
••• Nalional Library
01 Canada

Bibliolhèque nationale
du Canada

Acquisitions and Direction des acquisilions el
Bibliographie Services Branch des services bibliographiques

395 Wolhnglon Sllcel
Ollawa. COILIno
K1AON4

NOTICE

395, rue Wclhnglon
Ollawa (Onl,mo)
K1AON4

AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisse. (:
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•

•

•

PRACTICAL TECHNIQUES FOR INTERPROCEDURAL
HEAP ANALYSIS

by
Rakesh Ghiya

School of Computer Science
McGilI University, Montreal

January 1996

A TIIESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF TUE REQUIREMENTS FOR TUE DEGREE OF

MASTER OF SCIENCE

Copyright @ 1996 by Rakesh Ghiya

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wollington Stroct
Ollawa, Ontario
K1A ON4

395, rua Wellington
Ollowo (OnlollO)
K1AON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada ' to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12199-2

Canada

•

•

•

Abstract

Accurate alias analysis is critical for optimizing/parallclizing compilers that support
languages with pointers. Efficient techniques have been developed to calclliate aliases
introduced Dy pointers to named memory locations (typically on the stack). How
ever, practical and effective techniques for detection of aliases induccd by heap-based
dynamic data structures, have yet to be de'!c1oped. Existing approaches are either
efficient but overly conservative, or sophisticated but expensive.

In this thesis, wc present a. new and practical approach for analyzing the alias
properties of heap data structures. The important features of our approach include:
(i) wc analyze h<,ap-directed pointers after resolving the points-to relationships of
stack-directed pointers, (ii) we use a slorel,:ss model and estimate the heap structure
by abstracting the relationships betwcen heap-directed pointers, and not by explicitly
abstracting the heap as a graph, and (iii) we employa hierarchicai approach and
design different abstractions to solve the problem nt different levels of complexity.

We present a hierarchy of three practical abstractions for analyzing heap data
structures, namely connection, direction and interference matrix abstractions. These
abstractions respectively capture the following boo/ean relationships between any two
given heap-directed pointer.: (i) if they can point to the same heap data. structure,
(ii) if an access path exists between the heap objects they point to, and (iii) if they can
access a common heap object. Connection matrix information helps detect pointer
accesses to completcly disjoint data structures. The other two abstractions work
together to identify if the given program builds tree-like or dag-like structures.

We have implemented context-sensitive interprccedural analyses for these abstrac
tions in the framework of the McCAT C compiler. For each abstraction, we first
present basic analysis rules applicable to any language that supports pointers. We
then describe C specific featmes of the analyses. We demonstrate the effectiveness of
the anaJyscs by providing examplcs as weil as empirica1 results for real C programs.

Il

.1

•

Résumé

L'analyse précise d'alias est critique pour les compilateurs optimisateurs/ parallelisa
teurs, supportant des langages qui utilisent des pointeurs. Des techniques efficaces ont
été développées pour calculer les alias introduits par des pointeurs qui pointent sur
des locations mémoires nommées (typiquement sur la pile). Pourtant des techniques
efficaces et pratiques pour détecter les alias introduits par les structures de données
dynamiques basées sur le heap, sont encore à être développées. Les approches qui
existent maintenant sont: ou efficaces mais très conservatives, ou compliquées mais
chères.

Dans cette thèse, nous présentons une nouvelle méthode qui est pratique pour
analyser les propriétés des structures de données de type 'heap'. Les principales
caractéristiques de notre méthode sont: (i) nous analysons les pointeurs pointant
sur le heap après avoir résolu les relations 'pointc-sur' des pointeurs pointant sur la
pile, (ii) nous utilisons un modèle qui ne requiert aucune mémoire et nous estimons
les structures du heap en faisant abstraction des relations entre les pointeurs qui
pointent sur le heap, et non pas en faisant abstraction du heap comme un graphe, et
(iii) nous employons une approche de type hierarchique et nous avons conçu différentes
abstra::tions pour résoudre le problème. à plusieurs niveaux de complexité.

Nous présentons une hiérarchie de trois abstractions pratiques pour analyser les
structures de données de heap: abstractions de matrices de connection, de direction,
et d'interférence. Chacune de ces abstractions reconnaît une relation booléenne entre
deux pointeurs qui pointent sur un heap. Respectivement: (i) si ces pointeurs peuvent
pointer sur la même structure de donnée du heap, (ii) s'il existe un chemin d'accès
entre les objets du heap qu'ils pointent, et (iii) s'ils peuvent accéder à un objet
commun du heap. La matrice de connection aide à détecter l'accès des pointeurs
à des structures de données complètement disjointes. Les deux autres abstractions

iii

•

•

•

identifient ensemble si le programme considér(; construit des structures de données de
type arbre ou 'dag' (graphe dirigé sans cycle).

Nous avons implémenté des analyses inter-procedurales qui tiennent compte du
contexte pour ces abstractions dans l'environnement du compilateur C McCAT. Pour
chacune de ces abstractions, nous présentons d'abord les règles d'analyse de b'l.Se
appplicable a n'importe qucllangage supportant des pointeurs. Puis, nous décrivons
les caractéristiques qui sont spécifiques pour C. Nous démontrons aussi l'efficacité de
ces analyses en présentant des exemples ainsi que le résultat d'éxperiences réalisées
avec de véritables programmes écrits en C.

iv

•

•

•

Acknowledgments

Many thanks to:

Laurie Hendren for being a very caring and cheerful advisor. She has provided
constant encouragement and kept me in good spirits all through. The numerons
discussions 1 had with her, greatly helped mil in making my fuzzy ideas concrete and
in maintaining my focus. She has also supported my studies and saved me from the
worldly worries. It has becn fun sharing the penchant for pointers with her.

Professor Guang Gao for providing c1ear insights into the compiler-architecture
relationship through his foundational courses. He always grected me with a smile and
boosted my morale with words of encouragement. 1must also add that his keen sense
of humor has given me many light moments during his lectures and seminars.

My mentors at TRDDC at Pune in India, for the first lessons. Professor I<esav
Nori initiated me into the realm of compilers and Hemant Pande indueted me into
pointer research.

Maryam Emami for making things tractable. She solved the first half of the
problem and provided me a framework to attack the second part. She patiently
answered all my questions, and many a times took pains to explain intricate details
with elegant examples. 1 owe her a debt of gratitude.

The multi-cultural melange of people in the ACAPS lab, for adding much color
to life. Chris Donawa showed me the ropes around in Montréal and provoked me
into many interesting discussions of all kinds. Ana Erosa made us jealous with rc
a1ly long holiday trips to Europe, and kept us happy with her parties. Luis Lozano
always cheered me with a warm hello, and has been a considerate friend. Bhama,
Cecile, Maryam and Justiani arranged sorne wonderful get-togethers, which will al
ways remind me of the good old days. This pack however remains incomplete without
inc1uding Ian and Helga, who have always been great fun.

v

•

•

•

The fun friends in Montréal, for always having time for me. Nasser Elmasri
provided company during the late night hacking sessions. He consistently humbled
me on the squash courts, but invariably consoled me with a dinner invitation. Alain
Turki and Herve Avril always invented attractive alternatives to work, and never said
no to a snooker game. And Dhrubajyoti Goswami has been a good-natured friend
since the first days in Montréal.

The very hclpful people in the administrative office: Lorraine Harper, Franca
Cianci and Lise Minogue, for making life a lot easier.

People at home: my parents for their quiet support, uncle S. N. for always coming
to rescue, and everyone else for being so much fun.

This work was partly supported by the EPPP project, financed by Industry Canada,
Alex Parallel Computers, Digital Eqnipment Canada, IBM Canada and the Centre
de recherche informatique de Montréal (CRIM).

vi

•

•

•

In the memory of my grandfather Jagdish Prasad Ghiya

vii

•

Contents

Abstract ii

Résumé iii

• Acknowledgments v

1 Introduction and Related Work 1

1.1 Pointer Analysis 2

1.2 Heap Analysis . 3

1.3 Related Work . 5

1.4 Our Approach . 13

1.5 Thesis Contributions 14

1.6 Thesis Organization . 16

2 Setting 17

2.1 The McCAT C Compiler 17

2.2 SIMPLE Intermediate Representation 18

• 2.3 Points-to Analysis . 23

viii

•

•

•

2.4 Interproccdural Analysis FramelVork .

2.4.1 Representing Calling Contexts .

2.4.2 Map Information in the Invocation Graph

2.4.3 Resolving Function Pointers

2.5 Path Matrix Analysis

3 Conneetion AnaIysis

3.1 The Abstraction ..

3.2 Basic Heap Statements

3.2.1 Analysis Rules for Basic Heap Statements

3.3 Summary

4 Interprocedural Conneetion Analysis for C

4.1 Analyzing Basic SIMPLE Statements

4.1.1 Identifying S-locations

4.1.2 Analysis Based on S-locations

4.2 Ana!yzing Compositional Control Statements

4.2.1 Analysis without break and continue Statements .

4.2.2 Analysis with break and continue Statements

4.3 Interprocedural Ana!ysis

4.3.1 An Approach Based on Invocation Graphs

4.3.2 Handling Recursive Procedure CaUs.

4.3.3 Handling Indirect Procedure CaUs.

4.3.4 Retum Statement ...

ix

27

27

30

30

3:1

37

37

40

41

53

54

54

55

56

66

67

68

69

71

72

75

75

•
4.3.5 Mappi'lg and Unmapping Connection Matrices.

4.4 Some Important Observations

4.4.1 Memory-Allocating FUlIctions .

4.4.2 Pointers from Heap To Stack

4.5 Summary .

76

83

83

86

90

6.1.1 Measurements for Heap Related Indirect References .

6.2 Shape Analysis Resulls ...

6.3 Summary .•........

6 Experimental Results

6.1 Connection Analysis Results

5 Shape Analysis

5.1 The Abstractions
5.2 Analyzing Basic Heap Statements

5.3 Analyzing Basic SIMPLE Statements

5.3.1 Computing Kill Set .

5.3.2 Computing Gen Set.

5.3.3 Estimating New Attributes .

5.3.4 An Example

SA Analyzing Compositional Control Slalcmenls

5.5 Interprocedural Analysis

5.6 Summary

91

91

97

108

110

110

113

117

118

119

120

123

123

127

132

141

155

Interprocedural Measurements .6.1.2

•

•
x

•

•

•

7 Conclusions and Future Work

Bibliography

A Implementation Details

xi

156

150

i64

•

List of Figures

1.1 The Pointer Classification 2

1.2 Example Program for Heap Analysis 4

1.3 An Example of 2-limiting . 6

2.1 The McCAT Compiler 19

• 2.2 Variable Transformation 20

2.3 Basic Statements Transformation 20

2.4 List of the 15 Basic SIMPLE Statements. Variables x and y denote
varname. Variables a, b, and c denote val. Variables p and q denote ID. 21

2.5 SIMPLE Grammar for a varname . . . 21

2.6 Simplification of an Indirect Reference 22

2.7 Simplification of a while-Ioop Conditional Expression . 22

2.8 A Switch Statement Transformation. 23

2.9 An example for Points-to Analysis. . 25

2.10 Points-to Information and Heap Analyses. 26

2.11 Invocation Contexts. 28

2.12 Invocation Graph for Recursion 29• 2.13 Invocation Graph for Mutual Recursion . 29

xii

•
2.14 Map Information 31

2.15 Invocation Graph for Function Pointers . 32

2.16 Identifying the !land/cs .. 33

2.17 An examp1e Path Matrix . 34

2.18 The Overall Setting For Heap Analyses 35

3.1 An examp1e Connection Matrix 39

3.2 Basic Heap Statements 41

3.3 Computing Connection Matrix Cn from C 42

3.4 Ana1yzing Basic Heap Statement p = mallocO 43

3.5 Analyzing Basic Heap Statement p =q. . . 45• 3.6 Ana1yzing Basic Heap Statement p = q->f . 46

3.7 Analyzing Basic Heap Statement p = &: (q->f) . 47

3.8 Ana1yzing Basic Heap Statement p = q + k . 49

3.9 Analyzing Basic Heap Statement p = NULL •• 50

3.10 Analyzing Basic Heap Statement p->f = NULL .•• 51

3.11 Analyzing Basic Heap Statement p->f = q 52

4.1 Example to TI\ustrate Identification of S-locations . 58

4.2 Computing Gen Set for a Basic SIMPLE Statemcnt 63

4.3 Computing Gen Sets using S-Iocations 64

4.4 Analyzing a Basic SIMPLE Statement 65

4.5 Analyzing an if Statement. . . 67

• 4.6 Analyzing a "hile Statement 68

xiii

•
4.7 Analyzing a while Statement \Vith break and continue Statements . 70

4.8 Interprocedural Startegy . 71

4.9 Compositional Interprocedural Rules for Connection Analysis 73

4.10 Compositional Interprocedural Rules for Connection Analysis 74

4.11 Handling Indirect Procedure Calls 75

4.12 Procedure Cali Affects Relationships of Inaccessible Pointers 77

4.13 An Interprocedural Example 80

4.14 Connection Relationships for the Interprocedural Example 81

4.15 Mapping Names From Caller to Callee 82

4.16 Mapping a Connection Matrix . . 84

• 4.17 Unmapping a Connection Matrix 85

4.18 Handling Stack-connection Relationships 88

4.19 Overview of Analyzing a SIMPLE Statement . 89

5.1 Example Direction and Interference Matrices. 93

5.2 Example Demonstrating Shape Estimation .. 95

5.3 Estimating Shape wi th accessibility Cri terion . 96

5.4 Acyclicity of Dag Data Structures . . . 96

5.5 The Overall Structure of the Analysis . 98

5.6 Analyzing Basic Heap Statement p = q->f . 100

5.7 Shape Attribute and Direction Relationships 101

5.8 Matrices For the Heap Structure Shown in Figure 5.6 103

• 5.9 Analyzing Basic Heap Statement p->f = q. 105

XIV

•
5.10 Direction Relationships Impacting Shape Attribute 106

5.11 Analyzing a Basic SIMPLE Statement 109

5.12 Computing Gen Set for a Basic SIMPLE Statement 111

5.13 Computing Gen Sets using S-Iocations 112

5.14 Estimating Attributes Modified by a Basic SIMPLE Statement . 114

5.15 Estimating Attributes using S-Iocations . 115

5.16 Calculating New Attributes 116

5.17 Analyzing Basic SIMPLE Statement r " s->f . 117

5.18 Analyzing a Ilhile Statement 119

5.19 Mapping Names From Caller to Callee 121

• 6.1 Connection Relationships at Indirect References 133

6.2 Connection Relationships at Indirect References 134

6.3 Connection Relationships at Indirect References 135

6.4 Connection Relationships at Indirect References 136

6.5 Connection Relationships at Indirect References 137

6.6 Shape Attribute Becomes Dag due to Array of Pointers 146

6.7 Shape Attributc Becomes Cycle due to Array of Pointers 147

6.8 Data Structure Built by paraffins Benchmark. 150

• xv

•

•

•

Chapter 1

Introduction and Related Work

Optimizing and parallelizing compilers rely upon accurate static disambiguation of
mcmory references i.e. determining at compile-time, if two given memory references
would a1ways access disjoint memory locations. Unfortunately the presence of a1iases
in programs makes memory disambiguation a non-trivial issue. An alias arises in
a prograrn when there are two or more distinct ways to refer to the sarne memory
location. In the presence of aliasing, two seemingly dissimilar references can access
the sarne memory location. Prograrn constructs that introduce aliases are arrays,
pointers 1 and pointer.based dynamic data structures. For example, the array refer
ences a[i+2*j] and a[j+2*i], the pointer dereferences *q and *p, and the structure
accesses p->item and q->next->item, can lead to the same memory location.

Over the past twenty years, powerful data dependence analyses have been de
veloped to resolve the problcm of array aliascs [BanSS, WolS9, ZC90]. These anal
yscs use integcr programming techniqucs to determine if two array subscript ex
pressions can evaluate to the same valuc. Thcy form the core of present day opti
mizing/parallelizing compilers. The problem of calculating pointer-induced a1iases,·
terrned pointer analysis, has 50 far remained a topic of mostly academic interest. It
has not progressed beyond prototype implementations, as it is a much harder problem
shown to be undecidable in its generality [Lan92]. However, as languages supporting
pointers such as C, C++ and Fortran90 continue to gain popularity, an increasing
need is being felt to develop approximatc but effective pointer analysis techniques.
Further emphasis on (his problem cornes from application areas which primarily use

ICall-by-reference parameters can be considered as a restricted case of pointer usage.

1

pointer-based dynamic data structures. Important examplcs includc: computationn1
fluid dynamics, computational geomctry, computational biology, computer graphicR,
N-body and circuit simulations.

1.1 Pointer Analysis

•

Ta praperly understand the painter analysis problem, we first dividc it into twa
distinct subproblems. The first subproblem foeuses on pointers pointing to statically
allocated memory abjects (typically on the stack). We cal1 them stack-dircctcd point
ers. The second subproblcm dcals with heap-directcd pointers, which point ta objects
dynamically al10cated in the heap. A pointer painting to an object, implics that it
contains the memory address of the given abject. For examplc in Figure LI, pointer
p points ta the abject x. Further, pointer variables p and q arc stack-directcd, while
rand s are heap-directed. Note that the pointer variables themselvcs are rcsidcnt
on the stack. Also, a pointer can fall into bath categories, if it can possibly point ta
locations on the stack as well as in the heap.

{ p = &x;
q=&y;
r =malloc();
s = malloc();

}

Points-ta (p, x) (q, y)
Info c::> (r, heap) (s. heap)

...
"

.......r.
r...

y
q
x
p
r
s

Figure 1.1: The Pointer Classification

•
Stack-direeted pointers exhibit the important property that their targcts always

possess a name. This is because all data abjects al10cated on the stack, have compile
time names. Using this property, alias information for sucb pointers can he conve
niently captured in the fonn of pointa-to pairs. For example in Figure LI, we have

2

•

•

•

points-to pairs (p, x) and (q, y) denotin!~ that pointer variable p points to the
data object x and pointer variable q points to the data object y. An alias anal
ysis algorithm for stack-allocated data objects, based on the points-to abstraction,
has been implemented in the framework of our McCAT (McGill Compiler Architec
ture Testbed) C compiler [HDE+93, Ema93, EGH94]. The empirical results reported
in [Ema93, EGH94] indicate that the points-to information collected is highly precise.

Unfortunately this nice property does not hold for heap-allocated data items. In
fact all the objects in the heap arc anonymollS. They can be accessed only through
pointer dereferences like *r or r->item or a[i], where a is a heap-directed pointer.
One cannot also use a simple naming scheme to name heap objects, as a potentially
inlinite number of them can be created. Further, objects in the heap are dynamically
linked, and more importantly delinked. Hence, there is no natural way of naming
even collections of objects (e.g. linked structures). Unlike arrays, both the number of
linked structures and the number of objects belonging to a given linked structure, vary
dynamically. Thus for a heap-directed pointer, the points-to abstraction only captures
the very coarse information that it points to the heap. The points-to pairs (r. heap)
and (5, heap) in Figure 1.1 demonstrate this point. Thus in order to estimate more
accurate information about heap-directed pointers, a different approach is required.

This thesis focuscs on developing some practical techniques for heap analysis.
In the following sections we lirst give an overview of the problem, discuss existing
methods and approaches, and then brielly describe our approach.

1.2 Heap Analysis

The problem of heap analysis has the following two components:

• Data Structure Analysis.

• Interference Analysis.

The goal of data structure analysis is to statically estimate the structure of the
heap at each prograrn point. A typical data structure analysis should be able to
answer the question: "cao two heap references at a given program point, lead to the
sarne heap location7" This question can also be rephrased as: "are the two references

3

•

•

aliased at the given program point?" For example in Figure 1.2(a), at program point
S, the heap references p->item and q->item would access the same heap location,
while the references p->item and r->item would Dot. Note that in the light of
theoretical results [Lan92], the analysis is not expcctcd to give precise information.
It is allowcd to err conservatively Le. two heap references may he reportcd to access
the same location, even when they would not, in any execution of the program.

{ p =build_list();
r =build_list();
q =Pi

s: p->item a q->item + r->item;
p = p->next;
r ::z r->next;

T: p->item =q->item + r->item;
}

(a) Program

p
q

r

f.

r-

(h) Heap Structure

--~

--~

•

Figure 1.2: Example Program for Heap Analysis

Interference analysis attempts to answer the same question, albeit in a different
context. Here the heap references of concern are typically at two differcnt program
points. Two statements interfere, if both statements access a common memory loca
tion, and one of them writes to it. Interference analysis for heaps necds to establish
a connection hetween the heap locations accessed at different statements in the pro
gram. This is a difficult problem, because seemingly similar references can access
different locations. For example, the heap reference p->item in Figure 1.2(a), ac
cesses different locations at statements 5 and T. It should be noted that the term

4

•

•

•

intcrference analysis is analogous to other terms used in the literature: confiict anal
ysis and data dependence analysis.

Any sort of interference analysis for heaps, depends on a precise data structure
analysis. Alternative1y, the information collected by data structure ana!ysis, may be
directly supplied by the user, using programmer annotations. Over the last fifteen
years, a good deal of work has been done on the different problems of heap ana1ysis.
We give an overview in the next section.

1.3 Related Work

Jones and Muchnick [JM81] proposed one of the first approaches to the data structure
analysis problem. They analyze LISP-like structures for a simple language without
procedures. They abstract the structure of the heap at each program-point, in the
form of a set of graphs. Nodes in the graph represent objects in the heap, while edges
represent the links between these objects. Nodes bound to variables are labeled by
variable names. Nodes which can possibly be shared (have more than one parent) or
become part of a cycle, are respectively labeled as shared and cyclic. They use set
union as data flow merge operator at join points, which results in a set of graphs at
each program point. Since the graphs abstract recursive structures, they can have
unbounded number of nodes. To avoid building infinite graphs they use the notion of
k-/imiting, whereby aIl the nodes in a graph accessible from a variable after traversing
k or more links, are coalesced into one summary node. For example, a 2-Iimited Iinked
list is shown in Figure 1.3.

The goal of their analysis is to optimize storage allocation. The k-Iimited graphs
at ail program points are analyzed to classify variables into three categories: (i)
variables which cannot access any shared or cyclic nodes at any program point, (Hl.
variables which can access shared nodes but no cyclic nodes, and (iii) variables which
can access cyclic nodes. The heap cells accessible from the first variety of variables
can be deallocated as soon as pointers to them are destroyed, as their reference count
never exceeds one. Those accessible from the second variety can be reference-counted
while the rest need to be garbage-collected.

Although an interesting analysis for improving storage allocation, it does not pro
vide precise enough estimation of the heap structure for program optimization. Due

5

•
to k-limiting aU the information about nodes beyond depth k is lost. The introduc
tion of summary nodcs can gcncratc spurious cycles in otherwisc acyc1ic structurcs.
Finally, maintaining a set of graphs at evcry program point, can prove to he quitc
expensive.

P i----i
--~

•

•

p ---~

Figure 1.3: An Examplc of 2-limiting

Jones and Muchnick [JM82) aIso proposed a flexible framework for anaIysis of pro
grams with recursive data structures. They designate program points which create
or modify recursive structures with tokens. The tokens can be considered as local
representations of the data structures at the given program points. They then define
a retrieval function to finitely represent the relationships between tokens and data
values. The definition of the retrieval function is based on the simulation of program
statements, using abstract interpretation [CC77]. The analysis framework is param
eterized by the choice of token sets. Thus a wide range of analyses can be exprcssed
in this framework. However, this method has remained mostly of thcorctical intcrest,
being expensive in both space and time.

Larus and Hilfinger [LH88] use a variation of k-limited graphs callcd alias graphs
for analyzing Lisp programs. Their goal is ta detect potentiaI conflicts between hcap
accesses at different program statements. They label edges in the alias graph by names
of corresponding accessors (pointer fields). In addition, they label nodes either by

6

•

•

•

a variable name or by a path expression. Path expressions are regular expressions
summarizing possible access paths from a variable to the node being labeled. A
ncwly allocated node is labeled by an aggregatc of the labels of the arguments to the
allocation function(cons). This praves to be more precise than labeling the node by
the program point where it is allocated. Unlike [JM81], they maintain only one alias
graph per program point instead of a set of graphs. They define a meet operator that
combines two alias graphs into a new alias graph that contains ail aliases in either
graph. To keep the size of the resulting graph fini te, they introduce summary nodes
using s·l Iimiting. In an s·l limited alias graph, no node has more than s outgoing arcs
(except the node representing the bot tom element), and no node has a label longer
than 1.

Once an alias graph is computed for each program point, conflict detection is
done. A potential conflict exists if access paths at the given statements can lead to
anode with the same label in their respective alias graphs. This method works weil
only for simple data structures like trees and Iists. It is rendered expensive by its
complex meet, node summary and node labeling operations.

Horwitz, Pfeiffer and Reps [HPR89] presented another variation on k-limited
graphs, called storage graphs which abstract the dynamic store. They present a
variety of ways to k-Iimit the storage graphs. The goal of their analysis is detection
of dependences between program statements. To this end, they label each node in
the storage graph with the program point that last set its contents (unlike Larus and
Hilfinger, who use path expressions for labeling nodes). A statement S is (flow) de
pendent on statement T, if S reads a location whose abstraction in the storage graph
is labeled with statement T.

Their notion of dependence analysis is more precise than conflict analysis of Larus
and Hilfinger, as the latter do not take into account the intervening writes between
the statements under consideration. Further, they maintain a set of storage graphs at
each program point, unlike a single alias graph [LH88]. This makes their analysis more
precise, but also more expensive. They use abstract interpretation [CC77] augmented
with a fourth semantics called instrumented semantics, to prove the correctness of
their technique. However, it is unclear how effective it would prove to be in practice.

Another approach to abstracting the heap structure in the form of a bounded
graph was given by Chase, Wegman and Zadeck [CWZ90]. Their abstraction, called
storage shape graph (SSG), contains one node for each variable and one for each

7

•

•

•

allocation site in the program. It is based on the premise that nodes allocatcd at
different places tend to be treated differently, while the ones allocated at a given
site would be updated similarly. This abstraction can introduce cycles in othcrwise
unaliased structures like lists and trees. For example, if all nodes of a list arc allocated
at the same site, they would be rcpresented by a single summary SSG node with a
self-cycle.

To avoid this possibility, they augment their abstraction with reference connts ror
each node, where nodes with reference counts less than two, would represent trees
and lists. Further refinements to the model include: keeping multiple inleresling
instances of an allocation site (i.e. SSG node), enabling slrong updales, and defining
a precise meet operator for join points. An SSG node is considered interesting if it
is pointed to by a delerminislie variable i.e. a variable which does not point to any
other node except possibly to nil node. A strong update involves replacing edges
leaving anode with a new set of edges, giving more precise information. It can only
be performed for nodes representing a single heap location. Finally, the meet operator
tries to minimize the creation of summary nodes, and only merges nodes representing
the same allocation site.

This method would give precise results in sorne special cases. In general, it can be
overly conservative because of one SSG node abstracting several run-time locations.
For example, it would give highly imprecise results, if the program uses a single
routine for allocating nodes (authors suggest the use of function inlining to overcome
this.). Further, the meet operation is fairly complex.

Plevyak, Chien and Karamcheti [PCK94) have extended the model of Chase et al.
[CWZ90) to handle regular cyclic structures like doubly linked lists and trees with
parent pointers, more precisely. They introduce additional nodes called choice nodes,
to represent that two given links coming into a summary node would not exist at
the same time. They also annotate summary nodes with identity paths, to indicate
which combinations of link fields can create cycles. Presently they do not handle
procedure calls. Further, their analysis needs empirical verification, though they give
sorne examples in the paper. The effectiveness of their analysis would become clearer,
once they implement it in their Concert compiler.

The approaches described so far are termed as storc-based techniques [Deu92), as
they attempt to explicitly abstra.ct the dynamic store in the form of a bounded graph.
They basically differ from ea.ch other in the way they choose to bound the graph.

8

•

•

•

Further, nodes in the grnph are sometimes labeled to facilitate conflict detection
between statements [LH88, HPR89]. Procedure calls are either not handled [JM81,
HPR89, PCK94] or are analyzed with different degrees of precision [JM82, LH88,
CWZ90]. The restriction of representing several heap locations with one abstract
location, forms the main source of imprecision for the store-based techniques.

To avoid this trap, Hendren and Nicolau [HN90] took a different approach. They
focus on abstracting the propcrties of data structures being built and manipulated,
instead of abstracting each cell in the heap. Their main focus is on identifying data
structures with regular properties Iike trees and dags. The knowledge about the un
derlying data structures is then used for interference allalysis and parallelization. For
example, computations on left and right subpieces of a binary tree can be scheduled
in parnlle!.

To colleel such information, they perform path matriz ana/ysis. A path matrix
P, is a matrix of stack-resident heap-directed pointers, called hand/es. An entry
P[r. s] in the matrix contains the summary of possible access paths from pointer r
to pointer s in the heap, at the given program point. Access paths consist of Iink
fields, and are represented as restricted regular expressions called path expressions.
Path relationships between pointers are used to determine when a tree temporarily
becomes a dag. Dag nodes are reference-counted to detect when they again become
trce-Iike (i.e. when the reference count becomesless than two). They perform context
sensitive interprocedural analysis and handie recllrsion precisely, which is important,
as recursion is thp main tool to build and use recursive data structures. Once the path
matrix analysis determines the underlying data structure to be a tree, they perform
interference analysis based on this information. This exposes the divide and conquer
type of parallelism, induced by recursive traversai of tree-Iike structures.

Their method is precise and effective for trees and to sorne extent for dags. How
ever, it cannot handie cyclic st.ructures, which are commonly used in programs, Iike
doubly-linked lists and trees with parent pointers.

Ail the techniques discussed above, consider the heap analysis problem in isolation
from stack analysis. They assume that pointers only point to heap objects, and
cannot point to objects on the stack. This assumption is valid for languages Iike Lisp
and Pascal. However, it is not valid for languages like C, which have the address
of (i.e .ta.) operator. Here, one has to provide solutions to both the problems. As
discussed above, it is desirable to have separate abstractions for performing stack and

9

•

•

•

heap analyses. However, several schemes have bccn proposed, which use a unified
framework for both the analyses. Each of them depend upon, and propose, a dilferent
strategy for naming anonymous heap objects. We discuss them below.

Guarna [Gua88] proposed one of the first approaches to analyze C pointers for
dependence detection. He constructs syntax trees to name heap objects, and intersects
them to detect dependences. His analysis assumes the underlying data structure to
be a tree, and is not safe otherwise. Further, it does not handle procedure calls.

Landi and Ryder [LR92] collect alias information in the form of pairs of abject
names. An abject name consists of a variable and a (possibly empty) sequence of
dereferences and field accesses. Typical alias pairs are: (••a, .b). (• (a->next) ,

• (b->next)). In the presence of recursive data structures, the number of object
names is infinite. To avoid this, they k-limit object names (as opposed to k-limiting
data structures [JM81J), where 'no object name can have more than k dereferences.
For example, for k .. 1, p->l->r would be represented by p->l. They also namc
heap objects according to th~ malloc site that allocates them.

Their method effectively resolves stack-based aliases. It is Dot designed to ac
curately handle heap-allocated recursive data structures. In sorne special cases it
cao help detect completely unaliased data structures (lists and trees) built by a pro
gram, but neither empirical nor theoretical evidence is available to draw any general
conclusions.

Choi, Burke and Carini [CBC93] also compute aliases of pairs of aceess pat/ls.

Their access paths are siinilar to object names [LR92). However, they do not use
access paths to name heap objects. They use the place (statement) in the program,
where an anonymous heap object is created, to name it, as in [CWZ90). To avoid
giving the same name to heap objects created at the same statement, but along
different call-chaîns, they qualify the names with procedure strings. In the presence
of recursion, this qualification proves to be of limited use. They mention that they
combine this naming scheme with k-limiting to analyze recursive structures. It is not
clear from their paper, what type of k-limiting they perform [MLR+93].

Harrison and Ammarguellat [HA93) pres<:nt a unified framework for parallelizing
C, Lisp and Fortran programs, in their Miprac compiler. It uses a very low-Ievel inter
mediate representation called MIL, which cao be considered as a machinc-independent
assembly language. In MIL, all memory references are made explicit and all loops

10

•

•

•

are converted into tail·recursion. They perform whole program abstract interpreta
tion [CC77] on MIL, and use procedure strings [Har89] to perform interprocedural
analysis. Program analysis performed at such a low level becomes less sensitive to pro
gram syntax, but also fails to take hints from the program structure. The viability of
this approach is hard to determine, until empirical results from their implementation
become available.

Deutsch [Deu92, Deu94] calculates aliases in the form of pairs of symbolic access

paths. This abstraction is particularly suited to recursive data structure analysis. A
symbolic access path (SAP) is an access path possibly containing symbolic expressions
of the form Bk, where B is a set of access paths called a basis and k is a variable. For
example, the SAP X->(tl)i_>hd, has its basis as tl. This SAP, when parameterized
on i, finitely represents an infinite number of access paths from the head of a list to
the hd fields of its nodes. No imprecision is incurred, as happens with the k-limiting
of object names [LR92).

An alias pair in this framework consists of a pair of symbolic access paths qualified
by an equation. Thus a position dependent alias relationship of the form: "the ith
element of list X is a1iased to the fi + lth element of list Y", would be precisely
expressed as « X->(tl)i. y->(tl)j >. j=2i+1). Although a more powerful and ex
pressive framework, it is not clear if it is practical enough to be implemented in a real
compiler.

Emami, Ghiya and Hendren [EGH94] proposed the approach of decoupling stack
and heap analyses. They focus on analysis of stack·directed pointers, and collect alias
information in the form of points-to relationships. A points-to relationship is denoted
by a triple (p, x. d), which indicates that pointer p definitely (d = D) or possibly
(d ,. P) points-to the location named x. As locations in the heap are anonymous,
they are represented by one abstract location called heap. Ali heap-directed pointers
are reported to be pointing to this location.

The points-to abstraction provides a more compact representation for calculating
aliases than exhaustive alias pairs based on access paths. It also enables simultaneous
calculation of both possible and definite relationships. Empirical results reported
indicate that this method collects highly precise information for stack-based aliases.
At the same time, it builds a framework for conducting a variety of heap analyses
such as those presented in this thesis. This approach of decoupling the stack and
heap analyses might incur sorne imprecision, when pointer fields in heap cells point

11

•

•

•

to locations on the stack. However, the authors provide empirical evidellce that it
does not commonly happen in real programs.

The techniques proposed by [LR92, CBC93, EGH94] handle procedure calls in a
context.sensitive manner i.e. the effect of a procedure cali is estimated specifie to
a catling context, and not just summarized for all possible catling contexts. They
use different strategies to abstract catling contexts: assumed alias sets [LR92], last
cali site and source alias sets [CBC93], and invocation graphs [EGH94]. In addition,
Emami et al. [EGH94] preciscly handle indirect calls through function pointers in C.
Deutsch [Deu94] descrihes how to handle procedure calls in general, and does not
propose any particular strategy for interprocedural analysis.

Besides the automatic analysis techniques discussed above, certain languagc-based
approaches have been proposed to get the information from the programmer. A brief
discussion follows.

Lucassen and Gifford [LG88] defined a language (FX·87), which incorporates both
an effect and a type system. The effect of a computation must be explicitly associ·
ated with a region of memory. The effect system differentiates between totally disjoint
linked structures, but fails to distinguish between disjoint subpieces of a data struc·
ture.

Klappholz et al. [KKK90] proposed Refined C, which extends C with special par
titioning constructs. Run time code is associated with these constructs to check if
any interference occurs, which can result in substantial overhead.

