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Abstract

This dissertation presents two new systematic feedback approaches for set point feedback stabilization

of drift free systems which employ Lie algebraic techniques. Due to some special features, drift free

systems are known to be difficult to stahilize. For such systems, linearization, and state feedhack

linearization techniques, fail to he usefuL rvIoreover, such systems cannot be stahilized hy continuous

static state feedback as they fail to satisfy Brockett's necessary condition for smooth stabilization. In

the absence of continuous static state feedhack laws, most of the e.."'cisting methods utilize piece-wise

constant feedback or time-varying feedhack controls which usually necessitate transformation of the

system models into chained, power or nilpotentized forms. In this dissertation two new feedhack ap­

proaches: the guiding functions approach and the trajectory interception approach are introduced.

The importance of these approaches is due to their simplicity and the fact that they do not require

any special transformation techniques.

The guiding functions approach delivers piece-wise constant control sequences and relies on the con­

struction of special guiding functions which are not Lyapunov functions. However, a comparison of

their values allows to determine a desired direction of system motion and permits ta construct a

sequence of controls such that the sum of these guiding functions decreases in an average sense. The

individual guiding functions are hence not restricted to decrease monotonically but their oscillations

are limited and coordinated in a way to guarantee convergence.

The guiding functions strategy is first analysed with reference to systems which appear in a special

rectified form and requires the construction of as many guiding functions as there are control vari­

ables. Later, this approach is e..'ctended to apply to general drift free systems and usually results in

the construction of only a pair of guiding functions. The strategy is general and can be employed

to control a variety of mechanical systems with velocity constraints. The most important feature

of this strategy is that it often leads to dead beat control. For higher order systems, a combined

strategy which employs sinusoidal steering in conjunction with the guiding functions approach is

also e..xamined.
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The trajectory interception approach prmrides a universal method for the construction of time vary­

ing stabilizing feedhack control for drift free systems in the sense that it is independent of the vector

fields determining the motion of the system, or of the choice of a Lyapunov function. The resulting

feedback law is a composition of a standard stabilising feedback control for a Lie bracket e..xtension of

the original system and a periodic continuation of a specifie solution to an open loop, finite horizon

control problem stated in terms of a formai equation on a Lie group - an equation which (via an

evaluation homomorphism) describes the evolution of the fiows of the original as weil as the ex­

tended system. The open loop problem is solved as a trajectory interception problem in logarithmic

coordinates of fiows.

The construction proposed in this approach demonstrates that synthesis of time varying feedback

stabilizers for drift free systems can be viewed as a procedure of combining static feedback laws for a

Lie bracket extension of the system with a solution of an open loop control problem on the associated

Lie group. This approach is employed first to a subclass of drift free systems which are characterized

by nilpotent controilability Lie algebras. Later, the approach is extended to apply to other drift free

systems which possess non-nilpotent controilability Lie aIgebras. This is accomplished by introduc­

ing approximate system models which possess nilpotent controilability Lie algebras.

The applicability of both approaches is demonstrated on a variety of drift free systems with different

algebraic structures: a unicycle, Brockett's system, a front wheel drive car, a rigid spacecraft, a

hopping robot in flight phase, an underwater vehicle, a fire truck, a mobile robot with trailer, and a

class of wheeled mobile robots. The examples confirm the effectiveness of both approaches beyond

any doubt.

iv
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RÉSUMÉ

Dans cette thèse on présente deu.x méthodes directes pour la stabilisation par rétro-action des

systèmes sans dérives. Ces méthodes sont basées sur les méthodes algébriques de Lie. Due à

certaines particularités ces systémes sont difficiles à stabiliser. Ainsi la linéarisation et les tech­

niques de linéarisation par retour d'etat ne sont pas utiles. De plus, de tels systèms ne peuvent

pas être stabilisés par un retour d'etat statique et continu puisqu'ils ne satisfont pas à la condition

nécessaire et suffisante de Brockett pour la stabilisation lisse. En absence de commande par re­

tour d'etat statique et continu, la majeure partie des méthodes existantes utilisent des commandes

à retro-action constantes par morceaux ou variantes dans le temps qui d'habitude nécessitent une

transformation des modéles du système en chaines, et formes de puissances ou nilpotantes. Dans

cette dissertation on introduit deu."C approches rétro-actives nouvelles: l'approche par fonctions de

guidances et l'approche d'interception de trajectoire. L'importance de ces approches est due à leur

simplicité, et le fait qu'elles n'ont pas besoin de technique de transformation spéciale.

L'approche des fontions de guidance générent des suites de contrôle constantes par morcealLX, et

s'appuie sur la construction de fonctions de guidance spéciales qui sont des fonctions de Liapounov.

Cependant, une comparaison de leurs valeurs permet de détérminer une direction désirée du mou­

vement du système et de construire une suite de commandes telle que la somme de ces fontions de

guidance décroît en moyenne. Les fontions de guidance individuelles ne sont pas donc restraintes à

décroiotatre de [acon monotone mais leurs oscillations sont limitées et coordonnées dans un sense

qui garantie la convergence.

La stratégie des font ions de guidance est d'abord analyser avec référence aux systémes apparaissant

dans une forme rectifiée particulière et exigant la construction d'autant de fonctions de guidance que

de variables de contrôle. Plus tard, cette approche est prolongée de facon à s'appliquer en général

au."C systémes sans dérive, il en résulte comme d'habitude la construction de seulement une paire

des fonctions de guidance. La stratégie est générale et peut être employée à contrôler une variété
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de systémes mécaniques avec des constraintes de vélocité. La caractéristique la plus importante

de cette stratégie est qu'elle méne souvent à la commande pile. Pour les systémes d'ordre élevé,

une stratégie combinée qui emploie un entrainement sinusoidal en conjonction avec l'approche des

fontions de guidance est examinée.

L'approche d'interception de trajectoire fournit une méthode universelle de constructi on de com­

mandes par rétro-action variante dans le temps pour la stabilisation des systèmes sans dérive, dans

le sense qu'elle est indépendante du champs vectoriel qui détermine le mouvement du système,

ou du choi..x d'une fonction de Liapounov. La loi de rétro-action résultante est une composition

d'une stabilisation par rétro-action standard spéci tique au crochet de Lie du systéme original, et

un prolongement périodique d'une solution spécifique à un problème de commande en boucle ou­

verte d'horizon fini, posé en termes d'une equation formelle sur un groupe de Lie - une equation

qui décrit (via un homomorphisme d'evaluation) l'évolution du flux du système original et prolongé.

Le problème en boucle ouverte est résolu comme un problème d'interception de trajectoire dans les

coordonnées logarithmiques du filLX.

La construction proposée dans cette approche démontre que la synthèse de stabilisa teurs par rétro­

action variant dans le temps pour des systémes sans dérive peut être considérée comme une procédure

combinant les lois de rétro- action statiques pour une extension du crochet de Lie du système avec

solution d'un problèm e de contrôle en boucle ouverte sur le groupe de Lie associé. Cette approche

est employée en premier lieu à une sous-classe de systèmes sans dérive qui sont caractérisés par

des algébres de contrôllabilité de Lie nilpotantes. Plus tard, cette approche est prolongée de fa­

con à s'appliquer à d'autres systèmes sans dérive qui possédent des algébres de contrôllabilité de

Lie nilpotantes. Ceci est accomplie en introduisant des modéles approximatifs qui possédent des

algébres de contôllabilité de Lie nilpotante.

L'applicabilité de ces delLx approches est démontrée sur une variété de systè mes sans dérive avec des

structures algébriques différentes: un unicycle, le système de Brockett, une auto à traction avant, un

engin spatial rig id, un robo sautillant dans une phase de saut, un vehicule sous-marin, une pompe

à incendi e, un robot mobile avec remorque, et une classe de robots mobiles avec des roues. Les

exemples confirment l'efficacité des deu..x approches hors de doute.

vi
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Claims of Originality

The following contributions are made in this dissertation:

• The two feedback control strategies introduced are new and do nat require conversion of the

system models either ta power or chained forms. In principle, no transformation techniques

are needed. Both strategies can thus be applied to systems which fail ta satisfy the condi­

tions for the existence of special transformations, and to systems which are not fiat. Both

control strategies possess strong robustness properties with respect to model inaccuracies.

• The concept of guiding funetions as a tool for feedback control design has not appeared in

previous literature. The guiding functions approach is particularly simple and often leads

to very effective feedback controllaws such as 'dead beat control'.

• The trajectory interception approach involves an original idea of employing the Lie alge­

braic techniques of [51] and [50] in a systematic synthesis of time-varying feedback control

for drift free systems.

• The trajectory interception approach provides for ex:ponential rates of convergence to a de­

sired set point. The results contained in this thesis open a new area of research with the goal

of rendering this synthesis approach computationally simpler, more effective, and extending

its applicability to systems with drift.

This research work has been partially reported by H. Michalska and F. U_ Rehman ([63], [64], [65],

[661,[67J, [68J,[69], [70], [71], [72], and [84]) in journals and conference proceedings.
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CHAPTER 1

Introduction

It is hardly possible to avoid contact with nonholonomic systems. Nonholonomic control problems

arise in everyday life: while driving a car to work, pushing a baby stroller, or riding a bicycle to

school. Sorne of these control problems are simple for a human being to solve, after sorne training.

There are however control problems which are more intricate, for e..xample: parking a tractor with

multiple trailers or reorientation of a body of a cat in mid-air while respecting the law of angular

momentum conservation. It is indeed amazing that a cat, dropped from an upside down configura­

tion, is usually able to land on her feet by using an interesting combination of maneuvers, which is

one example of a nonholonomic control problem solved successfully.

These examples seem to be superficially unrelated. However, from a mechanical or mathematical

stand point, they are examples of nonholonomic systems. Such systems arise due to the presence

of either nonholonomic constraints or non-integrable conservation laws in their motion. A non­

holonomie constraint, such as a rolling contact constraint in the instance of parallel-parking, is a

constraint on the velocity of the system which cannot be integrated into position constraints, (if

it could be integrated, it would then be referred to as a holonomie constraint). Similarly, a non­

integrable conservation law, such as the angular momentum conservation law in the case of a falling

cat, is a physicallaw that constrains the velocities of a system.

As pointed out, nonholonomic constraints appear very frequently in our daily lives and in fact are

much more common than holonomie constraints. Unlike a holonomie constraint which constrains

motion of a system away from a certain region of its configuration space, a nonholonomic constraint

limits only the freedom of motion. The case of parallel parking subject to rolling contact constraints

serves as a perfect illustrative e..xample: with such constraint a car can move backwards and forwards

but not sideways.



•

•
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lVIuch research interest was taken recently in the control of nonholonomic systems as such control

problems are of practical importance and are theoretically challenging. The literature on the control

of nonholonomic systems has grown enormously, see the survey paper [43].

In this work, we will restrict our attention to systems which represent mechanical systems with

linear velocity constraints. Such constraints can arise in a number of different ways; a few typical

~""Camples are given below:

(1) Mobile robots navigating in a cluttered environment:

The kinematics of the drive mechanisms of robot carts results in constraints on the instantaneous

velocities that can be achieved. For instance, a cart with two forward drive wheels and two back

wheeIs is often required to move without slipping sideways.

(2) Multi-fingered hands manipulating a grasped abject:

If an object is twirled through a cyclic motion that returns the object to its initiai position and

orientation, the fingers are constrained to roll without slipping on the surface of the object.

(3) Space robotics:

Unanchored robots in space are difficult to control with either thrusters or internai motors since

they conserve total angular momentum. The latter is a nonholonomic constraint. The motion of

astronauts on space walks is of this ilk, so that planning a strategy to reorient an astronaut is a

nonholonomic control problem. Other ~"Camples of this effect inc1ude gymnasts and springboard

divers in flight phase.

1. Linear velocity constraints and their integrability

Most of the velocity constraints mentioned above have the form of linear constraints ~""(pressed by

the following system of equations:

Wj(q) q = 0, q E JRn , j = 1,2, ...k (1.1)

•

where the vector q E !Rn describes the configuration of the system ta be contralled, and Wj(q),

j = 1,2, ...k, are row vectors in IRn. The following ~""(ample illustrates, haw linear velocity can­

straints can be written in the farm of (1.1) .

2
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y

'-- .r

FlGURE 1.1. Model of an automobile with front and rear wheels.

Example 1.1

Consider a simple model of an automobile with front and rear wheels, as presented in [79]. The

rear wheels are aligned with the car, while the front tires are allowed to spin about the vertical

axes. The constraints on the system arise by allowing the wheels ta roll and spin, but not slip. Let

q = (</J, x, y, 8) denote the configuration of the car, parameterized by: </J - the steering angle with

respect to the car body, (x, y) - the xy - location of the rear wheels, and 8 - the angle of the car

body with respect to the horizontal. Let l be the distance between the front and the rear wheels,

see Figure 1.1. The constraints for the front and rear wheels are formed by setting the 'sideways

velocity' of the wheels to zero. In particular, the velocity of the back wheels perpendicular ta their

direction is sin8 i: - cos8 il, and the velocity of the front wheels perpendicular ta the direction they

are painting is sin(8 + r/» i: - cos(8 + </;) il -l cos</J B. These constraints cao thus be written as:

sin() i: - cosO il = 0

sin(8 + </J) :i; - cos(8 + </J) il -l cos</; il = 0

or Wl(q) q= 0, W2(q) q = 0

where, Wl(q) = [0, sin8, -cosO, 0]

W2(q) = [0, sin(O + f/J), -cas((} + </J), -l cos</Jl

(1.2)

(1.3)

(lA)

(1.5)

(1.6)

(1.7)•
The constraints are said to be integrable if for each q there exist scalar functions h j ; N(q) -r IR,

j = 1,2, ...k, (defined on sorne neighbourhood N(q) of q), such that (1.1) can be written as;

:thj(q) = 'Vhj(q)q = 0, j = 1,2, ...k, for q E N(q)

3
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where V denotes the gradient of hi. Integrating (1.7) yields:

hi(q) = D, j = 1,2, ...k, for q E N(q) (1.8)

•

•

1t follows that integrable constraints can be substituted by algebraic constraints which do not in­

volve velocities. The constraints are said to be non-integrable if they cannot be written as algebraic

constraints involving only configuration variables q. Integrable constraints are known as holonomic

constraints and, non-integrable constraints are called nonholonomic constraints.

Constraints can he classified either as holonomic or nonholonomic by using the Frobenius Theorem

which gives a necessary and sufficient condition for the existence of at least locally defined scalar

functions hi in (1.7).

Before we state the Frobenius Theorem, the reader is advised to see Appendb: A for the definitions

of a distribution, a regular distribution, a codistribution, involutiveness and integrability of distri­

butions, etc.

Frobenius Theorern [79]

Suppose a distribution 6.(q) = span{gl (q), g2(q), ... , gm(q)} is regular, so that the dimension of Ll(qL

dim(6.(q)L is a constant. Then such distribution is integrable if and only if it is involutive.

To check integrability of constraints (1.1) by employing the Frobenius Theorem it is first necessary

to find a distribution Ll(q) = span{gl(q), g2(q), ..., gn-k(q)} such that whenever

then (1.1) is satisfied at q. The latter is clearlyequivalent to the problem of finding an annihilator

OJ..(q) to the codistribution O(q) defined by the covector fields Wi of (1.1):

The existence of OJ.(q) is guaranteed by the Proposition below:

Proposition 1.1 [79]

Assume that Wi 7 i = 1, ..., k are smooth and linearly independent covector fields on !Rn which form

a codistribution !1(q) = span{wl(q), .. ', Wk(q)} of constant dimension. There exist smooth, linearly

4
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independent vectors fields gj t j = 1, ..., n - k, such that the distribution

is the annihilator of O(q) at q, i.e., ~(q) = OJ..(q), which implies that Wi(q)gj(q) = 0, for i =
1, "', kt j = 1, ... , n - k.

The following is an easy consequence of the Frobenius Theorem and Proposition 1.1.

Corollary 1.1 [79]

A set of smooth constraints of the type (1.1) is integrable if and only if the distribution ~(q) = n.L(q)

of Proposition 1.1 is involutive.

We continue to consider Example 1.1 and show that the constraints (1.2)-(1.3) are nonholonomic.

Example 1.1 (continued )

It is easily seen that the codistribution O(q) = span{wl(q),W2(q)}, involving the covector fields Wi,

i = 1,2, of constraints (1.2)-(1.3) is annihilated by the distribution

(1.9)

where, 91(q) = [1, 0, 0, OIT, g2(q) = [0, cosO, sinO, y tan4J]T (1.10)

•

It is easily verified that distribution (1.9) is not involutive as [gl,g2](q) tI. D.(q). Therefore these

constraints are non-integrable, and thus nonholonomic.

In the next section, we describe, how nonholonomic systems with linear velocity constraints give rise

to control systems known as "drift free systems". The study of such systems is the main interest of

this thesis.

2. Drift free systems as nonholonomic systems

Consider the problem of constructing a path q(t) E IRn between given points qo and ql, subject to

constraints (1.1). vVithout the loss of generality, it can be assumed that the Wi, i = 1, ..., k, are

linearly independent and smooth covector fields. Intuitively, constructing such a path requires con­

verting the constraint specification from describing the directions in which the system cannat move ta

those in which it cano To do this, we first construct the codistribution f2(q) = span{wI(q), ""Wk(q)}.

5
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By Proposition 1.1, there exists n - k smooth, linearly independent vector fields gl, ... , 9n-k such

that the (n - k)-dimensional distribution ~(q) = span{gl(q), ... , 9n-k(q)} , spans the annihilator nJ..
of n,50 that:

Do = nJ.. Le. w(q)g(q) = 0, for ail w E n, 9 E~, 'if q.

It is now clear that the nonholonomic constraints Wi(q)q = 0, i = 1, ... , k, are equivalent to the

statement that q E ~, which requires that q is a linear combination of the vector fields of ~:

(1.11)

•

•

with some coefficients Ut, .•• , Un-k which generally depend on time, (as q and q vary with time). The

above equation represents a control system in which q is the controlled state and Ul, •.• , Un-k are the

controls. Assuming that the velocity q can be actuated direct1y, the path planning problem becomes

as finding the control, u(t) d;j [Ut, .•• , Un-k] (t) E JRn-k, which steers qo ta ql along the trajectory

of (1.11).

The control system (1.11) is said to be a drift free system; a system which is at rest if all its controis

are zero, (so that q = a if u(t) = 0) .

The construction of a drift free system from kinematic constraints is illustrated on the previous

Example 1.1.

Exam.ple 1.1 (continued)

Since

D.(q) = span{gr(q), g2(q)}

with gl and g2 given by (1.10), then (1.11) can be written as:

4J 1 0

:i; a cosB
q= = Ur + U2 (1.12)

il a sin B

é a t tan </J

~ gl (q)Ul + g2(q)U2

6
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and represents a kinematic model of the four wheel car. The contraIs Ul and U2 influence: the

angular steering, and forward velocities of the car, respectively, bath of which were assumed ta be

actuated directly.

3. IIIlportant features of drift free systems and difficulties arising in their con­

trol

Generally, drift free systems can be defined as systems described by equation of the form:

rn

X = L9i(X) Ui, x E!Rn

i=l

(1.13)

•

where, 9i(X), i E m d;f {l, ... , m}, m = n - k, m < n, can be assumed ta be linearly independent,

smooth vector fields in !Rn, and Ui can be assumed ta belong to the class of Lebesgue integrable

functions on the interval [0, (0).

The most important features of drift free systems are described below:

(a) The number of control variables Ui, i :::::: 1, ..., m is smaller than the number of state variables

Xi, i = 1, ... , n .

(h) Equation (1.13) has no equilibrium points in the usuaI sense; setting Ul = ... = U m = 0 gives

x = 0, indicating that every point is an "equilibrium point" .

(c) The linearization of (1.13) around any operating point is uncontrollable. Ta see this, let IO

be any operating point, and Ul = ." = U m = 0 be the nominal contraIs. Then the linearization of

equation (1.13) gives:

171.

lx = L 9i(XO) <SUi
i=l

(1.14)

•

which is a linear system of the form lx = A.<Sx + B<Su in which the matrix A is identicaIly zero

and B is a matrbc of dimension n by m, where n :f:. m. Therefore (1.14) does not satisfy Kalman's

controllability rank condition.

(d) It is easily seen that drift free systems have the special feature that every trajectory of (1.13),

run backwards in time, is aIso a trajectory of this system. Ta see this, suppose that the controls

t 1--7 Ul(t), ..., t 1--7 um(t) steer IO to xf in time T. Then the contraIs reversed in time t 1--7 ul(T ­

t), ..., t 1--7 um(T - t), steer xf ta Xo. Additionally, it is possible ta re-scale Ul(t), U2(t), ... , um(t) 50

7
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that xI is attained from Xo in any time T # T. This is explained as follows. Suppose'U = (Ul~ ••. , u m )

steers (1.13) from Xo to xI in time T. Then u defined by rescaling the original u in time:

T T
u(s) = T u(S f ), for 0 ~ S < 00

steers (1.13) Xo ta xI in time T. (This is because the solution of (1.13) with controls ii., i~ can be

e..xpressed by:

Then substituting ç d~ sTIT, yields

f(T) = Xo + l T
:tgi(X(Ç)) u;(Ç) ~ = x(T) = xI

o i=O

where x is the solution of (1.13) with the original contraIs Ul, ..• , u m .)

(e) Despite the fact that linearization of (1.13) is uncontrollable, the controllability of (1.13) can

be easily established by the famous Chow's Theorem [79]. Before we can state it, sorne rigorous

definitions of nonlinear controllability are in place.

Given an open set V ç !Rn, define 'RV (xo ~ T) to be the set of states x such that there exist admissible

controls Ul, ..., Um , defined on [0, T], that steer a given system from x(O) = Xo to x(T) = xI and

such that x(t) E V for 0 ~ t ~ T. Also define

'Rv (xo, ~ T) = U 'R.v (xo, r)
0:Sr:ST

to be the set of states reachable up to time T.

Definition 1.1 (small-tiIne local controllability)

A system is small-time locally controllable at Xo if 'Rv (xo, ~ T) contains a neighbourhood of Xo for

all neighbourhoods V of Xo and T > O.

In simple terms, small time local controllability at x E !Rn implies that for any given bound on the

time T, and any given neighbourhood V of x, there exists another neighbourhood of x, N ç V, such

that any i ENcan be reached from x, in time not exceeding T~ while the corresponding trajectory

remains in V .

8
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Definition 1.2 (local controllability)

A system i.s said to be locally controllable at x if there e.xists a neighbourhood N of x such that for

any XD, x f E N there e.xists a T > 0, and admissible contraIs Ul, ••• , U m defined on [0, Tl, which steer

Xo ta xf in time T, Le. x(O) = Xo and x(T) =xf.

Let .c(gl, ..., 9m) denote the Lie algebra of vector fields generated by gl, ... , gm, (see the Appendi..x

A for a definition of a Lie aIgebra of vector fields). Also, let C(gl, ... ,gm)(x) denote the Lie algebra

C(gr, ..., gm) "evaluated" at x; i.e.

Chow Theorem (local version) [79]

Suppose the vector fields 91, ... ,9m in (1.13) are real analytic, linearly independent and complete (in

that the solutions of (1.13) are defined for aU initial conditions and ail times). The system (1.13)

is locally small-time controllable at x E JRn if

[,(91, ... , gm)(x) = JRn

Clearly, small time local controllability at x implies local controllability of (1.13) at x. This is

because small time local controHability guarantees the existence of a neighbourhood N of x and

time T > 0, such that any Xo ENcan be attained from x in time T. Then by (d), the control

u reversed in time, UR, steers Xo ta x. Since Xf E lV, there exists another control ü which steers

x ta xf in time less or equaI ta T. Thus the concatenated control: UR 0 ü steers XD ta xf in time

no greater than 2T. Therefore, for drift free systems, small time local controllability implies local

controllability in the usuaI sense.

Definition 1.3 (controllability on open sets)

A system (1.13) is said ta be control/able on an open set U C JRn, if for any xo, x f E !Rn there

e.xists a T > 0 and admissible contraIs Ul, ••• , U m , defined on [0, T], which steer Xo ta xf in time T,

Le. x(O) = XD and x(T) = x f.

Chow Theorem (global version) [79]

Suppose the vector fields 91, ... ,9m in (1.13) are real analyticJ linearly independent and complete.

The system (1.13) is control/able on an open neighbourhood of the origin, U c !Rn, if

9
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(f) Systems of the form (1.13) do not satisfy Brockett's necessary condition (10) for the e:tistence

of smooth (or even continuous) time invariant feedhack laws:

Brockett's necessary condition for smooth static stabilization [10]:

Consider the control system

x == f(x, u), x(O) == Xo E JRn, f(O,O) = 0 (1.15)

where 1 : !Rn x!Rm ~ JRn is continuously difJerentiable, which is denoted by f E Cl. If (l.15) is Cl

stabilizable ( in the sense that there exists a time-invariant Cl feedback that renders the origin ta be

both Lyapunov stable, and an attractor) J then the image of the map 1 contains some neighbourhood

of the origin.

To illustrate that the above condition fails to hold for systems of type (1.13), consider the famous

a""<ample known as Brockett's system:

•
(1.16)

•

Let XQ = 0 he the equilihrium point for this system. For any e f= 0, a point of the form [0 0 eJT,

belongs to the neighbourhood of Xo but is not a member of the image of f. This is because f(x, u) ==

[0 0 e]T implies that Ul == U2 == 0, but then I(x, u) = O. Consequently, system (1.16) cannot be

asymptotically stabilized to Xo == 0 hy a Cl static state feedback.

Cg) It is easy to see that drift free systems (1.13) are invariant \Vith respect to diffeomorphic state

transformations. It follows that the standard feedhack linearization techniques cannot be applied ta

construct stabilizing feedhack contrais for (1.13). (For suppose that there is a diffeomorphic state­

space transformation and nonlinear feedhack which brings (1.13) to a linear system farm. It would

then follow that, after coordinate change, the smooth feedback constructed for the transformed

linear system is also a smooth stabilizing controllaw for (1.13). This however is not possible since

there a""<Ïst no smooth static feedhack controllaws for (1.13).)

Due to the ahove difficulties, the control of drift free systems is a challenging prohlem which has

attracted the attention of many researchers. Control strategies for such systems can naturally be

classified inta two groups:

10
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- open loop strategies (referred to under the name of motion planning)

- closed loop strategies (typically used for stabilization purposes).

Since open loop strategies often lead to closed loop strategies, the ne......-t section summarizes previously

obtained results in both areas.

4. Literature pertinent to the control of drift free systems

The relative difficulty of the control problem depends not only on the nonholonomic nature of the

system but aIso on the control objective. For some control objectives, classical nonlinear control

approaches (e.g., feedback linearization and dynamic inversion, as developed in [38]) are effective.

Examples of such control objectives include stabilization to a suitably defined manifold [8, 14],

stabilization to certain trajectories [115], dynamic path following [92], and output tracking [31, 87}.

Consequently, there are classes of control problems for nonholonomic systems for which standard

nonlinear control methods can be applied.

However, many of the most common control objectives, e.g., motion planning and stabilization to a

point, cannot be solved using the standard nonlinear control methods, and new approaches have been

developed. Substantial research has been devoted to motion planning, Le., the study of (open loop)

controis that transfer the system from a specified initial state to a specified final state. A variety

of construction procedures for determining such controls have been proposed. Feedback control of

nonholonomic systems has also been studied where the goal has been to accomplish specified closed

loop performance objectives, including the classical control objectives of stabilization, asymptotic

tracking, disturbance rejection, robustness improvement, etc.

In the next section, we describe recent developments in motion planning as these are relevant to

feedhack synthesis results presented later.

4.1. Open loop control strategies (motion planning)

Motion planning problems are concerned with obtaining open loop controls which steer a nonholo­

nomic control system from an initial state ta a final state over a given finite time interval. To

understand why nonholonomic motion planning may be difficult, it is convenient to compare it with

motion planning for holonomie mechanical systems. For a holonomic system, a set of independent

generalized coordinates Can be found, and thus an arbitrary motion in the space of independent

generalized coordinates is feasible .
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In contrast, for a nonholonomic system, a set of independent generalized coordinates does not exist.

Consequently, not every motion is feasible, but only those motions which satisfy the instantaneous

nonholonomic constraints. Nevertheless, the controllability condition of Chow's Theorem guaran­

tees that feasible motions do e."XÏst which steer an arbitrary initial state ta an arbitrary final state.

Efficient techniques for such steering have been developed.

A variety of motion planning techniques are described in the book [58], which is a collection of re­

search articles on nonholonomic motion planning. Besides [58], an excellent introduction to motion

planning for nonholonomic robots is contained in the book by Murray, Li, and Sastry [79]. The book

by Latombe [49] also cantains a chapter on nonholonomic motion planning. The motion planning

methodologies can be categorized into the following three groups according to which mathematical

methods are used :

- strategies derived by employing differential-geometric and differential-algebraic techniques;

- strategies based on special control parametrizationj

- strategies employing methods of optimal control.

Although, at first glance, the above appear to be very different, however, there are many connections

between them, and they alllead to similar developments.

4.1.1. Strategies derived by employing differential-geometric and differential-algebraic

techniques

lVIany of the available open loop strategies are based on Lie-algebraic techniques in which motion

in the directions of iterated Lie brackets is generated by using piecewise constant inputs. This is

e.xplained below.

It is weil known, see [79), that if gi, 1 ~ i ~ m are smooth vector fields associated with a drift

free system of the type (1.13), then the motion of the system in any Lie bracket direction [gi. 9i),

1 ~ i,j ~ m can be achieved by applying the following control sequence for a time Llt:

(a) (Ui,Uj) = (1,0)

(b) (Ui, Uj) = (0,1)

(c) (Ui, Uj) = (-1,0)

(d) CUi, Uj) = (0, -1)

• 12
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To make the idea more concrete, we consider a simplification of the model used in Example LI.

Exarnple 1.2: (two wheel car or unicycle)

Neglecting the equation for the 0 angle in (1.12) of Example 1.1, and substituting 0 for 4> (which is

equivalent to assuming that the car model has only the rear wheeIs), leads to the following equation:

(1.17)

•

•

where () represents the orientation of the car with respect to the x-a"Cis, (x~ y) are the Cartesian

coordinates of the centre of the mass of the car, VI and V2 denote the angular velocity, and the

translational velocity of the car, respectively, and qd~ [0 X yJT.

The motion along YI corresponds to forward translation of the car, and the motion along 92 corre­

sponds to counterclockwise rotation of the car about its mass centre. It is clear that contraIs (a)

and (b) result respectively in forward translation and counterclockwise rotation of the car (both

contrais are applied for a time ût). Similarly, controls (c) and (d) result in backward translation

and clockwise rotation of the car (also applied for a time Llt). lt is then easy to verify that for a

small Llt the net motion of the car is essentially a sideways translation with respect to its original

configuration and in fact, the Lie bracket, [91, 92](q) = [0 - sin8 cosO]T, predicts precisely this

motion. The example thus illustrates that, although instantaneous sideways motion is impossible

because of the imposed no-slip condition, sideways motion can be generated by switching between

the motions which satisfy the instantaneous nonholonomic constraint.

By using more complex switchings it is possible to generate net motions in the directions provided by

the iterated Lie brackets of Yi and 9j. The idea of employing piecewise constant inputs to generate

motions in the directions of iterated Lie brackets has been exploited by Lafferriere [51J and Laffer­

riere and Sussmann [52]. Their algorithm is based on e.."<pressing the flow resulting from piecewise

constant inputs as a formai e..,,<ponential product expansion involving iterated Lie brackets. If the

initial and final states are sufficiently close, the algorithm of Lafferriere and Sussmann moves the

original system closer to the goal by at least a half of the initial distance. By repeated application

of the algorithm, it is possible to move the system into an arbitrary neighbourhood of the desired

state. For nilpotent systems (systems for which all iterated Lie brackets of sufficiently high order

are zero) the algorithm provides exact steering. Examples of nilpotent systems include systems in

chained and in power forms which are special cases of (1.13) .

13
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Systems in chained form are systems whose equations are given by:

Xl = UI

X2 = U2

X3 = X2 UI

:i4 = X3 UI

(1.18)

•

Systems in power form are systems whose equations are given by:

Xl = UI

X2 = U2

X3 = Xl U2

X4 = 1 2
2XI U2

x·n
1 n-2= (n _ 2)!x1 u.,

Example 1.2 (continued)

It is easily seen that the following state and control transformation:

Xl = ()

X2 = X cos () + y sin ()

X3 = x sin () - y cos ()

UI = VI

U2 = V2 - VIX3

brings the car system (1.17) into chained form:

•
Xl = Ul

X2 = U2

X3 = X2 Ul (1.19)

14
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Similarly the following transformation:

x cos B+ y sin B

= B

X3 x sin B - Y cos B

brings the car system (1.17) into power form:

XL = UL

X2 = U2

X3 = xL U2 (1.20)

•

•

It is worth pointing out that the chained form and the power form are equivalent via a state trans­

formation [78, 1141. Sufficient conditions on the vector fields in (1.13) that guarantee that (1.13)

can he transformed into the chained form via state and control transformations have been developed

by Murray and Sastray in [77, BD} for m = 2, and by Bushnell et al. in [13] for m > 2.

It should also be pointed out that the algorithm of Lafferriere and Sussmann [51, 52], can be based

on other types of switching inputs, not necessarily piecewise constant inputs, see [52] for details.

In a related paper, Jacob [39] proposed an algorithm for exact steering of nilpotent systems using

piecewise constant or polynomial inputs. His algorithm is similar to Lafferriere and Sussmann's but

with some modification in the construction procedure which results in simpler paths.

Another set of tools for motion planning, based on averaging theory, has been developed by Gurvits

and Li [34], Leonard and Krishnaprasad [54], Liu [57], and Sussmann and Liu [106]. The basic

idea there is to use high-frequency, high-amplitude periodic control inputs to generate motions in

the directions of the iterated Lie brackets. Employing this technique, the averaged system, obtained

in the limit as the frequency of the inputs increases, is steered e.xactly to a given desired point.

Tilbury et al. [109] examine a variety of implementation issues pertinent ta the asymptotic sinu­

soidal steering algorithm of Sussman and Liu [106], in the conte.xt of steering kinematic car-like

systems with trailers. Specifically, it is shown that preliminary state and control transformations

may facilitate convergence to the averaged trajectory. Although high-frequency control inputs may
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be undesirable from an implementation point of view, the high frequency can be avoided by selecting

the time interval to be large, over which the system is steered approximately.

The concept of a flat nonlinear system [29, 30, 112J is useful in solving certain nonholonomic mo­

tion planning problems. To explain the notion of a flat system, consider the nonholonomic system

(1.13). If there exists an output function y(x(t), u(t), ü(t», with same dimension as control input

u, such that the state x and the control input u can be e.xpressed as fnnctions of the output y and

its derivative il, then (1.13) is called differentially fiat and the output is called the fiat output. For a

differentially flat system motion planning reduces to prescribing a smooth output function satisfying

the boundary conditions imposed by the initial and final state specification. The desired control

input and the trajectory can be obtained by differentiating the prescribed output fnnction and no

integration is required. Rouchon et al. [85, 86J showed that systems such as, an automobile with

multiple trailers, are flat. The flat output is provided by the Cartesian coordinates of the last trailer.

For system (1.20), the flat output is given by (YI,Y2) dg} (X2,X3), and thus:

The motion planning problem hence reduces to prescribing output functions YI Ct), Y2(t), satisfying

the boundary conditions imposed by the initial and final state specification and Ih(t) =1= O. In [60J it

is shown that any kinematic nonholonomic system of the form (1.13) with n = 5 and m = 2 is flat.

An example of a system which is not flat is provided by a ball rolling on a plane without slipping

•
X2 = Yl,

•

[12, 59J.

4.1.2. Strategies based on special control para.m.etrization

A more elementary method for motion planning is aIso available. This method is based on parametriza­

tion of the inputs within a given finite dimensionaI family of fnnctions such as sinusoidal functions.

Consider the kinematic model of a nonholonomic control system of the form (1.13). The objective

is to steer the system from a given initial state Xo E IRn ta a pre-specified final state x f E IRn,

over a time interval [0, TI. Let {U(a;.) : a E lRq
} be a parameter-dependent family of control

inputs U(a;.) : [O,lJ -r lRm , where Ct E lRq is a parameter. Let x(a; t), 0 ~ t ~ 1, denote the

solution to (1.13) with x(a; 0) = 0 and u(t) = U(a; t), 0 ~ t ~ 1. Let G : lRq -r lRn be defined by

G(a) = x(aj 1). If the control family {U(a;.) : a E lRq } is sufficiently rich, G is onto !Rn. In this

case the control input ü(a; t), 0 ~ t ~ 1, which steers the system from the origin to x E lRn
, cao be

defined by setting ü(a; t) = U(a; t), 0 :5 t ~ 1, where a is a solution to G(a) = x. Since (1.13) is
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drift-free, it is then possible ta re-scale u ta obtain a control:

{

_1.u(xo·l - 2t/T)
u(t) = T' ,

~ü(xI;2t/T - 1),

o::; t ::; .5T,

.5T ~ t::; T

which steers system (1.13) from Xo ta xI over the time-interval [0, T] (see (d) of section 3). For

e."<:ample, consider steering (1.20) using a family of control inputs U(o; t) = (UI (a; t), U2 (a; t»:

UI(o;t) = {01, o::; t ~ .5,

03 sin41rt, .5 ~ t ::; 1

{02, o~ t ::; .5,

1Q31 cos4rt, .5 ~ t ~ 1

•

•

Integrating (1.20) with the above controls and with Xl(O) = X2(0) = X3(0) = 0 over the interval

[0, 1] ~ yields

[

f!.L. ]

2

G(c:' = ~

1 ~!2a.. _ 0310 31/(811")

Clearly, G is onto IR3 and the system can be steered ta any configuration as described above.

The above idea appears in the work of many researchers: Bushnell et al. [13], Niurray [78], Nfurray

and Sastry [77]. In this approach a system in power or chained form can be steered ta any given

desired point by using a family of sinusoids at integrally related frequencies. Lewis et al. [56J showed

that sinusoids at integrally related frequencies can be used ta steer a snakeboard. The use of other

control functions, e.g., piecewise constant functions or polynomials, has aIso been investigated by

Jacob [39], Tilbury [110], and Tilbury et ai. [111]

The multirate digital control approaches developed by Chelouah et al. [20], Monaco and Norman­

Cyrot [74], Sordalen and Egeland [101], Tilbury and Chelouah [108], can be aIso viewed as a way

of steering a system via parameterization of the input within a family of piecewise constant inputs.

The basic idea of the multirate digital control approach is ta sample the input by a zero arder hold

and steer the resulting discrete time system, typically, different sampling rates are used for different

input channels. Depending on the nature of control strategies and their interpretation, the multirate

digital control approaches may be viewed as feedback strategies [101] .
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4.1.3. Strategies eUlploying methods of optimal control

Although the methodologies of the previous section provide a solution to the motion planning proh­

lem, there often exist many solutions. A specifie solution can be selected using optimization. Brock­

ett [IlL and Brockett and Dai [12} demonstrated the optimality of sinusoidal and elliptic control

functions for certain minimum norm nonholonomic optimal control problems. The optimality of

elliptic functions has been also addressed by Krishnaprasad and Yang in [481. Reeds and Shepp [831

obtained a complete characterization of the shortest paths connecting any two given configurations

for the car model (1.17). They showed that the shortest path is one of 48 extremaI paths that can

be e.xplicït1y computed. Each of the eÀ-tremal paths has no more than five segments and requires no

more than two direction reversais.

Conditions for optimality in various nonholonomic optimal control problems are discussed by Bloch

and Crouch [9], Sastry and ~fontgomery[93} and Montgomery [75]. In particular, Sastry and Mont­

gomery [93] and Montgomery [75] study the optimal control problem of minimizing the L 2-norm of

control subject ta given initial and final states and subject to equation (1.13). Using the maximum

princïple, they show that the optimal control is such that the quantity L~l IUi(t)12 remains con­

stant. For the same problem, Montgomery [751 considers in detail the case of abnormal (singular)

extremaIs. He demonstrates that abnormal e.xtremals may provide an optimal solution and thus

cannot be neglected in anaIysis. He aIso considers a time-optimal control problem for nonholonomic

control system (1.13). Walsh et al. [1161 studied the minimal norm control problems for kinematic

systems evolving on Lie groups. Numerical techniques for constructing optimal trajectories for a

variety of nonholonomic control problems are proposed by Agrawal and Xu [1] 1 Fernandes et al.

[27, 281 and Hussein and Kane [361.

4.2. Closed loop control strategies

A majority of the c10sed loop control strategies developed for nonholonomic control systems serve

the purpose of stabilization of sucb systems to a point. In the absence of smooth static or even

continuous stabilizing feedback, (see Brockett's necessary condition [10]), the c1osed-loop synthesis

methods concentrate on either:

- synthesis of discontinuous state feedback,

- synthesis of time-varying state feedback.

The literature pertinent to the above methods is summarized below.
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4.2.1. Synthesis of discontinuous state feedhack

Discontinuous state feedhack control for stabilization of drift free systems to the origin can he further

classified into three types:

(a) piecewise continuous feedhack

(b) sliding mode control

(c) hyhrid feedhack control.

(a) Piecewise continuons feedhack

In [102], Sussmann proved the existence of stahilizing piecewise continuous static state feedhack

control for a class of nonlinear controllahle systems. The class mentioned includes nonholonomic

control systems which satisfy the real analyticity assumption (namely that all the vector fields in the

drift free system equation are real and analytic). Lafferierre and Sontag [53] presented a formula for

a piecewise continuous feedhack law1 ohtained from a piecewise smooth control Lyapunov function.

