INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600






SET POINT FEEDBACK STABILIZATION OF DRIFT FREE
SYSTEMS

Fazal Ur Rehman

Department of Electrical Engineering
McGill University, Montréal

July 1997

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

© FazaL Ur REHMAN, 1997



i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Weliington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheéque nationale

services bibliographiques

395, rue Weliington
Ottawa ON K1A ON4

Your file Volre réfeérence

Qur file Notre rélérenca

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

1’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-37036-4

Canada



To

the memory of my father,

my dear wife and son.



Abstract

This dissertation presents two new systematic feedback approaches for set point feedback stabilization
of drift free systems which employ Lie algebraic techniques. Due to some special features, drift free
systems are known to be difficult to stabilize. For such systems, linearization, and state feedback
linearization techniques, fail to be useful. Moreover, such systems cannot be stabilized by continuous
static state feedback as they fail to satisfy Brockett’s necessary condition for smooth stabilization. In
the absence of continuous static state feedback laws, most of the existing methods utilize piece-wise
constant feedback or time-varying feedback controls which usually necessitate transformation of the
system models into chained, power or nilpotentized forms. In this dissertation two new feedback ap-
proaches: the guiding functions approach and the trajectory interception approach are introduced.
The importance of these approaches is due to their simplicity and the fact that they do not require

any special transformation techniques.

The guiding functions approach delivers piece-wise constant control sequences and relies on the con-
struction of special guiding functions which are not Lyapunov functions. However, a comparison of
their values allows to determine a desired direction of system motion and permits to construct a
sequence of controls such that the sum of these guiding functions decreases in an average sense. The
individual guiding functions are hence not restricted to decrease monotonically but their oscillations

are limited and coordinated in a way to guarantee convergence.

The guiding functions strategy is first analysed with reference to systems which appear in a special
rectified form and requires the construction of as many guiding functions as there are control vari-
ables. Later, this approach is extended to apply to general drift free systems and usually results in
the construction of only a pair of guiding functions. The strategy is general and can be employed
to control a variety of mechanical systems with velocity constraints. The most important feature
of this strategy is that it often leads to dead beat control. For higher order systems, a combined
strategy which employs sinusoidal steering in conjunction with the guiding functions approach is

also examined.
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The trajectory interception approach provides a universal method for the construction of time vary-
ing stabilizing feedback control for drift free systems in the sense that it is independent of the vector
fields determining the motion of the system, or of the choice of a Lyapunov function. The resulting
feedback law is a composition of a standard stabilising feedback control for a Lie bracket extension of
the original system and a periodic continuation of a specific solution to an oper loop, finite horizon
control problem stated in terms of a formal equation on a Lie group - an equation which (via an
evaluation homomorphism) describes the evolution of the flows of the original as well as the ex-
tended system. The open loop problem is solved as a trajectory interception problem in logarithmic

coordinates of flows.

The construction proposed in this approach demonstrates that synthesis of time varying feedback
stabilizers for drift free systems can be viewed as a procedure of combining static feedback laws for a
Lie bracket extension of the system with a solution of an open loop control problem on the associated
Lie group. This approach is employed first to a subclass of drift free systems which are characterized
by nilpotent controllability Lie algebras. Later, the approach is extended to apply to other drift free
systems which possess non-nilpotent controllability Lie algebras. This is accomplished by introduc-

ing approximate system models which possess nilpotent controllability Lie algebras.

The applicability of both approaches is demonstrated on a variety of drift free systems with different
algebraic structures: a unicycle, Brockett’s system, a front wheel drive car, a rigid spacecrait, a
hopping robot in flight phase, an underwater vehicle, a fire truck, a mobile robot with trailer, and a
class of wheeled mabile robots. The examples confirm the effectiveness of both approaches beyond

any doubt.

iv



RESUME

Dans cette thése on présente deux méthodes directes pour la stabilisation par rétro-action des
systémes sans dérives. Ces méthodes sont basées sur les méthodes algébriques de Lie. Due a
certaines particularités ces systémes sont difficiles a stabiliser. Ainsi la linéarisation et les tech-
niques de linéarisation par retour d’ etat ne sont pas utiles. De plus, de tels systéms ne peuvent
pas étre stabilisés par un retour d’etat statique et continu puisqu’ils ne satisfont pas & la condition
nécessaire et suffisante de Brockett pour la stabilisation lisse. En absence de commande par re-
tour d’etat statique et continu, la majeure partie des méthodes existantes utilisent des commandes
a retro-action constantes par morceaux ou variantes dans le temps qui d’habitude nécessitent une
transformation des modéles du systéme en chaines, et formes de puissances ou nilpotantes. Dans
cette dissertation on introduit deux approches rétro-actives nouvelles: 1'approche par fonctions de
guidances et Papproche d’interception de trajectoire. L'importance de ces approches est due & leur

simplicité, et le fait qu’elles n’ont pas besoin de technique de transformation spéciale.

L’approche des fontions de guidance générent des suites de contrdle constantes par morceaux, et
s’appuie sur la construction de fonctions de guidance spéciales qui sont des fonctions de Liapounov.
Cependant, une comparaison de leurs valeurs permet de détérminer une direction désirée du mou-
vement du systéme et de construire une suite de commandes telle que la somme de ces fontions de
guidance décroit en moyenne. Les fontions de guidance individuelles ne sont pas donc restraintes a
décroiotatre de facon monotone mais leurs oscillations sont limitées et coordonnées dans un sense

qui garantie la convergence.

La stratégie des fontions de guidance est d’abord analyser avec référence aux systémes apparaissant
dans une forme rectifiée particuliére et exigant la construction d’autant de fonctions de guidance que
de variables de contrdle. Plus tard, cette approche est prolongée de facon & s’appliquer en général
aux systémes sans dérive, il en résulte comme d’habitude la construction de seulement une paire

des fonctions de guidance. La stratégie est générale et peut étre employée & contrdler une variété
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de systémes mécaniques avec des constraintes de vélocité. La caractéristique la plus importante
de cette stratégie est qu’elle méne souvent a la commande pile. Pour les systémes d’ordre élevé,
une stratégie combinée qui emploie un entrainement sinusoidal en conjonction avec I’'approche des

fontions de guidance est examinée.

L’approche d’interception de trajectoire fournit une méthode universelle de constructi on de com-
mandes par rétro-action variante dans le temps pour la stabilisation des systémes sans dérive, dans
le sense qu'elle est indépendante du champs vectoriel qui détermine le mouvement du systéme,
ou du choix d’une fonction de Liapounov. La loi de rétro-action résultante est une composition
d’une stabilisation par rétro-action standard spéci fique au crochet de Lie du systéme original, et
un prolongement périodique d’une solution spécifique a un probléme de commande en boucle ou-
verte d’horizon fini, posé en termes d’une equation formelle sur un groupe de Lie - une equation
qui décrit (via un homomorphisme d’evaluation) I’évolution du flux du systéme original et prolongé.
Le probléeme en boucle ouverte est résolu comme un probléeme d’interception de trajectoire dans les

coordonnées logarithmiques du flux.

La construction proposée dans cette approche démontre que la synthése de stabilisa teurs par rétro-
action variant dans le temps pour des systémes sans dérive peut étre considérée comme une procédure
combinant les lois de rétro- action statiques pour une extension du crochet de Lie du systéme avec
solution d'un problém e de contrdle en boucle ouverte sur le groupe de Lie associé. Cette approche
est employée en premier lieu & une sous-classe de systémes sans dérive qui sont caractérisés par
des algébres de contréllabilité de Lie nilpotantes. Plus tard, cette approche est prolongée de fa-
con & s’appliquer & d’autres systémes sans dérive qui possédent des algébres de contrdllabilité de
Lie nilpotantes. Ceci est accomplie en introduisant des modéles approximatifs qui possédent des

algébres de contéllabilité de Lie nilpotante.

L’applicabilité de ces deux approches est démontrée sur une variété de systé mes sans dérive avec des
structures algébriques différentes: un unicycle, le systéeme de Brockett, une auto a traction avant, un
engin spatial rig id, un robo sautillant dans une phase de saut, un vehicule sous-marin, une pompe
4 incendi e, un robot mobile avec remorque, et une classe de robots mobiles avec des roues. Les

exemples confirment 'efficacité des deux approches hors de doute.
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Claims of Originality

The following contributions are made in this dissertation:

e The two feedback control strategies introduced are new and do not require conversion of the
system models either to power or chained forms. In principle, no transformation techniques
are needed. Both strategies can thus be applied to systems which fail to satisfy the condi-
tions for the existence of special transformations, and to systems which are not flat. Both

control strategies possess strong robustness properties with respect to model inaccuracies.

o The concept of guiding functions as a tool for feedback control design has not appeared in
previous literature. The guiding functions approach is particularly simple and often leads

to very effective feedback control laws such as ‘dead beat control’.

e The trajectory interception approach involves an original idea of employing the Lie alge-
braic techniques of [51] and [50] in a systematic synthesis of time-varying feedback control

for drift free systems.

e The trajectory interception approach provides for exponential rates of convergence to a de-
sired set point. The results contained in this thesis open a new area of research with the goal
of rendering this synthesis approach computationally simpler, more effective, and extending

its applicability to systems with drift.

This research work has been partially reported by H. Michalska and F. U. Rehman ([63], [64], [65],
(66],(67], [68],[69], [70], [T1], [72], and [84]) in journals and conference proceedings.
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CHAPTER 1

Introduction

It is hardly possible to avoid contact with nonholonomic systems. Nonholonomic control problems
arise in everyday life: while driving a car to work, pushing a baby stroller, or riding a bicycle to
school. Some of these control problems are simple for a human being to solve, after some training.
There are however control problems which are more intricate, for example: parking a tractor with
multiple trailers or reorientation of a body of a cat in mid-air while respecting the law of angular
momentum conservation. It is indeed amazing that a cat, dropped from an upside down configura-
tion, is usually able to land on her feet by using an interesting combination of maneuvers, which is

one example of a nonholonomic control problem solved successfully.

These examples seem to be superficially unrelated. However, from a mechanical or mathematical
stand point, they are examples of nonholonomic systems. Such systems arise due to the presence
of either nonholonomic constraints or non-integrable conservation laws in their motion. A non-
holonomic constraint, such as a rolling contact constraint in the instance of parallel-parking, is a
constraint on the velocity of the system which cannot be integrated into position constraints, (if
it could be integrated, it would then be referred to as a holonomic constraint). Similarly, a non-
integrable conservation law, such as the angular momentum conservation law in the case of a falling

cat, is a physical law that constrains the velocities of a system.

As pointed out, nonholonomic constraints appear very frequently in our daily lives and in fact are
much more common than holonomic constraints. Unlike a holonomic constraint which constrains
motion of a system away from a certain region of its configuration space, a nonholonomic constraint
limits only the freedom of motion. The case of parallel parking subject to rolling contact constraints
serves as a perfect illustrative example: with such constraint a car can move backwards and forwards

but not sideways.
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Much research interest was taken recently in the control of nonholonomic systems as such control
problems are of practical importance and are theoretically challenging. The literature on the control

of nonholonomic systems has grown enormously, see the survey paper [43].

In this work, we will restrict our attention to systems which represent mechanical systems with
linear velocity constraints. Such constraints can arise in a number of different ways; a few typical

examples are given below:

(1) Mobile robots navigating in a cluttered environment:

The kinematics of the drive mechanisms of robot carts results in constraints on the instantaneous

velocities that can be achieved. For instance, a cart with two forward drive wheels and two back

wheels is often required to move without slipping sideways.

(2) Multi-fingered hands manipulating a grasped object:

If an object is twirled through a cyclic motion that returns the object to its initial position and

orientation, the fingers are constrained to roll without slipping on the surface of the object.

(3) Space robotics:

Unanchored robots in space are difficult to control with either thrusters or internal motors since
they conserve total angular momentum. The latter is a nonholonomic constraint. The motion of
astronauts on space walks is of this ilk, so that planning a strategy to reorient an astronaut is a
nonholonomic control problem. Other examples of this effect include gymnasts and springboard

divers in flight phase.

1. Linear velocity constraints and their integrability

Most of the velocity constraints mentioned above have the form of linear constraints expressed by

the following system of equations:
wilg) §=0, q€R", j=12.k (L.1)

where the vector ¢ € IR™ describes the configuration of the system to be controlled, and w;(g),
j = 1,2,...k, are row vectors in JR®. The following example illustrates, how linear velocity con-

straints can be written in the form of (1.1).
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FIGURE 1.1. Model of an automobile with front and rear wheels.

Example 1.1

Consider a simple model of an automobile with front and rear wheels, as presented in [79]. The
rear wheels are aligned with the car, while the front tires are allowed to spin about the vertical
axes. The constraints on the system arise by allowing the wheels to roll and spin, but not slip. Let
g = (¢,z,y,0) denote the configuration of the car, parameterized by: ¢ - the steering angle with
respect to the car body, (z,y) - the zy - location of the rear wheels, and 6 - the angle of the car
body with respect to the horizontal. Let [ be the distance between the front and the rear wheels,
see Figure 1.1. The constraints for the front and rear wheels are formed by setting the ‘sideways
velocity’ of the wheels to zero. In particular, the velocity of the back wheels perpendicular to their
direction is sind £ — cosf 3, and the velocity of the front wheels perpendicular to the direction they

are pointing is sin(8 + ¢)  — cos(8 + @) § — [ cos¢ §. These constraints can thus be written as:

sinf & —cosf y =0 (1.2)

sin(8 + ¢) £ — cos(@ + ¢) y — L cosp 6 =0 (1.3)

or wi(g)¢=0, w2(q) ¢ =0 (1.4)

where, wi(g) = [0, sinf, —cosf, 0] (1.5)
wa(q) = [0, sin(@ +¢), —cos(@+¢), —I cosd) (1.6)

The constraints are said to be integrable if for each g there exist scalar functions ~; : N(q) = R,

J=1,2,...k, (defined on some neighbourhocod N(g) of g), such that (1.1) can be written as:

d . . ;
EhJ(Q) = VhJ(Q)q =0, j=1,2,..k, for g€ N(q) (1.7)
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where V denotes the gradient of k;. Integrating (1.7) yields:
hi(g) =0, j=1,2,..k, for g€ N(q) (1.8

It follows that integrable constraints can be substituted by algebraic constraints which do not in-
volve velocities. The constraints are said to be non-integrable if they cannot be written as algebraic
constraints involving only configuration variables g. Integrable constraints are known as holonomic

constraints and, non-integrable constraints are called nonholonomic constraints.

Constraints can be classified either as holonomic or nonholonomic by using the Frobenius Theorem

which gives a necessary and sufficient condition for the existence of at least locally defined scalar

functions h; in (1.7).

Before we state the Frobenius Theorem, the reader is advised to see Appendix A for the definitions
of a distribution, a regular distribution, a codistribution, involutiveness and integrability of distri-

butions, etc.

Frobenius Theorem [79]

Suppose a distribution A(q) = span{g1(q), 92(q), ---,gm(q)} is regular, so that the dimension of A(q),

dim(A(q)), is a constant. Then such distribution is integrable if and only if it is involutive.

To check integrability of constraints {1.1) by employing the Frobenius Theorem it is first necessary

to find a distribution A(q) = span{gi(q),92(q), ---» gn—«(q)} such that whenever

q € span{g1(q),92(q), - gn—-«(Q)}

then (1.1) is satisfied at gq. The latter is clearly equivalent to the problem of finding an annihilator

QL(q) to the codistribution Q{q) defined by the covector fields w; of (1.1):
Q(Q) = span{wl(Q)r "'lwk(Q)}
The existence of Q+(q) is guaranteed by the Proposition below:

Proposition 1.1 [79]

Assume that w;, i = 1,...,k are smooth and linearly independent covector fields on IR™ which form

a codistribution Q(q) = span{wi(q), ...,wr(q)} of constant dimension. There ezist smooth, linearly
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independent vectors fields g;, j = 1,...,n — k, such that the distribution

A(q) = span{g1(q), 92(q); .-, gn—-i(q@)}, g € R"

is the annihilator of Qq) at q, i.e., A(q) = Q+(q), which implies that wi(q)gj(q) =0, for i=
Lk, j=1,..n—k.

The following is an easy consequence of the Frobenius Theorem and Proposition 1.1.

Corollary 1.1 [79]

A set of smooth constraints of the type (1.1) is integrable if and only if the distribution A(q) = Q1 (q)

of Proposition 1.1 is involutive.

We continue to consider Example 1.1 and show that the constraints (1.2)-(1.3) are nonholonomic.

Example 1.1 (continued )

It is easily seen that the codistribution §(q) = span{w.(g),w2(q)}, involving the covector fields w;,

i = 1,2, of constraints (1.2)-(1.3) is annihilated by the distribution

A(g) = span{g1(q9), 92(q)} (1.9)

where, ai{g)=[1, 0, O, O]T, g2(q) = [0, cosf, siné, —}tanqﬁ]T (1.10)

It is easily verified that distribution (1.9) is not involutive as [g1,¢2](q) € A(g). Therefore these

constraints are non-integrable, and thus nonholonomic.

In the next section, we describe, how nonholonomic systems with linear velocity constraints give rise
to control systems known as “drift free systems”. The study of such systems is the main interest of

this thesis.

2. Drift free systems as nonholonomic systems

Consider the problem of constructing a path ¢(¢) € IR® between given points gy and ¢, subject to
constraints (1.1). Without the loss of generality, it can be assumed that the w;, ¢ = 1,..., k, are
linearly independent and smooth covector fields. Intuitively, constructing such a path requires con-
verting the constraint specification from describing the directions in which the system cannot move to

those in which it can. To do this, we first construct the codistribution 2(g) = span{wi(g), ...,wr(q)}.
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By Proposition 1.1, there exists n — k smooth, linearly independent vector fields gy, ..., gn— such
that the (n — k)-dimensional distribution A(q) = span{gi(q), ---» 9n—k(q)}, spans the annihilator Q-+
of Q, so that:

A=0% ie w(q)g(g) =0, forall we, geA, Vgq.

It is now clear that the nonholonomic constraints w;(q)g = 0, ¢ = 1,...,k, are equivalent to the

statement that ¢ € A, which requires that ¢ is a linear combination of the vector fields of A:
¢ =g1(@Qur + - + gn—i(q)tn—k (1.11)

with some coefficients uy, ..., un—; which generally depend on time, (as ¢ and ¢ vary with time). The
above equation represents a control system in which q is the controlled state and u;, ..., un—¢ are the
controls. Assuming that the velocity ¢ can be actuated directly, the path planning problem becomes
as finding the control, u(t) def [, -y Un—k] (t) € R™*, which steers qo to g1 along the trajectory
of (1.11).

The control system (1.11) is said to be a drift free system; a system which is at rest if all its controls

are zero, (so that ¢ = 0 if «(¢) = 0).

The construction of a drift free system from kinematic constraints is illustrated on the previous

Example 1.1.
Example 1.1 (continued)
Since
A(q) = span{gi1(q9), g2(9)}

with ¢; and g» given by (1.10), then (1.11) can be written as:

é 1 0
i I 0 cos 8
q= = u; + U2 (112)
Y 0 sin 0
i g | | 0 i T tan ¢ |

def

= gu{@)ur + g2(q)u2
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and represents a kinematic model of the four wheel car. The controls u; and us influence: the
angular steering, and forward velocities of the car, respectively, both of which were assumed to be

actuated directly.

3. Important features of drift free systems and difficulties arising in their con-

trol
Generally, drift free systems can be defined as systems described by equation of the form:
=) giz)u, z€R" (1.13)

i=l

where, g;(z), 1 € m ef {1,....m}, m =n —k, m <n, can be assumed to be linearly independent,

smooth vector fields in JR™, and u; can be assumed to belong to the class of Lebesgue integrable

functions on the interval [0, cc).

The most important features of drift free systems are described below:

(a) The number of control variables u;, ¢ = 1,...,m is smaller than the number of state variables

T;,t=1,...,n.

(b) Equation (1.13) has no equilibrium points in the usual sense; setting u; = ... = u,, = 0 gives

£ = 0, indicating that every point is an “equilibrium point”.

(c) The linearization of {1.13) around any operating point is uncontrollable. To see this, let zq

be any operating point, and u; = ... = ¥, = 0 be the nominal controls. Then the linearization of
equation (1.13) gives:
m
st = Z!]i(fro) du; (1.14)
i=1
which is a linear system of the form 6z = Aéz + Béu in which the matrix A is identically zero
and B is a matrix of dimension n by m, where n # m. Therefore (1.14) does not satisfy Kalman’s

controllability rank condition.

(d) It is easily seen that drift free systems have the special feature that every trajectory of (1.13),
run backwards in time, is also a trajectory of this system. To see this, suppose that the controls
t — ui(t),...,t == um(t) steer o to z; in time T'. Then the controls reversed in time t — u (T —

t),....,t = um (T —t), steer zy to zo. Additionally, it is possible to re-scale u;(t), ua(t), ..., um(t) so
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that zy is attained from zp in any time T # T. This is explained as follows. Suppose © = (uy, ..., um)

steers (1.13) from zg to z; in time T'. Then @ defined by rescaling the original « in time:

u(s) = Z_: u(sz—:), for 0<s< o
T T

steers (1.13) zo to zy in time T. (This is because the solution of (1.13) with controls @, Z, can be
expressed by:

3r) =20+ [ Y 0ila(e)) ulsz) 7 ds
i=0

Then substituting £ ef s T/T, yields
- T m
#(T) =70 + /0 S 6:(2(8)) uil€) d = 2(T) =z
1=0

where z is the solution of (1.13) with the original controls u;, ..., um.)

(e) Despite the fact that linearization of (1.13) is uncontrollable, the controllability of (1.13) can
be easily established by the famous Chow’s Theorem [79]. Before we can state it, some rigorous

definitions of nonlinear controllability are in place.

Given an open set V C IR™, define RY (zg, T') to be the set of states z such that there exist admissible
controls up, ..., um, defined on [0,T], that steer a given system from z(0) = zo to z(T) = z; and
such that z(t) € V for 0 < ¢t < T. Also define
RY(z0,<T)= |J RY(z0,7)
0<r<T

to be the set of states reachable up to time T.

Definition 1.1 (small-time local controllability)

A system is smali-time locally controllable at zo if RY (o, < T') contains a neighbourhood of zq for

all neighbourhoods V' of g and T > 0.

In simple terms, small time local controllability at = € IR™ implies that for any given bound on the
time T, and any given neighbourhood V of z, there exists another neighbourhood of z, N C V, such
that any £ € N can be reached from z, in time not exceeding T', while the corresponding trajectory

remains in V.
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Definition 1.2 (local controllability)

A system is said to be locally controllable at z if there exists a neighbourhood N of z such that for
any zo, 5 € N there exists a T > 0, and admissible controls uy, ..., 4, defined on [0, T}, which steer

To to zf in time T, i.e. £(0) = zo and z(T) = zy.

Let £(g;,..-,gm) denote the Lie algebra of vector fields generated by g1, ..., gm, (see the Appendix
A for a definition of a Lie algebra of vector fields). Also, let £(g1, .-, gm)(z) denote the Lie algebra
L{g1,---, gm) “evaluated” at z; i.e.

d s
£(g1, - 9m)(@) E {g(z) € B g € L(gr, - 9m)}
Chow Theorem (local version) [79]

Suppose the vector fields g1, ..., gm n (1.13) are real analytic, linearly independent and complete (in
that the solutions of (1.13) are defined for all initial conditions and all times). The system (1.13)

is locally small-time controllable at xz € IR™ if
L(g1; - gm)(z) = R"

Clearly, small time local controllability at z implies local controllability of (1.13) at z. This is
because small time local controllability guarantees the existence of a neighbourhood N of z and
time T > 0, such that any 2o € N can be attained from z in time T. Then by (d), the control
u reversed in time, ug, steers g to . Since zy € N, there exists another control @ which steers
T to zy in time less or equal to T. Thus the concatenated control: ug o @ steers zp to zy in time
no greater than 27T". Therefore, for drift free systems, small time local controllability implies local

controllability in the usual sense.

Definition 1.3 (controllability on open sets)

A system (1.13) is said to be controllable on an open set U C IR™, if for any zg, z; € IR™ there
exists a T > 0 and admissible controls uy, ..., un, defined on [0,T], which steer z¢ to z; in time T,

i.e. (0) = =g and z(T) = zy.

Chow Theorem (global version) [79]

Suppose the vector fields g, ...,gm in (1.13) are real analytic, linearly independent and complete.

The system (1.13) is controllable on an open neighbourhood of the origin, U C IR™, if

L(g1, - gm)(z) =R" forall zeU.
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(f) Systems of the form (1.13) do not satisfy Brockett’s necessary condition [10] for the existence

of smooth (or even continuous) time invariant feedback laws:

Brockett’s necessary condition for smooth static stabilization [10]:

Consider the control system
z = f(z,u), z(0) =z0 € R", f(0,0)=0 (1.15)

where f : R™ x R™ — IR™ is continuously differentiable, which is denoted by f € C. If (1.15) is C!
stabilizable ( in the sense that there exists a time-invariant C' feedback that renders the origin to be
both Lyapunov stable, and an attractor), then the image of the map f contains some neighbourhood

of the origin.

To illustrate that the above condition fails to hold for systems of type (1.13), consider the famous

example known as Brockett’s system:

T 1 0
T = 0 u+ | 1 | (1.16)
I3 —Zp T

def

= gi(z)ur + g2(z)uz = f(z,u)

Let £o = O be the equilibrium point for this system. For any € # 0, a point of the form [0 0 |7,
belongs to the neighbourhood of zg but is not a member of the image of f. This is because f(z,u) =
[0 0 €7 implies that u; = u, = 0, but then f(z,u) = 0. Consequently, system (1.16) cannot be

asymptotically stabilized to zo = 0 by a C! static state feedback.

(g) It is easy to see that drift free systems (1.13) are invariant with respect to diffeomorphic state
transformations. It follows that the standard feedback linearization techniques carnot be applied to
construct stabilizing feedback controls for (1.13). (For suppose that there is a diffeomorphic state-
space transformation and nonlinear feedback which brings (1.13) to a linear system form. It would
then follow that, after coordinate change, the smooth feedback constructed for the transformed
linear system is also a smooth stabilizing control law for (1.13). This however is not possible since

there exist no smooth static feedback control laws for (1.13).)

Due to the above difficulties, the control of drift free systems is a challenging problem which has

attracted the attention of many researchers. Control strategies for such systems can naturally be

classified into two groups:

10
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- open loop strategies (referred to under the name of motion planning)

- closed loop strategies (typically used for stabilization purposes).

Since open loop strategies often lead to closed loop strategies, the next section summarizes previously

obtained results in both areas.

4. Literature pertinent to the control of drift free systems

The relative difficulty of the control problem depends not only on the nonholonomic nature of the
system but also on the control objective. For some control objectives, classical nonlinear control
approaches (e.g., feedback linearization and dynamic inversion, as developed in [38]) are effective.
Examples of such control objectives include stabilization to a suitably defined manifold 8, 14],
stabilization to certain trajectories [115], dynamic path following [92], and output tracking [31, 87].
Consequently, there are classes of control problems for nonholonomic systems for which standard

nonlinear control methods can be applied.

However, many of the most common control objectives, e.g., motion planning and stabilization to a
point, cannot be solved using the standard nonlinear control methods, and new approaches have been
developed. Substantial research has been devoted to motion planning, i.e., the study of (open loop)
controls that transfer the system from a specified initial state to a specified final state. A variety
of construction procedures for determining such controls have been proposed. Feedback control of
nonholonomic systems has also been studied where the goal has been to accomplish specified closed
loop performance objectives, including the classical control objectives of stabilization, asymptotic

tracking, disturbance rejection, robustness improvement, etc.

In the next section, we describe recent developments in motion planning as these are relevant to

feedback synthesis results presented later.

4.1. Open loop control strategies (motion planning)

Motion planning problems are concerned with obtaining open loop controls which steer a nonholo-
nomic control system from an initial state to a final state over a given finite time interval. To
understand why nonholonomic motion planning may be difficult, it is convenient to compare it with
motion planning for holonomic mechanical systems. For a holonomic system, a set of independent
generalized coordinates can be found, and thus an arbitrary motion in the space of independent

generalized coordinates is feasible.

11
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In contrast, for a nonholonomic system, a set of independent generalized coordinates does not exist.
Consequently, not every motion is feasible, but only those motions which satisfy the instantaneous
nonholonomic constraints. Nevertheless, the controllability condition of Chow’s Theorem guaran-
tees that feasible motions do exist which steer an arbitrary initial state to an arbitrary final state.

Efficient techniques for such steering have been developed.

A variety of motion planning techniques are described in the book [58], which is a collection of re-
search articles on nonholonomic motion planning. Besides [58], an excellent introduction to motion
planning for nonholonomic robots is contained in the book by Murray, Li, and Sastry [79]. The book
by Latombe [49] also contains a chapter on nonholonomic motion planning. The motion planning
methodologies can be categorized into the following three groups according to which mathematical

methods are used :

- strategies derived by employing differential-geometric and differential-algebraic techniques;
- strategies based on special control parametrization;
- strategies employing methods of optimal control.

Although, at first glance, the above appear to be very different, however, there are many connections

between them, and they all lead to similar developments.

4.1.1. Strategies derived by employing differential-geometric and differential-algebraic

techniques

Many of the available open loop strategies are based on Lie-algebraic techniques in which motion
in the directions of iterated Lie brackets is generated by using piecewise constant inputs. This is

explained below.

It is well known, see [79], that if g;, 1 < 7 < m are smooth vector fields associated with a drift
free system of the type (1.13), then the motion of the system in any Lie bracket direction [g;, g;],

1 € 4,7 < m can be achieved by applying the following control sequence for a time At:

(a) (uiyv;) = (1,0)
(%) (ui,u;) = (0,1)
(c) (us,u;) = (-1,0)
(d) (ui,u) = (0,-1)

12
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To make the idea more concrete, we coansider a simplification of the model used in Example 1.1.

Example 1.2: (two wheel car or unicycle)

Neglecting the equation for the # angle in (1.12) of Example 1.1, and substituting 8 for ¢ (which is

equivalent to assuming that the car model has only the rear wheels), leads to the following equation:

6 1 0
. d d _ - -
i ¥ i |=]0|vu+]| cosd | n (@ + ga(q)v2 (1.17)
1} 0 sind

where 6 represents the orientation of the car with respect to the x-axis, (x,y) are the Cartesian
coordinates of the centre of the mass of the car, v; and v, denote the angular velocity, and the

translational velocity of the car, respectively, and § def 6 zy]T.

The motion along g; corresponds to forward translation of the car, and the motion along g» corre-
sponds to counterclockwise rotation of the car about its mass centre. It is clear that controls (a)
and (b) result respectively in forward translation and counterclockwise rotation of the car (both
controls are applied for a time At). Similarly, controls (¢) and (d) result in backward translation
and clockwise rotation of the car (also applied for a time At). It is then easy to verify that for a
small At the net motion of the car is essentially a sideways translation with respect to its original
configuration and in fact, the Lie bracket, [g1,92](§) = [0 — sinf cos6]T, predicts precisely this
motion. The example thus illustrates that, although instantaneous sideways motion is impossible
because of the imposed no-slip condition, sideways motion can be generated by switching between

the motions which satisfy the instantaneous nonholonomic constraint.

By using more complex switchings it is possible to generate net motions in the directions provided by
the iterated Lie brackets of g; and g;. The idea of employing piecewise constant inputs to generate
motions in the directions of iterated Lie brackets has been exploited by Lafferriere [51] and Laffer-
riere and Sussmann [52]. Their algorithm is based on expressing the flow resulting from piecewise
constant inputs as a formal exponential product expansion involving iterated Lie brackets. If the
initial and final states are sufficiently close, the algorithm of Lafferriere and Sussmann moves the
original system closer to the goal by at least a half of the initial distance. By repeated application
of the algorithm, it is possible to move the system into an arbitrary neighbourhood of the desired
state. For nilpotent systems (systems for which all iterated Lie brackets of sufficiently high order
are zero) the algorithm provides exact steering. Examples of nilpotent systems include systems in

chained and in power forms which are special cases of (1.13).

13
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Systems in chained form are systems whose equations are given by:

I
I
I3

Zy

Zn

= ul

= u2

= I w

= I3 u;

= ZTp-1 Ui

Systems in power form are systems whose equations are given by:

I
Ty
T3

T4

Zn

Example 1.2 (continued)

up
u2

I U2

1
EI% Us

1 -
"2uo

m—op°t

It is easily seen that the following state and control transformation:

I3

u

uz

zcosG+ysind
z sitn 6 —y cos 6
u

Vg — U1 I3

brings the car system (1.17) into chained form:

T
T2

T3

= Ua

= 22 U1

(1.18)

(1.19)
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Similarly the following transformation:

zy = zcosb+ysinb
I = g

3 = =z sinfB —ycosb
Uy = VU1 —U2T3

Us = un0

brings the car system (1.17) into power form:

r = up
Zo = U2
:153 = I U»s (1 20)

It is worth pointing out that the chained form and the power form are equivalent via a state trans-
formation {78, 114]. Sufficient conditions on the vector fields in (1.13) that guarantee that (1.13)
can be transformed into the chained form via state and control transformations have been developed

by Murray and Sastray in [77, 80| for m = 2, and by Bushnell et al. in [13] for m > 2.

It should also be pointed out that the algorithm of Lafferriere and Sussmann [51, 52|, can be based
on other types of switching inputs, not necessarily piecewise constant inputs, see {52] for details.
In a related paper, Jacob [39] proposed an algorithm for exact steering of nilpotent systems using
piecewise constant or polynomial inputs. His algorithm is similar to Lafferriere and Sussmann’s but

with some modification in the construction procedure which results in simpler paths.

Another set of tools for motion planning, based on averaging theory, has been developed by Gurvits
and Li [34], Leonard and Krishnaprasad [54], Liu [57], and Sussmann and Liu [106]. The basic
idea there is to use high-frequency, high-amplitude periodic control inputs to generate moticns in
the directions of the iterated Lie brackets. Employing this technique, the averaged system, obtained

in the limit as the frequency of the inputs increases, is steered exactly to a given desired point.

Tilbury et al. [109] examine a variety of implementation issues pertinent to the asymptotic sinu-
soidal steering algorithm of Sussman and Liu [106], in the context of steering kinematic car-like
systems with trailers. Specifically, it is shown that preliminary state and control transformations

may facilitate convergence to the averaged trajectory. Although high-frequency control inputs may
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be undesirable from an implementation point of view, the high frequency can be avoided by selecting

the time interval to be large, over which the system is steered approximately.

The concept of a flat nonlinear system [29, 30, 112] is useful in solving certain nonholonomic mo-
tion planning problems. To explain the notion of a flat system, consider the nonholonomic system
(1.13). If there exists an output functior y(z(£),u(t),u(¢)), with same dimension as control input
u, such that the state z and the control input u can be expressed as functions of the output y and
its derivative g, then {1.13) is called differentially flat and the output is called the flat output. For a
differentially flat system motion planning reduces to prescribing a smooth output function satisfying
the boundary conditions imposed by the initial and final state specification. The desired control
input and the trajectory can be obtained by differentiating the prescribed output function and no
integration is required. Rouchon et al. [85, 86] showed that systems such as, an automobile with
multiple trailers, are flat. The flat output is provided by the Cartesian coordinates of the last trailer.

For system (1.20), the flat output is given by (y1,y2) def (z2,z3), and thus:

Ty = ¥a2/1, T2 = Y1, T3 =y

(Y291 — Y1)/ (11)?, Uz =y

Uy

The motion planning problem hence reduces to prescribing output functions y; (%), y2(t), satisfying
the boundary conditions imposed by the initial and final state specification and 3 (¢) # 0. In [60] it
is shown that any kinematic nonholonomic system of the form (1.13) with n = 5 and m = 2 is flat.

An example of a system which is not flat is provided by a ball rolling on a plane without slipping

[12, 59].

4.1.2. Strategies based on special control parametrization

A more elementary method for motion planning is also available. This method is based on parametriza-
tion of the inputs within a given finite dimensional family of functions such as sinusoidal functions.
Consider the kinematic model of a nonholonomic control system of the form (1.13). The objective
is to steer the system from a given initial state To € IR™ to a pre-specified final state £y € IR™,
over a time interval [0,T]. Let {U(a;.) : @ € IR} be a parameter-dependent family of control
inputs U(a;.) : [0,1] - IR™, where a € IR? is a parameter. Let £(a;t), 0 < t < 1, denote the
solution to (1.13) with Z(e;0) = 0 and u(¢) = U(;¢), 0 <t < 1. Let G: IR —+ R™ be defined by
G(a) = #(e;1). If the control family {U(cw;.) : @ € IR} is sufficiently rich, G is onto JR™. In this
case the control input i#(a;t), 0 < ¢ < 1, which steers the system from the origin to = € IR™, can be

defined by setting u(a;t) = U(e;t), 0 < t < 1, where « is a solution to G(a) = z. Since (1.13) is
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drift-free, it is then possible to re-scale ¢ to obtain a control:

—%i(zo;1 ~2¢/T), 0<t<.5T,

u(t) =
a(zs;2t/T — 1), ST<t<T

2
T
which steers system (1.13) from zg¢ to zy over the time-interval [0, 7] (see (d) of section 3). For

example, consider steering (1.20) using a family of control inputs U{a;t) = (Ui(a;t), Ua(a; t)):

ai, 0<t< .55,
Uila;t) =

a3 sindnt, 5<t<L1

s, 0<t<.5,
Us(a;t) =

lag| cosdnt, HS<t<1

Integrating (1.20) with the above controls and with z;(0) = z2(0) = z3(0) = 0 over the interval
[0, 1], yields

NL? ME

Gla) =

422 — azlas|/(87)

Clearly, G is onto IR® and the system can be steered to any configuration as described above.

The above idea appears in the work of many researchers: Bushnell et al. [13], Murray [78], Murray
and Sastry [77]. In this approach a system in power or chained form can be steered to any given
desired point by using a family of sinusoids at integrally related frequencies. Lewis et al. [56] showed
that sinusoids at integrally related frequencies can be used to steer a snakeboard. The use of other
control functions, e.g., piecewise constant functions or polynomials, has also been investigated by

Jacob [39], Tilbury [110], and Tilbury et al. [111]

The multirate digital control approaches developed by Chelouah et al. [20], Monaco and Norman-
Cyrot [74], Sordalen and Egeland [101], Tilbury and Chelouah [108], can be also viewed as a way
of steering a system via parameterization of the input within a family of piecewise constant inputs.
The basic idea of the multirate digital contro! approach is to sample the input by a zero order hold
and steer the resulting discrete time system, typically, different sampling rates are used for different
input channels. Depending on the nature of control strategies and their interpretation, the multirate

digital control approaches may be viewed as feedback strategies [101].
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4.1.3. Strategies employing methods of optimal control

Although the methodologies of the previous section provide a solution to the motion planning prob-
lem, there often exist many solutions. A specific solution can be selected using optimization. Brock-
ett [11], and Brockett and Dai [12] demonstrated the optimality of sinusoidal and elliptic control
functions for certain minimum norm nonholonomic optimal control problems. The optimality of
elliptic functions has been also addressed by Krishnaprasad and Yang in [48]. Reeds and Shepp [83]
obtained a complete characterization of the shortest paths connecting any two given configurations
for the car model (1.17). They showed that the shortest path is one of 48 extremal paths that can
be explicitly computed. Each of the extremal paths has no more than five segments and requires no

more than two direction reversals.

Conditions for optimality in various nonholonomic optimal control problems are discussed by Bloch
and Crouch [9], Sastry and Montgomery [93] and Montgomery {75]. In particular, Sastry and Mont-
gomery [93] and Montgomery [75] study the optimal control problem of minimizing the Ly-norm of
control subject to given initial and final states and subject to equation (1.13). Using the maximum
principle, they show that the optimal control is such that the quantity 3 .- |u:(¢)|> remains con-
stant. For the same problem, Montgomery {75] considers in detail the case of abnormal (singular)
extremals. He demonstrates that abnormal extremals may provide an optimal solution and thus
cannot be neglected in analysis. He also considers a time-optimal control problem for nonholonomic
control system (1.13). Walsh et al. {116] studied the minimal norm control problems for kinematic
systems evolving on Lie groups. Numerical techniques for constructing optimal trajectories for a
variety of nonholonomic control problems are proposed by Agrawal and Xu [1], Fernandes et al.

(27, 28] and Hussein and Kane [36].

4.2. Closed loop control strategies

A majority of the closed loop control strategies developed for nonholonomic control systems serve
the purpose of stabilization of such systems to a point. In the absence of smooth static or even
continuous stabilizing feedback, (see Brockett’s necessary condition [10]), the closed-loop synthesis

methods concentrate on either:
- synthesis of discontinuous state feedback,
- synthesis of time-varying state feedback.

The literature pertinent to the above methods is summarized below.
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4.2.1. Synthesis of discontinuous state feedback

Discontinuous state feedback control for stabilization of drift free systems to the origin can be further

classified into three types:
(a) piecewise continuous feedback
(b) sliding mode control
(c) hybrid feedback control.

(a) Piecewise continuous feedback

In [102], Sussmann proved the existence of stabilizing piecewise continuous static state feedback
control for a class of nonlinear controllable systems. The class mentioned includes nonholonomic
control systems which satisfy the real analyticity assumption (namely that all the vector fields in the
drift free system equation are real and analytic). Lafferierre and Sontag [53] presented a formula for
a piecewise continuous feedback law, obtained from a piecewise smooth control Lyapunov function.
The resulting feedback is globally stabilizing and is discontinuous on a surface of a lower dimension
than the state space. However, there are no general methods for constructing control Lyapunov

functions satisfying the assumptions of [53].

Piecewise continuous feedback has been constructed for specific examples as reported by Lafferierre
and Sontag [53], Canudas de Wit and Sordalen [16] and Khennouf and Canudas de Wit [46, 17].
Exponential convergence of the states to the equilibrium point has been demonstrated in all these
examples. Sordalen et al. [98] also proposed a piecewise continuous feedback law for local stabiliza-
tion of the attitude of an under-actuated rigid spacecraft with only two angular velocity controls.

The feedback law results in exponential convergence rates of the states to the equilibrium.

A different approach for the construction of piecewise continuous controllers has been developed by
Aicardi et al. [2], Astolfi [4, 5], and Badreddin and Mansour [6]. A non-smooth state transformation
is employed there and a smooth time-invariant feedback is constructed to stabilize the transformed
system. In the original coordinates, the resulting feedback law is discontinuous. In [2, 4] this ap-
proach has been used for stabilization of kinematic and dynamic models of simple mobile robots. For
these examples, the non-smooth state transformation is provided by simply changing the Cartesian
coordinates to polar coordinates. The potential of this approach for application to more complicated

nonholonomic control problems remains to be investigated.
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(b) Sliding mode control

Discontinuous time-invariant feedback laws can also be developed using sliding mode control ap-
proaches as proposed by Bloch and Drakunov (7] and by Guldner and Utkin {32]. The resuiting
discontinuous feedback laws force the trajectory to slide along a certain manifold towards the equi-
librium. Consider, for example, the problem of stabilizing system (1.20) to the origin. Define the

feedback law according to [7]:

uy, = —zx1+ 2zys8ign(z; — 1:12:1:2 )s
1
uy = —z2— STisign(zs - ”"1;2 ) (1.21)

where sign(-) denotes the signum function. Let V(zi,22) = &( 5}- + z2). Then the derivative of
V along the closed-loop trajectories of (1.20) satisfies vV = %xlul + Tous = —2V. Thus V(¢) =
V(0)e? - 0ast —-coand z, =+ 0,72 +0ast— co. Let § =3 — #1F2 . Then, 6 = —2V sign(9).