Hendren, Hummel and Nicolau [HHN92a, HHN92b] presented a mechanism called
ADDS (Abstract Description of Data Structures), to explicitly convey the dimension
and direction properties of a data structure, to the compiler. This involves enriching
the type definitions of data structures with sorne semantic information. For example,
consider an ADDS type definition of a doubly linked list:

type TlIoWayLL [X]
{ int data;

TlIoWayLL *next ia uniquely :!orvard along X;
TlIoWayLL *prev ia uniquely backllard along X;

};

This description tells the compiler that if the list is traversed using only next
links, then ail the nodes visited are unaliased. They demonstrate that using such
information, the compiler can perform useful transformations like software pipelining.

12

•

•

•

Hummel, Hendren and Nicolau [HHN94] presented a more formai approach, to
convey the alias properties of data structures. They propose a language based on
regular expressions, which captures alias properties in terms ofaxioms applicable to
the type definition of a data structure. For example, the alias properties of a doubly
linked list can be easily expressed as:

V p. p.next <> p.(
V p. p.prev <> p.(
V p. p.next.prev = p.(

Using these aliasing axioms, fairly complicated data structures like sparse matrices
and two-dimensional range trees, can be precisely described. The ADOS descriptions
can also be translated to aliasing axioms.

They also present a general purpose dependence test for dynamic data structures.
To detect dependence between two program statements, they first traverse the pro
gram segment to find the relative position of the heap locations accessed by them.
This is achieved by determining the possible access paths to these heap locations,
with reference to a pointer pointing to a fixed heap location. A theorem proyer is
then used to determine if the given access paths can lead to a common heap location,
on the basis of the aliasing axioms provided for the data structure being traversed.

This technique is general purpose (i.e. is not restricted to data structures of certain
types like lists and trees). The initial results provided in the paper are encouraging.
It would be interesting to see more detailed experimental results.

Klarlund and Schwartzbach [KS93] also proposed a similar approach called Graph
Types to describe data structures using regular-like expressions. With graph types,
pointer fields are separated into two types, tree and routing fields. The tree fields
must r.reate a spanning tree for the data structure, and the routing fields are defined
in terms of the tree fields and the underlying spanning tree. Thus, graph types can
only describe data structures with a spanning tree backbone.

A large body of work on analysis of heap-allocated objects, has focused on other
problems like reference counting and memory lifetimes [Hud86, ISY88, RM88, ?,
Deu90, WH92].

1.4 Our Approach

Our overall goal was to design and implement a sophisticated pointer analysis frame
work for the McCAT C compiler. We followed the approach of decoupling stack and

13

•

•

•

heap analyses, instead of solving the two problems using the same abstraction. As al
ready mentioned in section 1.1, an interprocedural points-to analysis, which calculates
the points-to relationships of variables on the stack, has already been implemented
in the framework of the McCAT compiler [Ema93, EGH94J. The points-to analysis
uses one abstract location called heap for ail heap locations. Any pointer pointing to
a heap location is r~ported to be pointing to heap. Thus ail heap-directcd pointers
appear to be aliased after points-to analysis.

Our specifie goal was to complement the points-to analysis, by further rcfining
the alias relationships of the heap-directed pointers. We found the heap analysis
techniques described in the Iiterature (which we have discussed above), to be quite
complex and expensive to be implemented in a real C compiler. We realized that any
analysis framework aimed to solve the problem in its generality, would tend to become
complex. 50, we focused our attention on identifying interesting sub-domains of the
problem, for which simple and efficient analyses could be developed. Further, we
decided to follow the storeless analysis approach [Deu92). Accordingly, wc estimate
the structure of the heap, by capturing the relationships between stack-resident heap
directed pointers, as opposed to explicit1y abstracting each ccli in the dynamic store.

1.5 Thesis Contributions

With the strategy adopted in the previous section, we developed two practical heap
data structure analyses. These analyses use simple store/ess abstractions that capture
boolean relationships between stack-resident heap-directed pointers in the program,
computed at each program point. Below, we briefly describe the two analyses and
identify their specific application domains:

• Connection Analysis: This analysis determines if two heap-directed point
ers point to the same Iinked structure (i.e. they are connected) or to disjoint
regions in the heap (i.e. they are not connected). It uses a connection ma
trix abstraction, which is a boolean matrix of heap-directed pointers, to col1ect
connection information. This information is useful in disambiguating heap ac
cesses to complete1y disjoint data structures Iike dynamically allocated arrays
and other non-recursively defined structures. Scientific applications written in
C typically use these constructs.

• Shape Analysis: This analysis focuses on estimating the shape of the struc
ture accessible from a given pointer: is it tree-like, dag-like or a general graph

14

•

•

•

containing cycles. It uses four simple abstractions ta achieve this goal, which
include:

1. Direction Matrix: This abstraction approximates the path existence rela
tionship between heap-directed pointers, i.e. if there exists an access path
in the heap from one pointer to another pointer.

2. Interference Matrix: This matrix computes, if a common heap location can
be accessed, starting from two given heap-directed pointers. It is computed
in conjunction with the direction matrix, and is designed to handle dag
like structures, where two pointers may not have a path to each other, but
can still interfere Le. access a common heap location. It forms a superset
of the direction matrix.

3. Shape Attribute: This attribute is associated with each heap-directed pointer
to store the shape of the data structure accessible from the given pointer.

4. Raot Attribute: It abstracts the following property: if the object pointed
ta by a given heap-directed pointer forms the root of the data structure
(i.e. has no incoming links) or an intermediate node.

The motivation behind shape analysis is to identify tree and list-like structures
in programs in a simple and efficient way. This knowledge can then be gainfully
exploited for parallelizing programs [Lar89, Hen90], and performing optimizing
transformations like loop unrolling [HG92] and software pipelining [HHN92a].
There is a large body of applications which use trees and lists as principal data
structures.

It should be noted that these abstractions are practical variations on the path
matrix model of Hendren and Nicolau [HN90J. The differences lie in collecting coarser
path information for efficiency reasons, and associating additional attributes with each
pointer (e.g. shape attribute). Our strategy is to run these analyses in a hierarchica/
fashion. If the points-to analysis reports no heap-directed pointers, no heap analysis
needs to be performed. Otherwise, we first run a simple and cheap analysis like
connection analysis. If it provides overly conservative results, we proceed to shape
analysis. Next, more complex analyses like that of Deutsch [Deu94], or programmer
supplied information [HHN92a, HHN94], can be used. Thus, the cost of an expensive
analysis is incurred only if the input program requires so.

We have implemented context-sensitive interprocedural analyses for these abstrac
tions in the McCAT C compiler. We have augmented the interprocedural analysis
framework used for points-to analysis [EGH94]. Our method precisely handles re
cursion, indirect calls through function pointers, and variables indirectly accessible

15

•
through pointers (invisible variables). We have performed experiments on a set of
heap·intensive C benchmark programs of medium size. The empirical results indicate
that each analysis provides reasonably precise information for its target application
domain, and safe conservative approximations otherwise, as expected. The analyses
l'un efficiently, as boolean matrices enable fast update and merge operations.

In brief, the main contributions of this thesis include:

• Design of two practical heap data structure analyses, connection analysis and
shape analysis, which use simple and efficient sloreless abstractions, and form
part of a hierarchy of pointer analyses.

• A context-sensitive interprocedural implementation of these analyses in a real
C compiler, handling almost al1 the complexities of the C language.

• Verification of the effectiveness of these analyses by an empirical study of a set
of heap-intensive C benchmark programs of medium size (of upto 5,000 lines) .

• 1.6 Thesis Organization

•

The l'est of this thesis is organized as fol1ows. In chapter 2 we describe the over
aIl setting for the implementation of heap analyses in the McCAT C compiler. In
chapters 3 and 4, we provide the analysis rules for connection analysis. The rules
for estimating shape information are given in chapter 5. In chapter 6, empirical data
is presented to demonstrate the effectiveness of these analyses on real C prograrns.
Finally in chapter 7, we draw conclusions and discuss the scope for future work.

16

•

•

•

Chapter 2

Setting

In this chapter, we outline the setting in which our analyses have been designed and
implemented. We chose C as the language under analysis, as it supports ail the inter
esting and challenging pointer features, and is widely used. We modeled our analyses
as practical variations on the path matrix abstraction of Hendren and Nicolau [HN90] .
The McCAT C compiler formed the ideal platform for implementing our analyses. The
main reasons for this choice were: (1) it provides a simple and structured intermedi
ate representation called SIMPLE, specially designed for efficient pointer analysis,
(2) it already has an implementation of the points-to analysis [Ema93], that calcu
lates the points-to relationships of variables on stack, enabling us to focus solely on
the analysis of heap-directed pointers, and (3) it provides a framework for general
purpose context-sensitive interprocedural analysis, that accurately handles recursion
and function pointers [HEGV93, EGH94].

We give a brief overview of the McCAT compiler in the first section. The next
section focuses on the SIMPLE intermediate representation. In section 2.3, we briefly
discuss the interaction of points-to and heap analyses. The interprocedural analysis
framework is described in section 2.4. In the last section we review the path matrix
analysis, to put our analysis techniques in proper perspective.

2.1 The McCAT C Compiler

The McCAT C compiler is part of the McGill Compiler Architecture Testbed, be
ing developed to study the interaction between smart compilation techniques and

17

•

•

•

advanced architectural features [HDE+93]. The compiler is built on top of the front
end of the GNU C compiler (version 1.37.1) [Sta90]. The most important goal in
its design was to develop appropriate intermediate representations to facilitate im
plementation of various high-level and low-Ievel analyses and transformations in a
simple and straightforward manner. Thus it supports a family of tree-based interme
diate representations (IR's) , namely FmST, SIMPLE and LAST.

FIRST is a high-Ievel Abstract Syntax Tree (AST) representation of the entire
source program. It is built to separate the front-end processing (e.g. scanning, pars
ing, and type-checking) from the analysis, optimization and code-generation phases
of the compiler. It retains the original format of the source program and its data
structures. Analysis at this level can become cumbersome, specially if the program
uses complex constructs and the programmer has resorted to various tricks a1lowed
by high-Ievellanguages (specially Cl).

In order to make the implementation of analyses simple and straightforward,
FmsT is transformed to another AST intermediate representation called SIMPLE.
As the name implies, SIMPLE breaks down ail complex program constructs into a
series of simple and regular constructs. It also makes control f10w structured and ex
plicit. SIMPLE forms the appropriate program representation for high-level analyses
like alias and dependence analysis, and for high-Ievelloop and parallelization trans
formations. We discuss it in more detail in the next section. A complete description
is given in [Sri92J.

SIMPLE is further transformed to a lower-Ievel representation called LAsT(Lower
level Abstract Syntax Trec). It exposes the memory hierarchy, address calculations,
and architectural features Iike delay slots. This IR is designed for low-Ievel opti
mizations Iike register allocation and instruction scheduling, and for code generation.
More details on LAST can be found in [Don94).

The overall design of the McCAT compiler is shown in Figure 2.1. Note that the
compiler takes as input a set of C files, which are Iinked by a source levellinker. This
is necessary in order to have the whole source program available for interprocedural
analysis.

2.2 SIMPLE Intermediate Representation

The SIMPLE intermediate representation has been specially designed to facilitate
accurate pointer analysis for C programs. Its major advantage lies in being simple

18

•

•

• Figure 2.1: The McCAT Compiler

19

•
to analyze. This is achieved by performing a number of simplifying transforma·
tions. Typical examples include: compiling complex statements into a series of ba.sic
statements, breaking down complex variable references into a series of simpler ones,
simplifying procedure arguments to either constants or variable names, and moving
variable initializations from declarations to statements in the body of the appropriate
procedure. We illustrate sorne simplifying transformations in Figures 2.2 and 2.3.
SIMPLE however retains the identity of high-level variable references like array and
structure references, and complete type and type-ca.sting information. Most high
level analyses can derive useful hints from this information. For example, array
dependence can make use of information like array dimension and array size, while
pointer analyses can benefit from type information.

Figure 2.2: Variable Transformation•
f = a.b[3] .c:.d[2] [6].e =?

a =b t C + (.d) 1 e; =?

templ =li:a.b;
temp2. lrtempl[3];
temp3 =li:(ttemp2).c.d
temp4 • lrtemp3[2] [6];
f • (ttemp4). e;

templ • b t c;
temp2 =.d;
temp3 • temp2 1 e;
a = templ + temp3;

•

Figure 2.3: Basic Statements Transformation

SIMPLE restricts the number of ba.sic statements in a program to fifteen. Dif
ferent types of basic statements in a C program are broken down into one or more of
these fifteen statements. In Figure 2.4 we list this set of basic statments. Note that
variables 'x' and 'y' denote varnames, wherea.s the variables 'a', "b', and oc' denote.
vals. The SIMPLE grammar for a varname is shown in Figure 2.5.

Deve10pment of any new analysis is greatly simplified, as ba.sic analysis rules need
ta be specified for only fifteen simple statements. Pointer analysis is further facili
tated by the fact that only one level of indirection is allowed in any indirect variable
referencc. Indirect references of multiple level are broken down to adhere ta this
format, during simplification. Figure 2.6 shows an example of simplifying indirect
references. Indirect references augmented with field accesses (i.e. component refer
enc:es) like (.a) .Dext and (ta).Dext • i tCIIII , and indirect array references like a (i]

20

•
1. x .. a binop b where binop is any bina,.,) 0 peration
2. .p .. a binop b
3. x .. unop a where unop is any unary operati on
4. .p .. unop a
5. x .. y
6. .p .. y
7. x .. f(args) where args is a possibly empty list of arguments
8. .p .. f(args)
9. x .. (cast)b where cast is any typecast

10. .p .. (cast)b
11. x .. ty
12. .p .. ty
13. x .. .q
14. .p .. .q
15. f(args)

• Figure 2.4: List of the 15 Basic SIMPLE Staternents. Variables x and y denote
varname. Variables a, b, and c denote val. Variables p and q denote ID.

val ID reflist '[' val '] ,
CONSr reflist ' [' val 'p

varname : arrayref idlist idlist ' , ID
compref ID
ID

compref ' (' '.' ID ')' , , idlist.
arrayref : ID reflist idlist

•
Figure 2.5: SIMPLE Grarnrnar for a varname

21

•
where a is a pointer to an array, are represented in the ba.~ic statements (Figure 2,t1)
by variables 'x' and 'y' (as can be seen from the grammar shown in Figure 2.5).
However, the level of indirection remains restricted to one.

"pp. q; templ " -pp;
-templ • q;

•

Figure 2.6: Simplification of an Indirect Reference

Another important feature of SIMPLE is that it provides a compositional rcp
resentation of the program, and makes the control flow structured and explicit. The
compositional control statement forms supported by SIMPLE are simplificd versions
of: statement sequences, for-loops,lIhile-Ioops, do-Ioops, sllitch/case statements,
and if/else statements. In addition, return statements is snpported for exiting
a procedure, and break and continue statements are supported for exiting a loop.
Since the unrestricted use of goto is not compositional, the compiler provides a struc
turing phase that eliminates all goto statements from a C program [Er094, EH94].

An important simplification for compositionai control constructs involves reduc
ing complex conditional expressions into simple expressions with no side-elfects. Fig
ure 2.7 gives an example. Another significant transformation concerns making the
control Bow in SlIitcb/case statements structured and explicit. This involves encling
eacb case statement with a break, continue or return, and introducing a default
statement at the end of each sllitcb statement. An example transformation is shown
in Figure 2.8.

IIhile (a + b > cl
{
...

templ =a+ b;
IIhile (templ > cl

{

}

•

templ • a + b,
}

Figure 2.7: Simplification of a IIhile-Joop Conditional Expression

With a compositiona1 representation, structured analysis techniques can be used
ta analyze a11 control constructs. For example, a while loop cao be analyzcd by con
sidering only its components: the conditional expression and the body. A structured
analysis framework is casier ta implement, as only one analysis rule necds ta be de
fined for each of the compound statements sucb as conditionals and loops. Further,
it becomes casier ta rcason about the fixed-point computations for loop constructs.

22

•
svitch (a)
{

case 12:
default:
case 13:

{ int i:
stmt1;

caSB 14:
stmt2;

}

break:
}

svitch (a)
{

int i:
case 12:
case 13:

stmt1;
stmt2:
broak;

case 14:
stmt2:
break:

default:
stmtl ;
stmt2:
break:

}

•

•

Figure 2.8: A Switch Statcment Transformation

Our heap analyses are performed at the SIMPLE level, using structured analysis
techniques. We analyze the program in the source order, as a SIMPLE tree-walk
naturally follows this order.

2.3 Points-to Analysis

In C, one tan have pointers to locations on the stack as weil as in the heap. As
mentioncd earlier, we follow the strategy of separating the analysis of stack-directed
and heap-directed pointers. So we first resolve the points-to (alias) relationships
of variables on the stack, using an analysis called points-to analysis. This analysis
abstracts the set of ail accessible stack locations \Vith a finite set of namcd abstract
stack locations. An abstract location may correspond to: (1) the name of a local
variable, global variable or a parameter; or (2) a symbolic name that corresponds
10 locations indirect1y accessible through a pointer dereference, when these locations
l.'orrespond to variables not in the scope of the procedure under analysisj or (3) the
symbolic name heap that represents ail accessible heap locations. Note that symbolic
abstract stack locations tan rcpresent more than one real stack location. We further
e1aborate on this in the next section.

Given that each real stack location has a corresponding named abstract stack lo
cation, alias information is then capturcd in the form of definite and possible points-to

23

•

•

•

relationships between abstract stack locations, defined as follows:

Definition 2.3.1 Abstraet stacJ: location x definitely points-to abstraet stack location
y, at a given program pint, ifx and y each represent exact/y one real stack location at
that program point, and the real stack location corresponding ta x contains the t1ddrcss
of the real stack location corresponding ta y. This is denot~d by the triple (x,y ,0).

Definition 2.3.2 Abstraet stack location x possibly points-to abstraet stack location
y, at a given program point, if il is possible that one of the real stack locations corre
sponding ta x contains the address of one of the real stack locations corresponding ta
y at that progra. point. This is denoted by the triple (x ,y, p).

The complete description of points-to analysis can be found in (Ema93] and an
overview in (EGH94J. However, we demonstrate it on an example program, in Fig
ure 2.9. Part (a) of the figure shows the original program, while part (b) shows
the simplified program decorated with program-point-specific points-to information.
Note that ail heap-directed pointers are reported to be possibly pointing to the ab
stract stack location heap. A pictorial representation of the abstract stack at program
point D is shown in part (c) of the figure. Solid lines in the figure denote defini te
relationships while dashed ones represent possible relationships. The abstract stack
is implemented using two boolean mat.rices, which respectively store the definite and
possible points-to relationships.

Points-to analysis lays the foundation for performing heap analyses. First, it
determines the set of heap-directed pointers in the program. This set consists of
pointers which are reported to be possibly pointing to heap at sorne point in the
program. For example, for the simplified program in Figure 2.9(b), only pointers
p and q would fall into this set. Ali heap analyses only nccd to approximate the
relationships betwccn these heap-directed pointers. This hclps in reducing the storage
requirements for the abstraction being implemented.

Secondly, the points-to information is used by heap analyses to accurately handie
indirect references. For example, consider the analysis of statement p->next • q
((.p) .next • q) in Figure 2.10. To estimate its effect on any heap analysis, we
first nccd to know what locations pointers p and q cao point-to. If both of them
point-to heap, then this statement links the actual pointed-to locations through the
next link, as shown in Figure 2.10(a). Similarly, if q points-to heap, and p points
to a stack-resident structure x, wc would have x. next pointing to the same heap
location as q, as shown in Figure 2.10(b). On the other hand, if q points-to a stack
location, and p points-to the structure x, with its next field al50 pointing to a stack

24

•

•

mainO
{ int -p, -q, "PP;

P = (int -) maIlocO i
q = Pi
PP = &Pi
"PP = 5i

}

(a) Original Program

mainO
{ int _P, -q, _tcmpl, ..pp;

p = (int _) maIlocO;
/- A: { (p,heap,P) } _/
q = Pi
/- B: { (p,heap,P), (q,heap,P) } _/
PP =&Pi
/- C: { (p, heap,P), (q,heap,P)

(pp,p,D) } _/
tcmpl = -PPi
/. D: { (p, heap,P), (q,heap,P)

(pp,p,D) (tempJ,p,D) } _/
_tcmpl = 5i

}

(b) Simplified Program with
Points-to Information

•

=I--_~~:th<ap)
I8mpll-_-l

(c) Abstract Stack Representation

Figure 2.9: An example for Points-to Analysis

25

•

•

•

p ~~-'D p
~--'t?

~ p->next=qp ne,l

q "--D
q "--D

(a)

ll.nell1 X.nelll --
x ::-D~ p->next=qF:>

x

"'~:_~p p

q q

(b)

x.next x.next --x • 1... '
p ~ c=:>l p->next = qf=:> p ~. 1

1
1., ,

Y ~. Y ~.q q

(c)

Figure 2.10: Points-to Information and Heap Analyses

26

•

•

•

location, the statement does not affect heap ana!ysis, as no pointer to a heap location
is updated (Figure 2.10(c». Thus points-to information is offundamental importance
for performing accurate heap analysis. We will further explore the dependence of heap
analyses on points-to information, in the following chapters.

2.4 Interprocedural Analysis Framework

Points-to analysis handles procedure calls in a context-sensitive manner i.e. it esti
mates the efi"ect of a procedure cali, within its specifie calling context, and not as a
summary of ail possible calling contexts. To support this analysis strategy, it builds a
framework for interprocedural analysis. Other context-sensitive interprocedural anal
yses Iike heap analyses, are built on top of this framework. A complete description of
the framework can be found in [Ema93, HEGV93, EGH94]. In the following chapters,
we specialize this framework for difi"erent heap analyses. Below, we briefly describe
its salient features, which are of relevance for this purpose.

2.4.1 Representing Calling Contexts

In general, a calling context depends on the invocation path followed by the program
i.e. the chain of procedure invocations starting from main and ending with the pro
cedure cali under analysis. Points-to analysis builds an invocation graph, where all
invocation paths are explicitly represented. In the absence of recursion, the invoca
tion graph is constructed by a simple depth-first traversai of the invocation structure
of the program. Consider for example, the invocation graph for the program in
Figure 2.11(a). An important characteristic of the invocation graph is that each pro
cedure invocation chain is represented by a unique path in it, and vice versa. Using
the invocation graph one can distinguish not only calls from two different cali-sites
of a procedure (caIls to fO in Figure 2.11(a)), but one can also distinguish two differ
ent invocations of a procedure from the same calI-site when reached along difi"erent'
invocation chains (cali to fO in Figure 2.11(b)).

In the presence of recursion the exact invocation structure of the program is not
known staticallY' and one must approximate ail possible unrollings of the recursion.
Figure 2.12 iIIustrates a program with simple recursion and the set of ail possible
invocation unrollings for this program, and our invocation graph that is used to
approximate ail possible unrollings. To build the graph in the case of recursion one
terminates the depth-first traversai each time a function name is the same as that

27

•
of one of the ancestors on the caU chain from main. The Ieaf node (representing the
repeated function name) islabeied as an approximate node, and its matching ancestor
node ie Iabeied as a recursive node. The pairings of these nodes are indicated with
a special back-edge from the approximate node to the recursive node. It shouid
be noted that these back-edges are used only to match the approximate node with
its appropriate recursive node, and they are therefore quite different from the other
tree edges which correspond to procedure caUs. This scheme is compietely general.
Consider, for exampIe, the invocation graph for a program with mutuai recursion
dispIayed in Figure 2.13.

mainO fO mainO gO
{ ... { ... { ... { ...

fOi gOi fOi
fOi } gOi

} } }

• main/"main

/"-,.., g g

f f .~ ~
f f

(a) (b)

Figure 2.11: Invocation Contexts

•

The approach of explicitIy building the invocation graph has the fol1owing advan- .
tages: (1) it cleanly separates the abstraction for any interprocedural analysis from
the abstraction required to encode .the caI1ing context, (2) it allows one to depoeit
information computed from one analysis that can be useful for the next analysis, (3) it
provides a place to store (memoize) IN/OUT pairs previously computed to summarize
the effect of the function calI (90 that extra computation can be avoided at analyeis
time), and (4) it provides a simple framework for implementingsimple compositional
fixed-point computations for reeursion•

28

•

•

main main main

mainO f(int x) ~ ~ ~ main

{ ... { if (c) , , ,
~

fO j fO j ~ ~
••• '·R

} } , f ~)
~ f·A,

(a) Program (b) Ali Possible (c) Invocation
Invocation Unrollings Graph

Figure 2.12: Invocation Graph for Recursion

CO i

mainO
{

}

co
{

}

gO ;
hO i

gO
{

}
co ;

main

~
" '·R

// ": 9 h

\ ~
·'·A

(a) Prograril (b) Invocation Graph

•
Figure 2.13: Invocation Graph for Mutual Recursion

29

•

•

•

2.4.2 Map Information in the Invocation Graph

In the presence of procedure calls, an indirect reference in a procedure can refer to
variables that are outside its scope (henceforth termed as invisible variables). This
can happen, for example, when the address of a local variable is passed as a parameter,
or when a global pointer points-to local variables of the caller. As each accessible real
stack location needs to be represented by a named abstract stack location, points-to
analysis generates special symbolic names to represent 'such invisible variables. A
symbolic name is generated for each possible levcl of indirection of formai parameters
and global pointers. Next each invisible variable is mapped to a unique symbolic
name.

For example in Figure 2.14, for the formai parameter ppu with type intu, sym
bolic names l_ppu and 2_ppu with types int. and int are generated. Now, since the
address of the local variable pa (invisible to ind_swap) is passed to ppu, the symbolic
name l_ppu is used ta represent pa in the procedure ind_swap. Similarly, as the invisi
ble variable a is accessible through the indirect reference ••ppu, it gets represented by
the symbolic name 2_ppu. This association of invisible variables with symbolic names
is recorded in the invocation graph nodes as map information. Figure 2.14(b) shows
the map information for various procedure calls. Complete details of the mapping
process can be found in [Ema93].

The map information is context-sensitive as can be seen from the different map
pings for the two calls to procedure incr in Figure 2.14(b). The symbolic names
are independent of the context. Points-ta analysis and other interprocedural analyses
use the symbolic names in a context-free manner when analyzing a procedure. On
returning from a procedure, they are unmapped to appropriate variables based on the
map information recorded in the invocation graph, for the given calling context.

2.4.3 Resolving Function Pointers

In C, pointers may not only point to memory locations, but also to functions. This
means that the complete invocation graph cannot be built by a simple textual pass
over the program. Thus the points-to analysis must complete the invocation graph
by resolving which functions are invocable from each indirect function pointer calI.
One migIit ask why the completion of the invocation graph must proceed at the same
time as the points-to analysis. Consider that the complete invocation graph cannot
be built before points-to analysis because the meaning of an indirect cali (.pf) 0
is determined by examining the objects that pf may point-to. However, points-to

30

•

•

void ind_8wap(int **ppu, intppv)
{int *ptempi

ptemp = *PPUj
*ppu = .ppv;
.ppv = ptcmpj

}

void incr(int *px)
{ int temp_O;

temp_O = *px;
.px = temp_O + li

}

int mainO
{ int aj int bj int .pa; int .pb;

int ..temp_2j int ..temp_lj
a. = 1; b = 10;
pa. = &aj pb = &bj
incr(pa);
temp_1 = &pa; temp_2 = &pbj
ind_swap(temp_l,temp_2);
incr(pa)j

}

(a) Example Program

maIn

/i~
Incr Ind_swap Incr

(b) Invocation Graph and Map
Information

•
Figure 2.14: Map Information

31

•
analysis itselfis a context-sensitive interprocedural analysis that needs the invocation
graph. Thus the two approximations must he ca1culated at the same time.

int (*fp)O
mainO int fO int gO
{ { { ... }

fp = f; fp = g
while (e)
{ }

fpO

}
}

(a)

• main main main

~ + +
fp fp fp

~ /"-
f f 9

(h) (c) (d)

Figure 2.15: Invocation Graph for Function Pointers

•

To explain how points-to analysis completes the invocation graph, we give an
example. Consider the program in Figure 2.15(a), with an indirect calI fp() inside
the while loop. The (incomplete) invocation graph of the program before points-to
analysis is given in Figure 2.15(b). When points-to analysis encounters the indirect
calI fp (), during the first iteration of the while-Ioop fixed-point computation, it finds
the current points-to set of fp to he (f). The invocation graph is updated according
to this information, as shown In Figure 2.15(c) and the function f is analyzed in the
current calling context. During the second iteration of the fixed-point computation,
the points-to set of fp hecomes (f ,g), and the invocation graph again gets updated
as shown in Figure 2.l5(d). Future iterations do not modify the points-to set of fp,

32

•

•

and thus the points-to analysis constructs the complete invocation graph for other
interprocedural analyses. The complete algorithm for resolving function pointers can
he round in [Ghi92, EGH94].

Other intcrprocedural analyses can measure the effect of a function pointer caU, by
merging the outputs obtained by individually analyzing in the current calling context,
aU the functions represented by its children nodes in the invocation graph.

2.5 Path Matrix Analysis

Our abstractions for heap analysis are variations on the path matrix model of Hendren
and Nicolau [HN9D]. The path matrix approach captures the structure of the heap
using an abstraction, orthogonal to the k-limited graphs. It essentially exploits the
fact, that though there are potentially infinite number ofobjects in the heap, they are
always accessed using access-paths which originate from stack-resident heap-directed
pointers. Figure 2.16 provides an illustration of this observation. It can be easily
notOO, that access to any node of the data structure Duilt in the heap, has to originate
either from pointer variable p or pointer variable q. They term such heap-direeted
pointers as handles, as these are the pointers the programmer has handle on. Since
handles are themselves resident on the stack, they are not many in numher, and are
relatively inexpensive to reason about.

p --~-

ql----1

•
Figure 2.16: Identifying the handles

Based on the abovc observations, the abstraction developed by Hendrcn and Nico
Jau, is a matrix of handles P, where an entry P [p J q] , contains the access path inside
the heap, from handJe p to handlc q. The access paths are expressed in the fonn

33

•

•

•

of restricted regular expressions. Figure 2.17 presents an example of how the heap
structure is captured using the path matrix. An empty entry, say P[r ,q] indicates
that the heap object pointed to by r cannot be reached by using an access path orig.
inating from pointer q and vice versa. The symbol S in an cutry deuotes that the two
pointer variables point to the same heap object. The more complicated expressions,
represent the access paths using the link fields.

1---i/'D-N-o-~:0---~

~ ---------------
---------:I----i ~ ':
'L~R~
6 b

(a) Heap Structure

p q r s t

p S N~

q S
r S
s R S L"
t S

(b) Path Matrix Information

Figure 2.1';'~ An example Path Matrix

However, the path matrix analysis assumes and verifies that the underlying data
strudure being created and manipulated by the program is a tree. The path matrix
information is usoo to distinguish between pointers acccssing disjoint subpieccs of the

34

•
Heap Analysis in the McCAT C Compiler

=.c =
- .~"?

•

•

Simplify, Strueturing, and Building Invocation Graph

SIMPLEAST
+

InitiaI Invocation Graph

~
SIMPLE AST with Point-specifie Points-to Infonnation

+
Complete Invocation Graph with Map Infonnation

....... ~ " " .. " " .. III • " ..

Interprocedural Heap
Analyses

Figure 2.18: The Overall Setting For Heap Analyses

35

•

•

•

tree, and to detect the creation and c1imination of temporary DAC nodes during trec
updates. It cannot handle cyclic structures. Further, the encoding of precise (lath
rc1ationships in the form of path expressions, can prave to be potential\y expensive
information to store.

In the light of these problems, we have adapted the model for more practical and
general purpose heap analysis (without any assumptions about the underlying data
structures). We fol\ow the paradigm of abstracting the heap structure, by captur
ing the relationships only between the handlcs. However, wc capture coarser path
rc1ationships, which can be stored as boolean matrices. This enables faster data How
merge operation and substantially reduces the storage requirements for the analysis,
while the analyses still gather useful information. Further wc also abstract simple
at.tributes like shape and root attributes which increase the effectiveness of our anal
yses. Based on this philosophy, wc present a hierarchy of praetical abstractions for
heap analysis in the following chapters.

The heap analyses arc implemented on the structured tree-based SIMPLE inter
mediate representation. Points-to analysis builds il complete framework to perform
them efficiently and accurately in an interprocedural fashion. The overall implemen
tation setting is shown in Figure 2.18, which can be brieny described as fol\ows:

First, ail the . c files for the given program arc fed to the source level linker,
which generates the FIR5T AST for the entire program. Subsequently this AST
is simplified and structured (i.e. goto statements are eliminated). The invocation
graph is then constructed by identifying the functions called by each function in the
program. Next, points-to analysis is performed, which calculates possible pointer
targets at each program point for stack-directed pointers, and also resolves indirect
calls through function pointers. Finally, various interprocedural heap analyses are
conducted to estimate the rc1ationships of heap-directed pointers.

36

•

•

•

Chapter 3

Connection Analysis

ln this chapter, we describe the connection matrix abstraction, and the basic connec
tion analysis rules associated with it. It forms the first step of our hierarchical ap
proach to heap analysis. It is a simple storelus abstraction designed to disambiguate
heap accesses at a coarse level, but in a highly efficient and cost-effective manner. Wc
introduce and motivate this abstraction in section 3.1. In the next section we identify
eight basic statements that can affect the relationships of hcap-directed pointers. We
then define analysis rules for these statements to clearly illustrate the basic principlcs
of connection analysis. Using these rules as the foundation, the complete framework
for connection analysis of C programs at the SIMPLE intermediate representation,
is developed in chapter 4.

3.1 The Abstraction

A connection matrix C is a boolean matrix of relationships betwccn heap-directed
pointers which captures simple connectivity of hcap objects. A heap abject is defined
as a memory object allocated in the hcap memory, represcnting an instance of "a
valid type definition (basic or user-defined) in the prograrn. The connection matrix
abstraction is dcsigned to disambiguate heap accesses at the data structure level.
The term data structure in this context represents a connected region in the hcap i.e.
if the hcap is viewed as an undirected graph with hcap objects as nodes and links
betwccn them as edgcs, each connected component forms a separate data structure.
Given any two data structures, they would not have a common heap object belonging
to them. For example in Figure 3.1, the heap consists of two data structures: oDe
pointed ta by pointers p and q and the other pointed to by pointers r, s and t. Note

37

•

•

•

that we cannot give IldmeS to these data structures. We cau only rcfcr to them lUI

being pointed to by a given set of pointers.

With the above definitions, given any two heap-directed pointers say p and q,
connection matrix abstracts the following]ITogmlll-l'oint-.•pccific rehüionships:

• C[p,q] = 1 : Pointers p and q possibly point to heap objects bclonging to the
same data structure. In our terminology, pointers p and q are considered to be
conneeted, or to have a connection relationship.

• C[p,q] = 0 : The heap objects pointed to by pointers p and q definitdy bclong
to dilferent data structures. In other words, pointers p and q are not connected.

The uaeful information is the negative information. If pointers p and q are not
connected, then heap accesses originating from them will always lead to disjoint heap
locations, and thus not interfere. Il is sale to report two heap·directed pointers to be
connected, when they are not. However, if they can point to the same data structure,
they should always be reported to be connected.

