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Abstract

Accurate alias analysis is critical for optimizing/parallelizing compilers that support
languages with pointers. Efficient techniques have been developed to calculate aliases
introduced by pointers to named memory locations (typically on the stack). How-
ever, practical and effective techniques for detection of aliases induced by heap-based
dynamic data structures, have yet to be developed. Existing approaches are either
cfficient but overly conservative, or sophisticated but expensive.

In this thesis, we present a new and practical approach for analyzing the alias
properties of heap data structures. The important features of our approach include:
(i) we analyze heap-directed pointers after resolving the points-to relationships of
stack-directed pointers, (ii) we use a storeless model and estimate the heap structure
by abstracting the relationships between heap-directed pointers, and not by explicitly
abstracting the heap as a graph, and (ii) we employ a hierarchical approach and
design different abstractions to solve the problem at different levels of complexity.

We present a hierarchy of three practical abstractions for analyzing heap data
structures, namely connection, direction and interference matrix abstractions. These
abstractions respectively capture the following boolean relationships between any two
given heap-directed pointers: (i) if they can point to the same heap data structure,
(i1) if an access path exists between the heap objects they point to, and (iii) if they can
access a common heap object. Connection matrix information helps detect pointer-
accesses to completely disjoint data structures. The other two abstractions work
together to identify if the given program builds tree-like or dag-like structures.

We have implemented context-sensitive interprccedural analyses for these abstrac-
tions in the framework of the McCAT C compiler. For each abstraction, we first
present basic analysis rules applicable to any language that supports pointers. We
then describe C specific features of the analyses. We demonstrate the effectiveness of
the analyses by providing examples as well as empirical results for real C programs.
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Résumé

L’analyse précise d’alias est critique pour les compilateurs optimisateurs/ parallelisa-
teurs, supportant des langages qui utilisent des pointeurs. Des techniques eflicaces ont
été développées pour calculer les alias introduits par des pointeurs qui pointent sur
des locations mémoires nommées (typiquement sur la pile). Pourtant des techniques
efficaces et pratiques pour détecter les alias introduits par les structures de données
dynamiques basées sur le heap, sont encore a étre développées. Les approches qui
existent maintenant sont: ou efficaces mais trés conservatives, ou compliquées mais
chéres.

Dans cette these, nous présentons une nouvelle méthode qui est pratique pour
analyser les propriétés des structures de données de type 'heap’. Les principales
caractéristiques de notre méthode sont: (i) nous analysons les pointecurs pointant
sur le heap aprés avoir résolu les relations 'pointe-sur’ des pointcurs pointant sur la
pile, (ii) nous utilisons un modele qui ne requiert aucune mémoire et nous estimons
les structures du heap en faisant abstraction des relations entre les pointeurs qui
pointent sur le heap, et non pas en faisant abstraction du heap comme un graphe, et
(iii) nous employons une approche de type hierarchique et nous avons congu différentes
abstraztions pour résoudre le probleme a plusieurs niveaux de complexité.

Nous présentons une hiérarchie de trois abstractions pratiques pour analyser les
structures de données de heap: abstractions de matrices de connection, de direction,
et d’interférence. Chacune de ces abstractions reconnait une relation booléenne entre
deux pointeurs qui pointent sur un heap. Respectivement: (i) si ces pointeurs peuvent
pointer sur la méme structure de donnée du heap, (ii) s’il existe un chemin d’acces
entre les objets du heap qu'ils pointent, et (iii) s’ils peuvent accéder & un objet
commun du heap. La matrice de connection aide & détecter ’accés des pointeurs
a des structures de données completement disjointes. Les deux autres abstractions

-y
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identifient ensemble si le programme considéré construit des structures de données de
type arbre ou 'dag’ (graphe dirigé sans cycle).

Nous avons implémenté des analyses inter-procedurales qui tiennent compte du
contexte pour ces abstractions dans ’environnement du compilateur C McCAT. Pour
chacune de ces abstractions, nous présentons d’abord les régles d’analyse de base
appplicable a n’importe quel langage supportant des pointeurs, Puis, nous décrivons
les caractéristiques qui sont spécifiques pour C. Nous démontrons aussi 'efficacité de
ces analyses en présentant des exemples ainsi que le résultat d’éxperiences réalisées
avec de véritables programmes écrits en C.
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Chapter 1

Introduction and Related Work

Optimizing and parallelizing compilers rely upon accurate static disambiguation of
mcmory references i.e. determining at compile-time, if two given memory references
would always access disjoint memory locations. Unfortunately the presence of aliases
in programs makes memory disambiguation a non-trivial issue. An alias arises in
a programn when there are two or more distinct ways to refer to the same memory
location. In the presence of aliasing, two seemingly dissimilar references can access
the same memory location. Program constructs that introduce aliases are arrays,
pointers ! and pointer-based dynamic data structures. For example, the array refer-
ences a[i+2*j] and a[j+2#*i], the pointer dereferences *q and *p, and the structure
accesses p->item and q->next->item, can lead to the same memory location.

Over the past twenty years, powerful data dependence analyses have been de-
veloped to resolve the problem of array aliases [Ban88, Wol89, ZC90]. These anal-
yses use integer programming techniques to determine if two array subscript ex-
pressions can evaluate to the same value. They form the core of present day opti-
mizing/parallelizing compilers. The problem of calculating pointer-induced aliases,
termed pointer analysis, has so far remained a topic of mostly academic interest. It
has not progressed beyond prototype implementations, as it is a much harder problem
shown to be undecidable in its generality [Lan92]. However, as languages supporting
pointers such as C, C++4 and Fortran90 continue to gain popularity, an increasing
need is being felt to develop approximate but effective pointer analysis techniques.
Further emphasis on this problem comes from application areas which primarily use

1Call-by-reference parameters can be considered as a restricted case of pointer usage,
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pointer-based dynamic data structures. Important examples include: computational
fluid dynamics, computational geometry, computational biology, computer graphics,
N-body and circuit simulations.

1.1 Pointer Analysis

To properly understand the pointer analysis problem, we first divide it into two
distinct subproblems. The first subproblem focuses on pointers pointing to statically
allocated memory objects (typically on the stack). We call them stack-directed point-
ers. The second subproblem deals with heap-directed pointers, which point to objects
dynamically allocated in the heap. A pointer pointing to an object, implies that it
contains the memory address of the given object. For example in Figure 1.1, pointer
p points to the object x. Further, pointer variables p and q are stack-directed, while
r and s are heap-directed. Note that the pointer variables themselves are resident
on the stack. Also, a pointer can fall into both categories, if it can possibly point to
locations on the stack as well as in the heap.

: ~ {p=8x
X . q= &y,
p -7 r = malloc();
r r s = malloc();

b Points-to P.x) @y

info = |(r, heap) (s, heap)

Figure 1.1: The Pointer Classification

Stack-directed pointers exhibit the important property that their targets always
possess a name. This is because all data objects allocated on the stack, have compile-
time names. Using this property, alias information for such pointers can be conve-
niently captured in the form of points-to pairs. For example in Figure 1.1, we have

2



points-to pairs (p, x) and (q, y)} denoting that pointer variable p points to the
data object x and pointer variable q points to the data object y. An alias anal-
ysis algorithm for stack-allocated data objects, based on the points-to abstraction,
has been implemented in the framewerk of our McCAT (McGill Compiler Architec-
ture Testbed) C compiler [HDE*93, Ema93, EGH94]. The empirical results reported
in [Ema93, EGH94) indicate that the points-to information collected is highly precise.

Unfortunately this nice property does not hold for heap-allocated data items. In
fact all the objects in the heap are anonymous. They can be accessed only through
pointer dereferences like *r or r=>item or ali], where a is a heap-directed pointer.
One cannot also use a simple naming scheme to name heap objects, as a potentially
infinite number of them can be created. Further, objects in the heap are dynamically
linked, and more importantly delinked. Hence, there is no natural way of naming
even collections of objects (e.g. linked structures). Unlike arrays, both the number of
linked structures and the number of objects belonging to a given linked structure, vary
dynamically. Thus for a heap-directed pointer, the points-to abstraction only captures
the very coarse information that it points to the heap. The points-to pairs (r, heap)
and (s, heap) in Figure 1.1 demonstrate this point. Thus in order to estimate more
accurate information about heap-directed pointers, a different approach is required.

This thesis focuses on developing some practical techniques for heap analysis.
In the following sections we first give an overview of the problem, discuss existing
methods and approaches, and then briefly describe our approach.

1.2 Heap Analysis

The problem of heap analysis has the following two components:

¢ Data Structure Analysis.

¢ Interference Analysis.

The goal of data structure analysis is to statically estimate the structure of the
heap at each program point. A typical data structure analysis should be able to

answer the question: “can two heap references at a given program point, lead to the
same heap location?” This question can also be rephrased as: “are the two references

3



aliased at the given program point?” For example in Figure 1.2(a), at program point
S, the heap references p->item and q->item would access the same heap location,
while the references p->item and r->item would not. Note that in the light of
theoretical results [Lan92], the analysis is not expected to give precise information,
It is allowed to err conservatively i.e. two heap references may be reported to access
the same location, even when they would not, in any execution of the program.

build_1list();
build_list();
pi
S: p->item = g->item + r->item;
P = p->next;
r = r=>next;
T: p->item = gq->item + r->item;

£ N g

(2) Program

q ~_"

(b) Heap Structure

Figure 1.2: Example Program for Heap Analysis

Interference analysis attempts to answer the same question, albeit in a different
context. Here the heap references of concern are typically at two different program
points. Two statements interfere, if both statements access a common memory loca-
tion, and one of them writes to it. Interference analysis for heaps needs to establish
a connection between the heap locations accessed at different statements in the pro-
gram. This is a difficult problem, because seemingly similar references can access
different locations. For example, the heap reference p->item in Figure 1.2(a), ac-
cesses different locations at statements S and T. It should be noted that the term



interference analysis is analogous to other terms used in the literature: conflict anal-
ysis and data dependence analysis.

Any sort of interference analysis for heaps, depends on a precise data structure
analysis. Alternatively, the information collected by data structure analysis, may be
directly supplied by the user, using programmer annotations. Over the last fifteen
years, a good deal of work has been done on the different problems of heap analysis.
We give an overview in the next section.

1.3 Related Work

Jones and Muchnick {JM81] proposed one of the first approaches to the data structure
analysis problem. They analyze LISP-like structures for a simple language without
procedures. They abstract the structure of the heap at each program-point, in the
form of a set of graphs. Nodes in the graph represent objects in the heap, while edges
represent the links between these objects. Nodes bound to variables are labeled by
variable names. Nodes which can possibly be shared (have more than one parent) or
become part of a cycle, are respectively labeled as shared and cyclic. They use set
union as data flow merge operator at join points, which results in a set of graphs at
each program point. Since the graphs abstract recursive structures, they can have
unbounded number of nodes. To avoid building infinite graphs they use the notion of
k-limiting, whereby all the nodes in a graph accessible from a variable after traversing
k or more links, are coalesced into one summary node. For example, a 2-limited linked
list is shown in Figure 1.3.

The goal of their analysis is to optimize storage allocation. The k-limited graphs
at all program points are analyzed to classify variables into three categories: (i)
variables which cannot access any shared or cyclic nodes at any program point, (ii)
variables which can access shared nodes but no cyclic nodes, and (iii) variables which
can access cyclic nodes. The heap cells accessible from the first variety of variables
can be deallocated as soon as pointers to them are destroyed, as their reference count
never exceeds one. Those accessible from the second variety can be reference-counted
while the rest need to be garbage-collected.

Although an interesting analysis for improving storage allocation, it does not pro-
vide precise enough estimation of the heap structure for program optimization. Due

5



to k-limiting all the information about nodes beyond depth k is lost. The introduc-
tion of summary nodes can gencrate spurious cycles in otherwise acyclic structures.

Finally, maintaining a set of graphs at every program point, can prove to be quite
expensive.

!

Figure 1.3: An Example of 2-limiting

Jones and Muchnick [JM82] also proposed a flexible framework for analysis of pro-
grams with recursive data structures. They designate program points which create
or modify recursive structures with tokens. The tokens can be considered as local
representations of the data structures at the given program points. They then define
a retrieval function to finitely represent the relationships between tokens and data
values. The definition of the retrieval function is based on the simulation of program
statements, using abstract interpretation [CC77). The analysis framework is param-
eterized by the choice of token sets. Thus a wide range of analyses can be expressed
in this framework. However, this method has remained mostly of theoretical interest,
being expensive in both space and time.

Larus and Hilfinger [LH88] use a variation of k-limited graphs called alias graphs
for analyzing Lisp programs. Their goal is to detect potential conflicts between heap
accesses at different program statements. They label edges in the alias graph by names
of corresponding accessors (poiater fields). In addition, they label nodes either by



a variable name or by a path expression. Path expressions are regular expressions
summarizing possible access paths from a variable to the node being labeled. A
newly allocated node is labeled by an aggregate of the labels of the arguments to the
allocation function(cons). This proves to be more precise than labeling the node by
the program point where it is allocated. Unlike {JM81], they maintain only one alias
graph per program point instead of a set of graphs. They define a meet operator that
combines two alias graphs into a new alias graph that contains all aliases in either
graph. To keep the size of the resulting graph finite, they introduce summary nodes
using s-{ limiting. In an s-/limited alias graph, no node has more than s outgoing arcs
(except the node representing the bottom clement), and no node has a label longer
than [

Once an alias graph is computed for each program point, conflict detection is
done. A potential conflict exists if access paths at the given statements can lead to
a node with the same label in their respective alias graphs. This method works well
only for simple data structures like trees and lists. It is rendered expensive by its
complex meet, node summary and node labeling operations.

Horwitz, Pfeiffer and Reps [HPR89] presented another variation on k-limited
graphs, called storage graphs which abstract the dynamic store. They present a
variety of ways to k-limit the storage graphs. The goal of their analysis is detection
of dependences between program statements. To this end, they label each node in
the storage graph with the program point that last set its contents (unlike Larus and
Hilfinger, who use path expressions for labeling nodes). A statement S is (flow) de-
pendent on statement T, if S reads a location whose abstraction in the storage graph
is labeled with statement T.

Their notion of dependence analysis is more precise than conflict analysis of Larus
and Hilfinger, as the latter do not take into account the intervening writes between
the statements under consideration. Further, they maintain a set of storage graphs at
each program point, unlike a single alias graph [LH88]. This makes their analysis more
precise, but also more expensive. They use abstract interpretation [CC77] augmented
with a fourth semantics called instrumented semantics, to prove the correctness of
their technique. However, it is unclear how effective it would prove to be in practice.

Another approach to abstracting the heap structure in the form of a bounded
graph was given by Chase, Wegman and Zadeck [CWZ90]. Their abstraction, called
storage shape graph (SSG), contains one node for each variable and one for each



allocation site in the program. It is based on the premise that nodes allocated at
different places tend to be treated differently, while the ones allocated at a given
site would be updated similarly. This abstraction can introduce cycles in otherwise
unaliased structures like lists and trees. For example, if all nodes of a list are allocated

at the same site, they would be represented by a single summary SSG node with a
self-cycle.

To avoid this possibility, they augment their abstraction with reference counts for
each node, where nodes with reference counts less than two, would represent trees
and lists. Further refinements to the model include: keeping multiple interesting
instances of an allocation site (i.e. SSG node), enabling strong updates, and defining
a precise meet operator for join points. An SSG node is considered interesting if it
is pointed to by a deterministic variable i.c. a variable which does not point to any
other node except possibly to nil node. A strong update involves replacing edges
leaving a node with a new set of edges, giving more precise information. It can only
be performed for nodes representing a single heap location. Finally, the meet operator
tries to minimize the creation of summary nodes, and only merges nodes representing
the same allocation site.

This method would give precise results in some special cases. In general, it can be
overly conservative because of one SSG node abstracting several run-time locations.
For example, it would give highly imprecise results, if the program uses a single
routine for allocating nodes (authors suggest the use of function inlining to overcome
this.). Further, the meet operation is fairly complex.

Plevyak, Chien and Karamcheti [PCK94) have extended the model of Chase et al.
[CWZ90] to handle regular cyclic structures like doubly linked lists and trees with
parent pointers, more precisely. They introduce additional nodes called choice nodes,
to represent that two given links coming into a summary node would not exist at
the same time. They also annotate summary nodes with identity paths, to indicate
which combinations of link fields can create cycles. Presently they do not handle
procedure calls. Further, their analysis needs empirical verification, though they give
some examples in the paper. The effectiveness of their analysis would become clearer,
once they implement it in their Concert compiler.

The approaches described so far are termed as store-based techniques [Deu92], as

they attempt to explicitly abstract the dynamic store in the form of a bounded graph.
They basically differ from each other in the way they choose to bound the graph.



Further, nodes in the graph are sometimes labeled to facilitate conflict detection
between statements [LH88, HPR89). Procedure calls are cither not handled [JM8I1,
HPR89, PCK94] or are analyzed with diffcrent degrees of precision [JM82, LHS8S,
CWZ90]. The restriction of representing several heap locations with one abstract
location, forms the main source of imprecision for the store-based techniques,

To avoid this trap, Hendren and Nicolau [HN90] took a different approach. They
focus on abstracting the properties of data structures being built and manipulated,
instead of abstracting cach cell in the heap. Their main focus is on identifying data
structures with regular properties like trees and dags. The knowledge about the un-
derlying data structures is then used for interference analysis and parallelization. For
example, computations on left and right subpieces of a binary tree can be scheduled
in parallel.

To collect such information, they perform path matriz analysis. A path matrix
P, is a matrix of stack-resident heap-directed pointers, called handles. An entry
P[r,s] in the matrix contains the summary of possible access paths from pointer r
to pointer s in the heap, at the given program point. Access paths consist of link
fields, and are represented as restricted regular expressions called path ezpressions.
Path relationships between pointers are used to determine when a tree temporarily
becomes a dag. Dag nodes are reference-counted to detect when they again become
tree-like (i.e. when the reference count becomes less than two). They perform context-
sensitive interprocedural analysis and handle recursion precisely, which is important,
as recursion is the main tool to build and use recursive data structures. Once the path
matrix analysis determines the underlying data structure to be a tree, they perform
interference analysis based on this information. This exposes the divide and conquer
type of parallelism, induced by recursive traversal of tree-like structures.

Their method is precise and effective for trees and to some extent for dags. How-
ever, it cannot handle cyclic structures, which are commonly used in programs, like
doubly-linked lists and trees with parent pointers.

All the techniques discussed above, consider the heap analysis problem in isolation
from stack analysis. They assume that pointers only point to heap objects, and
cannot point to objects on the stack. This assumption is valid for languages like Lisp
and Pascal. However, it is not valid for languages like C, which have the address-
of (i.e &a) operator. Here, one has to provide solutions to both the problems. As
discussed above, it is desirable to have separate abstractions for performing stack and



heap analyses. However, several schemes have been proposed, which use a unified
framework for both the analyscs. Each of them depend upon, and propose, a differcnt
strategy for naming anonymous heap objects. We discuss them below,

Guarna [Gua88] proposed one of the first approaches to analyze C pointers for
dependence detection. He constructs syntax trees to name heap objects, and intersects
them to detect dependences. His analysis assumes the underlying data structure to
be a tree, and is not safe otherwise. Further, it does not handle procedure calls.

Landi and Ryder [LR92] collect alias information in the form of pairs of ebject
names. An object name consists of a variable and a (possibly empty) sequence of
dereferences and field accesses. Typical alias pairs are: (#**a, *b), ( *(a->next),
*(b->next) ). In the presence of recursive data structures, the number of object
names is infinite. To avoid this, they k-limit object names (as opposed to k-limiting
data structures [JM81]}, where no object name can have more than k dereferences.
For example, for k = 1, p=>1->r would be represented by p->1. They also name
heap objects according to the malloc site that allocates them.

Their method effectively resolves stack-based aliases. It is not designed to ac-
curately handle heap-allocated recursive data structures. In some special cases it
can help detect completely unaliased data structures (lists and trees) built by a pro-

gram, but neither empirical nor theoretical evidence is available to draw any general
conclusions.

Choi, Burke and Carini [CBC93] also compute aliases of pairs of access paths.
Their access paths are similar to object names [LR92]. However, they do not use
access paths to name heap objects. They use the place (statement) in the program,
where an anonymous heap object is created, to name it, as in [CWZ90]. To avoid
giving the same name to heap objects created at the same statement, but along
different call-chains, they qualify the names with procedure strings. In the presence
of recursion, this qualification proves to be of limited use. They mention that they
combine this naming scheme with k-limiting to analyze recursive structures. It is not
clear from their paper, what type of k-limiting they perform [MLR*93].

Harrison and Ammarguellat {HA93] present a unified framework for parallelizing
C, Lisp and Fortran programs, in their Miprac compiler. It uses a very low-level inter-
mediate representation called MIL, which can be considered as a machine-independent
assembly language. In MIL, all memory references are made explicit and all loops
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are converted into tail-recursion. They perform whole program abstract interpreta-
tion [CC77] on MIL, and use procedure strings [Har89) to perform interprocedural
analysis. Program analysis performed at such a low level becomes less sensitive to pro-
gram syntax, but also fails to take hints from the program structure. The viability of
this approach is hard to determine, until empirical results from their implementation
become available.

Deutsch [Deu92, Deu9d) calculates aliases in the form of pairs of symbolic access
paths. This abstraction is particularly suited to recursive data structure analysis. A
symbolic access path (SAP) is an access path possibly containing symbolic expressions
of the form B*, where B is a set of access paths called a basis and k is a variable. For
example, the SAP X->(t{)->hd, has its dasis as t[. This SAP, when parameterized
on f, finitely represents an infinite number of access paths from the head of a list to
the hd fields of its nodes. No imprecision is incurred, as happens with the k-limiting
of object names [LR92).

An alias pair in this framework consists of a pair of symbolic access paths qualified
by an equation. Thus a position dependent alias relationship of the form: “the ith
element of list X is aliased to the 2i + Ith element of list Y”, would be precisely
expressed as (< X->(#), Y=>(¢) >, j=2i+1). Although a more powerful and ex-
pressive framework, it is not clear if it is practical enough to be implemented in a real
compiler.

Emami, Ghiya and Hendren [EGH94] proposed the approach of decoupling stack
and heap analyses. They focus on analysis of stack-directed pointers, and collect alias
information in the form of points-to relationships. A points-to relationship is denoted
by a triple (p, x, d), which indicates that pointer p definitely (d = D) or possibly
(¢ = P) points-to the location named x. As locations in the heap are anonymous,
they are represented by one abstract location called heap. All heap-directed pointers
are reported to be pointing to this location.

The points-to abstraction provides a more compact representation for calculating
aliases than exhaustive alias pairs based on access paths. It also enables simultaneous
calculation of both possible and definite relationships. Empirical results reported
indicate that this method collects highly precise information for stack-based aliases.
At the same time, it builds a framework for conducting a variety of heap analyses
such as those presented in this thesis. This approach of decoupling the stack and
heap analyses might incur some imprecision, when pointer fields in heap cells point
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to locations on the stack. However, the authors provide empirical evidence that it
does not commonly happen in real programs.

The techniques proposed by {LR92, CBC93, EGH94] handle procedure calls in a
context-sensitive manner i.e. the effect of a procedure call is estimated specific to
a calling context, and not just summarized for all possible calling contexts. They
use different strategies to abstract calling contexts: assumed alias sets [LR92], last
call site and source alias sets [CBC93], and invocation graphs [EGH94]. In addition,
Emami et al. [EGH94] precisely handle indirect calls through function pointers in C.
Deutsch [Deu94] describes how to handle procedure calls in general, and does not
propose any particular strategy for interprocedural analysis.

Besides the automatic analysis techniques discussed above, certain language-based

approaches have been proposed to get the information from the programmer. A brief
discussion follows.

Lucassen and Gifford [LG88] defined a language (FX-87), which incorporates both
an effect and a type system. The effect of a computation must be explicitly associ-
ated with a region of memory. The effect system differentiates between totally disjoint
linked structures, but fails to distinguish between disjoint subpieces of a data struc-
ture.

Klappholz et al. [KKK90] proposed Refined C, which extends C with special par-
titioning constructs. Run time code is associated with these constructs to check if
any interference occurs, which can result in substantial overhead.

Hendren, Hummel and Nicolau [HHN92a, HHN92b] presented a mechanism called
ADDS (Abstract Description of Data Structures), to explicitly convey the dimension
and direction properties of a data structure, to the compiler. This involves enriching
the type definitions of data structures with some semantic information. For example,
consider an ADDS type definition of a doubly linked list:

type TwoWayLL [X]
{ int data;
TwoWayLL *next is uniquely forward aleng X;
TwoWayLL *prev is uniquely backward along X;

Y

This description tells the compiler that if the list is traversed using only next
links, then all the nodes visited are unaliased. They demonstrate that using such
information, the compiler can perform useful transformations like software pipelining.
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Hummel, Hendren and Nicolau {HHN94] presented a more formal approach, to
convey the alias properties of data structures. They propose a language based on
regular expressions, which captures alias properties in terms of axioms applicable to
the type definition of a data structure. For example, the alias properties of a doubly
linked list can be easily expressed as:

Y p, p.next <> p.¢
VY p, p.prev <> p.c¢
VY p, p.-next.prev = p.c

Using these aliasing axioms, fairly complicated data structures like sparse matrices
and two-dimensional range trees, can be precisely described, The ADDS descriptions
can also be translated to aliasing axioms.

They also present a general purpose dependence test for dynamic data structures.
To detect dependence between two program statements, they first traverse the pro-
gram segment to find the relative position of the heap locations accessed by them.
This is achieved by determining the possible access paths to these heap locations,
with reference to a pointer pointing to a fixed heap location. A theorem prover is
then used to determine if the given access paths can lead to a common heap location,
on the basis of the aliasing axioms provided for the data structure being traversed,

This technique is general purpose (i.e. is not restricted to data structures of certain
types like lists and trees). The initial results provided in the paper are encouraging.
It would be interesting to see more detailed experimental results.

Klarlund and Schwartzbach [KS93] also proposed a similar approach called Graph
Types to describe data structures using regular-like expressions. With graph types,
pointer fields are separated into two types, tree and routing fields. The tree fields
must create a spanning tree for the data structure, and the routing fields are defined
in terms of the tree fields and the underlying spanning tree. Thus, graph types can
only describe data structures with a spanning tree backbone,

A large body of work on analysis of heap-allocated objects, has focused on other
problems like reference counting and memory lifetimes [Hud86, ISY88, RM88, 7,
Deu90, WH92].

1.4 Owur Approach

Our overall goal was to design and implement a sophisticated pointer analysis frame-
work for the McCAT C compiler. We followed the approach of decoupling stack and
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heap analyses, instead of solving the two problems using the same abstraction. As al-
ready mentioned in section 1.1, an interprocedural points-to analysis, which calculates
the points-to relationships of variables on the stack, has already been implemented
in the framework of the McCAT compiler [Ema93, EGH94]. The points-to analysis
uses one abstract location called heap for all heap locations. Any pointer pointing to

a heap location is reported to be pointing to heap. Thus all heap-directed pointers
appear to be aliased after points-to analysis.

Our specific goal was to complement the points-to analysis, by further refining
the alias relationships of the heap-directed pointers. We found the heap analysis
techniques described in the literature (which we have discussed above), to be quite
complex and expensive to be implemented in a real C compiler. We realized that any
analysis framework aimed to solve the problem in its generality, would tend to become
complex. So, we focused our attention on identifying interesting sub-domains of the
problem, for which simple and efficient analyses could be developed. Further, we
decided to follow the storeless analysis approach [Deu92]. Accordingly, we estimate
the structure of the heap, by capturing the relationships between stack-resident heap-
directed pointers, as opposed to explicitly abstracting each cell in the dynamic store.

1.5 Thesis Contributions

With the strategy adopted in the previous section, we developed two practical heap
data structure analyses. These analyses use simple storeless abstractions that capture
boolean relationships between stack-resident heap-directed pointers in the program,

computed at each program point. Below, we briefly describe the two analyses and
identify their specific application domains:

e Connection Analysis: This analysis determines if two heap-directed point-
ers point to the same linked structure (i.e. they are connected) or to disjoint
regions in the heap (i.e. they are not connected). It uses a connection ma-
triz abstraction, which is a boolean matrix of heap-directed pointers, to collect
connection information. This information is useful in disambiguating heap ac-
cesses to completely disjoint data structures like dynamically allocated arrays
and other non-recursively defined structures. Scientific applications written in
C typically use these constructs.

¢ Shape Analysis: This analysis focuses on estimating the shape of the struc-
ture accesstble from a given pointer: is it tree-like, dag-like or a general graph
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containing cycles. It uses four simple abstractions to achieve this goal, which
include:

1. Direction Matriz: This abstraction approximates the path ezistence rela-
tionship between heap-directed pointers, i.e. if there exists an access path
in the heap from one pointer to another pointer.

2. Interference Malriz: This matrix computes, if a common heap location can
be accessed, starting from two given heap-directed pointers, It is computed
in conjunction with the direction matrix, and is designed to handle dag-
like structures, where two pointers may not have a path to each other, but
can still interfere i.e. access a common heap location. It forms a superset
of the direction matrix.

3. Shape Attribute: This attribute is associated with each heap-directed pointer
to store the shape of the data structure accessible from the given pointer.

4. Root Attribute: It abstracts the [ollowing property: if the object pointed
to by a given heap-directed pointer forms the root of the data structure
(i.e. has no incoming links) or an intermediate node.

The motivation behind shape analysis is to identify tree and list-like structures
in programs in a simple and efficient way. This knowledge can then be gainfully
exploited for parallelizing programs [Lar89, Hen90], and performing optimizing
transformations like loop unrolling [HG92] and software pipelining [HHN92a].
There is a large body of applications which use trees and lists as principal data
structures.

