will differ even more so.

Although circuit timing analyzed with FPGA simulators and synthesis tools will most
often predict acceptable results to proceed with their programming, the corresponding timing
and responses with ASIC technology cannot be guaranteed. Functional validation is equitable
but timing analyses are not comparable. While certain elements are predictable in FPGAs,
some such as parasitic capacitances, resistances, interconnect detays and loading in ASICs are

not. Worst case delays can be given for FPGAs, however the same is not necessarily true with
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ASICS. llence if ASICs are the final implementation, circuit timing from FPGA simulations
are not accurate enough and re-simulation of the entire circuit is needed. In fact, post layout
characteristic values will be needed for the back annotation and re-simulation. Even though
the circuit will most likely be faster, the relative timing is no longer similar and functionality
can fail. Nonetheless, an alternative exists but it bears drawbacks. Predictability can be
achieved 1o a certain degree if the circuit is completely synchronous. Such circuits are
more casily transferable, process and technology-wise, than asynchronous circuits. Given
the nature of the FPGA architecture, much of the asynchronous elements will have to be
synchronized to ensure correct functionality and predictable behavior should ASIC migration

he a potential route in the implementation phase.

2.4 VHDL for Design Entry

For high-density FPGA designs, gate-level entry tools often are cumbersome, and the use
. of logic, RTL, or high-level synthesis and high level description languages (HDLs), such
as VIIDL or Verilog, can raise designer productivity [54). Simulation of HDL descriptions
can test alternative decisions carly in the design cycle and can hence refine specification.
Additionally, with design changes facilitated, more extensive experimentation and trade-off
exploration in the architectural design are permitted. Elements which deserve attention

while reviewing VDL synthesis issues are:

¢ The synthesizable subset

¢ Behavioral versus structural encoding advantages
¢ l'ime o market versus design specifications

¢ Area versus timing tradeoffs

. l[owl to dﬁsign with VHDL for controller applications, (hints for good syntax dependent
synthesis

¢ Limitations/capabilities of VHDL language, synthesis and layout tools.

VHDL was chosen for design entry due to its ability to accept hierarchical design input
specifications, and capture designs at various levels of abstraction permitting both behavioral

. and structural specifications. These can be expressed through sequential and concurrent
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statements, respectively. Encoding can be algorithmie {behavioral) or it ¢an be structural
(register level and schematic like, with component instantiations). In addition. VIIDL can
adequately model concurrently executing processes, a necessary leature lor reliability checks
and for hardware descriptions where line- and coarse-grain parallelisin exist and must be

realized expressly.

Processes were employed wherever possible as they are a natural starting point of Ligh-
level synthesis. They are deseribed with sequential statements and tmpress higher levels
ol design entry. Blocks contain concurrent statements and impress lower structured levels
of design entry. As with any textual design description, certain encodings produce more
optimal implementations. Well written VHDL code for simulation, may not be so uselul lor
synthesis. The pros and cons of low and high level VHDL, which effectively translates to the
calling of low and high level synthesis procedures, respectively, must be weighed. Synthoesis
of structural descriptions is less ambiguous, more predictable and hence less tinme consuming,
algorithmically speaking, Behavioral descriptions are less predictable, not as efficient, huot

portable across technologies, often more readable, and casier for the designer to eneode.

2.5 Evaluation of Synthesis Quality

Benchmarking, quantifying the area utilization and runtime of blocks, aggregate biocks and
systems through simulation or execution, circuits for performance measures is a classical way
to compare hardware. Design methodologies are not so casy to evaluate and their utilization
on different technologies is further difficult to gauge and equate. One of the first analysis
of design methodologies known to date, appeared in 1983 under Obrebska [12]. Several
methodologies were presented and compared in the design of control parts of microprocessors
where layout quality and facilitation of the designers’ tasks ranked in importance. The
term “synthesis” scarcely existed yet the underlying requirements, goals and theories were
present. Design methodologies were weighted on efficiency in Lerms of hardware cost, which
was defined as a function of the total area, design time, and performance. Design time was
estimated based on the percentage of structures which conld be generated automatically like

ROMs or PLAs, and was labeled percentage regularity factor. Today synthesis tools must



CHAPTER 2. CONTROLLER AMPLEMENTATION FUNDAMENTALS 31

hivedle ntany more strucltures and work at regularity factors of close to 100% since otherwise

Lhe doesipn’s implementation would not be antomatically generated,
B ] Y E

Another dillicully Tor achieving equitable comparisons arises from the diverse nature of
FPCGA technology, Currently it is viewed that, to ellectively compare technologies is Lo syu-
Lhesize the same top level design specification, resorting to generic modeling if necessary, with
Lhe dilferent synthesis tools. Though the FPGA architectures and synthesis algorithims will
be signilicantly diverse, no customizations should he allowed to better the results. However,
the ideal and desired approach of linding a commeon VHDIL, subset may prove impossible and
its inclusions may be somewhat biased. Technology specific features will only be utilized
il the vendor specifie synthesis algorithms can realize them from the VHDL starting point.
A disadvantage rom a tool developer’s viewpoint®, huy an appreciable advantage from a
designor’s perspective arise. In fact, a current set of FPGA qualifiers, the PREPTM bench-
marks attempt to measure the utilization and implementation of a list of specified circuits,
Illowever, the cirenits were realized by the vendors themselves exploiting their features to
the Tullest not necessarily using their synthesis algorithms and VHDL encoding, precluding
the original intent of unbiased implementation comparisons, leaving their worth somewhat
prejudiced and questionable. If, on the other hand, a generic VIDL description was used
and synthesized on the individual architectures, comparisons of the realizations would be

informative. However, this is once more challenged, as some of the customized features will

not. he exploited due 1o VDL encoding limitations or vendor tool status.

2.6 Testability Measures

OIF the shelf, programmable FPGAs preclude designing tests for manufacturing faults, in
their design and field environments®, fundamental in ASICs and full custom chips, yot admit
the need for tests for field reliability, A subset of criteria for evaluation of the quality of

testability includes some of the following: the area overhead and the performance degradation

*Ihey will be forced to develap tools exploiting their proprictary features while catering to some generic
platform which will likely be ill-specified in their cyes eliminating the ease of adding “patches™ which are
common for customizing sofltware

SFPGA die manufacturing, logic and interconnects are tested by the manufacturing when the wafers are
created
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incurred by extra cirenitry, the fraction of fanlts/functionality tested /eovered by the eirenitey,
and the design time lor its implementation.  Additionally, the time required to apply the
tests, the applicability to a general elass of systems, and the technological independence all

contribute to the merits of a testable design. Seetion 3.0 furnishes additional detaits,



Chapter 3

Controller and FPGA Design
Considerations

The constantly evolving design characteristics and system variables, and the need for in-
system {embedded) testing provides justification for the design of a controller application
onto FPGA technology. The availability of fast prototyping and programmable capabili-
ties of FPGA technology offer a Tavorable dyad, VHDL design specifications as opposed
to schematic entry implicate higher level synthesis techniques where the implementation
feasibility can be determined. This study is likely to open up a high level of automated
design methodology for safely critical applications with real-time constraints. In this chap-
ter design considerations, in context of VIIDL for design entry and FPGA technology for
implementation, are claborated upon. The generic design flow diagram of Chapter 2 has

heen instantiated to a Xilinx FPGA design flow.

3.1 Requirements for Optimal Controller Design

FPGA realization of controller type applications is driven by several objectives, Many are
qualified as engineering issues and must therefore be solved or concluded upon alter the

rescarch and experimentation. A wish-list follows:

¢ Rapid prototyping feasibility - casily alterable designs and embedded testing.

33
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¢ Real-time validations - can the hardware respond 1o input events, explicitly, to the
[astest rate of change ol the input vadues, which itself is highly system and application
specilic,

¢ Paramcter programmable - easily adaptable to parimetrie alterations and changing
system variables,

o Ield upgradeable - can the implementation be altered inits embedded system withont
having to install a new compounent or revert to & new manulacturing product.

e Lirror correcting, fault tolerant.

o Sclf-testing.

o Compact, time efficient.

¢ Error detection, system shutdown eapability

¢ Salety - both from reliability and human safoty viewpoints.

In addition to the above set of goals, their evaluation eriteria deserve attention. Sev-
. cral merits of CAD tool usage for design and implementation on FPGA technology can he

measured by their ability to excel in some, or all, of the following evaluation eriteria:

¢ Exploitation of technology (the different. FPGA architectures, logic blocks)
¢ Rapid prototyping facilities (imperative for implemeniation finc-tuning)

¢ Arca versus liming tradeoffs

¢ Designer synthesis versus tool synthesis tradeolfs

¢ Tool capabilitics from a real-time implementation perspective

— input sample rates: sufficiently high
- calenlations: sufliciently fast
— output results: adequate response times dependent on Lhe application.

— safety criticality of the controller system.

3.2 FPGA Design Flow

Precluding final implementation and focusing on a prototype implementation where the

I technology is known, the generic design flow as depicted in Figure 2.2 can be customized
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to Lthe Xiling design llow as i Figure 3.1, Commencing with a VHDL description, the
synthesis platform followed initially produced a list of generic FPGA CLBs and I0Bs, taking
some design constraints into consideration. These were siubsequently translated to logically
equivalent primitive combinational, sequential, and tristate gates from Synopsys’ deflined
version of a Xilinx FPGA technology specific library., The resulting netlist, in “.xnf™ format!
was then used by FPGA vendor’s (Xilinx') Placement, Partition and Route (PPR) Tools
for an XCA010 implementation. Consequently, it was determined that the Synopsys-XACT
layout was not a direct technology driven path, as the “.xnf” files were created. Hence, FPGA
CLDB clustering and implementation before the replace_fpga command, will not necessarily
be preserved. A transformation to logic gates after FPGA synthesis, where CLB and 10B
programiming were previously created, was required, distancing the router from clustering

2

and input design constraints, Fortunately though, some hard macros® were and can be

passed in the “.xnf file” format,

3.3 VHDL Constructs

Wiih an appetite to substantiate higher levels of design entry, the VHDL process and its
corresponding sequential statements were used wherever possible in the description of the
coutroller. Similar research by Gutberlet and Rosenstiel, [44], involving high level synthesis
and algorithmic specifications also advocates process statement utilization. The resulting
target system architecture is then composed of interacting hardware processes in which com-
munication is achieved using signals connecting the control units and the data paths. For
purely synchronous designs, this communication can be embedded within the process de-
scription where the user can explicitly describe the communication using standard VHDL
construets which force events (read, write, calculate, set, reset) on correct clock cycles. When
communicating processes arc not synchronous, a specific set of protocols to achieve synchro-
nization of the interacting designs is needed. There are two basic methods for achieving this
synchronization: shared medium and message passing [38]. In VHDL the former becomes

interconnections between processes via straight port descriptions, In the latter, primitives

"this .xnf netlist file does not support CLBs and 10Bs but rather includes a small subset of primitive
gates, and some hard macros, ADSULG and ADSUS,
“Vendor specific blocks with specific functionality and predictable CLB utilization and some routing .
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Figure 3.1: Design flow for VHDL design and implementation using Xilinx FPGAs

)

arc used to describe and control Lhe synchronization between communicating processes,

A subset of preferable and reusable VHDI encoding styles for inter-process communica-
tion are included below. Their syntactic form is beneficial for FPGA types which exhibit
built-in clock enable circuitry. A typical VIIDIL coutrol for excention of a functional block

follows:

process:
wait until (enable=’1');
initialize some signals;
initialize some variables;
may or may not want to synchronize to a signal;
do work, calculations;
(re)assign signals;
(re)assign variables;
eud process;

A typical situation where onc process exhibits control over another process is demon-
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strated by the VHDL code below. Qune process can be master over an other, using wait

staloments,

process;

initialize some signals; initialize some variables;
do work:
set slave_cntrl_job_enable;
vait slave_cntrl_job_complete;
do work:
(re)assign signals; (re)assign variables;
end process;

A typical handshaking example between processes, cach of which drives the intercomnu-
nication signals, is outlined for a general case. Customization is straightforward and merely

follows stit.,

process;

sat resource _request;

wvait for resource_ack;

use resource;

reset resource_requests; -— release resource

wait for resource_ack_off;

(or wait for a clock event to synchronize this process;)

end process;

Care must be taken when employing the above VHDL construct so as to avoid an ac-
cidental and unwanted deacdlock situation, where two processes reach a point in time where
they nst wait for cach other. Additionally, aside from handshaking, the WAIT statement
san aid in the creation of a control flow for the design. Averages can be calculated over many
clock cycles easily with the WAIT statement. Additionally, time or event durations can be

synthesized with multiple, consecutive uses of a wait statement.

3.4 The Testable Design

One purpose of integrated cireuit testing is to reject those parts that do not function due to

imperfections in the manufacturing process. Since SRAM FPGA programming is reversible®,

Jrepetitive options to load both 0 and 1 into cach memory cell permitting circuit modifications
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the FPGA can and should be tested at the lactory 1o ensure that it is correet regardless of
the programming pattern. Therelore the part does nol require testing part (in the usual
1C terminology) for cach design implemented on it the factory testing guarantees that the
part will work regardless of the programming. This property still holds rogardloss of the size

of the FPGA. In Tact. most Xilinx, Altera. Atmel. Aetel, ete. elaim 100% Fault coverage,

Another aspect of testing deals with reliability, sccurity, and the circuit’s reaction (o
error detection. [t is almost impossible not Lo have faults somewhere in o system, be it
in the controller itself or in the surrounding elements, al any given time. A fndamental
problem in estimating reliability is whether a system will funetion in a preseribed manner in
a given environment for a given period of time [5]. There are many solutions o ault-tolerant,
and detection circnits. One solution would be to duplicate the cirenit, add in comparative
cirenitry and busing for the interconnections and arrive at a sell-cheeking civenit. with wmore
than 110% overhead. An alternative proposed in this thesis, is to imploment a partial sofution

employing a self-testing value injection circuit deseribed in Chapter -1, Section L.,

A remaining area for testing arises when design complexities intensify boyond single
components to boards, sets of boards and systems. lnterconnects, routing, timing, drive
capabilitics, and short circuits can lead to Fulty operation even if Lhe 1Cs themselves are
fault free. In addition to the testability concerus for hierarchical system designs such as
these, particular time-sequential testability concerns surface with PGAs, Consider the na-
ture of programmable devices wher it comes to board tests. ‘Their logic is changeable and
preparation of tests for such components must be delayed for the duration of these changes.
Confusion and diagnostic difficulties cansed by board fanlts can arise from the time the hoard

is powered up, to the time the progranmmable chip has settled.

A partial solution with a Joint Test Action Group (JTAG) Boundary-Scan Test (BST)
architecture’ can be applicd to one case, but providing testability over time intervals is not
straightforward. When it comes to testing these field programmable clements, two device
types exist: {i) those that have no pre-defined logic and (ii) those that have a small amount

of logic built in, and certain 1/0Q pins assigned, and three methodologies exist: (i) inclusion

*Which allows the isalation of a device’s internal circuitry from its [/O cirenitey with the intent Lhat JTAG
boundary-scan testing can offer the capability 10 efficiently test components on circuit boards with tight lead
spacing,
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of JTAG BS features, (ii) no inclusion and (iil) power-up inclusion with no-inclusion during
operation. There are advantages/disadvantages in cach type. Those that have no pre-defined
logic, can always be progrannned 1o include boundary scan logic. but then, not all logic
eolls will be Tree to implentent the intended design for the 1C. Otherwise the FPGA can be
programmed twice with JTAG features loaded fivst and the 1C design implementation loaded
during operation offering no subsequent testability options unless power down. lowever,
added cireuitry, control and memory to support two FPGA programming is required and
the secondary progranmumation of the chip is not tested. On the other hand, a hard-coded,
houndary scan logic in a small arca of the chip, and in the I/O blocks, can reduce the area
taken for BS and thus offers more logic blocks for the intended circuit., But some FPGA

area is removed resulting in fewer overall gates per dic.

Some FPGAs offer built in hardware [20], [16], others don’t but provide application notes
ot JTAG implementation indicating that the cost of the added circuitry is not justifiable as
Lheir resources become depleted and the performance degradation is not worth the JTAG
itmplementation. Xilinx’s XC4005, contains a hard-coded boundary-scan facility. It contains
a hard-coded 1149.1 shell comprising of a TAP, an “Instruction Register” and a “Bypass
Register” superimposed on the IC infrastructure. What remains to be added is the “Bound-
ary Register™ itsell, which is made part of the 1/0 blocks. The idea is to have a resulting
configuration which is that of a 1149.1 compliant compouent. In addition to Xilinx, both
Altera and Crosspoinl carry support in their latest programmable devices, for the JTAG

houndary test scan standard.

3.4.1 Fault-Detecting and Fault-Tolerant Designs

There exist many techniques to construct fault-tolerant and fault-detecting systems, a lew

are listed below: .

o triple modular redundancy (‘TMR) with three of the same modules where the result can
be an average of all three or it can be the majority value (2 out of 3).

o Nemodule redundancy (NMR), a generalization of the TRM for N-modules..
o duplex system, where a single back up unit exists and their results are compared.

s biduplex system, a double duplex system where two sets of two operation results are
compared and four modules are required.
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Of those. individual customizations are possible. A mismateh at an output stage can
trigger an error flag which may shut the entire system down or just the faulty module, In
the case ol only two modules. the Faulty unit must first be determined. A back-up system
may or may not then resume system operation. Two main types of faults exist: permanent
and intermittent. Intermittent faults can be corrected with a TMR system where the system
response assnmes majority result. Permauent Giulis must shut the system down or resort o

a backup unit.

Vital to coutroller systems is inclusion of such circuitry which is failure lolerant. An
error of any kind must be detected, and the system must respand accordingly so Lhat Tur-
ther mallunctions do not occur producing hazardous cousequences. Faunlts (which al their
lowest level can be modeled as stuek-af-0 and stuck-al-1} mast either be compensated or
cffect system shut-down. As with all testable systems, this also applies to the logic which
performs the system functionality. In the ABS, a dupler system is employed without the
added overhead of module duplicity. The approach taken was to exploit integrated cireuit
speed of operation and perform comparisons at different time intervals in lieu of simultane-
ous output matching. Hardware time-sharing and added control and sto rage logic Lo test
the functionality with previously stored values was incorporated into the specification for
the ABS design. Fault detection became available, however its tolerance would he limitoed
1o a certain error margin resulting from the caleulations themselves. As a result, if the error
was large enough, the system would shut itself down and request maintenance. The option
of a back up unit does exist, yet was not implemented due to the original specification of
FFPGA resource limilations (a restriction as limited by Lhis case study and not by the ABS

embedded environment, information of which was not known).

3.4.2 Test Circuitry Evaluation Criteria

Just as the design, the methodologies, and the performance undergo judgment, the merits of
test circuitry can be evaluated by consideration of the following eriteria. This list enumeratos
a possible set of parameters which can be used to evaluate the overall quality of a given built-

in self-testing, self-diagnosing circuit design,

e Aroa overhead incurred by the extra circuitry.

¢ [Lffect of extra circuitry on performance of the original circuit.
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o Litne required to apply tests and perform the diagnosis,

o Engineer’s design time required to implement self-test overhead.

o The [raction of [auits located by built-in self-diagnosis

o T'he self-testability of extra cirenitry which performs the sell diagnosis
o "T'he flexibility of design with respect to the lollowing issues:

— Independence of the fabrication technology used
- .!\h'i[it._v to accommodate to new and different fault types as the technology evolves
HEH

- z\pplu ability with minor changes to dillerent types of FPGAs such as those which
are PLA, nand, or mux hased,

Length of the testing sequence and the fault coverage.

The test sequence length determines the time required to test the actual deviee, Fault
coverage is delined as the percentage of all faults detected given that the faults could exist,

by the vectors in the test sequence.

3.5 Design Procedures

Kuowledge of the design process was acquired by sclecting a specific controller example and
progressing through the steps from design specification to implementation. The vature of
an engineering control-design problem can be split into seven stages according to Houpis
and Lamont [2]. The steps originally referred to a software solution but can be applied for
hardware solutions. Four have been assimilated here for their direct applicability while the
third clement in the list was appended for its benefit towards hardware implementation. The

last two aseribe particularly to the work which produced several of the design methodologies

covered in subsequent chapters.

1. Establish a sct of performance specifications relating system input to output based
upon given criteria (tracking response, sensitivity to system variations/uncertainties,
ote,).

2. Generate a lincar model that describes the basic or original physical system.

3. Exploit available Computer Aided System 'I'echnology (CAST), to help formulate the
implementation specifications,

1. Simulate the overall control system, iterating the design until perforinance specifica-
tions are achieved.
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-~

5. Enulate, rest. and flerate the implemented design. Technical knowledge ol contem-
porary digital hardware and software architectures has eritical inflluence on vost and
real-1itme operation,

FPGA technology is very well adapted to step 5, and our control problem can be sum-
marized to that ol designing the system to obtain the desired perlormance, T'he synthesis
approach embodies an iterative design procedure.  lnitial attempts permit the tools from
Synopsis. to perform the synthesis for hardware realization and conlorm within Uheir own
limitations to the original specifications. Subsequent iterations requive the design engineer to
become more involved using known or learned synthesis stralegios. Ultimately the delinition
ol levels of design specification in VHDL which can be emplayed for controlier system type
applications, while conforming to and satislying the design coustraints, is the goal. Specil-
ically, what is, or what can be defined, as a synthesizable set of VHDL flor an exteraally
asynchronous, internally synchronous coutroller desigu. At a low level this translates to efli-
cient specilication, design partition, synthesis, and implementation of controller constituents

such as FSM, data path or random (control) logic onto FPGA technology.



Chapter 4

The ABS Control Model

Our evolutionary understanding of control synthesis arose from the analysis of two experi-
mental applications, A telephone answering machine controller and an ABS controtler were
specified, designed and stmulated in VIIDL. In this chapter we describe the more complex
and more complete of the two, the ABS controller, which was eventually synthesized and
ronted onto a Xilink FPGA. The circuit’s specification follows while details of its’ realiza-
tion, and the formulation of application specific design and synthesis methodologics follow

in Chapters 5 and 6, respectively.

The experimental aspect of this thesis thus focuses on developing a schema for an ABS
Controfler application which continnally self tests its operation, implementing it, verilying
and validating its operation. And, in the process, fashion FPGA design methodologies and
re-usable, well-constructed VHDL components specific to FPGAs and real-time controller
applications written to conform efficiently to both area and timing constraints. These are to
then serve as a means for designing targer modules and systems and be used by higher level

synthesis and simulation tools, and will become part of the ASDSL for FPGAs.

4.1 ABS Dynamics
4.1.1 Motivation for ABS Design and Implementation

Originally developed for airplanes, where the high cost of development was justifiable from

both monetary and safety fosterings, ABSs have transgressed to the automotive industry

43
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and today are commonplace in several vehicle models. An ABS is used to prevent wheel
tock-up during an emergency braking mancuver, by controlling the solenoid valves which
modulate brake pressure, and thus provide directional stability and steerability of vehicles,
while reducing the stopping distance. The motivation lor antomatic ABSs arose from the
need to reduce speed during & “panic” brake on slippery surfaces, reyniving the driver’s
removal of continual application of the brake. or pumping, 1 is claimed that an clectronic
system/controller would he more reliable and responsive than human reactions amd wounld

therelore contribute to the salety of vehicle operation.

4.1.2 The ABS Functional Model

Much rescarch exists in the modeling of ABS and in its corresponding control theory |9,
[14], [10], [11], as well as in related anti-slip regulatory (ASR) systems Tor acceleration
coutrol, [12], and [13]. The underlying lundamentals of operation of an ABS sysiem involve
the detection of optimum braking conditions and the application of corresponding brake
pressures to maintain the optimum conditions. Details of these two elements along with
notational definitions, terminology, and mathemalical equations and derivitions can be fonnd

in Appendix A.