The resulting feedhack is globally stabilizing and is discontinuous on a surface of a lower dimension

than the state space. However1 there are no general methods for constructing control Lyapunov

functions satisfying the assumptions of [53J .

Piecewise continuous feedback has been constructed for specific e.xamples as reported by Lafferierre

and Sontag [53}, Canudas de Wit and Sordalen [16] and Khennouf and Canudas de Wit [46, 11].

Exponential convergence of the states to the equilibrium point has been demonstrated in al! these

examples. Sordalen et al. [98] also proposed a piecewise continuous feedback law for local stabiliza­

tion of the attitude of an under-actuated rigid spacecraft with only two angular velocity controls.

The feedback law results in e.xponential convergence rates of the states to the equilibrium.

A different approach for the construction of piecewise continuous controllers has been developed by

Aicardi et al. [2], Astolfi [4, 5], and Badreddin and Mansour [6]. A non-smooth state transformation

is employed there and a smooth time-invariant feedback is constructed to stabilize the transformed

system. In the original coordinates 1 the resulting feedback law is discontinuous. In [2, 4] this ap­

proach has heen used for stabilization of kinematic and dynamic models of simple mobile robots. For

these examples 1 the non-smooth state transformation is provided by simply changing the Cartesian

coordinates to polar coordinates. The potential of this approach for application to more complicated

nonholonomic control problems remains to he investigated.

19



•
1.4 LITERATURE PERTINENT TO THE CONTROL OF DRIFT FREE SYSTEMS·

(h) Sliding mode control

Discontinuous time-invariant feedback laws can aIso be developed using stiding mode control ap­

proaches as proposed by Bloch and Drakunov (7] and by Guldner and Utkin [32]. The resulting

discontinuous feedback laws Ïorce the trajectory to slide aIong a certain manifold towards the equi­

librium. Consider, for e.xample, the problem of stabilizing system (1.20) to the origin. Define the

feedback Law according to [7]:

=

=

. XlX'>
-Xl + 2X2Stgn(X3 - 2)'

1. XIX2
-X2 - -XlStgn(x3 - --)

2 2
(1.21)

•

•

where sign(·) denotes the signum function. Let V(Xl,X2) = !(=}- + x~). Then the derivative of

V aIong the closed-Ioop trajectories of (1.20) satisfies li = tXIUI + X2U2 = -2V. Thus V(t) =
V(0)e-2t ~ 0 as t ~ 00 and Xl -+ 0, X2 ~ 0 as t ~ 00. Let 0 = X3 - x't2

• Then, iJ = -2Vsign(O).

Clearly, IO(t)1 is non-increasing and, in fact, can reach zero in finite time provided that

(1.22)

Once BCt) reaches the origin, it must stay at the origin and, hence, the trajectory will slide aIong

the surface X3 = X'2:1: 2 toward the origin. If the initiaI conditions do not satisfy inequality (1.22), a

preliminary control can he used to force the trajectory into the region where inequality (1.22) holds

and then the feedback law (1.21) can be switched on.

The sliding mode control approach can only be applied to certain classes of higher àimensionaI

nonholonomic control systems [7, 32]. GeneraIly, however, it is not suitable for stabilization of

nonholonomic control systems and remains a subject for future research.

(c) Hyhrid feedhack control

TypicaIly, hybrid controllers combine continuous-time features with either discrete-event features or

discrete-time features. The operation of hybrid controllers is based on switching at discrete-time

instants hetween various low-Ievel continuous-time controllers. The time-instants at which switches

occur may either be specified a priori or aIso be determined in the process of controller operation.

Controllers which combine continuous time features with discrete event features have been proposed

by Bloch et al. [8], and by Kolmanovsky et aI. [41, 42], for a sub-class of (1.13). The controllers

developed there consist of a discrete event supervisor and low-Ievel time-invariant feedback con­

trollers. The supervisor configures the low-Ievel feedback controllers and accomplishes switchings
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between them in a way that provides stabilization of the system. Each of the low-Ievel feedback

control1ers forces the base variables to trace a specifie straight line segment of the base space path,

which is selected by the supervisor to produce the desired geometric phase change. The feedback

law provides finite time (dead-beat) responses. This approach is also used by Krishnan et al. [47]

for attitude stabilization of a rigid under-actuated spacecraft model with only two control torques.

SordaIen et ai. [99, 100] developed a hybrid control1er for stabilization of kinematic nonholonomic

systems in chained form and showed that such controllers result in ~"{ponentiaI convergence rates of

the states to the origin. AIso hybrid controllers of a different type, which apply to systems specif­

ically in chained form have been proposed by Canudas de Wit et al. [18]. The control of [18]

provides only for practicaI stabilization (stabilization to a small neighbourhood of the origin). The

hybrid approach proposed by Sontag in [95, 96] is more general as it applicable to a large class of

nonholonomic control systems, but is less explicit. Sontag makes use of a family of periodic inputs

that are universal nonsingular control [95] and result in periodic trajectories. Linearization about

each of these trajectories is controllable. Consequently, a perturbation of a periodic input can be

constructed to bring the state closer to the origin at the end of each cycle. A good introduction to

some of hybrid stabilization techniques in mobile robot conteÀ-t is contained in the article [19] .

4.2.2. Synthesis of tirne-varying state feedhack

The use of time-varying feedhack controls in application to nonholonomic systems was probably first

proposed by Samson [88, 89, 90, 91] in his research work concerning mobile robots. Coron [24] was

to the first to show rigorously that kinematic nonholonomic control systems can be asymptoticaIly

stabilized to an equilibrium point by smooth time-periodic static state feedback. The existence praof

of [24], however, does not provide for the construction of feedhack laws.

Some explicit feedhack construction procedures are developed later. LVlurrayet al. [77], Teel et al.

[107), and Walsh and Bushnell [114] used the method of averaging and saturation type functions to

construct smooth time-periodic feedback laws for systems in power and chained f01ms. The feedback

laws of [77], [107], and [1141 achieve global asymptotic stabilization. In [114] numerical simulations

illustrate the resulting feedback laws for a fire truck example, a nonholonomic system with three

inputs and five states.

Samson and Ait-Abder-rahim [90], and Walsh et al. [115] provided a different asymptotic stabiliza­

tion scheme based on construction of a "nominal trajectory:' which asymptotically approaches the

equilibrium. In [90] and [115] linear control1ers are constructed which stabilize a variational system
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about the nominal trajectory. This approach is easy to use but requires an a priori selection of a

nominal trajectory.

Another constructive approach has been proposed by Pomet [82), and Coron et al. [25]. This

approach, widely known as Pomet's method, is based on Lyapunov's direct method and is ta sorne

extent, similar to the well-known technique of Jurdjevic and Quinn [40]. Pomet's method generates

smooth time-periodic feedback laws by constructing suitable Lyapunov functions. As an illustra­

tion, consider the following smooth feedback law for the chained system (1.20) provided by Pomet's

method:

=

V(x, t)

•

•

This feedhack law is obtained from the c1osed-Ioop Lyapunov function given by

1 2 1 2 1 2
2(X1 + X3cost ) + 2" X 2 + 2 X3

which gives

V(x, t)

along any trajectory of (1.20). By applying the Krasovskii-LaSalle invariance principle for periodic

systems it can be verified that the origin is the globally asymptotically stable equilibrium of the

closed loop.

Unfortunately, the rates of convergence provided by smooth time-periodic feedhack laws are nec­

essarily non-exponential [78]. For system (1.20) smooth time-periodic controllers can provide time

rates of convergence of at most 1/0, see [88]. Furthermore, in experiment work [21], M'Closkey

and Murray have demonstrated that smooth time-periodic feedhack laws do not steer mobile robots

to a small neighbourhood of the desired configuration in a reasonable amount of time. Thus feedback

laws which provide faster convergence rates are desirable. These feedback laws must be necessarily

be nonsmooth (non-differentiable). Further information on connections between the rates of conver­

gence and smoothness of feedback laws can be found in references [34, 22].

A construction procedure which provides nonsmooth feedback laws with exponential convergence

rates has been proposed by M'Closkey and IvIurray in [23]. The resulting feedhack laws are con­

tinuous and smooth everywhere except at the origin. The construction procedure can be viewed as

an e."'(tension of Pomet's algorithm to the case of nonsmooth feedback laws. For systems in power
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form, explicit expressions for the feedback Iaws can be obtained. For exampIe, for system (1.20) a

nonsmooth time-periodic feedback law which results in exponential convergence rates i5 of the form:

ut{x,t)
X3

x;60= -Xl + p(x) cost,

U2(X, t)
x~ .

x;60= -X2 + p3(X) s'Znt,

UI(O,t) - U2(O, t) = 0, where p(x) = (x1 + x~ + x~)(1/4)

The cIosed-Ioop system is gIobally exponentially stable with respect to a homogeneous norm p(x),

in that, there exist constants ..\1 > 0 and ...\2 > 0 such that

p(x(t)) ~ ...\IP(x(O))exp( -...\2t)

This notion of exponentiaI stability "with respect to a homogeneous norm" is only slightly different

from the standard notion of e.."CponentiaI stability.

Time-periodic feedback Iaws for stabilization of dynamic models of nonholonomic control systems

can be derived from kinematic controllers using the integrator backstepping or ';error tracking"

approaches, see [45, 114] for details.

Besides mobile robots [21, 88, 89, 90, 91, 114], time-varying stabilization has been used for knife­

edge modeIs with augmented actuator dynamics [45J, under-actuated rigid spacecraft control1ed by

only two rotors [16, 115J, and free-fioating multi-body spacecraft [44].

4.3. Difficulties arising in the previously existing methods

(a) ~lost of the existing methods for both motion planning and feedback stabilization necessi­

tate the construction of diffeomorphic state transformations which convert the systems into

either chained or power forro, see [13, 17, 78, 80, 114]. Although, there are necessary and

sufficient conditions available for the existence of such diffeomorphic state transformations,

see [77, 80, 131, the transformations are u5Ually defined only locaIly.

(b) The disadvantage of the sliding mode cantrol1ers is that they may cause chattering. Guldner

et al. [33] have proposed ta use smoothing ta prevent chattering, see [941 for the definition of

smoothing. Piecewise continuous control1ers usually avoid chattering as the trajectory does

not "stick" ta the discontinuities. It shouId aIso be pointed out that controlling kinematic

nonholonomic systems with discontinuous (velocity) contraIs may he difficult to implement.
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Formulations involving dynamic nonholonomic control systems seem preferable if discontin­

uous controlIers are used.

(c) As mentioned earlier, Coron [24) showed that the nonholonomic control systems can be

asymptoticalIy stahilized to an equilihrium point by smooth time-periodic static state feed­

back but the existence proof of [24) does not provide for the construction of feedback laws.

Other time-varying feedhack approaches [24, 77, 107, 114, 82, 25] rely on the e..xistence

of suitable time varying Lyapunov functions which are not easy to find.

(d) Time varying feedback laws do not provide for exponential convergence rates in asymptotic

stabilization.

(e) There are hardly any results available concerning robustness of the control methods de­

veloped (with respect to model uncertainties, as arise from parameter variations or from

neglected dynamics). Only a few preliminary results are available in [17). The difliculties

are primarily technical and general methods for the study of robustness for this cIass of

nonlinear systems are not available. Consequently, methods for design of robust controllers

for nonholonomic systems are unknown. Open loop approaches are less likely to produce

solutions which are robust with respect to modelling uncertainties and censoring error, as

compared with feedhack approaches.

5. Research objective

In the light of the difliculties arising in the control of nonholonomic systems listed above, and the

intrinsic features of nonholonomic systems outlined in section 3, the objective of this thesis was to

ex:plore novel and more effective feedback synthesis approaches for stabilization of such systems to a

point. In the absence of continuous static feedback laws, attention was focused on developing simple

and systematic approaches for the construction of:

1- piece-wise constant feedhack control laws

2- time varying feedback control laws

3- investigating the possibility of employing a mbc:ture of the above approaches and sinusoidal

steering [77, 109].

Since the e..x:istence of transformations to either power or chained form is not generaIly obvious

and even if such transformations exist they are usually defined locally, the ultimate aim was to
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propose synthesis methods of 1-3 which abstract from any specifie form of a drift free system. Such

transformation free approaches would naturally result in simpler and more direct feedback synthesis.

6. Contribution of the thesis

With respect to objectives 1-3 listed above, two novel feedback synthesis approaches were intro­

duced, analysed, and their utility for applications was e.."'q>lored:

Ca) a guiding functions approach [63, 64, 65, 67, 69, 71, 72}

(b) a trajectory interception approach [66, 68, 70, 84].

The possibility of emploYÏng sinusoidal steering [77, 109], in conjunction with either of the above

approaches was also explored, see [64, 67, 69, 70, 71, 72]. The above approaches resulted in the

construction of new and effective feedback control strategies for drift free systems.

A brief description of the new approaches Ca) and (h) follows next.

6.1. The guiding functions approach

In the guiding functions approach a number of semi-positive definite functions called "guiding

functions" are introduced to determine a desired direction of system motion. These guiding functions

permit to construct a sequence of controls such that the sum of the guiding functions decreases in an

average sense. This approach delivers bounded, piece-wise constant control Iaws. The approach is

first applied and analysed for systems which appear in a special rectified form, and is later extended

to apply to general drift free systems. The guiding functions approach often leads to dead beat

control and provides discontinuous stabilizing feedback laws.

6.2. The trajectory interception approach

The trajectory interception approach is based on considering of what is known as the Lie bracket

extension of the original system. The resulting feedback law can be viewed as a composition of

a standard stabilizing feedhack control for the extended system and a periodic continuation of a

parametrized solution to an open loop, finite horizon control problem stated in logarithmic coordi­

nates of flows. In this approach an arbitrary Lyapunov function is used to construct a time-varying

stabilizing feedback law.
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7. Thesis outline

The thesis is organized as follows:

• Chapter 2. Guiding functions as a tool for stabilization ofsystems in rectified form.

A novel concept of guiding functions is introduced which can be used as a tool for construc­

tion of new and effective feedback control strategies for drift free systems, [63J. A stabilizing

control strategy based on this concept is developed and analysed for systems of control de­

ficiency order one, in rectified form. The strategy is shawn ta be applicable also to systems

of higher order of control deficiency. Under reasonable assumptions, the feedback control

strategy yields global asymptotic stabilization ta a set point.

The guiding functions control strategy is tested on two examples on which it proves ta be

very effective. The geometric insight into the steering problem, gained by employing the

guiding functions, is demonstrated ta lead to a yet simpler and more effective feedback con­

trollaws [63, 65].

• Chapter 3. The guiding functions stabilizing strategy for general drift Cree sys­

tems.

The guiding functions control strategy is next extended ta apply ta generai drift free sys­

tems which need not be transformable to a rectified form. A systematic method for the

construction of a pair of guiding functions is introduced [63J, and conditions are stated

which guarantee that the resulting feedhack control strategy yields global asymptotic con­

vergence to a desired set point.

A few applications of the strategy are discussed and tested on modeis of drift free systems

which are characterized by different algebraic structures: an underwater vehicle, a general

system with five state variables and three controIs, and a spacecraft model [64, 69J.

The possibility of employing the guiding functions approach to systems whose controllability

Lie algehra involves higher order Lie brackets is also investigated. The idea of combining

sinusoidal steering [77, 1091 with the guiding functions approach is e."\.-plored in [64, 69, 72].

In [64, 69J a feedhack: controller is constructed for an underwater vehicle in actuator failure

mode, and in [72] a feedhack controller is constructed for a mobile robot with trailer.
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The guiding functions approach for general drift free systems is further extended to allow for

the construction of several rather than two guiding functions and its applicability is demon­

strated on a fire truck model [67] and on a class of wheeled mobile robots [71}.

• Chapter 4. The trajectory interception approach

The trajectory interception approach is first introduced for a class of drift free systems for

which the associated controllability Lie algebra is nilpotent. The concept of a Lie bracket

extension of the system, see [51], is employed and an arbitrary Lyapunov function is used to

construct a closed loop stabilizing controller for the e..xtended system. This classical static

feedback is then combined with a periodic continuation of a parametrized solution to an open

loop steering problem for the comparison of flows of the original and extended systems. This

approach is applied to stabilize severa! examples of drift free systems possessing different

algebraic structures.

It is shown that the application of the trajectory interception approach is not limited to

systems whose controllability Lie algebra is nilpotent. The approach can successfully be ap­

plied to systems with non nilpotent controllability Lie algebras by introducing approximate

models which generate nilpotent controllability Lie algebras. This approximation idea is

employed to stabilize a number of drift free systems possessing different algebraic structures:

a rigid spacecraft in actuator failure mode [68}, a hopping robot in flight phase [84], an

underwater vehicle [66], and a class of wheeled mobile robots [70}.

lt is shown that introducing approximate models often permits significant simplification of

the differential equations describing the evolution of the logarithmic coordinates in the open­

loop problem formulation (which are usually difficult to solve analytically).

Since the computation of the solutions to the open loop trajectory interception problem may

be elaborate if the e.xtended system contains high arder Lie brackets, the possibility of in­

troducing decomposition into control synthesis is e.xplored. This idea involves decomposing

a comple..x system model into subsystems of which one can be controlled by the trajectory

interception approach and the other by simple sinusoidally varying inputs. The feasibility

of this approach is demonstrated using a few e..xamples.

As in the case of the guiding functions approach, the feedback synthesis method based on

the trajectory interception idea does not necessitate conversion of the models into chained

or power forms.
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• Chapter 5. Conclusions and Future Research

In conclusion, a brief review of the results of the preceding chapters is presented and sorne

general observations are commented. The two feedback design approaches are compared and

their utility for different applications is explained. Sorne suggestions are also given for future

work.

8. Originality of research contribution and its potential advantages for applica­

tions

• The two feedback control strategies introduced are new and do not require conversion of the

system models either to power or chained forms. In principle, no transformation techniques

are needed. Both strategies can thus be applied ta systems which fail to satisfy the condi­

tions for the e.xistence of special transformations, and to systems which are not fiat. Bath

control strategies possess strong robustness properties with respect to model inaccuracies.

• The concept of guiding functions as a tool for feedback control design has not appeared in

prevïous literature. The guiding functions approach is particularly simple and often leads

to very effective feedback controllaws such as ~dead beat control'.

• The trajectory interception approach involves an original idea of employing the Lie alge­

braic techniques of [51] and [50] in a systematic synthesis of time-varying feedback control

for drift free systems.

• The trajectory interception approach provides for exponential rates of convergence ta a

desired set point. The results contained in this thesis open a new area of research with

the goal of rendering this synthesis approach computationally simpler, more effective, and

extending its applicability ta systems with drift .

28



•

•

CHAPTER 2

Guiding functions as a too1 for stabi1ization of systems ln

rectified form

A novel and systematic approach to the construction of feedback control for stabilization to a set

point of drift free systems is introduced, [63, 64). The approach is based on a new concept of

guiding functions whose sum vanishes only at the reference set point. The guiding functions are not

Lyapunov functions, however, a comparison of their values allows to determine a desired direction

of system motion and permits to construct a sequence of contro1s such that the sum of the guiding

functions decreases in an average sense. The individual guiding functions are hence not restricted

to decrease monotonically but their oscillations are limited and coordinated in a way to guarantee

convergence. The guiding functions control strategy is tested on two examples; a unicycle and a front

wheel drive, on which it proves to be very effective. In both cases, the choice of the guiding functions

is straightforward and gives additional, geometric insight into the steering problem. The guiding

functions approach presented is general and can be employed to control a variety of mechanical

systems with velocity constraints.

1. Introduction

The feedback control method presented in this Chapter applies to drift free systems of the form

(1.13), which appear in a special rectified form (see section 3). The method employs a new concept

of guiding functions in place of a single Lyapunov function. Before to explain this concept, consider

the system (1.13) with slightly different notaionsj ç =X, Vi = Ui, and !ï(ç) = gi(X):

•
m

~ = 2: fi (Ç)vù

i=l

(2.1)
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and also for any integer m > 1, let m d~ {1, ..., m}. The principal idea of this approach is explained

below for the simple case when the number of contraIs is by one less than the number of state

variables (m = n - 1).

Design of nonlinear stabilizing feedhack typically involves a search for a suitable 'controP Lyapunov

function V(ç) and a control law v(ç) d~ [Vl(Ç"), •••,vm(ç)] which renders tt V(ç) < 0 along the

trajectories of the controlled system, see [50, 97]. For systems of type (2.1) this approach is not

possible as there does not exist any function V for which the set T d~ {ç E JRn : \7V(Ç)li(Ç) = 0, i E

m} = {O}. Renee we take a different route. We attempt to find n - 1 functions Vi(ç), i E n - 1,

henceforth called 'guiding functions', whose behaviour along the trajectories of the controlled system

is not limited ta ft Vi(ç) < O. While allowing sorne guiding functions to increase, we design contraIs

Vi(Ç) i Em such that their "synchronized action!> causes the sum V(ç) d~ L~==-11 Vi(Ç) to decrease

on average. The latter is indeed possible if the functions Vi are chosen to satisfy the following

conditions:

Condition (a): Each Vi, i E n - 1, is semi-positive definite on IRn while the sum V = L:~l Vi is

positive definite, decrescent and proper on IRn.

Condition (b): The value of each Vi, i E n - 2, can be manipulated independently of the value of

Vn - 1 in that if Vi(P) #- 0 for SOIDe i E n - 2, at some point p, then there axist controls Vi, i E m,

which steer Vi, i E n - 2, to zero in finite time while Vn - 1 maintains its value at p.

Condition (c): The value of Vn - 1 can be decreased over a finite interval of time if the remaining

Vi, i E n - 2, are allowed to vary freely.

The above assumptions suggest a feedback strategy which foeuses on the decrease on V~-l alone.

To begin with, the strategy attempts to employ contraIs which provide for the satisfaction of the

usual condition that ft V(ç) = L:~l ft Vi(ç) < O. If the last becomes impossible, due to the fact

that tt Vi(P) = 0, for i E n - l, regardless to the values of the contraIs Ui, i E m, then a sequence

of controls is employed which results in a decrease of Vn - 1 while the remaining Vi are permitted to

increase byan amount proportional to the current value of V (see assumption (c». Naxt, another

sequence of controis is empIoyed which maintains the current value of Vn - 1 and steers Vi, i E n - 2,

to zero (see assumption (b». Repeating the above procedure results in asymptotic convergence of

V ta zero.

It is shown here that the above strategy is indeed feasible, and that the guiding functions, satisfying

the desired properties (a)-(e), are especially easy to define in the case when the vector fields Ir, ..., lm
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are simultaneously "rectifiable" (see hypothesis Hl in section 3). The strategy is first developed and

analysed for systems in which the difference between the number of control and state variables is one

(Le. m = n -1). Such systems are referred ta under the name of systems of "control deficiency arder

one". A weil known e.."Cample of such systems is the model of a unicycle. For this e..xample, when

the set point is chosen ta he the arigin, the strategy is shawn ta achieve what could he regarded as

the 'intuitively bese type of control. In the absence of disturbances, the control is dead-heat and is

accomplished in three steps. At the end of the first step the car assumes a position sideways ta its

goal - the origin. This position of the car 'requires' the car to displace sideways, (in the direction

of the Lie bracket of the vector fields corresponding ta the rotation and rolling movements of the

car). In its second step the strategy makes the car rotate 90 degrees and then drives it straight ta

the origin.

1t is shawn next that the guiding functions approach can be generalized ta apply ta systems of

control deficiency arder two. In this case considering a Lie bracket e.."Ctension of the original system

is necessary. A more complex example of a car is used this time (a front wheel drive for which

m = n - 2). Simulations confirm that the strategy is very effective also in this case. Finally, a yet

hetter control construction for this particular example is shawn ta follow from the guiding functions

approach.

The guiding functions control strategy has several advantages which make it potentiaIly useful for

applications (e..xamples include the control of mobile robots in which it is important ta control the

entire state vector) :

(i) Without the loss of generality, the strategy employs bounded, piecewise constant contraIs.

The bound on the control can be adjusted as necessary if control constraints have ta be

satisfied.

(ii) The strategy is based on simple principles; the values of the guiding fünctions provide an

on-line convergence verification test.

(iii) Control efliciency in terms of the convergence speed can be improved in special cases as it is

dictated by particular realizations of assumptions (b) and (c) which are model dependent.

The novel contribution of this Chapter can he sum.marized as follows:

• A novel concept of guiding functions is introduced which can be used as a ta01 for the

construction of new and effective feedback control strategies for drift free systems.
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• A stabilizing control strategy based on this concept is developed and analysed for systems

of control deficiency arder one in rectified forme The strategy is shawn to be applicable also

ta systems of higher arder of control deficiency.

• 1t is shawn that, under reasonable assumptions, the feedhack control strategy yields global

asymptotic stabilization ta a set point.

• The guiding function controller is tested on two ~"'{amples on which it proves ta he very

effective. The geometric insight into the steering prohlem, gained by employing the guiding

functions, is demonstrated ta lead ta a yet simpler and more effective feedback control laws.

2. The control problem. and basic assum.ptions

We aim ta solve the following:

Set point control problem..

SPC: Find a feedhack control strategy in terms of piecewise constant contrais Vi(X), i E m, snch

that for any two points ço, Ça E JRn , ç(t; ço, 0) -r Ça as t -r 00 , where ç(t; ço, 0) denotes the

trajectory of the controlled system (2.1) emanating from ço at time t = O.

Without the loss of generality, we assume that Ça = 0 , or else the original coordinate system can be

translated as required. Two sub-classes of drift free systems will he considered: systems of control

deficiency arder one, for which m = n - 1, and systems of control deficiency order two, for which

m = n - 2.

We need the following, basic assumptions:

Al. Complete controllability :

For system of control deficiency arder one, (m = n - 1):

span{fi(ç), [Ji, h](ç), i,j E n - I} = /Rn 'if ç E /Rn.

For system of control deficiency arder two, (m =n - 2):

(2.2)

(2.3)

•
A2. Absence of singular points:

The vector fields in (2.2)-(2.3) do not have asymptotic singular points in that there exists a
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constant c > 0 such that

(2.4)

3. Construction of feedhack using guiding functions

3.1. Construction of guiding functions

In the case when the number of state variables e.xceeds the number of controls by one and, addi­

tionally, the system equations appear in a 'rectified forro' (see below), the set of guiding functions

satisfying the conditions (a)-(c) of section 1 can be introduced in a particularly easy way. For

systems in a general form we need to impose the following hypothesis :

HL Rectifiability:

There exist diffeomorphic state feedback transformations ç = Tn-l(x), v = Un-l(ç,u),

such that, in the new coordinates x, and in terms of the new control u, the system with

m = n - 1 2: 2 assumes the form :

1 0 0 0

0 1• x = 0 Ul + 0 U2 + ... + 1 U n -2 + 0 Un-l

0 hl(x)

0 0 0 h2 (x)

(2.5)

•

where hl, h2 , are some smooth functions of the new state variable x.

REMARK 2.1. Sufficient conditions for local existence of similar transformations were discussed in

[37]. Hypothesis Hl is not very restrictive; many systems which are important for applications,

appear a priori in this form, or else the rectifying transformations can be found very easily. At times

the rectifying transformations are not needed at all as a set of guiding functions Vi, i E n - 1 which

satisfy conditions (a)-(c) of the Introduction can be found for the original system, see Remark 2.2.

This is aIso confirmed by examples in the ne.xt sections.

Assuming the satisfaction of Hl, we will concentrate on the construction of the guiding functions

and the associated feedback control strategy for system (2.5) in place of the original system (2.1).

Clearly, if (2.1) satisfies the controllability assumption Al, 50 does the transformed system (2.5).

We will hence assume that assumption Al is made with respect to system (2.5) .
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For a system in a rectified form (2.5), we introduce a set of the following semi-positive definite

guiding functions:

de! 1 2
Vi(x) = 2"Xi' i E n - 2,

de! 1 [ 2 ?]
Vn-1(x) = 2" Xn-l + X~

(2.6)

(2.7)

The above functions indeed satisfy the conditions (a)-(c), as explained below:

Condition (a):

The sum of ail guiding functions, defined as:

n-l
de!~ 1 T

V(x) = L- Vi(x) = 2"x X

i=l

is clearly positive definite, proper and decrescent in JRn.

Condition (h):

(2.8)

•
Calculating

i E n - 2
, iEn-1

i=n-l
(2.9)

shows that the value of each guiding function Vi 1 for i E n - 1, cau be changed only by the corre­

sponding control Ui but not by any other control Uj, j i= i. Now, suppose that Vk(P) i= 0, for sorne

p E JRn and k E n - 2. The standard feedhack control

(2.10)

with the sign function defined in the usuaI way, 50 that sign(O) = 0, yields

~V;(x) = { ~IXkl i=k
, iEn-1

ii=k

and

d { -sign(xkl i=k
dtXi(t) = i E Il

0 ii=k

(2.11)

(2.12)

•
for ail t ~ 0, where x(O) d~ p. It follows that there e."'cists a finite time t* > 0 such that Xk(t*) = 0,

and hence that Vk(x(t*» = ~x%(t*) = 0, while Vj(x(t*» = Vj(P), for ail j i= k, j E n - 1. This

shows that condition (b) is satisfied.
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Condition (c):

If p E IRn is such that Vn- 1CP) :fi 0 and pTgn-L (P) #= 0, then the value of Vn- L can be decreased by

the standard contraIs

( ) de! . (TUn-L X = -S1.gn X gn-L(X)), (2.13)

When pTgn-L(P) = 0, but Vn-1(P) #= 0, then, there may exist no controis wmch can further decrease

Vn-r, while simuitaneously preserving the values of the other guiding functions Vi, i #= n - 1. (Such

an impasse situation occurs when, additionally, Vi(P) = 0, for i E n - 2.) A decrease in Vn - 1 is thus

guaranteed only when the vaIues of Vi, i :fi n - 1, are permitted to increase temporarily. A method

for achieving such a decrease can be obtained by inspecting the second derivatives of the guiding

functions Vi, i E n - 1 , while assuming that the contraIs can only take constant values.

Noticing that, for ail x E IRn,

•
IIgi(x)1I 2 = l, \igi(X) =° for i E n - 2, and all X E IRn

9i(X)Tgj(x} = 0 for i:fi j, i,j E n -1 and x E !Rn

gives

d2 ?
(WVi(x) = Ui, 1. E n - 2

~Vn-L(X} = L;~ll g'{;_l(x}gj(x)uiun-L + Lj~ll XT'Vgn_l (x)gj (X)UjUn-l

={[lgn_l(x)1I 2 + xT\ign-l(X)gn-l(X)}U~_L + E~; xT[gj,gn_d(x)ujUn_l

From (2.9), and (2.14)-(2.18) it further follows that

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

•

If pTgn_L(P) = 0 but Vn-1(P) #= 0, then \iVn-1(p) ..L gn-l(P) and \iVn-L(p) :fi 0, and since

\iVn-1(p) 1. gi(P), for i E n - 2, then 'VVn-1(p) E span{[gi,gn-t1,i E n - 2} , by virtue of the

controllabilityassumption Al. It is then possible to choose an index i E n - 2 such that

(2.21)
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It is then clear that the contraIs

Ui(X) = 1, and Uj(x) = 0 for j =P i, j E n - 1 (2.22)

change the value of Vi along the controlled trajectary, ( increasing it, if Vi(P) = 0), while Vi for j i= i

stays constant. Most importantly, in the process of the above, the 'coefficient' x Tgn-L(X) in tt V~-L
changes value from zero to nonzero since, by virtue of (2.19)-(2.20),

(2.23)

along the controlled trajectory, with controls as in (2.22).

At this point, i.e. when x Tgn-L(X) i= 0, the controis of (2.13) can be re-employed, resulting in

a further decrease of Vn - b while the values of the other guiding functions stay uneffected. After

x T gn-! (x) reaches zero again, Vi can be restored to its previous value by 'reverse controls' :

Ui(X) = -1, and Uj(x) = 0 for j =fi i, jE n - 1 (2.24)

•
This demonstrates that the choice of the guiding functions satisfies condition (c).

3.2. Feedback control strategy for systems of control deficiency arder one

A control strategy which employs the above guiding functions can now easily be constructed. Its

principles are summarized below.

In the initial stage of the strategy, the standard contraIs (compare with (2.10»

Ui(X) d~ -sign(xTgi(X» = -sign(xd, i E n -2

def . T
Un-LeX) = -s1.gn(x gn-L(x)L for aU x E IRn

, (2.25)

where the sign functian is defined in the usuaI way, 50 that sign(O) = 0, are employed, to steer the

system to the set T, defined by

Td~ {x E IRn : XTgi(X) =O,i E n -1}

= {x E IRn
: Xi =O,i E n - 2, xT9n-L(X) = O} (2.26)

•
The conditions which guarantee this, will be given Iater in Propositions 2.1 and 2.2. It is important

to note that system (2.5) with contraIs in (2.25) is essentially a variable structure system and hence it

is necessary to define precisely its solutions. No difficulty arises if the sign function can be realized
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faithfully (instantan~ously), in the absence of any model system error, or disturbances. This is

because, it follows from the definition of the guiding functions and equation (2.13) that, for each

i E n - 2, there exists a finite time ti at which Ui = -sign(xi) = 0 and thus ttXi(t) = 0, for all

t ~ ti, regardless of the action of the remaining contraIs. (If, in addition, the control U n -1 takes

a zero value, then aIso ttxi(t) = 0, for i = n - 1, and for i = n). It follows that, in such case of

" disturbance free, faithful realization", any control Ui can switch value only once (ta zero). For

simplicity of exposition, and ta avoid the discussion of the chattering effect, we assume henceforth

that, in the presence of errors and disturbances, a control Ui takes zero value for ail times after

the instant at which its argument changes sign for the first time. The latter creates no additionaI

problems, as the system need not be steered ta the set T exactly, see Remark 2.4.

Clearly,

along the trajectory of (2.5) with contraIs (2.25), which implies that V decreases in the complement

of T. Additionally,

•

d n-1 n-2

dt V(x) = - ?= IxTgi(x)1 = - ?= IXil -lxT gn-l(X)1 ::; 0, for all x rt T
1=1 1=1

Vi (P) = 0, i E n - 2, for all pET

V(P) = Vn - 1 (p) for all pET

(2.27)

(2.28)

(2.29)

and aE T. T is hence a set of impasse points at which none of the guiding functions Vi, i E n - 1,

can be further decreased instantaneously, as, for x(t) = pET, ~Vi(P) = 0, i E n - 1, regardless of

the contraIs. At this point, the control strategy enters its second stage in which an index i E n - 2

is selected, as in (2.21), and followed by application of the contraIs (2.22) until xTgn-l(X) reaches

its ma.."'<Ïmal value, or else until the value of Vi (x) becomes comparable with the value of V(P) at a

point p at which T was Iast traversed, and 50 until the controlled trajectory reaches a point x at

which either of the following conditions is satisfied

(2.30)

where (k » 1 is a given constant. The controls in (2.13) are employed ne.xt ta decrease Vn - 1

while the values of the other guiding functions stay unchanged. After xTgn-l(X) reaches zero, Vi is

restored ta its previous value (zero) by

•
Ui(X) = -sign(xTgi(X» = -sign(xi), and Uj(x) = a for j #- i, j E n - 1 (2.31)
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which is applied until X T 9i(X) = Xi = 0, and hence until the state of the controlled system returns

to the set T. The nex-t control cycle is then initiated by choosing a possibly new inde..x value i which

satisfies (2.21).

REMARK 2.2. The guiding functions approach is not limited to systems which are appearing in a

"rectified" form. Finding a suitable set of guiding functions can often be easy even if the system is

not in the form stated in hypothesis Hl. To see this, consider the weIl known example

x=u

y=v

•

i = xv - yu

The two guiding functions needed in this case can, for e.."'Cample, be introduced as foIlows:

li; de! 1 2
l = 2Y

de! 1? 1 ?V2 = -x- + -(z - xy)-
2 4

An easy calculation shows that T = {p d~ (x, y, z) E JR3 : X = Y = O} as

d
dt V (x, y, z) = [x - zy + xy2] u + yv

(2.32)

(2.33)

(2.34)

and the contrais u = -sign(x - zy + xy2) and v = -sign(y) can be applied until the system

trajectory traverses T.

For constant contrais u, v:

cP
-d?Vi(x,y,z) = V2t-
cP ? 2
dt2 lt2(x, y, z) = (1 + 2y-)u - (z - xy)uv (2.35)

It follows that, whenever p E /, then setting u = 0 and v = 1 produces a change in Vl while V2

stays unchanged. AIso, the time derivative of x - zy + xy2, the 'coefficient' in :ft V, associated with

u, is given by

d 2 ?
dt (x - zy + xy ) = (1 + 2y-)u - (z - xy)v = -z:l 0 (2.36)

•
for all p = (x, y, z) E / such that p :1 0, and provîded that v = 1 and u =0 are selected as control

values. Hence lx - zyl grows away from zero, as required. The guiding functions, as introduced by

(2.33), satisfy the assumptions (a)-(c) of the Introduction and our control strategy can be applied.
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Let t t-+ x(t) denote the trajectory of (2.5) with controIs (2.25) and let x denote the cnrrent (mea­

sured) state of this system. The above discussion can be formalised into the following algorithmic

feedback strategy.

Stabilizing feedhack strategy

• Data: Ct» 1.

• 1 If x E JRn \ T, apply the controls

{

-sign(xi),
Ui(X) =

-sign(xT9n-l(X»,

ijén-1

i=n-1
iEn-l.

•

•

• 2 If at some time instant t, p~ x(t) E T, then stop if p =°;eise proceed if P jé 0

.2a Select an index i E n - 2 which satisfies

.2b Until X T [gi,9n-dCx) = 0 or eise until V(x) = aV(p), employ the controis

Ui(X) = l, and Uj(x) = ° for all j =fi i, j E n - 1

.2c Until x T gn-I(X) = 0, employ the controis

Un-ICX) = -sign(xT gn-l(X» and Uj(x) =° for j E n - 2

.2d Until x T 9i(X) = 0, employ the controis

Ui(X) = -sign(xi), and Uj(x) =0 for all j =fi i, j E n - 1

and repeat Step 2.

REMARK 2.3. Clearly, if Pk, kEN, denotes the value of the state at the entrance to Step 2b, in

iteration k of the algorithm, then V(Pk) = Vn-1(Pk), kEN. In Step 2b of the above strategJP,

the state of the controlled system is driven away from the set T while x T gn-l (x) changes from

zero to non-zero. Simultaneously, V increases since Vi increases from zero to non-zero. The value

of Vn - 1 stays unchanged during the execution of Step 2b. In Step 2c, the increase of Vi is halted

while Vn - 1 is decreased beyond its value at Pk. When further decrease in Vn - 1 becomes impossible

due ta XTgn_l(X) = 0, Step 2c is entered in which the value of Vi is restored ta zero. Clearly, at

the e.xit of Step 2c, the state of the controlled system returns to the set T,50 that the condition of

Step 2 can again be verified. By the controllability assumption Al, whenever Pk i= 0 then the value

of the maximum in Step 2a is positive, sa that Step 2b is non-trivial. The strategy hence produces
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a sequence of points {Pk} which is firrite (if for sorne finite value of the index k = k", , Pk. = 0) ,

or eise an infinite sequence {Pk }kEN, for which the corresponding sequence of values {V(Pk)} kEN is

rnonotonically decreasing.

It is worth noticing that the "oscillations" in the Xi , i i= n - 1, components of the state (as caused

by controis (2.22) and (2.31)) can be big. The evolution of Vn - 1 consists of intervals in which Vn - 1

stays constant, alternated by intervals in which Vn - 1 is strictly decreasing. In the meantime, the

remaining guiding functions are oscillating freely.

Since the magnitudes of the non-zero contraIs are constant, the control switches increase in frequency

as Vn - 1 decreases. This can easily be prevented by scaling each Ui by a factor of the corresponding

value of Vi, wIDch may be practical but is a trade-off with the convergence rate of the strategy.

REMARK 2.4. It is not essential that the system is steered to the set r exactly. In this respect,

several relaxed, alternative control strategies can be constructed which result in convergence ta a

pre-specified neighbourhood of the origin, rather than the origin itself (practical stabilization). vVe

omit the details as these would further complicate the analysis, but notice that "disturbances" such

as numerical errors in computer simulations do not prejudice convergence.

The parameter a E (1,00) can be selected arbitrarily, however, its value is correlated with the

rate of convergence of the strategy. Large values of a, permitting large oscillations in guiding

functions values, are preferable when the possibility of achieving convergence in finite time needs to

be explored. This is explained in Example 1 of this section.

3.3. Convergence analysis

The properties of the controls of Step 1, which guarantee the feasibility of this Step, are stated in

the next two Propositions.

PROPOSITION 2.1. Any trajectory of system (2.5) with controts given in (2.25) converges the set T,

(where convergence is defined in the sense of the Euclidean distance between a point on the system

trajectory and the set T).

Proof. Let XQ E IRn be an initial state of (2.5) at t = 0 and t Ho x(t) denote the corresponding

trajectory when controis (2.10) are employed. Further, let n denote a level set of V which contains

XQ, Le. n d~ {x E IR : V(x)::; Vexa)}.

Suppose, contrary ta what needs to be shown, that x(t) does not approach T. Renee, there e..xists
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an € > 0 and a sequence of time instants {tk}keN such that

dist(x(tk); T) > E for all k E 1lV (2.37)

where the function x t-+ dist(x; T) is a measure of the distance of a point x from the hypersurface

T, and is defined by

n-l

dist(x; T) dg L IxTgi(x)1 for all x E JRn
i=l

(2.38)

The above definition is meaningful since dist(x; T) > 0 for all x E JRn \ 1 and dist(x; T) = 0 for

all x E 1.