It should be noted that these abstractions are practical variations on the path
matrix model of Hendren and Nicolau [HN90]. The differences lie in collecting coarser
path information for efficiency reasons, and associating additional attributes with each
pointer (e.g. shape attribute). Our strategy is to run these analyses in a hierarchical
fashion. If the points-to analysis reports no heap-directed pointers, no heap analysis
needs to be performed. Otherwise, we first run a simple and cheap analysis like
connection analysis. If it provides overly conservative results, we proceed to shape
analysis. Next, more complex analyses like that of Deutsch [Deu94], or programmer
supplied information [HHN92a, HHN94], can be used. Thus, the cost of an expensive
analysis is incurred only if the input program requires so.

We have implemented context-sensitive interprocedural analyses for these abstrac-
tions in the McCAT C compiler. We have augmented the interprocedural analysis
framework used for points-to analysis [EGH94]. Our method precisely handles re-
cursion, indirect calls through function pointers, and variables indirectly accessible
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through pointers (invisible variables). We have performed experiments on a set of
heap-intensive C benchmark programs of medium size, The empirical results indicate
that each analysis provides reasonably precise information for its target application
domain, and safe conservative approximations otherwise, as expected. The analyses
run efficiently, as boolean matrices enable fast update and merge operations.

In brief, the main contributions of this thesis include:

e Design of two practical heap data structure analyses, conncction analysis and
shape analysis, which use simple and efficient storeless abstractions, and form
part of a hierarchy of pointer analyses.

¢ A context-sensitive interprocedural implementation of these analyses in a real
C compiler, handling almost all the complexities of the C language.

¢ Verification of the effectiveness of these analyses by an empirical study of a set
of heap-intensive C benchmark programs of medium size (of upto 5,000 lincs).

1.6 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2 we describe the over-
all setting for the implementation of heap analyses in the McCAT C compiler. In
chapters 3 and 4, we provide the analysis rules for connection analysis. The rules
for estimating shape information are given in chapter 5. In chapter 6, empirical data
is presented to demonstrate the effectiveness of these analyses on real C programs.
Finally in chapter 7, we draw conclusions and discuss the scope for future work.
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Chapter 2

Setting

In this chapter, we outline the setting in which our analyses have been designed and
implemented. We chose C as the language under analysis, as it supports all the inter-
esting and challenging pointer features, and is widely used. We modeled our analyses
as practical variations on the path matrix abstraction of Hendren and Nicolau [HN90].
The McCAT C compiler formed the ideal platform for implementing our analyses. The
main reasons for this choice were: (1) it provides a simple and structured intermedi-
ate representation called SIMPLE, specially designed for efficient pointer analysis,
(2) it already has an implementation of the points-to analysis [Ema93], that calcu-
lates the points-to relationships of variables on stack, enabling us to focus solely on
the analysis of heap-directed pointers, and (3) it provides a framework for general
purpose context-sensitive interprocedural analysis, that accurately handles recursion
and function pointers [HEGV93, EGH%4].

We give a brief overview of the McCAT compiler in the first section. The next
section focuses on the SIMPLE intermediate representation. In section 2.3, we briefly
discuss the interaction of points-to and heap analyses. The interprocedural analysis
framework is described in section 2.4. In the last section we review the path matrix
analysis, to put our analysis techniques in proper perspective. '

2.1 The McCAT C Compiler

The McCAT C compiler is part of the McGill Compiler Architecture Testbed, be-
ing developed to study the interaction between smart compilation techniques and
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advanced architectural features [HDE*+93]. The compiler is built on top of the front-
end of the GNU C compiler (version 1.37.1) [Sta90]. The most important goal in
its design was to develop appropriate intermediate representations to facilitate im-
plementation of various high-level and low-level analyses and transformations in a
simple and straightforward manner. Thus it supports a family of tree-based interme-
diate representations (IR’s), namely FIRST, SIMPLE and LAST.

FIRST is a high-level Abstract Syntax Tree (AST) representation of the entire
source program. It is built to separate the front-end processing (e.g. scanning, pars-
ing, and type-checking) from the analysis, optimization and code-generation phases
of the compiler. It retains the original format of the source program and its data
structures. Analysis at this level can become cumbersome, specially if the program
uses complex constructs and the programmer has resorted to various tricks allowed
by high-level languages (specially C!).

In order to make the implementation of analyses simple and straightforward,
FIRST is transformed to another AST intermediate representation called SIMPLE.
As the name implies, SIMPLE breaks down all complex program constructs into a
series of simple and regular constructs. It also makes control flow structured and ex-
plicit. SIMPLE forms the appropriate program representation for high-level analyses
like alias and dependence analysis, and for high-level loop and parallelization trans-
formations. We discuss it in more detail in the next section. A complete description
is given in [Sri92).

SIMPLE is further transformed to a lower-level representation called LAsT(Lower-
level Abstract Syntax Tree). It exposes the memory hierarchy, address calculations,
and architectural features like delay slots. This IR is designed for low-level opti-
mizations like register allocation and instruction scheduling, and for code generation.
More details on LAST can be found in [Don94].

The overall design of the McCAT compiler is shown in Figure 2.1. Note that the
compiler takes as input a set of C files, which are linked by a source level linker. This
is necessary in order to have the whole source program available for interprocedural
analysis.

2.2 SIMPLE Intermediate Representation

The SIMPLE intermediate representation has been specially designed to facilitate
accurate pointer analysis for C programs. Its major advantage lies in being simple
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Figure 2.1: The McCAT Compiler
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to analyze. This is achieved by performing a number of simplifying transforma-
tions. Typical examples include: compiling complex statements into a series of basic
statements, breaking down complex variable references into a series of simpler ones,
simplifying procedure arguments to either constants or variable names, and moving
variable initializations from declarations to statements in the body of the appropriate
procedure. We illustrate some simplifying transformations in Figures 2.2 and 2.3.
SIMPLE however retains the identity of high-level variable references like array and
structure references, and complete type and type-casting information. Most high-
level analyses can derive useful hints from this information. For example, array
dependence can make use of information like array dimension and array size, while
pointer analyses can benefit from type information.

templ = &a.b;
temp2 = &tempi[3];

f = a.b[3].c.d[2][8]l.e = tomp3 = &(*tamp2).c.d
tempd = &temp3[2] [6);

f = (stempd).e;

Figure 2.2: Variable Transformation

templ = b * c;

tamp2 = *d;
a=b=#c+ (*d) / e; = temp3 = temp2 / e;

a = templ + temp3;

Figure 2.3: Basic Statements Transformation

SIMPLE restricts the number of basic statements in a program to fifteen. Dif-
ferent types of basic statements in a C program are broken down into one or more of
these fifteen statements. In Figure 2.4 we list this set of basic statments. Note that
variables ‘x’ and ‘y’ denote varnames, whereas the variables ‘a’, ‘b’, and ‘c’ denote.
vals. The SIMPLE grammar for a varname is shown in Figure 2.5.

Development of any new analysis is greatly simplified, as basic analysis rules need
to be specified for only fifteen simple statements. Pointer analysis is further facili-
tated by the fact that only one level of indirection is allowed in any indirect variable
reference. Indirect references of multiple level are broken down to adhere to this
format, during simplification. Figure 2.6 shows an example of simplifying indirect
references. Indirect references augmented with field accesses (i.e. component refer-
ences) like (*a) .next and (»a).next.item, and indirect array references like a{i]
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1. x =
2, »*p
3. x =
4, *p =
5. x =
6. *p
7. x =
8. »p =
9. x =
10, »p =
11. x =
12, »p =
13. x =
14. *p =
15. t{args)

a binop b
a binop b
unop a
unop a

y

Yy

£(args)
f(args)
(cast)b
(cast)b
&y

&y

*q

*q

where binop is any binary o peration

where unop is any unary operati on

where args is a possibly empty list of arquments

where cast is any lypecast

Figure 2.4: List of the 15 Basic SIMPLE Statements. Variables x and y denote
varname. Variables a, b, and c denote val. Variables p and q denote ID.

val : ID

| CONST

varname : arrayref
| compret

| ID

arrayref

: ID raflist

reflist : *[? val ']’
| reflist ?[? val ']’

idlist : idlist ’.’ ID
| ID

compref : *(’ *»* ID *)? .’ jdlist
| idlist

Figure 2.5: SIMPLE Grammar for a varname
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where a is a pointer to an array, are represented in the basic statements (Figure 2.4)
by variables ‘x’ and ‘y’ (as can be seen from the grammar shown in Figure 2.5).
However, the level of indirection remains restricted to one.

templ = *pp;

*spp = q;
PP E 1 = wtempl ~ q;

Figure 2.6: Simplification of an Indirect Reference

Another important feature of SIMPLE is that it provides a compositional rep-
resentation of the program, and makes the control flow structured and explicit. The
compositional control statement forms supported by SIMPLE are simplified versions
of: statement sequences, for-loops, while-loops, do-loops, switch/case statements,
and if/else statements. In addition, return statements is supported for exiting
a procedure, and break and continue statements are supported for exiting a loop.
Since the unrestricted use of goto is not compositional, the compiler provides a struc-
turing phase that eliminates all goto statements from a C program [Ero94, EH94).

An important simplification for compositional control constructs involves reduc-
ing complex conditional expressions into simple expressions with no side-effects. Fig-
ure 2.7 gives an example. Another significant transformation concerns making the
control flow in switch/case statements structured and explicit. This involves ending
each case statement with a break, continue or return, and introducing a default
statement at the end of each switch statement. An example transformation is shown
in Figure 2.8.

templ = a+ b;

while (a + b > ¢) while (templ > ¢)
{ = <

} ‘templ = a + b;
}

Figure 2.7: Simplification of a while-loop Conditional Expression

With a compositional representation, structured analysis techniques can be used
to analyze all control constructs. For example, a while loop can be analyzed by con-
sidering only its components: the conditional expression and the body. A structured
analysis framework is easier to implement, as only one analysis rule needs to be de-
fined for each of the compound statements such as conditionals and loops. Further,
it becomes easier to reason about the fixed-point computations for loop constructs.
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switch (a)

{

switch (a) int i;

{ casa 12:
case 12: case 13:
default: stmti;
case 13: stmt2;

{ int i; broak;
stmtl; = cagse 14:
case 14: stmt2;
stmt2; break;

} default:
break; stmtl;

} stmt2;

break;
}

Figure 2.8: A Switch Statement Transformation

Our hecap analyses are performed at the SIMPLE level, using structured analysis
techniques. We analyze the program in the source order, as a SIMPLE tree-walk
naturally follows this order.

2.3 Points-to Analysis

In C, one can have pointers to locations on the stack as well as in the heap. As
mentioned carlier, we follow the strategy of separating the analysis of stack-directed
and heap-directed pointers. So we first resolve the points-to (alias) relationships
of variables on the stack, using an analysis called poinis-to analysis. This analysis
abstracts the set of all accessible stack locations with a finite set of named abstract
stack locations. An abstract location may correspond to: (1) the name of a local
variable, global variable or a parameter; or (2) a symbolic name that corresponds
to locations indirectly accessible through a pointer dereference, when these locations
correspond to variables not in the scope of the procedure under analysis; or (3) the
symbolic name heap that represents all accessible heap locations. Note that symbolic
abstract stack locations can represent more than one real stack location. We further
elaborate on this in the next section.

Given that each real stack lacation has a corresponding named abstract stack lo-
cation, alias information is then captured in the form of definite and possible points-to
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relationships between abstract stack locations, defined as follows:

Definition 2.3.1 Abstract stack location x definitely points-to abstract stack location
Yy, at a given program roint, if x and y each represent cxactly one real stack location at
thal program poinl, and the real stack locatlion corresponding to x conlains the address
of the real stack location corresponding to y. This is denoted by the triple (x,y,D).

Definition 2.3.2 Abstract stack localion x possibly points-to abstract stack location
y, at a given program point, if it is possible that one of the real stack locations corre-
sponding to x contains the address of one of the real stack localions corresponding to
y at that progra. point. This is denoted by the triple (x,y,P).

The complete description of points-to analysis can be found in [Ema93] and an
overview in [EGH94]. However, we demonstrate it on an example program, in Fig-
ure 2.9. Part (a) of the figure shows the original program, while part (b) shows
the simplified program decorated with program-point-specific points-to information.
Note that all heap-directed pointers are reported to be possibly pointing to the ab-
stract stack location heap. A pictorial representation of the abstract stack at program
point D is shown in part (c) of the figure. Solid lines in the figure denote definite
relationships while dashed ones represent possible relationships. The abstract stack
is implemented using two boolean ma'rices, which respectively store the definite and
possible points-to relationships.

Points-to analysis lays the foundation for performing heap analyses. First, it
determines the set of heap-directed pointers in the program. This set consists of
pointers which are reported to be possibly pointing to heap at some point in the
program. For example, for the simplified program in Figure 2,9(b), only pointers
p and q would fall into this set. All heap analyses only need to approximate the
relationships between these heap-directed pointers. This helps in reducing the storage
requirements for the abstraction being implemented.

Secondly, the points-to information is used by heap analyses to accurately handle
indirect references. For example, consider the analysis of statement p->next = q
( (*p) .next = q ) in Figure 2.10. To estimate its effect on any heap analysis, we
first need to know what locations pointers p and q can point-to. If both of them
point-to heap, then this statement links the actual pointed-to locations through the
next link, as shown in Figure 2.10{a). Similarly, if q points-to heap, and p points-
to a stack-resident structure x, we would have x.next pointing to the same heap
location as q, as shown in Figure 2.10(b). On the other hand, if q points-to a stack
location, and p points-to the structure x, with its next field also pointing to a stack
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main()
{ int p, xq, **pp;

p = (int #)} malloc();
Q=P

pp = &p;

=pp = §;

}

(2) Original Program

main()
{ int *p, »q, *templ, #*pp;

p = (int *) malloc();

/"' A: { (p,heap,P) } */

qQ=m

/" B: { (p,heap,P), (Q':hcap!P) } "/

pp = &p;

/"l C: { (p,heap,P), (q,heap,P)
(pp,0,D) } »/

templ = «pp;

J« D: { (pheap,P), (q,heap,P)

(rp,p,D) (tempi,p,D) } +/
stempl = §;

(b) Simplified Program with

Points-to Information

temp1

; A

(c) Abstract Stack Representation

Figure 2.9: An example for Points-to Analysis
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location, the statement does not affect heap analysis, as no pointer to a heap location
is updated (Figure 2.10(c)). Thus points-to information is of fundamental importance
for performing accurate heap analysis. We will further explore the dependence of heap
analyses on points-to information, in the following chapters.

2.4 Interprocedural Analysis Framework

Points-to analysis handles procedure calls in a context-sensitive manner i.e. it esti-
mates the effect of a procedure call, within its specific calling context, and not as a
summary of all possible calling contexts. To support this analysis strategy, it builds a
framework for interprocedural analysis. Other context-sensitive interprocedural anal-
yses like heap analyses, are built on top of this framework. A complete description of
the framework can be found in {(Ema93, HEGV93, EGH94]. In the following chapters,
we specialize this framework for diflerent heap analyses. Below, we briefly describe
its salient features, which are of relevance for this purpose.

2.4.1 Representing Calling Contexts

In general, a calling context depends on the invocation path followed by the program
i.e. the chain of procedure invocations starting from main and ending with the pro-
cedure call under analysis. Points-to analysis builds an invocation graph, where all
invocation paths are explicitly represented. In the absence of recursion, the invoca-
tion graph is constructed by a simple depth-first traversal of the invocation structure
of the program. Consider for example, the invocation graph for the program in
Figure 2.11(a). An important characteristic of the invocation graph is that each pro-
cedure invocation chain is represented by a unique path in it, and vice versa. Using
the invocation graph one can distinguish not only calls from two different call-sites
of a procedure {calls to f() in Figure 2.11(a)), but one can also distinguish two differ-
ent invocations of a procedure from the same call-site when reached along different-
invocation chains (call to f() in Figure 2.11(b)).

In the presence of recursion the exact invocation structure of the program is not
known statically, and one must approximate all possible unrollings of the recursion.
Figure 2.12 illustrates a program with simple recursion and the set of all possible
invocation unrollings for this program, and our invocation graph that is used to
approximate all possible unrollings. To build the graph in the case of recursion one
terminates the depth-first traversal each time a function name is the same as that
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of one of the ancestors on the call chain from nain. The leaf node (representing the
repeated function name) is labeled as an approximate node, and its matching ancestor
node is labeled as a recursive node. The pairings of these nodes are indicated with
a special back-edge from the approximate node to the recursive node. It should
be noted that these back-edges are used only to match the approximate node with
its appropriate recursive node, and they are therefore quite different from the other
tree edges which correspond to procedure calls, This scheme is completely general.
Consider, for example, the invocation graph for a program with mutual recursion
displayed in Figure 2.13.

main() f) main()  g()
{ .. {.. { ..
f0); g(); f0s
f(); } g();
} }

main

/main\‘ / \
g
f f - l l

() (b)

Figure 2.11: Invocation Contexts

The approach of explicitly building the invocation graph has the following advan--
tages: (1) it cleanly separates the abstraction for any interprocedural analysis from
the abstraction required to encode.the calling context, (2) it allows one to deposit
information computed from one analysis that can be useful for the next analysis, (3) it
provides a place to store (memoize) IN/OUT pairs previously computed to summarize
the effect of the function call (so that extra computation can be avoided at analysis
time), and (4) it provides a simple framework for implementing simple compositiona!
fixed-point computations for recursion.
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Figure 2.12: Invocation Graph for Recursion
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\ Y
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(a) Program (b) Invocation Graph

Figure 2.13: Invocation Graph for Mutual Recursion

29




2.4.2 Map Information in the Invocation Graph

In the presence of procedure calls, an indirect reference in a procedure can refer to
variables that are outside its scope (henceforth termed as invisible variables). This
can happen, for example, when the address of a local variable is passed as a parameter,
or when a global pointer points-to local variables of the caller, As each accessible real
stack location needs to be represented by a named abstract stack location, points-to
analysis generates special symbolic names to represent -such invisible variables. A
symbolic name is generated for each possible level of indirection of formal parameters
and global pointers. Next each invisible variable is mapped to a unique symbolic
name.

For example in Figure 2.14, for the formal parameter ppu with type int#*, sym-
bolic names 1.ppu and 2_ppu with types int#* and int are generated. Now, since the
address of the local variable pa (invisible to ind_swap) is passed to ppu, the symbolic
name 1.ppu is used to represent pa in the procedure ind.swap. Similarly, as the invisi-
ble variable a is accessible through the indirect reference **ppu, it gets represented by
the symbolic name 2_ppu. This association of invisible variables with symbolic names
is recorded in the invocation graph nodes as map information. Figure 2.14(b) shows
the map information for various procedure calls. Complete details of the mapping
process can be found in [Ema93].

The map information is context-sensitive as can be seen from the different map-
pings for the two calls to procedure incr in Figure 2.14(b). The symbolic names
are independent of the context. Points-to analysis and other interprocedural analyses
use the symbolic names in a context-free manner when analyzing a procedure. On
returning from a procedure, they are unmapped to appropriate variables based on the
map information recorded in the invocation graph, for the given calling context.

2.4.3 Resolving Function Pointers

In C, pointers may not only point to memory locations, but also to functions. This
means that the complete invocation graph cannot be built by a simple textual pass
over the program. Thus the points-to analysis must complete the invocation graph
by resolving which functions are invocable from each indirect function pointer call.
One might ask why the completion of the invocation graph must procced at the same
time as the points-to analysis. Consider that the complete invocation graph cannot
be built before points-to analysis because the meaning of an indirect call (*pf) ()
is determined by examining the objects that pf may point-to. However, points-to
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void ind_swap(int *sppu, int *#ppv)
{ int +ptemp;

ptemp = sppu;
*ppu = *ppV;
#ppv = ptemp;
}
void incr(int #px) main
{ int temp_0;
temp_0 = »px;
+px = temp_0 + 1; incr  ind_swap incr
} 1px c>a 1_Ppu > pa 1P b
. . 2o o @
int main() 1oV o o
{ int a; int b; int #pa; int #pb; 2P o b
int sstemp_2; int sstemp_l;
a=1b =10 (b) Invocation Graph and Map
pa = &a; pb = &b; Information

incr(pa);

temp_l = &pa; temp_2 = &pb;
ind_swap(temp_l,temp_2);
incr(pa);

(a) Example Program

Figure 2.14: Map Information
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analysis itself is a context-sensitive interprocedural analysis that nceds the invocation
graph. Thus the two approximations must be calculated at the same time.

int (xfp)() ;

main() int §() int g()
{ - { ..}
fp=1; fp=g;
while (e)

{ . }
fp() ;
,

main main main
} v '
fp fp fp
f f g
(b) (c) (d)

Figure 2.15: Invocation Graph for Function Pointers

To explain how points-to analysis completes the invocation graph, we give an
example. Consider the program in Figure 2.15(a), with an indirect call £p() inside
the while loop. The (incomplete) invocation graph of the program before points-to
analysis is given in Figure 2.15(b). When points-to analysis encounters the indirect
call £p(), during the first iteration of the while-loop fixed-point computation, it finds
the current points-to set of £p to be (£). The invocation graph is updated according
to this information, as shown In Figure 2.15(c) and the function f is analyzed in the
current calling context. During the second iteration of the fixed-point computation,
the points-to set of £p becomes (£,g), and the invocation graph again gets updated
as shown in Figure 2.15(d). Future iterations do not modify the points-to set of £p,
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and thus the points-to analysis constructs the complete invocation graph for other
interprocedural analyses. The complete algorithm for resolving function pointers can
be found in [Ghi92, EGH94].

Other interprocedural analyses can measure the effect of a function pointer call, by
merging the outputs obtained by individually analyzing in the current calling context,
all the functions represented by its children nodes in the invocation graph.

2.5 Path Matrix Analysis

Our abstractions for heap analysis are variations on the path matrix model of Hendren
and Nicolau [HN90). The path matrix approach captures the structure of the heap
using an abstraction, orthogonal to the k-limited graphs. It essentially exploits the
fact, that though there are potentially infinite number of objects in the heap, they are
always accessed using access-paths which originete from stack-resident heap-directed
pointers. Figure 2.16 provides an illustration of this observation. It can be easily
noted, that access to any node of the data structure built in the heap, has to originate
either from pointer variable p or pointer variable q. They term such keap-directed
pointers as handles, as these are the pointers the programmer has handle on. Since
hendles are themselves resident on the stack, they are not many in number, and are
relatively inexpensive to reason about.

Figure 2.16: Identifying the handles
Based on the above observations, the abstraction developed by Hendren and Nico-

lau, is a matrix of handles P, where an entry P[p,ql, contains the access path inside
the heap, from handle p to handle q. The access paths are expressed in the form
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of restricted regular expressions. Figure 2.17 presents an example of how the heap
structure is captured using the path matrix, An empty entry, say P[r,q] indicates
that the heap object pointed to by r cannot be reached by using an access path orig-
inating from pointer q and vice versa. The symbol S in an entry denotes that the two
pointer variables point to the same heap object. The more complicated expressions,
represent the access paths using the link ficlds.

-
-
- -
-----
-
-

~wm T 00
T

(a) Heap Structure

| Iplalzfs]ct]

p| S| N?

q S

r S

s RISV L*
t

S

(b) Path Matrix Information

Figure 2.17: An example Path Matrix

Hoviever, the path matrix analysis assumes and verifies that the underlying data
. structure being created and manipulated by the program is a tree. The path matrix
information is used to distinguish between pointers accessing disjoint subpieces of the
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Heap Analysis in the McCAT C Compiler
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Figure 2.18: The Overall Setting For Heap Analyses
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tree, and to detect the creation and elimination of temporary DAG nodes during tree
updates. It cannot handle cyclic structures. Further, the encoding of precise path

rclationships in the form of path expressions, can prove to be potentially expensive
information to store.

In the light of these problems, we have adapted the model for more practical and
general purpose heap analysis (without any assumptions about the underlying data
structures), We follow the paradigm of abstracting the heap structure, by captur-
ing the relationships only between the handles. However, we capture coarser path
relationships, which can be stored as boolean matrices. This enables faster data flow
merge operation and substantially reduces the storage requirements for the analysis,
while the analyses still gather useful information. Further we also abstract simple
attributes like shape and root attributes which increase the effectiveness of our anal-
yses. Based on this philosophy, we present a hierarchy of practical abstractions for
heap analysis in the following chapters.

The heap analyses are implemented on the structured tree-based SIMPLE inter-
mediate representation. Points-to analysis builds a complete framework to perform
them efficiently and accurately in an interprocedural fashion. The overall implemen-
tation setting is shown in Figure 2.18, which can be briefly described as follows:

First, all the .c files for the given program are fed to the source level linker,
which generates the FIRST AST for the entire program. Subsequently this AST
is simplified and structured (i.e. goto statements are eliminated). The invocation
graph is then constructed by identifying the [unctions called by each function in the
program. Next, points-to analysis is performed, which calculates possible pointer
targets at each program point for stack-directed pointers, and also resolves indirect
calls through function pointers. Finally, various interprocedural heap analyses are
conducted to estimate the relationships of heap-directed pointers.
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Chapter 3

Connection Analysis

In this chapter, we describe the connection matrix abstraction, and the basic connec-
tion analysis rules associated with it. It forms the first step of our hierarchical ap-
proach to heap analysis, It is a simple storeless abstraction designed to disambiguate
heap accesses at a coarse level, but in a highly efficient and cost-effective manner. We
introduce and motivate this abstraction in section 3.1. In the next section we identify
eight basic statements that can affect the relationships of heap-directed pointers. We
then define analysis rules for these statements to clearly illustrate the basic principles
of connection analysis. Using these rules as the foundation, the complete framework
for connection analysis of C programs at the SIMPLE intermediate representation,
is developed in chapter 4.

3.1 The Abstraction

A conpection matrix C is a boolean matrix of relationships between heap-directed
pointers which captures simple connectivity of heap objects. A heap object is defined
as a memory object allocated in the heap memory, representing an instance of a
valid type definition (basic or user-defined) in the program. The connection matrix
abstraction is designed to disambiguate heap accesses at the data structure level.
The term data structure in this context represents a connected region in the heap i.e.
if the heap is viewed as an undirected graph with heap objects as nodes and links
between them as edges, each connected component forms a separate data structure.
Given any two data structures, they would not have a common heap object belonging
to them. For example in Figure 3.1, the heap consists of two data structures: one
pointed to by pointers p and q and the other pointed to by pointers r, s and t. Note
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that we cannot give names to these data structures, We can only refer to them as
being pointed to by a given set of pointers.

With the above definitions, given any two heap-directed pointers say p and q,
connection matrix abstracts the following program-point-specific relationships:

e C[p,q] = | : Pointers p and q possibly point to heap objects belonging to the
same data structure. In our terminology, pointers p and q are considered to be
connecled, or to have a connection relationship.

e C[p,q] = 0 : The heap objects pointed to by pointers p and q definitely belong
to different data structures. In other words, pointers p and q are not connected.

The useful information is the negative information. If pointers p and q are not
connected, then heap accesses originating from them will always lead to disjoint heap
locations, and thus not interfere. It is safe to report two heap-directed pointers to be
connected, when they are not. However, if they can point to the same data structure,
they should always be reported to be connected.

We illustrate the abstraction in Figure 3.1. Part (a) shows the structure of heap
at a program point, while part (b} shows its abstraction as a connection matrix.
In Figure 2.17(b) we have shown the path matrix abstraction for the same heap
structure. The path matrix entries are path expressions, while connection matrix
entries are simply zeros or ones. The zero in the entry C[p,r] indicates that pointers
p and r point to disjoint data structures in the heap. The one in the entry C[s,r]
indicates that s and r point to objects belonging to the same data structure. Note
that the entry CJr,t] is set to one, despite the fact that pointers r and t point to
disjoint subpieces of the same data structure. This is because connection matrix
is designed to disambiguate heap accesses at the data structure level (for efficiency
reasons). More sophisticated abstractions, which can distinguish between subpieces
of a data structure itself, will be presented in the following chapters.

Following are some other important characteristics of the connection matrix ab-
straction:

o It abstracts relationships only between stack-resident heap-directed pointers.
As all heap accesses originate from these pointers, their relationships effectively
capture the structure of the heap. For example in Figure 3.1(b), the informa-
tion that pointers p and s point to disjoint data structures also simultaneously
implies that pointers p->N and s->L point to disjoint structures.
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Figure 3.1: An example Connection Matrix
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e For cach function in the program, the connection matrix abstracts relationships
between all stack-resident pointers which can be heap-dirceted at some point in
the program and are directly or indirectly (through an indirect reference) ac-
cessible from the function. Names are naturally available from the program, for
directly accessible pointers. For indirectly accessible pointers, special symbolic
names are generated by points-to analysis as explained in section 2.4.2. These
names are reused by connection analysis. To know which pointers ever point to
heap, the existing points-to information is used.

e If a pointer, say p, does not point to a heap location at a given program point,
the connection matrix entry C[p,p] is set to zcro at that program point. In this
case the pointer points to NULL or to a stack location.

¢ The connection matrix relationship is symmetric i.e. for any two heap-directed
pointers say p and q, we always have C[p,q] = C|q,p]. The connection rclation-
ships shown in Figure 3.1(b) illustrate this property. It is used in the actual
implementation to reduce the storage requirement by half.

The connection matrix abstraction is targeted towards programs that allocate
a number of disjoint data structures in the heap. Scientific applications written
in C typically exhibit this feature, as they use a number of disjoint dynamically
allocated arrays. We will present some empirical data in chapter 6, to demonstrate
the effectiveness of this abstraction for its intended domain of applications. We now
describe the basic analysis rules to compute connection matrix information.