Clearly, |#(t)| is non-increasing and, in fact, can reach zero in finite time provided that
V(z1(0),z2(0)) > [6(0}| (1.22)

Once 9(%) reaches the origin, it must stay at the origin and, hence, the trajectory will slide along
the surface z3 = %432 toward the origin. If the initial conditions do not satisfy inequality (1.22), a
preliminary control can be used to force the trajectory into the region where inequality (1.22) holds

and then the feedback law (1.21) can be switched on.

The sliding mode control approach can only be applied to certain classes of higher dimensional
nonholonomic control systems [7, 32]. Generally, however, it is not suitable for stabilization of

nonholonomic control systems and remains a subject for future research.

(c¢) Hybrid feedback control

Typically, hybrid controllers combine continuous-time features with either discrete-event features or
discrete-time features. The operation of hybrid controllers is based on switching at discrete-time
instants between various low-level continuous-time controllers. The time-instants at which switches

occur may either be specified a priori or also be determined in the process of controller operation.

Controllers which combine continuous time features with discrete event features have been proposed
by Bloch et al. {8], and by Kolmanovsky et al. [41, 42], for a sub-class of (1.13). The controllers
developed there consist of a discrete event supervisor and low-level time-invariant feedback con-

trollers. The supervisor configures the low-level feedback controllers and accomplishes switchings

20



1.4 LITERATURE PERTINENT TO THE CONTROL OF DRIFT FREE SYSTEMS

between them in a way that provides stabilization of the system. Each of the low-level feedback
controllers forces the base variables to trace a specific straight line segment of the base space path,
which is selected by the supervisor to produce the desired geometric phase change. The feedback
law provides finite time (dead-beat) responses. This approach is also used by Krishnan et al. [47]

for attitude stabilization of a rigid under-actuated spacecraft model with only two control torques.

Sordalen et al. [99, 100] developed a hybrid controller for stabilization of kinematic nonholonomic
systems in chained form and showed that such controllers result in exponential convergence rates of
the states to the origin. Also hybrid controllers of a different type, which apply to systems specif-
ically in chained form have been proposed by Canudas de Wit et al. [18]. The control of [18]
provides only for practical stabilization (stabilization to a small neighbourhood of the origin}. The
hybrid approach proposed by Sontag in [95, 96] is more general as it applicable to a large class of
nonholonomic control systems, but is less explicit. Sontag makes use of a family of periodic inputs
that are universal nonsingular control [85] and result in periodic trajectories. Linearization about
each of these trajectories is controllable. Consequently, a perturbation of a periodic input can be
constructed to bring the state closer to the origin at the end of each cycle. A good introduction to

some of hybrid stabilization techniques in mobile robot context is contained in the article [19].

4.2.2. Synthesis of time-varying state feedback

The use of time-varying feedback controls in application to nonholonomic systems was probably first
proposed by Samson [88, 89, 90, 91] in his research work concerning mobile robots. Coron [24] was
to the first to show rigorously that kinematic nonholonomic control systems can be asymptotically
stabilized to an equilibrium point by smooth time-periodic static state feedback. The existence proof

of [24], however, does not provide for the construction of feedback laws.

Some explicit feedback construction procedures are developed later. Murray et al. [77], Teel et al.
[107], and Walsh and Bushnell [114] used the method of averaging and saturation type functions to
construct smooth time-periodic feedback laws for systems in power and chained forms. The feedback
laws of [77], [107], and [114] achieve global asymptotic stabilization. In [114] numerical simulations
illustrate the resulting feedback laws for a fire truck example, a nonholonomic system with three

inputs and five states.

Samson and Ait-Abder-rahim [90], and Walsh et al. [115] provided a different asymptotic stabiliza-
tion scheme based on construction of a “nominal trajectory” which asymptotically approaches the

equilibrium. In [90] and [115] linear controllers are constructed which stabilize a variational system
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about the nominal trajectory. This approach is easy to use but requires an a priori selection of a

nominal trajectory.

Another constructive approach has been proposed by Pomet [82], and Coron et al. [25]. This
approach, widely known as Pomet’s method, is based on Lyapunov’s direct method and is to some
extent, similar to the well-known technique of Jurdjevic and Quinn [40]. Pomet’s method generates
smooth time-periodic feedback laws by constructing suitable Lyapunov functions. As an illustra-
tion, consider the following smooth feedback law for the chained system (1.20) provided by Pomet’s

method:

ui(z,t) = —z) + z3(sint — cost)

’U2(:L', t) = =—I2—TI1I3 — 2(31 + IgCOSt)

This feedback law is obtained from the closed-loop Lyapunov function given by

1 1 1
V(z,t) = 5(:1:1 + z3cost)® + -2-13 + §x§
which gives

along any trajectory of (1.20). By applying the Krasovskii-LaSalle invariance principle for periodic
systems it can be verified that the origin is the globally asymptotically stable equilibrium of the

closed loop.

Unfortunately, the rates of convergence provided by smooth time-periodic feedback laws are nec-
essarily non-exponential [78]. For system (1.20) smooth time-periodic controllers can provide time
rates of convergence of at most 1/v/%, see [88]. Furthermore, in experiment work [21], M’Closkey
and Murray have demonstrated that smooth time-periodic feedback laws do not steer mobile robots
to a small neighbourhood of the desired configuration in a reasonable amount of time. Thus feedback
laws which provide faster convergence rates are desirable. These feedback laws must be necessarily
be nonsmooth (non-differentiable). Further information on connections between therates of conver-

gence and smoothness of feedback laws can be found in references [34, 22].

A construction procedure which provides nonsmooth feedback laws with exponential convergence
rates has been proposed by M'Closkey and Murray in [23]. The resulting feedback laws are con-
tinuous and smooth everywhere except at the origin. The construction procedure can be viewed as

an extension of Pomet’s algorithm to the case of nonsmooth feedback laws. For systems in power
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form, explicit expressions for the feedback laws can be obtained. For example, for system (1.20) a

nonsmooth time-periodic feedback law which results in exponential convergence rates is of the form:

I3
wy(z,t) = -+ ——=cost, z#0
ua(z,t) = —z2+ z3 sint, z#0
204y - 2 p3(:z:) 1
u (0,8) = wuy(0,¢) =0, where p(z)=(z!+z3+23)1/?

The closed-loop system is globally exponentially stable with respect to a homogeneous norm p(z),

in that, there exist constants A; > 0 and A2 > 0 such that
p(z(t)) < Ap(z(0))ezp(—Aqt)

This notion of exponential stability “with respect to a homogeneous norm” is only slightly different

from the standard notion of exponential stability.

Time-periodic feedback laws for stabilization of dynamic models of nonholonomic control systems
can be derived from kinematic controllers using the integrator backstepping or “error tracking”

approaches, see [45, 114] for details.

Besides mobile robots [21, 88, 89, 90, 91, 114], time-varying stabilization has been used for knife-
edge models with augmented actuator dynamics [45], under-actuated rigid spacecraft controlled by

only two rotors [76, 115], and free-floating multi-body spacecraft [44].

4.3. Difficulties arising in the previously existing methods

(a) Most of the existing methods for both motion planning and feedback stabilization necessi-
tate the construction of diffeomorphic state transformations which convert the systems into
either chained or power form, see [13, 77, 78, 80, 114]. Although, there are necessary and
sufficient conditions available for the existence of such diffeomorphic state transformations,

see [77, 80, 13|, the transformations are usually defined only locally.

(b) The disadvantage of the sliding mode controllers is that they may cause chattering. Guldner
et al. [33] have proposed to use smoothing to prevent chattering, see [94] for the definition of
smoothing. Piecewise continuous controllers usually avoid chattering as the trajectory does
not “stick” to the discontinuities. It should also be pointed out that controlling kinematic

nonholonomic systems with discontinuous (velocity) controls may be difficult to implement.
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Formulations involving dynamic nonholonomic control systems seem preferable if discontin-

uous controllers are used.

(c) As mentioned earlier, Coron [24] showed that the nonholonomic control systems can be
asymptotically stabilized to an equilibrium point by smooth time-periodic static state feed-
back but the existence proof of [24] does not provide for the construction of feedback laws.
Other time-varying feedback approaches [24, 77, 107, 114, 82, 25] rely on the existence

of suitable time varying Lyapunov functions which are not easy to find.

(d) Time varying feedback laws do not provide for exponential convergence rates in asymptotic

stabilization.

(e} There are hardly any results available concerning robustness of the control methods de-
veloped (with respect to model uncertainties, as arise from parameter variations or from
neglected dynamics). Only a few preliminary results are available in [17]. The difficulties
are primarily technical and general methods for the study of robustness for this class of
nonlinear systems are not available. Consequently, methods for design of robust controllers
for nonholonomic systems are unknown. Open loop approaches are less likely to produce
solutions which are robust with respect to modelling uncertainties and censoring error, as

compared with feedback approaches.

5. Research objective

In the light of the difficulties arising in the control of nonholonomic systems listed above, and the
intrinsic features of nonholonomic systems outlined in section 3, the objective of this thesis was to
explore novel and more effective feedback synthesis approaches for stabilization of such systems to a
point. In the absence of continucus static feedback laws, attention was focused on developing simple

and systematic approaches for the construction of:
1- piece-wise constant feedback control laws
2- time varying feedback control laws

3- investigating the possibility of employing a mixture of the above approaches and sinusoidal

steering (77, 109].

Since the existence of transformations to either power or chained form is not generally obvious

and even if such transformations exist they are usually defined locally, the ultimate aim was to
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propose synthesis methods of 1-3 which abstract from any specific form of a drift free system. Such

transformation free approaches would naturally result in simpler and more direct feedback synthesis.

6. Contribution of the thesis

With respect to objectives 1-3 listed above, two novel feedback synthesis approaches were intro-

duced, analysed, and their utility for applications was explored:
(a) a guiding functions approach [63, 64, 65, 67, 69, T1, 72]
(b) a trajectory interception approach [66, 68, 70, 84].

The possibility of employing sinusoidal steering {77, 109], in conjunction with either of the above
approaches was also explored, see [64, 67, 69, 70, 71, 72]. The above approaches resulted in the

construction of new and effective feedback control strategies for drift free systems.

A brief description of the new approaches (a) and (b) follows next.

6.1. The guiding functions approach

In the guiding functions approach a number of semi-positive definite functions called “guiding
functions” are introduced to determine a desired direction of system motion. These guiding functions
permit to construct a sequence of controls such that the sum of the guiding functions decreases in an
average sense. This approach delivers bounded, piece-wise constant control laws. The approach is
first applied and analysed for systems which appear in a special rectified form, and is later extended
to apply to general drift free systems. The guiding functions approach often leads to dead beat

control and provides discontinuous stabilizing feedback laws.

6.2. The trajectory interception approach

The trajectory interception approach is based on considering of what is known as the Lie bracket
extension of the original system. The resulting feedback law can be viewed as a composition of
a standard stabilizing feedback control for the extended system and a periodic continuation of a
parametrized solution to an open loop, finite horizon control problem stated in logarithmic coordi-
nates of flows. In this approach an arbitrary Lyapunov function is used to construct a time-varying

stabilizing feedback law.
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7. Thesis outline

The thesis is organized as follows:
e Chapter 2. Guiding functions as a tool for stabilization of systems in rectified form.

A novel concept of guiding functions is introduced which can be used as a tool for construc-
tion of new and effective feedback control strategies for drift free systems, [63]. A stabilizing
control strategy based on this concept is developed and analysed for systems of control de-
ficiency order one, in rectified form. The strategy is shown to be applicable also to systems
of higher order of control deficiency. Under reasonable assumptions, the feedback control

strategy vields global asymptotic stabilization to a set point.

The guiding functions control strategy is tested on two examples on which it proves to be
very effective. The geometric insight into the steering problem, gained by employing the
guiding functions, is demonstrated to lead to a yet simpler and more effective feedback con-

trol laws [63, 65].

e Chapter 3. The guiding functions stabilizing strategy for general drift free sys-

tems.

The guiding functions control strategy is next extended to apply to general drift free sys-
tems which need not be transformable to a rectified form. A systematic method for the
construction of a pair of guiding functions is introduced [63], and conditions are stated
which guarantee that the resulting feedback control strategy yields global asymptotic con-

vergence to a desired set point.

A few applications of the strategy are discussed and tested on models of drift free systems
which are characterized by different algebraic structures: an underwater vehicle, a general

system with five state variables and three controls, and a spacecraft model 64, 69].

The possibility of employing the guiding functions approach to systems whose controllability
Lie algebra involves higher order Lie brackets is also investigated. The idea of combining
sinusoidal steering (77, 109] with the guiding functions approach is explored in {64, 69, 72].
In (64, 69] a feedback controller is constructed for an underwater vehicle in actuator failure

mode, and in [72] a feedback controller is constructed for a mobile robot with trailer.
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The guiding functions approach for general drift free systems is further extended to allow for
the construction of several rather than two guiding functions and its applicability is demon-

strated on a fire truck model [67] and on a class of wheeled mobile robots [71].

Chapter 4. The trajectory interception approach

The trajectory interception approach is first introduced for a class of drift free systems for
which the associated controllability Lie algebra is nilpotent. The concept of a Lie bracket
extension of the system, see [51], is employed and an arbitrary Lyapunov function is used to
construct a closed loop stabilizing controller for the extended system. This classical static
feedback is then combined with a periodic continuation of a parametrized solution to an open
loop steering problem for the comparison of flows of the original and extended systems. This
approach is applied to stabilize several examples of drift free systems possessing different

algebraic structures.

It is shown that the application of the trajectory interception approach is not limited to
systems whose controllability Lie algebra is nilpotent. The approach can successfully be ap-
plied to systems with non nilpotent controllability Lie algebras by introducing approximate
models which generate nilpotent controllability Lie algebras. This approximation idea is
employed to stabilize a number of drift free systems possessing different algebraic structures:
a rigid spacecraft in actuator failure mode [68], a hopping robot in flight phase [84], an

underwater vehicle [66], and a class of wheeled mobile robots [70].

It is shown that introducing approximate models often permits significant simplification of
the differential equations describing the evolution of the logarithmic coordinates in the open-

loop problem formulation (which are usually difficult to solve analytically).

Since the computation of the solutions to the open loop trajectory interception problem may
be elaborate if the extended system contains high order Lie brackets, the possibility of in-
troducing decomposition into control synthesis is explored. This idea involves decomposing
a complex system model into subsystems of which one can be controlled by the trajectory
interception approach and the other by simple sinusoidally varying inputs. The feasibility

of this approach is demonstrated using a few examples.

As in the case of the guiding functions approach, the feedback synthesis method based on
the trajectory interception idea does not necessitate conversion of the models into chained

or power forms.
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e Chapter 5. Counclusions and Future Research

In conclusion, a brief review of the results of the preceding chapters is presented and some
general observations are commented. The two feedback design approaches are compared and
their utility for different applications is explained. Some suggestions are also given for future

work.

8. Originality of research contribution and its potential advantages for applica-

tions

e The two feedback control strategies introduced are new and do not require conversion of the
system models either to power or chained forms. In principle, no transformation techniques
are needed. Both strategies can thus be applied to systems which fail to satisfy the condi-
tions for the existence of special transformations, and to systems which are not flat. Both

control strategies possess strong robustness properties with respect to model inaccuracies.

e The concept of guiding functions as a tool for feedback control design has not appeared in
previous literature. The guiding functions approach is particularly simple and often leads

to very effective feedback control laws such as ‘dead beat control’.

e The trajectory interception approach involves an original idea of employing the Lie alge-
braic techniques of [51] and [50] in a systematic synthesis of time-varying feedback control

for drift free systems.

e The trajectory interception approach provides for exponential rates of convergence to a
desired set point. The results contained in this thesis open a new area of research with
the goal of rendering this synthesis approach computationally simpler, more effective, and

extending its applicability to systems with drift.
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CHAPTER 2

Guiding functions as a tool for stabilization of systems in

rectified form

A novel and systematic approach to the construction of feedback control for stabilization to a set
point of drift free systems is introduced, [63, 64]. The approach is based on a new concept of
guiding functions whose sum vanishes only at the reference set point. The guiding functions are not
Lyapunov functions, however, a comparison of their values allows to determine a desired direction
of system motion and permits to construct a sequence of controls such that the sum of the guiding
functions decreases in an average sense. The individual guiding functions are hence not restricted
to decrease monotonically but their oscillations are limited and coordinated in a way to guarantee
convergence. The guiding functions control strategy is tested on two examples; a unicycle and a front
wheel drive, on which it proves to be very effective. In both cases, the choice of the guiding functions
is straightforward and gives additional, geometric insight into the steering problem. The guiding
functions approach presented is general and can be employed to control a variety of mechanical

systems with velocity constraints.

1. Introduction

The feedback control method presented in this Chapter applies to drift free systems of the form
(1.13), which appear in a special rectified form (see section 3). The method employs a new concept
of guiding functions in place of a single Lyapunov function. Before to explain this concept, consider

the system (1.13) with slightly different notaions; £ = z, v; = u;, and fi(€) = gi(z):

=Y fi&wi, (2.1)

i=1
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and also for any integerm > 1, let m def {1, ...,m}. The principal idea of this approach is explained

below for the simple case when the number of controls is by one less than the number of state

variables (m =n — 1).

Design of nonlinear stabilizing feedback typically involves a search for a suitable ‘control’ Lyapunov
function V'(£§) and a control law v(&) ef [v1(€), ..., um(€)] which renders :—tV(f) < 0 along the
trajectories of the controlled system, see [50, 97]. For systems of type (2.1) this approach is not
possible as there does not exist any function V for which the set 7 f {Ee R":VV(£)fi(§) =0,i €
m} = {0}. Hence we take a different route. We attempt to find n — 1 functions Vi{§), i € n—1,
henceforth called ‘guiding functions’, whose behaviour along the trajectories of the controlled system
is not limited to Tf?vi(f) < 0. While allowing some guiding functions to increase, we design controls
vi(€) i € m such that their “synchronized action” causes the sum V(£) </ Sl Vi(€) to decrease
on average. The latter is indeed possible if the functions V; are chosen to satisfy the following

conditions:

Condition (a): Each V;,i € n — 1, is semi-positive definite on JR™ while the sum V =12, V; is

positive definite, decrescent and proper on IR™.

Condition (b): The value of each V;, i € n — 2, can be manipulated independently of the value of
Va—1 in that if Vi(p) # 0 for some { € n — 2, at some point p, then there exist controls v;,7 € m,

which steer V;, i € n — 2, to zero in finite time while V,,_; maintains its value at p.

Condition (c¢): The value of V;,_; can be decreased over a finite interval of time if the remaining

Vi, 1 € n — 2, are allowed to vary freely.

The above assumptions suggest a feedback strategy which focuses on the decrease on V,;_; alone.
To begin with, the strategy attempts to employ controls which provide for the satisfaction of the
usual condition that £V (§) = Y, £V;(§) < 0. If the last becomes impossible, due to the fact
that %Vi(p) =0, for ¢ € n — 1, regardless to the values of the controls u;,7 € m, then a sequence
of controls is employed which results in a decrease of V,_; while the remaining V; are permitted to
increase by an amount proportional to the current value of V' (see assumption (c)). Next, another
sequence of controls is employed which maintains the current value of V;,_; and steers V;, i € n — 2,

to zero (see assumption {b)). Repeating the above procedure results in asymptotic convergence of

V to zero.

It is shown here that the above strategy is indeed feasible, and that the guiding functions, satisfying

the desired properties (a)-(c), are especially easy to define in the case when the vector fields fi, ..., fm
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are simultaneously “rectifiable” (see hypothesis H1 in section 3). The strategy is first developed and
analysed for systems in which the difference between the number of control and state variables is one
(i.e. m = n—1). Such systems are referred to under the name of systems of “control deficiency order
one”. A well known example of such systems is the model of a unicycle. For this example, when
the set point is chosen to be the origin, the strategy is shown to achieve what could be regarded as
the ‘intuitively best’ type of control. In the absence of disturbances, the control is dead-beat and is
accomplished in three steps. At the end of the first step the car assumes a position sideways to its
goal - the origin. This position of the car ‘requires’ the car to displace sideways, (in the direction
of the Lie bracket of the vector fields corresponding to the rotation and rolling movements of the
car). In its second step the strategy makes the car rotate 90 degrees and then drives it straight to

the origin.

It is shown next that the guiding functions approach can be generalized to apply to systems of
control deficiency order two. In this case considering a Lie bracket extension of the original system
is necessary. A more complex example of a car is used this time (a front wheel drive for which
m = n — 2). Simulations confirm that the strategy is very effective also in this case. Finally, a yet
better control construction for this particular example is shown to follow from the guiding functions

approach.

The guiding functions control strategy has several advantages which make it potentially useful for
applications (examples include the control of mobile robots in which it is important to control the
entire state vector) :

(i) Without the loss of generality, the strategy employs bounded, piecewise constant controls.
The bound on the control can be adjusted as necessary if control constraints have to be
satisfied.

(ii) The strategy is based on simple principles; the values of the guiding functions provide an
on-line convergence verification test.

(iii) Control efficiency in terms of the convergence speed can be improved in special cases as it is

dictated by particular realizations of assumptions (b) and (c) which are model dependent.

The novel contribution of this Chapter can be summarized as follows:

e A novel concept of guiding functions is introduced which can be used as a tool for the

construction of new and effective feedback control strategies for drift free systems.
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2.2 THE CONTROL PROBLEM AND BASIC ASSUMPTIONS

e A stabilizing control strategy based on this concept is developed and analysed for systems
of control deficiency order one in rectified form. The strategy is shown to be applicable also
to systems of higher order of control deficiency.

e It is shown that, under reasonable assumptions, the feedback control strategy yields global
asymptotic stabilization to a set point.

e The guiding function controller is tested on two examples on which it proves to be very
effective. The geometric insight into the steering problem, gained by employing the guiding

functions, is demonstrated to lead to a yet simpler and more effective feedback control laws.

2. The control problem and basic assumptions

We aim to solve the following:
Set point control problem.

SPC: Find a feedback control strategy in terms of piecewise constant controls v;(z), i € m, such
that for any two points &, & € IR™ , &€(t;&,0) = & as t — oo , where £(¢; &, 0) denotes the
trajectory of the controlled system (2.1) emanating from &g at time ¢ = 0.

Without the loss of generality, we assume that & = 0, or else the original coordinate system can be

translated as required. Two sub-classes of drift free systems will be considered: systems of control

deficiency order ore, for which m = n — 1, and systems of control deficiency order two, for which

m=n—2.

We need the following, basic assumptions:

Al. Complete controllability :

For system of control deficiency order one, (m =n — 1):

5pan{fi(§)v [fiv fJ](E)w ,jENn— 1} =R"V e R™. (22)

For system of control deficiency order two, (m =n — 2):

Span{fi(fL [fia f]](é)w [fiv [f_71 f’s]](&): 2.,]., k € M:= R" VY E € R". (2'3)
A2. Absence of singular points :

The vector fields in (2.2)-(2.3) do not have asymptotic singular points in that there exists a
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constant ¢ > 0 such that

inf“‘fz(f)”: ”[fly fj](f)”? “[fn [fj! fk]](&)llviYLk €En — 216 € Bn} >c (2’4)

3. Construction of feedback using guiding functions

3.1. Construction of guiding functions

In the case when the number of state variables exceeds the number of controls by one and, addi-
tionally, the system equations appear in a ‘rectified form’ (see below), the set of guiding functions
satisfying the conditions (a)-{c) of section 1 can be introduced in a particularly easy way. For
systems in a general form we need to impose the following hypothesis :
H1l. Rectifiability:
There exist diffeomorphic state feedback transformations £ = T, _1(z), v = Un—1(§,u),
such that, in the new coordinates z, and in terms of the new control u, the system with

m =n — 1 > 2 assumes the form :

- - — - —

1 0 0 0
0 1
zr = O jur+] 0 jua+.o+| 1 jtn2+]|0 Up—1
hy(z)
| 0 | | 0 ] | O ] | Ra(z) ]
Y i@ + ga2(@uz + o + Gno2(2)un—2 + gno1 (T)un1 (2.5)

where hj, hs, are some smooth functions of the new state variable z.

REMARK 2.1. Sufficient conditions for local existence of similar transformations were discussed in
[37]. Hypothesis H1 is not very restrictive; many systems which are important for applications,
appear 2 priori ir this form, or else the rectifying transformations can be found very easily. At times
the rectifying transformations are not needed at all as a set of guiding functions V;,7 € n — 1 which
satisfy conditions (a)-(c) of the Introduction can be found for the original system, see Remark 2.2.

This is also confirmed by examples in the next sections.

Assuming the satisfaction of H1, we will concentrate on the construction of the guiding functions
and the associated feedback control strategy for system (2.5) in place of the original system (2.1).
Clearly, if (2.1) satisfies the controllability assumption Al, so does the transformed system (2.5).

We will hence assume that assumption Al is made with respect to system (2.5).
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For a system in a rectified form (2.5), we introduce a set of the following semi-positive definite

guiding functions:

Vie) " 32, ien=2 =9 (o,za) (2.6)
Vaur() e Sla2, + 23] (2.7)

The above functions indeed satisfy the conditions (a)-(c), as explained below:
Condition (a):
The sum of all guiding functions, defined as:

n-—1
V(@)Y Vi) = %xT:r (2.8)

=1

is clearly positive definite, proper and decrescent in IR™.
Condition (b):

Calculating

iUg L En — 2
2 viz) = Vi@ a(@ui = { e (2.9)
dt zTgn—l(z)un—l i=n-1

shows that the value of each guiding function V;, for ¢ € n — 1, can be changed only by the corre-
sponding control u; but not by any other control u;, j # i. Now, suppose that Vi (p) # 0, for some

p € IR"™ and k£ € n — 2. The standard feedback control
ur(z) def —sign(zy), ui(z)=0, i#k,ien—-1, ze€R" (2.10)

with the sign function defined in the usual way, so that sign(0) = 0, yields

—lze 1 = k
iy =] Tl , ien—1 (2.11)
dt 0 i£k
and
—5i i = k
i:c,—(t) _ sign(zi) i ien (2.12)
dt 0 itk

for all ¢ > 0, where z(0) ef p- It follows that there exists a finite time ¢* > 0 such that z4(¢*) =0,

and hence that Vi(z(t*)) = 3zi(t*) = 0, while Vj(z(¢*)) = V;(p), for all j # k, j € n—1. This

shows that condition (b) is satisfied.
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Condition (c):

If p € R™ is such that V,,_;(p) # 0 and pTgn_;1(p) # 0, then the value of V,,_; can be decreased by

the standard controls

un—1(z) & —sign(zTgn_1(z), ui(z)=0, i€n=2, ze€R" (2.13)

When pTg,-1(p) =0, but V,,_1(p) # 0, then, there may exist no controls which can further decrease
V-1, while simultaneously preserving the values of the other guiding functions V;, 7 # n — 1. (Such
an impasse situation occurs when, additionally, V;(p) =0, for7 € n — 2.) A decrease in V;,_; is thus
guaranteed only when the values of V;, ¢ # n — 1, are permitted to increase temporarily. A method
for achieving such a decrease can be obtained by inspecting the second derivatives of the guiding

functions V;,i € n — 1, while assuming that the controls can only take constant values.

Noticing that, for all z € IR,

Ho:(@)||2 =1, Vgi(z) =0 fori€n—2, and all z € R" (2.14)
gi(z)Tgi(z) =0 fori#j, i,j€En—1 andz € R" (2.15)
(9j:9n—1](z) = Vgn-1(z)g;(z), for j€En -2, andz € R" (2.16)
gives
LVi@)=u?, i€n=2 (2.17)

L Var(2) = 05 071 (2)g5(2)ugun—r + 202 27 Vgn_1(2)g;(2)ujtn—1
= {[Ign-1(@)> + 2TV gn-1(z)gn—1(z) }u3_, + Z_?:—I_Q zT(g;, gn—1](z)ejun—1 (2.18)
From (2.9), and (2.14)-(2.18) it further follows that
#zTgi(e) =wi;, i€n=2 (2.19)
527 9n-1(2) = {llgn-1(@)||* + 2T Vgn_1(2)gn—1(z) }ttn—1 + Z;‘;l?' zT[gj, gn-1](z)u; (2.20)

If pTgn1(p) = 0 but Vy_1(p) # 0, then VV,_1(p) L gn-1(p) and VV,_(p) # 0, and since
VVao1(p) L gi(p), for i € n — 2, then VV,_1(p) € span{[gi, gn-1],i € n — 2} , by virtue of the

controllability assumption Al. It is then possible to choose an index i € n — 2 such that

IIT[gis gn—l](x)l = maz{le[gja gn-—l](z)lrj € u} >0 (221)
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It is then clear that the controls
ui(z) =1, and uj(z)=0 for j#i jen—-1 (2.22)

change the value of V; along the controlled trajectory, ( increasing it, if V;(p) = 0), while V; for j # ¢
stays constant. Most importantly, in the process of the above, the *coefficient’ z7g,_,(z) in B%V;l—l

changes value from zero to nonzero since, by virtue of (2.19)-(2.20),
d
'd_Ea:Tgn—l(I) = xT[giygn—l](z) #0 (2.23)

along the controlled trajectory, with controls as in (2.22).

At this point, i.e. when z7g,_;(z) # 0, the controls of (2.13) can be re-employed, resulting in
a further decrease of V,,_;, while the values of the other guiding functions stay uneffected. After

a:Tgn_l(z:) reaches zero again, V; can be restored to its previous value by ‘reverse controls’ :
ui(z) =—1, and wuj(z)=0 for j#i,jeEn—1 (2.24)

This demonstrates that the choice of the guiding functions satisfies condition (c).

3.2. Feedback control strategy for systems of control deficiency order one

A control strategy which employs the above guiding functions can now easily be constructed. Its

principles are summarized below.

In the initial stage of the strategy, the standard controls (compare with (2.10))

ui(z) € —sign(zTgi(z)) = —sign(z:), i€n=—2
Un_1(T) ef —sign(zT gn_1(z)), for all z € R", (2.25)

where the sign function is defined in the usual way, so that sign{0) = 0, are employed, to steer the

system to the set 7, defined by
T (z e R : 2T g;(z) =0,i € n— 1}
={z€R":z;=0,ien—2, z¥gn—1(z) =0} (2.26)

The conditions which guarantee this, will be given later in Propositions 2.1 and 2.2. It is important
to note that system (2.5) with controls in (2.25) is essentially a variable structure system and hence it

is necessary to define precisely its solutions. No difficulty arises if the sign function can be realized
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faithfully (instantanzously), in the absence of any model system error, or disturbances. This is
because, it follows from the definition of the guiding functions and equation (2.13) that, for each
1 € n — 2, there exists a finite time ¢t} at which u; = —sign(z;} = 0 and thus %:I:,—(t) = (0, for all
t > t, regardless of the action of the remaining controls. (If, in addition, the control u,_; takes
a zero value, then also £z;(t) =0, for i = n — 1, and for i = n). It follows that, in such case of
“ disturbance free, faithful realization”, any control u; can switch value only once (to zero). For
simplicity of exposition, and to avoid the discussion of the chattering effect, we assume henceforth
that, in the presence of errors and disturbances, a control u; takes zero value for all times after

the instant at which its argument changes sign for the first time. The latter creates no additional

problems, as the system need not be steered to the set 7 exactly, see Remark 2.4.

Clearly,

n—1 n—2
j—tw::) == le7g(z)l = = 3 _lz:| ~ &7 gn-1(2)| <0, forallz ¢ T (2.27)

i=1 i=1
along the trajectory of (2.5) with controls (2.25), which implies that V' decreases in the complement
of 7. Additionally,

Vilp) =0, ien—2, forallpeT (2.28)

V(p) = Vai(p) forallpeT (2.29)

and 0 € 7. 7 is hence a set of impasse points at which none of the guiding functions V;, i € n — 1,
can be further decreased instantaneously, as, for z(t) =p € T, &Vi(p) =0, i € n — 1, regardless of
the controls. At this point, the control strategy enters its second stage in which an indexi€n —2
is selected, as in (2.21), and followed by application of the controls (2.22) until z7g,_;(z) reaches
its maximal value, or else until the value of V;(z) becomes comparable with the value of V(p) at a
point p at which 7 was last traversed, and so until the controlled trajectory reaches a point r at

which either of the following conditions is satisfied
T (g, gn-1](z) =0 or V(z) =aV(p) (2.30)

where & >> 1 is a given constant. The controls in (2.13) are employed next to decrease V,_,
while the values of the other guiding functions stay unchanged. After z7g,,_;(z) reaches zero, V; is

restored to its previous value (zero) by

ui(z) = —sign(zT gi(z)) = —sign(z;), and uj(z) =0for j#1i, jeEn—1 (2.31)
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which is applied until z7g;(z) = z; = 0, and hence until the state of the controlled system returns
to the set 7. The next control cycle is then initiated by choosing a possibly new index value z which

satisfies (2.21).

REMARK 2.2. The guiding functions approach is not limited to systems which are appearing in a
“rectified” form. Finding a suitable set of guiding functions can often be easy even if the system is

not in the form stated in hypothesis H1. To see this, consider the well known example

rT=u
g=v
z=zv—yu (2.32)

The two guiding functions needed in this case can, for example, be introduced as follows:

dej 2

1

141 =4 5Y
e i

v, & %1:2 + 5z —zy)? (2.33)

An easy calculation shows that 7 = {p f (z,y,2) € R} :z2 =y =0} as

d
EV(I' y,2) =z —zy+zylu+yv (2.34)
and the controls u = —sign(z — zy + zy*) and v = —sign(y) can be applied until the system
trajectory traverses 7 .
For constant controls u, v:
FV—I(zi Y, 2) = 'U2
d? 2\ 2
315—2%(1:,1 ,2) = (14 2y°)u® — (z — zy)uv (2.35)

It follows that, whenever p € 7, then setting « = 0 and v = 1 produces a change in V; while V5
stays unchanged. Also, the time derivative of z — zy + zy?, the ‘coefficient’ in d%—V, associated with

u, is given by
d , \
a—t(:n-zy-i-zy )= +2yu—(z—zy)y=—2#0 (2.36)

for all p = (z,y,z) € T such that p # 0, and provided that v = 1 and u == 0 are selected as control
values. Hence |z — zy| grows away from zero, as required. The guiding functions, as introduced by

(2.33), satisfy the assumptions (a)-(c) of the Introduction and our control strategy can be applied.
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Let ¢ — z(t) denote the trajectory of (2.5) with controls (2.25) and let z denote the current (mea-

sured) state of this system. The above discussion can be formalised into the following algorithmic

feedback strategy.

Stabilizing feedback strategy
e Data: a>>1.
o1l Ifx e R™"\ T, apply the controls

—sign(z;), i#£n-—1
ui(z) = gn(=:) # ieEn—1.

—sign(zTgn1(z)), i=n-1

e 2 If at some time instant ¢, p a«f z(t) € T, then stop if p =0 ; else proceed if p # 0
e2a Select an index ¢ € n — 2 which satisfies
127 (9, gn—11(p)| = maz{IpT (g5, gn—1)(P)|.7 € =2}

e2b Until £7[g;, gn—1](z) = 0 or else until V(z) = aV(p), employ the controls
ui(z) =1, and uj(z)=0 forallj#i, jeEn—1
e2c Until z7¢,,_,(z) = 0, employ the controls
Un—1(z) = —sign(z? gn_1(z)) and uj(z) =0 forjen—2
e2d Until z7g;(z) = 0, employ the controls
ui(z) = —sign(z;), and uj(z)=0 forallj#i, jeEn—1

and repeat Step 2.

REMARK 2.3. Clearly, if pr, kK € IN, denotes the value of the state at the entrance to Step 2b, in
iteration k£ of the algorithm, then V(p;) = Vh—1(pk), k£ € IN. In Step 2b of the above strategy,
the state of the controlled system is driven away from the set 7 while zTg,_;(z) changes from
zero to non-zero. Simultaneously, V increases since V; increases from zero to non-zero. The value
of V,— stays unchanged during the execution of Step 2b. In Step 2c, the increase of V; is halted
while V,,_; is decreased beyond its value at pr.. When further decrease in V,,_; becomes impossible
due to z7g,_;1(z) = 0, Step 2c is entered in which the value of V; is restored to zero. Clearly, at
the exit of Step 2c, the state of the controlled system returns to the set 7, so that the condition of
Step 2 can again be verified. By the controllability assumption A1, whenever p; # 0 then the value

of the maximum in Step 2a is positive, so that Step 2b is non-trivial. The strategy hence produces
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a sequence of points {p;} which is finite (if for some finite value of the index k = k. , pr. = 0) ,
or else an infinite sequence {pi }kerv, for which the corresponding sequence of values {V'(px)}reav is

monotonically decreasing.

It is worth noticing that the “oscillations” in the z; , i # n — 1, components of the state (as caused
by controls (2.22) and (2.31)) can be big. The evolution of V,_; consists of intervals in which V;,_;
stays constant, alternated by intervals in which V,,_; is strictly decreasing. In the meantime, the

remaining guiding functions are oscillating freely.

Since the magnitudes of the non-zero controls are constant, the control switches increase in frequency
as V,_; decreases. This can easily be prevented by scaling each u; by a factor of the corresponding

value of V;, which may be practical but is a trade-off with the convergence rate of the strategy.

REMARK 2.4. It is not essential that the system is steered to the set 7 exactly. In this respect,
several relaxed, alternative control strategies can be constructed which result in convergence to a
pre-specified neighbourhood of the origin, rather than the origin itself (practical stabilization). We
omit the details as these would further complicate the analysis, but notice that “disturbances” such

as numerical errors in computer simulations do not prejudice convergence.

The parameter a € (1,00) can be selected arbitrarily, however, its value is correlated with the
rate of convergence of the strategy. Large values of a, permitting large oscillations in guiding
functions values, are preferable when the possibility of achieving convergence in finite time needs to

be explored. This is explained in Example 1 of this section.

3.3. Convergence analysis

The properties of the controls of Step 1, which guarantee the feasibility of this Step, are stated in

the next two Propositions.

PROPOSITION 2.1. Any trajectory of system (2.5) with controls given in (2.25) converges the set T,

(where convergence is defined in the sense of the Euclidean distance between a point on the system

trajectory and the set T ).

Proof. Let zg € IR™ be an initial state of (2.5) at ¢ = 0 and ¢ — z(¢) denote the corresponding
trajectory when controls (2.10) are employed. Further, let Q2 denote a level set of V' which contains

zo,ie. O {ze R : V(z) < V(zo)}.
Suppose, contrary to what needs to be shown, that z(¢) does not approach 7. Hence, there exists
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an € > 0 and a sequence of time instants {tx}xem such that
dist(z(t;); T)>e€ forall k€ IV (2.37)

where the function z — dist(z; T) is a measure of the distance of a point z from the hypersurface
T, and is defined by

n—1
dist(z; T) = Z |zT gi(z)] for all z € R™ (2.38)

i=1
The above definition is meaningful since dist(z; 7) > 0 for all z € IR™ \ T and dist(z; T7) =0 for
allzeT.

Clearly, z(t) € Q for all times ¢, and  is compact. Hence, by smoothness of the vector fields g;,

and boundedness of the controls in (2.25), there exists a constant ¢; > 0 such that
lz(t) |I<er foralle>0 (2.39)

It follows that there exists a constant § > 0 such that for all k € IV :

dist(z(7); T) > 0.5€ forall 7 € [te,tr + 26]. (2.40)
Therefore,
te+25 d
V(z(te +28)) = V(z(tr)) +/ EV(I(T)) dr
7%

te 426 n—1

= V(e(t)) - /t S oM gi(z())] dr

L3 i=1

tr+248
V(z(te)) — 0.5 / ™

[ 1%

< V(z(ty)) —be forall ke IN (2.41)

IA

Since V is non-increasing along z(t) then the latter implies the existence of a finite time ¢* < oo
such that V(z(¢t*)) = 0. Thus z(¢t*) = 0 € T, which is a contradiction with the assumption that z(t)

never approaches 7. =

In fact we can show a stronger result under an additional assumption which is somewhat stronger
than the one requesting that the motion of system (2.5) with controls (2.25) is not confined to any
non-void level surface Ty ief {z € R* : V(z) =r}, r > 0; equivalently, requesting that 7y does

not contain any invariant sets of £ = g,_;(z). This is shown in the following proposition.
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PROPOSITION 2.2. Suppose that
def T
A(z) = V(2" gn-1(z))gn-1(z) #0
forallzeAdéf{xER"lzi=0,iEn—2} (2.42)
Under this condition, any trajectory of system (2.5), with controls (2.25), reaches T in finite time.

Proof. Let t — z{t) be a trajectory of (2.5) with controls (2.25) emanating from some initial
condition zg at t = 0. As before, let Q be a level set of V' which contains zg. Clearly, by virtue of

the fact that ‘%V(:c(t)) <0, forall t >0, z{t) € Q, for all times £ > 0.

By virtue of (2.25) and the definition of g;, 1 € n — 2,
Zi(t) = —sign(z(t)T g:(z(t))) = —sign(zi(t)) forallien —2 (2.43)

which implies the existence of a finite time £* < co such that z;(¢*) = 0 for all { € n — 2, and

consequently, that z;(t) =0 forallt >¢t* ,i€n—2.

Suppose, contrary to what needs to be shown, that the trajectory z(¢) never reaches 7. Since §? is

compact and £ — A(z) is continuous, then
5§ min{ |A(z)] |z€ QN A} >0 (2.44)

Also,

d

aV(z(t)) = z2(t) T gn—1(z(t))ttn—; <0 for all t > ¢ (2.45)

in which up—; = —1 or else u,_; = 1. Clearly, since forall ¢t > t*, u; =0,i €n— 2, and z(t) € A,

then
;%V(r(t)) = V{z(t)T gn—1(2(t)) }un-1 (t) = A(z())ul_, = A(z(t)), ¢t >t (2.46)
By assumption, for all £ , A(z(¢)) has a constant sign. Suppose first that A(z(t)) > 0, for all t. Then
d d ta?
aV(z(t)) = EV(:!:(t')) + /t. FV(I(T)) dr > %V(z(t')) +({@t-t) 6 (2.47)

for all ¢ > ¢*. Equations (2.45) and (2.47) imply that there exists a finite time ¢’ > t* such that
£V (z(t')) = 0 which contradicts (2.45).

Next, suppose that A(z(t)) < 0 for all £. Equation (2.44) then implies that
maz{ A(z) |z € QN A}=-6<0 (2.48)
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and thus that
d d t &2 d
— = — . _— < — N—-@—-t") 6 .
FVE0) = Ve + [ Vi) ar < GV - - t) (2.49)
for all t > t*. It follows that there exists a constant ¢; > 0 and a time ¢ > t* such that
d -
EEV(::(t)} < —c forallt>¢ (2.50)

The latter implies the existence of a finite time ¢’ > £ such that V(z(¢')) =0, so that z(¢/) =0€ T

which contradicts the assumption that z(t) never reaches 7. ]
A quantitative analysis of the decrements in V,_; in Step 2c leads to the following result.

THEOREM 2.1. Let the assumption of Proposition 2.2 and assumptions Al and A2 be satisfied with
respect to the systern (2.5), and assume the absence of any model-system error and disturbances.
Under these conditions,
(a): the stabilization feedback strategy is well defined,
(b): every trajectory of system (2.5) employing the stabilizing feedback strategy converges to
the origin (the origin is globally attractive).

For the proof of the Theorem we will need the following auxiliary result.