Clearly, x(t) E n for all times t, and n is compact. Renee, by smoothness of the vector fields 9i,

and boundedness of the contraIs in (2.25), there e..xists a constant Cl > 0 such that

•

Il x(t) Il ~ Cl for all t > 0

It follows that there e..xists a constant ~ > a such that for all k E 1lV :

dist(x(r); T) ~ 0.5 € for all r E [tk' tk + 26].

Therefore,

(2.39)

(2.40)

V(X(tk + 2~»

(2.41)

Since V is non-increasing along x(t) then the latter implies the existence of a finite time t* < 00

such that V(x(t*» = O. Thus x(t*) =0 E l, which is a contradiction with the assumption that x(t)

never approaches T. •

•

In fact we can show a stronger result under an additional assumption which is somewhat stronger

than the one requesting that the motion of system (2.5) with contraIs (2.25) is not confined ta any

non-void level surface Tv d;j {x E IRn : V(x) = r}, r > 0; equivalently, requesting that Tv does

not contain any invariant sets of:i: = gn-l (x). This is shawn in the following proposition.
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PROPOSITION 2.2. Suppose that

A(x) d~ \l(xTgn-l (X))Yn-l (x) ::f: a

for ail x E A d~ {x E /Rn 1 Xi = 0, i E n - 2} (2.42)

Under this condition, any trajectory of system (2.5), with controIs (2.25), reaches T in finite time.

Proof. Let t t-+ x(t) be a trajectory of (2.5) with contraIs (2.25) emanating from some initial

condition Xo at t = O. As before, let n be a level set of V which contains xo. ClearlYI by virtue of

the fact that tt V(x(t)) ::; 0, for aU t 2: 0, x(t) E n, for aU times t > O.

By virtne of (2.25) and the definition of Yi, i E n - 2,

Xi(t) = -siyn(x(t)TYi(X(t))) = -siyn(xi(t» for aU i E n - 2 (2.43)

which implies the existence of a finite time t· < 00 snch that Xi(t*) = 0 for ail i E n - 2, and

consequently, that xiCt) = a for aU t > t* , i E n - 2.

Suppose, contrary ta what needs to be shawn, that the trajectory x(t) never reaches T. Since n is

compact and x t-+ A.(x) is continuons, then

•
Also,

8 d~ min{ /A(x)/I x E n n A} > a

d
dt V(x(t)) = x(t)TYn-l(X(t))Un-l < a for ail t 2: t*

(2.44)

(2.45)

in which Un-l = -1 or else Un-l = 1. Clearly, since for all t > t*, Ui = 0, i E n - 2, and x(t) E A,

then

cP
dt2 V(x(t)) = \l{x(t)T9n-l(X(t))}Un-l x(t) = A.(x(t))U~_l = A(x(t)), t> t* (2.46)

(2.47)

By assnmption, for all t , A(x(t)) has a constant sign. Suppose first that A(x(t)) > 0, for all t. Then

d d if ~ d
-dV(x(t)) = -dV(x(t*)) + d 2 Vexer)) dr ~ -dV(x(t·» + (t - t") 8

t t t- r t

for ail t 2: t*. Equations (2.45) and (2.47) imply that there exists a finite time t' > t· snch that

1tV(x(t')) = 0 which contradicts (2.45).

•
Next , suppose that A(x(t)) < a for all t. Equation (2.44) then implies that

max{ A(x) 1 xE nn A} = -8 < a (2.48)
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and thus that

d
d V(x(t» ::: dd V(x(t·)) + ft drf22 Vexer)) dT ~ dd V(x(t*» - (t - t*) t5
t t i t • T t

for all t ~ C. It follows that there exists a constant Cl > 0 and a time l ~ t· such that

d
dt V(x(t)) < -Cl for all t > t

(2.49)

(2.50)

The latter implies the e..~tence of a fuite time t' > l such that V(x(t'» = 0 , so that x(t') = 0 E T

which contradicts the assumption that x(t) never reaches T.

A quantitative analysis of the decrements in Vn - l in Step 2c leads to the following result.

•

•

THEOREM 2.1. Let the assumption of Proposition 2.2 and assumptions Al and A2 be satisfied with

respect to the system (2.5), and assume the absence of any model-system error and disturbances.

Under these conditions,

(a): the stabilization feedback strategy is well defined,

(h): every trajectory of system (2.5) employing the stabilizing feedback strategy converges to

the origin (the origin is globally attractive).

For the proof of the Theorem we will need the following auxiliary result .

PROPOSITION 2.3. If the vector fields Yj, j E n - 1, are smooth and satisfy assumptions Al and A2,

then for any compact set B E !Rn which does not include the origin (i.e. 0 fi. B), there exists a

constant 'Y > 0 such that

(2.51)

for any index i E n - 2 and any point p E B n T which satisfies

(2.52)

Proof. Suppose that the assertion of the proposition is not true. Then there e..xists a sequence

{"Yl }lEN such that 'Yl -+ 0 as l ---r 00 and corresponding sequences of indices {it}CEN, and points

Pl E B n T, {Pl}lEN, satisfying (2.52) , and such that (2.51) is violated, 50 that

•
together with

pTgj(Pc) = 0 for j E n - 1, l E IN

(2.53)

(2.54)
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(2.55)

Since B is compact, there exists a convergent subsequence of {Pl }IEN for which we will use the same

symbol to simplify notation. Let p. E B denote its limit, 50 that Pl -;. p. as l -+- 00. Additionally,

suppose that the latter subsequence is chosen in such a way that each of its elements corresponds

to the same vaIue of the inde.."'C i of (2.52). Denote this value by i•. Letting l tend to infinity in

(2.53)-(2.55) yields

and

P;9j(P.) = 0 for j E n - 1

0= Ip;[gi.,gn-d(P.)1 ~ Ip;[gj,gn-d(P.)I, jE n - 2,

(2.56)

(2.57)

(2.58)

•
which implies that p. is orthogonal to the set span{9i(P.), [gi,gj](P.), i,j E n - i}. By virtue of

the controllability assumption, p. = 0, which cantradicts the fact that p. E B and that B does not

contain the origin. This shows the validity of (2.51). •

Praof of Theorem 2.1.

Part (a) :

This part is clearly true by virtue of Propositions 2.2 and the discussion in Remark 2.3.

Part (b) :

Let Xo be an arbitrary initial condition for the controlled system (2.5). In the k-th iteration of the

stabilizing strategy, let Pk and p~ denote the vaIues of the 5tate of the system at the entrance and

the exit of Step 2b, respectively. Further, let Tk and T~ be the time instants at which Step 2b is

entered and exited, respectively. Similarly, let tk and t~ be the time instants at which Step 2c is

entered and e.."'Cited. Finally, let 4 be the time at the exit of Step 2d. Clearly, tk = Tk.

If the sequence {Pk} produced by the strategy is finite, the Theorem is trivially true , 50 that only

the case when {PkhEN is infinite requires analysis.

First, suppose that V(Pk) = Vn-1(Pk) -;. 0 as k -+ 00. By virtue of the condition in Step 2b,

•
(2.59)
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Since V decreases in all the steps other than Step 2b then, from the above analysis, it aIso fol1ows

that

(2.60)

•

and hence that V(x(t» ~ 0 as t ~ 00.

Next, suppose, contrary to what needs to be shown, that V(x(t» does not converge to zero as

t ~ 00. From the previous discussion it follows that there e..cists a constant a > 0 such that

V(Pk) = Vn-l(Pk) > a, for all k E lN. Since the sequence {Vn-1(Pk)hEN is bounded from below

and monotonically decreasing, it is convergent.

Since V(x(t» increases only in Step 2b, then by virtue of the condition of this Step, the trajectory

x(t) remains in the set 0 0 dg! {x E JRn : V(x) ::; oV(xo) }. Since Vn- I is decreasing monotonically,

the latter implies that the trajectory x(t) remains for all times in the compact annulus B d~ {x E

IR : a::; V(x) ::; aV(xo)}.

In order to estimate the decrease in Vn - 1 which takes place in Step 2c, we will show the validity of

the fol1owing :

(i): There exists a constant KI > 0 such that

(2.61)

for any Pk E B, and kEN.

CH): There e..xists a constant K 2 > 0 such that

(2.62)

whenever x(r) E B, for all r E [tk, tU.
Part (i) :

At the entrance of Step 2b, xCTk) = Pk and Pkgn-l (p/J = o. By virtue of (2.20) and the fact that

in Step 2b the only nonzero control is Ui = 1, we have that

•

rT~ dd [x(s)Tgn-l(X(S))J ds
JTI: S

= rT~ x(s)T[gil gn-rl(x(s» ds
JTk

(2.63)
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The rate of change of the integrand in (2.63) is limited if the trajectory x(t), for t E [Tb -ri], remains

in the annulus B. Since in Step 2b the controlled system equation is given by x = gi(X)! then

1~ {x(t)T[gi, gn-d(x(t))}! = 1[gi, gn_dex(t))Tx(t) + x(t)TV[gi, gn-d(x(t))x(t)1

~ {ll[gi' gn-d(x(t)) Il + VaV(xo) IIv[gi,gn-r](x(t))II} 119i(x(t))11

~ l\1f?{l + VaV(xo)} d~ V2 (2.64)

in which AIl> 0 is a common bound for the values of Il[gi,gn-d(x)ll, IIv[gi,gn-d(x)II, and IIgi(x)11

for all x E B and all i E n - 2.

Assuming that Step 2b is exited due to the satisfaction of the condition X(T~)T[gi,gn-d(x(Tk))= 0,

the time T~ - Tk can be estimated as follows :

(2.65)

•
If Step 2b is exited due to the satisfaction of VexeTn) = a V(Pk), then, at the e."CÏt of Step 2b, it

holds that 0.5 Xi(Tn 2 + V(Pk) = aV(pk). Since Xi(Tk) = 0, then the time Tf.: - Tk can be estimated

as follows :

(2.66)

Denoting Tmin d~ min{T~in' T~in}' we obtain the following bound for 1(P~)Tgn-l(P~)1 :

1(P~)Tgn-l(Pk)1 = 1 ('~ x(s)T[gi,gn_d(x(s)) dsl
J'le

> ('k+Tm.sn. {lp[rgi,gn-d(Pk)/ _ V2(S - Tk)} ds
J,,.
1 T[> 2Tmin IPk gi, gn-d(Pk)1

1 T[ 2> -2 IPk gi,gn-d(Pk)1
V2

(2.67)

The latter is valid since x(s)T[gi,gn_d(x(s)) does not change sign for s E [Tk, T~] . By virtue of

Proposition 2.3 and assumption A2, it follows that

> -2
1

···?IIPkWII[gi,gn-d(Pk)I/2
V2

> ("}'TC)2 d~ K
l

2V2
(2.68)

•
where c is the constant of assumption A2 and r is the radius of the largest ball B(O; r) contained in

the level set {x E!Rn : V(x) ~ a} .
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Part (ii) :

We first notice that X(tk) = p~ and that x(t~)T9n-I(X(t~))= O. The rate of change in Ix(t)T9n-I(X(t»1

under the action of Un-l, which is the only nonzero control in Step 2c, is limited as the trajectory

x(t) evolves in B. Sînce /un-ll = 1 then, by virtue of (2.20),

•

1~ xT9n-1 (x)1 :5 IIgn-1 (x)l12 + IIxll !Ivgn-l (x) Il 119n-1 (X) Il

:5 Mi {l + VQV(xo)} d~ VI

where M 2 is a cornmon bound for Wvgn-l(x)1I and 119n-l(x)II in the annulus B . Rence

~ ~

l lc Ix(s}T9n-I(X(s)}1 ds ~ II. {!CPUT9n-I(P~)I- VI(S - tk)} ds
tic tic

where t~ is the time for which the integrand in (2.70) becomes equal to zero, 50 that

" deI 1 ICP')T (P' }It k - tk = tmin = - k 9n-1 k
VI

Therefore

for any k E IN , which proves part (ü).

We are now ready ta estimate the decrease in Vn - l in Step 2c. \Ve first note that

(2.69)

(2.70)

(2.71)

(2.72)

Rence, and from parts (i) and (ii) of this proof, it follows that

kE lN (2.73)

(2.74)

Finally, the latter implies

(2.75)

•
which contradicts the convergence of {V(Pk)hEN.

Therefore, V(Pk) -+ 0 as k -+ 00, and consequently V(x(t)) -+ 0 as t -+ 00 , as claimed. •
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4. Stahilizing feedhack control of a unicycle model

It is interesting to apply the above feedback strategy ta a unicycle mode!. As shawn in Example 1.2

of Chapter l, the kinematic model of a unicycle can be written as:

where, x(t) d;j [XI(t), X2(t), X3(t)]T E JR3

gl(X) = [l,O,O]T, g2(Z) = [0,cosx1,sinxdT

(2.76)

(2.77)

•

•

The model of this system appears originally in a rectified form, 50 no transformation is needed. The

feedhack control strategy with constant Ct = 10 is employed ta steer the system ta the origin with the

initial condition [Xl, X2,X3](0) = [1.,3.,3.]. (In this case, the constant Ct is chosen ta be sufficiently

large as to permit Step 2b of the strategy ta he exited due to the satisfaction of zT[gl, g2](X) = 0,

rather than due to the condition that Vez) = a:V(p). The latter guarantees finite time convergence

of the strategy, as e.xplained below.)

The assumptions of Proposition 2.2 are satisfied here since 'V(xTg2(X»g2(X) = IIg2(x)1I 2 = 1 for all

x E 1R3. The surface r = {x E JR3 : Xl = O} n {x E JR3 : X2COSXI + X3sinxl = O} = {x E JR3 : Xl =

X2 = O} is hence reached in finial time.

Figure 2.1 shows the trajectories of the controlled system versus time. It is visible that the set ris

reached approximately at time t = 3.2. The strategy then enters its second phase. The desired (but

inaccessible) direction of motion is [91,92] at any point (0,O,X3)' X3 > O. (orelse -[gl,g2] when

X3 < 0).

Figure 2.2 shows the actual trajectory of the car's center of mass. At the end of the first phase of

the control strategy the car is positioned sideways to its goal - the origin. Any further decrease of

the global guiding function V is impossible at this point since a car with no slipping cannot perform

instantaneous sideways motion. In Step 2b of the strategy the car is rotated in place by an angle of

(rr/2) which is the point at which XT [91,g2](X) = 0, and at which x Tg2CX) achieves its maximum.

The application of Step 2c then results in a straight line motion of the car to the origin. In this case,

the controller achieves its goal in a finite numher of steps, which demonstrates its effectiveness.

Figure 2.3 shows the plot of the guiding functions Vi ~ !xÏ and V2 d;j !(x~ + x5) and Figure 2.4

shows the plot of their sum V .
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FIGURE 2.1. Unicycle model: Trajectories (Xl(t), X2(t), X3(t)) of the unicycle versus time.
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FIGURE 2.2. Unicycle model: Plot of the position of the unicyde (X2(t), X3(t)) .
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FIGURE 2.3. Unicycle model: Plots of the guiding functions Vi = tX12 and V2 = HX22 +
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FIGURE 2.4. Unicycle model: Plot of the SUffi of the guiding functions V = Vl + V2 versus time.
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2.5 EXTENSION OF THE STRATEGY TO SYSTEMS OF HIGHER ORDER CONTROL DEFICIENCY

5. Extension of the strategy ta systems of higher arder control deficiency

In this section we explain how the guiding functions approach can be extended to apply to systems

of control deficiency order two (and, by analogy, to systems of higher arder control deficiency).

For systems for which m = n - 2, we introduce the following family of Lie bracket e."d:ension systems

n-2

~ = L fi(ç)vi + [/i,h;](Ç)Vn-l' for any j,k E n - 2
i=l

(2.78)

•

Any member of this family can be regarded as a system of control deficiency arder one ta which the

previous strategy is applicable.

However, we now require that the rectifiability Hypothesis Hl holds for all members of the family

(2.78) :

Rectifiability of the farnily of extended systems :

Hl'. For any first arder e."d:ension of the original system (2.78) there exist diffeomorphic state

feedback transformations ç = Tex), u = U(ç, v), such that in the new coordinates x and in

terms of the new control u, system (2.1) takes the rectified form (2.5).

The strategy of the previous section can now be applied ta individual members of the family of

extended systems. The detailed "adapted version" of the control strategy is omitted here; instead,

its Interpretation for a particular e.~ample is presented in the next section.

Clearly, for the stabilizing feedback strategy constructed for the e."d:ended system to work with the

original system, it is necessary to provide a way in which the original system can "move" in the

directions corresponding ta the first order Lie brackets [fi, fj]. Motion involving such directions is

needed whenever the system traverses the set T given by (2.26) and which, in terms of the original

system vector fields, is given by

(2.79)

•

If, for e.~ample, gi = [Ii, fkJ, then Step 2b of the strategy requires the system motion to take place

purely in the direction [fj, fk]. For the original system, such direction of motion is not directly

accessible and has to be achieved only approximately. This can he done in a number of ways, of

which a standard one relies on repetitive use of the following four control pairs (each over a fixed

interval of time 6) : (Uj, Uk) = (1,0), (0, 1), (-1,0), (0, -1). It is weIl known, see for example [113],
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2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

that the latter control sequence results in the following estimated value for the state x of the system

at time t = 48 :

(2.80)

•

where the precision in maintaining a motion in the direction of the Lie bracket can be increased as

desired by letting 8 -+ o. The latter can be adjusted on line or converted into a proper feedback

strategy in the case of particular models as shawn in the next section. It is nat important to follow

the Lie bracket direction exactly but ta keep track of the relative increments and decrements of

the associated guidiog functions, as required by the stabilizing strategy in arder to observe periodic

decrease in Vn-l.

Finally, the original contraIs are derived by using inverse transformations to T and U which con­

vert the extended system iota its rectified forme This may be simplified in particular cases, as

demonstrated below.

6. Stabilizing feedhack control of a front wheel drive

The kinematic model of a front wheel drive (car) as given in Example 1.1 of Chapter l, can be

written as:

;p 1 0

:i; 0 COSe deI
Vl + V2 = ftVl + hV2

il 0 sine

iJ 0 tan4>

(2.81)

where,
a

ft = 8</J' h = cosB:x + sinB:y + tant/J :B

•

Calculating the Lie brackets yields

della
h = [fl, hl = cos2rj> ae

f d~ [} [f } J] _ sine a case a
4 - 2, 1, 2 - --- - --­

cos2if> 8x cos2if> ay

deI 2tanrj> 8
/5 = [ft, [ft, hll = cos2rj> (je
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and shows that if the motion of the system is restricted to the manifold

M = {ç dg! (,p, X, y, 8) E JR4 : 14>1 < 1ï/2} (2.82)

then {ft, 12, 13, f4} are linearly independent and hence the system represented by (2.81) satisfies

condition Al for complete controllability on the manifold M. As we will see, this is sufficient for

control purposes.

By virtue of the dimension of the system ( n = 4 and n - m = 2), there exists only one extended

system ta (2.81) which is given in terms of the equation

4> 1 0 0

x 0 cosf} 0
= Vt + V2 + V3

il 0 sinB 0

il 0 tan 4> t
cos241

d~ ft (Ç)Vl + 12 (Ç)V2 + 13 (Ç)V3 (2.83)

l . h h fi • - deI ( ) (A.. () ) d ( )t IS easy ta see t at t e trans ormatlOn x = XI,X2,X3,X4 = 'fi, ,x,y an Ul,U2,U3 =
(VI, COS1Xt V3 + tanxIV2,V2) brings system (2.83) into the following "rectified" form

• Xl 1 0 a
X2 a 1 a

= Ut + U2 + U3

X3 0 0 COSX2

X4 0 0 sinx2

~ 91(X)UI + 92 (X)U2 + g3(X)U3 (2.84)

The model of the front wheel drive hence satisfies assumption Hl on the manifold M.

6.1. The guiding functions and the original strategy

The extended system (2.84) induces the following guiding functions:

•

Vi (x) d~ !. 2- !.4>2
2 XI - 2

lI2(x) dg! !. 2_ !.82
2 X2

- 2

ltJ(x) d~ l 2 2 1? ?
(2.85)-(x3 + X4) = -(x- + y-)

2 2

53



•
2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

It follows from (2.79) that the set of "impass points", T, is given by:

= {ç d~ (l/J,x,y,(}) E lR.4 : c/J = 8 = x = O} (2.86)

From the discussion of section 3 and the model equations, it follows that the guiding function VI can

be manipulated independently of the remaining ones. The guiding function 112 must be manipulated

through motion in the Lie bracket direction [fI, hl , while V3 can be manipulated by U3 = V2, unless

x E T. At any point x ET:

(2.87)

•

Rence, the stabilizing strategy of section 3 can be applied, without change, ta the extended system

(2.84). In Steps 1 and 2 of the strategy the system is supposed ta be steered to the set 1. This can

be easily achieved for the extended system but requires the use of the control U3 = -sign(xT93(X»

= -sign(x3cosX2 + X4sinx2) = -sign(xcos(} + ysin(}) which cannat be implemented directly in the

original system. The action of this control must thus he translated into appropriate controls in terms

of VI and V2 which are the only inputs in the original system. For the car model (2.81) it is easy to

suggest a possible control strategy which cao accomplish such a task , as can be verified by direct

inspection :

Subalgorithm. 1 ( feedhack control for steering the car ta the set n

la Vi = -sign(çTh(ç» , i = 1,2, until çT fi(Ç) = 0, for i = 1,2.

lb VI = 1, V2 = 0, until t/J = 1r/4.

lc VI = 0, V2 = -sign(8tan4>)' until () = O.

Id VI = -signec/J), V2 =0, untU 4> = O.

le VI = 0, V2 = -sign(xcos8 + ysin(}) until ç E T.

The inde.x i of Step 2a is constant and equal 2 since, in the case of the e.x:tended model (2.83),

(2.88)

•

and, additionaily, çT[fI' hJ<ç) = 0 for ç E T,50 that [ft, [ft, h]](ç) = 0, as it is linearly dependent

with [fl,h](ç).

The control of Step 2b then requires the use of U2 = 1 which corresponds ta the motion of the system

in the direction of increasing 8, while keeping the remaining state variables constant. The latter

corresponds to pure motion in the Lie bracket direction [ft, hl. In view of our previous discussion,
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such motion ean be achieved only approximately, by eyellc switching between the vector fields Ir
and h. Here, we employ the following simple 'feedback' control scheme, by repeating N times the

following sequence of controls:

Subalgoritlun 2 (for achieving motion in the B direction)

(i) Increase ifJ until ifJ = min{7I'-{4, Iyl} by using Vi = Ir V2 = O.

(ii) Inerease 8 by J.rmin{7r/2, (a - 1)1/2Iyl} r by using VI = O,V2 = 1.

(iü) Restore rP ta zero by using Vi = -sign(ifJ) , V2 = o.
(ixv) Steer (x, y), as closely as possible r to their values prior to (i) by using the controls Vi = 0 ,

and V2 = -sign(xcosB + ysinB).

A decrease in 8 r which is required in Step 2d, can be obtained by reversing the sign of V2 in (ii).

Scaling is introduced in (i) and (ü) ta prevent excessive deviations in the variables ifJ and B. Clearly,

at the exit of the N-th cycle of Subalgorithm 2,8 = 71"/2, or else B = (a -1)1/2[yl. The latter corre­

spond precisely ta the exit conditions of Step 2b becauser XT [g2, g3](X) = 0 for any x = (0, ~,Or y),

and V(x) ~ tB2 + ty2 = a~y2 = aV(p) whenever p E T, and X is the value of the state of the

system at the exit of Subalgorithm 2.

Step 2c is easy to implement on the original system since, at the exit of Step 2b, 4J = 0 and hence

tant/> = O. The control Vz = -sign(x3cosX2 +X4sinx2) = -sign(xcosB +ysinB) is thus exactly equal

ta U3 = -sign(xg3(x».

The stabilizing feedbaek control for the car model (2.81) in the original variables, hence takes the

following form :

Stabilizing feedhack for the front wheel drive

-1 Steer the system to the set T by employing Subalgorithm 1.

-2b Increase 8 until B = 71"/2 or until B = (a)I/2Iyl by employing Subalgorithm 2.

-2c Employ the contraIs Vr = 0, and V2 = -sign(xcos8 +ysinB) until xcosB + ysinB = O•

• 2d Restore (J ta zero by employing Subalgorithm 1 and repeat Steps 2b-2d.

The simulation results are depicted in Figures 2.5-2.8. Figure 2.5 shows the trajectories of (cP, X, y, 8)

of the control1ed system while the guiding funetions Vi, V2 and V3, and their sum V, are depicted

in Figures 2.7 and 2.8, respectively. Figure 2.6 shows the position of the car (x, y) . It should be

added that during the simulation a practical modification was introdueed to the original stabilizing

strategy: the controis in all steps were sealed by a factor of the eurrent value of the function V.

55



2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

• 0.6

0.4
\

0.2

-v 0X

1-
.1.

8-0.2
CV)
x
~

~-OA

~
1- 1

~-O.6
1

i
X

\1-0.8

-1

Y
-1.2

0 5 10 15
time

20 25 30 35

•

•
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Other simulation experiments show that aIso in this case, in the absence of disturbances, the control

is essentially dead-beat in that the origin can be achieved with an accuracy reflected by V :5 10-5

in only one cycle of the strategy (Steps 1-2d).

6.2. Further sim.plifications resulting from. the guiding functions approach

The guiding functions approach reveals that the greatest difficulty in steering the car to the origin

arises when the trajectory of the controlled system traverses the set T. The corresponding, "desired"

direction of system motion is then the y a.xes in the configuration space. Ivlotion in y can be achieved

only indirectly, by increasing B to a nonzero value. The configuration variables y and B are clearly

the ones which are the most difficult to manipulate (Steps 2b-2d of the control strategy). On the

other hand, once y and B are both zero, steering if> and x to zero is easy. In attempt to simplify

Steps 2b-2d we consider a "reduced system" which consists ooly of the two last model equations in

y and B :

il = sinB Vz

(2.89)

in which tanc/J is replaced by "an additional" constant control th. Assuming that ih and Vz are

constant and that 'Ïh f:. 0, integration of (2.89) yields

1
y(t) = Yo + =-[cosBo - cos(Ba + ih V2 t )]

Vl

(2.90)

(2.91)

where Bo and Yo are the initial values of B(t) and y(t). Clearly, if Ya f:. 0 and Ba f:. f ± k-rr, kEN,

then

1
th = -[1 - cosBa] #- a

Yo

Vz = -sign[B(t)üd

(2.92)

(2.93)

•

steer B and y exactly to zero in finite time. The latter suggests the following, surprisingly simple,

control law which stabilizes the car configuration:
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Sim.plified feedhack strategy

• 1 Steer the system to the set T using Subalgorithm 1 as above.

• 2 By employing the controIs VI = 1, V2 = 1 steer the system to a point (4), x, y, B) at which

de! [
tPdes = atan (1 - cosB)fy] (2.94)

•

•

satisfies <Pdes # 0 and 4>des ~ aV(p), where p denotes a point at which T is last traversed,

and a >> 1 is a constant.

• 3 By employing the contraIs VI = -sign(4) - <Pdes), V2 = 0, steer the system to a point at

which 4> = r/Jdes'

• 4 EmpIy VI = 0 and V2 = -sign(Bvd, with VI = tan(rjJdes), until B= O.

• 5 Employ VI = -sign(</J), and V2 = 0 until 4> = o.

• 6 EmpIoy VI = 0 and V2 - -sign(x) until x = O. Repeat from Step 2 in case when

(4),x,y,B) :;f0.

It is easy ta see that the above strategy is feasible. Once the system reaches T, then 4> = x = B = 0

but y :;f 0 50 Step 2 is weIl defined. In Step 3 , 4> is steered ta a value required by equation (2.92),

(a value such that tan4J :;f 0). Renee, in the absence of any disturbances or model system error, the

contraIs of Step 4 steer the system ta a point at which bath B and y are zero. Due to disturbances or

model system error, only the condition that f} = 0 is met in finite time. In Steps 5 and 6 the system

is steered back to the set T, permitting repetition of Step 2 , if the system's state is not equal zero

exactly. In this way, the strategy acquires the properties of a feedback control. It follows that in the

absence of disturbances and modei system error, the system is steered to the origin in finite time

(at the e.."'Cit of Step 6), regardiess of its initial configuration.

Simulation results confirm the above analysis. Figure 2.9 shows the trajectories (r/J(t), xCt), y(t), B(t»

versus time, during the parallel parking maneuver. The trajectories showing the Cartesian position

(x, y) of the car's center of mass, and the variations in the corresponding values of the sum of aIl

guiding functions V, while performing a parallei parking maneuver, are shawn in Figure 2.10.
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FIGURE 2.9. Simplified control (car) example: Trajectories (Xl(t), X2(t), X3(t), X4(t» d~
(QS(t), x(t), y(t), OCt)) versus time in the parallel parking maneuver.
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FIGURE 2.10. Simplified control (car) example: Plots of the position of the car (x(t), y(t)}
and the sum of the guiding functions V versus tille, in a parallel parking maneuver, when
the simplified strategy is employed.
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CHAPTER 3

The guiding functions stabilizing strategy for general drift

free systems

In this chapter, the guiding functions control strategy of Chapter 2 is extended to apply to general

drift free systems which need not be transformable to a rectified form [64, 69]. A systematic

method for the construction of a pair of guiding functions is introduced and conditions are stated

which guarantee that the resulting feedback control strategy yields global asymptotic convergence

to a desired set point. Applications of the strategy are discussed and tested on different models of

drift free systems such as: an underwater vehicle model, a general drift free system with five state

variables and three controIs, and a model of a rigid spacecraft in actuator fallure mode [64, 69].

The possibility of employing the guiding functions approach to systems whose controllability Lie

algebra involves higher order Lie brackets is also investigated. The idea of combining sinusoidal

steering with the guiàing functions approach is explored using models of an underwater vehicle in

actuator fallure mode, a fire truck model, and a mobile robot with trailer [64, 72].

The guiding functions approach for genera! drift free systems is further e.xtended [67, 711, to allow for

the construction of several rather than two guiding functions and its applicability is demonstrated on

severa! examples of drift free systems: two different general drift free systems, a model of a hopping

robot in flight phase, a fire truck model, and a class of wheeled mobile robots.

The approach presented in this Chapter is general and can be employed to control a variety of

mechanical systems with velocity constraints.
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3.1 INTRODUCTION

1. Introduction

The theory developed in the previous Chapter requires the introduction of as many guiding functions

as there are inputs in the rectified system. It is shown here that, in general, this is not always

necessary. A class of drift free systems in general form is specified for which it is sufficient to

introduce only two guiding functions lIi(x) , i E {1,2}. The latter, serve a similar purpose as

the guiding functions of the previous chapter and so their behaviour along the trajectories of the

controlled system is not limited to :t lIi(x) < 0, i E {1,2}. "Vhile allowing one of the guiding

functions to increase, feedback controls Vi(X), i E m, are constructed in such a way that, as before,

the sum V(x) d;j VI(x) + V2(x) decreases on average. The functions Vi, i E {1,2}, must be chosen

to satisfy similar conditions as those in Chapter 2, namely:

Condition (a): Each Vi, i E {l, 2}, is semi-positive definite, while the sum V = VI + V2 is strictly

positive definite in IRn. The level sets Fr d;j {x E !Rn : V(x) :::; T}, are bounded for al! T ~ 0,

a.nd, additionally, dVi(x) = 0 (where dVi(x) denotes the gradient of lIi(x» implies that Vi(x) = 0,

i E {1,2}.

Condition (h): The value of each Vi, i E {1,2}, can be manipulated by a fixed subset of the

controis which have no effect on the other function Vk , k E {1,2}, k # i. Additionally, for any

constant T > 0, there exists a feedback control strategy which steers the system, in finite time, to

the level set V{ d;j {x E IRn : Vi. (x) :::; r}, while the value of V2 remains unchanged.

Condition (c): The value of the second function, l'z, can be decreased over a finite interval of time

if the first function, VI, is al!owed to vary freely.

The above conditions suggest a feedhack synthesis which focuses on the decrease on V2 alone. To

begin with, such a strategy employs controis which provide for :,. V(x) = 2::;=1 :ft lIi(x) < O. If this

becomes impossible, due to the fact that ft Vi(x) = 0, for i E {1,2}, regardless to the values of the

controis Vi, i E m, then a sequence of controls is employed which results in a decrease of V2 while the

first function, Vh is permitted to increase (see condition (c». Ne.xt, another sequence of controls is

employed whose task is to maintain the current value of V2 while restoring VI to zero (see condition

(b». Repeating the ahove procedure results in asymptotic convergence of V to zero.

The guiding functions control strategy introduced in this Chapter has similar advantages (i)-(iii) as

mentioned in the introduction of Chapter 2.
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3.2 PROBLEM STATEMENT AND ASSUMPTIONS

The novel contribution of this Chapter can he sununarized as follows:

• The guiding functions control strategy, introduced in Chapter 2, is e.xtended to a general

class of drift free systems, which need not be transformable to any special form, and in which

the difference between the number of state variables and controIs can exceed one.

• A much improved strategy is presented here, in which exact steering of the system to the

set r dg {x E !Rn : L gi V(X) = 0, i E m} is no longer necessary.

• A systematic method for the construction of guiding functions is introduced, and condi­

tions are stated which guarantee that the resulting feedback control strategy yields global

asymptotic convergence to a desired set point.

• The idea of combining sinusoidal steering with the guiding functions approach is aIso e.x­

plored.

• Applications of the strategy are discussed involving set point stabilization of different types

of modeis of drift free system possessing different algebraic structures. In ail these e.'"<amples,

the strategy proves very efficient in that it effectively leads to dead-beat control.

2. Problem statement and assumptions

In this Chapter, the set point control problem is stated as a practical stabilization problem:

(SPC) : Given a desired set point Xdes E JRn, and any constant € > 0, construct a (possibly

discontinuous) feedback strategy in terms of the controis Vi : !Rn -+ [0,1], i E m, such that

every trajectory t I--t x(t; to, xo) of the controlled system

m

X = L 9i(X)Vi(X),
i=l

(3.1)

•

reaches B(Xdesi €) in finite time, where (to, xo) E IR+ X JRn denotes an arbitrary initial

condition for (3.1) and B(Xdes; €) is a ball of radius €, centred at Xdes'

Without the 10ss of generality, it is also assumed that Xdes = 0, which can be achieved by a suitable

translation of the coordinate system. The guiding functions idea, permitting an effective synthesis of

such stabilizing feedback, is first explained with reference ta a subclass of systems of the type (3.1),

whose Lie bracket extension contains only brackets of depth one; see the definition below, (of which

the models of an underwater vehicle, a general system with five state variables and three contraIs,

and a rigid spacecraft in actuator failure mode are typical examples). The application of the basic

idea is then e.xtended ta systems whose Lie bracket extensions also contain brackets of depth ;::: 2,

by using the combination of the guiding functions idea and sinusoidal steering, (the models of an
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llnderwater vehicle, a hopping robot in the flight phase, a fire truck, and a mobile robot with trailer

are such examples).

The following controllability assumptions are assumed ta hold for members of the c1ass of systems

considered:

Al. (a) : The vector fields gi, i E m, are real analytic, complete, and linearly independent

at all x E JRn. The Lie algebraic rank controllability condition (LARe) for these systems is

assllmed to take the form :

for ail x E IRn
. (3.2)

Al. (h) There exists a subset of indices, .:J c m x m., of cardinality n - m, such that

span{S(x)} = IRn for ail x E JRn .

(3.3)

(3.4)

•
Due to the skew symmetry property for Lie brackets we will not distinguish between (j, k) E :r and

(k,j) E :J. Next, suppose that the set of indices :J has the following property :

A2. : The vector fields of the set S can be arranged in two groups, 9i d;j {Bi,k, k E Pi},

i E {1,2}, while adhering to the following mies:

(RI): For any Ci, k) E J, [Bj,Bk} E 92, and either Bi E 92, or Bk E 92, but never both.

(R2): Each vector field of S belongs only to one group and 91 U 92 = S, sa that

Pl + P2 = n.

For the construction of guiding functions we additionally need the following involutiveness condition:

A3. : The distributions x f-+ ~i(X) :

de! { }.6.i (x) = span 9i(X) , i E {l, 2} , x E IRn (3.5)

are involutive, and thus are completely integrable.

It follows from the Frobenius Theorem that there exists a neighbourhood of the origin n c IRn, and

two sets of scalar functions

de! { ..._ l de!Pl(x) = À2 ,k(X), k E !:Y, T2 = n - P2, xE n
P2(x) d;j {Àl,k(X), k E rI}, !:l d~ n - Pl, x E n (3.6)

such that the codistributions llt(x), and Llt(x), are spanned by exact differentials of (3.6), 50 that

•
Ll;-ex) = span{dPi(X)}, for ail i E {1,2} and ail xE n (3.7)
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where dPi(X) = {dÀi.dx), k E !:J. By virtue of rule (R2), Tl + T2 =n. For simplicity of e.xposition,

we additionally assume the following.

A4. : The scalar function5 Ài.k(X), k E Ti, i E {l, 2}, are defined globally in IRn , 50 that

for all i E {I,2} and ail x E IRn (3.8)

3. The guiding functions and their properties

At this stage, it is convenient to introduce the following notation. For any column vectors (or

matrices) VI, V2 the symbol rVI, V2j denotes a matrLx with columns VI and V2 (or a matrix whose

columns are those of VI and V2)' In particular, if VI and V2 are one-dimensional, then rVr, V2j is a

row vector. For any vectors VI and V2 the symbol colrVI, V2j denotes a column vector formed by

listing the elements of VI and V2 in a single sequence. For each index i E {1,2} and any x E /Rn, let

Ai(x) E IRri, and Li(x) E IRPi be vectors defined by

where 9i.i are members of the groups gi' for i E {1,2} and V is a real, analytic, positive definite

function. Let dAiex)T be the Jacobians of x 1-+ Âi(x), i E {l, 2}, sa that•
deI r (T TdAi(x) = dÀi,I X) , ••• ,dÀi,ri(x) j,

i E {1,2}

x E !Rn, i E {1, 2}

(3.9)

(3.10)

(3.11)

and Gi(x) be matrices whose columns are vector fields from gi(X), i E {1, 2}, respectively :

x E !Rn, i E {1,2} (3.12)

Further, for any x E !Rn, let

L(x) = colfLr, L 2 j (x)

G(x) = rGI , G2 j(x)

(3.13)

(3.14)

•

be aggregated vectors and matrices constructed from components Ai, Li, dAi , and Ci, respectively.

Using the above notation, the semi-positive definite guiding functions are introduced as foIlows:

Vi(x) d~ ~ 2:: P'i,k(X) - Ài ,k(0»2
kE!l

(3.15)
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• dei 1 T
V(x) = Vi (x) + V2(x) = 2"fA(x) - A(O)J fi\.(x) - A(O)J, xE IRn (3.16)

•

REMARK 3.1. Assumptions Al (b) and A4 which insure that the guiding functions in (3.15) can be

defined in the entire IRn, were made primarily for the simplicity of exposition, and are essential only if

global convergence to the set point is required. It can be shown that if these assumptions are omitted

then all the results of this Chapter are still valid locally. This is due to the fact that, in general, the set

of indices J, and the associated set S(x) of assumption Al are guaranteed to exist only locally, (such

local existence is guaranteed by the satisfaction of the LARe condition for controllability). Similarly,

as pointed out in equations (3.6) and (3.7), the scalar functions Ài,k(X), k E ri, i E {1,2}, and the

associated codistributions .6.f(x), i E {1,2}, are also, generally, defined locally. The satisfaction

of assumption A4 is related to aIl of the vector fields in the controllability distribution (3.2) being

complete.

Assumptions A1-A4 are sufficient to insure that the guiding functions Vi, i E {1,2}, possess the

desired properties (a)-(c) of the previous section, which we state in the form of Propositions 1-3,

below. AlL"Ciliary results are included in lemmas.

LEMMA 3.1. Under assumptions Al-A4, the mapping x I--t A(x), is a local diffeomorphism.

Proof. First, we will show that, by construction,

for all x E IRn (3.17)

where the symbol EV denotes a direct sum of subspaces. To see this, we note that, for all x E IRn,

tl;(x}, i = 1,2, are closed linear subspaces. Recalling the definitions of the distributions tli(x),

i = 1,2, it is then easy to verify that, for all x E !Rn :

(.~t(x) EB .6.:r(x»1. = .6.t1.(x) n .6.t.L(x)

= .6.1 (x) n tl2(x) = spanHit(x)} n span{Ç2(X)} = {O} (3.18)

where the last equality holds by virtue of the construction of the sets of vector fields ~Iï(x), i = 1,2,

(because the vector fields in the set S(x) are alllinearly independent, span IRn, and çl(x)n{h(x) =

0). Equation (3.18) shows (3.17). By definition,

.6.t = span{dÀ2,k(X},k E T2},

.6.t = span{dÀ1,k(X), k E rd, (3.19)

•
so that (3.17) implies that the matrix dA(x) = LdA1, dA21Cx) is non-singular for ail x E IRn. The

result of the Lemma follows readily, since dA(x)T is the jacobian of the mapping x I--t A(x). •
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LEMMA 3.2. For any compact set C E JRn there exist constants "l'l(C) > 0, and lZ(C) > 0 such that

where,

for aU xE C, i E {1,2}

for aU xE IRn, i E {1,2}

(3.20)

(3.21)

For any x E JRn, the matrix lvI(x) d~ G(x)TdA(x) == rG1 ,GZJ(x)TrdAl,dA2 J(xL is nonsingu­

lar by virtue of assumption Al(b), and the fact that the jacobian dA(x) is non-singular (see

Lemma 3.1). Rence the matrix M(x) dg G(x)TdA(x) is non-singular, and J\;I(x)T l\.tI(x) is pos­

itive definite and symmetric. Ivloreover, by construction, G 1(x)TdA2 (x) and G2 (x)TdA1(x) are

matrices containing only zero elements, so that l\.tI(x) is black diagonal and is given by lvI(x) =

diag{G1(x)TdA1 (x), G2(x)TdA2(x)}. It folIows that the blocles l\.tIi(x) d~ Gi(x)TdAi(X), i E {1,2},

are also non-singular and that J\;Ii(x)T Mi (x) , i E {1,2}, are both positive definite and symmetric.