In the single wheel vehicle model, the cquations: MV = </, 1o = —=(1) — rI,),
S =1- ‘T’,'-, where V; = 7w, describe the fundamental vehicle dynamics. 5 is delined as
the slippage where slip is the measure of the sliding component during a rolling movement.,
F, represents the frictional foree between tire and road, I and » Lthe moment, of inertia and
radius of Lthe wheel, and T} is the wheel torque resulting from braking. Ve is the tangential
wheel velocity, and V is the actual vehicle velocity. Further definitions ol the complete
set of variables can be found in Appendix A. The ABS along with the manual braking of
the driver interact with the solenoid valves whose hydraulic pressares are being controlled
inducing varying amounts of wheel braking. Many hydraulic and pneumatic systems involve
nonlinear relationships among their variables. In our case, an ABS controller is highly
dependent on a tire-road model, the characteristics of which depend on weather conditions,
vehicle parameters and dynamics, and hydraulic system parameters. In an ABS, Ure foree
varies non-linearly with slip S. As in [6], [7], and [8], a piecewise linear approximation of Lhe

tire-road characteristics will be used.
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ABS controller requirements embody certain asynchronous design techniques due to un-
predictable input arrivals and desired immediate actuator response. A potential demand
for wnltiple clocks or inter-clock activities to support the diflerent timings required for
input sampling, calculations, system response and on-line continnous testing, add to the
complexity. A deviation [rom single clocked synchronous controller designs surfaces, yet a
conceptualization can be formed by limiting the system to one main clock, a “fast”™ clock
with several oflspring clocks created by on chip clock dividers requiring inter-clock synchro-
nizations Lechnigues using this one main “fast”clock. Encoding many of these charactoristics

in a VIIDIL model is a major part of Lhis thesis,

The ABS design implemented in this thesis was formulated from a culmination of al-
porithins, theories, and known physical automotive dynamics, as mentioned above. Com-
plexities arise due to the non-linear dynamics, and the large number and diverse nature of
input variables. ABS dynamics behave differently under the varying road conditions, vehi-
cle speeds, nonlinear tire models, and different values of pressure increasing and decreasing
ratos due to inherent differences in a hydraulic system itself. Appendix A briefly outlines
the overall lunctionality and evolution of the ABS controller while methodically developing
the models used for implementation of the central pressure conlrol loop, which dominates in
the realization of the ABS case study . Measuring continuous vehicle variables, performing
aleulations, comparing results, evaluating time expirations and responding accordingly with
directives to the solenoid vialves (pressure actuators) comprise the pressure control loop. One
path in the development of its theory, hinges on the evolution from a two-phase controller to
it fonr-phase controller. Proven in theory to be better, facility of its implementation remained

10 he evaluated.

Two phase control loops employed pressure increasing and pressure decreasing stages
1o cantrol braking by circulating around the optimum braking force, or tire-road friction
coelficient {10], [6]. Kuo and Yeh [8], suggested four-phase control to improve the ABS
performance by adding a high-pressure and a low-pressure holding mode. Previously, no
analytical studies existed describing the fundamental design principle for ABS with four-
phase control, until [8] where systems with this four-phase control were investigated and the
threshold values for the ABS control laws were determined. Figure 4.1 depicts the pressure

control loop during ABS operation. The ab arc indicates the pressure increasing phase, the
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be segment indicates the high pressaee holding phase, and so on, Approximations to this
theary with some extensions form the complete control loop, further deseribed in this chapter

and in Appendix A.
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Figure 4.1: Piecewise linear approximation ol the tire-road characteristic and the desired
path to lollow under the ABS Control Loop.

FPGA implementation of the above control laws was investigated along with supplemen-
tary modules forming much of the aggregate ABS controller, demanding real-time operations.
Having met a satislactory number of design constraints, current and Mtnre work coneentrides
on the expansion of the single wheel model of past researchers [6], [7], [S] to o four wheel
system where cach wheel assumes the appropriate distribution of the mass of Lhe vehicle and

carries an additional driven/non-driven attribute, and individual braking lorce pereentagos,
4.1.3 ABS Design Specifications and Structure

Global constraints for the design were set considering the circnit’s eventnal environment.
Minimal area and system response times faster than huwman response times {in the suh-ms
range) were sought. Real-time relative to sampling, caleulations and responses as defined in
Section 3.1 is anticipated. Additionally, an on-line sell-testing/monitoring system capable of
error detection for system shut-down falls into the design specification. Lastly, it was desired
to allocate minimal time in the design phase for the implementation of the above system

onto programmable hardware using an HDL.

A block diagram of the proposed aggregate system appears in Figure 4.2, where all blocks
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and sub-blocks are controlled by Finite State Machines (I'SMs). Complementary blocks such
as the Wheel velocily gencrator, wheel velocity caleulator, wheel aceeleralion caleulalor, and
slip ealewlator, and FSMs such as master S0, and pressure control FSM, supplement the
actuator controller labeled as the ABS pressure regulating 4-phase loop, This block embodies
the four phase ABS controller of [8], and consists of four sub-blocks cach activated during
one phase of the pressure regulating cycle, and controlied by the pressurc control FSM,

subsequently referred to as the pres enlel FSM.

Off-chip clements such as a ROM, which holds pre-calculated data, is also part of the
system bur not part of the implementation on FPUAs. FPGA resources must he used
cantiously so only caleulations requiring the sampled incoming data have explicit hardware
resourees. A large Look-up Table (LUT) of values cannot be realized in an FPGA, but as it
is vilal to the design, it was included in the system specification, is referred Lo as the ABS-
ROM and was used in all simulations. Not included is the added circuitry for the on-line
system monitoring. The complexity and size of the design necessitates design partitioning,
ane of which is proposed by the designer and indicated by a dotted line in the ABS block
dingram of Figure 4.2, Upon actual circuit realization through leof and manual synihesis!,

an initial partition is most likely to change, as it did with the ABS controller {Chapter 5).

Master Controller: Top Level FSM

Contrelier applications naturally descend into FSM cycle control units and data path circuit
implementations. T'he top level 'SM, referred to as the master FSAM, determines the overall
state of the vehicle, in the ABS controller. There exist five major states of vehicle operation:
(i) Stopped vehicle position; (ii) Rest to sliding action; (iii}) Normal vehicle movement; (iv)
Regular braking of vehicle; (v) ABS controlled state. Appendix B lists the VHDL code for the
Master_FSAmplementation which demonstrates the conditions for vehicle state transitions
and FSM encoding. The caleulation and storage of values such as velocity and acceleration

will differ, depending on the state of the vehicle. Angular wheel dynamics can be obtained

from wheel rotational measurement instruments and are central to most calculations.

A frequency generator generates the wheel rotational frequency (velocity) from values

MPhis vefers to designer direction and explicit. hardware instantiations or partitions through compiler
divectives or definitive and unambiguous encoding during an iterative synthesis process.
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Figure 4.2: Block diagram of ABS Controller : ‘Top Level

generated from individual wheel sensors. Four of these exist. The continuously measured
velocities, or samples, are accumulated by the average velocity calenlator resnlting in an
average velocity value at a lower sampling rate. Contingent on the stide ol the vehicle,
particularly whether it is braking or not, the velocity is caleulated from an average across
diagonals with more weight given to the non-driven wheels since they better represent the
wheel velocity, Diagonals are compared, with the four wheel average, and when braking
occurs, past velocity values are taken into consideration for gencration of the final velocity
value, Using an external, proposed with specification, clock of 10MIlz, frequency values are
generated every 256 clock cycles. From this, Lthe averaging velocily module takes 16 samples
producing rounded velocity values every 0.4 ins. This rate is within range to successfully
furnish values to the other modnles and affect the necessary system responses, and thus it

proves real-time capabilities of some controller on FPGAs.

The vehicle velocily calewlator and storage unit, calculates, broadcasts, and registers? the

2\When braking is present and slipping occurs, previous velocity values are more reliable and are required
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voloeity of the vehicle which is needed for numerous computations and subsequent operations
by neighbaring modules, Vehicle velocity is derived lrom the angnlar velocily, radins, and
drive Lype? of the individual wheels. Velocity storage emplays lirst-in-first-out data manage-
ment as incoming values arrive continuously and order must be preserved. Other modules
like the angular and vehicle acceleration calculators, the slip calculator, the timer, and the
prak/slip detector all calenlate their values from both measured, calenlated, and previously

stored quantities. The central one being the instantancous angular wheel velocity.

Ideally, an exact, embedded vehicle velocity unit is desired, such that the module could
reliably, deteet the velocity by facilities such as motion detection through image processiug
Lechnigues, laser beam measurements on road surfaces, radar techniques, or with road side
external units which measure and transmit vehicle velocities on a “request” and “send to

owner” protocal. ABS cirenitry would be reduced with direct vehicle velocity availability.

Pressure control FSM: the 4-phase loop

Once in the ABS enabled state, a sub-controller takes over and monitors the 4 phases of
ABS control which involves regulating the pressure applied to the braking system, through
dually controlled valves, A limil eycle is comprised of four substates: pressure increasing,
high-pressure holding, pressure decreasing, and low-pressure holding and is used to keep
vehicular operation during slippage around the peak [riction coeflicient of the F,. curve, B
in Fignre -1, so as to sceure optimal braking force. Bach state is represented by a block
whose function is Lo generate its respective deceleration peak or time duration threshold when
activatad., The control parameters for every mode are designed to achieve phase trausitions
under all road conditions®for all the possible ranges of slope, subsequently denoted as m, in
regions A and C, and to follow a curve circumferencing Sope. The mode threshold caleulators
are individnally enabled by the pressure control loop FSM, which indirectly authorizes their

aceess to neighboring hardware resources through multiplexers. Figure 5.4 illustrates the

in futnre velocity predictions and ealeutation of slippage conditions.

*A wheel is said driven when gas pedal pressure affects the wheel differential directly effecting a turning
movenunt. In a front. wheel drive vehicle, the rear tives merely roll along the road with no gas-pedal pressure
torgue forces,

*Varying road conditions result in different slippage values which result in different slopes for the curve in
the friction-percentage slip graph. Thus, the slope m numerically equates to a ratio of friction over slip yet
retlects the road conditions,
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entire pressure control block with subcomponent clements, the thner, the multiptesers, amd

test cireuitry and the external ROM which houses the LUs,

As recommended by Kuo and Yel [S]. the trausition of states [rom the pressure -
creasing mode, or initial braking. to the high pressure holding mode oceurs when the
wheel deceleration exceeds a certain value My, e =1 > 1. [ liew of selecting o thresh-
old quantity which exists between two calenlated boundary values (8], one lower bound
threshold is caleulated and a predetermined ofllset is added to it*, I, the threshold value
triggering the high-pressure holding mode, is obtained from ™ which is determined from
Lhe largest value of iy, the critical valne ol torque differential to pass over the peak of the T,
curve for a given road condition, for all road conditions, so that Hy > mar{h;(V,m)} over
the range (10 2 m 2 ). I} can be found by solving the simultancous equations (1.1 Tor 8,

and hy, from [8], which are the slip value and [T}, — rF,] respeetively.

. —-508) /r U 2 SOy
S = _h] mig{l — 5\ )5 /i i = in [1_nn My {h.—"””“ "|)5|}]

mrid g Ty N, r
. . I —mig(l =55 /r
5= St — - 4.
2\ o mrdy (1)

Analysis runs using MATLAB® over extensive ranges of m, V', and systom parameters
were attempted to produce a safe incremental offset of i}, which satislies the condition Tor
A1, and which translates well into hardware as seen in Equation (4.2). Additionally, VHDI,
encoding and hardware implementation limitations engender certain adjustments since many
ol the above operations are not readily available, particularly on FPGAs. Note that the

cquations {4.1) can be reduced to the set in (4.3) and (4.4).

i, = h+ % * I} (4.2)
.1/ i Ka ,,m2

S5 = Sop: - l;—:'!_r [] —e ﬂl! ] (4.3)

by = my (S - Si.} + A1 (1 = 51)55) {1.9)

*When a range of values exists for the threshold caleulations, the minimum vatue can be chiosen as o hive,
knowing it will be first attained. The precalculated offset (caloulated with the aid of MATLAR stiimlations)
must be valid over the entire range of input variables and when added, must ensure adegpeate Liming or
deceleration values for corrcetly timed state transitions,

“a registered trademark of The Mathworks Ine.
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where, k) = -r—."—",-:—‘; mo=ErMy = i,-i

The initial detection of critical slippage/angular deceleration during braking has been
incorporated nto the four phase loop controller. Consequently, phase 1, the pressure in-
creasing mode, where a threshold value is calculated and compared to the wheel angular
acceleration, will be activated during both of the ABS control enabled and braking states.
I'he Tormer will result in a change of pressnre state but not effect a change in the vehicle

stale while the latter will.

Once the high pressure holding mode is triggered, a time interval T3 elapses, and a slip
change of Sy is permitted, hefore the lat trajectory of Figure 4.1 is changed into the pressure
deerensing mode. The time interval Ty must be long enough so that the trajectory during
this mode passes over the peak of the F,. curve for all road conditions, obtains maximum
brake force and avoids wheel lock-up, but not. too long to cause a greater than allowable
slip change ol ASy. A necessary and sullicient ASy of 0.4 is recommended [8]. To satisfy
both conditions, an eflective Ty must be chosen such that, 7 < Ty < 137, where the limits
are determined in [8]. We propose sulliciency in the calculation of 75, Equation 4.5, with a

corresponding predetermined offset, to determine 7.

se o MAX . . =1V M g(Sope ~ S1) .
o= 0h>m> 10 e it s ———xingl — — {4.5)
S My Hy—mlg(l = S1)5/r

For our ABS design, both the calculated 75 and known Sy values are used to detect the
end of the state, Lach coudition then acts as mutual back-up, where the lirst condition
met induces a change of state. Slip comparisons can be done immediately whereas T must
lirst be caleulated, followed by the start of a timer which signals expiration of time interval
Ta. Reduction of Equation 4.5 based on the approximations of Equation 4.2 results in

Equation A.16 as derived in Appendix A,

Both holding phases exist for a duration of time calculated from the present state of
the system variables. Expiration of the time is measured by an on chip timer. Calibration
and normalization must be done both in theory and in hardware. The time count value
generated is fed to the timer which counts clock cycles of known period. Ilence the input

clock frequency must be fixed and worked into the equations, which in turn will have to be
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normatized for the hardware, MATTLAR aided in these calenlations as welb as for the pressure

control loep caleulations,

several constants are known a priori, being cither vehicle specific or divectly dependent on
roid or temperature conditions, For the mathematical operatious which must be calenlated
on-line, look up tables (LUTs) are best employed as implementation aids to generate eynation
results and complex computations such as logarithws, Section 200 elavilies the usage of
MATLABR for LUT generation. Hence both threshold and time-duration vadues for velocity 1,
and road conditions m, can be determined from one or more read eyeles of the LUT realized
throngh a ROM. The value obtained Tor the angular deceleration o (or &) is compared to the
caleulated value for Iy to determine whether the next pressure controller state hecomes Lhe
pressure holding state. lmplementation of the pressure increasing phase ol the {four phase

loop is illustrated in, Figure 5.2.

Similar assumptions and calculations were made for the rematning two states, Bnabling of
the pressure decreasing mode initiates generation of the threshold valwe Hy = 00870 g,
which must be compared to input wheel deceleration to determine the state termination.
With such an approximation, further outlined in Appendix A, no LUT is required. "Vhe low-
pressure holding mode must cater to more possibilities and hence demands supplementary
cases which introduce additional internal sub-states of operation. Three threshold qnantitios
to he determined in this mode have been reduced to that of fy from the previons phase and
equations A.19 and A.20, derived in appendix A. Sample numerical values for time intervals

in the holding phases were found in [8] at Th=0.08scc and Ty=0.2550c.

4.1.4 The Self-Testing Design

T'he specification requires that the system continually test its Minctionality, lncorrect opera-
tion must be detected due to the severity and potential hazards of malfunctions, Consequent,
to the nature of the design, its timing, space limitations and desired responses, a time-sliced
“hardware re-usable” solution for on-line systein monitoring was employed. ‘Tolerance for
the resulting overhead is reflected in establishing it not merely as a part of the test cirenit

but also as a part of the design.

Clarification on the motivations for online testing is required. The purpose is notl to
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deteet mannfacturing fanlts. Chips received Trom the FPGA vendor are assumed to be
testedd andd working, ABS controller 1esting monitors field feulls: those errors which occur
during the lifetime of a circuit upon leaving the site of programming. Detection ol errors
caused by physical clements such as transient faults. liekl distortion clfects. mechanical wear,
radiation eflects, and aging, ete is imperative for correct and reliable operation. The interac-
tion between embedded controflers and their surronndings must be continnously monitored
since certain alterations or variations. be they electronic or magnetic, may well effeet circuit
funetionality at some point in time. Vehicle wear, for exampl, change of tires, an acci-
dent, installation of heavy equipment on the vehicle, falls under this category. Additionally
the weather nray have detrimental effects. At some point in time the vehicle may undergo

sufficient changes to warrant re-programming ol the original controller.

A control systein such as the ABS, which depends on external variables to control its
operitions and change of state, will not exhibit a predictable operation. Subsequent states
of control, their duration, and sequences of operations depend on the input conditions, (the
cuviromment, user, znd vehicle) and on timer expirations, an additional internally generated
input. These elements, classical in asynchronous systems, contribute to a degree of non-
determinism of the controller, for even though a next state can be defined in terms of the
inputs and presend state, its duration is not known, and it will only change dependent on

asynchronous changes in the environment or the internal signals.

Such a circuit cannot be tested for all situations as there exist a myriad of ways, times,
and durations for which a test circuit would have to be activated. However, by definition,
controller applications do have a fixed number 6f states and a known 72t of state sequences
which can be tested even if their duration is not known. Hence, test suites can be organized
to cause stale transitions by injecting “prepared” inputs and thenceforth effect calculation
sequences. Responses can be checked for correctness by accumulating the partial results
and measurements along the sequences of test state transitions and comparing them with
signatures known and stored a priori. Testing a subset of wisely chosen state transitions can
validate functionality of both the ABS controller and the self-testing circuitry itself. The
leve! of coverage will depend on the number of test sequences stored on chip which in turn

depends on the amount of free space on the FPGA after circuit synthesis.

For ADS, such lest injection refers to the injection of velocity values into the pressure
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camlrol loop modules where threshold values will he generated as in a regular fferation of
the controller. state transition will ocenr, necessary complementary inputs witl be generated,
further transitions will occur and all the results will be acewmulaed and compared with
the FPGA stored signatures. During test mode. some blocks must have optional feedback
paths ta input their calenlated thresholds. so that transitions can or cannot oceur, Physieal
ailments will affect the interaction between the ABS and its surroundings which in turn will
alfect the measured values. Incorrect measurements, out of range samples or responses can
be detected by a circuit which exhibits this test injeetion helavior, as erroncous resubts will

he propagated to tncorrect acenmulations.
| g

4.2 Design Engineering and Mechanics

Three phases comprised the progression from controller specification to FPGA implemen-
tation: (i) the theory/mathematics, (it) the approximations, (iii) the implementation. ‘Fhe-
orelical considerations involve exploring the mathematics of vehicle dynamics along with
analyses of the system and its environiment. Approximations in the form of lnearizations,
system parameter and variable assumptions, to name a few, can be eniployed to simplify
system representation. The implementation encompasses the eirenits realization and the
further approximations required to accomplish its task. Mindfulness of precision needs ver-
stis sulliciency will greatly affect the circnit’s final implementation. A hierarchy of decisions
is required. For example, selecting integers for the datapath operations mitigates a further
decision of range, which in turn determines the datapath width, and subsequently requires

choice of proecedures for rounding and normalization.

Computer Aided System "Technology (CAST) Tacilities are highly usefu! for the above
type ol approximations. MATLADB analyses aide in ranging (finding the maxinmm and min-
imum points), word-length delimiting (integer size for desired precision), and verification (1o
ensure reduced equations still produce desired results and matzh or approxitmate well the
system dynamies). Particular attention to I/O approximations is imperative for controller

H H ¥ H - Jof ? ’ Y . i ‘ - - r . I it
applications. Sampling rate, clock(s’) rate, caleulation rates, and response froquency deci-
sions must all be made to suit the design specifications and adhere to the limits of technology.

Simulated analyses of Lhe various options and approximations aid in cirenil specification for
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eventual implementation.

One remaining area for estimation inheres within the digital implementation domain.
Analysis of the continuity and sufficiency of the power-of-two number space can lead to ac-
coplahle approximations and simpier implementations, it operations on such data were to
transpire. Making use ol shift operalions to aid in normalizations or to replace division with
multiplication. or performing ealculations on power of two multiples as opposed to consec-
utive integer or continuons real values for approximation purpases are two such examples.
Several such techniques were nsed, but not being specilic to FPGAs they will not be dis-
cussed further. Such approximations are very specilic to the controller in question and future

waork could locus on such a class of circuit reduction techniqites.

4.2.1 Tooling of Design

MATLAB is eredited with its analysis and verification of mathematical equations and their
simplified versions. Specification of hardware boundaries and realizations of threshold val-
ues. bit-lengths, time interval calculations in addition to the generation of LUT values for
the ROM entries were all facilitated by MATLAB, and MATUCADT. Determination of
maxinmm {minimam) integer values lor register size delimiting, floating point rounding for
lixed point implementation by the multiplication of powers of two, and truncation steps are
some examples, Synthesis requires integer ranges to delimit register sizes, otherwise a 32 bit
default size is allocated, Likewise, ROM data was created nsing MATLAB and placed in an
array structure for circuit simulation. Fixed point values were calculated and multiplied by
powers of 2 to crepte integer values which could be handled by all ABS blocks with their

dativ defined in terms of integers.

Some sample MATLAB equation analyses are shown in Figures 4.3 and 4.4. Each contour
represents a different vehicle velocity. Both graphs provide bowndary and contour informa-
tion, for their respective mathematical equations. Both state transition threshold /Ay and
the state duration time T3 vary over the slope m, where m represents the tire-road traction.
ligher slopes indicate less friction and more slip which directly depends on the road condi-
tions and can be equated to wet or icy surfaces. A peak in the threshold graph indicates the

point ol maximam vehicle deceleration and equivalently maximum [riction coefficient and



CHAPTER 1. THE ABS CONTROL MODEL a6

braking effectiveness. 1t is aronnd this point that the pressure contral loop will evele during

emergeney braking manenvers,

1 _t* for vAnou3 tosw] Sondrom, m, and volochms, V
00 Sr

Hegh Bokl chiralum ke varsius sl coeions, m, dist vishscition, V

Figure .3: Thresholds for varions road con- Figure 4.:4: Time duration to maintain brake

ditions and a range of vehicle velocities pressure in the high and low holding states

4.2.2 Preamble and Approximations for an ABS Realization

Circuit realization evolves not only through synthesis tool iterations but through design tri-
als as well. Prior to addressing the final implementation, a few prelusive conceptualization
facets deserve presentation, [Ideally a specification of a control system should determine
hardware resources and circuit implementation. In some cases Lhe reverse may oceur. Given
a set of hardware limitations the design, while still meeting response times, may require
adjustments. Control systems like ABS can alford to undergo some approximations and nor-
malizations, which facilitated the fitting onto FPGAs. The level of estimations acceptable
can be determined by simulation and synthesis iterations: steps which programmable FPGAs
are well-suited for, compensating for their lack of density, abundant in their ASIC compe-
tition. Hence trade-offs in addition to design tricks such as LUT usage for pre-calenlated
results surface. Though feasible, such “hardware adjustmems” carry disadvantages; (1) lack

of przcision, (2) block module interconnections issues if individnal blocks have thetr equa-



CHAPTER 4. THE ABS CONTROL MODEL

ot
|

tions normalized, (3) resull imerpretation, (<) loss of generality if too specific, and (5) extra
maemory requiremnents, to name a few. The problem to solve now becomes that of finding the
level of approximation which can be tolerated to achieve the required response times with
the available hardware resources, without causing too much added design-time overhead in

their incorporation.,

Some mathematical approximations or algorithmic simplifications found in the enceded
seclions of the design can be applicd to other controller types, generalized and classified as
generie, For example, fractions limited to a representation with denominator power of 2’s,
continnous {unction ranges represented by discrete ranges, and holding certain continuous
vidues constant for a lew clock cycles so that some calculations can complete before input
variables change, are some examples. With particular reference to the ABS design. some of

the Tallowing specific cases originated, while additional examples are cited in Chapter 5.

Most blocks in the ABS conlroller depend extensively on vehicle velocity, a parameter
which depends on continuously changing values and, hence, one which must be constantly
updated. Sampling at intervals is equivalent to latching the value in hardware, and holding
it over successive clock cycles in order for calculations to be performed. The faster the
processing capabilities, the more ffequcnt sampling can occur, and the more accurate the
responses generated. A minimum sampling frequency, on the other hand, will be determined
by the precision requirements not by hardware limitations. As with most circuits, FPGA
throughput ties in closely with accuracy. Exact choice of range and bit precision can be
approximated in hardware yet will be finalized in the course of the embeédded system tests to
validate that sufficiently precise controller functionality is attainable once in the destination
cuvironment. Sclecting a range of 0-63.75m/s for velocity proved acceptable offering a large
cnough range for the threshold calculations as per MATLAB, and subsequent comparisons.
In hardware this translated to a normalized integer range of 0 to 255 where a fixed point
notation’ of [6,2] was ultimately chosen for its representatidn. Accordingly, the velocity

generation and utilization modules must respect this range of values.