PropPoOsITION 2.3. If the vector fields g;, j € n — 1, are smooth and satisfy assumptions Al and A2,
then for any compact set B € IR™ which does not include the origin (i.e. 0 ¢ B ), there ezists a

constant v > O such that
1p" [9i, gn—1]®@) > ¥ |IPIl 11[g:2 gn-1](@)]I (2.51)
for any indez i € n — 2 and any point p € BN T which satisfies
0" [9:, gn11(p)| = maz{{p” [g;, 9n1](P)]. 5 € n = 2}. (2.52)

Proof. Suppose that the assertion of the proposition is not true. Then there exists a sequence
{mhiew such that v — 0 as [ = oo and corresponding sequences of indices {4 }iep, and points

o1 € BNT, {pi}hiew, satisfying (2.52) , and such that (2.51) is violated, so that

|27 (920, gn—1](@0)l < 1 llpell [[g2s gn-r)@Oll, L€ IV (2.53)

together with

p,Tg,-(p;) =0 forjen—-1,1e N (2.54)
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1P{ [9:0 gn—1](@0)| = |P{ (95, 9n—1](1)l, jER =2, L€ IV. (2-55)

Since B is compact, there exists a convergent subsequence of {p; };en for which we will use the same
symbol to simplify notation. Let p. € B denote its limit, so that p; — p. as I — oo. Additionally,
suppose that the latter subsequence is chosen in such a way that each of its elements corresponds
to the same value of the index 7 of (2.52). Denote this value by i.. Letting ! tend to infinity in
(2.53)-(2.55) yields

pllgi., gn—1l(p.) =0 (2.56)

and
plgi(p.) =0 forjen—1 (2.57)
0 = |pTgi., gn—1l(@-)| > P (95, gn—1l(@.)l, jER =2, (2.58)

which implies that p. is orthogonal to the set span{gi(p.),[9i,g;](p«).%,j € n—1}. By virtue of
the controllability assumption, p. = 0, which contradicts the fact that p. € B and that B does not

contain the origin. This shows the validity of (2.51). [ ]
Proof of Theorem 2.1.

Part (a) :

This part is clearly true by virtue of Propositions 2.2 and the discussion in Remark 2.3.

Part (b) :

Let zo be an arbitrary initial condition for the controlled system (2.5). In the k-th iteration of the
stabilizing strategy, let p; and pj denote the values of the state of the system at the entrance and
the exit of Step 2b, respectively. Further, let 7 and 7 be the time instants at which Step 2b is
entered and exited, respectively. Similarly, let ¢ and t; be the time instants at which Step 2c is

entered and exited. Finally, let fx be the time at the exit of Step 2d. Clearly, tx = 7.

If the sequence {px} produced by the strategy is finite, the Theorem is trivially true , so that only

the case when {pi}resv is infinite requires analysis.
First, suppose that V(pr) = Vo—1(pr) = 0 as K = oo. By virtue of the condition in Step 2b,

V(z(t)) < aV(py) forallt€ [r, 7], ke N (2.59)
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Since V' decreases in all the steps other than Step 2b then, from the above analysis, it also follows

that
V(z(t)) < aV(pr) forallt€ [rg,tx], kEN (2.60)
and hence that V{z(t)) = 0 as ¢ = oc.

Next, suppose, contrary to what needs to be shown, that V(z(t}) does not converge to zero as
t = oo. From the previous discussion it follows that there exists a constant a > 0 such that
V(pr) = Va—1(pk) > a, for all k € IV. Since the sequence {Vn—1(pk)}keiv is bounded from below

and monotonically decreasing, it is convergent.

Since V(z(¢)) increases only in Step 2b, then by virtue of the condition of this Step, the trajectory
z(t) remains in the set Q, = {z € R* : V(z) < aV(zp) }. Since V,_ is decreasing monotonically,
the latter implies that the trajectory z(¢t) remains for all times in the compact annulus B o {z €

R : a<V(z) <aV(zg)}-

In order to estimate the decrease in V,,_; which takes place in Step 2¢, we will show the validity of

the following :
(i): There exists a constant K; > 0 such that

1(P%) T gn—1(pi)] > K1 (2.61)

for any pr. € B,and k€ IN.
(ii): There exists a constant K5 > 0 such that
te
[ e ns ()] ds 2 Ko |G g G, b€ DV (2.62)
e
whenever z(7) € B, for all 7 € [tg, t}.]-
Part (i) :

At the entrance of Step 2b, z(7x) = px and pf gn—1(px) = 0. By virtue of (2.20) and the fact that

in Step 2b the only nonzero control is u; = 1, we have that

G sk = [ a6 g ale))] ds

k

- /Tk 2(5)7 [g:, gn—1](z(s)) ds (2.63)

Tk
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The rate of change of the integrand in (2.63) is limited if the trajectory z(t), for t € [rx, 7], remains

in the annulus B. Since in Step 2b the controlled system equation is given by £ = g;(z), then

%{I(t)T[gs,gn_ll(x(t))}! = (g1, gn-1]((ENT£(2) + 2() TV [gi, gn—1](z(2))E(t)|
< {lllgis gn— 1}z (NI + VoV (zo) [|V]g:, gn_1](zENII} llg:(z ()]
< M2{1+ oV (zo)} ¥ v, (2.64)

in which M7 > 0 is a common bound for the values of ||[gi, gn—1](Z)[l; [|V[g:is gn-1](z)]|, and ||g:(z)}|
forallze Bandallien —2.

Assuming that Step 2b is exited due to the satisfaction of the condition z(7})7 [g;, gn—1)(z(7%)) = O,

the time 7, — 7 can be estimated as follows :

def 1

f
Th— Tk > Toin = - |px (9:, Gn—1}(Pk)| (2.65)

If Step 2b is exited due to the satisfaction of V(z(7;)) = aV(pk), then, at the exit of Step 2b, it
holds that 0.5 z;(77)? + V(pk) = aV(pk). Since z;(7x) = 0, then the time 7 — 7¢ can be estimated

as follows :

1 1 1 ”

- 2 —ladr)l = = V2la = DV(pe) > —v2(@- D ¥ 72, (2.66)

2 2 2

Denoting Tiin uf min{r};,, 72n}, we obtain the following bound for [(p)7 gn-1(p})! :
e
(@ ans @ = 1 [ als)Tlgw gnoi](2(5)) s
&

Te+Tmin
> / (1PF (98 9nar](e)] — vals — 73)} ds

Tk

1

> §Tmin lpz‘[gi,gn—ll@k)l
1

> 5P (g6 gna ()P (2.67)
U2

The latter is valid since z(s)T[gi, gn—1](z(s)) does not change sign for s € [, 7i] . By virtue of

Proposition 2.3 and assumption A2, it follows that

L N R e A PP )
2

2
> % “f K, (2.68)

where c is the constant of assumption A2 and r is the radius of the largest ball B(0;7) contained in

the level set {z € R™ : V(z) < a}.
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Part (ii) :

We first notice that £(t) = p} and that z(¢,)7 gn—1(z(t;)) = 0. The rate of change in |z(t)7 g1 (z(t))|

under the action of u,_1, which is the only nonzero control in Step 2c, is limited as the trajectory

x(t) evolves in B. Since |un—1| = 1 then, by virtue of (2.20),
[ I gn-1(z)| < l1ga-1@I* + |1zl [[Vgn-1 (@)l lign-1()I}
<MZ {1+aV(z)} Y v (2.69)

where M is a common bound for ||Vgn-1(z)|| and [|gn—1(z)[| in the annulus B . Hence

t ¥
[T ans oD ds 2 [T g0 )] = va(s = a)} d (2.70)
te te
where t{ is the time for which the integrand in (2.70) becomes equal to zero, so that
def 1
=tk = tmin = 1) g1 (1) (2.71)
Therefore
t T 1 T T
/ |z(s)" gn-1(z(s))| ds > 5 tmin |(P%)" gn—1(D))] = I(pk) gn—1 (D)1 (2.72)
7%

for any k € IV , which proves part (ii).
We are now ready to estimate the decrease in V,,_; in Step 2c. We first note that
Va-1(z(ti)) = Va—1(z(te)) +/ttlk 2(5)T gn-1(2(s))| ds, k€N (2.73)
.
Hence, and from parts (i) and (ii) of this proof, it follows that
V() 2 Vit (alte) + 5 l(p'k)‘fgnq(pz.)l“’
> Vaoi(z(te)) + Kl , ke IN (2.74)

Finally, the latter implies

[Va—1(z(t;)) — Va—1(z(t))|

Va1 (Pi+1) — Va-1(p&)]

> — K? ke NV 2.75
2 3 K;>0, ke v, (2.75)
which contradicts the convergence of {V (k) }rerv-
Therefore, V(px) = 0 as £ — oo, and consequently V(z(t)) = 0 as t — oo , as claimed. [ |
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4. Stabilizing feedback control of a unicycle model

It is interesting to apply the above feedback strategy to a unicycle model. As shown in Example 1.2

of Chapter 1, the kinematic model of a unicycle can be written as:

Z(t) = g1(z(t))ur + g2(z(t))ua (2.76)

where, z(t) ¥ [z,(6), 22(t), 22 (1)] T € R

a{z) =[1,0,0]7, ga(z) =0, cos:z:l,sinz'l]T (2.77)

The model of this system appears originally in a rectified form, so no transformation is needed. The
feedback control strategy with constant & = 10 is employed to steer the system to the origin with the
initial condition [z,, z2,23](0) = [1.,3.,3.]. (In this case, the constant « is chosen to be sufficiently
large as to permit Step 2b of the strategy to be exited due to the satisfaction of =7 [g;, g2](z) = 0,
rather than due to the condition that V(z) = V' (p). The latter guarantees finite time convergence

of the strategy, as explained below.)

The assumptions of Proposition 2.2 are satisfied here since V(z7 ga(z))g2(z) = ||g2(z)||> = 1 for all
z € R3. Thesurface 7 = {z € R3 : z; =0} N {z € R® : Tocosz, + z35inz1 =0} ={z € R3 : 7, =

T2 = 0} is hence reached in finial time.

Figure 2.1 shows the trajectories of the controlled system versus time. It is visible that the set 7 is
reached approximately at time ¢t = 3.2. The strategy then enters its second phase . The desired (but
inaccessible) direction of motion is [g;,g2] at any point (0,0,z3), z3 > 0. (or else —[g1, g2] when

z3 < 0).

Figure 2.2 shows the actual trajectory of the car’s center of mass. At the end of the first phase of
the control strategy the car is positioned sideways to its goal - the origin. Any further decrease of
the global guiding function V is impossible at this point since a car with no slipping cannot perform
instantaneous sideways motion. In Step 2b of the strategy the car is rotated in place by an angle of
(w/2) which is the point at which z7[g;, g2](z) = 0, and at which z7ga(z) achieves its maximum.
The application of Step 2c then results in a straight line motion of the car to the origin. In this case,

the controller achieves its goal in a finite number of steps, which demonstrates its effectiveness.
. . e - , d .
Figure 2.3 shows the plot of the guiding functions V; “<f 1z} and V5 ef 3(z3 + z3) and Figure 2.4

shows the plot of their sum V.
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2.4 STABILIZING FEEDBACK CONTROL OF A UNICYCLE MODEL

FIGURE 2.1. Unicycle model: Trajectories (x1(t), z2(¢), z3(t)) of the unicycle versus time.
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FIGURE 2.2. Unicycle model: Plot of the position of the unicycle (za2(t), z3(t)).
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FIGURE 2.3. Unicycle model: Plots of the guiding functions Vi = £z1? and V2 = H{z2? +
z3?) versus time.
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FIGURE 2.4. Unicycle model: Plot of the sum of the guiding functions V = V; + V; versus time.
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2.5 EXTENSION OF THE STRATEGY TO SYSTEMS OF HIGHER ORDER CONTROL DEFICIENCY
5. Extension of the strategy to systems of higher order control deficiency

In this section we explain how the guiding functions approach can be extended to apply to systems

of control deficiency order two (and, by analogy, to systems of higher order control deficiency).

For systems for which m = n — 2, we introduce the following family of Lie bracket extension systems

n-2

E=" fl&vi +fs, fel(€)vn—r, foranyjken—2 (2.78)
i=1

Any member of this family can be regarded as a system of control deficiency order one to which the

previous strategy is applicable.

However, we now require that the rectifiability Hypothesis H1 holds for all members of the family

(2.78) :

Rectifiability of the family of extended systems :

H1'. For any first order extension of the original system (2.78) there exist diffeomorphic state
feedback transformations £ = T'(z), © = U(£,v), such that in the new coordinates z and in

terms of the new control u, system (2.1) takes the rectified form (2.5).
The strategy of the previous section can now be applied to individual members of the family of
extended systems. The detailed “adapted version” of the control strategy is omitted here; instead,

its interpretation for a particular example is presented in the next section.

Clearly, for the stabilizing feedback strategy constructed for the extended system to work with the
original system, it is necessary to provide a way in which the original system can “move” in the
directions corresponding to the first order Lie brackets [f;, f;]. Motion involving such directions is
needed whenever the system traverses the set 7 given by (2.26) and which, in terms of the original

system vector fields, is given by
T ={z e R": g fi(z) = 0,27 [f}, flz) =0, 3,5,k € n — 2} (2.79)

If, for example, g; = (f;, fx], then Step 2b of the strategy requires the system motion to take place
purely in the direction [fj, fg]. For the original system, such direction of motion is not directly
accessible and has to be achieved only approximately. This can be done in a number of ways, of
which a standard one relies on repetitive use of the following four control pairs (each over a fixed

interval of time §) : (uj, ux) = (1,0), (0, 1),(-1,0),(0, —1). It is well known, see for example [113],
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2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

that the latter control sequence results in the following estimated value for the state z of the system

at time t = 44 :
z(46) = z(0) + & [f;, fxl(z(0)) + 0(¢°) (2.80)

where the precision in maintaining a motion in the direction of the Lie bracket can be increased as
desired by letting § — 0. The latter can be adjusted on line or converted into a proper feedback
strategy in the case of particular models as shown in the next section. It is not important to follow
the Lie bracket direction exactly but to keep track of the relative increments and decrements of
the associated guiding functions, as required by the stabilizing strategy in order to observe periodic

decrease in V,_;.

Finally, the original controls are derived by using inverse transformations to T and U which con-

vert the extended system into its rectified form. This may be simplified in particular cases, as

demonstrated below.

6. Stabilizing feedback control of a front wheel drive

The kinematic model of a front wheel drive (car) as given in Example 1.1 of Chapter 1, can be

written as:
é 1 [0
T 0 cosf def
= vy + va = fiur + fous (2.81)
v 0 sinf
6 ] 0 tang

a 7] . .0 a
where, f; = 35’ fo= cosB-a; + smH% + tanq&%

Calculating the Lie brackets yields

def 1 9
f3 - [fluf?]—m%

def _ sin 8 cosd 9
fo = [fa [, foll = cos?¢p 8z  cos?¢ Oy

e 2tang 8
fs Elhlfufll = a5 5
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2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

and shows that if the motion of the system is restricted to the manifold

M={e¥ (4,z,y,6) € R* : |¢| < 7/2}

(2.82)

then {fi, fa, f3, fa} are linearly independent and hence the system represented by (2.81) satisfies

condition Al for complete controllability on the manifold M. As we will see, this is sufficient for

control purposes.

By virtue of the dimension of the system ( n = 4 and n — m = 2), there exists only one extended

system to (2.81) which is given in terms of the equation

[ ) 1 ( 0 0
z 0 cosf 0
= v + vy + U3
] 0 sinfd 0
-éJ | 0 | | tang | _—J—co:‘pJ
de
= fE + f2(E)v + f3(E)vs (2.83)
It is easy to see that the transformation Z def (z1,22,73,24) = ($,0,z,y) and (uy,us,u3z) =
(v1, 53%71"3 + tanz;vs,v2) brings system (2.83) into the following “rectified” form
[ &, | [ 1] [ 0 ] o ]
2 0 1 0
= up + uz + us
I3 0 0 COSTa
T4 0 0 SinTa
Y (@) + 2Tz + g5()us (2.84)
The model of the front wheel drive hence satisfies assumption H1 on the manifold M.
6.1. The guiding functions and the original strategy
The extended system (2.84) induces the following guiding functions:
s def 1 1
Vi@ = 51'% = §¢2
_y def 1 1.,
Ve(z) = 5-’”5 59
1 1,
(@) S+l = 5@+ (2.85)
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2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

It follows from (2.79) that the set of “impass points”, T, is given by:

T={z€ R': 2, =0,2, =0, z3c08T3 + 245inz2 = 0}

=Y Gy ecR :6=0=2=0) (2.86)

From the discussion of section 3 and the model equations, it follows that the guiding function V; can
be manipulated independently of the remaining ones. The guiding function V> must be manipulated
through motion in the Lie bracket direction [fi, fo] , while V3 can be manipulated by us = va, unless

T €T. At any point Z € 7T :
Vi(#) = Va(2) =0, V() = 2 (2.87)

Hence, the stabilizing strategy of section 3 can be applied, without change, to the extended system
(2.84). In Steps 1 and 2 of the strategy the system is supposed to be steered to the set 7. This can
be easily achieved for the extended system but requires the use of the control us = —sign(z7 ¢g3(Z))
= —sign(x3cosTs + r45inzce) = —sign(xcosd + ysinf) which cannot be implemented directly in the
original system. The action of this control must thus be translated into appropriate controls in terms
of vy and v, which are the only inputs in the original system. For the car model (2.81) it is easy to
suggest a possible control strategy which can accomplish such a task , as can be verified by direct

inspection :
Subalgorithm 1 ( feedback control for steering the car to the set 7))

la v = —sign(€T fi(€)) , i = 1,2, until £7f;(€) =0, fori = 1,2.
1b v =1,u; =0, until ¢ ==/4.

lc v =0,vy = —signr(ftang), until 8 =0.

1d vy = —sign{¢),v2 =0, until ¢ =0.

le vy =0,vs = —sign{zcosf + ysind) until £ € T.

The index 7 of Step 2a is constant and equal 2 since, in the case of the extended model (2.83),
2792, 95](2) = €7 [f2, [f1, fol)() #0 for§ €T and £+#0, (2.88)

and, additionally, £7[f1, f2](€) = 0 for £ € T, so that [f1, [f1, f2]](€) = 0, as it is linearly dependent
with [f1, f2](€).

The control of Step 2b then requires the use of us = 1 which corresponds to the motion of the system
in the direction of increasing 8, while keeping the remairing state variables constant. The latter

corresponds to pure motion in the Lie bracket direction [fi, f2]. In view of our previous discussion,
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2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

such motion can be achieved only approximately, by cyclic switching between the vector fields f;
and f,. Here, we employ the following simple ‘feedback’ control scheme, by repeating N times the

following sequence of controls:
Subalgorithm 2 (for achieving motion in the # direction)

(i) Increase ¢ until ¢ = min{w/4,|y|} by using vy =1,vs =0.
(ii) Increase 6 by xmin{m/2, (a — 1)}/?|y[} , by using v; =0,v2 = L.
(iii) Restore ¢ to zero by using v; = —sign(¢),v. = 0.
(ixv) Steer (z,y), as closely as possible, to their values prior to (i) by using the controls v; =0,
and va = —sign(zcosf + ysind).
A decrease in § , which is required in Step 2d, can be obtained by reversing the sign of v, in (ii).
Scaling is introduced in (i) and (ii) to prevent excessive deviations in the variables ¢ and 8. Clearly,
at the exit of the N-th cycle of Subalgorithm 2, 8 = 7/2, or else § = (a — 1)!/2|y|. The latter corre-
spond precisely to the exit conditions of Step 2b because, Z7 g, g3)(Z) = 0 for any % = (0, 7:0.¥):
and V(Z) = 16° + 1y®> = aly® = aV(p) whenever p € T, and Z is the value of the state of the

system at the exit of Subalgorithm 2.

Step 2c is easy to implement on the original system since, at the exit of Step 2b, ¢ = 0 and hence
tang = 0. The control v2 = —sign{T3coszs + z48inT2) = —sign{zcosl +ysind) is thus exactly equal

to uz = —sign(zZgs(I)).

The stabilizing feedback control for the car model (2.81) in the original variables, hence takes the

following form :
Stabilizing feedback for the front wheel drive

el Steer the system to the set 7 by employing Subalgorithm 1.

e2b Increase 8 until § = 7/2 or until § = (a)'/?|y| by employing Subalgorithm 2.

e2¢ Employ the controls v; =0, and v, = —sign(zcosf +ysind) until zcosd + ysind = 0.

¢2d Restore § to zero by employing Subalgorithm 1 and repeat Steps 2b-2d.
The simulation results are depicted in Figures 2.5-2.8. Figure 2.5 shows the trajectories of (¢, z,y,8)
of the controlled system while the guiding functions Vi, V2 and V3, and their sum V', are depicted
in Figures 2.7 and 2.8, respectively. Figure 2.6 shows the position of the car (z,y) . It should be
added that during the simulation a practical modification was introduced to the original stabilizing

strategy : the controls in all steps were scaled by a factor of the current value of the function V.
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FIGURE 2.5. Front wheel drive model:

Trajectories (z1(t), z2{t), z3(t), z4{t))
(o(t), z(t),y(t),0(t)) versus time of the car while using the original stabilising control.
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FIGURE 2.6. Front wheel drive model: Plot of the position of the car (z(t),y(t)), using the
original stabilising control.
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2.6 STABILIZING FEEDBACK CONTROL OF A FRONT WHEEL DRIVE

Other simulation experiments show that also in this case, in the absence of disturbances, the control
is essentially dead-beat in that the origin can be achieved with an accuracy reflected by V' < 10~3

in only one cycle of the strategy (Steps 1-2d).

6.2. Further simplifications resulting from the guiding functions approach

The guiding functions approach reveals that the greatest difficulty in steering the car to the origin
arises when the trajectory of the controlled system traverses the set 7. The corresponding, “desired”
direction of system motion is then the y axes in the configuration space. Motion in y can be achieved
only indirectly, by increasing @ to a nonzero value. The configuration variables y and 8 are clearly
the ones which are the most difficult to manipulate (Steps 2b-2d of the control strategy). On the
other hand, once y and & are both zero, steering ¢ and z to zero is easy. In attempt to simplify
Steps 2b-2d we consider a “reduced system” which consists only of the two last model equations in

yand € :
y = sinb vs

6 = Tyvs (2.89)

in which tan¢ is replaced by “an additional” constant control #;. Assuming that 7; and vs are

constant and that ©; # 0, integration of (2.89) yields

G(t) =8 + Tyuat (2.90)

1
y(t) = yo + ﬁ—[cost% — cos(fq + Tyv2t)] (2.91)
1

where 8y and yo are the initial values of 8(t) and y(¢). Clearly, if yo # 0 and 8y # § £ kw, k € IV,

then

0 = yi[l — cosbp] # 0 (2.92)
)

v2 = —sign[0(t)D; ] (2.93)

steer § and y exactly to zero in finite time. The latter suggests the following, surprisingly simple,

control law which stabilizes the car configuration:
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Simplified feedback strategy
e 1 Steer the system to the set 7 using Subalgorithm 1 as above.

e 2 By employing the controls v; = 1, v2 = 1 steer the system to a point (¢, z,y,8) at which
def
®des = atan[(1 — cosb)/y] (2.94)

satisfies Pges # 0 and ¢g.s < @V (p), where p denotes a point at which 7T is last traversed,

and «« >> 1 is a constant.

e 3 By employing the controls v; = —sign(¢ — @des), v2 = 0, steer the system to a point at

which ¢ = Pdes-
e 4 Emply v; = 0 and vo = —sign(87;), with 7; = tan(dg.s), until § = 0.
¢ 5 Employ v, = —sign(¢), and v2 = 0 until ¢ = 0.

e 6 Employ vy = 0 and v = —sign(z) until z = 0. Repeat from Step 2 in case when

(6, 7,9,0) #0.

It is easy to see that the above strategy is feasible. Once the system reaches 7, then ¢ =z =8=20
but y # 0 so Step 2 is well defined. In Step 3 , ¢ is steered to a value required by equation (2.92},
(a value such that tang # 0). Hence, in the absence of any disturbances or model system error, the
controls of Step 4 steer the system to a point at which both 8 and y are zero. Due to disturbances or
model system error, only the condition that 8 = Q is met in finite time. In Steps 5 and 6 the system
is steered back to the set 7, permitting repetition of Step 2, if the system’s state is not equal zero
exactly. In this way, the strategy acquires the properties of a feedback control. It follows that in the
absence of disturbances and model system error, the system is steered to the origin in finite time

(at the exit of Step 6), regardless of its initial configuration.

Simulation results confirm the above analysis. Figure 2.9 shows the trajectories (¢(¢), z(£), y(¢), 8(¢))
versus time, during the parallel parking maneuver. The trajectories showing the Cartesian position
(z,y) of the car’s center of mass, and the variations in the corresponding values of the sum of all

guiding functions V', while performing a parallel parking maneuver, are shown in Figure 2.10.
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FIGURE 2.9. Simplified control (car) ezample: Trajectories (z1(t), z2(t), z3(t), za(t)) =
(@(t), z(¢), y(t), 8{t)) versus time in the parallel parking maneuver.

06 T 6
05r
5 -4
04f
4 -
03
> ;3 b
02r
2 -
o1
of ! ]
_0.‘ L 1 2 L 1 1 G
.05 i 0.05 0.1 0.15 02 025 0.3 035 0 4

FIGURE 2.10. Simplified control (car) example: Plots of the position of the car (z(¢), y(¢))
and the sum of the guiding functions V' versus time, in a parallel parking maneuver, when
the simplified strategy is employed.
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CHAPTER 3

The guiding functions stabilizing strategy for general drift

free systems

In this chapter, the guiding functions control strategy of Chapter 2 is extended to apply to general
drift free systems which need not be transformable to a rectified form [64, 69]. A systematic
method for the construction of a pair of guiding functions is introduced and conditions are stated
which guarantee that the resulting feedback control strategy yields global asymptotic convergence
to a desired set point. Applications of the strategy are discussed and tested on different models of
drift free systems such as: an underwater vehicle model, a general drift free system with five state

variables and three controls, and a model of a rigid spacecraft in actuator failure mode [64, 69].

The possibility of employing the guiding functions approach to systems whose controllability Lie
algebra involves higher order Lie brackets is also investigated. The idea of combining sinusoidal
steering with the guiding functions approach is explored using models of an underwater vehicle in

actuator failure mode, a fire truck model, and a mobile robot with trailer [64, 72].

The guiding functions approach for general drift free systems is further extended [67, 71], to allow for
the construction of several rather than two guiding functions and its applicability is demonstrated on
several examples of drift free systems: two different general drift free systems, a model of a hopping

robot in flight phase, a fire truck model, and a class of wheeled mobile robots.

The approach presented in this Chapter is general and can be employed to control a variety of

mechanical systems with velocity constraints.



3.1 INTRODUCTION

1. Introduction

The theory developed in the previous Chapter requires the introduction of as many guiding functions
as there are inputs in the rectified system. It is shown here that, in general, this is not always
necessary. A class of drift free systems in general form is specified for which it is sufficient to
introduce only two guiding functions Vi(z), ¢ € {1,2}. The latter, serve a similar purpose as
the guiding functions of the previous chapter and so their behaviour along the trajectories of the
controlled system is not limited to f—tf/',-(:c) < 0,7 € {1,2}. While allowing one of the guiding
functions to increase, feedback controls v;(z), i € m, are constructed in such a way that, as before,
the sum V' (z) s Vi(z) + V2(z) decreases on average. The functions V;, 7 € {1, 2}, must be chosen

to satisfy similar conditions as those in Chapter 2, namely:

Condition (a): Each V;, ¢ € {1,2}, is semi-positive definite, while the sum V =V + V5 is strictly
positive definite in R". The level sets V™ &/ {z € R" : V(z) < r}, are bounded for all r > 0,
and, additionally, dV;(z) = 0 (where dV;(z) denotes the gradient of V;(z)) implies that Vi(z) = 0,
i€ {1,2}.

Condition (b): The value of each V;, ¢ € {1,2}, can be manipulated by a fixed subset of the
controls which have no effect on the other function Vi, & € {1,2}, k£ # ¢. Additionally, for any
constant r > 0, there exists a feedback control strategy which steers the system, in finite time, to

the level set V" ef {z € R™ : Vi(z) < r}, while the value of V> remains unchanged.

Condition (c¢): The value of the second function, V3, can be decreased over a finite interval of time

if the first function, Vi, is allowed to vary freely.

The above conditions suggest a feedback synthesis which focuses on the decrease on V; alone. To
begin with, such a strategy employs controls which provide for £V (z) = Z?:L LVi(z) < 0. If this
becomes impossible, due to the fact that %Vi(z) =0, for 7 € {1,2}, regardless to the values of the
controls v;,7 € m, then a sequence of controls is employed which results in a decrease of V2 while the
first function, V), is permitted to increase (see condition (c)). Next, another sequence of controls is
employed whose task is to maintain the current value of V5 while restoring V] to zero (see condition

(b)). Repeating the above procedure results in asymptotic convergence of V' to zero.

The guiding functions control strategy introduced in this Chapter has similar advantages (i)-(iii) as

mentioned in the introduction of Chapter 2.
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3.2 PROBLEM STATEMENT AND ASSUMPTIONS

The novel contribution of this Chapter can be summarized as follows:

¢ The guiding functions control strategy, introduced in Chapter 2, is extended to a general
class of drift free systems, which need not be transformable to any special form, and in which
the difference between the number of state variables and controls can exceed one.

e A much improved strategy is presented here, in which exact steering of the system to the
set T {z € R" : Ly,V(z) =0, i € m} is no longer necessary.

e A systematic method for the construction of guiding functions is introduced, and condi-
tions are stated which guarantee that the resulting feedback control strategy yields global
asymptotic convergence to a desired set point.

e The idea of combining sinusoidal steering with the guiding functions approach is also ex-
plored.

e Applications of the strategy are discussed involving set point stabilization of different types
of models of drift free system possessing different algebraic structures. In all these examples,

the strategy proves very efficient in that it effectively leads to dead-beat control.

2. Problem statement and assumptions

In this Chapter, the set point control problem is stated as a practical stabilization problem:
(SPC) : Given a desired set point Tqes € IR™, and any constant € > 0, construct a (possibly
discontinuous) feedback strategy in terms of the controls v; : R® — [0, 1], ¢ € m, such that

every trajectory t — z(t; to, Zg) of the controlled system

= Zg,-(z)v.-(:z:), (3.1)

i=1
reaches B(zges;€) in finite time, where (t9,zq) € R* x IR™ denotes an arbitrary initial
condition for (3.1) and B(z4es;€) is a ball of radius e, centred at z4.s-
Without the loss of generality, it is also assumed that z4.s = 0, which can be achieved by a suitable
translation of the coordinate system. The guiding functions idea, permitting an effective synthesis of
such stabilizing feedback, is first explained with reference to a subclass of systems of the type (3.1),
whose Lie bracket extension contains only brackets of depth one; see the definition below, (of which
the models of an underwater vehicle, a general system with five state variables and three controls,
and a rigid spacecraft in actuator failure mode are typical examples). The application of the basic
idea is then extended to systems whose Lie bracket extensions also contain brackets of depth > 2,

by using the combination of the guiding functions idea and sinusoidal steering, (the models of an
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underwater vehicle, a hopping robot in the flight phase, a fire truck, and a mobile robot with trailer

are such examples).

The following controllability assumptions are assumed to hold for members of the class of systems
considered:

Al. (a) : The vector fields g;, i € m, are real analytic, complete, and linearly independent

at all z € IR™. The Lie algebraic rank controllability condition (LARC) for these systems is

assumed to take the form :
span{gi(z), (g gxl(z),%,j, k € m} = R"™ for all z € R". (3.2)
Al. (b) : There exists a subset of indices, J C m x m, of cardinality n — m, such that

S(z)  {g:(=z), [9j, 9x](2),i € m, (5,k) € T} (3.3)

span{S(z)} = R"™ forall z € R". (3.4)

Due to the skew symmetry property for Lie brackets we will not distinguish between (j,k) € J and
(k,7) € J. Next, suppose that the set of indices J has the following property :
A2. : The vector fields of the set S can be arranged in two groups, G; =4 {9ik: k € pi},
i € {1, 2}, while adhering to the following rules:
(R1): For any (5,k) € J, (97, 9%] € G2, and either g; € G, or gr € G», but never both.
(R2): Each vector field of S belongs only to one group and G; U G = &S, so that
D1 +p2 =n.
For the construction of guiding functions we additionally need the following involutiveness condition:

A3. : The distributions = — A;(z) :
Aiz) ¥ span{Gi(z)}, ie€{L2}, zeR" (3.5)

are involutive, and thus are completely integrable.
It follows from the Frobenius Theorem that there exists a neighbourhood of the origin Q2 C IR"™, and

two sets of scalar functions

pl(I) déf {A'l,k(x)rk GT_Q}, r_Zdéfn—p?: TE Q
Po(z) Y as@@)ikern), nYn-p, ze (3.6)

such that the codistributions Ai-(z), and Ay (z), are spanned by exact differentials of (3.6), so that

Af(z) = span{dPi(z)}, forallie {1,2} andallz € (3.7)
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where dP;i(z) = {d\ix(z), k € ri}. By virtue of rule (R2), r; + 72 = n. For simplicity of exposition,
we additionally assume the following.
A4. : The scalar functions A x(z),k € 3,7 € {1,2}, are defined globally in IR", so that

A}(z) = span{dP;(z)}, forallie€ {1,2} andallze R" (3.8)

3. The guiding functions and their properties

At this stage, it is convenient to introduce the following notation. For any column vectors (or
matrices) v, vs the symbol [v;,v2] denotes a matrix with columns v; and v (or a matrix whose
columns are those of v; and v2). In particular, if v; and v. are one-dimensional, then [v{,v2] is a
row vector. For any vectors vy and v; the symbol colfv;,v2] denotes a column vector formed by
listing the elements of v; and v2 in a single sequence. For each index i € {1,2} and any z € R™, let

Ai(z) € IR™, and L;(z) € IRP: be vectors defined by

M) E iy din )@, i€ {1,2) (3.9)

Li(z) ¥ [Lg Vi Ly, V)T, i€{1,2} (3.10)

where g; ; are members of the groups G;, for 7 € {1,2} and V is a real, analytic, positive definite

function. Let dA;(z)7 be the Jacobians of z — A;(z), 7 € {1,2}, so that
dri(z) % [dri1(@)T, drin(2)T], zeR™ ie{1,2} (3.11)
and G;(z)} be matrices whose columns are vector fields from G;(z), 7 € {1, 2}, respectively :
Gi(z) ¥ [gir(a), wagip(z)], zER", ie{l,2} (3.12)
Further, for any z € R", let

A(z) et ol [A;, Az (2), L(z) = col{Ly, Ly |(z) (3.13)
dA(z) & [dAr,dAs|(z)  G(z) = [G1,Ca)(z) (3.14)

be aggregated vectors and matrices constructed from components A;, L;, dA;, and G;, respectively.

Using the above notation, the semi-positive definite guiding functions are introduced as follows:

Vi) 5 3 (aale) = Aes(0))?

ker:

- %[Ai(z) — A:0))TTAi(z) — A0)], i€{L2), z€ R (3.15)
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V@) Y Vi(z) + Va(z) = 5TA(2) - AO)]TTAZ) ~ AQ), z€R®  (3.16)

REMARK 3.1. Assumptions Al (b) and A4 which insure that the guiding functions in (3.13) can be
defined in the entire IR™, were made primarily for the simplicity of exposition, and are essential only if
global convergence to the set point is required. It can be shown that if these assumptions are omitted
then all the results of this Chapter are still valid locally. This is due to the fact that, in general, the set
of indices J, and the associated set S(z) of assumption Al are guaranteed to exist only locally, (such
local existence is guaranteed by the satisfaction of the LARC condition for controllability). Similarly,
as pointed out in equations (3.6) and (3.7), the scalar functions A;x(z),k € ri,i € {1,2}, and the
associated codistributions A} (z), i € {1,2}, are also, generally, defined locally. The satisfaction
of assumption A4 is related to all of the vector fields in the controllability distribution (3.2) being

complete.

Assumptions A1-A4 are sufficient to insure that the guiding functions V;, i € {1,2}, possess the
desired properties (a)-(c) of the previous section, which we state in the form of Propositions 1-3,

below. Auxiliary results are included in lemmas.
LeMMA 3.1. Under assumptions A1-A4, the mapping £ — A(x), is a local diffeomorphism.

Proof. First, we will show that, by construction,
Af(z)® Ay(z) =R™ forall z € R" (3.17)

where the symbol & denotes a direct sum of subspaces. To see this, we note that, for all z € IR™,
Af(z), i = 1,2, are closed linear subspaces. Recalling the definitions of the distributions A;(z),
i=1,2, it is then easy to verify that, for all z € R" :
(AL (z) ® Az (z))" = AfH(2) N A (z)
= A1(2) N Aq(z) = span{Gi(z)} N span{Ga(x)} = {0} (3.18)
where the last equality holds by virtue of the construction of the sets of vector fields G;(z), 1 = 1,2,
(because the vector fields in the set S(z) are all linearly independent, span IR"®, and G;(z)NGa(z) =
#). Equation (3.18) shows (3.17). By definition,
At = span{dA; i(z),k € T2},
Ay = span{dX x(z),k € 11 }, z€R" (3.19)

so that (3.17) implies that the matrix dA(z) = |dA;,dA2](z) is non-singular for all z € R". The

result of the Lemma follows readily, since dA(z)7 is the jacobian of the mapping z — A(z). [ |
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LEMMA 3.2. For any compact set C € IR™ there ezist constants v, (C) > 0, and ¥2(C) > 0 such that

T Vi(z) < IZ;(Z) < 7 Vi(z), forall z€C, i€{1,2} (3.20)

where, Vi(z) e Liz)TLiz),  forall z€ R, ic{1,2} (3.21)
Proof. By direct calculation it is easy to verify that for all z € IR™, and for 7 € {1,2} :
Vi(z) = %[‘A,—(m) — A:(0)JT dAi(z)T Gi(z)G:(z)TdAs(z) [Ai(z) — Ai(0)] (3.22)

For any z € IR", the matrix M(x) %ef G(z)TdA(z) = [G1,G2])(z)T [dA1,dAs](z), is nonsingu-
lar by virtue of assumption Al(b), and the fact that the jacobian dA(z) is non-singular (see
Lemma 3.1). Hence the matrix M(z) ¢ G(z)TdA(z) is non-singular, and M(z)T M(z) is pos-
itive definite and symmetric. Moreover, by construction, Gi(z)TdA2(z) and Ga(z)TdA,(z) are
matrices containing only zero elements, so that M (z) is block diagonal and is given by M(z) =
diag{G1(z)TdA1(z), G2(z)TdAs(z)}. It follows that the blocks M:(z) & Gi(z)TdAi(z), i € {1,2},
are also non-singular and that M;(z)T M;(z), i € {1,2}, are both positive definite and symmetric.

Let o)

min

(z) and as,‘;)az(x) denote the smallest and largest eigenvalues of M;(z)T M;(z), and choose

the constants +; and v» as follows :

7 & min{c®®_(z) |z ecC, i€ {1,2}} (3.23)
v maz{c®) (z) |z €C, i € {1,2}} (3.24)

which are well defined, as these eigenvalues are continuous functions of z. Hence, for any z € C, and
y € R™, we have that Ivi|ly[|?> < (1/2)yT Mi(z)T Mi(z)y < $vllyll%, © € {1,2}, and (3.20) follows
from (3.22). [ ]

PROPOSITION 3.1. Suppose that assumptions A1-A4 are valid and, additionally, the mapping = —
A(z), is a global diffeomorphism. Under these conditions :
(a): The sum of the guiding functions V(z) = Vi(z) + Va(z) is strictly positive definite in IR".
(b): Tkhe level sets VT def {z € R" : V(z) <1}, are bounded for allT > 0.
(c): For anyi € {1,2}, and any = € IR™, the condition dV;(z) = 0 implies that Vi(z) =0, and
dV(z) = 0 implies that V() = 0.

Proof. (a): By contradiction, suppose that there exists a point zg # 0 for which V(zg) =0, so
that A; x(zo) = Aik(0), 7 € {1,2}, k € ;. This implies that the mapping = — A(z) is not injective
which contradicts the assumption that it is a global diffeomorphism. This demonstrates positive

definiteness of V" in IR™.
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(b): By contradiction, suppose that there exists a constant r > 0 such that the corresponding
level set V7 is not compact. Since V7 is closed, it is then possible to extract a sequence of points

{z:}ierwv C VT such that
Ii—300 as i—roo (3.29)
By definition of the level set, the corresponding values satisfy :

Vi) =3 3 3 (sl — a0 <7 (3.26)

i=1.2k€r;

Hence A(z:) € cI{B(A(0); (2r)'/2)}, where c/{B(A(0);(2r)}/%)} is a compact ball of radius (2r)!/2,
centred at A(0). Let the inverse mapping to £ — A(z) be denoted by A~1. Since A~! is continuous,
then the image A~ (ci{B(A(0); (2r)'/2)}) is a compact set. Clearly, z; € A~ {c/{B(A(0); (2r)/®)}),
for all ¢ € IV, which contradicts (3.25).

(c): Since, for each z € {1, 2}, the matrix dA;(z) et {dAi1(z), ..., dAir (T)] contains only vectors

which are linearly independent at every = € IR™, then the equality

dVi(z) = Y (Aik(®) = Aik(0)) @his(z) =0 (3-27)
ker:

implies that A; x(z) = Aix(0), k € r;, and thus, Vi(z) = 0, by definition of the guiding function V;.
By a similar argument, the fact that the columns of the matrix dA(z) are linearly independent also

implies that the condition dV(z) = 0 entails V(z)} = 0. [ ]

To show that the guiding functions construction satisfies Conditions (b) and (c), further definitions

will be of help.
For any constant p > 0, and for any subset of indices J C m we define
Tip) € (z e R™: |L,,V(z)| < p, k€ T} (3.28)

Clearly, if J = m then 7 = 7;(0), where 7 is the set of “impasse points” defined in the Introduction
to this Chapter. Let the sets J;, ¢ € {1,2}, contain the indices of the vector fields gi,k € m, which

correspond to members of the groups G;, 1 € {1, 2}, respectively, so that
Tr(o) € {z € B™: |L, V()| < p, k €m,gx € Gi}, i€ {1,2} (3.29)
also, let
Tie) ¥ {z € B" : |Lig, 0,V (2)] < p, (k:) € T} (3.30)
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vée

-p 0 T

FIGURE 3.1. A hysteresis loop of width 2p

where J is defined in assumption Al. For any subset of indices J C m and any constant p > 0, let

a control v/ (z, p) be defined component-wise by :

—signy(L,,V(z)), i€,
0, ifj¢ J,

v;-’('.r:,p) = jEm zeR" (3.31)
where sign, denotes the usual signum function with a hysteresis loop of width 2p; preferably of
the shape shown in Figure 3.1. With reference to Figure 3.1 it is assumed that at an initial point
zg # 0, either sign,(zo) = —1 or else that sign,(z¢) = 1, and that sign,(zo) = 0 if zg = 0. This
control definition is practical in that existence and uniqueness of classical solutions to a closed loop
system using this type of control is not prejudiced (a “sharp” switching control of the type sign(z)
would normally require special definitions of sclutions to the closed-loop system equation and would
necessitate considerations related to chattering). The presence of the hysteresis loop induces the
possibility of oscillations, but, for a given value of p, the latter will have finite frequency, or else
will not occur at all. The selection of the shape of the hysteresis loop in Figure 3.1 is motivated by
Lemma 3.3 which provides conditions which guarantee that the associated control does not exhibit

any oscillations.