Let CT~~n(X) and CT~~:r(X) denote the smallest and largest eigenvalues of A1i (x)T Mi(x), and choose

the constants II and l2 as folIows :

•

Proof. By direct calculation it is easy to verify that for all x E JRn, and for i E {I,2} :

II d~ min{CT~~n(X) 1 x E C, i E {l, 2}}

de! (')
l2 = maX{CT~a:r(X) 1 xE C, i E {l, 2}}

(3.22)

(3.23)

(3.24)

•

which are well defined, as these eigenvalues are continuous functions of x. Rence, for any x E C, and

y E JRn, we have that ~,tllyI12 ::; (1/2)yTMi(x)T lvIi(x)y ::; ~'2I1yIl2, i E {l, 2}, and (3.20) follows

from (3.22). •

PROPOSITION 3.1. Suppose that assumptions Al-A4 are valid and, additionally, the mapping x ~

A(x), is a global diffeomorphism. Under these conditions:

(a) : The sum of the guiding functions V (x) = VI (x) + V2(x) is strictly positive definite in IRn.

(h): The level sets vr d~ {x E IRn : V(x) ::; r}, are bounded for aU r ~ O.

(c): For any i E {l, 2}, and any x E IRn , the condition dVi(x) =0 implies that Vi(x) = 0, and

dV(x) = 0 implies that V(x) = O.

Proof. (a): By contradiction, suppose that there exists a point Xo :f:: 0 for which Vexa) = 0, so

that Ài,k(XO) = Ài,k(O), i E {1,2}, k E ri. This implies that the mapping x ~ A(x) is not injective

which contradicts the assumption that it is a global diffeomorphism. This demonstrates positive

definiteness of V in IRn .
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Ch): By contradiction, suppose that there ~"<Îsts a constant r > 0 such that the corresponding

level set vr is not compact. Since V r is closed, it is then possible to ~"Ctract a sequence of points

{Xi}iEN C V r such that

Xi -t 00 as i -+ 00 (3.25)

By definition of the level set, the corresponding values satisfy :

V(xd = ~ I: L (Ài,k(Xi) - Ài,k(O)f ::; r
i=1.2 kE!i,.

(3.26)

Renee A(xd E d{B(A(O); (2r)1/2)}, where cl{B(A(O); (2r)1/2)} is a compact ball of radius (2r)1/2,

centred at A(O). Let the inverse mapping to x I-t A(x) be denoted by A-1. Since A-1 is continuous,

then the image A-l(cl{B(A(O)j (2r)1/2)}) is a compact set. Clearly, Xi E A-l(cl{B(A(O); (2r)1/2)}),

for all i E lN, which contradicts (3.25).

implies that Ài,k(X) = Ài,k(O), k E ri, and thus, Vi(x) = 0, by definition of the guiding function Vi.

By a similar argument, the fact that the columns of the matrix dA(x) are linearly independent also

(c): Since, for each i E {l, 2}, the matrLx dAi(x) d~ rdÀi,l (x), ..., dÀi,ri (x)J contains only vectors

which are linearly independent at every x E JRn, then the equality

•
dVi(x) = L (Ài.k(X) - Ài,k(O)) dÀi,k(X) = 0

kE!}.

implies that the condition dV(x) = 0 entails V(x) = O.

(3.27)

•
To show that the guiding functions construction satisfies Conditions (b) and (c), further definitions

will be of help.

For any constant p > 0, and for any subset of indices Je m we define

~f }Tj(p) = {x E JRn : ILg.r. V(x)1 < p, k E J (3.28)

Clearly, if J = m then 7 = Tj(O), where 7 is the set of "impasse points" defined in the Introduction

to this Chapter. Let the sets Ji, i E {l, 2}, contain the indices of the vector fields gk, k E m, which

correspond to members of the groups Qi, i E {l, 2}, respectively, so that

(3.29)

•
also, let

(3.30)
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Il

-p p r

FIGURE 3.1. A hysteresis loop of width 2p

where .:J is defined in assumption Al. For any subset of indices J c m and any constant p > 0, let

a control v J (x, p) be defined component-wise by :

J { -signp(LYi V(x)) ,
Vj (x,p) =

0,

if jE J,

if j i J,
jEm (3.31)

•

•

where signp denotes the usual signum function with a hysteresis loop of width 2p; preferably of

the shape shown in Figure 3.1. With reference to Figure 3.1 it is assumed that at an initial point

Xo -=1 0, either signp(xo) = -1 or else that signp(xo) = l, and that signp(xo) = 0 if Xo = O. This

control definition is practical in that e.xistence and uniqueness of classical solutions to a closed loop

system using this type of control is not prejudiced (a "sharp" switching control of the type sign(x)

would normally require special definitions of solutions to the closed-Ioop system equation and would

necessitate considerations related to chattering). The presence of the hysteresis loop induces the

possibility of oscillations, but, for a given value of p, the latter will have finite frequency, or else

will not occur at all. The selection of the shape of the hysteresis loop in Figure 3.1 is motivated by

Lemma 3.3 which provides conditions which guarantee that the associated control does not e.xhibit

any oscillations.

PROPOSITION 3.2. Suppose assumptions Al-A4 hold and the mapping x I--T A(x) is a global diffeo­

morphism. Under these conditions:

(a) The value of each Vi, i E {1,2}, can he changed by a fixed subset of the controis which have

no efJect on the other function Vk , k E {l, 2}, k i= i.

(b) For any subset of indices Je Ill, and for any constant p > 0, the control v J (x, p) steers the

system to the set Tj(p) in finite time. Consequently, for any r > 0, there exists a control

which steers the system to the level set V{ = {x E !Rn : V1 (x) ~ r}, (in finite time), while

the value of V2 stays unchanged.
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By "irtue of assumption A4,

(3.32)

which implies that for all x E /Rn

(3.33)

(3.34)

•

Thereforer a control v d~ rVl, ••• , vmj in which Vj = 0 for aU j such that 9i E Ylr has no effect on

Vl , while a control v in which vi = 0, for all j such that 9j E 92 r cannot change the vaIue of V2.

(b): Suppose, contrary to what needs to he shown, that the trajectory t r-+ x(t) orthe closed loop

system controUed hy v J never reaches 0(P). Tt follows that at any time t > 0 there exists an inde..x

k E J such that ILgk V(x(t»1 ~ P, and hence that

d
dt Vex(t» ::; -ILgl< Vexet»1 ::; -p < 0,

Consequently, ft V(xet» ~ -Pr for aH times t, and therefore V(x(t» ~ -00 as t ~ 00, which

contradicts positive definiteness of V.

Now, suppose that the inde..x set J coincides with the set of indices of vector fields which belong ta

91' From the definition of the control v J it foUows that vf(xrP) = 0 whenever j corresponds ta a

vector field which belongs to 92, in which p can be selected freely. From part (a) of this proposition

we conjecture that the guiding function V2 cannot change under the action of such v J . Clearly, along

any trajectory t r-+ x(t) of the system so controlled r ft Vi (x( t» ~ 0, 50 that x( t) E C d~ {x E /Rn :

Vl(X) ~ V1(x(0»)}, for all t. Select p = (2r"Y1/m)~r where Tl is the constant of Lernma 3.2 which

corresponds to the set C. It further follows that v J steers the system to the set TJ(p) = 0 1 (p) in

finite time. Since L gte V(x) = L g ,. V1(xL if 9k E 91, and L g2•i Vl(x) = Or for all g2,j E (h r j E P2r then

vJ steers the system to the set {x E /Rn ; ILgl< Vi (x)l ~ Pr k E m, gk E 9d in finite time. It follows

from Lemma 3.2 that the control vJ steers the system to the set {x E JRn : V1(x) ::; (1/2)p2m}

C {x E!Rn
: V1(x)::; (1/2-rdp2 m = r} = vr in finite time. •

LEMMA 3.3. Suppose that the assumptions of Proposition 3.2 are valid where the index set J is

written as J = {il, ... , il} , L~ m. Let the following conditions hold :

L;i,. V(x) =fi 0 for aU xE JRn, k E {Ir ... , l}

L gite Lg'j V(x) = 0, for ail x E Trl<-l (O)r 1 ~ j < k, k E {2, ..., l}

(3.35)

(3.36)

•
where I k - 1 = {ill ...,ik-d. Furthersuppose that the component controis in v J

, as defined in (3.31),

are activated sequentially in that for any 1 < k ~ L, v~ (x, p) becomes non-zero only if L gi ; V(x) = 0,
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for aU j :::; k - 1, while L yilc V(x) changes sign. Under these conditions, and under the absence

of disturbances and model-system error, such sequentiaUy activated control vJ does not generate

oscillations and steers the system to the set 7j(0) in finite time.

Proof. Let Xo be the value of the state of the controlled system at the initial time t = O. Tf

L Yi1 Vexa) f; 0, then vi. is the only active component of vJ on some interval of time [0, €), 50 that

d
dt V(x(t)) = -ILg' l V(x(t»1 < 0 (3.3i)

•

along the control1ed system trajectory t Ho x(t), for t E [0, €). It follows that the trajectory remains

in the level set Va d~ {x E IR : V(x) :::; V(xo)} and converges ta 7ï1 (0), Il = {id, (see Proposition

3.2 (b». In fact, due ta the additional assumption (3.35), the trajectory reaches 1[1 (0) in finite time.

For if this is not true, then L Yi1 V(x(t» ~ 0 as t --t 00 but L gi1 V(x(t» f; 0 for all t. The latter i5

impossible since, bath L gi1 V(x(t» and L;il V(x(t» are continuous, cannat change their sign, and,

when vi. is the only non-zero component of vJ , then

(3.38)

for ail t ~ 0, where 8 d~ min{IL;i
1
V(x)1 1 x E Va}. Bence x(t) reaches 1[1 (0) at sorne finite

time tl, at which v~ (x(td,p) = 0, and the next control component v~ becomes active. Now,

condition (3.36) entails that, at any x E 1[1 (0), the vector field 92 is tangential ta the hypersurface

1[1 (0) = {x E IRn : LYi1 V(x) = O}, which fllrther implies that if at any time t, x(t) E 1[1 (0) then

x(t) can never leave 7ï1 (0) (provided that the only non-zero control component is v~). The latter is

indeed the case at t = tt because x(tt} E 1[1 (0). Renee, v~ is the only non-zero control component

for t ~ tl, and

L gi1 V(x(t» = 0 50 that vi (x(t),p) = 0 for t ~ tl (3.39)

Therefore, (3.37) and (3.38) are valid for the inde..x value il sllbstituted by i2 , and there exists a

finite time t2 ~ tl at which L gi1 V(X(t2» = L gi2 V(X(t2» = 0, i.e. X(t2) E 1[2(0).

Now, suppose that due to such sequentially activated control, for some inde..x i k < il, there e.......ists a

time instant tk such that X(tk) E 1[. (0). Clearly, vJ (X(tk), p) = 0 for ail j :::; k, and again, by virtue

of (3.36), x(t) E 1[",(0) for all t ;::: tk, if the only non-zero control component of vJ is v~+l' Since

this is indeed the case, we have as before

•
L gij V(x(t» = 0 and v~(x(t),p) = 0 (3.40)
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and equations (3.37) and (3.38) are valid for the inde..x value ik. By an argument identical to the

one used for il and i 2 , there exists a finite time tk+l ;::: tk at wmch X(tk+l) E 01c+l (0). The result

follows by induction. •

Contrary to what might seem, the assumptions of Lemma 3.3 are oot restrictive and are satisfied

for most examples considered in this Chapter.

For any open set T, let dT denote its closure and let the scalar switching function x H sign+(x)

be defined by : sign+(x) = 1 if x ~ D, and sign+(x) = -1 if x < o.

LEMMA 3.4. For an arbitrary P > 0 and any pair of indices (k, i) E .:r such that gk E 9l J the control

x H u(i)(x, p), defined component-wise by :

if j = k,

if j # k,
jE m, xE IRn (3.41)

•

•

is regular in the sense that the closed loop system equation with this control has unique, classical

( ") de!solutions. FuTthermore, u 1 steers the closed loop system /rom the set Ak,i(p) = {x E IRn :

ILg,V2 (x)1 :$ p, IL[glng;)V2(x)1 ~ p} to the set Bk,i(p) d~ {x E IRn : lLg.V2 (x)1 ~ 2p} U{x E IRn :

IL(glc,g;} 1!2(x)! :$ p/2} in finite time (any trajectory emanating /rom Âk,i(p) terminates in Bk,i(p)) .

For any such controlled trajectory t H xCt), emanating /rom Ak,i (p), the value of ILg,1!2(x(t))1

increases with t, while the value of the guiding function V2 stays constant.

Proof. By virtue of the definition of the switching function signp , and smoothness of the vector

fields gi, i E m, the e..xistence and uniqueness of cIassical solutions to the closed loop system equation

employing control U(i) can only be endangered by the presence of the other switching function sign+.

However, as will be shown soon, the Lie derivative Lgi V2 cannot change its sign if the system is

controlled by U(i). The right hand side of the controlled system equation is hence weIl defined

and the discontinuities in the control are encountered in isolated moments of time which does not

prejudice e..xistence and uniqueness of its solutions.

Now, suppose that Xo E Ak,i(p) and that the closed loop system trajectory t H x(t), emanating

from Xo never reaches the set Bk,i(p) and, in particular, that it never reaches the set:
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To see how the Lie derivative Lgi V2 changes along x(t) we calculate

d (")
dt L Yi V2(x(t» = LgicLgi V2(X(t»U k

1
(x(t»

(i) (i)
= L[y.lr'Y;) V2(x(t»u k (x(t» + LgiLglt: V2(x(t»U k (x(t»

= L[glt:,g;jVi(x(t) )ui
i
) (x(t»

= IL[g.,ud V 2 (x(t»lsign+(Lgi V2(x(t») (3.42)

The latter equality is due to the application of the Jacobi identity, and the fact that L yJc V2 == 0 for

ail k such that gk E 91. Since x(t) never reaches Ck,i(p), it follows that there exists an interval [0,6J

such that, if L gi V2 (xo) ;::: 0, then

d
dtLgi V2(x(t» > p/2,

d
dt Lgi V2(x(t» < -p/2,

for t E [0,6J

for t E [0,6J

(3.43)

(3.44)

•
Clearly, the value of ILgi V2(x(t))1 increases over the interval [0,6J and thus (3.43), or else (3.44),

remains valid for aIl times t > a as sign+(Lgi V2 (x(t» is of constant sign. The latter implies that

there exists a finite time t* > 0 such that ILui V2(x(t*»1 = 2p, which contradicts the assumption

that x(t) never reaches Bk,i(p). So x(t) reaches Bk,i(P) and V2 is uneffected by the control u(i), as

uY) == 0 for aIl j such that gj E 92. •

PROPOSITION 3.3. Suppose assumptions AI-A4 hold and the mapping x t-+ A(x) is a global difJeo­

morphism. Then the value of the second function, V2, can be decreased (over any finite interval of

time) if the first function: Vi, is allowed ta vary freely.

Proof. 1t follows from Proposition 3.2 that if x rt clT.J2 (0) then V2 can be decreased by applying

a control v J (., p) in which J inclndes aIl indices k E m snch that gk E (h. Renee, difficulty in

generating controls which decrease V2 arises only at points XQ E clT.J2 (O). Tc show how this can be

resolved suppose that Xo E cl7j2(0) but that V2(xo) =P o. 1t follows from the complete controllability

condition that there e."CÏsts indices (k, i) E J, and a constant p > 0, snch that

(3.45)

•
(as, otherwise, L g V2(xo) = 0 for aIl 9 E S(xo) which implies that dV2(xo) = 0, and contradicts the

assumption that V2(xo) "# 0, see Proposition 3.1 (c».

At this point the control u(i), defined in Lemma 3.4, can be employed to change the value of ILgi V21
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from zero to nonzero (in finite time) without having any effect on the '{alue of V2. Suppose that

t* > 0 is a time instant such that ILg•V2(x(t*»1 = € > 0, where t ~ x(t) is the controlled system

trajectory emanating from Xo and € is some positive constant. The control v J (', €/2) in which J

includes all indices k E !?l such that gk E Y2 can again be used for t > t* ta achieve a decrease in

•
REMARK 3.2. It should be clear that the eonstant p in the definition of the the control u(i) of

Lemma 3.4 can be taken to be zero without prejudicing the existence and uniqueness of solutions

ta the closed loop system equation. The latter follows readily from the fact that the only non-zero

component of u(i) is uii
) , so, in the absence of disturbances and model error, once L[gla,gd V 2 becomes

zero, the control uii
) is set ta zero, and remains zero for all later times.

3.1. Some simple examples

Assumption A2 ta A4 are seemingly complicated, however, they are not restrictive, as demonstrated

by the examples below.

The unicycle

The model of the unicycle is perhaps the most widely known nonholonomic system. Its model, as

given by equation (1.17) of Chapter l~ can be written as:

x = gl(X)Ul+g2(X)U2, xd~[Xl,X2,X3]TEIR3

dei a dei a. a
where, gl(X) = -a' g2(X) = cos(xd-a + sln(xd-aXl X2 x3

The first Lie bracket of gl and g2 is given by

dei . a a
g3(X) = [gl,g2](X) = -Sln(xd -a + COS(X1)-a ' and

X2 X3

span{gl(x),g2(X),g3(X)} = IR3, for ail xE IR3

(3.46)

(3.47)

Adhering to the rules RI-R2 of assumption A2, the groups 91 and 92 can be defined as follows :

dei
~h (X) = {gl (X)} , (3.48)

•

It is easy ta see that the distribution Â 2(x) d~ span{g2(x),g3(X)} is involutive, and the distribution

Â1(x), as spanned only by a single vector field gl, is also involutive. Renee, the codistributions Âf
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and Ll4- are (at least locally) spanned by e.xact differentials

Llt(x) - span{dÀ2.I(X), dÀ2.2}

Lltex) - span{dÀI.l(X)}

The choice of the scalar functions '\i,k is immediate :

The guiding functions are hence defined globally :

for all x E IR3 (3.49)

and

( )
dei 1(., 2V2 X = 2 X2 + X3 ), xE JR3, (3.50)

is clearly positive definite in IR.3 •

(3.51)

•
Brockett's system

Consider the famous system:

( ) ( ) de! ( ]T 3i: = gl X Ul + 92 X U2, X = XI,X2,X3 E IR.

gl(X) d~ a a
--X2-
aXl aX3

g2(X) d~ a a
-+Xl-
a X2 aX3

with

(3.52)

Rence

g3(X)
a

[91,9z](x) =2-
8X3

In this case, two different group divisions can be considered :

(3.53)

•
Q~ Cx) d~ {gl (x)},

dei }Ql(X) = {g2(X) ,

(3.54)

(3.55)
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and an easy caculation shows that either of the distributions 6.;(x) dg {g2(X) , g3(X)} or ~2(X) d~

{9r(X),g3(X)}, is involutive. Thus, there are two possible choices of the guiding functions generated

by the following selections of scalar functions :

1
ÀLI(X) = Xl

À~,l (x) = XIX2 + X3

À~.2(X) = x2 1
ÀI,I(X) = X2

À2 ,l (x) = XlX2 - X3

À2 ,2(X) = Xl

(3.56)

Note that the following are globally valid :

dÀLl .L span{g2, 93}

span{dÀ;,r,dÀ~.2} .1.9l

dÀl,l .L span{gl, 93}

span { dÀ2.1 , dÀ2,2} .L 92
(3.57)

The two sets of guiding functions are then also globally defined :

(3.58)

•
for ail x E JR3, and prove to be equaily effective for stabilization purposes.

4. The stabilizing control strategy and its convergence analysis

As demonstrated by Lemmas 3.1-3.4, and Propositions 3.1-3.3, the constructed guiding functions

possess the desired properties, which easily suggests an algorithmic feedback strategy for the solution

of the SPC.

Before we can state it formally, we first recall the definitions of the sets: Tjp /J2 , and lib, defined

in (3.29) and (3.30), and notice that for any given constant E > 0, and level set V r
, there exists a

constant p > 0 such that if x E Tj1 (p) n Tj2 (p) nTib(p) n V r then x E B(O; E). To see this, note

that since V r is compact, and V is strictly positive definite and analytic (see Al(a», there exists a

constant 13 > 0 and an integer q ~ l, (possibly dependent on vr) such that V(x) ~ 1311x11 2q, for

ail x E V 3r • Let Il be the constant of Lemma 3.2 corresponding to the compact level set V 3r and

suppose that the constant p > 0 is selected to satisfy

•

. 2 l 2rrl 1 de!
p::; mln{(-rlr3):fé, (--):f} = pmin

n m
(3.59)
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It then follows from Lemma 3.2 that, whenever x E V3r, then

<

<
?

( np- ) t ::; C
2'3'1

because, by assumption, V(x) ::; (n/2)p2 , when X E Tj1 (p) n T.J2 (p) n Tib(P).

(3.60)

•

•

Assumming that p, rand E are related by (3.59), the controis vJ(·,p) and u(i)(.,p), for i E m, are

defined as in (3.31) and (3.41), respectively, the set Bk,i(P) is defined as in Lemma 3.4, t t-+ x(t),

for t 2: 0, denotes the trajectory of the controlled system, and for any subset J C m, the set Tj is

defined by (3.28), the stabilizing strategy is stated as follows.

Stabilizing feedhack control strategy:

• Data: r > 0, x(O) E V,., and p ::; Pmin.

Until x(t) E Tj1 (p) n Tj2(P) n 7éb(P) repeat the foUowing :

.1 Until x(t) E T.J1(p) nT.J2 (p), employ the controlvJ(x,p), in which J = {l, ... ,m}.

• 2 Find a pair of indices (k, i) E :J such that gi E 92, and IL[g..gd V2(x(t»1 > p, and perform

steps 2a-2b :

• 2a Employ the control u(i)(x, p) until x(t) E Bk,t(p)}, or else until x(t) reaches the bound­

ary of the level set V 3r • Set 8 d!f1ILgi V2(x(ta »1 in which ta is the time at the exit of

this step.

• 2b For J = {i}, and until x(t) E Tj(6/2), employ the control v J (x,15/2).

Before proceeding with the convergence analysis it is helpful to explain how a skillful application of

this strategy can result in constructing a dead-beat control for the unicycle ~'"(ample .

Stabilizing control for the unicycle

For this ~'"(ampIe, the assumptions of Lemma 3.3 are satisfied permitting ~'"(act steering to the set

'!J(O), J = {1,2}. For an arbitrary initial configuration of the unicycle x(O) at time t = 0, and the

parameter p taken to be zero (with the set Bk,i(O) dg {X E IRn : IL[g•.gïl V2(x)1 = O}), the strategy

results in the foUowing control actions.

In step 1, the controis vr (x, 0) = -sign(xt} and vif (x, 0) = -sign[x2cos(Xr) + X3sin(Xr)J are used

ta steer the system to the set 7J1 (0) n 7ï2 (0) = {x E IR3 : Xl = 0, X2COS(Xr) + X3sin(Xr) = O}

== {x E IR3 : Xl = X2 = O}, in finite time. Since there is only one Lie bracket in the group 92,
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and the control UI cannot change the values of neither X2 nor X3, then the contraIs of step 2a

are : uî(x,O) = signe-X2sin(xd + X3COS(Xr)) sign+(x2cos(Xr) + X3sin(Xr)) = sign(x3cos(xr))

sign+(x3sin(Xr)), and u~(x,O) = 0, which, provided that the constant r is chosen large enough,

can be empIoyed until L[91 ,92] vi(x) = -X2sin(Xr) + X3COS(Xr) = O. At this point x E lIb(O) and

this occurs when the system reaches a point at which Xl = ±~ (recaIl that, at the entrance to step

2a, Xl = X2 = 0 and that ur can only influence the value of xd. Step 2b is hence entered with

Xl = ~, or with Xl = -~, and X2 = 0, so that L g2 l/2(x) = X3 =F O. The controis V}2}(X, 0) = a and

vi2 }(x,0) = -sign(x2cos(XI) + X3sin(Xr)) (the components of the control v J (x, 0) with J = {2})

thus decrease V2 while maintaining Xl = ~ or Xl = -~. Since

L g2 L[Yl,92] V2(x) = L y2 ( -X2sin(Xr) + X3COS(Xr))

= f-X2COS(Xr) - X3 sin(Xr), -sin(xr) , cos(xr)J T fO, cos(xr) , sin(xr)J = 0 (3.61)

•

•

the value of L[91,g2]Vi (x) stays unchanged (and equal to zero) over the duration of step 2b. At the

end of this step the system reaches a point at which L 92 Vi (x) = X2COS(Xr) + X3sin(Xr) = a again.

Since L Y1 Vi(x) == 0, by construction, the latter implies that Vi(x) = 0 at the end ofstep 2b. Finally,

in step 1, the controis v{(x, 0) = -sign(xr) and vt (x, 0) = 0 restore Vi to zero, while maintaining

Vi at zero. At this point, V(x) = 0, demonstrating that any "parking maneuver" of the unicycle

can be realized by the above strategy in 5 steps.

A quantitative analysis of the decrements in Vi yields the final stabilization result.

THEOREM 3.1. Under assumptions AI-A4, for any constant € > 0 and any desired set of attraction

V r , the stabilization feedback control strategy is well defined in that each of its steps is feasible, and is

exited in finite time. Any trajectory of the controlled system, emanating /rom a point in V r reaches

the baU B(Oi €) in finite time.

Proof. Steps 1, and 2b, of the strategy are feasible and are e:'<ited in finite time as guaranteed by

Proposition 3.2. Step 2a of the strategy is of finite duration, by virtue of Lemma 3.4. Rence the

overaIl strategy is weIl defined.

If follows from Proposition 3.2 (b) and Lemma 3.4 that V increases only in Step 2a. Rence the

controIled trajectory t t-+ xCt) remains in the level set V 3r for aIl times t ;::: 0, and, by virtue of

(3.60), a trajectory emanating from V r reaches BCOi e) if it reaches the set 0 1 Cp) n 1.J2 (p) nTib(p),

It is thus enough ta show that the strategy is exited in a finite number of steps.

Suppose, contrary to what needs ta be shown, that xCt) never reaches 0 1 (p) n Tj2(P) n TibCP). By
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virtue of the result of Proposition 3.2 , at the end of step 1, x(t) E Tj1 (p) n Tj2 (p) and thus, at the

entrance to step 2a, x(t) is never a member of Tib(p). As a result, there always exists an inde..x pair

(k, i) E :J sucb that IL[gs..9iI V2(x(t)) 1 > p, at the entrance of this step. From Lemma 3.2 it then

follows that

1 _ p2
V2(x(t)) ~ -V2(x(t)) ~ -

1'2 1'2

for all times t ~ 0, where the constant 1'2 corresponds ta the level set V 3r • However, the guiding

function Vi decreases in step 2b and stays constant under the control actions of the remaining steps

of the strategy. The decrease of 112 in step 2b can be estimated as fol1ows. Along the controlled

trajectory with the control of step 2b

which provides an upper bound for the speed of change of the Lie derivative L g , V2 under the action

of the control vJ (x, 6/2) with J = {i}. It thus follows that•

~V2(x(t)) = -ILYi v2(x(t))I, t ~ ta

where, initially, ILy , V2(x(ta}}1 = 6 > O. Let

deI {I?) 3 .Cl = max LYi V2(x 1 1 x E V r,1. E m}

for aU t E [ta, t .. ]

(3.63)

(3.64)

(3.65)

where t .. - ta is the minimal time in which the controlled system trajectory reaches the set 7{ i} (6/2)

, so that ILgi Vi(x(t·})1 = 6/2. From (3.65)

6
t .. - ta =-2

Cl

Equations (3.63) and (3.65) imply that

d
dt V2(x(t)) ~ -6 + CI(t - ta)

and, consequently, that

(3.66)

(3.67)

(3.68)

•

Since t. is the smallest time at which the step 2b can be exited, equation (3.68) gives an estimate

for the decrease in V2 in this step in terms of 6 - the value of ILg , V21 at its entrance.

Next, we will show that 6 is bounded from below (if xCt) never reaches Tib(p)). By definition, 6 is
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always greater than the increment in ILgi vil in step 2a. Step 2a can be exited if either of the three

situations occur :

(a) x(ta ) E 8v3r

(b) x(ta ) E 81lb(p/2)

(c) x(ta ) E 8TJ2 (2p)

in which as denotes the boundary of any given set S. Case (a) is sunilar ta case (b) in that the

increment in the magnitude of the Lie derivative ILgi V21 can be estimated from the time needed

ta execute step 2a. Let this time be denoted by Ta, and Tb, for cases (a) and (b), respectively.

Let t1 and t2 denote the times at the entrance and at the e.....at of step 2a, respectively. Then, by

construction, x(td E TJ l (p) n TJ2 (p), and, as 112 never increases, then

V(x(tt})
1 -< V2(x(td) + -V1(x(td)
ft

(3.69)

(3.70)•

p2m
< r+-­

2'1

In case (a), V(x(t2» = 3r, and since p ~ Pmin and, in particular, p ~ (2/I Tlm) t, the total increase

in V in step 2a is estimated as

p2m
V(X(t2» - V(x(tt}) ~ 3r - r - -2- ~ r

Il

It follows that the time Ta can be estimated from below as the minimal time needed for the system

ta reach the boundary of v3r from the boundary of v2r. By definition of the control u(i)(·,p),

the value function V2 stays constant during this transition, and lu~i)(x,p)[ = 1, sa the speed of the

change in V, or equivalently in VI is limited by the value of the Lie derivative /Lg... Vi(x(t»l, because

(3.71)

along any trajectory of the system using control u(i)(., p). Rence, if

(3.72)

•

then Ta ~ riez.

In case (b), the time Tb can be estimated as the shortest time needed for the Lie derivative 1L[gs. ,9i1\t21
ta decrease by the value of p/2. As the system trajectory remains for aU times in the level set v3r,

and uii
) is the only nonzero component of u(i), then speed of change in this Lie derivative is again

limited by the largest value of ILgr"L[91o"gdV2(x(t»1 along x(t) E v·3r. Sïnce 9k E gl' then by virtue
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of the Jacobi equality, this speed is limited by

(3. ï3)

Therefore, Tb ~ pj(2C3)' A lower bound for the time of e."{ecution of step 2a in cases (a) and (b) is

hence given by:

T. deI . {r p}
ab = m'ln -'-2

C2 C3
(3.74)

A lower bound cSab for the increase in ILg• Vil in step 2b, in the case when step 2a is exited in

situations (a) and (b), can now be obtained from equations (3.42) through (3.43)-(3.44) of the proof

of Lemma 3.4, by which

cS> cS = pTab
- ab 2 (3.75)

•

•

Case (c) is straightforward because, by definition of the set O 2 , and the fact that at the exit ofstep

1, x(t) E 7J2 (p), the increment in ILg • V2 1 is at least p. Therefore, in all the cases, the increase in

the Lie derivative ILg• Vil is bounded from below by cS. :

(3.76)

Recalling equation (3.68), the minimal decrement in Vz in Step 2b is therefore bounded from below by

3cS:j(8cr) > O. It follows inevitably that, after a finite number of repetitions of step 2b, V2 < pZ /'''(2

which contradicts (3.62) and completes the proof. •

REMARK 3.3. As was pointed out using the example of the unicycle, in certain cases, and provid~d

that there are no disturbances nor model error, the stabilizing feedhack strategy can be adjusted

to produce trajectories which pass through the origin in a finite time, thus acting as a dead·beat

stabilizing eontroller.

5. Applications of the feedhack strategy

In this section several e."{amples are provided iluminating different features of the guiding functions

strategy and explaining its applieability in non-standard situations such as when the controllability

Lie algebra contains Lie brackets of arder higher than one. Each example is preceded by a brier

mativation.

The strategy presented in section 4 is formulated with refrenee to general systems and takes no

account of any specifie properties of these systems nor of their particular algebraic structures. In
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most individual cases, however, it is possible to introduce straightforward modifications ta Step

1 of the strategy which consequently lead ta dead-beat control. For e.'Cample, such ~intelligent"

application of the strategy is possible when :

(i) the assumptions of Lemma 3.3 are satisfied

(ü) there exists a subset {Xii}' j E m, of state variables (of cardinality equal to the number of

control variables) such that each Xii can be changed only by a single control Uj while the

remaining contraIs Ui, i :/; j, have no effect on {Xii}.

In case of (i), Lemma 3.3 indicates that sequential activation of the components of the control v J of

Step 1 of the strategy is possible and ailows for the selection of p = o.

Similarly, in case (ü) introduction of the hysteresis laop in the definition of vJ is aIso redundant

as the individual control Uj, j E m, can be switched off sequentially as the corresponding state

variables Xii achieve zero values.

Indeed, ail the examples discussed below faII inta either of the categories (i) or (ü) permitting the

selection of p = O. Thus in all the considered cases the control1ers exhibit the dead beat property.

5.1. Stabilizing feedhack control for a model of an underwater vehicle (all con­

troIs availabIe) [64, 69]

The model of an underwater vehicle is standard in that it satisfies all the assumptions of section

2 of this Chapter. This example also illustrates, how ta use the strategy in a typical situation, in

particular how to construct the guiding functions when the system under consideration is defined

on a manifold.

A kinematic model of an underwater vehicle, as described in [81], involves six configuration variables

and four inputs (velocities), of which three are the angular velocity components, and the fourth rep­

resents the forward velocity of the vehic1e. H the velacity vector of the vehic1e is constrained so that

only its forward camponent can be nonzero, the vehicle exhibits nonholonomic behaviour, for details

see [26]. Feedback control of the autonomous underwater vehicle with this type of nonholonomic

constraint was previously studied in ([81], [26], [55]). In [118}, Yoerger and Slotine applied sliding

modes to trajectory control of such a vehicle.

In the derivation of the model of the underwater vehicle, two frames of reference are considered,

as shown in Figure 3.2. The 0 - XYZ is the inertial frame, while the local frame, C - xyz, is

attached to the vehicIe at its centre of mass C, with the X axis painting along the OZ direction,
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z
/~v

y

~---------------..x

FIGURE 3.2. Madel of an underwater vehic1e

when the vehicle is in the upright position. Si..x coordinates are used to describe the motion; three

ta specify the position of the centre of mass, described by coordinates (x, y, z) and three to describe

the orientation. The Z - y - X Euler angles are denoted by CcP, 0,1/;). vVhen the angles are small, 4>

corresponds to what is commonly called the roll motion, while f} and t/J correspond to the pich and

yaw motions, respectively.

As in [81], it is assumed that the vehic1e is moving with velocity v, whose direction is the C - x a."'ICÎs

in the local frame, 50 the components of this velocity along the x, y, and z axes are given by

(
x) ( v cos 1./J cos () )

~ = v sin.1./J cos ()

z -v S'ln 8

(3.77)

The relation between the time rate of the Euler angles and the angular velocity in the local frame,

w = (wx,Wy,w;)T, is given by, [81],

(
~) (1 sin 4> tan () cos 4>. tan () ) ( W

x
)

(} = 0 cos 4> -S'ln 4> w"
~ a sin f/J sec () cos r/J sec () w;

(3.78)

•
Combining equations (3.77) and (3.78), and introducing a new set of state and control variables:

(Xl,XZ,X3,X4,XS,X6) = (x,y,z,f/J,B,'l/J) and (Ul,UZ,U3,U4) = (v,wx,wy,w.::), yields the kinematic

model for the underwater vehic1e.
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Xl COS x6 COS Xs 0 0 0

X2 sin X6 cos Xs 0 0 0

:i3 -sin Xs 0 0 0
= UI + U2 + U3 + U4

:i4 0 1 sin X4 tan Xs cos X4 tan Xs

:is 0 0 cos X4 -sin X4

:i6 a a sin X4 sec Xs cos X4 sec Xs

d~ 91(X) Ul + 92(X) U2 + 93 (X) U3 + 94(X) '/1;4 (3.79)

where,

93(X)

94(X)

8. 8. 8
= cos X6 cos Xs -8 + S'ln X6 cos Xs -8 - S'ln Xs a '

Xl X2 X3

. 8 8. a= S'ln X4 tan Xs -a + cos X4 -a + S'Ln X4 sec Xs -a
X4 Xs X6

a . a a= cos X4 tan Xs -a - S'ln X4 -a + cos X4 sec Xs -a
X4 Xs X6

•
We refer to the kinematic model of the underwater vehicle given by (3.79) as wIodel 1.

It is easy to see that 91,92,93194 are smooth as vector fields defined on the manifold ..\.1 :

(3.80)

The solution to (3.79) exist for all times as long as the system trajectories remain in J\It. The

system defined by (3.79) is aIso completely controllable on the manifold M as it satisfies the LARe

(Lie algebraic controllability rank condition) on J\It. To see this, it is necessary to verify that the

controllability Lie algebra, L(gl,g2,93,94) for system (3.79), span JR6 at each point X E M. An

easy calculation shows that

(3.81)

in which the vector fields 95 and 96 are given by :

•

=

=

( . . . ) 8
S'Ln Xs cos X6 cos X4 + S'ln X6 S'ln X4 -8

Xl

a 8+ (sin Xs sin X6 cos X4 - cos X6 sin X4) -8 + cos Xs cos X4
X2 aX3

( . .. ) 8
-S'ln Xs cos X6 S'ln X4 + S'ln X6 cos X4 -8

Xl

(sin Xs sin X6 sin X4 + cos X6 cos X4) aa - cos Xs sin X4 ~
X2 aX3
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The Lie brackets multiplication table for L(91, 92,93, g4) is:

[91,92] = 0 [g2, 93] = 94 [92,94] = -g3

[93,g4] = 92 [91,95] = 0 [91,96] = 0

[92,95] = 96 [92,96] = -gs [93,95) = 91

[93,96} = 0 [94,95] = [g4' 96J == [95,96] = 0 (3.82)

which shows that the controllability Lie algebra L(gl,g2,g3,g4) is finite dimensional but not nilpo­

tent. The set S(x) is clearly defined by :

(3.83)

and the groups 91 and 92 are easily formed while obeying the rules (R!) - (R2) :

9l(X) = {92,g3,g4}(X), xE JR6

92(X) = {gl, [91,g3], [gI, 94]}(X) , xE 1R6

•
From Lie brackets multiplication table (3.82), it is clear that the distributions

deI { }~I (x) = span gz, 93, g4 (x)

~z(x) dg span{gl, [gl' g3], [91,g4]}(X) (3.84)

are involutive, and the corresponding codistributions have the following expressions as linear spans

of e.'"'Cact differentials =

~t(x) d;J span{dÀ2.l(X),dÀz.2(X),dÀ2.3(X)}, xE lR6

~}(x) d;J span{dÀ1,1 (x), dÀ1.2(X), dÀ1,3(X)}, x E 1R6 (3.85)

where the choices for the scalar functions Ài,j, are immediate, and are valid in the entire 1R6
=

dei
À2•1(X) = Xl,

À I •1 (X) d;J X4,

dei
ÀZ•2 (X) = X2,

de!
À1 ,2(X) = Xs,

de!
ÀZ,3(X) = X3

50 that the mapping x .....,. [À 1 , ••• , À 6 ] is obviously a global diffeomorphism. The resulting guiding

functions VI, V2, and their sum V, are hence defined for all x E IR6 :

•
( )

de! 1 2 ') 2)
VI X == 2'(X4+XS+X6 ~

V(x) = Vi (X) + V2(x) (3.86)
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With the guiding functions constructed above, the feedback control strategy of this Chapter is

employed to Model 1, for which it proves to be very effective. Simulation results are shown in

Figures 3.3 - 3.6. Figure 3.3 shows the state trajectories Xi(t), i = 1, ... , 6, of the controlled system

corresponding to Model 1, and Figures 3.5 and 3.6 show the associated trajectories of the guiding

functions VI and V2 and their sum V. The results also confirm that the origin is achieved in finite

time, and thus the constructed controller is dead beat.

It is easy to see that for l'IIodell, steering to the set 0 1 (0) n 7J2 (0), where

(3.87)

•

•

can be realized in finite time by sequential application of the following controIs:

• U2(X) d~ -sign(x4), and UI(X) = U3(X) = U4(X) == 0 until X4 = O.

• U3(X) d~ -sign(xs), and UI(X) = U2(X) = U4(X) == 0 until Xs =o.
• U4(X) d~ -sign(x6), and UI(X) = U2(X) = U3(X) == 0 until X6 = o.
• UI(X) d~ -sign(xd, and U2(X) = U3(X) = U4(X) == 0 until Xl = O.

Therefore, the insight gained by construction of the guiding functions construction leads to yet a

simpler stabilizing strategy for Model 1. EmploYing this strategy in the absence of disturbances,

the origin can be achieved exactly in 9 steps, regardless of the initial condition of the system. These

steps are stated below.

Sim.plified strategy for Model 1:

• 1 Until X4 = 0 employ the controls U2 = -sign(x4) and UI = U3 = U4 =:: 0

• 2 Until Xs = 0 employ U3 = -sign(xs) and UI = U2 = U4 =:: 0

• 3 If X6 ~ 1r/6, employ U'l = 1 and UI = U2 = U3 == 0 until X6 = 1r/6.