We illustrate the abstraction in Figure 3.1. Part (a) shows the structure of heap
at a program point, while part (b) shows its abstraction as a connection matrix.
ln Figure 2.17(b) wc have shown the path matrix abstraction for the same heap
structure. The path matrix entries are path expressions, while connection matrix
entries are simply zeros or ones. The zero in the entry C[p,r] indicates that pointers
p and r point to disjoint data structures in the heap. The one in the entry C[s,r]
indicates that sand r point to objects bclonging to the same data structure. Note
that the entry C[r,t) is set to one, despite the fact that pointers rand t point to
disjoint subpieces of the same data structure. This is because connection matrix
is designed to disambiguate heap accesses at the data structure levcl (for efficiency
rcasons). More sophisticated abstractions, which can distinguish between subpieces
of a data structure itself, will be presented in the following chapters.

Following are :;(>me other important characteristics of the connection matrix ab
straction:

• It abstracts relationships only betwccn slack-residenl heap-dirccted pointers.
As all heap accesses originate from these pointers, their relationships elfectively
capture the structure of the heap. For example in Figure 3.1(b), the informa
tion that pointers p and s point to disjoint data structures al90 simultaneously
implies that pointers p->N and s->L point to disjoint structures.

38

•

•

•

~--l,''''''O-N-V~V---~
p ------------q f---- ------
: ":=:_-~ -':

"\: ~ ~
:L R6
Ô b

(a) Heap Structure

=P 1 1 0 0 0
q 1 1 0 0 0
r 0 0 1 1 1
s. 0 0 1 1 1

f--
0 1 1 1t ;1 0

(b) Connection Matrix Abstraction

Figure 3.1: An example Connection Matrix

39

•

•

•

• For each function in the program, the connection matrix abstracts relationships
between a11 stack-resident pointers which can be heap-direcled I\t some point in
the program and are directly or indirectly (throllgh an indirect rcference) ac
cessible from the function. Names are natllra11y available from the program, for
directly accessible pointers. For indirectly accessible pointers, special symbolic
names are generated by points-to analysis I\S explained in section 2.4.2. These
names are reused by connection analysis. To knolV IVhich pointers ever point to
heap, the existing points-to information is lIsed.

• If a pointer, say p, does not point to a heap location at a given program point,
the connection matrix entry C[p,p] is set to zero at that program point. In this
case the pointer points to NULL or to a stack location.

• The connection matrix relationship is symmetric i.e. for any tlVO heap-directed
pointers say p and q, we always have C[p,q] = C[q,pJ. The connection relation
ships shown in Figure 3.l(b) iIlllstrate this property. It is lIsed in the actllal
implementation to reduce the storage requirement by half.

The connection matrix abstraction is targeted towards programs that a110cate
a number of disjoint data structures in the heap. Scientific applications IVritten
in C typica11y exhibit this feature, as they use a number of disjoint dynamically
allocated arrays. We will present some empirical data in chapter 6, to demonstrate
the e!fectiveness of this abstraction for its intended domain of applications. We nolV
describe the basic analysis rules to compute connection matrix information.

3.2 Basic Heap Statements

Hendren and Nicolau [HN90] had identified six basic statements of a simple Imperative
language SIL, that access or modify heap data structures. We have added two more
statements to this list to cover pointer arithmetic and use of address-operator a110wed
in the C-Ianguage. The complete list is given in Figure 3.2. Variables p and q and the
field f are of pointer type, variable k is of integer type, and op denotes the + and
operations. We first give the analysis rules for these eight basic heap statements, with
the restriction that pointers can only point to heap objects. These rules are simple to
describe and clearly illustrate the basic principles of connection analysis. Analysis
rules for the basic SIMPLE statements will then be constructed from these basic
rules in chapter 4. There we willtake into account the e!fect of stack-based points-to
relationships on estimating heap relationships.

40

•

•

•

1. P • mal10c 0 ;
2. P = q;
3. P • q->:t;
4. P =&:(q->:t);
6. P • q op k;
6. P = HULL;
7. p->:t • q;
8. p->:t =HULL;

Figure 3.2: Basic Heap Statements

3.2.1 Analysis Rules for Basic Heap Statements

The overall structure of the analysis is shown in Figure 3.3(a). Wc have the connection
matrix C at program point x before the given statment, and wc wish to compute the
connection matrix Cn at program point y. To this end, wc define an analysis rule
for each of the eight statements shown in Figure 3.2. Each rule will compute the
following sets of relationships:

• kill..set : Set of connection relationships killed by the given statement i.e. the
set of reJationships which were valid before the statment (program point x), but
are not valid after processing it (program point y). The entries corresponding
to these relationships should be set to zero in the connection matrix Cn •

• gen-set: Set of connection relationships generated by the given statement. The
entries corresponding to these re1ationships should be set to one in the new
matrix Cn •

Let H be the set of pointers whose relationships are abstracted by the connection
matrix C. Let p, q, r and s represent pointers in this set. Assume that pointers can .
only point to heap objects or to NULL (as already discussed). Further assume that
updating an entry C(p,q] also implies identically updating the entry C(q,p]. This
assumption is required due to the symmetric nature of connection relationships.

The new connection matrix Cn is computed as shown in Figure 3.3(b). First, the
old connection matrix C is copied over to Cn • Next, the entries in the kill..set are
set to zero in the matrix Cn • Firially, the entries in the gen-Set are set to one in the
matrix Cn , to get the complete new connection matrix.

41

•
[Statement)

y +
en

(a)

Build the new Conncctiorl fv[ut1"ix
V f,S E Il, Cn[r,s] = C[r,sl

Dclctc killcd rdnlionships
V cnlrics C[r,g] E kilLsct, Cn {r ,g] = 0

Acld gcncratccl rdationships
V entrics C{r,s] E gen..sct, Cu[r,s) = 1

(b)

•

•

Figure 3.3: Computing Connection Matrix Cn from C

We now present the analysis rules for the cight basic statcments shown in Fig
ure 3.2. For each statement, we give the mies for computing thcir km and gcn sets.
The new connection matrix can then bc computed as shown in Figure 3.3(b).

p • mallocO : Pointer p points to a newly aHocated heap object. AH the existing
connection relationships of p get killcd. Also as no other pointer can point ta this
object, p will only have connection rc1ationship with itself. 50 we get the following
ruIe:

kill..set ={C[p,s] 1s E H A C[p,s] }
gen.set = { C[p,p] }

An example is shown in Figure 3.4 ta illustratc this analysis rule.

Basic heap statements 2 through 5 in Figure 3.2 (p • q, p • q->f, P • &:(q->f)
and p = NULL), have a common attributc: ail of them update the stack-resident
pointer p, and make it point ta a new data structure. They do not modify the
structure of the heap itself. Their cffect on conneetion matrix information can be
summè.vized using a generaI mIe, as discussed below.

p = q : Pointer p now points ta the same heap abject as q, and hence to the same
data. structure as q. AU the existing rclationships of p get killed, and p gets connected
ta aIl pointers connected ta q. If q is presently heap~directed (C[q,q] = 1), then p

42

•

•

•

p
-~ p ~-u,
-~.Lr r --~

q -~

~ p = malloc() 1=:> q -~, ..
s S

(a) Heap Structure

kill.set ={C[p,p], C[p,r], C[p,q] }
gen..set ={Clp,p] }

(b) Kill and Gen Sets

~ ~
p 1 1 1 0 p 1 0 0 0
q 1 1 1 0 q 0 1 1 0
r 1 1 1 0 r 0 1 1 0
s 0 0 0 0 s 0 0 0 0

(c) Connection Matrix C (d) Connection Matrix Cn

Figure 3.4: Analyzing Basic Heap Statement p ,. malloc()

43

•

•

•

would also be heap-directed after the statement. So the entry C[p,p] is added to the
gen-set, if wc have C[q,q) = 1. Wc present the overall rule for this statement bclow
and illustrate it in Figure 3.5.

kill-set = { C[p,s) 1 s E H Il C[p,s] }
gen-set = { C[p,sJ 1 s E H Il C[q,s) } U { C[p,p) 1 C[q,q) }

Note that if q presently points to NULL, p should also point to NULL after the
statement. In this case ail entries C[q,s) will be zero, resulting in an empty gen-set.
Consequently ail entries Cn[p,s) will also be zero after the statement, indicating p
to be pointing to NULL, as desired. Similarly if q happens to be pointer p itsclf,
resulting in the statement p = p, the gen and kill sets wouId be identical. In this
case the connection matrix would remain unchanged, as required. Thus the above
rule is general enough to take into account various special cases.

p = q->f: Pointer p now points to the heap object connected to the object pointed to
by q through the pointer field f. Thus it points to the same data structure as q, even
if not to the same heap object as q. So the analysis rule for this statement is same as
that for the statement p = q. The effect of this statement on connection relationships
is demonstrated in Figure 3.6. The initial heap structure for this example is same as
in the example in Figure 3.5. It can be noticed that the kill and gen sets, and the
output matrix Cn, are identical for the two examples.

This rule incurs some imprecision, when the pointer q->f points to NULL. In this
case, pointer p also points to NULL after the statement. However wc would report it
be pointing to the same data structure as q. This information is sale but less precise.
This happens because wc cannot determine if q->f presently points to NULL, and not
to a heap object. In other words, q->f is a heap-resident pointer, while connection
matrix only abstracts the relationships of stack-resident pointers.

If pointers p and q arc not distinct, the statement can be of the form p .. p->f.
The rule for this case is same as for the statment p '" p, which does not change any
connection relationships, as required.

p = t(q->f) : Pointer p now points to the field f of the heap object pointed to by
q, as shown in Figure 3.7. For purpose of our analysis wc consider a pointer pointing
to a specific field of a heap object, to be pointing to the object itself. Thus, this
statement is equivalent to the statement p .. q for connection analysis.

p .. q op k : This statement represents pointer arithmetic. After the arithmetic
operation, q continues to point to the same heap-object, though at a different offset,

44

•

•

•

n n
r

/~ :,:"Ç5r
,-

p pq ,

:::p~
pq \,

\p=q ,,:t>s s

~ ~
(a) Heap Structure

kilLset = { C[P,p), C[p,r) }
gen..set = { C[p,p), C[p,q), C[p,s] }

(b) Kill and Gen Sets

UiliEEJ ~
p 1 0 1 0 P 1 1 0 1
q 0 1 0 1 q 1 1 0 1
r 1 0 1 0 r 0 0 1 0
s 0 1 0 1 s 1 1 0 1

(c) Connection Matrix C (d) Connection Matrix Cn

Figure 3.5: Analyzing Basic Heap Statement p = q

45

•

•

•

J) n
r

--:~ /~
r

~-p
p , , ,

q

-~~,Q c:1
pq , ,

p =q->f , ,, ,
s

S ~\" \
, 1

~
\ 1

~
(a) Heap Structure

kilLset = { C[p,p], C[p,r] }
gen-set = { C[p,p], C[p,q], C[p,s] }

(b) Kill and Gen Sets

~ ~
P 1 0 1 0 p 1 1 0 1
q 0 1 0 1 q 1 1 0 1
r 1 0 1 0 r 0 0 1 0
s 0 1 0 1 s 1 1 0 1

(c) Connection Matrix C (d) Connection Matrix Cn

Figure 3.6: Ana1yzing Basic Heap Statement p .. q->f

46

•

•

•

r --x r

~,-:2p 1--- P

q
-~~p=&(q->Q p q

,-.. \

ZS ••• S • •a , 9 a , 9

,

(a) Heap Structure

kill.set ={C[p,p), C(p,r) }
gen.set ={C[p,p), C(p,q) }

(b) Kill and Gen Sets

~ ~
p 1 0 1 0 p 1 1 0 0
q 0 1 0 0 q 1 1 0 0
r 1 0 1 0 r 0 0 1 0
s 0 0 0 0 s 0 0 0 0

(c) Connection Matrix C (d) Connection Matrix Cn

Figure 3.7: Analyzing Basic Heap Statement p • &(q->f)

47

•

•

•

as shown in Figure 3.8. We assume that a heap-direeted pointer does not cross the
boundary of the heap object, when pointer arithmetic is performed on it. Otherwise, it
can potentially point to memory not allocated by the program, and cause an execution
error on being dereferenced. With this assumption about pointer arithmetic, this
statement is equivalent to the statement p .. q for connection analysis.

p .. NULL: Pointer p now does not point to any heap object allocated by the program,
as shown in Figure 3.9. It does not have any connection relationship with any pointer,
including itself. Thus the effeet of this statement is to simply kill ail the rc1ationships
of p, as presented below:

kilLset = { C[p,s] 1s E H Il C[p,s] }
gen.set = {}

Thus after this statement we have C[p,p] = 0, indicating that p presently points
to NULL.

The statements discussed so far update a stack-resident heap-directed pointer.
The following two statements update a pointer field residing in a heap object, and
hence modify the structure of the heap itself.

p->f = NULL : This statement sets the field f to NULL. Consequently the subpiece
pointed to by the pointer p gets disconnected from the remaining data structure.
For example in Figure 3.10, after the statement p->f .. NULL, pointer p does not
have connection relationship with pointers r, q and s. However, to obtain this kill
information we nccd to know the following:

• Does setting the field f to NULL, really disconnect a subpiece from the data
structure? It is possible that the data structure still remains connected duc to
other links. For example in Figure 3.10, if pointers p and r are also connected
through a g link, the subpiece pointed to by r would not get disconnected by
the statement p->f • NULL•

• In case a suhpiece gets disconnected, which pointers point to it?

Unfortunately, connection matrix information is not sufficient to answer these
questions. To answer the first question we need to have sorne approximation for
the shape of the underlying data structure. The second question requires knowledge
about the possible path relationships between the various pointers pointing to the

48

•

•

•

r :,-2r

~::~ pp ,
q ,

q
~ 1=> -- ,--, p=q+k , ,

1 bTIms émm
s

(a) Heap Structure

kill.set = { C[P,p]. C[p,r] }
gen.set = { C[p,p]. C[p,q] }

(b) Kil! and Gen Sets

~ ~
p 1 0 1 0 p 1 1 0 0
q 0 1 0 0 q 1 1 0 0
r 1 0 1 0 r 0 0 1 0
s 0 0 0 0 s 0 0 0 0

(c) Connection Matrix C (d) Conneetion Matrix Cn

Figure 3.8: Analyzing Basic Heap Statement p = q + k

49

•

•

•

----dp -. p, -
r I--.'\..... r --.
q -. c:::>j p = NULL P q -., ,
5 5

(a) Heap Structure

kill.set = { C[p,pl, C[p,rl, C[p,q) }
gen.set = {}

(b) Kill and Gen Sets

ClCiliE0 ClCiliE0
p 1 1 1 0 p 0 0 0 0
q 1 1 1 0 q 0 1 1 0
r 1 1 1 0 r 0 1 1 0
s 0 0 0 0 s 0 0 0 0

(c) Connection Matrix C (d) Connection Matrix Cn

Figure 3.9: Analyzing Basic Heap Statement p = NULL

50

•

•

•

..·0 Qp
p ~

f
r --t) '-~y-r

q
....... " f 9 pe>f= NULL~ q

~--~s ... 0 ·
\ f

b 'tSbb
(a) Heap Structure

kill.3et = {}
geoe05et ={}

(b) Kill and Gen Sets

= =p 1 0 1 0 p 1 0 1 0
q 0 1 0 1 q 0 1 0 1
r 1 0 1 0 r 1 0 1 0
s 0 1 0 1 s 0 1 0 1

(c) Conncction Matrix C (d) Connection Matrix Cn

-
Figure 3.10: Analyzing Basic Heap Statement p->f = HULL

51

•

•

---y ---~p
p

:,-·6r _.'0
q

~.:p ~
p.>f= q q ,,

a ,
• ,, ,,

~
,
" f

X
(a) lIeap Structure

kill..sct = {}
gen..sct = { C(p,q], Clp,s], C(r,qJ, C(r,s] }

(b) Kill and Gell Sets

~
plO 1 0
q 0 1 0 1
rIO 1 0
sOl 0 1

(c) Conncction Matrix C

~
plI 1 1
q 1 1 1 1
r 1 1 1 1
sIl 1 1

(d) Conncclion Matrix Cn

•
L ---'

Figure 3.11: Analyzing Basic IIcap Statcrncnt p->f • q

52

•

•

•

data structure. As such information is expensive to abstract, we do not collect it for
our tiret abstraction for heap analysis.

In the absence of precise kiII information we err conservatively, and do not kiII any
connection relationships for this statement. Further, this statement does not generate
any new relationships. Thus both the kiII and gen sets are empty for this statement,
and it does not affect connection relationships.

p->t • q: This statement has two effects. First it potentially disconnects a subpiece
of the data structure pointed to by p, Iike the previous statement p->f • NULL. Next,
it connects the data structures pointed to by p and q. Figure 3.11 gives an illustration.

As already discussed precise kiII information duc to potential disconnection cano
not be obtained. However new connection relationships are generated due to the
interlinking ofdata structures pointcd to by p and q. AlI pointers connected to p now
get connected to ail pointers connected to q (which include q itself). So we have the
following analysis rule for this statement:

kiII.set ={}
gen.set = { C[r,s] 1r,s e H A Ctp,r] A C[q,s] }

This rule is iIIustrated in Figure 3.11. Before the statement, pointers p and r are
connectcd to p, and both of them get connected to pointers q and s after the state
ment p->t • q, as shown in part (d) of the figure. Note that after the statement,
ail the connection relationships of pointer rare spurious (cxcept Cn[r,r)). This hap
pens because the disconnection of r from p cannot be inferred from the information
available.

3.3 Summary

In this chapter, wc defined and motivatcd the connection matrix abstraction for hcap
data structure analysis. We aise identificd eight basic statement that affect the rela
tionships of heap-directed pointers. Wc developed the analysis rules for these state
ments, which cIearly iIlustrate the basic principles of connection analysis. Bascd
on these rules, one can construct a connection analysis framework for any language
that supports pointer-based dynamic data structures. Our focus is on analyzing C
language, using the SIMPLE intermcdiate reprcsentation.

53

•

•

•

Chapter 4

Interprocedural Connection
Analysis for C

In this chapter, we build a complete interprocedural analysis framework to implement
the connection matrix abstraction on the SIMPLE interrnediate representation. The
chapter is organized as follows. In section 4.1 analysis rules for basic SIMPLE
statements are developed. These rules are constructed from the basic connection
analysis rules presented in chapter 3. In section 4.2, analysis of control statements
is described. The rules for estimating the effect of procedure calls arc formulated in
section 4.3. These rules arc based on the interproccdural analysis framework described
in chapter 2. In section 4.4, sorne important assumptions made by the analysis arc
discussed. Finally, a brief summary of the chapter is presented.

4.1 Analyzing Basic SIMPLE Statements

We have identified eight basic heap siaiemen13 in the previous chapter (Figure 3.2),
that cao access or modify heap data structures. We also presentcd analysis rules for
them. In this section, wc construct the analysis rules for basic SIMPLE statements
from the rules developed for basic hcap statements. In this process, wc rcmove the
restriction that pointers cao only point to heap objects, and take into account the
presence of pointers to locations on stack. This step is crucial for applying our analysis
rules to real C programs.

Instead of separately describing an analysis rule for each basic SIMPLE state
ment, we will develop general rules for calculating the kill and get sets, based on the

54

•

•

•

variable refcrences on the left and right hand sides of a statement. This approach
enables both compact presentation of rules and c1ear illustration of the issues involved
in their construction.

4.1.1 Identifying S-locations

ln Table 4.1 we present the various types of variable references that can occur in
basic SIMPLE statements relevant to heap analysis. For each variable reference
we deline a set of S-Iocations. The set of S-loca.tions consists of the abstract stack
locations (delined in section 2.3) represented by the variable reference. S-locations are
represented ~ pairs of the form (x, D), (x, P) where x is an abstract stack location
name, and D and P respectively indicate delinite and possible locations. For a given
variable reference say .a, a delinite S-location (x, D) means that .11. delinitely refers
to the location corresponding to the abstract stack location x, while a possible S
location (y, P) means that .a possibly refers to the location corresponding to the
abstract stack location y. Further, a delinite S-location represents a unique real stack
location, while a possible S-Iocation can represent more than one real stack or heap
locations.

S-locations for direct variable references (Group II in Table 4.1) ca.n be trivially de
termined. To determine the S-locations for variables references involving indirection,
points-to information needs to be used. For example, the S-location for the vari
able reference p is simply (p, D). Now if the points-to set of variable p is {(p, r, Pl,
(p, s, PH, the set of S-locations for the variable reference .p is {(r, P), (s, PH.

Below we note sorne other important features of Table 4.1:

• The reference (.p) Ci] is our representation of the C syntax p[n, where pis a
pointer to an array.

• The S-locations for array references are always denoted as possible locations.
We use one abstract stack location to represcnt the whole array. This abstract
location cannot be delinite as it represents more than one reallocation.

• Points-to analysis uses one abstract location heap to reprcsent all locations in
the heap. The S-location corresponding to the abstract location heap is also
a1ways denoted as the possible location (heap. Pl, because it represents more
than one reallocation.

55

•
• For the variable reference (.p) . f, the case when p points to hcap is considered

separately. Ifp points to hcap then .p refers to a heap object, and (.p) . f refers
to the field f of this object. So the S-Iocation for (.p).f is simply (hcap, Pl.

• An S-location representing a stack location is either of the form (p, cl) or (p.J, cl).
If it represents a heap location, it is simply (heap, Pl.

• For sorne variable refcrences, the S-location set is not defined (marked NI A).
These references represent values (addresses of memory locations) and can ap
pear only on the right hand side of a statement.

Besides S-Iocations, we also define the tetm Root for each variable reference. It
is defined as the pointer from which the reference originates. The Root for all the
references in Table 4.1 is p except for p.f and &:p.f, for which it is p.f. For mallocO
and NULL it is l!')t defined.

1 Root 1 r;i§i]_.
&:p NIA P
&:p.>; NIA p.f
&:p [i) NIA p 1
&:(.p) [iJ NIA P
&:(.p).t NIA p
p {(p, D)} P
p.f {(p.J, D)} p.t Il
pei) {(p, Pl} p
.p {(x,d) 1(p,x,d) E Q} P
(·pHi) {(x, P) 1(p, x, d) E Q} p III
(.p) .f {(x.J,d) 1 (p, x,d) E Q 1\ x ;6hcap} p

u{ (heap, Pl 1 (p, heap, P) E Q}
HULL NIA NIA
mallocO NIA NIA IV

1 Var Rer ~ S-location Set

•

Table 4.1: S-location sets relative to points-to set Q.

•
4.1.2 Analysis Based on S-locations

We now present the analysis of a. basic SIMPLE statement, denoted as S. Let C be
the input connection matrix. Let H be the set of pointers whose relationships are

56

•

•

•

abstracted by the matrix C. This includes ail the pointers which can be heap-directed
(i.e. point to heap) , at sorne point in the program, and are accessible in the procedure
containing statement S. Let Q be the set of points-to relationships valid at statement
S (i.e. before executing S). Let the left and right hand sides of the statement be
respeetively denoted as Ihs(S) and rhs(S).

To be of relevance to connection analysis, statement S should be of pointer type
i.e. it should perform a pointer update. This information is directIy available from the
SIMPLE AST. Given that the statement S satisfies this criterion, we now compute
its kil! and gen sets with respect to connection relationships.

Kill Set Computation

To compute the kil! set only the variable reference on lhs(S) needs to be considered.
We have kil! information only if this variable reference represents a definite S-location.
In this case the location is definitely updated and all its existing relationships get
kil!ed. For example if the variable reference on Ihs(S) is p with S-location (p, D), all
relationships of p get kil!ed, as the statement would definitely update p. However,
if the reference is p [i] theu we cannot kil! any relationships. The corresponding
S-location (p, P) represents the entire array, while only one element of the array
would he updated by the statement. Similarly for the variable reference (*p). f,
if p definitely points to stack location x, its S-location would be (x.J, D). So all
relationships of x. f can be kil!ed.

Based on the above discussion, the general rule for calculating the kil! set can be
expressed as fol!ows:

kill..set(S) ={C(P,s) 1(p, D) E S-locations(lhs(S» /1 p,s E H /1 C(P,s) }

This general role is consistent with the kilLset computation roles defined for the
basic heap statements in section 3.2.1. For the basic heap statements with p on
lhs(S), S-location(1hs(S» is (p, D): 50 all the relationships of p get kil!ed. For the two
statements with p->f on lhs(S), S-location(1hs(S» is (heap, Pl: so no relationships
can be kil!ed.

Gen Set Computation

The set of connection relationships generated by the statement S depends on variable
references on both Ihs(S) and rhs(S). Every combination of S-locations represented by

57

•

•

•

Ihs(S) and rhs(S) needs ta be considered. For example let statement S be (.r) .f •
(.8) .f. Let the points-ta relationships ofr and 8 he WI given in Figure 4.1(a). Since
r possibly points to stack location c or to the abstract location heap (which represents
ail heap locations), we have {(c.J, P), (heap, PH as S-locations(lhs(S)). Similarlyas
8 possibly points to stack location d or to heap, we have {(d, P), (heap, PH as s
locations(rhs(S)). Since the set S-locations(lhs(S)) consists of only possible locations,
kill..set(S) is empty. Ta compute the gen..set for S, we need to consider the following
assignment statements generated by the four possible combinations of S-locations
for Ihs(S) and rhs(S): c. f =d. f, c. f =8->f where 8 is heap-direeted, r->f • d. f
where r is heap-directed, and r->f • 8->f where both r and 8 arc heap-directed.
Thus, gen..set(S) would be the union of the gen sets of these four possible assignments
it represents.

m --, m ~------Xr :;~
r r::;:o-

c c 1"""
c.l :: heap c.f --
d.l d.f ---0d C-, " d c::-----2s - ,,' s--- , 1

1 .- ----------
(a) (b)

Points-ta Set: { (r, c, P), (r, heap, P), (s, d, P), (s, heap, P) }
S-locations(.r) .f): {(e.J,P), (heap,P) }
S-locations((.8) . f): { (d.J, P), (heap, P) }

(e)

Figure 4.1: Example to Il1ustrate Identification of S-locations

It can he noticed from the above example, that every combination of S-locations
generates a simple assignment statement. In a simple assignment statement, ail refer
enees ta stack locations are through direct variable references, while all references ta
heap locations are ~hrough variable referenees involving an indir,ection. This happens
because pointll-to relationships on the stack, get factored out during calculatlon of
S-locations. For example, the simple assignment statement c.f • d.f results from

58

•

•

•

factoring out the points-to relationships (r, c, P) and (s, d, Pl. Henceforth, wc refer
to a simple assignment statcmcnt gcncratcd by two given S-locations, say S-lloc and
S-rloc, as S-statement(S-lloc,S-rloc). When clear from the context we will simply
refer to it as S-statement.

In gcneral, a basic SIMPLE statement Scan itself be an S-statement or can
be represented as a collection of S-statements. In the latter case, the S-statements
capture the different ways statement Scan be represented, when program execution
reaches it. So the gen set for S is computed as the union of the gen sets of the
S-statements it can generate.

Thus to compute the gen set for a basic SIMPLE statements, we simply need
to define the rules to compute the gen sets for its S-statements. We now identify
the various types of S-statements that can occur duc to various combinations of S
locations. We show that each type of S-statements corresponds to one of the eight
basic heap statements discussed in section 3.2.1. A general rule is derived to compute
the gen-8et for each type from the mie developed for its corresponding basic heap
statement. We recall that C is the input connection matrix to S, and H is the set of
pointers whose relationships are abstracted by C.

Given any two S-locations S-lloc and S-rloc, each S-statement generated by their
combination, denoted as T, can be analyzed as follows:

Case 1: S-lloe represents a staek location:

In this case, S-lloc is either of the form (x, d) or (x.f, dl, with corresponding real
stack location (i.e. variable reference on Ihs(T)) as x, x.f or x[i] (Group II in
Table 4.1).

Case l(a): If S-rloc also represents a stack location, S-statement T has the same
effect as the basic heap statement p = q. Both of them make one stack-resident
pointer to point to the data structure pointed to by another stack-resident pointer.
So the gen-8et for T can be computed using the rule defined for the statement p = q
in section 3.2.1.

Case l(h): If S-rloc is (heap, Pl, rhs(T) can be of the form (*x) Ci], *x or (*x).f
(Group III in Table 4.1), \Vith x pointing to a heap location. Thus rhs(T) represents
a heap-resident pointer. In this case, T can be analyzed in the same fashion as the
basic heap statement p .. q->f, where p is a stack-resident pointer and q->f is a
heap-resident pointer.

We had noted in section 3.2.1, that the gen sets for the basic heap statements p .. q
and p • q->f can be computed using the same rule. The underlying assumption is

59

•

•

•

that the heap-resident pointer q->f points to the same data structure as its origin
pointer on the stack q (Le. q = Root(q->f)). This assumption can be violated ifq->f
points to NULL or to a stack location. ln either case, the connection relationships
generated will be spurious but sale, as discussed in section 3.2.1. We further discuss
the implications of a heap-resident pointer pointing to a stack location in section 4.4.

The following rule was developed in section 3.2.1 to compute the gen set for these
basic heap statements:

gell-5et = { C[p,s] 1s E H /\ C[q,s] } U { C[p,p] 1 C[q,q] }

Based on this rule, we derive the following generaI rule to compute the gen set for
the S-statements with S-lloc as a stack location:

stackJhs_gen..set(C,H,x,y) = { C[x,z] 1x,y,Z E H /\ C[y,z] } U { C[x,xll C[y,y] }

In this rule, x represents the stack-resident pointer refered on Ihs(T). Ir rhs(T) is
a sta.ck-resident pointer, then y simply represents this pointer. If rhs(T) is a heap
resident pointer (like (*y) .f), then y represents its origin pointer on the stack Le.
its Reot. The gen..set consists of connection relationships generated by connecting x
with ail the pointers connected with Y. and with itself if Yis presently heap-directed
(C[y,y] = 1). It is narned stackJh3_gen..set as it basicaIly depends on Ihs(T) being
a stack location. Note that conneetion relationships are generated only if pointers x
and Yare relevant to connection analysis (i.e. belong to the set H).

Case 2: S-lIoc represents a heap location:

In this case S-Uoc is (heap, P) and Ihs(T) is a variable reference of the form (*x) . f,
(*x) [i] or *x (Group III in Table 4.1) with x pointing to a heap location.

Case 2(a): Ir S-doc represents a sta.ck location, S-statement T is equivalent to the
basic heap statement p->f = q for purposes of connection anaIysis.

Case 2(b): If S-doc is (heap, Pl, the corresponding basic heap etatement would be
p->f = q->f. This statement can be analyzed in the same fashion as the statement
p->f = q, because the pointer q points to the sarne data structure as q->f (as already
discussed).

The following rule was developed to compute the gen set for the basic heap statement
p->f • q:

gen..set = { C[r,s] 1r,s E H 1\ C[p,r] 1\ C[q,s] }

Based on this rule, we derive the following general rule to compute the gen set for
the S-statements with S-lloc as a heap location:

60

•

•

•

heapJhs_gen.set(C,H,x,y) ={C[w,z]1 x,y,w,z E H Il C[x,w] Il C[y,z] }

In this rule, x represents the Root of the heap-resident pointer refered on Ihs(T).
If rhs(T) is a stack-resident pointer, then y simply represents this pointer. If rhs(T) is
a heap-resident pointer then y represents its Root. The gen.set consists of conneetion
rc1ationships generated by connecting all pointers connected with x, with aIl the
pointers connected with y. It is named heapJhs_gen.set as it basically depends on
Ihs(T) being a heap location. Note that again conneetion relationships are generated
only if pointers x and y are relevant to connection analysis (i.e. bc10ng to the set H).

Special cases:

In this case rhs(T) consists of a variable reference for which the S-location set is
not defined (marked NIA). Note that these variable references can occur only on the
right hand side of a statement, and not on the left hand side. Below we discuss the
rules for each such reference on rhs(T). We also discuss the case when rhs(S), hence
rhs(T), is an arithmetic expression. We recall that T is an S-statement for the basic
SIMPLE statement S. So when S-rloc is not defined, th.:: variable reference on rhs(S)
and rhs(T) will be same. We now consider these variable references:

NULL : If rhs(T) is NULL no new relation~hips are generated and the gen set is
empty. Some relationships may be killecl if Ihs(S) happens to be a definite S-Iocation.
This is taken care of by kill.set computation.

malloe (): In this case, if S-Iloc represents a heap location, the S-statement T
would be of the form p->f = malIoe O. This statement simply adds an anonymous
node to the data structure pointed to by p, and does not generate or kill any connec
tion relationships. So we do not neecl to consicler this case for connection analysis. If
S-lloc represents a stack location, the rule for the basic heap statment p = malloeO,
is directly applicable to compute the gen.set for the S-statement under consideration.

This rule was:

gen.set = { C[p,p] 1 p EH}

We derive the following general rule:

maIloc..gen.set(C,H,x) .: { C[x,x] 1x EH}

This rule takes any pointer denoted by x which belongs to H, and generates the
relationship C[x,x) that connects x with itself. This indicates that x is now heap
directed. In C-Ianguage, there are several memory aIlocating routines other than
mallocO. Further, users typicaIly define their own allocation routines, which in turn
invoke the standard library routines. We discuss all these cases in section 4.4.

61

•

•

•

Address Operation: The references with the t operator in Table 4.1 represent
memory addresses of variables. The first three references represent addresses of vari
ables on the stack. The next two references (t (.p) [i]. t (.p) . f) can also represent
addresses of variables in the heap, if p points to a heap location. Connection matrix
only abstracts the connectivity of objects in the heap. So if the rhs(S) consists of
memory address of a stack location, the SIMPLE statement S does not generate any
new connection relationships.

Thus we need to consider only the references t(.p) Ci] and t(.p).f where p
points to a heap location. The former reference represents the address of a particular
index in a heap-a11o.:ated array. The latter represents the address of a particular
field in a heap-a11ocated structure. As noted in the rule for the basic heap statement
p = t(q->f) in section 3.2.1: for purpose of connection analysis, a pointer pointing
to a specific index or field of a heap object, is considered to be pointing to the object
itself. Thus eifectively for these references the S-Iocation is (heap, Pl. So the gen.set
for the S-statement T can be computed using the stacklhs..gen.set or heaplhs..gen.set
rules depending on the location represented by S-l1oc. The arguments would be C,
H, x and y, where x depends on S-lIoc, and y denotes Root(rhs(S)).

Arithmetic Expressions: Fina11y we consider the case when the SIMPLE statc
ment S involves pointer arithmetic. ln this case Ihs(S) would be a variable reference,
while rhs(S) would be an arithmetic expression of the form q op k. Here q represents
a pointer, op denotes a + or - operation, and k represents an integer. According to
SIMPLE grammar, q should be a scalar pointer: the type represented by the ref
erences p and p. f in Table 4.1. As noted in the rule for the basic heap statement
p = q op k in section 3.2.1: wc assume that after pointer arithmetic, a heap-directed
pointer continues to point to its present target, though at a different offset. With
this assumption, eifectively the S-location(rhs(S)) is (q, Pl: a stack location. The
gen.set for the S-statement T can again be computed as per the stacklhs_gen.set or
heaplhs..gen.set rules, depending on the location represented by S-l1oc. The argu
ments would be S, C, H, x and y, where x depends on S-l1oc and y denotes q.

Thus the gen set of a basic SIMPLE statement Scan be computed by first
computing the gen sets for its S-statements, and then unioning them. The complete
rules for computing the gen set are given in Figures 4.2 and 4.3. The complete
algorithm for analyzing a SIMPLE statement is presented in Figure 4.4.