PROPOSITION 3.2. Suppose assumptions Al-A4 hold and the mapping x — A(z) is a global diffeo-
morphism. Under these conditions:
(a) The value of each V;, i € {1,2}, can be changed by a fized subset of the controls which have
no effect on the other function Vi, k € {1,2}, k # 1.
(b) For any subset of indices J C m, and for any constant p > 0, the control v’ (z, p) steers the
system to the set Ty(p) in finite time. Consequently, for any r > 0, there exists a control
which steers the system to the level set V" = {z € R" : Vi(z) < r}, (in finite time), while

the value of Vo stays unchanged.
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Proof. (a): By virtue of assumption A4,
dArk(z) L Ga(z), k€1, dhai(z) LGi(z), kKET2, z€R" (3-32)
which implies that for all z € R™

L, Vi(z) =0, ifg; €Gs, and L, Va(z) =0, ifg;€G (3.33)

d . ] .
Therefore, a control v ef [v1, ..., Um] in which v; = 0 for all j such that g; € G, has no effect on

V1, while a control v in which v; =0, for all j such that g; € Go, cannot change the value of V5.

(b): Suppose, contrary to what needs to be shown, that the trajectory ¢ — z(t) of the closed loop
system controlled by v’ never reaches 7;(p). It follows that at any time ¢ > 0 there exists an index

k € J such that [Lg, V(z(t))| > p, and hence that
d
77 (@) < ~[Lg, V(z()l < —p <0, (3.34)

Consequently, %V(z(t)) < —p, for all times ¢, and therefore V(z(t)) - —oo ast — oo, which

contradicts positive definiteness of V.

Now, suppose that the index set J coincides with the set of indices of vector fields which belong to
G:. From the definition of the control v” it follows that v;' (z,p) = 0 whenever j corresponds to a
vector field which belongs to G», in which p can be selected freely. From part (a) of this proposition
we conjecture that the guiding function V5 cannot change under the action of such v’. Clearly, along
any trajectory ¢ — z(t) of the system so controlled, £Vi(z(t)) <0, so that z(t) € C =4 {zx € R™:
Vi(z) < Vi(z(0))}, for all ¢. Select p = (2ry,/m)=, where 7, is the constant of Lemma 3.2 which
corresponds to the set C. It further follows that v/ steers the system to the set 7;{p) = 77, (p) in
finite time. Since Lo, V(z) = Ly, Vi(z), if g € G1, and Ly, ;Vi(z) =0, for all g2 ; € G2, j € pa, then
v’ steers the system to the set {z € R™ : Lo Vi(z)] < p,k € m, gr € Gi} in finite time. It follows
from Lemma 3.2 that the control v’ steers the system to the set {z € R" : V;(z) < (1/2)p*m}

C{z e R":Vi(z) <(1/27)p*m =r} = V" in finite time. |

LeEMMA 3.3. Suppose that the assumptions of Proposition 3.2 are valid where the index set J is

written as J = {iy,...,4t} , | < m. Let the following conditions hold :

thk V(z) #0 forallze R™, ke{l,..10} (3.35)

Lo Lo V(z) =0, forallz€T;_,(0), 1<j<k, ke{2..1} (3.36)

where I;._1 = {i1,...,ix—1}. Further suppose that the component controls in v/, as defined in (3.31),

are activated sequentially in that for any 1 < k <1, v{,‘ (z, p) becomes non-zero only if Lg_.’_ Viz) =0,
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for all j < k — 1, while LgikV(a:) changes sign. Under these conditions, and under the absence
of disturbances and model-system error, such sequentially activated control v’ does not generate

oscillations and steers the system to the set T;(0) in finite time.

Proof. Let zp be the value of the state of the controlled system at the initial time ¢ = 0. If

Ly, V(zo) #0, then v;’l is the only active component of v’ on some interval of time [0, €), so that
d -
ZV(@(t) = ~|Ly., V()] <0 (3.37)

along the controlled system trajectory ¢t — z(t), for t € [0,¢). It follows that the trajectory remains
in the level set V0 %/ {z € R:V(z) < V(xo)} and converges to T;,(0), I, = {41}, (see Proposition
3.2 (b)). In fact, due to the additional assumption (3.35), the trajectory reaches 7y, (0) in finite time.
For if this is not true, then Ly, V(z(t)) = 0 as ¢ — oo but L, V(z(t)) # 0 for all t. The latter is

impossible since, both Ly, V(z(¢)) and L’“’K_IV(r(t)) are continuous, cannot change their sign, and,

when v,—’1 is the only non-zero component of v/, then
d
|5 Lo V()] = 1L, V() 28>0 (3.38)

for all ¢ > 0, where & %t min{|L2ilV($)| | z € V9}. Hence z(t) reaches T, (0) at some finite

time ¢;, at which v;-’l (z(t1),p) = 0, and the next control component u;-’2 becomes active. Now,
condition (3.36) entails that, at any = € T, (0), the vector field g, is tangential to the hypersurface
Tr,(0) = {z € R™ : Ly, V(z) = 0}, which further implies that if at any time ¢, z(t) € 71,(0) then
z(t) can never leave 77, (0) (provided that the only non-zero control component is v{z ). The latter is
indeed the case at ¢t = ¢t; because z(¢,) € Tr,(0). Hence, vé is the only non-zero control component

fort > t,, and
L, V(z(t)) =0 sothat vi(z(t),p)=0 fort>t (3.39)

Therefore, (3.37) and (3.38) are valid for the index value 7; substituted by i,, and there exists a
finite time ¢2 > ¢; at which Ly, V(z(t2)) = L, V(z(t2)) = 0, i.e. z(t2) € Tr(0).

Now, suppose that due to such sequentially activated control, for some index i) < 7, there exists a

time instant ¢z such that z(tz) € 77, (0). Clearly, v’ (z(tx),p) =0 for all j < k, and again, by virtue

of (3.36), z(¢) € T7,.(0) for all t > ¢, if the only non-zero control component of v/ is v} Since

et "

this is indeed the case, we have as before

Ly, V(z(t)) =0 and v (z(t),p) =0 fort>tx, 1<j<k (3.40)
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and equations {3.37) and (3.38) are valid for the index value ix. By an argument identical to the
one used for i; and 5, there exists a finite time #¢4; > i at which z(tg41) € 7r,,,(0). The result

follows by induction. =

Contrary to what might seem, the assumptions of Lemma 3.3 are not restrictive and are satisfied

for most examples considered in this Chapter.

For any open set T, let ¢clT denote its closure and let the scalar switching function z — sign™(z)

be defined by : signt(z) =1if z > 0, and signt(z) = -1 if £ < 0.

LEMMA 3.4. For an arbitrary p > 0 and any pair of indices (k,i) € T such that g € G, the control

z = uld(z, p), defined component-wise by :

) ; Lt 0aVa i L, Va ifj =k,
ug')(-’v,p) déf szgnp{ [g.9i] _(I)} szgn.,.{ gi 2(x)}7 ifJj j€m, =€ R (3.41)

0, ifj #k,

is reqular in the sense that the closed loop system equation with this control has unique, classical
solutions. Furthermore, u(?) steers the closed loop system from the set Ay :(p) def {z € R" :
|Lg:Va(2)| < P, |Ligy.gqVa(@)| 2 p} to the set Bri(p) & {z € R™ : |L,,Va(z)| > 20} U{z € R :
[Lig, g:1V2(2)| < p/2} in finite time (any trajectory emanating from Ay, i(p) terminates in By i(p))-
For any such controlled trajectory t — z(t), emanating from A ;(p), the value of {L, Va(z(t))|

increases with t, while the value of the guiding function V5 stays constant.

Proof. By virtue of the definition of the switching function sign,, and smoothness of the vector
fields g;, ¢ € m, the existence and uniqueness of classical solutions to the closed loop system equation
employing control ©{¥ can only be endangered by the presence of the other switching function sign™*.
However, as will be shown soon, the Lie derivative Ly, V> cannot change its sign if the system is
controlled by u(?. The right hand side of the controlled system equation is hence well defined
and the discontinuities in the control are encountered in isolated moments of time which does not

prejudice existence and uniqueness of its solutions.

Now, suppose that zo € Ag,i(p) and that the closed loop system trajectory t — z(t), emanating

from zo never reaches the set By i(p) and, in particular, that it never reaches the set:

de n
Cri(p) E {z € R : |Ly,, 4qVa(z)| < p/2}.
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To see how the Lie derivative Ly, V2 changes along z(t) we calculate

CLoVa(e®) = LouLoVa((t))ufd (a(2)

= LiggaVa(@@®)u (2(6) + Ly, L, Va((0))u (2(2))

= LigngaVa(=(®)ui’ (z(t))

= |Ligs, g Va(z(t)}lstgn+ (Lg, Va(z(t))) (3.42)
The latter equality is due to the application of the Jacobi identity, and the fact that L, Vo =0 for

all k£ such that gx € G;. Since z(t) never reaches Cy ;(p), it follows that there exists an interval [0, 4]
such that, if Lg,V2(za) > 0, then

%Lg‘.Vz(x(t)) > p/2, for t € [0, 4] (3.43)
and if Ly, Va(zo) < 0, then
ditLg'.V_a(z:(t)) < —p/2, for t € [0, 6] (3.44)

Clearly, the value of |Ly, Va(z(t))| increases over the interval [0,d] and thus (3.43), or else (3.44),
remains valid for all times t > 0 as sign*(L,, Va(z(t)) is of constant sign. The latter implies that
there exists a finite time t* > 0 such that |L,, Va(z(2"))| = 2p, which contradicts the assumption
that z(t) never reaches By ;(p). So z(t) reaches By i(p) and V5 is uneffected by the control u(¥, as

ug.i) =0 for all j such that g; € G.. "

ProOPOSITION 3.3. Suppose assumptions AI-A4 hold and the mapping = — A(x) is a global diffeo-
morphism. Then the value of the second function, V3, can be decreased (over any finite interval of

time) if the first function, Vi, is allowed to vary freely.

Proof. It follows from Proposition 3.2 that if z ¢ ¢/7;,(0) then V2 can be decreased by applying
a control v”(-,p) in which J includes all indices ¥ € m such that g € G,. Hence, difficulty in
generating controls which decrease Vs arises only at points zg € cl77,(0). To show how this can be
resolved suppose that zq € c/7;,(0) but that Va(zg) # 0. It follows from the complete controllability

condition that there exists indices (k,7) € J, and a constant p > 0, such that
[Ligs.g:1V2(za)l = p (3.45)

(as, otherwise, LyV5(zo) = 0 for all g € S(zo) which implies that dV>(zs) = 0, and contradicts the
assumption that Va(zo) # 0, see Proposition 3.1 (c)).

At this point the control »("), defined in Lemma 3.4, can be employed to change the value of |L,, V5]
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from zero to nonzero (in finite time) without having any effect on the value of V2. Suppose that
t* > 0 is a time instant such that Ly, Va(z(t"))| = € > 0, where ¢ +» z(t) is the controlled system
trajectory emanating from zo and e is some positive constant. The control v/(-,€/2) in which J
includes all indices &k € m such that gx € G, can again be used for ¢t > t* to achieve a decrease in

Va. =

REMARK 3.2. It should be clear that the constant p in the definition of the the control u(® of
Lemma 3.4 can be taken to be zero without prejudicing the existence and uniqueness of solutions
to the closed loop system equation. The latter follows readily from the fact that the only non-zero
component of u(¥ is uf:) , S0, in the absence of disturbances and model error, once Ly, ¢:1V2 becomes

zero, the control ufj) is set to zero, and remains zero for all later times.

3.1. Some simple examples

Assumption A2 to A4 are seemingly complicated, however, they are not restrictive, as demonstrated

by the examples below.

The unicycle

The model of the unicycle is perhaps the most widely known nonholonomic system. Its model, as

given by equation (1.17) of Chapter 1, can be written as:

¢ = gi(@)u +g@u, =Y (@027 € R (3.46)

def _6_ de f i . d
where, g1(z) = 3z, g2(z) = COS(-TL)azz +Sm(I1)£

The first Lie bracket of g; and g» is given by

def —_ — i i i
g3(I) = [gla.q?](x) - S’ZTl(Il)azz +cas(zl)61‘37 and

span{gl(m)792(z)vg3(x)} = Rz: forall ze Rs (3'47)
Adhering to the rules R1-R2 of assumption A2, the groups G; and G- can be defined as follows :

Gi(@) (@}, Golz) Y {92(2),03(2)} (3.48)

It is easy to see that the distribution As(x) ef span{g2(z), g3(z)} is involutive, and the distribution

A1 (z), as spanned only by a single vector field g, is also involutive. Hence, the codistributions A
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and A3 are (at least locally) spanned by exact differentials
Af(zx) = span{disi(z),d)22
Azy(z) = span{di i(z)}
The choice of the scalar functions A; x is immediate :
Mia(@) =21, don() Y 22, Roo(z) Y z;  forall z € R
The guiding functions are hence defined globally :
def 1 4 def 1, , 2 3
Viz) = 531, Va(@) = (a3 +a3), e R,
and
L o 2 2 3
V(z) =5(zi +25+123), z€R

is clearly positive definite in RS.

Brockett’s system
Consider the famous system:

. d
i =gz + g2(x)u2, = (21,720,737 € R

e 9 9
gl(z) - aI]_ :1:28(1:3
def 9 . 0
ga(z) = 612+1‘13$3
with
def =29
g3(z) = [g1.92}(z) =2 24
Hence

span{gi(z), g2(z), g3(z)} = R® for all z € R®

In this case, two different group divisions can be considered :

Gi(z) Y {g(@)},  Gi(z) Y {92(2), 9s(z)}

Gi(z) Y (0(2)}, (@) Y {01(2), 95(z)}

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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and an easy caculation shows that either of the distributions Aj(x) = {g2(z), g3(x)} or Aa(x) =4

{g1(z), g3(z)}, is involutive. Thus, there are two possible choices of the guiding functions generated

by the following selections of scalar functions :

E) == Ari(z) = z2
'2v1(:c) =I1T2+ I3 /\2,1(1‘) =ZI1T2—I3 z e R? (3.36)
Ap2(T) = z2 Az 2(z) =1,

Note that the following are globally valid :

d\] ; L span{g», d\y,1 L span{g,
1.1 L span{g2, g3} 11 L span{gi, g3} rc B (357)
span{d)\é‘l, d/\;z.g} 1 g1 span{d/\g'l, dz\g'g} A1 g2
The two sets of guiding functions are then also globally defined :
Vi(z) ¥ La? Vite) ¥ 122 (358)
4 d 2 2 .
Vi(2) ¥ 4lad + (3122 +25)%] Va(@) ¥ Lfa? + (3122 — 20)?)

for all z € IR®, and prove to be equally effective for stabilization purposes.

4. The stabilizing control strategy and its convergence analysis

As demonstrated by Lemmas 3.1-3.4, and Propositions 3.1-3.3, the constructed guiding functions
possess the desired properties, which easily suggests an algorithmic feedback strategy for the solution

of the SPC.

Before we can state it formally, we first recall the definitions of the sets : 7,, 77,, and T, defined
in (3.29) and (3.30), and notice that for any given constant ¢ > 0, and level set V'™, there exists a
constant p > 0 such that if z € T, (p) N Tr(p) NTw(p) N VT then = € B(0;¢). To see this, note
that since V7 is compact, and V is strictly positive definite and analytic (see Al(a)), there exists a
constant v3 > 0 and an integer ¢ > 1, (possibly dependent on V™) such that V' (z) > vs||z||?9, for
all z € V3", Let 7; be the constant of Lemma 3.2 corresponding to the compact level set V3" and

suppose that the constant p > 0 is selected to satisfy

., 2 L 2ryi,1, d _
p < min{(=m10) 4", ()4}  pinin (3.59)
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It then follows from Lemma 3.2 that, whenever z € V37, then

el < (%)55(%)5
np?‘ 1 9
< (e (3.60)

because, by assumption, V(z) < (n/2)p?, when z € T7,(p) N T2 (p) N Tis(p)-

Assumming that p, 7 and € are related by (3.59), the controls v” (-, p) and u¥)(-,p), for i € m, are
defined as in (3.31) and (3.41), respectively, the set By ;(p) is defined as in Lemma 3.4, t — z(t),
for t > 0, denotes the trajectory of the controlled system, and for any subset J C m, the set 7T is

defined by (3.28), the stabilizing strategy is stated as follows.
Stabilizing feedback control strategy:

e Data: r>0,z(0) € V", and p < pmin.
Until z(t) € T7,(p) N T1,(p) N Tis(p) repeat the following :

e 1 Until z(t) € T,(p) N T1,(p), employ the control v’/(z, p), in which J = {1,...,m}.

e 2 Find a pair of indices (k,7) € J such that g; € G2, and |Lg, . Va(z(t))| > p. and perform
steps 2a-2b :

e 2a Employ the control u{¥(z, p) until z(¢) € Bk i(p)}, or else until z(¢) reaches the bound-
ary of the level set V3", Set & if [Lg,Va(z(ta))| in which ¢, is the time at the exit of
this step.

e 2b For J = {i}, and until z(t) € 7;(6/2), employ the control v/ (z,§/2).

Before proceeding with the convergence analysis it is helpful to explain how a skillful application of

this strategy can result in constructing a dead-beat control for the unicycle example .
Stabilizing control for the unicycle

For this example, the assumptions of Lemma 3.3 are satisfied permitting exact steering to the set
77(0), J = {1,2}. For an arbitrary initial configuration of the unicycle z(0) at time ¢ = 0, and the
parameter p taken to be zero (with the set By ;(0) f {z € R™ : |L,, 4;;V2(z)| = 0}), the strategy

results in the following control actions.

In step 1, the controls v{(z,0) = —sign(z:1) and vf (z,0) = —sign[zacos(z,) + z3sin(z1)] are used
to steer the system to the set 77,(0) N 75,(0) = {z € R3 : z; = 0, zacos(z1) + z3sin(z;) = 0}
= {z € R® : ; = z2 = 0}, in finite time. Since there is only one Lie bracket in the group G-,
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and the control u; cannot change the values of neither z» nor z3, then the controls of step 2a
are : ui(z,0) = sign(—zasin(z;) + z3cos(z1)) signt (z2cos(z1) + zzsin(z1)) = sign{zscos(z.))
signt(z3sin(z,)), and u2(z,0) = 0, which, provided that the constant r is chosen large enough,
can be employed until Ly, ,.1Va(z) = —z2sin(z;) + z3cos(z1) = 0. At this point z € 7;(0) and
this occurs when the system reaches a point at which z; = %% (recall that, at the entrance to step
2a, £; = 23 = 0 and that u? can only influence the value of z,). Step 2b is hence entered with
z; = §, or with z; = -7, and z» = 0, so that L,,V2(z) = z3 # 0. The controls uf"’}(r,ﬂ) =0 and
uéz}(z, 0) = —sign(zacos(z;) + T3sin(z,)) (the components of the control v/(z,0) with J = {2})

T

thus decrease V5 while maintaining z; = % or z; = —7%. Since

[

Ly, Lig, g.1Va(z) = Lg,(—zT2sin(z1) + T3005(T1))

= [—zacos(z1) — zasin(z1 ), —sin(zy), cos(z1 )| T [0, cos(z,), sin(z,)] =0 (3.61)

the value of L, ¢,;V2(z) stays unchanged (and equal to zero) over the duration of step 2b. At the
end of this step the system reaches a point at which Ly, Va(z) = za2cos(z1) + zzsin(z,) = 0 again.
Since L,, V2(z) =0, by construction, the latter implies that V2(z) = 0 at the end of step 2b. Finally,
in step 1, the controls v{(z,0) = —sign(z;) and vJ(z,0) = O restore V; to zero, while maintaining
Va at zero. At this point , V(z) = 0, demonstrating that any “parking maneuver” of the unicycle

can be realized by the above strategy in 5 steps.
A quantitative analysis of the decrements in V; yields the final stabilization result.

THEOREM 3.1. Under assumptions A1-A4, for any constant ¢ > 0 and any desired set of attraction
VT, the stabilization feedback control strategy is well defined in that each of its steps is feasible, and is
ezited in finite time. Any trajectory of the controlled system, emanating from a point in V7 reaches

the ball B(0;€) in finite time.

Proof. Steps 1, and 2b, of the strategy are feasible and are exited in finite time as guaranteed by
Proposition 3.2. Step 2a of the strategy is of finite duration, by viriue of Lemma 3.4. Hence the

overall strategy is well defined.

If follows from Proposition 3.2 (b) and Lemma 3.4 that ¥ increases only in Step 2a. Hence the
controlled trajectory t + z(t) remains in the level set V37 for all times ¢ > 0, and, by virtue of
(3.60), a trajectory emanating from V" reaches B(0;¢) if it reaches the set 77, (p) N T, (p) NTin{p)-

It is thus enough to show that the strategy is exited in a finite number of steps.
Suppose, contrary to what needs to be shown, that z(t) never reaches 7;,(p) N 71,(p) N Tis(p). By
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virtue of the result of Proposition 3.2 , at the end of step 1, z(¢) € T;,(p) N 71, (p) and thus, at the
entrance to step 2a, z(¢) is never a member of Ty (p). As a result, there always exists an index pair
(k,i) € J such that [Lj,, .. V2(z(t))] > p, at the entrance of this step. From Lemma 3.2 it then

follows that
1 - o
Va(z(t)) > —Va(z(t)) > — (3.62)
Y2 Y2

for all times ¢ > 0, where the constant <, corresponds to the level set V3". However, the guiding
function V2 decreases in step 2b and stays constant under the control actions of the remaining steps
of the strategy. The decrease of V5 in step 2b can be estimated as follows. Along the controlled

trajectory with the control of step 2b
LVa(a() = Lo Vo@D, 12k (3.63)
where, initially, |Lg, Va(z(ts))] = > 0. Let
o1 Y maz{|L2,Va(z)| | z € Vi€ m} (3.64)

which provides an upper bound for the speed of change of the Lie derivative Ly, V> under the action

of the control v/(z,d/2) with J = {i}. It thus follows that
|Lg, Va(z(t))] > 6 — 1t — ta), for all t € [tq,t.] (3.63)

where t. —{, is the minimal time in which the controlled system trajectory reaches the set 7¢;3(4/2)

, 50 that |L,, Va(z(¢"))| = §/2. From (3.65)
b~ = % (3.66)
Equations (3.63) and (3.65) imply that
%Vz(z(t)) < —d+alt—ts) (3.67)
and, consequently, that
Va(e(t.)) - Va(e(ta)) € =8t — ta) + F(t. ~ta)? < g0 &2 (3.68)

Since £, is the smallest time at which the step 2b can be exited, equation (3.68) gives an estimate

for the decrease in V5 in this step in terms of § - the value of |Lg, V5] at its entrance.

Next, we will show that & is bounded from below (if z(¢) never reaches 7;,(p)). By definition, § is

79



3.4 THE STABILIZING CONTROL STRATEGY AND ITS CONVERGENCE ANALYSIS

always greater than the increment in |Lg, V2| in step 2a. Step 2a can be exited if either of the three
situations occur :

(a) z(t,) € BV3T

(b) z(ta) € 8Tww(p/2)

(©) =(ta) € 875 (2p)
in which 85 denotes the boundary of any given set S. Case (a) is similar to case (b) in that the
increment in the magnitude of the Lie derivative |Ly, V2| can be estimated from the time needed
to execute step 2a. Let this time be denoted by T,, and T}, for cases (a) and (b), respectively.
Let ¢, and ¢, denote the times at the entrance and at the exit of step 2a, respectively. Then, by

construction, z(¢,) € 71, {p) N 71,(p), and, as V> never increases, then

V() < %um»+%ﬁum»
2

< r+ 22 (3.69)
27

In case (a), V(z(t2)) = 3r, and since p < pmin and, in particular, p < (2'nr/m)%, the total increase
in V in step 2a is estimated as

V(a(t)) - Vi) 2 37— — &

m
>r 3.70
0 ( )

It follows that the time T, can be estimated from below as the minimal time needed for the system
to reach the boundary of V3" from the boundary of V2". By definition of the control u{¥(-,p),
the value function V> stays constant during this transition, and ]uﬁj) (z,p)| =1, so the speed of the

change in V, or equivalently in V] is limited by the value of the Lie derivative |Lg, V1 (z(£))|, because
2 Via(0)) = Lo Vila() (a(2). p) (3.71)
along any trajectory of the system using control u(¥)(-, p). Hence, if
s & maz{|L, Vi(z)] | z € V3, k € m} (3.72)
then T, > r/ca.

In case (b), the time T} can be estimated as the shortest time needed for the Lie derivative |Lig, 4,1 V2|
to decrease by the value of p/2. As the system trajectory remains for all times in the level set V37,
and uf:) is the only nonzero component of u(¥), then speed of change in this Lie derivative is again

limited by the largest value of |Lg, Lyg, 5.1V2(x(¢))| along z(t) € V3". Since gx € Gi, then by virtue
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of the Jacobi equality, this speed is limited by
de r . —
cs & maz{|Lig, jgr.0 V2@ | T € V3, ki € m} (3.73)

Therefore, Ty, > p/(2¢3). A lower bound for the time of execution of step 2a in cases (a) and (b) is

hence given by:
Top "= min{_, 2~ (3.74)
C2

A lower bound d, for the increase in {Lg, V2| in step 2b, in the case when step 2a is exited in
situations (a) and (b), can now be obtained from equations (3.42) through (3.43)-(3.44) of the proof
of Lemma 3.4, by which

5> 6= B2 (3.75)

Case (c) is straightforward because, by definition of the set Ty,, and the fact that at the exit of step
1, z(t) € T1,(p), the increment in |L, V5| is at least p. Therefore, in all the cases, the increase in

the Lie derivative |Lgy, V5| is bounded from below by 4. :
def . —
§ > 8. = min{dqp, p} (3.76)

Recalling equation (3.68), the minimal decrement in V; in Step 2b is therefore bounded from below by
362/(8c1) > 0. 1t follows inevitably that, after a finite number of repetitions of step 2b, Vs < g% /72

which contradicts (3.62) and completes the proof. |

REMARK 3.3. As was pointed out using the example of the unicycle, in certain cases, and provided
that there are no disturbances nor model error, the stabilizing feedback strategy can be adjusted
to produce trajectories which pass through the origin in a finite time, thus acting as a dead-beat

stabilizing controller.

5. Applications of the feedback strategy

In this section several examples are provided iluminating different features of the guiding functions
strategy and explaining its applicability in non-standard situations such as when the controllability
Lie algebra contains Lie brackets of order higher than one. Each example is preceded by a brief

motivation.

The strategy presented in section 4 is formulated with refrence to general systems and takes no

account of any specific properties of these systems nor of their particular algebraic structures. In
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most individual cases, however, it is possible to introduce straightforward modifications to Step
1 of the strategy which consequently lead to dead-beat control. For example, such “intelligent”
application of the strategy is possible when :
(i) the assumptions of Lemma 3.3 are satisfied
(ii) there exists a subset {z;;}, 7 € m, of state variables (of cardinality equal to the number of
control variables) such that each z;; can be changed only by a single control u; while the
remaining controls u;, ¢ # j, have no effect on {z;,}.
In case of (i), Lemma 3.3 indicates that sequential activation of the components of the control v7 of

Step 1 of the strategy is possible and allows for the selection of p = 0.

Similarly, in case (ii) introduction of the hysteresis loop in the definition of v/ is also redundant
as the individual control u;, j € m, can be switched off sequentially as the corresponding state

variables z;; achieve zero values.

Indeed, all the examples discussed below fall into either of the categories (i) or (ii) permitting the

selection of p = 0. Thus in all the considered cases the controllers exhibit the dead beat property.

5.1. Stabilizing feedback control for a model of an underwater vehicle (all con-

trols available) [64, 69]

The model of an underwater vehicle is standard in that it satisfies all the assumptions of section
2 of this Chapter. This example also illustrates, how to use the strategy in a typical situation, in
particular how to coastruct the guiding functions when the system under consideration is defined

on a manifold.

A kinematic model of an underwater vehicle, as described in [81], involves six configuration variables
and four inputs (velocities), of which three are the angular velocity components, and the fourth rep-
resents the forward velocity of the vehicle. If the velocity vector of the vehicle is constrained so that
only its forward component can be nonzero, the vehicle exhibits nonholonomic behaviour, for details
see [26]. Feedback control of the autonomous underwater vehicle with this type of nonholonomic
constraint was previously studied in ([81], [26], [55]). In [118], Yoerger and Slotine applied sliding

modes to trajectory control of such a vehicle.

In the derivation of the model of the underwater vehicle, two frames of reference are considered,
as shown in Figure 3.2. The O — XY Z is the inertial frame, while the local frame, C — zyz, is

attached to the vehicle at its centre of mass C, with the z axis pointing along the OZ direction,
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FiGURE 3.2. Model of an underwater vehicle

when the vehicle is in the upright position. Six coordinates are used to describe the motion; three
to specify the position of the centre of mass, described by coordinates (z,y, z) and three to describe
the orientation. The Z — ¥ — X Euler angles are denoted by (@, 4,%). When the angles are small, ¢
corresponds to what is commonly called the roll motion, while § and ¥ correspond to the pich and

yaw motions, respectively.

As in [81], it is assumed that the vehicle is moving with velocity v, whose direction is the C — z axds

in the local frame, so the components of this velocity along the z, ¥, and 2 axes are given by

z v cos P cos @
vy | =| vsinicosé (3.77)
z —v sin 8

The relation between the time rate of the Euler angles and the angular velocity in the local frame,

w = (wz,wy,w;)7, is given by, [81],

¢ 1 singtan 8 cos ¢ tan 6 Wy
8 |=| 0 coso —sin ¢ wy (3.78)
¥ 0 sin ¢ secf cos ¢ sect ws

Combining equations (3.77) and (3.78), and introducing a new set of state and control variables :
(z1, %2, 73, 24,T5,26) = (2,9, 2,0,6,¥) and (u1,uz,us3,us) = (v,wz,wy,w:), yields the kinematic

model for the underwater vehicle.
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Model 1:
S _ - _ _ - _ -
I COS Zg COS I3 0 0 0
o 8in Tg COS Ts 0 0 0
I3 —sin zs 0 0 0
= up + uz + uz + Ug
Z4 0 1 sin T4 tan Ts cos x4 tan Ts
Zs 0 0 cos T4 —sin T4
| Tg 0 ] 0 sin T4 Sec Ts €OS T4 Sec Is
def -,
= g1(z) ur + g2(z) uz + g3(z) us + 94(z) uy (3.79)
where (z) COS Tg COS T 9 + sin g cos in T 9 (z)
= — + st Is — — st —, go(z) = —
y g1 6 5 9z, 6 5 972 5 Bzs g 074
(z) = sinz4tanz 9 + cos T 9 + sin 4 sec 5 —
g3 4 5 £ 4 dzs 4 5 5ze
gs(z) = cos x4 tan s i — §in T4 —— + COS T4 SEC T5 ——
04 dzs Oz¢

We refer to the kinematic model of the underwater vehicle given by (3.79) as Model 1.
It is easy to see that gy, g2, g3, g4 are smooth as vector fields defined on the manifold M :

M= {.’L’ déf (Il,Ig,Ig,.'IL;,Is,Is) € Rs : I.’E5| < 7r/2} (3.80)

The solution to (3.79) exist for all times as long as the system trajectories remain in M. The
system defined by (3.79) is also completely controllable on the manifold M as it satisfies the LARC
(Lie algebraic controllability rank condition) on M. To see this, it is necessary to verify that the
controllability Lie algebra, L(g:, gz, g3,94) for system (3.79), span /R® at each point £ € M. An

easy calculation shows that
span{g1(z), 92(x), 93(z), 94(), 95(z), gs(z)} = R® for z € M (3.81)
in which the vector fields g5 and gg are given by :

d . . .
gs(z) e/ [g1.93](z) = (sin z5 cos ze cos T4 + sin Tg sin 1:4)5;-
1

+ (sin 5 Sin T COS Ty — COS Tg SIN T4) 3 + COS Ts COS T4 Fas
ZI2 3

. . . 17}
(—sin z5 cos zg sin x4 + Sin zg COS T4) —

32:1

96(z) < (91, 4] ()

— €cOS Ty SIN Ty ——

é
Oza Oza

— (sin z5 sin Tg Sin T4 + €OS Tg €OS T4)
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The Lie brackets multiplication table for L{g1, g2, 93, g4) is:

[91,92] =0 (92, 93] = g4 [92:94] = —g3

l93.94] =92  [g1.95] =0 [9:1, 96} =0

92, 95] = g6 (92,96l = =95  [g3,95] =&

[93,96] =0 (94, 95] = [91, 96] = [95.96] =0 (3.82)

which shows that the controllability Lie algebra L(gy, 92,93, 94) is finite dimensional but not nilpo-
tent. The set S(z) is clearly defined by :

S(z) = {91(z), 92(2), 93(2), 94 (), 91 93](2), [g1, 9l (x)}, = € RR® (3.83)

and the groups G; and G- are easily formed while obeying the rules (R1) - (R2) :

gl(z) = {921 93194}(1'), e RS

Ga(z) = {g1,[91. 93], [91, 94]}(z), = € R®

From Lie brackets multiplication table (3.82), it is clear that the distributions
d
A(z) ¥ span{gs, 93, g4 }(z)

Aa(z) déf span{gi, (91, g3], [91,94] }(Z) (3.84)

are involutive, and the corresponding codistributions have the following expressions as linear spans
of exact differentials :

AL (z) % span{dira.(z), dr22(z),dNa3(z)}, z € RS

Ax(z) Y span{dii.i(z),d)\ 2(z),d\a(z)}, =€ R® (3.85)

where the choices for the scalar functions J; j, are immediate, and are valid in the entire RS .

d
Aa,1(z) e Ty, Az2,2(z) o z2, A2 3(x) ef z3

d def def
Ani(z) éf T4, Ar2(z) = Is, Ar3(z) = Z6

so that the mapping z ~ [Ay,...,A¢] is obviously a global diffeomorphism. The resulting guiding

functions Vi, V5, and their sum V, are hence defined for all z € IR® :

def 1 2 def 1
Vite) ¥ S(@f +ai+328),  Valz) H S(a} +2f +a3)

V(z) = Vi(z) + Va(z) (3.86)
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With the guiding functions constructed above, the feedback control strategy of this Chapter is
employed to Model 1, for which it proves to be very effective. Simulation results are shown in
Figures 3.3 - 3.6. Figure 3.3 shows the state trajectories z;(t), i = 1, ..., 6, of the controlled system
corresponding to Model 1, and Figures 3.5 and 3.6 show the associated trajectories of the guiding
functions V; and V2 and their sum V. The results also confirm that the origin is achieved in finite

time, and thus the constructed controller is dead beat.

It is easy to see that for Model 1, steering to the set 77, (0) N 71, (0), where
Tnh0)NTLO0)={z€ R®:2; =24 =25 =25 =0} (3.87)

can be realized in finite time by sequential application of the following controls:

e us(z) ef —sign(z4), and u;(z) = uz(z) = u4(z) =0 until z, = 0.

o uz(z) el —sign(zs), and u;(z) = u2(z) = u4(z) =0 until z5 = 0.

o uy(z) ef —sign(zs), and u1(z) = ua(z) = uz(z) =0 until zg = 0.

o u;(x) f —sign(z,), and ua(z) = uz(x) = us(z) =0 until , =0.
Therefore, the insight gained by construction of the guiding functions construction leads to yet a
simpler stabilizing strategy for Model 1. Employing this strategy in the absence of disturbances,
the origin can be achieved exactly in 9 steps, regardless of the initial condition of the system. These

steps are stated below.
Simplified strategy for Model 1:

o 1 Until z4 = 0 employ the controls us = —sign(zy) and uy =uzg=uq4 =0
s 2 Until z5 = 0 employ uz = —sign(zs) and u; = us =ug =0

o 3 If ¢ < 7/6, employ us =1 and u; = us = uz = 0 until =g = 7/6.

il
o

e 4 Until z; = 0 employ u; = —sign(Lig, ¢,V (2)) = —sign(z2) and us = uz = uy4

e 5 Until z¢ = 0 employ uq = —sign(zs) and u; = us =u3 =0

¢ 6 Until z5 = 7/6, employ u3 =1 and u; =us =uy =0

¢ 7 Until z3 = 0 employ u; = —sign(Liy, ¢;)V(z)) = —sign(zs) and us =uz =us =0

e 8 Until z5 = 0 employ u3 = —sign(zs) and vy =uz3 =u3 =0

¢ 9 Until z, = 0 employ u; = —sign(z;) and up =uz =ug4 =0
The above stabilization strategy is tested on Model 1 and the controlled trajectories are shown in
Figure 3.7, while the plots of the variations of the corresponding guiding functions are depicted in

Figures 3.9 and 3.10.
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FIGURE 3.6. Underwater vehicle Model 1: Plot of the guiding function V() = Vi(¢) +
V2(t) versus time.
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FIGURE 3.7. Underwater vehicle Model I:
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FIGURE 3.9. Underwater vehicle Model I1: Plots of the guiding functions Vi(t) and V>(t)
versus time corresponding to simplified strategy.
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FIGURE 3.10. Underwater vehicle Model 1: Plot of the guiding function V(t) = Vi(¢) +
V2(t) versus time corresponding to simplified strategy.
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3.5 APPLICATIONS OF THE FEEDBACK STRATEGY

5.2. Stabilizing feedback control for a model of drift free system with five state

variables and three controls

The following example of a drift free system demonstrates that the guiding functions need not be

simple quadratics of the coordinate variables. The equations of this system are:

L2 1 0 0
T 0 1 0
T3 = —To U1+ | z; {uU2+ | 0 | us
T4 0 0 1
:L"5 T4 0
def
= gi(z) ur + g2(z) u2 + g3(z) us (3-88)
where (z) = 92 T +z
’ g - 611.'1 2 61173 ¢ 82'5
(z) = d +z —6—
92 - a.'L"_) ! 8:1:3
a
g3(z) = 5es

To satisfy the LARC condition, we need to calculate the following Lie brackets:

01() ¥ g1, 02(2) =2 -

05(2) < [g1, 90l(2) = — 5

which yields
span{g:(z), 92(z), g3(z), g4(z), 95(z)} = IR®, forall z e R® (3.89)
The set S can then be defined:
S = {g1(2), 92(x), 93(2), 94(2), 95 (z)}, <z € R (3.90)

The Lie brackets multiplication table for L(g,, g2,g3) is:

[91,92] = gu [91, 93] = g5
[g2.93] =0 [94,95] =0
(9:, 94] = [9:,95] =0, i=1,2,3 (3.91)
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3.5 APPLICATIONS OF THE FEEDBACK STRATEGY

which shows that the controllability Lie algebra L(g;, g2, ¢3) is nilpotent and hence finite dimensional.
By adhering to the rules R1-R2, we can find two groups G, and G. as follows:

G1(z) Y {91(), 9a(2), 95(2)}

def
Ga(2z) = {g2(2), g5(2)}
The multiplication table (3.91) shows that the distributions:

Av(z) Y span{gi(z), 91(z), gs(z)}

Ax(z) Y span{gs(z), g3(z)}

are involutive, and hence, the corresponding codistributions A{- and A3 are:

Ad(z) = span{drs,1(z),d)22(z)}

A (z) = span{di; 1 (z), A1 2(z),d\ 3(z)}

By using the Frobenius theorem, the scalar functions A; ;. are easily found:

def def

Ari(z) = A2(z) = =5
def
Ava(z) & (23 — z1z2),
Aoi(2) Y 2, Aoa(z) % 2y, forall ze R

Therefore, the guiding functions for this system are defined globally:

d 1 P
Vi(z) ¥ s{zt + 23 + (23 — 7122)},
- def 1. o o
Va(z) = ‘2‘{1”2 + 73}
1 a
Vi) = -2-{.'13% + .’E% + (z3 — .’l.'l.’lfz)2 +zz+ l?g}r z € R° (3.92)

The feedback strategy is then applied with conjunction of the guiding functions (3.92). The simula-
tion results are shown in Figures 3.11-3.13 which conform the effectiveness of this strategy. Figure
3.11 shows that all state trajectories z;(t), ¢ = 1, ..., 5, of the controlled system, reach the origin in
finite time. Figures 3.12 and 3.13 show the associated trajectories of the guiding functions V; and

V2 and their sum V. The control is again essentially dead-beat.
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FIGURE 3.11. General drift free system with n — m = 2: Plots of the controlled state
trajectories ¢t — (z1(¢), -.., s(t)) versus time.
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FIGURE 3.13. General drift free system with n — m = 2: Plot of the guiding function
V(t) = Vi(t) + Va(t) v.s. time.
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3.5 APPLICATIONS OF THE FEEDBACK STRATEGY

5.3. Stabilizing feedback control for a model of a rigid spacecraft in actuator

failure mode

This example illustrates that the guiding functions strategy developed in this Chapter, appears to
be robust with respect to model error. There are some drift free systems which do not satisfy the
assumption A2, so that, direct construction of guiding functions for such systems is not possible.
Instead, an approximation technique can be utilized first, in which the original system is approxi-
mated (by using truncated Taylor series expansion at zero) by a model which preserves controllability
and such that additionally, ¢;(0) = g;(0), for any ¢; € L(g1,---,9m) and g; € L(gi,-..,Gm), where
L(g1,---,9m) and L{gi,--.,gm) are the controllability Lie algebras for the original and approximate
systems, respectively. If the approximate system satisfies assumption A2, the guiding functions
can be constructed for this approximate system and applied in the feedback control to the original
system. In all the cases considered, simulations confirm that such feedback control is stabilizing for
the original system, thus demonstrating a robustness property of the guiding functions strategy. A
quantitative assessment of such robustness margin with respect to model error is beyond the scope
of this thesis. Due to the approximation, the convergence of the controlled system trajectories to the
origin is generally expected to be local. However, in most cases analysed, the region of attraction
appears to be practically unlimited. This is going to be confirmed on the example of the hopping

robot in section 7.3 of this Chapter.

The approach described above is applied to a model of a rigid spacecraft as given by, see [47]:

é cos 6 0 sin @ w1
6 | = sinftang 1 -—cos @ tan ¢ wa
¥ —sinf sec¢ 0 cos 8 sec ¢ w3

where [¢,8,%]T are Euler angles describing the orientation and [w1,wa,w3]T is the angular velocity
vector. Assuming that one of the rotation velocities, say ws, is constrained to be equal to zero, and by
introducing a new set of state and control variables : (z;,z2,z3) = (¢,6,%¢) and (u;,us) = (w1, w2),

yields the following kinematic model for the spacecraft:

T CcOS I3 0
Zo = sin 1 tan uy+ | 1 | uz
T3 —8in I sec I, 0
def
2 (@) w +92(a) w2 (3.93)
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3.5 APPLICATIONS OF THE FEEDBACK STRATEGY

where

(1’) =C0S Iy —— +Sin s tan T — Sin a2 Ssec Ty —— (.’L') o
-— N 2 =
g1 2 2 ! Oz- 2 ! 52:3 g 83:2

621 Zo

The Lie bracket of g, and g» is given by:

+ COS Ty S€C Ty

81‘3

. 0
g3(x) s [g1, g2](z) = sin zo -— — cos z2 tan =,

61'1

6:2

The kinematic model (3.93) satisfies the LARC condition if the motion of the system is constrained

to the manifold:
def 3
M= {z = (z1,z2,23) € R® : |z,| < 7/2}
that is
span{g1(z), g2(x), 93(2)} = I®, 7€ M (3.94)
The Lie brackets multiplication table for L(g;, g2) is given by:
(91, 92] = g3, [91193] = —ga, [92:93] = (3.95)

which shows that the controllability Lie algebra L(g:, g2} is finite dimensional, but not nilpotent.
By consulting table (3.95), it can easily be verified that it is not possible to construct groups G, and
G-, which give rise to involutive distributions. It is thus impossible to construct guiding functions

directly for system (3.93).