• 4 Until X2 = 0 employ Ur = -sign(L[91,94J V(x» = -sign(x2) and U2 = U3 = U4 == 0

• 5 Until X6 = 0 employ U4 = -sign(x6) and UI = U2 = U3 == 0

• 6 Until Xs = 1r/6, employ U3 = 1 and Ur = U2 = U4 == 0

• 7 Until X3 = 0 employ Ur = -sign(L[91 ,931 V(x» = -sign(x3) and U2 = U3 = U4 == a
• 8 Until Xs = 0 employ U3 = -sign(xs) and Ur = U3 = U3 == 0

• 9 Until Xl = 0 employ Ur = -sign(xl) and U2 = U3 = U4 == 0

The above stabilization strategy is tested on !\IIodel 1 and the controlled trajectories are shawn in

Figure 3.7, while the plots of the variations of the corresponding guiding functions are depicted in

Figures 3.9 and 3.10.
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FlOURE 3.S. Underwater vehicle Ar/odel1: Plots of the guiding functions Vi(t) and V2(t)
versus time.
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FlGURE 3.6. Underwater vehicle Model 1: Plot of the guiding function V(t) = V l (t) +
V2 (t) versus time.
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5.2. Stabilizing feedback control for a model of drift free system with five state

variables and three controIs

The following example of a drift free system demonstrates that the guiding functions need not be

simple quadratics of the coordinate variables. The equations of this system are:

To satisfy the LARe condition, we need to calculate the following Lie brackets:

de! a
94(X) = [gl, 92](X) = 2 -8

X3

de! a
9s(X) = [gl, g3](X) = --a

Xs

•

Xl 1 0 0

X2 0 1 0

X3 = -X2 UI + Xl U2 + 0 U3

X4 0 0 1

Xs X4 0 0

d~ 91(X) UI + 92(X) U2 + 93(X) U3

where, 91(X)
a a a

- --x? -+X4-
aXI - aX3 axs

92(X)
a a

- -+Xl-
8X2 a X 3

93(X)
a

-
aX4

which yields

(3.88)

The set S cau then be defined:

for all x E mS (3.89)

The Lie brackets multiplication table for L(gl., g2, 93) is:

(3.90)

•
(3.91)
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which shows that the controllability Lie algebra LeYI, Y2, Y3) is nilpotent and hence finite dimensional.

By adhering to the rules R1-R2, we can find two groups gl and g2 as follows:

The multiplication table (3.91) shows that the distributions:

are involutive, and hence, the corresponding codistributions Llt and .6.~ are:

By using the Frobenius theorem, the scalar functions Ài,k are easily found:

deI -
À 2•2 (X) = X'h for ail x E IR~

Therefore, the guiding functions for this system are defined globaily:

V(x) =

1 22 ?

2"{Xl + Xs + (X3 - XIX2)-},

1 ? ?

2{x2+ X4}

1{2 2 ( )2? 2}'2 Xl +X2 + X3 -XIX2 +X4 +Xs , xE 1Rs (3.92)

•

The feedback strategy is then applied with conjunction of the guiding functions (3.92). The simula­

tion results are shown in Figures 3.11-3.13 which conform the effectiveness of this strategy. Figure

3.11 shows that all state trajectories Xi(t), i = l, ...,5, of the controlled system, reach the origin in

finite time. Figures 3.12 and 3.13 show the associated trajectories of the guiding functions Vi. and

V2 and their SUffi V. The control is again essentially dead-beat.
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5.3. Stahilizing feedhack control for a model of a rigid spacecraft in actuator

failure IIlode

This example illustrates that the guiding functions strategy developed in this Chapter, appears ta

be robust with respect ta model error. There are some drift free systems which do not satisfy the

assumption A2, sa that, direct construction of guiding functions for such systems is not possible.

Instead, an approximation technique can be utilized first, in which the original system is approxi­

mated (by using truncated Taylor series expansion at zero) by a model which preserves controllability

and such that additionally, 9i(O) = 9i(0), for any gi E L(gl, ... , gm) and 9i E LUit, ...,Ym), where

L(gl, ..., gm) and L(YI, ..., 9m) are the controllability Lie algebras for the original and approximate

systems, respectively. If the approximate system satisfies assumption A2, the guiding functions

can be constructed for this approximate system and applied in the feedhack control to the original

system. In all the cases considered, simulations confirm that such feedhack control is stabilizing for

the original system, thus demonstrating a rabustness property of the guiding functions strategy. A

quantitative assessment of such robustness margin with respect to model error is beyond the scope

of this thesis. Due to the approximation, the convergence of the controlled system trajectories to the

origin is generally expected ta be local. However, in most cases analysed, the region of attraction

appears to be practically unlimited. This is going to he confirmed on the e.xample of the hopping

robot in section 7.3 of this Chapter.

The approach descrihed above is applied to a model of a rigid spacecraft as given by, see [47]:

1

a

[
: ] = [ si:;::n~
~ -sin() sect/> 0

sin 8 ] [WI ]
-cos 8 tan 4> W2

cos () sec 4> W3

•

where [4J,8,'l/J]T are Euler angles describing the orientation and [WI,W2,W3]T is the angular velocity

vector. Assuming that one of the rotation velocities, say W3, is constrained ta he equal to zero, and by

introducing a new set ofstate and control variables: (XI,X2,X3) = (4),8,1/;) and (UI,U2) = (WI,W2),

yields the following kinematic model for the spacecraft:

[:: ] [ cos X2

] u, + [nU2
= sin X2 tan Xl

-sin X2 sec Xl

d~
91(X) UI + 92(X) U2 (3.93)
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where

gl(X) = cos X2 aB + sin X2 tan Xl aa - sin X2 sec Xl ~
Xl X2 aX 3'

93(X)

The Lie bracket of gl and 92 is given by:

de! . a a a= [gl, 92](X) = sIn X2 -a - cos X2 tan Xl -a + cos X2 sec Xl -
Xl ~ a~

The kinematic model (3.93) satisfies the LARe condition if the motion of the system is constrained

ta the manifold:

that is

{
de! } 3M = X = (Xl,X2,X3 E IR IxLI < n/2}

which shows that the controllability Lie algebra L(gl, 92} is finite dimensional, but not nilpotent .

By consulting table (3.95), it can easily be verified that it is not possible to construct groups Ql and

(h, which give rise ta involutive distributions. It is thus impossible to construct guiding functions

directly for system (3.93).

•
The Lie brackets multiplication table for L(91' 92) is given by:

(3.94)

(3.95)

For this reason an approximation of (3.93) is considered in which the nonlinear terms in the vector

field 91 are substituted by their truncated (of order one) Taylor series e.xpansions at zero. In doing

sa, sinx ~ x and cosx ~ 1, which results in the following system:

(3.96)

where,

•
The Lie bracket of Yl and Y2 is now given by:

Y3(X)
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The approximate model (3.96) also satisfies the LARe condition since :

(3.97)

and the Lie brackets multiplication table for L(Yl, 92):

(3.98)

shows that the Lie algebra L(gl, g2) is nilpotent. By adhering to the ruIes R1-R2, the groups gl

and 92 can easily be defined for the approximate system (3.96) as follows:

From table (3.98), it is clear that the distributions:

(3.99)

•

~l(X) d~ span{gl(x),93(X)}

~2(X) d~ span{g2(x)}

are involutive and hence, the corresponding codistributions are:

~t(x) = span{dÀ2 •l (X)}

~t(x) = span{dÀl .1 (X),d.Àl .2 (X)}

One choice of the scalar functions .Ài•k is:

(3.100)

(3.101)

which yield globally defined guiding functions:

for all x E lR3 (3.102)

•

Vi (x) d~ 1 2 2 xE JR32"(x l + X3),

Vi(x) d~ 1 2 xE JR32"(X2L

V(x) 1 2 2 2 xE lR3 (3.103)= 2(xr + x2 + x3)'

The above guiding functions cau next be incorporated into the stabilizing strategy which is applied

to the original system (3.93). Simulation results conform that the strategy is robust with respect to

model error in the sense that although the guiding functions are constructed with reference to an

approximate model (3.96), yet they are generating stabilizing controls for the original system (3.93).

In this case simulations also show that the set point is reached in a finite number of steps (in finite

time). The simulated trajectories are depicted in Figures 3.14 - 3.16.
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

6. Sinusoidal steering and guiding functions

In this section, the possibility of combining the guiding functions approach with sinusoidal steering

of IvIurray and Sastry [77], and Tilbury et al. [109], as applied to systems whose controllability

Lie algebra involves higher order Lie brackets, is demonstrated. 1t is well known, see Tilbury et al.

[109] that the motion along the Lie bracket [gl, [YI, [gl' ..., [gbY2], ...J]] = ad;t Y2 , of depth k can be

generated by using the following sinusoidal controIs:

Ut(t)

U2(t)

- kt sin(21r;)

t
- k2 cos(k 21r T) (3.104)

•

where k 1 and k2 are some constants. By combining this idea with the guiding functions approach,

stabilizing controllers are constructed for different types of drift free systems possessing controlla­

bility Lie algebras with higher order Lie brackets.

6.1. Stabilizing feedback control for a model of an underwater vehicle (in actu­

ator failure mode) [64, 69]

The example below explains, how the idea of guiding functions can be combined with sinusoidal

steering. 1t is hence shown that the guiding functions approach is not limited to the class of systems

which satisfy assumptions AI-A4.

A model of an underwater vehicle (3.79) is considered in which the actuator corresponding to con­

trol U4 fails to be operational. The model of the underwater vehicle with such reduced number of

controls, is referred to as Model 2:

Model2:

Xl COS X6 COS Xs 0 0

:i2 sin X6 cos Xs 0 0

X3 -sin Xs 0 0
= UI + U2 + U3

:i4 0 1 sin X4 tan Xs

Xs 0 0 cos X4

:i6 0 0 sin X4 sec Xs

d9 YI (X) U l + 92 (X) U2 + Y3 (x) U3 (3.105)
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Ta verify complete controllability of (3.105), we need the foIlowing Lie brackets:

94(X) d~ [92,g3}(X) = (cos X4 tan xs) aa - (sin X4) aa + (cos X4 sec xs) aa
X4 Xs X6

( ) deI [ }( ) ( • .. ) a9s x = 91,93 X = S1.n Xs cos X6 cos X4 + S1.n X6 S'ln X4 -a
xl

( .. . ) a
+ S1.n Xs S1.n X6 cos X4 - cos X6 S1.n X4 -a

X2

a
+COS Xs COS X4 -8

X3

96(X) d~ [9l1 [92, 93]] (x) = (-sin Xs cos X6 sin X4 + sin X6 cos X4) aa
Xl

( . .. ) a
S1.n Xs S'ln X6 S'ln X4 + COS X6 COS X4 -a

X2

. a
-COS Xs S'ln X4 -a

X3

which satisfy the LARe condition:

(3.106)

•
The Lie brackets multiplication table for L(9l1 92, 93) is the same as given in (3.82). The set corre­

sponding ta S(x), can thus be defined by

(3.107)

and contains Lie brackets of depth one as weil as a Lie bracket of depth two. The stabilization

strategy and the associated guiding functions construction must hence be modified ta take account

of this complication. An immediate remedy for this situation cornes ta mind and relies on substituting

the original system by its e."rtension of the form:

(3.108)

•

The control V4 is clearly not accessible but, assuming that the motion of the real system along the

Lie bracket direction [92193] can be realized, at least approximately, through controts V2, V3, in an

indirect way, and over a finite interval of time, allows the introduction of the vector field groups 91

and 92 for the extended system (3.108):
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as if the motion of the real system in the direction [Y2' 931 was instantaneously feasible. By using

the Lie brackets multiplication table (3.82), it can be easily seen that the following distributions

~l (x) dg! span{92. 93. [92,93]}(X)

~2(X) dg! span{yl, [91,93], [Y1, [92, 93])} (x)

are involutive, and the corresponding codistributions have the following e..xpressions as linear spans

of e..'Xact differentials, valid in the entire IR6 :

J... deI { } 6
~1 (X) = span dÀ2,1(X), dÀ2,2(X), dÀ2,3(X) , X E JR

~t(X) d~ span{dÀ1,1(X), dÀ1,2(X), dÀ1,3(X)}, X E JR6

where the choices for the scalar function5 Ài,j, are identical as for Model 1 :

The corresponding guiding functions are defined for all X E JR6 and given by (3.86). The motion

along the Lie bracket [92,93} is realized indirectly by using the following standard controls:

• U2(t) = sin(2rr~)

t= cos(2rr T)' while U1 = 0 (3.109)

•

where T is a positive constant (the value T = 1 was used in simulations). The trajectories t .-+ Xi(t),

i = 1, ...,6, of the controlled system incorporating Model 2 are shown in Figure 3.17, while the

corresponding plots of the guiding functions Vi, V2, and V are depicted in Figures 3.20 and 3.2l.

A150 in this case, the control is essentially dead-beat.

6.2. Stabilizing feedhack control for a model of a fire truck

The example below demonstrates that the combination of the guiding functions strategy with sinu­

soidal steering is also robust with respect to model error. Such robustness property is important in

cases when the extended system (see section 6.1) rails ta satisfy assumption A2, hence disallowing

direct construction of the guiding functions. Proceeding similarly as in section 5.3, an approximation

of the e.xtended system is sought. If such approximate extended system satisfies assumption A2, the

guiding functions can be constructed with reference to this approximation. The latter can later be

used in a combined strategy and applied to the original system. Several simulations, see sections
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FIGURE 3.20. Underwater vehicle Model 2: Plots of the guiding functions Vl(t) and V2(t)
versus time.
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FIGURE 3.21. Underwater vehicle Model 2: Plot of the guiding function V(t) = VI (t) +
V2(t) versus time.
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y

x

FrGURE 3.22. Model of a fire truck

6.1,6.2, and 7.4 of this Chapter, show that the stabilizing property of the guiding functions strategy,

when combined with sinusoidal steering, is preserved under a skilIful approximation. The approach

outlined above is fully explained by the e.xample below.

The tire truck is an example of a nonholonomic system with three inputs and sb: configuration

variables, for which the Lie bracket extended system also involves second order Lie brackets. A

model given in [13}, consists of two planar rigid bodies supported by three a.xles, see Figure 3.22.

The support of the rear body, or trailer, is over the center of the rear axle of the front body, or cab

(a."'C1e-to-a.xle hitching). The first and third a.xles are allowed to pivot, while the middle a"'C1e is rigidly

fixed to the cab body. The wheels are assumed to roll but not slip, thus giving velocity constraints.

The selected configuration variables (states variables) in this system, (x,y, <1>0, Ba, </>1,(h) E IR6 , have

the following description:

(x, y) - the Cartesian location of the center of the rear axle of the cab,

<1>0 - the steering angle of the front wheels with respect ta the cab body,

Bo - the orientation of the cab body with respect to the horizontal axis of the inertial frame,

4>1 - the angle of the rear wheels with respect to the trailer body,

BI - the orientation of the trailer body with respect to the horizontal a.xis.

Denoting by lo and Ir the distance between the front and rear axles of the cab, and distance between

the centers of the rear a.xles of the cab and the trailer, respectively, the model of the fire truck can
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• be written as (see also [114]):

X 1 0 0

if tan Ba 0 0

cPa 0 1 0
= WI+ W2 + W3 (3.110)

00 (l/lo) tan cPo sec Bo 0 0

4JI 0 0 1

01 (-l/lt) sin(cPl - Bo + Br) sec <Pl sec (Jo 0 0

where the inputs (WI, W2, W3) correspond to: the forward driving velocity of the truck, the steering

velocity of the front wheels of the cab, and the steering velocity of the rear wheels of the trailer,

respectively.

1t is convenient ta redefine the state and control variables by putting x d~ (XI,X2,X3,X4,XS,X6) d;j

(</>I,</>o,x,y,fJo,Br), and v d;j (VI,V2,V3) d;j (W3,W2,Wr). With respect ta this new set of·....ariables~

additionally assuming that lo = II = 1, the system (3.110) takes the following, simpler form:

Xl 1 0 0

X2 0 1 0

• X3 0 0 1
= VI + V2 + V3

X4 0 0 tan Xs

Xs 0 0 tan X2 sec Xs

X6 0 0 -sin(xl - Xs + X6) sec Xl sec Xs

d~ gl(X)VI + 92 (X}U2 + 93(X)V3 (3.111)

a a
where, 91(X) = -a' 92(X) =-8

Xl X2

93(X) = aa + tan Xs aa + tan X2 sec Xs aa - sin(XI - Xs + X6) sec Xl sec Xs
X3 X4 Xs

Calculating the Lie brackets which are linearly independent at the origin yields:

•
a

+[(sec X2)2 sec Xs (COS(XI - Xs + X6) sec Xl sec Xs - sin(xi - Xs + X6) sec Xl sec Xs tan xs] ­
aX6
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It is hence clear that, if the motion of the system is restricted ta the manifold

M = {x E lR6
: IXi 1 < ~, i = 1, 2,5}

then the LARe condition:

(3.112)

is satisfied. For system (3.111), the set S(x) is given by:

The Lie brackets multiplication table for L(91,92,93) is:

(3.113)

[9i,9iJ t= 0, i = 1,2,3, j = 4,5,6 (3.114)

•
which shows that the Lie algebra L(91, 92, 93) is neither nilpotent nor finite dimensional. It is also

clear from the table (3.114) that the e.xtended system for the model (3.111)

(3.115)

does not lead to vector field groups QI and Q2 which satisfy assumption A2. Similarly, as in section

5.3, we hence consider an approximate system (which preserves controllability) as follows:

By defining

(3.116)

the LARe condition:

9s(X)

dE [91,93)(X) = -a8
X6

d;j [92,93](X) = 8
a
Xs

d;j [93, [g2,gJJ](X) = 88 + 88
X4 X6
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is satisfied. The Lie brackets multiplication table for L(gI, 927 93) is:

(3.117)

and shows that the Lie algebra L(Yl, 92,93) is finite dimensional but not nilpotent. By using this

table, the e..xtension to the approximate model (3.116) is of the form:

(3.118)

and provides for two vector field groups 91 and 92:

•

It can be checked that the following distributions

are involutive, and the corresponding codistributions have the following expressions:

By Frobenius theorem the scalar functions Ài,k can be computed:

de! de! de! 6
À1.l(X) = Xl, À1.2(X) = X2, Àl .3(X) = (xs - X2X3) for all X E IR

The guiding functions for the approximate extended system can thus be selected:

de! 1 {') ') )')} de! l 'l ") 'l)
Vl(x) = 2' Xi +X2 + (xs -X2X3 -, V2(x) = 2'(Xj +X4 +X6 ,

V(x) = ~{xî + x~ + x~ + x~ + x~ + (xs - X2X3)2}, X E IR6

These guiding functions are next incorporated into the stabilizing strategy which is applied to the

original system (3.111). The motion along the Lie bracket [92,93] is realized indirectly by using the

following controls:

while Ul = 0 (3.119)

•
Simulation results are shown in Figures 3.23- 3.26, which confirm that the constructed controller is

essentially dead beat. In simulations, the value T = 1 was used in the controls (3.119) .
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FIGURE 3.23. Pire truck model: Plots of the controlled state trajectories t H

• (Xl(t), ... , X6(t)) versus tÏme.
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FIGURE 3.24. Pire truck model: Plot of the controlled state trajectory X3(t) = x(t) versus
X4(t) = y(t) .
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FIGURE 3.26. Fire truck model: Plot of the guiding function V(t) = Vi (t) + 'Y2(t) versus time.

108



•

•

•

3.6 SINUSOIDAL STEERlNG AND GUIDING FUNCTIONS

Xl

FIGURE 3.27. Model of a mobile robot 'with trailer

6.3. Stabilizing feedback control for a mobile robot with trailer [72]

In this section yet another example is provided which demonstrates the robustness property of the

combined strategy based on guiding functions and sinusoidal steering. This example is more comple.x

than these of the previous of sections since the corresponding controllability Lie algebra involves also

a bracket of depth three.

The kinematic model of car-like robot with trailer, see [52], is given below.

XL = COS X3 COS X4 Ul

X2 = COS X3 sin X4 Ul

X3 = U2

X4
1

= l sin X3 Ul

xs = ~ sin (X4 - xs) cos X3 Ul (3.120)

where XL, X2 are the Cartesian coordinates of the centre of mass of the car, X3 is the steering angle, X4

and Xs are the angles which the main a.xes of the car and trailer make with the XL axis, respectively,

see Figure 3.27. The above can be rewritten in a compact farm as

(3.121)
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a . 8 . 8 O() 8
= cos X3 cos X4 -a + cos X3 s~n X4 -a + s~n X3 -8 + cos X3 s~n X4 - Xs -a

Xl X2 X4 X4

•

where, for simplicity, it is assumed that l = d = 1. The following Lie brackets are needed:

( ) de! [ l() 0 a 0 0 a
93 x = 91,92 X = s~n X3 cos X4 -8 + s~n X3 s~n X4 -

Xl 8X2

8 0 0 ( ) 8-cos X3 -a + s~n X3 s~n X4 - Xs -8
X4 Xs

de! . a a a
94(X) = [91, 93}(X) = s~n X4 -8 + cos X4 -a + cos (X4 - xs) -a

Xl X2 Xs

( ) de! [ l()' a 0 0 895 X = 91,94 X = -S'zn X3 cos X4 -a - s~n X3 s~n X4 -8
Xl X2

-(sin X3 sin (X4 - xs) - cos X3) aa
Xs

to satisfy the LARe condition:

span{9i(X), i = 1, ..., 5} = lRs , for all xE lRs

The set S(x) can be defined as:

S(x) = {9i(X), i = 1, ..., 5} = lRs, for all X E lRs

The Lie brackets multiplication table for L(91, 92) is:

[91,92] = 93 [91,93J = 94 [91,94J = 9s

[9i,9iJ f; 0, 'Ï = 1,2, j = 3,4,5 (3.122)

which indicates that the Lie algebra L(91 , 92) is neither nilpotent nor finite dimensional. The table

(3.122) also shows that the extended system for (3.121) :

(3.123)

does not allow for the introduction of two vector field groups gl and g2 which give rise ta involutive

distributions. We thus consider the fallowing approximate system:

•
where, 91(X)

a 8 8 a
= -+X4 -+X3 -+(X4- XS)-,

8X1 8X2 aX4 8xs

(3.124)
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Clearly

_ deI [_ _] a _( )deI [_ _]() a a
93 = 91,92 = --a ' 94 x = 91,93 X = -a +-aX4 X2 Xs

_ ( ) deI [_ _]() a
95 x = 91,94 X =-a

Xs

which also satisfy the LARC condition:

span{Yi(X), i = l, ..., 5} = mS, for all x E lRs

and form the corresponding extended system to the approximation (3.124):

(3.125)

(3.126)

The controls V3 and V4 are clearly not directly accessible but motion of the system along the cor­

responding Lie bracket directions [YI, Y2], and [YI, (YI, Y211, can be realized through controls Ul and

U2, in an indirect way, and over a finite interval of time. The Lie brackets multiplication table for

L(Yl, Y2) is:

• [YI, Y2] = 93,

[gl, Y4J = Ys,

[g1,Y3] = Y4

[Yl,YS] = Y5

(Yj,yd = 0, j = 2, ...,5, i = 3,4,5 (3.127)

•

which shows that Lie algebra L(Yl, Y2) is nilpotent. This table also allows for the introduction of

the vector field groups gl and Çh for the e:ctended system (3.126), as follows:

gr = {Y2, (YI, Y2], [YI, [Yr, 92]] } = {Y2, Y3, 94 }

f]2 = {yr, [YI, [YI, [YI, Y2]]] } = {YI, Ys }

which give rise to the involutive distributions:

~l(X) d~ span{Y2,Y3,Y4}(X)

.6.z(x) d~ span{YllYs}(x)

The corresponding codistributions thus have the following expressions:

.6.f(x) = span{dÀ1,l (x), dÀ1.2 (X)}

~t(x) = span{dÀ2,l (x), dÀ2,2(X), dÀ2,3(X)}
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and the scalar functions Ài,j, can be obtained by using the Frobenius Theorem:

À2,1(X) = X3, À2,2(X) = (X4 - XIX3)

1 ')
ÀZ,3(X) = (X2 - XIX3 + 2"XiX3)

The resulting guiding functions are given by:

Vi (X)

lI2(X)

V(X)

1 ') 2}
2"{xi + (X2 - xs)

1 ? ? 1 ') 2
2"{X3 + (X4 - XI X3)- + (X2 - XI X3 + 2" Xi X3) }

Vi (x) + V2 (x)

and can be used in a combined feedback strategy as applied to the original system (3.121). The

system motion along the Lie bracket direction [91,9z} can be achieved by employing sinusoidal

controis :

while motion along the Lie bracket direction [91, [91,92]] can be achieved by employing:• uz(t)

Ut (t)

U2(t)

= sin(27r;)

t
= cos(27rT)

. t
= k 1 s1.n(2rrT)

t= k2 cos(41iT)

(3.128)

(3.129)

•

where k 1 , k2 and T are sorne non-zero constants. Three sets of simulation results are shown in

Figures 3.28 - 3.30, 3.31 - 3.33, and 3.34 - 3.36, respectively.

Figures 3.28 - 3.30 correspond ta the situation when the robot and trailer are steered to the origin

from an arbitrary initial condition in the configuration space (specifically, the trajectories shawn are

obtained when Xo = [0.6,0.8, DA, 0.7, 0.5]T and k 1 = 2, k2 = 3, and T = 0.9).

Figures 3.31- 3.33 and 3.34 - 3.36 show the controlled system trajectories during two parallel parking

maneuvers, corresponding ta the initial conditions XQ = [0,1,0,0, OlT and Xo = [0, -1,0,0, OlT,

respectively (here, kt = 2, k2 = 3 and T = 1.5 were used) .

112



3.6 SINUSOIDAL STEERL.'l'lfG AND GUIDING FUNCTIONS

o.a.-------.------.---~---..,....__--_.

-4.2
0
'-----'-----1....0 ------"T5---20..l....----.J

25
lime

~~w~ j
o 5 Ta 15 20 25

~i~ j
o 5 10 15 20 2S

iiE, ; j
a 5 la T5 20 2S

lime

2520TO T5
lWne

•

FIGURE 3.28. Steering from an arbitrary initial configuration. Plots of the controlled state
trajectories t t-+ (Xl(t), ... , X5(t» versus time.
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Figure 3.28.
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7. A further extension of the guiding functions strategy

The guiding functions approach for general drift free systems can be further e..-xtended ta allow for

the construction of m rather than two guiding functions. Its applicability is demonstrated on two

general drift free systems (one with six state variables and three controIs, and another with ten state

variables and four control variables), a hopping robot in flight phase, a fire truck model [67], and a

class of wheeled mobile robots [711.

For the construction of m guiding functions, the assumption A2 is replaced by assumption A5 below:

A5. The distributions

•
6.m - 1(x)

span{gi(x) , if:. 1, i E m, [gk, gmJ(x), k E m}

span{gi(x),i f:. 2,i E m, [gk,gmJ(x),k E m}

span{gi(x),i f:. 3,i E m, (gk,gmJ(x),k E m}

span{gi(x),i f:. m -1,i E m, [gk,gmJ(x),k E m}

span{gi(x), i E m - 1} (3.130 )

are involutive, and therefore completely integrable.

Let À 1 (x), À2 (x), ..., Àm - 1 (x) be scalar functions such that the differentials dÀ l (x), ..., dÀm- l (x) span

the codistributions .â.t(x), ~t(x), ..., 6.~_1 (x), respectively, and let Àm(x), ..., Àn(x) be such that

dÀm(x), ... , dÀn(x) span the codistribution .Q.~(x), 50 that

dÀk ..L .â.m , k = m, ... , n

The following semi-positive definite guiding functions can then be introduced:

deI 1 [ ]?Vi (x) = "2 Ài (x) - Ài (0) -, z E m - 1

(3.131)

(3.132)

(3.133)

(3.134)

•
The guiding functions strategy of this Chapter can now be modified ta account for several rather

that two guiding functions, as fallows (recall the definition of the set of impasse points:

Td~ {x E JRn: Lg,V(x) = 0, i E ml) .
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Extended guiding functions strategy:

• Data: a ~ L

• 1 If x E JR" \ T, then for each i E m employ the control

for k := i

for k f:. i

•

until L g• Vi (x) = o.

• 2 Define p ~ x(t) in which t is the time at the exit of Step 1 (when the set T is traversed).

If p = a then stop, else if p =F 0, then

.2a Select a set of indices J E m - 1, such that

.2b Employ the controls

for k E J

for k tt. J

until, for each i E J : L[y.,g...IVm(x) = 0, or eise until Vi(x) ~ aV(p) .

• 2c Until LY>n v~(x) = 0, employ the contraIs

{

-sign[Lg>n Vm(x)],
Vk(X) =

0,

.2d For each of the indices i E J, employ the contrais

{

-sign[Lgi Vi (x)],
Vk(X) =

0,

until Lgi Vi (x) := 0, for each i. Repeat Step 2.

for k = m

for k =1= m

for k = i

for k f:. i

•
The convergence analysis for the above strategy' is similar to the one found in section 4 and is omitted

here as the proofs are direct analogs of the ones already presented. The efficiency of the strategy is

demonstrated using a few representative e..'Xamples .
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7.1. Stabilizing feedback control for general drift free system with six state

variables and three controIs

The following example motivates the necessity for the extension of the guiding functions strategy.

For this example, it is not possible ta find two vector field groups 91 and 92 which give tise ta

involutive distributions.

The system equations are given by:

Xl 1 0 0

X2 a 1 a
X3 -X2 Xl a

= UI + U2 + U3
X4 a 0 1

Xs 0 a Xl

X6 a a X2

d~ gl(X) Ul + g2(X) U2 + 93(X) U3 (3.135)

a 8
= --X2-

aXl 8X3'•
"Vith:

where, gl(X)

g3(X)
8 a a

== -+Xl -+X2-
8X4 axs 8X 6

yield

de! a
gs(x) = [gl,93](X) = -8'

Xs

span{9i(X) , i = 1, ..., 6} = lR6
, for all X E JR6. (3.136)

The Lie brackets multiplication table for L(gl, 92,93) is :

[9i,9i] = 0, i = l, ...,6 j = 4, ...,6 (3.137)

•
which shows that the controllability Lie algebra L(91, 92,93) is nilpotent. The set SCx) is defined by

(3.138)

By using table (3.137) it is clear that vector fields groups 91 and 92 cannot be formed while obeying
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the rules (RI) - (R2). This is the reason for which the introduction of severa! guiding functions is

attempted as guaranteed by assumption A5. Indeed, the following distributions:

Ô-1(X) d~ span{92 , 93, [91,92], [91793], [92, 93]}(X)

Ô-2(X) d~ span{91 , 93, [92,93], [91, 93]}(X)

~3 (x) d~ span{91, 92, [91, 92]}(X)

are involutive, and the corresponding codistributions are:

ô-t(x) = {dÀ1,l(X)}

ô-t(x) = {dÀ2,l(X), dÀ2 ,2(X)}

~t(x) = {dÀ3,l(X), dÀ3,2(X), dÀ3,3 (x)}

By using the Frobenius Theorem, one choice of the scalar functions Ài,k is:

which leads to the following guiding functions:

Vi (x)
1 "J

= 2"(xi)

V2(x)
1 2 1 2= 2"X2 + '2(x3 + X1 X2)

\t3(x)
1 "J ? ?= 2"(x:t + Xs + X6)

V(x) = Vi(x) + V2(x) + V3(X)

These guiding functions are then used into the e.,xtended strategy which is applied to this system.

Simulation results are shown in Figures 3.37 - 3.38 which confirm that the controller constructed by

this extended strategy is aIso dead beat.

7.2. Stahilizing feedhack control for general drift free system with ten state

variables and four controls

The example considered below demonstrates that the e.,"ctended guiding functions strategy introduced

in this section is successfully applicable to systems with higher order control deficiency (in this case

n - m = 6) .
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The equations of this example are:

•

Xl 1 0 0 0

X2 0 1 0 a
X3 a a 1 a
X4 0 a a 1

XS X3 0 a a
= Ul + U2 + U3 + U4

X6 0 a a Xl

X7 0 a a X2

Xa 0 a X2 0

Xg 0 0 X4 a
xia 0 Xl 0 0

d~ gl(X) Ul + g2(X) U2 + g3(X) U3 + g4(X) U4

where, gl(X)
8 8

= -+X3-
8Xl 8 x s

g2(X)
8 8

- -+Xl --
ÔX2 8xlQ

g3(X)
8 8 8

= -+X2 -+X4-
8X3 ôXS 8xg

g4(X)
8 8 8

= -+Xl -+x?-
8X4 ÔX6 - 8X7

The following Lie brackets:

(3.139)

(3.140)

de! Ô
g6(X) = [gl,g3](X) = --8

Xs

dei 8
g8(X) = [g2,g3](X) = -Ô

Xs

dei 8
g10(X) = [g3, g4](X) = --8Xg

yield

span{gi(X), i = l, ... , 10} = JRlO for all x E JR
IO

•

The Lie brackets multiplication table for L(gl, g2, g3, g4) is :

[gl,g3] = g6

[92,94] =9g

•
[gl, g2] = gs

[g2, g3] = gs

[9i,9j] =0, i = 1, ... , 10, j = 5, ... , 10

[91794] = 97

[93,94] = 910

(3.141)

121



•

•

•

3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

which shows that the Lie algebra L(91,92,93,94) is nilpotent. From table (3.141) it is also clear that

the following distributions are involutive:

~l(X) d~ span{92,93,g4, [91,92], [91:941, [92,93], [g2,g4], [93,94]}(X)

~2(X) d~ span{91,93:94, [91,93], [gl,941, [92,931, [92,94], [93,94]}(X)

~3(X) d~ span{91,92,94, [91,92], [91,93], [91,941, [92, 941}(x)

Ll4(x) d~ span{gI,92,g3, [9r,92], (91,g3], [92,g3}, [g3,g4]}(X)

The corresponding codistributions are:

Llt(x) = {dÀ1,l(X),dÀI ,2(X)}

Lli-(x) = {dÀ2,1 (x), dÀ2,2 (x)}

Llt(x) = {dÀ3•1(x), dÀ3,2(X), dÀ3,3(X)}

Llt(x) = {dÀt,l(X), dÀ4,2(X), dÀ4,3(X)}

One choice of the scalar functions A;,~ is:

ÀI,I(X) = Xl, À 1•2(X) = Xs

À2,I(X) = X2, À 2,2(X) = XIa

À3,1(X) = X3, À 3,2(X) = xs, À3,3(X) = Xg

À4•I (X) = X4, À.t,2(X) = X6, À4,3(X) = X7

which result in the following guiding functions:

1., ?)
VI(x) = "2(xï + Xs

1., 2
{!2(x) = 2"(X2 + XIO)

1., ? 2
V3 (x) = 2(X3 + Xg + Xg)

1., 2 2
\t4(x) = 2"(X4 + x6 + X7)

V(x) = VI (X) + V2(x) + Vj(x) + V4(x).

By using these guiding functions, the extended strategy is applied ta the system (3.139). Simulation

results are shown in Figures 3.39 - 3.40 and demonstrate the effectiveness of the €."\.1;ended guiding

functions strategy.
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7.3. Stabilizing feedback control for a hopping robot in Hight phase

This e..""<ample demonstrates that the extended guiding functions strategy can be applied if the

controllability Lie algebra of the system contains one Lie bracket ofarder two and in which n -m = 1,

without the necessity of introducing sinusoidal steering (compare with the e..xamples of section 6).

A simplified kinematic model of a hopping robot in the flight phase can be given in the form of the

following state space equations (see (79J):

1/1 = U1

i = U2

{} m(l + d)2
(3.142)= 1 +m(l +d)2

u1

The configuration variables 1/;, l and 0 have the following description: 1/1 is the angle of the hip of the

hopping robot in the flight phase, l the length of the leg extension, and 0 is the angle of the body of

the robot, as shawn in Figure 3.41. The remaining symbols represent constants: 1 is the moment of

inertia of the body, m is the mass of the leg concentrating at the foot, and d is the upper leg length.

Assuming for simplicity that m = 1 = d = 1, and introducing a new set of state variables x =
(X1,X2,X3) = ('ljJ,l + 1,8), the kinematic model can be written as:

Xl = U1

X2 = U2

X2
2

X3 = ') Ut
1 +X2-

where,

xE JR3

8
92(X) =-8

X2

(3.143)

To verify the LARe condition, we need the following Lie brackets of 91 and 92:

2X2 8
(1 + X2 2 )2 8X3

2 - 6X22 a
(1 + X2 2 )3 8X3

•

which satisfy

for ail xE IR3

The Lie brackets multiplication table for L(9r, 92) is:

(3.144)
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FIGURE 3.41. A simple hopping robot

[gl, 92] = 93

[91,94] = 0

[91, 93] = 0

[92, g4] :;6 0 (3.145)

which shows that the Lie algebra L(91, 92) is neither nilpotent nor finite dimensional. The table

(3.145) also shows that the distributions

• deI { }Ll2(x) = span 92(X)

are involutive, and the corresponding codistributions can be represented as:

where the scalar functions Ài,k can be selected as follows:

(3.146)

(3.14ï)

for aIl x E lR3 (3.148)

The guiding functions for this system are hence defined globally :

dei 1 2 ? r) dei 1 2Vi. (x) = i(X1 + X3), Y2(X = 2(x2),

1? ? 2 3
V(x) = i(Xï + X2 + x3), X E IR (3.149)

•

These guiding functions can be directly incorporated in a slight modification of the extended guiding

functions strategy (which is basically applicable to those systems whose Lie algebras contain only

first order Lie brackets) as explained below:

-a By employing Step 1 of the extended strategy in which:

Ui = -signp[Lg ; Vi (x»), i = 1,2, until Lgi l/i(x) = 0
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the system trajectories reach the p-neighbourhood of the set:

T = {x E JR3 : L g ; vi (x) = 0, i = 1, 2} = {x E JR3 : Xl = X2 = 0, X3 t= O}

in finite time.

• b As follows from the convergence analysis of section 4 of this Chapter the aim of the contral

of Step 2 of the feedback strategy is to steer the system away from the set of impasse points

T. This is a~hieved if L 9â Vi(x) # 0 for some index ï. The control which achieves this, is

proposed by considering the first time derivative of L9i Vi(x). In the case of the model of the

hopping robot, the first time derivative of Lgt Vi (x) is computed as:

~ LYt Vl (x) = L~lVi (X)UI + L 92 L gl VI (X)U2 = L;t Vï(X)UI + L{91'92] VI (X)U2

and L[gl ,g2] Vi. (X) = 2x2x3!(1 +X22? which is equal to zero at x ET. Therefore, this first

derivative is of little help in determining the control which is able to increase the value

of jL91 Vi(x)l. However, considering the second time derivative of L gI V1(x) provides more

information about the way to choose the controls UI and U2. Clearly,

and by choosing UI =0 and U2 = 1, while recalling that Lgj Vi(x) = 0, if i # i, we obtain

cP
dt2 L gI Vi (x) = L g2 L[gt'Y2J Vi (x) = L[92'[9I ,92]J VI (x) + L[91,92]Lg2 VI (x)

= L{9:Z,[9I,92JlVI (X) #0

as is guaranteed by the LARC condition (3.144) if only x t= O. Rence, Step 2 of the extended

strategy can be stated as :

Employ the contraIs Ul = a and U2 = 1 until L[92,[91 ,92Jl Vi (x) = 0, or else until

li2(x) ~ a:V(p).

At this stage, Steps 2c-2d of the e.."(tended guiding functions strategy can be applied without

change.

Three sets of simulation results are depicted in Figures 3.42 - 3.43, 3.44 - 3.45, and 3.46 - 3.47

corresponding to initial conditions [.5, .5, .5]T, [100,100, lOO]T and [-100, -100, -lOO]T respectively.

Figures 3.44 - 3.45, and 3.46 - 3.47 demonstrate the global convergence property of the extended

guiding fnnctions strategy. In all these simulations the set point is reached in four steps of strategy.
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7.4. Stabilizing feedhack control for a model ofa fire truck by using the extended

strategy [67]

The following example illustrates, how the extended strategy can be applied when the controllability

Lie aIgebra of the system involves higher order Lie brackets. This example aIso demonstrates the

robustness property of the extended strategy.

Consider the tire truck model as given in (3.111) and its extended system (3.123). The Lie brackets

multiplication table (3.114) shows that, it is not possible to find three involutive distributions for the

extended system (3.123), which satisfy assumption A5. For this reason we consider the approximate

model (3.116). The extended system for this approximate model is:

(3.150)

•

•

where it is assumed that V4 is realized indirectly by using the following standard sequence of controIs:

( V2 , V3) = « 1, 0), (0, 1), (-l, 0), (0, -1»

The above extended system now provides for the following involutive distributions:

~1(X) d~ span{92,93, [91,93J, [92,93], [[92,93], 93J}(X)

~2(X) d~ span{91 , 93, [91,93], [92,93], [[92, 93J, 93J}(X)

Ll3(x) d~ span{91, 93}(X)

and the corresponding codistributions have the following expressions as linear spans of exact differ­

entials :

.L de! 1. de!
~l (X) = span{dÀ1,t(x)}, Ll2 (X) = span{dÀ2 ,1(X)}

~t(x) d~ span{dÀ3.t (x), dÀ3,2(X), dÀ3.3 (X), d.À3,4 (X)}

The choice of the scalar functions Ài,k, is immediate:

de! de!
À1,1(X) = Xl, .À2.1(X) = X2,

À3,1(X) d~ X3, À3•2(X) dg X4, À3,3(X) d~ XS,

Rence the guiding functions for the approximate system (3.116) are:

Vi (x)
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These guiding functions are next used in e..-..ct:ended strategy and applied ta the original model. The

motion along the Lie bracket [g2, g3] is realized indirectly by using the standard sequence of contraIs:

(U2, U3) = ((1,0), (0, 1), (-1,0), (0, -1»

Simulation results are shawn in Figures 3.48 - 3.51 and clearly demonstrate the robustness of this

strategy. By comparing the simulation results 3.48 - 3.51, 3.48 - 3.51 obtained by the e..xtended

strategy and the combined strategy with sinusoidal steering, it is evident that the desired set point

is reached faster by using the e..xtended strategy.