3.2 Basic Heap Statements

Hendren and Nicolau [HN90] had identified six basic statements of a simple imperative
language SIL, that access or modify heap data structures. We have added two more
statements to this list to cover pointer arithmetic and use of address-operator allowed
in the C-language. The complete list is given in Figure 3.2. Variables p and q and the
field £ are of pointer type, variable k is of integer type, and op denotes the + and -
operations. We first give the analysis rules for these eight basic heap statements, with
the restriction that pointers can only point to heap objects. These rules are simple to
describe and clearly illustrate the basic principles of connection analysis. Analysis
rules for the basic SIMPLE statements will then be constructed from these basic
rules in chapter 4. There we will take into account the effect of stack-based points-to
relationships on estimating heap relationships.
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1. p = malloc();
2.p=q;

3. p = q->1;

4. p = &(q->f);
6. psqopk;
6. p = NULL;

7. p=>f = q;

8. p->f = NULL;

Figure 3.2: Basic Heap Statements
3.2.1 Analysis Rules for Basic Heap Statements

The overall structure of the analysis is shown in Figure 3.3(a). We have the connection
matrix C at program point x before the given statment, and we wish to compute the
connection matrix C, at program point y. To this end, we define an analysis rule
for each of the eight statements shown in Figure 3.2. Each rule will compute the
following sets of relationships:

o killset : Set of connection relationships killed by the given statement i.e. the
set of relationships which were valid before the statment (program point x), but
are not valid after processing it (program point y). The entries corresponding
to these relationships should be set to zero in the connection matrix C,.

e gen_set: Set of connection relationships generated by the given statement. The
entries corresponding to these relationships should be set to one in the new
matrix C,.

Let H be the set of pointers whose relationships are abstracted by the connection
matrix C. Let p, q, r and s represent pointers in this set. Assume that pointers can -
only point to heap objects or to NULL (as already discussed). Further assume that
updating an entry C[p,q] also implies identically updating the entry Cl[q,p]. This
assumption is required due to the symmetric nature of connection relationships.

The new connection matrix Cp, is computed as shown in Figure 3.3(b). First, the
old connection matrix C is copied over to C,. Next, the entries in the kill.set are
set to zero in the matrix C,. Finally, the entries in the gen_set are set to one in the
matrix C,, to get the complete new connection matrix.
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c Build the new Connection Matriz
Vs € H, Culr,s] = Cr,s)
X
Delete killed relationships
t
Statemen Y entries Clr,s] € killset, Culr,s] = 0
y
C Add generated relationships
n V entries Clr,s] € gen.set, C,[r,s] = 1
8 (5

Figure 3.3: Computing Connection Matrix C,, from C

We now present the analysis rules for the cight basic statements shown in Fig-
ure 3.2. For each statement, we give the rules for computing their kill and gen sets.
The new connection matrix can then be computed as shown in Figure 3.3(b).

p = malloc() : Pointer p points to a newly allocated heap object. All the existing
connection relationships of p get killed. Also as no other pointer can point to this
object, p will only have connection relationship with itself. So we get the following
rule:

killset = { Cip,s] | s € H A Clp,s] }
genset = { Clp,p] }

An example is shown in Figure 3.4 to illustrate this analysis rule.

Basic heap statements 2 through 5 in Figure 3.2 (p = q,p = q->f,p = &(q->f)
and p = NULL), have a common attribute: all of them update the stack-resident
pointer p, and make it point to a new data structure. They do not modify the
structure of the heap itself. Their effect on connection matrix information can be
summarized using a general rule, as discussed below.

p = q : Pointer p now points to the same heap object as g, and hence to the same
data structure as q. All the existing relationships of p get killed, and p gets connected
to all pointers connected to q. If q is presently heap-directed (Clq,q] = 1), then p
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would also be heap-directed after the statement. So the entry Clp,p| is added to the

gen_set, if we have C[q,q] = 1. We present the overall rule for this statement below
and illustrate it in Figure 3.5.

killset = { C{p,s] | s € H A C[p,s] }
gen_set = { C[p,S] | s€ HA C[‘l!s] } U { C[p,p] | C[‘Ia‘]] }

Note that if q presently points to NULL, p should also point to NULL after the
statement. In this case all entries C[q,s] will be zero, resulting in an empty gen.set.
Consequently all entries Cq[p,s] will also be zero after the statement, indicating p
to be pointing to NULL, as desired. Similarly if q happens to be pointer p itself,
resulting in the statement p = p, the gen and kill sets would be identical. In this
case the connection matrix would remain unchanged, as required. Thus the above
rule is general enough to take into account various special cases.

p = q->f: Pointer p now points to the heap object connected to the object pointed to
by q through the pointer field £. Thus it points to the same data structure as q, even
if not to the same heap object as q. So the analysis rule for this statement is same as
that for the statement p = q. The effect of this statement on connection relationships
is demonstrated in Figure 3.6, The initial heap structure for this example is same as
in the example in Figure 3.5. It can be noticed that the kill and gen sets, and the
output matrix C,, are identical for the two examples.

This rule incurs some imprecision, when the pointer q~>f points to NULL. In this
case, pointer p also points to NULL after the statement. However we would report it
be pointing to the same data structure as q. This information is safe but less precise.
This happens because we cannot determine if q->f presently points to NULL, and not
to a heap object. In other words, g->f is a heap-resident pointer, while connection
matrix only abstracts the relationships of stack-resident pointers.

If pointers p and q are not distinct, the statement can be of the form p = p->£.
The rule for this case is same as for the statment p = p, which does not change any
connection relationships, as required.

p = &(q->f) : Pointer p now points to the field £ of the heap object pointed to by
q, as shown in Figure 3.7. For purpose of our analysis we consider a pointer pointing
to a specific field of a heap object, to be pointing to the object itself. Thus, this
statement is equivalent to the statement p = q for connection analysis.

P = q op k : This statement represents pointer arithmetic. After the arithmetic
operation, q continues to point to the same heap-object, though at a different offset,
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as shown in Figure 3.8. We assume that a heap-directed pointer does not cross the
boundary of the heap object, when pointer arithmeticis performed on it. Otherwise, it
can potentially point to memory not allocated by the program, and cause an execution
error on being dereferenced. With this assumption about pointer arithmetic, this
statement is equivalent to the statement p = q for connection analysis.

p = NULL: Pointer p now does not point to any heap object allocated by the program,
as shown in Figure 3.9. It does not have any connection relationship with any pointer,
including itself. Thus the effect of this statement is to simply kill all the relationships
of p, as presented below:

killset = { C[p,s] | s € H A C[p,s] }
genset = {}

Thus after this statement we have C[p,p] = 0, indicating that p presently points
to NULL.

The statements discussed so far update a stack-resident heap-directed pointer.
. The following two statements update a pointer field residing in a heap object, and
hence modify the structure of the heap itself.

p->f = NULL : This statement sets the field £ to NULL. Consequently the subpiece
pointed to by the pointer p gets disconnected from the remaining data structure.
For example in Figure 3.10, after the statement p~>f = NULL, pointer p does not
have connection relationship with pointers r, q and s. However, to obtain this kill
information we need to know the following:

o Does setting the field £ to NULL, really disconnect a subpiece from the data
structure? It is possible that the data structure still remains connected due to
other links. For example in Figure 3.10, if pointers p and r are also connected

through a g link, the subpiece pointed to by r would not get disconnected by
the statement p->f = NULL.

¢ In case a subpiece gets disconnected, which pointers point to it?
Unfortunately, connection matrix information is not sufficient to answer these
questions. To answer the first question we need to have some approximation for

the shape of the underlying data structure. The second question requires knowledge
. about the possible path relationships between the various pointers pointing to the
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(2) Heap Structure
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p=NULL

(a) Heap Structure

killset = { C[p,p), C[p,r], Cip,a] }

genset = {}
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data structure. As such information is expensive to abstract, we do not collect it for
our first abstraction for heap analysis.

In the absence of precise kill information we err conservatively, and do not kill any
connection relationships for this statement. Further, this statement does not generate
any new relationships. Thus both the kill and gen sets are empty for this statement,
and it does not affect connection relationships.

p->f = q: This statement has two effects. First it potentially disconnects a subpiece
of the data structure pointed to by p, like the previous statement p->f = NULL. Next,
it connects the data structures pointed to by p and q. Figure 3.11 gives an illustration.

As already discussed precise kill information due to potential disconnection can-
not be obtained. However new connection relationships are generated due to the
interlinking of data structures pointed to by p and q. All pointers connected to p now
get connected to all pointers connected to g (which include q itself). So we have the
following analysis rule for this statement:

killset = {}
genset = { C[e;s] | r,;s € H A Cip,r] A Clq,s] }

This rule is illustrated in Figure 3.11. Before the statement, pointers p and r are
connected to p, and both of them get connected to pointers q and s after the state-
ment p->f = q, as shown in part (d) of the figure. Note that after the statement,
all the connection relationships of pointer r are spurious {except Cn[r,r]). This hap-
pens because the disconnection of r from p cannot be inferred from the information
available.

3.3 Summary

In this chapter, we defined and motivated the connection matrix abstraction for heap
data structure analysis. We also identified eight basic statement that affect the rela-
tionships of heap-directed pointers. We developed the analysis rules for these state-
ments, which clearly illustrate the basic principles of connection analysis. Based
on these rules, one can construct a connection analysis framework for any language
that supports pointer-based dynamic data structures. Qur focus is on analyzing C
language, using the SIMPLE intermediate representation.
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Chapter 4

Interprocedural Connection
Analysis for C

In this chapter, we build a complete interprocedural analysis framework to implement
the connection matrix abstraction on the SIMPLE intermediate representation. The
chapter is organized as follows. In section 4.1 analysis rules for basic SIMPLE
statements are developed. These rules are constructed from the basic conrnection
analysis rules presented in chapter 3. In section 4.2, analysis of control statements
is described. The rules for estimating the cifect of procedure calls are formulated in
section 4.3. These rules are based on the interprocedural analysis framework described
in chapter 2. In section 4.4, some important assumptions made by the analysis are
discussed. Finally, a brief summary of the chapter is presented.

4.1 Analyzing Basic SIMPLE Statements

We have identified eight basic heap statements in the previous chapter (Figure 3.2),
that can access or modify heap data structures. We also presented analysis rules for
them. In this section, we construct the analysis rules for basic SIMPLE statements
from the rules developed for basic heap statements. In this process, we remove the
restriction that pointers can only point to heap objects, and take into account the
presence of pointers to locations on stack. This step is crucial for applying our analysis
rules to real C programs.

Instead of separately describing an analysis rule for each basic SIMPLE state-
ment, we will develop general rules for calculating the kill and get sets, based on the
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variable refercnces on the left and right hand sides of a statement. This approach
enables both compact presentation of rules and clear illustration of the issues involved
in their construction.

4.1.1 Identifying S-locations

In Table 4.1 we present the various types of variable references that can occur in
basic SIMPLE statements relevant to heap analysis. For each variable reference
we define a set of S-locations. The set of S-locations consists of the abstract stack
locations (defined in scction 2.3) represented by the variable reference. S-locations are
represented as pairs of the form (z, D), (z, P) where z is an abstract stack location
name, and D and P respectively indicate definite and possible locations. For a given
variable reference say *a, a definite S-location (z, D) means that *a definitely refers
to the location corresponding to the abstract stack location z, while a possible S-
location (y, P) means that *a possibly refers to the location corresponding to the
abstract stack location y. Further, a definite S-location represents a unique real stack
location, while a possible S-location can represent more than one real stack or heap
locations.

S-locations for direct variable references (Group I1in Table 4.1) can be trivially de-
termined. To determine the S-locations for variables references involving indirection,
points-to information needs to be used. For example, the S-location for the vari-
able reference p is simply (p, D). Now if the points-to set of variable p is {(p,r, P),
(p, s, P)}, the set of S-locations for the variable reference *p is {(r, P), (s, P)}.

Below we note some other important features of Table 4.1:

o The reference (*p) [i] is our representation of the C syntax p[ii, wherepis a
pointer to an array.

® The S-locations for array references are always denoted as possible locations.
We use one abstract stack location to represent the whole array. This abstract
location cannot be definite as it represents more than one real location.

¢ Points-to analysis uses one abstract location heap to represent all locations in
the heap. The S-location corresponding to the abstract location heap is also
always denoted as the possible location (heap. P), because it represents more
than one real location.
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¢ For the variable reference (*p) .f, the case when p points to heap is considered
separately. If p points to heap then *p refers to a heap object, and (*p) . £ refers
to the field £ of this object. So the S-location for (*p) . £ is simply (heap, P).

e An S-location representing a stack location is either of the form (p,d) or (p.f,d).
If it represents a heap location, it is simply (keap, P).

¢ For some variable references, the S-location set is not defined (marked N /A).
These references represent values (addresses of memory locations) and can ap-
pear only on the right hand side of a statement.

Besides S-locations, we also define the term Root for each variable reference. It
is defined as the pointer from which the reference originates., The Root for all the
references in Table 4.1 is p except for p.£ and &p. £, for which it is p.£. For malloc()
and NULL it is uot defined. _

[ Var Ref || S-location Set | Root | Group |
= - — ] —_—

N/A p |
&p.x N/A p.-£f
&plil N/A p |
&(+p)[i] Il N/A P
&(+p).t I N/JA p
P {(p, D)} P
p.f {(p.f, D)} p.f I
plil {(r, P)} P
*p {(z,d) | (p,2,d) € Q} P
(ep) 0] || {(=, P)| (p,z,d) € Q} P 1
Gp).f | {(z.f,d) | (p,2,d) €EQ Az # heap} | P

U{(heap, P) | (p, heap, P) € Q}
NULL N/A N/A
malloc() | N/A N/A v

Table 4.1: S-location sets relative to points-to set Q.

4.1.2 Analysis Based on S-locations

We now present the analysis of a basic SIMPLE statement, denoted as S. Let C be
the input connection matrix. Let H be the set of pointers whose relationships are
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abstracted by the matrix C. This includes all the pointers which can be heap-directed
(i.e. point to heap), at some point in the program, and are accessible in the procedure
containing statement S. Let Q be the set of points-to relationships valid at statement
S (i.e. before executing S). Let the left and right hand sides of the statement be
respectively denoted as lhs(S) and rhs(S).

To be of relevance to connection analysis, statement S should be of pointer type
i.e. it should perform a pointer update. This information is directly available from the
SIMPLE AST. Given that the statement S satisfies this criterion, we now compute
its kill and gen sets with respect to connection relationships.

Kill Set Computation

To compute the kill set only the variable reference on lhs(S) needs to be considered.
We have kill information only if this variable reference represents a definite S-location.
In this case the location is definitely updated and all its existing relationships get
killed. For example if the variable reference or lhs(S) is p with S-location (p, D), all
relationships of p get killed, as the statement would definitely update p. However,
if the reference is p[i] then we cannot kill any relationships. The corresponding
S-location (p, P) represents the entire array, while only one element of the array
would be updated by the statement. Similarly for the variable reference (*p).f,
if p definitely points to stack location x, its S-locatior would be (z.f,D). So all
relationships of x.f can be killed.

Based on the above discussios, the general rule for calculating the kill set can be
expressed as follows:

kill set(S) = { C[p,s] | {(p, D) € S-locations(lhs(S)) A p,s € H A Cfp,s] }

This general rule is consisient with the kill set computation rules defined for the
basic heap statements in section 3.2.1. For the basic heap statements with p on
lhs(8S), S-location(lhs(S)) is (p, D): so all the relationships of p get killed. For the two
statements with p->f on lhs(S), S-location(lhs(S)) is (keap, P): so no relationships
can be killed.

Gen Set Computation

The set of connection relationships generated by the statement S depends on variable
references on both lhs(S) and rhs(S). Every combination of S-locations represented by
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lhs(S} and rhs(S) needs to be considered. For example let statement S be (*x) £ =
(»5) .£. Let the points-to relationships of r and s be as given in Figure 4.1(a). Since
r possibly points to stack location ¢ or to the abstract location heap (which represents
all heap locations), we have {(c.f, P), (heap, P)} as S-locations(lhs(S)). Similarly as
s possibly points to stack location d or to heap, we have {(d, P), (heap, P)} as S-
locations(rhs(S)). Since the set S-locations(ths(S)) consists of only possible locations,
killset(S) is empty. To compute the gen_set for S, we need to consider the following
assignment statements generated by the four possible combinations of S-locations
for lhs(S) and rhs(S): c.£ = d.f, c.f = s->f where s is heap-directed, r~>f = d.f
where r is heap-directed, and r->f = s->f where both r and s are heap-directed.
Thus, gen.set(S) would be the union of the gen sets of these four possible assignments
it represents.

m ’—""'\\ m -_—:::::
’_-u-\ N r :_-

r . -,
ed | - et - -
d.i |, -~ ’ d-' - .

d < -, AN d .f:"o
s . _” 8y Feo__
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Points-to Set: { (r,¢, P), (r, heap, P), (s,d, P), (s,heap, P) }
S-locations({*z) .£): { (¢.f, P), (heap, P) }
S-locations((*s) .£): { (d.f, P), (heap, P) }

(c)

Figure 4.1: Example to Illustrate Identification of S-locations

It can be noticed from the above example, that every combination of S-locations
generates a simple assignment statement. In a simple assignment statement, all refer-
ences to stack locations are through direct variable references, while all references to
heap locations are through variable references involving an indirection. This happens
because points-to relationships on the stack, get factored out during calculation of
S-locations. For example, the simple assignment statement c¢.£ = d.¢ results from
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factoring out the points-to relationships (r,c, P) and (s,d, P). Henceforth, we refer
to a simple assignment statement generated by two given S-locations, say S-lloc and
S-rloc, as S-statement(S-lloc,S-rloc}). When clear from the context we will simply
refer to it as S-statement.

In general, a basic SIMPLE statement S can itself be an S-statement or can
be represented as a collection of S-statements. In the latter case, the S-statements
capture the different ways statement S can be represented, when program execution
reaches it. So the gen set for S is computed as the union of the gen sets of the
S-statements it can generate,

Thus to compute the gen set for a basic SIMPLE statements, we simply need
to define the rules to compute the gen sets for its S-statements. We now identify
the various types of S-statements that can occur due to various combinations of §S-
locations. We show that each type of S-statements corresponds to one of the eight
basic heap statements discussed in section 3.2.1. A general rule is derived to compute
the gen.set for each type from the rule developed for its corresponding basic heap
statement. We recall that C is the input connection matrix to S, and H is the set of
pointers whose relationships are abstracted by C.

Given any two S-locations S-lloc and S-rloc, each S-statement generated by their
combination, denoted as T, can be analyzed as follows:

Case 1: S-lloc represents a stack location:

In this case, S-lloc is either of the form (z,d) or (z.f,d), with corresponding real
stack location (i.e. variable reference on lhs(T)) as x, x.f or x[i] (Group II in
Table 4.1).

Case 1(a): If S-rloc also represents a stack location, S-statement T has the same
effect as the basic heap statement p = q. Both of them make one stack-resident
pointer to point to the data structure pointed to by another stack-resident pointer.
So the genset for T can be computed using the rule defined for the statement p = q
in section 3.2.1. -

Case 1(b): If S-rloc is (heap, P), rhs(T) can be of the form (*x) [i], *x or (*x).f
{Group III in Table 4.1), with x pointing to a heap location. Thus rhs(T) represents
a heap-resident pointer. In this case, T can be analyzed in the same fashion as the
basic heap statement p = q->f, where p is a stack-resident pointer and g->f is a
heap-resident pointer.

We had noted in section 3.2.1, that the gen sets for the basic heap statementsp = q
and p = q->f can be computed using the same rule. The underlying assumption is
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that the heap-resident pointer q->f points to the same data structure as its origin
pointer on the stack q (i.e. q = Root(q->£)). This assumption can be violated if g~>f
points to NULL or to a stack location. In either case, the connection relationships
generated will be spurious but safe, as discussed in section 3.2.1. We further discuss
the implications of a heap-resident pointer pointing to a stack location in section 4.4.

The following rule was developed in section 3,2.1 to compute the gen sct for these
basic heap statements:

genset = { C[p,s} | s € H A Clq,s] } U { Clp,p] | Cla,q] }

Based on this rule, we derive the following general rule to compute the gen set for
the S-statements with S-lloc as a stack location:

stack_lhs_gen_set(C,H,x,y) = { Clx,2} | x,y,z2 € H A Cy,z] } U { C[x,x] | Cly.y] }

In this rule, x represents the stack-resident pointer refered on lhs(T). If rhs(T) is
a stack-resident pointer, then y simply represents this pointer. If rhs(T) is a heap-
resident pointer (like (*y).£), then y represents its origin pointer on the stack i.c.
its Root. The gen_set consists of connection relationships generated by connecting x
with all the pointers connected with y, and with itself if y is presently heap-directed
(Cly,y] = 1). It is named stacklha_gen_set as it basically depends on lhs(T) being
a stack location. Note that connection relationships are generated only if pointers x
and y are relevant to connection analysis (i.e. belong to the set H).

Case 2: S-lloc represents a heap location:

In this case S-lloc is (heap, P) and lhs(T) is a variable reference of the form (#x) . £,
(*x) [i] or *x (Group III in Table 4.1) with x pointing to a heap location.

Case 2(a): If S-rloc represents a stack location, S-statement T is equivalent to the
basic heap statement p->£ = q for purposes of connection analysis.

Case 2(b): If S-rloc is (keap, P), the corresponding basic heap ctatement would be
p->f = g->f. This statement can be analyzed in the same fashion as the statement

p->f = q, because the pointer q points to the same data structure as q->£ (as already
discussed).

The following rule was developed to compute the gen set for the basic heap statement
p->f = q:

genset = { Clr,s] | r,;s € H A Clp,r] A Clq,s) }

Based on this rule, we derive the following general rule to compute the gen set for
the S-statements with S-lloc as a heap location:
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heap_lhs_gen.set(C,H,x,y) = { C[w,z] | x,y,w,z € H A C[x,w] A Cly,z] }

In this rule, x represents the Root of the heap-resident pointer refered on lhs(T).
If rhs(T) is a stack-resident pointer, then y simply represents this pointer. If rhs(T) is
a heap-resident pointer then y represents its Root. The gen_set consists of connection
relationships generated by connecting all pointers connected with x, with all the
pointers connected with y. It is named heap.lhs_gen_set as it basically depends on
1hs(T) being a heap location. Note that again connection relationships are generated
only if pointers x and y are relevant to connection analysis (i.e. belong to the set H).

Special cases:

In this case rhs(T) consists of a variable reference for which the S-location set is
not defined {(marked N/A). Note that thesc variable references can occur only on the
right hand side of a statement, and not on the left hand side. Below we discuss the
rules for each such reference on rhs(T). We also discuss the case when rhs(S), hence
rhs(T), is an arithmetic expression. We recall that T is an S-statement for the basic
SIMPLE statement S. So when S-rloc is not defined, the variable reference on rhs(S)
and rhs(T) will be same. We now consider these variable references:

NULL : If rhs(T) is NULL no new relationships are generated and the gen set is
empty. Some relationships may be killed if Ihs{S) happens to be a definite S-location.
This is taken care of by kill.set computation.

malloc(): In this case, if S-lloc represents a heap location, the S-statement T
would be of the form p->f = malloc(). This statement simply adds an anonymous
node to the data structure pointed to by p, and does not generate or kill any connec-
tion relationships. So we do not need to consider this case for connection analysis. If
S-lioc represents a stack location, the rule for the basic heap statment p = malloc(),
is directly applicable to compute the gen_set for the S-statement under consideration.

This rule was:
genset = { Clp,p] |[p € H }

We derive the following general rule:
malloc.gen_set(C,Hx) = { Clx,x] | x € H }

This rule takes any pointer denoted by x which belongs to H, and generates the
relationship C[x,x] that connects x with itself. This indicates that x is now heap-
directed. In C-language, there are several memory allocating routines other than
malloc(). Further, users typically define their own allocation routines, which in turn
invoke the standard library routines. We discuss all these cases in section 4.4.
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Address Operation: The references with the & operator in Table 4.1 represent
memory addresses of variables. The first three references represent addresses of vari-
ables on the stack. The next two references (£(*p) [i], &(*p).£) can also represent
addresses of variables in the heap, if p points to a heap location. Connection matrix
only abstracts the connectivity of objects in the heap. So if the rhs(S) consists of

memory address of a stack location, the SIMPLE statement S does not gencrate any
new connection relationships.

Thus we need to consider only the references &(*p) [i] and &(*p).f where p
points to a heap location. The former reference represents the address of a particular
index in a heap-allocated array. The latter represents the address of a particular
field in a heap-allocated structure. As noted in the rule for the basic heap statement
p = &(q->f) in section 3.2.1: for purpose of connection analysis, a pointer pointing
to a specific index or field of a heap object, is considered to be pointing to the object
itself. Thus effectively for these references the S-location is (heap, P). So the gen_set
for the S-statement T can be computed using the stack_lhs_gen_sct or heap_lhs_gen_set
rules depending on the location represented by S-lloc. The arguments would be C,
H, x and y, where x depends on S-lloc, and y denotes Root(rhs(S}).

Arithmetic Expressions: Finally we consider the case when the SIMPLE state-
ment S involves pointer arithmetic. In this case lhs(S) would be a variable reference,
while rhs(S) would be an arithmetic expression of the form q op k. Here q represents
a pointer, op denotes a + or - operation, and k represents an integer. According to
SIMPLE grammar, q should be a scalar pointer: the type represented by the ref-
erences p and p.f in Table 4.1. As noted in the rule for the basic heap statement
P = q op kin section 3.2.1: we assume that after pointer arithmetic, a heap-directed
pointer continues to point to its present target, though at a different offset. With
this assumption, effectively the S-location(rhs(S)) is (g, P): a stack location. The
gen-set for the S-statement T can again be computed as per the stack_lhs_gen_set or
heap.lhs_gen set rules, depending on the location represented by S-lloc. The argu-
ments would be S, C, H, x and y, where x depends on S-lloc and y denotes q.

Thus the gen set of a basic SIMPLE statement S can be computed by first
computing the gen sets for its S-statements, and then unioning them. The complete
rules for computing the gen set are given in Figures 4.2 and 4.3. The complete
algorithm for analyzing a SIMPLE statement is presented in Figure 4.4.

We now demonstrate the analysis for the statement S (#r).f = (+s).f in Fig-
ure 4.1. Part (a) gives the poizts-io relationships of pointers r and s, part (b)
shows the connection relationships between heap-directed pointers, and part(c) gives
the points-to and S-location sets for the statement S. According to the figure the S-
location sets for lhs(S) and rhs(S) are: {(c.f, P), (heap, P)} and {{d.f, P), (heap, P}}
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/+ Compute the gen set for statement § with input connection
+ matriz C and I as the set of pointers abstracted by C x/
fun build_gen_set(S,C,H)
gen_set = {} /& Initialize gen set «/
if (is_null(rhs(S))) /* No necw relationships are generated */
return(gen_set)
Let | = Root(ths(S)} /+ Root of Var Ref on lhs(S) */
Let r = Root(rhs(S)) /* Root of Var Ref on rhs(S) */
foreach (z,d) € S—locations(lhs(S))
if ((z,d) = (heap, P)) [+ S—location(lhs(S)) is a heap location [/
gen_set = gen_set U build_heap_lhs_gen_set(S,C,H,l,r)
else /« S-location(lhs(S)) is a stack location */
gen_set = gen_set U build_stack_lhs_gen_set(S,C,H,x,r)
return(gen_set)

Figure 4.2: Computing Gen Set for a Basic SIMPLE Statement

with r as Root(lhs(S)) and s as Root(rhs(S)). Since all S-locations(ths(S}) are possi-
ble locations we have kill.set(S) = {}. The combinations of S-locations give us four
S-statements. We compute the gen sets for them below:

1.

Tl : ¢.f = d.f. Both S-locations are on the stack. Thus gen.set(T1) =
stack_lhs_gen_set(C,H,c.f,d.f) Pointer c.f gets connected with all pointers d.f
is connected with. Since d.f is only connected with itself, so the only new
connection relationships generated is C[c.f,d.f]. So we get:

gen_set(T1) = { Clc.f,d.f] }

T2 : c.f = s=->f with s pointing to a heap location. S-lloc is stack loca-
tion while S-rloc is (heap, P}). Thus gen_set(T2) = stack_lhs_gen_set(C,H,c.f;s).
Pointer c.f gets connected with all pointers s is connected with. Thus c.f gets
connected with pointers s and 1, and we get.

gen.set(T2) = { Clc.fs], Cle.f)]] }

. T3 : r->f = d.f with r pointing to a heap location. S-lloc is (heap, P) and

S-rloc is a stack location. So gen.set(S3) = heap_lhs_gen_set(C,H,rd.f). All
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/* §: Statement, C: Connection Matriz, H: Set of pointers in C
+ (z,d): S—location(lhs(S)), r: Root(rhs(S)} «/
fun build_stack_lhs_gen_set(S,C,H,x,r)
gen_set = {} /+ Initialize gen set »/
if (is_malloc(rhs(S)) /¢ = = malloc() /
gen_sct = malloc_gen_set(C,H x)
else if (is_address_op(rhs(S)}} and (r,heap,P) /x z = &(r->f) s/
gen_set = stack_lhs_gen_set(C,H x,r}
else if (is_arith_expr(rhs(S))) /* z = rop k +/
gen_set = stack_lhs_gen_set(C,H,x,r)
else
foreach (y,d) € S—locations(rhs(S))
if ((v,d) = (heap,P)) /* z = r->f: r is heap-directed +/
gen_set = gen_set U stack_lhs_gen_set{C,H x,r)
else /x (y,d) is a stack localion: z = y »/
gen_set = gen_set U stack_lhs_gen_set(C,H,x,y)
return(gen_set)

/* S: Statement, C: Connection Mairiz, H: Set of pointers in C «
* (heap,P): S—location(lhs(S)), I: Root(lhs(S)), r: Root(rhs(S)) */
fun build_heap_lks_gen_set(S,C,H,l,r)
gen_set = {} /= Initialize gen set »/
if (is_address_op(rhs(S))} and (C[r,r]) /*» I=>f = &(r~>f) «/
gen_set = heap_lhs_gen_set(C,H l,r)
else if (is_arith_expr(rhs(S))) /= I->f = r op k %/
gen_set = heap_lhs_gen_set(C,H,l,r}
else
foreach (y,d) € S—locations(rhs(S))
if ((v,d) = (heap,P)) /x I=>f = r=>f: | and r are heap-directed +/
gen_set = gen_set U heap_lhs_gen_set(C,H 1)
else /« (y,d) is a stack location: I->f = y s/
gen_set = gen_set U heap_lhs_gen_set(C,H,ly)
return(gen_set)

Figure 4.3: Computing Gen Sets using S-locations
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/* Analyze statement S with inpul connection matriz C and
+ Il as the set of poinlers abstracted by C o/
fun process_basic_stmt(S,C,H) =

if (! is_pointer_type(S) ) /¢ not a pointer assignment «f

return(C)
/+ Connection relationships of definite S-locations are killed +/

kill_set = { Clx,2] | (z,D) € S-locations(ihs(S)) A x,2 € H A C[x,z] }
gen_set = build_gen_set(S,C,1) /+ Build the gen set +/

Vrs € H, Cy[rs] = C[r,s] /» Build thc ncw Connection Matriz »/

¥ entrics Clr,s] € kill_set, Cu[r,s] = 0 /+ Delete killed relationships «/
¥ entries C[r,s] € gen_set, Cylr,s] = 1 /+ Add generated relationships »/
return(C,)

Figure 4.4: Analyzing a Basic SIMPLE Statement

pointets connected with r get connected with all pointers connected with d.£.
Thus r and m get connected with d. £, and we get:

genset(T3) = { C[r,d.f], C[m,d.f] }

4. T4 ; r->f = s->f with r and s pointing to heap locations. Both S-lloc and
S-rloc represent (heap, P). So gen.sct(T4) = heaphs.genset(C,H,r;s). All
pointers connected with r get connected with all pointers connected with s.
Thus r and = get connected with s and 1, and we get:

genset(T4) = { C[r,s], C[r,]], C[m,s], C[m,]] }

We get gen_set{S) by unioning the gen scts of the above four S-statements:

genset(S) = { Clc.f,d.f], C[c.f,s], Clc.f)]], C[r,d.f],
C[m,d.f], Cir,s], C[r.l], C[m,s], C[m,]} }

We finally note that assignments involving structures are handled by breaking

them down into assignments between individual fields. However only fields of pointer
type arc considered for connection analysis.
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4.2 Analyzing Compositional Control Statements

In this section we present the analysis of control statements. SIMPLE supports
the following control statements: if, for, while, do~while, switch, continue, and
break. Thus only compositional control statements are supported, as goto statements
arc eliminated during the program structuring phase [EH94).