For this reason an approximation of (3.93) is considered in which the nonlinear terms in the vector
field g, are substituted by their truncated (of order one) Taylor series expansions at zero. In doing

S0, sinz =~ z and cosz = 1, which results in the following system:

z 1 0
T2 = 0 u 4+ [ 1 | ue
z3 —I3 0
Y Gi@) w+ G2(z) u2 (3.96)
where, gi(z) = 5%‘ - 226_:?:;’ g2(z) = _8?:_3

The Lie bracket of §; and §» is now given by:

Ga(z) H [§1,§21(z)=%
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3.5 APPLICATIONS OF THE FEEDBACK STRATEGY

The approximate model (3.96) also satisfies the LARC condition since :
span{gi(z), §2(z), G3(z)} = R zelR® (3.97)
and the Lie brackets multiplication table for L(g1, g2):
[G1,G2] =33, [§1.83] =0. [§2,33] =0 (3.98)

shows that the Lie algebra L(§;, §=) is nilpotent. By adhering to the rules R1-R2, the groups G

and G- can easily be defined for the approximate system (3.96) as follows:
def .. - def (-
Gi(z) = {§i(z),3:(x)}, Ga(z) = {g2(2)} (3-99)

From table (3.98), it is clear that the distributions:

A (z) Y span{gi(z), §3()}

As(2) ¥ span{ga(z)} (3.100)
are involutive and hence, the corresponding codistributions are:
Ai(z) = span{dXz2,1(z)}
Ay (z) = span{dA; 1(z),dA 2(z)} (3.101)

One choice of the scalar functions A; ; is:

A@) E 2, Ma(@) Y 1s, Mon(z) Y 2.,  forall z e R (3.102)

which yield globally defined guiding functions:
Vi(z) = %(xf +z2), zeR®
B ¥ 6, zeR
Viz) = %(zf +zi+12), zeR® (3.103)

The above guiding functions can next be incorporated into the stabilizing strategy which is applied
to the original system (3.93). Simulation results conform that the strategy is robust with respect to
model error in the sense that although the guiding functions are constructed with reference to an
approximate model (3.96), yet they are generating stabilizing controls for the original system (3.93).
In this case simulations alsc show that the set point is reached in a finite number of steps (in finite

time). The simulated trajectories are depicted in Figures 3.14 - 3.16.
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FiGUurRe 3.14. Spacecraft model: Plots of the controlled state trajectories t —
(z1(t), z2(¢), z3(t)) versus time.

3
time

0.9 . . . -

o.7 : . o]
o.sl-
Fo.s|
O.al L P . - .
o.3| ‘ =
ozl - . . . . . \ - . . -

o.tf - - B T T S T e T N ............ ~
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

6. Sinusoidal steering and guiding functions

In this section, the possibility of combining the guiding functions approach with sinusoidal steering
of Murray and Sastry [77], and Tilbury et al. [109}, as applied to systems whose controllability
Lie algebra involves higher order Lie brackets, is demonstrated. It is well known, see Tilbury et al.
[109] that the motion along the Lie bracket (g1, [g1, [91, -, [91,92], --]]] = ad¥, g2, of depth k can be

generated by using the following sinusoidal controls:

ui(t) = k sin(27r%)
ws(t) = ka cos(k 27%) (3.104)

where k; and &, are some constants. By combining this idea with the guiding functions approach,
stabilizing controllers are constructed for different types of drift free systems possessing controlla-

bility Lie algebras with higher order Lie brackets.

6.1. Stabilizing feedback control for a model of an underwater vehicle (in actu-

ator failure mode) [64, 69|

The example below explains, how the idea of guiding functions can be combined with sinusoidal
steering. It is hence shown that the guiding functions approach is not limited to the class of systems

which satisfy assumptions A1-A4.

A model of an underwater vehicle (3.79) is considered in which the actuator corresponding to con-
trol u4 fails to be operational. The model of the underwater vehicle with such reduced number of

controls, is referred to as Model 2:

Model 2:

91(z) ur + g2(z} ua + g3(z) uz

T COS Tg €OS Ts 0 [ 0
Ty sin Tg COS Ts 0 0]
z3 —Sin Ts 0 0
= u; + uz + us
T4 0 1 sin T4 tan x5
s 0 0 CcOoS T4
Ts 0 0 ] Sin T4 Sec Is ]

(3.105)
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

To verify complete controllability of (3.105), we need the following Lie brackets:

def d . d
= , = tan zs) —— — (sin z4) =— + (cos x4 sec r5) —
94(-’5) [ 2 93](1') (cos x4 5) Bz ( 4) dzs ( 4 5) Bzs
d . ) .
gs(z) el [91,93](z) = (sin zs cos T cos T4 + sin Te Sin T4) o
1
+ (sin z5 sin Tg COS T4 — COS Tg SiN Ty)
6:1:2
+€0S Ts €OS T4 ——
61213
d . . i
ge(x) ef [91,[g2.93])(z) = (—sin z5 cos =g sin T4 + sin Tg cos T4) o
1

— (sin z5 sin Tg Sin T4 + COS Tg COS Ty) —
a:tz
—COS T3 SIN Ty —

82.'3

which satisfy the LARC condition:
span{gl(z)vg2(z)= g3(.'17),g4(.'11), gS(z)796(z)} = Rs forz € M (3'106)

The Lie brackets multiplication table for L(gy, g2, 93) is the same as given in (3.82). The set corre-

sponding to S(z), can thus be defined by
S(z) = {g1(z), g2(2), g3(x), 91, 93](2), [92, g3}(2), (91, [92. 3]l(z)}, = € R® (3.107)

and contains Lie brackets of depth one as well as a Lie bracket of depth two. The stabilization
strategy and the associated guiding functions construction must hence be modified to take account

of this complication. An immediate remedy for this situation comes to mind and relies on substituting

the original system by its extension of the form:
& = gi(z) v + g2(z) v2 + g3(z) v3 + [92,93)() v4 (3.108)

The control v4 is clearly not accessible but, assuming that the motion of the real system along the
Lie bracket direction [g2, 93] can be realized, at least approximately, through controls vs,v3, in an
indirect way, and over a finite interval of time, allows the introduction of the vector field groups G;

and G, for the extended system (3.108):

Gi(z) = {g2,93,[92,93]}(z), =z € R®

Ga(z) = {91.[91. 93], [91, [92, 93]]}(z), = € RS
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

as if the motion of the real system in the direction [g-,g3] was instantaneously feasible. By using

the Lie brackets multiplication table (3.82), it can be easily seen that the following distributions
def
Ai(z) = span{gs, gs, (92, g3]}(z)
de
Ax(z) E span{or o1, 93 lg1. g2, gs]]}(z)
are involutive, and the corresponding codistributions have the following expressions as linear spans
of exact differentials, valid in the entire /RS :
Al (z) Y span{dha,(z), draa(z), dres(z)}, =€ RE

AF(z) Y span{diii(z),dA 2 (z), dArs(2)}, T € RS
where the choices for the scalar functions A; ;, are identical as for Model 1 :

d
A2,1(z) <z, Az,2(z) H 2, Az,3(z) et 1a,

def def def
Ai(z) T ze, A2(@) T ozs, As(z) T ze.

The corresponding guiding functions are defined for all z € IR® and given by (3.86). The motion
along the Lie bracket [g2, g3] is realized indirectly by using the following standard controls:

ua(t) = sz’n(27r%)
us(t) = cos(27r%), while w, =0 (3.109)

where T is a positive constant (the value 7" = 1 was used in simulations). The trajectories t + z;(¢},
i = 1,..,6, of the controlled system incorporating Model 2 are shown in Figure 3.17, while the
corresponding plots of the guiding functions V;, V2, and V are depicted in Figures 3.20 and 3.21.

Also in this case, the control is essentially dead-beat.

6.2. Stabilizing feedback control for a model of a fire truck

The example below demonstrates that the combination of the guiding functions strategy with sinu-
soidal steering is also robust with respect to model error. Such robustness property is important in
cases when the extended system (see section 6.1) fails to satisfy assumption A2, hence disallowing
direct construction of the guiding functions. Proceeding similarly as in section 5.3, an approximation
of the extended system is sought. If such approximate extended system satisfies assumption A2, the
guiding functions can be constructed with reference to this approximation. The latter can later be

used in a combined strategy and applied to the original system. Several simulations, see sections
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FIGURE 3.17. Underwater vehicle Model 2: Plots of the controlled state trajectories t —
(z:1(t),...,zs(t)) versus time.
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FIGURE 3.18. Underwater vehicle Model 2: Plot of the controlled state trajectory z:(f)

versus za(t).
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FIGURE 3.19. Underwater vehicle Model 2: Plot of the controlled state trajectory zs(t)

versus zg(t).

101



m

3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

0.9 T T

sresasspresseatpeentd

5 10 15 20 25
time

FIGURE 3.20. Underwater vehicle Model 2: Plots of the guiding functions V1(t) and V3(t)
versus time.
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FIGURE 3.21. Underwater vehicle Model 2: Plot of the guiding function V(t) = Vi(¢) +
V2(t) versus time.
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FIGURE 3.22. Model of a fire truck

6.1, 6.2, and 7.4 of this Chapter, show that the stabilizing property of the guiding functions strategy,
when combined with sinusoidal steering, is preserved under a skillful approximation. The approach

outiined above is fully explained by the example below.

The fire truck is an example of a nonholonomic system with three inputs and six configuration
variables, for which the Lie bracket extended system also involves second order Lie brackets. A
model given in {13], consists of two planar rigid bodies supperted by three axles, see Figure 3.22.
The support of the rear body, or trailer, is over the center of the rear axle of the front body, or cab
(axle-to-axle hitching). The first and third axles are allowed to pivot, while the middle axle is rigidly
fixed to the cab body. The wheels are assumed to roll but not slip, thus giving velocity constraints.
The selected configuration variables (states variables) in this system, (z, v, @g, 6o, ¢1,61) € IRS, have
the following description:

(z,y) — the Cartesian location of the center of the rear axle of the cab,

o — the steering angle of the front wheels with respect to the cab body,

6o — the orientation of the cab body with respect to the horizontal axis of the inertial frame,

¢1 — the angle of the rear wheels with respect to the trailer body,

8, — the orientation of the trailer body with respect to the horizontal axis.
Denoting by l; and [; the distance between the front and rear axles of the cab, and distance between

the centers of the rear axles of the cab and the trailer, respectively, the model of the fire truck can
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

be written as (see also [114]):

(] [1 0 0
] tan g 0 0
%o 0 1 0
) = w) + wo + w3 (3.110)
6o (1/1o) tan ¢o sec g 0 1]
é1 0 0 1
6 | (—1/1) sin(pr — O + 81) sec ¢ sec 8y 0 0

where the inputs (w;,w,,ws) correspond to: the forward driving velocity of the truck, the steering
velocity of the front wheels of the cab, and the steering velocity of the rear wheels of the trailer,

respectively.

. . . . d. d
It is convenient to redefine the state and control variables by putting z ef (z1,%2,T3,T4,Z5,Ts) ief

d . . .
(¢1,00,7,y,00,61), and v =f (vy,vg,v3) s (w3, we,w1). With respect to this new set of variables,

additionally assuming that lo =[; = 1, the system (3.110) takes the following, simpler form:

I L 0 0
2 0 1 0
I3 0 0 1
= v + Us + U3
T4 0 0 tan zs
Is 0 0 tan x4 sec Ts
g | 0 0 J —sin(z, — z5 + Ts) sec T sec x5
= g + g2(a)vr + gs(z)vs (3.111)
where (z) = 9 (z) =
’ g1 - 611 ’ g2 = 8:1:2
(z)—i+tan:z: i-i-tan:z sec y — — sin(Ty — o5 + Tg) S€c T sec Ts ——
g3 = 923 5 Bz 2 5 925 1 5 6 1 5 9Ze

Calculating the Lie brackets which are linearly independent at the origin yields:

ga(z) & [91, g3](z) = [—cos(z1 — z5 + z6)seczsecTs + sin(z, — T5 + Te)secT, tanz, sec :1:515
6
def 2

95() 2 [g2,51(a) = (sec 22)? sec 75 5

T5

d a
96(z)  [[g2, 93], gal(z) = (sec z2)? (sec zs)° E

+[(sec 24)? sec zs (cos(xy — x5 + x6) sec 1 sec x5 — sin(z, — Ts + Te) Sec T Sec Ts tan Ts) -
6
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It is hence clear that, if the motion of the system is restricted to the manifold

™

5 t=1,2,5}

M={:I:ER6 ez <
then the LARC condition:
span{gi, 92,93, (91, 93], [92, 9a]. [[92, 93], 93]} (z) = R® forz € M (3.112)
is satisfied. For system (3.111), the set S(z) is given by:
S(z) = {g1(x), 92(z), 93, [91, 93], [92. 93], [[92. 93], g3] (=) =z € M (3.113)

The Lie brackets multiplication table for L(g1, g2, 93) is:

(91, 93] = g4 [g2, 93] = g5 (95, 93] = g6
[girgj] ;é 07 i= 1123 37 j = 41 516 (3.114)

which shows that the Lie algebra L(g1, g2, 93) is neither nilpotent nor finite dimensional. It is also
clear from the table (3.114) that the extended system for the model (3.111)

T = g1(z) vi + g2(z) va + g3(x) vs + [g2, 93](z) v4 (3.115)

does not lead to vector field groups G; and G» which satisfy assumption A2. Similarly, as in section

5.3, we hence consider an approximate system (which preserves controllability) as follows:

i H giz) w+Ga(2) ua +Ga(2) us (3.116)
- d - _ 9
gl(x) - -a—:l-::’ gg(.'l:) - 62'2
”(a:)—-i+ —i+x i——(a: - +a:)i
g3z} = Oz3 s Oz4 2 Bz ! S
By defining
@) ¥ e =5
5 df 15, 5 =9
gs(z) = [§2,8](z) = Bzs

§5($) déf [§3: [52,53”(12) = -62—4 + %

the LARC condition:

span{gr, 2. 3s, [G1, Ga), (32, G3], [33. [G2, Ga]] }(z) = R®, forz € RS
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is satisfied. The Lie brackets multiplication table for L(gi, §a,§3) is:
(91,92} =0, (61, g3] = da, [G2. §3] = G5, (§3,35] = g6
(g3, 4] = [33. 6] = 94, [91,3:] = [§2.9i] =0, i=4,5,6 (3.117)

and shows that the Lie algebra L(g;, §2,§3) is finite dimensional but not nilpotent. By using this

table, the extension to the approximate model (3.116) is of the form:
z = §1(z) v1 + G2(z) v2 + g3(z) vs + [, G3)(z) vs (3.118)
and provides for two vector field groups G; and G,:
G1 = {41,392, (G2, 331}, Go = {§3, (51, 3], (93, [32. Gal1}

It can be checked that the following distributions

Av(z) % span{dn, g2 [G2, 33]Hz), Aa(z) Y span{ds, (31, 3l [§3, (G20 G]]} ()

are involutive, and the corresponding codistributions have the following expressions:

Af(z) o span{diz,1(z),dA22(Z),dA23(z)}, A (z) = span{dA; 1(z), dA1 2(z),dA; 3(z)}

By Frobenius theorem the scalar functions A; x can be computed:

def def de f
Aoi(7) E 23, Aao(z) F zy, Aaal(z) = z6

)\1'1(1’) d_e__f I, /\1'2(2:) déf o, A]_‘;;(I) déf (.’1:5 - :1:'_)2:3) forall z € RG

The guiding functions for the approximate extended system can thus be selected:

def 1

(4 1 9 9 9
def {z7 +z3 + (zs — T223)°}, Va(z) = 3

Viz) ¥ 3 (z3 +z; +x3), T€ERS®
1
Viz) = §{xf+z§+z§+zi+x§+(xs —z273)%}, TER®

These guiding functions are next incorporated into the stabilizing strategy which is applied to the
original system (3.111). The motion along the Lie bracket [gs, g3] is realized indirectly by using the

following controls:
us(t) = sin(Qw%), uz(t) = cos(27r%), while u; =0 (3.119)

Simulation results are shown in Figures 3.23- 3.26, which confirm that the constructed controller is

essentially dead beat. In simulations, the value T = 1 was used in the controls (3.119).
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FIGURE 3.23. Fire truck model: Plots of the controlled state trajectories t —
(z1(t), ..., z6(t)) versus time.
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FIGURE 3.24. Fire truck model: Plot of the controlled state trajectory z3(t) = z(t) versus
za(t) = y(¢).
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FIGURE 3.25. Fire truck model: Plots of the guiding functions Vi(¢) and V2(t) versus time.
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F1GURE 3.26. Fire truck model: Plot of the guiding function V() = Vi(t) + V2(t) versus time.
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I

FiGURE 3.27. Model of a mobile robot with trailer

6.3. Stabilizing feedback control for a mobile robot with trailer [72]

In this section yet another example is provided which demonstrates the robustness property of the

combined strategy based on guiding functions and sinusoidal steering. This example is more complex

than these of the previous of sections since the corresponding controllability Lie algebra involves also

a bracket of depth three.

The kinematic model of car-like robot with trailer, see [52], is given below.

z
I
T3
T4

Ts

COS T3 COS T4 Uy
COS T3 SIN T4 Wy
U2

- sin T3 U

l

1
7 sin (z4 — Ts) cos T3 wy (3.120)

where z;, T2 are the Cartesian coordinates of the centre of mass of the car, =3 is the steering angle, z;4

and x5 are the angles which the main axes of the car and trailer make with the z; axis, respectively,

see Figure 3.27. The above can be rewritten in a compact form as

& = gi1(z)u; + g2(T)u2, z € R® (3.121)
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

a
gi(z) = cos z3 cos x4 53; + cOs T3 Sin T4 6_:1:; + sin x3 Er: + cos T3 sin (T4 — Ts5) 2.
a
g2(z) = E
where, for simplicity, it is assumed that [ = d = 1. The following Lie brackets are needed:
ga(z) def (91, 92](z) = sin z3 cos z,4 9 + sin z3 sin T4
’ 61:1 6172
cos z + sin z3 sin (x4 — zs) 9
S I3 874 s 3 4 5 33
def . l3] a
94(z) = [g1,93}(z) = sin z4 £ +cos x4 52a +cos (24 — x5) Er
gs(z) af [91,94])(z) = —sin z3 cos z4 9 _ Sin T3 Sin T4
! Oz, 8z-
—(sin z3 sin (z4 — z5) — cos 3) .
to satisfy the LARC condition:
span{gi(z),i =1,...,5} = R®, foral ze€ R®
The set S(z) can be defined as:
S(z) = {gi(z),i=1,...,5} = R®, foral z€ R®
The Lie brackets multiplication table for L(g1,g2) is:
[91,92] = g3 [91.93] = g4 (91,94] = g5
(9:,9;] #0, i=1,2, j=3,4,5 (3.122)

which indicates that the Lie algebra L(gi, g2) is neither nilpotent nor finite dimensional. The table
(3.122) also shows that the extended system for (3.121) :

z = g1(z) v1 + g2(z) v2 + g1, 92](T) v3 + [, 93](Z) va (3.123)

does not allow for the introduction of two vector field groups G, and G, which give rise to involutive

distributions. We thus consider the following approximate system:

z = Gi(z) ur + golz) us (3.124)
- 0 a - _ 0
where, gi(z) = 3z, +z4 Bza +z3 Er + (24 — T5) E' g2(z) = 923
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

Clearly
i gl = 54 Y [01,581(0) = e+
5x) ¥ (31, 8dl(2) = 52—5
which also satisfy the LARC condition:
span{gi(z),i=1,..,5} =R, forall z € R® (3.125)
and form the corresponding extended system to the approximation (3.124):
z = gi(z) v1 + G2(z) v2 + (31, Gol(z) vs + [G1, [91, G]](Z) va

= g1(z) v1 + Go(z) v2 + Fa(x) vz + Ga(Z) v4 (3-126)

The controls v3 and vy are clearly not directly accessible but motion of the system along the cor-
responding Lie bracket directions [g1, §2}, and [g1, [§1, §2]], can be realized through controls u; and

ug, in an indirect way, and over a finite interval of time. The Lie brackets multiplication table for

L{g1, g2) is:
(31, 2] = 93, [§1,83] = 34
[31,34] = 35, [91,35] =35
{§J7§i] = 07 ] = 27 bt ] 59 i = 3! 475 (3.127)

which shows that Lie algebra L(g,, g=) is nilpotent. This table also allows for the introduction of
the vector field groups G, and G, for the extended system (3.126), as follows:

G = {32,(91,32], (61,51, 52]] } = {32, 33,54 }

G» = {g1,[G1,[d1,[91,32]]] } = {31.55 }

which give rise to the involutive distributions:

de - = o~
A (x) =f 3?“”{92,93794}(1')

d - -
Ao(z) H span{g, 3s}=)
The corresponding codistributions thus have the following expressions:

A (z) = span{dA;,1(z), dA1 2(z)}

Ay (z) = span{drs2,1(z),d)2,2(Z), dA2,3(z)}
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

and the scalar functions A; j, can be obtained by using the Frobenius Theorem:

Ai(z) =z1, Ar2(z) =22 — x5
Ao1(z) =23, A22(z) = (x4 — I1T3)

A2 3(z) = (22 — o123 + -2‘:5%273)

The resulting guiding functions are given by:

1
Vi(z) =4 5{1?% + (z2 — z5)%}

1 2 9 1 <5
Va@) Sz} + (34— muza)? + (22 — 7z + 57izs)’)
V(iz) “ Vi) + val)

and can be used in a combined feedback strategy as applied to the original system (3.121). The

system motion along the Lie bracket direction [g1,g2] can be achieved by employing sinusoidal

controls :
u(t) = sin(@rs)
s T
t
us(t) = cos(27rf) (3.128)

while motion along the Lie bracket direction [g,, [g1,g2]] can be achieved by employing:

wu(t) = k sin(27r%)
us(t) = ks cos(47r%) (3.129)

where k;, ko and T are some non-zero constants. Three sets of simulation results are shown in

Figures 3.28 - 3.30, 3.31 - 3.33, and 3.34 - 3.36, respectively.

Figures 3.28 - 3.30 correspond to the situation when the robot and trailer are steered to the origin
from an arbitrary initial condition in the configuration space (specifically, the trajectories shown are

obtained when zq = [0.6,0.8,0.4,0.7,0.5]7 and k; = 2, k2 = 3, and T = 0.9).

Figures 3.31 - 3.33 and 3.34 - 3.36 show the controlled system trajectories during two parallel parking
maneuvers, corresponding to the initial conditions z¢ = [0,1,0,0,0]T and zo = [0,-1,0,0,0]7,

respectively (here, k1 = 2, k2 =3 and T = 1.5 were used).
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3.6 SINUSOIDAL STEERING AND GUIDING FUNCTIONS

FIGURE 3.28. Steering from an arbitrary initial configuration. Plots of the controlled state
trajectories t — (z1(t), ..., z5(t)) versus time.
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FiGure 3.29. Plot of the controlled state trajectory z,(t) versus x2(t) corresponding to
Figure 3.28.

20 25

vy
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FIGURE 3.30. Plots of the guiding functions Vi(t), V2(t) and V(t} = Vi(t) + Va(t) versus
time, corresponding to Figure 3.28.
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o

~

FiGure 3.31. Parallel parking maneuver I: Plots of the controlled state trajectories ¢ —
(z1(t), -.., zs(t)) versus time.
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FIGURE 3.32. Plot of the controlled state trajectory z:(t) versus z2(t) corresponding to
Figure 3.31.
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FiGure 3.33. Plots of the guiding functions Vi(¢}, V2(t) and V{t) = Vi(¢) + Va(t) versus
time, corresponding to Figure 3.31.
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5 30 35 @

FIGURE 3.34. Parallel parking maneuver II. Plots of the controlled state trajectories ¢ —
(z1(t), .-, zs(t)) versus time.
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FiGURE 3.35. Plot of the controlled state trajectory z1(t) versus z2(t) corresponding to
Figure 3.34.
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FIGURE 3.36. Plots of the guiding functions Vi(t), V2(¢) and V(¢) = Vi(¢) + V2(t) versus
time, corresponding to Figure 3.34.
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3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

7. A further extension of the guiding functions strategy

The guiding functions approach for general drift free systems can be further extended to allow for
the construction of m rather than two guiding functions. Its applicability is demonstrated on two
general drift free systems (one with six state variables and three controls, and another with ten state
variables and four control variables), a hopping robot in flight phase, a fire truck model [67], and a

class of wheeled mobile robots [71].
For the construction of m guiding functions, the assumption A2 is replaced by assumption A5 below:

A5. The distributions

A]_(IL‘) déf span{g,-(z:),i # lvi em, [gka gm](x)a ke m}
Ao(z) E span{gi(z),i #2,i € m, [gk, gm](z), k € m}
As(z) Y span{gi(z),i # 3,i € m, gk, gm)(2), k € m}
Am-i(z) Z span{g(z),i #m —1,i € m, gk, gm](z), k € m}
Am(z) def span{gi(z),i € m — 1} (3.130)

are involutive, and therefore completely integrable.

Let A1 (z), A2(z), ..., Am—1 (z) be scalar functions such that the differentials d\;(z), ..., dAm—1(z) span
the codistributions A{(z), AF(z), ..., AL _,(z), respectively, and let A, (z), ..., An(z) be such that

dAm(z), ...,dAn(z) span the codistribution A% (z), so that

di LA, iem-—1 (3.131)

d\ie LA, k=m,..,n (3.132)

The following semi-positive definite guiding functions can then be introduced:

def 1

Vi) = Sile) - MO)P, iem=1 (3.133)
Vin(z) %Lgl[xk(z) — (O (3.134)

The guiding functions strategy of this Chapter can now be modified to account for several rather
that two guiding functions, as follows (recall the definition of the set of impasse points:

T (s R : L, V(z) =0, i € m}).
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3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

Extended guiding functions strategy:
e Data: a > 1.

el Ifz € R™\ T, then for each ¢ € m employ the control

(z) —sign,[Lg, Vi(z)], fork=1
Vp\T) =
, fork #1

until L, Vi(z) =0.

e 2 Define p def z(t) in which t is the time at the exit of Step 1 (when the set 7 is traversed).

If p = 0 then stop, else if p # 0, then
#2a Select a set of indices J € m — 1, such that
iedJ if L[gi'ngVm(p) #0,

#2b Employ the controls

1, forkeJ
ve(z) =
0, fork¢ J

until, for each ¢ € J : Ly, 4..1Vm(z) = 0, or else until V;(z) > aV(p).

o2¢ Until L, Vin(z) =0, employ the controls

—sign[Ly, . Vm(z)], fork=m
ve(z) =
0, fork#m

o2d For each of the indices i € J, employ the controls

—sign[Lg, Vi(z)], for k =1
ve(z) =
0, fork#1

until Ly, Vi(z) =0, for each i. Repeat Step 2.

The convergence analysis for the above strategy is similar to the one found in section 4 and is omitted
here as the proofs are direct analogs of the ones already presented. The efficiency of the strategy is

demonstrated using a few representative examples.



3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY
7.1. Stabilizing feedback control for general drift free system with six state
variables and three controls

The following example motivates the necessity for the extension of the guiding functions strategy.
For this example, it is not possible to find two vector field groups G; and G- which give rise to

involutive distributions.

The system equations are given by:

T | 1 0] 0

To 0 1 0

.'I."3 —Ts I 0
= up + uz + Uus

Ty 0 0] 1

113.5 0] 0 I

| I-s ] i 0 3 | 0 ] L T ]
de -
2 g1(z) w1 + 92(z) Uz + ga() us (3.135)
a 7] o a

where, ¢(z) = —— —

3z, z a, 92(1)=‘a—g+$1 Er

@ = Lpa OO
I = Bz T Gzs T2 Bz
With:
e o e d e a
94(z) ¥ (o1, go)(z) =2 o 95(z) E (g1, 93)(z) = oyt 96(z) Y (92, 93](z) = e
yield
span{gi(z), i =1, ...,6} = IR®, forall =z e IRS. (3.136)

The Lie brackets multiplication table for L{g1, g2,93) is :

(91,92] = g4 lg1,93] = g5 (92,93] = g6

l9iy9i] =0, i=1,...,6 j=4,..,6 (3.137)
which shows that the controllability Lie algebra L(g1, g2, g3) is nilpotent. The set S(z) is defined by
S(z) = {91(2), 92(2), 93(2), (91, 92)(2): [91, gal(2), [g2, 9] (z)}, = € R® (3.138)

By using table (3.137) it is clear that vector fields groups G, and G cannot be formed while obeying
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FIGURE 3.37. General drift free system with n — m = 3: Plots of the controlled state
trajectories t — (z1(t),..., z¢(t)) versus time.

time

FIGURE 3.38. General drift free system with n — m = 3: Plots of the guiding functions
Vi(t), Va(t) and V() = ?:1 Vi(t) versus time.
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3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

the rules (R1) - (R2). This is the reason for which the introduction of several guiding functions is

attempted as guaranteed by assumption A5. Indeed, the following distributions:

Ay (z) % span{gz, g3, (91, 92], [91, 9], [g2, 93]} (=)
As(z) = span{gi, 93, (92, 93], [g1, 93] }(z)

d
As(z)  span{gn, g2, [1, 221 }(2)
are involutive, and the corresponding codistributions are:

Af(z) = {dA1(2)}
AéL(I) = {d)\g'l(z),d)\g'g(x)}
AT (z) = {dA3,1(z),dA3,2(),dA3,2(z)}

By using the Frobenius Theorem, one choice of the scalar functions A; is:

Ai(z) =z1,  Aa(z) =22,  Aop2(z) =z3 + 11702

A31(z) = x4, Azo(z) =125, A33(z) =6

which leads to the following guiding functions:

Vi) = 3

1, 1 2
Va(z) = §z2+§(13+1’1$2)
Va(z) = %(x;~’+x'g’+z§)
Viz) = Vi(z)+ Va(z) + Va(z)

These guiding functions are then used into the extended strategy which is applied to this system.
Simulation results are shown in Figures 3.37 - 3.38 which confirm that the controller constructed by

this extended strategy is also dead beat.

7.2. Stabilizing feedback control for general drift free system with ten state

variables and four controls

The example considered below demonstrates that the extended guiding functions strategy introduced
in this section is successfully applicable to systems with higher order control deficiency (in this case

n—m=6).
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3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

The equations of this example are:

% 1 0 0 | 0
T 0 1 0 0
T3 0 0 1 0
T4 0 0 0 1
Ts T3 0 0 0
= uy + us + usz + Uy
.’E.e 0 0 0 I
T7 0 0 0 T2
T3 0 0 To 0
.’fg 0 0] I 0
ino_ _0_ | T1 ] -0_ LO_
Y gi(z) ur + g2(2) up + g3(2) uz + ga(z) ua (3.139)
15} d
where, gi(z) = EE—{ + I3 ﬂ
(z) = 9 +z o
g2 - 31.‘2 ! 3:1710
g3(z) = %-i—:rz -675;--{“1:4 5—;;
a 0 0
= P —_— n —_— .14
ga(z) 54 +z 5ze + s 327 (3 0)
The following Lie brackets:
def _ 9 def __9
gs(z) = [g1,82](x) = e g6(z) = [g1,93](z) = Fre
def =2 def -2
g7(z) = [g1,94(z) = Bza’ gs8(z) = [g2.43)(z) = 3z
d o d a
95(z) & (92, 9)(2) = e g10(z) % (93, 94)(2) = ~ 324
yield
span{gi(z), i = 1,..,10} = R** forall ze RY.
The Lie brackets multiplication table for L(gi, 92, g3,94) is :
[91,92] = gs [91,93] = g6 (91, 94] = g7
[g2, 93] = gs [92,94) = g0 [g3, 94] = g10
lg:,9;] =0, i=1,..,10, j=35,..,10 (3.141)
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which shows that the Lie algebra L(g;, g2,93,94) is nilpotent. From table (3.141) it is also clear that
the following distributions are involutive:
d
Av(z) Y span{gz, g3, 94,91, 92, 91+ 94}, [92, 93, [92. 9], [g3, 94] H)
d
As(z) 24 Span{ghgs,g«t, [91,93], [91,94], [92,93], [92,94], [93794]}(-’13)
d
As(z) ¥ span{gr, 92,94, [91, 921, l91, 93], [91, 94], [g2, 9]} (z)

d
A‘l(x) éf span{glvg?.’ g3, [91,921’ [91,93]: [gz: gSIr {g3y 94]}(33)

The corresponding codistributions are:
Af(2) = {dA11(z), dAr2(2)}
Ay (z) = {dA2,1(2), dM2,2(z)}
Az (z) = {dA3,1(z),d)32(2),dA3 3(x)}

A (z) = {d\,1(z), d)s 2(z), dAa3(z)}

One choice of the scalar functions X; = is:
Ari(z) =z, Ara2(z) =5
Az 1(z) = Za, Az22(z) = 10
Az,1(T) = z3, Az2(z) = zs, A3,3(z) = 29
M 1(z) = 24, As2(z) = z6, A 3(T) = 27

which result in the following guiding functions:
Vie) = 5(23 +33)
Va(z) = 5(a3 + 7o)
Vilz) = (e + 2 +23)
Vila) = (a3 + 23 +27)
V(z) = Vi(z) + Va(z) + Va(z) + Vi(z).

By using these guiding functions, the extended strategy is applied to the system (3.139). Simulation
results are shown in Figures 3.39 - 3.40 and demonstrate the effectiveness of the extended guiding

functions strategy.
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FiGure 3.39. General drift free system with n — m = 6: Plots of the controlled state
trajectories £ — (z1(t), ..., z10(t)) versus time.
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FIGURE 3.40. General drift free system with n — m = 6: Plots of the guiding functions
Vi(t),..., Va(t) and V(t) = 3°;_, Vi(t) versus time.
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7.3. Stabilizing feedback control for a hopping robot in flight phase

This example demonstrates that the extended guiding functions strategy can be applied if the
controllability Lie algebra of the system contains one Lie bracket of order two and in which n—m =1,

without the necessity of introducing sinusoidal steering (compare with the examples of section 6).

A simplified kinematic model of a hopping robot in the flight phase can be given in the form of the

following state space equations (see [79]):

1L = u
[ = U2
§ = m(l +d)” (3.142)

TTem+dE
The configuration variables ¥, [ and ¢ have the following description: ¢ is the angle of the hip of the
hopping robot in the flight phase, [ the length of the leg extension, and @ is the angle of the body of
the robot, as shown in Figure 3.41. The remaining symbols represent constants: I is the moment of

inertia of the body, m is the mass of the leg concentrating at the foot, and d is the upper leg length.

Assuming for simplicity that m = [ = d = 1, and introducing a new set of state variables z =

(z1,72,z3) = (¢, + 1,8), the kinematic model can be written as:

. = u
252 = U2
"
T3 = ——2 _u
3 1+ 2222 1
or & = g (z)ur +go(z)us, z€IR3 (3.143)
1‘,’0?‘ a

1s]
where, gi(z) = g2(z) = Fre

oz, - 14 x52 %,

To verify the LARC condition, we need the following Lie brackets of g; and g,:

def _ 2z 8
93(2'.) - {91,92](17) - (1 +I22)2 61:3
def _ 2—6x? 9
g4(z) = [92,[91,92]l(z) = 1+ z22)° 9z
which satisfy
span{g1(z), g2(z),91(z)} = R®* forall =z € R® (3.144)

The Lie brackets multiplication table for L(g, g2) is:
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FIGURE 3.41. A simple hopping robot

(91, 92] = g3 {91,931 =0 [92, 93] = 94

[91,94] =0  [g2,94] #0 (3.145)

which shows that the Lie algebra L(g;,g2) is neither nilpotent nor finite dimensional. The table

(3.145) also shows that the distributions

Ay (z) Y span{gi(z),91(z)}, Aa(z) Y span{gs(z)} (3.146)

are involutive, and the corresponding codistributions can be represented as:
Al (z) = span{dr21(z)}, AF(z)=span{dii i(z),dA 2(z)} (3.147)
where the scalar functions A;x can be selected as follows:
Aa(z) =z1, A2(z) =23, Ay(z)=z2 forall ze R (3.148)
The guiding functions for this system are hence defined globally :
Vi@ ¥ JEt+ad), @ g

1 .
V(z) = 3(i + 22 +23), z€R’ (3.149)

z3), ze€ R?

These guiding functions can be directly incorporated in a slight modification of the extended guiding
functions strategy (which is basically applicable to those systems whose Lie algebras contain only
first order Lie brackets) as explained below:

ea By employing Step 1 of the extended strategy in which:
u; = —signy[Ly, Vi(z)], i=1,2, until Ly Vi(z) =0
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the system trajectories reach the p-neighbourhood of the set:
T={zeR?:L,Vi(z) =0, i=12}={z€ R*:2; =2, =0, z3#0}

in finite time.

As follows from the convergence analysis of section 4 of this Chapter the aim of the control
of Step 2 of the feedback strategy is to steer the system away from the set of impasse points
T. This is achieved if Lg,Vi(z) # 0 for some index i. The control which achieves this, is
proposed by considering the first time derivative of Ly, Vi(x). In the case of the model of the

hopping robot, the first time derivative of Ly, Vi (z) is computed as:
d 2 1~
EL!;; Vl(x) = Lg;‘/l(x)ul + ng Lg: V1 (.'L')U2 = L_l;x ‘/1 (.’L')‘U.1 + L[gx.gz]‘/l(z)uz

and Lig, 5.Vi(z) = 2z273/(1 + z2?)? which is equal to zero at = € 7. Therefore, this first
derivative is of little help in determining the control which is able to increase the value
of |[Lg, Vi(z)|- However, considering the second time derivative of Ly, Vi(z) provides more

information about the way to choose the controls u; and u,. Clearly,

d? 2 .
ﬁLm Vi(z) = L3 Vi(z)ui + Lgy Ly, Vi(z)uruz + Lg, Lig, g0 Vi (Z)ur22 + Lg, Lig, g2 Vi (T)u3

and by choosing u; = 0 and up = 1, while recalling that L, Vi(z) = 0, if ¢ # j, we obtain

d? _
_zL!h £ (.’L‘) = Lg! L[91 192} Vi(z) = L[gz,[gx ,!n]]Vl (z) + L[glvgzngz Vi (:L')

dt
= L[gg,[g1 Jz]]vl(x) #0

as is guaranteed by the LARC condition (3.144) if only z # 0. Hence, Step 2 of the extended

strategy can be stated as :

Employ the controls u; = 0 and up = 1 until L, [4,,4.}V1(z) = 0, or else until

Va(z) 2 oV (p)-

At this stage, Steps 2c-2d of the extended guiding functions strategy can be applied without

change.

Three sets of simulation results are depicted in Figures 3.42 - 3.43, 3.44 - 3.45, and 3.46 - 3.47
corresponding to initial conditions [.5, .5, .5]T, [100, 100, 100]7 and [—100, —100, —100]7 respectively.
Figures 3.44 - 3.45, and 3.46 - 3.47 demonstrate the global convergence property of the extended

guiding functions strategy. In all these simulations the set point is reached in four steps of strategy.
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time

FIGURE 3.42. Hopping robot: Plots of the controlled state trajectories ¢ >
(z1(t), z2(t), z3(t)) versus time corresponding to initial condition (0.5,0.5,0.5).
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FiGURE 3.43. Hopping robot: Plots of the guiding functions Vi(t), Va(¢) and V(¢) =
Vi(t) + Va(t) versus time corresponding to Figure 3.42.
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FIGURE 3.44. Hopping robot: Plots of the controlled state trajectories ¢t —
(z1(t), z2(t), za(t)) versus time corresponding to initial condition (100, 100, 100).
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FIGURE 3.45. Hopping robot: Plots of the guiding functions Vi(t), Va(t) and V(t) =
Vi(t) + Va(t) versus time corresponding to Figure 3.44.

128



3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY

|

-t
Q
=]

|

-
[4)]
[«

X1t~ x2 (1) —, x3(t): -

~200

__250 1 L e 1L 1
0 200 400 600 800 1000 1200
time

FIGURE 3.46. Hopping robot: Plots of the controlled state trajectories ¢ —
(z1(t), z2(t), z3(t)) versus time corresponding to initial condition (—100, —100, —100).
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FIGURE 3.47. Hopping robot: Plots of the guiding functions Vi(t), V2(¢) and V() =
Vi(t) + Va(t) versus time corresponding to Figure 3.46.
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7.4. Stabilizing feedback control for a model of a fire truck by using the extended
strategy [67]
The following example illustrates, how the extended strategy can be applied when the controllability

Lie algebra of the system involves higher order Lie brackets. This example also demonstrates the

robustness property of the extended strategy.

Consider the fire truck model as given in (3.111) and its extended system (3.123). The Lie brackets
multiplication table (3.114) shows that, it is not possible to find three involutive distributions for the
extended system (3.123), which satisfy assumption A5. For this reason we consider the approximate

model (3.116). The extended system for this approximate model is:
I = §1v1 + Gov2 + Gavus + (G2, G3]va (3.150)
where it is assumed that vy4 is realized indirectly by using the following standard sequence of controls:
(v2,v3) = ((1,0),(0,1),(-1,0),(0, -1))

The above extended system now provides for the following involutive distributions:

Ay (z) Y span{da, ds, [§1, sl [52, Gl (2, Ga], G3] } (@)

Ao(z) Y span{gi, gs, [§1. Gal, (G2, Gal. [[F2 Gal. Gal} (@)

As(z) % span{d, ds}(z)

and the corresponding codistributions have the following expressions as linear spans of exact differ-
entials :

Af(z) 4/ span{di1,1(z)}, Asy(z) def span{diz 1(z)}

A#(z) ¥ span{drs(z), dhsa(z), dAa (), dAsa(2)}
The choice of the scalar functions A; x, is immediate:

d d
Ar1(z) 24 Ty, Aga(z) e z2,

d e
Az,1(z) = 3, (@) oz, Aaale) Ers, Aalz) oz

Hence the guiding functions for the approximate system (3.116) are:
1 1
W) ¥ et @) ¥ g
2 2
1, ., 2
Va(e) (@i 4ol +2d +ap)
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These guiding functions are next used in extended strategy and applied to the original model. The

motion along the Lie bracket [g2, g3] is realized indirectly by using the standard sequence of controls:
(u21 'U.3) = ((1,0), (0) 1)1 (_11 0)1 (01 _1))

Simulation results are shown in Figures 3.48 - 3.51 and clearly demonstrate the robustness of this
strategy. By comparing the simulation results 3.48 - 3.51, 3.48 - 3.51 obtained by the extended
strategy and the combined strategy with sinusoidal steering, it is evident that the desired set point

is reached faster by using the extended strategy.

7.5. Stabilizing feedback control for a class of wheeled mobile robots [71]

In this section, the extended guiding functions strategy is employed to three categories of mobile
robots. There is a growing interest in feedback control design for such mobile robots, as it raises

practical and theoretically challenging issues.

In the sequel, the abbreviation “WMR of type (0m,ds)” is used to denote wheeled mobile robots of
degree of mobility d,, and degree of steeribility J;; see [3] for the definition of degree of mobility and
steeribilty. The application of our strategy to three types of WMR is discussed below.

7.5.1. Stabilizing feedback control for a WMR of type (2,1)

This type of wheeled mobile robots is easy to control as its controllability Lie algebra contains only

Lie brackets of depth one.
The kinematic model of WMR of type (2,1) is given by, (see [3]):

z —sin(6+08) O

n

] = cos(@+p8) 0 ( ! )

. T2

6 0 1

B = m (3.151)

The notation (z,y.6,8) = (z1,z2,%3,2z4) and (,72,1m3) = (uz, u2,uy), is used for simplicity, so

that (3.151) becomes:

z = gi{z)uy + ga(z)us + g3(z)uz, z € R (3-152)
Fé] d
g1(z) = Fae g2(z) = 3za
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FIGURE 3.48. Fire truck model : Plots of the coatrolled state trajectories t +—

(z1(t), ..., z6(t)) versus time.