7.5. Stabilizing feedhack control for a class of wheeled mobile robots [71]

In this section, the extended guiding functions strategy is empIoyed to three categories of mobile

robots. There is a growing interest in feedhack control design for such mobile robots, as it raises

practical and theoreticaily challenging issues.

In the sequeI, the abbreviation "\VMR of type (6m , da)" is used to denote wheeled mobile robots of

degree of mobility dm and degree of steeribility 5a ; see [3] for the definition of degree of mobility and

steeribilty. The application of our strategy ta three types of WNIR is discussed below.

7.5.1. Stabilizing feedhack control for a WMR of type (2,1)

This type of wheeled mobile robots is easy to control as its controllability Lie algebra contains only

Lie brackets of depth one.

The kinematic model of \VMR of type (2,1) is given by, (see [3]):

(:) - (
/3 = 7}3

-sin(8 + {3)

cos(8 + (3)

°
(3.151)

The notation (x,y,8,{3) = (X1,Xl,X3,X4) and (1]1,7}2,7}3) = (U3,U2,ud, is used for simplicity, 50

that (3.151) hecomes:

(3.152)

•
8

gl(X) = -8'
X4
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Fire truck model : Plots of the guiding functions V1(t) and V2 (t) versus time.
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The LARe condition is satisfied since

(3.153)

The Lie brackets multiplication table for L(gr, g2, g3) is given by

(3.154)

•

which shows that the Lie aIgebra L(gl,g2,g3) is finite dimensionaI but not nilpotent. It also follows

directly from the multiplication table (3.154), that the following distributions are involutive:

de!
~l(X) = Span{g2,g3,g4}(X)

de! ]}~2(X) = Span{gl,g3,g-t (X)

de!
~3(X) = span{gl, g2}(X)

From the Frobenius Theorem, the corresponding codistributions have the following expressions as

linear spans of exact differentials :

~t(x) = span{dÀ1.1(X)}

~i-(x) = span{dÀ2.1(X)}

~t(x) = span{dÀ3.1(X), dÀ3.2(X)}

where the scalar functions Ài,k, can be chosen ta be :

The guiding functions are hence given by :

(3.155)

•
and are used in the application of the stabilizing strategy to model (3.151).

The simulation results are shown in Figures 3.52 - 3.54 from which it can be seen that the stabilization

control task is performed in finite time.
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7.5.2. Control of WMR of type (1,2)

Although the controllability Lie algebra of this class of wheeled mobile robots contains Lie brackets

of depth one, it is not possible to find m distributions which satisfy assumption A5. Proceeding

similarly as before an approximate model is sought which satisfies A5.

In this e.."Cample, the desired set point is chosen ta be different from the origin as at the origin, the

kinematic model of this class of robots (see [3D does not satisfy the LARC condition.

The kinematic model of the \Vj\Iffi of type (1,2) is given by, see [3J :

[
x] [ -2 L cos e sin f31 sin.82 - L sine sin (.81 + {32) ]

~ = -2 L sin e sin f31 sin fl2 + L cos e sin (fll + (32) TIl

e sin (fl2 - f3d

r31 = Çr

(3.156)

•
Here (x, y) are the Cartesian coordinates of a point P of the wheeled robot platform, e is the

orientation of the platform with respect to the horizontal axis, f3i, i = 1,2 are the orientation angles

of the independent steering wheels and L is the distance between P and the centre of the master

wheel.

Without the 10ss of generality, let the desired rest point be given by:

(X,y,O,/31,f32) = (0, 0,0, 7r/2, 71"/2)

The set point stabilization problem for a \VNffi of type (1,2) can now be stated :

Find a feedback control which stabilizes the system described by (3.156) on the manifold M :

(3.157)

•

to the set point Xo = (0,0,0, 7r/2,71"/2) E M.

It should be noted that restricting the motion of the robot to manifold )\1{ is necessary for control­

lability purposes; at points (0,0,0,0[71"), 0[71"]) the system fails ta satisfy the LARC condition.

For simplicity, we assume that L = l, and define:

(x, y, e,131, (32) = (Xl, X2, X3, X4 + 71"/2, Xs + TI"/2)
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With this notation, (3.156) takes the following vector form :

(3.158)

a a
where, gl(X) = -a 1 92(X) =-a

Xs X4

g3(X) = {-2COSX3COSX4COSXS + sinX3sin(X4 + Xs)} aa
Xl

-{2sinX3COSX4COSXs + COSX3sin(X4 + XS)}aa + sin(xs - X4)a
8

x2 x3

To satisfy the LARe condition, we need the following Lie brackets:

dei J a94 (X) = [931 g2 (x) = {-2COSX3sinX4COSXS - sinX3COS(X4 + Xs)} -a
Xl

{2sinX3sinX4COSXS - COSX3COS(X4 + Xs)} aa + COs(xs - X4) aa
x2 x3

~/[ 1 ags(x) = 93,gl (X) = {-2COSX3COSX4sinxs - sinX3COS(X4 + Xs)} -a
Xl

{2sinx3cosx4sinxs - COSX3COS(X4 + xs)} aa - cos(XS - X4) aa
X2 X3

•
50 that

span{gi(X) , i = l, ..., 5} = lRs for ail xE M. (3.159)

The Lie brackets multiplication table for L(911 92, 93) is computed

and shows that the Lie algebra L(g1, 92,93) is neither nilpotent nor finite dimensional. It is also clear

from the table (3.160) that for system (3.158), it is not possible ta find three involutive distributions

satisfying A5.

Consider the following approximation ta model (3.158):

with

x =91Ùl + 92Ù2 + g3ù3

93(X) = -2~ - (X4 + XS)~ + (xs - X4)~
aXl aX2 aX3

g2(X) = aa , gl(X) = aa
X4 Xs

(3.161)

•
- ( ) dei [- - IC ) a ag4 X = 91,93 x =--{} +-a'

X2 X3
_ ( ) dei [- _ l( ) a a
gs x = 92,g3 X = --a - -a

X2 X3
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yields

span{9i(x) , i = l, ... , 5} = mS, for aIl x E mS (3.162)

and a new Lie brackets multiplication table for the Lie algebra L(U1, 92,93) :

It follows that the distributions :

~1(X) d~ span{U2,93,94,9S}(X)

~2(X) d~ span{91193, 94, 9s}(X), ~3(X) d~ span{91192}

are aIl involutive and the corresponding codistributions thus have the following e.xpressions:

flt(x) = span{dÀ1,1(X)}, fl4-(x) = span{dÀ2,1(X)}

flt(x) = span{dÀ3,1(X),dÀ3,2(X),dÀ3,3(X)}, in which

can be selected. The resulting guiding functions are hence defined by:

• v; ( ) de! 1 2
1 X = '2xs, (3.164)

and incarporated into the stabilizing strategy which is applied ta the original system (3.156). Sim­

ulation results are shown in Figures 3.55 - 3.57 and again confirm the robustness property of the

strategy and its fast convergence properties.

7.5.3. Control of WMR of type (1,1)

The controllability Lie algebra of this type of mobile robots contains Lie brackets of depth one as weIl

as depth two. It is hence not possible to employ the e-xtended strategy directly. The approximation

technique is thus applied in inconjunction with sinusoidal steering.

The kinematic state space model of WNIR of type (1,1) is given by, see [3]

•
U) = (

- L sin B sin (3 )

L cos B sin (3 1]1

cos 13

(3.165)
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where (x,y) are the Cartesian coordinates of a point P of the wheeled mobile robots platform 1 (J is

the orientation of the platform with respect to the horizontal axis, /3 is the orientation angle of the

independent steering wheel, and L is the distance between P and the centre of wheeI. For simplicity,

we take L = 1 and denote :

so that (3.165) is written as :

(3.166)

CaIculation of the Lie brackets of 91 and 92:

a . a-a +S1.nX4-
x2 aX3

•
shows that the LARC condition is satisfied:

and the Lie brackets multiplication table for L(91 1 92)

(3.167)

From table (3.167) it foUows that finding two involutive distributions for system (3.166) is not

possible. However, a controllable approximation to (3.166), such as, for example,

(3.168)

•

where, 91(X) ~ 93 (x), g2(X) = 91(X), Vi = U2, V3 = Ur,

_() a a a _() a
93 x = -X3 X 4 -a +X4-a + -a ' 91 X =-a

xl X2 X3 X4

can be constructed and satisfies the LARC condition:

where the new vector fields 92 and g'l are given by

_ a
94(X) =-a

Xl

140



•
3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

The Lie brackets multiplication table for L(gl r93) shows that :

(3.169)

the Lie algebra L(9l, 93) is nilpotent. Since the vector field 94 is a bracket of depth two: 94 =

[,93 r [93 r 9dJ, direct application of the e.xtended guiding functions strategy is still not possible. The

extended system to (3.168) is :

(3.170)

in which the control V2 (or equivalently motion along the Lie bracket direction 92 = [93 r 9d) can be

realized approximately and indirectly, by employing sinusoidal inputs of the type (3.104).

Clearly, the guiding functions approach can now be applied without change, to the extension (3.170),

as the multiplication table (3.169) indicates that the distributions

are involutive. The corresponding codistributions are:

Ll1 (x) = span{92 , 93r 94}(X)

Llz(x) = span{9lr 92, 94}(X),

•
with

Lltex)

.6.i" (x)

span{d.À1,l (x)}

span {dÀ2 ,1 (x)},

(3.171)

The guiding functions employed are hence defined by :

These guiding functions are ne."Ct used in the e."Ctended strategy as applied to the original mode!.

The system motion along the Lie bracket [gl, g2] is realized indirectly by using

. 27r
Ul = stn( Tt), (3.172)

•
with T = 1. Simulation results are shown in Figures 3.58 - 3.60 and clearly demonstrate the

effectiveness of the approach.

141



3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

• 0.4

0.3

~0.2 . ':l -1

0.1

0 -2
0 2 6 tO 12 14 0 2 5 8 10 12 14

lime lime

14121082
-o.2'----'---.........--""-----'-----'"--.........-----J

o14121062
lime lime

FIGURE 3.58. WMR of type (1,1): Plots of the controlled state trajectories t 1-+

(Xl(t), ..., X4(t)) versus time.

..-.-.~.~.

0.40.350.250.2X, (t)
0.'50.10.05

_ _ __ _-_._._~._._ _.__._._.._._---_.~~.:_:~-~.--~-:- ..

0.4

0.35

0.3

0.25

0.2
E:
~

0.15

o.,

0.05

0

-0.05
0

•
FIGURE 3.59. WMR of type (1,1): Plots of the controlled state variables Xl(t) versus X2(t).

1.4,---~---.---.,..-----,.------r----.----,

FIGURE 3.60. WMR of type (1,1): Plots of the guiding functions VI(t), V2 (t), and their
sum V (t) versus time.

142

14121412

VI(I):­
\12(1):­

,V3{l); •

0.4

1.2

..,
~OB

::0.6

•



•

•

•

CHAPTER 4

The trajectory interception approach

This chapter provides a simple and systematic method for the construction of time varying stabilizing

feedback control for drift free systems in the spirit of the idea first presented in [61J. The method

is universal in the sense that it is independent of the vector fields determining the motion of the

system, or of the choice of a Lyapunov function. The resulting feedback law is a composition of a

standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic

continuation of a specific solution to an open loop, finite horizon control problem stated in terms of

a formal equation on a Lie group - an equation which (via an evaluation homomorphism) describes

the evolution of the flows of the original as weil as the e.xtended system. The open loop problem is

solved as a trajectory interception problem in logarithmic coordinates of flows.

The trajectory interception approach is first e.xplained in application to a sub-class of drift free

systems with solvable or nilpotent controllability Lie algebras. The approach is further extended,

see [73] and also [66, 68, 70, 84], to other drift free systems whose controllability Lie algebras need

not be nilpotent nor solvable. This is done by introducing approximate models whose controllability

Lie algebras possess the desired properties. The time varying feedback constructed for such an

approximation can then be successfully applied to the original system in that the model error does

not prejudice local stabilization provided that an adequately large stability robustness margin for

the extended controlled system is insured.

The trajectory interception approach does not require transformation of the system model to chained

or power forms .
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4.1 INTRODUCTION

1. Introduction

The method praposed here elaborates on the ideas contained in [61] and [62], and is inspired by

the results and techniques contained in [52] - in which a piece-wise constant open loop control is

constructed ta achieve point to point steering. A similar attempt of feedback through system ex­

tension can be found in [34]. The feedback law constructed there allows to track trajectories with

arbii:rary precision but is assumed to be applied "on a finite time interval" only. The precision of

steering (and hence the error within which the final point is attained) is adjusted by decreasing (to

zero) a parameter € in the time varying part of the control. The construction is based on the result

contained in [106] which states that on finite intervals of time, trajectories of extended systems can

be uniformly approximated by ordinary trajectories with oscillatory contraIs. The feedback of [34]

is not suitable for stabilization purposes.

The trajectory interception approach primarily applies ta systems which are nilpotent or at least

solvable. It is weil known that many systems can be made nilpotent by application of a smooth

feedback, see for example [35].

The method proposed is based on considering of what is known as the Lie bracket e.xtension of the

original system, see [52]. An arbitrary Lyapunov function is first employed ta furnish a closed loop

stabilizing control for the extended system. The stabilizing time-invariant feedback control for the

extended system is then combined with a periodic continuation of a specific solution of a formal,

open loop, finite horizon control problem. This open loop control problem is posed in terms of the

logarithmic coordinates for flows, see [117], and its purpose is ta generate open loop contraIs such

that the trajectories of the controlled extended system and the original system intersect after a finite

time T, independent of their common initial condition. While the time-invariant feedback for the

extended system dictates the speed of convergence of the system trajectory to the desired terminal

point, the open loop solution serves the averaging purpose in that it ensures that the "average mo­

tion" of the original system is that of the controlled extended system.

The construction proposed demonstrates that synthesis of time varying feedback stabilizers for drift

free systems can be viewed as a procedure of combining static feedback laws for a Lie bracket ex­

tension of the system with a solution of an open loop control problem on the associated Lie group.

The contribution of this chapter can he sUIl1.D1.arized as follows:

• A systematic method for the synthesis of stabilizing, time-varying feedback for a large class

of drift-free systems is presented. The feedback provides for exponential rate of convergence

of the system trajectories to a desired set point.
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4.2 NOTATION AND HYPOTHESES

• The method shows how the averaging effect can be achieved by a (periodically repeated)

open loop solution to a control problem in logarithmic coordinates.

• It is shown that the application of the trajectory interception approach is not limited to

systems whose controllability Lie algebra is nilpotent. The approach can successfully be ap­

plied to systems with non-nilpotent controllability Lie algebras by introducing approximate

models which generate nilpotent controllability Lie algebras. The error in the solution of

the open-Ioop problem, resulting from such an approximation, can be compensated (with­

out prejudicing stabilization) by adjusting the stability robustness margin of the feedback

control for the ex.tended system.

• It is shown that introducing approximate models often permits significant simplification of

the differential equations describing the evolution of the logarithmic coordinates in the open­

loop problem formulation (which are usually difficult ta solve analytically).

• The approach is first applied to stabilize drift free systems which are characterized by nilpo­

tent (solvable) controllability Lie algebras such as: a general drift free system with 5 states

and 3 contraIs, a unicyde model in chained form, and Brockett's system.

The approach is also applied to stabilize drift free systems whose controllability Lie algebras

fail to satisfy the solvability assumption. Example systems such as: an underwater vehicle

[66], a unicycle, a rigid spacecraft in actuator failure mode [70], a class of wheeled mobile

robots [70], and a hopping robot in flight phase [84J, are considered.

Since computation of the solutions to the open loop trajectory interception problem may

be elaborate if the extended system contains high order Lie brackets, the possibility of in­

troducing decomposition into control synthesis is explored. This idea involves decomposing

a complex system model into sub-systems of which one can he controlled by the trajectory

interception approach and the other is controlled by sinusoidally varying inputs. The feasi­

bility of this approach is demonstrated using: a model of a wheeled mobile robot [70], a fire

truck, an underwater vehicle in actuator failure mode, and a mobile robot with trailer.

2. Notation and hypotheses

The symbol CCI) denotes the space of continuous fnnctions on a closed sub-interval l C [0,00),

and PC(l) denotes the class of piece-wise continuous functions on a closed interval I, (with a finite
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number of discontinuities in I). The symbol B(x; €) denotes a ball of radius €, centred at x.

For a set of (real) analytic vector fields gr, ..., gm, the symbol L(gl, ..., gm) denotes the Lie aIgebra of

vector fields generated by gl, ... ,gm' If L(gl, ...,gm) is nilpotent of order k, we write Lk(gt, ... ,gm)'

Consider the following system on IRn :

m

x(t) =L gi(X(t))Ui(t),
i=1

where

xE IRn (4.1)

•

•

HO. g1, ... , gm are complete, Creal) analytic, and linearly independent vector fields on IRn, and

U1, "'Um are locally bounded and Lebesgue integrable functions on IR.

The objective is to construct controls Ui(X, t) : IRn x lR+ -+ .IR, i = 1, ..., m: sucb that system (4.1)

is Lyapunov asymptotically stable (the continuity properties of u are to be specified later).

For our construction to be valid, we need to impose the following basic controllability hypotheses :

Hl. System (4.1) satisfies the LARC (Lie aIgebra rank condition) for accessibility, namely that

L(gl, ... ,gm)(x) spans .IR" at each point x E !Rn.

H2. The controllability Lie algebra L(gt, ... ,gm) is nilpotent of order k, 50 that L(gl, ... ,gm) =
Lk(gr, ..., gm)'

Since drift free systems are "symmetric" in the sense that every trajectory run backwards in time

is also a system trajectory, it is weIl known that the accessibility hypothesis Hl implies complete

controllability of (4.1) in IRn. Hypothesis H2 is quite restrictive but will be needed only in section

3. In section 5 it will be shown that H2 can he removed at the cost of increasing the frequency of

oscillation in the time varying part of the constructed feedhack control.

3. Solution of the stabilization problern for systems with nilpotent controllabil­

ity Lie algebras

The solution of the stabilization problem, as first suggested in [61], involves two steps:

1). The construction of a time invariant feedback law for stabilization of a Lie bracket e.xtension

of the original system based on the choice of an arbitrary Lyapunov function.

2). The solution of a formai open loop control problem in logarithmic coordinates which effec­

tively provides for 'pointwise equivalence' of the flows of the original and e.xtended systems.
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A periodic continuation of this solution is composed with the feedback for the extended sys­

tem to yield the final time-varying feedhack controL The oscillatory behaviour of the closed

loop system results in an "average" decrease of the Lyapunov function selected in step 1).

3.1. Stabilization of the Lie bracket extension of the original system

To solve the stabilization problem for the "extended system", we first select a scalar Lyapunov

function V : JRn ~ JR.+. Without the loss of generality, let V be quadratic Le. V(x) d~ txTQx,

X E JRn, for some positive definite and symmetric matrix Q.

As in [61], a Lie bracket extension of (4.1) is considered ne.."'ct, and is given by

r

x(t) = L 9i(X(t))Vi(t) for all x En
i=1

(4.2)

•

where n c lRn is a sufficiently large, compact neighhourhood of the origin, and the vector fields gi,

i = m + l, ... , T, are Lie brackets of 91, ..., gm which are necessary to complete the span of lRn for all

xE n. Generally, T 2:: n, since for a given n there may not exist precisely n - m hrackets such that

span{gl •... ,gn}(x) = lRn for ail x En (however, the compactness of n guarantees that r is finite).

Let G(x) d~ [gl, ... , gr](x) denote the state dependent matrbc: whose columns are the gl, ...gr of

(4.2). Since (4.2) is instantaneously locally controllable in any direction in JRn, a variety of static

stabilizing feedhack controls for (4.2) can be constructed easily. Consider, for example, the following

controls:

(Cl) : deI tV(x) = -G(X) X, de! [ l Tv(x) = Vl,""Vr (X) (4.3)

in which G(x)f is the pseudo-inverse of G(x), or else:

(C2) :
de!

Vi(X) = -Lg , V(x), i E {l, ..., r} (4.4)

•

The result stated below can be found in [62] but is cited here for the reason of completeness.

PROPOSITION 4.1. The control laws (Cl) and (C2) are exponentially stabilizing for system (4.2),

(globally exponentially stabilizing if n = lRn).

Proof. First, note that both of the above controls satisfy v(O) = 0, and the control (C2) can be

written as v(x) = -G(x)TQx. By construction, Tank{G(x)} = n, for ail x E n. Thus G(x)G(x)T

is invertible for x E n, as in fact G(x)G(x)T = [TirJ]i$n.j~n(X) is the Grammian matrix for the n

linearly independent rows ri, i = l, ... , n, of G(x). Therefore, Gt (x) is the right inverse of G(x) since
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then G(X)t = G(X)T(G(X)G(X)T)-L . Since the Grammian matrix for a linearly independent set of

vectors is positive definite, thus the time derivative of V along the trajectories of (4.2) with contraIs

(Cl) and (C2), respectively, can be bounded as follows:

d
dt V(x(t» =

=

=
d
dt V(x(t» =

<

<

1 1
-"2[G(x(t»Gt (x(t»x(t)JT Qx(t) - 2x(t)TQG(x(t»Gt (x(t»x(t)

-x(t)TQx(t)

-2V(x(t» (4.5)

-~[G(x(t»G(x(t»TQx(t)JQx(t) - ~x(t)TQG(x(t»G(x(t»TQx(t)

_"'(x(t)Tx(t)

2"'(
Àmax(Q) V(x(t» (4.6)

•

for all t such that x(t) E n, where 1 > 0 is a lower bound for the eigenvalues of the positive definite

and symmetric matrices QG(x)G(x)TQ on the set n, and À max > 0 is the largest eigenvalue of Q.

By a standard Lyapunov argument, both controls (Cl) and (C2) are exponentially stabilizing for

the extended system (and globally exponentially stabilizing if n = IRn). •

While the "controlled" vector fields giVi are still analytic, they may not be complete and the new

Lie algebra of vector fields L(glVL, ••• , grVr) may not be nilpotent. As this complicates our principal

construction it is convenient to assume that the feedback controls are "updated" discretely in time

which also simplifies the calculation of the time varying part of the stabilizing control for the original

system. Instead of (4.2) we thus consider an extended system with "discretised" contraIs:

r

x(t) =L gi(X(t»Vi(T, xCt»
i=l

where the functians Vi, i = 1, ... , r, are obtained from Vi, i = 1, ..., r, by the formula

Vi (T, x(t» d~ vi(x(nT» t E [nT, (n + l)T), n = 0,1,2, ... i = 1, ... , r

(4.7)

(4.8)

•

and thus are constant over each interval [nT, (n + l)T). (In practical terms, the control (4.8) can be

viewed as a cascade of the smooth controller v(x) and a zero order eA'"trapolator.)

Not to complicate further analysis, it will henceforth be assumed that n = IRn. In cases when this

assumption cannot be made, all the subsequent results hold only locally.

It can be shown that such "discretization" of the control V does not prejudice exponential stability

of the controlled extended system.
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PROPOSITION 4.2. (62} Suppose n = IRn , the hypotheses HO-H2 are valid, and the extended system

(4.2) employs any of the controis (Cl) or (C2). Under these conditions, for any compact region C

containing the origin there exists a maximal discretization step Tmax > 0 such that the corresponding

discretized controlled extended system (4.7) is exponentially stable with region of attraction C, for

any T ~ Tmax •

Proof. First we note that discontinuities in the control of equation (4.7) do not prejudice existence

or uniqueness of its solutions (on any interval of time) since, by construction, such discontinuities

occur at isolated moments of time, and solutions of (4.7) with constant controls exist and are unique

(on any interval of time) , by virtue of hypotheses HO-H2.

Without the loss of generality, let C be a level set of the Lyapunov function V = txTQx, Le.

C = {x E !Rn : V(x) ~ a}, for some positive a. Let t Ho X exp{t L~=l 9iUd denote the integral

curve of (4.7), passing through x at time t = 0, and due to constant controls Ui, i = 1, .._, T. From

standard results in differential equations concerning the sensitivity of solutions to perturbations

in initial conditions and parameters, it foIlows, by virtue of hypotheses HO - H2, that the mapping

./R+ X JRn x!Rr :3 (t, X, U1, ...,ur) Ho X exp{t L;=19iUd E IRn is weIl defined and at least continuous.

If ./Rn :3 X Ho (Ul(X), ..., ur(x» E JRr is any continuous mapping, then the mapping .JR+ X !Rn 3

(t,x) Ho X exp{t L~=l 9iUi(X)} E JRn is continuous as a composition of continuous mappings. ft

foIlows that the mapping !R+ X JRn :3 (t, x) Ho X exp{t L~=l gi'lh(To, x)} E JRn is continuous for

an arbitrary discretization step To (note that here the vi(To, x) signify controIs which depend only

on x but not on t). By continuity, it maps compact sets onto compact sets. Thus the image of

the set [0, To] x C under this map is some compact set n. In fact n is the set of states reachable

(in times not exceeding To) by trajectories of (4.7) which emanate from C. This implies that any

trajectory of the e.xtended system with discretized control, emanating from C, remains in R for time

Ta. Let B(O; pl, p > 0, be a closed balI containing all the trajectories of the e.xtended system with a

smooth feedback control v(x) which emanate from C, and a superset of n (such a ball exists as the

e.xtended system with smooth controIs is stable). Let Mg denote a uniform bound for gi, i = 1, ... , r,

on B(O; p), and let Lv be a common Lipschitz constant for Vi, i = 1, ... , T, also on B(O; p). Let the

symbols x(·;to,xo) and x(·;to,xa) (or simply x(·) and x(-» denote the trajectories passing through

Xo E C at time to of the e.xtended systems (4.2) and (4.7) with continuons and discretized controls,

respectively. For an arbitrary (to,xo) E IR+ xC,

(4.9)
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~f 1for ail • E [0, ToL as V(O) = O. Define c = r!v[gLv and let Tl ~ min{To, 2c}· Then for all

(to, xo) E JR+ x C, and ail • E [0, Til,

IIX(to +Tjto,XO) -xo)ll ~ .cllxoll ~ T1cllx(to +.;to,xo) -xo)1I +.cllx(to +T;to,xo)11
1

::; 2""x(to +.; to, xo) - xo)1I + .cllx(to + 'j to, xo)" (4.10)

50 that IIx(to +.; to, Xo) - xo)11 ::; T 2cllx(to +'i to, xo)!l, TE [0, Tt} (4.11)

From the proof of Proposition 4.1 it follows that the extended system with smooth feedhack controls

Vi, as given by (Cl) or (C2), is ~'\.'"PonentiaIly stable, and there ~"\:Ïsts a constant f3 > 0 such that

d r

dt V(x) = \7V(x)T z= 9i(X)Vi(X) ::; -,BV(x)
i=l

(4.12)

•

for all x E n = IRn, where \7V denotes the gradient of V. This yields the following hound for

the time derivative of V, this time along the trajectory x(.;to,xo) of the extended system with

discretized control using a discretization step T2 ~ Tl:

d r

dt V(x) = \7V(x)T:?= 9i(X)Vi(XO)
:=1

r r r

::; \7V(x)T L9i(X)Vi(X) + IIvV(x)TIIII L9i(X)Vi(XO) - 2:9i(X)Vi(X)11
i=l i=l i=l

r

~ -f3V(x) + lvlg l/\7V(x)TII :L Ilvi(xo) - vi(x)1I
i=l

~ -,BV(x) + rAlg Lv IlQII IIxIl IIx - xoll

~ -{3V(x) + Tz2c211Qllllxll2 ~ -,BV(x) + T2::~~\ V(x) (4.13)

(4.14)

•

for all • E [0, T2 ], by virtue of (4.12) and (4.11). Clearly, it is possible to select a T2 ::; Tl such that

d 1
dt V(x(to +.; ta, xo» ~ -2"f3V(x(to +.; to, xo»

for ail • E [0, T2 ], along a trajectory of the controlled ~"ctended system using discretization step T2 •

It follows that Xl d~ X(tl;ta,Xo) E C, with tl d~ to + T2 • As equations (4.9) - (4.14) were obtained

for an arbitrary initial condition (to,xa), inequality (4.14) is thus again valid for x(t l + .;tl,xd,

• E [0, Tz], and X2 d~ x(tz; tl, xd E C, with tz d~ t l + T2 - By a simple inductive argument,

x n = x(to + nTz; to, xo) E C, for all n = 1,2, .. , and, consequently, (4.14) is valid for ail times

• ~ ta. As Xo was arbitrary, this implies eJo..'"Ponential stability of the e.xtended controlled system

using discretization step Tmax = T2 •

150



•
4.3 SOLUTION OF THE STi\.BILlZATrON PROBLEM

Finally, for any discretization step T < Tmaz, and because T rnaz ~ Ta, the trajectories x( ti ta, xo) t

and x(t; to, xo), t ~ ta, (where the latter corresponds to a discretisation step T), still remain in

B(Oi pl, provided that (to, Xo) E .JR.+ x C. Rence the previous argument applies also for T, as

equations (4.9) - (4.14) can be re-written without change. The extended system using discretized

control is thus exponentially stable for any T ~ Tmaz . •

The following definition, cited from [62], specifies a somewhat different type of exponential stability

which will be found useful in the analysis of the stabilizing properties of the feedback law constructed

later.

DEFINITION 1. A tirne varying system given by

x(t) = f(x(t), t), (4.15)

•

whose solutions x(·; to, xo) through any (to, xo) exist and are unique for ail times t ~ to, and in which

1(0, t) == 0, for aIl t, is said to be p-exponentially stable with p E (0,1) and a region of attraction n
iff there exist positive constants C and; such that for aU t ~ to and all (to, xo) E .JR.+ X 11 :

(4.16)

where JL(xo) = p for Xo E B(O; 1), and JL(xo) = 1 for Xo ~ B(Oi 1) .

Clearly, if p = 1 then (4.15) is e.xponentially stable in the usual sense and, in any case, (4.16) differs

from the liSUal definition of exponential stability only for Xo E B(Oi 1).

The following elementary lemma, taken from [62], will aIso be found useful, and basically re-states the

weil known fact that asymptotic stability of a system is guaranteed by the existence of a Lyapunov

function which decreases "on average" (rather than monotonically) along the trajectories of this

system.

LEMMA 4.1. Consider the system of Definition 1. Suppose there exists a Lipschitz continuous func­

tion V : !Rn -r .JR.+ which, for sorne p > 0, satisfies:

(4.17)

with sorne positive constants ;1 and ;2. Let p E (0,1], and let C be a Level set of V, so that

C = {x E .JR.n : V(x) ~ a}, for sorne positive 0:. Suppose that there exist constants M > l, T > 0,

and f3 E (0,1), and a function JL : 1R+ x C -r {1, p}, s'Uch that for aIl (ta, xo) E JR+ xe

•
(a) V(x(to + T; to, xo» < f3V(xo)

(b) V(x(to + T; to, xo» < .NfV(XO)Sl(ZO) for ail T E [0, T]

(4.18)

(4.19)

151



•
4.3 SOLUTION OF THE STABILIZATION PROBLEM

Under these conditions, system (4.15) is p-exponentially stable with region of attraction C.

Proof. Take any (to, xo) E lR+ X C and define

~f ~f
Xk = x(to + Tk; to, xo), tk = to + Tk (4.20)

and for any k =: 0,1,2, ..., with either: Il- = 1, or f.J. = p, (depending on k,to, and xo). Choosing

'Y > 0 such that (3 = e-rT~ and defining C d~ (AtII2 /,d*e'"YT yields•

By uniqueness of trajectories of (4.15), if Xk E C then

which implies that Xk+l E C, as (3 E (0,1). Since Xk was arbitrary, it follows that

V(xk+d = V(x(to + T(k + 1); ta, xo)) =: V(X(tk + T; tk, Xk))

S;,BV(Xk) ~ '" S;.ak+IV(xO), k=0,1,2, ...

for any (ta, xo) E IR+ x C, as Xl, .•• , Xk+l are all members of C. Further, by condition (b),

for all TE [0, Tl

V(x(to +Tk+7";to,xo)) < Atie-rTkP 7; V(XO)IL S; lvle-'"YTkp V(XO)IL

< CP "'/1 e-rpT(k+l) V(xo)l"
12

< CP 'Yl e-rP(Tk+')V(xo)1L,2
50 using (4.17) gives

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

which holds for any k = 0,1,2, .. , any 7" E [0, Tl, and any (to, xo) E IR+ x C, with sorne value of

J.L E {p, 1} (dependent on k, to and xo). However, if IIxoll ~ 1 then Ilxall ~ IIxoliJL for any J.L ~ 1,

and if IIxoll < 1 then IIxall < I/xolllL for any J.L S; l, sa inequality (4.25) can be further re-written as

Ilx(to + Tk + r; to, xo)1I ::; {
Cllxo Il e-r(Tk+,)

Cllxa IIP e-r(Tk+,)

for Xo ri. B(O; 1)

for Xo E B(O; 1)
(4.26)

•
for all k = D, 1,2, .., all T E [0, T], and all (ta, xo) E JR+ xC. Putting t dg} Tk + T, yields

(4.27)
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for all t ~ to and all (to, xo) E JR+ xC, with 1L(xo) = p if Xo E B(O; 1) and 1L(xo) = 1 if Xo ft B(O; 1).• System (4.15) is hence p-exponentially stable with region of attraction C.

3.2. An open loop control problem on a Lie group

•

The objective here is to use the stabilizing feedback control for the extended system as a base

upon which to construct a time varying stabilizing feedback but, this time, for the original system.

Consider the discretized system (4.7) on the interval [nT, (n + l)T). Since the controls ih(T, x(t»,

i = 1, ..., r are constant over each interval [nT, (n + l)T), n = 0,1,2, ..., these can be regarded as

parameters ai E IR, i = 1, ... , T, yielding a parametrized extended system

r

X = L 9i(x(t»ai, ai d~ Vi (T, x(t», t E [nT, (n + l)T)
i=l

(4.28)

•

The task of the open Ioop control problem is to generate the time varying part of the feedhack con­

troIs Ui(X, t), i = 1, ..., m,50 that the trajectories of the original system (4.1) with controIs U ù and

the parameterized controlled axtended system (4.28) intersect periodically with a freequency liT,

for sorne fLxed T ~ Tmax , where Tmax is the constant whose e..xistence was established in Proposition

4.2. An open Ioop "trajectory interception" problem (TIF) can now be posed as follows:

TIP: For a fLxed value of the time horizon T ~ Tmax , find control functions wi(a,t), i = l, ...,m,

in the class of functions which are Holder continuous in a dg} [al, ... , ar ] at zero, so that there

exist constants K> 0 and ')' E (0,1) such that for any fixed t

IWi(a, t)1 ~ Kllallî' i = l, ... , m (4.29)

for all a, and piece-wise continuous, and Iocally bounded in t, such that, for any initial

condition x(O) = x at time t s = 0, the trajectory xa(t; x,O) of the axtended, parametrized

system (4.28) intersects the trajectory X W (t; x, 0) of the original system with controls Wi,

i= 1, ... ,m

m

i; = L giwi(a, t)
i=l

preciselyat time tf = T, so that xa(T;x,O) = xW(T;x,O).

(4.30)

•
REMARK 4.1. lt is important that the solution of the TIF is independent of the "parameter" n as

weIl as the actual values of the trajectory interception points xC t s ) and x( tf ).

Employing the formalism descrihed in (62] and [52] is essential in the solution of the TIF. This

formalism, as it applies to the TIF, is briefly summarized below_
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Given a set of controls Wi : [0, Tl -r IR, i = 1, ..., m, one can find the corresponding trajectory

t Ho x(t) of (4.30), through an initial condition x(O) by first considering a formai initiai value

problem primarily stated on the algebra Â(XI , ••• , X m ) of formai power series in a set of abjects Xi,

i = 1, ... , m, called indeterminates (see [52]):

m

Set) = Set) (L Wi(t)Xi)
i=l

(4.31)

•

Since the systems considered are assumed to be nilpotent, it is actually sufficient to consider (4.31)

as an evolution equation on a nilpotent version of A.(X1 , •.. , X m ), namely A k(X l1 •.• , Xm) - the

free nilpotent associative algebra of arder k whose elements are finite series in the indeterminates

Xl, ...,Xm (in which all the monomials in more than k indeterminates are assumed to be zero). It is

then possible to define the free nilpotent Lie algebra Lk(X1 , •.•, Xm) of order k, which is a subaIgebra

of Ak(Xr, ... , Xm) consisting of those elements of Ak(X1 , ••• , X m ) which are actually Lie polynomials,

and also the set

(4.32)

where the mapping l09 is the inverse of the e:,<ponential mappingfrom Lk(X1 , ••• , X m ) to Gd"'!(l, ..., Xm)

defined in terms of the usual power series. '"'Vith this definition, Gk(X1 , ••• , Xm) is actually the con­

nected simply connected Lie group with Lie algebra Lk(Xr, ... , Xm). It is weil known (see [521) that

solutions to (4.31) exist and are unique for all times, and that the "trajectories" t r-t Set) remain in

Gk(X1 , ••• , Xml for ail times, as 1 E Gk(Xl, ... , Xm). Now it is important to note that the control­

lability Lie aIgebra, Lk(gl, ... , 9m), is nilpotent of order k. It is thus possible to define an evaluation

homomorphism (a Lie algebra homomorphism) as a mapping v : Lk(X1, ... , Xm) -r Lk(91, ... ,9m)

which maps each element of Lk(X1 , ••• , Xml into an element of Lk(91, '.',9m) by substituting any

.Xj for the corresponding 9i, j = l, ... ,m. For e.."'Cample, v([Xil' [Xi :!,."Y"i 3JD = [giIl[9i:!,9 i3J]. This

mapping extends to a Lie group homomorphism (aIso denoted by v), from Gk(X1 , ••• , X m ) to G ­

the connected simply connected Lie group with Lie aIgebra Lk (91, ..., 9m). It is weIl known, see [52],

that the function t I-t x(t), defined by x(t) d~ x(O)v(S(t» (where v(SCt» E G for all t ~ 0) is in fact

the unique trajectory of (4.30) through xCO). Furthermore, it is clear that a similar conclusion holds

for the discretized extended system (4.28) if the formai initial value problem (4.31) is substituted

by an "extended" initial value problem

•
r

Set) =Set) (L aiXi), SeO) = 1
i=l

(4.33)
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whose solution also evolves in Gk(Xl, ..., X m ) and in which the elements Xi, for i E {m + 1, ..., r}

are all members of Lk(X1, ...,Xm ) and correspond to the vector fields gj, j = m + 1, ...,r, in the

e.xtended system.

The above leads to a conclusion that the "trajectory interception" problem TIP translates into a

formal interception problem (FIP) on the Lie group Gk(X1 , ••• , Xm), stated below.

FIP: Consider the two formal initial value problems on Gk(X1 , •••,Xm ) :

SI:
r

sa(t) = sa(t) (L aiXd,
i=l

S2:
m

5W(t) = SW(t) (L wi(a, t)Xd, SW(O) == 1
i=l

(4.34)

•

where the constants ai, i = l, ... , T, of SI are known from (4.28), and in which the indeter­

minates Xm+1, ...,Xr are understood to be Lie brackets of the first X1, ...,Xm . For a fixed

time horizon T ~ Tmax , find control functions Wi , i == l, ... , m, which are Holder continuous

in a (at zero) and piece-wise continuous in t, such that sa(T) = SW(T).

REMARK 4.2. For any value of the time horizon T, a solution to FIP can always be found but

is generally non-unique. The existence of solutions folIows directly from the general theory of

accessibility (see a version of Chow's theorem for systems on manifolds in [105]).

A solution to FIP can be calculated in many ways. One such way, as presented in [117), is summa­

rized below.

It is a weIl known fact, see [117J, that for sufficiently small t, the solution Set) of (4.31) or (4.33)

can be represented as a product of exponentials, 50 that

(4.35)

•

for all t E BCO; E), where € > 0 is a small constant, where the elements BI, ..., B p constitute a

finite basis for Lk(XI , ... , Xm), and (tl , ... , t p ) is a real vector (dependent on t). Moreover, it can

he shown, see [117J, that because the algebra Lk(XII .."Xm ) is solvable (which is the fact since

Lk(X1 , .•• , Xm) is nilpotent), it is possible ta select an ordered basis of Lk(XI , ••• , Xm), snch that

representation (4.35) is global (holds for any t). Without the 1055 of generality, it can be assumed

that the indeterminants Xl, ..., X r form a such basis for Lk(X1, ... , Xm), and that V(gi) == Xi, for

i == 1, ... , r. It follows that each Set) has the unique representation:

(4.36)
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where the real functions t t-+ 'YiCt), i = 1, ..., T, are known as "the logarithmic coordinates" of Set).