Some specific cases depicting the strength and usefulness of power-of-two operations

come from module alignment and division avoidance. Numerous adjustments of multiplica-

*[n.d): 0 Dits for integer part, d bits for the fractional part.
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tion/division hy powers of two were incorporated through shifting, bus slicing or alignment,
where suceessive bus connections were purposely misaligned.  Division can be replaced by
multiplication, LUT operations, or cousecutive additions by initially lelt-shilting the fixed-

paiut or right shilting the integer (dividing) the number by a large power of two value.

The search for a good value for the My threshold came from analysis of the equations
of AT and A7 [8], and the assumption that ealeulating one it will sullice and thereupon
reduce hardware. Both equations were computed using MATLAR over diserete ranges of
Voand m. Based on the #77 limits, an offset ratio can be calenlated which works for all
Iy values, Accordingly, only k] was used in the final calculation to be implemented. ‘The

formmnla, iy = b7 + LB} exemplifies the resulting estimate.

Though continuous time variables, velocity, ¥ and [riction-slip ratio, m, reside in the
set ol input variables, hardware implementation requires diserete rangoes, warranting in our
controller resolution to fixed point ranges with decimal powers ol Lwo. Corvespondingly,
calculated values, such as iy and {3, are continuous in theory but acquire fixed point roproe-
sentations once destined for a hardware realization. Surveillance of the deceleration threshold
cquations over the ranges of the m parameter® for fixed values of V', resulted in an by mazima
between range of 0.5 £ m < 7. llence a numeric range for i with power ol Lwa [ractions,
represented as normalized integers, could be determined along with the number of bits for
its allocation. A similar analysis is done with MATLAB for the calculated threshold values.
Countenance on a ROM implementation, and on utilizing V and m as indices, alfects choice
of ROM size and of the level of precision possible for the indices (1 and V), and the cal-
culated values, Eventually, a normalized integer range from 0 to 31, 5 bits with the two bit
fractional part, was allocated to represent the abave range, a fixed point equivalent of [3,2].
Additionally, a normalized integer range from 0 to 4095 was chosen for LUT entries stored

in the ROM.

Some elements which do not translate well from theory to implementation are limits

and operational ranges, boundary value calculations, and special cases. Equations exeenting
1

at a full range of inputs, measurement of values which result in 0 outputs can produce

undesired effects. These elements, both from a design and an implementation perspective,

4 actually represents the road conditions and is mathematically represented as the radio of the friction

cocflicient, or a linear multiple of it, and the slip as seen in Figare 4.1,
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were nol covered by any papers within onr research, inciuding those [6], [7], [8]). which directly
influenced onr realization, Lxeluding the “out-ol-bound™ cases with restricted loop or “if”
statement clauses, duplication or time sharing ol certain hardware Mocks, if possible, to
aceount. for varying processing procedures for full input ranges are some means of managing

indeterminacies found within equations and theory.

Time, case of data retrieval, space, llexibility and precision concerns were conducive to
the acceptance of LUT implementations via an external ROM, in place of computational
hardware. Once again, numerical estimations were necessary particularly with respect to
ROM and individual LUL size, as hardware is not limitless. Threshold caleulations depend
on iterative computations and comparisons which can all be related to ¥ and m. Henee,
they hecame the obvious choice for indices for the LUTs holding equation computations. For
cach phase requiring a LUT operation (a computation), a LUT of size 8K must be alloted
in the ROM. Hence we will be saving time, for memory read operations shall be performed

instead of real-titme ealeulations.

The fow-pressure holding mode requires two wheel decelerations thresholds in addition to
the time duration calculation. Both Hy and H,; can be calculated a priori. Hy marks a safe
guarding region for the /3 condition in this mode, so that the oscillations of pressure which
can take place at this time have some room to move in, i.e. between the two threshold values.
Becanse My was not defined in the paper by [8], an approximation was defined with the help
of MATLAB simulations. So to date depending on the accuracy of the value needed, H, will

be a fraction of Iy, and will be one of two expressions: either H,; = g!]a or Hy = I—%H;;.

A possible future extension to the deceleration slippage control of an ABS implementation
could be to incorporate acceleration slippage control. Such an addition elicits motivation
from a desire for engine efficiency, vehicle handling, minimizing stress on vehicle components,
cle. in contrast to the predominant safety precautions for ABS. Basically, a system for
regutating whee! slip at the driven wheels () possesses similar requiremen{s to those for a
system designed to regulate brake slip (ABS); steerability, directional stability and effective
transmission of longitudinal forces onto the road. Even further, as current research suggests,

lateral slippage can also be incorporated into an ABS.

Chapter 5 addresses the final phase, the encoding in VHDL, the circuit realization for syn-
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thesis, FPGA hardware analyses and design methodologies. Technology dependent concerns
are required if most available resourees and features of an FPGA chip ave 1o be exploited
by way ol the tools. At the present fime, synthesis algorithms have not yet matured to Tully

exploit all architectural attributes of the many FPGA 1ypes.



Chapter 5

FPGA Synthesis

Chapter 4 aided by Appendix A, introduced the ABS controller theory and presented build-
ing blocks and design angles. With the groundwork of theory laid, and the specification
of the ABS controller completed down to the sub-block, encodable elements, that which
remains and which is more conducive 1o our research, is the implementation. The steps
undertaken from design entry to semi-detailed implementation procedures and results, to
the sell-testing circuit of the FPGA realization are all described in this chapter. The ex-
perimental design goal can now be stated as: To ascertain whether real-time asynchronous
control type applications can be implemented in FPGAs and withal conform to the necessary

read-lime constraints, and to provide methodologies for application specific design, synthesis

e layont (ASDSL).

5.1 The FPGA Design Cycle

FPGAs have suceessfully instituted their way into the realn of rapid prototyping. Their
sieeess can be attributed to their ability for implementation fine-tuning due to their field
programmitble features. Hardware and software (tool) availabilities contributed to the choice

of technology for this circuit’s realization.

61
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5.1.1 Tuning an Application to FPGA Structures

The design phases for the development of a rapid prototype are depicted in Vigure 5.1,
VIIDL design, simulation and synthesis were performed using the CAD Framework from
Synopsys. NACT tools from Xilinx were used for partition, place aud route (P1'R) and bit-
stream creation [or 'PGA downloading onto XC1010s, One key aspeet in this FPGA dosign
takes rool in the tooling of a design, which refers to the use of Computer Aided System
Techuology (CAST) to facilitate some of the specification and design phases. MATLAD was
used to analyze certain equations for range limits, lor variations in system parameters anl
variables, and lor pursuil and verilication of approximations which can be made while stil}

aclieving correct controller functionality.

The original design goal was Lo fit the entire controller onto a single FIPGAL A Xilinx
XCA4010 consists of 400 CLBs and 160 10 Bs, and carries an equivalent gate connt of abont
10K. Due to technology limitations, multiple FPGAs were considered with Lhie potential of
using on-chip RAM [acilities for storage of constant data. Constant dela can be determined
a priori and may consist of physical constants, calculation results (imultiplication, division,
logarithm), and normalization resuits. With the lookup table! (LUT) sizes required, FPGA
logic blocks programmed as RAMs proved insufficient and external memory elements were
sought, such as RAM or ROM. Perhaps with the availability ol application specific memories
{ASMs) and the creation of programmable ASMs, such logic and memory hnplementations,
i.e. one chip solutions, will be possible. The conceptualization of compact memory elements
combined with standard logic is difficult due to Lhe different manufacturing processes reguired
for cach. However design strategies are surfacing which can create eflicient memaory structures

combined with logic, and the area is open for further research.

Eventual implementation involved manual design partitioning, optimization, and resource
sharing. For the controller circnit, two FPGAs were required along with one dedicated
memory chip, a ROM, to hold the bulk of the LUTs created wsing MATLAR. Aperiodic
testing was then annexed using a built-in signature analysis scheme and resource sharing,
The same hardware is used for both the controller operation and on-line testing. This is

accomplished with the added overhead of multiplexor inputs, and off-state cycle stealing.

'Can be regarded as a large array of constant valucs
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When the bulk calenlating circuitry is not in use, during off/normal cycles of the vehicle, the
tost circuitry controtlor awakens and proceeds to verily the circuits operation with injected

test values, measuring, accumulating and tabulating the resnlts.

—
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Figure 5.1: FPGA design steps and realization cycle

Fine-tuning the design in its embedded environment may alter some of these hardware
realizations. The advantapes of FPGAs for both rapid prototyping and final circuit realiza-
tion surface during the validation of circuit implementation approximations. Additionally,
parameters change with time, and the controller implementation may need to be altered
with time. FPQGAs can easily be re-programmed in the field, the vehicular repair shop, as
opposed to the factory, if an ASIC was the choice for implementation. Thus far, superior

circuit density capabilities are the main support for ASIC implementation.

Most of the design originated from mathematical models describing ABS dynamics. Im-
plementation of equations, variables and their umits and normalization across functional
blocks is not forthright. Logical interconnecting and normalization of values while main-

taining their real world implications for external connections and responses in addition to
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equation implementation or rather datapath realization were difficult tasks in the design
phase, Selection of precision is another matter and simulations are required 1o settle on a
linal data length for the individual modules. Between 10-12 bits of precision are deemed
adequate and normalization of input and output block values are based on the maximum
and/or minimum expected valnes, For example velocity values (V), road condition (m), and
LUT entries are represented by normalized integer ranges which translate to a fixed-point
hardware lormats of [6,2], [3,2], [6.5] respectively. With 2 bits Tor the Trctional part, the
precision is held at 20,25, Shilting of the datapath is required to align interacting data for

COITeCt processing.

5.1.2 Encoding Primitives

A synthesizable VIIDL subset along with some encoding guidance, found in one of the man-
wals of the Synopsys’ tool set [52] becaume an aide for cirenit description. Carelul attention
was given to the hardware inference resulting from VIDIL synthesis. Standard VIIDL syu-
tax, such as if, ease, loop statements, vartable and signal assignments were ntilized, while all
syntactic timing clements, {afler and wail, statements), were avoided. VHDL formad also
enables direct control over combinational and sequential realizations, as well as satisfactory
synthesis of certain behavioral descriptions. For example, depending on the context, vari-
able or signal assignments may infer cither registers or latches. FPGA architecture harbors
certain kinds of {lip-flops and dependent on completeness of a signal assignment (whether
all cases of inpuls are covered), either sequential (llip-flop usage) or combinational cirenitry
will result. Additionally, a statement such as € <= A + # will initiate a search in the
technology specific library for specific blocks which are capable of supporting the addition

function. Design constraints subsequently cffect final block or macro selection,

In controiler applicaticns, most inputs occur asynchronously. ()l'llt.]nlth‘ can be synchro-
nized to a clock, but as most actuators are expected to respond asynchronously, Lhis is not
really necessary. Careful VHDL encoding can generate and control both synchronous and
asynchronous events, as seen in section 3.3, VHDL examples were included illustrating hand-
shaking protocols where entities wait for events to happen before continuing their exccution,

Synthesis tools casily support events which postray clock signals. Difficulties arise when
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an evenl is not o derivative of o global clock signal, They are often reflected by errors in
synlhesis or if the circuit can be synthesized, by requiring closer scrutiny during simulation

il Lhe eirenit can be synthesized.

Qur stratagem requires catching asynchronous signals and synchronizing them to a clock,
amd permitting sub-clock handshaking but eventual clock synchronization similar to what
was mentioned in [44]. The statement WAIT UNTIL clock <edge> is used throughout the
vodde Lo synelironize events with one of the system clocks, It can also be employed more
than onee in a process statement to *wait™ for multiple clock cycle times, so that events in
time ean be ardered/scheduled, A WAIT UNTIL can also be used for handshaking to control
inter-process communication, a procedure which is somewhat asynchronous and requires
careful design and simulation to ensure correct lunctionality. Interface action can then occur
with a finer granularity than clock cycles with the use of the above WAIT statement and a
campiler which can synthesize them correctly. VIIDL encoding of the above would thence
require that interface procedures terminate on a clock transition (wait until clock <edge>
statement), Global time, and control can then be maintained throughout the design. The
ABS controller employs this type of timing control, executing sequential statements and
then synchronizing to cither the fast clock (clk-in) or the medium clock {pipe.clk). Process
statements, generated responses will all appear synchronized at the periphery even if there
are slower or [aster events from within, An alternative finer-grain sofution worth exploring
is to use a faster clock, as limited by the technology, to trap all signals and make responses

quick enough so the circuit becomes completely synchronous.

A sample encoded control FSM and datapath implementation from two blocks of the
ABS design exists in Appendix B. The FSM is broken into two processes, the combinational
process which determines the next state and should define all signals for all input combina-
tions, and the sequential process which infers registers to hold the current state via inclusion
of VIIDL WAIT until clock <edge> statement. Both datapath and control can coexist as
scen by ROM access requests and multiple use of WAIT statements in the same process. Sev-
cral of the VHDL models contain WAIT statements to control the multi-cycle flow of events
using the medium speed clock. As FPGAs are register rich, one may use a pipelined style of

design to obtain increased throughput, should the demand be there.
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5.2 FPGA Implementation of ABS

The dotted line in Figure -1.2 separates the design into the two original partitions or modiles,
one containing the “input sampling and measurement blocks™, and the other the “top control
and action blocks™. In the current realized version the slip caleulator has become part of
Lhe *top control” modules, as there was space available and its result was being processed
directly by the lour phase control loop. LBach module, requires a single 5- 10K I'PGA chip
for realization, and when larger FPGAs become readily available, samples are already oul,
it is estimated that the design will fit on a single chip. All of the initial specilication, the top
level ABS block diagram, and the resulting VHDL encoding eucapsulate hierarchy. Encodod
VIDL entity were written to agree with the block diagram and its inherent, hivr:u'vhy ol
blocks. The corresponding architecturcs with process statements of Lhe entitios deseribe the
block™s functionality. The block interfaces to neighboring blocks translate to entity ports.
Synehronization amongst the blocks, or entities, follows from individual event interpretation
as exhibited in the VHDL FSM description listed in Appendix B. Recall thal high level
synthesis concerns were the driving forces for the use of sequential statements within the
VHDI. process configuration. Depending on the complexity of the block, its constitnents

and levels of hicrarchy will vary.

5.2.1 Control Circuitry

Both of the above modules with their subblock lunctionality were specified in Chapter 4. A
subset of them from the “top control and action” module which exemplilies unique, com-
mon, or special feature progression from original specification and VIIDL encoding to final
implementation and testing were selected for further mention. Five blocks of interest: the
Master_FSM, the Presudevel.entrl FSM, the Pressurc-_incr_enirl, the Pres_high hold, and the

Stip. calculation block shall have their implementation specifies deseribed here,

The Master-FSM block determines the vehicular state at all times and will be disabled on
an error signal event generated by the self-testing circuitry. Its four major statos of operation
are stopped, normal (moving without braking), braking and A BS_cnabled. ‘The velicle state
will change from the initial stop state to normal when the vehicle moves, and subsequentiy Lo

hraking if the brake pedal is pressed. The minute this state is entered a threshold calculation
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sib-Wlock is enabled and iF eritieal slippage or optunum braking is attained. the ADBS four
phase control loop is enahled putting the vehicle in A BS.cnebled mode. Appendix B lists
a concise VHDL deseription illustrating how combinaional and sequential logic inferences

aned @ svnehronized FSA can be synthesized.

The Presdevelentrf Mock. also known as the minor FSAL works only in one sub-state
of the Master FSML and functions similarly. It is charged with controlling. enabling. and
absorbing results from the external modules and from its four lnteracting sub-modules which
are activated at different times in the limil cyele of ABS enabled operation. One of these
states aclivates the Pressure_iner_entrl block, which ealcunlates threshold values based on the
current {or sample) vilue of the velocity. From the theory. the Equation 1.1 led te the calcu-
lation of the threshold angular deceleration value. Subsequent to some hand approximations
and simplilications. the Equations -1.2, 1.3, and 1.1 resulted. A block implementation of the
pressure increasing phase of the four phase loop is shown in Figure 5.2. A LU'T holds all the
potential Sy and £y values indexed by both the m and V' values. The comparator checks the
results and tracks the maximum value of vehicle deceleration to attain belore the next state
must be initiated. A loop generator was required to cyvele through a limited range of road
conditions, Though one value could be stored instead of several, this approach was taken to
accomnt for future options where an external m value could be generated by external vehicle
or road-side generators. The synthesized schematic representation of the Pressure_incr_entrl
block in FMigure 5.3 depicts the instantiation of two hard macros, one for the “integer” com-
parison. and the other for an addition. Each box represents a programmed CLB containing

some mapped combinational and sequential cirenitry within.

Three similar blocks and one further sub-calculation hfﬁtk which exhibit orcz2ring of
operations, control, read from the ROM. work in multi-eycles and perform some Kind of
handshaking with other sub-blocks. were also encaded in VHDL, along with their com-
plementary and secoudary blocks required for full ABS operation. A block diagram of the
implementation of the four phase control loop is outlined in Figure 5..1. The existence of mul-
Liple concurrent events requiring multiple clocks. makes the task of synchronization a delicate
task. Nanetheless, each sub-module was synchronized producing deterministic responses and
outputs. WAIT statements were strategically emploved to permit efficient capturing, storing

amd processing at alternate times of block input data in addition to supplying output data
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Figure 5.2: Block diagram impiementation  Figure 5.3: Synopsys’ synthesized version of
of the pressure increasing state. the pressure increasing state and its calen-

lations.

to external actuators at reasonable times with respect to the hydraulic response times. Wail
statements were also employed to materialize handshaking protocols within and among the

various modules,

The overall picture, Figure 5.4, includes these blocks as well as some multiplexer blocks
to ald in hardware re-usability and some testability resources. DPresently, the entire AUS
controller does not yet fit on a single FPGA. As this was one of our targets, any advanta-
geous simplifications should be exploited. In particular, potential resource sharing should he
attempted by the designer as the synthesis tool cannot globally implement resource sharing.
(In fact, the Synopsys compiler restricts sharing to within process statements.) The calen-
lation of ROM addresses using individual offsets for LUT access in some of the four phase
modules. exemplifies such forethought. Though each read request could have calealatod its
own address, encoding this (effectually an addition for each state, with dilferent offsets) in
VHDL across processes would result in instantiation of several adder nnits,  Accordingly,
having one unit performing the addition of an offset contingent on the pressure state during
the ABS_enabled state would save on area so long as pressure control state information can

be made public, which is the case. Figure 5.4 illustrates the addition of an add operation to
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the nrdtipleser unit whick does not nerely serve as a multiplecer but as a MUN+add unit.,

Manual synthesis had to be performed across processos.
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Figure 5.4: lmplementation of Pressure control Blocks.

The Pres.deer_entr! hlock exhibits analogous behavior as its sibling Pres-iner—cnirl block.
However additional conditions must be analyzed which is reflected in the minor FSM (pres-
sure control FSM). Longer VIIDL code with more clauses, if..then...else statemendts, surfaces
but atherwise, its realization follows suit. The Pres_high_hold block differs in that it requires
access to the timer which is a simple downcounter with reset capabilities, When time expires,
the top level pressure controller detects the need for a state transition. As with pressure
Wigh holding mode, a Presilow-hold block behaves stmilarly in that a timer is required to
track the duration of the pressure holding state. Unlike the high mode, after the time limit

has expired. the next state may or may not be the pressure increasing as one would expect,
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other conditions (& <

8

Subsequently, the timer circuitey may have to he enabled more than onee in this state. and

-

or < Iy and > or < M) must be tested, see Appendix A,

it is shared by both pressure holding states,

The Slip_caleulation is as close 1o a daapath description as possible with the tools avail-
able. Encoded in a process statement. the datapath ol the slip caleulition involves the vehicle
velocity, the wheel’s tangential velocity and access (address and data paths) to a LUT or
ROM. Yxplicit control using state variables for operation enable. variable {(as opposed to
signal) usage to sequence operations and synchronization of the entire process Lo a clock
using a closing WAIT statement are depicted in Figure 5.5, Figure 5.6 illustrates the resulting
synthesized circuit onto CLBs, housing the coutrol and data path logic, and hard macros,

representing the multiplication, addition and subtraction operations,

USE WONK, AR3_CEFS . ALL:
antity alip.cal is
port{global remst : in bit;

pipe.clx . IN bit;
¥ : IN fnteger range O to 254}
freg.ndj ! IN lnteger rangs 9 to 256
CURRENT_MAJ . STATE: in ¥vehicle_mtatw typs:
CURRENT . MIK_STATE: in pres_valve_stntw;

rom_datw !
»i rom_ addr

wlip. cal_norm :

IR pres_valus_vord:

OUT abs.ron_Tange:
OUT pren.valus word);

whd elip.cal:
Architecture behav_ ulip.cal of alip.cal inm
begin
m.Chl: procass
VARIADLE val_nd} ¢ intuger Tange O to 306;
begin
1F (zilobal_rewet = *1*3 TIEN
alip.cal horm <= 0
ELSIF C{CURRENT_NAJ_D1ATE = abs_snabled) ARD
C{CUNRERT_MIN.STATE & high.hold) Qn
(CURRERT_NIN_STATE = low_told ))) THEN

si_Tom.addr ¢ slip_offeel ¢ ¥,
wel_ad) 1= rom_data:
alip.cal.noern <= ILIP_IDENT+(fruq.ndisvel_nd)):
EXD IF;
WAIT UNTIL pipe.cik = *1';
and procwus s.cal;
and bakav,slip.cal;

Figure 5.5: VIIDL code for slip calculation.  Figure 5.6: CLB representation of slip ealen-

lation,

5.2.2 Self-testing Circuitry

Design for testability was accounted for beginning with the specification stage and traversing
through to the implementation. Functionality testing was done through simulation. Fvent,
timing was validated through the monitoring of input signals, state transitions, and gener-

ation of output signals. Back-annotation of technology specific titnings remains upon avail-



CHAPTER 5. FPGA SYNTHESIS 7l

ability of the respective tools. A built-in reliability check was implemented by the inclusion

ol sell-monitoring circuit control blocks, multiplexed inputs, and accumulation capabilitics.

During oll eycles, a test clock (enabled through the test circuitry and derived ultimately
frenn the main clock) is generated enabling the re-use of hardware for testing purposes.
With a high-speed clock driving the computation logic, a medium speed clock driving the
controlied pipelined stages, adequate time should exist to perform on-line system monitoring,
within the system’s specilied response times. The slower fes! clock is only enabled during the
fest mode and monitors the global test events so that all caleulations and state changes still
fanction with their regular clock inputs. Recall, values are injected whereby this test clock
will produce velocity values (stored on chip if the number is small and ofl-chip otherwise)
which are normally calculated during regular mode operation. Such testing by stealing clock
cycles, makes use of existing modules by initiating calculations and comparing results to
signatares to verily correct lunctionality. Figure 5.4 showed the inclusion of test structures
in the overall design. A test mode exists where the individual blocks carry out their regular
aperation yet register the results in separate test structures for subsequent accumulation and

signature analysis.

A more detailed diagram of the test injection cireuit coupled with the top level controller
appears in INgure 5.7. Velocity, and wheel acceleration values can either arrive from the other
blocks where they arve caleulated from external measurements or from the test circuitry block.
Continnal ABS malfunctions will turn the ABS controller off disengaging all brake actuators

and inform the driver through a dashboard LED.