The analysis of control statements builds upon two fundamental concepts: (i)
merge operation for the flow information, and (ii) fixed-point computation.

The merge operation is required to approximate the data flow information at
control flow join points in the program. For example to obtain the output information
for an if statement, one needs to merge the output information from its if-part and
else-part. Fixed-point computation is needed to approximate the flow inforination
for loop statements. In this context, a fixed-point is reached when two successive
approximations of a loop do not result in any new information.

Merge Operator : We now define the merge operator for connection matrix infor-
mation. Since the information abstracted by conncction matrix is binary in nature,
the merge operator turns out to be simply the logical OR operation. Two connection
matrices C and C,, can be merged as follows, with C, as the resulting matrix:

Merge(C,C,) = V r,s € H, Cyu[r,s] = Cy[r,s] V C|r,5]

Thus if a connection relationship exists in either of the matrices, it exists in the
resulting matrix. It should be noted that having an efficient metge operation was
one of the major design criteria for connection matrix abstraction. In section 1.3 we
had shown that most heap analysis techniques are rendered expensive due to complex
merge operation.

To simplify the explanation, we first consider compositional control statements
without the presence of break and continue statements. Next we discuss how these
statements are accommodated in the analysis framework. The complete framework
for analyzing compositional control statements was developed in [Sri92, Ema93). We
simply adapt this framework for connection analysis.
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4.2.1 Analysis without break and continue Statements

if stalement:

Figure 4.5 gives the algorithm as well as a pictorial representation of the analysis of
if statement. The input connection matrix is C. If the condition cond does a pointer
equality check (e.g. p == NULL), it is considered as an assignment. The input matrix
C is modified to take this into account, and the resulting matrix CO is propagated
to the then-body. Similarly if the condition cond does a pointer inequality check
(c.g. p != NULL), its negation is considered to obtain the modified matrix Cl for the
else-body. Next the output matrices C2 and C3 from the then-body and else-body
are merged to obtain the output matrix for the if statement. In case the else-body
is empty, its ouput will be same as its input matrix Cl.

/» C : Input connection matriz, C
« H : Set of pointers abstracted by C,
« ign : Curren! invocation graph node »/
fun process_if(cond,then_body,clse_body,C,H,ign) = @
C0 = process_basic_stmt(cond,C H); Cco C1
Cl = process_basic_stmt(!cond,C,H); ¥ ‘
C2 = process_stmt(then_body,C0,H,ign); then_body else_body
C3 = process_stmt(else_body,C1,H,ign); ‘—r—
return(Merge(C1,C2));
C2 C3

Figure 4.5: Analyzing an if Statement

while statement:

The algorithm for analyzing a while loop is shown in Figure 4.6 along with a
pictorial representation of the analysis. The input connection matrix is C which is
also ihe first approximation as the output matrix for the loop. It is modified to C1
to take into account the condition cond if it happens to be a pointer equality test.
The matrix C1 is then propagated through the loop body to get the matrix C2. We
merge C and C2 to obtain the new approximation. This process is repeated until
the previous and current approximations turn out to be identical i.e. a fixed-point is
reached.

Other loop constructs like do-while and for statements are analyzed in a similar
way, using the analysis framework describe in [Sri92, Ema93).
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4.2.2 Analysis with break and continue Statements

We first recall the semantics of break and continue statements. Execution of a
break statement terminates the execution of the closest while, do-while, for or
switch statement. The control flow is then immediately transfered to the point just
aftor the body of the corresponding statement. A continue statement terminates the
exccution of the body of the closest while, do-while, or for statement. The control
flow is immediately transferred to the beginning of the loop body and the execution
continues from that point with a re-evaluation of the loop condition.

[+ C : Inpul connection matriz,

« H : Set of pointers abstracted by C, C

+ ign : Current invocation graph node */

fun process_while(cond,body,C,H,ign) = @
do
prevC = C; Ci
C1 = process_basic_stmt(cond,C,H); result
C2 = process_stmt(body,C1,H,ign); body
C = Merge(C,C2);

while (C != prevC);

return(C); C2

Figure 4.6: Analyzing a while Statement

To handle these statements we use two structures called the break-list and
continue-list. On encountering a break or continue statement, the current con-
nection matrix is stored in the break-list/continue-1list, and L (BOTTOM) is
passed as output, where L denotes no information. Propagating L corresponds to
taking paths in the program that will never occur in aay execution. Any statement
with the input .L produces 1 as output. The merge oper.*i-n for 1 and a connection
matrix C is as follows:

Merge(C,L) = Merge(L,C) = C

This rule is based on the fact, that a path with L as its output is an impossible
execution path, and its output can be ignored during the merge.
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We now explain how the information stored in the structures break-list and
continue-list is used in our analysis. Let us first consider the continue-1ist,
Since a continue statement takes the program control back to the beginning of
the corresponding loop, the following three matrices should be merged to get a new
ap,.roximation for the loop, cach time it is analyzed (each of these matrices can form
a new input to the loop):

o The matrix representing the previous approximation for the loop.

e The output matrix obtained by analyzing the loop-body with the previous ap-
proximation as the input.

e The matrices stored in the continue-1ist. Note that each of these matrices
is a potential input to the loop corresponding to some path in the loop body
terminated by a continue statement.

This process is repeated until a fixed-point is reached.

Unlike the continue-1list, the break~list does not participate in the fixed-
point calculation. Each matrix in the break-list represents a potential output of
the enclosing loop or switch statement. So matrices stored in this list are simply
merged with the approximation obtained for the statement under analysis, to get its
final approximation.

In the actual implementation, the whole list of matrices is not maintained. Every
time a break or continue statement is encountered, the new matrix is simply merged
with the one existing in the corresponding list.

In Figures 4.7 we present the algorithm to analyze a while statement in the
presence of break and continue statements. The framework for analyzing other
statements like do-while, for, and switch statements in this context, is presented
in [Sri92, Ema93], and is similarly adapted for connection analysis.

4.3 Interprocedural Analysis

In section 2.4 we had described a framework for context-sensitive interprocedural anal-
ysis. This framework is built by points-to analysis, and its salient features include: (i)
the invocation graph representation, which precisely captures the invocation struc-
ture of the program, (ii) context-sensitive map information deposited on invocation
graph nodes, and (iii) accurate handling of indirect calls through function pointers.

We now extend connection analysis to handle procedure calls using this framework.
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[+ C : Input conneclion matriz,
« H : Set of pointers abstracted by C,
+ ign : Current invocation graph node +/
fun process_while(cond,body,C,H,ign) =
do C
prevC = C; -
C1 = process_basic_stmt(cond,C,H);
C2 = process_stmt({body,C1,H,ign);
[+ cont_lst denotes continue—list »/
C3 = Merge(C2, cont_lst);
C = Merge(C,C3);
while (prevC != C);
[+ break_lst denotes break—list «/
result = Merge(C,break_lst);
return(result);

continue
) 4 break

Y
fun process_break(C,break_lst} = ¥ ¥ | continue
break_lst = Merge(C,break_lst); result
return 1;

fun process_break(C,cont_Ist) =
cont_lst = Merge(C,cont_st);
return 1;

Figure 4.7: Analyzing a while Statement with break and continue Statcments
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4.3.1 An Approach Based on Invocation Graphs

The overall strategy for interprocedural analysis is depicted in Figure 4.8, and the
complete rules are given in Figures 4.9 and 4.10. The general idea is that, first,
the connection matrix Cn, at the call-site is mapped to prepare the input connection
matrix C, for the called procedure. Next, the body of the procedure is analyzed with
this input matrix and the output matrix obtained (C;) is unmapped and the resulting
matrix C, is returned to the call-site. In effect, this strategy leads to a depth first
traversal of the invocation graph. Every time a procedure call is analyzed for some
call-chain, there exists an invocation graph node corresponding to it.

Callee

Map Process

Procedure

Figure 4.8: Interprocedural Startegy

With this strategy, connection relationships induced by one cali-site are never
returned to another call-site, and similarly connection relationships arriving from
diflerent call-sites are never simultaneously used to gencrate new relationships. How-
ever, the worst-case cost of this approach is exponestial in the number of call-sites
in the program. It may not scale for programs with a large number of call-sites for
procedures having large invocation (sub)graphs. Empirical results [EGH94] indicate
that this scheme is efficient for a broad range of programs. Presently we use simple
memoization to avoid potential explosion, as shown in the rules for interprocedural
analysis, where memoization can be turned on by setting a flag. More advanced
techniques for memoization are currently being developed.

With the above approach, when a procedure is analyzed for the first time, the
connection matrix valid at each statement (i.e. the matrix valid before processing the
statement), is deposited in the corresponding statement node in the SIMPLE tree.
For subsequent passes, the current matrix is merged with the one deposited in the
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tree, and the resulting matrix is stored in the SIMPLE node. Thus, the final matrix
in each statement node captures the connection relationships that may arisc due to
all possible invocations of the procedure.

With the overall strategy being clear, we first explain our approach to handle
recursive procedure calls, indircct procedure calls and return statements. Then we
describe in detail the process of mapping and unmapping connection matrices.

4.3.2 Handling Recursive Procedure Calls

The cases of approximate and recursive procedure calls shown in Figure 4.10 work
together to implement a safe and accurate fixed-point computation for recursion. As
we have explained in section 2.4.1, all possible unrollings for call-chains involving re-
cursion are approximated by introducing matched pairs of recursive and approximate
nodes in the invocation graph. Each recursive node marks a place where a fixed-
point computation must be performed, while each approximate node marks a place
where the current stored approximation for the function should be used (instead of
evaluating the call, the stored output matrix is used directly).

At each recursive node we store an input matrix, an output matrix, and a list
of pending input matrices. The input and output matrices can be thought of as
approximating the effect of the call associated with the recursive function (let us call
it £). The fixed-point computation generalizes the stored input matrix until it finds
an input matrix that summarizes all invocations of f in any unrolled call tree starting
at the recursive node for £. Similarly, the output matrix is gencralized to find a
summary for the output for any unrolling of the call tree starting in the recursive
node for £. The generalizations of the input and output matrices may alternate, with
a new generalization of the output matrix causing the input matrix to change.

Let us consider the ruvle for the approximate node in Figure 4.10. In this case,
the current input matrix is compared to the stored input matrix of the matching
recursive node. If the current input matrix is contained in the stored input matrix,
then we use the stored output matrix as the result. Otherwise, the result is not yet
known for this input matrix, so the input matrix is put on the pending list, and 1 is
returned as the resul:. Note that an approximate node never evaluates the body of a
function, it either uses the stored result, or returns L.

Now consider the recursive rule. In this case we have an iteration that only
terminates when the input matrix is sufficiently generalized (the pending list of input
matrices is empty) and the output matrix is sufficiently generzlized (the result of
evaluating the call doesn’t add any new information to the stored output matrix).
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[+ Analyze the procedure call corresponding to the invocation graph
« node ign. funcBody: Body of the called function, C: Inpui matriz,
+ H: set of pointers abstracted by the input malriz,

+ flyMemo: flag to set memoization on »/
fun process_call(funcBody,C,H,actualList,formalList,ign,figMemo) =
cnse type(ign} of
< Ordinary > =>

funclnput = cn_map(C,H,actualList,formalList,ign);

[+ if already computed »/

if ((ligMemo) and (funclnput == ign.storedInput})
return(cn_unmap(C,H,ign.storedOutput,ign));

else /» compute oulput, store input and output »/
/* JuncInput.pSet is the set of pointers abstracted by
+ the connection matriz funcinput «/
funcOutput = process_stmt(funcBody,funcInput,funclnput.pSet,ign);
ign.storedInput = funcinput;
ign.storedOutput = funcQutput;
reture{cn_unmap(C,H,funcOutput,ign));

< Approximate > =>
return(process_call_approx(funcBody,C,H,actualList,
formalList,ign,figMemo));

< Recursive > =>
return(process_call_recur(funcBody,C,H,actualList,
formalList,ign,flgMemo));

Figure 4.9: Compositional Interprocedural Rules for Connection Analysis
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/» Rules to analyze approzimate and recursive calls »/
fun process_call_approx(funcBody,C,H,actualList,formalList,ign,igMemo) =
funclnput = cn_map(C,H,actualList,formalList,ign);
reclgn = ign.recEdge; /+ gel pariner recursive node in inv, graph s/
[ if this input is contained in stored input, use stored oupul s/
if isSubsetOf(funcInput,recign.storedInput)
return(cn_unmap{C,H,reclgn.storedOutput,ign);
else [+ put thiz inpul in the pending list, and return 1 »/
addToPendingList{funcInput,reclgn.pendingList);
return L;

fun process_call_recur(funcBody,C,H actualList,formalList,ign,lgMemo) =
funclnput = cn_map(C,H,actualList,formalList,ign);
if {((igMemo) and (funclnput == ign.storedinput)) /# already computed »/
return(cn_unmap(C,H,ign.storedOutput,ign));

else
/* initial input estimate »/ [+ initial output estimate «/
ign.storedInput = funclnput; * ign.storedQutput = L;
ign.pendingList = {}; figMemo = done = false;

do /* process the function body »/
sInput = ign.storedInput;
funcOutput = process_stmt(funcBody,sInput,sInput.pSet,ign,llgMemo);
/* if there are unresolved inputs, merge inpuits and restart s/
if {ign.pendingList != {})
ign.storedInput = Merge(ign.storedInput,pendingListInputs);
ign.pendingList = {}; ign.storedQutput = 1;
/* check to see if the new output is included in old output +/
else if isSubsetOf(funcOutput,ign.storedOutput)
done = true;
else /+ merge outputs and iry again */
ign.storedOutput = Merge(ign.storedOutput,funcOutput);
while (not done);
/» reset stored input to initial inpul for fulure memoization «/
ign.storedinput = funcInput;
/» return the fized—point after unmapping +/
return(cn_unmap(C,H,ign.storedOutput,ign));

Figure 4.10: Compositional Interprocedural Rules for Connection Analysis
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An important point to note from Figure 4.10 is that the memoization flag is set
to False while handling a recursive procedure call. This is done to avoid the possible
reuse of an incompletely computed output for an incompletely computed input at
approximate nodes.

4.3.3 Handling Indirect Procedure Calls

Indirect procedure calls through function pointers are easily incorporated in the anal-
ysis. The points-to analysis has resolved all the functions possibly pointed to by the
function pointer, and one just analyzes each possibility, merging the output matrices.
The exact rule is given in Figure 4.11.

/% Analyze the indirect procedure call corresponding to the invocation
+ graph node ign. C: Input matriz, H: Set of poinlers abstracted by
+ the input matriz, flgMemo: flag to set memoization on */

fun process_indirect_call(C,H,actualList,ign,figMemo) =

ignSet = childNodesOf(ign) /* set of functions invocable */
funcOutput = {}
foreach igNode in (ignSet)
[+ get the output matriz for each invocable function s/
igNodeQutput = process_call(igNode.funcBody,C,H,actuallList,
igNode.formalList,igNode,flgMemo);
/* merge the oulpu? matrices +/
funcOutput = Merge(funcOutput,igNodeQutput);
return(funcOutput);

Figure 4.11: Handling Indirect Procedure Calls

4.3.4 Return Statement

Function calls of the form x = f(args) are handled in the same way as normal
function calls, with a slight modification. In this case the function £ should have at
least one occurrence of the return statement.
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For each function £ returning a pointer type variable, we definc a global vari-
able returnf with the same type as £. Using this newly defined variable, we treat
return(var) as:

returnf = var;
return;

and we treat x = f(args) as:
f(args);
x = returnftf;

The return statement is handled in the same way as break statement. Another
structure called return-list is maintained to store connection matrices reaching
the return statements in the function, and L is passed as the output of each return
statement. At function exit, the current connection matrix is merged with the ma-
trices in the return-1list, to obtain the output matrix for the function.

4.3.5 Mapping and Unmapping Connection Matrices

Mapping involves preparing the input connection matrix C. for the called procedure
from the connection matrix Cp, valid at the call-site. The mapping process proceeds in
three sieps : (i) identifying pointers abstracted by C,,, whose connection relationships
can be modified by the procedure call, and representing them in the matrix C., (ii)
computing the connection relationships generated by assigning actual parameters to
their corresponding formals, and (iii) building the connection matrix C, from C,,
using the information from steps (i) and (ii).

Let the set of pointers abstracted by C,, and C, be respectively denoted as H,, and
H.. We first identify the pointers belonging to H,,, whose connection relatxonshlps
can be changed by the procedure call. They are as follows:

e Pointers which are global in scope. They are directly accessible to the
callee, and hence their connection relationships can be arbitrarily modified by
the procedure call.

o Pointers indirectly accessible in the callee. These pointers are local to the
caller, but can be accessed by the callee through an indirect reference. Hence
their connection relationships can also be eastly modified by the procedure call.
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¢ Inaccessible local pointers. These pointers are local to the caller and are
also not indirectly accessible in the callee. However, they are connected either
(i) with a global pointer, or (ii) with an indirectly accessible poinzer, or (iii)
with a pointer passed as a parameter. These pointers cannot be accessed or
updated by the callee. However, their connection relationships can be modified
by the callee, through the accessible pointers connected with them.

In Figure 4.12 global pointer p and local pointer q are connected at the call-
site foo(). After the call, both p and q remain connected, but only p remains
accessible in the called procedure. In procedure foo(), statement r = p con-
nects global pointer r with p. Next the statement p = NULL kills all connection
relationships of p. On returning from the procedure, pointer q becomes visible
again. But now it is connected with r and is no longer connected with p. Thus
the connection relationships of q are modified by the call, through the global
pointer p. Similarly if q is connected with an indirectly accessible pointer x or
to an actual parameter a;, the callee can modify its connection relationships by
indirectly referencing x or by connecting the corresponding formal £; to some
pointer visible in the caller.

bar #r, *p;
main() fool)
{ {
bar *q;
= (bar+) malloc();
?: = (bil;:) ﬁanzc(); {*_C;{p,p] */
q->f = p; =™
/"‘ Cm[PrP]: Cm[q,q], Cm[p,q] */ {)*=C=D[I-I{}%]i;cc[r:r]: Ccff‘,P] xf
e v Caltr] 3/
/* Cﬂ[‘i’r‘]]! Cn[r;r]r Cn[‘)yr] */ }
qQ->i = 5
}

Figure 4.12: Procedure Call Affects Relationships of Inaccessible Pointers
To enable accurate estimation of the effect of a procedure call on their connection

relationships, the above three types of pointers should participate in the analysis of
the called procedure. Hence they should be abstracted by the connection matrix C.,
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and should be represented by some name in the set H. Global pointers can be simply
represented by their name, as in the set H,,. The other two types of pointers are local
to the caller, and do not have natural names in the callee. So we represent them
using special compiler-generated symbolic names. If a pointer p is represented by a
symbolic name say 1-x, p is considered to be mapped to the name 1-x.

Representing Out of Scope Pointers

To represent indirectly accessible pointers, we simply reuse the symbolic names gener-
ated by points-to analysis. As discussed in section 2.4.2, points-to analysis generates
special symbolic names to represent all indirectly accessible variables. The symbolic
names themselves are context-independent. For a given calling context, each indi-
rectly accessible variable is mapped to one of these symbolic names, and this map
information is stored in the corresponding invocation graph node.

For connection analysis, we extract the points-to map information from the invo-
cation graph node for the current calling context. To represent indirectly accessible
pointers in connection matrix C,, we use the symbolic names they are mapped to,
as per this map information. It should be noted that points-to analysis maps each
indirectly accessible variable to a unique symbolic name, but can map more than one
variable to a single symbolic name.

To represent inaccessible local pointers, we generate additional symbolic names,
in the same fashion as points-to analysis (section 2.4.2). For each pointer that can
be heap-directed at some point in the program, and is ¢ither global in scope or is a
formal parameter, a unique symbolic name is generated by prefixing its name with
the string ‘0+’. Further, if a symbolic name generated by points-to analysis happens
to represent a heap-directed pointer in some calling context, another symbolic name
is generated by prefixing its name with the string ‘04’. Points-to analysis prefixes
variable names with strings of the form ‘i+’ and ‘i-* where i 2 1, to generate symbolic
names. Qur choice of the string ‘04’ thus avoids possible name clashes. Otherwise
the choice is completely arbitrary.

Now if 2n inaccessible local pointer is connected with a globai pointer, it would be
mapped to the ‘0+’-prefixed symbolic name corresponding to the global pointer. We
demonstrate the mapping of names {hrough the example program in Figure 4.13(a).
At the call-site foo() in main, local pointer q is connected with global pointer p. So
it is mapped to the symbolic name 0+p. Further, pointer r is connected with itself
and is passed as a parameter to the formal fr. So it is mapped to the symbolic
name 0+fr. Finally, pointer s is indirectly accessible in the callee via the indirect
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reference *£3, Points-to analysis maps it to the symbolic name 1-£s, and we reuse this
mapping. Since local pointer 1 is connected with s, it gets mapped to the symbolic
name 0+1-fs, The complete map associations are shown in part (b) of Figure 4.13.

Fach inaccessible local pointer is mapped to at most one symbolic name. So if a
pointer has already been mapped, it is not mapped again. However more than one
pointer may be mapped to a symbolic name. In this case, the connection relationships
of the symbolic name are a merge of the relationships of the pointers it represents.
This introduces imprecision. So we try to minimize the number of pointers mapped to
a symbolic name, using a simple greedy strategy: if a pointer can be mapped to more
than onc symbolic name, we choose the one with least number of pointers mapped to
it. More complicated schemes can be developed, but empirical results indicate that
our simple scheme works well for real programs.

Finally, the mapping associations of both indirectly accessible and inaccessible
local pointers, are recorded in the invocation graph as conncction map informa-
tion(cn.map.info). This information is retricved and used while unmapping.

The complete algorithm for mapping local pointers is shown in Figure 4.15. The
function cn.mapped_name is also defined. For any pointer x, cn_mapped_name(x,ign)
gives the name that represents x in the called procedure for the calling context cor-
responding to the invocation graph node ign.

Building the Connection Matrix at Procedure Entry

Due to call-by-value semantics of C-language, parameter passing results in assigning
actual arguments to the corresponding formal parameters. If an actual argument a; is
presently heap-directed, the corresponding formal £; inherits its connection relation-
ships. Thus if a; is connected with a pointer x; as per connection matrix C,,, we have
f; connected with the pointer y; = cnomapped_name(x;,ign) in connection matrix C..
Besides if a; is connected with some pointer a;, which is passed as a parameter to the
formal £;, £; and £; get connected in C.. A special instance of this case is when a;
itself is passed as an argument to the two formals.

Only parameter assignments gencrate new connection relationships for a procedure
call. Other relationships are simply copied over from C,, to C,, taking into account the
mapping of pointers in C,, to possibly new names in C.. Consider a connection matrix
entry Cm[r,s]. Let y = cn.mapped-name(r,ign) and z = cn.mapped.name(s,ign).
If either y or z is not defined, the entry Cn[r,s] can be ignored. In this case the
relationship Cp[r,s] neither generates any relationship in C, nor would it itself be
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bar *p;
main()

bar *q, »r, #s;
bar *l, »+temp;
p = (barx) malloc();
r = (bare) malloc();
s = (bar+¢) malloc();

q=7p;l=s;
temp 0 = &s;
/* Cm "‘/
foo(temp_0,r);
/* Ca "'/
q->i = §

(a)

foo(bar »xfs, «fr)

{
/* Ce x/

p—>f = fr;
temp_1 = »fs;
fr—=>f = stemp_l;
p = NULL;

[+ C:

Map Associations: { » = 1-fs,| = 0+1-fs, q = 04p, r = 0+fr }

(b)

Figure 4.13: An Interprocedural Example
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Figure 4.14: Connection Relationships for the Interprocedural Example

81




/+# Functions lo map names in the matriz C,, at call-site, lo names in
« the matriz C, at procedure entry, for the call corresponding lo the
* invocation graph node ign »/
fun cn_map_names{C,,,H ,actualList,formalList,ign)
foreach r € Hy,
/+ Find the name r should be mapped to in the called procedure */
x = find_mapped_name(r,Cp,,Hm,actualList,formalList,ign);
/* r is mapped lo the name denoted by z for this invocation */
cn_mapped_name(r,ign) = x;
return;

fun find_mapped_name(r,Cm,Hm actualList,formalList,ign)
if is_defined(cn_mapped_name(r,ign)) /+ already mapped */
return;
if is_global(r) /» global pointers are mapped to themselves »/
return r;
if is_defined(ign.ptMaplnfo(r)) /+ already mapped by points—to analysis */
return (ign.ptMaplnfo(r));
/* r is an inaccessible local. Determine the set of globals, indirectly
+ accessible pointers, and actual arguments, r is connecied with */
cn_set = {};
foreach s € H,,
if (C[r,8]) /* r is connected with 3 %/
if ((is_global(s}) or (is_defined(ign.ptMaplnfo(s)) or
(s € actualList))
/* Find the ‘0+’-prefized symbolic name corresponding to s =/
s_sym = cn_symbolic_var(s);
cn_set = cn_set U {s_sym};
if (is_empiy(cn_set))
return undefined; /+ r need not be mapped »/
/+ find the variable in cn_set with minimum number of vars mapped to it */
X = min_mapped_var(cn_set);
return (x);

Figure 4.15: Mapping Names From Caller to Callee
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modified by the procedure call. Otherwise if y and z arc already connccted, they
remain connected. This can happen because more than one name in C,, can be
mapped to names in C.. If C.ly,z] is presently zero, it is set to one il C,,[r,s] is
presently one. So we have: C.[y,z] = Cmir.s] vV Cc[y,z]. The rest of the entries in C,
relating local pointers of the callee are initialized to zero.

The complete algorithm to construct the matrix C, at the procedure entry is shown
in Figure 4.16. An example is shown in Figure 4.14, for the program in Figure 4.13,

Unmap Strategy

Once the called procedure is analyzed with the input connection matrix C, we get the
output matrix C. at iiie procedure exit. Next we need to unmap C.. to obtain the out-
put matrix C, valid after the call-site in the caller. This is a simple process. For each
entry C.r,s] we find y = cn_.mapped_name(r,ign) and z = cn_mapped_name(s,ign). If
either y or z is not defined, it implies that this entry is not modified by the procedure
call. So it is simply copied over to C,, and we have C,[r,s] = C,.[r,s]. Otherwise r
and s would have the same relationship after the call-site, as y and z at the proce-
dure exit, and we have Cp[r,s] = Cz[y,z}. The complete unmap algorithm is shown
in Figure 4,17, An example unmapping is shown in Figure 4.14, for the program in
Figure 4.13.

4.4 Some Important Observations

Connection analysis relies upon some important assumptions. We discuss them below.