We now demonstrate the analysis for the statement S (.r).f • (.s).f in Fig
ure 4.1. Part (a) gives the poio::tô-t..... relationships of pointers r and s, part (b)
shows the connection relationships between heap-directed pointers, and part(c) gives
the points-to and S-Iocation sets for the statement S. According to the figure the 5
location sets for Ihs(S) and rhs(S) are: {(c.J, Pl, (heap, Pl) and {(d.J, Pl, (heap, Pl)

62

•

•

•

/0 Compute the gen set for statement S with input connec/ion
o matrix C and Il as the set of pointers abstracted by C 0/

fun build_gen_set(S,C,H)
gen_set = {} /0 lnilia/ize gen set •/
if (is_null(rhs(S))) /0 No new relations/aips are generated 0/

return(gen_set)
Let 1 = Root(lhs(S)) /0 Raot of Var Ref on Ihs(S) 0/
Let r = Root(rhs(S)) /0 Raot of Var Ref on rhs(S) 0/
foreach (x, d) e S-locations(lhs(S))

if ((x,d) == (heap, Pl) /0 S-location(lhs(S)) is a heap location 0/
gen_set = gen_set U build_heap_lhs~en_set(S,C,H,I,r)

cIse /0 S-location(lhs(S)) is a stack location 0/
gen_set = gen_set U build_stack-'hs~en_set(S,C,H,x,r)

rcturn(gen_set)

Figure 4.2: Computing Gen Set for a Basic SIMPLE Statement

with ras Root(lhs(S)) and s as Root(rhs(S)). Since ail S-locations(lhs(S)) are possi
ble locations we have kill.set(S) = n. The combinations of S-Iocations give us four
S-statements. We compute the gen sets for them below:

I. Tl : c.f = d.f. Both S-Iocations are on the stack. Thus gen.set(TI) =
stackJhs_gen..set(C,H,c.f,d.f) Pointer c.f gets eonnected with ail pointers d.f
is connected with. Since d.f is only connected with itself, so the only new
connection relationships generated is C[c.f,d.f]. So we get:

gen.set(Tl) ={C[e.f,d.f] }

2. T2: c.f .. s->f with s pointing to a heap location. S-lloe is stack loca
tion while S-rIoc is (heap, Pl. Thus gen..set(T2) = stackJhs.gen..set(C,H,c.f,s).
Pointer c.f gets connected with ail pointers sis conneeted with. Thus c.f gets
eonnected with pointers s and l, and we get',

gen..set(T2) = { C[e.f,sJ, C[e.f,I] }

3. T3 : r->f .. d.f with r pointing to a heap location. S-lloe is (heap, P) and
S-rIoe is a stack location. 50 gen..set(53) = heapJhs.gen..set(C,H,r,d.f). Ail

63

•

•

•

/* S: Statement, C: Connection Matrix, Il: Set of pointcrs in C
* (x,d): S-location(lhs(S)), r: Root(rhs(S)) ./

fun build_stackJhs~cn_sct(S,C,H,x,r)
gcn_set = {} / * Initiali:e yen set */
if (is_malloc(rhs(S)) /_ x = malloc() ./

gen_sct = malloc-l\en_sct(C,H,x)
else if (is_addrcss_op(rhs(S))) and (r,heap,P) /. x = t(r->/}./

gcn_sct = stackJhs-l\cn_sct(C,H,x,r)
else if (is_arith_expr(rhs(S))) /* x = r op k */

gcn_set = stackJhs-l\cn_set(C,H,x,r)
else

foreach (y, d) e S-locations(rhs(S))
if «y, d) :; (heap, Pl) /* x = r->f: r is heap.directed ./

gcn_set = gen_set U stackJhs-l\en_set(C,lI,x,r)
else /* (y, d) is a stack location: x =y */

gen_set = gen_set U stackJhs-l\en_sct(C,H,x,y)
return(gen_set)

/. S: Statement, C: Connection Matrix, Il: Set of pointers in C •
• (heap,P): S-location(lhs(S)), 1: Root(lhs(S)), r: Root(rhs(S)) */

fun build_heapJhs-l\en_sct(S,C,H,I,r)
gen_set = {} /* Initiali:e yen set ./
if (is_addrcss_op(rhs(S))) and (C[r,rJ) /* I->f = t(r->f)./

gcn_set = heapJhs-l\en_set(C,H,I,r)
else if (is_arith_expr(rhs(S))) /* I->f = r op k ./

gen_set = he3pJhs-l\en_set(C,H,I,r)
else

foreach (y, d) e S-locations(rhs(S))
if (y,d) :; (heap,P)) /* I->f = r->f: 1 and rare heap.directed */

gen_sct = gen_sct U heapJhs..gen_sct(C,H,I,r)
eIse /* (y, d) is a stack location: I->f = y */

gen_sct = gen_sct U heapJhs..gcn_sct(C,H,I,y)
return(gen_set)

Figure 4.3: Computing Gen Scts using S-locations

64

•

•

•

/. Ana/vze slalernenl S witll inpul eO'lIIleliOlI "1IlllOir C alli/
• Il as Ille set 0/ poilliers ahalrac/ed hy C •/

fun proeells_basie_sl mt(S,C,II) =
if (1 is_pointer_type(S)) /. 1101 Il IHJill/er a••siglllllelli •/

return(C)
/0 Conlleetioll rc/aliollJlIips of dejillite S·/ocaliolls arc kil/cd 0/
kill_set = { C[x,z) 1 (r,D) E S-loeations(lhs(S)) 1\ X,z E Il 1\ C[x,z) }
gen_sct = build_gen_set(S,C,II) /. Dui/d Ihe gen sel 0/

V r,s E H, Cn[r,s] = C[r,s] /0 Dui/ri Ille new Conneelion Ma/rir 0/
V entrics C[r,s] E kill_set, Cn[r,s] = 0 /. Dclele killed re/ationsllips ./
V entrics C[r,s] E gen_sct, Cn[r,s) = 1 /0 Ariri generaled rc/atiollships 0/
return(Cn)

Figure 4.4: Analyzing Il Basic SIMPLE Statement

pointers connected with r get connecled with ail pointers connecled with d.f.
Thus r and mget eonneeted with d. f, and we get:

gen..set(T3) ={C[r,d.f), C[m,d.f] }

4. T4 : r->f • s->f with r and s pointing to h-.:ap locations. Both S-lloc and
S-rloc reprcsent (heap, Pl. So gen..set(T4) = heapJhs.gen..set(C,H,r,s). Ali
pointers connected with r get eonneeted with ail pointers eonneeted with s.
Thus r and mget eonnected with sand 1, and wc get:

gen..set(T4) ={C[r,sJ, C[r,I), C[m,s], C[m,l] }

Wc get gen..sct(S) by unioning the gen sets of the above four S-statements:

gen..sct(S) = {C[e.f,d.f), C[c.f,sJ, C[e.f,I), C[r,d.f],
C[m,d.f), C[r,s), C[r,I), C[m,s], C[m,l) }

Wc linally note that assignments involving structures arc handled by breaking
them down into assignments betwccn individual fields. I10wever only fields of pointer
type arc eonsidered for eonnection analysis.

65

•

•

•

4.2 Analyzing Compositional Control Statements

In this section we present the analysis of control statements. SIMPLE supports
the following control statements: if, for, IIhile, dO-llhile, slIitch, continue, and
break. Thus only compositional control statements are supported, as goto statcmcnts
are eliminated during the program structuring phase [EII94].

The analysis of control statements builds upon two fundamental concepts: (i)
merge operation for the fiow information, and (ii) fixed.point computation.

The merge operation is required to approximate the data fiow information at
control fiow join points in the program. For example to obtain the output information
for an if statement, one necds to merge the output information from its if-part and
elsc-part. Fixed·point computation is necded to approximate the fiow information
for 100p statements. In this context, a fixed.point is reached when two successive
approximations of a loop do not result in any new information.

Merge Operator : We now define the merge operator for connection matrix infor
mation. Since the information abstracted by connection matrix is binary in nature,
the merge operator turns out to be simply the logical OR operation. Two conncction
matrices C and Cn can be merged as follows, with Cn as the resulting matrix:

Merge(C,Cn) '* V r,s E H, Cn[r,s] = Cn[r,s] V C[r,s]

Thus if a connection relationship exists in cither of the matrices, it exists in the
resulting matrix. It should be noted that having an efficient merge operation was
one of the major design criteria for connection matrix abstraction. In section 1.3 we
had shown that most heap analysis techniques are rendered expensive due to complex
merge operation.

To simplify the explanation, we first consider compositional control statcmcnts
without the presence of break and continue statements. Next we discuss how these
statements are accommodatcd in the ana1ysis framework. The complete frarnework
for analyzing compositional control statements wa~ developed in [Sri92, Ema93]. We
simply adapt this framework for connection analysis.

66

•
4.2.1 Analysis without break and continue Statements

if slnl.,:mcot:

Figure 4.5 givcs th(" algorilhm as wcll i.lS a pictorial representation of the analysis of
if slatcment. The input connection matrix is C. If the condition cond does a pointer
cquality check (e.g. p •• NULL), it is considercd as an assignment. The input matrix
C is modified to take this into account, and the resulting matrix CO is propagatcd
to the then~body. Similarly if the condition cond does a pointer inequality check
(c.g. p ,- NULL), ils negation is considered to obtain the modified matrix Cl for the
elsc-body. Next the output matrices C2 and C3 from the then-body and else-body
are mcrged to obtain the output matrix for lhe if slalement. In case the else-body
is ernpty, its Oll·.put will be same as its input matrix Cl.

co

I,henry 1

C2

•
/t C : Input connection matri:c,

t Il : Set of pointers abstmcted by C,
t ign : Cummt invocation graph node t/

fun proces..ur(cond,thcn_body,clsc_body,C,H,ign) =
CO = proccss_basic_stmt(cond,C,H);
Cl = proccss_basic_stmt(!cond,C,H)j
C2 = proccss_stmt(then_body,CO,H,ign);
C3 = proccss_stmt(clsc_body,CI,H,ign)j
rcturn(Mcrgc(Cl,C2));

Figure 4.5: Analyzing an if Statement

"hile statement:

C

Cl

l~sety1

C3

•

The aJgorithm for analyzing a while loop is shown in Figure 4.6 along with a
pictorial representation of the anaIysis. The' input connection matrix is C which is
also "he first approximation as the output matrix for the loop. It is modified to Cl
to take inta account the condition cond if it happens ta be a pointer equality test.
The matrix Cl is then propagated through the loop body ta get the matrix C2. \Ve
merge C and C2 ta obtain the new approximation. This process is repeated until
the previous and current approximations turn out ta be identica1 i.e. a fixed-point is
rcachcd.

Other loop constructs like do-vhile and for statements are analyzed in a similar
way. using the analysis framework dcscrib(>~ in [Sri92. Ema93].

6;

•
4.2.2 Analysis with break and continue Statements

Wc first rccal1 the sernantics of break and continue statcrnents. Execution of a
break staternent terminates the execution of the c10scst while, do-while, for or
switch staternent. The control now Îs then irnrned'aatc1y trans~ered to the point juat
aft~r the body of the corrcsponding statcment. A continue statcrncnt terminatcsthc
exccution of the body of the c10scst while, do-while, or for statcmcnt. The control
How is imrncdiatcly transfcrrcd to the beginning of the loop body and the exccutioll
continues from that point with a rc-cvaluation of thc loop condition.

•

/* C : Input conncction matriz,
• H : Sct 0/ pointers a6stractcd by CI
* ign : Current invocation grapll node */

fun proccss_whilc(cond,body,C,H,ign) -
do

prevC = Ci
Cl = proccss_basic_stmt(cond,C,H);
C2 = proccss_stmt(body,CI,H,ign);
C = Mergc(C,C2);

while (C != prevC);
return(C)~

c

C2

•

Figure 4.6: Analyzing a vhile Statcrnent

To handle these statcmcnts wc use two structures callcd the break-list and
continue-list. On encountcring a break or continue staterncnt, the eurrent con
nedion matrix is stored in the break-list/continue-list, and 1. (BOTTOM) is
passed as output, wherc 1. denotes no information. Propagating 1. corresponds to
taking paths in the program that will never oeeur in a..'1yexceution. Any statemcnt
with the input 1. produccs 1. as output. The merge oper,·";," for 1. an-:l a conncction
matrix C is as follows:

Merge(C,l.) = Merge{l.,C) = C

This role is based on the fact, that a path with J. aa ita output is an impossible
execution path, and its output can be ignored during the merge.

68

•

•

•

We now explain how the information storcd in the structures break-Hst and
continue-liat is used in our analysis. Let us first consider the continue-list.
Since a continue statement takes the program control back to the beginning of
the corresponding loop, the follo\Ving three matrice.l should be merged to get a ne\V
ap,.loximation for the loop, each time it is analyzed (each of these matrices can form
a new input to the loop):

• The matrix representing the previous approximation for the loop.

• The output matrix obtained by analyzing the loop-body \Vith the previous ap
proximation as the input.

• The matrices stored in the continue-list. Note that each of these matrices
is a potential input to the loop corresponding to sorne path in the loop body
terminated by a continue statement.

This process is repeated until a fixed-point is reached.

Unlike the continue-list, the break-list does not participate in the fixed
point calculation. Each matrix in the break-liat represents a pûtential output of
the enclosing loop or s"itch statement. So matrices stored in this list are simply
merged \Vith the approximation obtained for the statement unoer ana1ysis, to get its
final approximation.

In the actua1 implementation, the whole list of matrices is not maintained. Every
time a break or continue statement is encountered, the new matrix is simply merged
with the one existing in the corresponding list.

In Figures 4.7 we present the algorithm to analyze a "hile statement in the
presence of break and continue statements. The framework for ana1yzing other
statements like do-"hile, for, and s"itch statements in this context, is presented
in [Sri92, Ema93J, and is similarly adapted for connection ana1ysis.

4.3 Interprocedural Analysis

In section 2.4 we had described a framework for context-sensitive interprocedural anal
ysis. This framework is built by points-to ana1ysis, and its salient features include: (i)
the invocation graph representation, which precisely captures the invocation struc
ture of the program, (ii) context-sensitive map information deposited on invocation
graph nodes, and (iii) accurate handling of indirect calls through function pointers.

We DOW extend conncction analysis to handle procedure calls using this frarnework.

69

•

•

/. C : Input connccUon matrix,
• Il : Set of pointers abstrneted by C,
• ign : Current invocation graph node ./

fun proccss_whilc(cond,body,C,H,ign) =
do

prcvC = Ci
Cl = proccss_ba.sic_stmt(cond,C,H)j
C2 = proccss_stmt(body,Cl,H,ign);
/* conClst denotcs continuc-list ./
C3 = Mergc(C2, contJst);
C = Merge(C,C3);

while (preve != C);
/* break_Ist denotcs break-list */
rcsult = Mergc(C,brcakJst};
return(result) i

fun proccss_breal;(C,brcakJst) =
break_lst = Mergc(C,brcakJst);
return .L;

fun proccss_break(C,contJst)
contJst = Merge(C,contJst);
return .L;

c

continue

1
1
1
1
1,,,,,,,

•

Figure 4.7: Analyzing a while Statement with break: and continue Statcrncnts

70

•

•

•

4.3.1 An Approach Based on Invocation Graphs

The overall strategy for interprocedural analysis is depicted in Figure 4.8, and the
complete rules are given in Figures 4.9 and 4.10. The general idea is that, first,
the connection matrix Cm at the calI-site is mapped to prepare the input connection
matrix C. for the called procedure. Next, the body of the procedure is analyzed with
this input matrix and the output matrix obtained (C",) is unmapped and the resulting
matrix Cn is returned to the calI-site. In effect, this strategy leads to a depth first
traversai of the invocation graph. Every time a procedure calI is analyzed for sorne
calI-chain, there exists an invocation graph node corresponding to it.

Callee
Caller g(x) ;

tO Map Process {
(V'

Ce
Cm Procedure ·
g(a) ; Analysis ·

Cn ~ ·
} 1 Unmap Process

Cx
}

Figure 4.8: Interprocedural Startegy

With this strategy, connection relationships induced by one cali-site are never
returned to another calI-site, and similarly connection relationships arriving from
different cali-sites are never simultaneously used to gen-::rate new relationships. How
ever, the worst-case cost of this approach is exp0Df:<ltial in the number of calI-sites
in the program. It may not scale for programs with a large number of cali-sites for
procedures having large invocation (sub)graphs. Empirical results [EGH94] indicate
that this scheme is efficient for a broad range of programs. Prese:ltly we use simple'
memoization to avoid potential explosion, as shown in the rules for interprocedural
analysis, where memoization can be turned on by setting a fIag. More advanced
techniques for memoization are currently being developed.

With the above approach, when a procedure is analyzed for the first time, the
connection matrix valid at each statement (i.e. the matrix valid before processing the
statement), is deposited in the corresponding statement node in the SIMPLE tree.
For subsequent passes, the current matrix is merged with the one deposited in the

71

•

•

•

tree, and the resulting matrix is stored in the SIMPLE node. Thus, the final lTIatrix
in each statement node captures the connection relationships that may arisc due to
all possible invocations of the procedure.

With the overall strategy being c1ear, we first explain our approach to handle
recursive procedure calls, indirect procedure calls and return statements. Then we
describe in detail the process of mapping and unmapping connection matrices.

4.3.2 Handling Recursive Procedure CaBs

The cases of approximate and recursive procedure calls shown in Figure 4.10 work
together to implement a safe and accurate fixed-point computation for recursion. As
we have explained in section 2.4.1, ail possible unrollings for call-chains involving rc
cursion are approximated by introducing matched pairs of recursive and approximate
nodes in the invocation graph. Each recllrsive node marks a place where a fixed
point computation must be performed, while each approximate node marks a place
where the current stored approximation for the function should be used (instead of
evaluating the cali, the stored output matrix is used directly).

At each recursive node we store an input matrix, an output matrix, and a list
of pending input matrices. The input and output matrices can be thought of as
approximating the effect of the cali associated with the recursive function (let us cali
it f). The fixed-point computation generalizes the stored input matrix until it finds
an input matrix that summarizes ail invocations of f in any unrolled call trcc starting
at the recursive node for f. Similarly, the output matrix is generalized to find a
summary for the output for any unrolling of the .;ail trce starting in the recursive
node for f. The generalizations of the input and output matrices may alternate, with
a new generalization of the output, matrix causing the input matrix to change.

Let us consider the roI" for the approximate node in Figure 4.10. In this case,
the current input matrÎl: is compared to the stored input matrix of the matching
recursive node. If the current input matrix is contained in the stored input matrix,
then we use the stored output matrix as the reslilt. Otherwise, the result is not yet
known for this input matrix, so the input matrix is put on the pending Iist, and .L is
returned as the resu!:. Note that an approximate node never evaluates the body of a
function, it either uses the stored result, or returns .L.

Now consider the recursive rule. In this case we have an iteration that on'y
terminates when the input matrix is sufficient1y generalized (the pending Iist of input
matrices is empty) and the output matrix is sufficiently gener;;:lized (the result of
evaluating the calI doesn't add any new information to the stored output matrix).

72

•

•

•

/. Ana/yze Il,e procedure cali correspanding la Ihe invocation graph
• node ign.. luncBody: Body 01 Ihc callcd lunclion, C: Tnpul malrix,
• li: sel 01 painlers abslracled by Ihe inpul malrix,
• JlgMcmo: Jlag la sel mcmoizalion on ./

fun proccss_cal1(funcBody,C,H,actualList,formaIList,ign,f1gMcmo) =
cnse typc(ign) of

< Ordinary > =>
funcInput = cn_map(C,H,actuaIList,formalList,ign);
/. il a/ready compuled • /
if «f1gMcmo) and (funcInput == ign.storedInput))

return(cn_unmap(C,H,ign.storedOutput,ign));
cIse /. compule OUIPLII, slore inpul and oulpul • /

/. luncTnput.pSet is the set 01 painlers abstracted by
• the connection malrix lunclnpul ./

funcOutput = proccss_stmt(funcBody,funcInput,funcInput.pSct,ign);
ign.stor~'<!Input = funcinputj
ign.storcdOutput = funcOutput;
retur»(cn_unmap(C,H,funcOutput,ign));

< Approximatc > =>
return(proccss_call_approx(funcBody,C,H,actualList,

formalList,ign,flgMcmo)) ;

< Recursive > =>
return(proccss_call_recur(funcBody,C,H,actualList,

formalList,ign,f1gMcmo)) ;

Figure 4.9: Compositional Interproccdural Rules for Connection Analysis

73

;* initial oulpul estimale *;
. ign.storcdOutput = .l;

ftgMemo = donc = falsc;

•

•

•

;* Rulcs 10 analyzc approximalc and recursivc calls *;
fun proccss_call_approx(funcBody,C,H,actuaIList,forma.lList,ign,f1gMcmo) =

funclnput = cn_map(C,H,actua.lList,forma.lList,ign);
rcclgn = ign.rccEdgc; ;* gel parlncr recursive node in inv. gmph *;
;* if Ihis input is conlaincd in slored input, usc slorcd oupul *;
if isSubsctOf(funcinput,rcclgn.storcdlnpu t)

return(cn_unmap(C,H,rcclgn.storcdOutput,ign)j
else ;* pul this inpul in the pcnding lisl, and relum .l *;

addToPcndingList(funcinput,rcclgn.pcndingList);
return .l;

fun proccss_call_rccur(funcBody,C,H,actua.lList,forma.lList,ign,f1gMcmo) =
funclnput = cn_map(C,H,actualList,formaiList,ign);
if ((f1gMemo) and (funclnput == ign.storedlnput» ;* already compuled *;

return(cn_unmap(C,H,ign.storcdOutput,ign»;
else

;* initial input cslimale *;
ign.storcdlnput = funclnput;
ign.pendingList = {};
do ;* process Ihe funetion body *;

sinput = ign.storcdlnput;
funcOutput = proccss_stmt(funcBody,slnput,slnput.pSct,ign,f1gMcmo);
;* if Ihere are unresolved inputs, merge inputs and reslarl *;
if (ign.pendingList != {})

ign.storcdlnput = Merge(ign.storcdlnput,pendingListinputs);
ign.pendingList = {}; ign.storedOutput = .l;

;* check to sec iflhe new oulput is included in old oulpul *;
else if isSubsetOf(funcOutput,ign.storcdOutput)

done = truc;
else ;* merge oulputs and lt'!J again *;

ign.storcdOutput = Merge(ign.storedOutput,funcOutput)j
while (not donc);
;* reset stored input 10 initial input for future memoizalion _;
ign.storedlnput = funclnput;
;* retum the fized-poinl afler unmapping *;
return(cn_unmap(C,H,ign.storcdOutput,ign»;

Figure 4.10: Compositionai Interprocedurai Rules for Connection Analysis
74

•

•

•

An important point to note from Figure 4.10 is that the memoization flag is set
to False while handling a recursive procedure calI. This is done to avoid the possible
reuse of an incompletely computed output for an incompletely computed input at
approximate nodes.

4.3.3 HandIing Indirect Procedure CaUs

Indirect procedure calls through function pointers are easily incorporated in the anal
ysis. The points-to analysis has resolved all the functions possibly pointed to by the
function pointer, and one just analyzes each possibility, merging the output matrices.
The exact rule is given in Figure 4.11.

/. Analyze the indirect procedure cali correspanding to the invocation
• graph node ign. C: Input matriz, H: Set of painters abstraeted bg
• the input matm:, flgMemo: flag to set memoization on ./

fun procCS8_indirect_call(C,H,actuaIList,ign,flgMemo) =
ignSet = chiidNodesOf(ign) /. set of functions invocable ./
funcOutput = {}
foreach igNode in (ignSet)

/. get the output matriz for eaeh invocable funetion .;
igNodeOutput = process_call(igNodeJuncBody,C,H,actualList,

igNode.formaIList,igNodc,flgMcmo)i
/. merge the output matrices • /
funcOutput = Merge(funcOutput,igNodeOutput);

return(funcOutput)j

Figure 4.11: Handling Indirect Procedure Calls

4.3.4 Return Statement

Function calls of the form x • f(args) are handled in the sarne way as normal
fundion calls, with a slight modification. In this case the function f should have at
least one occurrence of the return statement.

75

•

•

•

For each function f returning a pointer type variable, we deline a global vari
able return-f with the same type as f. Using this newly delined variable, we treat
return(var) as:

return-f • var;

return;

and we treat x = f(args) as:

f(args);

x = return-f;

The return statement is handled in the same way as break statement. Another
structure called return-list is maintained to store connection matrices reaching
the return statements in the function, and 1. is passed as the output of each return
statement. At funetion exit, the current connection matrix is merged with the ma
trices in the return-list, to obtain the output matrix for the function.

4.3.5 Mapping and Unmapping Conneetion Matrices

Mapping involves preparing the input connection matrix C. for the called procedure
from the connection matrix Cm valid at the cali-site. The mapping process proceeds in
thrce steps: (i) identifying pointers abstracted by Cm, whose connection relationships
can be modified by the procedure cali, and representing them in the matrix C., (ii)
computing the connection relationships generated by assigning actual parameters to
their corresponding formals, and (iii) huilding the connection matrix C. from Cm
using the information from steps (i) and (H).

Let the set of pointers abstracted by Cm and C. be respectively denoted as Hm and
H.. We first identify the pointers belonging to Hm, whose connection relationships
can be changed by the procedure cali. They are as follows:

• Pointers which are global in scope. They are directly acce!lsible to the
calIce, and hence their connection relationships can he arbitrarily modified by
the procedure calI.

• Pointers indirectly accessible in the callee. These pointers are local to the
calIer, but can be accessed by the calIce through an indirect reference. Hence
their connection relationships can also be easily modified by the procedure calI.

76

•

•

• Inaccessible local pointers. These pointers arc local to the caller and are
also not indirectly accessible in the calice. However, they are connected either
(i) with a global pointer, or (ii) with an indirectly accessible pfJin:er, or (iii)
with a pointer passed as a parameter. These pointers cannot be accessed or
updated by the calice. However, their connection rclationships can be modified
by the calice, through the accessible pointers connected with them.

ln Figure 4.12 global pointer p and local pointer q arc connected at the call
site fooO. ACter the cali, both p and q remain connected, but only p remains
accessible in the called procedure. ln procedure foo 0, statement r = p con
nects global pointer r with p. Next the statement p = NULL kills ail connection
relationships of p. On returning from the procedure, pointer q becomes visible
again. But now it is connected with rand is no longer connected with p. Thus
the connection relationships of q are modified by the cali, through the global
pointer p. Similarly if q is connected with an indirectly accessible pointer x or
to an actual parameter ai, the callee can modify its connection relationships by
indirectly referencing x or by connecting the corresponding formai fi to sorne
pointer visible in the caller.

bar H, .p;
mainO
{

bar .q;
q = (bar.) mallocO;
p = (bar.) mallocO;
q->f = p;
/. Cm/p,p], Cm/q,q}, Cm/p,q} ./
fooO;
/. Cn/q,q}, Cn/r,r], Cn/q,r] */
q->i = 5;

}

fooO
{

/* C.[p,p] */
r = p;
/* Ce/p,p], Ce/r,r], Ce/r,p] */
p = NULL;
/* Cz/r,r] */

}

•
Figure 4.12: Procedure Cali Affects Rclationships of Inaccessible Pointers

To enable accurate estimation of the effect of a procedure caU on their connection
relationships, the above three types of pointers should participate in the analysis of
the called procedure. Hence they should be abstracted by the connection matrix Ce,

77

•

•

•

and should be reprcsented by some name in the set H•. Global pointers can be simply
represented hy their name, as in the set Hm. The other two types of pointers arc local
to the caller, and do not have natural names in the callee, So we represent them
using special compiler-generated symbolic names. If a pointer p is represented by a
symbolic: name say 1-x, p is considered ta be mapped ta the name 1-x.

Representing Out of Seope Pointers

Ta represent indirectly accessible pointers, we simply reuse the symbolic names genCl'
ated by points-ta analysis. As discussed in section 2.4.2, points-to analysis generates
special symbolic names to reprcsent all indircctly accessible variables. The symbolic
names themselves are context-independent. For a given calling context, each indi
rectly accessible variable is mapped to one of these symbolic names, and th:s map
information is stored in the corresponding invocation graph node.

For connection analysis, we extract the points-to map information from the invo
cation graph node for the current calling context. To represent indirectly accessible
pointers in connection matrix C., we use the symbolic names they are mapped to,
as per this map information. It should be noted that points-to analysis maps each
indirectly accessible variable to a unique symbolic name, but can map more than one
variable to a single symbolic name.

To represent inaccessible local pointers, we generate additional symbolic names,
in the same fashion as points-to analysis (section 2.4.2). For each pointer that can
be heap-directed at sorne point in the program, and is either global in scope or is a
formai parameter, a unique symbolic name is generated by prefixing its name with
the string '0+'. Further, if a symbolic name generated by points-ta analysis happens
to represent a heap-directed pointer in sorne calling context, another symbolic name
is generated by prefixing its name with the string '0+'. Points-to analysis prefixes
variable names with strings of the form 'i+' and 'i-' where i ~ l, ta generate symbolic
names. Our choice of the string '0+' thus avoids possible name clashes. Otherwisc
the choice is completely arbitrary.

Now if an inaccessible local pointer is connectet! with a globai pointer, it would be
rnapped to the 'O+'-prefixed symbolic name corresponding ta the global pointer. We
demonstrate the mapping of names through the cxarnple program in Figilre 4.13(a).
At the call-site foo 0 in main, local pointer q is connected with global pointer p. So
it is mapped to the symbolic name O+p. Further, pointer r is connected with itself
and is passed as a parameter ta the formai fr. So it is rnapped ta the symbolic
name O+fr. Finally, pointer 5 is indirectly accessible in the calice via the indirect

78

•

•

•

rcference *fs. Points-to analysis maps it to the symbolic name l-fs, and we reuse this
mapping. Since local pointer l is connectcd with s, it gds mllpl'ed to thc symbolic
name OH-fs. The complete map associations arc shown in part (h) of Fignre ,1.1:1.

Each inaccessible local pointer is mapped to Olt most one symbolic n'Ul1e. 50 if a
pointer has already been mapped, it is not nH\pped again. Ilmvever 1lI0rll than one
pointer may be mapped to a symbolic name. In this case, the connection relationshipH
of the symbolic name are a merge of the relationships of the pointers it represents.
This introduces imprecision. So we try to minimize the number of pointers mllpped to
a symbolic name, using a simple greedy strategy: if a pointer can he mapped to more
than one symbolic name, wc choose the one with least nllmber of pointers mapped to
it. More complicated schemes can be devcloped, but empirical results indicate that
our simple scheme works weil for real programs.

Finally, the mapping associations of both indirectly accessible and inaccessible
local pointers, arc recorded in the invocation graph as conneetion map informa
tion(cn.mapJnfo). This information is retrieved and used while unmapping.

The complete algorithm for mapping local pointers is shown in Figure 4.15. The
function cn.mapped.narne is also defined. For any pointer x, cn.mapped.name(x,ign)
gives the name that represents x in the called procedure for the cal\ing context cor
responding to the invocation graph node ign.

Building the Connection Matrix at Procedure Entry

Due to call-by-value semantics of C-Ianguage, parameter passing results in assigning
actual arguments to the corresponding formai parameters. If an actual argument a; is
presently heap-directed, the corresponding formai fi inherits its connection relation
ships. Thus if a; is connected with a pointer Xi as per connection matrix C"" wc have
fi connected with the pointer Yi = cn.mapped.name(xi,ign) in connection matrix C•.
Besides if a; is connected with sorne pointer ail which is passed as a parameter to the
formai fi, fi and fi get connected in C•. A special instance of this case is when a;
itself is passed as an argument to the two formais.

Only parameter assignments generate new connection relationships for a procedure
calI. Other relationships arc simply copied over from C'" to C., taking into account the
mappillg of pointers in C'" to possibly new names in C._ Consider a connection matrix
entry Cmlr,sl. Let Y = cn..mapped.name(r,ign) and z = cn.mapped.narne(s,ign).
If either Y or z is not defined, the entry Cmlr,s] can he ignored. In this case the
relationship Cmlr,s] neither generates any relationship in C. nor would it itself be

79

•

•

bar .p;
mainO
{

bar .q, H, .5;
bar .1, ..tcmp;
p = (bar.) mallocO;
r = (bar.) mallocO;
5 = (bar.) mallocO;
q = p; 1 = Sj

tcmp_O = &5;
/. Cm ./
foo(tcmp_O,r);
/. Cn ./
q->i = 5;

}

(a)

foo(bar ..fs, .fr)
{

/. C• • /

p->f = fr;
temp_l = .fs;
fr->f = .tcmp_l;
p = NULLj
/. C" ./

J

•

Map Associations: { li => I-fs, 1 => O+I-fs, q => O+p, r => O+fr }

(b)

Figure 4.13: An Interprocedural Example

80

•

;1'

;1'

l:-

i--

p
O+p

fr
0+"
'-fa

fa
IOmp_'
0.1-13

~~D
;~

__....f_..~v
-"U..

;1'

-
~

~

• Analy:ze
Procedure

-
~

<::9 Unmap~

p
O.p

Ir
O+1r
'·fa

fa
temp_'
O.,·fs

;1'

...
!Ii-
~

~ ..
~ ..

Figure 4.14: Connection Relationships for the Interprocedural Example

•
81

•

•

•

/* Functions ta map names in the matrix C'" at call-site, ta names in
* the matrix C. at procedure entry, for the call corresponding ta the
* invocation grrJph node ign */

fun cn_map_namcs(C""H""actualList,formaIList,ign)
foreach r E H",

/* Find the name r should be mapped ta in the called procedure */
x = find_mapped_name(r,C""H""actuaIList,formaIList,ign);
/* r is mapped ta the nllme denoted by x Jar this invocation */
cn_mapped_name(r,ign) = Xi

returnj

fun find_mapped_name(r,C""H""actualList,formaIList,ign)
if is_defined(cn_mapped_name(r,ign)) /* already mapped */

return;
if is..global (r) /* globol pointers are mapped ta themselves */

return ri
if is_dcfined(ign.ptMaplnfo(r)) /* already mapped by points-ta analysis */

return (ign.ptMaplnfo(r))j
/* r is an inaccessible local. Determine the set of globols, indirectly
* accessible pointers, and actual arguments, r is connected with */

cn_set = ni
foreach 5 E H",

if (C",[r,sJ) /* r is connected with s */
if «is..global(s)) or (is_dcfined(ign.ptMaplnfo(s)) or

(5 E actualList))
/* Find the 'O+'-prefized symbalic name corresponding ta s */
s_sym = cn_symbolic_var(s)j
cn_set = cn_set U {s_sym};

if (is_cmpty(cn_sct))
return undefined; /* r need not be mapped */

/* find the variable in cn_set with minimum number of vars mapped to it */
x = min_mappc<Cvar(cn_set)j
return {x)j

Figure 4.15: Mapping Names From Caller to Calice

82

•

•

modified by the procedure cal1. Otherwise if y and z arc already connected, they
remain connected. This can happen becausc more than one name in Cm can be
mapped to names in Ce' If Ce [y,z] is presently zero, it is set to one if Cm [r,s] is
presentlyone. So wc have: Ce[y,z] = C..[r,s] V Cc[y,zl. The rest of the entries in Cc
relating local pointers of the cal1ee are initialized to zero.

The complete algorithm to construct the mntrix Ce at the procedure entry is shown
in Figure 4.16. An example is shown in Figure 4.14, for the program in Figure 4.13.

Unmap Strategy

Once the cal1ed procedure is analyzed with the input conneetion matrix Cc wc get the
output matrix C= at 'LÎle procedure exit. Next wc need to unmap C" to obtain the out
put matrix Cn valid after the cal1-site in the cal1er. This is a simple process. For each
entry C,,[r,s] wc find y = cn.mapped-l1ame(r,ign) and z = cn.mapped-l1ame(s,ign). If
either y or z is not defined, it implies that this entry is not modified by the procedure
cal1. So it is simply copied over to Cn , and we have Cn[r,s] = Cm[r,sJ. Otherwise r
and s would have the same relationship after the cal1-site, as y and z at the proce
dure exit, and we have Cn[r,s] = C,,[y,z]. The complete unmap algorithm is shown
in Figure 4.17. An example unmapping is shown in Figure 4.14, for the program in
Figure 4.13.