For a given set of controls ai, i = 1, ..., T, the evolution of the corresponding logarithmic coordinates

of sa(t), t 2: 0, can be determined easily. Since (4.36) is required to satisfy the formai extended

equation (51), then the Ieft hand side of (81) is (omitting e..xplicit time dependence):

(4.37)

It would then be desirable to collect the common factor e1' l X 1 ••• e'Y..x .. on the left 50 as ta be able

to equate coefficients of the basis elements }(i, i = l, ... , r on both sides of (SI). This is however

complicated by the fact that the Xi generally do not commute ([Xi, Xi] i= 0 for i i= j). A variation

of the Campbell-Hausdorff formula turns out helpful to overcome this difficulty :

for any t, where the symbols ad on the right hand side are defined recursively by:

• a~B=B, adk+1B = [A adk B]A 'A' for k = 1,2, ...

C4.38)

(4.39)

Since Lk(X1 , ••• ,JYr ) is nilpotent, (4.38) can actually be re-written as a finite sum:

r

e'x. Xj = L c;iXl etX•

l=l

(4.40)

where c;i are computed from (4.38). This formula allows to move the Xi past the e"f·Xi in (4.37)

and collect the common product of exponentials on the left. Equating coefficients of JYI l ••• , X r

in the formai equation (SI) so transformed, yields a set of ordinary differentiaI equations for the

logarithmic coordinates rI, ..., fr, which have the form:

(4.41)

•
where the Fi, i = 1, ...,T, are analytic functions of rt d~ Crl(t), ... ,rr(t» and a d2 (al, ... ,ar ). The

initiai condition for (4.41) is clearly 'YI (0) = ... = rr(O) = 0, because sa CO) = 1. It is also clear

that a similar set of equations can be obtained for the formai system 82 with unknown controls Wi,

i = 1, ..., m, and differs from (4.41) only in that the controis a = (al, ..., ar ) need to be substituted
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de! ( )by Wt = (Wl(a,t), ...,Wm a,t ,0,0, ..,0):

(4.42)

•

The solution of the FIP, as re-stated in the logarithmic coordinates, is then an ordinary trajectory

interception problem for systems (4.41) and (4.42) satisfying zero initial conditions, and can be

solved by different methods.

The method adopted here is the following. The solution to the FIP can often be obtained by impos­

ing that the Wi are some linear combinations of a set of known time functions Ûlk(T, t) k = 1, ... ,l,

50 that Wi(t) = L~=l bk,i(a)Wk(T, t) for i = 1, ..., m. The unknown coefficients bk.i(a) can be found

in terms of the known parameters ai by solving the equations (4.41) and (4.42) symbolically and

comparing the solutions at time T and should be Holder continuous in a at zero. An example illus­

trating such procedure is presented at the end of this section.

REMARK 4.3. It is perhaps desirable ta seek solutions of FIP in the subspace of C[O, Tl, ë[O, T] d~

{I E C : 1(0) = J(T)}, consisting of functions with equal end-points. As ",ill soon become c1ear,

such restriction of the class of admissible Wi 's leads to feedback contraIs which are continuous in

t. The result contained in [103] seems helpful for this purpose as it establishes that "motion" in

Lie bracket directions can be realised with an arbitrary precision using contraIs which are linear

combinations of sinusoidal functions of adequately chosen frequencies, which are members of ë[O, TI.
The e..xamples considered later demonstrate this possibility.

3.3. The time varying stabilizing feedhack

For any given T ~ Tmax, where Tmax is the ma.ximal discretization step defined in Proposition 4.2,

let a solution to the TIP be denoted by wk(T, a, t), t E [0, Tl, k = 1, ..., m, and be of the form:

1

wi(T, a, t) =L bk,i(a) wk(T, t),
k=l

Its substitution into (4.30) yields a system:

i = 1, ... ,m (4.43)

•
m

Lgi(X)wi(T,a,t - ta)
i=l

m 1

Lgi(X) L bk,i(a(x»wk(T, t), t E [ta, ta + T], x(ta) = Xa
i=l k=l

(4.44)
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This suggests the following definition of a time-varying feedhack law for the original system (4.1):

1

Ui(t, x) dg! L bk,i(a(v(T, x»ÛJf(T, t), i = 1, ..., m, tE [ta, 00)
k=l

where w{' denote periodic continuations of Wk, given by

wf(T, t - ta) dg! wk(T,t - ta - nT), tE [ta + nT, ta + (n + I)T ),

(4.45)

•

foral1n=0,1,2, ... , k=l, ... ,l (4.46)

The following stabilization result folIows readily.

THEOREM 4.1. Let T be such that the extended system using discretized controls is exponentially

stable with a desired region of attraction C. Under hypotheses HO-H2, a solution to the TIP problem

exists and the original system (4.1) with feedback control defined by (4.45) is p-exponentially stable

with the same region of attraction C.

Proof. The existence of solutions to the TIP folIows from Remark 4.2.

Without the loss of generality, let C be a level set of V - the Lyapunov function for the e..x:tended

system. Let (ta, xa) E 1R+ xe be arbitrary and denote by x(·; ta, xo), and x(·; to, xa), the trajectories

of the original system (4.1) using feedhack control (4.45), and the e..xtended system with discretized

control (4.7), through (to,xo), respectively. Due to assumption HO, and because the functions ai,

i = 1, ... , r, are piece-wise constant along the trajectories of the e..x:tended system, the trajectories x

and x e..x:ist and are unique for ail times.

From the discussion of the previous section it follows that :

x(to + t; to, xo) = xov(SW(t» and x(to + t; to, xo) = xov(sa(t», t E [0, Tl

and since sa(T) = SW(T), then

x(to + T; ta, xo) = x(to + T; ta, xo) E C

(4.47)

(4.48)

Since the extended system with discretized control is e..x:ponentially stable with Lyapunov function

V, there exists a constant f > °such that

(4.49)

•
By construction, for any fixed initial point (to, xo) E JR+ x C the corresponding feedhack con­

troIs Ui, are linear combinations of the time functions wi(T,·) with constant coefficients bk,i(a) =
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bk,i(u(T,xo» for all t E [to,to + Tl· Rence Ui(t,X) =Ui(t,XO) for t E [to,to + Tl. Let t t-+

X exp(t L~l giui(r, xo)) denote the integral curve of the original system (4.1) through the point

(to,x), with control Ui(·,XO). Consider the rnapping: (t,x) t-+ x exp(tL:::lgiUi(T,XO)) on the do­

main [to, 00) x IRn. By virtue of the definition of the control Ui (., xo), and completeness of the vector

fields g1, ... ,gm, this rnapping is at least continuous, as it is a composition ofsmooth mappings and

in fact can be equivalently expressed by

(t, x) t-+ x v(SU(t» = x v [exp (-y1(t, xo)..-Y"tl e.Xp( fret, xo)Xr ))

= x e.XP(;1(t,xo)v(XIl) e.xp(;r(t,xa)v(Xr ))

= x e.xp(;l(t,XO)gr) ... exp(1'r(t,xo)gr) (4.50)

where Su is the solution of a corresponding formai initial value problem on a group Gk(X1 , ••• , X r)

with v(X"d = gi, i = l, ..., r, and controls ui(T, xa), i = 1, ... , T (the corresponding logarithmic

coordinates;i are smooth functions of the time t and depend on Xa via ui(T,xo»).

Rence, the image of the compact set [to, ta + Tl xe under this mapping is a subset of some compact

ball B(O; p) c IRn. It follows that

and for any (ta, xo) E JR+ x C. Let NIg and Lv > 1 be: a cornmon bound for gi, i = l, ... , m, and a

cornmon Lipschitz constant for ail vk(T, x), k = l, ... , T, on B(O; pl, respectively. Further, let K > 1

and Pk,i > 0 be the Rolder constants for the bTc,i' i = 1, ... , m, k = 1, ... , l. Finally, let Wb k = l, ... , l,

be bounded by Mc on [0, T]. Then

• x(to + t; to, xo) E B(O; pl, for all t E (ta, ta + T], (4.51)

xE B(O; 1)

x ~ B(O; 1)
(4.52)

•

for i E {l, ... ,m}, k E {l, ...,l}, and ail x E B(O,p), where

p~ min{Pk,i' i E {l, ..., ml, k E {l, ... , l}}

Rence the integral curve x(t; to, xo), for t E [to, ta + TI, can be bounded as follows :

IIx(to +t;to,xo)11 < IIx oll
m to+t 1

+ L1 119i(x)11 L Ibk,i(a(x»)lIwk(T, T)ldT
i=l ta 1:=1

(4.53)

(4.54)
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in which f.L(XO) = P if Xo E B(O; 1), and /L(xo) = 1 if Xo t:/ B(O; 1). Since for all x E !Rn,

2Àmin llxl1 2 ~ V(x) ~ 2Àmax llxll2 , then there exists a constant NI > 1 such that

V(x(to + t; to,xo» ~ !vI V(xo)Jl(xo) (4.55)

•

•

for all tE [ta, ta +T], and all (to,xo) E JR+ X C. Equations (4.49) and (4.55), together with Lemma

4.1, prove that the original system (4.1) with controIs (4.45) is p-exponentially stable with region of

attraction C. •

REMARK 4.4. An obvious question comes to mind and is concerned with determining the effect of

reversing the discretization of the feedback function v(x), a posteriori to the design, which involves

substituting the piece-wise constant functions (.zh(x» by their continuous counterparts Vi(X) (in

which v(x) is the smooth feedback for the e.."'Ctended system). If, additionally, the solution to the

FIP is sought in the class of continuous functions with equal end-points, then the resulting feedback

law is continuous in t and smooth in x. Since the e."'Ctended controlled system has strong stabilizing

properties (the rate of exponential stability can be adjusted arbitrarily), it is natural ta expect that

the robustness margin of the extended system can compensate for snch difference in the values of

the functions vi. The latter is indeed confirmed by numerous simulation experiments, which show

that asymptotic stabilizing properties of the feedback (4.45) using continuous instead if discretized

controls, are preserved (with the proviso that the discretization step T is sufficiently small and the

magnitudes of the solutions to the FIP increase with T at a rate not exceeding that of T-P, for

p E (0,1». A quantitative assessment of the influence of such reversal to continuous feedback on

the rate of stabilization is technically involved and will not be presented here.

4. Examples

In this section, the application of the trajectory interception approach is demonstrated on some

examples of drift free systems characterized by nilpotent controllability Lie algebras.

4.1. Time varying stabilizing feedhack control for a system with five state vari­

ables and three controls

The example considered below represents a drift free system of control deficiency order two whose

controllability Lie algebra is nilpotent. This example is general enough to illustrate the procedure

for deriving the equations describing the evolution of the logarithmic coordinates of Hows.
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The equations of the system are given by

where,

X5

=

=

-X4 0 r 0
-Xs 0 0

1 Ul + 0 U2 + 0 U3

0 1 0

0 0 1

gLUI + 92U 2 + g3u 3

a a a
-X4 --Xs -+-

aXI aX2 aX3

a a
- g3(X) =-a
aX4' Xs

(4.56)

•

To satisfy the LARe condition, we need to calculate the following Lie brackets:

g4(X) d~ a
[gl,g2J(X) == a-

Xl

d!l a
9s(X) [gl,g3J(X) = a-

X2

which yields

for ail x E lRs

The Lie brackets multiplication table for L(gl, 92, 93) is:

(4.57)

[gl,g2} = 94

[94,95] == 0 (4.58)

which shows that the controllability Lie algebra L(91, g2, 93) is nilpotent. The e..xtended system can

he defined as :

and the contraIs are taken to be

(4.59)

deI
Vi(X) == -L9i V(x), i = 1, ... , 5, with V( ) d!U 1 T X E mS

X - 2X X, (4.60)

•
which give the following e..'\..~ended system with discretized contraIs:

(4.61)
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with ai = ih(T7 xL i = 17 •••5. The formai equation for this system becomes:

5

Set) = Set) (2: Xiad
i=l

SeO) = [

(4.62)

(4.63)

where each Xi corresponds to Yi, i = l, ..., 5, via an eva1uation homomorphism v. The solution of

(4.62) is assumed in the forro:

5

Set) = II exp('Yi (t)Xd
i=l

(4.64)

and the logarithmic coordinates, 'Yh i = 17 ••• ,5, are computed as follows. Expression (4.64) is first

substituted into (4.62) which yields:

(4.65)

•
where

Employing the Baker-Hausdorff formula:

gives

(4.66)

•

Similarly

(4.6ï)
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Substituting (4.66) and (4.67) into equation (4.65) and comparing the coefficients of Xi 1 i = 1, .., 5~

yields the following equations for the evolution of the logarithmic coordinates "Yi, i = 1, ...,5:

..ys + "Yl1'3 =as

with initial conditions "Yi(O) = 0, i = 1, ..,5, corresponding to the identity in (4.63). The latter is

easily soived with respect to 'YI, ..., 1'5, yieiding:

..yI = al

1'2 = a2

1'3 = a3

• (4.68)

The TIP in logarithmic coordinates now takes the form of a trajectory interception problem for the

following two "control systems":

CSl: ..y3 = a3

1'4 = -"Yl a2 + a4

..ys = -"YI a3 + as

CS2:

1'1 =Wl

1'3 =W3

1'4 = -"YIW2

1'5 = -rlW 3

•

with common initial conditions "Yi(O) = 0, i = 1, .. ,5.

The controis wi(a, t), i = 1,2,3, can be sought in the form

Wl = bl + (b4 + bs ) sin(:; t)

21ï
W2 = b2 + b4 cos(Tt)

21r
(4.69)W3 = b3 + bs cos(Tt)
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where bi, i = Ir "r 5 are sorne unknown coefficients. The above are substituted into CS2r and the

systems CS! and CS2 are integrated symbolicallYr to yie1d respective solutions ')'a(T) and rW(T)

in terms of parameters a and b. The equation ra(T) = r W(T) is then aIso solved symbolically to

deliver the values for the unknown coefficients bi(a), i = 1, ...,5 as functions of the control parameters

which reflects that two solutions were found.

In this and all further examples, at the implementation stage of the final feedhack control, ail the

terms invoiving square roots of the extended discretized contrais air such as .;air must naturally be

substituted by sign(ai)Vj(iJ.

The time varying stabilizing contrais are then finally given by

ul(Trx)
27r

= ih (Trx) + {b4 (v(T, x» + bs(v(Trx»} sineTt)

u2(T, x)
27r

= v2(T, x) + b4 (v(Trx» cos("Tt)• u3(T, x)
27r

(4.ïO)= v3(T, x) + bs(v(Trx» coseTt)

The above controIs, as applied ta the system model (4.56), result in controlled trajectories t H

Xi(t)r i = 1, ..., 5r depicted in Figure 4.1. Plot of the "Lyapunov function'r V along the controlled

trajectories and plot of X3(t) versus X4(t) is shawn in Figure 4.2.

4.2. Time varying stabilizing feedhack control for a unicycle in chained forIll

This example is a particular case of a three dimensional system in chained forma Systems in chained

form have the important property of being characterized by nilpotent controllability Lie algebras.

The model of a unicycle in chained form is given byequation (1.19) of Chapter 1 and represents a

system with control deficiency order one. The controllability Lie algebra L(gl r92) for this system

is nilpotent: as can be verified by inspection of the following Lie brackets multiplication table for

L(gl,g2) :
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FIGURE 4.1. Five dimen.sional drift free system: Plots of the controlled state trajectories
t 1-+ (Xl (t) , ... , Xs (t)) versus time.
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FIGURE 4.2. Five dimensional drift free system: Plots of the controlled state trajectories
X3(t) versus X4(t) and the Lyapunov function V(x(t)) = ! L~=l xr(t) along the controlled
state trajectories.
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The extended system can thus he defined as :

and the e..xtended controIs can he defined by:

(4.72)

de!Vi(X) = -Lg , V(X), i = 1, ...,3, \V-ith V( ) de! 1 T X E JR3
X = 2"x X, (4.73)

and result in the following discretized extended system:

where ai = ih(T, X), i = 1,2,3.

(4.74)

Proceeding similarly as in section 4.1, the equations describing the evolution of the logarithmic

coordinates of the fiow of this system can be found :

'Yl = al

'Y2 = a2

• 'Y3 = -rla2 + a3, ri(O) = 0, i = 1,2,3 (4.75)

The TIP in logarithmic coordinates thus takes the [orm of a trajectory interception problem for the

following two control systems:

CSl: !'Yl = al

'Y2 = a2

'Y3 = -"YIa2 + a3

CS2 : !'Yl = Wl

'Y2 = W2

'Y3 = -rlW2

(4.76)

with cornmon initial conditions "Yi(O) = 0, i = 1,2,3.

The controis wi(a, t), i = 1,2 can he sought in the form

(4.77)

The time varying stabilizing controis for the unicycle in chained form are finally given by

•
ul(T,x) = ih(T,x) + b3(v(T, x» Sin(:;t)

21r
= v2(T, x) + b3 (v(T, x» COS ( Tt) (4.78)
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FleURE 4.3. Unicycle model in chained form: Plots of the controlled state trajectories
t ~ (XL (t), X2(t), X3(t)) versus time.
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FIGURE 4.4. Unicycle model in chained form: Plots of the controlled state trajectories
XL(t) versus X2(t) and the Lyapunov function V(x(t)) = ~ E~=l x;(t) along the controlled
state trajectories.
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FIGURE 4.5. Brockett's system: Plots of the controlled state trajectories t 1-+

(XI(t), xz(t), X3(t)) versus time and the Lyapunov function V(x(t)) = t E~=l x~(t) along
the controlled state trajectories.
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FIGURE 4.6. Brockett 's system: Plots of the controlled state trajectories Xl Ct) versus X2(t),
X2(t) versus X3(t), and X3(t) versus Xl(t).
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The controls given in (4.78) are ready to apply to the system model (1.20), and produce results

depicted in Figures 4.3 - 4.4.

4.3. Time varying stabilizing feedhack control for Brockett's system

Brockett's system whose equations of motion are given in (1.16) of Chapter 1 is another famous

example of a three dimensional drift free system which does not, however, appear in a chained form.

The controllability Lie algebra L(Y1' g2) for Brockett's system is given by (1.16) of Chapter l, and is

nilpotent. The equations for the evolution of the logarithmic coordinates of the flow of this system

are the same as the ones given in (4.75). This is because the controllability Lie algebras of the

unicycle and Brockett's system are isomorphic. The following controls with k = 2 and T = 0.8 are

used in simulations:

u1(T, x)
2rr

- k lh (T, x) + b3 (v(T, x)) sin (Tt)

21r= k v2(T, x) + b3 (v(T, x») COs( Tt) (4.79)

•

•

where, b3 = ±3.54491.jëa3)/ y/(T). Simulation results are shown in Figures 4.5 - 4.6.

5. Time varying feedhack for general systems

In the case when the algebra of vector fields L(gr, ... , gm) is not nilpotent, the TIF or, equivalently

the FIP, cannat be solved exactly, since the basis for L(gr, ... , 9m) is then not necessarily finite. It is

possible often, however, to solve the FIP "approximately" as will be explained shortly. The success

of the approximate approach relies on the ability to construct a type of nilpotent approximation to

the original system which is defined below.

DEFINlTION 2. (Approximately nilpotent system) A system :i; = L~1 gi(X)Ui, with a non­

nilpotent controliability Lie algebra L(g!, ... , gm) is said to be approximately nilpotent if the vector

fields can be approximated by their troncated Taylor series expansions g1' ...,gm at zero in such a

way that the controllability Lie algebra Lk(gl, ... ,Ym) for the approximate system :i; = L~l giui

is nilpotent of sorne order k, and, additionally, the Lie brackets multiplication tables for both Lie

algebras are identical for all brackets of depth up to k.

Once an approximately nilpotent substitute for the original system is selected, the FIP problem can

be solved for the approximate system, and produces a kind of approximate solution to the original

TIF. The computation of such an approximate solution to FIP clearly does not differ from the one

discussed above but the trajectories of the extended and the original system with time v-arying
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feedhack are no longer guaranteed to intercept with frequency liT. lt is therefore not entirely

clear whether the stahilizing properties of the constructed time varying feedhack are preserved. To

answer this question we make use of a result from [521 which delivers an error estimate for open

loop steering while neglecting higher arder Lie hrackets. This result is relevant also to our analysis

hecause, loosely speaking, the controllahility Lie algehras L(gl, ... ,gm) and Lk(Yl, ... ,Ym) differ only

in the hrackets of depths higher than k. The aforementioned result, adequately interpreted in the

context of the TIP, can he restated as follows.

THEOREM 4.2. [52} Suppose that the algebra of vector fields L(gl, ..., gm) is not nilpotent but that the

FIP is still solved on a Lie group Gk(X1 , ••• , -J'Yr ) of order k < 00, using the structure of the nilpotent

approximation Lk (Yl, ... , 9m) of the original L(gl, ..., 9m). Let w denote such an approximate solution

to the FIP, and let t ....-+ x( t; ta, xa) and t ....-+ x(t; ta, xa) denote integral curves, through (ta, xa), of the

extended system with discretised control, and the original system (4.1) with the time varying feedback

incorporating W, respectively. Further, let xr dg! x(ta + Tj to, Xa) , and xr dg! x(to + T; ta, Xa).

Finally, let n be a bounded region in !Rn. Under these conditions, there exists a function F

[0, co) -t [0,00], which is finite and bounded near zero, such that if xo, Xr E n, ta ~ D, then

(4.80)

The stahilizing properties of the time varying feedhack control incorporating an approximate solution

to the FIP can now he specified.

COROLLARY 1. Suppose that the hypotheses HO-Hl are valid but the controllability Lie algebra

L(gl, ... ,gm) is not necessarily nilpotent. Let iü denote an approximate solution to the FIP, as

obtained in Gk(Xl , ... , XmL for some finite k. Then for any given level set C of the Lyapunov

function V for the extended system, there exists a T* > a such that the time varying feedback using

a discretisation step T ~ T*, and incorporating w: is p-exponentially stabilizing for the original

system (.f.l), with region of attraction C.

Proof. Proceeding similarl)r as in the proof of Theorem 4.1, let t ~ x(t; to, xa) and t ....-+ x(tj ta, xa)

denote the integral curves of the extended system (4.7), with discretized controls, and the original

system (4.1) "rith the time varying feedback (4.45) employing an approximate solution w to FIP,

respectively. (The dependence on the initial conditions of x and x will he omitted, when it is clear

from the context.)

As the extended system is Lyapunov stable with Lyapunov function V, there e.xists a closed hall

B(O; p), p > 0, which contains all the trajectories x(t; ta, xo), t ~ ta, as (ta, xo) ranges over JR+ xC.
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Additionally, there exists a constant 'Y > 0 such that for any T > 0, and any (to, xo) E /R+ xe

(4.81)

Let Mg and Lu be: a cornmon bound for gi, i = 1, ..., m, and, a common Lipschitz constant for

Vk, k = 1, ..., r, on B(O; p), respectively. The following estimates are immediate :

and

Ilx(to + T; to, xo)1I ~ IIx(to + T; to,xo) - xoll + IIxoll ~ (1 + cT)lIxoll

(4.82)

(4.83)

which hold for any (to, xo) E /R+ x C, and any T > o. For brevity, let xT dg! x(to + T; to, Xa),

XT d~ x(to +T;to,xo), and aIso .t1xT d~ XT -XT. From (4.81) it follows that:

•
V(X(to +T;to,xo» = V(XT) + (V(XT) - V(XT»

1 1
~ e--rTV(xo) + 2(XT + ~XT)TQ(XT + D.XT) - 2(XT)TQxT

1
~ e-ï'TV(xo) + (D.XT)TQXT + 2(D.XT)TQ.6.xT

~ e--rTV(xo) + IIQII(l/xTIIIIL\xTII + ~1I~xTI12) (4.84)

Let 8 E (0,1) be such that the function ç ~ F(ç) of Theorem 4.2 is bounded by sorne constant },tIF

for ç E [0,8]. Let Tl be such that

1

max{cTI , T l2 }lIxol/ ~ 8 for all Xo E C (4.85)

(such a Tl exists because C is bounded). Then, by virtue of the definition of .6.xT, equation (4.82)

and the result of Theorem 4.2

Il.6.xTII ~ MFllx(to + T; to, xo) - xoll l + t

~ MFcl + t TI+~lIxoll (T!l[xoll)t ~ AtIFCI +/; T1+*lIxoll (4.86)

for all T ~ Tl, and all Xo E C, as 8 < 1. Using (4.82) and (4.83), the "error" on right hand side of

(4.84) can thus be bounded as follows:

•
1

I/QII(ll x rllllL\xTII + 2".6.xT II2)

~ NIFCI + t (l + cTr) TI+~lIxoW + iM~C2+~ T2+/;lIxoIl2 (4.87)
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for all T ~ Tl, and (to,xo) E IR+ xC. Since V(x) ~ 2Àmin (Q)llxIl 2
, then (4.84) and (4.8ï) imply

that there e.xist constants NI, lV2 > 0 such that

V(x(to + T; to, xo» ~ f(T)V(xo)

(4.88)

Clearly, 1(0) = 1, and J'(O) = -"Y < 0, 50 f is decreasing in some neighbourhood of zero. It follows

that there e."rists an inten'al (0, T-], T- < Tl, such that J(T) < 1 for all T E (0, T-]. Rence for any

fixed T E (0, T-I there exists a {3 < 1 such that

V(x(to + T;to,xa» ~ {3V(xo) (4.89)

•

for al! (to,xo) E JR+ xC. Inequality (4.89) implies that the original system, using the time varying

control with ùh and discretization step T < T-, satisfies condition (a) of Lemma 4.1 in the region C.

To show that condition (b) of this Lemma is also satisfied, we proceed similarly as in the proof of

Theorem 4.1. Let t 1---+ X exp(t L~l 9iui(r, xa» denote the integral curve of the original system

(4.1) through the point (to,x), with feedback control given by (4.45), in which Wi are replaced by

ùiï and ih(T, x), are constant and equal to vi(T, xo), i = 1, ..., r. By the definition of the time

varying feedback control Ui, and completeness of the vector fields 91, ... , gm, the mapping : (t, x) 1---+

x exp(t L~l 9iUi(T,Xa», with the domain [to, 00) xIRn, is continuous, as a composition of continuous

mappings (see (4.50). Consider a fixed value of T E (0, T-], and let the image of the compact set

[to, to + TI xC under this mapping be contained in 13(0; p) (the radius p can always be chosen large

enough to ensure this). It follows that

x(to +t;to,xo) E Ë(O;p), for aIl t E [to, ta + Tl, (4.90)

and any (to, xo) E 1R+ x C. Let Mg and Lv > 1 be: a common bound for 9i, i = l, "', m, and a

Lipschitz constant for aIl the feedback control functions Vk, k = l, ... , m, on B(O; pl, respectively.

Further, let tih, i = 1, ... , l be bounded by }vIc on [0, TI (regardless of the value of T). As before, (see

(4.52» the functions bk,i can be bounded by :

xE B(O; 1)

x ~ B(O; 1)
(4.91)

•
for all i E {l, ... , ml, k E {1, ... ,l}, and all x E C, where

P d~ min{Pk,i' i E {l, ..., m}, k E {I, ...,l}} (4.92)
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and K andpk,i are the Holder constants for bk,j. Rence the integral curve x(t; ta, xo), for tE [to, to+T]

can be bounded as follows :

(4.93)

in which JL(xo) = p if Xo E B(O; 1), and Jl(xo) = 1 if Xo E B(O; 1). It follows from the definition of

V that there e..xists a constant lvI > 1 such that

V(X(to + t; to,xo» ::; !vI V(xo)Jl(xo) (4.94)

•

•

for ail t E [ta, ta + Tl, and all (to,xo) E IR+ x C. Equation (4.94) shows that condition (b) of

Lemma 4.1 is satisfied 50 the original system controlled by (4.45), with Wi substituted by wÎt is

p-exponentially stable with region of attraction C. •

6. Examples of tim.e varying control of non-nilpotent systems

The procedure described above, and involving nilpotent approximations in the sense of definition 2,

is applied ta stabilize several drift free systems whose controllability Lie algebras fail to he nilpotent

: a unicycle, an underwater vehicle [66], a rigid spacecraft in actuator failure mode [701, a class of

wheeled mobile robots [70], and a hopping robot in flight phase [84J.

Simulations confirm that the error in the solution of the open-loop problem, resulting from a nilpotent

approximation, can be compensated (without prejudicing stabilization) by adjusting the stability

robustness margin of the feedback control for the e.xtended system.

6.1. Time varying stabilizing feedhack control for a unicycle

Using the idea of nilpotent approximation, the trajectory interception approach can be successfully

applied to control a unicycle without converting the model into a chained form.

The kinematic model of a unicycle is given byequation (1.17) of Chapter 1, and satisfies the LARC

condition:
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a• where

gl(X)

g3(X)

= ( ) a. a
g2 x = cos Xl -a +s~n Xl -

aXI' X2 aX3

[gbg2](X) = -sin Xl aa + cos Xl aa
X2 X3

The first three terms of the Lie brackets multiplication table for L(gl, g2) are:

(4.95)

and confirm that L(gr,g2) is not nilpotent. The following approximation to the original model (1.17)

is therefore considered:

(4.96)

where

The Lie brackets multiplication table for L(gl, g2) is now:

(4.97)

gl(X) =

•
which shows that L(Yl, 92) is nilpotent of order 2 and its structure coincides with that of L(gl, 92)

for brackets up to order 2. The extended system for the original model is :

(4.98)

and the extended controls:

dei
Vi(X) = -Lgi V(X), i = 1, ... ,3, with (4.99)

give the following discretized ~"Ctended system:

(4.100)

where ai = ih(T, X), i = 1,2,3.

•
The differential equations describing the evolution of the logarithmic coordinates of the flow of the

nilpotent approximation (4.96) are obtained easily and are obviously iclentical to those of sections
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4.2 and 4.3, Le.

(4.101)

The TIF in logarithmic coordinates is hence a trajectory interception problem for the folIo~ing two

control systems:

CS! :
{

"YI = al

"Y2 = a2

"Y3 = -'Yl a 2 + a3
{

"YI = Wl

CS2: 'h =W2

"Y3 = -'YIW 2

(4.102)

with cornmon initial conditions 'Yi(O) = O! i = 1,2,3.

The controls Wi (a, t), i = 1, 2 can be round by assuming :

and the unknown coefficients bi(a), i = 1,2,3 are computed analytically as:

•
Wl = b1 + b3 sin(:; t), (4.103)

and are identical to those in (4.77). The time varying stabilizing controis for the unicycle are :

Ul (T, x) = ih(T, x) + b3 (v(T, x» sin(:; t)

2«
= ii2(T, x) + b3 (ii(T, x» cos(Tt) (4.104)

•

Simulation results are shawn in Figures 4.7- 4.8 and clearly confirm the result obtained in Corallary

L The trajectories of the controlled unicycle are similar to those of (Figures 4.3 - 4.4) which were

obtained by converting the system modei into a chained form a priori to control design.

6.2. Time varying feedhack stabilizing control for a rigid spacecraft in actuator

failure mode [68]

This e..'"Cample demonstrates the applicability of the trajectory interception approach when the system

under consideration is defined on a manifold rather than in a linear space, and is characterized by

a non-nilpotent Lie algebra.

The kinernatic model of a rigid spacecraft in actuator failure mode as given by (3.93) of Chapter 3, is
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controllable on a manifold M defined by (3.94). The Lie brackets multiplication table (3.95) shows

that the Lie algebra L(91' 92) is not nilpotent. The approximate model can be taken to be that

of (3.96), for which the Lie brackets multiplication table (3.98) establishes nilpotency. As the Lie

aIgebraic structure of the nilpotent approximation is the same as that of a unicycle, the equations

for the evolution of the logarithmic coordinates are again given by (4.101) and the controis are of

the same form as those of (4.104).

The simulations results are shown in Figures 4.9 - 4.11.

6.3. Tim.e varying stabilizing feedhack control for an underwater vehicle [66]

This e..xample demonstrates that the trajectory interception approach is aIso successful when applied

to non-nilpotent systems with higher order of control deficiency. The Lie brackets multiplication

table for the controllability Lie algebra L(91' 92, 93, 94) for the underwater vehicle is computed pre­

viously in (3.82) of in Chapter 3, and clearly shows that the controllability Lie algebra fails to be

nilpotent. The following approximate model i5 adopted by using truncated Taylor series of order

one for the vector field 91 and of order zero for the vector fields 93 and 94, (each evaluated at zero):

• Xl 1 0 0 0

Xz xij 0 0 0

X3 -xs 0 0 0
Ut + Uz + U3 + U4

X4 0 1 0 0

Xs 0 0 1 0

X6 0 0 0 1

d~ 91(X)UI + 92(X)U2 + 93 (X)U3 + 94 (X)U4 (4.105)

where, 9l(X)
a a a

9z(X) = aa ,- -+ Xij --- Xs-
aXl axz aX3' X4

93(X)
a

94(X) = aa= ,
axs X6

The approximate system i8 controllable as it satisfied the LARC condition:

where the vector fields 9s(X) and 96(X) are given by :

•
- ( ) de! [- - J() a95 x = 91,93 X = -a'

X3
_ ( ) de! [_ _]() a
96 x = 91,94 X = --a

x2
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The Lie brackets multiplication table for L(Yl, Y2' Y3' Y4) is:

(4.106)

The extended system for the original model (3.79) can be defined by:

and the e."Ctended controIs:

(4.107)

deI
Vi(X) = -Lgi V(X), i = 1, ... , 6!

give the following discretized e.xtended system:

with V( ) deI 1 T X E JR6
X = 2'X x, (4.108)

where ai = Vi (T, x), i = 1, ...6. It can be verified that the equations for the logarithmic coordinates

are given by:

• ..yl - al

..y2 - a2

..y3 - a3

..y4 - a4

..ys - -,la3 + as

..y6 -,la4 + a6, li(O) = 0, i = 1, ..,6

(4.109)

(4.110)

so the TIP in Iogarithmic coordinates is a trajectory interception problem for the following two

control systems:

•
CSI :

"h =a3

1'4 = a4

1's = -"YI a3 + as

1'6 = -"Yla4 + a6

CS2:

..yl = Wl

1'3 = W3

1'4 = W4

..ys = -"Yl W3

..y6 = -"Y1W4
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with comillon initial conditions "ti(O) = 0, i = 1, ..,6.

It is reasonable to seek the contraIs wi(a, t), i = 1, ...,4, in the following form :

. 21r 21r
WI = bl + bs s~n(Tt) + bij cas( Tt), W2 = b2

21r _ 27ï
W3 = b3 + bs cas (Tt), W4 = b4 + bij 51.n( Tt)

The constants bi, i = 1, __ ,6 cao be computed as:

bs = ±3.54491J(as)/VCT)

b6 = (0.5(2a I T 2 ± Je -50.2655a6T3 + 4aîT4»)/(T2)

The time varying stabilizing contraIs for underwater vehicle modei are hence given by

e4.111)

uI(T,x) =
u2(T, x) =
u3(T, x) =

• u4(T,x) =

_ 27ï 21r
ih(T, x) +b5 (v(T,x» s~n(Tt)+ b6 (v(T, x» cos(T t )

v2(T, x)

27ï
v3(T, x) + bs(v(T, x» cas(Tt)

ü4(T, x) + bij(v(T, x» sin(:; t) (4.112)

•

Simulation results are depicted in Figures 4.12 - 4.15 and confirm the effectiveness of the approach.

6.4. Tim.e varying stabilizing feedback control for a WMR of type (2, 1)

This and the next section discuss the application of the trajectory interception approach to two

classes of wheeled mobile robots which are important in industry.

The kinematic model of a WlYffi of type (2,1) is given by (3.152) of Chapter 3 and is characterized

by a controllability Lie algebra which fails to be nilpotent (see the multiplication table (3.154». The

following approximate model:

Xl 0 0 -X4

X2 0 0 1
= UI + U2 + U3

X3 0 1 0

X4 1 0 0

d~
glUI + g2U2 + g3u 3 e4.113)
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is found ta be adequate as it satisfies the LARe condition:

(4.114)

h - dei [- - l( ) 8w ere, 94 == 91,93 X == - -8
Xl

and the Lie brackets multiplication table for L(Y1, 92,93):

(4.115)

cIearIy shows that the Lie algebra L(91' 92,93) is nilpotent.

The extended system is clearly given by :

and standard extended controIs can again be adopted :

(4.116)

These resuit in the following discretized extended system:•
deI

Vi(X) == -Lg , V(x), i = 1, ...,4, with V( ) deI 1 T X E 1R4
X = 2'x X, (4.117)

(4.118)

where ai == ih(T, X), i = 1, .. .4. It can be verified that the logarithmic coordinates for the approximate

system satisfy the following differential equations:

"YI == al

"Y2 == a2

"Y3 == a3

"Y4 == -'r1 a 3 + a4, 'Yi(O) =0, i == 1, ..,4

The corresponding control systems are:

(4.119)

with common initial conditions li(O) = 0, i == l, ..,4.•
CS1 :

71 = al

72 == a2

73 == a3

"Y4 = -'rla3 + a4

CS2:
73 = W3

1'4 == -71W 3

(4.120)
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The contraIs wi(a, t), i = 1, ...,4 are sought in the following form

WI = bl + b4 sin ( :; t), W2 = b2

21r
(4.121)W3 - b3 + bot cas( Tt)

and bl = al, b2 = a2, b3 = a3, b4 = ±3.54491 V(a4.)/ .fiT) are found.

The time varying stabilizing controls are hence given by :

uI(T,x) = ih(T,x) +b4 (v(T,x)) sin(7;t),

21r
v3(T,x) + b4(V(T, x» cas(Tt) (4.122)

•

Simulation results are depicted in Figures 4.16 - 4.18.

6.5. Time varying stabilizing feedhack control for a WMR of type (1,2) [70]

The example of WMR of type (1,2) represents a typical five dimensional system with control defi­

ciency order two and with a non-nilpotent controllability Lie aIgebra.

The kinematic model of a W11R of type (1,2) is given in (3.158) of Chapter 3 and the Lie brackets

multiplication table for its controllability Lie aIgebra is given in (3.160). An approximate model

(3.161) with multiplication table (3.163) proves sufficient in that its controllability Lie algebra sat­

isfies the conditions of Definition 2.

The extended system is dearly :

and the usuaI e.xtended controls:

(4.123)

deIVi(X) = -Lg , V(x), i = 1, ...,5,

give the following discretized ex:tended system:

with V( ) dei 1 T X E IRS
X = 2"x X, (4.124)

(4.125)

•

where ai = Vi (T, x), i = 1, ...5. The equations describing the evolution of the Iogarithmic coordinates

for the approximate system are the same as those of (4.68), as the system has the same Lie algebraic

structure as that of section 4.1. The controis wi(a, t), i = 1, ...,3 are therefore again given by (4.70).

Simulation results are shown in Figures 4.19 - 4.20.
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X3(t), and Lyapunov function V(x(t)) = t E~=l xUt) along the controlled state trajecto­
ries.
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6.6. Time varying feedback stabilizing control for a hopping robot in flight phase

[84]

This example illustrates the applicability of the trajectory interception approach to systems whose

controllability Lie algebra contains higher arder Lie brackets and fails to be nilpotent. It is also

shown that it is important that the approximate models satisfy aIl the conditions of Definition 2,

specificaIly, the Lie brackets multiplication tables for the original and approximate controllability

Lie algebras ought to agree for brackets of depth up to k - the order of nilpotency of the approximate

system.

The kinematic model of a hopping robot is stated in (3.143) of Chapter 3. The Lie brackets mul­

tiplication table (3.145) for the controllability Lie algebra of this system shows that the nilpotency

condition fails to hold.

An approximate model of the form

is therefore considered. We refer to this model as ta "approximate model 1". The latter proves to

be controllable as:•
j; = 91(X)Ul + 9Z(X)U2, xE IR3

91(X) = a 2 a
iÏ2(x) = aa--X2 -

aXI 8X3' X2

(4.126)

where, - [- -] 2 a93 = 91,92 = X2-a '
X3

The Lie brackets multiplication table for L(91, 92) is :

[91,92] = 93

[91,94] = 0

[yr, Y3] = 0

[.§Z,Y4] = 0 (4.127)

and shows that the Lie algebra L(Yl, Y2) is nilpotent.

The Lie algebraic e."'Ctension of the original system, (3.143) is taken to be :

(4.128)

•
With the usual e.xtended contraIs:

de!
Vi(X) = -Lgi V(X), i = 1,2,4, with V( ) d!U 1 T X E JR3

X - 2"x x, (4.129)
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the discretized extended system becomes :

ft can be verified that the logarithmic coordinates for the approximate system satisfy the follO\ving

differential equations:

il = al

i2 = a2

~(s = -7la2 + as, with a3 =0

i4 = 1112 a 2 + a4, li(O) = 0, i = l, ..,4 (4.131)

The third equation of (4.131), i3 = -71a2 + as, is discarded as it corresponds to the component of

the fiow along the vector field 93 = [gl: 92], which is linearly dependent with the remaining vector

fields 91, 92 and 94. Then the corresponding control systems for the TIF are hence :

•
{

il = al

CS1: i2 = a2

i4 = 11/2a2 + a4

with common initial conditions li(O) = 0, i = 1,2,4.

CS2: {

il = Wl

i2 =W2

i4 = '"'(1/2 W 2

(4.132)

Since flows of i; = [92, [91,92]] can be "approximated" by the fiows of if = 91 sin(27r~) + 92cos(21i+),

the controls wi(a, t), i = 1,2 are assumed to take the farm :

(4.133)

where bï, i = 1, 2,4 are round to be :

b1 = al, b2 = a2, b4 = (4ala2T2 ± d)/2(al + 2a27r)T2,

where, d = {-64a47r2(al + 2a27r)T2 + 16a12a22T4}1/2

The time varying stabilizing controls for the original system, (3.143), are thus given by

Ul(X) = b1(VT(X)) + b4(VT (X)) sine:; t)

T T 2;r
U2(X) = b2(v (x)) + b4(v (x)) COS(Tt) (4.134)

•
Simulation results obtained when such controls are applied to the system modeI (3.143) are pre­

sented in Figures 4.21 - 4.22. Continuous extended contraIs are used in place of vT , and the time
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horizon chosen is T = 4. Simulation e..-..cperiments confirm that the constructed time varying feedback

possesses a wide robustness margin with respect to inaccuracies in the solution to the Tll'.