A little extra cost, for example the area overhead for on-line testing, can be alloted for a
higher level of reliability and security, so its initial specification was implemented. Eventually
the chip will fail, at which point detection is imperative and the ABS must shut itself off,
indicating malfunction so that the user/driver is aware and can have it checked! The error
van then lie in the chip itself or in a surrounding clement of the braking system or vehicle.
The source of error at this point is well outside the realm of an ABS controller, and is up
to the vehicle repair person. However, further research can be invested to create a newer
ABS version which contains additional circuitry for post-failure fault search and repair. In
sich o case o larger FPGA or, alternatively, an ASIC may be required in the final system

realization.
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Figure 5.7: Self-testing circuitry added to the pressure control block

Self-checking, achieved with aperiodic circuit monitoring, ensures reliability and secu-
rity through added test circuitry which detects functionality errors potentially oceurring in
the field. 2. Signature analysis and compaction methods, renown built-in self test (B1S1)
techniques, along with fest injec ton, constitute part of our ABS sell-test cirenit, An acen-
mulation scheme was chosen over RAM for the obvious reason of space. RAM is expensive
in FPGAs and accumulators are less arca consuming. FPGAs are designed for such cireuits.
In fact, Xilinx implements fast carry circuitry which can be used to build even more efficiont,
accumulators. For small test vector sels, and a single signature, the cost of an accumulator
is not justified, but for this controller, 32 velocity vectors with a single signature require
storage, an additional ALU is warrantable. T'he option to reverse the vectors, Lhus lesting
functionality with 64 vectors, can be readily accommodated by flipping a datia bus halfway
through a test cycle. Easily implemented in hardware, such a design concept requires manuwal

instantiation as it is not assuredly synthesizable. Any VHDL encoding deseribing such an

2It is acknowledged that the design is not Fully fault-tolerant. but there is no problem or obslacles Lo
extend it so it will become one. Similarly, 100% fanit detection is currently not available, but. its inclision is

achievable as long as the added area, and timing overheads (both in circuil and design) can be tolerated,
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operation, wonld be sequentially listed inferring a circuit with many shiflts and bit checks,

as opposed 1o simply twisting the data bus.

The rate al injection depends on the vehicle state, Self-checking can consume more tinle-
spatial use of the available hardware outside of an ABS control enabled state, Less thne is
alloeated for controller testing during computation intensive states to ensure that real-time
requirements of the system are satisfied. An attempt of maximumm hardware re-usability for
Lhe above test features is targeted at less than 40% arca overhead. Note that sell-checking
is not merely BIST on start-up. It is part of the design so additional area can be allocated
to Lhe cirenils implementation,

Figure 5,7 indicates the blocks involved with the continual monitoring of the ABS enabled
control section. The lest_time_generalor determines when the pressure control loop hardware
van be employed for self-checking operation. When the test mode is enabled, the correspond-
ing lest blocks are permitted to perform their respective functions. For instance, the V_test
generator will generate sample velocity values to be injected into the pres_entrl loop block.
The values are part of a predetermined list stored as constants on Lthe FPGA. Subsequent
to traversal of the encire list, an end of eyele signal is initiated to indicate completion and

permit the accumulator block to verily the results.

The V.injeel pulser block determines the duration of time for the velocity value to be
held so that a complete cycle of pressure state transitions can transpire, and results can
he properly accumulated. The test.nalue accumulator accumulates all the threshold values,
atdd time duration calculations, Aliasing can oceur, but not due to overflow since all inputs
are of the same length and the bit widths were designed to accommodate all max values
with adequate margins. One extra feature of the accumulator is that it will also generate
sample input deceleration values in order for the pres.entrl_loop block to {unction correctly
and undergo state transitions. The simplest case would be a direct feedback path, taking the
caleulated value, incrementing it and returning it to indicate that the resfiéétive threshold

or time expiration value has been attained.

The testing cycle was designed to be time multiplexed {on the shared hardware) with
regular operation of the ABS enabled controller cireuit. Hence if test mode is interrupted,

it will resnme its state of operation sometime later with the correct test velocity value
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last injected into the prescentritoop block, Similarly. when the regular mode of operation
is interrupted, it too. will resume operation with its continnous sampling of inputs and
calculations. Such confert swifehing is possible due 1o the individual storage units for the
respective modes ol operation:  test mode owns its own registers for data accumnlation
and state recording, and regular mode had its own velocity storage and ealealation modules,
acceleration and slip generation units providing accurate and updated inputs to the hardware

resourees.

5.2.3 Simulations

VIDL simulations validated ABS functionality and timing. Control system testing ne-
cessitated generation of input signal sequences, as sequential logie testing procedures wore
utilized. A succession of alterations on the inputs is reqnired to fully test functionality as a
controller application ntonitors events in time, operates with current inputs awd past states,

and must consequently respond in time. Wavelorm viewers visually aide sueh tasks.

Careful VHDL modeling when simulating Lo acconnt lor eventual syuthesis was required.
Apprehension that VHDL semantics execute in zero time, while only wail statements con-
sume time is necessary to preempt false simulation interpretation. While simulation ver-
ifies Munctionality, timing cannot be assumed. For some syuchronous circuits and FPGA
implementation, pre-layout simulation sufliced whereas for some asynchronous blocks, re-

simulation with back-arnotated values was required.

“Iigures 5.8 and 5.9 exhibit the transitions through all the ABS pressure controlled states
during an emergency braking mancuver. Synchronization between various states (blocks)
is illustrated by correct state changes which result from event occurrences either external,
such as a sudden braking or release of braking, or internal, such as time expiration. State
dependent caleulations are also triggered, creating thresholds for subsequent comparisons
which may trigger internal events. The pumbers appearing in the timing dingrams reflect
the normalized integer values representing ABS variables such as ROM data and address,

slip values, angular acceleration, calenlated thresholds, and timer (counter) states.

The controller begins in a startup state, proceads to normal operation when a velocity is

detected, and enters braking when the brake pedal is pressed, When a eritical deccloration
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~1
=

vitlietl i neasured 1o be larger than the threshold, SHIZTHRESH™, thien the A BS_ enabled
vehicle stale, along with the high_hold pressure controlled sub-stite become active enabling
their corresponding computational modules. All Tour pressure states are transgressed veri-

fying the functionality of the threshold calenlation and timer units.

5.2.4 Timing Considerations

The aceuracy ol Synopsys versus Xilinx timing is quantized in Section 5.3.1. Timing models
in FPGAs account for such values as: set-up times, hold times, propagations delays, clock
to outpul delays lor the logic blocks, and rounting delays for the interconnects. Traditionally,
stinulations use these local temporal values to generate global timing values which in turn
are analyzed by the designer to verify that the specified constraints have been met. Two
sets of valnes, post-layout and pre-layout are obtainable through the tools. For FPGAs
the need for back-anunotation is questionable and not all-together necessary. Realistically,
back-annotation of post-layont timing delays is vital for accurate simulations. ABS timing
lues were compared before and alter layout, proving this point, as will be seen in the next
section. However, the differences were not extremely large, and with programmable hardware
the need for this added simulation can be aveided, particularly for completely synchronous
designs and contrary to ASIC circuits where such back-annotation is a necessity. However,
for strict asynchronous designs on FPGAs, it is proposed Lo import the post-layout timing

valu s into simulation Lo verify both functionality and timing.

Determinationr of the maximum clock speed and critical path are areas where cireuit
timing must be well approximated, The XACT PPR utility which took the “.xnf” netlist and
partitioned the logie, placed the circuits into CLBs and 10Bs, and routed the interconnecting
signals is one such tool. Timing results, which include critical path analysis, individual path
traversals for mulliple clock circuits, and maximam clock speed potential, obtained after
the NACT enfppr, are close to what can be achieved in the laboratory environment, and

suflicient to begin embedded system testing. Synopsys’ titming model is conservative and

thus good for estimations, but merit more accurate FPGA technology dependent timing

alues, and routing information from Xilinx.
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5.3 Synthesis

Ounee desired funcelionality was defined, and longest eritical paths were acconnted for by con-
stratned clocks and specified cireuit timings. VIIDL files were read and checked for syntax
errars, [/O pads were insorted, clock pads were delined, and the design was subsequently
compiled producing a CLB-10B design. Design iterations followed, leading to the accemmu-

Jation ol evelutionary data, highlighting the growth of the hicrarchical design.

5.3.1 Implementation Specifics and Results

VHDL design, sinntlation and synthesis for the ABS controller were performed using the
CAD Framework from Synopsys. Design compilation was accomplished using the Synopsys
PGA Compiler. The XACT Development System from Nilinx was used for PPR and bit-
streaun creation for downloading circnit programming directives onto XC4010s. Oue single
NCA010 FPGA was not large enough for the entire ABS controller even though numerous
global theoretieal approximations were attempted, Circumventing the hardware limitations,
reguired Toremost, design partitioning as shown in Figure 4.2, and subsequently varied design
strategies, optimizations, further approximations using MATLAD simulations for confirma-
tions, and the addition of an external ROM. Primarily, cffort was made to accommodate
hoth the Master-FPSM and the Pressure regqulating §-phase loop onto a single FPGA. Gradu-
ally, with improved synthesis technigues and adjusted design strategies, the slip calculation

with its integer multiplication was included in the single Xilinx FPGA.

The remaining calculations and control logic could be synthesized onto a second FPGA,
or with the advent of the new XC4025, it is expected that this single chip will accommodate
the entire controller design. It remains the choice of the designer whether to implement the
design on one or more FPGAs, and whether 1o wait for new hardware or employ “off the
shell™ technology. ‘There remain many ways in which a synthesis tool could be improved,
especially with respect to cirenit partitioning in the gate count range of 10-20K, and chip
selection,  Currently, we must accept exploiting tool capabilities manually with iterative
allempts on circuit partitioning. So much as it were within Synopsys’s grasp to select
Xilinx FPGA pasts, based on gate counts, the ultimate decision must should rather cmbody

broader considerations such as FPGA vendors and their product lines and cost/performance
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1radeolls.

The design flow involved two paths of resull accutmlation. Oue path followed incremental
design formulations for only Synopsys tools, while the other used the results of the lirst and
applied FPGA vendor specific tools producing more aceurate timings and lavout information,
Imperative at any stage ol VIIDL synthesis is boundary optimization, te. the Hattening of
blocks across borders so that more compaction and optimizing can be done during sy nthoesis,
and more specifically. mapping.  When the bocks were joined, nngrouped and boundary
optimized, the resulting cirenitry occupied less CLBs and area. Depending on the nnmber of
stb-blocks a circuit may contain, the arca utilization can almost be cut in hall i the desipgn

hierarchy is Qattened and optimizations are made across block bonndaries,

The results for synthesis ol the circuit using Synopsys’ compilation tools, the Design
Compiler’ and the VHDL Compiler™ , and its Xilinx libraries ave eapturced in ‘Fable 1,
The modules built. were designed and synthesized in chronological order as they appear in
the table, illustrating the accumulative design flow. The arca values provide comparative
descriptors as opposed Lo quantitative ones and correlate almost Huearty with ekip atilization,
For all the timing analyses, an input clock was speciliod with a period of 200 ns, or a frequency
ol 5M Iz, However, this and the FPGA logic block timing values, which Synopsys utilizes for
its delay calculations, are also approximations. I'he slack lime is determined by subtracting
cither an 8 or 6 ns set-up time and the maximal path defay through the cirenit. The 10Bs
refllect the number of ports on the top level entities of each modnle and do not provide

indications as to their relative sizes,

Design CLBs 10Dy Area Hard Max. delay | Slack
Description | [UL.Y%] [Unitless] | Macros | arrival time | timelns]
Master.FSM bl h2 64 0 (G8.:4) 123.70

Pres_entrl block | 207[h2%] | 112 320 5 110,20 B3.80
Sell-Testing
Pres_entrl_block | 292[73% 108 362 8 118.20 T4.80
Topentrl_pres | 216[54% (in) 324 b 114.40 77.060
Self-Testing
Topentrl_pres | 309[77% 108 118 4} 123,20 (8.80
Top_presslip | 200[72% 108 398 9 131.40 G1.50
Self-Testing
Toppresslip | 385[96%] | 109 194 10 140.20 51.80

Tabie 5.1: Synopsys’ implementation results synthesizing different. ABS partitions/mocdules,
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The Top_entrli_pres Dok includes both the Pres leeelentel and Master #25M blocks and
ocenpied only 5% of Lthe FPGAL With test civenitry added, the CLB count went up to 309
CLHs or 77% atilization, understandibly so, and attempts to route the testable design were
sueeossful, The testing circuit added a timing delay of between 9 and 10 ns and a 20-24%
arca overhead to the cirenit. These values are conservative coming from the synthesis tool’s
approximation of delays before actual ronting and exact interconnect delays were known.
Wilh spiace remaining on the FPGA, the next step was to incorporate additional blocks into
this FPGA design partition until we fill the vtilization quota. We define this as the point at
which the CLB quota is at its maximum from logic and routing. One such block contains
the slip ealenlation logic. With the slip_calenlation block added, the CLB count reached 385
with 96% utilization. As will be mentioned helow, after using the enstomized layout tool,

this module was also routable once its logic was mapped to the FPGA logic blocks.

With the I'PGA vendor tools, precise layout and timing results could be obtained. The
synlhesis tool Lranslated the design 1o a lile format (.xnf) aceeptable to the layout tool. The
NACT XNFmerge, PPR, and XDelay tools® were used to generate more accurate design
huplementations and timing analyses with the inclusion of more precise interconnect and
routing information. 'Fhe resulis of applying the XACT soltware onto the .xnf file produced
by the Synopsys Design Compiler after synthesis can be seen in Table 5.2, Timing analyses
from XDelay were more accomplished and exhaustive so that all of Clock to Pad, Pad to
setup, Clock to Setup, Clock to Clock (same edge and other clock edge), Clock to Setup (same
edge and other clock edge) timings for each clock or clock-related signal were calculated,
resulting in a higher accuracy and confidence in the resulting timing delays. The critical path
was identified from the maximum over these values and this determined the fast, sampling
and processing, clock speed. Both the medium, and sfow clock circuits exhibited critical
paths of comparable parameter timing to the system (fast) clock so that dividing the clocks
lor our sub-state computations by 4 and 32 respectively is acceptable and produces sufficient

slack.

*Registered trademark of Xiling, Ine.
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Dosign CLBs 10Ds Hawd Critieal cLny |
Description Ul YA (Uil %] | Maeros | Path (max.) | Feedthrns
Prescentel Dlock | 201 (50%) | 137 (85%) 5 U156 o
Self-Testing T
Pres_entrlblock | 285 (TIV0) | 70 (A3%) 8 155.4 5l
Topentrl block | 204 (51%) | 108 {67%) A 12T el
Sell-"Festing
Top-entrlblock | 204 (739%) | 100 (68%) 9 1218.8 Y
Top.presslip | 268 (67%) | 108 (67%) G (H{KH A
Self-"Testing
‘Top_presslip | 370 (92%) | 109 (58%) 10 1:16.2 62

Table 3.2: Comparison of synthesis results lor testable aud non-testable chironologically designed ABS Moddels

The above timings are indicative of limitations on the system (fast) clock which is wsed
{or global system synchronizalion. The slack time can be ealenlated by subtracting the above
timing values from a given clock period given in nanoseconds. For a comparisen with the
previous table, a valne of 200 ns can be used. The above timing values take setup lime
into consideration. Additional information was available from the PPR ool with respeel
to CLI} utilization: sowe CLDs were used for direct circuit impletmentation, while others,
feedthrus, were used for routing in addition to the interconnect network, Feedihreus, thus
offer incite into the actual LCA utilization and potential density hnprovements. As is, using
a base clock of T-10MHz, a slower pipelined clock of [-2M11z, and a threshold ealenlation
phase of 1/32M 1z, produce adequate response times ol 0.032 ms which satisfies our real-
time requirements. Furthermore, the eritical path produced a slack of 25% in the timing
analysis, providing reassurance that alternative or additional routing can be toleraled wilhin

this margin and still satisfy the necessary controller response times.

The testable cireuit added a 22-25% area overhead (CLB count), close Lo the above, and
a 10-15 ns timing delay, somewhat more realistic than that of the pre-layout results since
it is known that al least two extra multiplexers lie in the eritical path. This is rather high
but it can well be tolerated since (i) it is part of the design and serves Lo Tullill a reliability
specilication, (ii) the test vectors are included in chip, even if presently there are only 16,

and (iit) in control-type applications, it is customary for hardware duplicity to provide the

redundancy needed to verify cirenit operation, so in comparison the overhead here is small.

The difference from Table 5.1 and Table 5.2 in timing and arca exist due, in part to dif-

ferent algorithms which map primitive gate representations to the FPGA CLBs and [OBs,
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in addition to imprecise routing information, and lihrary component module representation
used by the Synopsys™ tools. a deficieney which the Nilinsg™ NACT toolser does not exhibit,
With syethesis tools like the Design Compiler and the VIDL Compiler, worst ease analysis
is often used and the timing results fend ta he over-compensated.  In general, the tiiming
differences between pre-layout and post-layoat for the Xilins PPGA Tell in the 6-17% range.
while the CLB utilization differed by at most 53%. Henee [aivly reasonable approximations
for implementation can be made with the more gonerie tools, however liual validation still
requires the technology dependent layout tools. fu facte sulliciently accurate timing was
achieved rom technology specific tools, withont back annotiation, so that the next stage in
the design phase was the progranmmation of the FPGA and consequently prototype testing,
Hence. the importance ol collaboration between synthesis tool vendor and the FPGA archi-
tecture vendor becomes apparent to shorten the design evele to hasten the testing ol the

realized design on aa programmed FPGA.

The timings are rather high for the Prescentriblock as compared to the Top_entrel block
which contains one more internal block. During the rowting stage, PPR experienced diflicnl-
ties with the Pres_entriZblk. We attribute the lack of routing cfliciency to the large nnmber
ol 1/O conncctions as all of the entity inputs and outputs were translated to ports, which
in turn had to be honded (as defined by the experiment with respeet to comparisons for
synthesis). The Top_cntrd block had less 1/O ports in its top level entity description as most
connections between the incorporated modules were internal so that the number of external
signals translated to PORTS and I/0 pads was considerably less. In general, the TOB connt
is only an indication of how the block connects to the outside world and are not valid for
comparison of sell-testing versus non sell-testing cirenits. Uhe arca of routing does inerease
with the number of 1/O pads required since additional nets must he allocated to connect,
the internal signals and entity ports to the 10OBs. A key lactor in FPGA synthesis is to
remember that the process is algorithmic and not optimal. AL times a small change in code,
can drastically change the arca and timing values or dramatically affect the routing, These
problem areas are very difficuit to locate and are nol always casy to solve. Awarcness of
such possibilities is imperative, even if the solution is to “haphazardly” change the VIIDL

code while retaining the same desired functionality.

Alternative design methodologies, design partitioning, FPGA vendor types, and encoding
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strategios, with perchance huilt-in-self-test with internal sean cells and JTAG implementa-
tion. 1o niune a few, are areas ol future research. Due to non-availability of sean cell models
[or the Xilinx cells, & version which implements sean technology was not synthesizable. The
awareness of the added overhead of BIST and the programmable nature of the chip were suf-
licient to discourage the inclusion of tins type of chip testing facilities in the implementation.
However, B/ does merit future consideration, as its focus is not only on single chip but
rather hoard and systent level testing. which is a must even if the ¢hip itsell can be repro-
grammed. As a further note for expansion, it was determined that the Field Programmable
Interconnect. Components (FPICY) and Field Programmable Circuit Boards (FPCB®) from
Aptix for last wiring and interconnection could be beneficial for the prototyping of the ag-

gregate ABS coutroller, vutil larger FPGA chips are available.

5.3.2 VHDL Synthesis and Tool Support

Two intelligent design-for-synthesis techniques lie with trial and ervor and modularity. Meet-
ing constraints is an iterative process, especially in VHDL where their direction specification
is not straightforward. One approach is to try several compiler options, i.e. exploit the
synthesis tools to get diverse results from which the most favorable one can be selected. The
is true for “all” levels of synthesis from logic up to system where different module entry
formats, ordering, and encoding along with variations in the ordering of the compilation
atilities and their directives {such as command line arguments or special in-line coding di-
rectives) will result in different circuit realizations. The ABS/Synopsys case study resulted
in several convictions for pragmatic compilation. With Synopsys, specific blocks such as
FSMs can be optimized with the FSA compiler, FPGAs can be optimized with the FPGA
Compifer, and testability features can be added with the Test Compiled®. Designing small,
madularized blocks, synthesizing them individually with different optimization facilities, and
subsequently connecting them and resynthesizing them produces better results than synthe-

sts of a flavtened design.

Straight sequential VHDL behavioral code tended to produce excessive combinational

o registered trademark of Aptix Corporation
K . - .
“a registered trademark of Aptix Corporation

“all registered trademarks of Synopsys Inc.
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logic and a somewhat asynchronons design with oceasional tndeterminacies. Manipulation
ol fogic gate and register connectivity is. on the other hand, time consuming, Fragments of
cach cutry format, hehavioral and structural, were employed (o achieve quick and ellicient
synthesis. Onee the desired arca and timing was achioeved. the VDL deseription was kepi,
otherwise more structural features were hrought i, Heneeo achieving the desired response
times amd area is an iterative procedure, Refinements for civenit improvement , such as real-
time constraints placed on clock(s). input and output points, the addition ol arcit constraints
or more RTEL level constructed elements can be employed it the resultant timings and area
are unacceptable. Additionally, ensuring that cortain encodings are already explicit, sueh as

control logic into FSMs as illustrated in Appendix B. also breeds ellicient realizations,

Implementation directives in design entry and compilation phases can be employed 1o
communicate design constraints to the synthesis tools. I this is not sullicient, Lhe designer
will have to intervene and direct some ol the synthesis stages. Of the VIIDL hardware com-
pilers tested. resource sharing across processes was not performed, 11 iU s known that two
separate processes perform the same Tunctionality and they will never be run conenrrently,
the designer can arrange to have one single process be accessed by multiple blocks or pro-
cesses. In the ABS design this can be seen with the timer module, and its mutually exelusive
operation in different vehicle states. Using a structural approach, one instance ol the timer
was necessary implicating additional multiplexor circuitry for its sharing. 'Free versus cas-
caded implementations are not inferred naturally by the tool, Care mus. be taken when
encoding in VHDL to convey this type of information. Pipelined designs are not antamatic.
Optimizations are done on Lhe combinational logic only, register retiming has not, yel made
its debut. The designer must understand what makes the synthesis tool infer combinational
and sequential circuits from VIIDL code. Even at a higher helavioral level of cirenit deserip-
tion such cireuit types can be conveyed through the process or block descriptions. Purther

reflections on “tight” FPGA designs which deserve observance, can be found in Chaptler G,

In summary, commercial synthesis tools are not yet that far advanced to produce & design
cquivalent to a user entered schematic, VIDL synthesis may not be suflicient for constraint
strict designs and some manual intervention is vital for cirenit realization, Additionally, care
must be taken when optimizing, some circnitry may be discarded, and some ports or nets

may be deleted producing an incorrect eircuit. Onee again we re-emphasize the need for
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designer sueveillanee during synthesis,

5.3.3 FPGA Design Specifics

As FPGA resonrces lack slightly tn density and timing, more attention shounld be taken by the
glil) A g. A

syithesis Lool and the designer during cireuit implementation. A partial list of clever design

approaches, many of which require special encoding or compiler directives and most of which

are arca consereers, is presented. The list will continne to evolve as FPGA architectures

tmprove, synthesis tools better interpret VIIDL yiclding better architecture exploitation, the

applications directed towards them diversify, and additional simplifications/approximations

are found,

Power of two implementation: in calculations, and integer ranges.

F'SM realization: explicit VHDL encoding of state Lransitions for control logic for best
g g

exlraction.

Data path width versus approximation: larger more accurate data path may re-
quire ROM usage, and can avoid the instantiation or creation of operational units

(*, /, exp, In) and the inaccuracies which may result from operations on them.

LUT conceptualization: may save time with usage of fast RAM as LUTs. -
Explicit. encoding to utilize built-in clock and global reset circuitry, through either

block tnstantiation or compiler directives, in the event where the synthesis tool does

not. antomatically instantiate such elements.