4.4.1 Memory-Allocating Functions

Our analysis needs to know the functions that can allocate a new heap object. Since
the analysis is implemented for C programs, we have identified various library func-
tions that allocate heap memory: malloc, calloc, valloc, memalign, mallopt, and
alloca. The function alloca zilocates memory on the stack but since the allocation
is dynamic we treat it as heap allocation. The function realloc(ptr, siza) needs
to be considered separately. The statement p = realloc(q,size) makes p point to
the memory object pointed to by q, but at an offset of size size. For purpose of
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/* Funclions te compule input malriz C, al procedure eniry from the
» matriz Cy, at call-sile corresponding to invocation graph node ign */
fun cn_map_matrix(Cm,Hm,actualList formalList,ign) =
/* Map names in C; to names in C, +/
cn_map_names(Cp,Hy, actualList,formalList,ign);
/* Compute relationships generated by parameter assignments +/
param_gen_sct = {}; /+ inilializing param_gen_set »/
foreach (a; € actualList) and (f; € formalList)
if (Cla;,a;)) /+ actual is presently heap—directed */
/* gen_set for the assignment f; = a; */
gen_set = cn_param_assign(Cy, ,Hm,a;,f;,actualList,ign);
param_gen_set = param_gen_set U gen_set;
/* Entries in param_gen_set are set lo one in C, »/
foreach entry C[r,s] € param_gen_set, C.[r;s] = 1;
/* Map entries in Cp lo eniries in C, +/
foreach pair r,s € Hy,
¥y = cn_mapped_name(r,ign); /+ r is mapped lo y =/
z = cn_mapped_name(s,ign); /* s is mapped to z «/
if ({is_defined(y)) and (is_defined(z)}) /* Both r and s are mapped +/
/% C.ly,z] could already be set to one due.to
* @ previous mapping. So merge is done »/
Ce[yvz] = Cm[ris] v C,[y.z];

return C.; /+ Matriz at procedure entry +/

fun cn_param_assign(Cp,Hm,ai,fi,actualList,ign)
gen_set = {};
foreach r € H, .
y = cn_mapped_name(r,ign); /+ r is mapped to y »/
if (Cml[as,r)) /* r is connected with a; at call-site x/
/% fi gets connected with y at procedure entry x/
gen_set = gen_set U {C[fi,y]};
foreach a; € actualList
if (r = a;) /* a; is connected with another actual a; */
gen_set = gen_set U {C[f;,{;]}; /+ fi gets connected with f; +/
return gen_set;

Figure 4.16: Mapping a Connection Matrix
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/* Given the matriz C; valid al the call-site, and the matriz C;
+ valid at the procedure eril, computle the matriz C, valid after
* the call-site. ign is the invocation graph node for the given call «/
fun cn_unmap_matrix(Cy, ,Hm,Cr ign) =
foreach pair r,s € H,,
y = cn_mapped_name(r,ign); /« r is mapped lo y +/
z = cn_mapped_name(s,ign); /* s is mapped to : */
if ((is_defined(y)} and (is_defined(z)))
[+ Both r and s were mapped to C,. So simply copy from C; x/
Cn[l',S] = C:[sz];
else
/* At least one of them is not mapped. So relationship remains same +/
Cnlrs] = Chmlrs);

return Cy;

Figure 4.17: Unmapping a Connection Matrix

connection analysis we consider p to be pointing to the same object as q. Hence the
analysis rule for the above statement is same as that for the statement p = q.

Sometimes, due to efficiency reasons, programmers allocate a big chunk of memory
using one of the above library functions. Then they do their own memory manage-
ment, typically using pointer arithmetic. In this case our analysis is able to identify
only one heap object. All heap-directed pointers point at different offsets of this
object. Hence all of them are reported to be connected with each other, providing
essentially no useful information. However, even in this case, programmers typically
define their own function to ailocate memory from the pre-allocated chunk of memory.
If the analysis is informed about this function, it can treat it same as a malloc()
call.

Presently, our analysis recognizes only the library functions mentioned above as
memvry allocators. We plan to extend it to recognize user-defined memory-allocating
functions, with appropriate feedback from the programmer.

It should be noted that if the call to a memory-allocating function is embed-
ded inside another function, our analysis does not lose any precision because of its
interprocedural nature. For example, suppose the user defines a function my_malloc:
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void *my_malloc(int size)

{
void *temp;
temp = (void*) malloc(size);
if (temp == 0}
fatal_error("Virtual memory exhausted.");
else
return temp;

}

Now the statement p = my_malloc(size) will be analyzed as:
my-malloc(size);
p = returnmy.malloc;

In the function czll my_mallec(), statement return temp will be analyzed as:
return.my_malloc = temp;
return;

Thus after the function call, the global variable return_my malloc will be pointing
to the new heap object allocated by the call to malloc() in the function. The
assignment p = return.my.malloc will make p also point to this object. Thus the
statement p = my malloc(size) has the same effect on connection relationships of
p as would the statement p = malloc(size).

We also review our assumptions about pointer arithmetic. They may not be valid
under certain circumstances, specially when user does his own memory management.
We provide a flag to the user to indicate when the assumptions may not be valid. In
this case, for a statement like p = q + k, p is connected with every other pointer to
ensure the safety of our approximation.

4.4.2 Pointers from Heap To Stack

While defining the basic analysis rules, we had assumed that heap-resident pointers
do not point to locations on the stack. With this assumption, if p points to a heap
data structure, p=>f should also point to the same data structure. Without this
assumption, p->f can also point to a stack location. The two cases are shown in
Figure 4.18( with N denoting the field £). In part (b) of the figure, pointers p and q
point to disjoint heap data structures from connection matrix point of view, as they
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are not linked by a heap-resident pointer. However, starting from pointer p one can
access pointer q, and hence the data stricture pointed to by q. On the contrary, we
want that when p and q are not connected, p should not be able to access any heap
location accessible from q, and vice versa.

Note that heap-resident pointers pointing to stack locations (henceforth we term
these stack locations as heap-pointed locations), as such do not affect the correctness
of connection analysis. Their presence just requires more carcful interpretation of
connection matrix information. Presently, we detect all heap-pointed locations of
pointer type by using points-to information: any pointer x, involved in points-to
relationships of the form (heap,z, P), falls into this category. In the presence of
heap-pointed pointers, we ensure that any analysis or transformation using connection
matrix information, makes the following conservative assumption: if a heap-pointed
pointer is heap-directed, the data structure pointed to by it can be potentially accessed
by any other heap-directed pointer.

To enable more accurate assumptions, we plan to abstract another relationship
called stack-connection. Pointer p is considered to be stack-connected with pointer q,
if some heap object belonging to the data structure pointed to by p, has a pointer field
pointing to q i.e. the pointer field contains the address of q. Thus, in Figure 4.18(b),
pointer p is stack-connected with pointer q. With this abstraction, we can state the
following: Two heap-directed pointers cannot access a common heap location, if they
are neither connected nor stack-connected.

To accurately capture stack-connection relationships, we need to build a stack-
connection matrix for each function. This matrix abstracts relationships between
heap-directed pointers and pointers which are reported to be heap-pointed by points-
to analysis. A pointer becomes expiicitly stack-connected with another pointer due to
the statement p->1link = &q. Further if a pointer p is stack-connected with another
pointer q, all pointers connected with p also get stack-connected with q. Using these
two basic rules, stack-connections can be computed in the same fashion as connection
relationships, both intraprocedurally and interprocedurally.

In our experimental study of a collection of C programs presented in chapter 6, we
found some programs to have heap-pointed stack locations. However, none of these
locations turned out to be of pointer type. We plan to analyze a larger sct of programs
to evaluate, how much improvement can be obtained by abstracting stack-connection
relationships.
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Figure 4.18: Handling Stack-connection Relationships




/* Given a statement S, an inpul matriz C which abstracis the set of
» pointers H, and an invocation graph nodc ign: analyze it in the
* calling context corresponding lo ign, and reiurn the output
= conneclion matriz, fliMemo: flag to set memoization on »/
fun process_stmt (S,C,H,ign,flgMemo) =
if basic_stmt(S)
return(process_basic_stmt(S,C,H));
else
case S of
<SEQ(S1,52)> : return(process_stmt(S2,process_stmt(S1,C,H,ign),H,ign));
<IF(cond,thenS,elseS)> : return(process_if(cond,thenS,clseS,C,H,ign));
<WHILE(cond,bodyS)> : return(process_while(cond,bodyS,C,H,ign));

<(*f)(args)> : return(process_indirect_call(C,H,ign,figMemo));
<f(args)> : return(process_call(f.body,C,H f.actualList,
f.formalList,ign,figMemo));

Figure 4.19: Overview of Analyzing a SIMPLE Statement
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4.5 Summary

In this chapter we described the complete interprocedural connection analysis. A
storcless approach was developed to identify if two heap-directed pointers point to
the same data structure i.e. the same connected region in the heap. The analysis has
been implemented on the SIMPLE intermediate representation, and an overview of
the analysis is shown in Figure 4.19.

Othar more sophisticated heap analysis techniques discussed in section 1.3 can
also obtain this information. However connection analysis should be viewed as the
first abstraction in a hierarchy of abstractions for heap analysis. Hence it cannot be
directly compared with other methods. In chapter 6, we provide empirical data to
demonstrate that it provides useful information in a cost-effective way, for its target
domain of applications.
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Chapter 5

Shape Analysis

In this chapter, we present a new heap data structure analysis called shape analysis.
It follows the connection analysis in our hierarchy of heap data structure analyses.
Connection analysis helps disambiguate heap accesses to completely disjoint data
structures. When programs use huge aggregate structures like trees, it becomes es-
sential to disambiguate accesses to disjoint subpieces of the same data structure.
Shape analysis is designed to disambiguate heap accesses at this level, and it uses
four simple abstractions which work together towards this goal. These abstractions
include: (i} direction matrix, (ii) interference matrix, (iii) shape attribute, and (iv)
root attribute.

The chapter is organized as follows. We introduce and motivate these abstractions
in section 5.1. In the next section, we dzfine the rules to analyze basic heap statements
for collecting shape analysis information. In sections 5.3 and 5.4, we extend these
rules to analyze C programs, using the SIMPLE intermediate representation. In
section 5.5, the interprocedural analysis framcwork presented in section 2.4, is adapted
to shape analysis. Finally, a brief summary of the chapter is presented.

5.1 The Abstractions

Like connection matrices, both direction and interference matrices are boolean ma-
trices of relationships between heap-directed pointers. Direction matrix abstracts
the path eristence relationship between heap-directed pointers. Interference matrix
abstracts the accessibility of a common heap object from two given heap-directed
pointers.
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Given any two heap-directed pointers p and q, direction matrix D captures the
following program-point-specific relationships between them:

e D[p,q] = 1 : An access path possibly exists in the heap, from the heap object
pointed to by pointer p, to the heap object pointed to by pointer q.

e D[p,q] = 0: No access path exists from the heap object pointed to by p, to the
heap object pointed to by q.

Henceforth, if D[p,q] is one, we will simply state that pointer p has a path to
pointer q, and vice versa.

Given any two heap-directed pointers p and q, interference matrix I captures the
following program-point-specific relationships between them:

e I[p,q = 1: A common heap object can be possibly accessed, starting from
pointers p and q. In this case, we state that p and q can interfere.

e I[p,q] = 0 : No common heap object can be accessed, starting from pointers p
and q. In this case, we state that p and q do not interfere.

We illustrate the two abstractions in Figure 5.1. Part (a) shows the heap st1icture
at a program point, while parts (b) and (c) show the direction and interference ma-
trices for it. In Figures 2,17 and 3.1, we had shown the path matrix and connection
matrix abstractions for a similar heap structure.

The zero in the entry D[p,r] indicates that no access path exists from the heap
object pointed to by p to the heap object pointed-to by r. The one in the entry
D[s,t] indicates that an access path exists from pointer s to pointer t. Note that in
the path matrix abstraction in Figure 2.17, the entry P[s,t] is the path expression
L?. Thus direction matrix only abstracts the path eristence relationship between
heap-directed pointers, as opposed to the precise path expressions between them, for
efficiency reasons.

In Figure 5.1(a), pointers r and t point to disjoint subpieces of the same data
structure. So the entry D[r,t] is zero, while in Figure 3.1 the connection matrix entry
C[r,t} is set to one. Thus direction matrix collects more sophisticated information
than the connection matrix abstraction.

Pointers s and u in Figure 5.1(a) point to the same data structure. However, no
access path exists between them. So both the entries D[s,u] and D[u,s] are zero. But
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Figure 5.1: Example Direction and Interference Matrices
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starting from both s and u, the heap object pointed to by r can be accessed. To
indicate this, the interference matrix entry I[s,u] is set to one. Note that in this case
the connection matrix entry Cs,u] would also be one. However, the entry I[u,t] is
zero, whereas Clu,t] would be one. Thus the interference matrix abstraction captures
more precisc information than the connection matrix abstraction.

Below, we note some other important characteristics of the two abstractions:

¢ Dircction relationships are not symmetric. If an entry D[p,q] is one, it only
implies the existence of an access path from p to q and not vice versa. For
example, in Figure 5.1 the entry D[s,t] is one, while the entry D[t,s] is zero.

o Interference relationships like connection relationships are symmetric. If an
entry Ifp,q] is one, the entry I[q,p] is also one. Both of them imply that a
common heap object can be accessed starting from pointers p and q. The
interference relationships shown in Figure 5.1(c), illustrate this property. The
symmetric property reduces the storage requirements for interference matrix by
half, in the actual implementation.

e Interference relationships form a superset of direction relationships. If an access
path exists from pointer p to q, then p and q can both access the heap object
pointed to by q. Thus, if the entry D[p,q] is one, the entries I[p,q] and I{q,p]
are also one. As already discussed, the converse is not necessarily true. In
Figure 5.1 I[s,u] is one, while both D[s,u] and D[u,s] are zero.

e If the entry D[p,p] is set to one, it implies that pointer p is presently heap-
directed.

The main motivation behind estimating direction relationships, is to estimate the
shape of the data structures built by the program. The shape of a data structure can
be Tree, Dagor Cycle. A data structure is considered to be a Tree, if there is a unique
(possibly empty) (access) path between any two nodes (heap objects) belonging to
it. It is considered to be a Dag (directed acyclic graph), if there can be more than
one path between any two nodes in the data structure, but there is no path from a
node to itself (i.e. it is acyclic). If the data structure contains a node having a path
to itself, its shape is considered to be Cycle. Note that, as lists are a special case of
tree data structures, their shape is also considered as Tree.

We now demonstrate how direction relationships help estimate the shape of heap
data structures. A shape attribute is associated with each heap-directed pointer. For
a pointer p, the shape of the data structure accessible from it, is abstracted as p.shape.
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In Figure 5.2, initially we have both p.shape and q.shape as Tree. Further we have
D[p,q] as one, as there exists a path between p and q through the next link, The
statement q->prev = p, sets up a path from q to p through the prev link, and creates
a cycle between heap objects pointed to by p and q. After the statement, we have
D[p,q] = 1, D(q,p} = 1, p.shape = Cycle and q.shape = Cycle.

next :q p->prev =q next prev

Dlqpl=1 Dp.qi= 0 Dlq,p] =1 D[pgl=1
p.shape = Tree p-shape = Cycle
q.shape = Tree q.shape = Cycle

Figure 5.2: Example Demonstrating Shape Estimation

It should be noted that for a heap-directed pointer p, p.shape only abstracts the
shape of the data structure accessible from p and not the overall shape of the data
structure pointed to by p. For example, in Figure 5.3, the overall shape of the data
structure pointed to by p and q is Dag. However, if only the part of the data structure
accessible from p or q is considered, its shape is Tree. So we have both p.shape and
q.shape as Tree.

Knowledge about the shape of the data structure accessible from a heap-directed
pointer, provides crucial information for disambiguating heap accesses originating
from it. For a pointer p, if p.shape is Tree, then any two accesses of the form p->f
and p->g will always lead to disjoint subpieces of the tree (assuming £ and g are
distinct fields). If p.shape is Dag, then two distinct field accesses p->f and p->g
can lead to a common heap object, as in Figure 5.4. However, if the data structure
is traversed using only one link, for example using only the £ link in Figure 5.4, a
distinct heap object will be visited by each access. Moreover, if a dag-like structure
is traversed using a given sequence of links, every subsequence would visit a distinct
node. This information can be used to disarnbiguate heap accesses across different
iterations of a loop traversing such a data structure. Finally, if p.shape happens to be



Figure 5.3: Estimating Shape with accessibility Criterion

Cycle, we have effectively no information to disambiguate heap accesses originating
from p.

Figure 5.4: Acyclicity of Dag Data Structures

Thus, our goal is to identify tree-like and dag-like data structures, and to retain
this information as long as possible, during the analysis. To be able to collect more
accurate shape information, we also abstract a root attribute for each heap-directed
pointer !. We have p.root as True, when the heap object pointed to by p has no.
incoming links into it. Otherwise, it is assigned False. Note that a stack-resident
pointer pointing to a heap object, is not considered as an incoming link. In Figure 5.1
the root attribute of pointers p, u and s is True, while for pointers g, r and t it is

False.

It turned out that the root attribute does not prove to be of direct help in shape analysis.
However, we still abstract it as it can be useful for other purposes like program understanding and
debugging,
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The interference matrix information is used to improve the precision of shape
analysis, as shown in the next section. However, to accurately estimate interference
relationships themselves, direction relationships are required. So the two abstractions
need to be computed simultaneously. Interference information by itself, can be used
to determine if heap accesses originating from two heap-directed pointers can lead to a
common heap object. This information is more accurate than connection information,
as the latter only identifies if two heap accesses can lead to a common data structure.

Having defined and motivated the abstractions, we now present the analysis rules
to compute them.

5.2 Analyzing Basic Heap Statements

In this section, we present the rules to estimate the effect of the eight basic heap
staternents shown in Figure 3.2, on direction and interference matrix information.
The overall structure of the analysis is shown in Figure 5.5(a). We have the direction
and interference matrices D and [ at program point x, before the given statement. We
wish to compute the matrices D, and I, at program point y. Additionally, we have
the attribute matrix A, where for a pointer p, A[p.shape] gives its shape attribute,
and Alp.root] gives its root attribute. The attribute matrix after the statement is
represented as A,

For each statement, we compute the sets of direction and interference relationships
it kills and generates. Using these sets, the new matrices D, and I, are computed as
shown in Figure 5.5(b). We also compute the sets of heap-directed pointers H, and
H,, whose shape and root attributes can be changed by the given statement. Another
attribute matrix A. is used to store the changed attributes of pointers belonging to
the sets H, and H,. The attribute matrix A, is then computed using the matrices A
and A, as shown in Figure 5.5(b).

Let H be the set of pointers relevant to heap analysis, for the procedure containing
the given statement. This is the set of pointers whose relationships/attributes are
abstracted by matrices D, I and A. For the analysis of basic heap statements, we
assume that pointers can only point to heap objects or to NULL, as we assumed for
connection analysis. We also assume that updating an interference matrix I|p,q],
implies identically updating the entry I[q,p]. This assumption is rendered valid duc
to the symmetric nature of interference relationships.

We now present the analysis rules for the eight basic heap statements:
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p = malloc() : Pointer p points to a newly allocated heap object. All its existing
relationships get killed. Pointer p has an empty path to itself, and it also interferes
with itself. This statement can change the attributes of only pointer p. Since the
newly allocated object pointed to by p has no incoming or outgoing links, it is both
a root and a Tree.

These observations can be summarized in rule format as follows:

D_kill.set = { D[p,s] | s € H A D[p,s] } U { D[s,p] | s € H A Dis,p] }
Ikiliset = { I[p,s] | s € HA I[p,s] }

malloc.gen_set = { D[p,p], I[p,p] }

Hy,={p)} H-={p} Aclpshape] =Tree A.[p.root] = True

Build the new matrices
Vrse€H, Dﬂ[r!s] = D[I,S], In[l',S] = I[r$5]
Vs € H, A,[s.shape] = A[s.shape]
D I A Vs € H, Apfs.root] = Afs.root]
Delete killed relationships
X V entries D[r,s] € killset, Dy[r,s] = 0
m V entries Ifr,s] € kill_set, I,[r,s] = 0
7 Add generated relationships
V entries D[r,s] € gen-set, Dy[r,s] = 1
D, I, A, V entries I[r.s] € gen_set, I,[r,s] = 1
Update attributes of affected pointers
Vs € H,. A,[s.root] = A {s.root]
Vs € H,, An[s.shape] = A [s.shape]

(a) (b)

Figure 5.5: The Overall Structure of the Analysis

Note that having D[p,p] in the gen sct here simply implies that p presently points
to a heap object. It does not imply that a cyclic data structure becomes accessible
from p after this statement. In that case, we should also have A [p.shape} = Cycle.

The next five basic heap statements (p = q, p = q=->£,p = &(q~>£),p = q op
k and p = NULL) update the stack-resident pointer p, and make it point to a new
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heap object. They kill all existing relationships of p, and only change the attributes
of pointer p. So the kill set and the sets H, and H, for all these statements, are same
as that for the statement p = malloc(). Below, we present the rules to calculate the
gen set and the matrix A, for these five statements.

P = q: Pointer p now points to the same heap object as q. So it would have paths
from/to all the pointers q has paths from/to. Similarly, it would interfere with all the
pointers q interferes with. Finally, the same data structure would be accessible from
p as from q. Thus, all the existing relationships of pointer p get killed, and it simply
inherits the relationships and attributes of pointer q. In case q presently points to
NULL, p would also point to NULL after the statement. So we have D(p,p] and [[p,p]
in the gen set, only if D[q,q) and I[q,q] are presently set to one (implying that q does
not point to NULL). Thus, we have the following rule for this statement:

D.genset.l = { D[p;s] | s € H A D[q,s] }
D_genset.2 = { Dis,p} | s € H A Dis,a] } U { Dlp,p] | Dfasal }

Lgenset = { Ilp,s] | s € HA Hq,s] } U { Ilp,p} | I{q,q] }
stacklhs_stackrhs_gen.set = D_gen_set_1 U D_gen.set.2 U Lgen_set

A.[p.shape] = A,[q.shape] A.[p.root] = A,[q.root)

Since this statement simply copies one stack-resident pointer to another stack-
resident pointer, we name its overall gen.set as stack lhs stack_rhs_gen.set.

As discussed in section 3.2, the statements p = q op k and p » &(q->f) are
equivalent to the statement p = q, for purposes of heap analysis. So these state-
ments are analyzed using the same rules as developed for the statement p = q. The
statement p = NULL kills all relationships of p and does not generate any new re-
lationships. Since p points to NULL after the statement, shape and root attributes
are not relevant to it. As a default case, its attributes are set as Tree and True
respectively. We now present the analysis rules for the statement p = q->£.

p = gq~>f: Pointer p now points to the heap object accessible from pointer q through-
the link £, as shown in Figure 5.6.2 All the existing relationships of p get killed. All
pointers having a path to q (which includes q itself), now have a path to p through
the link £. In Figure 5.6, pointers u, v and q will have a path to p after the statement.
This set of newly generated direction relationships, can be summarized as follows:

D.genset.1 = { D[s,p] { s € H A Dis,q] }
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Figure 5.6: Analyzing Basic Heap Statement p = q->f

Some pointers q has paths to, may also have paths back to p, after the statement
p = q->f. In Figure 5.6, before the statement, A[q.shape] is Tree and q has paths to
pointers 1, r and s. After the statement, r and s will not have paths back to p, while
1 will have an empty path to p. Further, in Figures 5.7(a) and (b), where A[q.shape]
is respectively Dag and Cycle, q has a path to x before the statement, and x will
have a path to p after the statement p = q=->f. Thus, to ensure the correctness of
the analysis we err conservatively, and assume all pointers q has paths to, to have a
path to p in the matrix D,. The set of new direction relationships generated for this
case can be summarized as follows:

Dgenset2 = { D[s,p] | s € H A D[q,s} }

In Figure 5.6, pointer t has a path to pointer p after the statement. Now pointer
t does not have any direction relationships with pointer q (Figure 5.8(a)), but it
has an interference relationship with q, as shown in in the interference matrix I in
Figure 5.8(b). Thus, any pointer that interferes with q can potentially have a path
to p, giving the following gen_set:

D_gen_set_:} = { D[S,p] |seHA I[s,q] }

2In this Figure, for sake of clarity we have simply labeled each node with the stack-resident
pointer that points to it, instead of explicitly representing the stack.
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Figure 5.7: Shape Attribute and Direction Relationships

Now, all pointers q has paths from/to, also interfere with q. Thus, D_gen_set_1 and
D_gen_set.2 are subsets of D_gen_set_3, and the set of direction relationships generated

because of pointer p having paths from other pointers, is simply D.gen_set_3.

Pointer p will have a path to all pointers q has a path to, via the link 2. From
the direction matrix, we can find all the pointers q has a path to, but cannot identify
the pointers q has a path to via a specific link. So, we assume p to have a path to
all the pointers q has a path to. This makes the information collected conservative,
but ensures its correctness. In Figure 5.6, after the statement, pointer p is reported
to be having paths to pointers 1, r and s, where the path from p to s is spurious.

Note that q has a path to itself , so p should also be reported to have a path
to q after the statement. However, this would not be true, if the the data structure
accessible from q is acyclic {i.e. Alq.shape] = Tree or Dag). In this case, any path
originating from q cannot return to it, and q can only have an empty path to itself.
In Figure 5.6, A(q.shape] is Tree, hence p is not reported to be having a path to q.
Further, in this case if another pointer say m points to the same heap object as q, p
should not be reported to be having a path to m either. To enable this, we need to
keep track of pointers definitely pointing to the same heap object. We track them in
the implementation, but do not consider them here for sake of clarity.

Thus, the set of direction relationships generated due to pointer p having paths
to other pointers, can be summarized as follows:

D_gensetd ={Dlpsjjs€ HAs#qAD[gs] } U
{ Dlp,d] | Alq.shape] = Cycle }
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After the statement, pointer p can potentially interfere with all the pointers q
presently interferes with. So we have the following set of newly generated interference
relationships:

Igenset = { I[p,s] | s € H A I[q,3] }

Finally, p is reported as heap-directed (i.e D[p,p] and I[p,p] are set to one), only if
q is presently heap-directed. To ensure this we have the following set of relationships:

D.genset.5 = { D{p,p] | Dla,q] } U { I[p,p] | Tla,q] }

The overall gen set for this statement, named stack_lhs_heap_rhs.gen._set as the
statement copies a heap-resident pointer to a stack-resident pointer, is as follows:

stack_lhs_heap_rhsset = D_genset.3 U D_gen_set.4 U D_gen_set_5 U I_gen_set

The new direction and interference matrices D, and I, valid after the analysis of
tke statement p = q->f with the heap structure illustrated in Figure 5.6, are shown
in parts (c) and (d) of Figure 5.8. It can be noticed that many spurious direction and
interference relationships can be generated during the analysis of this statement. To
avoid them, more sophisticated path relationships like path expressions [HNS0] need
to be captured, incurring greater cost in analysis. Thus, there iz a trade-off between
the cost of the analysis and the quality of information it collects.

However, as already mentioned, the main focus of shape analysis, is to identify the
shape of the underlying data structures. The statement p = q~>£, despite potentially
introducing several spurious direction/interference relationships, does not affect the
shape of the data structure accessible from q. It only gives a new name to one of the
heap objects belonging to this data structure. Now, since the data structure accessible
from p is a subpiece of the data structure accessible from q, p simply inherits the shape
attribute of q.

It is possible that A[q.shape] is Cycle, while the shape of the structure accessible
from q via the f link is Tree. However, we cannot detect this from the information
available, and have A,[p.shape] also as Cycle. But if A[q.shape] is Tree, we do not
lose the tree attribute, and if it is Dag we still preserve the acyclic property of the
data structure accessible from p. Note that, if we simply deduce the shape attribute
of p from its direction relationships after the statement, we may lose its Tree or Dag
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attribute. Thus, separately abstracting the shape attribute, proves to be critical in
identilying tree-like and dag-like data structures. Finally, the node (heap object)
pointed to by p, cannot be a roof node, as the link £ from q leads into it.

Thus, we have the following attribute matrix A.:

A [p.shape] = A[q.shape] A.[p.root] = False

L [ilplalr]|s{tiulv] liplajris]tiu]v]
T 1[0fol1[0]0][0]0] IftfotTrJofrJ1]1
pfl0/0]0{0[0{0[0]0 pj0j0j0j0]0)0]00
qf1{0f{111}113030}0 qfit10(21{111}{1]11§1
r||0)j0j0]1]|0[0|0[0 ritlj0j1]1j0j1j1j]1
s{{0/0/0{03110;0]0 sffojo|1]0¢1{0(1]1
tigl1j]0j0j1]10|1]|0(0 tf1joj1j1)10)1)1]1
w[110]1[1]1]0|1]0 w1011 [1(1[1]1
v)1j01111J1[0]0]1 vif1fof1l1j1i1j1jl1
(2) Direction Matrix D (b) Interference Matrix I
1lplalrisitlulv Lliliplaf[r]s]t]ufv]

A fif1Jofj1]0Jof0]0] A [I[1 (1[I0 1]1[1
p(1{1(0(141{0101]0 plllji)lj1)1j1]1]1l
qfi1}141}111j0|0{0 qll{I{l1l111{111}]1
rf|0oj1]0(1{0}0[{0}0 rhlj1)1}j1j0)1|1]1l
s0j1j0]0j1]0(0)0 sflO]2]1(0]1]0|1}1
tjij1|ol110]140}0 tjil{1j1)1]10]1]|1}1
ull1{1f{1]1}j1]0}1}0 ulllj1|1]J1}2{1]1¢(1
vj} ij1y111]0{0]1 vigIi1]1]1;17111]1
{c) Direction Matrix D, (d) Interference Matrix I,

Figure 5.8: Matrices For the Heap Structure Shown in Figure 5.6
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p~>f = NULL : This statement breaks the link £ emanating from the heap object
pointed to by p. Thus, after the statement, p shoula no longer have paths to point-
ers, it presently has paths to, exclusively via the link £. As already discussed, this
information cannot be obtained from direction/interference matrices. So no relation-
ships can be killed. Further, the statement does not generate any new relationships.

The shape attribute of pointer p may change, if this statement disconnects the
subpiece of the data structure, due to which A[p.shape] is Dag or Cycle. Similarly,
the heap object into which the £ link presently leads from p, may become a root again
once the link is broken. But the direction/interference information does not suffice
to detect such cases, and we err conservatively leaving the attributes unchanged.
Note that due to the lack of precise kill information for this statement, if a tree-like
structure temporarily becomes dag-like or cyclic, and becomes a tree again (e.g. when
swapping the children of a tree), our analysis would continue to report its shape as
Dag or Cycle.

p->f = q: This statement first breaks the link £, and then resets it thereby linking
the heap object pointed to by p, to the heap object pointed to by q, as shown in
Figure 5.9. As already discussed, the relationships killed on breaking the link £,
cannot be obtained with the information available. However, resetting the link £
results in generating some new relationships and modifying the attributes of several
pointers, as discussed below.