A comparison result:

For the sake of comparison, we consider a different approximation to the system modeL (3.143)

which is used in [77], to construct open-Ioop controIs to steer the hopping robot to a set point. The

approximate system obtained by this approximation is in chained form:

(4.135)

•

where

ïl(X)
a 1 a - a

= -- - - x., f2(x) = a8Xl 2 - 8X3' X2

and ï3
d;j - - 8

[fl,/2] = 1/2 a
X3

It is easy to see that the above model, to which we refer as to an approximate model 2, has a

different algebraic structure. The latter is reflected by the fact that the Lie algebraic controllability

rank condition for system (4.135) involves only a Lie bracket of depth one, 50 that :

(4.136)

This Ieads to simpler equations for the evolution of the logarithmic coordinates of flows, which for

(4.135) take the following form :

(4.13ï)

•

The calculation of a solution to the corresponding TIF aIso simplifies; the controis Wl and W2 can

be obtained in following form:

Wl = b1 + b3 sine:; t)

27r
W2 = b2 + b3 cos(Tt)

where the unknown coefficients bl, b21 b3 can easily be expressed in terms of al, a2, a3. The resulting

time varying stabilizing controIs for the original system obtained by using approximate Iogarithmic
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FIGURE 4.21. Hopping robot model: Plots of the controlled state trajectories t t-+
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FrGURE 4.22. Hopping robot model: Plots of the controlled state trajectories Xl(t) versus
xz(t), and Lyapunov function V(x(t)) = t 2:~=1 xr<t) along the controlled state trajecto­
ries.
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FIGURE 4.23. Hopping robot model: Plots of the controlled state trajectories t H­

(Xl (t), ..., X3(t» versus time.

coordinates C4.137) are hence given by:

ÜICX) = b1Cv'[(x)) + b3 (v!(x)) sinC:; t)

T T 2rr
Ü2Cx) = b2 CV2 (x) + b3 (V3 (x)) cas (Tt) C4.138)

•

The contraIs in (4.138) are applied ta the original system model (3.143) for the sake of comparison

of the stabilizing properties of the contraIs derived using model 1 and model 2. The simulation

results are shawn in Figure 4.23 and dearly indicate that modei 2 is tao crude an approximation:

the contraIs based on modei 2 do not have as good stabilizing properties as those derived by using

model L
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7. Sinusoidal steering and the trajectory interception approach

Using a few examples we demonstrate here that the trajectory interception approach can sometimes

be successfully combined with sinusoidal steering.

Such combined control relies on decomposing a comple.x system model into subsystems of which

one can be controlled by the trajectory interception approach and the other by sinusoidally varying

inputs. The decomposition idea proves especially useful when the Lie algebraic structure of the

higher dimensional sub-system is sufficiently simple as to permit an easy application of the trajectory

interception approach.

The purpose of this section is not to present a rigorous strategy based on such decomposition but

rather to demonstrate that combined strategies using TIF may aIso be successful. Theoretical

investigation involving possible decomposition methods can be a topic for future research.

7.1. Stabilizing feedhack control for a WMR of type (1,1) [70]

A wheeled mobile robot model of type (1,1) represents a four dimensional systems with control

deficiency order two and with a non-nilpotent controllability Lie algebra which contains Lie brackets

of depth one as weil as depth two. Interestingly, the model of a 'VVMR of type (1,1) has a similar

algebraic structure as the model of a front wheel drive; the stabilizing control1er constructed for a

WNIR of type (1,1) can therefore also be used to stabilize a front wheel drive.

The kinematic model ofa WMR of type (1,1) is given by (3.165) ofChapter 3, in which (ZI, Z2, Z3, Z4) =

(/3, y, (), x) and (u l, U2) = (7]1,6) are defined as new sets of state and control variables :

(4.139)

91(Z) =
a

aZ1 '
92(Z) = COSZ3 sinz1 aa + COSZI aa - sinz3 sinzl ~

~ ~ a~

•

Calculating the following Lie brackets:

93(Z) d~ [91, 92)(Z) = cos ZI cos Z3 a
a - sin Z1 aa - cos Zl sin Z3 a

8
Z2 Z2 Z3

de! • 8 a
94(Z) = [92, [91, 92)J(Z) = -S7.n Z3-a - cos Z3-aZ2 z4

shows that the LARe condition is satisfied for this system :
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A few moments of refiection leads to the conclusion that e4.139) can he decomposed into the following

two subsystems:

SI:

82:

[ :~ 1= [ ~ lJ Ul + [ :. Z3 sin z, 1U2

Z3 0 cos Zl

. .. de! f( )
Z4 = -S'l.n Z3 S'zn ZlU2 = Z U2

(4.140)

(4.141)

Next we observe that defining x d~ (Zl, Z2, Z3) allaws ta re-write subsystem SI as:

!leX)

fI (X)Ul + 12 (X)U2 , x E IR3

= ~ f2(x) = cos Z3 sin Zl aa + cos Zl aaazl ' Z2 Z3

(4.142)

•

Subsystem (4.142) is controllable as it clearly satisfies:

where

de! 8 . a
fJ(x) = [fI,h](x) = cos Zl cos Z3-a - S'ln Zl -a•

Z2 Z3

It can he easily checked that the Lie algehra L(h, 12) is not nilpotent, but the following approxi-

mation to SI:

SI: x - il(X)Ul + i2(X)UZ' xE JR3

il(X)
a

-
aZl

Ï2(X)
8 8

- Zl-+-8zz 8z3

i3(X)
d~ - - 8

ffI,1z)(x) = a
Z2

gives

- - - 3 3span{fI, 12, fJ}(x) = IR, for all x E IR

and is nilpotent as shawn by the Lie hrackets multiplication table for L(il' 12):

(4.143)

•
The trajectory interception approach can thus he employed to steer SI.
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The extended system for SI is given by

(4.144)

in which Vi(X) = LI. W(x), i = 1,2,3 and W(x) = ~ E~=l zr.
The logarithmic coordinates for SI satisfy the following differential equations:

and the following controls stabilize subsystem SI

It can be seen that the control (4.145) obtained using the trajectory interception approach, steers

the original system (4.139), to any € - neighbaurhood of the manifold M' d~ {z E IR4 : Zi = 0, i =
1,2, 3}, and further decrease in the cost function V can be obtained only through system motion in

the direction of the Lie bracket g4 d~ [gl, [gl, g2]]. Such motion can be achieved only indirectly, for

example by using an open-loop control of the type :

•

Ul(X) = (vf(x) +b3 (v[(x» sin(:;t»

U2(X) = (vi (x) + b3 (v[(x)) cos(:; t»

where b3 is ±3.54491.j(v[(x))/vtT) are easily computed.

2ïr
Ul = k1sin( Tt)

41r
Uz kzcos(Tt)

where k l , kz are constants. Introducing the following definitions :

SI d~ {Z E 1R4
: Zl = Zz = Z3 = 0, Z4 i: D}

S2 d~ {z E 1R4 : Z4 = D & f (Z) = O}

= {z E 1R4
: Z4. = 0 & sin Z3 sin Zl = D}

= {z E IR4
: Z4 = Z3 = Zl = D}

(4.145)

(4.146)

•
and for any set S c IRn and any constant € > 0, let the symbol JV(S; E) denotes the liSUal

€ - neighbaurhood of S. This leads to the following feedback stabilization strategy for the orig­

inal system.
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Stabilization strategy for a WMR of type (1,1)

Repeat the steps below until sufficient accuracy is achieved in reaching the ongin:

Data: € > °
Step a: Steer the original system (4.139) ta N(Sl;€) by applying the control of (4.145).

Step b: Employ the control (4.146) until the system trajectories converge to N(Sz;€).

Step c: Set € := ~.

Three sets of simulation results are shawn in Figures 4.24 - 4.25, 4.26 - 4.27, and 4.28 - 4.29,

respectively.

Figures 4.24 - 4.25 correspond to the situation when the mobile robot is steered ta the arigin from

an arbitrary initial condition in the configuration space (specifically, the trajectories shawn were

achieved when Xo = (OA,O.7,0.6,0.5jT and k1 = 2, k2 = -3.5 and T = l, were used).

Figures 4.26 - 4.27 and 4.28 - 4.29 show the controlled system trajectories during two parallel parking

maneuvers, corresponding ta the initial conditions Xo = [0,1,0, O]T (k1 = -2.5, kz = 4 and T = 1.5

were used), and Xo = [0, -1,0, O]T (k l = 2, k2 = 3 and T = 1.2 were used), respectively.

7.2. Stabilizing feedback control for a tire truck model

The fire truck model represents a six dimensional systems with control deficiency arder three and

with a non-nilpotent controllability Lie algebra which contains Lie brackets of depth one as weil as

depth two.

The kinematic model of a fire truck is given by (3.110) ofChapter 3, in which Z = (Zl' Z2, Z3, Z4, zs, Z6) d;j

(x, ifJo, ifJl, Ba, B1 , y) and which can thus be re-written as :

Zl 1 ° °
Z2 0 1 °
Z3 ° ° 1

- Ul + U2 + U3

Z4 tan Z2 sec Z4 ° °
Zs -sineZ3 - Z4 + zs) sec Z3 sec Z4 0 0

Z6 tan Z4 0 °
~ 91(Z)Ul + gZ(Z)U2 + 93(Z)U3 (4.147)
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FIGURE 4.24. WMR of type (1,1): Plots of the controlled state trajectories t Ho

((Zl(t), ... , Z4(t») == (X1(t), •.. ,X4(t)} versus time.
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FIGURE 4.25. WMR of type (1,1): Plots of the controlled state trajectories xI(t) == Zl (t)
versus X2(t) == Z2(t), and the Lyapunov function V(x(t» == ~ 2::=1 X[(t) along the con­
trolled state trajectories.

196



4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

252015
lime

10
2520la 15

lime
5a

• 0.4

0.5 0.2

0
~

C'l
l( -{l.2

-{l.4

5 la 15 20 2S -{l.6
a 5 la 15 20 25

lime lime

02

0

(Il
s-{l.2

x

~.2I..---L_---l.._---l-_...l-_..l----l_---l.._-L...._..L.---I

~ ~ ~ ~ ~ 0 U U ~ M
xl (1)

•
0.8

0.6

;;; 0.4
)(

0.2
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FIGURE 4.27. WMR of type (1,1): Plots of the controlled state trajectories XI(t) = Zl(t)
versus X2(t) = zz(t), and the Lyapunov function V(x(t)) = t 2::=1 x;(t) along the con­
trolled state trajectories in parallel parking maneuver.
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FIGURE 4.29. WMR of type (1,1): Plots of the controlled state trajectories Xl(t) = Zl(t)
versus X2(t) = Z2(t), and the Lyapunov function V(x(t» = î 2::=1 x~(t) along the con­
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a a. 8 8- -a + tan Zz sec Z4 -8 - Stn(z3 - Z4 + zs) sec Z3 sec Z4 -8 + tan Z4 -8
Zl Z4 Zs Z6

8 a
= - g3(Z) =-

aZ2 aZ3

Computing the following Lie brackets:

de! [] z ag4 (z ) = gl, g2 (z) = - (sec zz) sec Z4 -8
Z4

de! . a
gs(z) = [gl,g3](Z) = [sec Z3 sec Z4(COS(Z3 - Z4 + zs) + szn(z3 - Z4 + zs) tan Z3)] -a

Zs

g6(Z) d~ [gl, [gl,gZ]J(Z) = (sec ZZ)2 (sec ZS)3 aa
Z6

+[(sec Z2)2 (sec Z4)2 sec Z3 (COS(Z3 - Z4 + Zs) - sin(Z3 - Z4 + Zs) tan Z4)] aa
Zs

demanstrates that, if the motion of the system is restricteà ta the manifold:

then the LARC condition is satisfied :

• Consider the follawing decomposition:

(4.148)

SI:

S2:

Zl 1 0 0

Z2 0 1 0

Z3 = 0 Ul + 0 U2 + 1 U3

Z4 tan Z2 sec Z4 0 0

Zs -sin(z3 - Z4 + zs) sec Z3 sec Z4 0 0

Z6
de!

- tan Z4 U3 = fez) U3

(4.149)

(4.150)

h(x)

hCx)

•

By defining x d~ (Zl, Z2, Z3, Z4: zs), the subsystem 51 can be written as:

± = ft(X)Ul + fz(x)uz + h(X)U3, x E JRS

a a. ( ) a= -a + tan Z2 sec Z4 -a - Stn Z3 - Z4 + Zs sec Z3 sec Z4 -a
Zl Z4 Zs

8 a
- - h(x)=-aaz2 ' Z3

5ubsystem SI is controllable as it satisfies the LARC condition:

for ail xE M

(4.151)
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It can be easily checked that the Lie algebra L(fL, 12, h) is not nilpotent. The following approxi­

mation ta subsystem SI:

(4.152)

gives

il (x) =
8 8 a

-+Z2 - -(Z3 -Z4 +zs)-
8zI 8z4 8zs
a - 8

- h(x)=-
8Z2' 8z3

- - 8 - dei - - 8
[ft, f2](x) = --8 fs(x) = [fI, h](x) = -8

Z4 Z5

•
for ail x E JRs

and is nilpotent as shown by Lie brackets multiplication table L(il, 12, 13) :

Therefore the trajectory interception approach can be applied to steer 51. The extended system for

51 is given by:

(4.153)

•

in which Vi(X) = LI, W(x), i = 1, ... ,5, and vV(x) = ~ L~=l zr. The approximate logarithmic

coordinates for SI satisfy the following differential equations :

'YI = al

~f2 = a2

1'3 = a3

1'4 = -"Yla2 + a4

1's = -"Yl a3 +aS I liCO) = 0, i = 1, ...,5
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and the following controls stabilize subsystem SI:

U2(X)

T T 21r T . 27r
- (v1 (x) + b4 (V4 (x)) sineTt) + bs(vs (x)) S1n( Tt))

= (v[(x) +b4 (v[(x)) cos(~t»

= (v[(x) +bs(v[(x)) cos(~t»

where b4 = ±3.54491J(v[)/VêT) and bs = ±3.54491J(vl)/..jëT).

(4.154)

•

For faster convergence, vr were replaced by k ur, i = 1,2,3. and in simulation, k = 3 was used.

Stabilizing algoritlun for a tire truck model:

Repeat the following steps until sufficient accuracy is achieved in reaching the origin:

Data: € > 0

Step a: Apply the controis (4.154) to original system (4.147) until its trajectories converge to N(Sl; E),

where:

Step b: To generate motion along 96 = [91, [91,92]], apply the sinusoidal controis

. (21r )
U1 = s'Zn Tt , U3 =0

•

until the system trajectories converge to N(S2; E), where :

{z E lR6
: Z6 & f (z) = O}

= {z E lR6
: Z6 & tan Z4 = O}

= {z E lR6
: Z6 = Z4 = ü}

Step c: Set E := ~.

Two sets of simulation results are shown in Figures 4.30 - 4.22, and 4.32 - 4.33, respectively.

Figures 4.30 - 4.31 correspond to the situation when the fire truck is steered to the origin from an

arbitrary initial condition in the configuration space.

Figures 4.32 - 4.33 show the controlled system trajectories during a parallel parking maneuver,

corresponding to the initial conditions Zo = [0,.4,0,0,0, OlT.
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FIGURE 4.30. Pire truck: Plots of the controlled state trajectories t ....-+ ((Zl(t), ..., Z6(t»
versus time.

S 0.5
l"J

N O~VUINWNWW--------,nr\I\1\i""",,",,---.

•

1510

12.---......,....-.,...----,---.------..-....,...----,-......,....---.."

1

]
,

1
j

0.8

0.4

02

O.6r------r----..----.,----....------,

o .

0.5

0.4

0.1

~-û.1 L...-__--l- L..___---'- ..L..-__---J OL__L_--J~__J~_L..__J...!.l"o"'__L___J~__J:...-.___J

-1 -ûS 0 OS 1.5 0
x(I)=zl (1)

S 0.3
CD
N

b
>: 02

•
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1.3. Stabilizing algorithm for an underwater vehicle in actuator failure mode

By defining

the kinematic model of underwater vehic1e with one actuator failure mode, as given by (3.105) of

Chapter 3, can he decomposed as:

il COS Z2 0 0

i2 sin Z2 tan Zr 1 0

51: i3 - 0 Ul + 0 Ü2 + cos Z4 cos Zl U3

i 4 sin Z2 sec Zr 0 0

is 0 0 -sin Zl

52: Z6 . - de! j( ) _= S'Ln z4 cos Zl u3 = Z U3

(4.155)

(4.156)

•
Stahilizing feedhack control for an underwater vehicle in actuator fallure mode:

Repeat the following steps until sufficient accuracy is achieved in reaching the origin:

Data: € > 0

Step a: Apply the contraIs (4.154) to original system (4.147) until its trajectories converge ta l'I(SI; €),

where:

Step b: To generate motion along 96 = [92, [91,93]], apply the' sinusoidal controls

(4.157)

•

until the system trajectories converge to N(S2; €), where :

S2 ~ {z E m6
: Z6 = 0 & j (z) = O}

= {z E m6 : Z6 = 0 & sin Z4 cos Zl = O} = {z E IR6 : Z6 = Z4 = O}

Step c: Set € := ~.

Simulation results are shown in Figures 4.34 - 4.35. In simulation results, the values k l = 1, k 2 = -3,

k3 =4 and T = 1.6 were used.
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7.4. Stabilizing feedback control for a mobile robot with trailer

The e..xample considered below represents a five dimensional systems with control deficiency order

three, possessing a non-nilpotent controllability Lie algebra which contains Lie brackets of depth one,

two, and three. Although, the algebraic structure of mobile robot with trailer is more complicated,

the decomposition idea can still be employed successfully.

The kinematic model of a mobile robot with trailer as given by (3.121) of Chapter 3 and can be

suitably re-written by defining (Xl, X2, X3, X4,XS) = (Zl, Z4, Z3, zz, ZS):

(4.158)

•

8 . 8 . 8 ()a= cos Z3 cos Z2 -a + S'Ln Z3 -a + cos Z3 S'Ln Z2 -a + cos Z3 sin Z2 - Zs -a
Zl Z2 Z4 Zs

The following Lie brackets:

( ) deI [ l('. a a.. 8 . . ( ) 8
g3 Z = 91, g2 z) = S'l.nZ3 COSZz -a - COSZ3 -8 + S'l.nZ3 S'l.nzz -a + S'LnZ3 S'Ln Zz - Zs -

Zl Xz Z4 8zs
deI . 8 8 8

g4(Z) = [gl,g3](Z) = -S'Lnzz -8 + cOSZz -8 + COs(zz - zs) -a
Zl Z4 Zs

( ) deI [ J( ). 8.. 8 (. . ( ) ) a
gs Z = gl, g4 Z = -S'LnZ3 cosZz -8 - Stnz 3 S7.nzz -8 - S1.nZ3 S'Ln Zz - Zs - COSZ3 -8

Zl Z4 Zs

show that the LARC condition is satisfied :

span{gi(Z) , i = 1, ... , 5} = lRs
, for ail z E mS

For this model the following decomposition is considered:

51:

52:

[~l] [C~SZ2 COSZ3 ] [ 0 ]
Zz = S1.n Z3 Ul + 0 Uz

~ 0 1

(4.159)

(4.160)

•
By defining X ~ (Zl' Zz, Z3), subsystem SI can be written as:

(4.161)

206



•
4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

a . a
- cos Z2 cos Z3 -8 + s'tn Z3 -8

Zl Z2

h(x) -
8

aZ3

Subsystem SI is controllable as it satisfies:

where

dei • a a
h(x) = [ft, f2](x) = s'tn Z3 cos Z2 -8 - cos Z3 -8

Zl Z2

It can be easily verified that the Lie algebra L(ft, 12) is not nilpotent.

The following approximation to 51 :

(4.162)

•
il (x)

satisfies the LARe condition:

8 a
= -8 +Z3 -8'

Zl Z2

- 8
f2(x) =-8

Z3

for all

where,
- ~f - - 8
h(x) = [fIl f2](x) = --8

Z2

and the Lie brackets multiplication table for L(ill i2):

shows that the controllability Lie algebra L(il' i2) is nilpotent. The e:\.1;ended system for 51 is given

by

:i; = fr(X)VI + f2(X)V2 + h(X)V3

with Vi(X) = LI;W(x), i = 1,2,3, where W(x) = ~ 2:;=1 z'f,

and the logarithmic coordinates for 51 satisfy the following equations:

(4.163)

'YI al

'Y2 - a2

'Y3 = -"YCa2 + a3• 207
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• The following controIs stabilize subsystem SI

U1(X) = (vf(x) +b3 (vfCx» sinC:;t»

U2CX) = e1J[ex) + b3 evfex» cos(:; t))

where, b3 = ±3.54491j[v[(x»/.;cT).

Stabilizing algorithm. for a mobile robot with trailer:

Repeat the following steps until sufficient accuracy is achieved in reaching the origin:

Data: € > 0

(4.164)

•

Step a: Apply the controis (4.164) ta original system (4.158) until its trajectories converge to N(Sl; E),

where:

eb): To generate motion along 94 = [91, [91,92]], apply the following controis

U1 = k l sine:; t)

41r
(4.165)Uz = k 2 cos(Tt)

until the system trajectories converge to N(S2; E), where :

S2 d!! {z E IRs : Z4 = 0 & ft Cz) = O}

= {z E mS : Z4 = 0 & sin Z2 cos Z3 = O}

= {z E mS : Z4 = Z2 = O}

(c): Again apply the control (4.164) until the system trajectories converge to }1(S3; €) :

(d): To generate motion along 95 = [91, [91, (91,92]]], apply the following controls

U1 = k 3 sin(:; t)

61r
U2 = k4 cos(Tt) C4.166)
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until its trajectories converge to N(S4.; é) :

S4 d~ {Z E JRS : Zs = 0 & h (z) = O}

{z E JRS : Zs = 0 & sin (Z2 - zs) cos Z3 = O} = {z E JRs : Zs = Z2 = D}

(e): Set € := t.

Simulation results are depicted in Figures 4.36 - 4.37 which confirm the applicability of combining

strategy. In simulation, the values k1 = -2, k1 = -3, k3 = -2.8, k4 = 5, and T = 1.2 were used.
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CHAPTER 5

Conclusions and Future Research

In this dissertation, the probIem of set point feedback stabilization of drift free systems was discussed

in the conte.'lCt of introducing two new feedback synthesis approaches :

Ci) the guiding functions approach, and

(ü) the trajectory interception approach

Lie algebraic techniques were used and the importance of the introduced methods lies in the fact that

they do not necessitate converting system models into chained or power forms. The applicability of

both approaches was demonstrated on a variety of examples.

In this conclusion we briefly review the results of the preceding chapters, give sorne general obser­

vations, and make some suggestions for future work.

1. Review of the results

In Chapter 2:

• A noveI concept of guiding functions is introduced which can be used as a tool for construc­

tion of new and effective feedback control strategies for drift free systems.

• A stabilizing control strategy based on this concept is first developed and analysed for sys­

tems of control deficiency arder one in rectified [orm, but is also shown to apply ta systems

of higher arder control deficiency. The strategy is based on simple principles and employs

bounded, piecewise constant controis. The values of the guiding functions provide an on-Hne

convergence verification test .
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5.1 REVIEW OF THE RESULTS

• It is shown that, under reasonable assumptions, the feedback control strategy yields global

asymptotic stabilization to a set point.

In Chapter 3:

• The guiding functions control strategy, introduced in Chapter 2, is first extended to a genera!

class of drift free systems, which need not be transformable to any special form, and requires

constructing two guiding functions. The strategy is extended further to a general class of

drift free systems by constructing m guiding functions.

• A systematic method for the construction of guiding functions is introduced, and conditions

are stated which guarantee that the resulting feedback control strategy yields global asymp­

totic convergence to a desired set point.

• The idea of combining sinusoidal steering with the guiding functions approach is also e.x­

plored.

• Applications of the strategy are discussed involving set point stabilization of several types

of models of drift free systems possessing different algebraic structures. In all examples, the

strategy proves very efficient in that it effectively leads to dead-beat control.

In Chapter 4:

• A systematic method for the synthesis of stabilising, time-varying feedback for a large class

of drift-free systems is presented.

• The method shows how the averaging effect can be achieved by a (periodically repeated)

open loop solution to a control problem in logarithmic coordinates.

• It is shown that the application of the trajectory interception approach is not limited to

systems whose controllability Lie algebra is nilpotent. The approach can successfully be ap­

plied to systems with non-nilpotent controllability Lie algebras by introducing approximate

models which generate nilpotent controllability Lie algebras. This is confirmed by severa!

examples.

• For higher orders systems, the idea of decomposing the system model into subsystems (of

which one can be controlled by the trajectory interception approach and the other by simple

sinusoidally varying inputs) is explored.
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5.2 OBSERVATIONS

2. Observations

Generallyy the concept of guiding functions y as introduced for the purpose of the construction of sta­

hilizing feedback y gives rise ta piecewise constant contraIs. The first version of the method presented

in Chapter 2 y howevery has two disadvantages :

(i) Ta be effective, it requîres the system ta be written in a certain rectified form (guiding func­

tians are then chosen ta be quadratic functions). Ta apply the technique of this Chapter ta

a broader cIass of drift free systems again necessitates the construction of a diffeomorphic

state feedback transformation which bring the system ta a rectified form.

(ü) Although the control strategy of Chapter 2 is proved to asymptotically stabilize the system y

no hounds on the number of switchings are provided (which can he infinite) leading possibly

ta non-practicable chattering controis.

The e.."'ctended guiding functions strategy of Chapter 3 brings improvements exactly about the two

points listed above :

(a) Under the hypotheses of analytic vector fields and involutive distributions y the candidate

guiding functions {V1y VS} are constructed directly hy the application of the Frobenius the­

orem (and thus need not be quadratic) and, more importantlyy it is not require that the

system is written in a rectified forme

(h) Estimates of the minimum decrease of ILgi VII (while VS stays constant) and the maximum

increase of ILg , Vi 1 (while VS is decreasing) are provided. Thus for a given € > 0, bounds

on the number of switchings and the time to reach the set B(G, €) can be computed off-lïne,

depending only of the size of the level set which contains the initial condition. Furthermore,

it is shawn that introducing hysteresis on the switching contraIs leads ta practicai controll~rs.

(c) It is important ta notice, however, that the guiding functions strategy is not a "feedback

control" in the cIassical sense which is understood ta be given in terms of a single function

x 1--1- u(x) (see Step 2 of the strategy). For this reason, the terms "feedback control strat­

egy" or "control strategy" are used instead of terms "feedback control" or "feedback control

law". However, the ward "feedback" is justified as the control action of the strategy clearly

depends on x( t) E T - the point at which T is traversed y and the value of the state needs ta

be accessible for measurement in arder ta implement the control.

The trajectory interception approach introduced in Chapter 4, provides time-varying feedback con­

trol laws. The following can he listed as its main properties :
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5.3 COMPARlSON OF THE STRATEGIES

(1) The trajectory interception approach appears to be very effective for systems whose control­

lability Lie algebras contain only brackets of depth one. For systems whose controllability

Lie algebra contains brackets of higher order, the equations describing the evolution of the

logarithmic coordinates are more complicated and usually difficult to solve analytically. In

such cases numerical solutions should he sought or eIse the idea of decomposing the system

into simpler subsystems should be further e.xplored.

(2) The trajectory interception approach provides for exponential rates of convergence to a de­

sired set point.

(3) The introduction of approximate models orten permits significant simplification of the dif­

ferential equations descrihing the evolution of the logarithmic coordinates in the open-Ioop

problem formulation.

3. Comparison of the strategies

The control approaches developed can be compared as follows :

• The guiding functions approach provides feedhack contraIs which are discontinuous in the

state while the trajectory interception approach leads to feedback control which are con­

tinuous in the state. Further, the trajectory interception approach can result in controis

which are also continuous in the time if the solution to the OCP is chosen in the suh-class

of continuous functions with equal end point values.

• Generally, the guiding functions strategy provides controls which are stabilizing only in the

sense of practical stabilization while the trajectory interception approach provides for stabi­

lization in the Lyapunov sense.

• The feedback controls obtained by the guiding functions approach yield global asymptotic

convergence to a desired set point and are often dead-beat. On the other hand, the trajec­

tory interception approach provides feedhack controls which 'generally' result in only local

asymptotic convergence to a set point.

• For systems whose controllability Lie algebra contains Lie brackets of higher arder, the guid­

ing functions approach is generally easier to implement than the trajectory interception

approach.
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5.4 FUTURE RESEARCH TOPICS

• The guiding functions approach appears to be more robust with respect to model error as

compared with the trajectory interception approach.

• In the trajectory interception approach arbitrary Lyapunov functions can be used while in

the guiding functions approach the construction of a Lyapunov function is a part of the

feedback control synthesis.

• The trajectory interception approach is more general in the sense that it applies directly (at

least theoretically) ta systems whose controllability Lie algebra contains brackets of higher

arder.

Both approaches lend themselves weIl ta various improvements and generalizations.

4. Future researeh tapies

A list of a few tapies for future research is :

(i) Analysis of the robustness properties (with respect to both model error and e.."'Cternal distur­

bances) of the strategies developed.

(li) Generalization of the control strategies ta systems with drift.

(iii) Accommodation of other control objectives such as trajectory tracking and steering ta set

points under control and state constraints.

(iv) Observer based control when states are not accessible for measurement.
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APPENDIX A

1. Basic review of differential geometry

o iffeomorphism:

Let U c IRn and V C IRm be open sets. A mapping f : U -+ V is a smooth map if ail partial

derivatives of f, of any order, e..xist and are continuous. If m = n and f is bijective and both f and

f- L are smooth, then f is called a diffeomorphism and U and V are said to be diffeomorphic.

Manifolds:

A manifold of dimension n is a set NI which is locally homeomorphic to IRn.

Local coordinate chart:

A local coordinate chatt is a pair (1), U), where cP is a function which maps points in the set U C AI

to an open subset of IRn.

GOO related and smooth atlas:

Two overlapping charts (1), U) and ('1/;, V) are Goo related if ('I/;)-L 0 c/J is a diffeomorphism where it

is defined. A collection of such charts with the additional property that the U' s caver /vI is called a

smooth atlas.

Smooth manifolds:

A manifold M is a smooth manifold if it admits a smooth atlas.

Smooth map between smooth manifolds:

Let F : /vI -+ lV be a mapping between two smooth manifolds and let (c/J, U) and (1/1, V) be coordinate

charts for M and N respectively. The mapping F : }vI -+ N is smooth if F = '1/; 0 F 0 </>-L : c/J(U) -).

1f;(V) is smooth for ail choices of coordinate charts on M and N. Similarly, F is a diffeomorphism
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if F is a diffeomorphism for ail coordinate charts.

Derivation:

Let M be a smooth manifold of dimension n and let p be a point in M. We write Coo (P) for the set of

smooth, real-valued functions on NI whose domain of definition includes sorne open neighbourhood

ofp. A map X p : Coo(P) ~ IR. is called a derivation if, for ail a,(3 E IR and f,g E Coo(P), it satisfies

(i) Xp(af + (3g) = a(Xpf) + (3(Xp g) (linearity)

(ii) Xp(fg) = (Xpf)g(P) + f(P)(Xpg) (Leibniz rule)

The set of ail derivations X p : Goa (P) ~ IR defines a vector space over the reals with the operations

(Xp + Yp)f = Xpf + Ypf

(aXp)f a(Xpf)

Tangent space:

The tangent space of NI at a point p, denoted TpNI, is the set of all derivations X p : Coo(P) -+ IR..

Elements of the tangent space are called tangent vectors. Let (4J, U) be a coordinate chart on !vI

\vith local coordinates (Xl, ...• , x n). Then, the set of derivations {:x} forms a basis for TpM and

hence we can write

8 8
X p = Xl -8 + ... + )(n -8

Xl X n

The vector (Xl, ""Xn) E IR.n is a local coordinate representation of X p E Tp!l1.

Cotangent space:

Given the tangent space TpM to a manifold NI at a point P, we define the cotangent space of lvf at

P, denoted T; NI, as the set of all linear functions wp : TpNf -+ IR. r; M is a vector space having the

same dimension as Tp!vI and the elements of r; M are called cotangent vectors. We write < w P' X p >

for the action of a cotangent vector wp E T; M on a tangent vector X p E TpM. If {8~1 ' ---, 8~.. } is

a basis for TpNI corresponding to local coordinates (Xl, .••. , X n ), the dual basis for T; Nf is given by

{dXl' .... , dxn }, where

8
< dxi , -8 >= 8ij

Xj

Given a function f : !vI ~ IR., we define a cotangent vector df(P) E T; M by

< df(P), X p >= Xp(f),
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df(P) is called the differential of j. Relative to a chart (ifJ, U) with local coordinates (Xl, ..._,Xn ),

df(P) is written as

af af
dl(x) = -a(x)dx l + ._- + -a(x)dxn where x = 4J(P)

Xl X n

Vector Field:

A uector field on !Rn is a smooth map which assign ta each point x E JRn a tangent vector j(x) E

TxIRn, where T;r;!Rn is the tangent space to !Rn at a point x E !Rn. In local coordinates, we represent

1 as a colü.mn vector whose elements depend on x,

!l(x)

I(x) -

A vector field is smooth if each h(x) is smooth_ Vector fields are to he thought of as right-hand sides

of differential eqnations:

• x=f(x)

The rate of change of a smooth function V : !Rn -+ !R along the flow of f is given by

. av n av
v = a I(x) = 2: a-:h(x)

X i=l XI

Covector fields :

(A.l)

•

The dual space of the tangent space T;r;!Rn is the set of linear functions on T;r;JRn and it is denoted

by T;!Rn . The elements of T;!Rn are called cotangent vectors. A covector field or one-form on JRn

is a smooth map which assign to each point x E IRn a cotangent vector w(x) E T; JRn . In local

coordinatecs, we represent a smooth one-form w as a row vector

where Wi : !Rn --+ !R, i = 1, ...n are smooth functions. Differentials of smooth functions are examples

of one-forms. For e..""(ample, if {3 : JRn -+ IR, then the one-form d{3 is given by
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Note, however, the alI one-fonns are not necessarily the differentials of smooth functions ( a one­

form which does happen to he the derivative of a function is said to he e..xact).

Flow of a vector field:

If f is a vector field, we denote the parametrized maximal integral curve of the differential equation

x = f(x), passing through x E !Rn at time zero, by 4>{ (x), and cali the mapping (t, x) I-t 4>{(x) the

flow generated by f. Thus r/J{ (x) : JRn ~ IRm satisfies

Lie derivative :

d4>{ (x) = f(r/J{ (x»
dt

xE JRn

•

•

The time derivative of V along the How of f is called the Lie derivative of V along f and is denoted

L,V:

Complete vector field:

A vector field is said to be complete if its fiow is defined for ail t .

Remark:

By the existence and uniqueness theorem of ordinary differential equations, for each fixed t, r/J{ is a

local diffeomorphism of IRn+l onto itself. Further, it satisfies the following group property:

for all t and s, where 0 means the composition of the two Hows, namely r/J{ (<Pt (x».

If there are two vector fields gl and 92, the map </Jfl 0 rf>9s2 stands for the composition of the How of

92 for s seconds with the flow of 91 for t seconds. In general,

Motivation for the definition of a Lie bracket:

Consider the How depicted in Figure A.1 starting from Xo. It consists of a flow along gl for E seconds

fol1owed by a flow along 91 for E seconds, -gl for E seconds, and -g2 for € seconds. For small E, we

can evaluate the Taylors series in € for the value of the state of the differential equation A.l as:
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nonzero
net motion

~

•

•

FleURE A.1. A Lie bracket motion.

x(€) = </J~1 (x(O))

= x(O) + d;(O) + ~€2X(O) + o(€3)

1.,8g1 3)= Xo + E91(XO) + 2"€- 8x 91 (xo) + O(E

where the partial derivative of 91 is evaluated at Xo and the notation o(€k) represents terms of arder

€k. Similarly

x(2€) = ~2 0 ~1 (x(O))

[ () 1 ') 8g1 3 ]= ~2 Xo + €9I Xo + 2"E- 8x 91 (Xo) + o(€ )

1 2891 €2892 3
Xo +E91(XO) + 2"E 8x 91(XO) +€92(XO +€91(XO)) + 2" 8x 92(XO) +O(E )

1 2 8g1 892 892 3= Xo + €[91(XO) + g2(XO)] + 2"E [8x 91(XO) + 8x 92(XO) + 2 8x 91(XO)] + o(€ )

where we have used the Taylor series expansion for

Further,

X(3E) = 4J;91 0 4>~2 0 l/J~1 (x(O))

€2 89" 892 891 3= Xo + €92(XO) + 2"[ 8; 92(XO) + 2 8x 91(XO) - 2 8x 92(XO)] + O(E )
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FinallY1 we get

x(4€) = rf1;92 0 4J;91 0 cP~2 0 tM1 (x(Q»

2[892 8g1 3= Xo +€ 8x gdxo) - 8x g2(Xo)I +o(€ )

Motivated by the above calculation is the next definition.

Lie bracket:

A Lie bracket of two vector fields 1 and 9 is defined (in local coordinates) as:

89 81
[f,g](x) = 8x l (x) - 8x g(x)

(A.2)

If [f, g] = Q then the right hand side of equation A.2 is identically equal to Xo and 1 and 9 are said

to commute.

Properties of Lie brackets:

Given vector fields f, g, h on IR" and smooth functions Q, (3 : JR" -T IR, the Lie bracket satisfies the

following properties:

• (1) Skew-symmetry:

(2) Jacobi identity:

(3) Chain rule:

[f,g] = -[g, fI

[f, [g, h]] + [h, [l, g]] + [g, [h, III = Q

[al, (3g] = a(3[J, gI + o:(Lff3)9 - f3(Lga)f

where (Lff3) and (LgCl) stand for the Lie derivative of (3 and a along the vector fields 1 and 9

respectively.

(4) Jacobi identity:

Lie algebra:

A vector space V ( over JR.) is a Lie algebra if there exists a bilinear operator V x V -T V, denoted

[., .I, satisfying

1. Skew-symmetry:

2. Jacobi identity:

[v, w] = -[w, vI for aIl v, w E V

•
([v, w], z] + ([z, v], w] + ([w, z], vI = Q for all v, W, z E V
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The vector space of all smooth vector fields on a manifold M is an infinite-dimensional Lie algebra

under Lie bracket operation on vector fields.

Lie sub-algebra:

A subspace W C V of a Lie algebra V is called a Lie sub-algebra if [v, w] E W for ail v, w E W.

Lie group:

A Lie group is a group G which is also a smooth manifold and for which the group operations

(g, h) i-T gh and 9 i-T g-1 are smooth.

Examples of Lie groups:

1 The Euclidean space under addition.

2 The generallinear group, GL(n, IR); set of all n x n nonsingular real matrices, which can be

regarded as an open subset of IRn
2

•

3 The special orthogonal group, SO~n);

SO(n) = {R E GL(n, IR) : RRT = I, detR = 1}

The dimension of SOen) is n(n -1)/2. For n = 3, the group SO(3) is also referred to as the

rotation group on IR3.

4 The special Euclidean group, SE(3); the set of mappings y : JR3 --T JR3 defined by g(x) =
Rx + p, where R E SO(3) and p E IR3. SE(3) can be identified with the space of 4 x 4

matrices of the form

g= [: ~]
SE(3) is a Lie group of dimension 6.

Distribution:

Let {YI, ...,gm} be a set of vectors fields. Then for any fixed x E IRn, the vectors g1(X), ... ,gm(x)

span a vector space called a distribution. The distribution at a point x is denoted by:

~(x) = span{g1(x), ...,Ym(x)}

If the spanning vector fields Yi 's are smooth then the distribution is called a smooth distribution.
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Dimension of the distribution:

The dimension of a distribution at a point x E IRn is the dimension of the vector space ~(x).

ReguIar distribution:

The distribution is said to be regular if the dimension of the vector space .6.(x) does not vary with

x Le. dim(~(x)) = constant, for all xE IRn .

Involutive distribution:

A distribution Ll(x) = span{f1(x), '.', fm(x)} is involutive if it is closed under the Lie bracket

operation, Le.,

.6. involutive {=} "il f, 9 E~, [f, g1 E ~

Codistribution:

Let {Wl, ... , wm } be a set of covectors fields. Then for any fL"'{ed x E !Rn, the codistribution is defined

as: O(x) = span{wl(x), ... ,Wk(X)}. If Wi are smooth then the codistribution is called a smooth

codistribution.

Annihilator:

The annihilator of ~(x) is the set of ail covectors which annihilates all vectors in .6.(x)

~ -L(x) = {w E (JRn )* : < W, v >= 0 'if v E Ll(x)}

Similarly the annihilator of O(x) is defined as:

n-L(x) = {v E JRn : < w,v >= a "il W E Ll(x)}

Integrable distribution:

A distribution Ll of constant dimension k is said to be integrable if for every point x E IRn, there

exists a set of smooth functions hi : IRn -+ IR, i = 1, ..., n - k such that the row vectors ~ are

linearly independent at x, and for every f E ~(x)

Lfht"(x) d~ 8hif(x) = 0, . 1 k8x 7. = , ...,n - ~
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