Architectural specific features: It is imperative to be aware of the FPGA technology
features and ensure that they are being exploited. Exploit technology specific architec-
tural features such as the LUTs, RAM cells, registers, tristates, buffers, multiplexers,
global reset circuitry, global routed signals, etc. Some FPGAs are multiplexor rich,
for example Actel and Xilinx, and for multiple drivers of a signal, multiplezer usage
may be preferred over fristale implementation due to the difliculty of the additional
routing required in their (tristate) instantiation. One particular case with Xilinx stems

from the CLB structure supporting explicit gated clocks. Synopsys’ VHDL Compiler
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currently takes VIIDL code which infers a gated clock and transforms it into a Qip-llop
with feedback. Not exactly the desired implementation when dealing with FPGA toch-
nology. The inherent architecture of a logie block accounts for a gatoed clock. and henee
the synthesis tool must be capable of exploiting the FPGA features while allowing a
high level description such as VHDL. The cirenitry s usable, built-in aud fanetional

so it may as well be exercised, even if it must be {orced.

o Sequential features: It is also essential to know the flavor of the registers/ilip-llops ol
the PFPGA.L The programmable logic blocks will often predetermine the allowable en-
coding. Recall, inferences of asynchronous or synchronous load or preload, synehronous
with asynchronous reset/set, ete., latches can be controlled by the VHDL deseription.
Figure 5.10 depicts a mandatory encoding alteration specilic to the Xilinx FPGA. An
asynchronous set or reset circuit required transformation to a synchronous set/reset
as Xilinx CLBs only support synchronous loads. Note however, that simulation will
permit all of the above statements whereas synthesis will llag component. availability,

and the beginnings of technology dependent VIIDL are apparent.

if preload | if clock_edge
<= valueg if preload
elseif clock_edg;z —> cl~::§l<= value;
a<=a-l; (3] Tac=a-l; (§)

tigure 5.10: VHDL transformation from asynchronous code to implementable synclironous

sequential code.

¢ Synchronous design: Synchronous designs are by far the most synthesizable, and pre-
dictable, and it is advisable to dcsign with such a style in mind regardless of the level
of specification. FPGA architectures contain large numbers of clocked registers which
cater to synchronous conceptualizations. While one clock is preferable, often mnltiple
clocks are needed, particularly for controllers. In such a case child clocks should he
created on chip and they should be derivations of the parent inpnt clock (external

clock) using a generically encoded clock divider.
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o Asvuehronons design: If the design is asynchronous. a fast clock can be employed to
syielronize aspects such as the input sampling. subsequent ealenlations, and result
generation commonly present in controller type applications, avoiding circuit hazards.
[However, hardware permitting. the clock rate must be sufiiciently high to trigger the
cireuitry quickly enongh to respond to the input rate and eventual generation of asyn-
chronous output signals, and perlorm the necessary computations. If physical limita-
tions prohibit & complete synelironous approach, asynchronous encoding may be beck-
oned. Synthesis of sueh VIIDL, not merely on FPGAs, ofien produces unpredictable
cirenit. implementations,  Unless carelully designed and simulated, final behavior of
synthesized asyncehronous VIIDL code will not be known, and even then glitches and
race conditions will most surely result. Furthermore, deterministic behavior will not
be puaranteed should the design traverse a migration path to an ASIC, as timing is

nol. eqguivalent hetween the two technologies.

o The types (behavioral and structural) or levels (logic, RTL, abstract behavioral and
system level, ete.) of encoding can be varied in VHDL. Iterations are commouplace,
with the synthesized version which best meets design constraints being chosen, either
by the tool or the designer. The tool will carry out iterations of its own recourse, but

if not satisfactory, manual intervention is necessary,

A briel sumnary of some design and implementation considerations:

e VHDL descriptions: If encoding is behavioral (and to some degree structural), it is
advisable to become aware of the synthesis tool capabilities, learn the FPGA architec-
tural features, obtain a reasonable understanding of FPGA synthesis (partitioning and
mapping) algorithms (or heuristics). and visualize the hardware. Complete abstraction
deteriorates FPGA realization efficiency. With structural descriptions, only instantiate
FIPGA specific components il technology dependence at the design entry level can be

accepted and ASIC migration is a small possibility.

o FPGAsare built with repetitive structures, hence try to organize, if possible, the circuit
correspondingly. IF a synthesized module produces an ingeniously implemented circuit

(upon reflection of parameters such as CLB or IOB counts and timing results or upon
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viewing schematios with desigraanalyzer), the format of the code should be retained,
I possible. the parameterization of such well-construeted blocks should be attempred

will the help of generies,

Noteworthy of mention regarding FPGA technology in general: there are features and
design styles which should be wtilized just as there ave those which cannot be supported,
Fitting a VIIDL design to different FPGAs will not resull in the same design realizations,
timings and parateters, some of which appear in Tables 5.1 awd 5.2, and are certain to

generale new measurement parameters and criteria,



Chapter 6

Design and Synthesis
Methodologies

Alter studying several high-level synthesis techniques [46}, [38], [39], [40] producing RT-level
descriptions, VIIDL encoding strategies, FPGA architectures and capabilities, and perform-
ing an ABS case study, it was determined that many of the heuristics and synthesis systems
have not. been directed to the commercial FPGA domain. Two major stumbling blocks were
found. Oune deals with theory, its realization and application, while the other centers on
the type of application being computation intensive. In theory, insufficient application of
the large quantities of research (papers, texts) has been directed towards FPGA architec-
tures with their structures and limited resources. Larger logic blocks, unlike primitive gates,
maintain particnlar configurations which synthesis algorithins should cater to. As is, the
abstraction of the synthesis algorithms towards a decomposition of a circuitl into control and
data flow and then the reduction to an unlimited number of registers and busses will not nec-
essarily find optimal results for FPGA implementations. Such techniques are more directed
1o ASICs. Secondly, the case study chosen required more than straight ALU operations,
for example logarithms and exponentials in the ABS threshold calculations, Such equations
would need to be written differently, and in simpler behavioral format to be acceptable to
some af the proposed synthesis systems. In fact, for the VHDL Compiler from Synopsys,

the encoding was more RT-level than behavioral, as this was the only alternative to fit the

88
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controller design onto the progranumable hardware. To sunimarize, this stady recommends
the inclusion of standard HDL pattern delinitions. more optimization leatures particutirly
for these HDL patterns (such as for FSMs). better resource allovation where resources can
be primitive logic gates or the unigue building blocks of the FPGA. and resource sharing
capabilities and their detection. This chapter mentions a few of the most notable 'PGA

design hints and strategies.

Though much rescarch has extended into the domain ol high level synthesis, touls have yot
to cfliciently implement some of these algorithms from a VHDL design entry format account-
ing for FPGA architectures, Simply porting of ASIC tools for FPGA implementation will not
produce optimal realizations. AL the time of this experimentation, often, only the simplest
form of heuristics coukd be expected from a synthesis tool such as a generie VDL compiler,
FPGA specific synthesis tools are needed yet in these, localization to hardware types can
be both a strength and an hindrance. Ideally, a generic VHDL compiler for design porta-
bility which is many-hardware locused would be most benelicial. Some ol the most abvious
measures are taken while selecting hardware resources, but their localized approaches hread
small scale solutions, Ideally one would like to see globally cfficient scheduling of operations,
resource sharing, and appropriate hardware selection (each of which have received extensive
rescarch). Additionally, while VHDL compilation produces predictable synchronous hard-
ware, asytchronous implementation, already diflicult from a design viewpoint, is still in its
infancy from a synthesis standpoint. Much work remains for suecessful matehing of an asyn-
chronous circuit’s functional and timing specification Lo both pre- and post-synthesis rosulls
through simulation. Once again, embodying asynchronous design techniques and rescarch

into synthesis tools remains to be exercised.

Through the implementation of the real-time controller, varions design hurdles were over-
come, and in the process, application specific, Lool-oriented, and VHDL encoding method-
ologies were developed. Defining practical design methods and synthesis procedures bestows
a pragmatic, as opposed to purely theoretical, engineering anchorage. Methodologies can be
formulated from regularities in the design cycle, re-used and updated when theory changes or
transgresses application boundaries. The following sections highlight mechanisms for design
within specified constraints, exploitation of architectural features via synthesis tools, improv-

ing VHDL encoding etiquette, and commeits on commercial tool capabilities/limitations.
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6.1 Well-Constructed Procedures for FPGA Conceptualiza-

tion and Implementation

Just as 10 years ago, from a simple study into design methodologics for the control parts
ol microprocessors [42], regular structures, time and lacility of design, modular architecture
approach, appropriate CAD tools were all deemed mandatory to handle the complexity of
fiture circuits and to ensure optimal solutions using automatic analysis. Similar needs, tasks
and goals are reflected in FPGA synthesis, where time and facility of design carry more
importance than arca, and regular structures in both the design models and the selected
hardware must be correfated to aid in decreasing global PPR procedures. This thesis aims
to show that the hest correlation exists among FPGA architectures geared lor specific design

methodologies and classes of applications.

preferred Unless the task of design entry is amongst one of specification refinement (such
as was the case for the Telephone Answering Machine Controller {TAM)), peripheral unit
deseription Tor simulation purposes! and, or a test bench (where the use of the after state-
ment is indispensable), then only synthesizable VHDL should be used. With synthesis as
the ultimate target, simulation of VHDL designs to test for functionality and specification
refinement, can benelit further stages in the design flow if constricting synthesis rules for
encoding and compilation are considered up front. If possible, selection of the FPGA type
is recommended first-ofl, followed by technology specific simulation using a synthesizable
FPGA-VHDL subset, then circuit realization. However, in some situations it is desired
to refrain from vendor choices until that latest possible so that alternative options can be

examined and compared.

'The proficiency of the synthesis tool as evaluated by the resulting circuit implementation,
was determined through o series of steps: VHDL encoding, compiling (synthesizing), and
viewing the resulting architectures and output files all of which generated CLB count, area,
hiard macro, and timing information. Both tool and designer took part. There will always
remain features which are better exploited manually than with the synthesis tool, and to

a small degree, vice versa. Currently manual intervention is necessary for dense designs.

YI'he modeling of the ROM was behavioral and used a large arrcy with simple indexing to mirrer read

operations. Due to its size it could not fit on the FPGA, so its encoding was less strict,



CHAPTER 6. DESIGN AND SYNTHESIS METHODOLOGHS 1

Whetler a synthesis tool can be created to remove this dependency, currently no, but an
initial step is to offer better tool-hardware integration, so that more FIPGA featnres could
he exploited.  ldeally. as little manual intervention as necessary is . but the eapability to
exert some control over block selection, placement and ronting to maximize deviee speeds

and densities must remain.

6.1.1 FPGA-Specific Hardware Considerations

A well known coneeptualization and realization tactic is to employ hardware re-usability,
both in time and space. Both are casily implementable in VIIDL and on FPGAs. Time re-
usability involves multiplexing units which seek to control the same hardware block. Spatial
re-usce refers to straightforward entity block copies with a unique set ol ol input signals driving
the input ports and output signals being driven. FPGAs have repetitive hardware structures

to support spatial re-nse and suflicient multiplexer elements to support time re-use.

Currently FPGA architectures are fairly regular. The core logic blocks in the array and
on the periphery are identical. However, certain angmented features such as: specialized
[/0 buffers, clock and resel circuitry, carry logic, decoders, tristate bullers, along with the
unique programming mechanisms and interconnect networks, cte., further characterize the
individual FPGA. Even now, memory capabilities are being integrated within some of the
FPGA structures (Xilinx) and more tristate capabilities are being incorporaled into the in-
dividual logic blocks (Atmel). Room for feature development, architectural expansion, and
creativity exist and are needed as design requirements and application arcas are continuously
evolving. In addition to pondering over application-specific synthesis, consideration should
he given to Application Specific FPGAs (ASFPGAs). Atmel designs FPGAs for datapath
applications with its partial reconfiguration on the fly and abundant registers and tristale
bullers for efficient implementation of bus and data-flow functions. A recommended next
step for this thesis would be to realize the ABS design on Atmel FPGA technology and com-
pare the density and performance capabilities with that of Xilinx technology. Additioually,
with the partial chip re-programming option, self-repairing circuits could he designed and

implemeanted complementing the existing self-error-detection circnitry.

Vendor logic blocks (LBs) could be customized to the different application areas and
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desipn styles, and diversity in the LBs could be introduced as well so that the array of
slements becomes heterogencons as opposed (o homogeneons,  Experimental evidence [23]
s indicated that several heierogencons architectures are more arca-eflicient than the best
homogencons ones, a viable alternative, and innovation. Section 5.3.3 lists sonie strategies

Lo exploit FPGA architecture,

6.1.2 VHDL Encoding Styles

VIIDL provides absiraction and case of design modifications. Altering the design, and mak-
ing incremental changes in VIIDL are less arduous than with schematic entry. In addition
to Lhe two approaches for intelligent synthesis mentioned in Section 5.3.3, a third became
implicit: top-level manual synthesis. The designer should not ease up on hardware imple-
mentation considerations when synthesis tool aides are available. They serve to reduce the
design time, nol to remove the thinking process. The VDL designer must still keep in
mind tosting procedures and design methodologies, and strategies such as scheduling and
resonrce allocation. One must “think hardware”™ as “he or she” writes HDL code, and if a
logic architecture is known that would yield a good implementation, “communicate it to the

tool™ [36].

Writing synthesizable VHDL code differs lrom encoding for simulation only. Even though
the specified functionality has been atiained, the realization may not be acceptable. Depen-
dent on the mapping library chosen, and the design constraints, the VHDL to hardware
Lranstation will vary. The current process is iterative. When results are favorable, they are
kept, otherwise another encoding, such as more explicit FSM or RTL level elements is at-
tempted often resulting in more structural level or technology dependent VHDL. Favorability
is often detected by analysis of a generated schematic, something which was 1o be avoided
through an HDL design entry. Visual inspection is often easier than netlist or code viewing
and less cryptie. Hencee, a valid case study conclusion using a synthesis tool such as the
Synopsys VIIDL Compiler, is that avoidance of low level considerations is not yet possible if
both ASIC and FPGA hardware is to be exploited to its fullest. A path for direct designer
manipulation and override must always exist, no matter how high level the synthesis tool

input is.
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Just as with schematic captures the best desigus are ereated from the Towest Torm ol tech
nology components, whore bost is defined in terms of area and timing, .\ comparative analogy
applies to VHDL as an alternative design entey mechanisin, The lower the deseription, ie,
strnetueal VHDL using gates and simple primitives, the better the area ellicieney and timing,
for programmable logic, The higher the levell moving up towands R'UL and wltimately 1o
hehavioral, the less area and time eflicient the design realization becomes, Regrettably, the
duration of the design evele moves in the opposite divection with the complexity ol logie

primitives used in the design process,

The manner in which VI, code s wrilten, program structure, encoding, mudulariza-
tion. affects synthesis. For example. contral can be attained implicitly with the knowledge
ol what type VHDI ereates combinational logic, and what Torm produces sequential logie.
Encoding and implementation of finite state machines has received much attention, sl now
an antomatic synthesis path is heing served by the research conmnity, FSMs are the hack-
bone of control cirenits. Appendix B lists a cleauly, synthesized VDL deseription of what
was determined 10 be the best way to implement FSMs on FPGAs, T the ABS case study,
one hot encoding oflers beneficial cirenit realization due to the register rich nature of the
Xilinx FPGA, where each CLB has two registered elements in addition Lo the possibility of
a progranmming a wide variety of combinational logic. In fact, it is onr beliel that writing
VDL descriptions [or FSMs can be standardized, so that o tool can ecasily decode Lhe in-
put description. Another option is to use a specinlized compiler, as Synopsys dovs, which
can focus on FSM extraction. The use of an FSM compiler is sngpested lor controller sys-
tems to best cater to FSM implementation sinee a tool like this could sample varions stide
encodings lor cirenit minimization on the FPGA architecture in question. The advantage
ol application specific synthesis tools is sell-explanatory. With system modularization and
the affiliation of different tools with these individual modules, global synihesis ean boecome
specialized. A small designer overhead is involved to inclnde the tool-associations but the

resulting implementation will be well directed.

Local resource sharing within VHDL process statements and single nested blocks is pos-
sible whereas global resources sharing, intra-process and inter-block statements, is nol yol
entrenched in commercial tool products. llowever, not all sharing, even atl the sub-process

level will be exercised as seen with the following example: Writing the following code,
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v_offzet := (V*32); .
IF ((current_min_state = increasing) OR (current_maj_state
..out_addr <= addrl + v_offset + m;

braking))THEN

resnlts in Lwo instantiations of addoers whereas the following code:

v_offset := (V#32) + m; . ) ) .
IF ({current_min_state = increasing) OR (current_maj_state = braking))THEN
.. out_addr <= addrl + v_offset

results in one. Carvefui encoding, or manual synthesis has aptinmized the cireuit, [nte-

grating Lhese skills into a synthesis tool should be unquestionable.

The main disadvantage with heliavioral synthesis, is the need for much tighter constraints
L accompany the VHDIL deseription, leading to a need for particular encoding styles and
slandards. Often the resuiting cireuit is not necessarily what is desired, does not mateh
Liming specilications, and may not function correctly. Behavioral encoding does nof produce
gliteh free implementations unless a design is completely synchronous. As mentioned in [53),
adesign synthesized with complex logie driving the gate of a tatch rarely works, Something
suelhoas 11 (A=8) THEN will not work in asynchronous designs if A and B are complex
types siteh as integers or bit vecetors. The comparison is made at low levels and each bit-pair
of the veetors will not necessarily respond simultancously. Ounce again, hardware design

concepls cannhol be neglected.

6.1.3 Design Problems: FPGA Solutions

Many of the previous commentaries apply not only to FPGAs but to the process of automatic
synthesis in general. I is acknowledged that deficiencies exist with VIIDL compilation tools
and often this can be redneed to the problem of design space exploration. 1 unlimited
time is allowed, the optimal solution can be found, however the designer cannot afford to
wail for eternity. Many problems are theoretically solvable, but practical solutions are the
ones in demand. A few general design for synthesis pointers which generate more efficient

realizations are listed,

¢ Learning the hardware is useful to ensure that synthesis tool generates efficient. designs.
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o Writing explicit VIIDL code is beneficial. 'S structures are well studied and their
encoding can be cleverly synthesized when written correetly, Lateh and register jnfor-

enees are also manipulatable from VIIDL descriptions.

o Gronping construets, VDL blocks, and VIIDL expressions attentively ean elicit a-

chitecturally optimized realizations,

¢ In designing synchronous circuits, one should avoid writing VIIDY, code which infers
asynchronous sequential logic. Certain asynchronous encodings are usable, but atten-
tion to their effects on implementation and consequently FPGA hardware knowledge
will be a prerequisite. Section 6.1.3 on asynchronous design and handshaking provides

more details,

o Generally, a single clocked design is the ideal choice for circnit design. 1t is sale, stmple,
structured. casily implemented and prediciable. Multiple clocks may be required, in
which case the designer must take extra precantions in encoding and simulistion, lvent

. driven simulators do not always perform as expeected, and their operation must be

clearly understood.

¢ While usage to tool optimizers is imperative, their resnlts must be verilied maneally
1o ensure continnal correct circuit realization (applicable outside the realm of FPGAs
as well). Synopsys provides such tools as the FPGA Compiler and the FSM Compiler,

both of which were used, the latter only oceasionally.

¢ Tool dircctives must be mastered. If the VHDL compiler alone does not infer the correet,
FPGA features, then the compilation must be directed for the destred technology, so

that technology specific features are optimally instantiated.

o If design portability across FPGA technologics, or future implementations are a po-
tential, then customizations should be avoided. For example with the Xilinx XC4010,
though all on-chip flip-flops contain a built-in clock enable, the version of the synthesis
tool utilized could not instautiate the proper hardware and created a feedback path 1o
the flip-flop inputs instead. In licu of customizing the VHDL code to use the buili-in
clock enable, it was decided to leave the code as is and acceptl the results knowing that

. in future versions of the compiler the correct hardware features would he exploited.



CHAPTER 6. DESIGN AND SYNTHESIS METHODOLOGIES 96

o I the final technology is known, and portability can be sacrificed. then lower levels
of design and “customizations”, such as hardware instantiation in VHDL, particular
svithesis {compiler) options, and more stractural entity descriptions. are alternative

design options when constraints are tight.

e Dosigner synthesis techuiques, referred to as manual synthesis can be invoked by the
lolfowing methods and approaches should the resulting circuit implementation prove

unsalisfactory,

Resource sharing: 1ime and space multiplexing,.

Design small modules, ones that fit compactly in a CLDB(s).

Manual partitioning and modularity. Plan and organized circuit with the size and
structure of the FPGA in mind. Create individually optimized modules for those

circuit parts which are time/area critical.

!

Employ tree versus cascaded structures.

¢ Solution Lo bus conflicts or mulliple drivers on a signalis uncarthed most easily through
tristate buffers or multiplexers. VHDL bus resolution functions are not synthesizable
unless they are of the WIRED_AND and sometimes the WIRED_OR type. Often this
miry not suffice. As the synthesis tool will not correct such a problent, it is up to the
desiguer. In such a case the implementation is then application specific. For bussing of
wide signals, mulliplexers should be employed, as they are readily available and reside
in the CLBs alongside the CLBs. For single signals, tristate buffers are suggested and
an be instantiated but they do add routing overhead, since they are external to the
CLBs, and do not exist in byte or word aggregates. The FPGA compiler version used,
could not instantiate tristate buffers, so it could not infer one over the other based on

sclected integer lengths of the signals in question.

A few summarizing key points are worthy of mention. Though the front end of the
design phase involves a VHDL compilation, and a synthesis tools exist, one must still think
hardware. ‘The viewpoint that VHDL is technology independent is a myth for any realistic

design. If synthesis and a technology is chosen, then the likelihood of the designer customizing
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code is unguestionable.  Aceeptance of technology dependent VDI will vesult in bottor

circuit implementations.

Synchronous/Asynchronous Behavior

Asynchronous design is delicate as events happen independently Trom a system cloek. Multi-
ple clock interaction, two communicating processes synchronized to separate clocks, sampling
haphazard input data at relatively high [requencies, or handshaking between two processes
are all examples of asynchronous clements. Describing these events in VHDL, antomatically
synthesizing them, and attaining the desired functionality is not alwayvs immediately possi-
ble. Asynchronous design principles are specific to the synthesis tool and to the technotogy.
Tool specilics, particularly VHDL synthesis subsets and encoding styles, and technology lim-
itations must be reviewed belore design. For example, the Nilinx XCH010 technology woukd
require asynchronous set/preset flip-llops to assist asynchronous design realizations. With-
out their avatlability, work-arounds had to be found, and VIIDL encoding was restricted as

was illustrated in Section 5.3.3.

The ABS design process in this thesis” case study, explored several asyuchronous method-
ologies but repeatedly encountered solutions which required synchronizations with a clock
or strict monitoring of handshaking (ack-nack) protocols, A wail stalement can synchronize
asynchronous elements to a system clock, supervise handshaking, and provide control llow,
{ts use for general synchronization, control and management, over the asynchronons control
signals is highly endorsed. One approach was to always synchronize commuuicating pro-
cesses Lo a fast, global clock, through higher level state machines as seen in Chapler 5 with
the Master and the Pres_entrl FSMs, also listed in Appendix B. With respect to handshaking
protocols, Section 3.3 gives examples of encoding styles for VDL description of inter-block
communications. The timer block interacting with the FSMs and the two pressure-holding
subblocks is indicative of inter-process communication, whereby the wait for ¢lock edge was
replace by a wait for an enable signal or an event generated during one of the states. Asyn-
chironous events were translated to “enable” signals, and cither internally synchronized to
a clock, or externally synchronized through another process, onc of the two main FSMs.

Appendix B lists the VHDL encoding, indicating process interaction during ABS operation
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of the above mentioned blocks, and methods of global clock syachronization.

Other techniques used Lo time, synchronize and control events was the use of clock divider
theory. On one hand events could be staggered along several clock cyeles dependent on the
application needs. Aunalogons to a pipe-lined design approach, this strategy permits event
sequencing and may solve some synchronons or asyuchronous timing issues. Alternatively,
wailing for multiple occurrences ol changes ol a signal, such as a clock, can produce a
clock divider. Nevertheless, synchironization of individually ¢locked processes had to be done
explicitly, and Tirther stresses the RT'L encoding style required with contemporary synthesis
tools. Additionally, FPGA nsage lavors design where all synchronization should be done on
chip. ldeally one clock is preferred, but if multiple clocks are needed, on chip clocks dividers

are advised to ensure logic conformity.

Dependent on whether a process is constructed synchronously, with a global clock, or
asynchronously with enable signals inferred [rom external or neighboring process events, the

preparation and interpretation of the simulation should reflect the design methodology.

6.1.4 FPGA Test Philosophy

Several of the different stages of testing and and mechanisms of test inclusion were discussed
in Section 3. During construction, a design is not complete and can not be branded
functional until tested. During operation, the design must remain fault-tolerant or possess
compensittion alternatives or system shut-down capabilities. Controllers constantly monitor
and manage systems, and are required to be continually self-checked for correct functionality.
Methods to perform this efficiently and within the area and time limits of FPGA technology
were considered. A renown test philosophy would be to utilize more than one controller
chips and compare the outputs in time. Should one of the controller chips fail, then another
conld resume master operation with some sort of back-up in effect flag or the systemn would
shut down with an error flag. With such multiplicity, the burden of additional chips, added
comparators, some verification circuitry and control logic must be tolerated in addition
to newly created datapaths since the operations are multiplied. As mentioned earlier two
or three-unit systems are commonplace. To avoid this area overhead, the proposed cycle-

stealing, hardware tinte-sharing solution was utilized, successfully implemented and extension
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to other control applications is encouraged.