All pointers having a path to p (including p itself), will now have a path to q
via the link £. Further, these pointers will have paths to all pointers q has paths to.
In Figure 5.9, pointers u, v and p will have paths to pointers q, r and s after the
statement. Thus, the set of direction relationships generated can be summarized as
follows:

D_gen.set = { D[rs] | r.s € H A D[r,p] A D[q,s] }

In Figure 5.9, pointer q interferes with pointer t, before the statement. After the
statement, pointers u and v will also interfere with t. This demonstrates that all
pointers having a path to p, can potentially interfere with all pointers q interferes
with.

Thus, we get the following set of new interference relationships:
Igen_set = { I[r,;s] | r,;s € H A Dir,p] A Ifq,s] }
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The overall gen sct for this statement, named heap.lhs.stack_rhs.gen_set as the
statement copies a stack-resident pointer to a heap-resident pointer, is as follows:

heap_lhsstack_rhs_gen_set = D_gen_set U [_gen.set

QPR O LR
V00 e

% o

3

Figure 5.9: Analyzing Basic Heap Statement p->f = q

This statement can considerably affect the shape attribute of pointers, which have
direction relationships with pointers p and q. We can have the following situations,
depending on the current attributes and direction relationships of pointers p and g

Pointer q already has a path to p | (Dig,p} = 1) : After the statement p->f = q, p
will also have a path back to q. Thus, a cycle will be generated between p and q, as
shown in Figure 5.10(a). This cycle will be accessible from all pointers that presently
bave a path to p or q (including p and q themselves), and the shape attribute of all
these pointers will become Cycle. In Figure 5.10(a), the shape attribute of pointers
u, v, p, and q becomes Cycle after the statement. We summarize this case as follows:

H, = {s|s e HA (D[s,q] v D[s,p)) }
Vs € H,, Diq,p] => Ac[s.shape] = Cycle

If the above situation does not arise, we have the following possibilities:
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Figure 5.10: Direction Relationships Impacting Shape Attribute
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Alq.shape] = Tree : In this case another tree-like structure becomes accessible
from all the pointers that presently have a path to p. If the data structures pointed
to by p and q are initially completely disjoint, then the statement simply connects
a tree substructure to the data structure pointed to by p and does not affect the
shape attribute of any pointer. Figure 5.9 illustrates this case. Qtherwise the shape
attribute of pointers that initially have a path to p and also interfere with q, becomes
Dag (if it is presently Tree). Pointers u and v in Figure 5.10(b} fall in this category.
These pointers presently have paths to both p and q. After the statement, they will
have additional paths to q via p. Thus, the shape attribute of u and v will become
Dag, if it is presently Tree. The same would hold true, if pointers u and v have paths
to p, and to some pointer to which q has a path to (i.e. u and v have a path to p and
interfere with q).

Finally, if the shape attribute of such a pointer is already Dag or Cycle, it remains
unchanged. In other words, the shape attribute of these pointers, becomes the merge
of their current attribute and the Dag attribute, where the merge operator v for the
shape attribute is defined as follows:

| oo || Tree lﬁa_g | Cycle |
Tree | Tree | Dag | Cycle
Dag || Dag | Dag | Cycle
Cyele || Cycle | Cycle | Cycle

This case can be formally summarized as follows:

H,={s[seHA(I[s\q A D[s;p]) }
V' € H, ((~Dlg;]) A (Algshape] = Tree)) =
A [s.shape] = A[s.shape] 0a Dag

Alq.shape] # Tree : In this case, the shape attribute of all pointers that have path
to p is merged with the shape attribute of q. This is required because the data
structure accessible from q, will also become accessible from all these pointers after
the statement. We summarize the case as follows:

H,={s]|s€ HAD[s,p] }
Vs € H,, ((~D[q,p]) A {A[q.shape] # Tree)) =
A [s.shape] = Als.shape] ba A[q.shape]
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Finally, the heap object pointed to by p cannot be a root anymore, as the link £
from p will lead into it. So, the root atiribute of q becoraes False after the statement.
Further, any other pointer that points to the same heap object as g, should also have
its root attribute as False, after the statement. To capture such pointers, we make
the root attribute of all pointers q has paths to, as False. Note that this does not
introduce any imprecision, as no pointer to which another pointer can have a path,
can have its root attribute as True. Thus, we have the following rule:

Hr={s|s€ HADgs]}
Vs € Hy, A[s.root] = False

This completes the analysis of the statement p~>f = q, and the analysis of basic heap
statements.

From the rules presented above, it can be noticed that a considerable number of
spurious direction and interference relationships can be introduced during the analy-
sis. This happens because of the following two reasons:

o We only abstract boolean relationships between heap-directed pointers, as op-
posed to precise path relationships between them [HN90). This makes the anal-
ysis more efficient, but less precise.

o Our analysis is not restricted to analyze programs that only build tree and
dag-like data structures, as in [HN90]. Due to the requirement to handle more
complex data structures, it tends to become more conservative.

However, as already mentioned, the main focus of our analysis is to be able to
identify tree and dag-like data structures built by the program under analysis. Di-
rection and interference relationships are basically computed to achieve this goal.
Empirical results presented in chapter 6, indicate that our analysis provides effective
information for a broad range of programs.

5.3 Analyzing Basic SIMPLE Statements

Shape analysis of a basic SIMPLE statement S, is also based on the S-locations
represented by the variable references on lhs(S) and rhs(S) (similar to connection
analysis). The overall algorithm for analyzing a basic SIMPLE statement is pre-
sented in Figure 5.11. In the following paragraphs, we describe in detail the rules for
computation of kill and gen sets and the estimation of new attributes.

108



/* Analyze statement S with input matrices D, I and A »
+ with H as the set of pointers abstracted by them +/
fun process_basic_stmt(S,D,[,A H) =
if (! is_pointer_type(S) ) /# not a pointer assignment +/
return{[D,1,A})
/+ All relationships of definite locations are killed »/
kill_set = { D[x,z], Dlzx], l[x,2] | (z,D) € S—locations(lhs(S)) A x,z2 € H }
gen_set = build_gen_set(S,D,],A,H) /+ Build the gen set »/
(H,HsAg) = find_mod_attr(S,D,[,A,H) /+ Estimate new attributes »/

/+ Build the new Matrices »/

V rs € H, Dyfrs] = D[rss], In[r,g] = lr,g]

V s € H, A.[s.shape] = Als.shape), An[s.root] = Als.root]

/* Delete killed relationships »/

Y entries D[r,s] € kill_set, Dn[r;s] = 0

V entries I[r;s] € kill_set, I [r,s] = 0

/* Add generated relationships +/

V entries D[r,s] € gen_set, Dy[r;s] = 1

V¥ entries Ifr,s] € gen_set, I [rs] = 1

[+ Reset the attributes of definitely updated pointers to default values s/
¥ (z,D) € S—locations(lhs(S)), An[x.shape] = Tree, An[x.root] = True
[+ Update Attributes of Affected Pointers s/

V s € H,, A,[s.shape] = A [s.shape] ts Ap[s.shape]

VY s € H,, Apfs.root] = Acfs.root] pa Ap[s.root]

return([Dn,l,An])

Figure 5.11: Analyzing a Basic SIMPLE Statement
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5.3.1 Computing Kill Set

If the set S-locations(lhs(S)) consists of a (single) definite S-location (z, D), all the
direction and interference relationships of x are killed. If this set consists of possible
S-locations, no relationships can be killed. Thus, we have the following kill set for
any given SIMPLE statement S (also shown in Figure 5.11):

kill set(S) = { D[x,z], D[z,x], I[x,2] | (z, D) € S-locations(lhs(S)) A x,z € H }

5.3.2 Computing Gen Set

To compute the gen set for the SIMPLE statement S, we need to consider all the
S-statements (section 4.1.2) it can generate. The gen set for S would be the union of
the gen sets of its S-statements. We had noted during connection analysis (chapter
4), that each S-statement corresponds to one of the eight basic heap statements,
depending upon the S-locations it represents. The gen set for an S-statement can
thus be computed using the gen set computation rule for its corresponding basic
heap statement. Based on this strategy, the complete rules for computing the gen set
of a basic SIMPLE statement are formulated in Figures 5.12 and 5.13.

Given any two S-locations S-lloc and S-rloc (for the SIMPLE statement S), the
gen set for the S-statement T generated by their combination, can be computed
depending on the location of S-lloc and S-rloc in the memory organization, as follows:

Case 1: S-lloc represents a stack location: If S-rloc is a stack location, the ba-
sic heap statement corresponding to T is p = q. If S-rloc is a heap location, the
corresponding basic heap statement is p = q->f£. The general rules to compute
the gen sets for these two cases, are derived by simply parameterizing the gen sets
stack_lhs_stack _rhs_gen.set and stack_lhs_heap_rhs_gen_set defined for the two basic
heap statements, as shown in Figure 5.13.

Case 2: S-lloc represents a heap location:

Case 2(a): If S-rloc is a stack location, the basic heap statement corresponding to T
is p=>f = q, The rule to compute the gen set for this case is obtained by appropriately
parameterizing the set heap.lhs_stack_rhs_gen_set as shown in Figure 5.13.

Case 2(b): If S-rloc is a heap location, the basic heap statement corresponding to
T would be p->f = g->f. Our analysis breaks down this statement as the following
sequence of basic heap statements: {temp = q->f; p=->f = temp). First, the state-
ment temp = q->f is analyzed with the input matrices. Using the resulting matrices,
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/* Compute the gen set for statement S with input matrices »
+ D, I and A. H is the set of pointers abstracted by them «/
fun build_gen_set(S,D,I,A,H)
gen_set = {} /+ Initialize gen set »/
if (is_null(rhs(S))) /+ No new relationships are generated »/
return(gen_set) |
Let | = Root(lhs(S)) /+ Root of Var Ref on lhs(S) +/
Let r = Root(rhs(S)) /* Root of Var Ref on rhs(S) »/
foreach (z,d) € S~locations(lhs(S))
if ((z,d) = (heap, P)) [/« S-location(lhs(S}) is a heap location s/
gen_set = gen_set U build_heap_lhs_gen_set(S,D,I,A,H,l,r)
else /s S—location(lhs(S)) is a stack location »/
gen_set = gen_set U build_stack_|hs_gen_set(S,D,I,A,H,x,r)
return(gen_set)

Figure 5.12: Computing Gen Set for a Basic SIMPLE Statement
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/¢ S : Statement, D, I, A : Matrices, Il : Set of pointers »
« absiracted, (x,P) : S-location(lhs(S)) r : Rool(rhs(S)) x/
fun build_stack_lhs_gen_set(S,D,l,AH,x,r)
gen_set = {}
if (is_malloc(rhs(S)) /+ z = malloc() +/
gen_set = malloc_gen_set(D,[,H,x)
else if (is_address_op(rhs(S))) and (r heap, P) /% z = &(r->f) +/
gen_set = stack_lhs_stack_rhs_gen_set(D,[,H,x,r)
else if (is_arith_expr(rhs(S))) /« £ =r op &k %/
gen_set = stack_lhs_stack_rhs_gen_set(D,I,H x,r)
else
foreach (y,d) € S—locations(rhs(S))
if ((v,d) = (heap,P)) /% £ = r~>f: r is heap-dirccted +/
gen_set = gen_set U stack_ths_heap_rhs_gen_set(D,I,A,H,x,r)
else /» (y,d) is a stack location : z = y »/
gen_set = gen_set U stack_lhs_stack_rhs_gen_set(D,I,H,x,y)
return(gen_set)

/* 8 : Statement, D, I, A : Matrices, H : Set of pointers abstracted *
+ (heap,P) : S—location(lhs(S)), | : Root(lhs(S)), r : Root(rhs(S)) */
fun build_heap_lhs_gen_set(S,D,I,A,H,l,r)
gen_set = {}
if (is_address_op(rhs(S))) and (r,heap,P) /« I->f = &(r=>f) »/
gen_set = heap_lhs_stack_rhs_gen_set(D.I.AH l,r)
else if (is_arith_expr(rhs(S))) /+ I->f = rop k +/
gen_set = heap_lhs_stack_rhs_gen_set(D,I,A,H,l,r)
else
foreach (y,d) € S—locations(rhs(S}))
if ((v,d) = (heap,P)) [+ I=>f = r~>f : |l and r are heap-directed +/
gen_set = gen_set U heap_lhs_heap_rhs_gen_set(D,I,A,H,l,r)
else /e (y,d) is a stack location : I->f = y x/
gen_set = gen_set U heap_lhs_stack_rhs_gen_set(D,[,A,H,,y)
return(gen_set)

Figure 5.13: Computing Gen Sets using S-locations
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the gen set for the statement p->f = temp is computed, which forms the gen set for
the statement p=>f = q->f. We summarize the gen set computation for this case as
follows:

heap_lhs_heap_rhs_gen.set(D,I,A,H,x,y) =
heapJhs_stack_rhs.gen_set(Dm,Im,Am,H,x,temp)
where [Dpm,Im,Am] = process_basic_stmt(temp = y->£,D,I,AH)

The function process._basic_stmt is defined in Figure 5.11.

Special cases: In this case, rhs(S) (S is the basic SIMPLE statement) can be: (i)
NULL, (ii) a call to malloc, (iii) an address operation, or (iv) an arithmetic operation.
If rhs(S) is NULL, the gen set is empty. Ifit is a call to malloc, and statement S is of the
form x = malloc(), the gen set can be obtained by appropriately parameterizing the
set malloc_genset defined for the basic heap statement p = malloc(). If statement
S is of the form x->f = malloec(), we generate different S-statments for it depending
on the points-to relationships of x. If x is heap-directed, this statement simply adds an
anonymous node to the data structure pointed to by x, and does not kill or generate
any relationships. Finally, if rhs(S) is an arithmetic or an address operation, S-rloc
is simply considered as the stack location Root(rhs(S})), and the appropriate gen set
rule is used depending on S-lloc, as shown in Figure 5.13.

5.3.3 Estimating New Attributes

The effect of the SIMPLE statement S, on the shape and root attributes of heap-
directed pointers, is also estimated by considering all the S-statements it can generate.
For each S-statement, we calculate: (i) the set of pointers H, whose root attribute
is affected, (ii) the set of pointers H, whose shape attribute is affected, and (iii) the
matrix A, which stores the new attributes of pointers in sets H, and H,. The overall
H, and H, sets for the SIMPLE statement S, are obtained by taking the union of the
individual H, and H, sets of its S-statements. Similarly, the matrix A, for statement S
is obtained by merging the individual A, matrices of its S-statements. The complete
rules to estimate the modified attributes are presented in Figures 5.14, 5.15 and
5.16. It can be noticed from Figure 5.16, that the computation of sets H,, H, and the
matrix A, for any S-statement, again depends on the S-locations (S-lloc and S-rloc)
it represents.
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/+ Estimate the attributes modified by statement § with input »
¢ matrices as D, [ and A. H is the set of pointers abstracted. +
s H, is the set of pointers whose rool attribute is modified. »

+ I, is the set of pointers whose shape attribute is modified. *
+ A. contains the new attributes of pointers in H, and Hy »/
fun find_mod_attr(S,D,],A,H)
[HrHyAl) = {3 /¢ Initialization +/
Let | = Root(lhs(S)) /+ Root of Var Ref on lhs(S) s/ -
Let r = Root(rhs(S)) /+ Root of Var Ref on rhs(S) »/
foreach (z,d) € S—locations(lhs(S))
if ((z,d) = (heap,P)) /* S-location(lhs(S)) is a heap location =»/
(pH,,pH,,pA:] = find_heap_lhs_mod_attr(S,D,I,A,H,x,r)
else /» S-location(ihs(S}) is a stack location */
(pH,,pH,,pA.] = find_stack_lhs_mod_attr(S,D,IA,H,x,r)
[H.,H,,A;] = merge_attr(H,,H,,Ac,pH-,pH,,pA.)
return([H,,H,,A.])

/+ Merge the attribute information in matrices A. and pA. */
fun merge_attr(H,,H,,A.pH.,pH,s,pA L)
foreach s € pH,
if (s € H,)
A [s.root] = A [s.root] a pAcfs.root]
else
Ac[s.toot] = pA.[s.root]
foreach s € pH,
if (s € Hy)
Ac[s:shape] = A.[s.shape] pa pA [s.shape]
else
A [s.shape] = pA_.[s.shape]
[+ Obtain the new H, and H, sets =/
H. = H, U pH,
H, = H, v pH,
return([H,.,H,,Ac])

Figure 5.14: Estimating Attributes Modified by a Basic SIMPLE Statement
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/* & Statement, D, I, A : Matrices, H : Set of pointers »
« abstracted, (z,P) : S-location(lhs(S)) r : Root(rhs(5)) »/
fun find_stack_lhs_mod_attr(S,D,I,A,Hx,r)
[He,HsAl] = {} /¢ Initialization */
if (is_malloc(rhs(S)) or (is_null(rhs(S)) /¢« z = malloc() or £ = NULL +/
[H-H,,A;] = malloc_mod_attr(A,x)
else if (is_address_op(rhs(S))) and (r,heap,P) /2 z = &(r~>f) s/
(He,HsAe] = stack_lhs_stack_rhs_mod_attr(A,x,r)
else if (is_arith_expr(rhs(S))) /« z = rop k +/
[He,H,,A.] = stack_lhs_stack_rhs_mod_attr(A,x,r)
else
foreach (y,d) € S—locations(rhs(S))
if ((y,d) = (heap,P)) /% z = r~>f : r is heap-directed »/
[pH,,pH,,pA.] = stack_lhs_heap_rhs_mod_attr(A,x,r)
else /+ (y,d) is a stack location : z = y */
[pH,,pH,,pA.] = stack_lhs_stack_rhs_mod_attr(A,x,y)
[HrHsAc] = merge_attr(H,,H,,Ac,pH;,pH,,pA)
retura([H,,H,,A.])

/+ (heap,P) : §~location(lhs(S)}, 1 : Root(lhs(S)), r : Root(rhs(S)) */
fun find_heap_lhs_mod_attr(S,D,I,A,H,l,r)
B, H,,A;] = {} /+ Initialization «/
if (is_address_op(rhs(S))) and (r,heap,P) /+ I=>f = &(r—>f) +/
(H,H,,A.] = heap_lhs_stack_rhs_mod_attr(D,I,AH,l,r)
else if (is_arith_expr(rhs(S))) /¢ I=>f =rop k »/
[H,,H,,A.] = heap_lhs_stack_rhs_mod_attr(D,[,A,H,,r)
else
foreach (y,d) € S—locations(rhs(S))
if ((y,d) = (heap,P)) [+ I=>f = r—>f : l and r are heap-directed +/
[pH.,pH,,pA;] = heap_lhs_heap_rhs_mod_attr(D,I,A,Hl,r)
else /+ (y,d) is a stack location : I=->f =y s/
[pH.,pH,,pA.] = heap_lhs_stack_rhs_mod_attr(D,],A,H,ly)
[HanAc] = merge_attf(Han:AmPHnPHnPAc)
return([H,,H,,A]) :

Figure 5.15: Estimating Attributes using S-locations
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fun malloc_mod_attr(A,x)
H ={x} H,={x}
Ac[x.shape] = Tree  A[x.root] = True
return ([H. H,A.])

fun stack_lhs_stack_rhs_mod_attr(A,x,y} =
Ho={x} H,={x}
A/[x.shape] = A[x.shape] Ac[x.root] = A[y.root]
return ([H. H,A.])

fun stack_lhs_heap_rhs_mod_attr(A,x,y) =
H o ={x} H, ={x}
A [x.shape] = A[x.shape] Ac[x.root] = False
return ([H,,H,A.]}

fun heap_lhs_stack _rhs_mod_attr(D,I,AH,x,y) =
(H-H,Al = {}
if (Dly,x])
H, = {s]s€&HA (Dsx] v Disyl) }
VY s € H,, A[s.shape] = Cycle
else if (Alyshape] == Tree)
Hy={s}s€HA (DA lfsy]) )
Y s € H,, As.shape] = Als.shape] e Dag
else /+ Afy.shape] is Dag or Cyclc +/
H, = {s|s &€ HAD[sx] }
V s € H,, Acfs.shape] = Als.shape] oa Afy.shape)
H, ={s|s&HADps)}
Y s € H,, As.root] = False
return ({H.,H,,A]}

fun heap_lhs_heap_rhs_mod_attr(D,0,AH,x,y) =
(DmJm,Hm] = process_basic_stmt(temp = y—>f,D,[,A,H)
return (heap_lhs_stack_rhs_mod_attr(Dm,Im,Am H,x,temp))

Figure 5.16: Calculating New Attributes
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5.3.4 An Example

We now demonstrate shape analysis on a basic SIMPLE statement S. Let statement
S be r = 8=->f with the following points-to relationships: {(r,heap, P), (s, heap, P),
(s,d, P)}. The heap structure before the statement is shown in Figure 5.17(a). The
set S-locations(lhs(S)) consists of the definite S-location (r, D), so all relationships of

r get killed, resulting in the following kill set:

killset(S) = { Dr,u],D[u,r],I{u,r] }
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Figure 5.17: Analyzing Basic SIMPLE Statement r = s=->f

With the above points-to relationships, the statement S generates the following
two S-statements: (i) T1: r = d.f and (ii) T2: r = s->2 where s points to a heap
location. We get the following gen sets for the S-statements T1 and T2, using the

stack_ths.stack.rhs_gen set and stack ths_heap_rhs_gen_set rules respectively:

gen.set(T1) = { Dr,d.f],Dld.f;r],D[v,c},I{r,d.f],I[r,v] }
genset(T2) = { D[s,r),D[r,t],D[¢.],I[r,s]I[rt] }
gen_set(S) = gen_set(T1) U gen.set(T2)
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The statements T1 and T2 can change the attributes of only pointer r. So we
have both H, and H, as { r }. For T1, we follow the stacklhs.stack_rhs_mod.attr
rule and have A[r.shape] = A[{d.f).shape] and A_[r.root] = A{(d.f).root]. For T2, we
follow the stacklhs_heap_rhs.mod.attr rule and thus have A [r.shape] = A{s.shapc]
and A.r.root] = False. The matrix A for statement S is obtained by merging the
matrices for its S-statements T1 and T2. So for the SIMPLE statement S, we have
A.[r.shape] = A[(d.f).shape} e« A[s.shape] = Tree 0a Dag => Dag. Similarly, we have
Ac[r.root} = A[(d.f).root] ¢ False => False 0a True => False.

The current matrices D, I and A are copied over to the new matrices D, I, and
A,. The relationships in killset(S) are then deleted from the matrices D,, and I,.
Next, the relationships in gen.set(S) are added to the two matrices. Since the set
S-locations(lhs(S)) consists of the definite S-location (r, D), the attributes of r are
set to default values: A,[r.shape] = Tree, A,[r.root] = True. Finally, the attributes
of pointers belonging to the sets H, and H,, are merged with their attributes in the
matrix A.. Since r is the only pointer in sets H, and H,, we have A,[r.shape] =
A.,[r.shape] b4 A.[r.shape] => Tree b« Dag = Dag. Using the same strategy, we have
A [r.root] = False. The attributes of other pointers remain same as in matrix A, The
heap structure after the statement S is shown in Figure 5.17(b).

5.4 Analyzing Compositional Control Statements

The overall strategy for analyzing control statements is same as that described for
connection analysis. However, now the fixed-point computation has to take into
account three matrices as opposed to only one. The merge operator for direction and
interference matrices is also simply the logical OR operation as for connection matrix.
We have already defined the merge operator o« for the attribute matrix. Thus we have
the following merge rules:

Merge(D,,D) = V r,s € H, Da|r,s} = Dy[r,s] V Dlrs]

Merge(I,,I) = V r,s € H, I,[r,s] = Lu[rs] V I{rs]

Merge(A,,A) = Vs € H, Ap[s.shape] = A,[s.shape] ba Afs.shape],
Anp[s.root] = A,[s.root] ba A[s.root]

We demonstrate the analysis of control statements, by presenting the algorithm
for analyzing the while statement in Figure 5.18.
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[+ D,L,A : Input matrices, H : Set of pointers abstracted,
+ ign : Current invocation graph node =/
fun process_while(cond,body,D,I,A,H,ign) =
do
prevD = D; prevl = I; prevA = A;
(D1,I1,A1] = process_basic_stmt(cond,D,I,A,H);
[D2,12,A2] = process_stmt(body,D1,11,A1,H,ign);
D = Merge(D,D2); I = Merge(1,12); A = Merge(A,A2);
while ((D != prevD) and (I != prevl) and (A != prevA));
return([D,LA]); '

Figure 5.18: Analyzing a while Statement

5.5 Interprocedural Analysis

The overall interprocedural strategy for shape analysis is similar to that for connection
analysis presented in section 4.3. However, now three matrices (D, I and A) need to
be handled as opposed to one. All three of them are simultaneously mapped and
unmapped. Further, all of them participate in the fixed-point approximation for
recursive procedure calls, in the same manner as for the while statement analysis
shown in Figure 5.18.

The only aspect where the interprocedural scheme for shape analysis basically dif-
fers from that for connection analysis, is in the mapping of inaccessible local pointers
in the caller to symbolic names in the callee. Recall that inaccessible local pointers are
those pointers in the caller, which are neither directly nor indirectly accessible in the
callee, but which have relationships with pointers accessible in the callee. Since these
relationships can be changed by the call, inaccessible pointers need to be ma.pped to
special symbolic names, as explained in section 4.3.5.

Connection analysis maps inaccessible pointers to special ‘0+’-prefixed symbolic
names in the callee. For example, if an inaccessible local pointer r is connected with
a global pointer s at the call-site, then r is mapped to the symbolic name 0+s and
inside the callee we have 0+s connected with as. Unlike connection relationships,
direction relationships are not symmetric. Considering the above example in the
context of direction relationships, we would like to map r to different symbolic names
depending upon if = bas a path fo s or a path from s.
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If all inaccessible pointers having direction relationships with s are mapped to
the same symbolic name, unnecessary imprecision can be introduced. For example,
consider two inaccessible pointers u and v having direction relationship with global
pointer s, Assume that u has a path to s while v has a path from s. Now if both
u and v are mapped to the symbolic name 0+3, we will have 0+s having paths both
to and from s. Assuming that the direction relationships between s and 0+s are not
affected by the callee, on returning from the callee we will have both u and v having
paths to as well as from s, thereby introducing two spurious direction relationships.

To avoid this imprecision, for each ‘0+4'-prefixed symbolic name, we generate an-
other ‘0--prefixed symbolic name. In the above example, we will have two symbolic
names corresponding to 3: 0+s and 0-s. Inaccessible pointers having paths to s (like
u) will be mapped to 0-3, while those having paths from s (like v} will be mapped
to O+s. .

The inaccessible pointers are first mapped based on their direction relationships.
Now a pointer can also fall into the inaccessible category, because of having an inter-
ference relationship alone. So, if an inaccessible pointer has not already been mapped
due to a direction relationship, it is mapped based on its interference relationships.
It should be noted that more than one pointer can be mapped to a symbolic name,
but not vice versa. When a symbolic name represents more than one pointer, its
relationships and attributes become the merge of the relationships and attributes of
these pointers.

The complete algorithm for mapping names in caller to appropriate names in
callee is given in Figure 5.19. More complex algorithms can be devised to improve
the accuracy of mapping. However, our experimental results indicate that this simple
scheme suffices for real C benchmark programs. The algorithms for mapping and
unmapping matrices, and for handling recursive, approximate and indirect procedure
calls are similar to that for connection analysis, except that here three matrices are
simultaneously handled. So we do not describe them again.