4.4 Sorne Important Observations

Connection analysis relies upon sorne important assumptions. We discuss them below.

4.4.1 Memory-Allocating Functions

•

Our analysis needs to know the funetions that can al10cate a new heap object. Since
the analysis is implemented for C programs, we have identified various library funl:
tions that al10cate heap memory: mallee, eallee, valloe, memalign, mallept, and
alloea. The funetion alloea al10cates memory on the stack but since the al1ocation
is dynamic wc treat it as heap allocation. The function realloe(ptr. size) needs
to be considered separately. The statement p = realloe(q,size) makes p point to
the memory object pointed to by q, but at an offset of size Bize. For purpose of

83

•

•

•

/0 Funclions to compute input matriz C, at procedure entry from the
o matriz Cm at cali-site corresponding to invocation graph node ign 0/

fun cn_map_matrix(Cm,Hm,actualList,formalList,ign)
/0 Map names in Cm to names in C. 0/
cn_map_names(Cm ,Hm ,actualList,formalList,ign) i
/0 Compute relationships generated by porameter assignments 0/
param.,.gen_set = ni /0 initializing param...!Jen_set 0/
foreach (a; e actualList) and (fi e formai List)

if (C[a;,a;J) /0 actual is presently heap-directed */
/0 gen_set for the assignment li =Qi 0/
gen_set = cn_param_assign(Cm,Hm ,a; ,fi ,actualList,ign);
param.,.gen_set = param.,.gen_set U gen_seti

/0 Entries in param...!Jen_set are set to one in C. 0/
forench entry C[r,s] e param.,.gen_set, C.[r,s] = 1;
/0 Map entries in Cm to entries in C. 0/
foreach pair r,s E Hm

y = cn_mapped_name(r,ign); /0 r is mapped to y */
z = cn_mapped_name(s,ign); /0 s is mapped to z of
if «is_defined(y» and (is_defined(z») /* Both rand s are mapped 0/

/0 C.ly,z] could already be set to one due to
o a previous mapping. 50 merye is donc of

C.[y,z] = Cm[r,s] V C.[Y,Z]i
return C.i /0 Matriz at procedure entry */

fun cn_param_assibn (Cm ,Hm,a;,fi,actuaIList,ign)
gen_set = n;
foreach r e Hm

y = cn_mapped_name(r,ign); /0 r is mapped to y *f
if (Cm[a;,rJ) /* r is connected with a; at cali-site of

fo li gets connecled with y at procedure entry */
gen_set = gen_set U {C[fi,y)}i
foreach aj E actualList

if (r == aj) fo a; is connected with another actual aj */
gen_set = gen_set U {C[fi,fj)}; /0 li gets connected with f; *f

return gen_set;

Figure 4.16: Mapping a CODDectioD Matrix

84

•

•

•

/. Given the matri", Cm va/id al the cali-site, and Ihe mat";", Cr
• va/id at the procedure exit, compute the /11ll/rix Cn va/id lifter
• the cali-site, ign is the invocation gmpll node for the given cali ./

fUll cn_unmap_matrix(Cm,Hm,Cr,ign) =
forench pair r,s E Hm

y = cn_mapped_name(r,ign); /. r is I/Illpped to y ./
z = cn_mapped_name(s,ign)i /. s is mllppcd to : ./
if ((is_defined(y)) and (is_defined(z)))

/. Both rand s were mappcd to C•. So simp/y copu from Cr ./
Cn[r,s] = Cr[y,z];

else
/. At/cast one of them is nol l/IalJpcd. SO re/Iltionship remain.• SIl711e • /
Cn[r,s] = Cm[r,s];

return Cni

Figure 4.17: Unmapping a Connection Matrix

connection analysis we consider p to be pointing to the same object as q. Hence the
analysis rule for the above statement is same as that for the statement p = q.

Sometimes, due to efficiency reasons, programmers allocate a big chunk of memory
using one of the above library functions. Then the)' do their own memory manage
ment, typically using pointer arithmetic. In this case our analysis is able to identify
only one heap object. Ail heap-directed pointers point at dilferent olfsets of this
object. Hence ail of them are reported to be connected with each other, providing
essentially no useful information. However, even in this case, programmers typically
deline their own function to a:Iocate memory from the pre-allocated chunk of memory.
If the analysis is informed about this fundion, it can treat it same as a malloc()
cali.

Presently, our analysis recognizes only the Iibrary functions mentioned above as
mem..ry allocators. We plan to extend it to recognize user-delined memory-allocating
functions, with appropriate feedback from the programmer.

It should be noted that if the cali to a memory-allocating function is embed
ded inside another function, our analysis does not lose any precision because of its
interprocedura! nature. For example, suppose the user delines a fundion my..malloc:

85

•

•

void .my_malloc(int size)
{

void .temp;
temp ~ (void.) malloc(size);
if (temp == 0)

fatal_error("Virtual memory exhausted. ") ;
else

return temp;
}

Now the statement p • my..malloc(size) will be analyzed as:

my..malloc(size);

p =return..my..malloc;

In the function cali my..mallocO, statement return temp will be analyzed as:

return.my..malloc = temp;

return;

Thus arter the function cali, the global variable return..my..malloc will be pointing
to the new heap object allocated by the cali to mallocO in the function. The
assignment p = return..my..malloc will make p also point to this object. Thus the
statement p = my..malloc(size) has the sarne effect on connection relationships of
p as would the statement p = malloc (size).

We also review our assumptions about pointer arithmetic. They may not be valid
under certain circumstances, specially when user does his own memory management.
We provide a flag to the user to indicate when the assumptions may not be valid. In
this case, for a statement iike p = q + k, P is connected with every other pointer to
ensure the safety of our approximation.

4.4.2 Pointers from Heap To Stack

•
While defining the basic analysis rules, we had assumed that heap-resident pointers
do not point to locations on the stack. With this assumption, if p points to a heap
data structure, p->f should also point to the sarne data structure. Without this
assumption, p->f can also point to a staek location. The two cases are shown in
Figure 4.18(with Ndenoting the field f). In part (b) of the figure, pointers p and q
point to disjoint heap data structures from connection matrix point of view, as they

86

•

•

•

are not linked by a heap-re~ident pointer. However, starting from pointer p one can
access pointer q, and her.r.c the data stn;cture pointed to by q. On the contrary, we
want that when p and q are not connected, p should not be able to acccss ~ny heap
location accessible from q, and vice versa.

Note that heap-resident pointers pointing to stack locations (henceforth we terrn
these stack locations as heap-pointcd locations), as such do not affect the correr.tness
of connection analysis. Their presence just requires more carcful interpretation of
connection matrix information. Presently, wc detect ail heap-pointed locations of
pointer type by using points-to information: any pointer x, involved in points-to
relationships of the form (heap, x, Pl, falls into this category. [n the presence of
heap-pointed pointers, wc ensure that any analysis or transformation using connection
matrix information, makes the following conservative assumption: if a heap-pointed
pointer is heap-directed, the data structure pointed to by it can he potentially accessed
by any other heap-directed pointer.

To enable more accurate assumptions, wc plan to abstract another relationship
called stack-connection. Pointer p is considered to be stack-connected with pointer q,
if sorne heap object belonging to the data structure pointed to by p, has a pointer field
pointing to q i.e. the pointer field contains the address of q. Thus, in Figure 4.18(b),
pointer p is stack-connected with pointer q. With this abstraction, wc can state the
following: Two heap-directed pointers cannot access a cornmon heap location, if they
are neither connected nor stack-connected.

To accurately capture stack-connection rc1ationships, wc need to build a stack
connection matrix for each function. This matrix abstracts relationships between
heap-directed pointers and pointers which are reported to be heap-pointed by points
to analysis. A pointer becomes expiicitly stack-connected with another pointer due to
the statement p->Hnk = .tq. Further if a pointer p is stack-connected with another
pointer q, all pointers connected with p also get stack-connected with q. Vsing these
two basic rules, stack-connections can he computed in the same fashion as connection
relationships, both intraprocedurally and interprocedurally.

In our experimental study of a collection of C programs presented in chapter 6, wc
found sorne programs to have heap-pointed stack locations. However, none of thcse
locations turned out to be of pointer type. Wc plan to 'lnalyze a larger set of programs
to evaluate, how much improvement can be obtained by abstracting stack-connection
relationships.

87

•

•

•

"-~~~N-o---~r
p ~-----_ ... ~

~------~q

L R

llR
(a)

'---D-;;;Dr ... -
p ~---------

k--N~q ~----_ ...

L R

llR
(b)

Figure 4.18: HandIing Stack-connection Relationships

88

•

•

•

/. Givcn a statcmcnt S, an input matrix C wilich abstracts the set of
• pointers H, and an invocation graph nodc ign: ana/y:e it in the
• ca/ling context corresponding to ign, and return the output
o connection matrix, flgMemo: flag 10 sel mcmoi:alion on 0/

fun proccss_stmt (S,C,H,ign,ngMemo) =
if basic_stmt(S)

return(proccss_basic_stmt(S,C,H)) ;
else

case S of
<SEQ(Sl,S2» : return(proccss_stmt(S2,proccss_stmt(Sl,C,H,ign),H,ign));
<IF(cond,thenS,elseS» : return(proccssjf(cond,thenS,elseS,C,H,ign));
<WHILE(cond,bodyS» : return(proccss_while(cond,bodyS,C,H,ign));

«of)(args» : return(proccssjndirect_call(C,H,ign,ngMemo));
<f(args)> : return(proccss_call(f.body,C,1I ,f.actuaIList,

fJorlllaIList,ign,ngMemo));

Figure 4.19: OvervicIV of Analyzing a SIMPLE Statcrncnt

89

•

•

•

4.5 Summary

In this chaptcr we describcd the complete interprocedural connection analysis. A
storeless approach was devcloped to identify if two heap.directed pointers point to
the same data structure i.e. the same connectcd region in the heap. The analysis has
been implemented on the SIMPLE intermediate representation, and an overview of
the analysis is shown in Figure 4.19.

Oth,~r more sophisticatcd heap analysis techniques discussed in section 1.3 can
also obtain this information. However connection analysis should be viewed as tie
first abstraction in a hierarchy of abstractions for heap analysis. Hence it cannot be
directly compared with other methods. In chapter 6, we provide empirical data to
dcmonstrate that it provides useful information in a cost-effective way, for its target
domain of applications.

90

•

•

•

Chapter 5

Shape Analysis

In this chapter, we present a new heap data structure analysis called shape analysis.
It follows the connection analysis in our hierarchy of he<:-!> data structure analyses.
Connection analysis helps disambiguate heap accesses to completcly disjoint data
structures. When programs use huge aggregate structures Ii!:c trees, it becomes es
sential to disambiguate accesses to disjoint subpieces of the same data structure.
Shape analysis is designed to disambiguate heap accesses at this level, and it uses
four simple abstractions which work together towards this goal. These abstractions
include: (i) direction matrix, (ii) interference matrix, (iii) shape attribute, and (iv)
root attribute.

The chapter is organized as follows. We introduce and motivate these abstractions
in section 5.1. In the next section, we d.dine the rules to analyze basic heap statements
for collecting shape analysis information. In sections 5.3 and 5.4, we extend these
rules to analyze C programs, using the SIMPLE intermediate representation. In
section 5.5, the interprocedural analysis framework presented in section 2.4, is adapted
to shape analysis. Finally, a brief summary of the chapter is presented.

5.1 The Abstractions

Like connection matrices, both direction and interference matrices are boolean ma
trices of relationships between heap-directed pointers. Direction matrix abstracts
the path existence relationship betwcen heap-directed pointers. Interference matrix
abstracts the accessibility of a common heap object from two given heap-directcd
pointers.

91

•

•

•

Civen any two heap-directed pointers p and q, direction matrix D captures the
following program-point-specific relationships betwccn them:

• D[p,q] = 1 : An access path possib/y exists in the heap, from the heap object
pointed to by pointer p, 10 the heap object pointed to by pointer q.

• D[p,q] = 0 : No access path exists from the heap object pointed to by p, 10 the
heap object pointed to by q.

Henceforth, if D[p,q) is one, we will simp!y state that pointer p has a path to
pointer q, and vice versa.

Civen any two heap-directed pointers p and q, interference matrix 1 captures the
following program-point-specific relationships between them:

• I[p,q) = 1 : A common heap object can be possib/y accessed, starting from
pointers p and q. In this case, we state that p and q cao inlerfere.

• 1[p,qJ = 0 : No common heap object cao be accessed, starting from pointers p
and q. In this case, we state that p and q do not interfere.

We iIIustrate the two abstractions in Figure 5.1. Part (a) shows the heap sh 'Icture
at a program point, while parts (b) and (c) show the direction and interference ma
trices for it. In Figures 2.17 and 3.1, we had shown the path matrix and connection
matrix abstractions for a similar heap structure_

The zero in the entry D[p,r) indicates that no access path exists from the heap
object pointed te by p to the heap object pointed· to by r. The one in the entry
D[s,t] indicates that an access path exists from pointer Il to pointer t. Note that in
the path matrix abstraction in Figure 2.17, the entry P[s,t) is the path expression
L2. Thus direction matrix only abstracts the path ezistenee relationship between
heap-directed pointers, as opposed to the precise path expressions between them, for
efficiency reasons.

ln Figure 5.l(a), pointers r and t point te disjoint subpieces of the same data
structure. 50 the entry D[r,t] is zero, while in Figure 3.1 the connection matrix entry
C[r,t] is set to one. Thus direction matrix collects more 50phisticated information
than the connection matrix abstraction.

Pointers Il and u in Figure 5.l(a) point to the same data structure. However, no
access path exists between them. 50 bath the entries D[s,u] and D[u,s) are zero. But

92

•

•

•

pt----;'-~~N_0_:~:0 ---~
q ---------------
u1-_-;-----------
r - ------ ~~~

~ -==---~~\ >-<
\: ~ ?rLRn
iL R66
6 b

(a) Heap Structure

p q r s t u P q r s t u

p 1 1 0 0 0 0 P 1 1 0 0 0 0
q 0 1 0 0 0 0 q 1 1 0 0 0 0
r 0 0 1 0 0 0 r 0 0 1 1 0 1
s 0 0 1 1 1 0 s 0 0 1 1 1 1
t 0 0 0 0 1 0 t 0 0 0 1 1 0
u 0 0 1 0 0 1 u 0 0 1 1 0 1

(b) Direction Matrix (c) Interference Matrix

Figure 5.1: Example Direction and Interference Matrices

93

•

•

•

starting from both B and u, the heap object pointed to by r can be accessed. To
indicate this, the interference matrix entry I[s,u] is set to one. Note that in this case
the connection matrix entry C[s,u] would also be one. However, the entry I[u,t] is
zero, whereas C[u,t] would be one. Thus the interference matrix abstraction captures
more precise information than the connection matrix abstraction.

Below, wc note sorne other important characteristics of the two abstractions:

• Direction relationships arc not symmetric. If an entry D[p,q) is one, it only
implies the existence of an acccss path from p 10 q and not vice versa. For
example, in Figure 5.1 the entry D[s,t] is one, while the entry D[t,s] is zero.

• Interference relationships Iike connection relationships are symmetric. If an
entry I[p,q) is one, the entry I[q,p] is also one. Both of them imply that a
cornmon heap object can be acccssed starting from pointers p and q. The
interference relationships shown in Figure 5.1(c), illustrate this property. The
symmetric property reduccs thé storage requirements for interference matrix by
half, in the actual implementation.

• Interference relationships form a superset of direction relationships. Ifan acccss
path exists from pointer p to q, then p and q cao both access the heap object
pointed to by q. Thus, if the entry D(p,q) is one, the entries I(p,q) and I[q,p]
are also one. As already discusscd, the converse is not necessarily true. In
Figure 5.1 I[s,u] is one, while both D[s,u] and D[u,s] are zero.

• If the entry D(P,p] is set to one, it implies that pointer p is prcsently heap
directed.

The main motivation behind cstimating direction relationships, is to estimate the
shape of the data structurcs built by the program. The shape of a data structure can
be Trec, Dag or Cycle. A data structl;lre is considered to be a 7h:e, if there is a unique
(possibly empty) (acœss) path between any two nodcs (heap objects) belonging to
it. It is coosidered to be a Dag (directed acyclic graph), if there can be more than'
one path between any two nodes in the data structure, but there is no path from a
node to itself (i.e. it is acyclic). If the data structure contains anode having a path
to itself, its shape is considered to be Cycle. Note that, as lists are a special case of
tree data structures, their shape is also considered as Tree.

We now demonstrate how direction relationships he1p cstimate the shape of heap
data structures. A shape attribute is as80ciated with each heap-directed pointer. For
a pointer p, the shape of the data structure acceui61e from it, is abstracted as p.shape.

94

•

•

•

ln Figure 5.2, initially we have both p.shape and q.shape as Tree. Furthcr we have
D[p,q] as one, as there exists a path between p and q through the next link. The
statemcnt q->prev .. p, sets up a path from q to p through the prey link, and creates
a cycle between heap objects pointed to by p and q. After the statement, we have
D[p,q] = l, D[q,p] = l, p.shape =Cycle and q.shape = Cycle.

~'--\J ~'-H: <'6 ~ p->prev=q P: <t3'
D[q,p] = 1 D[p,q] = 0 D[q,p] = 1 D[p,q] = 1

p.shape = Tree p.shape = Cycle
q.shape = Tree q.shape = Cycle

Figure 5.2: Example Demonstrating Shape Estimation

It should be noted that for a heap-directed pointer p, p.shape only abstracts the
shape of the data structure accessible from p and not the overall shape of the data
structure pointed to by p. For example, in Figure 5.3, the overall shape of the data
structure pointed to by p and q is Dag. However, if only the part of the data structure
accessible from p or q is considered, its shape is Tree. So we have both p.shape and
q.shape as Tree.

Knowledge about the shape of the data. structure accessible from a heap-directed
pointer, provides crucial information for disambiguating heap accesses originating
From it. For a. pointer p, if p.shape is Tree, then any two accesses of the form p->f.
and p->g will always lead to disjoint subpieces of the tree (assuming f and g are
distinct fields). If p.shape is Dag, then two distinct field accesses p->f and p->g
can lead to a common heap object, as in Figure 5.4. However, if the data structure
is traversed using only one link, for example using only the f link in Figure 5.4, a
distinct heap object will be visited by each access. Moreover, if a. dag-like structure
is traversed using a given sequence of links, every subsequence would visit a distinct
node. This information can be used to disambiguate heap accesses across different
iterations of a. loop traversing such a data structure. Final1y, if p.shape happens to be

95

•

•

•

ql------t..

Pl-----f

Figure 5.3: Estimating Shape with accessibility Criterion

Cycle, we have effectively no information to disambiguate heap accesses originating
{rom p.

Figure 5.4: Acyclicity of Dag Data Structures

Thus, our goal is to identify tree-likc and dag-like data structures, and to retain
this information as long as possible, during the analysis. To be able to collect more
accurate shape information, we also abstract a root attribute for each heap-directed
pointer 1. We have p.rool as True, when the heap object pointed to by p has no.
incoming links into it. Otherwise, it is assigned False. Note that a stack-resident
pointer pointing to a heap object, is not considered as an incoming link. In Figure 5.1
the root attribute of pointers p, u and s is True, while for pointers q, r and t it is
False.

1It turned out. that. the root attribute does not prove to be of direct heJp in shape analysis.
However. wc still abstract it as it can be useful for other purposes like program understanding and
debugging.

96

•

•

•

The interference matrix information is used to improve the precision of shape
analysis, as shown in the next section. However, to accurately estimate interference
relationships themselves, direction relationships are required. So the two abstractions
need to be computed simultaneously. Interference information by itself, can be used
to determine ifheap accesses originating from two heap.directed pointers can lead to a
cornmon heap object. This information is more accurate than connection information,
as the latter only identifies if two heap accesses can lead to a common data structure.

Having defined and motivated the abstractions, we nl\W present the analysis rules
to compute them.

5.2 Analyzing Basic Heap Statements

In this section, we present the rules to estimate the e1fect of the eight basic heap
statements shown in Figure 3.2, on direction and interference matrix information.
The overall structure of the analysis is shown in Figure S.S(a). We have the direction
and interference matrices D and lat program point x, before the given statement. We
wish to compute the matrices Dn and In at program point y. Additionally, we have
the attribute matrix A, where for a pointer p, A{p.shape] gives its shape attribute,
and A{p.root] gives its root attribute. The attribute matrix after the statement is
represented as An.

For each statement, we compute the sets of direction and interference relationships
it kills and generates. Using these sets, the new matrices Dn and In are computed as
shown in Figure S.S(b). We aIso compute the sets of heap-directed pointers H. and
H.. whose shape and root attributes cao be changed by the given statement. Another
attribute matrix Ac is used to store the changed attributes of pointers belonging to
the sets H. and H•. The attribute matrix An is then computed using the matrices A
and Ac as shown in Figure 5.5(b).

Let H be the set of pointers relevant to heap analysis, for the procedure containing
the given statement. This is the set of pointers whose relationships/attributes are
abstracted by matrices D,land A. For the analysis of basic heap statements, we
assume that pointers cao only point to heap objects or ta HULL, as we assumed for
connection analysis. We also assume that updating an interference matrix I[p,q),
implies identically updating the entry I[q,p). This assumption is rendered valid duc
to the symmetric nature of interference relationships.

We now present the anaIysis rules for the eight buic heap statement8:

97

• p • mallocO : Pointer p points to a newly allocatcd heap object. AIl its existing
rclationships gct kiIJed. Pointer p has an empty path ta itself, and it also interferes
with itsclf. This staternent can change the attributcs of only pointer p. Since the
newly allocatcd object pointed to by p has no incoming or outgoing links, it is both
a root and a Trec.

Thcse observations can be summarizcd in rule format as follows:

D..kill..set ={D[p,s] 1s E H A D[p,s] } U { D[s,p] 1s E H A D[s,p] }
IJdll..set = { I[p,sJ 1s E H A I[p,sJ }
maJloc..gen~et = { D[p,p], I[p,p] }
H, ={p} H,. ={p} Ae[p.shape] =Tree Ae[p.root] = True

•
ID 1 AI
x~

(Statement)

y~

(a)

Bui/d the new matrices
V r,s E H, Dn[r,s] = D[r,s], In[r,sJ = I[r,s]
Vs E H, An[s.shape] = A[s.shape]
Vs E H, An[s.root] = Afs.root]
De/ete kil/ed re/ationships
V cntries D[r,s] E km~et, Dn[r,s] = 0
Ventries l[r,5] E ki1l~et, 1,,[r,s] = 0
Add generated re/ationships
V entries D[r,5] e gen~et, D"fr,s] = 1
V entrics I[r.s) E gen..set, I,,[r,s] =1
Updaic attribules of affected pointers
V s EH,.. An[s.root] = Aefs.root)
Vs e H" An[s.shape] = Ae[s.shape]

(h)

•

Figure 5.5: The Overall Structure of the Analysis

Note that having D(P,p] in the gen set here simply implies that p presently points
to a heap object. It does not imply that a cyclic data structure becomes accessible
from p arter this statement. In that case, we should aIso have Ae(p.shape] =Cycle.

The next five basic heap statements (p • q, p • q->f, P • 1: (q->f), P • q op
k and p • NULL) update the stack-resident pointer p, and make it point ta a new

98

•

•

•

heap abject. They kill ail existing relationships of p, and only change the attributes
of pointer p. Sa the kill set and the sets H. and Hr for ail these statements, are sarne
as that for the statement p • malloeO. Below, we present the rules ta calculate the
gen set and the matrix Ac for these live statements.

p .. q: Pointer p now points ta the sarne heap abject as q. Sa it would have paths
from/ta ail the pointers q has paths from/ta. Similarly, it would interfere with ail the
pointers q interferes with. Finally, the same data structure would be accessible from
p as from q. Thus, ail the existing relationships of pointer p get killed, and it simply
inherits the relationships and attributes of pointer q. In case q presently points ta
NULL, p would also point ta NULL after the statement. SA we have D(p,p) and I[P,p]
in the gen set, only if D[q,q) and I[q,q] are presently set ta one (implying that q does
not point ta HULL). Thus, we have the following rule for this statement:

D_gen..set..l = { D[p,s) 1s E H A D[q,s) }
D_gen..set-2 ={D[s,p) 1s E H A D[s,q] } U { D[P,p) 1D[q,q] }
Lgen..set = { I(P,s) 1s E H A I[q,s) } U { I(P,p) 1I[q,q] }
stackJhs..stack..rhs-gen..set = D-gen..seU. U D-gen..set-2 U I-sen..set
Ac(p.shape) = An[q.shape] Ac[p.root) = An[q.root)

Since this statement simply copies one stack-resident pointer ta another stack
resident pointer, we name its overall gen.set as stackJhs..stack..rhs.gen..set.

As discussed in section 3.2, the statements p • q op k and p • t(q->t) are
equiva1ent ta the statement p • q, for purposes of heap analysis. Sa these statc
ments are analyzed using the same rules as developed for the statement p • q. The
statement p • HULL kills ail relationships of p and does not generate any new re
lationships. Since p points ta HULL after the statement, shape and root attributes
are not relevant ta it. As a default case, its attributes are set as 'Irec and 'Irue
respectively. We now present the analysis rules for the statement p • q->f.

P .. q->f: Pointer p now points ta the heap abject accessible from pointer q through
the link f, as shawn in Figure 5.6.2 Ail the existing relationships of p get killed. Ail
pointers having a path ta q (which includes q itself), now have a path ta p through
the link f. In Figure 5.6, pointers u, v and q will have a path ta p after the statement.
This set of newly generated direction relationships, cao he lmmmarized as follows:

D.gen..set..l = { D[s,p) 1s E H A D[s,q) }

99

•

c=:>1 p = q->f P

•

•

Figure 5.6: Analyzing Basic Heap Statement p = q->f

Sorne pointers Cl has paths to, rnay also have paths back ta p, after the statement
p • q->f. In Figure 5.6, hefore the statement, A[q.shape] is Tree and q has paths to
pointers 1, r and s. After the statement, rand s will not have paths back to p, while
1 will have an empty path to p. Further, in Figures 5.7(a) and (h), where A[q.shape]
is respectively Oag and Cycle, q has a path to x before the statement, and x will
have a path to p after the statement p = q->f. Thus, to ensure the correctness of
the analysie we err conservatively, and assume ail pointers q has paths to, to have a
path to p in the matrix On. The set of nc\\' direction relationships generated for this
case can be summarized as follows:

D-gen-set-2 = { D[s,p] 1s E H 1\ D[q,sl }

ln Figure 5.6, pointer t has a path ta pointer p after the statement. Now pointer
t does not have any direction relationships with pointer q (Figure 5.B(a», but it"
has an interference relationship with q, as shawn in in the interference matrix 1 in
Figure 5.8(h). Thus, any pointer that intcrfcrcs \Vith Cl can potentially have a path
to p, giving the fol1owing gen.set:

D-gen.set..3 ={D[s,p] 1s E H A I[s,q] }

2In this Figure, for sake of c1arity we have simply labeled each node with the stacl:-resident
pointer that pointa te it, instead of explicitly representing the stad:.

100

•

(a)

~
.---- ..

)(..........~ \- ,
q ~--- :

p "'d-f~

(h)

•

•

Figure 5.7: Shape Attrihute and Direction Relationships

Now, all pointers q has paths from/ta, aIso interfere with q. Thus, D_gcn..seLl and
D~en..set..2are subsets of D_gen..set-3, and the set of direction relationships gcnerated
because of pointer p having paths from other pointers, is simply D_gen..set..3.

Pointer p will have a path to ail pointers q has a path ta, via the link t. From
the direction matrix, we can find all the pointers q has a path to, hut cannot identify
the pointers q has a path to via a specifie link. Sa, we assume p ta have a path to
all the pointers q has a path to. This makes the infonnation collected conservative,
but ensures its correctness. In Figure 5.6, after the statement, pointer p is rcported
to he having paths to pointers 1, r and s, where the path (rom p ta s is spurious.

Note that q has a path to itself , 50 P should aIso he reported to have a path
ta q after the statement. However, this would not he true, if the the data structure
accessible from q is acyclic (i.e. A[q.shape] =Tree or Dag). In this case, any path
originating from q cannat return to it, and q can only have an empty path to itself.
In Figure 5.6, A(q.shapel is Trec, hence p is not reported to be having a path ta q.
Further, in this case if another pointer say m points to the same heap abject as q, p
should not he reported to be having a path ta III either. To enahle this, we need to
keep track of pointers definitely painting to the same heap object. We track them in
the implementation, but do not consider them here for sake of clarity.

Thus, the set of direction relationships generated due to pointer p having paths
ta other pointers, can he summarized as follows:

D-gen.seL4 ={D[P,s] 1s E H A 8 #- q A D(q,s] } u
{ D[p,q} 1A{q.shape] =Cycle}

101

•

•

•

After the statement, pointer pean potential1y interfere with ail the pointers q
presently interferes with. So wc have the fol1owing set of newly generated interference
relationships:

Lgen-5et = { I(p,sJ 1 s E H /1 I(q,sJ }

Finally, p is reported as heap-directed (i.e D(p,p] and I(p,p] are set to one), only if
q is presently heap-directed. To ensure this wc have the fol1owing set of relationships:

D.gen-5et-S = { D(p,p]1 D[q,q] } U { I[p,p]1 I(q,q] }

The overall gen set for this statement, named stackJhs.1Jeap.rhs.gen-5et as the
statement copies a heap-resident pointer to a stack·resident pointer, is as follows:

stackJhs.1Jeap-l'hs-set = D.gen-5et.3 U D.gen-5etA U D.gen.set.5 U I.gen-5et

The new direction and interference matrices Dn and In valid after the anaIysis of
the statement p .. q->f with the heap structure ilIustrated in Figure 5.6, are shown
in parts (c) and (d) of Figure 5.8. It can be noticed that many spurious direction and
interference relationships can be generated during the anaIysis of this statement. To
avoid them, more sophisticated path relationships Iike path expressions [HN90] necd
to be captured, incurring greater cost in analysis. Thus, there i: a trade-off betwecn
the cost of the anaIysis and the quality of information it collects.

However, as aIready mentioned, the main focus of shape anaIysis, is to identify the
shape of the underlying data structures. The statement p = q->f, despite potentiaIly
introducing severa! spurious direction/interference relationships, does not affect the
shape of the data structure accessible from q. It only gives a new name to one of the
heap objects belonging to this data structure. Now, since the data structure accessible
from p is a subpiece of the data structure accessible from q, p simply inherits the shape'
attribute of q.

It is possible that A[q.shape] is Cycle, while the shape of the structure accessible
from q via the f link is Trec. However, we cannot detect this from the information
available, and have An[p.shape] aIso as Cycle. But if A[q.shape] is Trec, we do not
lose the trec attribute, and if it is Dag we still preserve the acyclic property of the
data structure accessible from p. Note that, if we simply deduce the shape attribute
of p from its direction relationships after the statement, we may lose its Trec or Dag

102

•

•

•

attribute. Thus, separately abstracting the shape attribute, proves to be critical in
identifying tree-Iike and dag-Iike data structures. Finally, the node (heap object)
pointed to by p, cannot be a roo/ node, as the Iink f from q leads ioto it.

Thus, wc have the following attribute matrix Ac:

Ac[p.shape] = A[q.shape) Ac[p.root] = Falae

1 P q r s t u v 1 P q r s t u v

1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1
P 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0
q 1 0 1 1 1 0 0 0 q 1 0 1 1 1 1 1 1
r 0 0 0 1 0 0 0 0 r 1 0 1 1 0 1 1 1
s 0 0 0 0 1 0 0 0 s 0 0 1 0 1 0 1 1
t 1 0 0 1 0 1 0 0 t 1 0 1 1 0 1 1 1
u 1 0 1 1 1 0 1 0 u 1 0 1 1 1 1 1 1
v 1 0 1 1 1 0 0 1 v 1 0 1 1 1 1 1 1

(a) Direction Matrix D (h) Interference Matrix 1

1 P q r s t u v l P CI r s t u v

l 1 1 0 1 0 0 0 0 l 1 1 1 1 0 1 1 1

P 1 1 0 1 1 0 0 0 P 1 1 1 1 1 1 1 1

CI 1 1 1 1 1 0 0 0 CI 1 1 1 1 1 1 1 1
r 0 1 0 1 0 0 0 0 r 1 1 1 1 0 1 1 1
s 0 1 0 0 1 0 0 0 s 0 1 1 0 1 0 1 1
t 1 1 0 1 0 1 0 0 t 1 1 1 1 0 1 1 1
u 1 1 1 1 1 0 1 0 u 1 1 1 1 1 1 1 1
v 1 1 1 1 1 0 0 1 v 1 1 1 1 1 1 1 1

(c) Direction Matrix Dn (d) Interference Matrix In

Figure 5.8: Matrices For the Heap Structure Shown in Figure 5.6

103

•

•

•

p->f .. NULL : This statement breaks the Iink f emanating from the heap object
pointed to by p. Thus, after the statement, p shoula no longer have paths to point
ers, it presently has paths to, exclusively via the Iink f. As already discussed, this
information cannot be obtained from direction/interference matrices. So no relation
ships Can be killed. Further, the statement does not generate any new relationships.

The shape attribute of pointer p may change, if this statement disconnects the
subpiece of the data structure, due to which A[p.shape) is Dag or Cycle. Similarly,
the heap ohject into which the f Iink presently leads from p, may become a root again
once the Iink is broken. But the direction/interference information does not suffice
to detect such cases, and we err conservatively leaving the attributes unchanged.
Note that due to the lack of precise kill information for this statement, if a tree-Iike
structure temporarily becomes dag-Iike or cyclic, and becomes a tree again (e.g. when
swapping the children of a tree), our analysis would continue to report its shape as
Dag or Cycle.

p->f • q : This statement first breaks the link f, and then resets it thereby Iinking
the heap object pointed to by p, to the heap object pointed to by q, as shown in
Figure 5.9. As already discussed, the relationships killed on breaking the Iink f,
cannot be obtained with the information available. However, resetting the Iink f
results in generating sorne new re!ationships and modifying the attributes of several
pointers, as discussed below.

Ali pointers having a path to p (including p itself), will now have a path to q
via the Iink f. Further, these pointers will have paths to ail pointers q has paths to.
In Figure 5.9, pointers u, v and p will have paths to pointers q, r and s after the
statement. Thus, the set of direction relatiollships generated can be summarized as
follows:

D.gen..set = { D[r,sll r,s E H /\ D[r,p)/\ D[q,s) }

In Figure 5.9, pointer q interferes with pointer t, before the statement. After the
statement, pointers u and v will also intcrfere with t. This demonstrates that ail
pointers having a path to p, can potentially interfere with ail pointers q interferes
with.