Hardware sharing with value injection as a concept can elicit a generie application specilic
testing procedure. so long as the hardware performance can accomadate the real-time needs of
the conglomerate system. In the ABS controller application, where the timing requivements
were in the order of human respouse times, Limings in the order of ms are sought. FIPGA
technology can be clocked in the order of tens of Mliz. so that some leeway remains when
the eyele stealing is enforced. huplementation of on-line sampling lor testing purposes is
therefore a workable preposition. lowever monitoring the results of operations and ensuring
a number of fixed sequences will require some customizations which requires knowledge of

the design itself.

Ideally we want continnous monitoring of the controller civeuitey. The moment a failure
is detected somewhere in the cirenit, its operation must cither be adjusted or halted, as
incorrect controlling can be hazardous. For an ABS, a Bilure could hinder overall hraking,
precipitate brake failure, and in turn cause an accidenl. However during constant monitoring
of the system, normal funclionality mmst not be sacrificed, and the controller nust continue
to supply real-time responses to its actuators. Currently, the ADBS specilieation mandates
lanlt-detection and partial fault-tolerance. A design iimprovement would enconpass the
implementation of theoretical ABS dynamics which is direeted towards more exhaustive Taull-
tolerance and coverage. However, the percentage of thorough fanfl-processing will remain

limited by the FPGA technology limitations.

The Test Compiler ('TC) from Synopsys is capable of adding in scan chain elements,
connecting them together, and adding a few extra pins (10Bs) for scan chain serial input
and output. A Xilinx library which furnishes the scan chain equivalents for the flip-fops
was not available. The possibility of writing proprictary ones in VIDIL and then including
them during the Test Compiler’s component inferal phase exists, It was decided that these
features did not merit inclusion as the chip is programmable and chip density alter parti-
tioning was greater than 90%. The T'C is also capable of aflixing state of the art Losting
facilitics known as Boundary Scan, JTAG, to the circuits periphery. Already embedded in
some FPGA architectures, this feature can help create more global or bhoard level testing
procedures for a controller application which subsists in a larger system and interacts with

other chips possessing the same style of testing, Due to previously mentioned unavailability
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of a particalar Xilinx library, such a feature could not he implemented, but it is of future

imkoerest,

6.2 FPGA Synthesis Issues and Proposed Solutions

Ceortain hurdles exist for FPGA circuit realization using synthesis tools, and HDL entry
methods. Todays synthesis tools have a number of limitations. To cite a few, they require
many iterations or lest eases; they do not provide much feedback, or control, over place-
menl and routing; and they may produce results that fall short of those attainable from
schematics. As stated in [25], even successful synthesis users say that the dream ol technol-
agy independence ~ the idea that one can write a single high-level description and simply

re-target it 1o any device family — cannot be achieved today.

Both the synthesis tool and the FPGA device architecture must be well understood to
obtain [avorable results. Just as hardware structures and logic blocks can be customized
1o specilic applications one can also customize hardware to synthesis tools and HDLs. As
mentioned by Rose, {23], two angles for direction exist: “Architecture must be synthesis

friendly, and synthesis must be architecture smart”.

Aun immediate limitation of synthesis tools materializes in terms of device performance
and arca cefficiency. The key to using FPGA synthesis successfully is knowing where it works
and where it doesn’t, Forexample with respect to FPGAs it was noted that logic synthesis for
random-logic clements such as state machines, address decoders, lookup tables and straight
boolean type equations is very efficient, but synthesis for arithmetic or dataflow functions

necessitates supplementary improvements, as depicted with the ABS case study.

Library support systems merit investigation as they are the back boue of a synthesis sys-
tem and its inherent heuristics. Technology specific libraries will obviously produce better
reatizations, however device independence is becoming increasingly important as numerous
FPGA vendors exist and continue 1o enter the market with new devices. However, frequently,
the libraries supplied by the synthesis vendor are not sufficient as they are too generic and
will not be optimized to exploit the technology’s features. Abiding by traditional approaches,

as mentioned in [61], the libraries can be considered analogously to hardware off-the-shelf
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components. where each FPGA vendor is responsible for guacantecing their programming or
implementation in the moest optimal way on Lheir FIPPGA families. Nevertheloss, some non-
standard components must reside in the library to cater to particular avehitecture Tailies,
Settling on a standard sot of hardware elements, such as the Libeary of Parimeterized Mod-
nles (LPM) [57]. across FPGA vendors with the option to casily integrate vendor and user
specilic components would aid optimization of synthesis algorithms and help make designs
portable across vendors. LI'M defines higher-level modules for synthesis tools to pass to
back end tools, An attempt at tieir integration into design ald toals has been waterialized
through XBLOX™M from Xilinx. Hence to support Leehnology-trausparent design methodol-
ogy and to abtain the best cirenit implementations, a generie FPGA library of bloeks (which
all FPGA vendors would agree upon and support) along additional vendor specitie blocks
(which can be accesses through hooks in the synthesis system) should be reviewed, A more

in depth discussion of synthesis support systems and library creation can be found in [56].

Furthermore, from an algorithmic perspective, it is proposed that technology specilic
synthesis utilities deserve more observance, for superior cirenit realizations, Some vendors
such as Synopsys and Exemplar have already taken steps in creating specialized oplimizations
for FPGAs: Exemplar catering to many FPGA types while Synopsys catering to Xilinx and
Actel FPGAs through its FPGA Compiler™ . Moasurement of Exemplar’s system marits
was, unfortunately, not possible, however both systems dealt more explicitly with RTL and
logic level synthesis and were lacking in higher levels of design entry and behavioral synthesis.
If they could process some higher levels, the realizations will not be oplimal or tuned to
application specific features. Hence, as an underlying theme, synthesis tools should become
more design style specific.  Subsequent sections will highlight certain application specific
synthesis steps which could be integrated into a design style specific compiler to further

optimize the tool-automated circuit realizations.

With respect Lo synthesis and design size, further limitalions surface. 1t scems 1000 gates
is about as high as one should dare to go in a single pass [25]. The idea is to synthesize small
blocks and then pull them into a hierarchical schematic. Using reduced blocks permits certain
passes of the synthesis tools to succeed in some local optimizations. Varying the numerons
* compiler directives and utilizing the specialized compilers can also be nsed at this granolar

level {for the individual modules) resulting in overall (global) cirenit optimizations, Different,
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civcuil madules may be better served by application or design-style specific algorithms which

can he served by the specialized Lools.

For many of the above to achieve froition, more regard to the need for a tighter coupling
between synthests and layont (placement and routing) must be alloted. A synergy between
tool and technology must exist with adept communication protocols. This would invelve
the tools understanding the hardware features, providing queries, processing feedback and
passing Liming constraints to layout and bringing aceurate wire delay estimates back into

synthesis, i.o. back annotation,

6.2.1 FPGA Structures and Design Methodologies

Exploitation of the FPGA architecture via synthesis algorithms is lacking. Most FPGA
families have dedicated hard macros lor handling arithmetic functions, but often synthesis
lools pass collections of gates, not hard macros, to the placement and routing tools. It
is usuatlly only the technology specific (vendor specific) tools which pass hardware specific
macros and much more technology specific information. In this design experiment, Synopsys
was able to pass one type of hard macro, an ADDSUL6 bit unit, which is the extent of the

technology specifie library available.

Chapter 2 introduced the signilicance of regular structures and distinctive design proce-
dures for partienlar application types and hardware resonrces. With controller applications
instantintions of Moore and Mealy type FSMs are abundant. One such case study proved
the efficiency of their implementation on Xilinx FPGAs heedlul to register abundance and
software capability to handle known structures (VHDL models in this case) and exploit
hardware. Datapath operations like addition, subtraction, control, data transfer are recog-
nized and synthesized to units such as adders, ALUs, registers, multiplexers, bus drivers and
busses, by the better synthesis tools. The better high level synthesis tools will extract FSMs
o control the multiplexers, registers, bus drivers, and enable certain processes with correct
input data during the correct state and on the correct clock cycles unlike RTL level synthesis
whore conscience FSM encoding is required. However, in either case, once the application
traits are recognized, their implementation should fall onto hardware which caters to their

kind. Our FPGA served for the most part, well but was lacking in the area of drivers, busses,



CHAPTER 6. DESIGN AND SYNTHESIS METHODOLOGHES 103

and fast and ecasily usable memory banks.

Most datapath functions are synchronous in nature, matching their timings and operation
with the system’s clock or controller.  Availability of programmable logie devices which
provide for casy clock distribution, predictable timing, multiplexer, register, and hus driver
availability. in addition to bus layout features wonld be highly beneficial, Additionally direct
mapping of ALU operations. counters. and register files with fixed higher level blocks would

be favorable for FPGA synthesis.

6.2.2 Design Entry and VHDL

High level design languages provide a standard medium for communicating design data
hetween vendors and customers, in industry, and among designers working on varions aspects
ol the same project. VHDL is a hardware specification langnage, a vecognized standard, and
it encompasses many interesting features, sueh as hierarchical level deseriptions, hehavioral
descriptions and user delined attributes. I is a straightforward and versatile niethod of
entering design specilications and i the code is generic enough migration Lo an ASIC is

fastor,

VIDL is currently more acceptable in the industry environment, so much as a coryes
sponding versatile library systrm should cater 10 both the hardware platforms and the HDI,
for optimum synthesis performance. The synthesis system which cultivates the cominon

clements of the entry and implementation of a design, is superior.

Repeatedly, the steps undertaken by a synthesis tool to realize an D1 encoded cireuit are
cither not sufficient or they produce undesired effects. In such a case manual synthesis can he
attempted to alleviate unwanted circuit realizations. One occasion arises when an addition
operation of unequal size operands (different integer ranges) has Lo be carried out. Synopsys
automatically expands the smaller addend to the length of the longer addend, and infers a
large adder. An implementation using an adder the size of the smaller addend, then adding
the carry of this operation to the remaining part of the larger addend, and concatenating the

two proves to be faster, and less area consuming?. Morcover, at times, addition is required

21f the operands are comparable in size this is true, bowever of one is less than one half’ the other such

methodology may not provide better realizations, but will not resuit in & poorer implementation



CHAPTER 6. DESIGN AND SYNTHESIS METHODOLOGIES 10

which disregards the upper bits, such as a circular counter or an address generator. Inferal of
the simallest adder to correspond to the sinaller addend is then desired. Additionally better
eoncatenation and sheing leatures conld be employed, Defining an imteger range of 0 to 255
should not infer & 9 bit adder lor a potential sign or carry bit when arca is critical in FPGA

designs even Lhough it may be acceptable for ASIC implementation.

The ereation ol a synthesis language would be henclicial such that both a synthesis
paradigm and functional components become standardized throngh a specification language.
[t would be generic yet parameterizable and would fit with all levels of synthesis. For
example, just as with VHDIL, there are reserved words for language constructs describing
Lhe ardware, perhaps elements such as CLOCK and RESET could hecome fixed. At any
level of a design implementation you often need a clock to synchronize your circuit no matter
the level. The term CLOCK would then imply at say a high level, synchronize this part of
the cireuit, and at the low level it could be describing the clock signal which are feeding
into the flip flops. Similarly with a RESET signal. In fact, more than one could be defined

(reset2, resetd, ete) with similar functionality at the various levels of circuit description.

There are additional problems when employing an HDL, and synthesizing to FPGA

hardware. The following points are noteworthy:

¢ Loss of technology independence, One has to manipulate the VHDL so that the

targeted architecture flows smoothly.

Synthesis does accelerate cireuit realization once a methodology is in place, however
better performance estimates during the carly stages of synthesis are desired. For
the 20-50M U1z frequency range, synthesis provides satisfactory performance for parts

running in this ranges.

¢ Better timing coutrol is needed. Synopsys predicting interconnect delays. Often too
optimistic resulls or too conservative results are obtained. So it was decided to ignore

delays and concentrate on area, and use the timing from the XACT PPR and zdelay

tools.

¢ A synthesis tool often required additional help to meet design requirements. Qccasion-

ally one has to take the VEDL down to a very low level to force the synthesizer to
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generate desired realizations which meet specifications. I tining or area spees are ol
met, several iterations are needed to elein up blocks which consume to much space or

reduce eritical paths,

e Certain VIIDL construets must he avoided which generate inelficient designs. It comes

down to a technology sympathetic design™ [22].

¢ The designer is not removed frem technology concerus as the importance of loealing
constraints within the FPGAs themselves proved vital. Tt was not possible to write

VIHDL cocde withoutl knowing the target technology.

6.2.3 Synthesis/Layout Suggestions

The Synopsys to XACT layout was nol a direct technology driven path. CLB clustering,
and FPGA CLB implementation belore the replace.fpge command, will not necessarily he
preserved. A change in the current design flow would be beneficial. Tdeally o notlist formal
which could accept logic block clements specific to the FPGA wonld be destred. ‘T'he synthoesis
tool resolved the cirenit algorithmically into technology specific components, yet the transfer
Lo the layout tool required translation to logic gales. CLB and 10D clustering was somewhat
lost in the process, and design constraints could not be passed to the layoul tool. Much of
this is known, and consequently the synthesis tool vendors and the hardware people are

working to improve Lhe tools and hardware to form a Lrue synergy and reformed toals.

In Chapter 2 we introduced the synthesis and layout platform from which L ean be
deduced that a need for a lighter integration between synthesis front-end design tools and
FPGA layout tools arises. "To bring out the full power of the technology [22], synthesis tools
must be capable of passing hard macros Lo the placement and routing tools, and layout tools
must readily accept constraints {timing, area, etc.) from logic synthesis or schematic entry to
produce fast, dense designs with antomatic placement and routing. However, sotne guidance
and manual intervention whenever necessary should remain accessible. For example, FPGA
pin-out placement capability is vital for prototype testing otherwise its surrounding test
environment would continually require alterations (quite time-consuming).  Additionally,
better timing control on interconneet delays, could be accomplished il timing constraints

could be passed to the layoul tools and accurate wire delays could be brought back into
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symhiesis. Furthermore the presorvation of logie element. clustering as the design passes
to the layout (NACT) 1ools should be enforeed, and ean be implemented with meaningful
constraints heing passed 1o the layout level from synihesis tool. Lastly. full incremental
design, synthesis, aud routing capabilities should be attainable. One thing missing from the
Xilinx 1000 1ools, is a re-entrant router, i.e. the ability to change a few logic elements without
rerauting ihe entire chip. Synopsys has an incremental compiler but this is for synthesis,

and it is more a time saver than a design ool

An efticiently synthesizable VIIDL subset which is technology indepeudent, yet which
contains anguage construets specific to FPGAs, 18 aiso worthy of mention. The VHDL
stthset Losted in this case study should be expanded, and uniformity amongst other synthesis
tool vendors which support VIIDL is also recommended. Common elements akin to cireuit
resel, signal passing and synchronization can be dexterously supported by keywords such as
clock, start, stop, resely global.rescl, state | edge and ete, prechuding the need for explicit and

custom encoding prescribed by the synthesis tool capabilities.

Currently, the VIIDL code must be manipulated for the target architecture. Some VHDL
coustructs produce inefficient designs and unwanted structures while others are illegal. Some-
Limes, the VHDL code has to be taken to lower structural levels to force the synthesizer to
generate the desired circuits, 1t was noted that the VHHDL Compiler from Synopsys was un-
able to instantiate certain hardware features automatically, the decoders, memory eletents,
and clock cuable circuitry from VHDL descriptions. At these levels some technology inde-
pendence is lost. Synthesis tools should target an approach which uses generic, technology
specifie, and user components effectively at higher levels of synthesis, as opposed to manually
instantiating them which becomes just another form of schematic entry in words as opposed

to symbols.

Ideally, using a generic VHDL subset and synthesis tool which contains device-specific
optitmization heuristics to provide efficient utilization of logic within the FPGA could avoid
the above manual work. Optimization for the technology can also be performed for spe-
cific applications or design styles under the influence of dedicated compilers, directives, and
libraries {as mentioned ecarlier). Just as an FSM Compiler exists, a new conjecture sug-
gests additional tools: one such as a DP Compiler for a strict datapath VHDL encoding, a

Pipe Compiler for timplementation of pipelined hardware structures, or a MEM Compiler,
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to best explore farge data steueture realizations, For cach, optimal VDL encading can be

performed knowing the particular VIIDL constrnets which favor certain design styles,

Additional eapabilities sought encompass: timing-driven placement and routing, the abil-
ity to take constraints from synthesis, manual floor-planning capabilities, high-level macro
functions, direct exploitation ol specific hardware technology features. Deadlock detection,
as is flagged by some soltware compilers, would be an interesting featuee to have, 1 is
more of a simulation wish bhut could alleviate time spent simulating and debugging a cirenit
where two hardware units are waiting for each other. Such an error vecurs lrequently in

asynchronons designed circuits with handshaking protocol.

I is expected that the synthesis too! explore and adopt some of the available algorithms
which are so favorably deseribed in some of the literature, At the sione time diveel application
of them to FPGA technology is desired. For example, due to the nature of some FIMGAs,
a plobal memory block (shared memory) vorsus local rogister (distributed memory) tradeoft
should be explored in the respective FIPGA™s context. Xilinx in particular has Mip-flops evenly
spread out as they reside within the CLBS which are the rogularly repeated stroctures of
the legic cell array, This arrangement shoukl be considered during memory element hinding
and allocation, Kunowledge of the hardware can permit synthesis tools to formubite FPGA
specific optimizing design strategies. Employing tools which use sophisticated algorithms
which converge on the best solution, and a rules deiven approach where requirements are sel
up front to reduce the amount of clean up required at the end will keep the FIPGA dJesign
cycle to the fewest iterations possible. To Turther decrease protolyping lime, the shortest,
Lime per iteration is needed, hence support for ineremental design and synthesis eapabilities

wotlld be quite practical.

A closer link between the hardware and the synthesis tools would contribnte 1o the
achievement of a fast and dense design which meets the designer’s constraints, FPGA ar-
chitectures are constantly evolving and an alliance would open a fornm for design exchange
between VHDL design entry and FPGA logic block structures so that more direct, and of-
ficient, synthesis inferences are made. This would permit better exploitation of the FPGA
specific hardware resources, and direct input of synthesis constraints into the layont towls,
It secems this soon shall be achieved with the alliance of our two selected EDA vendors (Syn-

opsys and Xilinx), As mentioned in [22], knowing where the architectures are heading, will
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quicken the design of respective synthesis algorithis and henee the availability ol these effi-
cient toods, Some of these requests, improved support for Nilinx 1000 leatures. and ability to
drive NACT with Synopsys Uming constraints, and the ability 1o back-annotate technology
specific logic and routing delays fron XACT to Synopsys's simulator, are slated 1o come out

within the next months according to [22], and their eflfectiveness is yet to be determined.

Timing Constraints and Validation

Timing driven analyses are imperative. ‘The incorporation of timing constraints in VIIDL
is Tinperative. Syuthesis of VHDIL code with straight inclusion of after statements is not
yot possible. An alternative would he to support a subset of timing constraints. One idea
is Lo allow after statements al only certain peoints in the VIIDL code. Adding in a timing
parameter or a fiming map along with the port definitions is another alternative, would
provide some timing information for a block or process, or an cutity description, respectively.
Another alternative is to include relative timing techniques. This can be equated to the
inclusion of single or successive wait statements among processes or within a single process.
An analogous feature was introduced by Gutberlet et all [1] using the after statement
Lo incorporate relative time into their synthesis algorithms, Wait statements with timing
vitlues which were multiples of a clock cyele were permitted and hence contained in the
synthesizable subset. For example, a wail of 200 ns (a multiple of the main clock which is
100 us) is synthesizable given that the base clock has a c;vcle time of say 100 ns. As an
oxtension, the synthesis of VHDL containing multiple clocks should also be ensured. With
such a strategy, it would be unnecessary to specify a cycle time and all the timing values as

they are merely multiples of each other, and more optimization schemes could be explored

within the synthesis systemn with respect 1o clock speeds.

For validation purposes and perhaps verification, auvtomated timing analysis with the
ability to compare the completed design against user specified requirements and report back
on potential problems, would decrease the development cycle time. For a synthesis tool to
adequately process design constraints and matceh them with the implementation results, all
clements must be modeled strategically so as to provide sufficient coverage and testimony of

this to acquire the designer’s confidence in the tool’s ability.
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6.2.4 Functional Self-Checking

For the ABS application, driver safety is vital so tanlt detection mnst be o priority and the
system must either folerate faults, still ensuring salery. or shut the system down completely,
The testing must be done on-line. which is possible with the evele-stealing test procedures
deseribed. and ideally it should not double the size of its hardware implementation while
providing a high degree of reliability.  Furthermore, a proficient mechanism is songht to

evaluate the merits of the self-checking circuit based on its efticiency of error detection,

It was assumed an FPGA is Tault-free before progrimmming, awd that cirenit verilication
for manufacturing faults has previously been performed by the vendor. Conseguently, the
testing procedure proposed in Chapter 5 is a lfunctional test (or the detection ol field er-
rers. The ABS controller is expected to [unction as an aid in emergeney braking mancuvers
without endangering the vehicle occupants, and if this funetionality il not being met, the
ADBS controller must be halted from further aperation. The necessary tools to evalnate such
a functionality-testing procedure were not available, however a procedure 1o do so will be
proposed. Based on the previous assnmption, a standard procedure ol comparing fanlt-froe
and faulty circuits can provide information as to the testing capabilities of a test eireuit,
If the test circuit can detect a difference in functionality, often measured by the cirenit’s
oulputs, hetween the two circuits, then that particular fault in the circuit is testable by 1the

Lest-circuitry.

Injection of faults into the ABS cirenit followed by resimulation of the circnit checking
whether the funclional test cirenitey deteets the Tault and shuts down the ABS controller is
onc way Lo measure the coverage ol the on-line self-monitoring mechanism. The eviduation
process depends on the number of faults to be accounted for, and can be a fenglhy process,
To achieve the highest fanlt coverage one wonld liave to consider all possible faults, i.e. stuck-
at-0, 1, wire shorts, open circuits, delay faults, and multiple Taults which can be combination
of ail the above. Realistically, as time to market is a central issue in the design cycle this
is not possible, and testing of stuck-at-0 and stuck-at-1 faults is considered suflicient [4],
[5]. With a list of faults, the next step is to find a set of vectors which cover 100% of the
faults. Being a rather difficult task, a lower coverage can be accepted, the valne of which

would depend heavily on the application. Alternatively, for area sensitive designs, a given
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set-size of test veetors can be specilied with the coverage calenlated correspondingly by the
above method, IF either measoare s vnacceptable, the testing circuitry, or vector set can be

onhaneed,

The seleetion and encoding of faults into a VIID, description is not the most feasible
solution as the synthesis tool will not guarantee circuit implementations, and fanlts like the
above must be added at lower cirenit levels. However, this is not always possible with an
FIPGA implementation, for the exact low level architecture is not always known and the
designer would find it diflicnlt to inject faolts on an “unscen™ cireuit. A viable solution
the rests with the FPGA and the synthesis tool vendors adopting the responsibility of
injecting faults into a circuit, and permitting the designer to evaluate her/his design and
test. methodologies. Some comunercial tools support this functionality, even generating test
vectors for the cirenit under test. Alternatively, the designer can concentrate on functional

tests which is the what the ABS self-monitoring circuit attempts to address.

6.2.5 Mapping onto FPGAs

High level synthesis requires algorithms to Munction at the various levels of circuit modeling,.
Some of the .'.'nig,'hcr level methodologies were mentioned in Section 2.2.1, but ultimately the
lowest level of circuit representation or modeling will pass through the technology mapping
phases. Like ASICs, every stage of synthesis necessitates optimizations, but unlike ASICs,
this stage is very particular to the FPGA vendor as fixed structures exist in lieu of primitive
gate forms. Certain algorithms exist for mapping, Chortle-crf, Mis-pga, Amap, Xmap, [21]
are no longer suflicient due to the number of additional special features which are surfacing
on the newer FPGAs. The heuristies require modifications to cater to these specific features
appertaining to each FPGA. Assurance that VHDL compilations and translations exploit
the available hardware direetly, instead of going through several design phases which convert

VHDL to first standard logic and library components, is desirable.