5.6 Summary

In this chapter we presented a new heap data structure analysis called shape analysis,
We demonstrated how it uses relatively simple abstractions to identify of tree and dag-
like data structures built by the program. We also introduced the idea of associating
root and shape attributes with each heap-directed pointer. This enables abstraction of
the properties of the subpiece of the data structure accessible from the given pointer,
as opposed to those of the entire data structure it points to.
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/+ Functions lo map names in matrices Dy, and I, at call-site, to names in
» matrices D, and [, at prur dure entry for the call corresponding to the
+ invocation graph node ign s/
fun di_map_names(Dm,Im,Hm,actualList,formalList,ign)
foreach r € H,,
/* Find the name r should be mapped to in the called procedure «f
x = find_mapped_name(r,Dm,Im,Hm,actualList,formallList,ign};
/* r is mapped to the name denoted by x for this invocation s/
di_mapped_name(r,ign) = x;
return;

fun find_mapped_name(r,Dm,]m a,actuallist formalList,ign)
if is_defined(di_mapped_name(x,ign)) /e already mapped s/
return;
if is_global(r) /+ global pointers are mapped to themselves +/
return r;
if is_defined(ign.ptMaplnfo(r}) /» alrcady mapped by points—to analysis +/
return (ign.ptMaplinfo(r)};
[+ r is an inaccessible local. Determine the set of globals, indirectly
s accessible pointers, and actual arguments, r has relationships with «/
di_set = {};
foreach s € Hn
if ((is_global(s)) or (is_defined(ign.ptMaplnfo(s)) or
(s € actualList))
if (Dm[r,s]) /* r has a path to s »/
/+ Find the ‘0-'~prefized symbclic name corresponding to s «/
s_sym = di_symbolic_var_1(s);
di_set = di_set U {s_sym};
else if (Dn[s,r] or Infr,s)) /¢ r has a path from or interferes with s «f
[* Find the ‘0+’-prefized symbolic name corresponding to s +/
s_sym = di_symbolic_var_2(s);
di_set = di_set U {s_sym};
if (is_empty(di_set))
return undefined; /¢ r need not be mapped »f
/+ return the varigble in di_set with minimum number of vars mapped to it /
return{min_mapped_var{di_set));

Figure 5.19: Mapping Names From Caller to Callee
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Since we only abstract boolean relationships like path ezistence and interference
(for efficiency reasons), we are not able to precisely handle destructive updates where
a tree data structurc temporarily becomes dag-like or cyclic, and then again becomes
a tree. Analysis techniques that capture more precise path relationships between
heap-directed pointers as path expressions [HN90], symbolic access paths [Deu94]
or storage shape graphs [CWZ90], can handle such cases to some extent, but they
also incur considerable cost. Qur future research will focus on designing practical
abstractions to handle destructive updates more accurately. We briefly present one

such abstraction in chapter 7.
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Chapter 6

Experimental Results

In this chapter, we present empirical data to demonstrate the effectiveness of con-
nection and shape analyses presented in chapters 4 and 5. To perform this study,
we implemented these analyses in the framework of our McCAT C compiler, and
analyzed a collection of C programs written for both scientific and non-scientific ap-
plications. We present the results for connection analysis in section 6.1, and for shape
analysis in section 6.2,

6.1 Connection Analysis Results

In this section, we present the experimental results obtained from connection analysis
of a set of 13 C programs. We chose programs that use a significant amount of dynamic
allocation, as benchmarks for our study. Below we give a brief description of each
benchmark program, and the principal data structures it uses:

e genetic: It implements a genetic algorithin to test sorting. The principal data
structures used by this program are three global dynamically allocated arrays of
type int, which are also passed as parameters to various functions. Henceforth,
we will refer to dynamically allocated arrays as simply dynamic arrays.

e sim: This is a benchmark from computational biology that computes k-best
non-intersecting alignments within a single DNA sequence or between two DNA
sequences, using dynamic programming. The main data structures used by
this program are dynamic arrays of type long. It also uses dynamic arrays of
pointers to structures. It allocates two types of structures: one with no pointer
fields and one with a recursive pointer field.
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o blocks2: This is another benchmark from computational biology that com-
putes multiple aligned blocks from a given family of pairwise alignments for
DNA sequences. It mainly uses dynamic arrays of type long. It also builds a
constraint graph data structure using dynamic arrays of pointers to recursive
structures.

o ear: This is a SPECINT92 benchmark that implements a model of acoustic
propagation and detection in the human cochlea. It uses dynamic arrays and
structures with non-recursive pointer fields.

o asgembler: It implements an assembler and its principal data structures in-
clude: dynamic arrays and a linked list implementation for the symbol table,

e loader: It implements a loader, and uses the same data structures as the
benchmark assembler. Both of these benchmarks are part of Williamn Landi’s
test suite [LR92), and have been obtained from him.

e cholesky: It performs Cholesky factorization of a sparse positive definite ma-
trix. It is part of the SPLASH [SWGY1] benchmark suite from Stanford. It
implements the sparse matrix using structures with non-recursive pointer fields.
These pointers point to dynamic arrays of type int.

o mp3d: This is another benchmark from the SPLASH suite related to rarefied _
fluid flow simulation used in aerospace research. It dynamically allocates struc-
tures with no pointer fields or with one non-recursive pointer field, and arrays
of type int and float.

o water: It solves the molecular dynamics N-body problem to evaluate forces and
potentials in a system of water molecules in the liquid state, using spatial data.
structures. It is part of the new SPLASH benchmark suite called SPLASH-2,
and we use the sequential version. The primary data structures used by this
program are linked lists and dynamically allocated arrays of pointers pointing
to linked lists.

e volrend: This benchmark renders a three-dimensional volume onto a two-
dimensional plare using an optimized ray casting technique. It is also a part
of the SPLASH-2 benchmark suite, and we analyze its sequential version. It
dynamically allocates a number of bit vectors to store, manipulate and render
the image. Its principal data structure is an array of pointers on the stack,
which point to bit vectors allocated in the heap.

e chomp: It implements a game tree and uses two recursive data structures: a
binary tree and a linked list, besides dynamic arrays.
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e sparse: It builds a large and random sparse matrix using two-dimensionai
linked lists, then scales, factors and solves it. The sparse matrix data structure
is a cyclic structure wnth nodes having links to nodes in the previous and next
rows as well as columns

¢ pug: This program trla.ngu]ates an unstructured grid using control volume finite
element method. It uses a single complex cyclic data structure with nodes linked
to one another through various pointers.

In Table 6.1, we give further information about the the benchmark programs. The
following characteristics are presented for each program in the given order:

.-

o Source lines including comments, counted using the we utility.

e Number of statements in the SIMPLE intermediate representation. This num-
ber gives a good estimate of program size from the analysis point of view.

e Minimum, maximum and average number of vanables abstracted by the con-
nection matrices of various functions in the program (this includes symbolic
variables introduced by our analysis). These numbers indicate the size of the
abstraction and the memory requirements of the analysis for a given program.

e Total number of indirect references in the program, and the number of indirect
references where the dereferenced pointer can point to a stack location, to a heap
location and to both a stack and a heap location. We are able to determine the
possible targets of indirect references, as we collect the above statistics after
performing points-to analysis [Ema93, EGH94].

The number of indirect references in a program, provides a measure for the rele-
vance of pointer analysis to its optimization. The number of indirect references
refering to stack and heap locations, respectively represent the significance of
stack-based points-to analysis and heap-based data structure analyses for the
given program.

The number of SIMPLE statements for the given benchmark set varies from 476
for chomp to 4909 for volrend, with an overall average of 2028 statements per program.
The maximum number of variables abstracted by the connection matrix of a function
is 133 for pug, followed by 114 for cholesky. The maximum of the average number of
variables abstracted, is 89 for cho!eslcy followed by 43 for sim. We will estimate the

space requirements of the analysis using this data in appendix A on implementation
details.
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Program | Source { SIMPLE || Min } Max | Avg || Ind | To | To | Stack/
Lines stmts || vars | vars | vars || Refs | Stack | Heap | Heap
genetic 506 479 6] 14| 7] 54| 28] 30 4
sim 1422 1760 || 38| 69| 43| 374 34 | 340 0
blocks2 876 1070 28 54| 33| 373 98 275 0
ear 4953 3476 38 o1 39 290 | 143 147 0
asscmbler 3361 3071 12 26| 14 718 | 666 52 0
loader 1539 1055 7 20 10) 170 | 106 64 0
cholesky 1899 2217 76| 114 89| 488 | 22 | 466 0
mp3d 1687 1845 18 28| 20 490 25 465 0
water 2703 2418 8| 65| 27| 581 32 | 549 0
volrend 4207 4909 18 45 20| 190 63 128 1
chomp || 430 476 | 20) 27| 22 127{ 45 | 82 0
sparse 2859 1495 12 40| 18| 468 3 | 465 0
pug 2400 2089 || 16 | 133| 30| 822 | 147 | 688 | 13

Table 6.1: Characteristics of Conncction Analysis Benchmarks

All the benchmarks have substantial number of indirect references, with maximum
822 for pug followed by 718 for assembler. Further, all of them have indirect references
refering to both stack and heap locations, with majority of the indirect references
refering to heap locations (except for the two benchmarks: assembler and loader).
This makes the given benchmark set well-suited for evaluating a heap analysis.

While discussing the connection analysis of SIMPLE statements in Chapter 4, we
had noticed that the analysis tends to become conservative, when a pointer can point
to both heap and stack locations. However, the data in the last column of Table 6.1
shows that this does not happen very frequently in real C programs: pointers used
to point to dynamically allocated memory, are not commonly used to also point
to stack locations. We inspected the analysis output for programs genetic, volrend
and pug, to detect the indirect references where it happens. We found that these
indirect references mostly dereference formal parameters {(of pointer type), to which
both heap-directed and stack-directed pointers are passed as actuals, from different
call-sites of the given function.
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6.1.1 Measurements for Heap Related Indirect References

In Table 6.2, we present empirical measurements for connection analysis of the above
benchmarks. Our measurements focus on indirect references in the program that refer
to heap locations, as connection matrix information is computed to effectively resolve
them at compile time. We motivate our measurements using the following example
program:

main()
{...
p = my_malloc(N)};
q = my_malloc(M);

S: =p = INIT_VAL;
T: =#q = INIT_VAL;

This program allocates two disjoint heap structures and then initializes them.
Before connection analysis, the only information available from points-to analysis is:
both the indirect references *p and #*q (at statements S and T respectively) refer
to the location heap, and thus the statements S and T interfere. After connection
analysis, we know that the data structures pointed to by p and q are never connected
(are disjoint), and hence the statements S and T do not interfere.

Our experimental measurements attempt to quantify the improvement in reso-
lution of heap data structures provided by connection matrix information over that
obtained from the conservative approximation of points-to analysis. With only points-
to analysis one must assume that each heap-directed pointer is possibly connected
with all other other heap-directed pointers, while with connection analysis one can
identify a more precise set.

Thus, the effectiveness of connection analysis can be evaluated by comparing
the total number of heap-directed pointers at an indirect reference (the conservative
estimate provided by points-to analysis), with the total number of pointers connected
with the dereferenced pointer (the more precise estimate available from connection
analysis). For example, in the above program, at statement S, the total number of
heap-directed pointers is two (both p and q are heap-directed), while the number of
pointers connected with the dereferenced pointer p is only one (p itself). The same
situation holds at statment T.
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Following this strategy, we have calculated the following metrics for each bench-
mark program (presented in Table 6.2):

e Refs: Total number of indirect references in the program that can refer to heap
locations.

e cavg: Average number of pointers that are connected with the dereferenced
pointer at an indirect reference. This average is calculated as follows. At each
indirect reference we determine the total number of pointers connected with the
dereferenced pointer. Let us call this number as cn_tot_i for the ith indirect
reference in the program (as per lexical order). We do not include symbolic
variables in this count as we generate them only to facilitate interprocedural
mapping, and they cannot be accessed or dereferenced by the program. Further
if the dereferenced pointer is only connected with itself, the count en_tot_i will
be one for the given indirect reference.

We then sum up the numbers en_tot.i for all indirect references, and divide this
sum total denoted as cn.sum.tot by the total number of heap related indirect
references in the program (Refs), to obtain the average cavg. We cannot have
cavg less than 1.0 (unless there are no heap related indirect references in the
program and we have Refs as zero), as each heap-directed pointer is at least
connected with itself.

e havg: Average number of pointers that are heap-directed at an indirect refer-
ence. This average is calculated in the same fashion as cavg. First, at each
indirect reference the total number of heap-directed pointers is calculated as
heap.tot.i. Next, this number is summed up for all indirect references, and
the sum total heap_sum_tot is divided by Refs to obtain the average havg.
Again symbolic variables are not considered in computing this average.

e Impr: A measure to approximate the percentange improvement provided by
connection matrix information over points-to information, in effectively resolv-
ing heap related indirect references in the program. It is calculated using the fol-
lowing formula: ((heap_sum_tot - ca_sum_tot) * 100.0)/(heap_sum_tot), where
as described above, heap_sum_tot gives the sum total of heap-directed point-
ers, and cn_sum. tot gives the sum total of connection relationships at indirect
references in the program.

Without connection analysis, the conservative approximation for the number
cn_sum_tot would be simply heap_sum_tot, resulting in zero percentage im-
provement. With connection analysis, the more precise is the analysis, the
fewer will be the number of connection relationships reported. This results in
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Program *a / (*a).b ali]

| Refs | cavg | havg | % Impr || Refs | cavg [ havg [ % Impr
genetic 0] 0.0] 0.0 000 30] 1.7 52| 67.74
sim 96| 3.4 | 23.2 85.55 || 244 1.6 204 92.41
blocks2 119{ 8.8 | 22.9 61.36 || 156 5.2 | 223 83.74
ear 42 [ 2.7 3.8 27.22 | 105 24 7.1 66.26
assembler 45| 4.4 7.8 42.98 7( 6.0 9.4 36.36
Joader 55 4.1 6.5 21.07 91! 1.0 4.1 75.66
cholesky 82 14.9 | 34.3 56.46 || 384 | 3.7 20.7 82.27
mpdd 391| 25| 8.6 7042 741 19 7.1 73.86
water 250 | 154 | 31.2 50.69 | 299 14.7 ) 24.1 38.94
volrend 96| 741 22.2 66.73 32| 9.8| 188 47.59
chomp 56| 5.2 7.2 27.65 26 1.6 3.9 58.00
sparse 384 | 9.3 10.1 7.23 0{ 00| 00 0.00
pug 514t 36.8 | 36.9 030 ) 174 ) 476 ) 47.7 0.11

Table 6.2: Empirical Measurements for Connection Analysis Results

a small cn_sum_tot and hence a greater percentage improvement. Thus, the
metric Impr provides a reasonable measure for the effectiveness of connection
analysis. For our small example program (given above): Refs is 2, cn_sum_tot
is 2 and hence cavg is 1.0; heap_sun_tot is 4, havg is 2.0 and Impris ({(4 - 2)
*100.0) / 4) or 50%.

In Table 6.2, we present these measurements separately for indirect references of
the type *a/(*a).b, and of the type a[i] where a is of pointer type. We discuss the
results presented in this table below:

Indirect References of type ali): The percentage improvement (Impr) is in general
higher for indirect references of this type. This happens because most of these ref-
erences represent stack-based pointers that point to dynamically allocated memory
and access it as an array (of non pointer type). For example, the statement a = (int
*) malloc(8 * sizeof(int)) dynamically allocates an array of eight integers. Now
such array structures are in general not pointed to by many other pointers. In SIM-
PLE, the above statement is simplified as temp_0 = malloc(8 * sizeof(int)); a

= (int *) temp.0, resulting in both a and temp_0 pointing to the allocated struc-
ture.
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In case the allocation is done through a user-defined routine (for example a =
my malloc(size)), the temporary variable is not generated, and pointer a alone
points to the allocated structure. So the number of connection relationships of point-
ers like a tends to be close to 2.0 on an average. In Table 6.2, cavg for indirect
array references is in the range of 1.0 to 3.7 for most of the benchmarks. For some
benchmarks cavg tends to be much larger. We analyze them below.

The benchmarks volrend and blocks2 use arrays of pointers. Since we represent
the entire array by the array name, connection relationships of pointers representing
different indices of the array get merged. This results in large number of relationships
for the single name representing them in the connection matrix.

The benchmarks assembler, water and pug have pointers to arrays as fields of
dynamically allocated structures (as opposed to being located on the stack). These
pointers are reported to be connected with all other pointers that point to the given
data structure. This results in larger overall cavg for these benchmarks. Actually
cavg for pug is almost same as havg, as it builds only a single complex data structure,
providing effectively no improvement.

Indirect References of type *u/(*a).b: For indirect references of this form, the per-
centage improvement is in general not as high as for indirect array references. Such
indirect references commonly access big aggregate data structures that consist of a
large number of heap objects, specially if the data structure is recursive. Several
pointers point to any such data structure, and all of them have connection relation-
ships with each other.

In our benchmark set, sim and mp3d primarily use structures with no pointer
fields. The percentage improvement for them is quite high, as these structures are
also stand-alone entities in the heap, like dynamic arrays of non pointer type.

The benchmarks ear and cholesky primarily allocate structures with non-recursive
pointer fields. For ear, cavg is quite small, though the percentage improvement is
not very high as not many pointers are heap-directed in this program. For cholesky
we have more than 50 percent improvement. ‘

The benchmark volrend allocates integers and floats in the heap and accesses
them through indirect references of the form #a. The percentage improvement for
it could be even higher, but it uses arrays of pointers to point to the heap-allocated
integers and floats. The benchmark blocks2 allocates several disjoint arrays of pointers
to dynamically allocated objects of type int and user-defined structure types with
both recursive and non-recursive pointer fields. So it has higher cavg, but shows
substantial percentage improvement.
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| Program_ || Refs | cavg i havg [l % Imp_J

genetlc 30 67.74 |
sim 340 2.1 21.2 90.29
blocks2 275 6.8] 22.5 69.86
ear 147 | 2.5 6.1 59.40
assembler 52| 46| 8.0 41.93
loader 64] 4.5] 6.1 26.21
cholesky 466 | 9.7 | 23.1 75.53
mp3d 465 24| 8.4 70.88
water 549 ) 15.0 | 27.3 45.05
volrend 128 8.0 21.3 62.52
chomp 82 41} 6.2 33.86
sparse 384 | 9.3 10.1 7.23
pug 688 | 39.5 | 39.6 0.24

Table 6.3: Overall Connection Analysis Results

The benchmarks assembler and loader use two disjoint linked list data structures,
chomp uses a linked list and a tree structure, while water uses arrays of linked lists
several of which are disjoint at different points in the program. The percentage
improvement statistics for these benchmarks show the following expected trend: the
greater is the number of disjoint data structures used by a program, the better are
the connection matrix results for it.

Finally, the programs sparse and pug use a single complex recursive data structure,
and all heap-directed pointers point to it. Consequently, connection analysis provides
negligible improvement for them.

In Table 6.3, we present the overall measurements for all the benchmark programs.
The percentage improvement is highest for programs that primarily use dynamic ar-
rays (of non pointer type) and structures without pointer fields (sim,. cholesky and
mp8d). For some programs {genetic and ear) the percentage improvement is not very
high, but cavg is quite small which indicates that connection analysis provides effec-
tive information for them. Overall, the results show that if the given program uses
disjoint data structures, connection analysis can always provide more accurate infor-
mation for resolving heap related indirect references (as compared to the information
provided by points-to analysis). Thus, the connection matrix abstraction works well
for its target domain of applications.
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To give a clearer picture of the connection matrix results, we present scatter plots
of connection relationships for ten of our thirteen benchmarks, in Figures 6.1 to 6.5.
Each + mark in a scatter plot represents an indirect reference in the given program. Its
x-coordinate (horizontal axis) represents the total number of heap-directed pointers
at the program point where the indirect reference is made. Its y-coordinate (vertical
axis) represents the number of pointers connected with the pointer being dereferenced
by the indirect reference.

The dotted line represents the (x = y) plot. A + mark falling on this line represents
an indirect reference at which the number of total heap-directed pointers is equal to
the number of pointers connected with the dereferenced pointer. A + mark on the
bottom right hand corner of a plot represents an indirect reference where a large
number of pointers are heap-directed but which has a few connection relationships.
We cannot have any + mark above the dotted line, as for no indirect reference can
the number of connected pointers be greater than the number of total heap-directed
pointers.

The effectiveness of connection analysis for any program can be evaluated by iden-
tifying the regions in its scatter plot, where the majority of its indirect references are
represented. For example, for sim, mp3d and cholesky, most of the indirect refer-
ences fall close to the horizontal axis, indicating that they have very few connection
relationships. For the program sparse, majority of the indirect references fall on the
dotted line, indicating that connection analysis provides negligible improvement for
it. The scatter plots for other benchmarks can be interpreted accordingly.

While collecting the data, we noticed that scatter plot coordinates for many indi-
rect references in a given program, turn out to be identical. Thus, we end up having
one + mark representing several indirect references. To avoid this situation, we add
a randomly generated fraction in the range {0.00,0.49] to both x and y coordinates
of each point to be plotted. This strategy helps provide proper density effects in the
plots, with negligible modification of the original data.

6.1.2 Interprocedural Measurements

Connection analysis is a context-sensitive interprocedural analysis. In Tables 6.4
and 6.5 we present some measurements demonstrating the interprocedural character-
istics of the analysis, using the same set of benchmarks as listed in Table 6.1.

In Table 6.4, we provide some static interprocedural characteristics of the bench-
marks. The first three columns in this table, respectively give the total number of
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Program || fns | call ig | Recur { Appr | nodes/ ‘
sites | nodes | nodes | nodes | call
genetic 17 32 45 0 0 1.41
sim 14 26 44 2 8 1.70
blocks2 20 28 28 1 2 1.00
car 64 144 235 2 2 1.63
assembler | 52 | 263 642 0 0 2.44
loader 30 82 125 2 2 1.52
cholesky || 47 72 93 2 2 1.29
mpdd | 23 28 32 0 0 1.14
water 15 21 26 0 0 1.24
volrend 53| 108 169 2 2 1.56
chomp 22 47 a8 7 7 2.09
sparse || 28 76| 121 0 0 1.59
pug {| 41 69 101 0 0 1.46

Table 6.4: Invocation Graph Charateristics of Connection Analysis Benchmarks

functions actually called in the program, the total number of call-sites in the pro-
gram, and the total number of nodes in its invocation graph. The function main is
not counted as a function or a call-site, but the invocation graph node representing
main is counted. The last three columns give the number of recursive and approx-
imate nodes, and the number of nodes per call-site, in the invocation graph of the
given program.

In Table 6.5, we provide some dynamic interprocedural measurements for the
benchmarks. More specifically, we give some statistics about the number of procedure
calls analyzed during the analysis. The column labeled Tot gives the total number of
procedure calls analyzed during the analysis. Our interprocedural algorithm analyzes
a procedure once for each invocation context. Hence one might expect that the
number of procedure calls analyzed would be equal to the number of nodes in the
invocation graph. However, this is not true, since a procedure call can be analyzed
scveral times for a single invocation context, if the call is involved in a loop or recursion
fixed-point approximation.

The column labeled Memo in Table 6.5 shows the number of procedure calls that
get memoized. A call is considered memoized if the input connection matrix (at the
entry of the callee) for this call, is found equivalent to the stored input matrix at
the invocation graph node corresponding to the call. Recall, that our interprocedural
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Program Calls Analyzed || Avgf | Avge | Avgi

| Tot | Memo | Actual ||

genetic || 55 8 AT 276 | 1.46 1.04
sim 71 10 61 || 4.36 | 2.35| 1.39
blocksz || 371 | 221 150 || 7.50 | 5.36 | 5.36
ear 268 30| 238 3.72| 1.86 | L0l

assembler J| 767 101 666 || 12.80 [ 2.53 | 1.04
loader || 312 132 180 || 6.00 | 2.20 | 1.44
cholesky || 132 35 97 || 2.06 1.35] 1.04
mp3d 47 0 47 [ 2.04 | 1.68 | 1.47
water | 98 73 25| 1.67| 1.19] 0.96
volrend 192 21 171 | 11.40 | 1.58 | 1.01
chomp 219 92 127 5.77| 2.70| 1.30
sparse 168 47 121 | 4.32 | 1.60| 1.00
pug 160 47 113 2.75| 1.64| 1.12

Table 6.5: Interprocedural Measurements for Connection Analysis

analysis algorithm (shown in Figures 4.9 and 4.10), stores at each invocation graph
node, the pair of input/output connection matrices valid respectively at the entry
and exit of the callee, during the last visit to the node. So, in this case we can simply
obtain the output matrix, from the invocation graph node, without re-analyzing the
called procedure. So the number of calls actually analyzed is obtained by subtracting
the number of memoized calls from the total number of calls analyzed (Tot - Memo).
This number is given by the column labeled Actual in Table 6.5.

The last three columns in Table 6.5, labeled Avgf, Avge and Avgi respectively give
the average number of calls actually analyzed (given in the column labeled Actual) per
function, per call-site and per invocation graph node. These averages are calculated
by dividing the number in the Actual column, with the appropriate number from the
first three columns in Table 6.4. In other words, Avgf, Avge and Avgi respectively give
the average number of times: (i) a function gets analyzed, (ii) a call-site is encountered
during the analysis, and (iii) a call-chain in the program (possibly ending in recursion)
is traversed during the analysis.

We make the following observations from the results reported in Tables 6.4 and 6.5:

¢ The maximum number of invocation graph nodes for our benchmark set is 642
for assembler, which also shows the highest nodes/call-site ratio of 2.44. This
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ratio is close to 1.5 for majority of the benchmarks, indicating that each cali-
site in general, appears on at most two call chains. These figures demonstrate
the feasibility of our invocation graph based context-sensitive interprocedural
analysis for this benchmark set.

However, this cannot be said in gencral. We have encountered some programs
for which both the number of invocation graph nodes and the nodes/call-site
ratio turn out to be pretty large, rendering our interprocedural strategy rela-
tively expensive. These programs gencrally have a large number of call-sites for
a few functions, which in turn have relatively big invocation (sub)graphs. These
call-sites typically occur inside multiple case statements of big switch state-
ments. The SPEC92 integer benchmark sc, which is a spreadsheet calculator,
is one such example.

A large number of procedure calls get memoized (Table 6.5). For blocks2 as large
as 221 of 371 calls and for water 73 of 98 calls get memoized. These are very
encouraging results, specially considering the fact that presently we memoize a
procedure call, only if it is analyzed more than once along the same call-chain
(i.e. for the same invocation graph node). A higher degree of memoization can
be achieved by trying to memoize all calls to a procedure (except the first one)
irrespective of the call-chain they appear on. To this end, we need to compare
the current input matrix with the stored matrix at all invocation graph nodes
representing calls to the given procedure.

Avgc for most of the benchmarks is close to 2.0 while Avgi is close to 1.0. This
indicates that for our benchmark set, on an average a call-site is encountered
twice, while a call-chain is traversed only once during the analysis. This is
consistent with the observation that for this set, a call-site on an average appears
on at most two call-chains. For water Avgi is less than 1.0, because in our
statistics main is not counted as a call being analyzed, but it is counted as an
invocation graph node.

Avgf varies from benchmark to benchmark depending upon the relative number
of functions and call-sites present. However, Avgfis relatively high for assembler
(12.80), volrend (11.40) and blocks2 (7.50). This happens because assembler and
volrend have many calls-sites for small leaf functions (mostly error routines),
while blocks2 has several calls inside loops where some of these calls are also
recursive.

Further, since the calls to leaf functions get memoized, Avge and Avgi for
assembler and volrend are comparable with other benchmarks. However, this is
not the case for blocks2, for which both Avgc and Avgi turn out to be 5.36. The
fixed-point computations for loops containing procedure calls, which in turn are
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recursive and involve further fixed-point computations, contribute to the higher
averages for this benchmark.

Thus our interprocedural algorithm works effectively for programs whose inter-
procedural structure is not very complex. To be able to handle a broader range of
programs, we are planning to optimize our algorithm in the following ways: (i) ex-
cluding the functions from the invocation graph, which neither update nor access
pointer variables, (ii) building the invocation graph in a lazy manner, as the demand
for different invocation contexts arises during the analysis, and (iii) performing more
extensive memoization as described above.

6.2 Shape Analysis Results

In this section, we present empirical results for shape analysis. Table 6.6 gives the
benchmark programs used for this purpose, and their important characteristics. The
characteristics reported are same as for connection matrix benchmarks in Table 6.1.
However, the columns labeled vars give the number of variables abstracted by di-
rection/interference matrices. The first ten benchmarks in Table 6.6, have been
specifically selected to highlight the power as well as the limitations of the direc-
tion and interference matrix abstractions. The rest of the benchmarks are taken from
the connection matrix suite, to verify the effectiveness of shape analysis for larger C
applications.

It can be observed from the data on connection matrix benchmarks, that the
number of variables abstracted by direction/interference matrices is higher than that
abstracted by connection matrices. This happens because direction/interference ma-
trix abstractions use one extra symbolic variable for each symbolic variable used by
connection matrix abstraction (sections 4.3.5 and 5.5).

Another important observation from Table 6.6, is that for the benchmark misr, 27
indirect references can refer to both stack and heap locations. This happens because
misr implements a linked list with its first element on the stack and the rest inside
the heap. Consequently, the pointer used to traverse the list inside a loop, is reported
by points-to analysis, to be possibly pointing to both the first element of the list on
stack and to the abstract location heap.

The main goal of shape analysis is to identify the shape of the data structures
built and used by a program. By identifying completely unaliased tree-like recursive
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Program || Source | SIMPLE || Min [ Max [ Avg | Ind | To To | Stack/
Lines stmts || vars | vars |i vars | Refs | Stack || Heap | Heap
bintrce 351 342 4] 23] 10] s0] 1o [ 40 0
hash i 257 110 4 6 11 14 7 7 0
xref | 153 139 20| 40 24| 31 0 31 0
misr | 277 235 2/ 10 8| 47 39 35 27
stanford || 885 880 4 14 7| 28 0 28 0
power || 681 641 16( 23 18 | 180 29 151 0
chomp 430 476 § 20} 27§ 22| 127 45 82 0
reverse 123 49 9 18 12| 16 0 16 0
paraffins 381 180 6 31 21 37 2 35 0
assembler | 3361 3071} 22| 36| 24| 718| 666 52 0
loader 1539 1055 || 13| 28 17} 170 | 106 64 0
volrend 4207 4909 4 36| 65| 38| 190 63 128 1
sim 1422 1760 || 76 111 83| 374 34 |[ 340 0
blocks2 || 876 1070 | 56| 82| 61 373 98 || 275 0
water 2703 2418 || 16| 79] 36 581 32 || 549 0
nbody || 2204 703 24) 36) 27| 134 24 116 6
sparse 2859 1495 24 60| 32| 468 3 || 465 0
pug 2400 2089y 32| 153 | 48| 822 | 147 || 688 13

Table 6.6: Charateristics of Shape Analysis Benchmarks
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structures or aliased but acyclic dag-like structures in a program, we can enable sev-
eral powerful program optimizations like concurrent execution of recursive procedure
calls [Lar89, Hen90], software pipelining [HHN92a], and loop unrolling [HG92]. In
this light, we estimate the effectiveness of shape analysis, by providing the following
measurements in Table 6.7, for each benchmark:

o Refs: The number of heap-related indirect references in the program,

o T, D, C: These three columns respectively give the number of heap-related
indirect references where the dereferenced pointer, say p, points to a tree-like,
dag-like or cyclic data structure: i.e. A[p.shape] = Tree, Dag or Cycle, where
A is the attribute matrix at the given program point.

The multi-columns labeled *a/(*a) .band a[i] (where a is a pointer) in Table 6.7,
separately give the above measurements for indirect references of the respective form,

while the multi-column labeled Overall gives the overall statistics for the given pro-
gram.