Thus, we get the following set of new interference relationships:

Lgen..set = { l[r,s)1 r,s E H /\ D[r,p)/\ l[q,s) }

104

•

•

•

The overall gen set for this statcmcnt, namcd heapJhs..stack..rhs~cn..1let as the
staternent copies a stack-residcnt pointer to a heap-resident pointer, is as follows:

hcapJhs.stack-rhs_gen..set = O-gcn..set U Lg,cm..sct

Figure 5.9: Analyzing Basic Heap Statement p->f • q

This statement tan considerably affect the shape attribute of pointers, which have
direction relationships with pointers p and q. We can have the following situations,
depending on the current attributes and direction relationshipB of pointers p and q:

Pointer q already has a path ta p (D[q,p] = 1) : ACter the statement p->f • Cl, P
will aIso have a path back to q. Thus, a cycle will be generated between p and Cl, as
shown in Figure 5.10(a). This cycle will be accessible from all pointers that presently
have a path to p or Cl (including p and Cl themselves), and the shape attribute of all
these pointers will become Cycle. In Figure 5.10(a), the shape attribute of pointers
u, v, p, and q becomes Cycle after the statement. We summarizc this case as follows:

H, ={sis EH" (D(s,q] V D[s,p]) }
Vs EH., D{q,p] :} Ae{s.shape] =Cycle

H the above situation does not arise, we have the following possihilities:

105

•

•
Figure 5.10: Direction Relationships Impacting Shape Attribute

106

• A[q.shape) = Tree : In this case another trœ-likc structure becomes accessible
from aU the pointers that presently have a path to p. If the data structures pointed
to by p and q are initiaUy completely disjoint, then the statement simply connccts
a tree substructure to the data structure pointed to by p and does not affect the
shape attribute of any pointer. Figure 5.9 ilIustratcs this case. Otherwise the shape
attribute of pointers that initially have a path to p and also interfere with q, becomes
Oag (if it is presently Tree). Pointers u and v in Figure 5.10(b) fall in this category.
These pointers presently have paths to both p and q. After the statement, they will
have additional paths to q via p. Thus, the shape attribute of u and v will bec:lme
Oag, if it is presently Trec. The sarne would hold truc, if pointers u and v have paths
to p, and to sorne pointer to which q has a path to (i.e. u and v have a path to p and
interfere \Vith q).

Tree Tree Dag Cycle
Dag Dag Dag Cycle

Cycle Cycle Cyc/e Cyc/e

1 M ~ Tree 1 Dag 1 Cyc/e 1

Finally, if the shape attribute of such a pointer is already Oag or Cycle, it remains
unchanged. In other words, the shape attribute of these pointers, becomes the mcrge
of thcir current attribute and the Oag attribute, where the merge operator M for the
shape attribute is defined as follows:

•
This case can be formally summarized as follows:

H. = { sis e H A (I[s,q] A O[s,p]) }
Vs e H., «....O[q,p]) A (A[q.shape) =Trec» ~
Ac[s.shape) = A[s.shape) M Oag

A[q.shape) f: Trec: In this case, the shape attribute of ail pointers that have path
to p is merged with the shape attribute of q. This is required because the data
structure accessible from q, will also become accessible from alI these pointefll after
the statement. We summarize the case as follows:

•
H. ={sis e H A O[s,p] }
Vs e H., «....O[q,p]) A (A[q.shape) f: Trec) ~
Ac[s.shape) = A[s.shape] M A[q.shape]

107

•

•

•

FinaUy, the heap object pointed to by p cannot be a root anymore, as the Iink f
from p wiIllead into it. So, the root attribute of q beco:.les FaJse aCter the statement.
Further, any other pointer that points to the same heap object as q, should also have
its root attribute as False, after the statement. To capture such pointers, we make
the root attribute of aU pointers q has paths to, as FaJse. Note that this does not
introduce any imprecision, as no pointer to which another pointer can have a path,
can have its root attribute as True. Thus, we have the following rule:

Hr = { sis E H fi D(q,s] }
Vs E H., Ac(s.root] =False

This completes the analysis of the statement p->f = q, and the analysis of basic heap
statements.

From the rules presented above, it can be noticed that a considerable number of
spurious direction and interference relationships can be introduced during the analy
sis. This happens because of the following two reasons:

• We only abstract boolean relationships between heap-directed pointers, as op
posed to precise path relationships between them (HN90]. This makes the anal
ysis more efficient, but less precise.

• Our analysis is not restricted to analyze programs that only build tree and
dag-Iike data structures, as in (HN90J. Due to the requirement to handle more
complex data structures, it tends ta become more conservative.

However, as already mentioned, the main rocus of our analysis is ta be able ta
identify tree and dag-like data structures built by the program under analysis. Di
rection and interference relationships are basically computed ta achieve this goal.
Empirical results presented in chapter 6, indicate that our analysis provides effective
information for a broad range of programs.

5.3 Analyzing Basic SIMPLE Statements

Shape analysis of a basic SIMPLE statement S, is also based on the S-Iocations
represented by the variable references on Ihs(S) and rhs(S) (similar ta connection
analysis). The overall algorithm for analyzing a basic SIMPLE statement is pre
sented in Figure s.n. In the following paragraphs, we describe in detail the rules for
computation of kill and gen sets and the estimation of new attributes•

IDS

•

•

•

/. Analyze statement S with input matrices D, [and A '"
• with H as tlle set 0/ pointers abstracted bg them */

fun proccss_basic_stmt(S,O,I,A,H) =
if (! is-pointer_type(S)) /. not :1 pointer ass;gnment ./

return([D,I,A})
j. Ali relationships of definite locations are killed ./
kilLset = { D(x,z], D(z,x}, I[x,z] 1 (z, D) E S-locations(lhs(S» A x,z EH}
gen_set = buiId-!;en_set(S,D,I,A,H) 1. Bui/d the gen 8et ./
[H,.,H.,Ac] :: find_mod_attr(S,D,I,A,H) /t Estimate new attri6utes "'1

/t Build the new Matrices ./
V r,s e H, Dn[r,s] = D[r,s], In[r,s] = I[r,s]
V s E H, An[s.shape] = A[s.shape], A,,[s.root] = A(s.root]
1. De/ete killed re/ationships • /
V entries D(r,s} E kHI_set, D,,[r,s] = 0
V entries I(i",s] E kiU_set, In[r,s] = 0
/t Add generated re/ationships ./
V entries D[r,s) EgeR_set, Dn(r,s] = 1
V entries I(r,s] E gen_set, In[r,s] = 1
/. Reset the attributes of definitely updated pointers to de/ault values "'1
V (z, D) e S-locations(lhs(S», An[x.shape] = Tree, An[x.root] = Truc
j. Update Attributes of Affected Pointers "'1
V s EH., An[s.shape} = Ac[s.shape] E><J A,,[s.shape]
V S E Hr , An[s.root] = Ac[s.root] E><I A,,[s.root]

Figure 5.11: Analyzing a Basic SIMPLE Statement

109

•

•

•

5.3.1 Computing KiIl Set

If the set S-locations(lhs(S)) consists of a (single) definite S-location (x, D), ail the
direction and interference relationships of x arc killed. If this set consists of possible
S-Iocations, no relationships can be killed. Thus, we have the following kill set for
any given SIMPLE statement S (also shown in Figure 5.11):

kilI..set(S) = { D[x,z], D[z,x], I[x,z] 1(x, D) E S-locations(lhs(S)) A x,z EH}

5.3.2 Computing Gen Set

To compute the gen set for the SIMPLE statement S, we need to consider ail the
S-statements (section 4.1.2) it can generate. The gen set for S would be the union of
the gen sets of its S-statements. We had notcd during connection analysis (chapter
4), that each S-statement corresponds to one of the eight basic heap statements,
depending upon the S-locations it represents. The gen set for an S-statement can
thus be computed using the gen set computation rule for its corresponding basic
heap statement. Based on this strategy, the complete rules for computing the gen set
of a basic SIMPLE statement are formulated in Figures 5.12 and 5.13.

Given any two S-Iocations S-lloc and S-rloc (for the SIMPLE statement S), the
gen set for the S-statement T generated by their combination, can be computed
depending on the location of S-lloc and S-rloc in the memory organization, as follows:

Case 1: S-lloc represents a stack location: If S-doc is a stack location, the ba
sic heap statement corresponding to T is p = q. If S-doc is a heap location, the
corresponding basic heap statement is p = q->f. The general rules to compute
the gen sets for these two cases, are derivcd by simply parameterizing the gen sets
stackJhs..stack.rhs_gen..set and stackJhs.heap.rhs_gen..set defined for the two basic
heap statements, as shown in Figure 5.13.

Case 2: Solloc represents a heap location:

Case 2(a): If S-doc is a stack location, the basic heap statement corresponding to T
is p->f .. q. The rule to compute the gen set for this case is obtained by appropriately
parameterizing the set heapJhs..stack.rhs_gen.set as shown in Figure 5.13.

Case 2(b): If S-doc is a heap location, the basic heap statement corresponding to
T would be p->f .. q->f. Our analysis breaks down this statement as the following
sequence of basic heap statements: (temp = q->f; p->f .. temp). First, the state
ment temp .. q->f is analyzed with the input matrices. Using the resulting matrices,

110

•

•

•

/0 Compute the gen set for statement S with input matrices 0

o D,land A. H is the set of pointers abstTUcted by them 0/
fun build-llen_set(S,D,I,A,H)

gen_set = {} /0 lnitia/ize gen set 0/
if (is_nulI(rhs(S») /0 No new relationships are geneTUted 0/

return(gen_set)
Let 1 = Root(lhs(S» /0 Raot of Var Ref on /hs(S) 0/
Let r = Root(rhs(S» /0 Roat of Var Ref on rhs(S) 0/
foreach (x, d) E S-locations(lhs(S»

if «x, d) == (heap, P» /0 S-location(lhs(S)) is a heap location 0/
gen_set = gen_set U build_heap_1hs-llen_set(S,D,I,A,H,I,r)

eIse /0 S-location(lhs(S)) is a stack location 0/
gen_set = gen_set U build_stack-'hs-llen_set(S,D,I,A,H,x,r)

return(gen_set)

Figure 5.12: Computing Gen Set for a Basic SIMPLE Statement

111

•

•

•

/. S : Statement, D,l, A : Matrices, JI : Set 0/ pointers •
• abstraeted, (z,P) : S-location(lhs(S)) r : Root(rhs(S)) ./

fun build_stackjhs..gcn_set(S,D,I,A,H,x,r)
gen_set = {}
if (is_malloc(rhs(S)) /0 z = mal/oc() ./

gen_set = malloc..gen_sct(D,I,H,x)
else if (is_addrcss_op(rhs(S)) and (r,lieap, P) /. z = t(r->/)./

gen_set = stackjhs_stack_rhs.,.gen_set(D,I,H,x,r)
else if (is_arith_expr(rhs(S))) /0 z = r op k 0/

gcn_set =stackjhs_stack_rhs.,.gen_sct(D,I,H,x,r)
else

foreach (y, d) E S-locations(rhs(S))
if «y, d) == (heap, P)) /0 z = r->/ : r is heap-directcd 0/

gcn_set = gen_set U stackjhs_hcap_rhs.,.gen_set(D,I,A,H,x,r)
else Jo (y, d) is a stack location: z = y 0/

gen_set = gen_set U stackJhs_stack_rhs.,.gen_set(D,I,H,x,y)
return(gen_set)

Jo S : Statement, D, l, A : Matrices, H : Set 0/ pointers abstracted 0
o (hcap,P) : S-location(lhs(S)), 1 : Root(lhs(S)), r : Root(rhs(S)) ./

fun build_heap_lhs.,.gen_set(S,D,I,A,H,I,r)
gen_set = {}
if (is_address_op(rhs(S))) and (r, "eap, Pl /. 1->/ = lt.(r->j).J

gcn_set = heapjhs_stack_rhs..gcn_set(D.L\.H,I,r)
else if (is_arith_expr(rhs(S))) /. 1->/ = r op k ./

gen_set = heapjhs_stack_rhs.,.gcn_set(D,I,A,H,I,r)
else

foreach (y, d) E S-locations(rhs(S))
if «y,d) == (heap, Pl) /. 1->/ = r->/ : 1 and r are hcap-direetcd 0/

gen_set = gen_set U heap_lhs_heap_rhs.,.gen_set(D,I,A,H,I,r)
else /0 (y, d) is a staek location: 1->/ = y oJ

gen_set = gen_set U heapJhs_stack_rhs..gen_set(D,I,A,H,I,y)
return(gen_set)

Figure 5.13: Computing Gen Sets using S-locations

112

•

•

•

the gen set for the statcment p->f • temp is computed, which forms the gcn set for
the statement p->f .. q->f. Wc summarize the gen set computation for this case as
follows:

heapJhs.beap..rhs.gen..set(D,I,A,H,x,y) =
heapJhs..stack..rhs_gen..set(Dm,Im,A m,H,x,temp)
where [Dm,Im,Aml = process.basic..stmt(temp • y->f,D,I,A,H)

The funetion process.basic..stmt is defined in Figure 5.11.

Special cases: In this case, rhs(5) (5 is the basic SIMPLE statement) can be: (i)
NULL, (ii) a cali to malloc, (iii) an addrcss operation, or (iv) an arithmetic operation.
If rhs(5) is HULL, the gen set is empty. Ifit is a cali to malloc, and statement 5 is of the
form x .. malloc0, the gen set can be obtained by appropriately parameterizing the
set maIloc.gen..set defined for the basic heap statement p • lIlallocO. If statement
5 is of the form x->f • mallocO, we generate different S-statments for it depending
on the points-to relationships of x. Ifx is heap-direeted, this statement simply adds an
anonymous node to the data structure pointed to by x, and docs not kill or generate
any relationships. Finally, if rhs(5) is an arithmetic or an addrcss operation, S-r1oc
is simply considered as the stack location Root(rhs(5», and the appropriate gen set
rule is used dep~nding on S-lIoc, as shown in Figure 5.13.

5.3.3 Estimating New Attributes

The effeet of the SIMPLE statement S, on the shape and root attributcs of heap
directed pointers, is aIso cstimated by considering aIl the S-statements it cao generate.
For each S-statement, we calculate: (i) the set of pointers H. whose root attribute
is affected, (ii) the set of pointers H. whose shape attribute is affected, and (iii) the
matrix Ac which stores the new attributes of pointers in sets H. and H,. The overaIl
H. and H, sets for the SIMPLE statement S, are obtained by taking the union of the
individuaI H. and H, sets ofits S-statements. Similarly, the matrix Ac for statement S
is obtained by merging the individuaI Ac matrices of its S-statements. The complete
rulcs to estimate the modified attributes are presented in Figures 5.14, 5.15 and
5.16. It cao be noticed from Figure 5.16, that the computation of sets H., H. and the
matrix Ac for any S-statement, again depends on the S-Iocations (S-lIoc and S-r1oc)
it represents.

113

•

•

•

/0 Estimate the attributes modified by statement S with input 0

o matrices as D,land A. D is the set of pointers abstracted. 0

o Hr is the set of pointers whose root attribute is modified. 0

o Il. is the set of pointers whose shape attribute is modified. 0

o Ae contains the new attributes of pointers in Dr and H. 0/
Cun Rnd_mod_attr(S,D,I,A,H)

[H.,H.,Ae] = {} /0 Initialization 0/
Let 1 = Root(lhs(S)) /0 Raot of Var Ref on Ihs(S) ./
Let r = Root(rhs(S)) /. Raot of Var Ref on rhs(S) ./
Coreach (z,d) E S-locations(lhs(S))

iC ((z, d) == (heap, P)) /. S-location(lhs(S)) is a heap location ./
[pH.,pH..pAe] = Rnd_heapJhs_mod_attr(S,D,I,A,H,x,r)

else /. S-location(lhs(S)) is a stack location 0/
[pH.,pH.,pAe] = Rnd_stackJhs_mod_attr(S,D,I,A,H,x,r)

[H.,H.,Ae] = merge_attr(H.,H..Ae,pH.,pH..pAe)
return([H.,H..Ae])

/0 Merge the attribute information in matriccs Ae and pAe 0/
fun merge_attr(Hr,H.,AeoPHr,pH.,pAe)

Coreach s E pHr
if (s E Hr)

Ae[s.root] = Ae[s.root] txl pAe[s.root]
cIse

Ae[s.root] = pAe[s.root]
foreach s E pH,

if (8 EH.)
Ae[s.shape] = Ae[s.shape] txl pAe[s.shape]

eIse
Ae[s.shape] = pAe[s.shape]

/. Obtain the new Dr and H. sets 0/
Hr = Hr U pHr
H. = H, U pH,
return([H.,H"Ae])

Figure 5.14: Estimating Attributes Modified by a Basic SIMPLE Statement

114

•

•

•

/* S : Statement, D, f, A : Matrices, H : Set 0/ pointers *
* abstracted, (r,P) : S-localion(lhs(S)) r : Root(rhs(S)) */

iun lind_stackJhs_mod_attr(S,D,I,A,H,x,r)
[H"H"AcJ ={} /* fnilialization */
if (is_malIoc(rhs(S» or (is_nulI(rhs(S)) /* :z: =malloc() or r =NULL */

[H"H.,AcJ = malIoc_mod_attr(A,x)
else if (is_address_op(rhs(S») and (r, heap, P) /* r = t(r->/) */

[H"H.,Ael = stackJhs_stack_rhs_mod_attr(A,x,r)
else if (is_arith_expr(rhs(S))) /* :z: = r op k */

[H"H.,AcJ =stackJhs_stack_rhs_mod_attr(A,x,r)
else

foreach (y, d) E S-locations(rhs(S»
if «y, d) = (heap, Pl) /. r = r->/ : r is heap-directed */

[pH"pH.,pAel = stackJhs_heap_rhs_mod_attr(A,x,r)
else / * (y, d) is a stack location : :z: = y */

(PH"pH.,pAc] = stackJhs_stack_rhs_mod_attr(A,x,y)
[H"H.,Ael = merge_attr(H"H.,Ac,pH"pH"pAc)

return([H"H.,AcD

/. (heap,P) : S-location(lhs(S)), 1 : Root(lhs(S)), r : Root(rhs(S)) */
fun lind_heapJhs_mod_attr(S,D,I,A,H,I,r)

[H"H.,Ael = {} /* fnitialization */
if (is_address_op(rhs(S))) and (r,heap,P) /* 1->1 = t(r->/) */

[H.,H"Acl =heapJhs_stack_rhs_mod_attr(D,I,A,H,I,r)
else if (is_arith_expr(rhs(S))) /* 1->/ = r op k */

[H.,H.,Acl = heap_lhs_stack_rhs_mod_attr(D,I,A,H,I,r)
else

foreach (y, d) E S-locations(rhs(S»
if «y,d) == (heap,P)) /* 1->1 = r->I: 1 and rare heap-directed */

(pH.,pH.,pAcl = heap_lhs_heap_rhs_mod_attr(D,I,A,H,I,r)
else / * (y, d) is a stack location : 1->1 = 11 */

(PH.,pH.,pAel = heap_lhs_stack_rhs_mod_attr(D,I,A,H,I,y)
[H"H.,Ael = merge_attr(H.,H.,Ae,pH"pH.,pA.,)

return([H.,H.,AcD

Figure 5.15: Estimating Attributes using S-Iocations

115

•

•

•

fun malloc_mod_attr(A,x)
H. ={x} H. ={x }
Ac[x.shape] = Tree Ac(x.root] = True
return ([H.,H.,AcD

fun stackJhs_stack_rhs_mod_attr(A,x,y) ==
H. = { x} H. = { x }
Ac(x.shape] = A(x.shape] Ac[x.root] = A(y.root]
return ([H.,H.,Acl)

fun stackJhs_heap_rhs_mod_attr(A,x,y) =
H. = { x} H. = { x }
Ac(x.shape] = A(x.shape] Ac(x.root] = False
return ([H.,H.,AcD

fun heap_lhs_stack_rhs_mod_attr(D,I,A,H,x,y) =
(H.,H.,Ac] = {}
if (D(y,xJ)

H. = { sis E H /1 (D(s,x] V D(s,y]) }
V s EH•• Ac(s.shape] = Cycle

else if (A[y.shape] == Tree)
H. = {sis E H /1 (D[s,x] /1 I[s,y]) }
V s E Hu Ac(s.shape) = A[s.shape] txl Dag

eIse /0 A[y.shape] is Day or Cycle ./
H. = { sis E H /1 D(s,;.:] }
V s EH•• Ac(s.shape] = A[s.shape] txl A(y.shape]

H. = { sis E H /1 D(y,s] }
V s E H.. Ac(s.root] = False
return ([H.,H••Ac])

fun heap_lhs_heap_rhs_mod_attr(D,I,A,H,x,y) =
(Om,Im,Hm] = proccss_basic_stmt(temp = y->f,D,I,A,H)
return (heapJhs_stack_rhs_mod_attr(Dm,Im,Am,H,x,temp))

Figure 5.16: Calculating New Attributes

116

• 5.3.4 An Example

We now demonstrate shape analysis on a basic SIMPLE statement S. Let statement
S be r • s-)f with the following pojnts~to relationships: {(r, heap, P), (s, heap, P),
(s, d, PH. The heap structure before the statement is shown in Figure 5.17(a). The
set S~locations(lhs(S)) consists of the definite S~location (r, D), so all relationships of
r get killed, resulting in the following kill set:

kill.set(S) = { Dlr,u],D[u,r),I[u,r] }

"...
\ ...

-,..

Ç);:D
" -- ,.. ,; --- "-- .. - .. - , \.. , ,.. " - ", '1

, 1---~.----..- ,
1
1
1
1,\......p :, ,, ,

l ,

6-r~

r ~

10-
C

• \
1

"

u

c:::>I r =s~>f }=:> :.,
d

..
-- ""---
.,..

10-

,
..
oC

\

"

u
r

y

d.f
d

•
t•

Figure 5.17: Analyzing Basic SIMPLE Statement r • s-)f

With the above points-to re1ationships, the statement S generates the following
two S-statements: (i) Tl: r • d.t and (H) T2: r • s->t where s points to a heap
location. We get the fol1owing gen sets for the S-statements Tl and T2, using the
stackJhs..stack..rhs..getUet and stackJhs.heap..rhs..gelUlet rules respectively:

•
geIUet(TI) ={D[r,d.fJ,D[d.f,r],D[v,r],I[r,d.f],I[r,vJ }
gen...set(T2) = { D[s,r],D[r,t),D[t,r],I(r,s),I[r,tJ }
gen...set(S) =gen..set(TI) U gen-Set(T2)

117

•

•

•

The statements Tl and T2 can change the attributes of only pointer r. So we
have both Hr and H. as { r}. For Tl, we follow the stackJhs.stack..rhs..mod..attr
rule and have A.[r.shapeJ = A[(d.f).shape] and Aclr.root] = AI(d.f).root]. For T2, we
fol1ow the stackJhsJ1eap..rhs..mod..attr rule and thus have Aclr.shape] = Als.shape]
and Aclr.root] = False. The matrix Ac for statement S is obtained by merging the
matrices for its S-statements Tl and T2. So for the SIMPLE statement S, we have
Aclr.shape] =A[(d.f).shape] l><I A[s.shape] => Tree l><I Dag => Dag. Similarly, we have
Ac[r.root] = A[(d.f).root] l><I False => False C><I True => False.

The current matrices D, l and A are copied over to the new matrices DR! In and
An. The relationships in kill..set(S) are then deleted from the matrices Dn and In.
Next, the relationships in gen..set(S) are added to the two matrices. Since the set
S-locations(lhs(S» consists of the definite S-Iocation (r, D), the attributes of r are
set to default values: Anlr.shape] = Tree, An[r.root] = True. Finally, the attributes
of pointers belonging to the sets Hr and HI! are merged with their attributes in the
matrix Ac. Since r is the only pointer in sets Hr and H., we have An[r.shape] =
An[r.shape] C><I Ac[r.shape] => Tree C><I Dag => Dag. Using the same strategy, we have
An[r.root] = False. The attributes of other pointers remain same as in matrix A. The
heap structure after the statement S is shown in Figure 5.17(b).

5.4 Analyzing Compositional Control Statements

The overall strategy for analyzing control statements is same as that described for
connection analysis. HOlVever, now the fixed-point computation has to take into
account three matrices as opposed to only one. The merge operator for direction and
interference matrices is also simply the logical OR operation as for connection matrix.
We have already defined the merge operator l><I for the attribute matrix. Thus IVe have
the fol1owing merge rules:

Merge(Dn,D) => V r,s E H, Dnlr,s] = Dn[r,s] V D[r,s]
Merge(In,I) => V r,s E H, I.,[r,s] =I.,[r,s] V I[r,s)
Merge(An,A) => Vs E H, An[s.shape] =A.,[s.shape] C><I A[s.shape],

A.,[s.root] = Anls.root] l><I A[s.root)

We demonstrate the analysis of control statements, by presenting the algorithm
for analyzing the llhile statement in Figure 5.18.

118

•

'.

•

/. D,I,A : Input matrices, H : Set of pointers abstrncted,
• ign : Current invocation graph node ./

fun proces5_whiIe(cond,body,D,I,A,H,ign) =
do

preyD = Di preyl = 1; preyA = A;
(Dl,Il,Al] = proces5_basic_stmt(cond,D,I,A,H)j
(D2,12,A2] = proces5_stmt(body,Ol,Il,Al,H,ign)j
D = Merge(D,D2)j 1 = Merge(I,12)j A = Merge(A,A2)j

while «D != preyD) and (1 != preyl) and (A != preyA))j
return«(D,I,A])j ,

Figure 5.18: Ana/yzing a vhile Statement

5.5 Interprocedural Analysis

The overa/l interprocedura/ strategy for shape ana/ysis is similar to that for connection
ana/ysis presented in section 4.3. However, now three matrices (D,land A) need to
be handled as opposed to one. AIl three of them are simultaneously mapped and
unmapped. Further, aIl of them participate in the fixed-point approximation for
recursive procedure caIIs, in the same manner as for the vhile statement ana/ysis
shown in Figure 5.18.

The only aspect where the interprocedura/ scheme for shape ana/ysis basica/ly dif·
fers from that for connection ana/ysis, is in the mapping of inaccessible local pointers
in the caller to symbolic names in the callee. R.ecal1 that inaccessible local pointers are
those pointers in the caller, which are neither directiy nor indirectiy accessible in the
calIee, but which have relationships with pointers accessible in the calIee. Since these
relationships cao be changed by the cali, inaccessible pointers need to be mapped to
specia/ symbolic names, as explained in section 4.3.5. .

Connection ana/ysis maps inaccessible pointers to specia/ 'O+'-prefixed symbolic
names in the caIlee. For example, if an inaccessible local pointer r is connected with
a globa/ pointer 8 at the cali-site, then r is mapped to the symbolic name 0+8 and
inside the calIee we have 0+8 connected with s. Unlike connection relationships,
direction relationships are not symmetric. Considering the above example in the
context of direction relationships, we would like to map r to different symbolic names
depending upon if r has a path to s or a path /rom s .

119

•

•

•

If ail inaccCllsible pointers baving direction relationships witb s are mapped to
the same symbolic name, unnecessary imprecision can be introduced. For example,
consider two inaccessible pointers u and v having direction relationship witb global
pointer s. Assume that u bas a path to Il while v has a path from Il. Now if botb
u and v are mapped to tbe symbolic name 0+11, we will have O+s baving patbs botb
to and from s. Assuming tbat the direction relationsbips between s and O+s are not
affectcd by the calice, on returning from the calice we will bave both u and v baving
paths to as weU as from s, thereby introducing two spurious direction relationsbips.

To avoid tbis Imprecision, for eacb 'O+'-prefixed symbolic name, we generate an
other 'O-'-prefixed symbolic name. In the above example, we will bave two symbolic
names corrCllponding ta s: O+s and O-s. Inaccessible pointers baving patbs to s (like
u) will be mapped to 0-11, wbile those having paths from Il (like v) will be mapped
to O+s.

The inaccCllsible pointers are first mapped based on their direction relationships.
Nowa pointer cau also fall into tbe inaccessible category, because of baving an inter
ference relationsbip alone. 50, if an inaccessible pointer has not already been mapped
due to a direction rclationship, it is mapped based on its interference relationships.
It should be noted that more than one pointer cau be mapped to a symbolic name,
but not vice versa. When a symbolic name represents more than one pointer, its
relationships and attributea become the merge of the relationships and attributes of
these pointers.

The complete algorithm for mapping names in caller to appropriate Dames in
callee ill given in Figure 5.19. More complex algorithms cau be devised to improve
the accura.cy of mapping. However, our experimental results indicate that this simple
scheme sufficea for reaI C benchmark programs. The algorithms for mapping and
unmapping matrices, and for handling recursive, approximate and indirect procedure
calls are similar ta that for connection analysis, except that here three matrices are
aimultaneously handled. 50 we do not describe them again.

5.6 Summary

In this chapter we presen ted a new heap data structure analysis called shape analysis.
We demonstrated how it ases relatively simple abstractions ta identify oftree and dag
like data structures built by the program. We also introduced the idea of associating
root and shape attributes with each heap-directed pointer. This enablea abstraction of
the propertiea of the subpiece of the data structure aceeuible from the given pointer,
as opposed ta those of the entire data structure it points ta.

120

•

•

•

/. Amclions to map names in matrices Dm and 1", at cali-site, to names in
• matrices D. and 1. at pro~.dure entry for the cali carTesponding to the
• inllocation graph node ign ./

fu D dl_map_namcs{Dm,lm ,Hm,actualLlst,formalLlat,lgn)
foreach r E Hm

/. Find the name r should IN! mapped to in the called procedure •/
x = find_mappcd_name(r,Dm,lm,Hm,actualLlat,formaiLiat,ign);
/. r is mappcd to the name denotcd 6y :1: for this inllocation •/
di_mappcd_name{r,ign) = Xj

returnj

fun find_mappcd_name(r,Dm,lm .nlactualLlat,formalLlat,ign)
if is_defincd(di_mappcd_name{r,ign» /. alrcody mapped ./

returnj
if ia-8lobal{r) /. global pointers are mappcd 10 thcmse/llCB ./

return ri
if ia_defincd{ign.ptMaplnfo(r» /. alrcady mappt:d by poinl6-to analysis ./

return (ign.ptMaplnfo(r))j
/. r is an inacecssi6/e 10Cll1. Determine the set of globals, indirectly
• accessible pointers, and actual argumenl6, r hos re/ationships with ./

di_set = ni
Coreach s E Hm

if «la..global(s)) or (la_defincd{ign.ptMaplnfo(s» or
(s e a.ctualList»

if (D",[r,sJ) /. r hos a path to s ./
/. Find the 'o-'-prefized 81Jf'II>G/ic nome corTC8ponding to s ./
s_sym = dl_symbolic_Yar_l(s)j
dCset = di_set U {s_BYm}j

eIse if (Dm[s,r) or lm[r,s)) /. r hos a path from or interferes IDith s ./
/. Find the '0+ '-prefized 81Jf'Ibalic nome corTC8ponding 10 ••/
s_BYm =dCsymbolic_Yar_2(s)j
di_set = di_set U {s_sym};

if (is_cmpty{di_set»
return undefiacdj /. r necd not IN! mappcd •/

/. retum the lIOria6/e in dCsc/ IDith minimum numlN!r of lIOrs mappcd to it •/
return(mia_mappccCva.r{di_set»j

Figure 5.19: Mapping Names From Caller ta Callee

121

•

•

•

Sincc wc only abstract boolcan relationships like path existence and interference
(for efficiency reasons), we are not ablc to preciscly handlc destructive updatcs where
a trcc data structure temporarily bccomes dag-likc or cyclic, and then again hecomcs
a trcc. Analysis techniques that capture morc precise path rclationships between
hcap-dircctcd pointers as path exprcssion3 [HN90), symbolic access paths (Deu94)
or storagc shapc graphs (CWZ901, can handle such cases to sorne extent, but they
a1so incur considerable cost. Our future research will focus on designing practical
abstractions to handlc destructive updates more accurately. We briefly present olLe
such abstraction in chapter 7.

122

•

.,
..,

'.

•

Chapter 6

Experimental Results

In this chapter, we present empirical data to demonstrate the etrectiveness of con
nection and shape analyses presented in chapters 4 and 5. To perform this study,
we implemented these analyses in the framework of our McCAT C compiler, and
analyzed a collection of C programs written for both scientific and non-scientific ap
plications. We present the results for connection analysis in section 6.1, and for shape
analysis in section 6.2.

6.1 Connection Analysis Results

In this section, we present the experimental results obtained from connection analysis
of a set of 13 C programs. We chose programs that use a significant amount ofdynamic
allocation, as benchmarks for our study. Below we give a brief description of each
benchmark program, and the principal data structures it uses:

• genetic: It implements a genetic algorithm to test sorting. The principal data
structures used by this program are three global dynamical1y allocated arrays of
type int, which are also passed as parameters to various functions. Henceforth,
we will refer to dynamical1y allocated arrays as simply dynamic arrays•

• sim: This is a benchmark from computational biology that compute'! k-best
non-intersecting a1ignments within a single DNA sequence or between two DNA
sequences, using dynamic programming. The main data structures used by
this program are dynamic arrays of type long. It a1so uses dynamic arrays of
pointers to structures. It allocates two types of structures: one with no pointer
fields and one with a recursive pointer field•

123

•
.,
' ..

•

•

• blocks2: This is another benchmark from computational biology that com
putes multiple aligned blocks from a given fa.mily of pairwise alignments for
DNA sequences. lt mainly uses dyna.mic arrays of type long. It also builds a
constraint graph data structure using dyna.mic arrays of pointers to recursive
structures.

• ear: This is a SPEClNT92 benchmark that implements a model of a.coustic
propagation and detection in the human cochlea. lt uses dyna.mic arrays and
structures with non-recursive pointer fields.

• aBlI'i!mbler: It implements an assembler and its principal data structures in
clude: dyna.mic arrays and a Iinked Iist implementation for the symbol table.

• loader: lt implements a loader, and uses the sa.me data structures as the
benchmark assembler. Both of these benchmarks are part of William Landi's
test suite [LR92], and have been obtained from him.

• cholesky: It performs Cholesky fa.ctorization of a sparse positive definite ma
trix. It is part of the SPLASH [SWG91) benchmark suite from Stanford. It
implements the sparse matrix using structures with non-recursive pointer fields.
These pointers point to dyna.mic anays of typ<: int.

• mp3d: This is another benchmark from the SPLASH suite related to rarefied.
f1uid f10w simulation used in aerospa.ce resea.rch. lt dynamically al10cates struc
tures with no pointer fields or with one non-recursive pointer field, and anays
of type int and float.

• water: It BOives the molecular dyna.mics N-body problem to eva1uate forces and
potentials in a system of water molecules in the Iiquid state, using spatial data.
structures. It is part of the new SPLASH benchmark suite called SPLASH-2,
and we use the sequential version. The primary data structures used by this
program are Iinked Iists and dynamically al10cated anays of pointers pointing
to Iinked Iists.

• volrend: This benchmark renders a three-dimenaional volume onto a two-:
dimensional plane using an optimized ray casting technique. It is also a part
of the SPLASH-2 benchmark suite, and we analyze its sequential version. It
dynamically al10cates a number of bit vectors to store, manipulate and render
the image. lts principal data structure is an anay of pointers on the sta.ck,
which point to bit vectors al10cated in the heap.

• chomp: ft implements a game tree and uses two recursive data structures: a
binary tree and a Iinked Iist, besides dynamic anays.

124

•
"

'1
1

'1
\

•

•

• spnrse: It builds a large and random sparse matrix using two-dimensiona1
linked Iists, then scales, factors and solves it. The sparse matrix data structure
is a cyclic structure with nodes having links to nodes in the previous and next
rows as weIl as columns.

• pug: This program triangulates an unstructured grid using control volume finitc
element method. It uses a single complex cyclic data structure with nodes Iinked
to one another through various pointers.

In Table 6.1, we give further information about the the benchmark programs. The
following characteristics are presented for each program in the given order:

•
• Source !ines including comments, counted using the wc utiIity.

• Number of statements in the SIMPLE intermediate representation. This num
ber gives a good estimate of program size from the ana1ysis point of view.