0.5

0.4

0.3

] 1

-0.1 1 1 1 1 2 Il —
-1.4 -1.2 -1 -0.8 -0.6 -0.4 ~-0.2 o 0.2 04 0.6
x1 (t)

FIGURE 3.49. Fire truck model - Plot of the controlled state trajectory z3(t) = z(t) versus
z4(t) = y(t)-
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FIGURE 3.51. Fire truck model : Plot of the guiding function V' (¢) = Vi(t) + Va(t) + Va(t)
versus time.
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. a
gi(z) = —sin(z3 + z4) . + cos(z3 + z4) 3z,
The LARC condition is satisfied since

span{glv g2, 93, 94}(3:) = R41 for all = € R4 (3.153)

7] . d
where, g4(z) = —cos(z3 + z4) E — sin(z3 + 24) E
The Lie brackets multiplication table for L{g;, g2, g3) is given by

[91193] = G4, [92193] = g4, [91192] =0
(93,941 =0, {g1,94] = —g3, [g2,94] = —g3 (3.154)

which shows that the Lie algebra L(g, g2, 93) is finite dimensional but not rilpotent. It also follows

directly from the multiplication table (3.154), that the following distributions are involutive :
def
A (z) = span{gz, g3, 94 }(z)
def
Az(.’l.') = Spaﬂ{gl,g3,g4]}($)

As(z) Y span{g:,9:}(z)

From the Frobenius Theorem, the corresponding codistributions have the following expressions as
linear spans of exact differentials :

Ad(z) = span{dr; i (z)}

Ay (z) = span{diz,(z)}

Aé‘ (.’L‘) = span{d)\g,l(:z:), d1\3'g (.’L‘)}
where the scalar functions A;x, can be chosen to be :
A1(z) = 24, A21(2) = 23, A3,1(z) = Z2, A32(z) =13

The guiding functions are hence given by :

Vi@ Y s v Y e, @Y

3 5 (z? +z2) (3.155

1
2
and are used in the application of the stabilizing strategy to model (3.151).

The simulation results are shown in Figures 3.52 - 3.54 from which it can be seen that the stabilization

control task is performed in finite time.
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FIGURE 3.52. WMR of type (2,1): Plots of the controlled state trajectories ¢
(z1(t), .--y z4(t)) versus time.
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FIGURE 3.53. WMR of type (2,1): Plot of the controlled state trajectory x:{t) versus za(t).
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FIGURE 3.54. WMR of type (2,1): Plots of the guiding functions Vi (t), Va(t), V3(t) and
their sum V' (¢) versus time.
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7.5.2. Control of WMR of type (1,2)

Alithough the controllability Lie algebra of this class of wheeled mobile robots contains Lie brackets
of depth one, it is not possible to find m distributions which satisfy assumption A5. Proceeding

similarly as before an approximate model is sought which satisfies AS.

In this example, the desired set point is chosen to be different from the origin as at the origin, the

kinematic model of this class of robots (see {3]) does not satisfy the LARC condition.

The kinrematic model of the WMR of type (1,2) is given by, see [3] :

z —2 L cos 6 sin By sin B — L sinf sin (8, + B2)
g | =| —2LsinfsinB sinfr+ L cos@sin(B1+8) |m
é sin (B2 — B1)
b =&
B2 =& (3.156)

Here (z,y) are the Cartesian coordinates of a point P of the wheeled robot platform, 6 is the
orientation of the platform with respect to the horizontal axis, 8;, ¢ = 1,2 are the orientation angles
of the independent steering wheels and L is the distance between P and the centre of the master

wheel.

Without the loss of generality, let the desired rest point be given by:
(L%&ﬁhﬁ?) = (0,0,0,TF/Q, 77/2)

The set point stabilization problem for a WMR. of type (1,2) can now be stated :

Find a feedback control which stabilizes the system described by (3.156) on the manifold M :
d =
M ((2,4,6,6:,82)T € R® : By, Bz # O[]} (3.157)
to the set point zo = (0,0,0,7/2,7/2) € M.

It should be noted that restricting the motion of the robot to manifold M is necessary for control-

lability purposes; at points (0,0, 0,0[r],0[r]) the system fails to satisfy the LARC condition.

For simplicity, we assume that L = 1, and define:

(z,9,0,61,82) = (z1,%2,23,24 + 7/2,25 +7/2)

(uz,u2,u1) = (m1,&,6)
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With this notation, (3.156) takes the following vector form :

z = gi(z)ur + g2(z)us + g3(z)us, TEM (3.158)

a 0
where, gi(z) = e g2(z) = EE

. . ]
ga(z) = {—2coszzcoszscoszs + sinzzsin(zy + xs)}aT
1

) . 3} .
—{2sinz3coszycoszs + coszasin(zy + IS}}BT + sin{zs — :1:4)5;-
2 3

To satisfy the LARC condition, we need the following Lie brackets:

. a
ga(z) def [93,92](z) = {—2cosz3sinzscoszs — sinzzcos(z4 + Ts5)} Er.
1
. . 7] 7]
— {2sinzzsinzscoszs — coszzcos(zs + T5)} e + cos(zs — z4) .
T2 I3
def . . s}
gs(z) = [g3.q1)(z) = {—2coszzcoszysinzs — sinzzcos(zq + z5)} e
1
. . 7]
— {2sinzzcosrysinzs — coszacos(z4 + Ts5)} F-ro cos(zs — 14) .
o I3
so that
span{gi(z), i=1,...,5} =R%> forall =€ M. (3.159)

The Lie brackets multiplication table for L(gy,g2,¢93) is computed
[93,92] = 94, [93.91] =95, [91,92] =0, {gi,9;1#0, 1=1,23, j=4,5 (3.160)

and shows that the Lie algebra L(g., g2, ¢3) is neither nilpotent nor finite dimensional. It is also clear
from the table (3.160) that for system (3.158), it is not possible to find three involutive distributions

satisfying AS.

Consider the following approximation to model (3.158):

T = g14; + J2U2 + J3Us3 (3.161)
- 0 s} b7}
ga(z) = "2% —(z4 + 175)3?2 + (z5 — Iq)a—rs
- _ 0 . _ 9
go(z) = o gi(z) = B
with
N R IR S B}
ga(z) = [G1,83)(z) = 32, + pr gs(z) = [g2,Gs)(z) = 52, Bzs
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yields
span{gi(z), i=1,..,5} =R°, forall z€ R°® (3.162)
and a new Lie brackets multiplication table for the Lie algebra L(§, g2, 33) :
[01.93] = G4, (G293l = 35, (31,821 =0, [3:,351=0, j=4,5 i=123. (3.163)

It follows that the distributions :
def T,
Ar(z) T span{§a, §a. §a, §s }(z)

d - - - - def - -
As(z) ¥ span{dy, 33, 51,35 }(z),  As(z) Y span{gi,d}

are all involutive and the corresponding codistributions thus have the following expressions:

Ai(z) = span{dii1(z)}, Az (z) = span{dis,i(z)}
Aé‘(:r:) = span{dis (z),dA\32(z),d)33(z)}, in which

Ai(z) =25, Xojp(z)==z4, A31(x) =z3, A32(z) =22, M3(z)=12

can be selected. The resulting guiding functions are hence defined by:

1 - d 1 o d 1 9 9
Vi(z) ¥ 533, V() ef 575 Val@) ef 5@ +33 +23) (3.164)

and incorporated into the stabilizing strategy which is applied to the original system (3.156). Sim-
ulation results are shown in Figures 3.55 - 3.57 and again confirm the robustness property of the

strategy and its fast convergence properties.

7.5.3. Control of WMR of type (1,1)

The controllability Lie algebra. of this type of mobile robots contains Lie brackets of depth one as well
as depth two. It is hence not possible to employ the extended strategy directly. The approximation

technique is thus applied in inconjunction with sinusoidal steering.

The kinematic state space model of WMR of type (1,1) is given by, see {3]

z —~L sin 8 sin 8
Y = L cos 6 sin 8 m
é cos B
B = & (3.165)
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FIGURE 3.55. WMR of type (1,2): Plots of the controlled state trajectories ¢ —
(z1(2), -.-, T5(t)) versus time.
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FIGURE 3.56. WMR of type (1,2): Plots of the controlled state variables z;(t) versus z2(t)
and z2(t) versus z3(t).
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FiGure 3.57. WMR of type (1,2): Plots of the guiding functions Vi(t), Va(t), Va(t) and
their sum V' (¢) versus time.
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where (z,y) are the Cartesian coordinates of a point P of the wheeled mobile robots platform, € is
the orientation of the platform with respect to the horizontal axis, 3 is the orientation angle of the
independent steering wheel, and L is the distance between P and the centre of wheel. For simplicity,

we take L = 1 and denote :
(z,v,6.8) = (21,22, 23,24), (ur,u2) = (m,&)
so that (3.165) is written as :

z = gi1(z) u1 + g2(z) u2, z € R (3.166)

. . . a
gi(z) = —sinzzsinzy —— +cCosz3 sinzy — +C0S Ty—, g2(z) = =—
813 614

81:1 612

Calculation of the Lie brackets of g; and g»:

g(z)déf[g g2)(z) = sin z3 cos T4 — — COS T3 COS T i+sin:z: —_—
3 1,92 3 4 3 4 Bzs  Bra

BIL
(z) dif[ [ JI(z) =cos z i+sz'na: .
g4 = 91,91, 92|\T) = 3 oz, 3 Oz2

shows that the LARC condition is satisfied:
span{gi1(x), g2(x), g3(z), 94(z)} = R*, forall z € R?
and the Lie brackets multiplication table for L{g;, g2)
[91,92] = g3, [91,93] =94, [92,94] =0, [g2,93] =91, [g1.94] #0, (3.167)

From table (3.167) it follows that finding two involutive distributions for system (3.166) is not
possible. However, a controllable approximation to (3.166), such as, for example,
z = Gi(z) v1 + Ga(z) vs (3.168)
where,  g1(z) = §3(z), 92(z) = Gi(z), v1 =u2, vz =uy,
$AE) = —%3 49z, ‘8z, ' Oz3’ niz) = Oz,

can be constructed and satisfies the LARC condition:
span{gi(z), §2(z), §3(x), da(z)} = R*
where the new vector fields g» and g, are given by

- d 0 - _ 5]
g2(z) = =z3 a—m_ﬂ’ 94(1’)—a$1
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The Lie brackets multiplication table for L{§), §3) shows that :
(@3,91] = G2, {33,892l = G4y [G1,G2] =0, [§:,54] =0, i=1,2,3 (3.169)

the Lie algebra L(§i,Js) is rilpotent. Since the vector field §4 is a bracket of depth two: g4 =
(32, [g3, §1]], direct application of the extended guiding functions strategy is still not possible. The

extended system to (3.168) is :
z = gi(z) v1 + G2(z) v2 + §3(z) v3 (3.170)

in which the control v, (or equivalently motion along the Lie bracket direction §» = [§3,41]) car be
realized approximately and indirectly, by employing sinusoidal inputs of the type (3.104).
Clearly, the guiding functions approach can now be applied without change, to the extension (3.170),
as the multiplication table (3.169) indicates that the distributions

Ay (z) = span{g2, g3, §a }Hz)

Az(z) = span{g1, 92,94 }(z), Asz(z) = span{gi, §2}(z) (3.171)
are involutive. The corresponding codistributions are:
A (z) of span{dA; 1(z)}
$(z) Y span{dden@}. A=) E span{diai(a),dha()}

with

d d. d e
Ari(z) =f T4 A21(z) ! Ty Az.(T) =4 3 Az2(z) = (z1 + z223)
The guiding functions employed are hence defined by :
cooydef 1 o def 1 o def 1 2, .2
Vi(z) = 5%4 Va(z) = 5% Vi(z) = 5((1171 + 2223)" + 73)

These guiding functions are next used in the extended strategy as applied to the original model.

The system motion along the Lie bracket [g;, g2] is realized indirectly by using
2T 2T
= 81 —t = —_t 172
up = sin(5t),  uz = cos( Tt (3.172)

with T = 1. Simulation results are shown in Figures 3.58 - 3.60 and clearly demonstrate the

effectiveness of the approach.
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3.7 A FURTHER EXTENSION OF THE GUIDING FUNCTIONS STRATEGY
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FIGURE 3.58. WMR of type (1,1): Plots of the controlled state trajectories t ~»
(z1(t), ..., z4(t)) versus time.
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FIGURe 3.59. WMR of type (1,1): Plots of the controlled state variables z;(t) versus z2(t).
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CHAPTER 4

The trajectory interception approach

This chapter provides a simple and systematic method for the construction of time varying stabilizing
feedback control for drift free systems in the spirit of the idea first presented in [61]. The method
is universal in the sense that it is independent of the vector fields determining the motion of the
system, or of the choice of a Lyapunov function. The resulting feedback law is a composition of a
standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic
continuation of a specific solution to an open loop, finite horizon control problem stated in terms of
a formal equation on a Lie group - an equation which (via an evaluation homomorphism) describes
the evolution of the flows of the original as well as the extended system. The open loop problem is

solved as a trajectory interception problem in logarithmic coordinates of flows.

The trajectory interception approach is first explained in application to a sub-class of drift free
systems with solvable or nilpotent controllability Lie algebras. The approach is further extended,
see [73] and also [66, 68, 70, 84], to other drift free systems whose controllability Lie algebras need
not be nilpotent nor solvable. This is done by introducing approximate models whose controllability
Lie algebras possess the desired properties. The time varying feedback constructed for such an
approximation can then be successfully applied to the original system in that the model error does
not prejudice local stabilization provided that an adequately large stability robustness margin for

the extended controlled system is insured.

The trajectory interception approach does not require transformation of the system model to chained

or power forms.



4.1 INTRODUCTION

1. Introduction

The method proposed here elaborates on the ideas contained in [61] and [62], and is inspired by
the results and techniques contained in [52] - in which a piece-wise constant open loop control is
constructed to achieve point to point steering. A similar attempt of feedback through system ex-
tension can be found in [34]. The feedback law constructed there allows to track trajectories with
arbitrary precision but is assumed to be applied “on a finite time interval” only. The precision of
steering (and hence the error within which the final point is attained) is adjusted by decreasing (to
zero) a parameter ¢ in the time varying part of the control. The construction is based on the result
contained in [106] which states that on finite intervals of time, trajectories of extended systems can
be uniformly approximated by ordinary trajectories with oscillatory controls. The feedback of [34]

is not suitable for stabilization purposes.

The trajectory interception approach primarily applies to systems which are nilpotent or at least
solvable. It is well known that many systems can be made nilpotent by application of a smooth

feedback, see for example [35].

The method proposed is based on considering of what is known as the Lie bracket extension of the
original system, see [52]. An arbitrary Lyapunov function is first employed to furrish a closed loop
stabilizing control for the extended system. The stabilizing time-invariant feedback control for the
extended system is then combined with a periodic continuation of a specific solution of a formal,
open loop, finite horizon control problem. This open loop control problem is posed in terms of the
logarithmic coordinates for flows, see [117], and its purpose is to generate open loop controls such
that the trajectories of the controlled extended system and the original system intersect after a finite
time 7, independent of their common initial condition. While the time-invariant feedback for the
extended system dictates the speed of convergence of the system trajectory to the desired terminal
point, the open loop solution serves the averaging purpose in that it ensures that the “average mo-

tion” of the original system is that of the controlled extended system.

The construction proposed demonstrates that synthesis of time varying feedback stabilizers for drift
free systems can be viewed as a procedure of combining static feedback laws for a Lie bracket ex-

tension of the system with a solution of an open loop control problem on the associated Lie group.
The contribution of this chapter can be summarized as follows:

e A systematic method for the synthesis of stabilizing, time-varying feedback for a large class
of drift-free systems is presented. The feedback provides for exponential rate of convergence

of the system trajectories to a desired set point.
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4.2 NOTATION AND HYPOTHESES

e The method shows how the averaging effect can be achieved by a (periodically repeated)

open loop solution to a control problem in logarithmic coordinates.

e It is shown that the application of the trajectory interception approach is not limited to
systems whose controllability Lie algebra is nilpotent. The approach can successfully be ap-
plied to systems with non-nilpotent controllability Lie algebras by introducing approximate
models which generate nilpotent controllability Lie algebras. The error in the solution of
the open-loop problem, resulting from such an approximation, can be compensated (with-
out prejudicing stabilization) by adjusting the stability robustness margin of the feedback

control for the extended system.

e It is shown that introducing approximate models often permits significant simplification of
the differential equations describing the evolution of the logarithmic coordinates in the open-

loop problem formulation (which are usually difficult to solve analytically).

o The approach is first applied to stabilize drift free systems which are characterized by nilpo-
tent (solvable) controllability Lie algebras such as: a general drift free system with 5 states

and 3 controls, a unicycle model in chained form, and Brockett’s system.

The approach is also applied to stabilize drift free systems whose controllability Lie algebras
fail to satisfy the solvability assumption. Example systems such as: an underwater vehicle
[66], a unicycle, a rigid spacecraft in actuator failure mode [70], a class of wheeled mobile

robots [70], and a hopping robot in flight phase [84], are considered.

Since computation of the solutions to the open loop trajectory interception problem may
be elaborate if the extended system contains high order Lie brackets, the possibility of in-
troducing decomposition into control synthesis is explored. This idea involves decomposing
a complex system model into sub-systems of which one can be controlled by the trajectory
interception approach and the other is controlled by sinusoidally varying inputs. The feasi-
bility of this approach is demonstrated using: a model of a wheeled mobile robot [70], a fire

truck, an underwater vehicle in actuator failure mode, and a mobile robot with trailer.

2. Notation and hypotheses

The symbol C(I) denotes the space of continuous functions on a closed sub-interval I C [0,cc),

and PC(I) denotes the class of piece-wise continuous functions on a closed interval I, (with a finite



4.3 SOLUTION OF THE STABILIZATION PROBLEM

number of discontinuities in I). The symbol B(z;¢) denotes a ball of radius ¢, centred at z.

For a set of (real) analytic vector fields gy, .-, gm, the symbol L(g:, .., gm) denotes the Lie algebra of
vector fields generated by gy, ..., gm- H L{g1, ---, gm ) is nilpotent of order k&, we write Li(g1,---; m)-

Consider the following system on IR" :
m
£(t) = gilz(t)ui(t), z€R" (4.1)
i=1
where
HQ. gi, ..., gm are complete, (real) analytic, and linearly independent vector fields on R", and

Uy, ...un are locally bounded and Lebesgue integrable functions on IR.

The objective is to construct controls u;(z,t) : R® x R* -+ R, i = 1,...,m, such that system (4.1)

is Lyapunov asymptotically stable (the continuity properties of u are to be specified later).

For our construction to be valid, we need to impose the following basic controllability hypotheses :

HI1. System (4.1) satisfies the LARC (Lie algebra rank condition) for accessibility, namely that

L(g1,-..,gm)(z) spans IR™ at each point z € IR™.
H2. The controllability Lie algebra L(gy, ..., gm) is nilpotent of order &, so that L{gi,...,gm) =
Lik(g1, s gm)-

Since drift free systems are “symmetric” in the sense that every trajectory run backwards in time
is also a system trajectory, it is well known that the accessibility hypothesis H1 implies complete
controllability of (4.1) in IR™. Hypothesis H2 is quite restrictive but will be needed only in section
3. In section 5 it will be shown that H2 can be removed at the cost of increasing the frequency of

oscillation in the time varying part of the constructed feedback control.

3. Solution of the stabilization problem for systems with nilpotent controllabil-

ity Lie algebras
The solution of the stabilization problem, as first suggested in [61], involves two steps:

1). The construction of a time invariant feedback law for stabilization of a Lie bracket extension

of the original system based on the choice of an arbitrary Lyapunov function.

2). The solution of a formal open loop control problem in logarithmic coordinates which effec-

tively provides for ‘pointwise equivalence’ of the flows of the original and extended systems.
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

A periodic continuation of this solution is composed with the feedback for the extended sys-
tem to yield the final time-varying feedback control. The oscillatory behaviour of the closed

loop system results in an “average” decrease of the Lyapunov function selected in step 1).

3.1. Stabilization of the Lie bracket extension of the original system

To solve the stabilization problem for the “extended system”, we first select a scalar Lyapunov
d
function V' : R™ — IR*. Without the loss of generality, let V be quadratic i.e. V(z) tef ;1 Qr,

z € IR™, for some positive definite and symmetric matrix Q.

As in [61], a Lie bracket extension of (4.1) is considered next, and is given by
£(t) =Y _ gi(z(t))wi(t) forallz €Q (4.2)
i=1

where {1 C IR" is a sufficiently large, compact neighbourhood of the origin, and the vector fields g;,
it=m+1,...,7, are Lie brackets of gi, ..., gm which are necessary to complete the span of IR™ for all
z € Q. Generally, 7 > n, since for a given {2 there may not exist precisely n — m brackets such that

span{gi,---,gn}(z) = R™ for all z € Q (however, the compactness of  guarantees that r is finite).

Let G(z) def [g1,---, g-)(z) denote the state dependent matrix whose columns are the gi,...¢, of
(4.2). Since (4.2) is instantaneously locally controllable in any direction in IR®?, a variety of static
stabilizing feedback controls for (4.2) can be constructed easily. Consider, for example, the following

controls:

€1): vz ¥ c)tz, vz by, vl@)T (4.3)

in which G(z)! is the pseudo-inverse of G(z), or else:

(€2): wzx) ¥ -L,V(z), ie{l,..r} (4.4)

The result stated below can be found in [62] but is cited here for the reason of completeness.

PROPOSITION 4.1. The control laws (C1) and (C2) are erponentially stabilizing for system (4.2),
{globally exponentially stabilizing if 2 = IR™ ).

Proof. First, note that both of the above controls satisfy v(0) = 0, and the control (C2) can be
written as v(z) = —G(z)TQz. By construction, rank{G(z)} = n, for all z € Q. Thus G(z)G(z)T
is invertible for z € Q, as in fact G(2)G(z)T = [rir] li<n,j<n(2) is the Grammian matrix for the n

linearly independent rows r;,i = 1, ...,n, of G(z). Therefore, Gt(z) is the right inverse of G(z) since
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

then G(z)! = G(z)T(G(z)G(z)T)™! . Since the Grammian matrix for a linearly independent set of
vectors is positive definite, thus the time derivative of V along the trajectories of (4.2) with controls

(C1) and (C2), respectively, can be bounded as follows:

%V(z(t)) = —%[G(x(t))G*(z(t))m(t)]TQx(t)—%x(t)TQG(z(t))G*(x(t))z(t)

= —z()TQz(t)

= —2V(z(t)) (4.5)
—%[G(z(t))G(r(t))TQx(t)]Q:c(t) - %x(t)TQG(z(t))G(z(t))TQz(t)
—yz(t)Tz(t)

2y
A (@ ) o)

for all ¢ such that z(¢) € 2, where v > 0 is a lower bound for the eigenvalues of the positive definite

d
ZV(=()

IN

<

and symmetric matrices QG(z)G(z)TQ on the set 2, and Apmqaz > 0 is the largest eigenvalue of Q.
By a standard Lyapunov argument, both controls (C1) and {C2) are exponentially stabilizing for
the extended system (and globally exponentially stabilizing if Q2 = R"). |

While the “controlled” vector fields g;v; are still analytic, they may not be complete and the new
Lie algebra of vector fields L(g;v1, ..., grv-) may not be nilpotent. As this complicates our principal
construction it is convenient to assume that the feedback controls are “updated” discretely in time
which also simplifies the calculation of the time varying part of the stabilizing control for the original

system. Instead of (4.2) we thus consider an extended system with “discretised” controls:

r

£(t) = ) g:(=(£))5i(T, z(t)) (4.7)

i=1
where the functions 7;,7 = 1, ..., 7, are obtained from v;,7 = 1, ...,r, by the formula

G(T,z(t) & vi(z(nT)) tenl,(n+1)T), n=0,1,2,... i=1,..,r (4.8)

and thus are constant over each interval [n7, (n+ 1)T). (In practical terms, the control (4.8) can be

viewed as a cascade of the smooth controller v(z) and a zero order extrapolator.)

Not to complicate further aralysis, it will henceforth be assumed that Q = IR™. In cases when this

assumption cannot be made, all the subsequent results hold only locally.

It can be shown that such “discretization” of the control v does not prejudice exponential stability

of the controlled extended system.
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

PROPOSITION 4.2. {62] Suppose Q@ = IR™, the hypotheses HO-H2 are valid, and the extended system
(4-2) employs any of the controls (C1) or (C2). Under these conditions, for any compact region C
containing the origin there erists a mazimal discretization step Trmaz > O such that the corresponding
discretized controlled extended system (4.7) is ezponentially stable with region of attraction C, for
any T < Thaz-

Proof. First we note that discontinuities in the control of equation (4.7) do not prejudice existence
or uniqueness of its solutions (on any interval of time) since, by construction, such discontinuities
occur at isolated moments of time, and solutions of (4.7) with constant controls exist and are unique

(on any interval of time), by virtue of hypotheses HO-H2.

Without the loss of generality, let C be a level set of the Lyapunov function V = %mTQz, ie.
C = {z € R": V(z) < a}, for some positive a. Let t — z exp{t Z:=1 giu;} denote the integral
curve of (4.7), passing through z at time £ = 0, and due to constant controls u;, = 1,...,r. From
standard results in differential equations concerning the sensitivity of solutions to perturbations
in initial conditions and parameters, it follows, by virtue of hypotheses HQ - H2, that the mapping
RY*xR*xR" 3 (t,z,ut, ..., ur) — T ezp{t > ;_, giv:} € IR™ is well defined and at least continuous.
I R" 5 z » (ui(z),...,ur(z)) € R" is any continuous mapping, then the mapping R* x R" 3
(t,z) — z exp{t Y ._, giui(z)} € IR™ is continuous as a composition of continuous mappings. It
follows that the mapping R* x R"™ 3 (t,z) — z ezxp{t Y ._, 9:%i(To,z)} € IR™ is continuous for
an arbitrary discretization step Tp (note that here the 7;(Tq, z) signify controls which depend only
on z but not on £). By continuity, it maps compact sets onto compact sets. Thus the image of
the set [0, 7] x € under this map is some compact set R. In fact R is the set of states reachable
(in times not exceeding Ty) by trajectories of (4.7) which emanate from C. This implies that any
trajectory of the extended system with discretized control, emanating from C, remains in R for time
To. Let B(0; p), p > 0, be a closed ball containing all the trajectories of the extended system with a
smooth feedback control v{z) which emanate from C, and a superset of R (such a ball exists as the
extended system with smooth controls is stable). Let M, denote a uniform bound for g;, i =1,...,T,
on B(0; p), and let L, be a common Lipschitz constant for v;, i = 1, ..., 7, also on B(0;p). Let the
symbols z(-; tg, o) and Z(-; o, Zo) (or simply z(-) and Z(-)) denote the trajectories passing through
zg € C at time £ of the extended systems (4.2) and (4.7) with continuous and discretized controls,
respectively. For an arbitrary (¢p,z¢) € R* x C,
to+1

.
[1Z(to + T5t0, 7o) = Toll < D llgi{Z)vi(zo)l| dt < T rMyLy|izol] (4.9)

i=1 ¥ to
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

for all 7 € [0, Ty}, as v(0) = 0. Define ¢ ‘< rM,L, and let T, < min{To,x}. Then for all
(to,zo) € R* x C, and all T € [0,T7],

”:I_:(to + T3 to,.’l.'o) —.’L’o)” < TC”:EQ” < T1c“f(to + 73 to.,zo) —Io)” + Tclif(to +T;to,$o)”

1
< 5”5-'(% + 75 to, Zo) — Zo)|| + 7cl||Z(to + T; to, To)l| (4.10)

so that l1Z(to + 5 t0,To) — To)|| < 7 2¢||Z(to + T;t0,26)]], T € [0,T1] (4.11)

From the proof of Proposition 4.1 it follows that the extended system with smooth feedback controls
v;, as given by (C1) or (C2), is exponentially stable, and there exists a constant 8 > O such that

d

ZV (@) =VV@)T ) giz)vi(z) < -V (2) (4.12)

i=1
for all z € @ = IR®, where VV denotes the gradient of V. This yields the following bound for
the time derivative of V', this time along the trajectory Z(-;fo,zo¢) of the extended system with
discretized control using a discretization step 7o < T7:

%V(:E) =YV (E)T Y g:(Z)vilzo)

i=1

<SVVET Y g:@)vi(@) + [IVV(E) TN D 9:(E)viza) — Y gu(E)va(Z)|

r
i=1 =1 =1

< —BV(Z) + M[[VV(@)TI| D _ llvi(zo) — vi(@)l|

i=1

< —BV(Z) +rM,L,||QIZI[IZ — Zol|

< ~ov(@) + T2clQlIE? < -V (@) + Ti Ay (419)

for all 7 € [0, T3], by virtue of (4.12) and (4.11). Clearly, it is possible to select a 75 < T} such that
d__, _ 1 -
EV(z(to + T;t0,70)) < —iﬁv(l‘(to + 73 to0, Za)) (4.14)

for all 7 € [0,T3], along a trajectory of the controlled extended system using discretization step T5.
It follows that def Z(t1; to, Zo) € C, with ¢, af to + T>. As equations (4.9) - (4.14) were obtained
for an arbitrary initial condition (tg,z¢), inequality (4.14) is thus again valid for Z(¢1 + 75 t1,21),
T € [0,T2], and z» af Z(tz;t1, 1) € C, with ¢ def t; + T». By a simple inductive argument,
Tn = Z(tg + nTo;to,To) € C, for all n = 1,2,.., and, consequently, (4.14) is valid for all times
T > ty. As xrg was arbitrary, this implies exponential stability of the extended controlled system

using discretization step Tmaz = To.
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

Finally, for any discretization step T < Tinaz, and because Thar < Ty, the trajectories z(¢; to, o),
and Z(¢;¢0,z0), t > to, (where the latter corresponds to a discretisation step T'), still remain in
B(0; p), provided that (tg,zo) € IRt x C. Hence the previous argument applies also for T, as
equations (4.9) - (4.14) can be re-written without change. The extended system using discretized

control is thus exponentially stable for any T < Tyraz- |

The following definition, cited from [62], specifies a somewhat different type of exponential stability
which will be found useful in the analysis of the stabilizing properties of the feedback law constructed

later.

DEFINITION 1. A time varying system given by
z(t) = f(z(t),t), z(te) =z0 (to,Zo) € R x R" (4.15)

whose solutions z(-; tg, zg) through any (to,z¢) exist and are unique for all times t > to, and in which
f(0,t) =0, for allt, is said to be p-ezponentially stable witk p € (0,1] and a region of attraction Q
iff there ezist positive constants C and -y such that for all t > to and all (tg,z¢) € RT xQ -

llz(t; to, Zo)|| < Cllzo|[#{Fe) e=7(E=t0) (4.16)

where p{xq) = p for zo € B(0;1), and u(xe) =1 for o ¢ B(0;1).
Clearly, if p = 1 then (4.15) is exponentially stable in the usual sense and, in any case, (4.16) differs
from the usual definition of exponential stability only for zg € B(0;1).

The following elementary lemma, taken from [62], will also be found useful, and basically re-states the
well known fact that asymptotic stability of a system is guaranteed by the existence of a Lyapunov
function which decreases “on average” (rather than monotonically) along the trajectories of this

system.

LEMMA 4.1. Consider the system of Definition 1. Suppose there exists a Lipschitz continuous func-

tion V : R™ —+ IR* which, for some p > 0, satisfies:
nllzll? < V(z) < rllzllP  foralze R" (4.17)

with some positive constants vy, and v2. Let p € (0,1], and let C be a level set of V, so that
C={z € R":V(z) < a}, for some positive «. Suppose that there exist constants M >1, T > 0,
and B € (0,1), and a function p : R* x C = {1, p}, such that for all (to,z0) € R xC

(@) V(z(to +T;to,z0)) < BV(z0) (4.18)

(b) V(z(to + T;to,Za)) < MV (zo)*=} forall T € [0,T] (4.19)
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

Under these conditions, system ({.15) is p-ezponentially stable with region of attraction C.
Proof. Take any (f9,20) € R* x C and define

or % 2(ty + Thito, z0), te L to+Tk k=0,1,2,... (4.20)
By uniqueness of trajectories of (4.13), if zx € C then
V(zes1) = V(z(to + T(k + 1);to,z0)) = V(z(tr + Tite,zi)) < BV (k) (4.21)
which implies that z¢y; € C, as 8 € (0,1). Since z; was arbitrary, it follows that

V(zks1) = V(z(to + T(k + 1) to, 20)) = V(z(te + T’ te, Tk )

< BV(zi) € ... <V (x0), k£=0,1,2,.. (4.22)
for any (f9,z9) € R* x C, as z1, ..., Tr4+1 are all members of C. Further, by condition (b),

V(z(to + Tk + 7;t0,T0)) = V(z(tx + 75k, Tkc))

< MV (z)* < MB**V (z4)*, for all 7 € [0,7) (4.23)

and for any k£ = 0,1, 2, ..., with either: g = 1, or u = p, (depending on k,to, and zg). Choosing
v > 0 such that 8 = e~"T% and defining C & (Mys/m)7e7 yields

Viz(to + Tk +7it0,20)) < Me "T85 V(zo)* < Me™ 7Tk V' (zq)#

< CP 7_16-'717'1‘(k+1) V(zo)*

Y2
< ¢P ll—e_"p(T"*'f)V(zo)“ (4.24)
T2
so using (4.17) gives
[lz(to + Tk + T;to, To)|| < Ce™ Y TE+7)||zq||* (4.25)

which holds for any k£ = 0,1,2,.., any 7 € [0,7], and any (to,z0) € IRt x C, with some value of
i € {p,1} (dependent on k, ¢y and zo). However, if ||zg|| > 1 then ||zo|} > }|zo||* for any u < 1,
and if ||zo|| < 1 then ||zo|| < ||zo||* for any p < 1, so inequality (4.25) can be further re-written as

Cllzo|| e~ 7(Tk+7) for z B(0;1
z(to + Tk + 7 t0, 70)|| < lizoll o ¢ B(O:1) (4.26)
CllzollP e~ T5+7)  for z4 € B(0; 1)
forall £ =0,1,2,.., all 7 € [0,T], and all (to, 7o) € R* x C. Putting t & Tk + 7, yields
llz(ta + t; to, o)|| < Cllzol[#(=0? e~ (4.27)
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for all t > t5 and all (o, z0) € RT xC, with u(zp) = pif zg € B(0;1) and p(zo) =1 if zo ¢ B(0;1).
System (4.15) is hence p-exponentially stable with region of attraction C. [ |

3.2. An open loop control problem on a Lie group

The objective here is to use the stabilizing feedback control for the extended system as a base
upon which to construct a time varying stabilizing feedback but, this time, for the original system.
Ccnsider the discretized system (4.7) on the interval [nT, (n + 1)T'). Since the controls 7;(T, z(t)),
i = 1,...,r are constant over each interval [nT,(n + 1)T), n = 0,1,2, ..., these can be regarded as

parameters a; € IR, i = 1,...,r, ylelding a parametrized extended system

T = zr:yi(:c(t))ai, a; (T, z(t)), t € [nT,(n+1)T) (4.28)

i=1
The task of the open loop control problem is to generate the time varying part of the feedback con-
trols u;(z,t), i = 1,....m, so that the trajectories of the original system (4.1) with controls u;, and
the parameterized controlled extended system {4.28) intersect periodically with a freequency 1/T,
for some fixed T < Tyaz, where Thq- is the constant whose existence was established in Proposition

4.2. An open loop “trajectory interception” problem (TIP) can now be posed as follows:

TIP: For a fixed value of the time horizon T < Tpuaz, find control functions w;(e,t),i=1,...,m,
. . . . . d
in the class of functions which are Holder continuous in a e/ [a1,...,a,] at zero, so that there

exist constants K > 0 and v € (0, 1) such that for any fixed ¢
lwi(a,t)| < Klla]|” i=1,...,m (4.29)

for all a, and piece-wise continuous, and locally bounded in ¢, such that, for any initial
condition £(0) = z at time ¢t; = 0, the trajectory z%(¢; z,0) of the extended, parametrized
system (4.28) intersects the trajectory =" (t;z,0) of the original system with controls w;,
i=1,...,m
m
=) gwi(a,t) (4.30)
i=1

precisely at time t;y = T, so that z*(T;z,0) = z*(T; z,0).

REMARK 4.1. It is important that the solution of the TIP is independent of the “parameter” n as

well as the actual values of the trajectory interception points z(¢s) and z(tf).

Employing the formalism described in [62] and [52] is essential in the solution of the TIP. This

formalism, as it applies to the TIP, is briefly summarized below.
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

Given a set of controls w; : [0,T] - R, 7 = 1,...,m, one can find the corresponding trajectory
t — z(t) of (4.30), through an initial condition z(Q) by first considering a formal initial value
problem primarily stated on the algebra A(X, .., Xm) of formal power series in a set of objects X,
t = 1,...,m, called indeterminates (see [52]):

S(t) = S() (D wi(t)X)

=1

S0)=1€ A(X1, ... Xm) (4.31)

Since the systems considered are assumed to be nilpotent, it is actually sufficient to consider (4.31)
as an evolution equation on a nilpotent version of A(X\,..., Xm), namely Ax(Xy,..., Xm) - the
free nilpotent associative algebra of order & whose elements are finite series in the indeterminates
Xi, ...y Xm (in which all the monomials in more than k& indeterminates are assumed to be zero). It is
then possible to define the free nilpotent Lie algebra Lg (X}, ..., X;n) of order k, which is a subalgebra
of Ax(Xy, -, X;n) consisting of those elements of A;(X}, ..., X;n) which are actually Lie polynomials,

and also the set
Gr( X1y oo Xm) L {P € Ak(X1, s Xm) : logP € Li(X1, ey Xm)} (4.32)

where the mapping log is the inverse of the exponential mapping from L (X}, ..., X;n) to Gi (X1, .-, Xn)
defined in terms of the usual power series. With this definition, G (X}, ..., X;n) is actually the con-
nected simply connected Lie group with Lie algebra Li(X1, ..., Xm). It is well known (see [52]) that
solutions to (4.31) exist and are unique for all times, and that the “trajectories” ¢t — S(¢) remain in
Gr(Xy, ., Xin) for all times, as 1 € Gg(X1, ..., Xm). Now it is important to note that the conirol-
lability Lie algebra, Li(g1, ..., gm), is nilpotent of order k. It is thus possible to define an evaluation
homomorphism (a Lie algebra homomorphism) as a mapping v : Li(X1, ...y Xm) = Le(g91; -, 9m)
which maps each element of Lg(X),..., X) into an element of Li(g1,.--, gm) by substituting any
X for the corresponding g;, 7 = 1,...,m. For example, v([Xi,, [Xi,, Xis]]) = [gi1, (92> 9i5]]- This
mapping extends to a Lie group homomorphism (also denoted by v), from Gr(Xi,..., Xm) to G -
the connected simply connected Lie group with Lie algebra Li(g1, ---, gm)- It is well known, see [52],
that the function ¢ + z(t), defined by z(t) &Y £(0)»(S(t)) (where ¥(S(t)) € G for all t > 0) is in fact
the unique trajectory of (4.30) through z(0). Furthermore, it is clear that a similar conclusion holds
for the discretized extended system (4.28) if the formal initial value problem (4.31) is substituted
by an “extended” initial value problem

St) =S@t) O a:X:), S@O) =1 (4.33)

=1
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

whose solution also evolves in G¢(X}, ..., Xm) and in which the elements X;, fori € {m +1,...,r}
are all members of Li(X3,..., X;m) and correspond to the vector fields g;, 7 = m + 1,...,r, in the

extended system.

The above leads to a conclusion that the “trajectory interception” problem TIP translates into a
formal interception problem (FIP) on the Lie group Gg(Xji, ..., Xm), stated below.
FIP: Consider the two formal initial value problems on G¢(X1, ..., Xm) :
Sl:  §%(t) =S5%(t) (O aXs), S°(0)=1

=1
S2:  S¥(t) =S¥(t) O_wie,t)X:), S¥(0)=1 (4.34)
=1
where the constants a;, 1 = 1, ...,7, of S1 are known from (4.28), and in which the indeter-
minates Xm41, ..., Xr are understood to be Lie brackets of the first X, ..., X,,,. For a fixed
time horizon T' < T.z, find control functions w; , ¢ = 1, ..., m, which are Holder continuous

in a (at zero) and piece-wise continuous in ¢, such that S*(T) = S*(T).

REMARK 4.2. For any value of the time horizon 7', a solution to FIP can always be found but
is generally non-unique. The existence of solutions follows directly from the general theory of

accessibility (see a version of Chow’s theorem for systems on manifolds in [105]).

A solution to FIP can be calculated in many ways. One such way, as presented in [117], is summa-

rized below.

It is a well known fact, see [117], that for sufficiently small ¢, the solution S(t) of (4.31) or (4.33)

can be represented as a product of exponentials, so that

S(t) = etrBretzBz et Be (4.35)

for all ¢ € B(0;¢), where ¢ > 0 is a small constant, where the elements B,..., B, constitute a
finite basis for Lg(X,,..., Xm), and (f1,...,¢p) is a real vector (dependent on t). Moreover, it can
be shown, see [117], that because the algebra Li(Xi,...,X.) is solvable (which is the fact since
Li(Xy,--., Xm) is nilpotent), it is possible to select an ordered basis of Ly(X}, ..., Xm), such that
representation (4.35) is global (holds for any t). Without the loss of generality, it can be assumed
that the indeterminants X7, ..., X, form a such basis for L;(X3,..., X;n), and that v(g;) = X;, for

i = 1,...,7. It follows that each S(t) has the unique representation:

S(t) = en(t) X1 or2(t) X2 oma(t) Xr (4.36)

135



4.3 SOLUTION OF THE STABILIZATION PROBLEM

where the real functions ¢ — ~;(¢), ¢ = 1, ...,7, are known as “the logarithmic coordinates” of S(t).

For a given set of controls a;, t = 1, ..., 7, the evolution of the corresponding logarithmic coordinates
of S%(¢), t > 0, can be determined easily. Since (4.36) is required to satisfy the formal extended
equation (S1), then the left hand side of (S1) is (omitting explicit time dependence):

d b'e X,

Z(enXigrXa | o7 Xe

p )

- ’3’1X1€7‘X‘ e Xz Lo Xe o omXa ;Y,,Xze'mx: cooeteXr

+ooepenKignXe g X e ke (4.37)
It would then be desirable to collect the common factor e" X1 --.e¥ ¥~ on the left so as to be able
to equate coefficients of the basis elements X;, ¢ = 1,...,7 on both sides of (S1). This is however

complicated by the fact that the X; generally do not commute ([X;, X;] # 0 for ¢ # j). A variation
of the Campbell-Hausdorff formula turns out helpful to overcome this difficulty :

eXix; =" o adk, X, &% (4.38)
k=0
for any ¢, where the symbols ad on the right hand side are defined recursively by:
ed4B =B, ad""'B =[4,ad"B], fork=1,2,.. (4.39)
Since Li(X1,..., X,) is nilpotent, (4.38) can actually be re-written as a finite sum:

r
XX = o Xy e (4.40)
=1
where cfj are computed from (4.38). This formula allows to move the X past the e*: in (4.37)
and collect the common product of exponentials on the left. Equating coefficients of X, ..., X,

in the formal equation (S1) so transformed, yields a set of ordinary differential equations for the

logarithmic coordinates vy, ..., ¥, which have the form:

Yi(t) = Fi(mn,a)

¥-(t) = Fr(me) (4.41)
where the F;, i = 1, ...,7, are analytic functions of ~, s (@), - 7(t) and a %f (a1, ...,a). The
initial condition for (4.41) is clearly +;(0) = ... = ¥-(0) = 0, because §%(0) = 1. It is also clear

that a similar set of equations can be obtained for the formal system S2 with unknown controls w;,

i = 1,...,m, and differs from (4.41) only in that the controls a = (a,,...,a,) need to be substituted
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4.3 SOLUTION OF THE STABILIZATION PROBLEM

by we ¥ (wi(a,t), ., wm(a,1),0,0,.,0) :

W) = Fi(vwe)

H(t) = Fulvhwe), 7(0)=..=(0)=0 (4.42)

The solution of the FIP, as re-stated in the logarithmic coordinates, is then an ordinary trajectory
interception problem for systems (4.41) and (4.42) satisfying zero initial conditions, and can be

solved by different methods.