‘The FPGA logic blocks are now designed to support multiple types of functionality.
Often the combinatorial and sequential sections can be assigned individual and separate
design blocks. Straightforward mapping of logic no longer exists and more technology specific

algorithms are required. The move to pre-planned designed units containing an aggregation
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of lagic blocks offers exploitation of target architecture and potential for good synthesis.

Though clustering does provide a degree of efficiency, it still remaius o problem to decipher
the correet building block size, at what level technology dependenee should step in, how to
interconnect the agegregates. and at how to handle the interconnection ol blocks with 1heir

varying levels of specification.



Chapter 7

Closing Remarks

7.1 Accomplishments and Results
The initial goals propagated research in this thesis Lo master:

b Research into application specific synthesis and its merits, With FPGA synthesis, it

. is well worth considering both hardware and software application specific features and
desipn methodologies to best exploit technology. Timing critical and higher density

requirements demanded from FPGAs provide motivation to produce efflicient and sat-

isfactory circuit realizations from such synthesis tools,

2. Suceess in the implementation of a controller iype system using FPGAs instead of the

traditional microcoutroller/RAM /software approach.

1. Introduction of a new method for system reliability tests in controller applications pre-
cluding the module multiplicity of previous methods. A self-checking circuit was real-
ized with knowledge of design specifics, employed hardware re-usability, and provided

a general methodology for arca-limited controller testing.

1. Praposed evalnation scheme for the self-checking functional tests on the FPGA, which

involves injecting faults and verifying whether the test circuitry detects them.

In general, with the use of VHDL for design entry, the performance will be substantially

. below that which is achievable through schematic capture. The resulting maximum clock

t 112
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rate is design, designer, and encading-dependent. Our design falls in the 7-10M Hz maxintm
clock rates. Highly pipelined (i.e. registered) designs with minimun levels of logic hetwoeen
lip lops will vun significantly fastor. Testability, through eyele stealing, can he incorporated
into the design without sacrilicing the required system’s response times,  Nilinx waintains
that real-time performance can be achioved il a design’s requirements fall in the 200z
area, and VIIDL iterations are perlormed. Achieving SMHz performance was possible with-
out considering the architectural stenctures ol the <000 series, whereas several ilerations
were required to achieve the 7-10M 1z range. For above the 12-16MHz range, more manual
intervention and iterations in the syuthesis process sucl as compiler directives, component,
instantiations, carcfully encoded VHDL and RTL stenetured VHDL to efliciently program
the logic blocks, may be required. To run at full 20M 1z, it is estimated that a fnll stenctural

approach in VIIDL encoding would be mandatory.

From a marketing viewpoint, lor approximately $1K, not including tools, and hardware
requited to test the prototyped circuit, an FPGA (of high logic Dlock utilization), aund one
ROM can be built to accommodate an ABS controller, With production gquantities of greater
than 1000, the cost can be reduced to under $200. To ensnre safety, inherent self-checking
circuitry exists, however if all possible faults are to e detected, there is room lor improvement.
in its design and evaluation, lowever with the FPGA technology, alterations are alwiys

possible, so that upgrades are untroublesome,.

7.2 Conclusions

Success of an FPGA implementation for a real-time controller suggests its potential as an
alternative to the software programming-microprocessor approach with added hardware per-
formance. Rapid prototyping with FPGAs is quick and efficient. Great potential exists for
fine-tuning embedded controllers within multi-variable, safety critical systems which are
highly dependent on environmental side effects. For final implementation on programmable
logic, technology dependent VHDL is a viable option to ensure satisfaction of both area and
timing constraints and subsequently generate controllers with acceptable real-time responses.
Real-time performance is casily achievable on FPGAs if the controller design requirements

fall in the 10MHz area. Furthermore, sell-checking features ean be incorporated withous,
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aflecting the systemn’s reponse Limes,

Controller tostability for reliability was developed from the nature of the controller. Hard-
ware re-use permits eyele stealing and on-line system checking with a smaller overhead than
that found jn traditionally implemented control systems (often aver 100%). As controllers
oxhibit o cortain subsel of characteristics, this test niethodology can he extended to the
genoral case. A standard way to re-use hardware, add in the test injection cirenitry and
the multipexed inputs can be developed to facilitate the incorporation of the scli-checking
features for the general controller. However, though are for the testable eircuit is reduced,
100% lault. coverage of field errors is not guaranteed, particularly with such a [unctional
test. Fvaluation mechanisms of the Tunctional testing accomplished by the vector-injection
schema were mentioned in section 6.2.4, yet require additional research, as measuring fault

coverage is not an casy task for on-line field testing ol FPGAs,

Commercial synthesis tools add area and timing overheads during circuit realization in
addition to the inherent architectural costs of programmable hardware. Hence a balance
hetween performance issues, design time, design features and testability concerns must be
found whereby the design becomes self-testable, real-time and concise. As FPGA complex-
ities evolve, an HDL design entry method becomes a viable solution for quick designing.
FPGA architectures are already vendor specific with certain architectures fitting in better
with some design styles. It is expected that they will further “niche” themselves towards
application specific FPGAs (ASFPGAs) due to more strenuons design constraints on the
programmable devices, the growing design complexities which favor concise realizations, and
the effectiveness of encoding customizations. Consequently, it becomes imperative to develop
efficient VIIDL synthesis tools which exploit the new and improving FPGA architectures, so
that designs with specified real-time constraints can be implemented quickly, intelligently,

and correctly.

Synthesis is not a complete solution but a productivity aid. It does not provide push-
button resulls, Planning, regular structure extraction and creation, and a modular archi-
teeture style in order to manage the complexity of the current controller and to extend the
design methodologies to future controller designs were strongly emphasized in this thesis,
Synthesis merits analysis as the time and facility of desigus are rising in criticality and al-

lowance for less dense circuit areas is tolerable so long as circuit timing is achievable. For



CHAPTER 7. CLOSING REMARRKS LD

asyuchronous circuits, contrary to [37] it is not supported that the synthesized eirenit will
always beo that whicl was simlated, and it is sugmested that these authors were refering 1o

datapathi-control dominated synchronous systems vather than 1o any geneeal cireuit.

As hardware design styles emerge and proliferate, complementary design aides wust
cusne. The ideal tool must be technology independent from the designer’s viewpoint and
technology dependent Tor the synthesized cirewitry, producing optimal designs which best
exploit the technology for a given design application or style. CAD tools must undergo
coutinual evolution, playing hardware “cateh-np™. I is our opivion that the best synthesis
tool will be the one which is written/designed for the hardware, and has the best techniques
to exploit this hardware, It is praposed that better integration of touls amd haedware will
produce the best design-aides for the design engineer. What then rewmains is for the designoer
te learn the HDL syntax and its capacity for cirenit design, understand the technology, leara

the tool, and use all concurrently.

Although VHDL supports high level design entry, attention to the details of technology
implementation and digital design methodologies cannot be avoided i i cortain level of
efficieney in enforcing constraining parameters such as timing and area ave vital in the final
circuit.  With the present synthesis tools, VDL design entry does not eradicate all pate
level design considerations. I constraints cannot he met, the designer will be forced to
resort to hand-crafting portions of the design. Nonetheless, a disadvantage of trying 1o
make the design cfficient by exploiting the hardware is that added details and accuracy are
reguired in the original specification (design entry format will tend to he technology specilic).
Thence, though we advocate technology specific 1ools and in some cases, langnages, the bulk
of time spent designing circunits may just be shilting from implementation time to design
and specification time, and learning of the constantly evolving tools. Nevertheless, with the
mission to realize the cireuit and facilitate the designer’s task, respective tradeofls will alwiys

surmount.

If ASIC migration is to follow an FPGA prototype, the intent must be reflected in the
VHDL code, perhaps implicating certain restrictions. With the current tools, migration onto
non-programmable hardware is supported for VHDL designers if the encoding is not tech-
nology specific (no special feature instances), Currently only functionality can he equated

hetween FPGA and ASIC designs. Synthesis tools should provide some correlation hetwenn
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Lhe two techimologies so that adequate foresight is gained (rom an FPGA design, especially
wilh respeet Lo Liming. Proper timing models would alleviate compromises in timing valida-
tion, facilitating the migration. ldeally the synthesis tool should also automatically partition
the design to it on multiple FPGAs so the entire circnit’s functionality could be simulated,

implemented and tested, without restructuring and timing compromises,

Ultimately high-level and behavioral synthesis are envisioned. Exploring architectural
alternatives, hardware/soltware partitioning, automated functional partitioning into memo-
ries, processors and buses, VIIDL generation are undertakings of the former while schedul-
ing operations into clock cycles, allocating and sharing resources across multiple cycles, and
pipelining [all into the fatter. In both, fast metrics/perforniance estimators and both man-
ual and automatic scheduling, resource allocation and intervention in general, are desired,
with a conjoint, drawback that success in this arca will come at the expense of less efficient
hardware realizations. Analogous Lo logic synthesis where optimizations are sought across
cloek boundaries, VIIDL synthesis should concentrate on optimizations across processes and

enlities,

As for future arcas of study, more quantitative evaluation mechanisms for the functional
testing schemes of controllers on FPGAs remain to be researched and developed. Addi-
tionally, the examination of alternative FPGA architectures, and commercial synthesis tools
while preforming equitable design, synthesis, and testing steps for the comparison of circuit
reafizations merits further study. Circnit density, total area requirement, circuit timing,
testability, fanlt coverage of test-circuits, reliability, ete..., can collectively serve as con-
trol variables for such a study. With the evolution of technology and tools, such a synthesis
study will never terminate as the nouveautés require analysis, the gamnut of application areas

invariably grow and new evaluation criteria perpetually surface.
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Appendix A

ABS Theory, Notation, and

Dynamics

A briel evolution of ABS dynamics follows. System dyvnamies are explained through wmathe-

matical equations whiclt in turn depend on systemn vartables and parameters, 'The following

list of symbols is included to explain the variables used in the equations ntilized thronghout

this section.

tire foree between wheol and eond (N}
gravitational aceeleration (2.8 m/s?)

moient of ineetin of n wheel (kgin?)

slope of [riction conflicient versus slip entve

miass of the vehicle (k)

rolling riclius of the wheel (i)

brake tareue change rate; inereasing mode (N fs)
brake torque change rate; decreasing mode {(Nm/s)
vehicle veloeity (in/s)

wheel slip (riatio and % )

ship at penk of Fr curve or T, curve {optimum)
brake torque applicd 1o wheel (Nm)

equilibrisim brake torgue {Nus)

augulne velocity of wheel (rad/s)

derivative with respect to time

tire longitudinal stiffness

friction coclficient

normal load on the tire (i.e. the weight of vehicle)

Control of events is largely dependent on system variables and dynamics. In the proven-

tion of whee! locking, the relationship between the rotation of a wheel, its linear velocity

and its adhesion to the road surface predominate. No slippage occurs only when a wheel
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transmits no foree in the horizontal plane - when the vehicle rolls freely in a straight line.
As soon as acceleration, steering or braking of the vehicle transpires, the generation of the
necessary horizontal force at the road/tire interface results in slip between the tire contact
. . . . .
path and the road surlace. The amount of slip depends upon the force transmitted, and in
turn on Lhe deceleration. A piecewise linear approximation of the tire-road characteristics is

ilustrated in Figure A.1, with the notation delined on the following page.

Tofr
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Figure A.1: Piccewise linear approximation of the tire-road characteristic

It is shown in [6], [T], [8], [9] that the braking force approaches its maximum value at
slippage of 15%. Approaching the maximum braking friction coefficient value, the slippage
increases rapidly, whereas after the peak the braking force declines considerably. The signifi-
cance ol this, is that while the vehicle is undergoing severe braking, the angular deceleration
of the wheel is increasing as slip increases. Just as the maximum braking force is being

approached, & maximuin deceleration value is similarly being approached.

The first requirement for wheel lock prevention system is to detect excessive deceleration
of the wheel, or wheels, concerned so that, as a second requirement, action can be injtiated
to reduce the braking force. Once the braking force is within the capability of the available
adhesion to sustain, the tire will again grip the road, the wheel will accelerate and direc-
ttonal control will be restored. However, one cannot just remove braking completely or the
vehicle will never stop. A further general requirement is for braking to be restored on an
appropriate cyclic basis so that the deceleration approximates as closely as possible to the
maxinmum theoretically available. Maintaining brake pressure exactly at the maximum peak
friction coeflicient (Figure A.1) is rather impossible, even if vehicle velocity was continuously

measured and braking constantly monitored due to the dynamics of fluid in the hydraulic
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braking system. More reasonably, the alm ol an ABS is to encivele the optimm slippage

point in the most proflicient manuner via a mil eyele.

Some clementary, yet fundamental terms for vehicle dynamies requive definition. Torgue
is the product of a force and the perpendicular distance from i point of rotation 1o the action
line of the force. It tends to produce a change in rotational motion of a bady on which it
acts. Sfip is the measure of the sliding component during a rolling movement. As a wheel
rolls under the effects of driving or braking lorces, complex physical phenomena oceur in the
tire’s contact with the road. The tire's rubber elements become distorted and are exposed o
partial sliding movements, even il the wheel has not yet locked. The measure of the sliding
component ol the rolling movement is the slip denoted by A+ A = (V = ¥)/V, where Vis
the vehicle velocity and V; is the tangential (cireumflerential) wheel speed. Brake slip ocenrs
as soon as the wheel starts Lo rotate more siowly than the wheel speed which corresponds

to the driving speed [9].

Previous ABS systems operated with two-phase control, [6], [7], where the brake pressure
is increased with a fixed rate until a criterion (P condition) is satisfied predicting the danger
of the wheel lock-up; then the pressure is decreased until another re-selection criterion (R
condition) is triggered when the danger of lock-up is averted. Typically the prediction
and re-selection conditions selected for threshold analyses, as mentioned in [6], are: (P2):
—wfw > ky and (R4): @ < 0 (deceleration). These conditions are considered both robust and
serve as good threshold conditions for ABS dynamies [7]. To prevent the lock-up of wheels
and further providing large brake force, ABS will modulate the brake pressure to produce
a stable fimit cycle around the peak of F, curve (almost the peak of T, curve as seen in
Figure A.1) according to the criteria adopted in the  and R conditions of the control law
of ABS.

The complete system involves velocity calculations which are dependent on the wheel
velocities of all four tires. Taken from previous studies, [6], and [7], simplified equations of
motion of the vehicle system for a single-wheeled model are introduced and form the basis

of subsequent calculations.

The wvehicle model, neglecting air resistance and the suspension dynamics comprises the
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lollowing two equations for the motion ol the vehicle and the wheel respectively:

MV ==F, (A1)
lo=r1F =T, (A.2)

The tire Joree modelis predominantly contingent on wheel slip. Wheel slip is defined as in
{A3) where rw is Vi, the Langential velocity,

§=1- "—“‘ (A3)

The tire brake force £y, under zero slip angle assumption (no centrifugal slip), is described

by the following nonlinear equation:

¢.8 Nan CaS o ol
P = when 125 < &5
x - - .
= _ 21‘7![—.5! C.S [T
. [,u I TS ] when 25 > &
According to [7], the value of jt on wet asphalt is given by the nonlincar equation:
pnyV.S')
t = qigeap | — AAd
} = jlocay ( 100 (Ad)

where pty represents the nominal friction coefficient at zero velocity, and png stands for
pereent. normalized gradient which depends on the root mean square texture height of the

roaul.

Differentiating both sides of Equation A.3 and substituting equations A.1 and A2 to

oliminate V and w, the following equation for slip dynamics is obtained:

. (1 = 1e) .
5= 1o (A5)

o ., I(1-29)
where, T, =1F; [1 + —M-,—;-z—-] (A.G)

Note that § is zero when 73 = 7. Thus 7% is called the equilibriumn torque which is different

from r#, by a small quantity, as seen in Figure A.l.
A 1 y g

A brief look at the brake model produces an additional set of equations. Using the
assumption tn [7], that no hysteresis and time delay occur in the brake mechanism, the
relationship between the brake torque T, and the brake pressure p in the brake cylinder, is
simply assumed as a linear function:

Ty = Kp
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where Ay is a constant gain,  Brake pressure dynamies ean be approximated by o first
order system. For the high switching lrequencey ol solenoid valves, the values ol dp/dt can
be approximated to be constant for both increastng and decreasing pressure wodes 0],

Dilferentiating both sides, the brake torque clianges accordingly as:

. d -
Iy = I\gm(p):l" (AT)
whore
U= Ky, aconstant in pressure inereasing mode
U=43 U= Ky, o constant in pressure decreasing mode
0, in pressure holding mores

Thereupon, the nonlinear dynamic equations of the single-wheel brake system, Trom

equations A.2- A7 becone:

o F.r( vv S) }
Vo= M (8
[y =TV, 5]
¢ = = (A
B i y=u .10
b = fH(p - (1 ' )

Originally two stages were needed to control the vebicle braking., One to release the
brake pressure, and the other to re-apply brake pressure both of whick mimic the desired
pumping motion. Kuo and Yeh [8] introduced two additional stages, the high and low
pressure holding stages to hetter encircle the peak of optimum braking foree, Le, frictional
force. The resulting four-sided trajectory of the controlled braking foree can be seen in

Figure 4.1 which llustrates the dynamics of the four phase pressure control loop.

For simplification, both in theory and implementation, the velocity was assumed to he
constant during a few cycles of computation in the study. A sel of equations developed for
“the four phase control scheme of an anti-skid brake system for all road conditions” can
be found in [8]. These were derived from the dynamics above, and were further simpli-
fied for implementation. The final set of equations created through assnmptions and some

approximations follows suit.

During the pressure increasing mode, and the vehicle braking state, the set of simul-

taneous equations in (8], which solve for system parameters associated with the threshold
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decolerations, were reduced producing the folowing equations . The threshold ) is cal-
culated for comparison with the vehicles deceleration 1o determine when the high-pressure

holding mode mmst be triggered.

", = h,-l-é‘rh; (A1)

5 = .s'r,,,f—-""—‘..'[l-e“‘—"i-l'v] (A.12)
m-

= m[n(Sem = )+ A0 - 51)5] (A.13)

lu the high-pressure holding mode, time interval, 7 must be ealeulated, the value of
which defines the time to remain in this state and hold the break pressure constant in order
for the system to pass comfortably over the optimum slip, the maxima in the tire friction
coellicient-slip curve of Figure A. 1. According to [8] Ty exists between a calculable upper and
lower bound. A method of evaluating a single lower bound and an oflset is employed here
and sullices to determine a valid time duration. Equations A.13, A.1], and 4.5 contribute to
the derivation of T4, the latter of which leads to the following equation for £p* after variable
. substitution.  Recall, £° is the value use Lo calculate the lower hound for a given road
condition, while 7% is the maximum lower hound over all road conditions, and contributes
to the value of 1y, whick determines the holding time for the high-pressure holding mode.

- —Vhy myi(Sopt = 51) } _
o= m o fn {1 o —mB(1 = 8)5/r (A1)

From equation A.13 and A1, Iy is estimated to be:

9 , , .
m = ‘é"’-[‘Yl(So,n-u5l)+ﬂ1(l—51)-51] {A.15)

I'rom which £3 hecomes:

N(Sopt = 51) } (A.16)

{l B $Y1{Sope = S1) + 581 (1= 85135
The 1, (threshold value triggering high-pressure holding mode) dependency was removed
via substitution and £ became a function of the velocity and road-condition ratio, -,‘;:-, and
the slip, Sy, Similarly, 5y can be calculated from the previous state (pressure increasing or
braking) and is dependent on the ratio of %, so that one lookup table with indices formed

. from joining V and m, suffices to generate the ¢y and subsequently the 75 values.
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During the pressure decreasing mode. brake pressure decreases quickly so that brake
torque, Ty drops below the rby enrve, until a re-selection condition R [8] is satislied, that
is when 1% — Ty is boyond o threshold value Hy, the low-pressuee holding mode will be
triggered,  Moreover, whew e, =1y > Iy the trajectory (brake torque versus slip) lalls
below the peak in the curve of Figure |11, From FEquation A2, this condition translates o

lw > Iy, so that the measured deceleration value is compared to the ealenlated value of Ha.

The determination of the threshold value Hy s closely related to jts elloct on its snecossor
statoe, the low-pressure holding mode. Consequently, two sitiations must he avolded: (a) a
small brake foree when Iy is 1oo Large; (b) the trajectory hecomes stick on the T, eurve in
region C, Figure <11, for positive slope m, which may yield a large siip value and undesirable
directional stability. In [8], iy is determined to be m(rA¢)AS, o most ABS systems, the
pressure decreasing rate is very fast, so that the slip value triggering the 23 condition is
proximate to the one leaving the high-pressure holding mode. llence, AY is almost equal to
the slip change in the high pressurve holding mode, Asy, which is the maximum allowable
value lor the slip change after passing over the peak of the Fy cueve, My is then chosen Lo be
at least (0.2)(rMg)AS = (0.08)(»Mg) applying the maximum value of 0.2 for m in region
C [8).

Unlike the high-pressure lolding state, during the low-pressure holding mode, the
pressure is held constant for a fixed time interval 7%, after which comparisons are made
checking rF, — T with two threshold values Hy and Hy. I #F, =T is less than Hy the
pressure decreasing mode will be turned on and il #F, — 75 is less than My the pressure
increasing mode will be triggered; otherwise the low-pressure holding mode will be active
again for another time interval, Ty, until the next comparison. In this way, the trajectory is

able to enter the region A, Figure 4.1 before switching to the pressure increasing mode,
Similar to T3, the time duration of the low hold state was estimated Lo be T > Ty* ATy

Calculation of T" will lead to Ty, grace to MATLADB analyses. From {8],

T =MIN{GY  for m:0>m> 02

and ty" depends closely on H,, giving rise to the equation:

— v In { Hy4 (T, - 1‘1'1:.-)}
T T mrMy Hy+ (T, —7F,)

(A7)
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After some substitations and approsimations, the low-pressure holding mode description

is reduced to the Tollowing set of caleulations, where some [reedom is permissible due to

changing procision requircments:

13
1

l

whotoe In'_'; = Iﬂ-_l * P,

G.08(rMg) (A.18)

0 5

m”;; (42} g”; (!\.19)
Vi a4 (0.850, 1 /(M) 1 )

—n ki { 11y + (0850, 1 /(r2M) | (A.20)

This concludes the derivations ol the ABS equations which were encoded in VIIDL,

synthesized, implemented on an FPGA and supplemented by an external ROM.



Appendix B

Examples of VHDL Code

A typical I'SM encoded in VIIDL follows suit, 1ts eireuit realization is highly efficient with
respeet to a minimum nwmber of flip-flops for the state encoding. It was used to determine
the vehiele state for the ABS controller and thus determined which and when calenlation-

intensive modules requiring order preservation were enabled.