• Minimum, maximum and average number of variables abstracted by the con
nection matrices of various functionS in the program (this includes symbo!ic
variables introduced by our analysis). Thelle numbers indicate the size of the
abstraction and the memory requirements orthe analysis for a given program.

• Total number of indirect referenœs in the ProP-am, and the number of indirect
references where the dereferenced pointer cao point to a stack location, to a heap
location and to both a stack and a heap location. We are able to determine the
possible targets of indirect references, as we collect the above statistics after
perfonning points-to analysis (Ema93, EGH94].

The number of indirect references in a program, provides a measure for the rele
vance of pointer analysis to its optimization. The number of indirect references
refering to stack and heap locations, respectively represent the significance of
stack-based points-to analysis and hea~baseddata. structure analyses for the
given program.

The number of SIMPLE statements for the given benchmark set varies from 476
for chomp to 4909 for volrend, with an overaIl average of2028 statements per program.
The maximum number of variables abstracted by the comiection matrix of a function
is 133 for pug, followed by 114 for cholesky. The maximum of the average number of
variables abstracted, is 89 for cholesky followed by 43 for mm. We will estimate the
&pace requirements of the analysis uaÎng this data. in appendix A on implementation
details.

·125

•

•

•

Program Source SIMPLE Min Max Avg Ind To To Stack/
Lines stmts vars vars vars Rcfs Stack Heap Heap

genetic 506 479 6 14 7 54 28 30 4
sim 1422 1760 38 69 43 374 34 340 0
blocks2 876 1070 28 54 33 373 98 275 0
car 4953 3476 38 51 39 290 143 147 0
assembler 3361 3071 12 26 14 718 666 52 0
loader 1539 1055 7 20 10 170 106 64 0
cholesky 1899 2217 76 114 89 488 22 466 0
mp3d 1687 1849 18 28 20 490 25 465 0
water 2703 2418 8 65 27 581 32 549 0
volrend 4207 4909 18 45 20 190 63 128 1
chomp 430 476 20 27 22 127 45 82 0
sparse 2859 1495 12 40 18 468 3 465 0
pug 2400 2089 16 133 30 822 147 688 13

Table 6.1: Characteristics of Connection Analysis Benchmarks

Ali the benchmarks have substantial number of indirect references, with maximum
822 for pug followed by 718 for assembler. Further, ail of them have indirect references
refering to both stack and heap locations, with majority of the indirect references
refering to heap locations (except for the two henchmarks: assembler and loader).
This makes the given benchmark set well-suited for evaluating a heap analysis.

While discussing the connection analysis of SIMPLE statements in Chapter 4, we
had noticed that the analysis tends to bccomc conservative, when a pointer can point
to both heap and stack locations. However, the data in the last column of Table 6.1
shows that this does not happen very frequently in real C programs: pointers used
to point to dynamically allocated mcmory, are not commonly used to also point
to stack locations. We inspected the analysis output for programs genetic, volrend
and pug, to detect the indirect references where it happens. We found that these
indirect references mostly dereference formaI parameters (of pointer type), to which
both heap-directed and stack-directed pointers are passed as actuals, from dilferent
cali-sites of the given function.

126

•

•

•

6.1.1 Measurements for Heap Related Indirect References

In Table 6.2, we present empirical measurements for connection analysis of the above
benchmarks. Our measurements focus on indirect references in the program that refer
to heap locations, as connection matrix information is computed to effectively resolvc
them at compile time. We motivate our measurements using the following example
program:

mainO
{

p =my_malloc(N)j
q • my_malloc(H);

s: *p. INIT_VAL;
T: *q = INIT_VAL;

}

This program allocates two disjoint heap structures and then initializes them.
Before connection ana!ysis, the only information available from points-to analysis is:
both the indirect references *p and *q (at statements S and T respectively) refer
to the location heap, and thus the statements S and T interfere. After connection
analysis, we know that the data structures pointed to by p and q are never connected
(are disjoint), and hence the statements S and T do not interfere.

Our experimental measurements attempt to quantify the improvement in rcso
lution of heap data structures provided by connection matrix information over that
obtained from the conservative approximation of points-to analysis. With only points
to analysis one must assume that each heap-directed pointer is possibly connected
with ail other other heap-directed pointers, while with connection analysis one can
identify a more precise set.

Thus, the effectiveness of connection analysis cao be evaluated by comparing
the total number of heap-directed pointers at an indirect reference (the conservative
estimate provided by points-to analysis), with the total number of pointers connected
with the dereferenced pointer (the more precise cstimate available from connection
analysis). For example, in the above program, at statement S, the total number of
heap-directed pointers is two (both p and q are heap-directed), while the number of
pointera connected with the dere!erenced pointer p ia only one (p Ihel!). The aame
situation holds at statment T.

127

•

•

•

Following this strategy, wc have calculated the following metrics for each bench
mark program (presented in Table 6.2):

• Refs: Total number of indirect references in the program that can refer to heap
locations.

• cavg: Average number of pointers that arc connected with the dereferenced
pointer at an indirect reference. This average is calculated as follows. At each
indirect reference we determine the total number of pointers connected with the
dereferenced pointer. Let us calI this number as cn_tot_i for the ith indirect
reference in the program (as per lexical order). We do not include symbolic
variables in this count as we generate them only to facilitate interprocedural
mapping, and they cannot be accessed or dereferenced by the program. Further
if the dereferenced pointer is only connected with itself, the count cn_tot-i will
be one for the given indirect reference.

We then sum up the numbers cn_tot_i for all indirect references, and divide this
sum total denoted as cn_sum_tot by the total number of heap related indirect
references in the program (Refs), to obtain the average cavg. We cannot have
cavg less than 1.0 (unless there are no heap related indirect references in the
program and we have Refs as zero), as each heap-directed pointer is at least
connected with itself.

• havg: Average number of pointers that are heap-directed at an indirect refer
ence. This average is calculated in the same fashion as cavg. First, at each
indirect reference the total number of heap-directed pointers is calculated as
heap_tot..i.. Next, this number is summed up for all indirect references, and
the sum total heap-sum..tot is divided by Refs to obtain the average havg.
Again symbolic variables are not considered in computing this average.

• Impr: A measure to approximate the percentange improvement provided by
connection matrix information over points-to information, in effectively resolv
ing heap related indirect references in the program. It is calculated using the fol~

lowing formula: ((heap-sum_tot - cn_sum_tot) * 100.0)/(heap_sum..tot), where
as described above, heap-sum_tot gives the sum total of heap-directed point
ers, and cn-sum..tot gives the sum total of connection relationships at indirect
references in the program.

Without connection analysis, the conservative approximation for the number
cn..sum..tot would be simply heap-sum_tot, resulting in zero percentage im
pravement. With conneetion analysis, the more precise is the analysis, the
fewer will be the number of connection relationships reported. This results in

128

•

•

•

Program *a / (*a). b a[i]
Refs cavg havg % Impr Refs cavg havg ~ Impr

genetic 0 0.0 0.0 0.00 30 1.7 5.2 67.74
sim 96 3.4 23.2 85.55 244 1.6 20.4 92.41
blocks2 119 8.8 22.9 61.36 156 5.2 22.3 83.74
ear 42 2.7 3.8 27.22 105 2.4 7.1 66.26
assembler 45 4.4 7.8 42.98 7 6.0 9.4 36.36
loader 55 5.1 6.5 21.07 9 1.0 4.1 75.66
cholesky 82 14.9 34.3 56.46 384 3.7 20.7 82.27
mp3d 391 2.5 8.6 70.42 74 1.9 7.1 73.86
water 250 15.4 31.2 50.69 299 14.7 24.1 38.94
volrend 96 7.4 22.2 66.73 32 9.8 18.8 47.59
chomp 56 5.2 7.2 27.65 26 1.6 3.9 59.00
sparse 384 9.3 10.1 7.23 0 0.0 0.0 0.00
pug 514 36.8 36.9 0.30 174 47.6 47.7 0.11

Table 6.2: Empirical Measurements for Connection Analysis Rcsults

a small cn_sUID_tot and hence a greatcr percentage improvcmcnt. Thua, thc
metric Impr provides a reasonable measure for the effectiveness of connection
analysia. For our small example program (given above): Refs is 2, cn_sum_tot
is 2 and hence cavg is LOi heap-sUID_tot is 4, havg is 2.0 and Impr is (((4 - 2)
* 100.0) / 4) or 50%.

In Table 6.2, we present these measurements separately for indirect references of
the type *a/ (*a) . b, and of the type aB] where a is of pointer type. We discuss the
results presented in this table below:

Indirect References of type a[i]: The percentage improvement (Impr) is in general
higher for indirect references of this type. This happens because most of these ref
erences represent stack-based pointers that point to dynamically allocated memory
and access it as an array (of non pointer type). For cxample, the statement a • (int
*) malloc(8 * sizeof(int)) dynamically allocates an array of eight integers. Now
such array structures are in general not pointed to by many other pointers. In SIM
PLE, the above statement is simp/ified as temp_O = malloc(8 * sizeofCint)); a
• (int *) temp_O, resulting in both a and temp_O pointing to the allocated struc
ture.

129

•

•

•

In case the allocation is done through il. user-defined routine (for example a "
my..malloc(size»), the temporary variable is not generated, and pointer a aione
points to the allocated structure. Sa the number of connection relationships of point
ers like a tends to be close ta 2.0 on an average. In Table 6.2, cavg for indirect
array references is in the range of 1.0 to 3.7 for most of the benchmarks. For sorne
benchmarks cavg tends to be much larger. We anaIyze them below.

The benchmarks volrend and blocks2 use arrays of pointers. Since we represent
the entire array by the array name, connection relationships of pointers representing
different indices of the array get merged. This results in large number of relationships
for the single name representing them in the connection matrix.

The benchmarks assembler, water and puy have pointers to arrays as fields of
dynamicallyallocated structures (as opposed to being located on the stack). These
pointers are reported to be connected with all other pointers that point to the given
data structure. This results in larger overall cavg for these benchmarks. Actually
cavg for puy is almost same as havg, as it builds only a single complex data structure,
providing effectively no improvement.

Indirect References of type *b./ (*a) . b: For indirect references of this form, the pec
centage improvement is in general not as high as for indirect array references. Such
indirect references commonly access big aggregate data structures that consist of a
large number of heap objects, specially if the data structure is recursive. Several
pointers point to any such data structure, and all of them have connection relation
ships with each other.

In our benchmark set, sim and mp3d primarily use structures with no pointer
fields. The percentage improvement for them is quite high, as these structures are
also stand-alone entities in the heap, like dynamic arrays of non pointer type.

The benchmarks car and cholesky primarily allocate structures with non-recursive
pointer fields. For car, cavg is quite small, though the percentage improvement is
not very high as not many pointers are heap-directed in this program. For cholesl..-y
we have more than 50 percent improvement.

The benchmark volrend allocates integers and f10ats in the heap and accesses
them through indirect references of the form *a. The percentage improvement for
it could be even higher, but it uses arrays of pointers to point to the heap-allocated
integers and f1oats. The benchmark blocks2 allocates severa! disjoint arrays of pointers
to dynamically allocated objects of type int and user-defined structure types with
both recursive and non-recursive pointer fields. So it has higher cavg, but shows
substantial percentage improvernent.

130

•

Table 6.3: Overall Connection Analysis Results

genetic 30 1.7 5.2 67.74
sIm 340 2.1 21.2 90.29
blocks2 275 6.8 22.5 69.86
ear 147 2.5 6.1 59.40
assembler 52 4.6 8.0 41.93
loader 64 4.5 6.1 26.21
cholesky 466 5.7 23.1 75.53
mp3d 465 2.4 8.4 70.88
water 549 15.0 27.3 45.05
volrend 128 8.0 21.3 62.52
chomp 82 4.1 6.2 33.86
sparse 384 9.3 10.1 7.23
pug 688 39.5 39.6 0.24

1 Program ~ Refs 1 cavg 1 havg ~ % Impr 1

The benchmarks assembler and loader use two disjoint linked list data structures,
ehomp uses a linked list and a tree structure, while water uses arrays of linked lists
several of whieh are disjoint at different points in the program. The percentage
improvement statistics for these benchmarks show the following expected trend: the
greater is the number of disjoint data structures used by a program, the better are
the connection matrix results for it.

•

•

Finally, the programs sparse and pug use a single complex recursive data structure,
and all heap-direeted pointers point to it. Consequently, connection analysis provides
negligible improvement for them.

In Table 6.3, we present the overall measurements for ail the benchmark programs.
The percentage improvement is highest for programs that primarily use dynamic ar
rays (of non pointer type) and structures without pointer fields (sim,. eholesky and
mp9d). For sorne programs (gene/ie and ear) the percentage improvement is not very
high, but cavg is quite small which indicates that connection analysis provides effec
tive information for them. Overall, the results show that if the given program uses
disjoint data structures, connection analysis cao always provide more accurate infor
mation for resolving heap related indirect references (as compared to the information
provided by points-to analysis). Thus, the connection matrix abstraction works well
for its target domain of applications.

131

•

•

•

To give a clearer picture of the connection matrix results, wc present scattcr plots
of connection relationships for ten of our thirteen benchmarks, in FigureN G.1 to 6.5.
Each + mark in a scatter plot represents an indirect reference in the given program. !ts
x·coordinate (horizontal axis) represents the total number of heap·directed pointers
at the program point where the indirect reference is made. !ts y·coordinate (vertical
axis) represents the number of pointers connected with the pointer being dereferenced
by the indirect reference.

The dotted line represents the (x = y) plot. A + mark falling on this line represents
an indirect reference at which the number of total heap·directed pointers is equal to
the number of pointers connected with the dereferenced pointer. A + mark on the
bottom right hand corner of a plot represents an indirect reference where a large
number of pointers are heap·directed but which has a few connection relationships.
We cannot have any + mark above the dotted line, as for no indirect reference can
the number of connected pointers be greater than the number of total heap·directed
pointers.

The e/fectiveness of connection analysis for any program can be evaluated by iden
tifying the regions in its scatter plot, where the majority of its indirect references are
represented. For example, for sim, mp3d and cholesky, most of the indirect refer
ences fall close to the horizontal axis, indicating that they have very few connection
relationships. For the program sparse, majority of the indirect references fall on the
dotted line, indicating that connection analysis provides negligible improvement for
it. The scatter plots for other benchmarks can be interpreted accordingly.

While collecting the data, we noticed that scatter plot coordinates for many indi
rect references in a given program, turn out to be identical. Thus, we end up having
one + mark representing several indirect references. To avoid this situation, we add
a randomly generated fraction in the range [0.00,0.49] to both x and y coordinates
of each point to be plotted. This strategy helps provide proper density e1fects in the
plots, with negligible modification of the original data.

6.1.2 Interprocedural Measurements

Connection analysis is a context-sensitive interprocedural analysis. In Tables 6.4
and 6.5 we present sorne measurements demonstrating the interprocedural character
istics of the analysis, using the same set of benchmarks as listed in Table 6.1.

In Table 6.4, we provi,de sorne static interprocedural characteristics of the bench
marks. The first three columns in this table, respectively give the total number of

132

Figure 6.1: Connection Relationships at Indirect References

133

•

•

•

5

5

10

10

15 20 25 30 35
TOla! hcap-dirccted Pointers

(a) sim

15 20 25 30 35
Tota! hcap-dirccted Pointers

(b) b/ocks2

40 45

45

50

50

•

(a) car

1412

•

4 6 8 10
Total hcap-dircctcd Pointers

2

8 ..

6 f-

J4 r-----r--'T---,.---r---r----,..-~, ..,'.',"."
".'

",,'
./-'~

.".','"
"".,.~..

,,'."
,/".'....'

/'
,~, +

..1"

2 .'."...
/'" + .+",.

o /
o

JOf-

J2 f-

•

(b) assem

Figure 6.2: Connection Rclationships at Indirect References

134

205 JO 15
Total h~p"irceted Pointers

20 r-----r-----,r-----~---""""':'I

//
r! ,.../
!! 15 ~

~/.
~ 10/.:
g ,/.,
c ".- ..
8'...+
~ 5 ,....., ..".

// ~~ ..
O~---~----.-I-----....L.----~

a

•

•
16 .',"
14

/ ..
/ ..

~
.... .+12 ."u/-=;e 10 /'

~ /...-;.ts 8
~ ~

8 6 ;

'3 •
{!. 4

•
2

•
0

0 2 4 6 8 10 12 14 16
Talai hcap~irectcd Pointers

• (a) loader

Figure 6.3: ConnectioD ReJationships at Indirect References

135

#
• #

• #
$. .- •

~

~#

5 10 IS 20 25 30 35 40
Total he3p-directed Pointers

(b) volrend

40 ,....-.....,---r--r--~---r--r-----r-/---:t

3S /'

~ 30-
c:
~2S
'B
li 20
ë
8 15
'3
{!. 10

5

O~---_....o.-_---","-_r--_--_....o.-_~

o

•

Figure 6.4: Connection Relationships at Indirect References

•

•

•

50
el
Ë.- 40
i
'8
ü 30 1-

~
u 20

"3
{!.

10

10

+

20 30 40
Total hcap..<firectcd Pointers

(a) wa/~:-

20 30 40
Tolal heap-dircctcd Pointers

(b) choluky

50

sa

·

·

60

·

136

•

•

14

12

~
u la-c
~
i 8
tS

~ 6
8
iiI 4
~

2
/r-.

a
a 2

.; /
.; ;''; .;
.;.; ~.;
.; .. ~

4 6 8 la
Total heap-dircctcd Pointers

(a) mp3d

12

•

14

2S

;,
•,
.;

"•
•

5 10 15 20
Total hcap-dirccted Pointers

(b) sp4r3e

O~--"""'-_--I._-_.a-----'-----'

o

2Sr----~--__,---_.__--__r--~

t:! 20

Ë
f IS

M
~ 10
u

"3
{!. s

Figure 6.5: Connection Re1ationships at Indirect References

137
•

•

•

•

Program fns cali ig Recur Appr nodes/
sites nodes nodes nodes cali

genetic 17 32 45 0 0 1.41
sim 14 26 44 2 8 1.70
blocks2 20 28 28 1 2 1.00
ear 64 144 235 2 2 1.63
assembler 52 263 642 0 0 2.44
loader 30 82 125 2 2 1.52
cholesky 47 72 93 2 2 1.29
mp3d 23 28 32 0 0 1.14
water 15 21 26 0 0 1.24
volrend 53 108 169 2 2 1.56
chomp 22 47 98 7 7 2.09
sparse 28 76 121 0 0 1.59
pug 41 69 101 0 0 1.46

Table 6.4: Invocation Graph Charateristics of Connection Analysis Benchmarks

functioDs actually called in the program, the total number of cali-sites in the pro
gram, and the total number of nodes in its invocation graph. The function main is
Dot couDted as a function or a cali-site, but the invocation graph node representing
main is counted. The last thrce columns give the number of recursive and approx
imate nodcs, and the number of nodes per cali-site, in the invocation graph of the
given program.

In Table 6.5, wc provide sorne dynamic interprocedural measurements for the
benchmarks. More specifically, wc give sorne statistics about the number of procedure
calls analyzed during the analysis. The column labeled Tot gives the total number of
procedure calls analyzed during the analysis. Our interprocedurai algorithm analyzes
a procedure once for each invocation context. Hence one might expect that the
number of procedure calls analyzed would be equal to the number of nodes in the
invocation graph. However, this is not truc, since a procedure cali cao be analyzed
several times for a single invocation context, if the cali is involved in a loop or recursion
fixed-point approximation.

The column labeled Memo in Table 6.5 shows the number of procedure calls that
get memoized. A cali is considered memoized if the input connection matrix (at the
entry of the calice) for this cali, is found equivaient to the stored input matrix at
the invocation graph node corresponding to the calI. Recall, that our interprocedural

138

•

•

•

Progrnm Cnlls Annlyzed Avgf Avge Avgi
Tot Memo Actual

genetic 55 8 47 2.76 1.46 1.04
sim 71 10 61 4.36 2.35 1.39
blocks2 371 221 150 7.50 5.36 5.36
ear 268 30 238 3.72 1.86 1.01
assembler 767 101 666 12.80 2.53 1.04
loader 312 132 180 6.00 2.20 1.44
cholesky 132 35 97 2.06 1.35 1.04
mp3d 47 0 47 2.04 1.68 1.47
water 98 73 25 1.67 1.19 0.96
volrend 192 21 171 11.40 1.58 1.01
chomp 219 92 127 5.77 2.70 1.30
sparse 168 47 121 4.32 1.60 1.00
pug 160 47 113 2.75 1.64 1.12

Table 6.5: Interprocedural Measurements for Connection Analysis

analysis algorithm (shown in Figures 4.9 and 4.10), stores at each invocation graph
node, the pair of input/output connection matrices valid respectively at the entry
and exit of the callee, during the last visit to the node. So, in this case we can simply
obtain the output matrix, from the invocation graph node, without re-analyzing the
called procedure. So the number of calls actually analyzed is obtained by subtracting
the number of memoized calls from the total number of calls analyzed (Tot - Memo).
This number is given by the column labeled Actual in Table 6.5.

The last three columns in Table 6.5, labeled Avgf, Avgc and Avgi respectively give
the average number of calls actually analyzed (given in the column labeled Actual) per
function, per cali-site and per invocation graph node. These averages are calculated
by dividing the number in the Actual column, with the appropriate number from the
first three columns in Table 6.4. In other words, Avgf, Avgc and Avgi respectively give
the average number of times: (i) a function gets analyzed, (H) a cali-site is encountered
during the analysis, and (iii) a cali-chain in the program (possibly ending in recursion)
is traversed during the analysis.

We make the following observations from the results reported in Tables 6.4 and 6.5:

• The maximum number of invocation graph nodes for our benchmark set is 642
for assembler, which also shows the highest nodes/calI-site ratio of 2.44. This

139

•

•

•

ratio is close to 1.5 for majority of the benchmarks, indicating that each call
site in general, appears on at most two cali chains. These figures demonstrate
the feasibility of our invocation graph based context-sensitive interprocedural
analysis for this benchmark set.

However, this cannot be said in general. We have encountered sorne programs
for which both the number of invocation graph nodes and the nodes/cali-site
ratio turn out to be pretty large, rendering our interprocedural strategy rela
tivelyexpensive. These programs generally have a large number of cali-sites for
a few functions, which in turn have relatively big invocation (sub)graphs. These
cali-sites typically occur inside multiple case statements of big sllitch statc
ments. The SPEC92 integer benchmark sc, which is a spreadsheet calculator,
is one such example.

• A large number of procedure calls get memoized (Table 6.5). For blocksl! as large
as 221 of 371 calls and for water 73 of 98 calls get memoized. These are very
encouraging results, specially considering the fact that presently we memoize a
procedure cali, only if it is analyzed more than once a10ng the same calI-chain
(i.e. for the same invocation graph node). A higher degree of memoization can
be achieved by trying to memoize ail calls to a procedure (except the first one)
irrespective of the calI-chain they appear on. To this end, we need to compare
the current input matrix with the stored matrix at ail invocation graph nodes
representing calls to the given procedure.

• Avgc for most of the benchmarks is close to 2.0 while Avgi is close to 1.0. This
indicates that for our benchmark set, on an average a calI-site is encountered
twice, while a calI-chain is traversed only once during the analysis. This is
consistent with the observation that for this set, a cali-site on an average appears
on at most two call-chains. For water Avgi is less than 1.0, because in our
statistics main is not counted as a cali being analyzed, but it is counted as an
invocation graph node.

Avgf varies from benchmark to benchmark depending upon the relative number
offunctions and caU-sites present. However, Avgfis relatively high for assembler
(12.80), lIolrend (llAO) and blacks!! (7.50). This happens because assembler and
lIolrend have many calls-sites for smaU leaf functions (mostly error routines),
while blocksl! has several caUs inside loops where sorne of these calls are a1so
recursive.

Further, since the calls to leaf functions get memoized, Avgc and Avgi for
48sembler and lIolrend are comparable with other benchmarks. However, this is
not the case for blockaf!, for which both Avgc and Avgi tum out to be 5.36. The
fixed-point computations for loops containing f'rocedure calls, which in turn are

140

•

•

•

recursive and involve further fixed-point computations, contribute to the higher
averages for this benchmark.

Thus our interprocedural algorithm works efTectively for programs whose inter
procedural structure is not very complex. To be able to handle a broader range of
programs, wc arc planning to optimize our a1gorithm in the following ways: (i) ex
cluding the functions from the invocation graph, which neither update nor access
pointer variables, (ii) building the invocation graph in a lazy manner, as the demand
for difTerent invocation contexts arises during the analysis, and (iii) performing more
extensive memoization as described above.

6.2 Shape Analysis Results

In this section, we present empirical results for shape analysis. Table 6.6 gives the
benchmark programs used for this purpose, and their important characteristics. The
characteristics reported arc same as for connection matrix benchmarks in Table 6.1.
However, the columns labeled vars give the number of variables abstracted by di
rection/interference matrices. The first ten benchmarks in Table 6.6, have becn
specifically selected to highlight the power as weil as the limitations of the direc
tion and interference matrix abstractions. The rest of the benchmarks arc taken from
the connection matrix suite, to verify the efTectiveness of shape analysis for larger C
applications.

It can be observed from the data on connection matrix benchmnrks, that the
number of variables abstracted by direction/interference matrices is higher than that
abstracted by connection matrices. This happens because direction/interference ma·
trix abstractions use one extra symbolic variable for each symbolic variable used by
connection matrix abstraction (sections 4.3.5 and 5.5).

Another important observation from Table 6.6, is that for the benchmark misr, 27
indirect references eau refer to both stack and heap locations. This happens because
misr implements a linked list with its first element on the stack and the rest inside
the heap. Consequently, the pointer used to traverse the list inside a loop, is reported
by points-to analysis, to be possibly pointing to both the first element of the list on
stack and to the abstract location hcap.

The main goal of shape analysis is to identify the shape of the data structures
built and used by a program. By identifying completely unaliaaed tree-like recursive

141

•

•

•

Program Source SIMPLE Min Max Avg Ind To To Stack/
Lines stmts vars vars vars Refs Stack Heap Heap

bintree 351 342 4 23 10 50 10 40 0
hash 257 110 4 6 11 14 7 7 0
xref 153 139 20 40 24 31 0 31 0
misr 277 235 2 10 8 47 39 35 27
stanford 885 880 4 14 7 28 0 28 0
power 681 641 16 23 18 180 29 151 0
chomp 430 476 20 27 22 127 45 82 0
reverse 123 49 9 18 12 16 0 16 0
paraflins 381 180 6 31 21 37 2 35 0
assembler 3361 3071 22 36 24 718 666 52 0
loader 1539 1055 13 28 17 170 106 64 0
volrend 4207 4909 36 65 38 190 63 128 1
sim 1422 1760 76 111 83 374 34 340 0
blocks2 876 1070 56 82 61 373 98 275 0
water 2703 2418 16 79 36 581 32 549 0
nbody 2204 703 24 36 27 134 24 116 6
sparse 2859 1495 24 60 32 468 3 465 0
pug 2400 2089 32 153 48 822 147 688 13

Table 6.6: Charateristics of Shape Analysis Benchmarks

142

•

•

•

structures or aliased but acyclic dag-like structures in a program, we can enable sev
eral powerful program optimizations like concurrent execution of recursive procedure
cal1s [LarS9, Hen90], software pipelining [HHN92a], and loop unrolling [HG92]. [n
this light, we estimate the effectiveness of shape analysis, by providing the fol1owing
measurements in Table 6.7, for each benchmark:

• Refs: The number of heap-related indirect references in the program.

• T, D, C: These three columns respectively give the number of heap-rclated
indirect references where the dereferenced pointer, say p, points to a tree-like,
dag-like or cyclic data structure: Le. A[p.shape] = Tree, Dag or Cycle, where
A is the attribute matrix at the given program point.

The mu[ti-columns labeled .al (.a) . b and a[i] (where a is a pointer) in Table 6.7,
separate[y give the above measurements for indirect references of the respective form,
while the multi-co[umn labeled Overal1 gives the overal[statistics for the given pro
gram.

Be[ow we analyze the results for each benchmark, by comparing the actual shape
of the data structures it builds, with that reported by the ana[ysis. For benchmarks
where the two don't match, we investigate why the ana[ysis gives a conservative
answer.

bintree: As the name suggests this program builds a binary tree. Each tree node
consist of a char pointer, and pointers to left and right children. The program first
builds the tree using a loop, where each iteration inserts anode with a new string
pointed to by the char pointer. A new node is always inserted as the child of an
existing node with no children.

Thus the data structure a[ways remains tree-like and does not become dag-like
even temporarily. Once the tree is built, several traversaIs are done on it. They only
update the value of the string field in its nodes, and do not modify other pointer
fields.

Our analysis gives precise results. It reports aIl dereferenced pointers to be point
ing to tree-like structures. The indirect references of the form .al(.a) .b in this
prograrn refer to nodes of the binary tree, while the four indirect references of the
form a[i] are used in a string compare function, where the strings are stored in
dynarnically allocated objects.

hash: This prograrn builds a hash table. It uses an array of pointers on the stack,
namely htable, and each of the pointers htable ci] points ta a linkcd list of items.

143

•

•

•

Program *a / (*a). b am Overall
Refs T D C Refs T D C Refs T D C

bintree 36 36 0 0 4 4 0 0 40 40 0 0
hash 7 7 0 0 0 0 0 0 7 7 0 0
xref 29 29 0 0 2 2 0 0 31 31 0 0
misr 35 35 0 0 0 0 0 0 35 35 0 0
stanford 28 28 0 0 0 0 0 0 28 28 0 0
power 147 147 0 0 4 4 0 0 151 151 0 0
chomp 56 56 0 0 26 26 0 0 82 82 0 0
reverse 16 11 5 0 0 0 0 0 16 11 5 0
paraffins 26 8 18 0 9 3 6 0 35 11 24 0
assembler 45 45 0 0 7 7 0 0 52 52 0 0
loader 55 55 0 0 9 9 0 0 64 64 0 0
volrend 96 96 0 0 32 32 0 0 128 128 0 0
sim 96 29 67 0 244 221 23 0 340 250 90 0
blocks2 119 16 37 66 156 64 43 49 275 80 80 115
water 250 181 0 69 299 124 0 175 549 305 0 244
nbody 74 22 0 52 42 14 0 28 116 36 0 80
sparse 384 14 0 370 0 0 0 0 384 14 0 370
pug 514 16 0 498 174 1 0 173 688 17 0 671

Table 6.7: Empirical Measurements for Shàpe Analysis Results

144

•

•

•

An item is added by first hashing it to a number j, and then appending it at the end
of the list pointed to by the pointer htable [j].

Our analysis abstracts ail pointers htable [i] by the single name htable. The
shape attribute of htable is therefore the merge of the shape attributes of ail pointers
it represents. Since each of these pointers points to a trce-like structure, our analysis
reports the shape attribute of htable as Tree. Note that if the Iists pointed to by
two pointers htable Ci] and htable[j] share anode, then the analysis would report
the shape attribute of htable as Dag or Cycle.

Consider the example in Figure 6.6. Before the statement, pointer htllble IUlII

paths to both p and q as it represents both pointers htable Ci] and htable [j].
Further, the shape attribute of ail three pointers (htable, p and q) is Trec. ACter the
statement p->next • q, analysis would infer that htable has an additional path to
q via p and make its shape attribute as Dag.

Further, in the example in Figure 6.7, pointers htable[i] has a path to p. Thus,
from the analysis point of view htable has a path to p. Now, after the statement
p->next = htable [j], analysis finds that p has a path to htable, while htable
already has a path to p. So it infers the creation of a cycle, and makes the shape
attribute of both htable and p Cycle.

From the above discussion, we can conclude that if a pointer p represents an arcay
of pointers, and our analysis reports its shape attribute as Tree, the data structures
accessible from all pointers p[i], are tree-like and more importantly arc completely
disjoint from each other. This information is crucial, as a loop iterating over such
an array, would access disjoint heap locations in each iteration, and hence can be
potentially parallelized.

Finally, note that hash does not have any heap related indirect references of the
form a[i]. This is because access to an array of pointers on stack, pei] is simply a
pointer reference and not a pointer dereference.

:rref. This program builds a binary tree of items (character strings) for cross refer
encing purposes. Thus each tree node also has a pointer pointing to a linked list of
items. The overall shape of the data structure is tree-like and our analysis accordingly
reports aIl dereferenced pointers having their shape attribute as Tree.

The benchmark misr uses a linked list, stan/ord implements a tree sort algorithm,
while chomp implements agame tree and also uses a linked list. We get expected
results from the anaIysis for aIl three benchmarks.

power: This porgram implements the Power System Optimization problem [LML+93) .
It represents the power network as a tree with the power plant as the root and

145

•

..---D-f;-D-f-o
.......... _--_

l-

i-

htabl: :::.{5:è~f-o
htable[ij

htable[j]
q

•

/-O:è~f-o

next

,-:-0-f.-:O-f-o
.......... _-_ --

...

p
htable

htable[i]

htableUl
q

Figure 6.6: Shape Attributc Bccomes Dag due to Array of Pointers

•
146

•

•

•

htabl:1---.- - -~,D-r-0-r-<)
htable[ij f----f _

htable~1o----1----0-r-0-r-<)

...-----
htabl:I---~,:·-O=;Yf~

htabre[~ next

htabl9~ Io------C ---d-r-0-r-<)

Figure 6.7: Shape Attribute Becomes Cycle due to Array of Pointers

147

•

•

•

cllstomers as leaves. The root noue has an array of pointers calleu feeuers, painting
to variolls lateral noues. Each lateral noue has a pointer ta a brandI noue anu the
next lateralnoue. Eaeh brandI noue Ilseu a pointer to the next brandI, anu an array
of pointers calicu leaves, painting ta custolller (Ieaf) noues.

Wc analyze the sequential version of the this program, originally implemented for
Oluen [CRRH93] by Martin Carlisle. Our analysis reports the shape attribute of the
data structure buitt by this program, as Trec. After construding the power network
tree, it propagates pIicing information from the root noue to the customer nodes, and
uemand information from eustomer noues to the root node.

The main loop in this program iterates over the fcedl'" array ill the root node, and
each iteration computes this information for the feeder corresponding to the current
index. Now, feeder array is an array of pointers and our analysis reports its shape
attribute as Trec. This implies that ail array indices point ta disjoint data structures,
and the loop can be parallclized.

rcl1er.'c: This is a small program that builds a binary tree and then recursivcly swaps
the left and right chitdren of each node using the following procedure:

reverse(bintree .t)
{ if (t NULL)

returr.i
l .. t->left;
r .. t->right;
reverse(l) ;
reverse(r);
t->left .. r;
t->right .. 1;

}

Before the cali ta reverse, our analysis reports the shape of the data structure
ta be Trec, and after the cali it reports it ta be Oag. Note that actually the bioary
tree ooly temporariiy becomes a da.,; ..rter the statemeot t->left .. r when pointer
t has paths to pointer r via both left and right links. It becomes a tree again after
the statement t->right .. l, when the right Iink is reset. Shape analysis is able ta
identify the first situation and makcs the shape attribute of t as Oag. However, it
does not record the information as ta why t becomes a Oag. So it cannat identify
that the staternent t->righ'e • l restores the trce attribute of pointer t •

148

•

•

•

This example exposcs a major limitation of our nnalysis. Analyscs using more
powerful abstractions like path matrices [IIN90] can handle such CMCS, but they a1so
incur higher cost.

paraffins: This program generates ail the paraffins of size upto n, where parnffins are
molecules of chcmical formula Cn Il2n+2 • The principal data structure built by this
program is shown in Figure 6.8. The variables BCP, CCP and Radicals are arrays of
pointers located on the stack. The array Radicals is similar to the structure shown
in the example in Figure 6.6. So it is reported to be Oag by the analysis. Furthcr,
since this structure is accessible from arrays BCP and CCP, thcir shape is also reportcd
to be Oag. In Table 6.7, majority of indirect references for paraffina fall in the Ong
category. The ones falling in the Trec category, represent referencc.~ to newly allocatcd
nodes, before they are hooked in the main data structure.