The method adopted here is the following. The solution to the FIP can often be obtained by impos-
ing that the w; are some linear combinations of a set of known time functions @we(T,t) k =1, ..., 1,
so that w;(¢t) = 25:.-‘1 br,i(a)we (T, t) for i = 1,...,m. The unknown coefficients b ;(a) can be found
in terms of the known parameters a; by solving the equations (4.41) and (4.42) symbolically and
comparing the solutions at time 7" and should be Holder continuous in a at zero. An example illus-
trating such procedure is presented at the end of this section.

REMARK 4.3. It is perhaps desirable to seek solutions of FIP in the subspace of C[0,7T], C[0, T] =4
{f € C: f(0) = F(T)}, consisting of functions with equal end-points. As will soon become clear,
such restriction of the class of admissible w;’s leads to feedback controls which are continuous in
t. The result contained in [103] seems helpful for this purpose as it establishes that “motion” in
Lie bracket directions can be realised with an arbitrary precision using controls which are linear

combinations of sinusoidal functions of adequately chosen frequencies, which are members of [0, 7.

The examples considered later demonstrate this possibility.

3.3. The time varying stabilizing feedback

For any given T < Traz, where T1,; is the maximal discretization step defined in Proposition 4.2,

let a solution to the TIP be denoted by wi(T,a,t),t € [0,T],k = 1,...,m, and be of the form:

]
Wy (Ty a, t) = Z bk,i(a) u‘}k(Tv t)a 1= 1L..,m (4'43)
k=1

Its substitution into (4.30) yields a system :

z = igi(l‘)wi(T’a,t—to)

i=1
m {

= > 6i(@) D bei(a(@)we(T,t), t € [to, to + T], z(to) = o (4.44)
i=1 k=1
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4.3 SOLUTION OF THE STABILIZATION PROBLEM
This suggests the following definition of a time-varying feedback law for the original system (4.1):

{
ui(t,2) 3" bes(a(®(T, )0 (T,1), i=1,..,m, t€]to,0) (4.45)
k=1

where wf denote periodic continuations of iy, given by
BE (Tt — to) & b (T,t —to —nT), te[to+nT to+m+1)T),
foralln=0,1,2,..., k=1,...,1 (4.46)
The following stabilization result follows readily.

THEOREM 4.1. Let T be such that the ertended system using discretized controls is ezponentially
stable with a desired region of attraction C. Under hypotheses HO-H2, a solution to the TIP problem
ezists and the original system ({.1) with feedback control defined by (4.45) is p-exponentially stable

with the same region of attraction C.

Proof. The existence of solutions to the TIP follows from Remark 4.2.

Without the loss of generality, let C be a level set of V' - the Lyapunov function for the extended
system. Let (tg,z0) € IRt xC be arbitrary and denote by z(-; to, za), and Z(-; ¢p, o), the trajectories
of the original system (4.1) using feedback control (4.45), and the extended system with discretized
control (4.7), through (#g,zo), respectively. Due to assumption HO, and because the functions a;,
i=1,...,7, are piece-wise constant along the trajectories of the extended system, the trajectories

and T exist and are unique for all times.
From the discussion of the previous section it follows that :
z(to + t;t0, Ta) = zov(S™(t)) and Z(to + t;to, Ta) = zov(S%(t)), t € [0,T] (4.47)
and since S%(T) = S¥(T'), then
z(to + T tg,z0) = Z(tg + T; to,z0) € C (4.48)

Since the extended system with discretized control is exponentially stable with Lyapunov function

V, there exists a constant v > 0 such that
V(z(to + T to, 0)) = V(Z(to + T to, Z0)) < €777V (zo) (4.49)

By construction, for any fixed initial point (¢p,z¢) € IRT x C the corresponding feedback con-

trols u;, are linear combinations of the time functions (T, -) with constant coefficients b ;(a) =
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43 SOLUTION OF THE STABILIZATION PROBLEM

bi i(5(T, zo)) for all t € [to,to + T]. Hence ui(t,z) = ui(t,zo) for t € [to,to + T]. Let t —
z exp(ty .-, giui(7,20)) denote the integral curve of the original system (4.1) through the point
(to,x), with control u;(-,zo). Consider the mapping : (¢,z) — z ezp(t Y i, giui(T,Zo)) on the do-
main [tg, c0) x IR™. By virtue of the definition of the control u;(-, o), and completeness of the vector
fields gy, --., gm, this mapping is at least continuous , as it is a composition of smooth mappings and

in fact can be equivalently expressed by
(t,z) =z v(S“(t) = =z vexp(n(t,z0)X1)---exp(7r(t, 20) Xr)]
= z exp(vi(t, To)v(X1))-.-exp(7-(t, To)v(X,))
= z exp(7(t,zo)g1)---exp(vr(t. zo)gr) (4.50)
where S* is the solution of a corresponding formal initial value problem on a group Ge(X,,..., Xr)

with v(X;) = g;, 1 = 1,...,r, and controls u;(T,z¢), ¢ = 1,...,7 (the corresponding logarithmic

coordinates «y; are smooth functions of the time ¢ and depend on zy via u;(T, zo)).

Hence, the image of the compact set [tg, o + T'] X C under this mapping is a subset of some compact

ball B(0; p) C IR™. It follows that
z(to + t; to, To) € B(0; p), for all ¢ € [to,to + T, (4.51)

and for any (to,zo) € IRT x C. Let M, and L, > 1 be: a common bound for g;,  =1,...,m, and a
common Lipschitz constant for all vi(T,z), k = 1,...,7, on B(0; p), respectively. Further, let K > 1
and pg,; > 0 be the Holder constants for the bz ;, i = 1,...,m, k= 1,...,l. Finally, let wg, k =1,...,{,
be bounded by M. on [0,T]. Then

) KL,||z||? r € B(0;1
br. (@] < KIBfffors < { Lol 1 (452)
KL,||zl| z ¢ B(0;1)
for i € {1,...,m}, k € {1,...,1}, and all = € B(0, p), where
p E min{piii€ {1,..m} k€ {1,..,0}} (4.53)
Hence the integral curve z(¢; g, zo), for ¢ € [to, o + T], can be bounded as follows :
llz(to + t;to, zo)l] < [|zoll
lo+t
£ 3 A Z Ibe.<(a(@))l6e (T, 7)ldr
i=1 =1
< lizoll + miM, K L, M.T]|zo|[#(=0) (4.54)
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in which u(zg) = p if o € B(0;1), and pu(ze) = 1 if zo § B(0;1). Since for all z € R",
22 minl|z]? € V() < 2Amazl|Z{]?, then there exists a constant M > 1 such that

V(z(to + t; to, 20)) < M V(zg)**) (4.55)

for all ¢ € [to,to + T, and all (£g,z¢) € R* x C. Equations (4.49) and (4.55), together with Lemma
4.1, prove that the original system (4.1) with controls (4.45) is p-exponentially stable with region of

attraction C. "

REMARK 4.4. An obvious question comes to mind and is concerned with determining the effect of
reversing the discretization of the feedback function v(z), a posteriori to the design, which involves
substituting the piece-wise constant functions (7;(z)) by their continuous counterparts v;(z) (in
which v(z) is the smooth feedback for the extended system). If, additionally, the solution to the
FIP is sought in the class of continuous functions with equal end-points, then the resulting feedback
law is continuous in ¢t and smooth in z. Since the extended controlled system has strong stabilizing
properties (the rate of exponential stability can be adjusted arbitrarily), it is natural to expect that
the robustness margin of the extended system can compensate for such difference in the values of
the functions v;. The latter is indeed confirmed by numerous simulation experiments, which show
that asymptotic stabilizing properties of the feedback (4.43) using continuous instead if discretized
controls, are preserved (with the proviso that the discretization step T is sufficiently small and the
magnitudes of the solutions to the FIP increase with T at a rate not exceeding that of T'~?, for
p € (0,1)). A quantitative assessment of the influence of such reversal to continuous feedback on

the rate of stabilization is technically involved and will not be presented here.

4. Examples

In this section, the application of the trajectory interception approach is demonstrated on some

examples of drift free systems characterized by nilpotent controllability Lie algebras.

4.1. Time varying stabilizing feedback control for a system with five state vari-

ables and three controls

The example considered below represents a drift free system of control deficiency order two whose
controllability Lie algebra is nilpotent. This example is general enough to illustrate the procedure

for deriving the equations describing the evolution of the logarithmic coordinates of flows.
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The equations of the system are given by

I —T4 0 ( 0
z2 —Ts 0 0
I3 - 1 u; + 0 U2 + 0 ugz
T4 0 1 0
Ts 0 0 J 1
def =
=  giui + gau2 + gaug {4.56)
a o
where, gi(z) = -—z4 i T5 . + pi
o a
g2(z) = e gs(x) = Bzs

To satisfy the LARC condition, we need to calculate the following Lie brackets:
9@ ¥ lggl@) = a%
5@ Y logsles) = o
which yields
span{gi(z), g2(z), 93(2), 9s(2), 9s(2)} = R®,  forall ze€ R (4.57)
The Lie brackets multiplication table for L(g1, g2, 93) is:

[91,92] = g4 [91,93] = gs [g2,93] =0

(94,95] =0 (9i,94] = [9i,95] =0, i=1,2,3 (4.58)

which shows that the controllability Lie algebra L(g:, g2, 93) is nilpotent. The extended system can
be defined as :

= qu{z)vy + g2(z)ve + g3(z)uz + ga(z)vg + g5(z)vs, = € R’ (4.59)
and the controls are taken to be
vie) Y —L,V(z), i=1,..5, with V()% %xT:c, ze RS (4.60)

which give the following extended system with discretized controls:

& = q1(z)0, (T, z) + g2(z)02(T, z) + g3(x)T3(T, ) + ga(x)04(T, z) + g5(x)05(T, z), = € R®

= g1(z)a; + g2(x)az + g3(z)az + g4(z)aq + gs(z)as, ¢ € R® (4.61)
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with a; = 4;(T, z), i = 1,...5. The formal equation for this system becomes:

5
() = 5(t) (Q_ Xia:) (4.62)
=1

S(0)=1I (4.63)

where each X; corresponds to g;, ¢ = 1, ..., 5, via an evaluation homomorphism v. The solution of

(4.62) is assumed in the form:

S
5(t) = [] ezp(r:(t)X:) (4.64)

=1
and the logarithmic coordinates, 7;, ¢ = 1,...,5, are computed as follows. Expression (4.64) is first

substituted into (4.62) which yields:

X101 + . + Xsas = X1 +42(e4) Xg + Fa(em A9 X em 44X X

o +Ag(enAdXigrAdXe | graddXa) x (4.65)
where
(eAX)y % eXye~X and (4dX)Y ¥ [X,Y]
Employing the Baker-Hausdorff formula:
(eAMNY = eXYe X =Y +[X,Y]+[X,[X.Y])/2! + ...
gives
(enddXnx, = enXix,emXi

= Xg + ("/1/1!)[X1,X2] -+ (7%/2!)[X1, [X]_, Xg]] + ...

= Xo+nXe+ (/2D 0+0=X2+1 Xy (4.66)
Similarly

(em Ad Xy gmAd X2 Xz = Xaz+11Xs
(e"n AdX, e‘nﬂd.Yz e']a.‘llLYs )X4 — X4

(e‘n AdX, e‘yzAdXze‘mAd‘Ya e‘NAqu )XS — X5 (4.67)
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Substituting (4.66) and (4.67) into equation (4.65) and comparing the coefficients of X;, 7 =1, ..,5,

yields the following equations for the evolution of the logarithmic coordinates ;, i =1, ..., 5:

Nn=a
Y2 = ao
Y3 = a3

Y4+ 7172 = a4

¥s +M1¥3 = as

with initial conditions ~;(0) = 0, 7 = 1, ..,5, corresponding to the identity in (4.63). The latter is

easily solved with respect to 7y, ..

o=
J2 =
Y3 =
Ya =

Y5 =

. s, yielding:

a
a2
as
—7Ta2 + a4

—mas +as, 7(0)=0,i=1,.,5 (4.68)

The TIP in logarithmic coordinates now takes the form of a trajectory interception problem for the

following two “control systems”:

CS1:

’

\

N =a ( N =w
Y2 = as Yo = Wa
Y3 =az C52: J Y3 = w3
Y4 = —ma2 + a4 Y = —nw2
¥s = —mas +as Y5 = —1ws

with common initial conditions v;{(0) =0,7=1,..,5.

The controls w;(a,t), ¢ = 1,2, 3, can be sought in the form

un

wo

w3

= by + (bs +bs) sin(QT”t)
2
= by + by cos(Zxt
2 4 COS(T )

= by3+bs cos(:%rt) (4.69)
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where b;, i = 1,..,5 are some unknown coefficients. The above are substituted into CS2, and the
systems CS1 and CS2 are integrated symbolically, to yield respective solutions v*(T") and v*(T)
in terms of parameters ¢ and b. The equation v*(T} = v*(T) is then also solved symbolically to
deliver the values for the unknown coefficients b;(a), ¢ = 1, ..., 5 as functions of the control parameters

a = [a1,a2,a3,04,a5) and T

by =a1, ba=as, b3=a3

by = +3.54491/(as}//(T). bs = £3.54491/(as)//(T)
which reflects that two solutions were found.

In this and all further examples, at the implementation stage of the final feedback control, all the

terms involving square roots of the extended discretized controls a;, such as /a;, must naturally be

substituted by sign(a;)\/]a;|-
The time varying stabilizing controls are then finally given by
w(l5) = §(T,2)+ (B:(3(T, 7)) + bs(5(T, 2)} sin( )
w(T,z2) = (T,z) + ba(v(T, 1)) cos(2%t)
uz(T,z) = 63(T,z)+ bs(0(T,z)) ms(z%t) (4.70)

The above controls, as applied to the system model (4.56), result in controlled trajectories £ —
zi(t), ¢ = 1,...,5, depicted in Figure 4.1. Plot of the “Lyapunov function” V along the controlled

trajectories and plot of z3(t) versus z4(t) is shown in Figure 4.2.

4.2. Time varying stabilizing feedback control for a unicycle in chained form

This example is a particular case of a three dimensional system in chained form. Systems in chained

form have the important property of being characterized by nilpotent controllability Lie algebras.

The model of a unicycle in chained form is given by equation (1.19) of Chapter 1 and represents a
system with control deficiency order one. The controllability Lie algebra L(g1, g2) for this system

is nilpotent, as can be verified by inspection of the following Lie brackets multiplication table for

L(glygﬂ) :

(91, 92] = g3 [91.93] =0 [g2,93] =0 (4.71)
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FIGURE 4.1. Five dimensional drift free system: Plots of the controlled state trajectories
t — (z1(t), ..., z5(¢)) versus time.
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FIGURE 4.2. Five dimensional drift free system: Plots of the controlled state trajectories
z3(t) versus z4(t) and the Lyapunov function V{(z(t)) = %Z?:x z2(t) along the controlled
state trajectories.
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The extended system can thus be defined as :
& = g1(z)v1 + ga(z)v2 + g3(z)uz, = € R? (4.72)
and the extended controls can be defined by:
vilz) e —L, V(z), i=1,..3, with V()% %sz, ze R (4.73)
and result in the following discretized extended system:
& = g(z)01 (T, z) + g2(z)02(T, z) + g3(z)s(T, z), = € R

= qi(z)ar + g2()az + ga(z)as, z € R® (4.74)

where a; = 5;(T,z), 1 = 1,2,3.

Proceeding similarly as in section 4.1, the equations describing the evolution of the logarithmic

coordinates of the flow of this system can be found :

o= .
Y2 = a2
;f3 = -—7ea2 +ag, 71(0) = 07 1= 17 2'3 (4'75)

The TIP in logarithmic coordinates thus takes the form of a trajectory interception problem for the

following two control systems:

n=a T =w
CS1: Yo = Qs CS2: Yo = 1w (4.76)
¥3 = —maz + a3 Y3 = —nw2

with common initial conditions v;(0) = 0,7 = 1,2, 3.
The controls w;(a,t), i = 1,2 can be sought in the form

. 2T 27T —_—

wy = b + b3 sin(—=t1t), we = by + b3 cos(=t) (4.77)
T T

and indeed by = ay, b2 = ag, b3 = £3.54491,/(a3)//(T) are found.
The time varying stabilizing controls for the unicycle in chained form are finally given by

_ _ . 27

w(T,z) = o6 (T,z)+b3(3(T,x)) s‘m(Tt)

w(T,5) = 5(T,2) +5s(3(T,2)) cos(op) (4.78)
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FIGURE 4.3. Unicycle model in chained formm: Plots of the controlled state trajectories
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FIGURE 4.4. Unicycle model in chained form: Plots of the controlled state trajectories
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staie trajectories.
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The controls given in (4.78) are ready to apply to the system model (1.20), and produce results

depicted in Figures 4.3 - 4.4.

4.3. Time varying stabilizing feedback control for Brockett’s system

Brockett’s system whose equations of motion are given in (1.16) of Chapter 1 is another famous
example of a three dimensional drift free system which does not, however, appear in a chained form.
The controllability Lie algebra L(g1, g2} for Brockett’s system is given by (1.16) of Chapter 1, and is
nilpotent. The equations for the evolution of the logarithmic coordinates of the flow of this system
are the same as the ones given in (4.75). This is because the controllability Lie algebras of the
unicycle and Brockett’s system are isomorphic. The following controls with £ = 2 and T' = 0.8 are

used in simulations:

w(T,z) = ko(T,z)+ bs(o(T, z)) sin(%”t)
wp(T,z) = k 6T z) + ba(3(T, 7)) cos(?gt) (4.79)

where, b3 = £3.54491/(a3)/ \/(T). Simulation results are shown in Figures 4.5 - 4.6.

5. Time varying feedback for general systems

In the case when the algebra of vector fields L(gi, ..., gm) is not nilpotent, the TIP or, equivalently
the FIP, cannot be solved exactly, since the basis for L{gi, ..., gr) is then not necessarily finite. It is
possible often, however, to solve the FIP “approximately” as will be explained shortly. The success
of the approximate approach relies on the ability to construct a type of nilpotent approximation to

the original system which is defined below.

DEFINITION 2. (Approximately nilpotent system) A system £ = > - g:(z)ui, with a non-
nilpotent controllability Lie algebre L(g1,---,gm) is said to be approzimately nilpotent if the vector
fields can be approrimated by their truncated Taylor series expansions §i,.-.,gm at zero in such a
way that the controllability Lie algebra Li(gy,...,Gm) for the approzimate system £ = Y .- Giu;
is nilpotent of some order k, and, additionally, the Lie brackets multiplication tables for both Lie

algebras are identical for all brackets of depth up to k.

Once an approximately nilpotent substitute for the original system is selected, the FIP problem can
be solved for the approximate system, and produces a kind of approximate solution to the original
TIP. The computation of such an approximate solution to FIP clearly does not differ from the one

discussed above but the trajectories of the extended and the original system with time varying
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4.5 TIME VARYING FEEDBACK FOR GENERAL SYSTEMS

feedback are no longer guaranteed to intercept with frequency 1/T. It is therefore not entirely
clear whether the stabilizing properties of the constructed time varying feedback are preserved. To
answer this question we make use of a result from [52]| which delivers an error estimate for open
loop steering while neglecting higher order Lie brackets. This result is relevant also to our analysis
because, loosely speaking, the controllability Lie algebras L(gy, --..,gm) and Lr(§1, -.., §m) differ only
in the brackets of depths higher than £. The aforementioned result, adequately interpreted in the

context of the TIP, can be restated as follows.

THEOREM 4.2. [52] Suppose that the algebra of vector fields L(gy, .., gm) is not nilpotent but that the
FIP is still solved on a Lie group Gix(Xy, ..., X;) of order k < oo, using the structure of the nilpotent
approzimation Li(§, .., §m) of the original L(gy,...,gm). Let ¥ denote such an approrimate solution
to the FIP, and let t — Z(£;t0, o) and t — z(t; tg, zo) denote integral curves, through (to, o), of the
extended system with discretised control, and the original system (4{.1) with the time varying feedback
incorporating W, respectively. Further, let T def Z(to + T;tg,zg) , and zT %f z(to + T'; g, xa).
Finally, let R be a bounded region in IR™. Under these conditions, there erists a function F :

[0,00) = [0,00], which is finite and bounded near zero, such that if zo,zT € R, tg > 0, then
ller — 2]l < F(l|Zr — zoll) [|Z7 — zol|*** (4.80)

The stabilizing properties of the time varying feedback control incorporating an approximate solution

to the FIP can now be specified.

COROLLARY 1. Suppose that the hypotheses HO-H1 are valid but the controllability Lie algebra

L(g1,...,gm) 15 not necessarily nilpotent. Let @ denote an approzimate solution to the FIP, as
obtained in Gg(X1,...,Xm), for some finite k. Then for any given level set C of the Lyapunov
function V for the extended system, there ezists a T* > 0 such that the time varying feedback using
a discretisation step T < T*, and incorporating 10, is p-ezponentially stabilizing for the original

system (4.1}, with region of attraction C.

Proof. Proceeding similarly as in the proof of Theorem 4.1, let ¢ — Z(¢;to, o) and t — z(¢;to, To)
denote the integral curves of the extended system (4.7), with discretized controls, and the original
system (4.1) with the time varying feedback (4.45) employing an approximate solution w to FIP,
respectively. (The dependence on the initial conditions of z and Z will be omitted, when it is clear

from the context.)

As the extended system is Lyapunov stable with Lyapunov function V, there exists a closed ball

B(O;p), p > 0, which contains all the trajectories Z(¢; to, o), t > %o, as (o, zo) ranges over IR™ x C.
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4.5 TIME VARYING FEEDBACK FOR GENERAL SYSTEMS

Additionally, there exists a constant v > 0 such that for any 7 > 0, and any (o, To) € RT xC
V(Z(to + T;to, T0)) < e 7TV (zo) (4.81)

Let My and L, be: a common bound for g;,i = 1,...,m, and, a common Lipschitz constant for

vk, k =1,...,7, on B(0; p), respectively. The following estimates are immediate :
T, [te+T def
1Z(to + T t0,70) = zol| < Y / gk (@)ll|Te (zo)l[dr < rMyL,T||zoll E Tllzoll  (4.82)
k=1"to

and
[1Z(to + T': to, zo)l| < [|Z(te + T'5to. To) — Zol| + [[zoll < (1 + cT)|zol| (4.83)
which hold for any (tg,zo) € IR* x C, and any T > 0. For brevity, let z7 %ef z(ty + T'; t9,Z0),
IT def Z(tg + T; to, o), and also Az def zr — Z7. From (4.81) it follows that :
V(z(to + T;to, o)) = V(Z7) + (V(zr) — V(ZT))
1 1
< e TV (zo) + 5(5’1“ + Azp)TQ(ZT + Azr) — §(fT)TQi'T
< e TV (zo) + (Azp)TQZp + %(AzT)TQAzT

< eV (zo) +liQIIIZTIIIAZT I + %IIAITII'“’) (4.84)

Let é € (0,1) be such that the function £ ~ F(£) of Theorem 4.2 is bounded by some constant Mp
for £ € [0,6]. Let T, be such that

maz{cTy, Té}llxgll <46 forallzgelC (4.85)

(such a T exists because C is bounded). Then, by virtue of the definition of Az, equation (4.82)

and the result of Theorem 4.2

|AzT|| < MF|[Z(to + T to, 7o) — zo||'+1

< Mpc'™% T ||zo|| (T#||zol[)¥ < MpcttE TH 2 ||z (4.86)

for all T < T1, and all 7o € €, as 6 < 1. Using (4.82) and (4.83), the “error” on right hand side of
(4.84) can thus be bounded as follows:

IRNUzr Azl + 5llAzri?)

2 1 2
< MpcFE(L+ cTy) T 5 ||o|* + 5 MESHE T2z (487)
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for all T < Ty, and (¢o,z0) € IRT x C. Since V(z) > 2Amin(Q){|z||?, then (4.84) and (4.87) imply

that there exist constants Ny, Na > 0 such that

V(z(to + T;to,z0)) < f(T)V(x0)
where f(T) & e=7T + NyT'+% 4+ N, T2+ (4.88)

Clearly, f(0) =1, and f’(0) = —y < 0, so f is decreasing in some neighbourhood of zero. It follows
that there exists an interval (0,T*], T* < Ti, such that f(T) < 1 for all T € (0,T*]. Hence for any
fixed T € (0,7T~] there exists a 8 < 1 such that

V(z(to + T;te,z0)) < BV (zo) (4.89)

for all (to,z0) € IR* x C. Inequality (4.89) implies that the original system, using the time varying

control with w; and discretization step 7 < T, satisfies condition (a) of Lemma 4.1 in the region C.

To show that condition (b) of this Lemma is also satisfied, we proceed similarly as in the proof of
Theorem 4.1. Let ¢ = z ezp(tY i, giui(T.To)) denote the integral curve of the original system
(4.1) through the point (¢g,z), with feedback control given by (4.45), in which @; are replaced by
w; and 3;(T,z), are constant and equal to ©;(T,zq), ¢ = 1,...,7. By the definition of the time
varying feedback control u;, and completeness of the vector fields g, ..., gm, the mapping : (¢,z) —
z ezp(t Y v, giui(T, o)), with the domain [to, 00) x IR", is continuous, as a composition of continuous
mappings (see (4.50). Consider a fixed value of T € (0,T"], and let the image of the compact set
[to, to + T] x C under this mapping be contained in B(0; p) (the radius p can always be chosen large

enough to ensure this). It follows that
z(to + ¢; to,To) € B(O;p), forallte [to,to + T], (4.90)

and any (to,z0) € R* x C. Let M, and L, > 1 be: a common bound for g;, ¢ = 1,...,m, and a
Lipschitz constant for all the feedback control functions vk, k = 1,...,m, on B(0; p), respectively.
Further, let w;, ¢ = 1,...,{ be bounded by M. on [0, T] (regardless of the value of T'). As before, (see
(4.52)) the functions bg,; can be bounded by :

) KL p € B(0;1
Ibes(o(@))] < KLB|lajpes < { KLoliell® =€ BO:L) (4.91)
KLl  z¢ B©;1)
forallie {1,...m}, k€ {1,...,1}, and all z € C, where
P déf min{pk,iii € {1: “eey m}rk € {l, ) l}} (4.92)
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and K and py ; are the Holder constants for bx,;. Eence the integral curve z(t; to, zo), for t € [to, to+T]

can be bounded as follows :
llz(to + £ to, zo)ll < |0l

m to+t {
+ 3 [T ln@N Y bestoo)lon(T, mlar
k=1

i=1 Yto

< lzoll + mIM, K Ly M.T||zo||*=*) (4.93)

in which p(zg) = p if zo € B(0;1), and p(zq) = 1 if o € B(0;1). It follows from the definition of

V that there exists a constant M > 1 such that
V(z(to + t; to, To)) < M V(zo)*=) (4.94)

for all t € [to,to + T], and all (tp,z0) € R* x C. Equation (4.94) shows that condition (b) of
Lemma 4.1 is satisfied so the original system controlled by (4.45), with &; substituted by @, is

p-exponentially stable with region of attraction C. |

6. Examples of time varying control of non-nilpotent systems

The procedure described above, and involving nilpotent approximations in the sense of definition 2,
is applied to stabilize several drift free systems whose controllability Lie algebras fail to be nilpotent
: a unicycle, an underwater vehicle [66], a rigid spacecraft in actuator failure mode [70], a class of

wheeled mobile robots [70], and a hopping robot in flight phase [84].

Simulations confirm that the error in the solution of the open-loop problem, resulting from a nilpotent
approximation, can be compensated (without prejudicing stabilization) by adjusting the stability

robustness margin of the feedback control for the extended system.

6.1. Time varying stabilizing feedback control for a unicycle

Using the idea of nilpotent approximation, the trajectory interception approach can be successfully

applied to control a unicycle without converting the model into a chained form.

The kinematic model of a unicycle is given by equation (1.17) of Chapter 1, and satisfies the LARC

condition:

span{gi(z), g=(z),g3(z)} = Rs, for all = € R?
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where
(z) = 2 (z) =cos x 2 +sin T1 —
(1)1 = Bz g2 = 1 oza 1 973
g3(z) %ef (91, 92](x) = —sin z; +cos T, —
7o dz» Oz3

The first three terms of the Lie brackets multiplication table for L(g;, g») are :

[91,92] = g3 [g2.93] =0 (91, 93] = —g2 (4.95)

and confirm that L(g1, g2) is not nilpotent. The following approximation to the original model {1.17)

is therefore considered:

i = gi(z)ur + Golz)us, z € R (4.96)
where
_ P & . .2
gi(z) = 3z, +z3 e g2(z) = 35

gaz) [571,!72](1):_%

The Lie brackets multiplication table for L(§;, §2) is now:
(91, 2] = 33 [g1,33] =0 (92,33 =0 (4.97)

which shows that L(§, §2) is nilpotent of order 2 and its structure coincides with that of L(g1,g2)

for brackets up to order 2. The extended system for the original model is :

& = gi(z)v + g2(z)v2 + g3(z)v3, = € R (4.98)
and the extended controls:
def . . 1 3

vi(z) = —-Lg,V(z), i=1,..,3, with Viz) = 3% T T eR (4.99)
give the following discretized extended system:

& = gi(z)ar + g2(z)az + gs(z)as, ¢ € R® (4.100)

where a; = 43;(T,z),1=1,2,3.

The differential equations describing the evolution of the logarithmic coordinates of the flow of the

nilpotent approximation (4.96) are obtained easily and are obviously identical to those of sections
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4.2 and 4.3, i.e.
o= a
Y2 = a2
Y3 = -ma2+a3 7:(0)=0,i=1,2,3 (4.101)

The TIP in logarithmic coordinates is hence a trajectory interception problem for the following two

control systems:

n=a Y1 =uwy
CS]. : ’:f?_ = as 052 : ")'2 = ws (4.102)
Y3 = —7ia2 + a3 Y3 = —1Wa

with common initial conditions ;(0) =0, =1,2,3.
The controls w;(a,t), i = 1,2 can be found by assuming :
. 2T 2

wy =by + b3 sm(Tt), wy = by + b3 cos(Tt) (4.103)
and the unknown coefficients b;(a), i = 1,2, 3 are computed analytically as:

by =a; by=as, b3=+3.54491\/(a3)//(T)
and are identical to those in (4.77). The time varying stabilizing controls for the unicycle are :

_ _ . 2
’U.l(T, I) = UI(T: I) + b3(U(T7 I)) Sin(Tt)
2
w(T,z) = (T, z)+b3(3(T,z)) cos(-Tft) (4.104)

Simulation results are shown in Figures 4.7 - 4.8 and clearly confirm the result obtained in Corollary
1. The trajectories of the controlled unicycle are similar to those of (Figures 4.3 - 4.4) which were

obtained by converting the system model into a chained form a priori to control design.

6.2. Time varying feedback stabilizing control for a rigid spacecraft in actuator

failure mode [68]

This example demonstrates the applicability of the trajectory interception approach when the system

under consideration is defined on a manifold rather than in a linear space, and is characterized by

a non-nilpotent Lie algebra.

The kinematic model of a rigid spacecraft in actuator failure mode as given by (3.93) of Chapter 3, is
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FiGURE 4.7. Unicycle model: Plots of the controlled state trajectories ¢

(z1(t), z2(t), z3(t)) versus time.
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FIGURE 4.8. Unicycle model: Plots of the controlled state trajectories z1(t) versus z3(t)

and the Lyapunov function V(z(t)) = £ ?:1 z2(t) along the controlled state trajectories.
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FIGURE 4.9. Spacecraft model: Plots of the controlled state trajectories ¢t +—»
(z1(t), z2(t), z3(t)) versus time.
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FIGURE 4.10. Spacecraft model: Plots of the controlled state trajectories z, (¢) versus z2(t),
and z2(t) versus z3(¢).
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FIGURE 4.11. Spacecreft model: Plots of the controlled state trajectories ) () versus z3(t),
and the Lyapunov function V(z(t)) = 3 3°3_, z#(t) along the controlled state trajectories.
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controllable on a manifold M defined by (3.94). The Lie brackets multiplication table (3.95) shows
that the Lie algebra L(g1, g2) is not nilpotent. The approximate model can be taken to be that
of (3.96), for which the Lie brackets multiplication table {3.98) establishes nilpotency. As the Lie
algebraic structure of the nilpotent approximation is the same as that of a unicycle, the equations
for the evolution of the logarithmic coordinates are again given by (4.101) and the controls are of

the same form as those of (4.104).

The simulations results are shown in Figures 4.9 - 4.11.

6.3. Time varying stabilizing feedback control for an underwater vehicle [66]

This example demonstrates that the trajectory interception approach is also successful when applied
to non-nilpotent systems with higher order of control deficiency. The Lie brackets multiplication
table for the controllability Lie algebra L{gi, g2, g3, ¢g4) for the underwater vehicle is computed pre-
viously in (3.82) of in Chapter 3, and clearly shows that the controllability Lie algebra fails to be
nilpotent. The following approximate model is adopted by using truncated Taylor series of order

one for the vector field g; and of order zero for the vector fields g3 and g4, (each evaluated at zero):

[z ] (1] [0 ] [0 ] [0 ]
T2 Tg 0 0 0
:Z.:3 —Is5 0 0 0
= uy + us + uz 4+ Ug
T4 0 1 0 0
Ts 0 0 1 0
EN [0 | 0 | | 0 By
Y Gi@hu + Gala)us + Galz)us + Galz)ug (4.105)
o o o} d
h q = D — —_— I Go P
where, g1 (m) axl + Z6 6»7:2 Is 6173 ) g_(.’L’) 83.74 3
- 7} - a
g@i(z) = E, ga(z) = a

The approximate system is controllable as it satisfied the LARC condition:
span{gi(z), §2(z), §a(z), §a(), §s(z), Gs(z)} = R®, forall z e R®
where the vector fields §s(z) and gs(x) are given by :

35@) Y 00, 3:l(5) = s 36(2) Y 191, 341(0) = — 5
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The Lie brackets multiplication table for L(§1, g2, 93, d4) 1s:

[31.33] = 35 (G1,34] = g6, (7,821 =0, j=1,....4

[g:.35] = [2.96] =0, i=1,...,6 (4.106)

so that L{gi, g2, J3,g4) is nilpotent.

The extended system for the original model (3.79) can be defined by:

& = gi(z)v1 + g2(T)ve + g3(z)vs + gu(T)vs + g5(z)vs + gs(z)vs, z € RRE (4.107)

and the extended controls:

ef 1
v(z) Y —L,V(z), i=1,..6. with V(z)% 527z, z€ R (4.108)
give the following discretized extended system:
t = gi(z)a; + g2(x)as + g3(z)az + ga(z)as + gs(z)as + gs(z)as, = € IR® (4.109)

are given by:

where a; = U;(T,z), 1 = 1,...6. It can be verified that the equations for the logarithmic coordinates

no= a

Y = a2

Y3 = a3

Y = a4

Y5 = —mas+as

Y6 = -—-mas+tas 7(0)=0, i=1,.,6 (4.110)

so the TIP in logarithmic coordinates is a trajectory interception problem for the following two

control systems:

CS1:

r '4

YL =a; YL = wh

Y2 = a2 Y2 = W2

Y3 =a Yo = W
g e cs2: BT

Y4 = aq Y4 = wy

¥s = —mas +as Y5 = —nws
L Y6 = —7184 + as L Y6 =~

179



4.6 EXAMPLES OF TIME VARYING CONTROL OF NON-NILPOTENT SYSTEMS
with common initial conditions 7;(0) = 0,7 =1, ..,6.
It is reasonable to seek the controls wi(a,t), i = 1,...,4, in the following form :
.2 27
w; = b +bs sm(—ﬂ.t) + bg cos(=1t), wy=Dby
T T
2 . 2%
wy = by+bs cos(%t), wy = by + be sm(%t) (4.111)
The constants b;, ¢ = 1,..,6 can be computed as:

by =a1, ba=a2, b3=a3, by=ay

bs = +£3.54491+/(as)//(T)
bs = (0.5(2a1T? & |/(—50.2655a5T3 + 4a3T4)))/(T?)

The time varying stabilizing controls for underwater vehicle model are hence given by

u(T,z) = 6(T,z)+ bs(5(T, x)) sin(i,—’rt)-f-bs(ﬁ(T,:z:)) COS(ZTWt)

us(Tyz) = (T, z)

uz(T,z) = (T, z) + bs(5(T, z)) cos(%”t)

wl(T\z) = o(T,z)+ be(3(T, z)) sin(z%t) (4.112)

Simulation results are depicted in Figures 4.12 - 4.15 and confirm the effectiveness of the approach.

6.4. Time varying stabilizing feedback control for a WMR of type (2,1)

This and the next section discuss the application of the trajectory interception approach to two

classes of wheeled mobile robots which are important in industry.

The kinematic model of a WMR. of type (2,1) is given by (3.152) of Chapter 3 and is characterized
by a controllability Lie algebra which fails to be nilpotent (see the multiplication table (3.154)). The

following approximate model:

-'L"]_ 0 O F —Z4
Ty 0 0 1
= u; + up + us
T3 0] 1 0
[ % | | 1] [ 0 [0
d - - -
=4 qru1 + g2u2 + gaus (4.113)
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is found to be adequate as it satisfies the LARC condition:

span{gi, g, §3,3a} = R*, forall z € R* (4.114)

- def (. - o
where, s = [g1,35](z) = — py
and the Lie brackets multiplication table for L(g, g2, §3):

[91,93] = 34, [G2,33l =0, [§1,32] =0
[ﬁi,@i] = 01 i - 11 "-a4 (4.115)

clearly shows that the Lie algebra L(g:, g2, ds) is nilpotent.

The extended system is clearly given by :
% = gi1(z)v1 + ga(z)ve + ga(x)vs + ga(z)vs, z € R* (4.116)

and standard extended controls can again be adopted :

vi(z) e/ —L,V(z), i=1,...4, with V(z) ef %xT:z:, z € R? (4.117)
These result in the following discretized extended system:
£ = gi(z)ar + g2(z)as + g3(z)as + ga(z)as, z € R' (4.118)

where a; = 3;(T, z),7 = 1, ...4. It can be verified that the logarithmic coordinates for the approximate

system satisfy the following differential equations:

" o= a
Y2 = a2
Y3 = a3
Y4 = -maz+aq, %(0)=0,i=1,.,4 (4.119)

The corresponding control systems are:

Nn=a N =un
Yo = @ o = wa
CS1: T2 = cs2: e (4.120)
Y3 =as3 Y3 = w3
Y4 = —maz +aq Y4 = —mws

with common initial conditions v;(0) =0, =1, .., 4.
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The controls w;(a,t), ¢ = 1, ...,4 are sought in the following form

wy = by +bs sin(z%t), wo = by
w3 = by+by cos(%i[t) (4.121)
and by = a;, by=as b3=as, bs=+3.54491\/(as)/\/(T) are found.

The time varying stabilizing controls are hence given by :
W) = BT,2) +bu(0(T,2) sin(Grt), wa(T.2) = 5(T,7)
uz(T,z) = 03(T,z) +by(B(T,z)) cos(2%t) (4.122)

Simulation results are depicted in Figures 4.16 ~ 4.18.

6.5. Time varying stabilizing feedback control for a WMR. of type (1,2) [70]

The example of WMR, of type (1,2) represents a typical five dimensional system with control defi-

ciency order two and with a non-nilpotent controllability Lie algebra.

The kinematic model of a WMR of type (1,2) is given in (3.158) of Chapter 3 and the Lie brackets
multiplication table for its controllability Lie algebra is given in (3.160). An approximate model
(3.161) with multiplication table (3.163) proves sufficient in that its controllability Lie algebra sat-

isfies the conditions of Definition 2.

The extended system is clearly :
& = g1(z)v1 + go(z)v2 + g3(x)vs + gu()vs + gs(z)vs, = € R (4.123)
and the usual extended controls:
vi(z) af —Lg V(z), t=1,..,5 with V(z) ef —;-xT:z:, z € R’ (4.124)
give the following discretized extended system:
& = gi(z)ar +ge(z)as + g3(2)az + ga(z)as +gs(z)as, z€ R’ (4.125)

where a; = 7;(T, z), ¢ = 1, ...5. The equations describing the evolution of the logarithmic coordinates
for the approximate system are the same as those of (4.68), as the system has the same Lie algebraic

structure as that of section 4.1. The controls w;(a,t), ¢ = 1, ..., 3 are therefore again given by (4.70).

Simulation results are shown in Figures 4.19 - 4.20.
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6.6. Time varying feedback stabilizing control for a hopping robot in flight phase
(84]

This example illustrates the applicability of the trajectory interception approach to systems whose
controllability Lie algebra contains higher order Lie brackets and fails to be nilpotent. It is also
shown that it is important that the approximate models satisfy all the conditions of Definition 2,
specifically, the Lie brackets multiplication tables for the original and approximate controllability
Lie algebras ought to agree for brackets of depth up to & - the order of nilpotency of the approximate

system.

The kinematic model of a hopping robot is stated in (3.143) of Chapter 3. The Lie brackets mul-
tiplication table (3.145) for the controllability Lie algebra of this system shows that the nilpotency

condition fails to hold.

An approximate model of the form

. = gi(z)ur + Gao(z)us, r € R (4.126)
- _ 9 s 4 N _ _(9_
a(z) = 3—:“ — I3 b—:z;’ ga(z) = 822

is therefore considered. We refer to this model as to “approximate model 1”. The latter proves to

be controllable as:

span{g (z), §2(z),ds(z)} = R3, forall z e R®

a a
gz = (g1, 2] = 209 — gs = |9 g1, g =
where, g3 = [31, 2] = 2z, Bz3" 9a = [§2, g1, G2]] 2_6:1:3
The Lie brackets multiplication table for L(g:, §2) is :

[91:92] = 33 [§1.G3} =0 (G2,33] = 34

(G1,94] =0 [G2,34] =0 (4.127)
and shows that the Lie algebra L(§;, §2) is nilpotent.
The Lie algebraic extension of the original system, (3.143) is taken to be :
z = gi(z)vr +g2(z)v2 + ga(T)vs (4.128)
With the usual extended controls:

e . . 1
vi(z) & ~L,V(z), i=1,24, with V()% 52"z, zER (4.129)
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the discretized extended system becomes :
z = gi(z)ay + g2(x)as + g4(z)as, z € R®, where, a; =5;(T,z), i=1,2,4 (4130)

It can be verified that the logarithmic coordinates for the approximate system satisfy the following

differential equations:

o= a

Y2 = a»

¥3 = —maz+a3, with a3 =0

Y& = mr02+as, 71(0)=0,i=1,..4 (4.131)

The third equation of (4.131), 43 = —~v,a2 + ag, is discarded as it corresponds to the component of
the flow along the vector field g3 = [g1. 2], which is linearly dependent with the remaining vector

fields g1, §2> and §4. Then the corresponding control systems for the TIP are hence :

1 =a; 1 =un
CSI : "}’2 = Qa2 052 . "sz = w2 (4132)
Y4 = 17202 + a4 Y4 = Y1Y2wW2

with common initial conditions ¥;(0) = 0,7 =1,2,4.
Since flows of £ = [g2, [g1, g2]] can be “approximated” by the flows of § = g1 sin(2w %) + gacos(2r %),
the controls w;(a,t), ¢ = 1,2 are assumed to take the form :
.2 2T
wy = by + by sin( ?t), we = boy + by cos(—T—t) (4.133)
where b;, 1 = 1, 2,4 are found to be :

by = a1, bo = ay, by = (4a1agT2 + d)/2(01 + 2021T)T2,

where, d = {-64a47%(a; + 2a27)T? + 16a;%a,2T4} /2

The time varying stabilizing controls for the original system, (3.143), are thus given by

2

7t
ua(z) = bo (v () + bs(vT (z)) cos(%rt) (4.134)

ui(z) = bi(v"(2)) + bs (v (z)) sin(

Simulation results obtained when such controls are applied to the system model (3.143) are pre-

sented in Figures 4.21 - 4.22. Continuous extended controls are used in place of v7 , and the time
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horizon chosen is T = 4. Simulation experiments confirm that the constructed time varying feedback

possesses a wide robustness margin with respect to inaccuracies in the solution to the TIP.