Below we analyze the results for each benchmark, by comparing the actual shape
of the data structures it builds, with that reported by the analysis. For benchmarks
where the two don’t match, we investigate why the analysis gives a conservative
answer.

bintree: As the name suggests this program builds a binary tree. Each tree node
consist of a char pointer, and pointers to left and right children. The program first
builds the tree using a loop, where each iteration inserts a node with a new string
pointed to by the char pointer. A new node is always inserted as the child of an
existing node with no children.

Thus the data structure always remains tree-like and does not become dag-like
even temporarily. Once the tree is built, several traversals are done on it. They only

update the value of the string field in its nodes, and do not modify other pointer
fields.

Our analysis gives precise results. It reports all dereferenced pointers to be point-
ing to tree-like structures. The indirect references of the form *a/(*a).b in this
program refer to nodes of the binary tree, while the four indirect references of the
form a[i] are used in a string compare function, where the strings are stored in
dynamically allocated objects.

hash: This program builds a hash table. It uses an array of pointers on the stack,
namely htable, and each of the pointers htable[i] points to a linked list of items.
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Program *a / (*a).b ali] Overall
RefslT]DlC_RefslTlDJC RefslTlD]C‘

bintree 3] 36] 0] O 4] 4] 0] of 40] 40] 0] o
hash 7 71 0 0 0 o1 0 0 7 71 0 0
xref I 29[ 29| O 0 2 210 0 311 31| 0 0
misr 351 351 0 0 0 0| 0 0 3541 351 0 0
stanford 281 28| 0 0 0 gi 0 0 28| 281 0O 0
power || 147[147| 0] O 4| 4] 0| 0 161151 O] O
chomp I 56| 56| 0 0 26| 26| 0 0 821 8] 0 0
reverse [ 16( 11] & 0 0 0| 0 0 16| 11| 5 0
paraffins || 26 8118 0 9 3] 6 0 351 11 )24 0
assembler 451 45| 0 0 7 71 0 0 52| 82| 0 0
loader 551 55| 0 0 9 91 0 0 64 64| 0 0
volrend 96| 961 0 0 321 321 0 Of 1281128 | 0 0
sim 9651 29| 67 0 244|221 |23 0 340 | 250 | 90 0
blocks2 {| 119 16137( 661 156 64 {43 | 49| 275 80|80 {115
water 2501181 0] 69| 299 (124 | 0[175) 549|305 | 0| 244
nbody 741 221 0] 52 421 14} 0] 281 116 ) 36| 0| 80
sparse 384 14] 01370 0 0| 0 0| 384 14| 0 370
pug 5141 16| 0498 | 174 1] 0173 ) 688 17| 0} 671

Table 6.7: Empirical Measurecments for Shape Analysis Results
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An item is added by first hashing it to a number j, and then appending it at the end
of the list pointed to by the pointer htable(j].

Qur analysis abstracts all pointers htable[i] by the single name htable. The
shape attribute of htable is therefore the merge of the shape attributes of all pointers
it represents. Since each of these pointers points to a tree-like structure, our analysis
reports the shape attribute of htable as Tree. Note that if the lists pointed to by
two pointers htable[i] and htablel[j] share a node, then the analysis would report
the shape attribute of htable as Dag or Cycle.

Consider the example in Figure 6.6. Before the statement, pointer htable has
paths to both p and q as it represents both pointers htable[i] and htablel[j].
Further, the shape attribute of all three pointers (htable, p and q) is Tree. After the
statement p=>next = q, analysis would infer that htable has an additional path to
q via p and make its shape attribute as Dag.

Further, in the example in Figure 6.7, pointers htable[i] has a path to p. Thus,
from the analysis point of view htable has a path to p. Now, after the statement
p->next = htable[j], analysis finds that p has a path to htable, while htable
already has a path to p. So it infers the creation of a cycle, and makes the shape
attribute of both htable and p Cycle.

From the above discussion, we can conclude that if a pointer p represents an array
of pointers, and our analysis reports its shape attribute as Tree, the data structures
accessible from all pointers p[i], are tree-like and more importantly are completely
disjoint from each other. This information is crucial, as a loop iterating over such
an array, would access disjoint heap locations in each iteration, and hence can be
potentially parallelized.

Finally, note that hash does not have any heap related indirect references of the
form a[il. This is because access to an array of pointers on stack, p[i] is simply a
pointer reference and not a pointer dereference.

zref. This program builds a binary tree of items (character strings) for cross refer-
encing purposes. Thus each tree node also has a pointer pointing to a linked list of
items. The overall shape of the data structure is tree-like and our analysis accordingly
reports all dereferenced pointers having their shape attribute as Tree.

The benchmark misr uses a linked list, stanford implements a tree sort algorithm,
while chomp implements a game tree and also uses a linked list. We get expected
results from the analysis for all three benchmarks.

power: This porgram implements the Power System Optimization problem [LML*93].
It represents the power network as a tree with the power plant as the root and
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customers as leaves. The root node has an array of pointers called feeders, pointing
to various lateral nodes. Each lateral node has a pointer to a branch node and the
next lateral node. Each branch node used a pointer to the next branch, and an array
of pointers called leaves, pointing to customer (leaf) nodes.

We analyze the sequential version of the this program, originally implemented for
Olden [CRRRHI3) by Martin Carlisle. Our analysis reports the shape attribute of the
data structure built by this program, as Tree. After constructing the power network
tree, it propagates pricing information from the root node to the customer nodes, and
demand information from customer nodes to the root node.

The main loop in this program iterates over the feede- array in the root node, and
each iteration computes this information for the feeder corresponding to the current
index. Now, fecder array is an array of pointers and our analysis reports its shape
attribute as Tree. This implies that all array indices point to disjoint data structures,
and the loop can be parallelized.

reverse: This is a small program that builds a binary tree and then recursively swaps
the left and right children of each node using the following procedure:

reverse(bintree *t)
{ if (t == NULL)
return;

1 = t=->left;

r = t->right;

reverse(l);
reverse(r);
t->left = r;
t->right = 1;

Before the call to reverse, our analysis rcports the shape of the data structure
to be Tree, and after the call it reports it to be Dag. Note that actually the binary
tree only temporarily becomes a dag aiter the statement t->left = r when pointer
t has paths to pointer r via both left and right links. It becomes a tree again after
the statement t->right = 1, when the right link is reset. Shape analysis is able to
identify the first situation and makes the shape attribute of t as Dag. However, it
does not record the information as to why t becomes a Dag. So it cannot identify
that the statement t->right = 1 restores the tree attribute of pointer t.
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This example exposes a major limitation of our analysis. Analyscs using more
powerful abstractions like path matrices [IN90] can handle such cases, but they also
incur higher cost.

paraffins: This program generates all the paraflins of size upto n, where paraffing are
molccules of chemical formula €, Hanta. The principal data structure built by this
program is shown in Figure 6.8. The variables BCP, CCP and Radicals arc arrays of
pointers located on the stack. The array Radicals is similar to the structure shown
in the example in Figure 6.6. So it is reported to be Dag by the analysis. Further,
since this structure is accessible from arrays BCP and CCP, their shape is also reported
to be Dag. In Table 6.7, majority of indirect references for paraffins fall in the Dag
category. The ones falling in the Tree category, represent references to newly allocated
nodes, before they are hooked in the main data structure.

The benchmarks assembler and loader implement linked lists, while volrend uses a
stack-based array of pointers pointing to to bit vectors allocated in the heap, all of
which are disjoint from each other. The analysis results for these benchmarks are
consistent with the actual shape of data structures used by them.

sim: This program dynamically allocates an array of pointers to siructures, which
in turn themselves are dynamically allocated. The stack-based pointer LIST, that
points to the array of pointers, is reported to be dag-like because of the following
code fragment:

S1: LIST[I] = LIST(J];
S2: LIST[J] = newStruct():

After S1, both the pointers LIST[I] and LIST{J] point to a common hecap-
allocated structure. The stack-based pointer LIST has two paths to this structure:
both via LIST[I} and LISTLJ], so its shape is reported to be Dag. However, after
S2, LISTLJ] points to a newly allocated structure, and LIST no longer points to a
dag-like structure. Direction matrix abstraction cannot infer kill information for a
particular array index, and the shape attribute of LIST remains as Dag.

This program also builds a linked list, which is reported to be dag-like because
of the following code fragment, where z points to a linked list and row is a dynamic
array of pointers:

S1: z=>NEXT = row([1];
S2: row[l] = z;
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Program || fns | call ig | Recur | Appr | nodes/
| sites | nodes | nodes | nodes | call
[bintree || 17] 31 32 2] 4 1.03
hash | 8 8 0 0 1.00
xref | 8 14 15 2 4 1.07
misr |G 7 7 0 0 1.00
stanford || 8 12 13 2 4 1.08
power 18 31 53 6 6 1.71
chomp " 20 47 98 7 7 2.09
reverse " 5 10 11 2 4 1.10
paraffins 7 6 7 0 0 1.16
nbody || 34 67 118 2 2 1.76

Table 6.8: Invocation Graph Characteristics for Shape Analysis Benchmarks

Analysis fails to identify that the same index of the array row gets updated in 82
and gives a conservative answer.

The benchmarks dlocks2 and water use linked lists and heap-allocated arrays of point-
ers to linked lists. These arrays become dag-like or cyclic because of situations similar
to the ones depicted in Figures 6.6 and 6.7, except that arrays of pointers for these
benchmarks are heap-allocated. In Table 6.7, we have indirect references for blocks2
refering all three types of data structures. While for water, tuzy are reported to refer
to only tree-like and cyclic data structures.

nbody: This program implements the hierarchical N-body problem to calculate grav-
itational forces acting on N bodies in space and computing their new co-ordinates
at each time step. It stores the N bodies as a linked list, and builds an octrec data
structure to represent the relative position of the bodies in three dimensional space.

The root of this tree represents a space cell containing all bodies in the system.
The tree is built by adding bodies into the initially empty root cell, and subdividing
a cell into its eight children as soon as it contains more than a single body. In the
process, new cells are generated and they are inserted between an existing cell and a
leaf node (a body) in the tree. This insertion causes the analysis to infer the shape
of the data structure as Dag. For example, sce the following code fragment:
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S1: old_cell->item = q;

S2: new_cell = newCell();

S3: new_cell->item = q;

S4: old_cell->item = new_cell;

After 81, old.cell has a path to q. After S3, new.cell also has a path to
q. Presently the shape of the data structures accessible from both old_cell and
new_cell is Tree. After S4, old.cell has a path to new.cell, and it does not have
a dircct path to q (not considering the one via new.cell). However, shape analysis
does not have enough information to infer the latter. Hence it assumes that old_cell
has two paths to q: a direct path and a path through new_cell and repects its shape
to be Dag. If more insertions are done in this apparently dag-like data structure,
analysis gets overly conservative and finally reports it to be cyclic.

For the above reasons, we have majority of indirect references in nbody falling
in the Cycle category. Note that the octree data structure built by this program is
inherently a dag-like structure, as its leaves are linked. However, our in-depth analysis
of this program revealed that we would get the same results even if this were not the
case,

Finally, the benchmarks sparse and pug use inherently cyclic data structures with
back pointers. So majority of indirect references for them fall in the Cycle category.
The ones in the Tree category again represent newly allocated nodes, before they are
hooked in the main data structure of the program.

One can note that majority of the indirect references of type a[i] fall in the Tree
category. This happens because for most of the benchmarks, these arrays are stand-
alone data structures in the heap, which can be considered as trees with a single node.
However some benchmarks like paraffins, blocks2 and water use heap allocated arrays
of pointers to recursive structures like linked lists. Indirect array references for such
benchmarks fall into all three shape categorics.

From the above analysis of shape analysis results for the various benchmarks, we
draw the following conclusions:

e If a program builds a tree-like data structure in such a manner, that a new node
is always appended at the beginning/end of the existing structure, then shape
analysis is able to infer the shape of this data structure as Tree. For example, in
the above benchmark set, dintree and stanford build binary trees by arpending
the new node to a leaf node, while hash, misr, and zref build linked lists by
appending a new item at the beginning/end of the list.
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Program Calls Analyzed Avgf | Avge | Avgi |
Tot | Memo | Actual
bintree 59 12 477 2.76 | 1.51] 147
hash 11 1 10% 2.00) 1.25] 1.25
xref 60 13 47| 588 | 3.36( 3.13
misr 7 0 Of 1.40{ 1.00]| 1.00
stanford || 36 6 301 3.75| 2.50| 231
power 112 49 63 || 3.50| 2.03| 1.19
chomp 390 196 . 194} 9.70 | 4.13| 1.98
reverse 52 16 36( 720 3.60] 3.27
paraffins 9 0 9 }F 1.29 | 1.507] 1.29
nbody H 252 42 210 | 6.17| 3.13| 1.78
assembler [| 1057 221 836 tLIS.OB 3.18| 1.30 |
loader “ 328 | 126| 202 6.73 | 2.46| 1.62 ]
volrend || 247 26 221 (| 4171 2.05| 1.31
sim 161 8 1563 || 1093 | 6.19| 3.66
blocks2 690 432 258 || 12.90 | 9.21 | 8.90
water ii 366 332 34 2271 1.62| 131
sparse 195 64 131 ] 4.68 ] 1.72] 1.08
pug | 213 53 160 {| 3.90| 2.39] 1.36

Table 6.9: Interprocedural Measurements for Shape Analysis
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e If a new node is inserted between two existing nodes in a data structure, analysis
fails to retain the shape attribute of the data structure as Tree and infers it to
be first a Dag, and on successive insertions a Cycle. The construction of the
octree structure for the nbody benchmark is an exampie of this case.

o If a data structure temporarily becomes dag-like or cyclic and then becomes
tree-like again, shape analysis cannot identify this case, and continues to report
it as dag-like or cyclic. The program reverse demonstrates this limitation of the
analysis. A more powerful abstraction is required to overcome this limitation.

e Abstracting entire arrays (of pointers) as one pointer, has both advantages and
disadvantages. On the positive side, if the shape attribute of such a pointer is
reported to be Tree, one is guaranteed that all indices of the array point to tree-
like structures, completely disjoint from cach other. This applies to benchmarks
hash and power.

On the negative side, such abstraction can introduce undesirable imprecision, as
demonstrated by the cases shown in Figures 6.6 and 6.7, which apply to bench-
marks paraffins, blocks2 and water. Further, shape analysis cannot obtain any
kill information when an array index is updated. This lack of kill information
results in loss of precise shape information, as shown for the benchmark sim.

One approach to avoid this imprecision can be, to use subscript analysis for ar-
rays of pointers, and identify when two array references access the same pointer
or distinct pointers. We are presently investigating this approach.

Finally, the interference matrix information itself can be used to find if two pointers
can access a common heap object. This can provide an improvement over connection
matrix information, which only informs if two pointers can lead to a common (con-
nected) heap data structure. However, our experiments showed that this is not the
case, and interference matrix results turn out to be almost identical to connection
matrix results. On further investigation, we discovered that during the analysis, in-
terference matrix information is more sophisticated than connection information, but
the final merged information deposited on the SIMPLE tree turns out to be identical
for the two abstractions. Now, interference matrix abstraction was designed to use
its information during the analysis, in order to improve the overall precision of shape
information. Thus, it serves its design target.

In Table 6.8, we present the \nvocation graph characteristics for shape analysis
benchmarks, and ir Table 6.9 some in’erprocedural measurentents for shape analysis.
The two tables present similar data ior shape analysis, as Tables 6.4 and 6.5 present
for connection analysis. Further in Table 6.8, we do not include the shape analysis
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benchmarks taken from the connection matrix suite, as the data for them is same as
that presented in Table 6.4.

It can be observed from Tables 6.4 and 6.8 that majority of the shape analysis
benchmarks, have recursive and approximate invocation graph nodes. Since most

of these programs use recursive data structures, they also employ recursion as the
control structure to traverse and modify them.

The interprocedural measurements show similar trends as the ones for connection
analysis, with memoization providing significant advantages. The averages Avgf,
Avge, and Avgi are relatively higher than those for connection analysis. This happens
because more iterations are required for loop and recursion fixed-point approximations
for shape analysis, as four separate abstractions are calculated at the same time.

6.3 Summary

In this chapter we provided empirical evidence of the effectiveness of our heap analysis
techniques on real C application programs. We also demonstrated that each of our
analyses gives accurzte results for its target domain of applications, and conservative
results for others. This proved the validity of our hierarchical approach to heap
analysis. In future, we plan to collect empirical data on the impact of accurate heap
analysis towards more accurate dependence analysis and increased opportunities for
optimizations like loop parallelization and instruction scheduling.
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Chapter 7

Conclusions and Future Work

In this thesis, we have presented a hierarchy of two practical heap data structure
analyses: connection analysis and shape analysis. The first analysis identifies pointer
accesses to completely disjoint heap data structures. The shape analysis estimates
the shape of the data structure accessible from a heap-directed pointer, with special
focus on identifying completely unaliased trce-like structures and aliased but acyclic
dag-like structures, built by the program under analysis.

We outlined the basic analysis rules for these analyses, which can be used to de-
velop the corresponding analyses for any language that supports dynamic data struc-
tures. Further, based on the basic analysis rules, we developed complete analysis
frameworks to analyze a language as complex as C. We also extended the context-
sensitive interprocedural analysis framework built by points-to analysis. Our exten-
sion involved introduction of additional symbolic variables, to correctly handle the
heap relationships of inaccessible local pointers of a function, across procedure calls.

We also implemented the connection and shape analyses at the structured tree-
based SIMPLE intermediate representation of the McCAT C compiler. Using this
implementation, we analyzed a collection of real C applications, and provided em-
pirical evidence of the effectiveness of each analysis for its intended target domain of
applications. Connection analysis provided very accurate results for programs that al-
locate a number of (mostly non-recursive) disjoint data structures in the heap. Shape
analysis accurately identified tree-like structures, when they were built by inserting
new nodes as children of existing leaf nodes. These empirical results also validated our
approach of decoupling the analysis of stack-directed and heap-directed pointers, and
developing a hierarchy of analyses for heap data structure analysis. Finally, the in-
terprocedural measurements demonstrated the benefits achievable from memoization,
for a context-sensitive interprocedural analysis.
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We have illustrated that heap data structure analysis can be both efficient and
effective, provided that appropriate abstractions are designed in keeping with the
data structures used by the target domain of application programs. In future, we
plan to extend our work in several directions. We discuss these extensions below.

We plan to develop efficient techniques for performing heap interference (depen-
dence) analysis using the data structure information from connection and shape anal-
yses. A general approach for heap interference analysis has been proposed by Hummel
et al. [HHN94). We plan to develop some practical variations of their approach, suit-
able to the data structure information collected by our analyses. We also plan to
investigate the use of shape information for optimizing transformations like pipelined
and parallel execution of recursive calls traversing tree-like structures, and software

pipelining and unrolling of loops iterating over lists and arrays of (disjoint) recursive
data structures.

We plan to optimize our interpracedural analysis algorithm to be able to han-
dle programs which have large invocation graphs. We mentioned several approaches
for this optimization in chapter 6. We also plan to measure how much precision
is gained by performing a context-sensiiive connection analysis as compared to a
context-insensitive analysis. Shape analysis, however needs to be context-sensitive,
because one extraneous path information can result in loss of critical shape informa-
tion,

Finally, we plan to design more powerful abstractions to analyze programs that (i)
build data structures by insertion i.e. by inserting new nodes between existing nodes,
and (ii) use complex cyclic data structures. While examining application programs
that use dynamic data structures, we discovered that often they build data struc-
tures that are dag-like or cyclic in shape, but still have regular properties. Typical
examples include leaf-linked trees, doubly linked lists, and trees with parent and/or
sibling pointers. One way to accurately abstract such data structures is provided
by language-based mechanisms like ADDS [HHN92a] and alias axioms [HHN94]. We
have designed a new abstraction called partial path matrix, that can automatically
capture the critical properties of these data structures, and also accurately handle
node insertions.

Partial path matrix abstraction can be considered as an enhanced version of the
direction matrix abstraction. Given any two heap-directed pointers p and q, the
partial path matrix entry PP[p,q] contains the first links(s) of the possible path(s)
from the heap object pointed to by p to the heap object pointed to by q. For example,
if p points to the root of a tree, and q points to a node accessible from the root by
following a 1e£% link and a right link, the entry PP[p,q] will be simply 1eft. Keeplng
the first link information will provide us kill information for the basic heap statement,
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p-># = q, and cnable accurate estimation of the shape of data structures built by
insertion,

More importantly, partial path matrix abstracts the shape of a data structure in a
more comprehensive manner. Like shape analysis, it maintains an auxiliary attribute
matrix called AP. However, AP abstracts the shape of a data structure along specific
finks. The basic idea is that the overall shape of a data structure accessible from a
pointer may be dag-like or cyclic, but it can be still tree-like or dag-like if only specific
links in the data structure are considered.

For example, a binary tree with parent pointers is a cyclic structure. However, if
in some program segment, it is traversed only using the left and right links (i.e. its
tree edges), we can consider its shape to be tree-like for this part of the program, and
apply optimizing transformations applicable to tree traversals. Suppose a pointer p
points to the root of such a tree. The shape attribute of p is abstracted by the matrix
AP along each combination of links as follows:

AP|[p.shape,left left] = Tree AP|[p.shape,right right] = Tree
AP[p.shape,parent,parent] = Tree AP[p.shape,left,right] = Tree
AP[p.shape,left,parent] = Cycle =~ AP[p.shape,right,parent] = Cycle

It can be noticed that using this abstraction, shape attributes of other dag-like
and cyclic data structures like leaf-linked trees, trees with sibling pointers and dou-
bly linked lists, can be accurately and comprehensively captured. Presently, we are
developing the basic analysis rules for the partial path matrix abstraction. We soon
plan to implement it in the framework of the McCAT C compiler, and measure its
effectiveness on real C benchmark programs.
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Appendix A

Implementation Details

The connection and shape analyses hii  been implemented on the SIMPLE inter-
mediate representation, using the structured analysis framework of the McCAT C
compiler [Sri92, Ema93). We handle C language in its full glory, except for setjump
and longjump, union types, exception handling and type-casting of pointers to inte-
gers and vice versa. For union types, presently we assume the existence of all fields.
However, we also need to take into account that these fields are statically aliased.
This is a minor extension to our implementation.

Both connection and shape analyses are performed after points-to analysis. They
require points-to information and also depend on the interprocedural analysis frame-
work built by points-to analysis. However, connection and shape analyses themselves
are independent of each other. The user can invoke the particular analysis he/she
wants by setting the appropriate optimization flag at compile time.

For either analysis, a first pass is done through the program (after points-to analy-
sis) to determine which pointers can point to heap locations i.c. the abstract location
heap. If a pointer can point to heap at some point in the program, a row index is
reserved for it in the appropriate matrix. A separate matrix is constructed for each
function in the program. The matrix for a given function consists of two parts: the
global part which consists of rews allocated for variables global in scope, and (ii) the
local part which consists of rows allocated for variables local to the given function.
The size of the global part is same for matrices of all functions, while the size of the
local part varies from function to function.

When a pointer is added to a matrix (i.e. a row index is reserved for it in the
matrix), the symbolic variables corresponding to it are also simultancously gener-
ated and added to the matrix. Recall that symbolic variables need to be generated
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corresponding to all heap-directed pointers which are global in scope, are formal pa-

rameters or represent symbolic variables used by points-to analysis (sections 4.3.5
and 5.5).

Thus, the number of rows in the matrix of any function, is equal to the number
of pointers in the program that can be heap-directed at some program point and are
visible in the function, plus the number of symbolic variables corresponding to these
pointers. Once the number of rows is known, we implement the matrix by allocating
a bit vector for cach row. Each bit vector should have one bit corresponding to each
row (i.e. each pointer abstracted) in the matrix, The number of bytes required for a
bit vector is calculated by dividing the number of rows in the matrix by eight, where
each byte is assumed to have cight bits, and taking the ceiling in casc a fraction is
obtained.

The attribute matrix used to store root and shape attributes, is appended to
direction matrix in the implementation. It requires three bits for each pointers.
The first bit is used to store the root attribute: if it is zero, root attribute is True
(default value), else it is False. The remaining two bits are used to store the shape
attribute. Since four shape attributes can be represented using two bits, while we
need to abstract only three, we do not use one combination of bits. The choice is
motivated by making the merge operation for attributes and pointer relationships
uniform. So we follow the following convention:

[ Bits | Shape_ |
00 | Tree (Default) |
01 | Dag 1
10 | Not Used
11 | Cycle

It can be observed that logical OR operation on any two bit scts, gives the bit set
for the appropriate attribute. So the three bits used to store attributes of a pointer
are appended to the bit vector corresponding to it, in the direction matrix. Thus for
bit vectors for direction matrix, we need to allocate space for three additional bits.

For matrices that abstract symmetric relationships, like connection and in: - fer-
ence matrices, space is allocated only for the lower half of the matrix i.e. for the bit
vector corresponding to the ith row, space is allocated to store only i bits. Conse-
quently, an access like M[i,j] to a symmetric matrix M, is converted to an access to
the element M[j,i] if j > i. This scheme results in substantial space savings.
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The maximum of the average number of variables abstracted by a connection
matrix is 89 for the benchmark cholesky ('I'able 6.1). For this size, if we implement
the full matrix, each bit vector necds space for storing 89 bits. Thus, 12 bytes need
to be allocated for cach bit vector, and total (89 * 12 = 1068) bytes for the entire
matrix. Since we allocate ~uly the lower half of the matrix, the space requirement
should be (1068/2 = 534) bytes. In practice it turns out to be larger, because the
basic unit of allocation used by our analysis is a word (4 bytes). Thus, even if a
bit vector needs to store only one bit, a word is allocated for it. Taking this factor
into account, the number of bytes allocated for the above matrix can be calculated
as follows: ( (32 * 4) + (32 * 8) + (25 » 12) ) = 684).

Amony direction matrix benchmarks, the maximum of the average number of
variables abstracted is 83 for sim. Since, direction and interference matrix abstrac-
tions are computed simultaneously, we take into account the space requirements for
both the matrices. Considering that direction relationships are not symmetric, while
interference relationships are, the total space requirement for the two matrices with
83 variables is: ( (83 = 12) + (32 = 4) + (32 *= 8) + (19 = 12) = 1680 bytes ). Note
that (83 + 3 = 86) bits will be used for each direction matrix bit vector from the
total space for 96 bits allocated. Thus, it can be noticed that space requirement for
direction/interference matrix abstractions is much higher than that for connection
matrix abstraction, when the number of variables abstracted is comparable.

For heap analyses, bit vectors form the suitable data structures, as the number of
relationships between heap-directed pointers can be quite large. For example, if the
program uses a single data structure, every pointer will be connected with every other
pointer. Similarly if a data structure is cyclic, all pointers pointing to it would have
paths to each other. Further, bit vectors cnable fast merge operation on matrices,
which is simply a logical OR operation.

Our analysis framework uses a global data structure called DATA. It stores the
currently valid matrix, and pointers to other structures used by the analysis, like
break-list, continue~list and return-list (described in chapter 4). The fields
of this data structure get updated as analysis proceeds from statement to statement.
When the analysis visits a statement, it obtains the currently valid matrix (or ma-
trices) from DATA, and stores it (them) in the SIMPLE node corresponding to the
statement. If a matrix is already deposited at the statement node due to a previous
visit, the two matrices arc merged.

Next, the statement is analyzed and the matrix stored in DATA is updated if
required. The updated matrix is then saved at the next statement visited by the
analysis. Thus, our scheme cleanly separates the data structures used for calculating
the abstraction, from the ones used to store it for further use. Further, the matrix
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deposited at a statement node contains information valid before the execution of the
statement.

The space requirements estimated above for the various matrices, indicate that
storing them at each statement node can prove to be expensive. Further, if a state-
ment sequence involves no pointer updates, the matrices for all statements in the
sequence would be identical. Thus, substantial space optimizations are possible.

Presently, we employ a simple scheme that avoids the duplication of matrices at
the basic block level. Under this scheme, we store the matrices at basic SIMPLE
statements which follow a statement that accesses a pointer variable (and hence can
affect pointer relationships). They are also stored at statements falling before and
after a call-site, and at the entry of a function or a control construct. The rest of
the statements simply have a pointer to the matrix stored in the ncarest preceding
statement. The matrices valid at the exit of a function are stored in the corresponding
function declaration node in the SIMPLE tree. The above scheme reduces storage
requirements, while allowing us to output the analysis results at each statement, for
debugging purposes. More effective space optimization can be achicved by using
advanced intermediate representations like ALPHA [HGS92].

Another approach can be to store the matrices only at statements that derel-
erence heap-directed pointers, because it is at these statements where the analysis
information really gets used. Further, at these statements we need to store only the
information for the pointers being dereferenced, instead of the entire matrix (matri-
ces). If the information about the dereferenced pointers turns out to be sparse, it can
be stored as a linked list instead of as a bit vector. This approach can be quite easily
implemented in our analysis framework. We do not use it in our present implemen-
tation, as we need the analysis information at each statement in order to study the
factors that influence various heap analyses.

Besides the data structure DATA, another important data structure used by the
heap analyses is the invocation graph. Each path in the invocation graph represents a
call-chain, while each node represents a call in the given call-chain. Each node stores
the pair of input/output matrices last seen (to enable memoization), and a pointer
to the map information data structure. Map information is stored as a dynamically
allocated array of integers called map.inifo, where map_infol[i] gives the index of
the variable in callee to which the variable with index i in caller is mapped. If a
variable in caller, say with index j, is not mapped to any variable in the callee, we
set map_info[j] as -1.

Finally, we need to optimize our analysis in a number of other ways: most im-
portantly by minimizing the calls to the memory routines malloc and frse. With
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our current implementation, connection analysis takes less than 15 seconds for the
benchmarks given in Table 6.1, while shape analysis can take upto 354 seconds for
heap-intensive benchmarks like pug. We will make more detailed timing data available
once we fine-tune our implementation.
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