The benchmarks assembler and loader implement linked lists, while lIolrend uses a
stack-based array of pointers pointing to to bit vectors a1located in the heap, ail of
which are disjoint from each other. The nnalysis results for these benchmarks are
consistent with the actual shape of data structures used by them.

sim: This program dynamically allocates an array of pointers to structures, which
in turn themselves are dynamically a1located. The stack-based pointer LIST, that
points to the array of pointers, is reported to be dag-Iike because of the following
code fragment:

Sl: LIST[I] .. LIST[J];
S2: LIST[J] .. nevStruct();

After Sl, both the pointers LIST[I] and LIST[J] point to a common heap
allocated structure. The stack-based pointer LIST has two paths to this structure:
both via LIST[I] and LIST[J], 50 its shape is reported to be Oag. HOlYever, after
S2, LIST[J] points to a newly allocatcd structure, and LIST no longer points to a
dag-like structure. Direction matrix abstraction cannot infer kill information for a
particular array index, and the shape attribute of LIST remains as Oag.

This program also builds a linked list, which is reportcd to be dag-Iike because
of the following code fragment, where z points 10 a linkcd Iist and rOll is adynamie
array of pointers:

Sl: z->NEXT" rall[I];
52: rall[I] .. z;

149

•

CCPBCP

1 1 1 1
1 66 1• 1

Radicals 1

0 1
1
1
1
1

à

..... ..J

Figure 6.8: Data Structure Built by paraffins Benchmark

•
150

•

•

•

Program fns cali ig Rccur Appr nodes!
sites nodes nodes nodes cali

bintrcc 17 31 32 2 4 1.03
hash 5 8 8 0 0 1.00
xref 8 14 15 2 4 1.07
misr 5 7 7 0 0 1.00
stanford 8 12 13 2 4 1.08
power 18 31 53 6 6 1.71
chomp 20 47 98 7 7 2.09
reverse 5 10 11 2 4 1.10
paraffins 7 6 7 0 0 1.16
nbody 34 67 118 2 2 1.76

Table 6.8: Invocation Graph Characteristics for Shape Analysis Benchmarks

Analysis fails to identify that the same index of the array rOll gets updated in S2
and gives a conservative answer.

The benchmarks blacks!! and water use Iinked Iists and heap-allocated arrays of point
era to Iinked Iists. These arrays become dag-Iike or cyclic becau3C of situations similar
to the ones depicted in Figures 6.6 and 6.7, except that arrays of pointers for these
benchmarks arc heap-allocated. ln Table 6.7, we have indirect references for blacks!!
refering ail three types of data structures. While for water, t:,,~y are reported to refer
to only tree-Iike and cyclic data structures.

nbody: This program implements the hierarchica1 N-body problem to ca1culate grav
itational forces acting on N bodies in spacc and computing their new CCHlrdinates
at each time step. It stores the N bodies as a Iinked Iist, and builds an octree data
structure to represent the relative position of the bodies in three dimensional spacc.

The root of this tree represents a space ccll containing ail bodies in the system.
The tree is built by adding bodies into the initially empty root ccli, and subdividing
a ccU into its eight children as socn as it contains more than a single body. In the
proccss, new cclls are generated and they arc inscrted between an existing ccli and a
leaf node (a body) in the tree. This insertion causes the analysis to infer the shape
of the data structure as Dag. For example, sec the following code fragment:

151

•

•

•

51: old_cell->item • q;
52: new_cell· newCell()j
53: new_cell->item • q;
54: old_cell->item· new_cell;

Artcr 51, old_cell has a path to q. Aftcr 53, new_cell also has a path to
q. Prescntly thc shapc of thc data structurcs acccssible from both old_cell and
new_cell is Trec. After 54, old_cell has a path to new_cell, and it does not have
a dircct path to q (not considering the one via new_cell). However, shape analysis
does not have enough information to infer the latter. Hence it assumes that old_cell
has two paths to q: a direct path and a path through new_cell and reports its shape
to be Dag. If more insertions arc donc in this apparently dag-Iike data structure,
analysis gets overly conservative and finally reports it to be cyclic.

For the above reasons, we have majority of indirect references in nbody falling
in the Cycle category. Note that the octrce data structuré built by this program is
inherentlya dag-Iike structure,as its leaves arc Iinkcd. However, our in-depth analysis
of this program revealed that we would get the same results even if this were not the
case.

Finally, the benchmarks sparse and pug use inherently cyclic data structures with
back pointers. So majority of indirect references for them fall in the Cycle category.
The ones in the Trec category again represent newly allocated nodes, before they are
hooked in the main data structure of the program.

One can note that majority of the indirect references of type a Ci] fall in the Trec
category. This happens because for most of the benchmarks, these arrays ar~ stand
alone data structures in the heap, which can be considered as trees with a single node.
However sorne benchmarks like paraffins, blacks!! and water use heap allocated arrays
of pointers to recursive structures like linked lists. Indirect array references for such
benchmarks fall into ail threc shape categories.

From the above analysis of shape analysis results for the various benchmarks, we.
draw the following conclusions:

• If a program builds a tree-Iike data structure in such a manner, that a new node
is always appended at the beginning/end of the existing structure, then shape
analysis is able to infer the shape of this data structure as Trec. For example, in
the above benchmark set, bintree and stanford build binary trees by arpending
the new node to a leaf node, while hash, misr, and rref build linked lists by
appending a new item at the beginning/end of the list.

152

•

•

•

Program Calls Analyzed Avgf Avgc Avgi
Tot Memo Actual

bintree 59 12 47 2.76 1.51 1.47
hash 11 1 10 2.00 1.25 1.25
xref 60 13 47 5.88 3.36 3.13
misr 7 0 0 1.40 1.00 1.00
stanford 36 6 30 3.75 2.50 2.31
power 112 49 63 3.50 2.03 1.19
chomp 390 196 194 9.70 4.13 1.98
reverse 52 16 36 7.20 3.60 3.27
paraffins 9 0 9 1.29 1.5n 1.29
nbody 252 42 210 6.17 3.13 1.78
assembler 1057 221 836 16.08 3.18 1.30,
loader 328 126 202 6.73 2.46 1.62
volrend 247 26 221 4.17 2.05 1.31
sim 161 8 153 10.93 6.19 3.66
blocks2 690 432 258 12.90 9.21 8.90
water 366 332 34 2.27 1.62 1.31
sparse 195 64 131 4.68 1.72 1.08
pug 213 53 160 3.90 2.39 1.36

Table 6.9: Interprocedural Measurements for Shape Analysis

153

•

•

•

• If a new node is inserted between two existing nodes in a data structure, analysis
fails to retain the shape attribute of the data structure as Tree and infers it to
be first a Dag, and on successive insertions a Cycle. The construction of the
octree structure for the nbody benchmark is an example of this case.

• If a data structure temporarily becomes dag-like or cyclic and then becomes
tree-Iike again, shape analysis cannot identify this case, and continues to report
it as dag.like or cyclic. The program reverse demonstrates this limitation of the
analysis. A more powerful abstraction is required to overcome this limitation.

• Abstracting entire arrays (of pointers) as one pointer, has both advantages and
disadvantages. On the positive side, if the shape attribute of such a pointer is
reported to be Tree, one is guaranteed that ail indices of the array point to tree
Iike structures, completely disjoint from each other. This applies to benchmarks
hash and power.

On the negative side, such abstraction can introduce undesirable imprecision, as
demonstrated by the cases shown in Figures 6.6 and 6.7, which apply to bench
marks paraffins, b/oekse and water. Further, shape analysis cannot obtain any
kill information when an array index is updated. This lack of kill information
results in loss of precise shape information, as shown for the benchmark sim.

One approach to avoid this imprecision can be, to use subscript analysis for ar
rays of pointers, and identify when two array references access the same pointer
or distinct pointers. We are presently investigating this approach.

Finally, the interference matrix information itsclf can be used to finà if two pointers
can access a common heap object. This can provide an improvement over connp.c~ion

matrix information, which only informs if two pointers can lead to a common (con
nected) heap data structure. However, our experiments showed that this is not the
case, and interference matrix results turn out to be almost identical to connection
matrix results. On further investigation, wc discoyered that during the analysis, in
terference matrix information is more sophisticated than connection information, but
the final merged information deposited on the SIMPLE tree turns out to be identical
for the two abstractions. Now, interference matrix abstraction was designed to use
its information during the analysis, in order to improve the overall precision of shape
information. Thus, it serves its design target.

ln Table 6.8, we present the invocation graph characteristics for shape analysis
benchmarks, and in Table 6.9 sorne in',erprocedural measurements for shape analysis.
The two tables present similar data lor shape analysis, as Tables 6.4 and 6.5 present
for connection analysis. Further in Table 6.8, we do not inc1ude the shape analysis

154

•

•

•

benchmarks taken from the connection matrix suite, as the data for them is same llll

that presented in Table 6.4.

It can be observed from Tables 6.4 and 6.8 that majori ty of the shape allalysis
benchmarks, have recursive and approximate invocation graph nodes. Since most
of these programs use recursive data structures, they also employ recursion as the
control structure to traverse and modify them.

The interprocedural measurements show similar trends as the ones for connection
analysis, with memoization providing significant advantages. The averages Avgf,
Avgc, and Avgi are relatively higher than those for connection analysis. This happens
because more iterations are required for loop and recursion fixed-point approximations
for shape analysis, as four separate abstractions are calculated at the same time.

6.3 Summary

In this chapter we provided empirical evidence of the elfectiveness of our heap analysis
techniques on real C application programs. We also demonstrated that cach of our
analyses gives accur:.te results for its target domain of applications, and conscrvativc
results for others. This proved the validity of our hierarchical approach to heap
analysis. In future, we plan to collect empirical data on the impact of accurate heap
analysis towards more accurate dependence analysis and increased opportunities for
optimizations like loop parallelization and instruction scheduling.

155

•

•

•

Chapter 7

Conclusions and Future Work

In this thcsis, we have presented a hierarchy of two practlcal heap data structure
analyses: connection analysis and shape analysis. The first analysis identifies pointer
accesses to completely disjoint heap data structures. The shape analy~is estimates
the shape of the data structure accessible from a heap-directed pointer, with special
focus on identifying completely unaliased tree-like structures and aliased but acyclic
dag-like structures, built by the program under analysis.

We outlined the basic analysis l'ules for these analyses, which can be used to de
velop the corresponding analyses for any language that supports dynamic data struc
tures. Further, based on the basic analysis rules, we developed complete analysis
frameworks to analyze a language as complex as C. We also extended the context
sensitive interprocedural analysis framework built by points-to analysis. Our exten
sion involved introduction of additional symbolic variables, to correctly handle the
heap relationships of inaccessible local pointers of a function, across procedure calls.

We also implemented the connection and shape analyses at the structured tree
based SIMPLE intermediate representation of the McCAT C compiler. Using this
implementation, we analyzed a collection of real C applications, and provided em
pirical evidence of the e!fectiveness of each analysis for its intended target domain of
applications. Connection analysis provided very accurate results for programs that al
locate a number of (mostly non-recursive) disjoint data structures in the heap. Shape
analysis accurately identified trec-like structures, when they were built by inserting
new nodes as children of existing leaf nodes. These empirical results also validated our
approach of decoupling the analysis of stack-directed and heap-directed pointers, and
developing a hierarchy of analyses for hcap data structure analysis. FinaIly, the in
terprocedural measurements demonstrated the benefits achievable from memoization,
for a context-sensitive interprocedural analysis.

156

•

•

We have ilIustrated that heap data structure analysis can be both efficient and
effective, provided that appropriate abstractions are designed in keeping with the
data structures used by the target domain of application programs. In future, we
plan to extend our work in several directions. We discuss these extensions below.

We plan to develop efficient techniques for performing heap interferencc (depen
dence) analysis using the data structure information from connection and shape anal
yses. A general approach for heap interference analysis has been proposed by Hummcl
et al. [HHN94). We plan to develop sorne practical variations of their approach, suit
able to the data strl<cture information coIlected by our analyses. Wc also plan to
investigate the use of shape information for optimizing transformations like pipelined
and paraIlel execution of recursive caIls traversing tree-Iike structures, and software
pipelining and unroIling of loops iterating over Iists and arrays of (disjoint) recursive
data structures.

We plan to optimize our interpr::>cedural analysis algorithm to be able to han
die programs which have large invocation graphs. We mentioned several approaches
for this optimization in chapter 6. We also plan to measure how much precision
is gained by performing a context-sensitive connection analysis as comparcd to a
context-insensitive analysis. Shape analysis, however needs to be context-sensitive,
because one extraneous path information can result in loss of critical shape informa
tion.

Finally, we plan to design more powerful abstractions to analyze programs that (i)
build data structures by insertion i.e. by inserting new nodes between existing nodes,
and (H) use complex cycIic data structures. While examining application programs
that use dynamic data structures, we discovered that often they build data struc
tures that are dag-Iike or cyclic in shape, but still have regular propertics. Typical
examples include leaf-Iinked trees, doubly linked Iists, and trees with parent and/or
sibling pointers. One way to accurately abstract such data structurcs is provided
by language-based mechanisms like ADOS (HHN92a) and alias axioms (HHN94). We
bave designed a new abstraction callcd partial path matrix, that can automatically
ce"ture the critical prope.rtles of these data structurcs, and also accurately handie
node insertions.

Partial path matrix abstraction can be considered as an enhanced version of the
direction matrix abstraction. Given any two heap-directed pointers p and q, the
partial path matrix entry PP(p,q) contains the first Iinks(s) of the possible path(s)
from the heap object pointed to by p to the heap object pointed to by q. For example,
if p points to the root of a tree, and q points to anode accessiblo from the root by
fol1owing a left link and a rigbt link, th.. entry PP[p,q) wlll be Ilmply hfl:. Keeplng
the first link information will provide us kill information for the basic heap statcment,

157

•
p->t • q, and enable accurate estimation of the shape of data structures built by
insertion.

More importantly, partial path matrix abstracts the shape of a data structure in a
more comprehensive manner. Like shape analysis, it maintains an auxiliary attribute
matrix callcd AP. However, AP abstracts the shape of a data structure along specifie
links. The basic idea is that the overall shape of a data structure accessible from a
pointer may be dag-Iike or cyclic, but it can be still tree-like or dag-like if only specific
links in the data structure are considered.

For example, a binary tree with parent pointers is a cyclic structure. However, if
in sorne program segment, it is traversed only using the lett and right links (Le. its
tree edges), we can consider its shape to be tree-like for this part of the program, and
apply optimi:ling transformations applicable to tree traversaIs. Suppose a pointer p
points to the root of such a tree. The shape attribute of p is abstracted by the matrix
AP along each combination of links as follows:

•
AP[p.shape,left,leftj = Tree
AP[p.shape,parent,parent] = Tree
AP[p.shape,left,parentj = Cycle

AP[p.shape,right,rightj = Tree
AP[p.shape,left,rightj = Tree
AP[p.shape,right,parentj = Cycle

•

It can be noticed that using this abstraction, shape attributes of other dag-like
and cyclic data structures like leaf-linkcd trees, trees with sibling pointers and dou
bly linked lists, can be accurately and comprchensively captured. Presently, we are
developing the basic analysis rules for the partial path matrix abstraction. We soon
plan to implement it in the framework of the McCAT C compiler, and measure its
eifectiveness on real C benchmark programs.

158

•

Bibliography

(Ban88] U. Banerjee. Dependence Analys:s for Supercomputing. I<1uwer, 1988.

[CBC93] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side-effects. In Procecdings
of the ACM 20th Symposium on Principles of Programming Languages,
pages 232-245, January 1993.

•
(CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified 1attice model

for static analysis of prograrns by construction or approximation of fix
points. In Proceedings of the 4th ACM Symposium on Principles of Pro
gramming Languages, 1977.

(CRRH93] M. C. Carlisle, A. Rogers, J. H. Reppy, and L. J. Hendren. Earlyexperi
ences with OIden. In Uptal Banerjee, David Gelernter, Alex Nicolau, and
David Padua, editors, Proceedings of the 6th International Workshop on
Languages and Compilers for ParaI/el Computing, volume 768 of Lecture
Notes in Computer Science, pages 1-20, Portland, Oregon, August 1993.
Springer-Verlag. Published in 1994.

[CWZ90] D. R. Chase, M. Wegman, and F. K. Zadek. Analysis of pointers and struc
tures. In Proceedings of the SIGPLAN '90 Conference on Programming
Language Design and Implementation, pages 296-310, 1990.

(Deu90] A. Deutsch. On determining lifetime and aliasing of dynarnical1y al10cated
data in higher-order functional specifications. In Proceedings of the ACM
17th Symposium on Principles of Programming Languages, pages 157-168,
1990.

•
(Deu92] A. Deutsch. A storeless model of aliasing and its abstractions using finite

representations of right-regular equivalence reiationo. In Proceedings of
the IEEE 1992 International Conference on Computer Languages, pages
2-13, April 1992.

159

•

•

•

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k
limiting. In Proceedings of the ACM SIGPLAN Conference on Program
ming Language Design and Implementation, pages 230-241, June 1994.

(Don94] C. M. Donawa. A structured approach to the design and implentation of a
backend for the McCAT C compiler. Master's thesis, School of Computer
Science, McGiIl University, April 1994.

[EGH94] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedu
ral points-to analysis in the presence of function pointers. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 242-256, June 1994.

(EH94] A. M. Erosa and L. J. Hendren. Taming control flow: A structured ap
proach to eliminating goto statements. In Proceedings of IEEE 1994 In
ternational Conference on Computer Languages, May 1994.

[Ema93] M. Emami. A practical interprocedural alias analysis for an optimiz
ing/parallelizing compiler. Master's thesis, School of Computer Science,
McGiIl University, September 1993.

[Ero94] A. M. Erosa. A goto-elimination method and its implementation for the
McCAT C compiler. Master's thesis, McGiIl University, May 1994.

[Ghi92] Rakesh Ghiya. Interprocedural analysis in the presence of func
tion pointers. ACAPS Technical Memo 62, School of Computer Sci
ence, McGiIl University, Montréal, Québec, March 1992. In ftp://ftp
acaps.cs.mcgill.ca/pub/doc/memos.

[Gua88] V. A. Guam.. Jr. A technique for analyzing pointer and structure refer
ences in parallei restructuring compilers. In Proceedings of the Interna
tional Conference on ParaUci Processing, volume 2, pages 212-220, 1988.

(HA93] W. Ludwell Harrison III and Z. Ammarguellat. A program's eye view of
Miprac. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors,
Fifth International Workshop on Languages and Compilers for Paral/cl
Computing, volume 757 of Lecture Notes in Computer Science, pages 512
537. Springer-Verlag, 1993.

(Har89] W. Ludwell Harrison III. The interprocedural analysis and automatic
parallelization of Scheme programs. Lisp and Symbolir. Computation,
2(3/4):179-396, 1989.

160

[Hen90]

•
[HDE+93] L. J. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Srid

haran. Designing the McCAT compiler based on a family of structured
intermediate representations. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Fifth International Workshop on Languages and
Compilers for Parallel Computing, volume 757 of Lecture Notes in Com
puter Science, pages 406-420. Springer-Verlag, 1993.

[HEGV93] L. J. Hendrcn, M. Emami, R. Ghiya, and C. Vcrbrugge. A practi
cal context-sensitive interprocedural analysis framework for C compilers.
ACAPS Technical Memo 72, School of Computer Science, McGill Univer
sity, Montréal, Québec, July 1993.

L. J. Hendren. Parallelizing Programs with Recursive Data Structures.
PhD thesis, Cornell University, April 1990. TR 90-1114.

[HGS92] L. J. Hendren, G. R. Gao, and V. C. Sreedhar. ALPHA: A family of
structured intermediate representations for a. parallelizing C compiler.
ACAPS Technical Memo 49, School of Computer Science, McGill Uni
versity, Montréal, Québec, November 1992.

[HHN92a] L. J. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive
pointer data structures: Improving the analysis and transformation of
imperative programs. In Proceedings of the SIGPLAN '92 Conference on
Programming Language Design and Implementation, pages 24~2G(j, June
1992.

•
[HG92] L. J. Hendren and G. R. Gao. Designing programming languages for

analyzability: A fresh look at pointer data structures. In Proceedings
of the 4th IEEE fr./emational Conference on Computer Languages, April
1992.

[HN90]

•

[HHN92b] J. Hummel, L. J. Hendren, and A. Nicolau. Abstract description of pointer
data structures: An approach for improving the analysis and optimization
of imperative programs. ACM Let/ers on Programming Languages and
Systems, 1(3):243-260, September 1992.

[HHN94] J. Hummel, L. J. Hendren, and A. Nicolau. A general data dependcnce
test for dynamic, pointer-based data structurc:s. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Im
plementation, pages 218-229, .lune 1994.

L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data
structures. IEEE Trans. on Parallel and Distributed Computing, 1(1):35
47, January 1990.

161

•

•

[m'Il!!!J) s. IIorwitz, l'. l'fcim'r, aud T. Hl'Jls. Depeude/lce aualysis for pointer
varia"lc~. In Prtleeetli/I!J.• of Ihe S/G/'/,tlN '89 COllferellee 011 Prtl!Jralllllli/l!J
IAlIIgllllge Desigll 11111/ Imp/wle/lllltirJII, pages 28-'10, .Iuue 1!J8!).

[lIl1d8liJ ". IIudak. A ~emautic model uf ref(~reuce cOllntiug and its abstraction. In
ProeeetlillgR of the 1986 ACM COllferCllee 0/1 LISP 11111/ F'lIIelitllla/ Pro
grammillg, 1986.

[ISVSf,) 1<. Inoue, Il. Scki, and Il. Vagi. A'Hlly~i~ of fllncliuual prugrnrna to detect
run-time garIJng(~ l'clis. ACM TOP/,AS, 10(4):555-578, October 1988.

PM81J N. D. Joncs and S. S. MlIchnkk. Program Flow A/III/ysis, TIIwry IInd Ap
pliea/iolls, chapter 4, Flow Anlllysis and Optimizntioll of LISI'·like Struc
tures. pages 102-13/. Preutice-llall, 1981.

[JM82) N. D. Joncs and S. S. Muchllick. A flexible approach to interprocedurnl
data flow analysis and progrnms with recursive data struclures. In 9/h
ACM Symposium on Princip/cs of Pr09ramming Languages, pages 66-·74,
1982.

[I<IŒ90] D. I<lappholz, A. D. Kallis, and X. I<ang. Refined C: An updat.l. In David
Gc1ernter, Alexandru Nicolall, and David Padua, editors, Lallguages and
Campi/cr.• for ParaI/cl COmplA/illg, pages 331-357. The MIT Press, 1990.

[I<S93]

[LUSS]

[LGSS)

[Lar89]

N. I<larlund and M. Schwartzbach. Graph types. In Proeeedings of /he
ACM !JO/h Symposicm on Prillei[>ie.• of Programming LanglAages, pages
196-205, January 1993.

W. Landi. Undecidabilityofstatic aualysis. ACM LeI/crs on Programming
Languages and Systems, 1(0\), Deeember 1992.

J. R. Larus. Res/rucluring Symbo/ic Programs for CÙi'leurrt:n/ Execution
on Mu/liproeessors. PhD thcsis. University of California, Berkeley, 1989.

J. M. Lueassen and D. 1\. Gifford. Polymorphie effecl systems. ln Pro·
cudings 15/h ACM Symposium 011 Princip/cs of Progromming Languages,
pages 47-57, 19S8.

J. R. Larus and P. N. IIilfingcr. Dctccling eonflicls betwccn structure
accesses. ln Procudings of /he SIGPL/IN '88 Conference on Progromming
Language Design and Im[l/cIIICll/a/ion, pages 21-34, June 1988.

[UIL+93) S. Lummetta, L. l\Iurphy, X. Li. D. Cu11er, and I. Khalil. Decentralizcd
optimal power pricing. In Proeecdings of Supcrcompu/ing 93, pages 243
249, November 1993.

[Lan92]

•
162

•
[LR92] W. Landi and 13. Ryder. A safe approximation algorilhm for inl"rproce.

durai poinler aliasing. [n ProeeedingN oftlle SlGPLtlN 'Y2 Confaellee 011

Programming Lllnguage Dcsigll and Implcmentation, pages 2:15-218, June
1992.

[MLR+93] T. Marlowe, W. Landi, B. Ryder, J. Choi,
Poinler·induced aliasing: A clarification.
28(9):67-70, September 1993.

M. Burke, and l'. Cari ni.
ACM SlGI'LtlN Notices,

[PC1<91] J. Plevyak, A. Chien, and V. I<aramcheti. Allalysis of dynamic structures
for efficient parallcl execution. [n U. Banerjec, D. Gclernler, A. Nieo
lau, and D. Padua, editors, Sixtll Intematiollal WorksllOll 011 I.orlguages
and Compi/ers for ParaUeI Computing, volume 768 of Lee/ure Notcs ill
Computer Science, pages 37-56. Springer-Verlag, 1991.

[RM88] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated
objects. [n Proeeedings oftlle 15tll ACM Symposium 011 Prillciples of
Programmin,'l Languaycs, pages 285-293, 1988.

• [Sri92) Bhama Sridharan. An ana[ysis framework for the McCAT compiler. Mas
ter's thesis, McGill University, Montréal, Québec, September 1992.

•

[Sta!JO) R. M. Slallman. Using and porting the GNU CC. Technical report, Fr<-'C
Software Foundation, Cambridge, Massachusetts, 1990.

[SWG91] J. P. Singh, W-D. Weber, and A. Gupta. SPLASII: Stanrord parallel
applications for shared-memory. Technical Report No. CSL.TR·91.169,
Computer Systems Laboratory, Stanford University, Stanrord, Calirornia,
June 1991.

[WH92) E. Wang and P. N. Hilfinger. Analysis of recursive types in LISP-:ikp.
languages. [n Proeudings of the '92 ACM Conference on LISP and Func·
tional Programming, pages 216-225, June 1992.

[Wol89) M. J. Wolfe. Oplimizing Supereompi/ers for Supcreomputers. Pitman,
London Md MIT Press, Cambridge, Massachusetts, 1989. [n Rcsearch
Monographs in Paral[cl and Distributed Computingj revised version of
the author's Ph.D. dissertation published as Report No. UIUCUCS·R·82
n05, University of Illinois Olt Urbana-Champaign, 1982.

[ZC90) H. Zima and B. Chapman. Supereompi/ers for l'amI/el and Vector Corn·
puters. ACM Press, 1990.

163

•

•

•

Appendix A

Implementation Details

The connection and shape analyses h" hecn implemented on the SIMPLE inter
mediate representation, using the slructurcd analysis framework of the McCAT C
compiler [Sri92, Ema93). We handle C language in its full glory, except for setjump
and longjump, union types, exception handling and type-casting of pointers to inte
gers and vice versa. For union types, presently we assume the existence of ail fields.
However, we also need to take into account that these fields are statically aliased.
This is a minor extension to our implemcntation.

80th connedion and shape analyses are pcrformed after points-to analysis. They
requirc points-to information and also depcnd on the interprocedural analysis framt.~

work built by points-to analysis. Howevcr, conn"clion and shape analyses themsclves
are independent of each other. The user can in\'okc the particular analysis he/she
wants by setting the appropriate optimization fiag Olt compile time.

For cither analysis, a first pass is donc through the program (after points-to analy
sis) to dctermine which pointers can point to heap locations i.e. the abstract location
heap. If a pointer can point to heap at sorne point in the program, a row index is
reserved for it in the appropriate matrix. A separate matrix is constructed for cach
function in the program. The matrix for a given function consists of two parts: the
global part which consists of rGWS allocated for variables global in scope, and (ii) the
local part which consists of rows allocated for \'llriablcs local to the given fundion.
The size of the global part is same for matrices of ail functions, while the size of the
local part varies from fundion to fundion.

\Vhen a pointer is added to a matrix (i.c. a roI\' index is rcservcd for it in the
matrix), the symbolic variables corresponding to it are also simultancously gener
ated and added to the matrix. Recall that symbolic variables nccd to be generated

164

•

•

•

corresponùing to ail hcap.ùircctcd pointl!rs which llrc global in sCOJlC, arc fort\lIllllil'
rameters or represent symbolic variables useel by points·to analysis (sectiolls -1.:1.5
and 5.5).

Thus, the nurnber of rows in the rnatrix of any function, is clJual tu thc nUllll"'r
of pointers in the prograrn that can be heap-directeel at sorne program point and ,lrc
visible in thc function, plus the nurnber of syrnbolic variables corresponding to thesc
pointers. Once the nurnber of rows is known, we irnplernent thc rnatrix by allocnting
a bit vector for each rolV. Each bit vector should have one bit corresponùing to cach
row (i.e. each pointer abstracted) in thc rnatrix. The nurnber of bytes rClJuired for n
bi t vector is cnlculated by dividing the nurnber of rows in the rnatrix by eight, whcre
each byte is assumed to have eight bits, and taking the ceiling in case a fraction is
obtained.

The attribute rnatrix used to store root and shape attributes, is nJlpcndcd ta
direction matrix in the implernentation. It requires three bits for each pointers.
The fir5t bit is used to store the root attribute: if it is zero, root attributc is Truc
(default value), else it is False. The remaining two bits are used to store thc shapc
attribute. Since four shape attributes can be represented using two bits, while we
need to abstract only three, we do not use one cornbination of bits. The choice is
motivated by making the merge operation for attributes and pointer relationships
uniform. So we follow the following convention:

1 Bits i Shape
00 Tree (Default)
01 Dag
10 Not Vsed
11 Cycle

It can be observed that logical OR operation on any two bit sets, gives the bit set
for the appropriate attribute. So the three bits used to store attributes of a pointer
are appended to the bit vector corresponding ta it, in the direction rnatrix. Thus for
bit vectors for direction matrix, we nccd to allocate spacc for thrcc additional bits.

For matrices that abstract symmetric relationships, like connection and i1.:- 'fer·
ence matrices, space is allocated only for the lower half of the rnatrix i.c. for thc bit
vector corresponding to the ith row, spacc is allocatcd to store only i bits. Conse
quently, an access like M[ij) to a symmetric rnatrix M, is converted to an acCC9S to
the element MU,i) if j > i. This scheme results in substantial spacc savings.

165

•

•

•

The maximum of the average number of variables abstracted by a connection
matrix is 89 for the benchmark cllolcsky (Taule 6.1). For this size, if wc implement
the full matrix, each bit vector needs space for storing 89 bits. Thus, 12 bytes need
to be allocated for each bit vector, and total (89 • 12 = 1068) bytes for the entire
matrix. Since wc allocate '1:,ly the lower half of the matrix, the space requïrement
should be (1068/2 = 534) bytes. In practice it turns out to be larger, because the
basic unit of allocation used by our analysis is a word (4 bytes). Thus, even if a
bit vector needs to store only one bit, a word is allocated for it. Taking this factor
into account, the number of bytes allocated for the above matrix can be calculated
as follows: ((32 • 4) + (32 • 8) + (25 • 12)) =684).

Amonll ,~irection matrix benchmarks, the maximum of the average number of
variables abstracted is 83 for sim. Since, direction and interferencc matrix abstrac
tions are computed simultaneously, we take into account the space requirements for
both the matrices. Considering that direction relationships arc not symmetric, while
interference relationships arc, the total space requirement for the two matrices with
83 variables is: ((83 • 12) + (32 • 4) + (32 • 8) + (19 • 12) = 1680 bytes). Note
that (83 + 3 = 86) bits will be used for each direction matrix bit vector from the
total space for 96 bits allocated. Thus, it can be noticed that space requirement for
direction/interference matrix abstractions is much higher than that for connection
matrix abstraction, when the number of variables abstracted is comparable.

For heap analyses, bit vectors form the suitable data structures, as the number of
relationships between heap-directed pointers can be quite large. For example, if the
program uses a single data structure, every pointer will be connected with every other
pointer. Similarly if a data structure is cyc1ic, ail pointers pointing to it would have
paths to each other. Further, bit vectors cnable fast merge operation on matrices,
which is simply a logical OR operation.

Our analysis frarnework uses a global data structure called DATA. It stores the
currently valid matrix, and pointers to other structures used by the analysis, like
break-list, continue-list and return-list (described in chapter 4). The fields
of this data structure get updated as analysis proceeds from statement to statement.
When the analysis visits a statement, it obtains the currently valid matrix (or ma
trices) from DATA, and stores it (them) in the SIMPLE node corresponding to the
statement. If a matrix is already deposiled at the statement node due to a previous
visit, the two matrices arc merged.

Next, the statement is analyzed and the matrix stored in DATA is updated if
rcquired. The updated matrix is then savcd at the next statement visited by the
analysis. Thus, our scheme c1eanly scparatcs the data structures used for calculating
the 'Lbstraction, from the ones used to store it for further use. Further, the matrix

166

•

•

•

deposited at a statement node contains information valid be/ore the execution of the
statement.

The space requirements estimated above for the various matriccs, indicate that
storing them at each statement node can prove tu be expensive. Furthcr, if n stntc
ment sequence involves no pointer updates, the matrices for 11.11 statcments in the
sequence would be identical. Thus, substantial space optimizations are possiblc.

Presently, we employa simple scheme that avoids the duplication of matrices at
th" basic block level. Under this scheme, wc store the matrices at basic SIMPLE
statements which follow a statement that accesses a pointer variable (and hence can
affect pointer relationships). They are also stored at statements falling before and
after a call·site, and at the entry of a function or a control construct. The rest of
the statements simply have a pointer to the matrix stored in the nearest precedillg
statement. The matrices valid at the exit of a function arc stored in the corresponding
function declaration node in the SIMPLE tree. The above scheme reduces storage
requirements, while allowing us to output the analysis results at each statement, for
debugging purposes. More effective space optimization can be achieved by using
advanced intermediate representations Iike ALPHA [HGS92).

Another approach can be to store the matrices only at statements that deref
erence heap-directed pointers, because it is at these statements where the analysis
information really gets used. Further, at these statements we need to store only the
information for the pointers being dereferenced, instead of the entire matrix (matri
ces). If the information about the dereferenced pointers turns out to be sparse, it can
be stored as a Iinked Iist instead of as a bit vcctor. This approach can be quite easily
implemented in our analysis framework. Wc do not use it in our present implemen
tation, as we need the analysis information at each statement in order to study the
factors that influence various heap analyses.

Besides the data structure DATA, another important data structure used by the
heap analyses is the invocation graph. Each path in the invocation graph represents a
cali-chain, while each node represents a cali in the given cali-chain. Each node stores
the pair of input/output matrices last seen (to enable memoization), and a pointer
ta the map information data structure. Map information is stored as a dynamically
allocated array of integers called map_ido, where map_info [i] gives the index of
the variable in calice to which the variable with index i in caller is mapped. If a
variable in caller, say with index j, is not mapped ta any variable in the callee, we
set map-info [j] as -1.

Finally, we need to optimize our analysis in a number of other ways: mORt im
portantly by minimizing the calls to the memory routines malloe and free. With

167

•

•

•

our currcllt implcmentation, connection analysis takes less than 15 seconds for the
benchmarks given in Table 6.1, while shape analysis can take ul'to 354 seconds for
heap-intensive benchmarks like pug. Wc will make more detailed timing data available
once we fine-tune our implemcntation.

168