A comparison result:

For the sake of comparison, we consider a different approximation to the system model (3.143)
which is used in [77], to construct open-loop controls to steer the hopping robot to a set point. The

approximate system obtained by this approximation is in chained form:

i = filz)us + fo(z)ua, z€R® (4.135)
where
- o 1 Is) - &
fl(I) = 5—512 5?3’ f2(2)=8—$2‘
: def ;= K
and i Rl=1/2 5

It is easy to see that the above model, to which we refer as to an approximate model 2, has a
different algebraic structure. The latter is reflected by the fact that the Lie algebraic controllability

rank condition for system (4.135) involves only a Lie bracket of depth one, so that :
span{fi(z), f2(z), [f1, fol(z)} = R®, forall z € R (4.136)

This leads to simpler equations for the evolution of the logarithmic coordinates of flows, which for

(4.135) take the following form :

Nn o= a
Y2 = a
¥3 = -me2+az, v(0)=0,7=123 (4.137)

The calculation of a solution to the corresponding TIP also simplifies; the controls w; and ws can

be obtaired in following form:
2w
=b by sin(—t
wy L + b3 sin( T )
2
9 = b') b —t
wo o + ba cos( T )

where the unknown coefficients b,, b2, b3 can easily be expressed in terms of a;, a2, a3. The resulting

time varying stabilizing controls for the original system obtained by using approximate logarithmic
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FIGURE 4.21. Hopping robot model: Plots of the controlled state trajectories t —

(z1(t), .., z3(t)) versus time.
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FIGURE 4.23. Hopping robot model: Plots of the controlled state trajectories t +»
(z1(t), --., z3(t)) versus time.

coordinates (4.137) are hence given by:
= T T . 2T
u1(z) = bivy (2)) + ba(vs (z)) sin(=t)

Ga2(z) = ba(vT () + b3(v] (z)) cos(g%rt) (4.138)

The controls in (4.138) are applied to the original system model (3.143) for the sake of comparison
of the stabilizing properties of the controls derived using model 1 and model 2. The simulation
results are shown in Figure 4.23 and clearly indicate that model 2 is toc crude an approximation:
the controls based on model 2 do not have as good stabilizing properties as those derived by using

model 1.
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7. Sinusoidal steering and the trajectory interception approach

Using a few examples we demonstrate here that the trajectory interception approach can sometimes

be successfully combined with sinusoidal steering.

Such combined control relies on decomposing a complex system model into subsystems of which
one can be controlled by the trajectory interception approach and the other by sinusoidally varying
inputs. The decomposition idea proves especially useful when the Lie algebraic structure of the
higher dimensional sub-system is sufficiently simple as to permit an easy application of the trajectory

interception approach.

The purpose of this section is not to present a rigorous strategy based on suck decomposition but
rather to demonstrate that combined strategies using TIP may also be successful. Theoretical

investigation involving possible decomposition methods can be a topic for future research.

7.1. Stabilizing feedback control for a WMR of type (1,1) [70]

A wheeled mobile robot model of type (1,1) represents a four dimensional systems with control
deficiency order two and with a non-nilpotent controllability Lie algebra which contains Lie brackets
of depth one as well as depth two. Interestingly, the model of a WMR of type (1,1) has a similar
algebraic structure as the model of a front wheel drive; the stabilizing controller constructed for a

WMR of type (1, 1) can therefore also be used to stabilize a front wheel drive.

The kinematic model of a WMR of type (1,1) is given by (3.165) of Chapter 3, in which (21, 22, 23, 24) =

(B,y,0,z) and (u1,uz) = (11, &) are defined as new sets of state and control variables :
;= gu2)m +g2(ue, 2 (21,2,2,2) € R (4.139)

é . . .
1(z) = — 2) = cosz3 sinz + c0Szy — — Sinz3 sinz; —
g1(z) 9z, 92( ) 3 1823 1 974

623

Calculating the following Lie brackets:

g3(z) = (91, 92](z) = cos z, cos 235(2—2 —sin f1g = cos 21 sin 535-5
de 0 d

ga(z) <! [92,[91,!72]](2) = —sin 233—22 —Ccos 23527
shows that the LARC condition is satisfied for this system :

span{gi,g2,93,94}{z) = R*, forall z € R*

192



4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

A few moments of reflection leads to the conclusion that (4.139) can be decomposed into the following

two subsystems:

# 1| 0
S1: 20 | = 0 |ur+ ]| cosz3 sinz | u (4.140)
Z3 0 cos z)
. . . def
S§2: 24 = —sin 23 sin zyus = f(z) ug (4.141)

Next we observe that defining = %«f (21, 22, z3) allows to re-write subsystem S1 as:

z = fi{z)ur + fo(z)ua, ze R (4.142)
a . a
f]_(I) = -371’ fg(I) = CO0S z3 Sin 21-8—22‘ + cos 91—32—3

Subsystem (4.142) is controllable as it clearly satisfies:

span{fi, f2, f3}(z) = R®, forall z € R®

where

fa(z) o [f1, f2](z) = cos z; cos z3 5o sin 2y e

It can be easily checked that the Lie algebra L(fi, f») is not nilpotent, but the following approxi-

mation to S1 :

S1: & = fi(@)ul+ f2(z)us, r € R® (4.143)
. 3
filz) = B
= 15] 15)
folz) = =z 3_—22. + 6_23
B@ e =

gives
span{fy, f2, fs}(z) = R®, forall z ¢ R®
and is nilpotent as shown by the Lie brackets multiplication table for L{ fi, fg):
(fi.fll=F [A.fa]l=0 [fo.fs] =0

The trajectory interception approach can thus be employed to steer S1.
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The extended system for S1 is given by
z = fi(z)v + fa(z)ve + fa(z)Us (4.144)

in which v;(z) = Ly, W(z), i =1,2,3and W(z) =137 22

The logarithmic coordinates for S1 satisfy the following differential equations:

N o= a
Yo = Q2
3 = -maz2+a3, v(0)=0i=1,23

and the following controls stabilize subsystem S1

ui(zr) = (wi(z)+b3(vT(x)) sin(%-?rt))

ua(z) = (F(2) +bsuf (2)) cos(o) (4.145)

where b3 is £3.54491/(v] (z))/\/(T) are easily computed.

It can be seen that the control (4.145) obtained using the trajectory interception approach, steers
the original system (4.139), to any € — neighbourhood of the manifold M’ %f {z€R*:z; =0,i =
1,2, 3}, and further decrease in the cost function V can be obtained only through system motion in
the direction of the Lie bracket g4 ef [g1,[g1,92]]- Such motion can be achieved only indirectly, for

example by using an open-loop control of the type :
27
= kisin(==t
uy 18in( T )

Ua = kgcos(%t) (4.146)

where k1, ko are constants. Introducing the following definitions :

S def {(z€R*: 2z, =20 = 23 = 0,24 # 0}

S ¥ [zeR':z,=0& f(z) =0}
= {z€R':z4=0& sin z;3 sin z; = 0}
= {ze€R':z4y=23 =2 =0}
and for any set S C IR™ and any constant ¢ > 0, let the symbol NV(S;¢) denotes the usual
€ — neighbourhood of S. This leads to the following feedback stabilization strategy for the orig-

inal system.
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Stabilization strategy for a WMR of type (1,1)

Repeat the steps below until sufficient accuracy is achieved in reaching the origin:

Data: e>0
Step a: Steer the original system (4.139) to A/(S;;¢€) by applying the control of (4.145).

Step b: Employ the control (4.146) until the system trajectories converge to A/(S;¢).

Step c: Set € := 3.

Three sets of simulation results are shown in Figures 4.24 - 4.25, 4.26 - 4.27, and 4.28 - 4.29,
respectively.

Figures 4.24 - 4.25 correspond to the situation when the mobile robot is steered to the origin from
an arbitrary initial condition in the configuration space (specificaily, the trajectories shown were

achieved when zo = [0.4,0.7,0.6,0.5]7 and k; =2, ks = —3.5 and T = 1, were used).

Figures 4.26 - 4.27 and 4.28 - 4.29 show the controlled system trajectories during two parallel parking

maneuvers, corresponding to the initial conditions zo = [0, 1,0, 0]7 (ky = 2.5, ko =4and T =1.5

were used), and z¢ = [0,—1,0,0]7 (k; =2, k2 = 3 and T = 1.2 were used), respectively.

7.2. Stabilizing feedback control for a fire truck model

The fire truck model represents a six dimensional systems with control deficiency order three and

with a non-nilpotent controllability Lie algebra which contains Lie brackets of depth one as well as

depth two.

def

The kinematic model of a fire truck is given by (3.110) of Chapter 3, in which z = (zy, 22, 23, 24, 25, 26) =
(z, 0, ?1,80,61,y) and which can thus be re-written as :

S - - ro -

21 1 0 0
29 0 1 0
23 0 0 1
= uy + ug + usz
24 tan z2 sec z4 0 0
25 —sin(zz — z4 + z5) sec z3 sec z4 0 0
L 26 ] | tan Z4 J i 0 _] | 0 i
def
= g1(2)u1 + g2(2)uz + ga(=)us (4.147)
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FIGURE 4.24. WMR of type (1,1): Plots of the controlled state trajectories ¢ +—
((z1(t), --vy 24(8)) = (21(2), ..., T4 (t)} versus time.
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FIGURE 4.25. WMR of type (1,1): Plots of the controlled state trajectories 1 () = z1(¢)
versus T2(t) = z2(t), and the Lyapunov function V(z(t)) = £ 3°i_, zZ(t) along the con-
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FIGURE 4.27. WMR of type (1, 1): Plots of the controlled state trajectories () = z1(t)
versus z2(t) = 2z2(t), and the Lyapunov function V(z(t)) = -.‘,l-zf:l z(t) along the con-
trolled state trajectories in parallel parking maneuver.
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FIGURE 4.28. WMR of type (1,1): Plots of the controlled state trajectories t —
((z1(2), .-, z4(£)) = (z1(2), ., z4(t)) versus time in parallel parking maneuver.
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FiGURE 4.29. WMR of type (1,1): Plots of the controlled state trajectories z;(t) = z1(t)
versus z2(t) = z2(t), and the Lyapunov function V(z(t)) = %2:‘:1 z2(t) along the con-
trolled state trajectories in parallel parking maneuver.
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g1(2)

92(2)

4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

8z Oz4 dzs
14] d
6_22 g3(z) = 6_2'3

Computing the following Lie brackets:

e g
94(z) « [91,92](z) = —(sec zz)2 sec z4 Pas
24

d .
g5(z) ef [91,93](2) = [ sec z3 sec z4(cos(z3 — z4 + 25) + sin(z3 — z4 + z5) tan z3)] Ey
2

96(2) & (91,191, 21)(2) = (sec z2)? (sec z5)° 6676

. a
+{[(sec 22)? (sec z4)* sec z3 (cos(zs — z4 + z5) — sin(zz — 24 + 25) tan z4)] Fy
5
demonstrates that, if the motion of the system is restricted to the manifold:
6 T .
M={ze R® :{z| < 70 1 =2,3,4},
then the LARC condition is satisfied :
span{911921 g3, [91192], [gl;gS]: [gl: [gla 92]]}(2) = RG fOI' zZ € "M
Consider the following decomposition:
- - - 5 - -
[ 3, 1 [0 0
29 0 1 0
Si: z3 =10 ur+ | 0 Jue+ | 1 |us
24 tan zo sec z4 0 0
Zs —sin(z3 — z4 + 25) sec 23 sec z4 0 | 0
52 26 = tan Z4 U3 déf f(Z) Uz

By defining = 4ef (21, 22, 23, 24, 25 ), the subsystem S1 can be written as:

T
fr(z)
fa(z)

fl(:z:)ul + fz(I)UQ + fs(l')’u.g, T e Bs

i+tnz ec z. i—sin(z — z4 + 25) sec A
Bz an zp Sec z4 EP 3 4 5 23 Sec z4 s
d 1o}

EP fa(z) = 372

Subsystem S1 is controllable as it satisfies the LARC condition:

span{fi(z), f2(z), fs(z), falz), fs(x)} = IR®,

forall z € M

%) a . 1]
—— +tan z; sec z4 o+ — sin(zz — z4 + 25) sec z3 sec z4 — +tan z4 Y
Z6

(4.148)

(4.149)

(4.150)

(4.151)
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4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

where, M= {z def (z1,-25) ER® :|zi| < g, 1=2,3,4}

fa(z) =4 [f1, f2](z) = —(sec z2)? sec 2456—
24

F5(2) E 1, fal(z) = [ sec z3 sec z4(cos (23 — 24 + 25) + sin (23 — 24 + 25) tan 2z3)] 3

It can be easily checked that the Lie algebra L{f|, f2, f3) is not nilpotent. The following approxi-

mation to subsystem S1:

i = filz)ur + fo(z)us + fa(z)us, z € R’ (4.152)
filzy = ain+z2 5% — (23 — 24 + 25) 5%5'
Be) = o h@ =
@) € Rl = B@ Y (7 Bl@) =
gives
spon{fi(z), @), fo(@), fala@), fo(@)} = IS, forall ze RS

and is nilpotent as shown by Lie brackets multiplication table L{ fi, fo, fa) :
[fi)f?]zf-‘i [f17f3]=.f_5 [f21f3]:0
[fis fal = [fi, f5] =0, =1,2,3

Therefore the trajectory interception approach can be applied to steer S1. The extended system for

S1 is given by:
z = filz)vr + fa(x)ve + fa(z)vzs + falz)vg + f5(x)vs, z e R’ (4.153)

in which vi{z) = LyW(z), i = 1,...,5, and W(z) = %Zf___l zZ?. The approximate logarithmic

coordinates for S1 satisfy the following differential equations :

o= oa

Yo = @

Y3 = a3

Y4 = —maextay

¥ = —maz+as, %(0)=0,7i=1,...,5
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4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

and the following controls stabilize subsystem S1:

u(z) = (Wi(z)+by(vl(z)) sin(z%rt) + bs(vY (z)) sz’n(?r—wt))
u(e) = (@) +b(od (@) cos( )
us(z) = (F(2) +bs (o (2)) cos( 1))

where by = £3.54491/(v])//(T) and bs = +3.54491/(vT)//(T).

(4.154)

For faster convergence, v7 were replaced by & vF,i=1,2,3. and in simulation, k = 3 was used.

Stabilizing algorithm for a fire truck model:

Repeat the following steps until sufficient accuracy is achieved in reaching the origin:

Data: e>0

Step a: Apply the controls (4.154) to original system (4.147) until its trajectories converge to A (S,; €),

where :

S def {z€R6:31:22=23=Z4=25=0, 26?50}

Step b: To generate motion along gs = [g1, [91,g2]], 2pply the sinusoidal controls

.2 4
up = sm(%t), uy = cos(—,r,it), uz =0

until the system trajectories converge to N (S,;€), where :
S: % (zeR°:z & f(z) =0}
= {z€ R®:z & tan z4 = 0}
= {z€R®:z =2z =0}
Step c: Set € := 3.

Two sets of simulation results are shown in Figures 4.30 - 4.22, and 4.32 - 4.33, respectively.

Figures 4.30 - 4.31 correspond to the situation when the fire truck is steered to the origin from an

arbitrary initial condition in the configuration space.

Figures 4.32 - 4.33 show the controlled system trajectories during a parallel parking maneuver,

corresponding to the initial conditions zo = [0,.4,0,0,0,0]7.

201



4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

-I 1 ] I L 1 J | 1 _05 L L 1 i3 ] : 1 1
0 5 10 15 2 5 K] kY] 40 45 5 10 15 2 5 ¥ B 40 45
05 T T T ) m T v { lJ 1 T T T T nrm T T T T
N : . -t
_05 1 L 1 1 1 ] L —
0 5 10 15 20 ] 3 kSl 40 45 45
time
1 T 1 11 T T T T ¥
= 05p T o 1 =
;’N' ;;O'SL o R . L . 4
o i VV\/\IV 1 :
_05 1 l 1 1 1 ] 1 N S 0 1] I L l\l : L L
0 5 10 15 20 3 30 3 40 45 0 5 10 15 20 % B 40 45
time ime
FIGURE 4.30. Fire truck : Plots of the controlled state trajectories t — ((z1(t), ..., z6(£))
versus time.
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FIGURE 4.31. Fire truck : Plots of the controlled state trajectories z;(¢) versus z3(t}, and
Lyapunov function V(z(t)) = ¢ Zf=l z?(t) along the controlled state trajectories.
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FIGURE 4.32. Flire truck : Plots of the controlled state trajectories £ — ((z1(£),-.., zs(t))
versus time in parallel parking maneuver.
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FIGURE 4.33. Fire truck : Plots of the controlled state trajectories z;(t) = z(t) versus
z6(t) = y(t) in parallel parking maneuver.
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4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

7.3. Stabilizing algorithm for an underwater vehicle in actuator failure mode

By defining

def e -~ . ydef
(21722123724:25|25) = (IS,$4,$1,16,$3,172) & (u17u21u3) = (u37u?.7u1)

the kinematic model of underwater vehicle with one actuator failure mode, as given by (3.105) of

Chapter 3, can be decomposed as:

rz'l- Fcoszg ] -0- r0 ]
2 sin 2o tan 2, 1 0
S1: Zz | =10 U+ | 0 | G2+ | coszqcosz | U3 (4.155)
Z4 sin zo sec zp 0 0
_z’s_ _0 | _0_ -—sinzl |
S2: 2 = Sin z4 cOs z1 U3 def f(z) 43 (4.156)

Stabilizing feedback control for an underwater vehicle in actuator failure mode:
Repeat the following steps until sufficient accuracy is achieved in reaching the origin:

Data: e>0

Step a: Apply the controls (4.154) to original system (4.147) until its trajectories converge to N(Sy;e),

where :

dif

Si {zeR® :zy =z =23 =24 =25 =0, 2z #0}

Step b: To generate motion along gs = [g2, [91, g3]], apply the sinusoidal controls
.27 . 2T 47 _
u = klsm(Tt), up = kgsm(—:ZTt), uz = kgcos(?t) (4.157)
until the system trajectories converge to N (S;¢€), where :
def 6
S = {zeR°:z=0& f(z) =0}

= {ZEBG:ZG=O&sinz4 cos 21 =0}={z€R6:z6=z4=0}

Step c: Set € := 3.

Simulation results are shown in Figures 4.34 - 4.35. In simulation results, the values k; = 1, k2 = -3,

k3 =4 and T = 1.6 were used.
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FIGURE 4.34. Underwater vehicle Model 2 : Plots of the controlled state trajectories ¢t —
{(z1{t), ..., z6(£)) versus time.
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FIGURE 4.35. Underwater vehicle Model 2 : Plots of the controlled state trajectories z3(t)

versus ze(t), and Lyapunov function V(z(t)) = 0.5 Zf;l z2(t) along the controlled state

trajectories.
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4.7 SINUSOIDAL STEERING AND THE TRAJECTORY INTERCEPTION APPROACH

7.4. Stabilizing feedback control for a mobile robot with trailer

The example considered below represents a five dimensional systems with control deficiency order
three, possessing a non-nilpotent controllability Lie algebra which contains Lie brackets of depth one,
two, and three. Although, the algebraic structure of mobile robot with trailer is more complicated,

the decomposition idea can still be employed successfuily.

The kinematic model of a mobile robot with trailer as given by (3.121) of Chapter 3 and can be

suitably re-written by defining (z;,z2,23,%Z4,25) = (21, 24, 23, 22, Z5):

z = qi(2)u + g2(2)u2, 2z € R° (4.158)
(z) coSs z3 COS + sin 9 + cos z3 sin z + cos z3 sin ( 25) =—
== Z Z —_— Zn —
a1 3 2 Bz, 3 922 3 2 Bz 3 Sin (22 5 Bz
a
g2(z) = a

The following Lie brackets:

def . . . . . .
z) = [g1,g92](z) = sinzz coszpy — — cosz + sinzz sinzy — + sinzz sin{zy — z5) =—
93(z) = [g1,92](z) 3 2 3o 3 3 2 5mn 3 sin(za — zs) B
def 3 o IZ]
z) = z) = —s§inzy — + cos22 =— + cos(zy — z5) =—
94(z) = [g1,95](2) 2 3an 2 3m (z2 — 25) 32s
def . e, . . . . g
gs(2) = [g1,94](z) = —sinz; coszs — sinzs sinzs — (stnzs sin(zo — 25) — coszz) —
6z1 824 825

show that the LARC condition is satisfied :
span{gi(z),i =1,...,5} = R5, forall z € IR®

For this model the following decomposition is considered:

Z1 COSZa COSZ3 0
S1: Za | =1 sin z3 ur+ ¢ 0 | w2 (4.159)
| Z3 J i 0 1
z. ( Sin 23 COS Z e z
5. 4| _ 2 3 g %! fi(2) “ (4.160)
75 | cos z3 sin (22 — z3) f2(2)

By defining = def (21,22, z3), subsystem Sl can be written as:

z = fi(z)u; + fo(z)u2, = € R® (4.161)

206
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. d
fi{z) = cos =2 cos z3 52_1 + sin z3 %
a
fo(z) = 3_2;

Subsystem S1 is controllable as it satisfies:
span{fi(z), f2(z), fa{z)} = R forall z€ R®

where

fa(z) def [f1, f2](z) = sin z3 cos z» le —cos 23 57a
It can be easily verified that the Lie algebra L(fi, f2) is not nilpotent.
The following approximation to S1 :

&= fi(z)u1 + fo(z)us, z€ R®

z 7] 1] - 8
hHiz) = 52—14'23 Er fz(ﬂ?)—a—z3
satisfies the LARC condition:
span{fi(z), f2(z), fa(z)} = R®, for all re R3

where,  ful@) < (i, Foll@) =~ -

and the Lie brackets multiplication table for L(f1, fa):

(fi,fol=fs 1. fsl =[f2, f] =0

(4.162)

shows that the controllability Lie algebra L( fi, fg) is nilpotent. The extended system for S1 is given

by

z = fi(z)u + fa(z)va + fa(z)vus

with  vi(z) = LpW(z), i=1,2,3, where W(z)=1%?% 22

and the logarithmic coordinates for S1 satisfy the following equations:

N = a
Y2 = Q@2
¥ = —va2+a3

(4.163)
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The following controls stabilize subsystem S1
T T . 2T

w@) = (F(@) +b((2) sin(F1)

us(z) = (WI(z)+bs(v¥(z)) cos(%rt)) (4.164)
where, b3 = %3.54491/(v] (z))//(T).
Stabilizing algorithm for a mobile robot with trailer:
Repeat the following steps until sufficient accuracy is achieved in reaching the origin:
Data: €>0

Step a: Apply the controls (4.164) to original system (4.158) until its trajectories converge to A'(Sy; €),
where :
def 5
S1 = {z€R’:z1=2z0=2z3=0, 24 #0, z5 #0}
(b): To generate motion along g4 = [g1, [91, 92]], apply the following controls

k1 sin(gTLrt)

uy
us = ko COS(‘Ll%r-t) (4.165)

until the system trajectories converge to N (Sz;€), where :

S ¥ (zeR°:z;=0& fi(z) =0}
= {z€ R®:z4 =0 & sin zo cos z3 =0}
= {z€R®:z4=2z =0}
(c): Again apply the control (4.164) until the system trajectories converge to NV (S3;¢) :
def 5
S3 = {2€R’:z1=2p=23=24=0, z5 #0}
(d): To generate motion along gs = [g1, [91, {91, 92]]], apply the following controls

u; = k3 sz'n(z%t)

6
up = ky cos(%t) (4.166)
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until its trajectories converge to A(Sy;€) :

Si Y (zeRS:z5=0& fo(2) = 0}
= {z€R°:25=0&sin(z2—25)cos 23 =0} ={z€ R®:2z5 = z, =0}

(e): Set e:= 5.

Simulation results are depicted in Figures 4.36 - 4.37 which confirm the applicability of combining

strategy. In simulation, the values k; = -2, k; = -3, k3 = —2.8, ky = 5, and T = 1.2 were used.
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FIGURE 4.36. Mobile robot with trailer : Plots of the controlled state trajectories ¢ —

((z1(¢), ..., z6(t)) versus time.
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FIGURE 4.37. Mobile robot with trailer : Plots of the controlled state trajectories z1(t)
zZ(t) along the controlled state

versus z4(t), and Lyapunov function V(z(t)) = + 37,

trajectories.
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CHAPTER 5

Conclusions and Future Research

In this dissertation, the problem of set point feedback stabilization of drift free systems was discussed

in the context of introducing two new feedback synthesis approaches :
(i) the guiding functions approach, and
(ii) the trajectory interception approach

Lie algebraic techniques were used and the importance of the introduced methods lies in the fact that
they do not necessitate converting system models into chained or power forms. The applicability of

both approaches was demonstrated on a variety of examples.

In this conclusion we briefly review the results of the preceding chapters, give some general obser-

vations, and make some suggestions for future work.

1. Review of the results
In Chapter 2:

e A novel concept of guiding functions is introduced which can be used as a tool for construc-

tion of new and effective feedback control strategies for drift free systems.

e A stabilizing control strategy based on this concept is first developed and analysed for sys-
tems of control deficiency order one in rectified form, but is also shown to apply to systems
of higher order control deficiency. The strategy is based on simple principles and employs
bounded, piecewise constant controls. The values of the guiding functions provide an on-line

convergence verification test.



5.1 REVIEW OF THE RESULTS

e It is shown that, under reasonable assumptions, the feedback control strategy yields global

asymptotic stabilization to a set point.

In Chapter 3:

e The guiding functions control strategy, introduced in Chapter 2, is first extended to a general

class of drift free systems, which need not be transformable to any special form, and requires
constructing two guiding functions. The strategy is extended further to a general class of

drift free systems by constructing m guiding functions.

A systematic method for the construction of guiding functions is introduced, and conditions
are stated which guarantee that the resulting feedback control strategy yields global asymp-

totic convergence to a desired set point.

The idea of combining sinusoidal steering with the guiding functions approach is also ex-

plored.

Applications of the strategy are discussed involving set point stabilization of several types
of models of drift free systems possessing different algebraic structures. In all examples, the

strategy proves very efficient in that it effectively leads to dead-beat control.

In Chapter 4:

e A systematic method for the synthesis of stabilising, time-varying feedback for a large class

of drift-free systems is presented.

The method shows how the averaging effect can be achieved by a (periodically repeated)

open loop solution to a control problem in logarithmic coordinates.

It is shown that the application of the trajectory interception approach is not limited to
systems whose controllability Lie algebra is nilpotent. The approach can successfully be ap-
plied to systems with non-nilpotent controllability Lie algebras by introducing approximate
models which generate nilpotent controliability Lie algebras. This is confirmed by several

examples.

For higher orders systems, the idea of decomposing the system model into subsystems (of
which one can be controlled by the trajectory interception approach and the other by simple

sinusoidally varying inputs) is explored.
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5.2 OBSERVATIONS

2. Observations

Generally, the concept of guiding functions, as introduced for the purpose of the construction of sta-
bilizing feedback, gives rise to piecewise constant controls. The first version of the method presented

in Chapter 2, however, has two disadvantages :

(i) To be effective, it requires the system to be written in a certain rectified form {(guiding func-
tions are then chosen to be guadratic functions). To apply the technique of this Chapter to
a broader class of drift free systems again necessitates the construction of a diffeomorphic

state feedback transformation which bring the system to a rectified form.

(ii) Although the control strategy of Chapter 2 is proved to asymptotically stabilize the system,
no bounds on the number of switchings are provided (which can be infinite) leading possibly

to non-practicable chattering controls.

The extended guiding functions strategy of Chapter 3 brings improvements exactly about the two

points listed above :

(a) Under the hypotheses of analytic vector fields and involutive distributions, the candidate
guiding functions {V;, V2} are constructed directly by the application of the Frobenius the-
orem (and thus need not be quadratic) and, more importantly, it is not require that the

system is written in a rectified form.

(b) Estimates of the minimum decrease of [Lg, Vi| (while V> stays constant) and the maximum
increase of |Lg, Vi| (while V3 is decreasing) are provided. Thus for a given € > 0, bounds
on the number of switchings and the time to reach the set B(0,¢€) can be computed off-line,
depending only of the size of the level set which contains the initial condition. Furthermore,

it is shown that introducing hysteresis on the switching controls leads to practical controllers.

(c) It is important to notice, however, that the guiding functions strategy is not a “feedback
control” in the classical sense which is understood to be given in terms of a single function
z — u(z) (see Step 2 of the strategy). For this reason, the terms “feedback control strat-
egy” or “control strategy” are used instead of terms “feedback control” or “feedback control
law”. However, the word “feedback” is justified as the control action of the strategy clearly
depends on z(t) € T - the point at which 7 is traversed, and the value of the state needs to

be accessible for measurement in order to implement the control.

The trajectory interception approach introduced in Chapter 4, provides time-varying feedback con-

trol laws. The following can be listed as its main properties :
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5.3 COMPARISON OF THE STRATEGIES

(1) The trajectory interception approach appears to be very effective for systems whose control-
lability Lie algebras contain only brackets of depth one. For systems whose controllability
Lie algebra contains brackets of higher order, the equations describing the evolution of the
logarithmic coordinates are more complicated and usually difficult to solve analytically. In
such cases numerical solutions should be sought or else the idea of decomposing the system

into simpler subsystems should be further explored.

(2) The trajectory interception approach provides for exponential rates of convergence to a de-

sired set point.

(3) The introduction of approximate models often permits significant simplification of the dif-
ferential equations describing the evolution of the logarithmic coordinates in the open-loop

problem formulation.

3. Comparison of the strategies

The control approaches developed can be compared as follows :

e The guiding functions approach provides feedback controls which are discontinuous in the
state while the trajectory interception approach leads to feedback control which are con-
tinuous in the state. Further, the trajectory interception approach can result in controls
which are also continuous in the time if the solution to the OCP is chosen in the sub-class

of continuous functions with equal end point values.

e Generally, the guiding functions strategy provides controls which are stabilizing only in the
sense of practical stabilization while the trajectory interception approach provides for stabi-

lization in the Lyapunov sense.

e The feedback controls obtained by the guiding functions approach yield global asymptotic
convergence to a desired set point and are often dead-beat. On the other hand, the trajec-
tory interception approach provides feedback controls which ‘generally’ result in only local

asymptotic convergence to a set point.

o For systems whose controllability Lie algebra contains Lie brackets of higher order, the guid-
ing functions approach is generally easier to implement than the trajectory interception

approach.
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5.4 FUTURE RESEARCH TOPICS
e The guiding functions approach appears to be more robust with respect to model error as
compared with the trajectory interception approach.

e In the trajectory interception approach arbitrary Lyapunov functions can be used while in
the guiding functions approach the comstruction of a Lyapunov function is a part of the

feedback control synthesis.

e The trajectory interception approach is more general in the sense that it applies directly (at
least theoretically) to systems whose controllability Lie algebra contains brackets of higher

order.

Both approaches lend themselves well to various improvements and generalizations.

4. Future research topics

A list of a few topics for future research is :

(i) Analysis of the robustness properties (with respect to both model error and external distur-

bances) of the strategies developed.

(ii) Generalization of the control strategies to systems with drift.

(iii) Accommodation of other control objectives such as trajectory tracking and steering to set

points under control and state constraints.

(iv) Observer based control when states are not accessible for measurement.
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APPENDIX A

1. Basic review of differential geometry

Diffeomorphism:

Let U C R™ and V C IR™ be open sets. A mapping f : U — V is a smooth map if all partial
derivatives of f, of any order, exist and are continuous. If m = n and f is bijective and both f and

f~! are smooth, then f is called a diffeomorphism and U and V are said to be diffeomorphic.
Manifolds:

A manifold of dimension n is a set M which is locally homeomorphic to IR™.

Local coordinate chart:

A local coordinate chart is a pair (¢,U), where ¢ is a function which maps points in the set U C M

to an open subset of IR™.

C* related and smooth atlas:

Two overlapping charts (¢,U) and (¥, V) are C® related if (1)~! o ¢ is a diffeomorphism where it
is defined. A collection of such charts with the additional property that the U's cover M is called a
smooth atlas.

Smooth manifolds:

A manifold M is a smooth manifold if it admits a smooth atlas.

Smooth map between smooth manifolds:

Let £ : M — N be a mapping between two smooth manifolds and let {¢,U) and (v, V') be coordinate
charts for M and N respectively. The mapping F : M = N is smooth if F =9 o Fog¢™! : ¢(U) -
¥(V) is smooth for all choices of coordinate charts on M and N. Similarly, F is a diffeomorphism



A.1 BASIC REVIEW OF DIFFERENTIAL GEOMETRY

if Fisa diffeomorphism for all coordinate charts.

Derivation:

Let M be a smooth manifold of dimension n and let p be a point in M. We write C*(p) for the set of
smooth, real-valued functions on M whose domain of definition includes some open neighbourhood

of p. A map X, :C*®(p) = IR is called a derivation if, for all @, 3 € IR and f, g € C*=(p), it satisfies

() Xplaf +89) = a(Xpf) +B(Xpg) (linearity)

(7)) Xp(fg) = (Xpf)9(p) + f(p)(Xpg) (Leibniz rule)
The set of all derivations X, : C*°(p) — IR defines a vector space over the reals with the operations

(Xp+Yp)f = Xpf+Ypf

(aXp)f = ofXpf)

Tangent space:

The tangent space of M at a point p, denoted T, M, is the set of all derivations X, : C*(p) = R.
Elements of the tangent space are called tangent vectors. Let (¢,U) be a coordinate chart on M
with local coordinates (zy, ....,zn). Then, the set of derivations {a%} forms a basis for T,M and
hence we can write

8 3
Xp=Xi go=+ ot X 5—

The vector (X1,...,X,) € IR™ is a local coordinate representation of X, € T,M.

Cotangent space:

Given the tangent space T, M to a manifold M at a point p, we define the cotangent space of M at
p, denoted T; M, as the set of all linear functions w, : T,M — IR. T, M is a vector space having the
same dimension as T, M and the elements of T,; M are called cotangent vectors. We write < wp, X >
for the action of a cotangent vector w, € T, M on a tangent vector X, € T,M. If {8—27, ey %} is
a basis for T, M corresponding to local coordinates (z1, ..., Zn), the dual basis for T; M is given by
{dzi, ....,dz.}, where

o]

< dz, _8—1:7>
7

= (si :
Given a function f: M — IR, we define a cotangent vector df (p) € T, M by

< df(p), X, >=X,(f), X,eT,M

227
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df (p) is called the differential of f. Relative to a chart (¢,U) with local coordinates (zy, --.., Zn),

df (p) is written as
of

Oz,

df(z) = %(r)dxl + ...+ (x)dz, where z = ¢(p)

Vector Field:

A vector field on IR™ is a smooth map which assign to each point z € JR™ a tangent vector f(z) €
TIR™, where T;JR™ is the tangent space to JR™ at a point z € IR". In local coordinates, we represent

f as a column vector whose elements depend on z,

[ fi(z)

flz) =

| fn(=) |
A vector field is smooth if each f;(z) is smooth. Vector fields are to be thought of as right-hand sides

of differential equations:
i = f(z) (A.1)
The rate of change of a smooth function V : IR™ — IR along the flow of f is given by
. 9V = oV
V= gf(x) = ; B—x;fi(z)

Covector fields :

The dual space of the tangent space T, IR"™ is the set of linear functions on T;/R™ and it is denoted
by T7IR™. The elements of T; IR™ are called cotangent vectors. A covector field or one-form on IR™
is a smooth map which assign to each point z € IR™ a cotangent vector w(z) € T, IR". In local

coordinates, we represent a smooth one-form w as a row vector
w(z) = [wi(z) wa(x) .- wn(z)]

where w; : IR™® — IR, i = 1, ...n are smooth functions. Differentials of smooth functions are examples

of one-forms. For example, if 8 : R™ — IR, then the one-form df is given by

_[o8 28 98
dﬂ—[a—zla--- azn]
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Note, however, the all one-forms are not necessarily the differentials of smooth functions ( a one-

form which does happen to be the derivative of a function is said to be exact).

Flow of a vector field:

If f is a vector field, we denote the parametrized maximal integral curve of the differential equation
z = f(z), passing through =z € IR™ at time zero, by cﬁ{(:z:), and call the mapping (¢, z) — ¢f(z) the
flow generated by f. Thus ¢f (z) : R® — R™ satisfies

do{(z)

e =f¢l) zeR"

Lie derivative :

The time derivative of V' along the flow of f is called the Lie derivative of V along f and is denoted
L,V:

def OV
LV = B

f(=z)
Complete vector field:
A vector field is said to be complete if its flow is defined for all ¢.

Remark:

By the existence and uniqueness theorem of ordinary differential equations, for each fixed ¢, ¢{ is a

local diffeomorphism of IR™*! onto itself. Further, it satisfies the following group property:
¢{ o ¢£ = ¢{+s

for all t and s, where o means the composition of the two flows, namely d){ (¢ ().
If there are two vector fields g; and g», the map ¢§' o ¢392 stands for the composition of the flow of

g2 for s seconds with the flow of g; for t seconds. In general,
B 000 # 9 0 8%
Motivation for the definition of a Lie bracket:

Consider the flow depicted in Figure A.1 starting from z,. It consists of a flow along g; for € seconds
followed by a flow along ¢; for € seconds, —g; for € seconds, and —g» for € seconds. For small €, we

can evaluate the Taylors series in e for the value of the state of the differential equation A.1 as:
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—€g2

nonzero
net motion

—€q

0
€0

g2
€G2

FIGURE A.1. A Lie bracket motion.

z(e) = ¢7'(z(0))

= 2(0) + e£(0) + %62:2(0) + (%)

1.8
zg + €g1(za) + 562 *5%:'91 (zo) + o(€®)

where the partial derivative of g, is evaluated at zo and the notation o(e*) represents terms of order

€. Similarly

z(2) = %2 0 49 (2(0))

1,4
8220 + €01(20) + 5 21 (o) + o(e?)]

1,8 ea
= 20 +egu(z0) + 56 T g1(30) + €ga(z0 + €91(20)) + 5 - 92(x0) + o)

2 Or
1,0 o) dgo
= 20+ elg1(z0) + 2(20)] + F€(Fm91(w0) + Fog2(z0) + 25 g1 (w0)] + o(<”)

where we have used the Taylor series expansion for

g2(zo + €g1(z0)) = g2(zo) + E%%gl(l'o) + o{€?)

Further,
z(3e) = @7 0P o ¢¥(z(0))

dg
ox

g2 ag 3
E‘!]I(zo) 2 3z 92(x0)] + o(€”)

2
= Iq +Egg(:ro) + %[ gg(l‘o) +2
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Finally, we get
z(de) = @92 0§ 0 ¢F* 0 ¢7'(z(0))
a3 7}
= zo+¢€ [?‘?91(1‘0) - %92(1‘0)] + o(€?) (A.2)
Motivated by the above calculation is the next definition.
Lie bracket:
A Lie bracket of two vector fields f and g is defined (in local coordinates) as:
_dg of
[fi9l(z) = a—zf(l') - a—zg(l‘)
If [f,g9] = 0 then the right hand side of equation A.2 is identically equal to o and f and g are said
to commute.

Properties of Lie brackets:

Given vector fields f,g,h on IR and smooth functions «, 8 : R® — IR, the Lie bracket satisfies the

following properties:

(1) Skew-symmetry: (f.9] = ~[g. f]
(2) Jacobi identity: (f.lg. R} + (A, [f. 9]l + [9.[h. FI| = O
(3) Chain rule: (af,Bg] = aBf,g] + a(LsB)g — B(Lya) f

where (Ls8) and (Lja) stand for the Lie derivative of 8 and a along the vector fields f and g

respectively.
(4) Jacobi identity: Lig g0 = Lg(Lga} — Ly(Lysa)

Lie algebra:

A vector space V ( over IR) is a Lie algebra if there exists a bilinear operator V x V' — V, denoted

[, ], satisfying
1. Skew-symmetry:

(v, w] = —[w,v] forall v,weV
2. Jacobi identity:

([v,w], 2] + [z, v],w] + [[w, 2],v] =0 for all v,w,z€V
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The vector space of all smooth vector fields on a manifold M is an infinite-dimensional Lie algebra

under Lie bracket operation on vector fields.

Lie sub-algebra:

A subspace W C V of a Lie algebra V is called a Lie sub-algebra if [v,w] € W for all v,w € W.

Lie group:

A Lie group is a2 group G which is also a smooth manifold and for which the group operations

(g,h) = gh and g — g~! are smooth.

Examples of Lie groups:

1 The Euclidean space under addition.

2 The general linear group, GL(n, IR); set of all n x n nonsingular real matrices, which can be

regarded as an open subset of R™.

3 The special orthogonal group, SO(n);

SO(n) ={R€ GL(n,R): RRT =1, detR=1}

The dimension of SO(n) is n(n —1)/2. For n = 3, the group SO(3) is also referred to as the

rotation group on IR3.

4 The special Euclidean group, SE(3); the set of mappings g : R? — IR® defined by g(z) =
Rz + p, where R € SO(3) and p € IR3. SE(3) can be identified with the space of 4 x 4

st

SE(3) is a Lie group of dimension 6.

matrices of the form

Distribution:

Let {g1,...,9m} be a set of vectors fields. Then for any fixed z € IR™, the vectors g,(z), ..., gm ()

span a vector space called a distribution. The distribution at a point = is denoted by:

A(z) = span{gi(z), ..., gm (z)}

If the spanning vector fields g;’s are smooth then the distribution is called a smooth distribution.
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Dimension of the distribution:
The dimension of a distribution at a point z € IR™ is the dimension of the vector space A(z).
Regular distribution:

The distribution is said to be regular if the dimension of the vector space A(z) does not vary with

z i.e. dim(A(z)) = constant, for all z € R".
Involutive distribution:

A distribution A(z) = span{fi(z),..., fm(z)} is tnvolutive if it is closed under the Lie bracket

oneration, i.e.,
A involutive <= V f,g€ A, [f,gleA

Codistribution:

Let {w,...,wm} be a set of covectors fields. Then for any fixed = € IR", the codistribution is defined
as:  Qz) = span{wi(z), ...,wr(z)}. If w; are smooth then the codistribution is called a smooth

codistribution.
Anunihilator:
The annihilator of A(z) is the set of all covectors which annihilates all vectors in A(z)
At(z) ={we(R™)" :<w,v>=0 V veAlx)}
Similarly the annihilator of Q(z) is defined as:
Ql(z)={veR" :<w,v>=0 V we€A(z)}
Integrable distribution:

A distribution A of constant dimension k is said to be integrable if for every point £ € IR™, there
exists a set of smooth functions h; : R® - IR, i = 1,...,n — k such that the row vectors %’;‘- are

linearly independent at z, and for every f € A(xz)

def Oh;

= Ef(z) =0, i=1,..n—k
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