COMBIN: process{CURRENT_MAJ_STATE, Bat_power, ignition, trigger_pulses,
brake_pedal, V, wheel_vel, current_min_state)
begin
next_state <= stopped; -- put this to aveid latches.
case CURRENT_MAJ_STATE is
when stopped =>
IF (V /= 0) THEN
NEXT_STATE <= normal;
ELSE
NEXT_STATE <= stopped; -- need, else past naext state takes over
END IF;
when normal =>
if brake_pedal = depressed then
NEXT_STATE <= braking;
elsif (V = 0) then
NEXT.STATE <= stopped;
else
NEXT_STATE <= normal;
end if;
when braking =>
IF (V = 0) THEN

131
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-- double check the wheel velocities
IF (wheel_vel = (0,0,0,0)) THEN
NEXT_STATE <= stopped;
END IF;
ELSIF (brake_pedal = released) THEN
NEXT_STATE <= normal;
ELSIF {current_min_state /= ABS_cntrl_idle) THEN
NEXT_STATE <= abs_enabled;
ELSE
next_state <= braking;
END IF;
when abs_enabled =>
IF brake_pedal = released then
NEXT_STATE <= normal;
ELSIF (V = 0) THEN
NEXT_STATE <= stopped;
-- ABS has made car stop:: assuming other circuitry knows when
-- to say that the vehicle velocity if zero and car has
--  successfully stopped.
ELSIF current_min_state = ABS_cntrl_idle then
--  ABS has been turned off
IF (brake_pedal = depressed ) THEN
NEXT_STATE <= braking;
ELSIF (V /= C) THEN
NEXT_STATE <= normal;
ERD IF;
ELSE
next_state <= abs_enabled; -- don’t want to infer latches
END IF;
end case;
end process;
-- Process to hold synchronous elements (flip-flops)
SYNCH: process(CLK_IN, global_reset,NEXT_STATE,abs_cntrl_enable )
--  asynchronous reset, but synchronous finite state machine.
begin
-- ( consider this as reset state: asynchronous. )
IF (giobal_reset = *1’) THEN
CURRENT_MAJ_STATE <= stopped;
ELSIF (CLK.IN’event AND CLK_IN = ’1?') THEN
IF (abs_cntrl_enable = *1’) THEN
CURRENT _MAJ_STATE <= NEXT_STATE;
END IF;
END IF;
end process;
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The following code shows the use of WAIT statements 1o create a multi-cxele control
sequence which synchronizes two blocks together. Its particular function was to sequentially
perform the operations needed during the pressure inereasing state of the pressure control
tfoop which was enabled during the A BS.cnabled vehicle state,
multi: process

VARIABLE hl_star, si_crit : pres.value_word;
VARIABLE rom_addr_tmp : abs_rom_range;
begin
IF (pi_m_enable = ’1’) THEN
IF (m=0) THEN
Hi_max <= 0;
--Hi_thresh_rdy <= FALSE;
WAIT UNTIL pipe_clk = '1°; -~  skip reading ROM
ELSE
--WAIT UNTIL pipe_clk = *1’;
~-create address to ROM and read the data
pi_rom_addr <= incrl_offset;
-—WAIT UNTIL pipe_cik = ’1’;
sl_crit := rom_data; -- wait for data
WAIT until pipe_clk = *1?%;
-- now read LUT for the value of H1_Thresh
pi_rom_addr <= incr2_offset;
--WAIT UNTIL pipe.clk = *1’;
hl_star := rom_data;
WAIT until pipe.clk = '1?’;
-- select a max value
IF (hil_star > Hi_max ) THEN
Hi_max <= hl_star;
81 <= si_crit;
m_max <= m;
END IF;
IF (m=28) THEN
Hi_Thresh ¢= Hi_max + Hl_max/8; -- output correct thresh value
-- will have te wait for the above instruction to finish adjust
--  that in the clock!!!}
hi_thresh_rdy <= TRUE;
END IF;
END IF;

for now do these two to synch to a slower clock, the m_clk which
can generate values only every four of the pipe clock. So we hope to
split our function here intc three clock cycles, the last one just
waits for now, may need it later!
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I

WAIT until pipe_clk = ’1’;
WAIT until pipe_clk = 17}
-- when calculation is enabled, and hit m=31, our max output is ready
- change the max to 28 for now, otherwise have to wait too long
-~ ATTENTION: this comparison could lead to a glitch

ELSE
hi_thresh_rdy <= FALSE;
WAIT until pipe_clk = '17;

END IF;

and process multi;

The VIIDL code for the high- and low-holding pressure blocks lollow. Both processes
interact with the two above FSMs and the Timer block, whose VHDL description is also

inclided helow, The wait statements can be nsed to implement pipe-lining as shown.

- File: pres_hhold_cntrl.vhd
- Author: bHol

- Description: Calculate the duration,T2, for the pressure holding
. -~ mode. It depends on velocity, slope, and the last values of Si and H1
-- from the increasing state. So they must be registered.

- Implementation note: assuming V is constant and m is latched
- then these two can be used as an indice into this LUT as well.

- Modification history:
USE WORK.ABS_DEFS.ALL;

ENTITY pres_hhold_cntrl IS
Port (CURRENT_MIN _STATE : IN PRES_VALVE_STATE;

-- V: IN integer range 0 to MAX_VEL;

- m: IN integer range 0 to 3i;
s1 : IN pres_value_word;
rom_data : IN PRES_VALUE_WORD;
pipe_clk : IN BIT;
phh_rom_addr : OUT ABS_ROM_RANGE;
s2_limit : OUT pres.value_word;
--slip_rdy : OUT BIT;
t2_val : OUT pres_.value_word;
t2_preload_cnt : OUT bit;

. t2_enable_cnt : BUFFER bit;
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t2_high_rdy : OUT boolean);
end pres_hhold_cntrl;

architecture behav_pres_hhold_cntrl of pres_hhold_cntrl is
begin
-~ calculate the time in stages of a slower clock
process
begin
IF (CURRENT_MIN_STATE = high_hold) THEN
-~ only want to calculate (use LUT) stuff once, so trigger on edgo.
IF (t2_enable_cnt = 'Q’) THEN
--WAIT until pipe_clk=?1?;
-- may want to play around with the mapping, ie could still use m and V
-~ from the previous state to serve as indice in the lus.
phh_rom_addr <= hholdl_offset;
s2.limit <= s1 + MAX_SLIP_RANGE;
--WAIT until pipe_clk = ’1°;
t2_val <= rom_data; -~ data is ready at this point
WAIT until pipe_clk = '17;
t2_enable_cnt <= 17,

t2_preload_cnt <= '1%;

. WAIT until pipe_clk = ’1’; -- make a pulse for the loading
t2_preload_cnt <= *0%;
t2_high_rdy <=TRUE;

WAIT until pipe_clk = ?17%; --
ELSE
WAIT until pipe_clk = ?1?%;
END IF;
ELSE

t2_high_rdy <= FALSE;
t2_preload_cnt <= '0’;
t2_enable_cnt <= !0?’;
WAIT until pipe_clk = ’17;
END IF;
end process;
end behav_pres_hhold_cntrl;
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- File: pres_lheld_cntrl.vhd
-- Author: bHol

-- Description: Calculate the duration,T4, for the pressure low holding
-- mode. This value depends on the Velocity, m and H3. Access to rom is
-- necessary. H3 is a constant and is determined a priori so this value
-- once again depends on m and V.,

-- Modification history:

S I D VE M e e ey A T T N T Y W R D R N S A N R A e e ek e S S o g o o o ke

USE WORK.ABS_DEFS.ALL;

ENTITY pres_lhold_cntrl IS
Port (CURRENT_MIN_STATE : IN PRES_VALVE_STATE;

-- V: IN integer range O to MAX_VEL;

- m: IN integer range O to 31;
rom_data : IN PRES_VALUE_WORD;
pipe_clk : IN BIT;
timer_expired : in BIT;
plh_rom_addr : OUT  ABS_ROM_RANGE;
t4_val : OUT PRES_VALUE_WORD;
t4_preleoad_cnt: OUT bit;
t4_enable_cnt : BUFFER bit;
h4_thresh_ridy : OUT boulean;
t4_low_rdy : OUT boolean);

oend pres_lhold_cntrl; N

architecture behav_pres_lhold_cntrl of pres_lhold_cntrl is
begin ‘
-- calculate the time in stages of a slower clock
process
begin
IF (CURRENT_.MIN_STATE = low_hold) THEN
-- if expired, then load a new value
IF (timer_expired = *1°’) THEN
-- load next value, and reset snable.cnt to start down counting again
t4_enable.cnt <= *0’;
WAIT until pipe_clk=’1%;
ELSIF (t4_enable_.cnt = ’0’) THEN :
== may want to play around with the mapping, ie could still use m and V
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-- from the previous state to serve as indice in the lut.
plh_rom_addr <= lheldl_offset;
--WAIT until pipe_clk = *17%;
t4_val <= rom_data;
WAIT until pipe_clk=*1"’;
t4_enable_cnt <= *17;
t4_preload.cnt <= ’1’;
WAIT until pipe_clk = *'1?;
td4_preload_cnt <= *0’;
t4_low_rdy <=TRUE;
h4_thresh_rdy <= TRUE;

ELSE
WAIT until pipe_clk = ’1°'; -~ do nothing

END IF;

ELSE

t4_low_rdy <= FALSE;

h4_thresh_rdy <= FALSE;

t4_preload_cnt <= '0?;

t4_enable_cnt <= '0’;

WAIT until pipe._clk = *1°;

END IF;
end process;
end behav_pres_lhold_cntrl;

The two entities, the down_enir and the timer.muz which are alliliated with the Timer
block functionality follow. Different encoding styles which produce both asynelronous and
synchronous code are shown, with the latter one being favored by both the synthesis tool

and the author, for reasons listed in the VIIDL encoding’s comments.

-~ File: down_cntr.vhd
-- Author: bHol

- Description: Countdown given a preloaded signal and an enable signal.

-- Taken from edge_cntr module and modified. Count down value is
-- expected to come in terms of clock counts. For the timer we may want
-- clock to be a larger clock than the input clock.

- NOTE: May have to change to a synchronous preload. TEST THIS

== °  Modification history:

A A e S A A A e ey T A ) 0 0 Y e
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USE WORK.ABS_DEFS.all;

entity down_cntr is
port{clk_in, prelecad_cnt, enable_cnt : in bit;
count : IN pres_value_word; -- make a 10 bit counter
timer_expired : DUT BIT;
ecnt_val : BUFFER pres_value_word);
end down_cntr;
-- According to a synopsys app note, this is a dangerous asynchronous design
-~ and must be simulated carefully for the setting of the output must occur
--  before, the change of the clock.
architecture behav_down_cntr of down_cntr is
signal gated_clk : BIT;

begin

-- gated_clk <= clk_in and enable_cnt; -- only cnt when clk and enabled

-- process(preload_cnt, gated_clk, cnt_val)

-- begin

~- -- timer_expired <= '0’; THIS produces and error, non clock edge????
-- IF (preload_cnt = ’1’) then

-- cnt_val <= count; --  this load must be fast enough
-- ELSIF(gated_clk’EVENT and gated_clk = 1’ ) then

- IF (cnt_val = Q) THEN

- timer_expired <= *1{’;

-- ELSE

-- cnt_val <= cnt_val -1;

-- timer_expired <= '0’;

- END IF;

-- END IF;

~-- end process;

process(enaﬁie_cnt. preload_cnt, clk_in, count)
begin
IF (enable_cnt = *1°) THEN
IF ({clk_in’EVENT) and (clk_in = *1°)) THEN
IF (preload_cnt = ’1’) then
cnt_val <= count; -~  this load must be fast enough
timer.expired <= *0°;
ELSIF (cnt_val = 0) THEN
timer_expired <= *%?;
ELSE
cnt_val <= cnt_val -1;
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-~timer_expired <= '0’;
END IF;
END IF;
ELSE
timer_expired <= ’0?%;
END IF;
end process;

END behav_down_cntr;

e File: timer_mux.vhd
-- Author: bHol

-- Description: lets more than one block be connected to the

-- timer or rather down_cntr entity. This approach uses muxes instead of
- tristates.

- Modification history:
- Mar 11, 1994: Decided to go with Muxes to avoid routing problems

L ik S ey o T o oy oy T Py Ak S Ak ey o P T S S ke e e e e T A A A A Ay
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USE WORK.ABS_DEFS.all;

entity timer_mux is
port( current_min_state : in pres_valve_state;

preload_cntl, enable_cntl : in bit;
countl : IN pres_valuas_word;
prelcad_cntZ, enable_cnt2 : in bit;
count2 : IN pres_value_word;
preleoad_cnt, enable_cnt : out bit;
count : OUT pres_value_word);

end timer_mux;

architecture behav_timer_mux of timer_mux is
begin
process{current_min_state, preload_cntl, enable_cntl, countl,
preload_cnt2, enable_cnt2, count?2)
begin '
IF (current_min_state=high hold) THEN
preload_cnt <= preload_cntl;
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enable_cnt <= enable_cntl;
count <= countl;

ELSIF (current_min_state=low_hold) THEN
preload_cnt <= preload_cnt2;
enable_cnt <= enable_cnt2:
count <= count2;

ELSE
preload_cnt <= '07;
enable_cnt <= '0’;
count <= 0;

END IF;

end process;

.- now lats try using concurrent logic, Synopsys produces similar circuits
-- for both type of encodings.

--preload.cnt <= preload_cntl WHEN current_min.state = low_hold ELSE

-= preload_cnt2 WHEN current_min_state = high_hold ELSE ’0°;
--gnable_cnt <= enable_cntl WHEN current_min_state = low_hold ELSE

- enable_cnt2 WHEN current_min_state = high_ hold else 'Q’;
--count <= countl WHEN current_min_state = low_hold ELSE

-- count? WHEN current_min_state = high_hold else O;

END behav_timer_mux;
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Synthesis and Supporting

Libraries

An entered design, schematic or VDL, transgresses Lo its realization viaa librarcy or hierar-
chy al libraries, employed by the synthesis tool, which attempt to best mirror the technology
features. Analogous Lo design entry methods, libraries can be generie or technology specifie.
A schematic can contain both technology specilic components and higher lovel Blocks just
as VIIDL encodings can be behavioral (generic) or can instantiate technology specilie prim-
itives. Whatever the description, the mapping Lo an interconnection al components from
a library during the synthesis will transpire. Logice synthesis will map logic gates Lo logic
gate primitives. RTL synthesis will initially map to higher level blocks, then then to lower
level logic primitives. The mapping steps during synthesis continue as one progresses higher
up the specification ladder. High level synthesis implicates more abstracted modules which
will go through many levels of refinement before final realization on the given technology. A
library, which may also be hierarchical, must support such a synihesis process so that the

best cirenit realization results,

Synthesis attempts to replicate and improve the traditional conceptuadization of the
designer through its numerous algorithms using deductive reasoning and pre-constructed,
sometlimes pre-mapped, hardware components, Hardware design exhibits a certain degree of

commonality which aides in constructing a generic, hierarchically integrated cirenit database.

111
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Tochnology distinet bardware features, known a priori, could also be translated into library
representations so that all architectural features both standard and custom can he exploited.
‘The tncorporation into commercial tools of well-constructed and standardized library support
systoms camposed ol both fised and parameterizable logic blocks which accommodate the

many fayers ina hierarchical design is proposed.

VI, synthesis, the translation of VDL encoding to a library ol hardware blocks,
and its eventual layout is not without complications and ambiguities. llardware mapping
performed as carly as possible will produce optimum results. If the first stage accompanies
peneric blocks, then the lowest stage (often layout) which deals with logic gate primitives,
will have lost certain hardware specific optimizations and clusterings due to the previously
excented generalizations. A VDL application specific and/or technology specific library
waould aid higher levels of design, optimize circuit realizations and consequently ease the job
ol the designer due to the facility of component re-use, hard macro exploitation and special
l[eature or design style exploitation. In a library, one can encode (encrypt) design styles and
exploit architecture and technology through well-constructed non-atomic entities, Various
levels of genericity and specialization could also he incorporated for block paramecterizations

Lo customize a design as per the designer’s specilied functionality and constraints,

The objective of a module library is to provide a generic, technology independent set of
logical primitives with which one can construct a design and achieve efficient performance
from a wide array of technologies and obtain efficient access to unique architectures. Addi-
lional research remains to he explored in the domain of tool capabilities and their respective
library support systems, with respect to design space exploration and library support system

Lraversals,

C.1 FPGA Library Motivation

For FPGAs, it is desired 1o have clever explicit and implicit liaisons to the hardware features
of the destination techunology from a VHDL design entry point. Inference, the selection of
a hardware equivalent or a logic equivalent circuit, is a difficult task. Because the architec-
tures of FPGAs have evolved into many different structures and will continue 1o evolve as

hetter architectures, and newer inherent structures are constantly being developed, it is sub-
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sequently diflienlt to come up with VDL inferences which can exploit all hardware features,
when some are unique, some change, old ones die. and new ones are ereated, Maintaining
compilers current with architoeture is a hard task. 10 will be quite a challonge for havdware
vendors and tools vendors to coordinate their efforts in keeping the design engineees supplicd
with tools which transform their designs into techuology specilic eiveuit realizations which
meet area and ming constraints and require little low level design work, A well designed

FPGA vendor ereated library can provide these [acilitios,

The goal to keep in mind is the desive for a technology independent design style supported
hy synthesis tool which maps an entered design "as hest as possible™ onto the given hardware,
Tlie problem is NI hard, providing justification for the nnavailability of such a tool, Creating
PGA vendor specilic modules seems to be a viable alternative, Instantiation is a simple
measure Lo obtain desired results immediately. Having both. support for technology specific
macros, and support {or technology dependent structured logic synthesis in FIPGAs s our

proposed solution.

Recolleet the nature of the FPGA architecture. Unwanted arvea overhead and propagation
delays caused by the programmable switches, entail the need Tor more succinet mappings.
Less synthesis slack than could be accepted for MPGAs can be tolerated, Henee, Lhe oxigeney
to support vendor specifie well-constructed docks which inelude one or more logic blocks and
their strategically designed interconnections, From an engineering HD1 design viewpoinl
creating a library ol parameterizable and rensable components and a design methodology

can serve as building blocks for additional system modules and luture designs,

A library supporl system is needed with a high level design entry method in order 1o
exploit the FPGA architectural features, support standard ofl-the-shell components and
utilize alrcady designed blocks of past designers!. These blocks could include, hard, soft,
special fealure macros, and user-crealed macros, and would require alliance between synthesis
and technology vendors. Hard macros consist of a fixed number of logic blocks, and some
pre-assigned routing to form partially prelaid and prerouted larger blocks or aggregates.
They are specially designed Lo exploit the target architectnre to jts fullest. A larger number

of soft macros exist from cach vendor supporting their version of standard blocks, some of

Ywho most likely work with the FPGA hardware and have mastered some eflicient usage of the logie blocks

and the routing structure and consequently crealed guite suceinet blocks efficient both in area and time, 7
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which are similar 1o standard TTL gates and S8I cirenits, The hardware specific detail
aceompanying a sofll macro is the mnmber of its vendor specifie logie blocks. Its Tuctionality
is easily delined and cach vendor is responsible for the implememtation,  One remaining
vendor specilic Lype of macro 1o be supported are the speeial feature macros. iSach FPGA
vondar will possess special hardware features which offer performance or area advantages. For
oximnple, fast carry cireaitry, low skew clock lines, and registers are all elements cach FPGA
voendor supports. The fast Lype are aser-defincd blocks designed to serve their requirements.
Thoy ean be created to comply well with user-specified constraints of minimum area and
Liming Lrade-olls and to best fit the technology, and for facilitate module generation through

repealed usage of application specific primitive blocks,

C.2 Existing Concepts

Some work which addresses FI'GA based library support systeins for synthesis is reported
in [59], [60, [61] and (37]. Dekker [59], presents a methodology to utilize technology spe-
cilic macros for arithmetic and relational operators while, allowing technology independent
specification using VHDL Tor design entry. The approach useful but additional logic con-
figurations and operators at the RT'L structural and higher levels of design specifications is

suggested.

Kelem et al, [60] propose a module synthesis tool which maps architecture-independent
designs into architecture-specific implementations. Both schematic capture and HDLs are
supported for functional design entry. In the current version, only the XC4000 block archi-

tecture is supported. There is mention of extensions to other families in the future.

A library of 32 general symbols exists representing the generic modules. Their parameters
can be defined both during the schematic capture, and via generic construct usage in HDLs.
The main difference between a conventional netlist and an X-BLOX netlist is that in an
X-BLOX netlist the sizes and implementation styles of modules and buses do not have to
be completely specified. They can be determined by context, data-types, and bus-types.
Thus for each datapath only one value must be given, the remaining operators and buses

will benefit, from type-inference,
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The knowledge base which supports the synthesis tool contains Lypes and tumber of
resources available lor each member of the XCHO00 Family, and resembles a rule-hased Hbrary,
Its information is used to determine which types of architecture-specilic optimizations can b
performed and which styles are appropriate for synthesis. This way the special feadurves can
e exploited, and elements suel as fast carry eircaitry, ean be used for mapping arithmetic

[unctions.

The synthesis technigne is similar to our proposal. yeu little, iCany, mention is luenished
regarding rules governing a library system and how il can be extended aeross Lhe usmer-
ous FPGA architectural varieties. We propose to delay the technology dependent phase of

synthesis so that any, and more than one, type of FPGA may be used.

Underlying concepts and principles of object-oriented techniques have already found rools
amongst hardware desighers, The construction of systems using reusable library components,
a highly renown advantage of object-oriented techniques is analogous to nsing off-the-shell

building blocks in the hardware world [61].

Using C++ constructs, classes, object and translormation faunetions, Kumar et all {6G1],
indicate a potential for developing C++4 madels for hardware components. Just as their
resulting model resembles a data path/control decomposition, we analogonsly emphasize
the lormation of design blocks, VIIDL code, synthesis and implementation tricks and de-
sign methodologies for control/data-path circuits. Similar VHDL design tochniques can be

developed for other design styles and for other FPGA technologies.

Sample library component lists already exist [58] but, they are described at the logic
level in the form of boolean equations. A start, but the need for more paramelerizable,
standardized components which exhibit both simple and complex boxed functionality would
be useful. Library samples [57], [60] with parameterizing capabilities have been proposed.
From a synthesis perspective, an ensuing challenge demands support of these blocks through
techniques such as easy component instantiation with different parameters, quick composi-
tion of new components, component re-usability, and tailoring general-purpose coinponents,
From a VHDL perspective, it is expected that such components will be properly instantiated
with correctly specified parameters by the synthesis tool. Furthermore, in order to catoer o

application areas, particular blocks created with application or design style specific charae-
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teristies wonld also be beneficial to a symhesis tool which jwsell possesses application specific

[oataros,

C.3 Proposed Library Component Types

Our work focuses on blocks of a particular application type, controllers, and technology type,
FIPPGAs which can best be used by the synthesis tool for its creation of implementations and
for the designer 1o seleet if the need arises, blocks closcly related to the desired funclionality.
Exhanstive studies of design methodologies, application specific repetitive primitives gives
incite Lo such blocks. And inspection in the analogous [eatures between FPGA hardware
and possible Mocks and the input {ormats and viewpoints. is essential lor the creation of
such a sel of cleverly construeted bloeks which can be cither direetly aceessed by the user or

indirectly inferred by the synthesis Lool.

Of the many types of library components mentioned carlier, we will focus on two: well-
constructed functional blocks {user customized} and technology specific feature exploiting
Mocks, and justify the need for their existence. “Blocks” can represent both functional
units, functions/operations which do not necessarily exist in component form, and design
methodologies. or example, global eireuit reset and register injtialization are vital elements
of digital design, but do not exist in component form. Implementation of reset capabilities
(bolh synchronons and asynchronous) through VHDL statements directly (or even from
an instantiation) exploiting known hardware resources would be beneficial. Having them
inferred from the design description (VHDL in our case) rather than having to adjust the
compile process, or even instantiate a “block” to represent this type of functionality is even
better. Similarly being able to parameterize a finite state machine block would also be

advantageous,

As an application specific simple block(component) example, controllers often contain
different circuit sections execuling at different clock rates. Hence, the need for a clock
divider(s), and the uselulness of a generic, efficiently structured FPGA implemented, clock
with a parametric division factor. ‘T'he end-users sees an easily programmable block while the
synthesis tool implements a well-engineered version on the technology. From a methodology

angle, writing VDL code with a regular IF statement before a clock edge query results in
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asvnehronous set/reset eapahilitios, uselul for the event driven ¢ircuit behavior.

C.4 Synuthesis Tool Functionality

Thore is much room for improvement within synthesis tools and library supporl systems,
A library support system is most uselul, i a synthesis tool is capable of exploring design
implemeutation options and drawing ont the block(s) which best realize the input deseription,
which in the ABS case study was VHDL. Together they must offer optinium design spaco

exploration,

Manually instantiating a block through HDLs is a small task, whereas conveying the
presence of such a block (particularly ones lor hard macros or those which reprosent special
features) lrom encoding Lo the synthesis tool for inference is diflicndt, and will require a pre-
learned sequence of input commands, Such elements allect the formalizations of Lhe stratepy

behind alibrary structure, its access and the employment. of genericity and parameterization.

With direct association between synthesis tool developers and FPGA technology, a lune-
tional unit (FU) could be implemented by first scelecting a hard wired version, with pre-
routing, il such a module exists. Next soft macros conld be searched followed by user macros
to see if tie functionality and the design constraints are met. Should the above explorations
above fail to produce a satisfactory component matceh, the FU conld be constructed lrom
lower level building blocks, which in some cases, may be primitive gates, Either way the
reguests of the synthesis tool must be transferred to the techuology resources and Bbraries,
Alternatives are essential and should be expressly available, with last resort availability of
lower level building blocks, Ultimately, il & match is found between a functional request,
and an available library module, the library module is instantinted, otherwise a boolean
definition of the operation/functionality should be utilized for implementation. Finer grain
components are just as important in a library system as are larger, cleverly constructed

coarse-grained blocks.





